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Abstract 

Predictive maintenance is extremely important to fleet owners. On-duty automobile engine failures add 

cost of extra towing, gas and labor expenses which can add up to millions of dollars every year. Early 

knowledge of upcoming failures helps reduce these expenses. Thus, companies invest considerably in 

fault detection and diagnosis (FDD) systems to reduce unnecessary costs. Artificial Intelligence (AI) is 

getting increasingly used in the data driven signal based FDD industry because it requires less labor and 

equipment. It also results in higher productivity since it can operate continuously. This research offers 

Artificial Intelligence based solutions to detect and diagnose the degradation of three Internal 

Combustion Engine (ICE) parts which may cause on-duty failures: lead-acid accessory battery, spark 

plugs, and Exhaust Gas Recirculation (EGR) valve. Since the goal behind most FDD systems is cost 

reduction, it is important to reduce the cost of the FDD test. Therefore, all the FDD solutions proposed 

in this research are based on three types of built-in sensors: battery voltage sensor, knock sensors and 

speed sensor. Furthermore, the engine database, the Machine Learning (ML) and Deep Learning (DL) 

models, and the virtual operating machines were all stored and operated in the cloud.  

In this research, eight Machine Learning (ML) and Deep Learning (DL) models are proposed to detect 

degradations in three vehicle parts mentioned above. Additionally, novel advanced pre-processing 

approaches were designed to enhance the performance of the models. All the developed models showed 

excellent detection accuracies while classifying engine data obtained under artificially and physically 

induced fault conditions. Since some variant data samples could not be detected due to experimental 

flaws, defective sensors and changes in temperature and humidity, novel pre-processing methods were 

proposed for Long Short-Term Memory Networks (LSTM-RNN) and Convolutional Neural Networks 

(CNN) which solved the data variability problem and outperformed the previous ML/DL models.  
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Chapter 1 – Introduction 

1.1 Overview 

Artificial Intelligence (AI) is getting increasingly used in the Fault Detection and Diagnosis (FDD) 

industry. With the availability of both Big Data and much-improved computation capability, the use of 

AI for fault detection can be more feasible nowadays. Artificial Intelligence tools turn Big Data into 

learnable knowledge which can help us find solutions to industrial problems. In this research, both Big 

Data and Artificial Intelligence are used in Fault Detection and Diagnosis (FDD) of lead-acid accessory 

batteries and Internal Combustion Engines. 

Fleet owners across every industry suffer on-duty emergency calls because of failures of starting 

batteries or engine parts as shown in Figure 1.1. Towing broken vehicles to their original hub creates 

undesired expenses. Sending back-up vehicles may result in late deliveries and doubling gas and labor 

costs. Loss of reputation is also an additional bill. This problem can be a nightmare for large fleet owners 

such as shipping companies and product suppliers.  

 

Figure 1.1 On-duty vehicle fails on the road 
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Early knowledge about upcoming vehicle failures would help fleet owners save hundreds of thousands 

of dollars every year. This can be achieved by using fault prognosis that can help detect progression of 

faults in battery signals and engine parts. The cost of the fault prognosis methods typically comes from 

labor and equipment. Since the main goal behind fault prognosis is cost reduction, the solution must not 

be expensive. In this research, eight AI-based classification models were developed to detect the 

degradation of three vehicle parts in an engine using existing sensors only to keep operating cost to 

minimum. The vehicle parts are:  

➢ Lead-acid accessory battery. 

➢ Spark plugs. 

➢ Exhaust Gas Recirculation (EGR) valve.  

In this application, AI fault classification models require large amounts of engine data for training. The 

training data must include both healthy and faulty conditions from all the 3 vehicle parts mentioned 

above. This kind of data was not available in the public domain and needed to be generated. Therefore, 

it was necessary to collect data and build a new clean and reliable engine database which contained 

hundreds of thousands of engine cycles. This engine database was then migrated to the cloud to allow 

its sharing with other researchers and institutions. All the AI programming was implemented in Python 

and MATLAB. The Python-based and MATLAB-based classification models were also migrated to 

cloud virtual machines (VM) for the same reason. Figure 1.2 shows the workflow of the cloud-based 

model. 
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Figure 1.2 Data pipeline from engine to cloud FDD 

1.1.1 Lead-acid Accessory Battery 

The battery degradation detection element of this research involved a collaboration between McMaster’s 

Center for Mechatronics and Hybrid Technology (CMHT) and Geotab Inc. The collaboration was 

funded by the Natural Sciences and Engineering Research Council of Canada (NSERC). Geotab is a 

global leader in telematics which provides open platform fleet management solutions to businesses of 

all sizes. Many of Geotab’s customers suffered from on-duty failures of 12v accessory batteries of their 

commercial vehicles and were looking for a solution to reduce the unnecessary costs of this problem. As 

a research institution, the CMHT’s role was to develop a low-cost solution to detect progression of faults 

in the 12v accessory battery used in the powertrain to avoid on-duty failures. Since the main objective 

behind this project was cost reduction, only standard cranking voltage sensors were used in this research. 

All the battery data were collected by Geotab and cannot be shared in this thesis due to confidentiality 

limitations.  

At the time of this project, Geotab collected up to 1.5 billion data points every day from 2.2 million 

active vehicles through their own communication devices referred to as “GO device”. The GO device 

shown in Figure 1.3 is a small yet extremely powerful telematics measurement tool which collects engine 

and GPS data. Geotab is complemented by their own “MyGeotab” visualization and reporting software. 

Many of the largest fleets in North America and Europe are part of their roster of customers. The 
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company has been logging voltage data for over 8 years, including battery voltage, and cranking voltage. 

The battery data indicate a noticeable number of battery breakdowns in some of their customer fleets 

while the technical reports show that many of the breakdowns happen on duty. The affected vehicles are 

towed to maintenance workshops and fail to complete their assignments. 

 

Figure 1.3 Geotab’s GO device 

The breakdowns result in extra costs and reduce productivity. Early detection of battery degradation 

would significantly reduce the expenses caused by unexpected battery failures. A fault prognosis tool 

would be a potential solution for maintaining a high and sustainable performance. In this thesis, the use 

of Machine Learning (ML) techniques will be considered as a prognostics tool to augment the functional 

architecture of telematics systems. Machine learning learns from historical data of the batteries that have 

already failed by finding patterns. The ability of the ML model to differentiate between healthy and 

failing batteries means that the model can detect new samples which are about to fail. This would be an 

early indication of upcoming battery failure, which would save large fleet owners millions of dollars in 

road call expenses every year. Battery voltage, cranking voltage, engine coolant temperature and other 

measurements would be used as input features to the machine learning model.  
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Due to Geotab’s new data privacy policy, customers’ data were not allowed to be shared anymore with 

third parties, like McMaster’s CMHT. As a result, other applications were considered and the project 

was then expanded to detect degradation of other Internal Combustion engine (ICE) parts, namely Spark 

plugs and Exhaust Gas Recirculation (EGR) valve. 

1.1.2 Spark Plugs 

One of the common causes of spark plug faults is the change in the gap size. This can happen when the 

spark plug is incorrectly installed or when the spark plug is degrading. If the spark plug is incorrectly 

installed, the gap may become too narrow over time and a shorter spark would be generated. This may 

result in early or weak ignition, which may create vibrations inside the engine. Another fault is when the 

spark plug degrades because of electrode wear. In this case, the gap becomes larger, and a wider spark 

would be generated which may result in late ignition or no ignition at all. In both cases, these faults may 

result in low engine performance, low efficiency, and high fuel consumption. Since the main objective 

of this research is cost reduction, only standard built-in knock sensors were used to capture engine 

vibration and knocking due to spark plug faults. 

In this study, advanced AI-based fault classification models were built to detect faults in spark plugs 

(see Figure 1.4) using standard knock sensors only. ML and DL models require large amounts of training 

data to extract information from historical examples and make accurate classification decisions 

accordingly. Spark plug data were collected in the Center for Mechatronics and Hybrid Technology 

(CMHT). The center owns ICE engines, spark plugs, sensors, an engine dynamometer, and visualization 

software that are all available to use to collect the required training data.  
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Figure 1.4 Ignition spark 

Keeping the cost of data collection as well as testing equipment low was very important to keep this 

model economically effective. Therefore, only standard built-in sensors in the ICE were used to collect 

data. The input data to the ML model must include information that reflect the health status of spark 

plugs. Knowing what sensors could indicate spark plug faults was a challenge. It is common knowledge 

that defective spark plugs affect the ignition system, which result in a drop in the engine performance. 

One of the popular symptoms of bad or failing spark plugs is knocking. Therefore, knock sensors were 

selected to be the primary sensors for data collection. 

1.1.3 EGR Valve 

The exhaust gas recirculation (EGR) (see Figure 1.5) valve is an engine management component. It 

recirculates finely metered quantities of exhaust gas to the engine intake system to increase engine 

efficiency. This also reduces the fuel consumption rate and lowers NOx emissions. Since the world is 

increasingly caring more about reducing emissions, the EGR valve plays a very important role.  
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Figure 1.5 EGR valve 

The atmosphere consists of nearly 80% nitrogen. However, when it is exposed to extremely high 

temperatures in the combustion chamber, the normally inert gas becomes reactive. The gas creates 

harmful oxides of nitrogen (i.e., NOx), which are then passed through the exhaust system into the 

atmosphere. Therefore, the EGR valve only allows a precise quantity of exhaust gas to re-enter the intake 

the system. This effectively changes the chemical mixture of the air entering the engine. With less 

oxygen, the diluted mixture burns slower which result in lowering the temperature inside the combustion 

chamber. This also helps reduce the production of NOx to keep the exhaust clean and more efficient.  The 

EGR valve is normally closed while the engine is starting up. At idle and low speeds when only little 

power and oxygen is needed, the valve gradually opens. The valve can be up to 90% open at idle. As 

more torque, and therefore more power is required, the valve tends to close. During full acceleration, the 

EGR valve completely closes to ensure that the needed oxygen enters the cylinder. Thus, EGR valves 

can be used in engines to improve both combustion efficiency and knock tolerance as well as reduce 

pumping losses. In diesel engines, they can also help reduce knocking at idle. Older vehicles used to 

have vacuum-operated valves, while newer vehicles are now electronically controlled.  

The hostile environment in which EGR valves operate results in wear and tear over time. However, the 

most common cause of EGR failure is the accumulation of carbon particles from the exhaust gases along 
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the EGR valve and intake system passages. This results in clogged tubes and exhaust gas channels and 

possibly the plunger mechanism of the valve. This can force the valve to either remain open or closed. 

A rupture or leak in the valve diaphragm can also cause failure of the valve. 

The symptoms associated with EGR valve failure are like those of many other engine management 

components, which makes it not easy for many technicians to diagnose. However, there are a few signs 

of EGR failure: 

➢ Check engine light: An EGR valve fault may trigger the check engine light. Having the check 

engine light on makes the driver feel insecure since it can be on because of other major engine 

problems. The driver not knowing the reason why the check engine light is on might end up in 

stopping the vehicle on the road and asking for emergency help. 

➢ Engine performance issues: if the valve remains open, the air-to-fuel ratio (AFR) will be 

disrupted causing engine performance issues such as power reduction, poor acceleration and 

rough idle. It may also produce turbo boost pressure leaks, which may cause difficulties to the 

turbo to work. 

