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Highlights  23 

 24 

• Effects of diel cycles of hypoxia-reoxygenation on fish are understudied 25 

• We examined haematological and metabolic adjustments of killifish to such cycles  26 

• Erythrocytes were reversibly released and re-sequestered by the spleen 27 

• Acclimation to hypoxia cycles increased resting but not maximum metabolic rate 28 

• Dynamic modulation of blood haemoglobin helps fish cope with intermittent hypoxia  29 
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Abstract  32 

 33 

We investigated whether fish can make dynamic haematological adjustments to support aerobic 34 

metabolism during repeated cycles of hypoxia-reoxygenation. Killifish were acclimated to 35 

normoxia, constant hypoxia (2 kPa O2), or intermittent cycles of nocturnal hypoxia (12 h of 36 

normoxia: 12 h of 2 kPa O2 hypoxia) for 28 days. Normoxia-acclimated fish were sampled in the 37 

daytime in normoxia and after exposure to a single bout of nocturnal hypoxia. Each hypoxia 38 

acclimation group were sampled at the PO2 experienced during acclimation during both the day 39 

and night. All acclimation groups had increased blood haemoglobin content and haematocrit and 40 

reduced spleen mass during nocturnal hypoxia compared to normoxic controls. Blood 41 

haemoglobin content was negatively correlated with spleen mass at both the individual and 42 

group level. Fish acclimated to intermittent hypoxia rapidly reversed these changes during 43 

diurnal reoxygenation. The concentrations of haemoglobin, ATP, and GTP within erythrocytes 44 

did not vary substantially between groups. We also measured resting O2 consumption rate (MO2) 45 

and maximum MO2 (induced by an exhaustive chase) in hypoxia in each acclimation group. Fish 46 

acclimated to intermittent hypoxia maintained higher resting MO2 than other groups in hypoxia, 47 

comparable to the resting MO2 of normoxia-acclimated controls measured in normoxia. 48 

Differences in resting MO2 in hypoxia did not result from variation in O2 transport capacity, 49 

because maximal MO2 in hypoxia always exceeded resting MO2. Therefore, reversible 50 

modulation of blood haemoglobin content along with metabolic adjustments help killifish cope 51 

with intermittent cycles of hypoxia in the estuarine environment.  52 

 53 

  54 



  

 

 

Introduction 55 

 56 

Hypoxia occurs in various patterns in the aquatic environment, including periods of stable 57 

constant hypoxia or repeated cycles of hypoxia followed by reoxygenation (Diaz, 2001; Diaz and 58 

Breitburg, 2009; Richards, 2011; Tyler et al., 2009). The occurrence of hypoxic events is 59 

increasing as a result of climate change and other anthropogenic causes (Diaz and Breitburg, 60 

2009; Hasler et al., 2009; Tyler et al., 2009). Coping with hypoxia relies upon several 61 

physiological strategies to avoid the development of an ATP supply-demand imbalance 62 

(Boutilier, 2001; Hochachka et al., 1996; Richards, 2009), including cardiorespiratory responses 63 

that help protect O2 transport from the environment to mitochondria within tissues (Armelin et 64 

al., 2019; Perry et al., 2009; Wells, 2009). However, the extent to which cardiorespiratory 65 

physiology of fishes can be dynamically regulated during diel cycles of hypoxia and other 66 

intermittent patterns of hypoxia exposure remains unresolved.  67 

 68 

Fish exposed acutely to hypoxia can rapidly increase blood haemoglobin content and/or 69 

haematocrit through several mechanisms (Hughes, 1973; Wells, 2009). Splenic contraction can 70 

release erythrocytes into the circulation and thus augment blood O2 carrying capacity (Fänge and 71 

Nilsson, 1985; Lai et al., 2006; Yamamoto, 1987). Alternatively, red blood cell swelling and 72 

haemoconcentration due to a contraction of plasma volume can also occur in hypoxia (Jensen 73 

and Weber, 1985; Swift and Lloyd, 1974; Yamamoto et al., 1983). All of these mechanisms 74 

could occur concurrently, but the relative contribution of each mechanism to haematological 75 

responses to environmental change is unclear and has been the subject of recent debate (Brijs et 76 

al., 2020a, b; Hedrick et al., 2020). Longer exposure to constant hypoxia for several weeks can 77 



  

 

 

increase blood haemoglobin content and O2 carrying capacity further (Borowiec et al., 2015; 78 

