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LAY ABSTRACT 

 

Many surgeries, chemotherapy, and transplantation will be impossible if antibiotic 

resistance is not addressed. Antibiotic misuse, overuse, and time to definitive therapy 

exacerbate this global health problem. Phenotypic testing determines definitive therapy, 

but bacterial culturing is slow. A potentially faster and more accurate approach relies on 

sequencing the pathogen’s genome.  

 

I used machine learning to generate antibiotic resistance prediction models that achieved 

average accuracies of 94% and 89% for Escherichia coli and Pseudomonas aeruginosa, 

respectively. These models identified novel relationships between known resistance genes 

and resistance phenotypes, which were experimentally validated.  

 

Resistance and susceptibility are interpretations of a minimum inhibitory concentration 

(MIC) using a clinical breakpoint guideline. Since there are different guidelines, I 

generated MIC prediction models with average accuracies of 86%, 41%, and 98% for E. 

coli, P. aeruginosa, and Neisseria gonorrhoea, respectively. 

 

My findings work towards a world where clinical sequencing and genomics-based 

diagnostics are the gold standard.  
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ABSTRACT 

Antimicrobial resistance (AMR) is a threat to global health, food security, and economic 

productivity. Infections caused by drug resistant Gram-negative pathogens, such as 

Escherichia coli, Pseudomonas aeruginosa, and Neisseria gonorrhoeae, are continuously 

becoming harder to treat due to limited treatment options and long turnaround times for 

culture-based phenotypic diagnosis. Alternatively, genotypic approaches that exploit 

whole genome sequencing have the potential to be faster and more accurate. Genotypic 

approaches rely on using bacterial genomes to predict AMR phenotypes. 

 

I generated a rules-based algorithm and machine learning models using known resistance 

determinants from bacterial genomes to predict resistance or susceptibility. 

I showed that machine learning was superior to a rules-based algorithm and achieved an 

average accuracy of 94% and 89% for E. coli and P. aeruginosa, respectively. These 

machine learning models identified novel AMR genotype-phenotype relationships 

between known resistance determinants and resistance phenotypes, which were 

experimentally validated. 

 

To identify the parameters that can improve machine learning models, I tested a variety of 

genetic features, algorithms, and evaluation metrics. I observed an intricate dependency 

between parameters for AMR prediction performance, illustrating that careful selection of 

parameters is required to generate accurate AMR prediction models. 

 

A limitation of this work was its prediction of resistance and susceptibility categories, as 

these are interpretations of minimum inhibitory concentrations defined by clinical 

breakpoint guidelines. Since multiple guidelines exist, these prediction models are not 

generalizable, so prediction of MIC values was explored. The average accuracy of my 

MIC prediction models was 86%, 41%, and 98% for E. coli, P. aeruginosa, and N. 

gonorrhoea, respectively.  

 

Despite the multifactorial and intricate nature of the resistome, I was able to accurately 

predict AMR phenotypes for many antibiotics for these pathogens. This is a step towards 

advanced diagnostic microbiology methods driven by genomics.  
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CHAPTER ONE: Introduction 
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ANTIMICROBIAL RESISTANCE 

By 1942, a mere 14 years after the discovery of penicillin by Sir Alexander 

Fleming in 1928, penicillin resistant infections were documented in hospitals 

(Lobanovska & Pilla, 2017). Over the next few years, penicillin-resistant Staphylococcus 

aureus infections became widespread in the community and hospitals (Rammelkamp, 

Maxon, & Medicine, 1942). Antimicrobial discovery followed by resistance is not unique 

to penicillin and has been observed time and time again (Ventola, 2015). Antimicrobial 

resistance (AMR) is a natural phenomenon whereby microorganisms resist the 

effectiveness of antimicrobials. Over time, AMR has become a global health problem that 

many national and international organizations are addressing with varying degrees of 

success. The World Health Organization approved a Global Action Plan in 2015 which 

included the launch of the Global Antimicrobial Resistance and Use Surveillance System, 

the first worldwide effort to standardize AMR surveillance (World Health Organization, 

2015, 2017a). The US Centers for Disease Control and Prevention estimated that in 2019 

more than 2.8 million AMR infections occur every year and 35,000 people die as a result 

(CDC, 2019). This was an increase from their 2013 report, where 2 million people had an 

AMR infection and 23,000 people died, illustrating AMR as a growing public health 

threat (CDC, 2013). In 2018, approximately 5,400 people died as a result of AMR in 

Canada, with an economic impact of $2 billion due to deaths and illnesses related to 

AMR infections (Council of Canadian Academies, 2019). The Canadian Antimicrobial 

Resistance Surveillance System also indicates that AMR infections are becoming more 
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prevalent, leading to increased illness, death, and healthcare costs (Public Health Agency 

of Canada, 2020).  

 Alongside misuse and overuse of antibiotics, we are currently in a shortage of new 

antibiotics because of scientific and structural (e.g., financial and regulatory) challenges 

(Silver, 2011; Zorzet, 2014). Most newly approved antibiotics are modifications of 

existing antibiotic classes, rather than novel classes (World Health Organization, 2021). 

One of the few exceptions is teixobactin, which is the first of a new antibiotic class that 

was discovered in 2015 and is currently in late-stage preclinical development (Ling et al., 

2015). One main barrier is that emergence of resistance to antibiotics is nearly inevitable 

(Ventola, 2015) and bacteria do so through a few main mechanisms, which include 

enzyme catalyzed antibiotic modifications, bypass of antibiotic targets, and efflux of 

drugs from the cell (G. D. Wright, 2011). Bacteria destroy or modify antibiotics to resist 

their action through hydrolysis or transfer of a chemical group, but bacteria can also 

protect or modify the antibacterial target site to reduce affinity for the antibiotic. Bacteria 

can further reduce permeability of the cell to antibiotics (i.e., reduce uptake of drug) or 

utilize machinery called efflux pumps to actively expel antibiotics from the cell. Bacteria 

can either acquire or intrinsically possess one or more of these resistance mechanisms. 

Acquisition of resistance can be attributed to either horizontal gene transfer from other 

cells or the generation of spontaneous AMR mutations that can be vertically transmitted. 

Yet even without acquired resistance, not all antibiotics are effective for all infections due 

to intrinsic resistance, a universal trait that is independent of antibiotic selective pressure 

and horizontal gene transfer (G. Cox & Wright, 2013). For example, Gram-negative 
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bacteria have an additional outer membrane which makes them impermeable to many 

antibiotics that are effective for Gram-positive bacteria. In addition, it is important to 

acknowledge the effects of AMR in microbial communities since bacteria seldom live as 

planktonic bacteria. Bacteria without AMR mechanisms are able to survive antibiotic 

treatment through tolerance, where they slow essential processes or interact with the 

host’s immune system or other bacterial species (Bottery, Pitchford, & Friman, 2021). 

Persistence, on the other hand, is when a small population of bacteria become dormant to 

allow survival of sub-population despite high antibiotic concentrations, allowing post-

treatment re-emergence of infection (Bottery et al., 2021). Additionally, bacteria can form 

biofilms when they attach to a surface and produce a hydrated matrix to create 

microenvironments that promote growth while protecting the microorganisms from 

external insult, such as antibiotic treatment (Patel, 2005). Collectively, all of the antibiotic 

resistance determinants and their precursors that are encoded in bacterial genomes or 

mobile genetic elements are called the ‘resistome’ (G. D. Wright, 2007). 

 

GENOMICS OF BACTERIA AND RESISTANCE  

Bacterial genomics is the study of the hereditary information of bacteria that can 

be vertically or horizontally transmitted. The field of bacterial genomics has grown 

exponentially since the bacterial genomes of Haemophilus influenzae Rd and 

Mycoplasma genitalium were first completely sequenced in 1995 (Fleischmann et al., 

1995; Fraser et al., 1995). Between 2015 and 2021, NCBI’s sequenced bacterial genome 

database grew from over 30,000 to 335,910 sequenced bacterial genomes (Land et al., 
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2015; NCBI Resource Coordinators, 2018). Simplification and cost reduction of 

sequencing technology has made bacterial genome sequencing affordable to researchers, 

which has shifted the cost and workload towards downstream bioinformatics analysis and 

data management.    

 Sanger sequencing in combination with whole genome shotgun sequencing, high-

throughput sequencing, and single molecule long-read sequencing are currently the three 

generations in sequencing technology (Loman & Pallen, 2015). Using any of these 

sequencing technologies generates short or long sequencing reads that are then trimmed 

for quality control, using tools such as Trimmomatic (Bolger, Lohse, & Usadel, 2014). 

Afterwards, they can be assembled into chromosomes and plasmids by aligning 

sequences to generate longer, contiguous consensus sequence fragments called contigs. 

Genome assembly methods include SPAdes, which will assemble chromosomes and 

plasmids (Bankevich et al., 2012), whereas HyAsP identifies only plasmid sequences 

(Müller & Chauve, 2019). In an ideal scenario, contigs represent the complete 

chromosome and plasmid sequence of the bacteria. However, in practice, sequencing 

errors and biases, along with repetitive DNA regions, are challenges for genome 

assemblers and often result in draft fragmented genomes instead of complete circular 

genomes (Treangen & Salzberg, 2011; Utturkar, Klingeman, Hurt, & Brown, 2017). 

Assembling only plasmid genomes, particularly large plasmids (>50kbp), is challenging 

because they contain shared repeat sequences and different k-mer (short nucleotide 

sequences) abundance profiles that are difficult to resolve using de Bruijn graph-based 

assemblers (Arredondo-Alonso, Willems, van Schaik, & Schurch, 2017). The former 
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difficulties are only exacerbated by potential contamination from non-target organisms, 

whose sequences can be incorporated into the contigs or causes misassembly of contigs 

(Goig, Blanco, Garcia-Basteiro, & Comas, 2020). Even with all the complexities of 

bacterial genome sequencing and assembly, using draft genomes provides practical 

information that can be used to understand evolutionary origin, transmission route, 

pathogenicity, and resistance potential of bacteria. While the complete genome sequence 

itself may not be resolved, the gene content of draft genomes is in the majority accurately 

represented by assembly data. 

 To understand the drivers of resistance in bacteria, the resistome, the part of the 

genome that encodes for resistance, can be annotated using a number of bioinformatics 

databases and tools. Typically, comparative sequence analysis is used to annotate 

potential resistance determinants using either a read-based or assembly-based approach. 

Trimmed sequence reads can be mapped onto a reference database or trimmed sequence 

reads can be assembled into contigs and then compared to a reference database. In the 

read-based approach, pairwise alignment tools based on the Burrows–Wheeler transform 

such as Bowtie2 and BWA are commonly used (Langmead & Salzberg, 2012; H. Li & 

Durbin, 2009), although recent work shows that AMR in particular may require a new 

class of algorithms due to its complex network of similar alleles (P. Clausen, Aarestrup, 

& Lund, 2018). In comparison, after assembly, pairwise alignment tools such as BLAST 

or DIAMOND are used to compare the assembly to a reference sequence database 

(Buchfink, Xie, & Huson, 2015; Madden, 2013). While an assembly-based approach 

requires more computational power, it allows for understanding of genomic context (e.g., 
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regulatory and mobile elements). However, genome mis-assembly, particularly if 

plasmids are involved (Robertson & Nash, 2018), can cause a loss of information 

compared to a read-based method.  

Regardless of the method, antibiotic resistance annotation is highly dependent on 

the reference sequence database used (Boolchandani, D'Souza, & Dantas, 2019; Xavier et 

al., 2016). The Comprehensive Antibiotic Resistance Database (CARD) is a curated 

collection of AMR determinants connected to the antibiotics they confer resistance 

towards using the Antibiotic Resistance Ontology (ARO) (Alcock et al., 2020). CARD’s 

Resistance Gene Identifier (RGI) software uses the information in CARD to predict AMR 

determinants from genomic sequence data. RGI works under three paradigms: 1) Perfect, 

the complete detection of a known AMR gene that has peer-reviewed evidence of 

experimentally elevated minimum inhibitory concentration, 2) Strict, the detection of 

previously unknown variants of known AMR genes, including mutations, that pass a 

curated bit score cut-off, and 3) Loose, the detection of new, emergent threats and distant 

homologs of AMR genes that fall below the bit score cut-off. The latter could be newly 

emerging AMR genes or spurious matches and require experimental validation. The 

Antibiotic Resistance Gene-ANNOTation database (Gupta et al., 2014) and Pathosystems 

Resource Integration Center (Davis et al., 2020; Wattam et al., 2017) store a similar 

breadth of resistance determinants as CARD and also use BLAST-based tools for 

resistome annotations. Antibiotic Resistance Genes Online (Scaria, Chandramouli, & 

Verma, 2005) only catalogues β-lactam and vancomycin resistance determinants, in 

comparison to ResFinder (Bortolaia et al., 2020) which primarily annotates acquired 
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resistance genes using BLASTN, while ResFams (Gibson, Forsberg, & Dantas, 2015) is a 

database of protein domain Hidden Markov Models associated with AMR functional 

domains. The dependency on reference sequence databases is an inherent limitation of 

antibiotic resistance determinant annotation because it requires active and, oftentimes 

manual, curation. Without addressing the dynamic nature of biocuration, exacerbated by 

the ever evolving resistome, important epidemiological data on newly discovered 

resistance determinants cannot be collected and incorrect annotations can perpetuate 

throughout literature. Antibiotic resistance genomic data increases as new mechanisms of 

resistance and genes are discovered, which then need biocuration into these databases, 

e.g., the discovery of NDM-1 and MCR-1 in 2009 and 2016, respectively (Y. Y. Liu et 

al., 2016; Yong et al., 2009), but also discovery of new antibiotics, e.g. teixobactin (Ling 

et al., 2015). Biocurators are also responsible for resolving gene/protein nomenclature 

conflicts and redundancy within and across databases, e.g., dhfr is often curated as dfrA 

(Xavier et al., 2016). Furthermore, curated resistance determinants may require editing 

when more accurate information is published. For example, CrpP was previously thought 

to be a ciprofloxacin-modifying enzyme, but it has recently been shown to not inactivate 

fluoroquinolones, including ciprofloxacin (Chavez-Jacobo et al., 2018; Zubyk & Wright, 

2021). Above all, biocurators already face lack of funding, curating increased volumes of 

data, and difficulties in convincing other scientists of the need and importance of 

databases (Burge et al., 2012). Lastly, while resistome annotation can identify the 

presence of resistance determinants, it does not necessarily infer expression or repression 

of a particular resistance phenotype.  
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GENOTYPE TO ANTIBIOTIC RESISTANT PHENOTYPE  

Antibiotic Resistant Phenotypes 

To determine suitable treatment and to monitor the spread of resistant microbes, 

antimicrobial susceptibility testing (AST) is routinely performed in clinical microbiology 

labs. AST is typically performed after bacterial culturing and species identification. 

Currently, the gold standard is culture-based (or phenotypic) AST, where it measures 

bacterial cell growth in the presence of an antimicrobial to determine the minimum 

inhibitory concentration (MIC) to inhibit growth. There are a number of methods to 

perform phenotypic AST, including disk diffusion, E-test / gradient test, and broth 

microdilution. Disk diffusion and gradient tests detect decreased or no visible growth 

within a zone of inhibition, whereas broth microdilution assesses for the lack of visibility 

in broth. There are also commercial semi-automated machines, which can read zones of 

inhibition in disc diffusion assays, and a number of automated broth dilution assays. 

Common underlying issues with all of these tests are that they require bacterial culturing 

and there are years of lag before new antimicrobials can be used in these routine methods. 

Practically, a full test run or validation set must be complete before testing on samples, 

which requires staff availability (van Belkum et al., 2019). Current turnaround times for 

most AST results are between 48h and 72h depending on the species and antibiotic 

combination. This time includes overnight incubation, where non-fastidious pathogens 

(e.g., Escherichia coli) require 16-18 hours of incubation but fastidious pathogens (e.g., 

Neisseria gonorrhoeae) could require 18-24 hours or even 4-8 weeks of incubation (e.g., 

Mycobacterium tuberculosis) (Ghodbane, Raoult, & Drancourt, 2014; Jorgensen & 
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Ferraro, 2000; Melendez, Hardick, Barnes, Page, & Gaydos, 2018). Another limitation of 

AST is that it is not globally standardized. Currently, there are two popular guidelines, the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical 

Laboratory Standards Institute (CLSI) (CLSI, 2018; EUCAST, 2015). There are a number 

of differences between EUCAST and CLSI guidelines that include AST methodology, 

cost, definitions of the ‘intermediate’ resistance category, and clinical breakpoints 

(Cusack, Ashley, Ling, Roberts, et al., 2019). Clinical breakpoints organize MICs into 

‘resistant’, ‘intermediate’, and ‘susceptible’ categories, which are then used to inform 

treatment or public health surveillance. Since clinical breakpoints are rarely aligned 

between EUCAST and CLSI, several laboratories have compared the consequences of 

using either guideline (Cusack, Ashley, Ling, Rattanavong, et al., 2019; Hombach, 

Mouttet, & Bloemberg, 2013; Kassim, Omuse, Premji, & Revathi, 2016; Rodríguez-

Baño, Picón, Navarro, López-Cerero, & Pascual, 2012; Wolfensberger et al., 2013).  

In contrast to culture-based methods, there are genotypic AST methods that rely 

on identifying specific resistance determinants using molecular or genomic approaches. 

Most currently used genotypic AST methods are rapid, culture independent, and 

polymerase chain reaction (PCR)-based. However, currently genotypic ASTs provide 

supplemental information that still requires validation with phenotypic AST and are only 

available for a small subset of clinically important resistance determinants. For example, 

the mecA resistance gene can be identified in Staphylococcus aureus through PCR within 

minutes, however phenotypic AST is still required to test for susceptibility towards other 

antibiotics to treat a mecA-identified methicillin-resistant infection (Banerjee & 
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Humphries, 2021; van Belkum et al., 2019). Additionally, the identification of resistance 

genes using genotypic AST is rarely completely correlated with phenotypic AST due to 

the multifactorial nature of AMR (Banerjee & Humphries, 2021). While there are limited 

molecular tests, there is also hesitation towards implementing whole genome sequencing 

technology in clinical microbiology labs due to added costs, turnaround time, and lack of 

evidence towards the clinical utility of AMR predictions (Rossen, Friedrich, & Moran-

Gilad, 2018). This latter point is best exemplified by the Gram-negative pathogens (e.g., 

Pseudomonas aeruginosa), where AMR genotype-phenotype relationships are difficult to 

predict.  

 

Genotype-Phenotype Antibiotic Resistant Relationships 

Since the resistome encompasses all genetic drivers of resistance, prediction of 

phenotypic resistance should be possible using bacterial genomes. In particular, acquired 

resistance mechanisms generally result in a predictable increase of resistance. For 

example, mutations in rpsL, rpoB, or gyrA genes always confer in an increased level of 

resistance towards streptomycin, rifampicin, or nalidixic acid, respectively (Hughes & 

Andersson, 2017). In addition, over 30 resistance genes in 76 E. coli correlate to 

phenotypes with 97.8% specificity and 99.6% sensitivity (Tyson et al., 2015). However, 

after decades of research on the resistome, it is evident that genotype does not always 

result in the expected phenotype for AMR. Part of the reason for this dissociation is that 

we collectively have not characterized the entire resistome and there are unknown genes 

and mutations (e.g., genetic dark matter) that influence phenotype. In addition to 
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unknowns in the genome, we also poorly understand the genetic context (in addition to 

resistance genes and mutations) and environmental changes that can cause the 

dissociation of genotype and phenotype.  

While we have characterized a number of resistance determinants, it is evident 

that some resistance phenotypes are shaped by the interplay of a combination of these 

resistance determinants and not individual genes or mutations. A notable exception is M. 

tuberculosis, which is genetically homogenous and where resistance can be caused by a 

single chromosomal mutation. Yet, in Gram-negative bacteria fluoroquinolone resistance 

involves mutations in antibiotic target genes, efflux regulators, and acquired resistance 

genes (Jacoby, 2005; Webber & Piddock, 2001). In fact, individual mutations were not 

shown to increase fluroquinolone MICs beyond clinical breakpoints (Marcusson, 

Frimodt-Moller, & Hughes, 2009). Resistance to β-lactams in N. gonorrhoeae and 

Streptococcus pneumoniae occurs by homologous recombination that produces mosaic 

genes, e.g., penicillin-binding proteins, whereas in Klebsiella pneumoniae β-lactamases 

are horizontally gene transferred via plasmids (Bush, 2013; Hakenbeck, Bruckner, 

Denapaite, & Maurer, 2012; Tapsall, 2009). There is also evidence of epistatic 

relationships, where resistance genes and/or mutations can interact and change a 

resistance phenotype. For example, in E. coli a mutation in GyrA (S83L) increases 

ciprofloxacin MIC to 0.25 μg/mL whereas a mutation in ParC S80I does not change the 

MIC (0.015 μg/mL), but together in a double mutant they increase the MIC by greater 

than additivity to 0.75 μg/mL (Huseby et al., 2017). Lastly, antibiotic resistance genes are 

subject to genetic amplification that can alter the resistance phenotype through copy 
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number (Hjort, Nicoloff, & Andersson, 2016). Along with the complexities of genetic 

context, environmental modulation of resistance phenotypes have also been observed. 

Microbial communities can form biofilms which have increased resistance phenotypes 

due to increased physical protection and altered growth physiology (Olsen, 2015). 

Antibiotic induced and metabolite modulated antibiotic resistance can also occur, where 

the presence of other small compounds can change a resistance phenotype (Hanson & 

Sanders, 1999; Thulin, Sundqvist, & Andersson, 2015). 

 

ANTIBIOTIC RESISTANCE PHENOTYPE PREDICTION  

Methods for Predicting Antibiotic Resistance Phenotypes 

To our knowledge, the first publication that compared AMR prediction based on 

whole genome sequencing and AMR phenotypes was published in 2013 (Zankari et al., 

2013). The authors demonstrated high concordance between AMR prediction and AMR 

phenotypes in Salmonella, E. coli, and Enterococcus (Zankari et al., 2013). AMR 

phenotype prediction using whole genome sequencing has been a growing field with 74 

publications between 2013-2021 (determined using the search terms "antimicrobial", 

"predict" "genome", “resistance”, “phenotype” in NCBI PubMed).  

Predicting antibiotic resistance phenotypes begins with selecting a dataset that 

includes features and resistance phenotypes. These genetic features are derived from the 

genome in the form of short nucleotide sequences, known resistance genes, or all 

observed mutations. The resistance phenotypes are the ‘resistant’/‘susceptible’ categories 

(i.e., qualitative) or minimum inhibitory concentrations (MICs) (i.e., quantitative). The 
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dataset should be evaluated for the number of samples, sparsity of data, and balance of 

resistance phenotypes (e.g., the less representative phenotype should have at least >10% 

prevalence in the dataset). If there is a low number of samples and imbalance of 

resistance phenotypes, the dataset can still be used for AMR prediction, however these 

limitations must be acknowledged and generalization may be difficult. Following dataset 

selection, rules-based, machine learning, and neural network algorithms have all been 

applied for AMR phenotype prediction (Figure 1-1).  
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Figure 1-1. Methods for AMR phenotype prediction. Rules-based methods use known 

resistance determinants and can only predict resistance (R) or susceptibility (S). Machine 

learning algorithms generate a model using the training dataset, where then the 

performance of the model is evaluated by using the test dataset. Neural networks use the 

training dataset to develop a network, where it is then evaluated using the test set.  

Machine learning and neural networks are able to predict R/S or minimum inhibitory 

concentrations.  
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Rules-based algorithms predict resistance based on the presence of resistance 

determinants and rely on expert and current knowledge, generally stored in AMR 

databases like CARD. For machine learning, the dataset of genotypes and phenotypes is 

split into a training and test set (Larranaga et al., 2006) and the algorithm learns patterns 

within the training dataset to generate a model. Typically, a number of different 

algorithms are tested and an evaluation metric (e.g., log loss) is used to select the final 

model that best predicts AMR phenotype for new data. Since the test set has not been 

used in training the final model, it provides an unbiased evaluation of the final model 

performance. Neural networks are similar to machine learning, except that the training set 

is used to make a network and the test set is used to evaluate the network’s performance 

and that they generally require larger datasets (Kröse, Krose, van der Smagt, & Smagt, 

1993). There are also neural network learning (optimization) algorithms that can be used, 

however testing many of them will require much more computational power than 

machine learning algorithms. Regardless of algorithm selected, prediction results are 

always compared to the laboratory-determined resistance phenotypes to evaluate 

prediction performance.  

 

Antibiotic Resistance Phenotype Prediction Parameters 

 AMR phenotype prediction using rules-based, machine learning, and neural 

networks are summarized in the following reviews (Lv, Deng, Zhang, & Health, 2020; 

Macesic, Polubriaginof, & Tatonetti, 2017; McDermott & Davis, 2021; Su, Satola, & 

Read, 2018). There are a number of AMR prediction publications that use a variety of 
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different datasets that span many Gram-negative and Gram-positive pathogens, including 

Acinetobacter baumannii, Campylobacter jejuni, Campylobacter coli, Escherichia coli, 

Enterococcus faecalis, Enterococcus faecium, Enterobacter aerogenes, Klebsiella 

pneumoniae, Mycobacterium tuberculosis, Neisseria gonorrhoeae, Pseudomonas 

aeruginosa, Staphylococcus aureus, Shigella sonnei, Salmonella enterica serovar Typhi, 

non-serovar Typhi Salmonella enterica, and Streptococcus pneumoniae (Table 1-1, 1-2). 

These datasets also include testing on a number of different antibiotics and use a variety 

of rules-based and machine learning parameters (Figure 1-2).  
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Figure 1-2. Parameters in machine learning for AMR phenotype prediction. In 

orange are the parameters of machine learning that can be selected by the researcher.  
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 In addition to dataset selection, there are many aspects to predicting AMR 

phenotypes including genetic feature selection, algorithm, and evaluation metric choice. 

For feature selection, whole genome sequences from an isolate can be used in a number 

of methods for AMR phenotype prediction. Sequences can be assembled into contigs and 

then annotated with known resistance genes (as previously described), divided into short 

nucleotide sequences of k length, called k-mers, or used to identify mutations relative to a 

reference. Using known resistance determinants relies on the quality and quantity of 

information within a reference sequence database and is inherently blind to any unknown 

resistance determinants. The available antibiotic resistance reference databases are not 

harmonized, resulting in discordant AMR prediction (Doyle et al., 2020; Mahfouz, 

Ferreira, Beisken, von Haeseler, & Posch, 2020). On the other hand, k-mers can span the 

entire bacterial genome, thus in theory they can be used to discover novel resistance 

determinants (Drouin et al., 2016; Drouin et al., 2019). Catalogs of mutations relative to a 

reference make a similar, but more discrete data set than k-mers but their performance is 

dependent upon the reference (Eyre et al., 2017; Niehaus, Walker, Crook, Peto, & 

Clifton, 2014). 

 For algorithms, rules-based methods, which rely on expert and current knowledge, 

make a resistant phenotype prediction based on presence of an AMR determinant and 

inversely, a susceptible prediction if the AMR determinant is absent (Bradley et al., 2015; 

Gordon et al., 2014; Hasman et al., 2014; Kos et al., 2015; B.J. Metcalf et al., 2016; 

Moran, Anantham, Holt, & Hall, 2016; Pesesky et al., 2016; Stoesser et al., 2013; Walker 

et al., 2015; Zankari et al., 2013). As such, rules-based methods are ‘hard-wired’ and lack 
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any potential unknown resistance determinants when making AMR phenotype 

predictions. In contrast, machine learning algorithms identify patterns within a dataset to 

infer AMR genotype-phenotype relationships when making AMR predictions. This 

approach can be advantageous because it is not limited to defined rules. Acknowledging 

that many techniques (e.g., logistic regression and random forest) are borrowed from the 

field of statistics for machine learning (ML) (Larranaga et al., 2006), the algorithms 

discussed will collectively be called ML algorithms to prevent confusion.  

There are two types of machine learning, supervised and unsupervised. Supervised 

learning uses prior knowledge of what the output (e.g., resistance phenotype) should be, 

whereas unsupervised learning seeks learn the structure of the data without explicitly 

provided prior knowledge. AMR phenotype prediction studies use supervised learning as 

we have the input (e.g., genetic features) and output (e.g., resistance phenotypes) and we 

want to learn the relationships (i.e., patterns) associating the input and the output to make 

new predictions. In this work, there are two types of supervised learning problems: 

classification and regression. The goal of a classification problem is to categorize the 

associations within the data into two or more classes (e.g., resistant or susceptible 

categories), whereas a regression problem predicts a continuous, quantitative output 

variable (e.g., minimum inhibitory concentration). The classification algorithms that have 

been used for resistant or susceptible prediction are logistic regression, decision tree, 

random forest, naïve Bayes, adaBoost, XGBoost, support vector machine, set covering 

machine, and neural networks. Over these, the simplest ML classification algorithm is 

logistic regression and is an extension of linear regression (D. R. Cox, 1958). The 
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decision tree algorithm creates a model by learning simple decision rules inferred from 

the features (Quinlan, 1986). Random forest is a combination of many decision trees, 

which makes it more difficult to interpret (Breiman, 2001). Naïve Bayes assumes 

independence among features when developing a model (Lewis, 1998), which may not 

best reflect interplay of AMR genes. AdaBoost includes sequentially growing decision 

trees that punish incorrectly predicted samples (i.e., assigns weights to incorrect values) 

to allow it to learn from previous mistakes (Freund & Schapire, 1996). Extreme gradient 

boosting (XGBoost) uses the best parts of random forests and AdaBoost to also increases 

speed and is able to ignore irrelevant features in the model (Friedman, 2001), which can 

be valuable for noisy data sets. Support vector machine is similar to logistic regression, 

but it attempts to find the largest margin that separates the prediction phenotypes 

(Suthaharan, 2016). Set covering machine learns conjunctions (e.g., gene 1 and gene 2) or 

disjunctions (e.g., gene 1 or gene 2) between the features to predict a phenotype 

(Marchand, Shawe-Taylor, Brodley, & Danyluk, 2002).  Lastly, modelled after the brain, 

neural networks consists of many processing nodes that, in its simplest form, are 

interconnected where information only moves in one (forward) direction (Wang, 2003). 