➢ Increased NOx emissions: On the other hand, if the EGR valve remains closed, the temperature 

will increase inside the combustion chamber which will leave a lot of unburned fuel in the 

exhaust. Therefore, NOx emissions will increase, and the fuel efficiency will decrease. 

➢ Engine knocking: the higher temperatures and NOx emissions, the higher detonation or 

knocking in the engine. This symptom was the reason why engine knock sensors are used in this 

research to detect EGR faults. Not only that knock sensors are meant to sense knocking, but also, 

they already exist in all ICEs, which meets the objectives of this research. The level of knocking 
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in the engine is therefore used in this thesis as an indirect form of measurement that avoids use 

of additional instrumentation to diagnose the level of failure of the EGR valve. 

 

Figure 1.6 Clogged EGR valve 

1.2 Research Motivation  

Early recognition of upcoming engine and vehicle battery failures can help save hundreds of thousands 

of dollars for large fleet owners. This research aims for early Fault Detection and Diagnosis (FDD) of 

12v accessory batteries, spark plugs and Exhaust Gas Recirculation (EGR) valves through AI-based 

classification models to avoid on-duty failures, reduce maintenance costs and avoid major damages to 

the engine. Furthermore, no external sensors or transducers are required to help keep the cost of the 

solution low. Only built-in engine sensors are used for data collection and fault detection.  

Due to experimental issues and equipment flaws, some of the collected data often have variant 

characteristics, such as different frequency or voltage amplitudes compared to the normal range. These 

variants are harder to detect by AI-based algorithms. Thus, this research provides novel pre-processing 

techniques which facilitated handling and, in some cases, use of certain forms of variant data. 
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1.3 Research Objectives 

The main research objective is to use Artificial Intelligence (AI) to perform Internal Combustion Engine 

(ICE) fault classification using standard engine sensors only. This was achieved by: 

➢ building a labeled engine database of both healthy and faulty conditions, provided by 

McMaster’s test engineers. 

➢ Developing reliable Machine Learning (ML) and Deep Learning (DL) classification models 

which learns from engine data to detect and diagnose faults. 

➢ Developing novel pre-processing techniques for Deep Learning algorithms to enhance the 

classification performance of variant engine data due to experimental issues and sensor flaws. 

1.4 Datasets 

Three major datasets were collected in this research: 

1. Battery cranking voltage dataset, which contains the cranking voltage history of vehicles with 

healthy batteries as well as vehicles with previous battery breakdowns. The dataset was collected 

through Geotab’s GO devices which were connected to their customer’s vehicle OBD II ports, 

as explained in section 1.1.1. This dataset was owned and stored by Geotab Inc. and cannot be 

shared in this thesis due to data confidentiality. 

2. Spark Plug dataset, which contains physically simulated Original Equipment Manufacturer 

(OEM) spark plugs with three different gap sizes. The spark plugs were used to physically 

simulate fault while engine data were being collected through standard knock and speed sensors. 

The smallest gap size (i.e., 0.020”) represents incorrectly installed spark plugs (a.k.a. fault 1), 

while the largest gap size (i.e., 0.080”) represents degrading spark plugs (a.k.a. fault 2) due to 
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electrode wear. The spark plug with the medium gap size (i.e., 0.050”) represents a standard and 

healthy spark plug. The entire spark plug dataset was collected at McMaster’s CMHT lab. 

Due to experimental issues and sensor flaws, about 40% of the data samples were considered as 

be corrupted and variant from the normal range with notably different characteristics (e.g., 

different voltage amplitudes and frequencies). Figure 1.7 shows an example of a regular knock 

sensor signal against a variant data sample due to a loose sensor cord. Note that in this signal, 

some of frequency content information may have been preserved, while the amplitude of the 

signal is clearly compromised. Therefore, one of the major novelties in this research was to invent 

a new method which enables classification by use of variant data that have partial information 

content. 

 

Figure 1.7 Regular vs variant data 

3. Exhaust Gas Recirculation (EGR) valve dataset, which contains three physically simulated EGR 

valve faults. The faults contain 0% CO2 dilution (a.k.a. healthy), 5% CO2 dilution (a.k.a. fault 
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1), and 10% CO2 dilution (a.k.a. fault 2). The entire EGR valve dataset was collected at 

McMaster’s CMHT lab. 

 

1.5 Proposed Solutions 

The proposed solution meets the research objectives through eight AI-based fault classification models, 

as shown in Figure 1.8, which cover three common faults: degradation of 12v accessory batteries (i.e., 

Models B1 and B2), spark plugs (i.e., Models S1 to S4) and EGR valves (i.e., Models E1 and E2). All 

the proposed models were trained on their corresponding datasets discussed in section 1.4. The following 

naming convention of the models is used throughout the thesis: 

➢ Model B1 was developed to detect 12v battery breakdowns in unlabeled cranking voltage signals 

using Artificial Neural Networks (ANN). The purpose of this model was to label battery data 

into healthy and breakdown batteries, which was used as training data in Model B2. 

➢ Model B2 detects degrading 12v battery signals using cranking voltage data, which was labeled 

by Model B1, using the Random Forest (RF) classifier. The model suggests a new set of features 

which describe the signal curve instead of using raw data to enhance the detection rate of the RF 

classifier. 

➢ Model S1 detects and diagnoses spark plug faults through standard knock sensors only. The 

model consists of McMaster CMHT’s own Extended Multi-Scale Principal Component Analysis 

(EMSPCA), which generates fault signatures as input data to an Artificial Neural Network 

(ANN).  
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➢ Model S2 detects and diagnoses spark plug faults through standard knock sensors only. The 

model turns the raw data into sequential features as input data to a deep Long Short-Term 

Memory Recurrent Neural Network (LSTM-RNN). Model S2 and S3 were developed for 2 

reasons: a) because the running time of Model S1 was high at the time of this research (not 

anymore), and b) to achieve higher accuracy. 

➢ Model S3 detects and diagnoses spark plug faults through standard knock sensors only. The 

model turns the raw data into Mel-frequency Cepstral Coefficient (MFCC) heatmaps as input 

data to a deep Convolutional Neural Network (CNN). 

➢ Model S4 uses a single engine speed sensor only and the Random Forest (RF) classifier to detect 

and diagnose spark plug faults. 

➢  Model E1 detects and diagnoses Exhaust Gas Recirculation (EGR) valve faults through standard 

knock sensors only. The model consists of McMaster CMHT’s own Extended Multi-Scale 

Principal Component Analysis (EMSPCA), which generates fault signatures as input data to an 

Artificial Neural Network (ANN).  

➢ Model E2 detects and diagnoses Exhaust Gas Recirculation (EGR) valve faults through standard 

knock sensors only. The model consists of Fast Fourier Transform (FFT) along with Principal 

Component Analysis (PCA). This model was developed to validate the results of Model E2. 
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Figure 1.8 Hierarchy of AI-based engine fault classification models 

1.6 Research Contributions and Novelties 

Novel pre-processing techniques were proposed in this research to enhance the classification accuracy 

of engine data using well-established Machine Learning (ML) and Deep Learning (DL) algorithms: 

➢ [CD-RF]: A curve description (CD) pre-processing technique was proposed for Random Forest 

(RF) classifiers to perform time-series classification of engine data at almost 90% accuracy.  

➢ [MFCC-CNN]: An image pre-processing strategy to time-series data was proposed for 

Convolutional Neural Networks (CNN) to achieve more than 97% detection rate. 

➢ [EMSPCA-Mosaic-CNN]: A novel image pre-processing technique was invented for 

Convolutional Neural Networks (CNN) to perform time-series classification of engine data 

through EMSPCA fault signatures. This new technique enabled the conversion of spark plug 
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fault signatures to mosaic-like images which can be classified by the CNN with 96% accuracy, 

with respect to variance in data due to experimental issues and sensor flaws. 

1.7 Implementations 

In this research, the following implementations were achieved: 

➢ An easy-to-share, structured, and labeled spark plug and EGR condition database was generated 

by McMaster’s CMHT test engineers for this research. It contains billions of engine sensory data 

points of both healthy conditions as well as physically simulated Spark Plug and Exhaust Gas 

Recirculation (EGR) fault conditions. The database was then migrated to the cloud to provide 

useable data to automotive researchers.   

➢ Eight AI-based fault classification models were proposed to detect and diagnose faults in 3 

vehicle parts:12v battery (models B1 and B2), spark plugs (models S1 to S4), and EGR valve 

(models E1 and E2) using standard engine sensors only. The models were able to achieve 95%, 

96% and 100% detection rates of 12v batteries, spark plugs and EGR valve faults, respectively, 

during the tests. 

➢ Extension and refinement of McMaster CMHT’s own FDD algorithm, referred to as the 

Extended Multi-Scale Principal Component Analysis (EMSPCA), to perform classification of 

Internal Combustion Engines (ICE). The processing time of the EMSPCA algorithm was reduced 

by 99% and full documentation for the algorithm was created. 

 

1.8 Thesis Structure 

This section describes the structure of the thesis, which is organized as follows: 
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Chapter 1 provides an overview about the problem solved in this research as well as the proposed 

solutions. The research projects conducted in this thesis were described. Brief descriptions of the 

research objectives, motivation, contributions, and novelties are also provided.  

In chapter 2, a literature review on the current FDD methodologies used in the industry as well as 

research publications about the most recent FDD approaches, specifically signal-based methods. The 

Machine Learning (ML) and Deep Learning (DL) Techniques used in this research were also discussed 

along with the research limitations and problems to be solved.  

Chapter 3 exhibits the battery data collection process, which was performed by McMaster’s industry 

partner, Geotab Inc. The data cleansing and filtration process was also explained in this chapter along 

with many challenging data issues which were solved throughout the process.  

Chapter 4 discusses the results of the battery degradation detection models developed in this research. 

Two Machine Learning (ML) models were built to detect battery replacements and progression of battery 

faults. 

Chapter 5 discusses the experimental setup, and the equipment used in this research. The engine data 

collection process is discussed, which included 3 spark plug and 3 EGR valve fault conditions. Data 

analysis strategies for the collected database were also explained. A cloud-based structured database was 

generated from this research and discussed in this chapter.  

Chapter 6 is where all the AI models developed for spark plug and EGR degradation detection were 

discussed in detail and fed with the collected engine data. The chapter also mentions the extension and 

refinement stages which were performed to the Extended Multi-Scale Principal Component Analysis 
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(EMSCPA) algorithm to handle ICE data classification since it was originally designed for electric 

motors. A  

Chapter 7 proposes novel pre-processing techniques to the deep Convolutional Neural Network (CNN) 

to handle classification of EMSPCA fault signatures. These techniques helped solve the data variability 

problem due to experimental flaws and temperature change (see section 1.4). This model outperformed 

all the ML and DL models developed in this research which attempted to classify variant data. 

Chapter 8 discusses the results of the engine data classification models and compares their performances 

in each problem. It contains the results of both spark plug degradation problem, and EGR valve 

degradation problem. A summary of the results of the classification models developed for both problems 

was also provided.  