Greaney et al., 1980), as a result of erythropoiesis by the kidneys that mobilizes erythrocytes into 79 

the circulation (Lai et al., 2006). In addition, fish can increase haemoglobin-O2 binding affinity 80 

during hypoxia by reducing the concentrations of negative allosteric modifiers (ATP and GTP) 81 

within erythrocytes (Nikinmaa, 1990; Wells, 2009), or by inducing the expression of higher 82 

affinity haemoglobin isoforms (Pan et al., 2017; Rutjes et al., 2007; van den Thillart et al., 2018). 83 

However, very little is known about the use of these adjustments during intermittent cycles of 84 

hypoxia in fishes. Carp exposed to two diel cycles of hypoxia have been observed to reduce 85 

erythrocyte GTP, increase blood pH, and thus increase haemoglobin-O2 affinity (Lykkeboe and 86 

Weber, 1978), but little else is known about the haematological responses of fish to repeated 87 

cycles of hypoxia and reoxygenation.  88 

 89 

Our previous work has found that fishes of the family Fundulidae undergo substantial alterations 90 

in metabolism after prolonged acclimation to diel cycles of nocturnal hypoxia (Borowiec et al., 91 

2015; Borowiec et al., 2020; Borowiec et al., 2018), and are capable of maintaining high O2 92 

consumption rates (MO2) at rest during nocturnal hypoxia (Borowiec et al., 2018). These 93 

previous studies did not examine haematological changes during nocturnal hypoxia, but fish 94 

acclimated to diel cycles of hypoxia had normal blood haemoglobin content and haematocrit 95 

during daytime normoxia, similar to levels in normoxic controls (Borowiec et al., 2015). We 96 

hypothesize that fish exposed to such diel cycles of hypoxia (which we term ‘intermittent 97 

hypoxia’) dynamically regulate blood haemoglobin content, such that haemoglobin content is 98 

only elevated during nighttime hypoxia periods, and that this contributed to increasing resting 99 

MO2 in hypoxia. We tested this hypothesis by examining haematology along with resting and 100 



  

 

 

maximal MO2 during a hypoxia-reoxygenation cycle in killifish that were acclimated to 101 

intermittent hypoxia, and by comparing them to killifish acclimated to normoxia or constant 102 

hypoxia.   103 

 104 

Materials and Methods 105 

 106 

Animals & hypoxia acclimations  107 

 108 

Adult wild-caught Fundulus heteroclitus of mixed sex were shipped from a commercial supplier 109 

(Aquatic Research Organisms, NH, USA) to McMaster University in Hamilton, Canada. 110 

Killifish were initially held in ~300 L fiberglass tanks filled with aerated brackish water (4 ppt) 111 

at room temperature (∼20°C) for one to two months before acclimation to experimental 112 

treatments was initiated. Fish were fed commercial feed (EWOS Canada, Ltd.) to satiation at 113 

least four days a week. A 12 h: 12 h photoperiod was maintained with the nighttime portion 114 

occurring from 1900 (7 pm) to 0700 (7 am) local time. All animal protocols were approved by 115 

the McMaster University Animal Research Ethics Board. 116 

 117 

Fish were acclimated for 28 d to normoxia, constant hypoxia (24 h per day at 2 kPa O2, ∼0.8 mg 118 

O2 l
-1), or nocturnal (‘intermittent’) hypoxia (12 h normoxia during the light phase : 12 h at 2 kPa 119 

O2 during the dark phase). We term these acclimation groups ‘normoxia control group’ (N), 120 

‘constant hypoxia group’ (CH), and ‘intermittent hypoxia group’ (IH). Exposures occurred in a 121 

multi-stressor exposure system (Aquabiotech, Coaticook, QC, Canada) that modulates water PO2 122 

with controlled bubbling of oxygen and nitrogen gas based on feedback from a galvanic oxygen 123 



  

 

 

probe. Transitions between normoxia and hypoxia occurred over 1 h starting at 0700 124 

(reoxygenation) or 1900 (deoxygenation) local time. Killifish were either sampled for tissues 125 