Random forest and XGBoost have also been used for quantitative MIC prediction, as has 

linear regression, which predicts AMR phenotype using the best straight line fit to a set of 

genetic features (Lai, Robbins, & Wei, 1978).  

 One of the remaining choices in AMR phenotype prediction is evaluation metric 

choice. For rules-based algorithms, results are reported via a confusion matrix: true 

positive (prediction and laboratory phenotype are both resistant), true negative (prediction 
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and laboratory phenotype are both susceptible), false positive / major error (prediction is 

resistant, but laboratory phenotype is susceptible) or false negative / very major error 

(prediction is susceptible, but laboratory phenotype is resistant). With the confusion 

matrix values, accuracy, recall/sensitivity, precision, F1 score, and specificity can be 

calculated and are used to report the results of AMR phenotype prediction (Ting, 2017), 

elaborated on further in Chapter 3. Unlike rules-based approaches, in machine learning 

choosing an evaluation metric is important for both model selection and assessment of the 

final model performance (e.g., results of AMR phenotype prediction). Similar to 

evaluation metrics used in rules-based algorithms, accuracy, recall/sensitivity, precision, 

F1 score, specificity, plus log loss (described in detail in Chapter 2 and 3) can be used for 

model selection and final model performance. Choosing one evaluation metric will have 

consequences and trade-offs towards other evaluation metrics. For example, when two 

models have different accuracy, precision, and log loss values, prioritizing one evaluation 

metric may come at the cost of another. One challenge in currently published AMR 

prediction models is lack of standardization of evaluation metric reporting, which makes 

it difficult to compare results.  
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Table 1-1. AMR prediction using rules-based algorithms. NR indicates not reported. 

In M. tuberculosis analyses, if uncharacterized mutations were included, this is indicated 

with an asterisk. Resistance determinants (RD) or only mutations were used in these 

studies.  

 

Species Database + Software Genetic Feature Reference 

Campylobacter coli 
Custom, ARDB, ResFinder 

+ BLASTx, ClustalW 
RD 

(S. Zhao et al., 
2015) 

Campylobacter 
jejuni 

Custom, ARDB, ResFinder 
+ BLASTx, ClustalW 

RD 
(S. Zhao et al., 

2015) 

ResFinder, PointFinder RD 
(Bortolaia et al., 

2020) 

Campylobacter spp. AMRFinder RD 
(Feldgarden et al., 

2019) 

Enterococcus 
faecalis, 

Enterococcus 
faecium 

ResFinder RD 
(Zankari et al., 

2013) 

ResFinder, PointFinder RD 
(Bortolaia et al., 

2020) 

ResFinder, NCBI 
Pathogens Database, 

BLASTn 
RD 

(Tyson, Sabo, 
Rice-Trujillo, 

Hernandez, & 
McDermott, 2018) 

Escherichia coli 

Custom + BLASTx, 
ClustalW 

RD 
(Tyson et al., 

2015) 

ResFinder RD 
(Zankari et al., 

2013) 

Custom + BLASTn RD 
(Stoesser et al., 

2013) 

AMRFinder RD 
(Feldgarden et al., 

2019) 

ResFinder, PointFinder RD 
(Bortolaia et al., 

2020) 

ResFinder, PointFinder RD 

(Aytan-Aktug, 
Clausen, 
Bortolaia, 

Aarestrup, & 
Lund, 2020) 

Helicobacter pylori CLC genomic Workbench RD (Tuan et al., 2019) 

Klebsiella 
pneumoniae 

Custom + BLASTn 
  

RD 
(Stoesser et al., 

2013) 

Mycobacterium 
tuberculosis 

PhyResSE + Stampy RD 
(Pankhurst et al., 

2016) 

TBDReaMDB, MUBII-TB-
DB minus phylogenetic 

SNPs + TB Profiler 
Mutations (Coll et al., 2015) 

NR Mutations 
(Miotto et al., 

2017) 

Custom + SAMtools, 
mpileup, Cortex 

RD 
(Walker et al., 

2015) 

Hain, Cepheid, 
AIDb assays, literature + 

Mykrobe 
RD 

(Bradley et al., 
2015) 

Stampy, Platypus RD 
(M. L. Chen et al., 

2019) 
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ResFinder, PointFinder RD 
(Aytan-Aktug et 

al., 2020) 

Custom RD (Yang et al., 2018) 

Mykrobe RD 
(Quan et al., 

2018) 

Neisseria 
gonorrhoeae 

Custom, BLAST, BWA 
mem 

RD (Eyre et al., 2017) 

Pseudomonas 
aeruginosa 

Custom + NR RD (Kos et al., 2015) 

Salmonella enterica 

ResFinder, PointFinder RD 
(Bortolaia et al., 

2020) 

ResFinder, PointFinder RD 
(Aytan-Aktug et 

al., 2020) 

AMRFinder RD 
(Feldgarden et al., 

2019) 

Salmonella 
enterica serovar 

Typhi 

CARD, ResFinder, 
literature + GeneFinder 

RD (Day et al., 2018) 

ARIBA, ResFinder, 
PointFinder 

RD 
(Mensah et al., 

2019) 

Non-typhoidal 
Salmonella enterica 

Custom + BLASTx, 
ClustalW 

RD 
(McDermott et al., 

2016) 

CARD, ResFinder + 
GeneFinder 

RD 
(Neuert et al., 

2018) 

CARD, RGI RD 

(Maguire, 
Rehman, Carrillo, 
Diarra, & Beiko, 

2019) 

Salmonella 
Typhimurium 

ResFinder RD 
(Zankari et al., 

2013) 

Shigella sonnei 
CARD, ResFinder + 

GeneFinder 
RD 

(Sadouki et al., 
2017) 

Staphylococcus 
aureus 

Custom + BLASTn, 
tBLASTn 

RD 
(Gordon et al., 

2014) 

Custom + BLASTn RD 
(Aanensen et al., 

2016) 

Custom + Mykrobe RD 
(Bradley et al., 

2015) 

Custom + Mykrobe, 
GeneFinder, Typewriter 

RD 
(Mason et al., 

2018) 

ResFinder, PointFinder RD 
(Bortolaia et al., 

2020) 

ResFinder, PointFinder RD 
(Aytan-Aktug et 

al., 2020) 

Streptococcus 
pneumoniae 

SRST2 RD 
(Deng et al., 

2016) 
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Table 1-2. AMR prediction models using machine learning algorithms. Machine 

learning algorithms include, gradient boosted trees (GBT), random forest (RF), class-

conditional Bernoulli mixture model (CBMM), neural networks (NN) AdaBoost (AdaB), 

support vector machine (SVM), linear regression (LinR), XGBoost (XGB), logistic 

regression (LogR), set covering machine (SCM), classification and regression trees 

(CART). Studies that also or only predicted MICs are highlighted in yellow.  

 

Species ML algorithm Genetic Feature Reference 

Acinetobacter baumannii AdaB k-mers (genome) (Davis et al., 2016) 

RF k-mers (genome) (Santerre et al., 2016) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

XGB RD (Kim et al., 2019) 

SCM, RF k-mers (genome) (Hicks et al., 2019) 

Actinobacillus 
pleuropneumoniae 

SVM, SCM k-mers (Z. Liu et al., 2020) 

Enterobacter aerogenes LogR RD (ResFams) (Pesesky et al., 2016) 

Enterococcus faecium CART, SCM k-mers (genome) (Drouin et al., 2019) 

Escherichia coli 

LogR RD (ResFams) (Pesesky et al., 2016) 

GBT 
 

Population structure, isolation 
year, gene content 

(Moradigaravand et al., 
2018) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

NN, RF RD (ResFinder+PointFinder) (Aytan-Aktug et al., 2020) 

RF, LinR 
Mutations (raw reads) + RD 

(ResFinder) 
(Pataki et al., 2020) 

SVM Pangenome 
(Hyun, Kavvas, Monk, & 

Palsson, 2020) 

XGB RD (Kim et al., 2019) 

Klebsiella pneumoniae LogR RD (ResFams) (Pesesky et al., 2016) 

AdaB k-mers (genome) (Long et al., 2017) 

XGB k-mers (genome) (Nguyen et al., 2018) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

XGB RD (Kim et al., 2019) 

SCM, RF k-mers (genome) (Hicks et al., 2019) 

XGB Conserved genes (non-AMR) 
(Nguyen, Olson, Shukla, 
VanOeffelen, & Davis, 

2020) 

RF Partial genome alignments (Aytan-Aktug et al., 2021) 

Mycobacterium 
tuberculosis 

AdaB k-mers (genome) (Davis et al., 2016) 

RF k-mers (genome) (Santerre et al., 2016) 

LogR, 
RF,CBMM, 

SVM 
RD (Yang et al., 2018) 
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SVM Pangenome (Kavvas et al., 2018) 

NN RD (M. L. Chen et al., 2019) 

XGB Conserved genes (non-AMR) (Nguyen et al., 2020) 

NN, RF RD (ResFinder+PointFinder) (Aytan-Aktug et al., 2020) 

RF Partial genome alignments (Aytan-Aktug et al., 2021) 

XGB Conserved genes (non-AMR) (Nguyen et al., 2020) 

Neisseria gonorrhoeae LinR RD (custom) (Demczuk et al., 2016) 

LinR RD (custom) (Eyre et al., 2017) 

LinR RD (custom) 
(Eyre, Golparian, & 

Unemo, 2019) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

SCM, RF k-mers (genome) (Hicks et al., 2019) 

LinR RD (custom) (Demczuk et al., 2020) 

Peptoclostridium difficile CART, SCM k-mers (genome) (Drouin et al., 2019) 

Pseudomonas 
aeruginosa 

SVM Pangenome +RD (Hyun et al., 2020) 

XGB RD (Kim et al., 2019) 

Salmonella enterica 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

XGB RD (Kim et al., 2019) 

XGB Conserved genes (non-AMR) (Nguyen et al., 2020) 

NN RD (ResFinder+PointFinder) (Aytan-Aktug et al., 2020) 

RF Partial genome alignments (Aytan-Aktug et al., 2021) 

Nontyphoidal Salmonella 
enterica 

XGB k-mers (genome) (Nguyen et al., 2019) 

LogR, SCM RD (Maguire et al., 2019) 

Staphylococcus aureus RF Assembly (Custom database) (Alam et al., 2014) 

RF k-mers (genome) (Santerre et al., 2016) 

AdaB k-mers (genome) (Davis et al., 2016) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

XGB RD (Kim et al., 2019) 

XGB Conserved genes (non-AMR) (Nguyen et al., 2020) 

SVM Pangenome +RD (Hyun et al., 2020) 

NN RD (ResFinder+PointFinder) (Aytan-Aktug et al., 2020) 

Staphylococcus 
haemolyticus 

CART, SCM k-mers (genome) (Drouin et al., 2019) 

Streptococcus 
pneumoniae 

AdaB k-mers (genome) (Davis et al., 2016) 

RF k-mers (genome) (Santerre et al., 2016) 

RF Penicillin-binding proteins (Y. Li et al., 2017) 

CART, SCM k-mers (genome) (Drouin et al., 2019) 
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RESEARCH GOALS 

My overarching research goal was to improve AMR genotype-phenotype 

prediction, examining the impact of different data, feature, algorithm, and evaluation 

choices. In the new and active field of genomics-based diagnostic microbiology, broadly 

testing new and existing methods is the only way to reveal knowledge and, eventually, 

achieve a gold standard clinical tool.   

Only one published study uses CARD and RGI to predict AMR phenotypes. Even 

for database-independent methods, there are only a few studies that use known resistance 

determinants as features in machine learning, whereas most others use k-mers. For 

database-independent methods, we have applied different machine learning methods to 

identify which result in highest accuracy, yet also have interpretable models. Interpretable 

machine learning models are essential to understanding which genetic determinants are 

driving phenotypic resistance and to expand our knowledge of the underlying resistance 

mechanisms. I explored machine learning using different genetic features as a basis for 

predicting resistance, such as known resistance determinants versus all observed 

mutations (base substitutions, insertions, and deletions relative to a reference genome). 

Thus, a major goal of this thesis was to compare database dependent and independent 

methods for prediction of resistance phenotypes for clinical isolates and to elucidate the 

underlying AMR genotype-phenotype relationships.  

While it is often sufficient to predict ‘resistant’ and ‘susceptible’ classifications, 

this method can be imprecise as these classifications are determined based on the 

minimum inhibitory concentration (MIC) value relative to a clinical breakpoint that is 
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different depending on the chosen guideline. For example, the piperacillin resistant MIC 

breakpoint for Enterobacteriaceae is different for the EUCAST guideline (>16μg/mL) 

compared to the CLSI guideline (≥128μg/mL). Another limitation is the lack of curation 

clarity as any resistance determinant that exemplifies an elevated MIC value compared to 

control can be curated into CARD, but the value of elevation is not recorded. Thus, 

detecting a CARD resistance determinant assumes the isolate is resistant; however, the 

MIC elevation in the literature may not surpass a clinical breakpoint value of ‘resistant.’ 

As a result, the second major aim of this thesis was to predict MIC values using machine 

learning, while maintaining the ability to learn genotype-MIC associations. 
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CHAPTER TWO: Identifying novel β-lactamase substrate activity through in silico 

prediction of antimicrobial resistance 

 

CHAPTER TWO PREFACE 
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ABSTRACT 

Diagnosing antimicrobial resistance (AMR) in the clinic is based on empirical 

evidence and current gold standard laboratory phenotypic methods. Genotypic methods 

have the potential advantages of being faster and cheaper, and having improved 

mechanistic resolution over phenotypic methods. We generated and applied rule-based 

and logistic regression models to predict the AMR phenotype from Escherichia coli and 

Pseudomonas aeruginosa multidrug-resistant clinical isolate genomes. By inspecting and 

evaluating these models, we identified previously unknown β-lactamase substrate 

activities. In total, 22 unknown β-lactamase substrate activities were experimentally 

validated using targeted gene expression studies. Our results demonstrate that generating 

and analysing predictive models can help guide researchers to the mechanisms driving 

resistance and improve annotation of AMR genes and phenotypic prediction, and suggest 

that we cannot solely rely on curated knowledge to predict resistance phenotypes. 
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INTRODUCTION 

Antimicrobial resistance (AMR) is a global health crisis accelerated by overuse 

and misuse of antimicrobials. Amongst Gram-negative pathogens, AMR Escherichia coli 

and Pseudomonas aeruginosa are of urgent and critical concern. The World Health 

Organization has reported high resistance to fluoroquinolones and third-generation 

cephalosporins when treating urinary tract E. coli infections, leading to reliance on 

carbapenems as a last-resort treatment option (World Health Organization, 2014), while 

the US Centers for Disease Control and Prevention estimates nearly 32 600 antibiotic-

resistant P. aeruginosa infection-related hospitalizations in the USA alone in 2017, to 

which 2700 deaths were attributed (CDC, 2019). 

Currently, the gold standards for diagnosing antibiotic resistance are culture-based 

phenotypic methods. However, the turnaround time for antibiotic susceptibility tests often 

surpasses the optimal time for life-threatening infection treatment (Maugeri, Lychko, 

Sobral, & Roque, 2019; Maurer, Christner, Hentschke, & Rohde, 2017) Furthermore, 

phenotypic tests do not reveal the genetic underpinnings of resistance. As such, genotypic 

methods that exploit high-throughput DNA sequencing technology combined with 

bioinformatics resources have the potential to be faster and more accurate and informative 

than the current phenotypic paradigm (Chan, 2016). There is growing momentum toward 

whole-genome sequencing of clinical infections, but there is a lag in the development of 

bioinformatic platforms that can accurately predict phenotypes such as virulence and 

AMR, which is essential for the full application of rapid pathogen sequencing as a robust 

diagnostic tool. Most sequencing pipelines rely on an AMR sequence database to predict 
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functional AMR genes from DNA sequences (Crofts, Gasparrini, & Dantas, 2017), of 

which there are many. For example, the Comprehensive Antibiotic Resistance Database 

(CARD) is an ontology-driven genomics database used by the Resistance Gene Identifier 

(RGI) software to predict intrinsic and acquired resistance determinants in genome 

sequences (Alcock et al., 2020). The Antibiotic Resistance Gene-ANNOTation database 

(Gupta et al., 2014) and Pathosystems Resource Integration Center (Wattam et al., 2017) 

store a similar breadth of resistance determinants to CARD and also use blast-based tools 

for resistome annotations. Antibiotic Resistance Genes Online (Gupta et al., 2014) only 

catalogues β-lactam and vancomycin resistance determinants, in comparison to ResFinder 

(Zankari et al., 2012), which primarily annotates acquired resistance genes using 

BLASTN, while ResFams (Gibson et al., 2015) is a database of protein domain hidden 

Markov models associated with AMR function. 

Despite our dependence upon curated AMR databases for genotype analysis and 

prediction of phenotypes, maintaining and developing AMR databases and tools are 

challenging due to the ever-evolving AMR genetic landscape, inconsistencies in AMR 

gene nomenclature, sparsity of phenotypic data and lack of funding for biocuration 

(McArthur & Tsang, 2017; van Belkum et al., 2019). Without comprehensiveness in 

phenotypic testing, such as antibiotic susceptibility testing using a broad panel of 

antibiotics, all of these databases will inherently be missing the full range of a resistance 

determinant’s substrate specificity. Yet, as β-lactams are the most commonly used 

antibiotic (Cantu, Huang, & Palzkill, 1997), there is strong motivation in the AMR field 

to identify the substrate specificity of clinically prevalent β-lactamases (Cantu et al., 
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1997; Chiou, Leung, & Chen, 2014; Jacquier et al., 2013; Khan, Sallum, Zheng, Nau, & 

Hasan, 2014; Majiduddin & Palzkill, 2005), particularly with regard to β-lactams new to 

the marketplace. Despite the development of gene-based antibiotic susceptibility testing 

tools such as the Antibiotic Resistance Platform (G. Cox et al., 2017), when novel β-

lactamases emerge in clinical settings they are often only characterized using a limited 

selection of β-lactams, or are assumed to have similar substrate activity to a related β-

lactamase. This leads to knowledge gaps in AMR databases for β-lactamase substrate 

specificity. In the face of missing experimental data, the prediction of novel substrate 

specificities for known β-lactamases can be performed using statistical modelling and 

machine learning methods (Davis et al., 2016; Drouin et al., 2016; Pesesky et al., 2016). 

While these statistical models can be used to discover novel genotype–phenotype 

relationships, they often require large and diverse datasets to be effective. Previous 

studies have used rule-based and statistical models to predict antibiotic resistance 

phenotypes from genotypes, but only a few studies provide genotype–phenotype 

associations (Davis et al., 2016; Drouin et al., 2016; Pesesky et al., 2016).  

Here we report the in silico prediction of genotype–phenotype associations and 

substrate specificities for AMR determinants from multidrug-resistant E. coli and P. 

aeruginosa clinical isolates using two computational approaches (rules-based and logistic 

regression) based upon CARD’s RGI (Alcock et al., 2020). The rules-based method uses 

new software (the Efflux Pump Identifier) to account for overexpressed multi-component 

efflux pumps as well as hand-curated knowledge encoded by CARD’s Antibiotic 

Resistance Ontology (ARO). This method helped identify gaps in CARD’s curated 
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knowledge of β-lactam substrate activity that contributed to poor β-lactam resistance 

phenotype prediction. We then performed logistic regression on the same data, observing 

higher prediction accuracy across most antibiotic resistance phenotypes. We were then 

able to experimentally validate the predicted genotype–phenotype relationships (i.e., 

learned weights) used by logistic regression to identify previously unknown β-lactamase 

substrate activities. 
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METHODS 

Bacterial isolates, antibiotic susceptibility testing, and DNA extraction 

Clinical bacterial isolates were obtained from the IIDR Clinical Isolate Collection, 

which consists of isolates from the core clinical laboratory at Hamilton Health Sciences, 

Hamilton, Ontario. Samples were collected between 2015 and 2018 and were resistant to 

3 or more antibiotics based on antimicrobial susceptibility to 18 and 17 antibiotics for E. 

coli and P. aeruginosa, respectively. As ertapenem lacks activity against P. aeruginosa 

(Livermore, Sefton, & Scott, 2003), it was not included in P. aeruginosa antibiotic 

susceptibility tests. Initial culture and antibiotic susceptibility testing (AST) were 

performed by Hamilton General Hospital General Microbiology Laboratory using a 

VITEK 2 Automated System and its Advanced Expert System (BioMérieux, Marcy-

l′Étoile, France), compliant with the Clinical and Laboratory Standards Institute (CLSI) 

(CLSI, 2018) antibiotic susceptibility testing formulations, reporting CLSI breakpoint-

determined susceptible (S), intermediate (I), or resistant (R). For DNA extraction, isolates 

were provided on blood agar plates and single colonies were restreaked onto brain heart 

infusion (BHI) agar. After overnight incubation, single colonies of each isolate were used 

to inoculate Luria–Bertani (LB) broth. Overnight broth cultures were used to prepare 

glycerol stocks for long-term storage at −80 °C. One millilitre of the same overnight 

cultures was centrifuged, the supernatant was removed and the pellet was stored at −80 °C 

for genomic DNA extraction. The Invitrogen Pure Link Genomic DNA Mini kit 

(K182002) was used for DNA extraction from pellets. DNA was eluted with water and 

stored at 4 °C. 
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Whole-genome sequencing, assembly and species identification 

DNA sequencing library construction (Illumina Nextera XT DNA Library 

Preparation kit or NEBNext Ultra II DNA Library Preparation kit) and all sequencing 

runs were performed at the Farncombe Metagenomics Facility at McMaster University 

using 2×150 bp paired-end sequencing on an Illumina HiSeq 1500 platform (E. coli 

n=115, P. aeruginosa n=92) or 2×250 bp paired-end sequencing on an Illumina MiSeq v3 

platform (P. aeruginosa n=10). Paired sequencing reads were trimmed using 

Trimmomatic (v0.36) (Bolger et al., 2014), checked for quality using fastqc (v0.11.8, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (Andrews, 2010) and de novo 

assembled using SPAdes (v3.9.0) (Bankevich et al., 2012). The Livermore Metagenomics 

Analysis Toolkit (lmat, v1.2.6) (Ames et al., 2013) was used to confirm bacterial species 

and screen for contamination or mixed culture. For E. coli, after quality trimming of the 

sequencing reads by Trimmomatic, sequencing isolate read coverage averaged 207.5-fold, 

assembly size averaged ~5,163,879 bp and N50s averaged 231,879 bp. For P. aeruginosa, 

quality-trimmed sequencing read coverage averaged 100.6-fold, assembly sizes averaged 

6 ,680, 703 bp and assembly N50s averaged 260,849 bp. Diversity of isolates for both E. 

coli and P. aeruginosa was assessed by multilocus sequence typing (MLST) via 

comparison to the reference sequences available at pubMLST 

(https://github.com/agmcarthur/pubMLST) (Jolley, Bray, & Maiden, 2018). 
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Curation of CARD 

At minimum, CARD requires the curation of a 

‘confers_resistance_to_drug_class’ relationship between an AMR gene family and a drug 

class in the ARO. However, to predict specific drug resistance phenotypes we needed 

curation of a ‘confers_resistance_to_antibiotic’ relationship between an individual 

resistance gene or mutation and a specific antibiotic. The curation of 

‘confers_resistance_to_antibiotic’ relationships is incomplete in CARD and is 

determined by experimental evidence of an elevation of MIC in the published literature 

(Alcock et al., 2020). Using extensive literature review, we curated 

‘confers_resistance_to_antibiotic’ relationships for all resistance determinants identified 

as RGI Perfect or Strict RGI hits for our E. coli and P. aeruginosa isolates: an additional 

250 ‘confers_resistance_to_antibiotic’ relationships (152 E. coli and 98 P. aeruginosa) 

were added to CARD (available as of v2.0.2). During the curation process we also 

identified two errors in CARD curation. These included incorrect inclusion of mutation 

Y45C in the E. coli protein NfsA as conferring resistance to nitrofurantoin and the β-

lactamase gene SHV-1 as conferring resistance to cefazolin. In both cases, the original 

publications lacked clear experimental support for these claims. 

To additionally improve efflux pump prediction and facilitate the functionality of 

the Efflux Pump Identifier (EPI), E. coli and P. aeruginosa efflux meta-models (a 

combination of individual models) were curated into CARD v1.1.9, based on review of 

the literature. Efflux meta-models comprise protein homologue and/or protein 

overexpression models to represent a known efflux pump complex and its regulatory 
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network. For example, the AcrAB-TolC efflux system (ARO:3000384) is encoded along 

with its regulatory network: marR, marA, acrR, sdiA, soxS, soxR, and rob. In this meta-

model, each component is a protein homologue model with the exception of marR, acrR, 

and soxS, which are protein overexpression models. We curated 21 P. aeruginosa efflux 

pump meta-models, 10 E. coli efflux pump meta-models and 2 plasmid-borne efflux 

pump meta-models known to confer resistance to the 18 antibiotics tested in this study for 

analysis by EPI. 

 

Rules-based prediction of antibiotic susceptibility phenotypes 

Isolate genomes were analysed using the Comprehensive Antibiotic Resistance 

Database (v2.0.2) and Resistance Gene Identifier (v4.1.0) (Alcock et al., 2020), plus the 

new EPI (v1.0.0) software developed by KKT, to predict resistance determinants. The 

EPI predicts multi-component efflux pumps and their regulatory networks using the 

efflux meta-models curated in CARD (https://git.io/JJFhT). RGI and EPI results were 

filtered to only include RGI Perfect and Strict hits, and EPI Perfect and Partial hits, 

respectively. Antibiotic susceptibility phenotypes were predicted by traversing CARD’s 

Antibiotic Resistance Ontology (ARO) to identify the antibiotic(s) each detected 

resistance determinant confers resistance to, based on peer-reviewed literature. In this 

rules-based method, the detection of a resistant determinant by RGI or EPI that had a 

‘confers_resistance_to_antibiotic’ relationship to an antibiotic in the ARO resulted in a 

‘resistant’ phenotype prediction, otherwise a ‘susceptible’ phenotype was predicted. 

Computational antibiotic susceptibility predictions were then compared to clinical ASTs. 
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As AST ‘intermediate’ resistances were rare (2.2 % of P. aeruginosa resistance 

phenotypes and 3.6 % of E. coli resistance phenotypes), we treated them as ‘resistant’ in 

our analyses. 

 

Using logistic regression to predict antibiotic resistance phenotypes 

To prepare the datasets, all RGI results for each species were collated into count 

matrices Xij where i represents each genome of that species and j represents a specific 

AMR determinant detected by RGI at either Strict or Perfect cut-offs. There were 189 and 

133 resistance determinants in the E. coli and P. aeruginosa matrix, respectively. The 

most appropriate algorithm for phenotype prediction was determined using the E. coli 

data, as these comprised the more balanced dataset. For each antibiotic, the resampled 

training data were used to fit four interpretable binary classification models: logistic 

regression, multinomial naïve Bayes, decision tree and random forest classifiers 

(Pedregosa, Varoquaux, Gramfort, & Michel, 2011). For each model the hyperparameters 

were then tuned using a threefold stratified shuffle split cross-validation scheme and 

evaluated using a negative log loss scoring function (Pedregosa et al., 2011), as negative 

log loss considers prediction uncertainty in relation to the divergence of the predicted 

probabilities and the actual AMR phenotype. Logistic regression and random forest 

classifiers had the highest performance of all tested modelling methods, so we chose 

logistic regression, a simpler algorithm, as our classification paradigm under the principle 

of parsimony. To predict each antibiotic resistance phenotype, antibiotic-specific LR 

models were trained, optimized via cross-validation and tested separately for each species 
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dataset. To determine whether each species and antibiotic dataset was phenotypically 

balanced enough for LR, the relative proportion of resistant predictions to susceptible 

predictions was evaluated. If the less frequent phenotype represented <10 % of all 

genomes it was considered inappropriate to train and properly test a model due to extreme 

class imbalance and low signal. For these antibiotics an ‘unbalanced classifier’ was 

trained and evaluated using all genomes of that species. Some antibiotics displayed an 

even more extreme case of imbalance where only a single phenotype was observed. For 

these, a ‘dummy’ model was used that only returned the observed phenotype (i.e. all 

observed isolates were resistant to an antibiotic and therefore the model always predicts 

resistance). For the remaining species-antibiotics combinations with greater label balance, 

20 % of the genomes were randomly selected with stratification (i.e. maintaining the 

relative proportion of susceptible to resistant) and withheld as a test set. The training set 

was then rebalanced using the synthetic minority over-sampling technique (SMOTE) 

(Chawla, Bowyer, Hall, & Kegelmeyer, 2002) as implemented in imbalanced-learn 

(v0.3.3) (Lemaître, Nogueira, Learning, & 2017, 2017) to generate a training set with 

equal proportions of susceptible and resistant genomes. After training of the E. coli 

models, the P. aeruginosa training data were used to fit and optimize logistic regression 

models via the same threefold stratified cross-validation scheme. 