Chapter 9 provides a conclusion of the entire research and recommendations for future work. 
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Chapter 2 - Literature Review 

Fault diagnosis and detection of ICE can help avoid major damages in the engine [1], [2]. There are two 

main categories of fault detection methods: signal-based and model-based [3], [4]. Many of the current 

FDD systems in industry [5] are signal-based and involve either conducting rule-based checks of raw 

measurements or using traditional statistical methods [6]. It is a common practice for FDD systems in 

rotating systems like ICE to conduct frequency analysis techniques, such as Fast Fourier transform 

(FFT), over engine speed signals [6]. However, FFT may not be the best approach with non-stationary 

vibration signals since frequency components change in time, which was shown by Rai and Mohanty 

[7] in their experimental research on faulty bearings. On the other hand, frequency components do not 

change in time with stationary vibration signals, which makes FFT a good tool for the latter case. 

2.1 Fault Detection and Diagnosis of ICE Using Artificial Intelligence. 

With the increasing acceptance of Artificial Intelligence (AI) in the automotive industry, AI based FDD 

methods are being considered more often, especially when using multiple sensors [8]. One of the most 

popular AI algorithms is the Artificial Neural Networks (ANN) [9]. ANNs are data-driven classifiers 

that are currently categorized as signal-based Fault Detection and Diagnosis (FDD) methods and are 

getting increasingly used in many FDD applications [10]. ANNs can be used in Machine Learning such 

as for classification and regression.  

More advanced versions of Artificial Neural Networks (ANNs), referred to as Deep Neural Networks 

(DNNs), are currently being used in the most advanced and complex technologies in the world such as 

self-driving cars [11], [12]. These networks require large amounts of data, which can be available 



PhD Thesis – Essam H. Seddik                                                                   McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------------- 
 

21 | P a g e  
 

through collecting many samples from each fault condition, multiple fault conditions, and multiple 

features, which are likely collected through sensors [13]. The main objective of this research is to utilize 

both Machine Learning (ML) and Deep Learning (DL) techniques in the detection of engine parts 

degradation, as well as vehicle batteries. 

DL algorithms are not only deeper networks than ML algorithms, but also have more complex structure. 

ML algorithms can be based on neural networks like Artificial Neural Networks (ANN) or other 

concepts like Random Forest (RF) and Support Vector Machines (SVM). However, DL algorithms are 

only based on neural networks. Unlike ANNs, some Deep Neural Networks (DNN) were particularly 

designed to learn from images, such as Convolutional Neural Networks (CNN), while others were 

designed for time-series data like Recurrent Neural Networks (RNN). The ANN consists of simple 

hidden layers where the weights are calculated regardless of the type of data. The CNN contains 

convolutional and max pooling layers which splits images into patches. 

Recent surveys [14] show that machine learning and deep learning techniques are being increasingly 

used in predictive maintenance applications. Figure 2.1 shows a trend line that describes the growth in 

the number of articles on predictive maintenance that were published between 2009 and 2018. Although 

the trend line is rising significantly, the predictive maintenance of spark plugs has never been studied 

using Deep Learning techniques. This paper describes our successful approach to diagnose and detect 

engine faults related to spark plugs using two of the most powerful deep learning algorithms with 

existing engine sensors. 
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Figure 2.1 Number of papers per year (with a trend line) [14] 

In a successful attempt of detecting gear faults, Samantha [14] reached a classification rate of nearly 

100% using ANNs as well as Support Vector Machines (SVMs). Samantha used sensory data acquired 

from seven accelerometers to train both models. Laftah, Rafil et al. [15] developed an ANN-based model 

that detected different engine faults by analyzing exhaust gas data. The faults introduced to the engine 

included spark plug faults, valves, air filter, piston rings and carburetor. In this research, a different set 

of sensors will be used to detect Exhaust Gas Recirculation (EGR) valve [16] failure using Machine 

Learning (ML) models. In 2019, Carvalho et al. [17] published a systematic literature review of machine 

learning (ML) methods applied to predictive maintenance (Pd.M.). The survey included FDD models of 

different applications such as fuel cells [18], automobile gearbox [19], wind and gas turbines [20], air 

compressors [21], fans [22] and pumps [23]. Random Forest [24], SVM [25], ANN [26] and K-means 

[27] were all used in these FDD models as the acting classifiers. 

2.2  Artificial Neural Networks 

In cognitive science, we humans have neural networks [28] which are the central nervous systems of 

our brains. In machine learning, Artificial Neural Networks (ANNs) are models inspired by our neural 

https://en.wikipedia.org/wiki/Cognitive_science
https://en.wikipedia.org/wiki/Central_nervous_system
https://en.wikipedia.org/wiki/Biological_neural_network
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networks used to estimate functions given historical data [29]. ANNs consist of interconnected layers 

with each layer containing neurons with numeric tunable weights which make the network capable of 

learning. Since traditional rule-based programming was not able to solve a wide variety of tasks, neural 

networks were invented to tackle more complex problems such as object detection and computer 

vision. The smallest unit of a typical neural network is referred to as the perceptron [30]. 

There are three major types of learning: supervised, unsupervised and reinforcement learning. Some 

other types can fall in between such as semi-supervised learning. Supervised learning is occurred using 

labeled data. The term label means information about the target being predicted. If information about 

the predicted target is available along with the dataset, then this is a supervised learning problem. In 

this case, the ML algorithm creates rules between the data itself and its labels (i.e., targets) based on 

the examples provided. Unsupervised learning works differently since no information about the target 

is available. In this case, the ML algorithm blindly assigns data points to groups based on 

measurements. Clustering methods such as K-means and Kernel Nearest Neighbor (KNN) are among 

the most popular unsupervised learning algorithms where data points are classified based on distances. 

In reinforcement learning, no data is given. Instead, environment is given and an agent who is supposed 

to navigate in this environment and finds its goal using its own experience that is gained gradually. 

  2.2.1 The Perceptron 

The perceptron is the basic neural network building block, which was the earliest supervised learning 

algorithm [31]. The perceptron takes historical data samples of a certain label, as well as samples of 

a different label (e.g., “car” and “not car”). The goal was to assign a test sample to the proper label. 

One way to do that was to assign the test sample to the closest neighbor as shown in Figure 2.2. The 

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
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algorithm draws a separating line, referred to as the separator, and splits the data into two classes. 

Any point on one side of the line would be a car while any data point on the other side would not be 

a car. This is how a linear classifier works [32]. 

 

 

Figure 2.2 Linear classifier [32] 

To represent this line mathematically, a weighted sum transfer function f(x) is formed [33]. The 

transfer function is equal to the sum of the input vector (x), multiplied by its weight (w), and a bias 

(b): 

f(x) = x.w + b               (2.1) 

The transfer function represents the threshold which is then fed into an activation function h(x), like in 

Figure 2.3. The activation function works as a threshold cut-off [34]. If the result exceeds a certain 

value, it labels it as “1” (i.e., car), otherwise, “0” (i.e., not car). 
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Figure 2.3 Activation function [34] 

 

(2.2) 

Weights (w) eliminate the output error, which is the difference between the desired and the actual 

output. Mean Square Error and Least Square Error are examples of the error functions which can be 

used in a transfer function. Single perceptron is simple and easy to apply, however, it can only learn 

linearly separable functions [35]. This is a major drawback because some simple functions, like XOR, 

cannot be classified as shown in Figure 2.4. That is why the multi-layered perceptron is used more 

often. 

 

Figure 2.4 XOR problem [32] 
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  2.2.2 Structure of Neural Networks 

A neural network consists of layers, each layer consists of perceptron (i.e., “neuron” or “unit”). The 

first layer is always called the input layer and it is always a single layer [37]. The last layer is called 

the output layer, which is always a single layer as well, and this is where the target is generated. 

Between the input and the output layer, there are hidden layers, which can be a single layer or as 

many as needed. Figure 2.5 shows an example of a neural network with a 3-unit input layer, a 4-unit 

hidden layer and a 2-unit output layer. Each unit in a layer (n) is typically connected to every unit of 

the previous layer (n-1). These connections are where the weights are calculated and can be 

disconnected by setting their weights to zero. F(x) and h(x) represents the transfer function and the 

activation function, respectively. 

 

Figure 2.5 Feedforward neural network [32] 

The network starts functioning when an input vector is fed to the input layer. The input vector is 

propagated forward to the hidden layers where the output of each layer becomes the input to the next. 
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The output of the last layer (i.e., output layer) becomes the output of the entire network [34]. Using 

linear activation functions makes the feedforward neural network not much more powerful than the 

perceptron, even if it contains multiple layers. That is the reason why non-linear activation functions 

are used in most neural networks. Networks with a single hidden layer are not powerful enough to 

learn functions. Thus, it is common practice to build neural networks with multiple hidden layers 

[38]. Figure 2.6 shows the different activation functions that can be used in neural networks. 

 

Figure 2.6 Activation functions [31] 

Like humans, feed forward neural networks do not get the best results from the first time. More attempts 

do not mean only repetition, but also corrections to the weights throughout the training process. This 

can be done using backpropagation.  

  2.2.3 Backpropagation 

Backpropagation is the most common algorithm for supervised learning in Machine Learning (ML). It 

is a simple, yet very effective algorithm.  
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After publishing the seminal book “Parallel Distributed Processing” by Rumelhart and McClelland 

in 1986 [41], backpropagation started to get popular. Every backpropagation algorithm consists of 

two phases: forward phase and backward phase [42]. In the forward phase, the weights do not 

change, and the input data is propagated through the network all the way to the output layer. This is 

when the activation functions and output of each neuron are being calculated.  The backward phase 

starts by calculating the output error, which is the difference between the actual and the desired 

target. The error is propagated back through all the layers in the opposite direction to update the 

weights accordingly. The correction Δ𝑤𝑗i(n) that is applied to the weight connecting neuron (i) to 

neuron (j) is defined in the delta rule [42]: 

  (2.3) 

The local gradient 𝛿𝑗(n) depends on whether neuron (j) is an output or hidden node. If it is an output 

node, 𝛿𝑗(n) is equal to the product of the derivative 𝜑′𝑗(𝑣𝑗(n)) and the error 𝑒𝑗(n), which are both 

associated to the neuron j as follows: 

𝛿𝑗(n) = 𝑒𝑗(n) 𝜑′𝑗(𝑣𝑗(n))                                      (2.4) 

If neuron j is a hidden node, 𝛿𝑗(n) is equal to the product of the derivative 𝜑′𝑗(𝑣𝑗(n)) and the weighted 

sum of 𝛿𝑠 that is computed for the neurons in the next output or hidden layer that are connected to 

neuron j, where neuron k is an output node [38]: 

𝛿𝑗(n) = 𝜑′𝑗(𝑣𝑗(n)) Σ𝑘 𝛿𝑘(n) 𝑤𝑘𝑗(n)                      (2.5)  
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The stochastic gradient method is the most preferred method of online implementation of 

backpropagation. Figure 2.7 represents this method graphically. The optimal value for a weight is 

when the error achieves the global minimum. Weights are typically updated in small steps in a 

continuous attempt to reach the global minimum. However, it is practically a difficult task as it often 

ends up in a local minimum [42]. 