(which occurred either during the day or night) or put through an exhaustive chase protocol for 126 

respirometry experiments (night only) (see Fig.1 for a graphical representation of the 127 

experimental design and treatment groups).  128 

 129 

Sampling  130 

 131 

Following acclimation, we sampled killifish directly from their acclimation conditions at 0100 132 

and 1300 local time in the N, CH, and IH acclimation groups (Fig. 1). In the IH group, the 0100 133 

and 1300 sampling times represented the 6 h midpoint of the normoxia and hypoxia periods of 134 

the daily cycle. We also exposed a second group of normoxia acclimated fish to 2 kPa O2 135 

hypoxia starting at 1900 local time and sampled them after 6 h of night-time hypoxia exposure, 136 

which we term the ‘acute hypoxia group’. Fish were netted and euthanized with an overdose of 137 

benzocaine (final concentration ~1 g l-1 in 95% ethanol). The tail was bisected, and blood was 138 

collected in a heparinized capillary tube. A 6 µl portion of this blood was quickly removed and 139 

used to measure haemoglobin content (using Drabkin’s reagent, following manufacturer’s 140 

instructions; Sigma-Aldrich, Oakville, ON, Canada). The remaining blood was immediately spun 141 

for 3 min at 12,700 g to measure haematocrit, and packed erythrocytes were immediately frozen 142 

in liquid nitrogen and stored at −80°C. The whole spleen and whole heart (which was composed 143 

of the atrium, the ventricle, and bulbus arteriosus) were carefully removed, and their wet masses 144 

were recorded. The body masses (mean ± SEM) of each group of sampled fish were as follows: 145 



  

 

 

N at 1300, 5.48 g ± 0.56; N at 0100, 5.28 g ± 0.66; AH at 0100, 5.40 g ± 0.71; IH at 1300, 7.28 g 146 

± 0.89; IH at 0100, 8.00 g ± 0.82; CH at 1300, 4.39 g ± 0.59; CH at 0100, 6.26 g ± 1.21.  147 

 148 

Erythrocyte ATP and GTP 149 

 150 

Frozen erythrocytes were lysed in 5 volumes of 10 mmol 1-1 Tris-HCl (pH 7.4), vortexed, and 151 

spun at 15,000 g for 10 min at 4oC. A portion of this supernatant (20 µl) was acidified with 3% 152 

HClO3 (80 µl) and spun at 10,000 g for 10 min at 4oC. Extracts were neutralized with 16 µl of 3 153 

mol 1-1 Tris (pH 12.0), and immediately used to quantify ATP and GTP content in triplicate with 154 

a Synergy H1 microplate reader at 37°C (BioTek Instruments, Inc., VT, USA). Assay conditions 155 

for ATP were as follows: 65 mmol 1-1 MgCl2, 7.2 mmol 1-1 glucose, 7.4 mmol 1-1 EDTA, 6.67 156 

mmol 1-1 β-mercaptoethanol, 12.7 mmol 1-1 β-NADP+, 2.5 U ml-1 of glucose-6-phosphate 157 

dehydrogenase, and excess hexokinase (15 U m1-1) in 0.67 mol 1-1 Tris (pH 8.0). Assay 158 

conditions for GTP were the same as for ATP, plus excess ADP (11.8 mmol 1-1) and nucleoside 159 

diphosphate kinase (15 U m1-1). Standard curves were constructed to relate the coupled 160 

production of β-NADPH to known concentrations of ATP and GTP. Erythrocyte ATP and GTP 161 

concentrations were expressed relative to the concentration of haemoglobin within the sample of 162 

lysed erythrocytes (measured as described for whole blood).  163 

 164 

Respirometry experiments  165 

 166 

In a separate set of fish, we measured resting O2 consumption rate (resting MO2) and maximal 167 

MO2 elicited by exhaustive exercise (MO2,max). Average body masses (mean ± SEM) were as 168 



  

 

 

follows: N, 4.66 g ± 0.44; AH, 4.46 g ± 0.50; IH, 5.57 g ± 0.36; CH, 4.49 g ± 0.56. There was no 169 

significant main effect of body mass across our groups (F[3, 30] = 1.581, p = 0.2145). MO2 was 170 

measured at ~ 0100 local time for all groups, at a PO2 of 20 kPa in the N group and at 2 kPa O2 171 

in the AH, CH, and IH groups (Fig. 1). Killifish were introduced and habituated to 160 ml 172 

respirometry chambers starting at ~15 h prior to measurements. These chambers were situated in 173 

a buffer tank containing water and were connected to two circulation circuits. One circuit flushed 174 

the chamber with water from the surrounding buffer tank (the flushing circuit), and the other 175 

circuit continuously pumped water from the respirometry chamber across a fibre-optic O2 sensor 176 