The individual trained antibiotic–species logistic regression models (including 

unbalanced and dummy classifiers) were evaluated against the test set to see if they could 

predict AMR phenotypes, with evaluation using precision–recall curves (summarized as 

average precision) and the receiver operating characteristic (summarized as area under the 
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curve) (Supplementary Figure 2-1 to 2-3) (Saito & Rehmsmeier, 2015). A test with 

perfect discrimination between resistance and susceptible phenotypes would have a 

receiver operating characteristic curve that passes through the upper-left corner 

(Supplementary Figure 2-1, 2-2). For each species the number of true positives, true 

negatives, false positives and false negatives was tallied and plotted for each antibiotic. 

To evaluate which resistance determinants within each classifier were important for 

predicting resistance phenotypes, we considered the estimated coefficients (scikit-learn’s 

coef_attribute) as the ‘weight of importance’ for each resistance determinant. Thus, given 

two resistance determinants, each with an estimated coefficient value, the resistant 

determinant with a larger estimated coefficient value was interpreted as more important 

for predicting a particular resistance phenotype. The five most highly weighted predictors 

of each resistance phenotype were examined (Supplementary Figure 2-4,2-5), but all 

feature weights of importance and their P-values were inspected and are listed in 

Supplementary Tables S2–S5 available online: https://doi.org/10.1099/mgen.0.000500. 

 

Antibiotic susceptibility testing (AST) using the Antibiotic Resistance Platform 

In cases where we wished to perform AST for individual resistance genes, we 

cloned these genes into pGDP1/pGDP3 from the Antibiotic Resistance Platform (G. Cox 

et al., 2017) and transformed into wild-type E. coli BW25113. AST was performed for E. 

coli BW25113 using the microdilution broth method, with the inoculum prepared using 

the growth method following CLSI guidelines (CLSI, 2018). Plates were sealed in a bag 
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and incubated for 18 h at 37 °C, 250 r.p.m. before the optical density at 600 nm was 

measured using the Spectramax microplate reader. 

 

Software availability 

CARD data and RGI software are available at the CARD website, 

http://card.mcmaster.ca. CARD (v2.0.2) and RGI (v4.1.0) were used for all resistome 

prediction, and RGI (v.5.1.0) was used for creating the heatmaps. The EPI software is 

available at 

https://github.com/karatsang/rulesbased_logisticregression/tree/v1.0.0/rulesbased/EffluxP

umpIdentifier. LR and dataset partitioning were performed using scikit-learn (v0.20.0) 

(Pedregosa et al., 2011) with data otherwise manipulated using numpy (v1.17.2) 

(Oliphant, 2006) and pandas (v0.25.1) (McKinney, 2010). For both datasets, the code, 

conda environments (using python v3.7.2 (van Rossum & Drake, 2003)), and 

intermediate data files required to generate this analysis are available: 

https://github.com/karatsang/rulesbased_logisticregression, 

https://doi.org/10.5281/zenodo.3988480. 
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RESULTS 

Bacterial isolates, antibiotic susceptibility testing (AST), and whole-genome 

sequencing 

In total, 115 E. coli and 102 P. aeruginosa putative multidrug-resistant clinical 

isolates were obtained from Hamilton Health Sciences hospitals (Hamilton, Ontario, 

Canada) and submitted for both genome sequencing and AST, i.e. categorized as 

‘resistant’ or ‘susceptible’ for 18 antibiotics under Clinical and Laboratory Standards 

Institute (CLSI) guidelines. Among the isolates, 20 E. coli had no resistance to any of the 

tested antibiotics and all of the P. aeruginosa strains were resistant to at least 1 drug. 

Seventy-four E. coli and 101 P. aeruginosa isolates were resistant to 3 or more 

antibiotics. The antibiotics tested and the full AST results are summarized in 

https://github.com/karatsang/rulesbased_logisticregression/tree/v1.0.0/AST. In the E. coli 

dataset there were 30 unique multilocus sequence types (MLSTs) and 5 isolates with 

unresolved MLST allele(s). The 2 most prevalent E. coli MLSTs in the dataset were 

ST131 and ST1193, which 39 and 10 clinical isolates belonged to, respectively. Notably, 

ST131 is known to be a major cause of multidrug-resistant E. coli infections in the USA 

(Johnson, Johnston, Clabots, Kuskowski, & Castanheira, 2010) and a globally dominant 

clone (Pitout & DeVinney, 2017) associated with CTX-M β-lactamases, while ST1193 is 

a newer multidrug-resistant E. coli clonal group (2017–2019) associated with both CTX-

M β-lactamases, plasmid-borne TEM-1 and aminoglycoside acetyltransferases (AACs) 

(Tchesnokova et al., 2019; Wu, Lan, Lu, He, & Li, 2017; Xia et al., 2017). In the P. 

aeruginosa dataset there were 59 unique MLSTs (43 known and 16 novel MLSTs) and 3 
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isolates with unresolved MLST allele(s). The three most prevalent MLSTs, ST244, 

ST235 and ST253, were identified in five P. aeruginosa isolates each. P. aeruginosa 

ST244 is an international clone, many isolates of which are multidrug-resistant (Y. Chen, 

Sun, Wang, Lu, & Yan, 2014; Empel et al., 2007), ST235 is amongst the most prevalent 

of international clones originating from Europe, with regional acquisition of AMR genes 

(Treepong et al., 2018), and ST253 a less common clone associated with multidrug 

resistance in Spain and Greece (Koutsogiannou et al., 2013). The full MLST results are 

summarized in 

https://github.com/karatsang/rulesbased_logisticregression/tree/v1.0.0/MLST. Raw 

Illumina DNA sequencing reads for each isolate are available through National Center for 

Biotechnology Information (NCBI) BioProject PRJNA532924. 

 

Rules-based interpretation leads to poor β-lactam phenotype prediction 

Our rules-based algorithm relies on the resistome predictions of CARD’s RGI and 

the genotype–phenotype relationships curated in CARD’s ARO. RGI uses four 

bioinformatics models to predict the resistome of a clinical isolate, which are the protein 

homology, protein variant, rRNA variant and protein overexpression models (detailed at 

https://github.com/arpcard/rgi). The protein homology model detects a protein sequence 

based on its similarity to a curated reference sequence in CARD. The protein variant 

model builds on the protein homologue model to identify curated mutations that are 

shown to confer resistance in antibiotic targets, while the rRNA variant model performs 

the same function for mutations conferring resistance to antibiotics targeting ribosomal 
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RNAs. The protein overexpression model identifies proteins with or without mutations 

which reflects regulatory proteins that are functional without a mutation, but confer 

overexpression of their targets with a mutation. As CARD’s RGI software is unable to 

predict multi-component efflux pump systems important for AMR, we developed the 

Efflux Pump Identifier (EPI) software to interpret RGI results for the prediction of 

overexpressed efflux pump systems, classifying them into three categories: Perfect, 

Partial and Putative. The Perfect category identifies sequence matches to CARD for all 

components of a predicted efflux multi-component system. The Partial category identifies 

all components of an efflux multi-component system, but at least one component is a 

sequence variant of CARD’s reference sequence. The Putative category predicts potential 

efflux multi-component systems with missing components or otherwise entirely 

composed of previously uncharacterized sequence variants. 

For our analyses we used the above models and RGI’s Perfect and Strict criteria, 

supplemented with the EPI’s interpretation of efflux complexes, to predict resistomes 

from isolate genome sequences. RGI’s Perfect criterion requires that a query protein 

sequence be identical to a curated reference sequence in CARD, while Strict detects 

variants of known resistance determinants that pass a curated bit-score cut-off (protein 

homologue model) or a known AMR-conferring mutation (protein variant model) that can 

be found curated within CARD (card.mcmaster.ca). The predicted resistomes of the 

individual P. aeruginosa and E. coli isolates were generally unique and contained a large 

diversity of resistance determinants (Table 2-1, also see https://git.io/JJFh3), with the 
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exceptions being two groups of three P. aeruginosa isolates and five E. coli isolates that 

had the same predicted resistome, respectively. 

Table 2-1. The prevalence of Perfect and Strict resistance determinants detected by 

the Resistance Gene Identifier, organized by the Antibiotic Resistance Ontology 

(ARO) drug class designations. Columns show number and percentage of sampled 

isolates having at least one AMR determinant associated with resistance to each drug 

class, broken down as harbouring efflux, non-efflux determinants, or both. For example, 

98% of all P. aeruginosa isolates had a least one resistance gene for rifamycin resistance, 

with 99 isolates predicted to have only efflux gene(s) conferring resistance to rifamycin 

and a single isolate predicted to have only a non-efflux determinant of rifamycin 

resistance. The total number of E. coli and P. aeruginosa isolates is 115 and 102, 

respectively. 

 
ARO Drug Class # of E. coli 

isolates (non-
efflux + efflux + 

both) 

% of E. 
coli 

isolates 

# of P. aeruginosa 
isolates (non-efflux + 

efflux + both) 

% of P. 
aeruginosa 

isolates 

acridine dye 0 + 115 + 0 100.0% 0 + 102 + 0 100.0% 

aminocoumarin 
antibiotic 

0 + 114 + 1 100.0% 0 + 101 + 1 100.0% 

aminoglycoside 
antibiotic 

0 + 44 + 71 100.0% 0 + 0 + 102 100.0% 

benzalkonium 
chloride 

0 + 115 + 0 100.0% 0 + 1 + 0 1.0% 

bicyclomycin 0 + 1 + 0 0.9% 0 + 102 + 0 100.0% 

carbapenem 0 + 0 + 115 100.0% 0 + 0 + 102 100.0% 

cephalosporin 0 + 0 + 115 100.0% 0 + 0 + 102 100.0% 

cephamycin 0 + 0 + 115 100.0% 0 + 101 + 1 100.0% 

diaminopyrimidine 
antibiotic 

50 + 1 + 3 47.0% 0 + 101 + 1 100.0% 

elfamycin antibiotic 115 + 0 + 0 100.0% 2 + 0 + 0 2.0% 

fluoroquinolone 
antibiotic 

0 + 42 + 73 100.0% 0 + 67 +35 100.0% 

fosfomycin 0 + 111 + 4 100.0% 102 + 0 + 0 100.0% 

fusidic acid 0 + 1 + 0 0.9% 0 + 0 + 0 0.0% 

glycopeptide 
antibiotic 

0 + 111 + 4 3.5% 2 + 0 + 0 2.0% 

glycylcycline 0 + 115 + 0 100.0% 0 + 100 + 0 98.0% 

lincosamide 
antibiotic 

4 + 68 + 3 65.2% 3 + 1 + 0 3.9% 

macrolide antibiotic 0 + 60 + 55 100.0% 0 + 0 + 102 100.0% 

monobactam 0 + 0 + 115 100.0% 0 + 0 + 102 100.0% 

mupirocin 0 + 0 + 0 0.0% 1 + 0 + 0 1.0% 

nitrofuran antibiotic 115 + 0 + 0 100.0% 0 + 2 + 0 2.0% 

nitroimidazole 
antibiotic 

0 + 115 + 0 100.0% 0 + 0 + 0 0.0% 
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nucleoside antibiotic 0 + 112 + 3 100.0% 0 + 1 + 0 1.0% 

nybomycin 72 + 0 + 0 62.6% 21 + 0 + 0 20.6% 

oxazolidinone 
antibiotic 

0 + 0 + 0 0.0% 1 + 0 + 0 1.0% 

penam 0 + 0 + 115 100.0% 0 + 0 + 102 100.0% 

penem 0 + 65 + 50 100.0% 0 + 99 + 3 100.0% 

peptide antibiotic 0 + 0 + 115 100.0% 0 + 0 + 0 100.0% 

phenicol antibiotic 0 + 91 + 24 100.0% 0 + 1 + 101 100.0% 

pleuromutilin 
antibiotic 

39 + 0 + 0 33.9% 1 + 0 + 0 1.0% 

rhodamine 0 + 115 + 0 100.0% 0 + 1 + 1 1.0% 

rifamycin antibiotic 0 + 115 + 0 100.0% 0 + 99 + 1 98.0% 

streptogramin 
antibiotic 

42 + 0 + 0 36.5% 3 + 0 + 0 2.9% 

sulfonamide 
antibiotic 

67 + 0 + 0 58.3% 0 + 94 + 8 100.0% 

sulfone antibiotic 67 + 0 + 0 58.3% 8 + 0 + 0 7.8% 

tetracycline 
antibiotic 

0 + 112 + 3 100.0% 0 + 99 + 3 100.0% 

triclosan 0 + 114 + 1 100.0% 0 + 102 + 0 100.0% 

 

In the P. aeruginosa clinical isolate dataset, RGI detected 4 Perfect and 38 Strict, 

non-efflux, unique resistance genes (protein homologue models) across 34 of CARD’s 

drug classes, plus 4 unique, non-efflux mutations (protein variant models) known to 

confer resistance to particular antibiotics (ParE A473V, GyrA T83I, BasR L71R and EF-

Tu R234F). In the E. coli dataset, RGI detected 31 Perfect and 59 Strict non-efflux, 

unique resistance genes (protein homologue models), plus 15 unique, non-efflux 

mutations or combinations of mutations (protein variant models) known to confer 

resistance to particular antibiotics (UhpT E350Q; ParC S80I, E84G; EF-Tu R234F; PBP3 

D350N, S357N; GlpT E448K; GyrB S464Y; GyrA D87Y, D87G, D87N, S83L; CyaA 

S352T; PtsI V25I; NfsA Y45C). For efflux, in P. aeruginosa there were 2 unique Perfect 

and 14 Strict and in E. coli there were 11 unique Perfect and 34 Strict protein homologue 

models representing single-component efflux resistance genes. EPI additionally detected 
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one Perfect or Partial efflux complex with an overexpression mutation (E. coli AcrAB-

TolC with MarR mutation Y137H conferring resistance to ciprofloxacin and tetracycline) 

in two different E. coli isolates; otherwise, EPI identified six unique Partial efflux pump 

complexes without an overexpression mutation among the E. coli isolates. In contrast, 

EPI did not identify any Perfect efflux pump complexes among P. aeruginosa isolates; 

however, three unique Partial efflux pump complexes with an overexpression mutation 

were identified in three different clinical isolates (MexEF-OprN with MexS 

F253L,V73A; MexAB-OprM with MexR R91C; MexAB-OprM with NalC S209R, 

G71E, A186T). Supplementary information and citations for all variants predicted by 

RGI/EPI can be found at CARD. 

Comparing the above RGI and EPI resistome predictions, phenotypically 

classified by CARD’s ARO, to the laboratory ASTs, we observed instances of true-

positive, true-negative, false-positive and false-negative predictions of AMR phenotype 

for both E. coli and P. aeruginosa (Figure 2-1 and 2-2). 
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Figure 2-1. True positive, true negative, false positive, and false negative predictions 

of E. coli resistance phenotype using a rules-based (left) and logistic regression 

method (right). Antibiotic susceptibility tests used eighteen antibiotics organized into 

their respective drug classes. True positives (dark blue) and true negatives (teal) indicate 

the classifier predicted resistance and susceptibility correctly. False positives (orange) 

indicate classifier prediction of resistant but an AST of susceptible. Similarly, false 

negatives (yellow) indicate classifier prediction of susceptible but an AST of resistant. 

The rules-based method uses RGI, EPI, and the Antibiotic Resistance Ontology to predict 

resistance phenotypes. Logistic regression classifiers use RGI detected AMR 

determinants to predict resistance phenotypes. Logistic regression models for antibiotics 

for which <10% of a species’ isolates displayed susceptible or resistant phenotypes could 

not be properly validated and tested and as such were trained using all the data (indicated 

by an asterisk). 
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Figure 2-2. True positive, true negative, false positive, and false negative predictions 

of P. aeruginosa resistance phenotype using a rules-based (left) and logistic 

regression method (right). Antibiotic susceptibility tests used seventeen antibiotics 

(ertapenem was not tested in P. aeruginosa) organized into their respective drug classes. 

Prediction performances for antibiotic logistic regression classifiers using RGI detected 

AMR determinants to predict resistance phenotypes for E. coli and P. aeruginosa. True 

positives (dark blue) and true negatives (teal) indicates the classifier predicted resistance 

and susceptibility correctly. False positives (orange) indicate a classifier prediction of 

resistant but an AST of susceptible. Similarly, false negatives (yellow) indicate a 

classifier prediction of susceptible but an AST of resistant. The rules-based method uses 

RGI, EPI, and the Antibiotic Resistance Ontology to predict resistance phenotypes. 

Logistic regression classifiers use RGI detected AMR determinants to predict resistance 

phenotypes. Logistic regression models for antibiotics for which <10% of a species’ 

isolates displayed susceptible or resistant phenotypes could not be properly validated and 

tested and as such were trained using all the data (indicated by an asterisk). Similarly, 

when all isolates were resistant or susceptible a ‘dummy’ model was used which always 

returns the relevant label (placed in square brackets). The bolded antibiotics represent 

antibiotics that P. aeruginosa confer intrinsic resistance towards, according to the Clinical 

& Laboratory Standards Institute (CLSI). The total of P. aeruginosa phenotype 

predictions does not always equal the total number of isolates (n=102) because not all 

isolates were tested against every antibiotic. 
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No antibiotic resistance phenotypes were predicted with 100 % accuracy (defined 

as the percentage of correctly classified phenotypes). Most of the penicillin and 

cephalosporin (amoxicillin/clavulanic acid, piperacillin/tazobactam, cefazolin, 

ceftriaxone, ceftazidime, cefixime and meropenem) resistance phenotype predictions 

resulted in false negatives for both E. coli and P. aeruginosa (i.e. we failed to predict the 

observed resistance based on genome sequence). In particular, the prediction of both 

cefazolin and cefixime resistance phenotypes was less than 2 % accurate in the P. 

aeruginosa dataset and less than 57 % accurate in the E. coli dataset. In addition, for E. 

coli the rules-based algorithm failed to predict any of the observed cefazolin and cefixime 

resistance based on genome sequence (i.e. not a single true-positive result was obtained). 

 

Logistic regression improves AMR phenotype prediction accuracy 

A limitation of the rules-based method is that it only uses known and curated 

information to predict resistance and is thus inherently blind to any unknown AMR 

genotype–phenotype relationships. To overcome this limitation, we used logistic 

regression (LR) to independently identify patterns between RGI-predicted AMR 

determinants and observed AMR phenotypes. For the E. coli dataset (n=115) it was 

possible to train LR classification models, optimized via 3-fold cross-validation, and test 

them on a set of withheld isolates for 14 out of 18 antibiotics (Figure 2-1). Due to the 

relative imbalance of resistant versus susceptible isolates for amikacin, ertapenem, 

meropenem and nitrofurantoin, models trained for these antibiotics required the use of all 

isolates, preventing the evaluation of model generalizability on a held-out test set. In the 
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P. aeruginosa dataset, piperacillin/tazobactam, ceftazidime, meropenem, ciprofloxacin 

and gentamicin resistance prediction models were trained and tested on separate isolates, 

while nitrofurantoin and tetracycline required use of ‘dummy’ models (i.e. all isolates 

were intrinsically resistant) and the remainder of the AMR prediction models were trained 

on all isolates due to unbalanced sampling of resistant and susceptible isolates (Figure 2-

2). 

We evaluated model performance using test set average precision (i.e. trapezoidal 

area under the precision–recall curve) and a model was categorized as very precise if the 

test set average precision was ≥0.85, relative to previous studies. Generally, our models 

were very precise with our E. coli data, with a test set average precision of ≥0.85 for all 

antibiotics except amoxicillin/clavulanic acid (0.811), piperacillin/tazobactam (0.435) and 

cefoxitin (0.385). In contrast, the P. aeruginosa dataset was particularly problematic for 

LR, with the majority of resistance phenotypes being either ubiquitous (tetracycline and 

nitrofurantoin) or the less-frequent phenotype representing fewer than 10 % of isolates 

(10/17 antibiotics; ertapenem was not evaluated for these isolates) (Figure 2-2). Only five 

antibiotics had properly fitted and evaluated models for P. aeruginosa : ceftazidime, 

ciprofloxacin, gentamicin, meropenem and piperacillin/tazobactam. These models had 

either moderate (ciprofloxacin:~0.650), poor (ceftazidime, piperacillin/tazobactam: 0.512, 

0.403), or extremely poor (meropenem: 0.227, gentamicin C: 0.196) test set average 

precision. 

Overall, using LR reduced problems of false-positive and false-negative 

prediction of AMR phenotypes (Figure 2-1 and 2-2). For P. aeruginosa cefazolin and 
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cefixime resistance phenotypes, where the rules-based approach had very few accurate 

predictions, LR was able to improve accuracy by 92 and 98 %, respectively. Similarly, the 

rules-based method could not predict any true-positive E. coli cefazolin and cefixime 

resistance phenotypes, whereas LR improved accuracy by 45 and 41 %, respectively. In 

both P. aeruginosa and E. coli datasets, LR reduced the number of false positives in most 

tested antibiotic resistance phenotypes compared to the rules-based method. Even in the 

antibiotic resistance phenotypes where the number of false positives increased, prediction 

accuracy still improved, e.g. P. aeruginosa piperacillin/tazobactam resistance and E. coli 

tobramycin resistance (Figure 2-1 and 2-2). 

 

LR models predict novel β-lactamase activity 

For every antibiotic resistance phenotype, LR assigns every resistance determinant 

a weight to estimate its relative contribution to the prediction. We investigated the five 

most highly weighted predictors for each antibiotic and pathogen to examine the 

predicted AMR genotype–phenotype relationships. LR weights that confirmed a known 

relationship (i.e. supported by the published literature and already curated in CARD) for 

E. coli included CTX-M-15 for ceftazidime resistance, tet(C) for tetracycline resistance, 

aac(3)-IIb for gentamicin and tobramycin resistance, dfrA17 for 

trimethoprim/sulfamethoxazole resistance, and gyrA for ciprofloxacin resistance (Figure 

2-3a–j) and for P. aeruginosa included mexD for amoxicillin/clavulanic acid, ceftriaxone, 

and cefoxitin resistance, gyrA for ciprofloxacin resistance, and mexB for amikacin 

resistance (Figure 2-3k–o). 
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Figure 2-3. Logistic regression and RGI identify resistance determinants for 

predicting E. coli and P. aeruginosa resistance phenotypes that are supported by the 

literature. The x-axes indicate assigned logistic regression weights for individual AMR 

phenotype predictions, while the y-axes list the top five weighted AMR determinants. 

Black and grey bars represent E. coli and P. aeruginosa resistance phenotypes, 

respectively. An asterisk indicates that <10 % of a species’ isolates displayed a susceptible 

or resistant phenotype to amikacin and therefore could not be properly validated and 

tested, so were trained using all of the data. Models identifying resistance determinants 

inconsistent with the literature are shown in Supplementary Figures 2-4 and 2-5. 
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A number of the most highly weighted predictors suggested a previously 

undocumented substrate specificity for a known β-lactamase, most notably CMY-2 

conferring resistance to amoxicillin/clavulanic acid and cefazolin, along with CTX-M-15 

conferring resistance to cefixime. To independently test these highly weighted 

associations, we tested the substrate activity of 11 resistance genes predicted in either the 

E. coli isolates (aac(6′)-Ib-cr, CMY-2, CTX-M-15, CTX-M-3, CTX-M-27, OXA-1, OXA-

50, TEM-1 and TEM-30) or P. aeruginosa isolates (PDC-3 and PDC-5) using the 

Antibiotic Resistance Platform (ARP) (G. Cox et al., 2017), concluding clinical resistance 

based on a ≥2-fold elevation in minimum inhibitory concentration (MIC) compared to 

control that also passed the CLSI Resistant MIC breakpoint value. In total, 22 previously 

unknown activities between 7 AMR genes and an antibiotic were experimentally 

validated as clinically relevant in at least 1 pathogen using the ARP and CLSI breakpoints 

(Table 2-2). These included new knowledge for resistance to ampicillin (CMY-2, CTX-

M-3, CTX-M-27, OXA-1 and TEM-30), amoxicillin/clavulanic acid (CMY-2, CTX-M-3, 

OXA-1 and TEM-1), cefazolin (CMY-2, CTX-M-3, CTX-M-15, CTX-M-27 and TEM-

1), cefixime (CMY-2 and CTX-M-3), ceftazidime (CMY-2, CTX-M-3 and CTX-M-27), 

ertapenem (CTX-M-27) and ceftriaxone (CMY-2 and CTX-M-3). However, none of the 

tested resistance genes explained the observed resistance to meropenem and an additional 

four genes only confirmed previous knowledge: AAC(6′)-Ib-cr conferring resistance to 

tobramycin (Robicsek et al., 2006), TEM-1 conferring resistance to ampicillin (Sutcliffe, 

1978), TEM-30 conferring resistance to amoxicillin/clavulanic acid (Belaaouaj et al., 

1994) and CTX-M-15 conferring resistance to ceftriaxone (Supplementary Table 2-1) 
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(Poirel, Gniadkowski, & Nordmann, 2002). ASTs also invalidated some predictions, e.g. 

CTX-M-15 conferring clinically relevant resistance towards cefixime and ceftazidime. 

Notably, while OXA-50 is reported to elevate the MIC towards ampicillin and cefotaxime 

when cloned into a multicopy plasmid and expressed in P. aeruginosa, like others 

(Girlich, Naas, & Nordmann, 2004), we did not observe any appreciable elevation in MIC 

compared to control in E. coli (data not shown). Overall, LR combined with AST 

validation provided a wealth of new knowledge on antibiotic specificities for β-

lactamases appearing in clinical isolates. Interestingly, incorporation of these results into 

the rules-based algorithm improved resistance prediction in E. coli for cefazolin (75 % 

improvement in true-positive results) and cefixime (31 % improvement in true-positive 

results) (Figure 2-4) plus in P. aeruginosa for cefixime (34 % improvement in true-

positive results) and cefoxitin (35 % improvement in true-positive results) (Supplementary 

Figure 2-6), illustrating the sensitivity of rules-based methods to available knowledge. 

Yet, even with this new knowledge, the rules-based algorithm was still outperformed by 

the LR approach. 
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Table 2-2. Antibiotic susceptibility testing (AST) of known resistance genes 

predicted to have previously undescribed activity. As per the Antibiotic Resistance 

Platform, AMR genes were cloned into the pGDP plasmid series and transformed into 

two strains of E. coli: wild-type E. coli BW25113, which is representative of a clinical 

isolate. AST was performed for each construct using the microdilution broth method, with 

the inoculum prepared using the growth method following CLSI guidelines. Dashes 

indicate lack of CLSI breakpoint for P. aeruginosa due to intrinsic resistance. NR: not 

relevant as PDC-3 and PDC-5 were only identified in P. aeruginosa. 