 

Figure 2.7 Stochastic gradient descent [32] 

  2.2.4 Cost Function 

A Feedforward Neural Network typically consists of multiple layers. The input propagates through 

the network until an output vector is returned. The output vector is called 𝑎𝑗
𝑖  the activation of the 𝑗𝑡ℎ 

neuron in the 𝑖𝑡ℎ layer, where 𝑎i is the 𝑗𝑡ℎ element of the input vector. Then the input of the next layer 

is related to its previous via the following relation [43]: 

                                    (2.6) 
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where σ is the activation function, 𝑤𝑖 is the weight from the 𝑘𝑡ℎ neuron in the (𝑖 − 1) 𝑡ℎ layer to 

the 𝑗𝑡ℎ neuron in the 𝑖𝑡ℎ layer. 𝑏𝑗
𝑖  is the bias of the 𝑗𝑡ℎ neuron in the 𝑖𝑡ℎ layer while 𝑎𝑗

𝑖  represents the 

activation value of the 𝑗𝑡ℎ neuron in the 𝑖𝑡ℎ layer.  

The output from a neural network is the predicted label, which assigns the test sample to one of the 

possible classes of the problem (e.g., Healthy/Faulty). The label is predicted through probabilities, 

where the sum adds up to 100%. The classifier compares the test sample with the training samples 

looking for similarities and calculates the probabilities for each class accordingly. The higher 

similarity between the sample and the class, the higher probability. The class with the highest 

probability becomes the final label to the test sample.  

 

2.3 Random Forest 

Random forest is an accurate, easy to use, non-neural network, Machine Learning (ML) algorithm 

which has showed great results [44] over the past few years. It is a supervised learning algorithm which 

consists of decision trees, which form a “forest” (see Figure 2.8) and are trained using the bagging 

method [56]. The bagging method is where a combination of learning models increases the overall 

result. Each tree makes an individual decision, and the forest merges all decisions together to get a 

more accurate and stable prediction. Random forest can be used for classification or regression 

problems, which form most machine learning methods.  
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Figure 2.8 Random Forest  

Random Forest has only been working well with classification of statistical data, or regression of time-

series data [45, 46]. Thus, a new pre-processing approach was proposed in this research for the Random 

Forest (RF) algorithm. This new pre-processing approach enhances the performance of the Random 

Forest algorithm in classification of time-series data. An example of classification of statistical data 

using Random Forest is provided by S. Bernard and S. Adam who used Random Forest (RF) to classify 

the popular handwritten digits dataset “MNIST” [47]. This dataset does not contain time-series data, 

but rather consists of 10 handwritten digits, dealt with as images. The dataset has a black background, 

and the digits are written in white. The dataset contains various fonts and way of writing the digits to 

cover as many scenarios as possible. Random forest has successfully classified the 10 classes with a 

98% detection rate. Another example is the popular IRIS dataset. N Azizah, L.S. Riza, and Y. Wirhardi 

used the IRIS dataset to test the Random Forest algorithm to test parallel computing performance using 

the R programming language [48]. Same with Wu Y., He J., and Ji Y., et al., who published enhanced 

models to increase the detection rate of the IRIS dataset [49]. The IRIS dataset is an image-based flower 

dataset which contains statistical values which describe each specie. Examples of these values are the 

sepal length, sepal width, petal length and petal width [50].  
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On the regression side, Random Forest was mostly used in forecasting. Mei J., He D., Harley R.G., et 

al. used RF to predict the electricity price in New York on a real-time basis [51]. Dudek G. forecasted 

short-term load using Random Forest [52], while Buchwitz B., Falkenberg A., and Kusters U. used 

Random Forest to forecast time-series events in consumer electronic markets [53]. The way time-series 

forecasting works, is that the Random Forest model takes the last few data points to predict the current 

value. For data samples with large number of data points, the algorithm keeps predicting one point at 

a time, and compares with the actual value. By the end of the training, the prediction accuracy increases, 

and the model can predict values in the near future. Based on the predict values, it predicts further 

points. The longer the predicted period, the less accuracy. 

Time-series classification in Random Forest works differently. The model must receive all the data 

points of the sample to find similarities within each class. This means the number of input data points 

per sample can be very large in case of engines and motors which can generate millions of data points 

in a few minutes. This does not match with the nature of Random Forest. Rodriguez J., and Kuncheva 

L. [54] compared the performance of decision trees, SVM on time-series interval and DTW features. 

Random Forest was not the best approach for this application. Same with Goehry B., Yan H. and Goude 

Y., et al. who tried Random Forests for time-series [55].  

A new pre-processing approach is proposed later in this research to solve the limitations above. The 

approach is referred to as the curve description technique. This technique provides statistical features 

of time-series data instead of fitting raw data points into the random forest algorithm. Not only that it 

opens a new path for time-series classification in Random Forest, but it also solves a very difficult 

Fault Detection and Diagnosis (FDD) problem of an Internal Combustion Engine (ICE). Random forest 

(Figure 2.9) is a fast, accurate and computationally light algorithm which competes with neural 
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networks in providing data-driven solutions to easy problems. One of the reasons why this algorithm 

is popular is because it is simple and diverse and can be used for both classification and regression 

tasks.  

 

Figure 2.9 Random Forest logic 

Random forest (RF) shares the same hyperparameters as traditional decision trees and bagging 

classifiers. Since the classifier-class of random forest can be used, it is not necessary to combine a 

decision tree with a bagging classifier. For regression tasks, the regressor of Random Forest can be 

used instead. While growing the trees, RF adds further randomness to the model by searching for the 

best feature among a random subset of features instead of searching for the most important feature 

while splitting a node. This increases the diversity of the model which affects the results positively. 

Thus, the algorithm takes only a random subset of the features into consideration for splitting a node. 

To add more randomness to the model, random thresholds can be used for each feature rather than 

searching for the best possible thresholds, which is what happens in a normal decision tree [57]. Figure 

2.10 shows a random forest with two trees. 
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Figure 2.10 Random Forest trees 

A great option in the random forest algorithm is that it provides importance ratings of each feature on 

the prediction. One of the most popular libraries which offer random forest models is Scikit-Learn 

(a.k.a. Sklearn) [58]. In Sklearn, a feature importance tool is provided which measures the importance 

of every feature by looking at how much it affected the results among all trees in the forest. This score 

is computed automatically for each feature after training and the results are scaled so that the sum of 

all ratings is equal to one. 

Each node in a decision tree represents a prediction. Each branch represents the outcome of the 

prediction, and each leaf node represents the label. The label is the decision taken after calculating all 

attributes. The feature importance tool helps to decide about what features to keep and what features 

to drop if they do not contribute to the prediction. This tool is very important to avoid overfitting due 

to redundant features, as well as eliminate computations and the running time. Figure 2.11 shows a 

table and a chart with an example of the feature importance tool of 13 features from the famous Titanic 

dataset on Kaggle [59].  
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Figure 2.11 Example of feature importance tool using Titanic dataset 

Although the Random Forest (RF) algorithm consists of decision trees, there are differences. Once a 

decision tree is trained on features and labels, it formulates a set of rules, which will be used to make 

predictions. For example, predicting whether a person will click on an online advertisement, the ads 

the person clicked on in the past are important features to train the tree on. Also, any features that 

describe their decision would be important features. Once trained on these features along with their 

corresponding labels, the decision tree will generate some rules that help predict whether the person 

will click on specific ads or not. On the other hand, the Random Forest algorithm randomly selects 

observations and features to build several decision trees where most decisions will take over the final 

label. However, deep decision trees often suffer from overfitting. Random forest avoids overfitting by 

creating random subsets of the features and building smaller trees using those subsets. Then, the 

subtrees are re-combined.  
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The hyperparameters in random forest are used to increase the performance of the model and to 

decrease the running time [60]. One important hyperparameter is the “n_estimators”, which represents 

the number of decision trees in the algorithm builds. Generally, higher number of trees increases the 

performance of the model and makes more stable predictions. However, more decision trees also slow 

down the computation. The “max_features” hyperparameter is the maximum number of features which 

can be considered to split a node. Another important hyperparameter is “min_sample_leaf” which is 

the minimum number of leaves needed to split a node. The “n_jobs” hyperparameter determines the 

number of processors allowed to use. If n_jobs is equal to “1”, only one processor will be used, while 

“-1” means there is no limit on processors. The “random_state” hyperparameter makes the output of 

the model reproducible, which means the model always produces the same results when 

“random_state” is set to a definite value, given the same hyperparameters and training data. Finally, 

the “oob_score” hyperparameter, a.k.a. oob sampling, is a cross-validation approach. When set on, 

almost one-third of the data is not used for training but rather used for validation. This is what is called 

“validation set”, or the “out-of-bag” samples. This hyperparameter is very similar to the leave-one-out-

cross-validation method with no additional computational. 

Like any algorithm, the random forest algorithm has advantages and disadvantages. One big advantage 

is that it can be used for both regression and classification tasks, as well as the feature importance tool 

which sorts out the features based on their contribution to the generalized rules and results. Another 

important advantage is that the algorithm is normally set to the best settings based on previous 

experiments. This means that the algorithm requires minimum parameter tuning since the default 

hyperparameters often produce good prediction results. Furthermore, understanding the 
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hyperparameters is straightforward. Although overfitting is a common problem in Machine Learning, 

this will not happen in random forest if there are enough trees in the forest.  

The biggest disadvantage of the random forest algorithm is that the large number of trees may make 

the algorithm too slow for real-time predictions. The algorithm is fast to train; however, it is slow to 

create predictions once they are trained. The more trees, the more accurate predictions, the slower 

model. Thus, Random Forest would not be the best algorithm for real-world real-time applications and 

other methods would be preferred.  Also, RF is a predictive modeling tool and not a descriptive tool. 

This means it would not be the best approach when looking for a description of the relationships within 

the data. Random Forest is often used in a lot of fields, such as stock market predictions, banking, e-

commerce and even medicine. In finance, it is used to detect customers who are likely to pay their debt 

on time, or use certain services more frequently, and detect fraudsters. Predicting the future behavior 

of the stock market is a very common application where RF is used. In healthcare, it can be used to 

identify the correct components in medicine and analyze the medical history of patients to diagnose 

diseases. In e-commerce, RF is used to determine whether a customer will like a certain product. 

2.4 Extended Multi-Scale Principal Component Analysis (EMSPCA) 

The Extended Multi-Scale Principal Component Analysis (EMSPCA) is a feature extraction method 

which was developed previously at McMaster’s Center for Mechatronics and Hybrid Technology 

(CMHT) [61]. The purpose of this method is to generate fault signatures from test samples. A fault 

signature is a measurement of the deviation of the test sample from healthy baselines (i.e., references). 

To achieve this purpose, the input data goes through three main stages: normalization, Wavelet Pack 

Transform (WPT), and Principal Component Analysis (PCA). The resultant fault signatures are then 

https://builtin.com/data-science/intro-descriptive-statistics
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used as input to an Artificial Neural Network (ANN) which is responsible for classification. Figure 

2.12 shows the block diagram of the EMSPCA method.  