(PreSens, Regensburg, Germany) in a closed loop (the recirculation circuit). The PO2 in the 177 

buffer tank was regulated to match the acclimation period, such that fish in the N group were 178 

held at 20 kPa O2, fish in the CH group were held at 2 kPa O2, and fish in the AH and IH groups 179 

were initially held at 20 kPa O2 and were then exposed to 2 kPa O2 hypoxia starting at 1900 local 180 

time. MO2 was measured throughout the habituation period and during subsequent MO2,max trials 181 

using intermittent-flow respirometry (Borowiec et al., 2015; Borowiec et al., 2020; Borowiec et 182 

al., 2018). We used alternating cycles of 370 s flush periods (when the flushing circuit was 183 

active) and 330 s measurement periods (when the flushing circuit was off and the decline in PO2 184 

was recorded). MO2 was measured during each measurement period as the overall rate of O2 185 

consumption from the water, ignoring the first 30 s of the measurement period (the ‘wait’ period) 186 

due to unsteady state conditions. We calculated resting MO2 as the average of the values 187 

recorded in the last ten measurement periods before 0100. These times of day correspond to 188 

daytime and overnight periods when resting MO2 is stable, and the resting MO2 values reported 189 

here are comparable to previous measurements in killifish (Borowiec et al., 2018).  190 

 191 



  

 

 

Beginning at 0100 local time, killifish were individually removed from the respirometry chamber 192 

and chased in a bucket with a net for 2 min (after which they were exhausted and did not respond 193 

to gentle tapping), and then exposed to air for 30 s, as previously recommended for inducing 194 

maximum rates of oxygen consumption in fish (Roche et al., 2013). Fish were chased in water 195 

with the same PO2 as the appropriate acclimation condition at that time of day, and that matched 196 

the PO2 in the respirometry chamber from which they were removed. Fish were then returned to 197 

the respirometry chamber and MO2 was measured as described above for 6 h, starting with a 198 

measurement period in order to determine MO2 as soon as possible after reintroduction to the 199 

chamber. MO2,max was the highest MO2 measurement recorded during the ~6 h period that fish 200 

were monitored after the chase, and was typically observed within the first few measurement 201 

periods following the chase. MO2 typically remained elevated for several hours following the 202 

exhaustive chase period. Reported values of MO2 were corrected for background rates of O2 203 

consumption in the empty chamber, which were measured daily and were always found to be 204 

very low.  205 

 206 

Analysis & Statistics  207 

 208 

Data are reported as individual values and/or means ± standard error. We checked data for 209 

normality with a Shapiro-Wilk test. We used one-way ANOVA (on ranks when appropriate 210 

using the Kruskal-Wallis test) followed by either Sidak’s (normal data) or Dunn’s (non-normal 211 

data) multiple comparison tests between each hypoxia group and the normoxic control group. 212 

We also conducted simple linear regressions of whole blood haemoglobin content and spleen 213 

mass (both for individual values and group means) using the function embedded in GraphPad 214 



  

 

 

Prism (La Jolla, CA) graphing and statistical software. P<0.05 was considered significant 215 

throughout. 216 

 217 

Results 218 

 219 

Haematological adjustments during diel cycles of hypoxia 220 

 221 

We measured blood haemoglobin content and haematocrit to examine the potential role for 222 

adjustments in blood O2 carrying capacity in killifish during hypoxia. Whole-blood haemoglobin 223 

content was sensitive to changes in PO2, and varied appreciably across treatment groups (main 224 

effect of treatment, F[6,67] = 8.689, p < 0.0001) (Fig. 2A). Normoxia acclimated fish increased 225 

haemoglobin content by 57% in response to acute hypoxia exposure (i.e., AH versus N groups 226 

during nighttime). Fish acclimated to intermittent hypoxia exhibited a dynamic response to daily 227 

cycles of hypoxia: blood haemoglobin content was elevated during nighttime hypoxia bouts and 228 

was reduced to levels that were comparable to controls during daytime normoxia (i.e., nighttime 229 

versus daytime within IH group). Blood haemoglobin content of fish acclimated to constant 230 

hypoxia was elevated during both nighttime and daytime, at slightly lower levels on average 231 

comparable to fish exposed to acute hypoxia. The variation in whole-blood haemoglobin content 232 

was mirrored by very similar changes in haematocrit (Fig. 2B) (F[6,67] = 9.610, p < 0.0001), with 233 

little variation in mean-cell haemoglobin content (MCHC) across treatment groups (F[6,67] = 234 