 

Antibiotic 
Resistance 

gene Plasmid 

MIC (μg/mL) 
wild-type E. 

coli 
BW25113 

CLSI Resistant MIC 
(μg/mL) breakpoint for 

Enterobacteriaceae 

CLSI Resistant MIC 
(μg/mL) breakpoint 
for Pseudomonas 

aeruginosa 

ampicillin 

 

 

 

 

 

None None 64 ≥32 - 

CMY-2 pGDP1 >256 ≥32 - 

CTX-M-3 pGDP1 >256 ≥32 - 

CTX-M-27 pGDP1 >256 ≥32 - 

OXA-1 pGDP1 >256 ≥32 - 

TEM-30 pGDP1 >256 ≥32 - 

amoxicillin-
clavulanic 

acid 

 

 

 

 

 

None None 8-16 ≥32/16 - 

CMY-2 pGDP1 256 ≥32/16 - 

CTX-M-3 pGDP1 64 ≥32/16 - 

CTX-M-15 pGDP1 16 ≥32/16 - 

OXA-1 pGDP1 64 ≥32/16 - 

TEM-1 pGDP1 128 ≥32/16 - 

cefazolin 

 

 

 

 

None None 4 ≥8/≥32 (Urine only) - 

CMY-2 pGDP1 >256 ≥8/≥32 (Urine only) - 

CTX-M-3 pGDP1 >256 ≥8/≥32 (Urine only) - 

CTX-M-27 pGDP1 >256 ≥8/≥32 (Urine only) - 

TEM-1 pGDP1 256 ≥8/≥32 (Urine only) - 

cefixime 

 

 

None None 0.25 ≥4 - 

CMY-2 pGDP1 >256 ≥4 - 

CTX-M-3 pGDP1 32 ≥4 - 

ceftazidime 

 

 

      

None None 0.5 ≥16 ≥32 

CMY-2 pGDP1 256 ≥16 NR 

CTX-M-3 pGDP1 16-32 ≥16 NR 
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CTX-M-27 pGDP1 128 ≥16 NR 

ertapenem 

 
None None 0.25 ≥2 - 

CTX-M-27 pGDP1 128 ≥2 - 

ceftriaxone 

 

      

None None 0.25 ≥4 - 

CMY-2 pGDP1 128 ≥4 - 

CTX-M-3 pGDP1 >256 ≥4 - 
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Figure 2-4. Improvement of E. coli cefazolin and cefixime resistance prediction using 

rules-based algorithm and substrate activity knowledge gained from antibiotic 

susceptibility testing (AST). Through antibiotic susceptibility testing, we observed 

CTX-M-3, CTX-M-27 and CMY-2 conferring clinically relevant resistance to cefazolin 

and cefixime. Curating this knowledge into CARD would improve cefazolin and cefixime 

true positive resistance prediction in E. coli by 74.1 and 30.6 %, respectively. 
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DISCUSSION 

Fast and accurate prediction of AMR phenotypes from genotypes would improve 

AMR surveillance, patient outcomes and antibiotic stewardship. Currently, our ability to 

diagnose bacterial infections is costly and slow, contributing to the misuse and overuse of 

antibiotics, as well as to poor clinical outcomes. Genotypic approaches using whole-

genome sequencing paired with bioinformatics resources have the potential to be a faster 

and more accurate method. The goal of this study was to identify and elucidate β-

lactamase substrate activity, a limiting factor in AMR phenotype prediction, by using two 

different in silico AMR phenotype prediction algorithms, subsequently validated using 

targeted gene expression experiments. In the rules-based method, we developed EPI to be 

used in combination with RGI to better identify overexpressed multi-component efflux 

pumps, while the LR method only used the resistance determinants predicted by RGI as 

its starting point. While naïve about the relative contribution of individual resistance 

determinants to overall resistance and sensitive to any gaps in knowledge for β-lactamase 

activity, the rules-based method nonetheless was able to accurately predict a number of 

resistance phenotypes when they involved well-characterized resistance determinants that 

confer resistance surpassing clinical breakpoints, e.g. AAC(6′)-Ib-cr for tobramycin. In 

terms of false-positive predictions using this approach, we hypothesize that CARD 

contains incorrect genotype–phenotype information, an environmental factor is altering 

the expression of a predicted resistance determinant, or that CARD has a knowledge gap 

regarding repressors. With the first scenario, removal of incorrect curation could decrease 

instances of false positives, highlighting one of the limitations of human biocuration for 
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AMR phenotype prediction. The second scenario, i.e. adaptive resistance, should not be a 

concern for our study, since our antibiotic susceptibility tests were standardized and 

automated, notwithstanding potential inconsistencies affecting gene expression 

(Fernández & Hancock, 2012). The third scenario suggests that there are gaps in the 

literature, as CARD only includes information published in peer-reviewed literature with 

clear experimental evidence of elevated resistance. Genetic determinants that decrease the 

expression or change the substrate profile of a resistance determinant, such as mutations 

within regulatory regions or active sites, would result in false-positive predictions. 

Alternatively, entirely unknown resistance genes or mutations could explain false-

negative predictions of AMR phenotypes. 

To identify relationships between known resistance genes and resistance 

phenotypes without relying on CARD’s ARO for curated genotype–phenotype 

relationships, we used RGI in combination with LR. It is important to note that accurate 

and generalizable LR-based prediction of susceptibility or resistance to an antibiotic from 

detected AMR determinants is only feasible when there are relatively large numbers of 

genomes exemplifying each phenotype, which was not always the case in our data. Even 

with stratified sampling and methods, such as SMOTE (Chawla et al., 2002), to resample 

datasets and improve balance (e.g. the relative proportion of susceptible and resistant 

isolates) there are limitations to what can be achieved with small datasets that are 

predominantly resistant or susceptible to a given antibiotic. Models that are not properly 

tested are likely to overfit to the data and are unlikely to generalize well for new data, in 

our case samples from outside the Hamilton, Ontario area. Additional validation of our 
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models using publicly available data is important for future studies; models may be 

dependent on feature selection, taxonomic distribution, resistance mechanism and 

algorithm choice. Yet, despite the models not being appropriately tested properly due to 

imbalance, LR proved a useful tool for improving prediction of resistance from genomic 

features, even without the rules-based algorithm’s additional consideration of 

overexpressed, multi-component efflux pumps. LR substantially decreased instances of 

false positives or false negatives, and the poor performance for predicting particular 

resistance phenotypes (e.g. tetracycline resistance in E. coli, ceftazidime resistance in P. 

aeruginosa and piperacillin/tazobactam resistance in both species) could either represent 

a failure of the LR algorithm to capture the combination of resistance determinants 

required to predict resistance due to additive or synergistic resistance or to recognize 

undiscovered resistance determinants not in CARD and thus not predicted by RGI. 

While bioinformatics tools such as breseq (Deatherage & Barrick, 2014) or k-mer 

approaches combined with LR could be used to potentially identify unknown mutations 

or functional gene loss (e.g. OprD loss is associated with imipenem, meropenem and 

doripenem resistance (Ocampo-Sosa et al., 2012)), our prediction of CLSI (CLSI, 2018) 

‘resistant’ and ‘susceptible’ resistance phenotypes places limits upon interpretation, as 

other clinical breakpoint guidelines exist, e.g. the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) (EUCAST, 2015) breakpoint guidelines are based on 

interpretation of quantitative MIC values, which unfortunately are not recorded in CARD 

or any other database for the breadth of known resistance genes and mutations. As such, 

detection of a CARD resistance determinant in a clinical isolate was interpreted as 
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‘resistant’, even though in reality the MIC value generated by the gene may not have 

reached the CLSI or EUCAST breakpoints for resistant. Nonetheless, aligning with 

George E. P. Box’s aphorism, ‘all models are wrong, but some are useful’ (Box, 1976), 

our goal was to identify the LR models with ‘useful’ or logical biological relevance with 

a focus on prevalent clinical β-lactamases. Prediction of genomic determinants 

responsible for resistance based on the feature weights of the LR only made biological 

sense in some cases based on the literature and knowledge. For example, novA was the 

highest weighted predictor for P. aeruginosa trimethoprim/sulfamethoxazole resistance, 

but is known to instead be involved in the transport of and resistance to novobiocin 

(Schmutz, Mühlenweg, Li, & Heide, 2003). Failure to predict logical determinants could 

be attributed to high levels of divergence from the canonical sequence or an unknown 

resistance determinant with prevalence correlated with NovA. In the balanced datasets, 

known relationships in CARD, such as Tet(C) conferring resistance to tetracycline in E. 

coli and P. aeruginosa GyrA mutation conferring resistance to ciprofloxacin, were 

predicted by both the rules-based and LR methods (Figure 2-3f, n). Beyond this, LR was 

additionally able to predict genotype–phenotype relationships that were useful in that they 

were new findings not predicted by the rules-based method and not published in the 

literature, yet consistent with known resistance mechanisms. Indeed, there is value in 

looking beyond the most highly weighted LR predictor, since analysis of a model can 

garner major insights into AMR genotype–phenotype relationships. We were able to 

experimentally validate many of the top five most highly weighted candidates, illustrating 

that systematic screening of a broad selection of antibiotics against known resistance 
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genes using molecular AST platforms such as the ARP (G. Cox et al., 2017), perhaps 

guided by LR, or at minimum community adoption of standard panels of antibiotics for 

AST characterization of newly reported resistance genes, could be adopted to fill these 

gaps in the literature and improve antibiotic resistance phenotype prediction. 

We have illustrated that completely accurate AMR phenotype prediction is not 

achievable using either rules-based or LR methods. There are likely unknown genomic 

determinants leading to both false-positive and false-negative prediction of resistance 

phenotypes, such as mutations in regulatory regions that change expression of a resistance 

gene. Overall, our results suggest that LR is capable of predicting resistance phenotypes 

and identifying substrate specificities of known resistance genes when there are 

sufficiently balanced datasets. Evaluating learned weights for each LR model led to novel 

hypotheses, illustrating the use of LR as an inductive approach to guide deductive 

research. Yet, our results also illustrate that full prediction of resistome and resistance 

phenotype will require careful examination of genome feature space and clinical 

breakpoints, plus broad and balanced sampling of diverse susceptible and resistant strains. 

It is our hope that collective advances in these methods will result in tools for clinical 

prediction of resistance, aiding antimicrobial stewardship and improving patient 

outcomes. Elucidating AMR genotype–phenotype relationships will reveal the genetic 

and mechanistic underpinnings of resistance to guide both public health surveillance and 

future drug discovery. 
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SUPPLEMENTARY MATERIAL 
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Supplementary Figures 
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Supplementary Figure 2-1. Precision-Recall (PR) and Receiver Operating 

Characteristic (ROC) curves for logistic regression models developed for E. coli 

antibiotic resistance phenotype prediction. Models for (A) ampicillin, (B) amoxicillin-

clavulanic acid, (C) amikacin, (D) cefazolin, (E) cefalotin, (F) ciprofloxacin, (G) 

cefixime, (H) ceftazidime, (I) gentamicin, (J) meropenem, (K) nitrofurantoin, (L) 

piperacillin-tazobactam, (M) tetracycline, (N) tobramycin, (O) trimethoprim-

sulfamethoxazole, (P) cefoxitin, (Q) ceftriaxone, (R) ertapenem which <10% of a species’ 

isolates displayed susceptible or resistant phenotypes could not be properly validated and 

tested (4 antibiotics for E. coli), so were trained using all the data (indicated by an 

asterisk). 
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Supplementary Figure 2-2. Precision-Recall (PR) and Receiver Operating 

Characteristic (ROC) curves for logistic regression models developed for P. 

aeruginosa antibiotic resistance phenotype prediction. Models for (A) ampicillin, (B) 

amoxicillin-clavulanic acid, (C) amikacin, (D) cefazolin, (E) cefalotin, (F) ciprofloxacin, 

(G) cefixime, (H) ceftazidime, (I) gentamicin, (J) meropenem, (K) piperacillin-

tazobactam, (L) tobramycin, (M) trimethoprim-sulfamethoxazole, (N) cefalotin, (O) 

ceftriaxone resistance which <10% of a species’ isolates displayed susceptible or resistant 

phenotypes could not be properly validated and tested (10 antibiotics for P. aeruginosa), 

so were trained using all the data (indicated by an asterisk). Tetracycline, nitrofurantoin, 

and ertapenem resistance prediction models could not be developed for the following 

reasons. All isolates were resistant to tetracycline and nitrofurantoin, thus a ‘dummy’ 

model was used which always returns the relevant label. Ertapenem phenotypic AST was 

not performed for P. aeruginosa. 
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Supplementary Figure 2-3. Average precision and area under Receiver Operating 

Characteristic (ROC) graphs for (A, B) E. coli and (C, D) P. aeruginosa logistic 

regression models used for resistance phenotype prediction. X-axis indicates the 

antibiotic tested whereas the y-axis indicates the (A, C) average precision or the (B, D) 

area under the ROC curve for each logistic regression model. Models for antibiotics for 

which <10% of a species’ isolates displayed susceptible or resistant phenotypes could not 

be properly validated and tested (10 antibiotics for P. aeruginosa and 4 antibiotics for E. 

coli), so were trained using all the data (indicated by an asterisk). 
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Supplementary Figure 2-4. The top five highest weights of importance for E. coli 

antibiotic resistance phenotype prediction. The x-axis indicates assigned LR weights 

for individual antibiotics, while the y-axis list the top five weighted AMR determinants. 

Models for (A) ampicillin, (B) amoxicillin-clavulanic acid, (C) piperacillin-tazobactam, 

(D) cefazolin, (E) cefalotin, (F) ceftriaxone, (G) ceftazidime, (H) cefixime, (I) cefoxitin, 

(J) ertapenem, (K) meropenem, (L) nitrofurantoin, (M) tetracycline, (N) trimethoprim-

sulfamethoxazole, (O) ciprofloxacin, (L) gentamicin (Q) amikacin, (R) tobramycin 

resistance which <10% of a species’ isolates displayed susceptible or resistant phenotypes 

could not be properly validated and tested (4 antibiotics for E. coli), so were trained using 

all the data (indicated by an asterisk). 
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Supplementary Figure 2-5. The top five highest weights of importance for P. 

aeruginosa antibiotic resistance phenotype prediction. The x-axis indicates assigned 

LR weights for individual antibiotics, while the y-axis list the top five weighted AMR 

determinants. Models for (A) ampicillin, (B) amoxicillin-clavulanic acid, (C) piperacillin-

tazobactam, (D) cefazolin, (E) cefalotin, (F) ceftriaxone, (G) ceftazidime, (H) cefixime, 

(I) cefoxitin, (J) meropenem, (K) trimethoprim-sulfamethoxazole, (L) ciprofloxacin, (M) 
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gentamicin, (N) amikacin, (O) tobramycin resistance which <10% of a species’ isolates 

displayed susceptible or resistant phenotypes could not be properly validated and tested 

(10 antibiotics for P. aeruginosa), so were trained using all the data (indicated by an 

asterisk). Tetracycline, nitrofurantoin, and ertapenem resistance prediction models could 

not be developed for the following reasons. All isolates were resistant to tetracycline and 

nitrofurantoin, thus a ‘dummy’ model was used which always returns the relevant label. 

Ertapenem phenotypic AST was not performed for P. aeruginosa. 
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Supplementary Figure 2-6. Improvement of P. aeruginosa cefixime and cefoxitin 

resistance prediction using information gained from ASTs, RGI and ARO. Through 

antibiotic susceptibility testing (AST), we observed PDC-3 and PDC-5 conferring 

resistance to cefixime and cefoxitin. Curating this knowledge into CARD would improve 

cefixime and cefoxitin resistance true positive prediction in P. aeruginosa by 34.0% and 

34.7%, respectively. However, there are no CLSI breakpoint guidelines for cefixime and 

cefoxitin because they are not used clinically to treat P. aeruginosa infections. 
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Supplementary Tables 

Supplementary Table 2-1. Antibiotic susceptibility tests (AST) performed on known 

resistance genes. As per the Antibiotic Resistance Platform, AMR genes were cloned 

into the pGDP plasmid series and transformed into two strains of E. coli: wild-type E. coli 

BW25113, which is representative of a clinical isolate, and a hyperpermeable, efflux-

deficient mutant strain, E. coli BW25113ΔbamBΔtolC. AST was performed for each 

construct using the microdilution broth method, with the inoculum prepared using the 

growth method following CLSI guidelines. Dashes indicate that there are no CLSI 

breakpoint guidelines for using that particular antibiotic against Enterobacteriaceae or P. 

aeruginosa. In red are the ‘confers_resistance_to_antibiotic’ relationships considered to 

be clinically relevant and curated in CARD. NR: not relevant as some resistance genes 

are known to be intrinsic to P. aeruginosa. 

 

Antibiotic 
Resistance 

gene 
Plasmid 

MIC 
(μg/mL) 

wild-type 
E. coli 

BW25113 

CLSI Resistant MIC 
(μg/mL) breakpoint 

for 
Enterobacteriaceae 

CLSI Resistant 
MIC (μg/mL) 

breakpoint for 
Pseudomonas 

aeruginosa 

ampicillin None None 64 ≥32 - 

 CMY-2 pGDP1 >256 ≥32 - 

 CTX-M-3 pGDP1 >256 ≥32 - 

 CTX-M-15 pGDP1 >256 ≥32 - 

 CTX-M-27 pGDP1 >256 ≥32 - 

 OXA-1 pGDP1 >256 ≥32 - 

 PDC-3 pGDP1 >256 ≥32 - 

 PDC-5 pGDP1 >256 ≥32 - 

 TEM-1 pGDP1 >256 ≥32 - 

 TEM-30 pGDP1 >256 ≥32 - 

amoxicillin-
clavulanic 

acid 
None None 8-16 ≥32/16 - 

 CMY-2 pGDP1 256 ≥32/16 - 

 CTX-M-3 pGDP1 64 ≥32/16 - 

 CTX-M-15 pGDP1 16 ≥32/16 - 

 CTX-M-27 pGDP1 8-16 ≥32/16 - 

 OXA-1 pGDP1 64 ≥32/16 - 

 PDC-3 pGDP1 256 ≥32/16 - 

 PDC-5 pGDP1 256 ≥32/16 - 

 TEM-1 pGDP1 128 ≥32/16 - 
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 TEM-30 pGDP1 128 ≥32/16 - 

piperacillin-
tazobactam 

None None 4 ≥128/4 ≥128/4 

 CMY-2 pGDP1 32-64 ≥128/4 NR 

 CTX-M-3 pGDP1 32 ≥128/4 NR 

 CTX-M-15 pGDP1 4 ≥128/4 NR 

 CTX-M-27 pGDP1 >256 ≥128/4 NR 

 OXA-1 pGDP1 32 ≥128/4 NR 

 PDC-3 pGDP1 >256 NR ≥128/4 

 PDC-5 pGDP1 32 NR ≥128/4 

 TEM-1 pGDP1 64-128 ≥128/4 NR 

 TEM-30 pGDP1 16 ≥128/4 NR 

cefazolin None None 4 ≥8/≥32 (Urine only) - 

 CMY-2 pGDP1 >256 ≥8/≥32 (Urine only) - 

 CTX-M-3 pGDP1 >256 ≥8/≥32 (Urine only) - 

 CTX-M-15 pGDP1 128 ≥8/≥32 (Urine only) - 

 CTX-M-27 pGDP1 >256 ≥8/≥32 (Urine only) - 

 OXA-1 pGDP1 8 ≥8/≥32 (Urine only) - 

 PDC-3 pGDP1 >256 NR - 

 PDC-5 pGDP1 >256 NR - 

 TEM-1 pGDP1 256 ≥8/≥32 (Urine only) - 

 TEM-30 pGDP1 2 ≥8/≥32 (Urine only) - 

cefalotin None None 16-32 - - 

 CMY-2 pGDP1 >256 - - 

 CTX-M-3 pGDP1 >256 - - 

 CTX-M-15 pGDP1 128 - - 

 CTX-M-27 pGDP1 16 - - 

 OXA-1 pGDP1 16-32 - - 

 PDC-3 pGDP1 >256 NR - 

 PDC-5 pGDP1 >256 NR - 

 TEM-1 pGDP1 256 - - 

 TEM-30 pGDP1 8 - - 

cefixime None None 0.25 ≥4 - 

 CMY-2 pGDP1 >256 ≥4 - 

 CTX-M-3 pGDP1 32 ≥4 - 

 CTX-M-15 pGDP1 0.5 ≥4 - 

 CTX-M-27 pGDP1 4 ≥4 - 
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 OXA-1 pGDP1 0.25-0.5 ≥4 - 

 PDC-3 pGDP1 >256 NR - 

 PDC-5 pGDP1 >256 NR - 

 TEM-1 pGDP1 0.25-0.5 ≥4 - 

 TEM-30 pGDP1 0.5 ≥4 - 

ceftazidime None None 0.5 ≥16 ≥32 

 CMY-2 pGDP1 256 ≥16 NR 

 CTX-M-3 pGDP1 16-32 ≥16 NR 

 CTX-M-15 pGDP1 0.5 ≥16 NR 

 CTX-M-27 pGDP1 128 ≥16 NR 

 OXA-1 pGDP1 0.5 ≥16 NR 

 PDC-3 pGDP1 32 NR ≥32 

 PDC-5 pGDP1 32 NR ≥32 

 TEM-1 pGDP1 1 ≥16 NR 

 TEM-30 pGDP1 0.25 ≥16 NR 

ertapenem None None 0.25 ≥2 - 

 CMY-2 pGDP1 1-2 ≥2 - 

 CTX-M-3 pGDP1 0.5 ≥2 - 

 CTX-M-15 pGDP1 0.25 ≥2 - 

 CTX-M-27 pGDP1 128 ≥2 - 

 OXA-1 pGDP1 0.25 ≥2 - 

 PDC-3 pGDP1 0.25 NR - 

 PDC-5 pGDP1 0.25 NR - 

 TEM-1 pGDP1 0.25-0.5 ≥2 - 

 TEM-30 pGDP1 0.25 ≥2 - 

meropenem None None 0.25 ≥4 ≥8 

 CMY-2 pGDP1 0.25 ≥4 NR 

 CTX-M-3 pGDP1 0.25 ≥4 NR 

 CTX-M-15 pGDP1 0.25 ≥4 NR 

 CTX-M-27 pGDP1 0.5 ≥4 NR 

 OXA-1 pGDP1 0.25 ≥4 NR 

 PDC-3 pGDP1 0.25 NR ≥8 

 PDC-5 pGDP1 0.25-64 NR ≥8 

 TEM-1 pGDP1 0.25-0.5 ≥4 NR 

 TEM-30 pGDP1 0.25 ≥4 NR 

cefoxitin None None 8 ≥32 - 
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 CMY-2 pGDP1 8 ≥32 - 

 CTX-M-3 pGDP1 32-256 ≥32 - 

 CTX-M-15 pGDP1 16 ≥32 - 

 CTX-M-27 pGDP1 0.5 ≥32 - 

 OXA-1 pGDP1 8 ≥32 - 

 PDC-3 pGDP1 >256 NR - 

 PDC-5 pGDP1 64 NR - 

 TEM-1 pGDP1 16 ≥32 - 

 TEM-30 pGDP1 1 ≥32 - 

ceftriaxone None None 0.25 ≥4 - 

 CMY-2 pGDP1 128 ≥4 - 

 CTX-M-3 pGDP1 >256 ≥4 - 

 CTX-M-15 pGDP1 128 ≥4 - 

 CTX-M-27 pGDP1 0.25 ≥4 - 

 OXA-1 pGDP1 0.25 ≥4 - 

 PDC-3 pGDP1 32 NR - 

 PDC-5 pGDP1 32 NR - 

 TEM-1 pGDP1 0.25 ≥4 - 

 TEM-30 pGDP1 0.25 ≥4 - 

gentamicin None None 0.5 >16 NR 

 aac(6')-Ib-cr pGDP3 0.5 >16 NR 

amikacin None None 1-2 >64 NR 

 aac(6')-Ib-cr pGDP3 4-8 >64 NR 

tobramycin None None 0.5-1 >16 NR 

 aac(6')-Ib-cr pGDP3 32-64 >16 NR 
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CHAPTER THREE: Antimicrobial resistance prediction model performance is 

dependent on dataset, algorithm, and evaluation metric 
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ABSTRACT 

 

Antimicrobial resistance (AMR) is a global health problem that is exacerbated by 

antibiotic misuse and overuse. Our inability to determine the antibiotic susceptibility of 

infectious pathogens within an optimal treatment timeframe is driven by the difficulties of 

culturing. Using whole genome sequencing, researchers have developed accurate AMR 

prediction models for a number of pathogens. These previously published studies are 

difficult to compare since they use different datasets, algorithms, genetic features, and 

evaluation metrics. In addition, only a few studies have attempted to elucidate the effect 

of these parameters on AMR prediction model performance. In this study, we show a 

three-way dependency upon dataset, algorithm, and evaluation metric on AMR prediction 

model performance in Escherichia coli, Neisseria gonorrhoeae, and Pseudomonas 

aeruginosa. We used known resistance determinants and mutations as genetic features 

combined with feature filtering methods which can have a variety of effects on AMR 

prediction model performance. Using only plasmid borne resistance determinants 

generally produced poorer performing AMR prediction models compared to using 

resistance determinants encoded by both the chromosome and plasmid. We showed that 

representing and filtering genetic features can improve AMR prediction models that can 

address sequencing error, gene copy number, and physicochemical properties of amino 

acid substitutions. We observed how choosing an evaluation metric dictates which 

algorithm is selected and that generally naïve Bayes performs poorly for AMR phenotype 

prediction using most evaluation metrics. Lastly, we demonstrate how AMR prediction 

model performance is also specific to the pathogen and antibiotic of interest. Therefore, 
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since we show how AMR prediction model performance relies on a number of decisions 

that a researcher can make during model construction, e.g., evaluation metric selection, 

algorithm, feature selection, and dataset stratification, we suggest testing and 

incorporating non-genetic metadata to determine how to create the best prediction models 

for a given dataset. Furthermore, we highlight the importance of sampling broadly and 

deeply, while collecting metadata, such as site of infection, to include into AMR 

prediction models. Lastly, we argue that domain experts should consider shifting from 

developing broad generalizable models to narrow and more specific AMR prediction 

models. Altogether, it is of added value to understand the effects of these parameters on 

AMR prediction model performance to further build a foundation for machine learning 

diagnostics in clinical microbiology labs.  
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INTRODUCTION 

In 2015, the World Health Organization published a global action plan on 

antimicrobial resistance (AMR) which highlights the need to improve awareness, 

strengthen knowledge, reduce infections, prioritize stewardship, and develop economic 

investment (World Health Organization, 2015). AMR has been estimated to cause 

126,000-700,000 deaths per year globally (Naghavi et al., 2017; O'Neill, 2016), however 

it is important to understand the limitations and assumptions of these estimates (de 

Kraker, Stewardson, & Harbarth, 2016; Limmathurotsakul et al., 2019). In 2017, the 

World Health Organization published a critical priority pathogens list including both 

Gram-negative and Gram-positive bacteria, including carbapenem resistant Pseudomonas 

aeruginosa and Enterobacteriaceae in the critical priority list, as well as, cephalosporin 

and fluoroquinone resistant Neisseria gonorrhoeae in the second high priority list (World 

Health Organization, 2017b). In 2019, the Centres for Disease and Control estimated 

3,200 cases of multi-drug resistant Pseudomonas aeruginosa, 550,000 drug-resistant 

Neisseria gonorrhoeae cases, and 210,500 extended spectrum β-lactamase producing or 

carbapenem resistant Enterobacteriaceae (CDC, 2019). As rates of drug resistant 

infections increase, we are simultaneously faced with a shrinking antimicrobial drug 

discovery pipeline (Butler & Paterson, 2020; Hutchings, Truman, & Wilkinson, 2019; 

World Health Organization, 2021). As such, prevention, timely diagnosis, and appropriate 

treatment of drug resistant infections guides the principles of antibiotic stewardship 

programs.  
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The current gold standard of diagnosing AMR currently relies on culture-based, 

phenotypic methods, namely antibiotic susceptibility tests (e.g., disk diffusion and broth 

dilution). However, the turnaround time for these results can be longer than the optimal 

infection treatment window, particularly for fastidious organisms. In contrast, genotypic 

methods of diagnosing AMR include PCR based nucleic acid amplification tests and 

whole genome sequencing (WGS). Currently, the costs and time to results are some 

limiting factors for point of care application of WGS. Resolving the challenges of using 

WGS for AMR diagnostics is imperative for when sequencing technology and costs are 

realistically implemented in a clinical environment. Feasibility issues are confounded by 

the gap between genotype and phenotype prediction, as AMR phenotypes are produced 

by the interplay of multiple factors, including genetic elements and the environment of 

the infecting bacteria (Geisinger & Isberg, 2017). Understanding the genetic drivers of 

AMR phenotypes facilitates the development of novel and improved molecular 

diagnostics for AMR (World Health Organization, 2019). However, associations between 

genotype and phenotype are difficult to uncover because of the polygenic nature of AMR, 

which perpetrates the difficulty in developing and updating AMR databases and software.  

There are many bioinformatics tools and databases available to predict AMR 

determinants from bacterial genomes. For example, the Comprehensive Antibiotic 

Resistance Database (CARD) (Alcock et al., 2020) is an ontology-driven genomics 

database used by the Resistance Gene Identifier (RGI) software to predict intrinsic and 

acquired resistance determinants in genome sequences. The Antibiotic Resistance Gene-

ANNOTation database (Gupta et al., 2014) and Pathosystems Resource Integration 
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Center (Davis et al., 2020) store a similar breadth of resistance determinants to CARD. 

ResFinder (Bortolaia et al., 2020) focuses on acquired resistance genes, while ResFams 

(Gibson et al., 2015) is a database of protein domain hidden Markov models for AMR 

function prediction. However, with the abundance of bioinformatics pipelines available 

comes discordant AMR genotype predictions across research groups, hospital 

laboratories, public health laboratories, and clinical diagnostic companies (Doyle et al., 

2020). If these AMR predictions were used to inform antibiotic treatment, at least one 

would recommend a different antibiotic and few would be based on a clear association 

between genotype and phenotype. Presence of an AMR gene or mutation does not 

guarantee expression and a subsequent drug resistant infection (Tsang et al., 2021). 

With advances in genome sequencing technology, researchers are increasingly 

examining the use of machine learning to predict AMR phenotype from genotype. Most 

previously published literature predicts ‘resistant’ or ‘susceptible’ phenotypes 

(Chowdhury, Call, & Broschat, 2019; Coelho et al., 2013; Davis et al., 2016; Drouin et 

al., 2019; Z. Liu et al., 2020; Pesesky et al., 2016; Shi et al., 2019; Tsang et al., 2021; 

Yang et al., 2018), while some (additionally) predict minimum inhibitory concentrations 

(MIC) (Demczuk et al., 2016; Demczuk et al., 2020; Eyre et al., 2019; Eyre et al., 2017; 

Golparian et al., 2018; Hicks et al., 2019; Nguyen et al., 2018; Nguyen et al., 2020; 

Nguyen et al., 2019; Pataki et al., 2020). The genetic features used in these prediction 

models include known resistance determinants, nucleotide sequence k-mers, and 

mutations to predict AMR phenotypes for Klebsiella pneumoniae, Neisseria 

gonorrhoeae, Actinobacillus pleuropneumoniae, Mycobacterium tuberculosis, 
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Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, and Staphylococcus 

aureus. Typically, the accuracy of AMR prediction models is greater than 90%, however 

some publications use different prediction model evaluation metrics, such as area under 

the curve (Cassini et al., 2019) sensitivity (Yang et al., 2018), and F1 score (Nguyen et 

al., 2020). Previously published works also use a number of different algorithms, 

including logistic regression (Pesesky et al., 2016; Tsang et al., 2021), linear regression 

(Demczuk et al., 2020; Eyre et al., 2017), XGBoost (Nguyen et al., 2018; Nguyen et al., 

2020; Nguyen et al., 2019), set covering machine (Drouin et al., 2016; Z. Liu et al., 

2020), support vector machine (Z. Liu et al., 2020), random forest (Hicks et al., 2019), 

and deep learning (Shi et al., 2019). The inconsistency between the algorithm, evaluation 

metric and datasets used in previously published works makes AMR prediction models 

difficult to compare. 