 

Fig (2.12) EMSPCA Diagram 

The EMSPCA method starts with normalization of both healthy baselines and faulty samples. The goal 

of normalization is to change all data points in the dataset to a common scale. Normalization is strongly 

required when different set of features have different ranges. The motive behind this step is to help 

the EMSPCA algorithm detect faults accurately in the case of different measurement types. This 

normalization is applied as follows in Equation 2.1: 
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Normalized signal =  
raw signal − mean value (baseline center) 

Variance (baseline raw signal)   (2.1) 

 

It is very important to use the baseline centerlines and variances in normalizing new observations, 

which is implemented in Equation 2.1. The next step was to apply Wavelet Packet Transform (WPT) 

to the normalized data. WPT converts data from its current domain (e.g., time or crank angle) to the 

frequency domain and splits the original signal into smaller portions, namely frequency components.  

 

  2.4.1 Wavelet Packet Transform (WPT) 

The EMSPCA method was inspired by the Modified Multi-Scale Principal Component Analysis (Mod-

MSPCA) [61], but the difference was in the wavelet stage. The Mod-MSPCA consists of Discrete 

Wavelet Transform (DWT) and Principal Component Analysis (PCA), while the EMSPCA 

consists of Wavelet Packet Transform (WPT) and PCA. Mod-MSPCA was developed to enable 

fault diagnosis through contribution charts in individual frequency levels. In DWT, the length of 

the signal is reduced at each level. Figure 2.13 shows a signal of 128 samples (i.e., 

components).  

 

Figure 2.13 DWT of a  128- samples signal [61] 
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Figure 2.14 Frequency contents of DWT coefficients [61] 

At each level, the signal is broken down into frequency levels with reduction in sample size. The 

full length of each level coefficients is recovered using wavelet reconstruction filters. This means 

that lower frequencies have narrower widths, which becomes wide again at higher frequencies 

as illustrated in Figure 2.14. For FDD applications where high frequency contents of the signal 

are rich in information, DWT strategy would result in loss of some of this information. Thus, 

another version of wavelet analysis, namely, Wavelet Packet Transformation (WPT) was used 

instead of DWT in the Extended Multi-Scale Principal Component Analysis (EMSPCA) method 

to avoid loss of information. The structure of WPT is shown in Figure 2.15.  

In WPT, both the outputs of high and low pass filters are broken down to the next level, while 

in DWT, only the output of low pass filter is considered. Each level breaks down the frequency 

content into two frequency bands. The first is a high frequency band, which results from the high 

pass filter, while the second is a low frequency band, which is represented by approximation 

coefficients and results from the low pass filter. As shown in Figure 2.16, each frequency content 

splits in half in every level of wavelets. This process iterates multiple times depending on the assigned 
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level of wavelets. The outputs of WPT of a test sample are smaller frequency bins which are then 

compared to those of healthy baselines [61]. Figure 2.15 shows the WPT method. 

 

Figure 2.15 WPT of 128 samples signal [61] 

 

 

                      Figure 2.16 Frequency content of WPT coefficients 
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Mathematically, Equations 2.2 and 2.3 describe DWT, where the approximation and detail 

coefficients (cj+1 and dj+1) of the next wavelet level use the approximation coefficients (cj and dj) 

of the current level. These equations breakdown the frequency content in different levels. Each 

level splits the frequency content into 2 frequency bands: high frequency band (output of high 

pass filter), and low frequency band (output of low pass filter).  

cj+1[n] = cj  ∗  Gj[2n] (2.2) 

 

dj+1[n] = cj  ∗  Hj[2n] (2.3) 

In WPT, both approximation and detail coefficients are used in calculating next level coefficients, 

this is described mathematically in Equations 2.4 and 2.5: 

  Wj+1,2k[n] = Wj,k  ∗  Gj[2n] (2.4) 

Wj+1,2k+1[n] = Wj,k  ∗  Hj[2n] (2.5) 

where Wj,k represents the coefficients at level j for the atom k. The low pass filter results in even 

k, while the high pass filter results in an odd k. At the last level, these Equations result in similar 

frequency bandwidths for all atoms (Wj,k). To feed the coefficients to a  Principal Component 

analysis (PCA) algorithm, a similar methodology to Mod-MSPCA was used where the 

coefficients were reconstructed using the filters of the WPT. The summation of the recovered 

signal components is the original signal as shown in Equation 2.6: 

  𝑊𝑆𝑊𝑗𝑋 =  𝐻1 
𝑡 𝐻1𝑋 +  𝐺1 

𝑡 𝐺1𝑋 +  𝐻2 
𝑡 𝐻2𝑋 + ⋯ + 𝐻𝑗

𝑡𝐻𝑗𝑋 +  𝐺𝑗 
𝑡𝐻𝑗𝑋  

   =  𝑋1 + 𝑋2 + ⋯ +  𝑋2𝑗−1 +  𝑋2𝑗              (2.6) 
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Therefore, applying PCA analysis on each component of the signal (Xi), allows for fault detection 

and diagnosis in narrower frequency bands of measurements spectrum compared to Mod-MSPCA 

frequency bands. 

  2.4.2 Principal Component Analysis (PCA) 

After applying Wavelet Packet Transform (WPT) to the normalized raw data, Principal Component 

Analysis (PCA) [63] is then applied to each batch of resultant frequency components. PCA reduces the 

dimensionality of a data sample by compressing its current dimension size into a smaller dimension. 

Dimensionality reduction helps discard redundant information and keep only significant patterns to get 

a more meaningful representation of the sample. PCA uses orthogonal transformation to convert a 

dependent set of measurements into a set of independent variables. The deduced variables are 

named Principal Components (PC), which carry a compact representation of the measured system 

behavior. Considering a set of dependent measurements defined in a matrix form as  

     X(k) = (x1, ..., xp)(k)     (2.7) 

where p is the number of variables and k is the number of measurements for each variable.  Each 

column in this matrix represents k measurements for a single sensor, such as x1. A 

transformation is applied as follows: 

T = XP (2.8) 

P is the Principal Components loading matrix,  w h i c h  when multiplied by X, X is 

transformed into its PC or Principal Components scores T. Principle Components scores T   are 

the uncorrelated signals to the cross-correlated signals X. Each column of the matrix represents k 

measurements for one variable ti. The first column includes the highest variance component t1, 
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and components variance decreases to the lowest variance component tp. This means that the 

first few Principal Components (PC) carry the highest amount of information. The last few PC 

are low variance variables, hence carrying the least amount of information. This helps the PCA 

identify the measurement signals which contain the fault signature and eliminate those that do 

not have significant information. Geometrically, the transformation in Equation 2.8 can be 

illustrated by mapping the measurements onto orthogonal axes.  

 

Figure  2 . 17  Pr inc ipa l  component  ana lys i s  [61 ]  

The visualization of this concept is shown in Figure 2.17, where x1, x2 are inputs and t1, t2 are 

orthogonal output PCs, which means both t1 and t2 are uncorrelated. This allows each component 

to represent a different event. FDD algorithms can better detect faults if any of the main 

characteristics changed. In Figure 2.17, t1 has higher variance which means that it contains more 

information about system and contributes more to the measurements than t2. To compute the 

matrix T, a transformation matrix P should be used, which defines the mathematical bases for 
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− 

− 

− 

the new orthogonal dimensions. Mathematical bases should result in uncorrelated outputs. The 

sample covariance of the transformation matrix T can be found as follows: 

1 
ΣT = 

n 1 
1 

= 
n 1 

1 
= 

n 1 
1 

= 
n − 1 

T t T  

(XP )tXP 

Pt(XtX)P 

Pt(XtX)P                         (2.9)

In Equation 2.9, the term (XtX) results in a symmetric matrix: 

S = XtX                                (2.10) 

 

Since S is symmetric, it can be decomposed into eigenvalues and eigenvectors. 

 

S = BΛB−1                                  (2.11) 

 

where B represents the eigenvectors, and Λ is a diagonal matrix of eigenvalues. Since B is 

orthogonal, its inverse is equal to its transpose (B−1 = Bt). Therefore, 

1 
ΣT = 

n – 1 
Pt(BΛBt) P                            (2.12)
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To avoid any numerical errors while finding the eigenvectors, Singular Value Decomposition 

(SVD) is used, which is a factorization method of matrices. SVD factors any matrix to three 

components: left singular matrix U, right singular matrix V, and singular values matrix Σ. 

The factorization for a given matrix X is shown in Equation 2.13. 

 

X = U ΣV t (2.13) 

 

Equation 2.13 is used to calculate PCA transformation matrix P and SVD is applied as 

follows: 

XtX = V ΣtUtU ΣV t (2.14) 

 

U is a unitary matrix, which means that Ut = U −1, which this reduces Equation 2.14 to: 

 

XtX = V ΣtΣV t (2.15) 

 

The singular values matrix Σ in Equation 2.13 is the square root of the eigenvalues of (XtX). 

Thus, Equation 2.15 can be rewritten as: 

XtX = V ΛV t (2.16) 

 

Comparing Equation 2.16 with Equations 2.10 and 2.11, it can be found that B = V, and since 

P = B to have a diagonal ΣT , the transformation matrix P is equal to SVD right singular 

matrix V. SVD assures that the eigenvalues, and the eigenvectors are sorted in a descending 

order. Thus, the output PC are assured to be sorted with the highest variance variable first (t1) 

and decreasing to the lowest variance variable (tp). 
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The output from PCA consists of significant principal components which best describes the 

original signal. In FDD applications, these principal components are then compared to the baseline 

(a.k.a. healthy sample) to measure the deviation of the test sample from the reference. 

           

Figure 2.18 Fault signature of a fault signal (left) against its healthy baseline (right) 

Figure 2.18 shows an example of a fault signature which describes how far the sample varies from 

the baseline. A fault signature consists of a bar chart which contains principal components of the 

original signal. The size of the fault signature depends on the level of wavelets applied to the 

original signal. The four rows in the z-direction represent the features coming from the sensors, 

each row represents a single sensor. The number of bins in each row depends on the level of 

wavelet used in the wavelet packet transform (WPT) process which was conducted in the 

EMSPCA algorithm. The number of bins is equal to 2 ^ (wavelet level). For example, for a fault 

signature of wavelet level 6 like the ones in Figure 2.18, the number of bins is 2 ^ 6 = 64 bins. The 

amplitude of each bin represents the error magnitude from healthy baselines. 
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  2.4.3 Multi-layer Perceptron 

Fault signatures of different classes (e.g., fault conditions) emphasize distinct patterns in each 

class. These patterns are used as input data to the Machine Learning Algorithm for training, which 

is an Artificial Neural Network (ANN), as shown in Figure 2.19. The ANN typically consists of a 

single input layer, multiple hidden layers, and a single output layer. The input layer consists of 

units (i.e., neurons). The number of units is equivalent to the number of principal components of 

each fault signature. The weights are calculated in the hidden layers. The number of hidden layers 

is set by the user and is adjustable. The output layer consists of units (i.e., neurons). Each unit 

provides a probability for the test sample to belong to one of the classes. 