1.232, p = 0.3011) (Table 1). Though chronic elevation of haematocrit could have foreseeably 235 

increased blood viscosity and cardiac workload, we did not observed any significant variation in 236 

heart mass across groups (H[7] = 8.631, p = 0.1954) (Table 1).  237 



  

 

 

 238 

We also measured the concentrations of allosteric modifiers of haemoglobin-O2 binding affinity 239 

in erythrocytes to examine whether dynamic modulation of O2 affinity might be involved in the 240 

response of killifish to acute or chronic hypoxia. We found no significant variation in erythrocyte 241 

ATP (H[7] = 7.399, p = 0.2855) or GTP (H[7] = 3.431, p = 0.7531) concentration across groups 242 

(Table 1). 243 

 244 

Response of the spleen 245 

 246 

We measured spleen mass to gain insight into whether splenic contraction and re-sequestration 247 

of erythrocytes contributes to the dynamic regulation of blood haemoglobin content during 248 

hypoxia. Fish exposed to acute hypoxia had smaller spleens than normoxic controls (H[7] = 249 

19.81, p = 0.0030) (Fig. 3A), and there was a strong negative correlation between spleen mass 250 

and blood haemoglobin content across all groups, and this correlation was significant regardless 251 

of whether we used individual data points (Fig. 3B) or group means (Fig. 3C). 252 

 253 

We calculated an estimate of the potential contribution of the spleen using a conservation of 254 

mass approach (Hedrick et al., 2020). The reduction in spleen mass of 0.28% of body weight in 255 

the acute hypoxia treatment would correspond to 0.015 g in a typical killifish with a body mass 256 

of 5.4 g. Assuming that total blood volume was 3% of body mass (Conte et al., 1963), we expect 257 

the same sized animal to have 0.16 g of whole blood (assuming a blood density of 1 g ml−1). This 258 

would correspond to a total blood erythrocyte mass of 0.038 g in normoxia and 0.061 g in acute 259 

hypoxia, respectively – a difference of 0.023 g – based on the haematocrit measurements of 24% 260 



  

 

 

and 38% (Fig. 2B). Therefore, the 0.015 g decrease in spleen mass in acute hypoxia could 261 

account for 65% of the 0.023 g increase in erythrocyte mass if there were no associated changes 262 

in total blood volume. Similar, calculations in the intermittent hypoxia group suggest that the 263 

spleen could account for 50% of the reversible changes in erythrocyte mass and blood 264 

haemoglobin between day and night in these fish. 265 

 266 

Resting O2 consumption rate (MO2) and maximum O2 consumption rate (MO2,max) in hypoxia  267 

 268 

In a separate group of animals, we examined the ability of killifish to maintain resting O2 269 

consumption rates and aerobic capacity in hypoxia. There were significant effects of hypoxia 270 

treatment on both resting MO2 (H[4] = 18.60, p = 0.0003) (Fig. 4A) and MO2,max (F[3,30] = 16.79, p 271 

< 0.0001) (Fig. 4B). Acute hypoxia exposure decreased both resting MO2 and MO2,max by 50% 272 

relative to values exhibited by normoxic controls. Chronic exposure to constant hypoxia was also 273 

associated with low resting MO2 and MO2,max, both of which appeared to be depressed lower on 274 

average than the values observed in the acute hypoxia group.  275 

 276 

Discussion 277 

 278 

Role of the spleen in regulating blood haemoglobin content during hypoxia bouts 279 

 280 

Taken together, our results for blood haemoglobin content and haematocrit (Fig. 2), spleen mass, 281 

and the robust relationship between spleen mass and haemoglobin content (Fig. 3) all strongly 282 

suggest that rapid release of erythrocytes from the spleen contributed to increasing blood 283 



  

 

 

haemoglobin content in hypoxia. Contraction of the spleen and a concomitant increase in 284 

haematocrit during periods of hypoxia are well-known phenomena in vertebrates, including 285 

fishes (Fänge and Nilsson, 1985; Lai et al., 2006; Yamamoto, 1987). This process appears to 286 

result from the release of catecholamines into the circulation (Reid et al., 1998) and the 287 

subsequent stimulation of -adrenergic receptors (Nilsson and Grove, 1974). The similarities 288 

observed here for the AH and IH acclimation groups in hypoxia show how dynamic these 289 

haematological changes can be. Killifish acclimated to daily bouts of nocturnal hypoxia are able 290 

to rapidly reduce haematocrit upon return to normoxia during the day, which may be 291 

advantageous for reducing blood viscosity and cardiac workload when tissue O2 supply is less 292 

constrained, and then mount anew a haematological response to hypoxia each night that is 293 

typical of normoxic fish exposed to their first bout of acute hypoxia. Rats also exhibit reversible 294 

increases in blood hemoglobin content via splenic contraction during intermittent hypoxia 295 