In our previous work, we illustrated the power of logistic regression for prediction 

of ‘Resistant’ or ‘Susceptible’ phenotype under CLSI guidelines based on genome 

sequences of E. coli and P. aeruginosa (Tsang et al., 2021), yet there is a lack of 

consensus on the most appropriate evaluation metric to assess machine learning model 

performance for AMR. Typically, an evaluation metric (e.g., accuracy, balanced 

accuracy, negative log loss score, precision, recall, F1 score) is chosen to measure 

prediction model performance. Once an evaluation metric is chosen, different machine 

learning algorithms are then put to the test. The lack of standardization in evaluation 

metric choice in publications inherently challenges our ability to compare different 

algorithms and studies.  



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 88 

Feature selection is another criterion that is determined prior to generating 

prediction models, i.e. which aspects of the genome to use for construction of models. 

Genetic features can be derived from bacterial sequences by annotating known AMR 

determinants, identifying all mutations using a reference sequence, or generating k-mers 

(short nucleotide sequences) that span the entire genome sequence. For example, Hicks et 

al. have evaluated parameters affecting AMR Neisseria gonorrhoeae, Klebsiella 

pneumoniae and Acinetobacter baumannii phenotypic prediction model performance and 

reliability using set covering machine and random forest algorithms with k-mers derived 

from genome assemblies, illustrating accuracy varies by antibiotic, genomic diversity, 

and pathogen (Tsang et al., 2021). Overall, too few genetic features restricts the machine 

learning algorithm’s ability to learn, leading to an underfitted model that has more bias 

towards incorrect predictions. In contrast, too many genetic features can lead to 

overfitting, i.e. an overly specific model that is not generalizable to new data. Thus, 

genetic feature selection is important for generating useful AMR prediction models, 

particularly if interpretation of the mechanisms driving resistance is valued. Using known 

resistance determinants as features also allows for easier interpretation of AMR 

prediction models but limits the discovery of novel resistance determinants.  

While in our previous work we evaluated a few different algorithms, we only used 

negative log loss as our evaluation metric, geographically limited datasets for E. coli and 

P. aeruginosa, and known resistance determinants as features (Tsang et al., 2021). The 

purpose of this publication is to elucidate the effect of algorithm, evaluation parameter, 

and dataset on AMR prediction models. We use a number of genetic features (e.g., 
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chromosome- and plasmid-borne resistance determinants, mutations) with different 

feature filtering methods to test four different algorithms (e.g., logistic regression, 

decision trees, naïve Bayes, and random forest). We show that while building AMR 

prediction models is intricate, understanding the genomic context and biology when 

making decisions about feature, evaluation metric, and algorithm selection are important 

to the quality and interpretability of AMR phenotype prediction. Finally, since we 

illustrate that AMR prediction models are also specific to pathogen, antibiotic, and data 

stratification, we argue that perhaps the AMR prediction field should deviate from 

developing universally generalizable models to more specific and localized AMR 

prediction models.  
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METHODS 

Bacterial Isolates 

For construction and testing of models, we used the E. coli (EC1) and P. 

aeruginosa (PA1) sample collections from our previous work (Tsang et al., 2021), E. coli 

(EC2) (MacFadden et al., 2019) and P. aeruginosa (PA2) (Davis et al., 2020) collections 

from the PATRIC database, and two previously published N. gonorrhoeae collections: 

NG1 (Lee et al., 2018) and NG2 (Eyre et al., 2017). Unpublished phenotypic testing data 

from dataset EC2 are available on 

https://github.com/karatsang/DatasetAlgorithmEvaluation.  Each of these genome data 

sets are associated with phenotypic estimates of Susceptible (S), Intermediate (I), or 

Resistant (R) for each antibiotic tested. Datasets EC1, PA1, and NG1 provided S and R 

categories for each dataset based on CLSI guidelines, whereas datasets EC2, PA2, and 

NG2 included minimum inhibitory concentrations which we interpreted into S and R 

categories also using CLSI guidelines (CLSI, 2018). Phenotypic testing of EC1, EC2, and 

PA1 were performed using the Vitek 2 system, while PA2 included methods including 

broth microdilution, Trek Sensititre custom plates, and Vitek systems. NG1 and NG2 

phenotypic susceptibilities were performed using agar dilution. Any samples categorized 

as Intermediate (I) were re-encoded as R. Descriptions of these genomes and associated 

phenotypic measurements are presented in Table 3-1. For more information about the 

phenotypic measurements of each dataset, refer to their respective primary publication 

source (Davis et al., 2020; Lee et al., 2018; MacFadden et al., 2019; Tsang et al., 2021). 

All datasets were balanced (i.e., less frequent phenotype represented >10% of all 
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genomes), with the exception of: EC1 (amikacin, meropenem, nitrofurantoin, ertapenem), 

EC2 (cefazolin, ertapenem, nitrofurantoin), PA1 (ampicillin, amoxicillin-clavulanic acid, 

amikacin, cefazolin, cefixime, tobramycin, cefoxitin, ceftriaxone), NG1 (penicillin, 

spectinomycin), and NG2 (cefixime). All datasets had raw sequencing FASTQ data 

available, with the exception of dataset PA2 where only genome assemblies (FASTA) 

were available. 

 

Table 3-1. Descriptions of the datasets. Not all antibiotics were tested against every 

clinical isolate. 

 
Dataset Pathogen Number 

of 
isolates 

Geography Site(s) of 
infection 

Antibiotics tested 

EC1 Escherichia 
coli 

115 Hamilton, 
Ontario, Canada 

blood, urine, 
sputum, 

abdomen, rectal 

ampicillin, 
amoxicillin-

clavulanic acid, 
amikacin, 
cefazolin, 
cefalotin, 

ciprofloxacin, 
cefixime, 

ceftazidime, 
gentamicin C, 
meropenem, 
nitrofurantoin, 
piperacillin-
tazobactam, 
tetracycline, 
tobramycin, 

trimethoprim-
sulfamethoxazole, 

cefoxitin, 
ceftriaxone, 
ertapenem 

EC2 Escherichia 
coli 

1097 Ontario, Canada blood, urine ampicillin, 
cefazolin, 

cefotaxime, 
ciprofloxacin, 
ertapenem, 
gentamicin, 
meropenem, 
nitrofurantoin, 
trimethoprim-

sulfamethoxazole  

PA1 Pseudomonas 
aeruginosa 

102 Hamilton, 
Ontario, Canada 

blood, urine, 
sputum, abscess, 

ampicillin, 
amoxicillin-
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eye, abdomen, 
arm, leg, chest, 
endotracheal 
tube, ulcer, 

catheter tip, foot 

clavulanic acid, 
amikacin, 
cefazolin, 
cefalotin, 

ciprofloxacin, 
cefixime, 

ceftazidime, 
gentamicin C, 
meropenem, 
nitrofurantoin, 
piperacillin-
tazobactam, 
tetracycline, 
tobramycin, 

trimethoprim-
sulfamethoxazole, 

cefoxitin, 
ceftriaxone 

PA2 Pseudomonas 
aeruginosa 

533 worldwide unknown amikacin, 
cefixime, 

ceftazidime, 
ciprofloxacin, 
gentamicin, 
meropenem, 
piperacillin-
tazobactam, 
tobramycin  

NG1 Neisseria 
gonorrhoeae 

398 New Zealand cervix, vaginal, 
urethral, 

anorectal, penile, 
throat/pharyngeal 

ciprofloxacin, 
azithromycin, 

penicillin, 
tetracycline, 

spectinomycin  

NG2 Neisseria 
gonorrhoeae 

660 Brighton 
(England), USA, 

& Canada 

urethra, rectum, 
pharynx, cervix, 

eye 

ciprofloxacin, 
azithromycin, 

penicillin, 
tetracycline, 

cefixime  

 

Genetic feature generation  

For each isolate, raw short read sequences are first trimmed using Trimmomatic 

(Bolger et al., 2014) and then either used to identify mutations using breseq (v 0.35.3) 

(Deatherage & Barrick, 2014), assembled into chromosomal and plasmid DNA using 

SPAdes (Robertson & Nash, 2018), or assembled into plasmid DNA alone using HyAsP 

(Müller & Chauve, 2019) (v1.0.0). Mutations were identified using breseq with default 

parameters and the following reference sequences: E. coli O83:H1 str. NRG 857C 
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(ASM18334v1), E. coli O157:H7 str. Sakai DNA (NC_002695.2), P. aeruginosa PAO1 

(NC_002516.2), P. aeruginosa UCBPP-PA14 (NC_008463.1), N. gonorrhoeae ATCC 

49226, WHOF, WHOG, WHOK, WHOL, WHOM, WHON, WHOO, WHOP, WHOU, 

WHOV, WHOW, WHOX, WHOZ. Gdtools was used to annotate the breseq results 

(Deatherage & Barrick, 2014). Only genome assemblies (FASTA) were available for the 

PA2 dataset, thus mutation prediction was not performed. Resistance determinants were 

predicted in the chromosomal and plasmid DNA assemblies using the Resistance Gene 

Identifier (RGI, v 5.1.0) and Comprehensive Antibiotic Resistance Database (CARD, v 

3.0.8) (Alcock et al., 2020). RGI categorizes resistance determinants as ‘Perfect’ or 

‘Strict’ if the predicted amino acid sequence is 100% identical to the reference sequence 

in CARD or if the predicted amino acid sequence passes a curated bitscore cutoff, 

respectively. Since RGI is dependent on CARD, RGI is unable to identify new resistance 

determinants, while breseq is CARD-independent, meaning that it is able to identify 

unknown mutations driving resistance.  

 

Genetic feature filtering 

We removed any mutations from breseq that were only observed in one isolate in 

a given dataset to reduce the potential misrepresentation of data, as it is difficult to 

differentiate between sequencing error, transcription error, and a bona fide mutation if it 

appears in a single isolate. In contrast, if a mutation was identified in multiple isolates, it 

is less likely to be a sequencing/transcription error. To remove potential spurious 

resistance determinant predictions by RGI, we applied a Grantham Score (Grantham, 
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1974) filter to categorize amino acid substitutions (relative to CARD reference) into 

classes of physicochemical dissimilarity: conservative (0-50), moderately conservative 

(51-100), moderately radical (101-150) or radical (≥151). We removed any RGI hits that 

had a Grantham Score greater than 151.  

 

AMR prediction modelling 

Genetic features for each dataset were collated into count matrices Xij where i 

represents each genome of that dataset and j represents a specific genetic feature. After 

matrices of genetic features were generated, we used four different machine learning 

algorithms (logistic regression, decision tree, random forest, and naïve Bayes) to build 

models for prediction of antimicrobial resistance phenotype from genotype for each 

antibiotic against each pathogen. Logistic regression (LR) is the simplest of all four 

algorithms and is an extension of linear regression (R. E. Wright, 1995). The decision tree 

(DT) algorithm creates a model by learning simple decision rules inferred from the 

features (Quinlan, 1986). Random forest (RF) is a combination of many decision trees, 

which makes it more difficult to interpret (Breiman, 2001). Lastly, Naïve Bayes (NB) 

assumes independence among features when developing a model (Lewis, 1998). For each 

dataset or combination of datasets, the hyperparameters were tuned using a threefold 

stratified shuffle split 3-fold cross-validation scheme and the training sets were evaluated 

using accuracy, balanced accuracy, average precision, precision, F1 score, negative log 

loss score, and recall for all AMR prediction models to determine which evaluation 

metric allows for greatest differentiation when evaluating model performance (Pedregosa 
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et al., 2011). Accuracy (and balanced accuracy), precision, F1, and recall can be 

calculated using values from a confusion matrix (e.g., true positives, true negatives, false 

positives, and false negatives) (Supplementary Table 3-1) (Ting, 2017). Accuracy often 

reported because of its simplicity, but can be strongly skewed when using imbalanced 

datasets (i.e., less representative phenotype is <10% prevalent in the dataset), which is 

what balanced accuracy can resolve. Average precision summarizes precision-recall 

curves and is also useful for imbalanced datasets. Lastly, log loss can also be used for 

imbalanced datasets and it considers prediction uncertainty in relation to the divergence 

of the predicted probabilities and the actual AMR phenotype. For more details regarding 

model development, we adhered to the methods in our previously published AMR 

prediction models (Tsang et al., 2021).  

Machine learning and dataset partitioning were performed using scikit-learn 

(Pedregosa et al., 2011) (v0.20.0) with data otherwise manipulated using numpy 

(Oliphant, 2006) (v1.17.2) and pandas (McKinney, 2010) (v0.25.1). Heatmaps were 

generated using seaborn (v0.11.0). The code and conda environments (using python 

v3.7.2) and intermediate data files required to generate this analysis are available: 

https://github.com/karatsang/DatasetAlgorithmEvaluation 
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RESULTS 

Genetic feature generation and filtering 

 Across each Escherichia coli, Pseudomonas aeruginosa, and Neisseria 

gonorrhoeae dataset (Table 3-1), we used SPAdes (Bankevich et al., 2012) to assemble 

chromosomes and plasmids of each isolate (Table 3-2), while HyAsP (Müller & Chauve, 

2019) was used to predict plasmid sequences alone. The only exception was the 

Pseudomonas aeruginosa PA2 dataset, for which raw sequencing reads were not 

available and we used the available assemblies, which represent both chromosome and 

plasmid sequences. In general, E. coli had 1.2-1.5 circular plasmids per sample, whereas 

N. gonorrhoeae had 1.0-1.2 circular plasmids per sample (Table 3-3). Across all 102 P. 

aeruginosa isolates, only one circular plasmid was identified.   

 Using the Comprehensive Antibiotic Resistance Database (CARD) and Resistance 

Gene Identifier (RGI) we predicted known AMR determinants in a given dataset. We first 

identified resistance determinants in SPAdes plasmid and chromosome assemblies, with 

larger datasets finding larger numbers of determinants due to the increase in genomic 

diversity (Supplementary Figure 3-1 to 3-6). For example, in the E. coli datasets, 184 and 

448 resistance determinants were identified in EC1 (n=115) and EC2 (n=972), 

respectively. Overall, fewer resistance determinants were predicted for N. gonorrhoeae 

than for E. coli or P. aeruginosa (Supplementary Figure 3-1, 3-3, 3-6). Similar results 

were observed when using RGI to annotate the HyAsP assemblies (Supplementary Figure 

3-7 to 3-10), including fewer for N. gonorrhoeae plasmids (9-11 AMR determinants) than 

E. coli plasmids (69-140 AMR determinants). In our analyses of all datasets, we 
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represented RGI results in two ways: only the presence of the resistance gene or the 

presence of the resistance gene combined with its RGI criteria (Perfect amino acid 

sequence match to CARD reference sequence or Strict variant of the CARD reference 

sequence). For example, if both a Perfect and Strict TEM-1 were identified in a sample, in 

the first representation there would only be one TEM-1 feature counted but in the second 

representation a TEM-1 Perfect feature and a TEM-1 Strict feature would be separately 

counted. Representing the resistance gene with its RGI criteria (‘PS’ representation) 

increased the number of features by 10-30%. We also filtered the RGI features in two 

ways. The first was selecting for resistance determinants that were found in at least two or 

more samples within the dataset to remove any uniquely identified and uninformative 

features. Typically, this reduced the number of features by 10-30%. Next, we created a 

Grantham score (‘GS’) filter to remove any predicted resistance genes that were 

considered to have radical amino acid changes, and thus likely representative of RGI false 

positives. The GS filter typically reduced the number of features by ~50%.  

Table 3-2. Average length and N50 of SPAdes (chromosome and plasmid) 

assemblies. Standard deviation (SD) in brackets. As sequencing reads were unavailable 

for PA2, we used the provided genome assemblies. 

 

Dataset Number of samples 
Average length in base 

pairs (SD) 
Average N50 in base 

pairs (SD) 

EC1 115 5,163,879 (182,559) 231,879 (80,960) 

EC2 1097 5,226,698 (505,792) 142,140 (62,816) 

PA1 102 6,677,430 (325,747) 257,809 (93,830) 

PA2 533 6,690,535 (301,819) 655,035 (1,669,049) 

NG1 398 2,121,269 (35,734) 39,070 (7,620) 

NG2 675 2,135,000 (162,840) 57,727 (16,653) 
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Table 3-3. HyAsP predicted plasmid characteristics. Standard deviation (SD) is in 

brackets where applicable. As sequencing reads were unavailable for PA2, we were 

unable to perform HyAsP. 

 

Dataset 
Number of 
samples 

Total 
number of 
putative 
plasmid 
contigs 

(circular + 
non-

circular) 

Number of 
circular 

plasmids 

Average 
length of 
circular 

plasmids in 
base pairs 

(SD) 

Average 
read depth 
of circular 
plasmids 

(SD) 

Gene 
density of 
circular 

plasmids 
(SD) 

EC1 115 813 178 
112,707 

(188,005) 
27.08 

(59.32) 
0.31 (0.33) 

EC2 1097 8707 1188 
14,626 

(26,577) 
33.28 

(70.42) 
0.71 (0.14) 

PA1 102 54 1 95,654 1.47 0.56 

PA2 Sequencing reads not available 

NG1 398 548 413 
6,467 

(8,640) 
32.17 

(14.64) 
0.79 (0.1) 

NG2 675 800 797 
9,405 

(12,823) 
23.99 

(30.70) 
0.83 (0.10) 

 

 

Feature selection drives AMR prediction model performance for E. coli, P. 

aeruginosa, and N. gonorrhoeae  

In the E. coli datasets, filtering resistance determinants had little effect on AMR 

prediction model performance (Figure 3-1, Supplementary Figure 3-11 to 3-15) while use 

of plasmid-borne resistance determinants exclusively instead of chromosome and 

plasmid-borne resistance determinants together decreased AMR prediction model 

performance using most evaluation metrics (Figure 3-2, Supplementary Figure 3-16). In 

the P. aeruginosa datasets, the PS or GS filter improved meropenem resistance prediction 

for both datasets (Figure 3-3), as well as improved ceftazidime, ciprofloxacin, and 

piperacillin-tazobactam resistance prediction for the PA2 dataset (Supplementary Figure 

3-17 to 3-19). The PS filter improved amoxicillin-clavulanic acid, cefixime, cefoxitin, 

ceftriaxone, and trimethoprim-sulfamethoxazole resistance prediction in dataset PA1 
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(Supplementary Figure 3-20 to 3-24), while ciprofloxacin, azithromycin, penicillin, and 

tetracycline resistance prediction models were improved using chromosome and plasmid 

resistance determinants together combined with the PS filter or the GS filter (Figure 3-4, 

Supplementary Figure 3-25 to 3-27). Use of feature filtering for plasmid-borne resistance 

determinants had little effect on N. gonorrhoeae AMR prediction performance and 

plasmid-borne resistance determinants generally produced poorer models compared to 

using chromosome and plasmid resistance determinants, with a few exceptions that 

illustrated an interaction between feature selection and algorithm choice (Figure 3-5, 

Supplementary Figure 3-28). In the NG1 dataset, the accuracy, F1, recall, and log loss of 

penicillin resistance prediction is improved when using random forest and plasmid-borne 

resistance determinants (Figure 3-5), but the same effect was not observed for penicillin 

resistance in dataset NG2. Yet, the log loss of all cefixime resistance prediction models 

was improved using plasmid-borne resistance determinants (Supplementary Figure 3-28). 
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Figure 3-1. AMR prediction models for E. coli ciprofloxacin resistance across two 

datasets (EC1 and EC2). Each square represents an AMR prediction model created 

using an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. The x-axis describes different feature filtering methods. For 

resistance genes, we represented them in two different ways: only the resistance gene or 

the resistance gene and its criteria (PS). For example, if a Perfect and Strict TEM-1 were 

identified in a sample, in the first representation, there would only be one TEM-1 feature, 

and in the second representation there would be a TEM-1 Perfect and TEM-1 Strict 

feature. Only using resistance determinants that were found in at least two or more 

samples within the dataset are represented as (≥2). A Grantham score (GS) filter to 

remove any resistance genes that were considered to have radical amino acid changes.  

On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree (DT), 

random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess model 

performance. The evaluation metrics on the top heatmap indicate qualities to be 

maximized, thus the closer to one (the more yellow), the better the prediction model. 

Whereas log loss is ideally zero (the more yellow) as it indicates a more probable, better 

prediction model.  
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Figure 3-2. AMR prediction models for E. coli resistance to compare using SPAdes 

(chromosome + plasmid) or HyAsP (plasmid) assemblies in dataset EC1. Each square 

represents an AMR prediction model created using an algorithm, known resistance 

determinants (no filter), and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. For more detail on performance interpretation, 

see Figure 3-1. 
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Figure 3-3. AMR prediction models for P. aeruginosa meropenem resistance across 

two datasets (PA1 and PA2). Each square represents an AMR prediction model created 

using an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants if they are found 

in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Figure 3-4. AMR prediction models for N. gonorrhoeae ciprofloxacin resistance 

across two datasets (NG1 and NG2). Each square represents an AMR prediction model 

created using an algorithm, features, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants if they are 

found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 

 

 

 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 104 

 
 

Figure 3-5. AMR prediction models for N. gonorrhoeae resistance to compare using 

SPAdes (chromosome + plasmid) or HyAsP (plasmid) assemblies in dataset NG1. 

Each square represents an AMR prediction model created using an algorithm, known 

resistance determinants (no filter), and assessed using an evaluation metric where its 

colour represents the performance. For more detail on performance interpretation, see 

Figure 3-1. 
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Mutation identification is dependent on reference sequence selection and can 

improve AMR prediction models 

As an alternative to dependence upon known resistance determinants as predicted 

by RGI, breseq was used to identify all single nucleotide polymorphisms (SNPs) in each 

sample using a collection of annotated reference genome sequences. Using these SNPs as 

genetic features in model training and analogous to the RGI results, more mutations were 

identified within larger datasets (Supplementary Figure 3-29 to 3-33). For both E. coli 

datasets, using E. coli O157 str. Sakai as a reference identified more mutations than using 

E. coli O83:H1 str. NRG 857C (Supplementary Figure 3-29 to 3-30). Using P. 

aeruginosa UCBPP-PA14 as a reference generated more mutations than using P. 

aeruginosa PAO1 (Supplementary Figure 3-31). In contrast, in the N. gonorrhoeae 

datasets, using N. gonorrhoeae WHOF generated the most mutations (39,735) in dataset 

NG1 (n=398, Supplementary Figure 3-32) while N. gonorrhoeae WHOV identified the 

most mutations (70,578) in dataset NG2 (n=660, Supplementary Figure 3-33). In dataset 

NG1, use of 15 different references identified 36,000 to 40,000 mutations, whereas in 

dataset NG2 the number of mutations ranged from 35,000 to 70,000.  

When using SNPs as features in model generation for E. coli, use of two different 

reference sequences did not have a large impact on AMR model prediction performance 

regardless of the dataset, algorithm, or evaluation metric (Figure 3-6, Supplementary 

Figure 3-34). We observed that using SNPs combined with naïve Bayes overall as well as 

SNPs combined with random forest for some antibiotics (e.g., nitrofurantoin in EC1 and 

meropenem in EC2) generated poor prediction models (Figure 3-6, Supplementary Figure 
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3-34). However, using logistic regression or decision trees created strong prediction 

models regardless of the evaluation metric. Using the mutations generated from EC1 and 

EC2 generally performed better than using known resistance genes predicted by RGI 

(Figure 3-6, Supplementary Figure 3-34,3-35).  Similarly, using one P. aeruginosa 

dataset, PA1, to generate mutations using two different reference sequences created subtle 

differences in prediction model quality (e.g., using P. aeruginosa PAO1 performed 

slightly worse for ciprofloxacin resistance prediction models using naïve Bayes) (Figure 

3-7). Furthermore, using P. aeruginosa mutations generated from reference sequences 

creates better AMR prediction models compared to using known resistance determinants 

predicted by RGI (Figure 3-7, Supplementary Figure 3-36). For the N. gonorrhoeae 

datasets, we used 15 reference sequences to generate mutations and there were subtle 

differences between each in the quality of the prediction model (Figure 3-8, 

Supplementary Figure 3-36 to 3-41), e.g., using N. gonorrhoeae WHOP and NG1 for 

penicillin resistance prediction (Figure 3-8). Naïve Bayes performed poorly for both 

datasets and every antibiotic using most evaluation parameters (Figure 3-7, 

Supplementary Figure 3-36), whereas random forest only performed poorly for 

spectinomycin and cefixime resistance prediction using all evaluation metrics except 

accuracy and precision (Supplementary Figure 3-40, 3-41).  
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Figure 3-6. AMR prediction models for E. coli resistance to compare using two 

different reference strains for mutation generation in dataset EC1. Each square 

represents an AMR prediction model created using an algorithm, mutations generated 

using a reference sequence, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. For more detail on performance interpretation, 

see Figure 3-1.  
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Figure 3-7. AMR prediction models for P. aeruginosa to compare using two different 

reference strains for mutation generation in dataset PA1. Each square represents an 

AMR prediction model created using an algorithm, mutations generated using a reference 

sequence, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. For more detail on performance interpretation, see Figure 3-1. 

 

P. aeruginosa PAO1 P. aeruginosa UCBPP4-PA14
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Figure 3-8. Penicillin resistant prediction models for N. gonorrhoeae to compare 

using 15 different reference strains for mutation generation in dataset NG1 and 

NG2. Each square represents an AMR prediction model created using an algorithm, 

mutations generated using a reference sequence, and assessed using an evaluation metric 

where its colour represents the performance. On the x-axis are the 15 different reference 

strains. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree (DT), 

random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess model 

performance. For more detail on performance interpretation, see Figure 3-1. 
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Evaluation metric and algorithm choice are inter-related 

To determine the best algorithm for predicting resistance to a particular antibiotic, 

one must first choose an evaluation metric to compare across all models. However, 

choosing different evaluation metrics can change the algorithm that will be chosen. To 

best illustrate the inter-relatedness of the evaluation metric and the algorithm choice, we 

compared ciprofloxacin resistance prediction models as ciprofloxacin resistance was the 

only phenotype that was included in every dataset. Generally, using resistance 

determinants and regardless of any evaluation metric chosen, Naïve Bayes performed 

poorer than decision tree, logistic regression, and random forest (Figure 3-9). However, 

the poor prediction quality of naïve Bayes is more evident in the E. coli and P. 

aeruginosa datasets than in the N. gonorrhoeae datasets (Figure 3-9). Even using 

mutations as features, use of Naïve Bayes is generally a poor algorithm choice (Figure 3-

6 to 3-8), yet there are some exceptions, e.g., using average precision or precision to 

evaluate the Naïve Bayes prediction models derived from dataset NG1 (Figure 3-8). In 

addition, there are also differences in prediction model performance across the antibiotic 

resistance phenotypes, e.g., the random forest meropenem and nitrofurantoin resistance 

prediction models perform poorer than other antibiotic resistance phenotypes using a 

number of different evaluation metrics (Figure 3-6).  
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Figure 3-9. Ciprofloxacin prediction models for across all species and datasets with 

feature filtering. Each square represents an AMR prediction model created using an 

algorithm, resistance determinants, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants if they are 

found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Prediction model performance is specific to antibiotic 

Regardless of whether known resistance determinants (RGI) or mutations derived 

from a reference sequence (breseq) were used as features, the quality of AMR prediction 

models depended upon the antibiotic examined. Across all datasets tested, we observed 

differences in prediction performance for every antibiotic. In the E. coli datasets, 

ertapenem, meropenem, and nitrofurantoin resistance were more difficult to predict using 

known resistance genes or mutations (Figure 3-2, 3-6), while with the P. aeruginosa 

datasets, ceftazidime and meropenem prediction models were not as strong as prediction 

models for other antibiotics (Figure 3-7, 3-10). In the N. gonorrhoeae datasets, using 

known resistance genes there are differences in prediction performance for each antibiotic 

(Figure 3-11), but the difference in prediction performance across antibiotics is more 

subtle when using mutations (Figure 3-8, Supplementary Figure 3-38 to 3-41). One 

observable difference is the poor prediction performance of using random forest for 

spectinomycin and cefixime resistance prediction (Supplementary Figure 3-40, 3-41). 
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Figure 3-10. AMR prediction models using known resistance determinants and no 

filtering for N. gonorrhoeae across two datasets (NG1 and NG2). Each square 

represents an AMR prediction model created using an algorithm, known resistance 

determinants, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. For more detail on performance interpretation, see Figure 3-1. 
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Figure 3-11. AMR prediction models using known resistance determinants and no 

filtering for P. aeruginosa across two datasets (PA1 and PA2). Each square represents 

an AMR prediction model created using an algorithm, known resistance determinants, 

and assessed using an evaluation metric where its colour represents the performance. On 

the y-axis are the algorithms (e.g., logistic regression (LR), decision tree (DT), random 

forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess model 

performance. For more detail on performance interpretation, see Figure 3-1. 
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Pathogen and dataset drive AMR prediction model quality 

We used geographically different datasets of the same pathogen to create AMR 

prediction models. For E. coli ertapenem and nitrofurantoin resistance prediction, using 

EC2 creates prediction models that are generally worse than using EC1 (Supplementary 

Figure 3-35, Supplementary Figure 3-42, 3-43), while for P. aeruginosa amikacin 

resistance prediction using PA1 performed worse than using PA2 when using naïve Bayes 

and random forest (Supplementary Figure 3-44). In general, using PA2 for ceftazidime 

resistance prediction performed better than using PA1 (Supplementary Figure 3-45), but 

PA2 performed worse for meropenem resistance prediction (Supplementary Figure 3-46). 