 

Figure 2.19 Multi-layer Perceptron 

The fault signatures were fed to the Artificial Neural Network (ANN) by fitting every data point 

in an input neuron. The size of the input layer was equivalent to the size of the fault signature. For 

example, the fault signature in Figure 2.18 had 64 bins. Thus, the input layer of the ANN consisted 

of 64 neurons. Based on the weights calculated in the hidden layers, a probability was predicted 

for each class in the output layer. The class which achieved the highest probability was voted as 

the final label. 
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2.5 Fault Detection and Diagnosis in ICE Using Deep Learning 

In 2020, Zhang, et al. [64] summarized existing literature on bearing fault diagnostics using 

conventional machine learning methods and state-of-the-art deep learning (DL) methods. The 

literature included a wide variety of successful FDD models using feature extraction techniques 

such as Convolutional Neural Networks (CNN), Sparse Auto-Encoders (SAE), Recurrent Neural 

Networks (RNN) and SVM.  Many methods achieved an accuracy of more than 91%. Jia et al. 

[65] achieved an accuracy of 99.92% in detecting bearing faults using an SAE-local connection 

network.  

 2.5.1    Recurrent Neural Networks (RNN) 

Recurrent neural networks are designed to recognize patterns in sequences of data such as 

numerical times series sensory data, stock markets and text translation. One of the most powerful 

sub-categories of RNNs is the Long Short-Term Memory (LSTM) [66] which was used in this 

project. What differentiates RNNs and LSTMs from other neural networks is that they take time 

and sequence into account. Recurrent networks are distinguished from feedforward networks by that 

feedback loop connected to their past decisions. This feedback loop effectively provides, RNNs with 

memory and enables them to take advantage of the information in the sequence itself to perform tasks that 

feedforward networks cannot [67]. An example of these tasks is finding correlations between events 

separated in time (i.e., long-term dependencies) since an event can be a function of one or more events that 

came before. That sequential information is preserved in the RNN’s hidden state which manages to span 

across time steps as it moves forward to affect the processing of each new example. In other words, RNNs 

can share weights over time.  
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RNNs take as their input not just the current input example they see, but also what they have 

perceived previously in time. The decision of a recurrent network reached at time step t affects the 

decision it will reach later step. So recurrent networks have two sources of input, the present and 

the recent past, which combine to determine how they respond to new data. The process of carrying 

memory forward mathematically is as follows:  

ℎ𝑡+1 = φ (𝑊𝑥𝑡+1 + 𝑈ℎ𝑡)     (2.7) 

The hidden state at time step t+1 is ℎ𝑡+1. It is a function of the input at the same time step 𝑥𝑡+1, 

modified by a weight matrix W added to the hidden state of the previous time step ℎ𝑡 multiplied 

by its own hidden-state-to-hidden-state matrix U, otherwise known as a transition matrix. The 

weight matrices are filters that determine how much importance to accord to both the present input 

and the past hidden state. The error they generate will return via backpropagation and be used to 

adjust their weights until error cannot go any lower. The sum of the weight input and hidden state 

is then pitched into the activation function φ (e.g., sigmoid, tanh) which is a standard tool for 

condensing very large or very small values into a logistic space. 

In the diagram below, each x is an input example, W is the weights that filter inputs, a is the 

activation of the hidden layer which is a combination of weighted inputs and the previous hidden 

states, while b is the output of the hidden layer after it has been transformed, using a rectified 

linear or sigmoidal unit. Figure 2.20 shows the structure of the LSTM model. 
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Figure 2.20 Recurrent neural networks 

LSTM-RNN was used as a fault detection and diagnosis (FDD) tool and predictive maintenance 

[68, 74-76] in applications such as bearings [69, 70], rotary machinery [71], satellite reaction 

flywheel [72] and transmission lines [73]. However, it was never used to detect spark plug 

degradation using engine built-in sensors.  

2.5.2    Convolutional Neural Networks (CNN) 

Convolutional neural networks are used primarily to classify images [77] and perform object 

recognition within scenes such as identifying faces, street signs, tumors, and many other aspects 

of visual data. CNNs are powering major advances in computer vision which has applications for 

self-driving cars, robotics, drones, security, and medical diagnoses. CNNs have been also applied 

to text analytics [78, 79] as well as sound when it is represented visually as a spectrogram, and 

graph data with graph convolutional networks. 

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
https://pathmind.com/wiki/graph-analysis
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Convolutional neural networks ingest and process images as tensors [80], which are matrices of 

numbers with additional dimensions (see Figure 2.21). Tensors are formed by arrays nested within 

arrays, and that nesting can go on infinitely, accounting for an arbitrary number of dimensions far 

greater than what we can visualize spatially. A 4-D tensor would simply replace each of these 

scalars with an array nested one level deeper.  

 

Figure 2.21 3D tensor 

Unlike humans, convolutional networks perceive images as volumes (i.e., 3D objects), rather than 

2D flat planes with width and height. That is because digital color images have a red-blue-green 

(RGB) encoding [80], mixing those colors to produce the color spectrum humans perceive. A 

convolutional network ingests such images as three separate channels (i.e., layers) of color stacked 

on top of each other as follows: 

 

Figure 2.22 RGB channels vs original image 
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Each of the 3 layers consists of several pixels which is equal to the product of width and height. 

For each pixel of an image, the intensity of R, G and B is presented by a number as in Figure 2.22. 

Those numbers are the raw sensory features being fed into the convolutional network which finds 

which of those numbers are significant signals that help it classify images more accurately. Rather 

than focus on one pixel at a time, a convolutional net takes in square patches of pixels and passes 

them through a filter (i.e., kernel) which is responsible for finding patterns in the pixels. That filter 

is a square matrix that is smaller than the original image and is equal in size to the patch. 

The dot product of the filter against the patch in the upper left-hand corner of the image channel 

is taken. If the two matrices have high values in the same positions, the dot product’s output will 

be high, otherwise it will be low. This way, a single value (i.e., the output of the dot product) 

indicates whether the pixel pattern in the underlying image matches the pixel pattern expressed by 

the filter. Figure 2.23 shows the activation maps. 

The filter is then moved across the image step by step until it reaches the upper right-hand corner. 

The size of the moving step is known as stride. The filter can move to the right one column at a 

time, or in larger steps. At each step, the dot product is taken, and the results are placed in a matrix 

known as an activation map. The width (i.e., number of columns) of the activation map is equal 

to the number of steps the filter takes to traverse the underlying image. Since larger strides lead to 

fewer steps, which means a smaller activation map, less computations, and less processing time. 

Convolutional networks are designed to reduce the dimensionality of images in a variety of ways. 

Filter stride is one way to reduce dimensionality. Another way is through down-sampling.  
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Figure 2.23 Activation maps 

The next layer in a convolutional network has 3 names: Max pooling, down sampling (fig 2.24) 

or sub-sampling. The activation maps are fed into a down-sampling layer, and like convolutions, 

this method is applied one patch at a time. In this case, max pooling simply takes the largest values 

(i.e., strongest correlation) only from each patch of an image, places them in a new matrix, and 

discards the rest of the information contained in the activation maps. 
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Figure 2.24 Max pooling (i.e., down-sampling) in CNN 

Only the locations on the image that showed the strongest correlation to each feature (the 

maximum value) are preserved, and those maximum values combine to form a lower-dimensional 

space. Figure 2.25 shows an example of a typical convolutional network, which was used in this 

research. From left to right: 

a. The original input image, where the light rectangle is the filter that passes over it. 

b. Activation maps stacked one on top of the other, one for each filter. The larger rectangle 

is one patch to be down sampled. 

c. The activation maps condensed through down-sampling. 

d. A new set of activation maps created by passing filters over the first down-sampled stack. 

e. The second down-sampling, which condenses the second set of activation maps. 

f. A fully connected layer that classifies output with one label per node. 

 

Figure 2.25 Convolutional neural network diagram 
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Convolutional Neural Networks (CNN) have been used in predictive maintenance as a FDD tool 

in many applications [81-89]. However, it was never used to detect spark plug degradation using 

engine built-in sensors. In this research, CNN will be used twice to detect spark plug degradation 

using engine built-in knock sensors. The first time will be using a special kind of heatmaps, which 

will show great prediction accuracy [71], only for test data which were collected on the same day 

as the training data. When tested with data collected on other days, the performance of the model 

drops significantly. The same problem happens when some variability occurs within the collected 

data due to changes in the atmosphere or experimental issues. That is why a novel contribution 

will be proposed later in this research which enhanced the performance of the model while testing 

data from different days as well as variant data. The contribution is the image pre-processing of 

time series data. 
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Chapter 3 - Battery Data Collection 

All the battery data was collected and stored by Geotab Inc. Their own GO device collects engine 

data through the OBD II port of the vehicle. The data is then sent to a Store & Forward (SF) server, 

then stored in a Google Big Query (GBQ) cloud database. In this chapter, the battery data 

collection and storage process will be discussed in detail. Cranking voltage was collected as the 

main feature. Other measurements like ambient temperature, engine temperature and coolant 

temperature would have added important information to the dataset, but unfortunately this data 

was not available due to Geotab’s new data privacy policy (see section 1.1.1 for details).   

3.1 Battery Data Collection 

GO devices use intelligent patented logging algorithms to decide when to record engine data 

[90]. This is to produce an accurate representation of the original data by logging the essential 

points and discarding redundant points (i.e., curve-based logging). Figure 3.1 shows an example 

of the GO device logging [90]: 

 

Figure 3.1 GO device logging [90] 

The actual trip is represented by the blue curve. The red dots represent a simple time-

based sampling where a speed value is recorded at regularly spaced time intervals. Some high 
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points and low points would be missed by this approach. Also, when the speed does not change, 

the time-based approach continues storing the same value multiple times. The green dots represent 

a more descriptive record of the data with less data points. This is the basic principle that underpins 

the intelligent logging of the GO device [90]. 

The battery breakdown measurements were logged the same way as the example above. These 

measurements were labeled using technical reports which were provided by the repair workshops 

of two of their customers (a.k.a. Customer A and Customer B). The reports contained the GO 

device Identification Number (Hardware ID), the Vehicle Identification Number (VIN), time of 

breakdown and time of battery replacement. The reason of the breakdown and replacement (e.g., 

periodic maintenance, road call) as well as the technician’s comments were also mentioned in the 

reports. These 2 sources of data (i.e., GO device and technical reports) were used to construct a 

labeled battery breakdown dataset. The cranking voltages were used as the most relevant input 

measurement to the machine learning algorithm and as an indicator to the battery health status. 

The descriptions and comments in the technical report were used for labeling each battery as 

healthy or unhealthy. This way, the supervised learning model had two separate labeled datasets 

of healthy batteries and batteries with previous breakdowns, which helps the model generalize and 

come up with classification rules. 

3.2 Invalid Battery Data 

Data filtration was the biggest challenge within the data acquisition process. Extracting the data 

occurred through Google BigQuery which contains both the GO device measurements and the 

technical reports. BigQuery is a cloud database application powered by Google that requires 

Structured-Query-Language (SQL)-based queries to pull out datasets. The returns from these 
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queries are tables containing information such as the GO device ID, VIN, date and time, 

description and cranking voltages needed to train the ML algorithm. The descriptions and 

comments that described the vehicle maintenance were very tricky and sometimes not clear 

enough. Some of the descriptions were too short and described nothing about the testing process, 

and others were very long such that they could not be classified by regular search filters and had 

to be read manually.  High precision in data filtration is highly recommended to ensure that all the 

input data feeding the ML algorithm belong to the same class and avoid invalid outputs. 