(Kuwahira et al., 1999), suggesting that rapid splenic modulation of blood haemoglobin content 296 

may be a common mechanism to cope with cycles of oxygen limitation in mammals and fish. 297 

 298 

We estimated that red blood cells released from the spleen contributed no more than 65% of the 299 

total increase in erythrocyte mass in the blood, so other mechanisms likely also contributed to 300 

modulating blood haemoglobin content in hypoxia. Indeed, a previous study of rainbow trout 301 

subjected to air exposure showed that the spleen released nearly all of its erythrocyte store within 302 

8 min, and contributing to a minority (~31%) of the observed increase in blood haemoglobin 303 

content (Pearson and Stevens, 1991). Two other possible mechanisms include 304 

haemoconcentration resulting from reductions in plasma volume and erythrocyte swelling 305 

(Pearson and Stevens, 1991). It is unlikely that erythrocyte swelling contributed to the 306 



  

 

 

haematological changes in killifish reported here because there were no observed alterations in 307 

mean-cell haemoglobin content (Table 1). Reductions in plasma volume could result from 308 

increases in blood pressure in hypoxia that increase capillary filtration (Hedrick et al., 2020; 309 

Pearson and Stevens, 1991), but this effect would likely be opposed by osmotic water gains that 310 

killifish experience during hypoxia exposure in hypo-osmotic environments and would tend to 311 

increase extracellular fluid volume (Wood et al., 2019). If reductions in plasma volume occur 312 

despite these potential increases in extracellular fluid volume, reductions in plasma volume 313 

might have contributed to some of the increase in blood haemoglobin content that remained 314 

unexplained by splenic contraction. Unaccounted for alterations in blood volume might have also 315 

impacted our estimates based on conservation of mass for the contribution of the spleen, which 316 

assumes that total blood volume does not change.  317 

 318 

Another mechanism by which vertebrates can increase blood haemoglobin content and 319 

haematocrit, albeit over more prolonged periods, is erythropoiesis (Lai et al., 2006). In the 320 

hypoxia-sensitive rainbow trout, erythropoietin levels begin to increase between 4 h and 8 h of 321 

hypoxia exposure (Lai et al., 2006). However, the process of proliferation and differentiation of 322 

progenitor cells that is necessary for the production of new erythrocytes takes time (Kulkeaw and 323 

Sugiyama, 2012; Nikinmaa, 2020), so this process is probably too slow to have contributed to the 324 

rapid haematological adjustments in response to acute hypoxia but it may have played a role in 325 

the responses to chronic hypoxia.  326 

 327 

Other potential haematological adjustments  328 

 329 



  

 

 

Aside from increasing blood haemoglobin content, animals can increase arterial O2 content in 330 

hypoxia by increasing the affinity of haemoglobin for O2. This can occur by decreasing the 331 

concentration of negative allosteric modifiers such as ATP and GTP within red blood cells 332 

(Lykkeboe and Weber, 1978; Nikinmaa, 2001; Pelster and Weber, 1990; Salama and Nikinmaa, 333 

1988; Val, 2000; Wells, 2009), but we found no substantial variation in erythrocyte ATP or GTP 334 

concentrations (Table 1). Killifish could foreseeably rely on other mechanisms to modulate 335 

haemoglobin-O2 binding affinity in chronic hypoxia, such as alterations in intracellular pH 336 

(Jensen, 2004; Lykkeboe and Weber, 1978; Nikinmaa, 1990), although pH homeostasis tends to 337 

be preserved in other tissues during chronic hypoxia (Borowiec et al., 2018). Killifish could have 338 

also increased the expression of higher affinity haemoglobin isoforms in chronic hypoxia (Pan et 339 

al., 2017; Rutjes et al., 2007; van den Thillart et al., 2018), but it is unlikely that such changes 340 

would occur quickly enough to support dynamic adjustments to daily cycles of hypoxia, as fish 341 

erythrocytes can persist in the circulation for 80 to 500 days (Avery et al., 1992; Götting and 342 

Nikinmaa, 2017). Notwithstanding these possibilities, our results suggest that adjustments in 343 

blood hemoglobin content may be more important than potential allosteric modulation of 344 

haemoglobin-O2 affinity in the response of killifish to intermittent hypoxia.  345 