For P. aeruginosa piperacillin-tazobactam resistance prediction, using PA1 performed 

slightly better than using PA2 (Supplementary Figure 3-47), whereas using naïve Bayes 

and PA2 or logistic regression and PA1 generated better tobramycin resistance prediction 

models (Supplementary Figure 3-48).  

Dataset specificity is particularly evident when combining datasets of the same 

species. In both E. coli and P. aeruginosa, when we combined their respective datasets 

(EC1+EC2 and PA1+PA2) to create prediction models, the quality of the prediction 

models generally decreased (Supplementary Figure 3-35, 3-36), but decreasing prediction 

model quality when combining datasets is less evident using the N. gonorrhoeae datasets 

(Supplementary Figure 3-49). 

While the decision tree or random forest algorithm would be chosen for 

ciprofloxacin resistance across all pathogens, the E. coli prediction models are better than 

the P. aeruginosa prediction models, which are better than those of N. gonorrhoeae 
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(Figure 3-9). Similarly, for E. coli, P. aeruginosa, and N. gonorrhoeae cefixime 

resistance prediction, the quality of prediction models is better in P. aeruginosa and E. 

coli in contrast to N. gonorrhoeae, particularly when using precision, average precision 

and F1 metrics (Supplementary Figure 3-50). Using naïve Bayes is generally poor for E. 

coli resistance prediction regardless of which evaluation metric (Supplementary Figure 3-

51), whereas with P. aeruginosa only evaluating naïve Bayes with balanced accuracy 

equates to poor prediction models.  

 

Stratification based on site of infection can improve AMR prediction models 

For the E. coli datasets, we had enough compiled data to stratify by site of 

infection (e.g., blood or urine) before generating the AMR prediction models and 

stratification by urine improved cefazolin, ciprofloxacin, and trimethoprim-

sulfamethoxazole resistance prediction models, but reduced the quality of nitrofurantoin 

resistance prediction models (Figure 3-12). When we excluded any known resistance 

genes only found in one sample, some of the nitrofurantoin resistance prediction models 

improved using random forest and stratification (Supplementary Figure 3-52).  
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Figure 3-12. AMR prediction models using resistance determinants and no filtering 

for E. coli across two datasets (EC1 and EC2) stratified by site of infection. Each 

square represents an AMR prediction model created using an algorithm, known resistance 

determinants, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. For more detail on performance interpretation, see Figure 3-1. 
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DISCUSSION 

 Using machine learning to create AMR prediction models can create new or 

improve existing molecular diagnostics. Since it is currently difficult to compare AMR 

prediction publications due to the variety in datasets and parameters used, we show the 

effect of these parameters on AMR prediction model performance. We show that AMR 

prediction model performance depends on dataset, algorithm, and evaluation metric. 

Furthermore, we show that AMR prediction model performance also relies on antibiotic, 

pathogen, feature selection and stratification of datasets.  

While AMR prediction models rely on a number of different parameters, many 

previously published AMR prediction studies have limited their use of such variables. 

One publication by Hicks et al. has evaluated parameters affecting AMR Neisseria 

gonorrhoeae, Klebsiella pneumoniae and Acinetobacter baumannii prediction model 

performance and reliability (Hicks et al., 2019). The authors used set covering machine 

and random forest algorithms with k-mers derived from genome assemblies and showed 

that AMR prediction model accuracy varies by antibiotic, genomic diversity, and 

pathogen using balanced accuracy, sensitivity, and specificity as evaluation metrics. Our 

work builds upon their publication to show their similar findings in Escherichia coli and 

Pseudomonas aeruginosa. Furthermore, we use additional algorithms, evaluation metrics, 

and biologically relevant feature filtering methods to identify their effect on AMR 

prediction model performance. 

 To our knowledge, there has been one AMR prediction modeling publication that 

has compared the use of different biologically relevant genetic features and feature 
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filtering methods on AMR prediction model performance (Aytan-Aktug et al., 2020). 

Using known resistance determinants compared to using mutations has implications on 

performance, interpretability, and generalizability of AMR prediction models. Typically, 

tens to hundreds of known resistance determinants compared to thousands when 

mutations are used as genetic features. The sheer number of features when using 

mutations requires more computational resources to build AMR prediction models 

compared to using known resistance determinants. In addition, having hundreds of 

thousands, if not millions, of mutations decreases our ability to interpret the AMR 

prediction model, e.g., the mutations important for AMR prediction. With the limitations 

of using mutations, it is nonetheless important to highlight that use of mutations can 

improve E. coli, P. aeruginosa, and N. gonorrhoeae AMR prediction performance for a 

number of different antibiotics. This is biologically reflective, as many N. gonorrhoeae 

resistance phenotypes are mediated or caused by mutations (Ng, Martin, Liu, & Bryden, 

2002; Shafer & Folster, 2006; Unemo & Shafer, 2014). Thus, choosing resistance 

determinants or mutations implies trade-offs between interpretability and performance. 

We also compared the use of known resistance determinants identified in SPAdes 

(chromosome and plasmid) and HyAsP (plasmid) assemblies. Generally, using plasmid-

borne resistance determinants decreased AMR prediction model performance in E. coli 

and N. gonorrhoeae, suggesting that AMR is driven by resistance determinants in both 

chromosome and plasmids, which supports current knowledge (Moradigaravand et al., 

2018; Unemo & Shafer, 2014). Lastly, as a part of feature selection we filtered genetic 

features for sequencing error, gene copy number, and amino acid physicochemistry by 
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including features only found in two or more samples, representing resistance 

determinants with their RGI Perfect or Strict criteria (‘PS’), and using a Grantham Score 

filter (‘G’), respectively. Again, the effect on AMR prediction model performance varies 

depending on the dataset, antibiotic, and pathogen. For example, amikacin resistance 

prediction is improved by using the PS representation and GS filter for only dataset PA2 

and not PA1 (Supplementary Figure 3-44). In contrast, the PS representation and GS 

filters improve ciprofloxacin resistance prediction models (using resistance determinants) 

in both N. gonorrhoeae and P. aeruginosa datasets, but has limited impact for E. coli 

datasets. This suggests that copy numbers of quinolone resistance genes are important in 

E. coli prediction models (Minh et al., 2012). However, in both N. gonorrhoeae and P. 

aeruginosa it has been established that amino acid substitutions predominantly cause 

ciprofloxacin resistance (Belland, Morrison, Ison, & Huang, 1994; L. Zhao, Wang, Li, 

He, & Jian, 2020) and thus the PS representation (which does not address mutation copy 

number) is perhaps determining associative, not causative, relationships between the 

genes and phenotypes. Alternatively, the GS filter is removing any resistance 

determinants that are predicted to have radical changes in amino acids disrupting 

function, thereby removing noise to improve ciprofloxacin resistance models. CARD’s 

RGI software should consider systematic evaluation of Grantham score filters in addition 

to the current curated bitscore cutoffs. 

Selecting an algorithm not only influences AMR prediction performance but also 

our ability to interpret the genetic features driving the model. Naïve Bayes generally built 

poor AMR prediction models and we hypothesize that it is because this algorithm 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 121 

assumes independence among the genetic features, while we know that AMR can be 

multifactorial (Piddock, 2014). Logistic regression, decision trees, and random forest do 

not assume independence among genetic features and nearly always performed better 

than Naïve Bayes. 

 When choosing an evaluation metric to measure the performance of AMR 

prediction models, it is essential to understand what the metric is evaluating. For example, 

Brankin & Fowler argue that sensitivity and specificity are more important than accuracy 

and precision (Brankin & Fowler, 2019). To select appropriate treatment for the patient 

and for stewardship, minimizing false negative predictions is a priority, whereas when 

there are limited antibiotics available, false positives should be minimized (Brankin & 

Fowler, 2019). Selecting an evaluation metric thus not only has implications on what will 

be considered the best prediction model, but also the clinical applicability of the model.  

 Stratifying datasets essentially subgroups data based on a similarity, whether that 

be patient demographic, geographic location, timeframe, or site of infection. Hicks et al. 

showed variation in performance of prediction models developed from a variety of 

sampling frames, e.g., temporal, geographic and/or sampling approach (Hicks et al., 

2019), and we also similarly show stratifying datasets by site of infection has a variable 

effect on prediction model performance. Perhaps stratifying by urine as a site of isolation 

improved cefazolin, ciprofloxacin, and trimethoprim-sulfamethoxazole resistance 

prediction models because these antibiotics are treatments for urinary tract infections and 

thus our data reflect treatment at time of sampling (Alanazi, Alqahtani, & Aleanizy, 2018; 

Car, 2006; C. E. Cox, 1973; Uppala, King, & Patel, 2019). However, the nitrofurantoin 
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resistance prediction model decreased in performance even though nitrofurantoin is used 

to treat urinary tract infections (Kashanian et al., 2008), yet this could possibly be 

attributed to the imbalanced training dataset. In addition, stratifying by site of infection 

may have inadvertently stratified by phylogeny. In contrast, combining datasets of the 

same pathogen decreased the performance of all AMR prediction models, which is 

comparable to previous findings where use of a global gonococcal dataset did not 

improve prediction accuracy (Hicks et al., 2019). This suggests sampling for genomic and 

geographic diversity may not necessarily improve AMR prediction model performance 

and that increased sampling of similar population structures can improve performance. 

All AMR ML approaches may need to be local. 

Resistant and susceptible categorizations are based on the minimum inhibitory 

concentration (MIC) being higher or lower than a breakpoint value, which are established 

by the Clinical & Laboratory Standards Institute (CLSI) (CLSI, 2018) and European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) (EUCAST, 2015). One 

limitation of our work is that predicting resistant and susceptible categorizations using 

one guideline may not be generalizable towards the other. Furthermore, while predicting 

resistant and susceptible may be sufficient for managing individual patients, it provides 

less surveillance information than predicting MICs. With MIC prediction there is added 

value where pathogens have MICs approaching the breakpoint values, providing 

additional information on the evolution and spread of resistance. There are a number of 

publications that develop models for MIC prediction, sometimes in addition to resistant 

and susceptible categorizations (Demczuk et al., 2020; Eyre et al., 2019; Eyre et al., 
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2017; Hicks et al., 2019; Nguyen et al., 2018; Nguyen et al., 2020; Nguyen et al., 2019; 

Pataki et al., 2020), however to our knowledge, there has not been a publication that tests 

the effect of different parameters (e.g., features, algorithm, dataset) on MIC prediction 

model performance. Understanding the parameters that affect AMR and MIC prediction 

models are important to further elucidate the mechanistic drivers of resistance and 

acknowledge the models’ applicability and limitations in a clinical microbiology lab for 

patient care and public health surveillance.  
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SUPPLEMENTARY MATERIAL 
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Supplementary Figures 

 
 

Supplementary Figure 3-1. Resistance determinant prediction and distribution of 

AMR phenotypes in E. coli SPAdes assemblies (Dataset EC1). The top plots show the 

number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-2. Resistance determinant prediction and distribution 

AMR phenotypes in E. coli SPAdes assemblies (Dataset EC2). The top plots show the 

number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-3. Resistance determinant prediction and distribution 

AMR phenotypes in P. aeruginosa SPAdes assemblies (Dataset PA1). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-4. Resistance determinant prediction and distribution 

AMR phenotypes in P. aeruginosa SPAdes assemblies (Dataset PA2). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-5. Resistance determinant prediction and distribution 

AMR phenotypes in N. gonorrhoeae SPAdes assemblies (Dataset NG1). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-6. Resistance determinant prediction and distribution 

AMR phenotypes in N. gonorrhoeae SPAdes assemblies (Dataset NG2). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 131 

 
 

Supplementary Figure 3-7. Resistance determinant prediction and distribution 

AMR phenotypes in E. coli HyAsP assemblies (Dataset EC1). The top plots show the 

number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-8. Resistance determinant prediction and distribution 

AMR phenotypes in E. coli  HyAsP assemblies (Dataset EC2). The top plots show the 

number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-9. Resistance determinant prediction and distribution 

AMR phenotypes in N. gonorrhoeae HyAsP assemblies (Dataset NG1). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 
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Supplementary Figure 3-10. Resistance determinant prediction and distribution 

AMR phenotypes in N. gonorrhoeae HyAsP assemblies (Dataset NG2). The top plots 

show the number of resistance determinants before (RGI) and after filtering for resistance 

determinants found in more than one sample (RGI ≥ 2). 

 

 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 135 

 

 
 

Supplementary Figure 3-11. E. coli ampicillin resistance prediction models using 

datasets EC1 and EC2. Each square represents an AMR prediction model created using 

an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-12. E. coli cefazolin resistance prediction models using 

datasets EC1 and EC2. Each square represents an AMR prediction model created using 

an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-13. E. coli ertapenem resistance prediction models using 

datasets EC1 and EC2. Each square represents an AMR prediction model created using 

an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-14. E. coli gentamicin resistance prediction models using 

datasets EC1 and EC2. Each square represents an AMR prediction model created using 

an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-15. E. coli nitrofurantoin resistance prediction models 

using datasets EC1 and EC2. Each square represents an AMR prediction model created 

using an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-16. E. coli AMR prediction models using SPAdes 

(chromosome + plasmid) or HyAsP (plasmid) assemblies in dataset EC2. Each square 

represents an AMR prediction model created using an algorithm, features, and assessed 

using an evaluation metric where its colour represents the performance. On the y-axis are 

the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. 

Representation of features (i.e., PS), physicochemical filtering (i.e., GS), inclusion of 

resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-17. P. aeruginosa ceftazidime resistance prediction models 

using datasets PA1 and PA2. Each square represents an AMR prediction model created 

using an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-18. P. aeruginosa ciprofloxacin resistance prediction 

models using datasets PA1 and PA2. Each square represents an AMR prediction model 

created using an algorithm, features, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 

samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-19. P. aeruginosa piperacillin-tazobactam resistance 

prediction models using datasets PA1 and PA2. Each square represents an AMR 

prediction model created using an algorithm, features, and assessed using an evaluation 

metric where its colour represents the performance. On the y-axis are the algorithms (e.g., 

logistic regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) 

and evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 

samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-20. AMR prediction models for P. aeruginosa amoxicillin-

clavulanic acid resistance prediction models using dataset PA1. Each square 

represents an AMR prediction model created using an algorithm, features, and assessed 

using an evaluation metric where its colour represents the performance. On the y-axis are 

the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. 

Representation of features (i.e., PS), physicochemical filtering (i.e., GS), inclusion of 

resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-21. P. aeruginosa cefixime resistance prediction models 

using dataset PA1. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. Representation of features (i.e., PS), physicochemical filtering 

(i.e., GS), inclusion of resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-22. P. aeruginosa cefoxitin resistance prediction models 

using dataset PA1. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. Representation of features (i.e., PS), physicochemical filtering 

(i.e., GS), inclusion of resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-23. P. aeruginosa ceftriaxone resistance prediction models 

using dataset PA1. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. Representation of features (i.e., PS), physicochemical filtering 

(i.e., GS), inclusion of resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 148 

 
 

Supplementary Figure 3-24. P. aeruginosa trimethoprim-sulfamethoxazole 

resistance prediction models using dataset PA1. Each square represents an AMR 

prediction model created using an algorithm, features, and assessed using an evaluation 

metric where its colour represents the performance. On the y-axis are the algorithms (e.g., 

logistic regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) 

and evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 

samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-25. N. gonorrhoeae azithromycin resistance prediction 

models using datasets NG1 and NG2. Each square represents an AMR prediction model 

created using an algorithm, features, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 

samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-26. N. gonorrhoeae penicillin resistance prediction models 

using datasets NG1 and NG2. Each square represents an AMR prediction model created 

using an algorithm, features, and assessed using an evaluation metric where its colour 

represents the performance. On the y-axis are the algorithms (e.g., logistic regression 

(LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation 

metrics used to assess model performance. Representation of features (i.e., PS), 

physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 samples 

(i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-27. N. gonorrhoeae tetracycline resistance prediction 

models using datasets NG1 and NG2. Each square represents an AMR prediction model 

created using an algorithm, features, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants in ≥ 2 

samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-28. N. gonorrhoeae resistance prediction models using 

SPAdes (chromosome + plasmid) or HyAsP (plasmid) assemblies in dataset NG2. 

Each square represents an AMR prediction model created using an algorithm, features, 

and assessed using an evaluation metric where its colour represents the performance. On 

the y-axis are the algorithms (e.g., logistic regression (LR), decision tree (DT), random 

forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess model 

performance. Representation of features (i.e., PS), physicochemical filtering (i.e., GS), 

inclusion of resistance determinants in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-29. Mutation generation and AMR phenotype distribution 

in E. coli dataset EC1. Two E. coli reference sequences were used.  
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Supplementary Figure 3-30. Mutation generation and AMR phenotype distribution 

in E. coli dataset EC2. Two E. coli reference sequences were used.  
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Supplementary Figure 3-31. Mutation generation and AMR phenotype distribution 

in P. aeruginosa dataset PA1. Two P. aeruginosa reference sequences were used.   
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Supplementary Figure 3-32. Mutation generation and AMR phenotype distribution 

in N. gonorrhoeae dataset NG1. Fifteen N. gonorrhoeae reference sequences were used.  
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Supplementary Figure 3-33. Mutation generation and AMR phenotype distribution 

in N. gonorrhoeae dataset NG2. Fifteen N. gonorrhoeae reference sequences were used.  

 

 

 

 
 

Supplementary Figure 3-34. E. coli AMR prediction models using mutations in 

dataset EC2. Two E. coli references were used. Each square represents an AMR 

prediction model created using an algorithm, features, and assessed using an evaluation 

metric where its colour represents the performance. On the y-axis are the algorithms (e.g., 

logistic regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) 

and evaluation metrics used to assess model performance. For more detail on 

performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-35. E. coli AMR prediction models using known resistance 

determinants and no filtering with datasets EC1 and EC2. Each square represents an 

AMR prediction model created using an algorithm, features, and assessed using an 

evaluation metric where its colour represents the performance. On the y-axis are the 

algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. For more 

detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-36. P. aeruginosa AMR prediction models using known 

resistance determinants and no filtering with datasets PA1 and PA2. Each square 
represents an AMR prediction model created using an algorithm, features, and assessed 
using an evaluation metric where its colour represents the performance. On the y-axis 
are the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) 
and naïve Bayes (NB)) and evaluation metrics used to assess model performance. For 
more detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-37. N. gonorrhoeae azithromycin resistance prediction 

models using mutations in datasets NG1 and NG2. Fifteen N. gonorrhoeae reference 

sequences were used. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. For more detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-38. N. gonorrhoeae ciprofloxacin resistance prediction 

models using mutations in datasets NG1 and NG2. Fifteen N. gonorrhoeae reference 

sequences were used. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. For more detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-39. N. gonorrhoeae tetracycline resistance prediction 

models using mutations in datasets NG1 and NG2. Fifteen N. gonorrhoeae reference 

sequences were used. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. For more detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-40. N. gonorrhoeae spectinomycin resistant prediction 

models for N. gonorrhoeae (NG1). Each square represents an AMR prediction model 

created using an algorithm, features, and assessed using an evaluation metric where its 

colour represents the performance. On the y-axis are the algorithms (e.g., logistic 

regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) and 

evaluation metrics used to assess model performance. For more detail on performance 

interpretation, see Figure 3-1. 
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Supplementary Figure 3-41. N. gonorrhoeae cefixime resistance prediction models 

using mutations in dataset NG1. Fifteen N. gonorrhoeae reference sequences were 

used. Each square represents an AMR prediction model created using an algorithm, 

features, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. For more detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-42. E. coli ertapenem resistance prediction models using 

known resistance determinants in datasets EC1 and EC2. Each square represents an 

AMR prediction model created using an algorithm, features, and assessed using an 

evaluation metric where its colour represents the performance. On the y-axis are the 

algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. 

Representation of features (i.e., PS), physicochemical filtering (i.e., GS), inclusion of 

resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-43. E. coli nitrofurantoin resistance prediction models 

using known resistance determinants in datasets EC1 and EC2. Each square 

represents an AMR prediction model created using an algorithm, features, and assessed 

using an evaluation metric where its colour represents the performance. On the y-axis are 

the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. 

Representation of features (i.e., PS), physicochemical filtering (i.e., GS), inclusion of 

resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-44. E. coli and P. aeruginosa amikacin resistance prediction 

models using known resistance determinants in datasets EC1, PA1, and PA2. Each 

square represents an AMR prediction model created using an algorithm, features, and 

assessed using an evaluation metric where its colour represents the performance. On the 

y-axis are the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest 

(RF) and naïve Bayes (NB)) and evaluation metrics used to assess model performance. 

Representation of features (i.e., PS), physicochemical filtering (i.e., GS), inclusion of 

resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-45. E. coli and P. aeruginosa ceftazidime resistance 

prediction models using known resistance determinants in datasets EC1, PA1, and 

PA2. Each square represents an AMR prediction model created using an algorithm, 

features, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. Representation of features (i.e., PS), physicochemical filtering (i.e., 

GS), inclusion of resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in 

Figure 3-1. 
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Supplementary Figure 3-46. E. coli and P. aeruginosa meropenem resistance 

prediction models using known resistance determinants in datasets EC1, PA1, and 

PA2. Each square represents an AMR prediction model created using an algorithm, 

features, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. Representation of features (i.e., PS), physicochemical filtering (i.e., 

GS), inclusion of resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in 

Figure 3-1. 

 

 

 

 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 170 

 
 

Supplementary Figure 3-47. E. coli and P. aeruginosa piperacillin-tazobactam 

resistance prediction models using known resistance determinants in datasets EC1, 

PA1, and PA2. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. Representation of features (i.e., PS), physicochemical filtering 

(i.e., GS), inclusion of resistance determinants if they are found in ≥ 2 samples (i.e., PS), 

as in Figure 3-1. 
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Supplementary Figure 3-48. E. coli and P. aeruginosa tobramycin resistance 

prediction models using known resistance determinants in datasets EC1, PA1, and 

PA2. Each square represents an AMR prediction model created using an algorithm, 

features, and assessed using an evaluation metric where its colour represents the 

performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision tree 

(DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to assess 

model performance. Representation of features (i.e., PS), physicochemical filtering (i.e., 

GS), inclusion of resistance determinants if they are found in ≥ 2 samples (i.e., PS), as in 

Figure 3-1. 
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Supplementary Figure 3-49. N. gonorrhoeae AMR prediction models using known 

resistance determinants and no filtering with datasets NG1 and NG2. Each square 

represents an AMR prediction model created using an algorithm, features, and assessed 

using an evaluation metric where its colour represents the performance. On the y-axis are 

the algorithms (e.g., logistic regression (LR), decision tree (DT), random forest (RF) and 

naïve Bayes (NB)) and evaluation metrics used to assess model performance. For more 

detail on performance interpretation, see Figure 3-1. 
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Supplementary Figure 3-50. E. coli, P. aeruginosa and N. gonorrhoeae cefixime 

resistance prediction models using known resistance determinants in datasets EC1, 

PA1, and NG2 grouped by evaluation metric. Each square represents an AMR 

prediction model created using an algorithm, features, and assessed using an evaluation 

metric where its colour represents the performance. On the y-axis are the algorithms (e.g., 

logistic regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) 

and evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants if they are 

found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-51. E. coli, P. aeruginosa and N. gonorrhoeae cefixime 

resistance prediction models using known resistance determinants in datasets EC1, 

PA1, and NG2 grouped by algorithm. Each square represents an AMR prediction 

model created using an algorithm, features, and assessed using an evaluation metric 

where its colour represents the performance. On the y-axis are the algorithms (e.g., 

logistic regression (LR), decision tree (DT), random forest (RF) and naïve Bayes (NB)) 

and evaluation metrics used to assess model performance. Representation of features (i.e., 

PS), physicochemical filtering (i.e., GS), inclusion of resistance determinants if they are 

found in ≥ 2 samples (i.e., PS), as in Figure 3-1. 
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Supplementary Figure 3-52. E. coli AMR prediction models stratified by site of 

infection using known resistance genes found in more than one sample in datasets 

EC1 and EC2. Each square represents an AMR prediction model created using an 

algorithm, features, and assessed using an evaluation metric where its colour represents 

the performance. On the y-axis are the algorithms (e.g., logistic regression (LR), decision 

tree (DT), random forest (RF) and naïve Bayes (NB)) and evaluation metrics used to 

assess model performance. For more detail on performance interpretation, see Figure 3-1. 
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Supplementary Tables 

Supplementary Table 3-1. Evaluation metric formulas. TP, TN, FP, FN indicate true 

positive, true negative, false positive, false negative.  

 

Evaluation Metric Formulas 

Accuracy 
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝐹𝑃 + 𝑇𝑁 +  𝐹𝑁
 

Precision (P) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (R) (or Sensitivity) 
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

Specificity (S) 
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 

F1 
2𝑃 ∙ 𝑅

𝑃 + 𝑅
 

Balanced accuracy 
𝑅 +  𝑆

2
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CHAPTER FOUR: Genomic feature selection drives antibiotic minimum inhibitory 

concentration prediction performance   
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ABSTRACT 

 

The World Health Organization and Centers for Disease Control and Prevention have 

described antimicrobial resistance (AMR) as a public and global health crisis. One 

challenge is the turnaround time for AMR diagnosis, which may be improved by using 

next-generation sequencing technology in clinical microbiology laboratories. The optimal 

workflow includes by-passing culture-based phenotypic methods through genome 

sequencing and bioinformatics analyses, with the result an accurate AMR phenotype 

prediction. While a few studies have predicted antibiotic minimum inhibitory 

concentrations (MICs), we show the effect of using different genetic features, algorithms, 

and evaluation metrics on Escherichia coli, Neisseria gonorrhoeae and Pseudomonas 

aeruginosa MIC prediction models. We used two different evaluation metrics to assess 

the MIC prediction models. First, we showed that using chromosome and plasmid-borne 

resistance determinants generated better prediction models than only plasmid-borne 

resistance determinants. Then, we showed that feature filtering and representation had 

little effect on MIC prediction model performance. We further demonstrated use of 

known resistance determinants generates improved AMR E. coli MIC prediction models, 

whereas using mutations generated using a reference genome sequence improved AMR 

N. gonorrhoeae MIC prediction models. However, with P. aeruginosa it was challenging 

to generate highly accurate prediction models with resistance determinants or mutations. 

The accuracy of the MIC prediction models within a two-fold dilution factor of the 

laboratory determined MIC were 86% for E. coli (9 antibiotics), 98% for N. gonorrhoeae 

(8 antibiotics), and 39% for P. aeruginosa (7 antibiotics). We illustrate that interpreting 
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MIC prediction models is useful for understanding the mechanisms driving resistance 

when using hundreds of known resistance determinants but not thousands of mutations 

relative to a reference. Lastly, we show that MIC prediction models only describe 

correlative and not causative relationships between genetic features and an antibiotic 

MIC. Our work demonstrates the parameters that need to be considered when genomic-

based MIC prediction models are used in clinical microbiology laboratories to inform 

clinical treatment and public health initiatives.  
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INTRODUCTION 

Antimicrobial resistance (AMR) is a growing public health threat, but new 

technologies are being used to address the lack of new interventions to prevent the spread 

and treatment of drug resistant infections (Baker, Payne, Rappuoli, & De Gregorio, 

2018). Currently, most clinical microbiology labs use gold standard culture-dependent 

phenotypic methods to determine antibiotic susceptibility profiles to inform antibiotic 

treatment. However, culture-dependent methods rely on in vitro growth of viable 

organisms and face inability to routinely test novel antibiotics, recipe modifications to 

support fastidious pathogens, reproducibility challenges for certain antibiotics, and do not 

account for factors that can influence the outcomes of infection, e.g., biofilm formation 

(Anonymous, 2019; Burnham, Leeds, Nordmann, O'Grady, & Patel, 2017). As such, there 

is growing interest for clinical laboratories to test the potential of next-generation 

sequencing technologies to predict AMR and bypass the time required for conventional 

culture-dependent AMR phenotypic methods (Ransom, Potter, Dantas, & Burnham, 

2020).   