Eventually, a total number of only 523 breakdown samples from Customer A were valid as well 

as 1216 samples from Customer B. A few thousands of healthy samples (i.e., batteries that were 

never replaced since the GO device was plugged in) were available. All the breakdown samples 

from each customer were used for training along with an equal number of healthy samples.  

As per Geotab’s legal policy, it is not allowed to publish individual battery data to protect the 

privacy of their customers. Figure 3.2 shows a fictitious example of a typical on-duty battery 

breakdown. All battery signals provided in this thesis are not from real customer data and are 

manually drawn to help the reader imagine how real data would look like. The red line shows the 

moving average of the minimum cranking events while the blue circle shows the time of 

breakdown and replacement. 

 

Figure 3.2 Battery breakdown example 
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Major inconsistencies were found in the dataset which required a lot of filtrations to ensure the 

model learned from clean and accurate training data. The presence of redundant patterns may have 

resulted in misleading the model during the learning and classification processes. Clean data helps 

guide the model to learn from informative patterns that describe the descending behavior of the 

battery life before it fails. The inconsistencies included the following: 

➢ Insufficient data. 

➢ Time gaps. 

➢ Incorrect breakdown information. 

➢ Multiple GO devices per VIN. 

➢ Invalid VINs. 

➢ Invalid cranking events. 

These issues are explained in detail below: 

3.2.1 Insufficient Data 

The number of data points of the raw cranking voltage signals varied significantly in different 

training samples. The size of the input layer of the ML model is typically equal to the sample with 

the highest number of data points. When samples with less data points are fitted to the input layer, 

the rest of units will be filled up with zeros or Nans. This would create an undesired flat pattern 

that might confuse the model. The ML model might take this pattern into consideration while 

looking for common patterns within the same class, which results in misclassification. One 

possible solution to this issue was to fill out all the missing data with the average value of cranking 

voltages. The maximum and minimum cranking values were also a better alternative to zeros and 
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Nans. This only fixed the issue for signals with an acceptable number of data points. Since enough 

samples were available for training, signals with less than 500 data points, as shown in Figure 3.3 

were completely discarded.  

 

Figure 3.3 Insufficient battery data 

3.2.2 Time Gaps  

Some outliers with time gaps were also found. These gaps were mostly a result of the vehicles 

staying in the workshop for months either waiting for new batteries or other spare parts or simply 

belonged to vehicles with no duty during this time. Bad installations of the GO device or 

miscommunications between the vehicle’s Electronic Control Unit (ECU), Controller Area 

Network (CAN) bus and the GO device could also cause these gaps in time. Another reason why 

this pattern could show up was vehicles that had been running but plugged off from the GO device 

for a while 

Although the reasons behind the time gaps were different than the missing data issue, the model 

dealt with both issues the same way. Although the gaps were also filled up with zeros or Nans, the 

solution to this issue was different. The time stamp from the classification process was dismissed 

since it was not needed as a feature for this specific purpose. However, timestamps would have 

been more important if it were a regression problem and time of failure prediction was required. 
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Instead, the last data point prior to the time gap was followed immediately by the first data point 

after the gap. This way, time gaps were avoided, as in Figure 3.4. 

 

 

 

Figure 3.4 Time gaps within battery data 

3.2.3 Incorrect Breakdown Information 

The repair logs (i.e., technical reports) were not very accurate since they were manually entered 

by technicians. Some batteries were reported as having broken down while their battery signals 

did not show any breakdowns as in Figure 3.5. Those batteries were only replaced as a periodic 

maintenance procedure. Based on the valid healthy and breakdown samples, a ML model was built 

specifically to detect battery signals with actual breakdowns. In other words, the ML model was 

used to label samples with incorrect breakdown information.  
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Figure 3.5 False battery breakdown 

Some repair logs reported one breakdown only for vehicles that had multiple breakdowns. This 

might have resulted in including data points that do not describe actual breakdown events. Some 

were manually fixed while others were totally discarded. 

3.2.4 Multiple GO Devices Per VIN 

Some vehicles were connected to multiple GO devices while cranking voltages were collected. 

Some re-sellers were doing this in their own vehicles to test new devices. Also, some vehicles had 

multiple devices connected at the same time because some re-sellers used dual adaptors to test and 

compare device performances. Solving this matter was not easy and was time consuming. It was 

necessary to create new lists, as shown in Table 3.1, for Go devices which were pugged in each 

VIN. At this point, VINs had to be the only identification information in all previous datasets and 

since then, GO devices were not used anymore for identification. Thus, any records where the GO 

device was plugged in for less than a week were discarded. 
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Table 3.1 VIN vs GO device 

Vin GO Device Plugged in Plugged out 

    

VIN1 Device1 2016-07-14     03:15:000 UTC 2016-10-01    22:05:000 UTC 

    

VIN1 Device2 2016-10-01    22:10:000 UTC 2017-02-17    12:30:000 UTC 

    

VIN1  Device3 2017-03-17    12:30:000 UTC 2018-01-03     12:47:000 UTC 

    

VIN2  Device1 2015-07-14     07:08:000 UTC 2016-10-01     20:50:000 UTC 

    

 

3.2.5 Invalid VINs 

Since VINs became the only vehicle identifier, double checking the validity of VINs was crucial. 

VINs were logged through the GO device using VIN decoders. Like any firmware code, it is 

common to find bugs that mainly happened because of incorrect device installations or bad 

communications between the ECU, CAN bus and the GO device. There was no way to re-generate 

the correct VINs, but fortunately, invalid VINs were less 3% of the dataset. Thus, all vehicles with 

invalid VINs were discarded from the training dataset. 

3.2.6 Invalid Cranking Events 

This was one of the biggest issues which could not be ignored. Many cranking events that were 

logged through the GO device were invalid. The curve below shows a typical valid cranking event. 

The crank starts with a significant dip when the ignition turns on, which represents the highest 

load on the battery. The cranking voltage (see Figure 3.6) increases gradually as the engine is 

starting and until it reaches a steady state. However, a noticeable number of cranking events of the 

vehicles in the training set did not follow this behavior. 
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Figure (3.6) Battery cranking  

Multiple sources might have been the cause of this issue: 

(a) Bad device installation/communication. 

(b) GO device was not compatible with certain makes and models. 

(c) Fuel Type (e.g., Hybrid and electric vehicles reported 100% invalid cranking events). 

(d) Battery Type (e.g., Some vehicles had 24v batteries, other had dual 12v batteries). 

(e) A few warm starts did not make complete cranks. 

(f) Software bug (i.e., the device logs cranking data, but the data shows that ignition was off).  

No consistent correlations were found with any of the possible reasons mentioned above. Thus, a 

quick ML model was built to classify invalid cranking events. Random forest was the best 

candidate for this task since a typical cranking curve has a clear pattern. Instead of raw data, a 

special set of features, namely Curve Description (CD) features were extracted as the input data 

to the ML model. Like any supervised ML model, labels were required. Thus, a special 

visualization tool was used to label thousands of cranking events manually. The tool allowed users 
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to select cranking events and the corresponding associated class (0: Valid, 1: Invalid). More than 

2000 cranking events were manually labeled using the visualization tool within a couple of days. 

The Curve Description (CD) features are discussed in chapter 7.  

 

3.3 Training Dataset 

After solving all the issues listed in section 3.1, the following dataset was used for training and 

testing. The dataset was split into 70% for training and 30% for testing as shown in Table 3.2. 

Table 3.2 Battery dataset 

 Training set Testing set Total 

Healthy samples 366 157 523 

Breakdown samples 366 157 523 

A total of 523 labeled battery breakdown samples were collected, where 366 samples were used 

for training (i.e., 70%) and 157 samples were used for testing (i.e., 30%). Similarly, 523 healthy 

battery samples were available. The dataset of the healthy batteries consisted of 366 training 

samples while 157 were reserved for testing. Much more battery samples were available, but they 

were unlabeled.  

3.4 Data Processing  

The final training datasets in Google Big Query (GBQ) were then exported to Google Cloud 

Storage (GCS), which is an online storage application on Google Cloud Platform (GCP) where 

the data were compressed to single (or multiple) downloadable and format-free files. The data files 

were then reshaped and sorted to a ML dataset format and labeled under 2 classes 
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(Healthy/Breakdown). The entire labeled dataset was imported to Google Cloud Data lab (GCD), 

which is a Python-based live notebook, and was ready to feed the training algorithm. Figure 3.7 

shows the different stages of data processing. The structure and results of the Machine Learning 

model are discussed in later chapters. 

 

Fig (3.7) Data Processing from source to analysis 
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Chapter 4 – Battery Degradation Detection Results and Discussions 

The objective of the battery degradation detection project was to detect progression of faults in 

12v accessory batteries using historical data. The data collection process was described in detail 

in section 3.1. In this chapter, the supervised Machine Learning (ML) algorithms which were 

developed to detect battery degradation are discussed, along with the results. The output from 

these models is one of two classes: healthy battery or failing battery.  

To learn from labeled data, the model accommodated historical data from both classes and their 

corresponding labels. The classification process is basically divided into two main stages: Training 

and testing. Training the Machine Learning model requires enough data to get a high detection 

rate.  Enough data does not only mean enough samples, but also relevant and rich features in each 

sample.  

The correlation of the input features with the target feature (e.g., cranking voltage) highly affects 

the accuracy of the model. The input features are transformed from high-level to low-level features 

in the form of vectors. Each sample is propagated in parallel with its corresponding label to give 

full information about each class and its characteristics. The testing process starts then with a 

prognostic model that diagnoses test samples and predicts the class they belong to. The output of 

this model is the predicted label of the test sample. Figure 4.1 shows the structure of the supervised 

battery degradation model which consists of two main stages: training and testing. The training 

stage starts with loading both healthy and breakdown training data along with their corresponding 

labels.  
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Figure 4.1 Supervised battery degradation detection model 

Since raw battery signals are noisy, moving average was applied to smoothen the curve and 

emphasize patterns in the curve. The resultant moving averaged signals became the new input 

features. Both features and labels were then fed to the Machine Learning (ML) algorithm, which 

is an Artificial Neural Network (ANN). The next stage was to load test battery samples, take their 

moving averages and predict the label. The label was predicted by the ANN which provided 

probabilities for each of the 2 classes. The class which got the highest probability became the final 

label for each test sample. 

As discussed earlier in section 3.1, thousands of battery data samples were collected and stored by 

Geotab through their own GO telematics device. The collected dataset consisted of cranking 

voltage history of Geotab customer vehicles which contained both healthy batteries, and battery 

breakdowns (see breakdown example in section 3.1). However, only 2 of Geotab customers 

provided labels for the collected data due to data confidentiality, which only covered a few 
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hundreds of data samples (see section 3.2). Therefore, more labels were required. Two options 

were available to label more data:  

➢ Manually, by looking at battery history signals and find significant voltage dips.  

➢ Develop a ML model to detect previous breakdowns in the battery history signal.  

Labeling thousands of battery samples would have been very time consuming. Therefore, an 

ANN-based classification model (a.k.a. Model B1, see section 1.5) was built to label more data 

samples. The model detects previous battery breakdowns/replacements in battery history signals. 