 346 

Aerobic capacity during diel cycles of hypoxia  347 

 348 

We also examined variation in resting MO2 and maximal MO2 in hypoxia. This was motivated 349 

by our previous observation that fish acclimated to intermittent hypoxia, but not other hypoxic 350 

treatment groups, maintain resting MO2 during night-time hypoxia at levels that are typical of 351 

normoxic controls (Borowiec et al., 2018). We confirmed this finding in the present study, but 352 



  

 

 

we found that maximal MO2 (i.e. aerobic capacity) was similarly depressed in hypoxia across all 353 

treatment groups (Fig. 4). The observed relationships between resting MO2 and MO2,max have 354 

several implications. Firstly, resting MO2 in acute hypoxia was clearly not limited by O2 355 

transport capacity, because MO2,max in hypoxia in the acute hypoxia group would have been 356 

sufficient to maintain resting MO2 at the levels exhibited by normoxic controls. This raises in 357 

intriguing possibility that reductions in resting MO2 in acute hypoxia were facultative. Indeed, 358 

when considering that maximal MO2 measured after an exhaustive chase can be slightly lower 359 

than the maximal MO2 measured during maximum sustainable exercise (Raby et al., 2020; 360 

Roche et al., 2013), the estimated differences between MO2,max and resting MO2 observed here 361 

are likely conservative. Secondly, the higher resting MO2 in hypoxia of the intermittent hypoxia 362 

group relative to other treatment groups was also unlikely to have resulted from increased O2 363 

transport capacity, in association with a similar lack of variation in blood haemoglobin content 364 

between acclimation groups in hypoxia. The ability of fish in this group to maintain resting MO2 365 

at a higher proportion of MO2,max may instead reflect a change in metabolic regulation during 366 

hypoxia to reactivate processes that were initially down-regulated when fish were first exposed 367 

to hypoxia, such as protein synthesis (Cassidy et al., 2018; Cassidy and Lamarre, 2019).  Such 368 

changes in metabolic regulation may therefore be important for maintaining important fitness-369 

related functions such as growth and reproduction in fish that are chronically exposed to daily 370 

bouts of hypoxia (Bera et al., 2017; Cheek, 2011; Cheek et al., 2009).  371 

 372 

Distinct responses to constant hypoxia and intermittent hypoxia in killifish  373 

 374 



  

 

 

Overall, our results suggest that dynamic modulation of blood haemoglobin content and O2 375 

carrying capacity, mediated in part by repeated release and re-sequestration of erythrocytes by 376 

the spleen, may help estuarine killifish cope with diel cycles of intermittent hypoxia. 377 

Interestingly, fish acclimated to intermittent hypoxia maintained higher resting MO2 during 378 

hypoxia than other groups, despite similar MO2,max, suggesting that the variation in metabolic 379 

rate did not result from alterations in O2 transport capacity. Fundulus killifish are well known for 380 

living in highly variable environments and for having a significant capacity for phenotypic 381 

plasticity (Burnett et al., 2007), and our work here and elsewhere (Borowiec et al., 2015; 382 

Borowiec et al., 2020; Borowiec et al., 2018; Borowiec and Scott, 2020; Du et al., 2016) 383 

contributes to the growing evidence that this species can make rapid and reversible adjustments 384 

in cardiorespiratory physiology and metabolism in order to cope with the challenges of 385 

intermittent hypoxia.  386 
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Figure Legends  538 

 539 

Fig. 1 Experimental design and groups used in this study. Killifish were first acclimated for 540 

28 d to normoxia (~20 kPa), diel cycles of nocturnal hypoxia (‘intermittent hypoxia’, 12 h 541 

normoxia during the daytime light phase [white; from 0700 to 1900 local time] and 12 h of 542 

hypoxia at 2 kPa O2 during the night-time dark phase [gray]), or constant hypoxia at 2 kPa O2 for 543 

24 h per day. These acclimation periods are shown to the left of the break in the x-axis. 544 