 The current workflow for predicting AMR phenotypes from genotypes is to use 

next-generation sequencing technology (e.g., Illumina, PacBio, Oxford Nanopore) to 

generate sequence reads which can then be processed in several ways to identify genetic 

features. After evaluating and excluding low quality reads, mutations can be identified 

using breseq (Deatherage & Barrick, 2014), k-mers (short nucleotide sequences) can be 

generated using Ray (Boisvert, Laviolette, & Corbeil, 2010), or genomes can be 

assembled using SPAdes and HyAsP (Bankevich et al., 2012; Müller & Chauve, 2019). 
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Typically, the latter is performed and known resistance determinants are annotated from 

the genome assemblies using databases such as the Comprehensive Antibiotic Resistance 

Database (Alcock et al., 2020), ARG-ANNOT (Gupta et al., 2014), ResFinder (P. T. L. 

C. Clausen, Zankari, Aarestrup, & Lund, 2016), homology models such as ResFams 

(Gibson et al., 2015), or manual use of alignment software such and BLAST (Madden, 

2013). These genetic features (e.g., mutations, k-mers, known resistance determinants) are 

then used to predict AMR phenotypes using either a rules-based or machine learning 

modelling method. Rules-based algorithms typically assume that the presence of a known 

resistance determinant leads to a resistant phenotype, whereas a susceptible phenotype is 

inferred from its absence (Bradley et al., 2015; Pesesky et al., 2016; Shelburne et al., 

2017; Tsang et al., 2021). Yet, machine learning approaches have increasingly illustrated 

the inaccuracy of rules-based algorithms (Moradigaravand et al., 2018; Pesesky et al., 

2016; Tsang et al., 2021), in part due to the fact the presence of an AMR gene does not 

guarantee its expression nor generation of a clinically actionable MIC. 

Machine learning methods infer patterns between genetic features and AMR 

phenotypes in a training dataset to build a model that is then evaluated using a test 

dataset. The end goal is production of a computational method to accurately predict AMR 

phenotypes from genome sequences of newly acquired samples based upon underlying 

patterns in the genomic data. A number of different machine learning algorithms can be 

used, including logistic regression, random forest, naïve Bayes, decision trees, set 

covering machine, XGBoost, AdaBoost, and neural networks (Avershina et al., 2021; 

Davis et al., 2016; Drouin et al., 2016; Hicks et al., 2019; Kim et al., 2019; Nguyen et al., 
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2018; Nguyen et al., 2019; Shi et al., 2019; Tsang et al., 2021; Yang et al., 2018). These 

machine learning algorithms differ in their ability to interpret the model (i.e., not only 

predict phenotype but identify genetic drivers) and in model performance. In addition to 

the variety of algorithms used, previously published AMR machine learning models have 

either predicted resistant (R) / susceptible (S) categories to match existing clinical 

guidelines or minimum inhibitory concentration values (MICs) for direct interpretation, 

with varying success. While predicting R/S may be sufficient for informing antibiotic 

treatment for an individual patient, predicting MICs can allow for more informative local 

and global surveillance, particularly for pathogens that have antibiotic MICs nearing 

clinical breakpoints. In addition, R/S categories are defined by international guidelines, 

such as the Clinical & Laboratory Standards Institute (CLSI, 2018) and the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST, 2015), that have differing 

breakpoints and laboratory methods for different bacteria and/or antibiotics and are thus 

not generalizable (Cusack, Ashley, Ling, Roberts, et al., 2019; Hombach et al., 2013; 

Kassim et al., 2016; Rodríguez-Baño et al., 2012; Wolfensberger et al., 2013). Previously 

published MIC prediction models have been built for Klebsiella pneumoniae (Nguyen et 

al., 2018; Nguyen et al., 2020), Neisseria gonorrhoeae (Eyre et al., 2019; Eyre et al., 

2017; Hicks et al., 2019), Escherichia coli (Pataki et al., 2020), nontyphoidal Salmonella 

(Nguyen et al., 2020; Nguyen et al., 2019), and Streptococcus pneumoniae (Y. Li et al., 

2016; B. J. Metcalf et al., 2016). Most of these MIC prediction models perform with 

greater than 80% accuracy yet are difficult to compare because each uses different genetic 

features, algorithms, and evaluation metrics. To our knowledge, there is no study that 
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compares the effect of using different genetic features, algorithms, and evaluation metrics 

on MIC prediction model performance. 

In this work, we develop MIC prediction models for E. coli, N. gonorrhoeae, and 

P. aeruginosa using different genetic features and filtering methods (known resistance 

determinants and mutations) and algorithms (linear regression, lasso LARS CV, and ridge 

regression), which we assess using two evaluation metrics (coefficient of determination 

and mean squared error). We demonstrate that using known resistance determinants 

improves E. coli MIC prediction model performance, whereas using mutations improves 

N. gonorrhoeae MIC prediction model performance. However, neither known resistance 

determinants nor mutations perform well for P. aeruginosa MIC prediction models.   

 

 

 

 

 

 

 

 

 

 

METHODS 

Bacterial isolates 
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We used datasets of E. coli (EC2) (MacFadden et al., 2019), P. aeruginosa (PA2) 

(Davis et al., 2020) from the PATRIC database, and two previously published N. 

gonorrhoeae collections (NG1 (Lee et al., 2018) and NG2 (Eyre et al., 2017)) that were 

also used in Chapter 3. Unpublished phenotypic testing data from dataset EC2 are 

available from https://github.com/karatsang/MICprediction. All datasets included 

minimum inhibitory concentrations for a number of different antibiotics using CLSI 

guidelines (CLSI, 2018).  For the PA2 dataset, we only included antibiotic phenotypes 

generated using the CLSI guidelines with 50 or more genomes. For more information 

about the phenotypic measurements of each dataset, refer to their respective primary 

publication source, as outlined in Chapter 3. Descriptions of these genomes are presented 

in Table 3-1. In terms of balance, all datasets had more than three minimum inhibitory 

concentration values based on more than 10% of all genomes, except for EC2 (ertapenem, 

meropenem, nitrofurantoin) and NG1 (spectinomycin) (Supplementary Figure 4-1 to 4-4). 

 

Genetic feature generation  

For each isolate, raw short read sequences were first trimmed using Trimmomatic 

and then either used to identify mutations using breseq (v 0.35.3) (Deatherage & Barrick, 

2014), assembled into chromosomal and plasmid DNA using SPAdes, or assembled into 

plasmid DNA alone using HyAsP (v1.0.0) (Müller & Chauve, 2019). Since the PA2 

dataset only provided genome assemblies (FASTAs), we were unable to include HyAsP 

plasmids as a feature set, but we simulated reads from the FASTA sequences using ART 

(v 2.3.7) (Huang, Li, Myers, & Marth, 2012) with the options `art_illumina -ss HS25 -
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sam --paired --len 150 --fcov 10 --mflen 200 --sdev 10` for mutation identification by 

breseq. Mutations were identified using breseq with default parameters and the following 

reference sequences: E. coli O83:H1 str. NRG 857C (ASM18334v1), E. coli O157:H7 

str. Sakai DNA (NC_002695.2), P. aeruginosa PAO1 (NC_002516.2), P. aeruginosa 

UCBPP-PA14 (NC_008463.1), N. gonorrhoeae ATCC 49226 (NZ_CP045728.1), 

WHOF, WHOG, WHOK, WHOL, WHOM, WHON, WHOO, WHOP, WHOU, WHOV, 

WHOW, WHOX, WHOZ (Unemo et al., 2016). Gdtools (Deatherage & Barrick, 2014) 

was used to annotate the breseq results, while known resistance determinants were 

predicted in the chromosomal and plasmid DNA assemblies using the Resistance Gene 

Identifier (RGI, v 5.1.0) and Comprehensive Antibiotic Resistance Database (CARD, v 

3.0.8) (Alcock et al., 2020). RGI categorizes resistance determinants as ‘Perfect’ or 

‘Strict’ if the predicted amino acid sequence is 100% identical to the reference sequence 

in CARD or if the predicted amino acid sequence passes a curated bitscore cutoff, 

respectively. Since RGI is dependent on CARD, RGI is unable to identify new resistance 

determinants, while breseq is CARD-independent, meaning it can identify unknown 

mutations.  

 

Genetic feature filtering 

We removed any mutations from breseq that were only observed in one isolate in 

a given dataset to reduce the potential misrepresentation of data, as it is difficult to 

differentiate between sequencing error, transcription error, and a bona fide mutation if it 

appears in a single isolate. In contrast, if a mutation is identified in multiple isolates, it is 
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less likely to be a sequencing/transcription error. To remove potential spurious ‘Strict’ 

resistance determinant predictions by RGI, we applied a Grantham Score (Grantham, 

1974) filter to categorize amino acid substitutions (relative to CARD reference) into 

classes of physicochemical dissimilarity: conservative (0-50), moderately conservative 

(51-100), moderately radical (101-150) or radical (≥151). We removed any RGI hits that 

had a Grantham Score greater than 151. As with mutations, we included a filter that only 

allowed resistance determinants found in two or more samples (≥2), 

 

Minimum inhibitory concentration (MIC) prediction modelling 

We used three different algorithms for predicting MICs (linear regression, lasso 

least-angle regression (LARS) cross validation (CV), ridge regression CV). Linear 

regression is the simplest algorithm of the three and it attempts to predict AMR 

phenotype using the best straight line fit to a set of genetic features (Lai et al., 1978). The 

latter two algorithms are penalized versions of linear regression, with Lasso LARS CV 

setting less contributive genetic features to be zero (Efron, Hastie, Johnstone, & 

Tibshirani, 2004) and ridge regression CV assigning genetic features with minor 

contribution to be close to zero (Hoerl & Kennard, 1970). Lasso LARS CV is useful 

when only a few genetic features are driving resistance, yet it is not useful for 

interpretation of drivers of resistance in complicated data sets as it will arbitrarily select 

one (and remove the other) if there are two highly collinear genetic features. Ridge 

regression is appropriate when all genetic features need to be incorporated into the model, 

as it will not reduce any genetic features and can be reflective of additive or synergistic 
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AMR gene interactions.  For each approach, hyperparameters were tuned using a 

threefold stratified shuffle split cross-validation scheme and models evaluated using the 

coefficient of determination (R2) on the test set and mean squared error (MSE) on the test 

set and overall dataset. R2 compares the fit of the chosen model to that of a straight line 

(e.g., the null hypothesis). If R2 is negative, it means the model has worse predictions than 

a baseline model that always predicts the average of the data. The closer R2 is to 1, the 

better the model explains the MIC prediction. A limitation of R2 is that it does not explain 

prediction error, which is why MSE was also used. MSE measures the average of the 

squares of the errors and an ideal MSE is 0 as it indicates a better prediction model. 

Model selection was performed for each dataset in its entirety, and not each antibiotic-

pathogen combination, because we strived for the most parsimonious method of model 

prediction. In other words, for each dataset we selected one feature set and one algorithm 

for final model performance evaluation and evaluated the performance of each feature set 

across all antibiotics using R2 and MSE, selecting the best algorithm based on majority 

rule (e.g., the feature set and model combination that worked best for the most 

antibiotics). If there were two feature sets that had the same R2 and MSE values, then the 

most parsimonious feature set (i.e., less filtering / computational effort) was selected.  

To predict MICs, the log2 values of the MICs were used for generation of all 

prediction models. We bound the accuracy to within a two-fold dilution factor of the 

laboratory determined MIC, which is consistent with current U.S. Food and Drug 

Administration standards for diagnostic tools, Canadian National Microbiology Lab 

quality assurance for antibiotic susceptibility testing of N. gonorrhoeae, and conventional 
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clinical microbiology practices (Reller, Weinstein, Jorgensen, & Ferraro, 2009; Sawatzky 

et al., 2015; U.S. Department of Health and Human Services, 2009).  

Machine learning and dataset partitioning were performed using scikit-learn 

(Pedregosa et al., 2011) (v0.20.0), with data otherwise manipulated using numpy 

(Oliphant, 2006) (v1.17.2) and pandas (McKinney, 2010) (v0.25.1). Heatmaps were 

generated using seaborn (v0.11.0). The code and conda environments (using python 

v3.7.2), and intermediate data files required to generate this analysis are available: 

https://github.com/karatsang/MICprediction. 

 

RESULTS 

Genetic feature generation and filtering 

 We used the Escherichia coli (EC2), Pseudomonas aeruginosa (PA2), and 

Neisseria gonorrhoeae (NG1 and NG2) datasets from Chapter 3 (Table 3-1) and as in 

Chapter 3 we used SPAdes (Bankevich et al., 2012) to assemble chromosomes and 

plasmids (Table 3-2), and HyAsP (Müller & Chauve, 2019) to predict plasmid assembles 

alone (Table 3-3). The only exception was the Pseudomonas aeruginosa PA2 dataset, for 

which raw sequencing reads were not available and we used the available assemblies. We 

simulated reads using the assemblies, which had resulted in an average read coverage of 

5.5-fold. Using breseq and the simulated reads, we generated a range of 390,000-430,000 

mutations, depending on the reference sequence used (Supplementary Table 4-1). As in 

Chapter 3, we represented RGI as a single feature or the presence of the resistance gene 

combined with its RGI criteria called the ‘PS’ representation (Perfect amino acid 
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sequence match to CARD reference sequence or Strict variant of the CARD reference 

sequence). We also excluded resistance determinants that were only found in one genome 

and created a Grantham score (‘GS’) filter to remove any predicted resistance genes that 

were considered to have radical amino acid changes, and thus likely representative of RGI 

false positives. Generally, the PS representation increased the number of resistance 

determinants by 10-30%, while excluding resistance determinants only found in one 

genome and the GS filter decreased the number of resistance determinants by 10-50%. 

Refer to this section in Chapter 3 for a more detailed description of genetic feature 

generation and filtering.  

 

Evaluation metrics to assess resistance determinant-based MIC prediction models  

One of the first decisions made was to determine which genetic features to use for 

MIC prediction model creation. We tested a number of different methods to represent and 

filter known resistance determinants from chromosomes and plasmids or plasmids alone. 

We decided to use the coefficient of determination (R2) and mean squared error (MSE) as 

evaluation metrics. For most antibiotics in the E. coli and N. gonorrhoeae datasets, using 

only plasmid-borne resistance determinants resulted in poorer performing MIC prediction 

models, regardless of any filter (Figure 4-1 to 4-3). Using R2 better illustrates the 

discrepancy in MIC model performance between using resistance determinants in 

plasmids and chromosomes versus plasmids alone. For example, the performance of E. 

coli cefazolin, meropenem, and ertapenem MIC prediction models did not notably change 

using MSE but decreased when using R2 (Figure 4-1). There was very little difference in 
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performance among filters applied to use of known resistance determinants from 

chromosomes and plasmids in E. coli (Figure 4-1), yet for N. gonorrhoeae using the 

Perfect and Strict (PS) representation decreased R2 and MSEs in both datasets (Figure 4-

1,4-2). The Grantham Score filter only impacted (and decreased) performance for the 

NG2 dataset (Figure 4-2). For N. gonorrhoeae, spectinomycin resistance prediction 

model performance conflicted among evaluation metrics: R2 scored poorly but MSEs 

scores were improved. In P. aeruginosa (PA2), filtering had no effect on lasso LARS CV 

and linear regression MIC prediction models, however the PS representation performed 

worse than no filtering or use of the GS filter in the ridge regression CV prediction 

models (Figure 4-4). Overall, we observed use of resistance determinants from both 

plasmids and chromosomes with no filters was both the simplest approach and generated 

MIC prediction models with the best R2 and MSE values across all pathogens.  

Alongside determining the genetic features to power MIC prediction, different 

algorithms were also tested and assessed using both evaluation metrics. For E. coli (EC2) 

and both N. gonorrhoeae datasets (NG1 and NG2), we observed that use of lasso LARS 

CV and ridge regression CV both generated similarly performing models that were 

improved compared to those produced by linear regression (Figure 4-1 to 4-3). In 

contrast, with P. aeruginosa (PA2) use of lasso LARS CV outperformed both linear 

regression and ridge regression CV (Figure 4-4), although performance was generally low 

across all algorithms for this pathogen.  
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Figure 4-1. E. coli MIC prediction models using resistance determinants assessed 

with evaluation metrics (EC2). Each box represents an antibiotic prediction model 

generated using specific features (x-axis) and algorithm (y-axis). Lasso LARS Cross 

Validation (CV), linear regression, and ridge regression CV were used to generate MIC 

prediction models. The Resistance Gene Identifier (RGI) was used to predict known 

resistance genes in chromosomes and plasmids or just plasmids (HyAsP). We use a filter 

that included resistance determinants found in two or more samples (≥2). Perfect and 

Strict (PS) representation was used to capture the redundancy of multiple resistance 

determinants and the Grantham Score (GS) filter removed any spurious RGI predictions. 

Coefficient of determination (R2) measures is the proportion of the variance in the 

dependent variable that is predictable from the independent variable. The closer R2 is to 1 

(i.e., darker blue), the better the prediction model. Mean squared error is measures the 

average of the squares of the errors. The closer the mean squared error is to 0 (i.e., darker 

blue), the better the prediction model. 
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Figure 4-2. N. gonorrhoeae MIC prediction models using resistance determinants 

assessed with evaluation metrics (NG1). Each box represents an antibiotic prediction 

model generated using specific features (x-axis) and algorithm (y-axis). Lasso LARS 

Cross Validation (CV), linear regression, and ridge regression CV were used to generate 

MIC prediction models.  Resistance Gene Identifier (RGI) was used to predict known 

resistance genes in chromosomes and plasmids or just plasmids (HyAsP). Only including 

features found in two or more samples (≥2), representation of features (i.e., PS), 

physicochemical filtering (i.e., GS) as in Figure 4-1. Coefficient of determination (R2) 

and mean squared error were used as evaluation metrics with details in Figure 4-1. 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 194 

 

Figure 4-3. N. gonorrhoeae MIC prediction models using resistance determinants 

assessed with evaluation metrics (NG2). Each box represents an antibiotic prediction 

model generated using specific features (x-axis) and algorithm (y-axis). Lasso LARS 

Cross Validation (CV), linear regression, and ridge regression CV were used to generate 

MIC prediction models. Resistance Gene Identifier (RGI) was used to predict known 

resistance genes in chromosomes and plasmids or just plasmids (HyAsP). Only including 

features found in two or more samples (≥2), representation of features (i.e., PS), 

physicochemical filtering (i.e., GS) as in Figure 4-1. Coefficient of determination (R2) 

and mean squared error were used as evaluation metrics with details in Figure 4-1. 
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Figure 4-4. P. aeruginosa MIC prediction models using resistance determinants 

assessed with evaluation metrics (PA2). Each box represents an antibiotic prediction 

model generated using specific features (x-axis) and algorithm (y-axis). Lasso LARS 

Cross Validation (CV), linear regression, and ridge regression CV were used to generate 

MIC prediction models. Resistance Gene Identifier (RGI) was used to predict known 

resistance genes in chromosomes and plasmids. Only including features found in two or 

more samples (≥2), representation of features (i.e., PS), physicochemical filtering (i.e., 

GS) as in Figure 4-1. Coefficient of determination (R2) and mean squared error were used 

as evaluation metrics with details in Figure 4-1. 
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Using mutations instead of known resistance determinants can improve MIC 

prediction models 

We used two different reference strains to detect mutations against each sample in 

the E. coli EC2 dataset. Using R2 and MSE, the mutations generated using E. coli 

O157:H7 str. Sakai produce similar but improved MIC prediction models than RGI 

determinants (Figure 4-5). For ampicillin MIC prediction, the R2 value is better than MSE 

and these values are consistent across all algorithms (Figure 4-5). The best performing 

algorithm using mutations in the EC2 dataset was lasso LARS CV (Figure 4-5), compared 

to either lasso LARS CV or ridge regression CV with RGI determinants (Figure 4-1). In 

the N. gonorrhoeae datasets (NG1 and NG2), we used 5 different reference strains to 

generate mutations. In dataset NG1, there was no notable difference among combinations 

of the 5 different reference strains and both evaluation metrics, particularly in the MIC 

prediction models created using linear regression and ridge regression CV (Figure 4-6). In 

contrast, with dataset NG2 using MSE on the test set showed use of reference strain N. 

gonorrhoeae ATCC 49226 was superior, particularly for azithromycin MIC prediction 

(Figure 4-7). Yet, using R2 there was little difference between using the 5 reference 

strains on MIC prediction model performance, suggesting MSE may be more 

discriminating for NG2 (Figure 4-7). Overall, for both NG1 and NG2 use of linear 

regression or ridge regression CV improved prediction models compared to using lasso 

LARS CV, with this difference being most pronounced for MSEs on the overall dataset 

(Figure 4-6, 4-7). In addition, the N. gonorrhoeae MIC prediction models generated using 
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mutations overall had improved R2 and MSE values (Figure 4-6, 4-7) than those 

generated using RGI determinants (Figure 4-2, 4-3), 

Overall, prediction of MICs for P. aeruginosa was considerably worse than for the 

other pathogens. For the P. aeruginosa PA2 dataset, we simulated reads using genome 

assemblies and then generated mutation feature sets using two different reference strains 

and breseq. Using P. aeruginosa PAO1 as a reference strain to generate mutations created 

improved prediction models compared to P. aeruginosa PA14 when applying R2, a 

finding particularly highlighted by gentamicin resistance prediction (Figure 4-8). The best 

predictive algorithm was lasso LARS CV, based on R2 values for amikacin, meropenem, 

piperacillin-tazobactam, and tobramycin MICs (Figure 4-8). Unlike the other two 

pathogens, the values of R2 with lasso LARS CV were improved using known resistance 

genes generated by RGI compared to using mutations (Figure 4-4, 4-8).  
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Figure 4-5. E. coli MIC prediction models using mutations assessed with evaluation 

metrics (EC2). Each box represents an antibiotic prediction model generated using a 

reference genome (x-axis) and algorithm (y-axis). Lasso LARS Cross Validation (CV), 

linear regression, and ridge regression CV were used to generate MIC prediction models. 

Breseq was used to identify mutations based on a reference genome and we only included 

mutations found in two or more samples (≥2). Coefficient of determination (R2) and mean 

squared error were used as evaluation metrics with details in Figure 4-1. 
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Figure 4-6. N. gonorrhoeae MIC prediction models using mutations assessed with 

evaluation metrics (NG1). Each box represents an antibiotic prediction model generated 

using a reference genome (x-axis) and algorithm (y-axis). Lasso LARS Cross Validation 

(CV), linear regression, and ridge regression CV were used to generate MIC prediction 

models. Breseq was used to identify mutations based on a reference genome and we only 

included mutations found in two or more samples (≥2). Coefficient of determination (R2) 

and mean squared error were used as evaluation metrics with details in Figure 4-1. 
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Figure 4-7. N. gonorrhoeae MIC prediction models using mutations assessed with 

evaluation metrics (NG2). Each box represents an antibiotic prediction model generated 

using a reference genome (x-axis) and algorithm (y-axis). Lasso LARS Cross Validation 

(CV), linear regression, and ridge regression CV were used to generate MIC prediction 

models. Breseq was used to identify mutations based on a reference genome and we only 

included mutations found in two or more samples (≥2). Coefficient of determination (R2) 

and mean squared error were used as evaluation metrics with details in Figure 4-1. 
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Figure 4-8. P. aeruginosa MIC prediction models using mutations assessed with 

evaluation metrics (PA2). Each box represents an antibiotic prediction model generated 

using a reference genome (x-axis) and algorithm (y-axis). Lasso LARS Cross Validation 

(CV), linear regression, and ridge regression CV were used to generate MIC prediction 

models. Breseq was used to identify mutations based on a reference genome and we only 

included mutations found in two or more samples (≥2). Coefficient of determination (R2) 

and mean squared error were used as evaluation metrics with details in Figure 4-1. 
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Picking a single algorithm for model selection among antibiotics 

Using the R2 and MSE evaluation metrics, we identified the best filter (for known 

resistance determinants) or reference sequence (for mutations) and algorithm to use for 

each dataset, regardless of antibiotic, as a step towards evaluation of ML performance for 

each antibiotic for each pathogen (Table 4-1). In making these decisions, if genetic 

features and filtering methods performed similarly in terms of R2 and MSEs, then the 

simplest method was chosen. In cases using known resistance determinants, inclusion of 

RGI features from both chromosomes and plasmids (without the Perfect and Strict 

representation or Grantham score filter, but only including resistance determinants in ≥ 

genomes) was best for all pathogens and datasets. If algorithms performed similarly for a 

specific data set, then the more interpretable algorithm was selected to maximize 

scientific value, i.e., the algorithm allowing the clearest identification of genetic drivers of 

resistance and their relative importance to the prediction model (best to worst: ridge 

regression CV, linear regression, lasso LARS CV). Overall, ridge regression CV and 

lasso LARS CV were the best for N. gonorrhoeae and P. aeruginosa MIC prediction 

models regardless of genetic features, respectively, whereas in E. coli ridge regression 

CV was best suited for known resistance determinants and lasso LARS generated the best 

MIC prediction models when using mutations (Table 4-1). Linear regression was not 

suitable for any MIC prediction models.   
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Table 4-1. The genetic features and algorithms selected to evaluate final MIC 

prediction models, based on either known resistance determinants or mutations. 

Known resistance determinants were identified in the chromosome and plasmid (without 

the Perfect and Strict representation or Grantham score filter, but only including 

resistance determinants present in ≥2 genomes). The mutation feature set was filtered to 

only include mutations in ≥2 genomes.  

 
Species Dataset Genetic features Algorithm 

E. coli EC2 Known resistance determinants  Ridge Regression 
CV 

Mutations (E. coli O157:H7 str. Sakai) Lasso LARS CV 

N. gonorrhoeae NG1 Known resistance determinants  Ridge Regression 
CV 

Mutations (N. gonorrhoeae ATCC 
49226) 

Ridge Regression 
CV 

NG2 Known resistance determinants  Ridge Regression 
CV 

Mutations (N. gonorrhoeae ATCC 
49226) 

Ridge Regression 
CV 

P. aeruginosa PA2 Known resistance determinants  Lasso LARS CV 

Mutations (P. aeruginosa PAO1) Lasso LARS CV 

 

MIC prediction models are specific to pathogen, antibiotic, and genetic features  

After identifying the algorithms and filters best suited for building MIC prediction 

models for every dataset for either known resistance determinants or mutations (Table 4-

1), we generated and tested the models, and determined rates of accurate prediction (i.e., 

predicted MIC value is within a two-fold dilution factor of the laboratory determined 

MIC), over prediction (i.e., predicted MIC value is greater than a two-fold dilution factor 

of the laboratory determined MIC), and under prediction (i.e., predicted MIC value is less 

than a two-fold dilution factor of the laboratory determined MIC). E. coli ampicillin, 

cefazolin, cefotaxime, ciprofloxacin, gentamicin, and trimethoprim-sulfamethoxazole 

MIC prediction models performed worse using mutations compared to using known 

resistance genes, with the largest decrease in accurate predictions for ciprofloxacin 
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(reduced 92%) and trimethoprim-sulfamethoxazole (reduced 78%) (Figure 4-9). Only the 

ertapenem MIC prediction model improved using mutations (15% increase in accurate 

predictions), while meropenem and nitrofurantoin prediction models performed similarly 

using known resistance determinants or mutations (Figure 4-9).  For the N. gonorrhoeae 

datasets, using mutations provided superior MIC prediction models for all antibiotics, 

with the greatest improvements over known resistance genes for azithromycin in NG1 

(increased 58%) and NG2 (increased 55%) (Figure 4-10,4-11). With P. aeruginosa, using 

mutations had very minimal (less than 1%) improvement over known resistance genes for 

amikacin, ceftazidime, ciprofloxacin, gentamicin, and meropenem MIC prediction and a 

10% improvement for piperacillin-tazobactam, while tobramycin MIC prediction had less 

than 1% improvement based on known resistance determinants compared to mutations 

(Figure 4-12). Overall, we observed that prediction models were specific to the species, 

the antibiotic, and genetic features. Selecting between the best performing features (i.e., 

known resistance determinants vs. mutations), E. coli MIC prediction models using 

known resistance determinants had an average accuracy of 86%, N. gonorrhoeae MIC 

prediction models using mutations had an average accuracy of 98% (NG1) and 97% 

(NG2), and P. aeruginosa MIC prediction models using mutations had an average 

accuracy of 41% (Supplementary Table 4-2).  
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Figure 4-9. Best performing E. coli MIC prediction models (EC2). Mutations were 

generated using E. coli O157:H7 str. Sakai. Accurate prediction means the predicted MIC 

value is within ±1- two-fold dilution factor of the laboratory determined MIC. Over 

prediction means the predicted MIC value is >1 two-fold dilution factor of the laboratory 

determined MIC. Under prediction means the predicted MIC value is <1 two-fold dilution 

factor of the laboratory determined MIC. Not every sample was able to generate 

mutations using breseq.  
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Figure 4-10. Best performing N. gonorrhoeae MIC prediction models (NG1). 

Mutations were generated using N. gonorrhoeae ATCC 49226. Accurate prediction 

means the predicted MIC value is within ±1- two-fold dilution factor of the laboratory 

determined MIC. Over prediction means the predicted MIC value is >1 two-fold dilution 

factor of the laboratory determined MIC. Under prediction means the predicted MIC 

value is <1 two-fold dilution factor of the laboratory determined MIC. Not every sample 

was able to generate mutations using breseq.  
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Figure 4-11. Best performing N. gonorrhoeae MIC prediction models (NG2). 