Following these 28 d acclimation periods, these fish were divided in the experimental period into 545 

one of four treatment groups. (A) One batch of normoxia-acclimated fish were held in constant 546 

normoxia throughout to act as time-matched normoxia controls (‘N’ group), and were examined 547 

during the night and/or day. (B) A second batch of normoxia-acclimated fish were exposed to 548 

acute hypoxia for 6 h at night and then examined (‘AH’ group). (C) Fish acclimated to 549 

intermittent hypoxia were exposed to a hypoxia-reoxygenation cycle identical to their 550 

acclimation treatment (‘IH’ group), and examined during the night and/or day. (D) Fish 551 

acclimated to constant hypoxia continued to be held in hypoxia (‘CH’ group) and were examined 552 

during the night and/or day. Sampling and respirometry occurred at the midpoint of the phase of 553 

the cycle (e.g. 6 h before or after hypoxia induction), with solid arrows indicating time points of 554 

both tissue sampling and respirometry, and dashed arrows indicating time points of sampling 555 

only.   556 

 557 

Fig. 2. Dynamic regulation of the blood haemoglobin content during bouts of hypoxia. (A) 558 

Whole-blood haemoglobin content and (B) haematocrit during day and night sampling periods. 559 

Error bars indicate means  SEM, and white circle symbols represent individual values. 560 



  

 

 

Measurements were made in normoxia (20 kPa O2; white bars) or hypoxia (2 kPa O2; black 561 

bars), and the time of day of measurement is indicated by white (1300 in daytime) or grey (0100 562 

in night-time) backgrounds, respectively. * Significant pairwise difference from time-matched 563 

normoxic controls. Groups are designated as described in Fig. 1.  564 

 565 

Fig. 3. Dynamic changes in spleen size during hypoxia exposure, and it’s relationship with 566 

blood haemoglobin content. (A) Spleen mass as a proportion of fish wet mass. (B) Linear 567 

regression (grey line) and 95% confidence interval (grey shading) between spleen mass and 568 

haemoglobin content with each individual represented. (C) Using the same data as the above 569 

panel, a linear regression (grey line) and 95% confidence interval (grey shading) between spleen 570 

mass and haemoglobin content (means  SEM). * Significant pairwise difference from time-571 

matched normoxic controls. Groups are designated as described in Fig. 1. 572 

 573 

Fig. 4. Resting O2 consumption rate (MO2) in hypoxia was augmented in fish acclimated to 574 

intermittent hypoxia, without any variation in maximal O2 consumption rate (MO2,max) in 575 

hypoxia. (A) Resting MO2, (B) MO2,max following an exhaustive chase, and (C) resting MO2 as a 576 

percentage of MO2,max, with bars indicating means  SEM and symbols representing individual 577 

values. Measurements were made in normoxia (20 kPa O2; white bars) or hypoxia (2 kPa O2; 578 

black bars) at 0100 h. * Significant pairwise difference from normoxic controls. Groups are 579 

designated as described in Fig. 1. 580 
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Table 583 

 584 

Table 1: Other responses of the circulatory system in killifish sampled at rest 585 

 586 

 

Parameter 

Sampled at 1300 h local time Sampled at 0100 h local time 

ND (20 kPa) ID (20 kPa) CD (2 kPa) NN (20 kPa) AH (2 kPa) IN (2 kPa) CN (2 kPa) 

Heart mass  
(% wet weight) 

0.151 ±  
0.007 (10) 

0.152 ± 
0.014 (7) 

0.168 ± 
0.011 (9) 

0.141 ±  
0.011 (11) 

0.151 ±  
0.014 (8) 

0.163 ± 
0.007 (11) 

0.132 ± 
0.007 (7) 

MCHC (g dl-1) 29.51 ±  

1.09 (15) 

30.22 ± 

1.70 (11) 

32.11 ± 

2.07 (11) 

33.71 ±  

0.96 (11) 

29.53 ±  

0.85 (8) 

29.87 ± 

1.27 (11) 

31.90 ± 

1.46 (7) 

[ATP] per Hb4 0.983 ±  
0.104 (15) 

0.973 ± 
0.110 (11) 

0.971 ± 
0.078 (11) 

1.190 ±  
0.176 (11) 

1.261 ±  
0.047 (8) 

0.976 ± 
0.091 (11) 

1.042 ± 
0.157 (7) 

[GTP] per Hb4 1.445 ± 

 0.268 (14) 

1.363 ± 

0.353 (11) 

0.937 ± 

0.161 (11) 

1.043 ±  

0.222 (11) 

1.397 ±  

0.348 (8) 

1.093 ± 

0.199 (11) 

1.102 ± 

0.294 (7) 

See Fig.1 for treatment group designations.  587 

Hb4, tetrametric haemoglobin; MCHC, mean corpuscular haemoglobin concentration.  588 

Data are presented as means ± SEM. Sample sizes are presented in brackets.  589 
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