Mutations were generated using N. gonorrhoeae ATCC 49226. Accurate prediction 

means the predicted MIC value is within ±1- two-fold dilution factor of the laboratory 

determined MIC. Over prediction means the predicted MIC value is >1 two-fold dilution 

factor of the laboratory determined MIC. Under prediction means the predicted MIC 

value is <1 two-fold dilution factor of the laboratory determined MIC. Not every sample 

was able to generate mutations using breseq.  
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Figure 4-12. Best performing P. aeruginosa MIC prediction models (PA2). Mutations 

were generated using P. aeruginosa PAO1 and simulated reads. Accurate prediction 

means the predicted MIC value is within ±1- two-fold dilution factor of the laboratory 

determined MIC. Over prediction means the predicted MIC value is >1 two-fold dilution 

factor of the laboratory determined MIC. Under prediction means the predicted MIC 

value is <1 two-fold dilution factor of the laboratory determined MIC. Not every sample 

was able to generate mutations using breseq.  

 

Interpretation of models is only meaningful using known resistance determinants  

Our goal was not only to predict MICs, but to interpret the MIC prediction models 

to better understand the mechanisms driving resistance. For each final model using 

resistance determinants, we investigated the resistance determinants with the top three 

coefficients and determined whether there was supporting experimental evidence in 

CARD or the literature (i.e., whether the resistance determinant is known to confer 

resistance to a particular antibiotic). We only investigated final models using resistance 

determinants because our method of interpretation is not suitable for the mutation feature 

set: mutation feature sets ranged from 31,000 to >1,000,000 mutations and thus only 

exploring 3 mutations is not informative. New approaches are needed to evaluate these 
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data holistically. In addition, a brief exploration of these mutations revealed that many are 

within unannotated “hypothetical proteins”, which makes it challenging to infer 

mechanism or function without deeper analysis or experimental approaches.  

For the E. coli MIC prediction models based on RGI, many of the highest 

coefficients were assigned to resistance determinants that are known to confer resistance 

to that particular antibiotic (Table 4-2). It is noteworthy that the substrate specificity of 

many β-lactamases (e.g., CTX-M-15, CMY-2, CTX-M-27) were validated in Chapter 2 

(Supplementary Table 2-1). While the resistance determinants with high coefficients for 

nitrofurantoin, ertapenem, and meropenem resistance may not be causal, they still 

generated models that performed well (Figure 4-9). In contrast, it is evident that 

understanding the mechanisms driving resistance for N. gonorrhoeae will be difficult for 

most antibiotics based on model coefficients (Tables 4-3, 4-4), with the exception that the 

resistance determinants with high coefficients for penicillin and tetracycline resistance 

prediction are known to confer resistance to these antibiotics (Table 4-3, 4-4). Lastly and 

matching the general trend of poor phenotype prediction for P. aeruginosa, most of the 

top three resistance determinants with the highest coefficients in P. aeruginosa do not 

confer resistance to the expected antibiotic (Table 4-5).  
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Table 4-2. Highest coefficients from each E. coli (EC2) MIC prediction model. Only 

the top three resistance determinants with the highest coefficients are included in table. 

Resistance determinants and whether they confer resistance to an antibiotic was 

determined using the Comprehensive Antibiotic Resistance Database and/or previously 

published literature. Asterisk indicates that the substrate specifies were experimentally 

validated using the Antibiotic Resistance Platform in Chapter 2 (Supplementary Table 2-

1).  

Antibiotic Resistance 
determinant 

Coefficient Does resistance 
determinant confer 
resistance to the 

antibiotic? 

ampicillin TEM-1 1.8 Yes* 

CTX-M-27 1.2 Yes* 

CMY-2 1.1 Yes* 

cefazolin CTX-M-15 2.4 Yes* 

CMY-2 1.9 Yes* 

CTX-M-27 1.4 Yes* 

cefotaxime CTX-M-14 3.7 Likely 

CTX-M-15 3.6 Likely 

CTX-M-27 3.4 Likely 

ciprofloxacin Escherichia coli parC 3.0 Yes 

Escherichia coli gyrA 0.7 Yes 

linG 0.3 No 

ertapenem CTX-M-15 0.7 No* 

CMY-2 0.7 Yes* 

CMY-42 0.4 No 

gentamicin AAC(3)-IId 3.9 Yes 

AAC(3)-IIe 3.6 Yes 

AAC(3)-VIa 2.8 Yes 

meropenem tetM 0.3 No 

CTX-M-15 0.2 No* 

dfrA24 0.2 No 

nitrofurantoin dfrA20 0.4 No 

AAC(3)-IIc 0.4 No 

adeL 0.4 No 

trimethoprim-
sulfamethoxazole 

Sul1 1.0 Yes 

dfrA1 1.0 Yes 

drfA14 0.99 Yes 
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Table 4-3. Highest coefficients from each N. gonorrhoeae (NG1) MIC prediction 

model. Only the top three resistance determinants with the highest coefficients are 

included in table. Resistance determinants and whether they confer resistance to an 

antibiotic was determined using the Comprehensive Antibiotic Resistance Database, NG-

STAR, and/or previously published literature.  

Antibiotic Resistance 
determinant 

Coefficient Does resistance 
determinant confer 
resistance to the 

antibiotic? 

azithromycin Neisseria 
gonorrhoeae porin 

PIB (por) 

0.6 Unknown 

Neisseria 
gonorrhoeae PBP2 

0.5 Unlikely 

Neisseria gonorrhoea 
PBP1 

0.4 Unlikely 

cefixime Neisseria 
gonorrhoeae porin 

PIB (por) 

0.8 Unknown 

FEZ-1 0.7 Likely 

Neisseria gonorrhoea 
PBP1 

0.5 Likely 

ciprofloxacin Neisseria 
gonorrhoeae gyrA 

1.0 Yes 

Neisseria 
gonorrhoeae porin 

PIB (por) 

1.0 Unlikely 

Neisseria gonorrhoea 
PBP1 

0.99 Unlikely 

ceftriaxone Neisseria 
gonorrhoeae porin 

PIB (por) 

1.1 Yes 

Neisseria gonorrhoea 
PBP1 

0.6 Unlikely 

Neisseria 
gonorrhoeae gyrA 

0.6 No 

ertapenem Neisseria 
gonorrhoeae PBP2 

0.9 No 

FloR 0.8 No 

Neisseria meningitidis 
PBP2 

0.7 No 

penicillin TEM-1 4.7 Yes 

TEM-135 4.3 Yes 

TEM-163 3.5 Yes 

spectinomycin FEZ-1 0.2 No 

Neisseria 
gonorrhoeae folP 

0.1 No 

Neisseria 
gonorrhoeae PBP2 

0.1 No 

tetracycline tetM 3.8 Yes 
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rpsJ 2.5 Yes 

Neisseria 
gonorrhoeae porin 

PIB (por) 

0.2 Yes 
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Table 4-4. Highest coefficients from each N. gonorrhoeae (NG2) MIC prediction 

model. Only the top three resistance determinants with the highest coefficients are 

included in table. Resistance determinants and whether they confer resistance to an 

antibiotic was determined using the Comprehensive Antibiotic Resistance Database, NG-

STAR, and/or previously published literature.  

Antibiotic Resistance 
determinant 

Coefficient Does resistance 
determinant confer 
resistance to the 

antibiotic? 

azithromycin Neisseria 
gonorrhoeae FolP 

1.5 No 

RpsJ 1.2 No 

Acinetobacter 
baumannii AmvA 

1.1 No 

cefixime Neisseria 
gonorrhoeae parC 

1.3 No 

TriC 1.2 No 

Neisseria 
gonorrhoeae porin 

PIB (por) 

1.0 Unknown 

ciprofloxacin Neisseria 
gonorrhoeae gyrA 

7.8 Yes 

Neisseria 
gonorrhoeae parC 

1.8 Yes 

Neisseria 
gonorrhoeae porin 

PIB (por) 

1.0 Unlikely 

penicillin TEM-1 2.4 Yes 

Neisseria 
gonorrhoeae porin 

PIB (por) 

1.3 Yes 

TEM-135 1.2 Yes 

tetracycline tetM 1.9 Yes 

Neisseria 
gonorrhoeae PBP2 

0.9 No 

Neisseria 
gonorrhoeae gyrA 

0.7 No 
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Table 4-5. Highest coefficients from each P. aeruginosa (PA2) MIC prediction 

model. Only the top three resistance determinants with the highest coefficients are 

included in table. Resistance determinants and whether they confer resistance to an 

antibiotic was determined using the Comprehensive Antibiotic Resistance Database, NG-

STAR, and/or previously published literature.  

Antibiotic Resistance 
determinant 

Coefficient Does resistance 
determinant confer 

resistance to the 
antibiotic? 

amikacin carA 0.0 No 

mexL 0.0 Yes 

OXA-301 0.0 No 

ceftazidime OXA-488 0.2 Likely 

cmx 0.0 No 

cmlb 0.0 No 

ciprofloxacin OXA-2 0.1 No 

ANT(3``)-IIa 0.1 No 

OXA-488 0.1 No 

gentamicin cmx 0.0 No 

OXA-9 0.0 No 

IMP-18 0.0 No 

meropenem carA 0.0 No 

mexL 0.0 No 

OXA-301 0.0 No 

piperacillin-
tazobactam 

PDC-2 0.5 No 

Pseudomonas gyrA 0.3 No 

OKP-A-14 0.2 No 

tobramycin ANT(3``)-IIa 0.4 No 

nalC 0.2 No 

cmlB 0.0 No 
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DISCUSSION 

In this study, we built MIC prediction models using different features 

(chromosome and plasmid-borne resistance determinants or mutations), algorithms (lasso 

LARS CV, ridge regression CV, and linear regression), and filtering and representation 

methods (Grantham score and Perfect + Strict representation) for E. coli, N. gonorrhoeae, 

and P. aeruginosa datasets. While there have been a number of publications that predict 

antibiotic MICs (Eyre et al., 2019; Eyre et al., 2017; Hicks et al., 2019; Y. Li et al., 2016; 

B. J. Metcalf et al., 2016; Nguyen et al., 2018; Nguyen et al., 2020; Nguyen et al., 2019; 

Pataki et al., 2020), to our knowledge none used different evaluation metrics to assess and 

then select algorithm and features for accurate MIC prediction. We used two evaluation 

metrics, the coefficient of determination (R2) and mean squared error (MSE), to show that 

while oftentimes their values can be correlated, their values are sometimes decoupled as 

they are measuring different aspects of the model. For example, we have observed 

scenarios where R2 values are all very close to 1 for P. aeruginosa MIC prediction using 

known resistance determinants, but the corresponding MSEs vary from 0 to 1. 

Alternatively, we have also observed MSE values close to 1 for N. gonorrhoeae 

spectinomycin MIC prediction, while the R2 values are close to -1. We argue that it is 

useful to consider both R2 and MSE as metrics of evaluation as R2 measures the 

correlation between the genetic features and the MICs, whereas MSE represents the 

average of the squared difference between the laboratory determined MICs and the 

predicted MICs. Challenges arise when the R2 values conflict with the MSE values and in 

those scenarios a trade-off between the two will have to be made based on external 
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criteria, such as accuracy, model simplicity, or interpretability. An inherent limitation is 

that for dataset EC2 (ertapenem, meropenem, nitrofurantoin) and NG1 (spectinomycin) 

there are only adjacent MICs (e.g., 2 µg/mL and 4 µg/mL), so if the measure of accuracy 

is ± one two-fold dilution, then the accuracy should always be close to 100%. In addition, 

for dataset PA2, there were a combination of phenotypic methods (e.g., Vitek 2 and broth 

microdilution) that were used, which can decrease accuracies.  

 In addition to evaluation metrics, only one study has compared use of different 

genetic features on MIC prediction models (Nguyen et al., 2020). The authors showed 

that using k-mers of core genes compared to whole genome assemblies decreased 

accuracy and increased error rates (Nguyen et al., 2020). We also show that using 

different features has an effect on MIC prediction models. Specifically, using 

chromosome and plasmid-borne resistance determinants together generates MIC models 

that are better than those using plasmid-borne resistance determinants alone in E. coli and 

N. gonorrhoeae. This suggests that resistance is both chromosome and plasmid driven in 

these two pathogens, aligning with previous evidence for multifactorial causes of 

resistance (Alekshun & Levy, 2007; Lin et al., 2015). Even though we were unable to 

identify plasmids since we lacked sequencing reads in the P. aeruginosa (PA2) dataset, 

we only identified one plasmid across all samples in our previous work with a different P. 

aeruginosa dataset (PA1, n=102). The low prevalence of plasmids in P. aeruginosa has 

been observed previously (Plesiat, Alkhalaf, & Michel-Briand, 1988), suggesting that 

perhaps the PA2 dataset may similarly not have had many plasmids.  
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We additionally show that using different genetic filtering and representation 

methods for the resistance determinants have little effect on MIC prediction model 

performance across all species. Yet, we demonstrate that using mutations improves all 

antibiotic MIC prediction models for N. gonorrhoeae, a few for E. coli, and very few for 

P. aeruginosa. AMR in N. gonorrhoeae is largely driven by mosaic gene sequences (e.g., 

penA), amino acid substitutions in resistance proteins, and promoter region nucleotide 

mutations (Unemo & Shafer, 2011, 2014), information which our analysis suggests is 

better captured by mutations than RGI. In contrast, using known resistance determinants 

curated in CARD generated better prediction models for E. coli antibiotic MICs. This 

suggests that the curation effort in CARD is sufficient for E. coli MIC prediction models 

and performance may even be improved with further refined curation and detection of 

mutations in regulatory sequences. For P. aeruginosa and N. gonorrhoeae, not all 

previously published resistance determinants are curated in CARD, which is a limitation 

of using a database dependent method. In addition, single nucleotide polymorphisms in 

promoter regions of particular genes (e.g., 13-bp deletion in mtrR promoter region 

overexpresses a penicillin efflux pump) have also been associated with resistance (Unemo 

& Shafer, 2014), however RGI is currently unable to predict mutations in promoter 

sequences. Yet, unlike for N. gonorrhoeae, use of mutations or RGI determinants did not 

yield accurate prediction of phenotype for P. aeruginosa, suggesting that uncaptured 

biological complexity is hampering effective model construction for this pathogen. It is 

important to note the P. aeruginosa mutations we used were generated from simulated 

reads via genome assemblies and thus may not reflect the full spectrum of bona fide P. 
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aeruginosa mutations. The overall challenges of generating accurate P. aeruginosa 

antibiotic MIC prediction models can be attributed to its phenotypic plasticity driven by 

genetic and environmental features (Dotsch et al., 2015). In fact, even just identifying the 

key resistance determinants could not explain all P. aeruginosa resistant phenotypes (Kos 

et al., 2015). One publication illustrated that using presence/absence of genes and gene 

expression information generated P. aeruginosa resistant/susceptible category prediction 

models with high sensitivity, but did not produce accurate MIC prediction models 

(Khaledi et al., 2020). Thus, future studies using transcriptomics to generate MIC 

prediction models for P. aeruginosa would be useful.  

Instead of selecting for the most parsimonious method of MIC model prediction, 

the alternative is to select a feature set and algorithm for each antibiotic-pathogen MIC 

prediction model. This would require more computational effort and is not what has been 

conventionally performed in MIC prediction studies. However, it may be a fruitful path to 

stratify all common antibiotics tested across different species to identify if there are 

genetic features or algorithms that are beneficial for predicting a particular antibiotic 

MIC. For example, ciprofloxacin resistance across many pathogens (e.g., E. coli and N. 

gonorrhoeae) is known to be driven by substitutions in GyrA, thus perhaps using these 

known mutations and a particular algorithm would be best for this drug regardless of 

pathogen (Weigel, Steward, & Tenover, 1998). 

 Since we also wanted to interpret MIC prediction models to better understand the 

mechanisms driving resistance, we used the coefficients assigned to each genetic feature 

in each prediction model to examine the relative contribution of individual resistance 
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determinants. The higher value the coefficient, the more important it was for prediction 

and we examined the three resistance determinants with the highest coefficients for each 

antibiotic MIC prediction model. For E. coli, many of the highest coefficients were 

assigned to resistance determinants that were known to confer resistance to that particular 

antibiotic. The substrate activity of many β-lactamases was tested in Chapter 2, which 

shows the value of having MIC values for each resistance gene to understand the 

mechanisms driving resistance. We observed that many MIC prediction models assigned 

the three highest coefficients to resistance determinants that are not known to cause the 

observed resistance in the literature. This could be explained by other resistance 

determinants beyond the top three highest coefficients, e.g., NfsA mutations conferring 

resistance to nitrofurantoin as the fifth highest coefficient in the E. coli nitrofurantoin 

MIC prediction model. Interpretation of these E. coli MIC prediction models shows the 

importance of gene expression studies to understand the drivers of resistance, yet as 

coefficient values are continuous and not discrete, deciding which to examine and which 

to ignore is difficult. In N. gonorrhoeae, it is evident that understanding the mechanisms 

driving resistance is difficult for most antibiotics when examining only a few of the 

highest coefficients for RGI determinants. As use of mutations led to improved N. 

gonorrhoeae models, examination of these coefficients may identify new, polygenic, or 

under-curated resistance determinants for this pathogen. Lastly and as with overall 

accuracy, our P. aeruginosa MIC prediction models gave few hints on the underlying 

drivers of resistance. With that being said, if model interpretation is not of value for the 

end goals, then using other parts of the genome, such as conserved non-AMR genes, has 
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also been shown to be useful for Mycobacterium tuberculosis, Salmonella enterica, and 

Staphylococcus aureus resistant/susceptible prediction (Nguyen et al., 2020) and may be 

useful for P. aeruginosa MIC prediction. In general, while we illustrate generation of 

accurate N. gonorrhoeae MIC prediction models and success varied by antibiotic for E. 

coli, pathogens that are known to confer resistance as a result of many interacting factors 

such as P. aeruginosa may benefit from the inclusion of different types of data in 

combination with machine learning to identify the best parameters to generate accurate 

MIC prediction models.  
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SUPPLEMENTARY MATERIAL 

Supplementary Figures 

 
 
 

 

Supplementary Figure 4-1. E. coli minimum inhibitory concentration distributions 

for dataset EC2.  
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Supplementary Figure 4-2. N. gonorrhoeae minimum inhibitory concentration 

distributions for dataset NG1.  
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Supplementary Figure 4-3. N. gonorrhoeae minimum inhibitory concentration 

distributions for dataset NG2.  
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Supplementary Figure 4-4. P. aeruginosa minimum inhibitory concentration 

distributions for dataset PA2.  
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Supplementary Tables 

Supplementary Table 4-1. Mutations identified in simulated reads of PA2 dataset. 

Mutations were generated using breseq and two reference sequences (P. aeruginosa 

PAO1 and P. aeruginosa PA14) 

 
Antibiotic Number of 

genomes 
Number of 

mutations (P. 
aeruginosa PAO1) 

Number of 
mutations (P. 

aeruginosa PA14) 

amikacin 502 393,606 425,937 

ceftazidime 182 

ciprofloxacin 129 

gentamicin 128 

meropenem 534 

piperacillin-
tazobactam 

155 

tobramycin 127 
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Supplementary Table 4-2. Accuracy for all MIC prediction models. Known resistance 

determinants were identified in the chromosome and plasmid (without the Perfect and 

Strict representation, Grantham score filter, or only including resistance determinants 

present in ≥2 genomes). The mutation feature set is filtered to only include mutations in 

≥2 genomes. Highlighted in yellow are the models that performed the best for a given 

dataset.  

 
Species Dataset Genetic features Antibiotic Accuracy (%) 

E. coli EC2 Known resistance 
determinants  

ampicillin 67 

cefazolin 82 

cefotaxime 90 

ciprofloxacin 96 

ertapenem 75 

gentamicin 96 

meropenem 96 

nitrofurantoin 92 

trimethoprim-
sulfamethoxazole 

79 

Mutations (E. coli 
O157:H7 str. Sakai) 

ampicillin 40 

cefazolin 52 

cefotaxime 47 

ciprofloxacin 4 

ertapenem 90 

gentamicin 57 

meropenem 96 

nitrofurantoin 93 

trimethoprim-
sulfamethoxazole 

1 

N. 
gonorrhoeae 

NG1 Known resistance 
determinants  

azithromycin 66 

cefixime 84 

ciprofloxacin 84 

ceftriaxone 86 

ertapenem 94 

penicillin 85 

spectinomycin 96 

tetracycline 92 

Mutations (N. 
gonorrhoeae ATCC 
49226) 

azithromycin 99 

cefixime 98 

ciprofloxacin 97 

ceftriaxone 98 

ertapenem 99 

penicillin 97 

spectinomycin 99 

tetracycline 97 

NG2 Known resistance 
determinants  

azithromycin 41 

cefixime 56 
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ciprofloxacin 88 

penicillin 57 

tetracycline 72 

Mutations (N. 
gonorrhoeae ATCC 
49226) 

azithromycin 96 

cefixime 97 

ciprofloxacin 98 

penicillin 96 

tetracycline 98 

P. 
aeruginosa 

PA2 Known resistance 
determinants  

amikacin 39 

ceftazidime 36 

ciprofloxacin 53 

gentamicin 58 

meropenem 14 

piperacillin-
tazobactam 

18 

tobramycin 56 

Mutations (P. 
aeruginosa PAO1) 

amikacin 39 

ceftazidime 36 

ciprofloxacin 54 

gentamicin 59 

meropenem 14 

piperacillin-
tazobactam 

28 

tobramycin 55 
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CHAPTER FIVE: Discussion and future directions  
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Discussion 

 Antimicrobial therapy timing is currently guided by the severity of an infection 

(Leekha, Terrell, & Edson, 2011). In critically ill patients, empiric therapy should be 

started in parallel with the collection of specimens for antibiotic susceptibility testing 

(AST) in a clinical diagnostic laboratory. Where the patient is more stable, antimicrobial 

therapy should be withheld until definitive therapy (informed by AST) is determined. 

Since AST results are not typically available for a couple of days, empiric therapy usually 

includes broad-spectrum antibiotics. However, due to the increased prevalence of 

antimicrobial resistance (AMR), first-line antibiotics often have to be switched for 

second- or third-line antibiotics that are more expensive, potentially ineffective, and more 

toxic (CDC, 2013; Prestinaci, Pezzotti, & Pantosti, 2015). The available arsenal of 

antibiotics is diminishing and the battle with AMR is exacerbated by lack of funding of 

antibiotic development (Ventola, 2015). Thus, there is a clear need for rapid alternatives 

to conventional phenotypic AST for individual patients and antimicrobial stewardship 

(Smith & Kirby, 2019).  

 Genomics-based methods are a potential alternative to phenotypic AST because 

they bypass the need for bacterial culturing. Prior to the advent of genomic technologies, 

the identification and characterization of individual resistance determinants, e.g., 

penicillinase (the first β-lactamase discovered), required carefully planned experiments 

(Abraham & Chain, 1940). Sixty years later in 2021, there are thousands of described β-

lactamases that span four classes curated in CARD and ResFinder (Alcock et al., 2020; 

Bortolaia et al., 2020). Increasingly these are described based on gene sequence alone, 
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without biochemical characterization (Feldgarden et al., 2019). This increase in 

identification of new resistance determinants is not only a trend for β-lactamases, but 

many different classes of resistance determinants. A large source for this increase in data 

is attributable to the study of bacterial genomics, where bacterial isolates are sequenced 

and annotated based on sequence similarity. While this increase in data is helpful for 

genomic epidemiology, high sequence similarity does not necessarily infer the same 

substrate specificity. For example, a few amino acid substitutions are capable of changing 

the substrate specificity for TEM-1 (Stojanoski et al., 2015). We have also shown that 

three CTX-M β-lactamases have broader substrate specificities than reported in the 

literature (Tsang et al., 2021). This is particularly challenging for use of the resistome to 

predict resistance phenotype because substrate specificities are often inferred from 

experimental validation on a similar (but not identical) resistance determinant. Even with 

new technologies that allow for a broad data-driven resistome analysis, we inherently still 

rely on experimental validation to increase our depth of knowledge of the resistome. As I 

have shown in Chapter 2, identifying substrate specificities of known resistance 

determinants can improve rules-based methods of AMR prediction. Thus, resistome 

research can be advanced by use of genomics data in an inductive approach to produce 

specific hypotheses ready for testing via use of deductive experiments.    

 While next-generation sequencing technologies are being slowly incorporated 

into clinical microbiology and public health laboratories, researchers have continued to 

generate and share a plethora of genomics data associated with resistance phenotypes.  
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The increase in data has allowed a shift from rules-based to machine learning algorithms 

for AMR prediction. The goal of machine learning is not to identify causative AMR 

genotype-phenotype relationships, although that is possible using ML, but to build a 

model that accurately predicts AMR phenotypes using genetic features. The benefit of 

using interpretable machine learning algorithms is then to generate an accurate model and 

potentially discover new AMR genotype-phenotype relationships. While we identified 

novel AMR genotype-phenotype relationships between known resistance genes and 

resistance phenotypes, others have illustrated that use of k-mers as genetic features can 

potentially identify new mechanisms of resistance (Davis et al., 2016; Drouin et al., 2016; 

Kavvas et al., 2018; Nguyen et al., 2018; Nguyen et al., 2019). To our knowledge, no 

new resistance determinants have been characterized through using machine learning 

models, but there are genetic features in these publications that could be investigated  

(Aytan-Aktug et al., 2021; Davis et al., 2016; Drouin et al., 2016; Kavvas et al., 2018; 

Nguyen et al., 2018; Nguyen et al., 2019). Conversely, it could be argued from a clinical 

perspective that understanding genetic features driving resistance does not matter as long 

as the prediction models perform as well or more improved than AST methods with head-

to-head practical advantages, e.g., sensitivity, specificity, cost, and overall turn-around 

time. With that being said, the current workflow for genomics sequencing still requires 

pure cultures of an isolated microorganism and therefore the slow turnaround time for 

genomics-based diagnostics is still an issue. Perhaps, AMR prediction models can be 

extended towards culture-free metagenomics sequencing, with the goal being to predict 

the resistance phenotype from sequences extracted directed from a clinical sample. While 
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there are still challenges and opportunities ahead, there is benefit in developing accurate 

AMR prediction models in parallel with inspecting the model, considering the new 

knowledge about the resistome to be gained and the research avenues it may open.  

 Since there are currently no standardized methods for building AMR prediction 

models, researchers are applying and testing new parameters to determine a potential gold 

standard. Even if the parameters examined reduce the performance of the AMR 

prediction models, the results should be shared for this new field to organically grow and 

improve. For example, one study even deliberately excludes all AMR related genes, to 

only include conserved genes within a species in their AMR prediction models (Nguyen 

et al., 2020). Even though these models were less accurate than using whole genomes or 

AMR determinants, they still illustrate that it is possible to achieve ≥80% accuracy across 

4 species using this information. Similarly, using partial genome alignments (that 

predominantly do not encode AMR-related functions) in AMR prediction models 

achieved at least 70% accuracy across 4 species (Aytan-Aktug et al., 2021). These studies 

show while the genomic information we have for a given dataset may be finite, there are 

still innovative methods to partition it for AMR prediction.  

 

 

 

 

 

 



Ph.D. Thesis - K. Tsang; McMaster University – Biochemistry and Biomedical Sciences 

 233 

Future Directions 

I) Even within our current understanding of the resistome, we have incomplete 

knowledge about known resistance determinants, i.e., substrate specificities. 

The AMR research community should ambitiously determine the antibiotic 

minimum inhibitory concentrations of all known resistance determinants 

against a broad and standardized collection of antibiotics using the Antibiotic 

Resistance Platform (G. Cox et al., 2017) or similar methods. The idea is to 

identify the substrate specificity of each resistance gene by controlling the 

gene copy number in a hyperpermeable, efflux-deficient mutant of E. coli 

that has increased sensitivity to antibiotics. This system isolates the specific 

minimum inhibitory concentration impact of the gene, but this is one step 

closer to understanding the impact of that gene in different pathogens. 

Ultimately, this would shift our annotations of the resistome to individual 

antibiotics, rather than antibiotic classes.  

II) Continue testing the effect of using a variety of parameters for AMR prediction 

models. Since this is still an active field, there is plenty room for discovery. 

We should additionally further use of genomic data by incorporating in silico 

structure prediction methods to deduce substrate specify or function. Along 

with using the genetic aspect of the resistome, there can be further 

exploration using transcriptomics data for AMR prediction. Different 

machine learning and deep learning algorithms can continue to be tested 

alongside a wider variety of features.    
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Concluding remarks 

 Innovations in next-generation sequencing have generated a plethora of 

genomics information that has both guided discovery and potentially masked unknown 

information in the resistome. Yet, we can still leverage this technology by applying 

machine learning to predict antibiotic resistance phenotypes. We demonstrate that 

intricate AMR genotype-phenotype relationships can be modelled for Escherichia coli 

and Neisseria gonorrhoea, but these methods require improvement for Pseudomonas 

aeruginosa. This work stands upon the shoulders of giants in this field as a step towards 

development of genomics-based diagnostic microbiology. We continue to adhere to the 

euphemism of George E. P. Box, “all models are wrong, but some are useful” (Box, 

1976), in that AMR prediction models are not expected to be a complete reflection of the 

resistome, but hopefully some are useful for AMR phenotype prediction. 
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