This helped create a bigger labeled dataset for the next model. Model B2 (see section 1.5) detects 

degrading battery signals which indicate upcoming failures. Therefore, two ML models were built 

to achieve battery failure detection: 

1. Model B1: assigns labels to unlabeled battery data (0: no previous breakdown detected, 1: 

previous breakdown(s) detected). 

2. Model B2: detects degrading battery signals which indicate upcoming failures. 

For comparison purposes, two classifiers were developed for each of the two models to achieve 

the highest possible performance: 

a) Random Forest (RF),  

b) and an Artificial Neural Network (ANN). 

Figure 4.2 shows the hierarchy of the supervised ML models. Model B1 was developed to detect 

previous battery breakdowns using both Artificial Neural Network (Model B1(a)) and Random 

Forest (Model B1(b)). Model B2 was developed to detect upcoming battery failures using both 

Artificial Neural Network (Model B2(a)) and Random Forest (Model B2(b)) as well. 
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Figure 4.2 Battery ML models  

4.1 Model B1(a): Battery Breakdown Detection Using ANN 

Model B1(a) detects previous battery breakdowns/replacements in the battery history signal using 

ANN. In this model, a common distribution strategy in ML was followed, where the dataset splits 

up into 70% for training and 30% for testing. The labels of the testing samples were never used 

during the testing process to make sure the algorithm was not testing samples that it has been 

already used for training. The supervised learning model comes up with a label (i.e., 0: no 

breakdown detected, 1: breakdown(s) detected) as an output. This label is predicted based on 

probability computations. The label having the highest probability is the one the test sample is 

assigned to. To calculate the detection rate, the predicted labels are compared with the actual labels 

of the test samples. The detection rate is the number of right predictions the algorithm can make. 

For example, if the model was able to make 90 right predictions out of 100 test samples, the 

detection rate is 90%. 
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(RF)

Model B2(b)

Artificial Neural Network 
(ANN)
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Figure 4.3 ML detection of battery replacement 

Given privacy restriction associated with Geotab’s data policy as explained in Chapter 3, 

Figure 4.4 is a fictitious but realistic example of a typical on-duty battery breakdown. The red 

line shows the moving average of the minimum cranking events while the blue circle shows 

the time of breakdown and replacement. All the cranking records of each sample were fully 

used for training. This included the cranking logs before and after the breakdown event, as 

well as the breakdown event itself. The classification in this case was mainly based on the 

curve dip which represents a battery breakdown or replacement event. 

 
Figure 4.4 Battery breakdown example 

Figure 4.5 shows the confusion matrix for Model B1(a). A confusion matrix is a common way to 

describe the performance of a classification model. A total of 523 breakdown samples were 
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available from Customer1. The number of labeled training samples was 366 (i.e., 70%) while 157 

(i.e., 30%) samples were saved for testing. A similar number of healthy samples was available for 

training and testing. The training set of the healthy batteries consisted of 366 samples while 157 

were reserved for testing. An average battery replacement detection rate of 99.4% was successfully 

achieved using an Artificial Neural Network (ANN). 
 

Predicted Labels  

Healthy 

Battery 

Failed 

Battery 

Training 

Samples 

Testing 

Samples 

A
ct

u
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l 
L

a
b

el
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Healthy Battery 100% 0% 366 157 

Failed Battery 0.6% 98.8% 366 157 

 
Total 99.4% 732 314 

Avg Detection Rate  

Figure 4.5 Confusion matrix of battery breakdown detection using ANN 

4.2 Model B1(b): Battery Breakdown Detection Using RF 

For comparison purposes, Model B1(b) was developed for the same objective as Model B1(a). It 

detects previous battery breakdowns or replacements in the battery history signal but using 

Random Forest (RF). RF works best when it is trained on statistical features, rather than raw input 

data. That is why RF has not been used often in time-series applications. In this research, a novel 

pre-processing method is proposed which enables time-series classification using Random Forest. 

The method suggests a set of features that describe the shape of battery curve, referred to as Curve 

Description (CD) features. 
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The input features were single individual points which described the battery history curve. The 

following thirty features were carefully selected to replace raw time-series data as input to RF: 

- First Voltage 

- Last Voltage 

- Min Voltage 

- Max Voltage 

- Mean Voltage 

- First Voltage - Min Voltage 

- Avg Voltage - Min Voltage 

- Max Voltage - Min Voltage 

- Difference between First and Last Voltage in number of events 

- Difference between First and Last Voltage in Months 

- Difference between First and Min Voltage in number of events 

- Difference between First and Min Voltage in Months 

- Difference between Max and Min Voltage in number of events 

- Difference between Max and Min Voltage in Months 

- Start Type (Cold/Warm) 

- Standard Deviation of the battery history signal (see Figure 4.6) 

- 2 * Standard Deviation of the battery history signal 

- 3 * Standard Deviation of the battery history signal 
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Figure 4.6 Standard deviation of battery history signal 

- Voltage at 25% of the battery history signal (see Figure 4.7) 

- Voltage at 50% of the battery history signal 

- Voltage at 75% of the battery history signal 

 

Figure 4.7 Voltages at quarter portions of battery signal 

Feeding the Random Forest model with curve-shape description features resulted in a detection 

rate of 98.6%. This means that in every 100 battery history signals, the RF model could accurately 

classify 98 previous breakdowns correctly. Generating the right features was key to success of this 

model. Figure 4.7 shows the confusion matrix of of the Battery Breakdown Detection model using 

the novel Curve Description (CD) pre-processing method, along with Random Forest, referred to 

as CD-RF.  
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Predicted Labels  

Healthy 

Battery 

Replaced 

Battery 

Training 

Samples 

Testing 
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Healthy Battery 99.8% 0.2% 1800 600 

Replaced Battery 2.6% 97.4% 1800 600 

 
Total 98.6% 3600 1200 

Avg Detection Rate  

Figure 4.8 Confusion matrix of battery breakdown detection using CD-RF 

4.3 Model B2(a): Battery Degradation Detection Using ANN 

The main goal of this model is to predict upcoming battery failures by detecting degrading battery 

curves (i.e., progression of faults). Thus, the model should be trained on an early portion of the 

battery curve prior to the breakdown event. For example, in Figure 4.9, the breakdown event (e.g., 

blue circle) should not be included in the portion used for training. Here, only an earlier portion 

(e.g., the green area) was used for training.  

 

Figure 4.9 Training portion: 49 cranking events prior to breakdown, to 630 events backwards 



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 79  
 
 

Generalizing a rule on how to extract this portion from all battery signals was challenging since 

different vehicles have been used very differently based on the daily routine of the driver. For 

example, local food delivery vehicles will make many cranking events throughout the day but not 

a lot of mileage, while commercial long-hauls make more mileage but conduct much fewer 

cranking events per day. Employee buses have fixed daily routes and will run almost the same 

mileage every day but will only make a couple of cranking events for the day. This means that 

different vehicles make similar number of cranking events in very different periods of time. 

Therefore, time (e.g., number of days/hours prior to the breakdown event) was not used as a 

threshold to decide on what portion of the battery signal will be used for training. Instead, the 

number of cranking events was selected as the threshold. After many fine-tuning experiments, the 

threshold was set to 49 cranking events prior to breakdown (i.e., starts at point A in Figure 4.9). 

The training portion covers 630 cranking events backwards (i.e., ends at point B in Figure 4.9). 

The 49 cranking events before the breakdown represented an average of one week worth of data 

for an average of 7 Cranking events per day, every day. The 630 prior cranking events represented 

an average of 3 months of cranks, with the same rate.  

The development strategy for Model B2 followed the same distribution strategy of 70% for 

training and 30% for testing. The labels of the testing samples were still hidden during the testing. 

The supervised learning model predicts a label (0: Healthy Battery, 1: Failing Battery). Each label 

gets a probability, where the sum of probabilities must be equal to 100%. The label having the 

highest probability was the one the test sample was assigned to. To calculate the detection rate, 

the predicted labels were compared to the actual labels of the test samples. Figure 4.10 shows the 
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test confusion matrix for of Model B2(a) using ANN. The model was only able to detect 71.3% 

of the provided test samples. 

 

Predicted Labels  
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Battery 
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Battery 

Training 

Samples 

Testing 

Samples 

A
ct

u
a

l 
L

a
b

el
s 

Healthy Battery 83.6% 16.4% 600 300 

Failing Battery 41% 59% 600 300 

 
Total 71.3% 1200 600 

Avg Detection Rate  

Figure 4.10 Confusion matrix of battery degradation detection using ANN 

4.4     Model B2(b): Detection of Battery Degradation Using Random Forest 

The first step in Model B2(b) was to implement the novel pre-processing Curve Description (CD) 

method. A set of 30 features which describe the curve shape were extracted. These features were 

then fed into a Random Forest (RF) classifier to detect battery degradation. Same as in Model 

B2(a), the signal portion used for training had to start and end before the actual breakdown. The 

training portion started at 49 cranking events prior to the breakdown and went backwards to 630 

cranking events prior to the breakdown as shown in Figure 4.10. The following features were 

extracted from the training portion to be used as input data for the Model B2(b): 

- First Voltage 

- Last Voltage 
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- Min Voltage 

- Max Voltage 

- Mean Voltage 

- First Voltage - Min Voltage 

- Avg Voltage - Min Voltage 

- Max Voltage - Min Voltage 

- Difference between First and Min Voltage in number of events 

- Difference between Max and Min Voltage in number of events 

- Start Type (Cold/Warm) 

- Standard Deviation of the training portion (e.g., green area), see Figure 4.11. 

- 2 * Standard Deviation of the training portion. 

- 3 * Standard Deviation of the training portion. 

 

Figure 4.11 Standard deviations of battery history signals 

- Voltage at 25% of the training portion (e.g., green area), see Figure 4.12. 

- Voltage at 50% of the training portion. 

- Voltage at 75% of the training portion. 
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Figure 4.12 Voltage checkpoints of battery signals 

The novel Curve Description (CD) features along with RF method outperformed the Artificial 

Neural Network (ANN) in Model B2(b). Generating the right features for different models was 

key to success of this model. The model was able to detect battery degradation in 95.8% of the 

test samples. Figure 4.13 shows the confusion matrix of Model B2(b). 
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Healthy Battery 98.2% 1.8% 1800 600 

Failing Battery 1.2% 93.4% 1800 600 

 
Total 95.8% 3600 1200 

Avg Detection Rate  

Figure 4.13 Confusion matrix of battery degradation detection using CD-RF 
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Table 4.1 shows a summary of the results of the four battery fault detection sub-models. Both the 

Artificial Neural Network (ANN) and Curve Description Random Forest (CD-RF) models have 

shown great performances in Model B1(a) and 1(b), respectively. However, Model B1(a) achieved 

a higher detection rate in detecting previous battery breakdowns. 

In the battery degradation detection problem, Curve Description Random Forest (CD-RF) model 

has outperformed the ANN model by achieving 95.8% detection rate. 

 MODEL 

Battery Breakdown Detection 

Model B1 (a) 

[ANN] 

Model B1 (b) 

[CD-RF] 

99.4% 98.4% 

Battery Degradation Detection 

Model B2 (a) 

[ANN] 

Model B2 (b) 

[CD-RF] 

71.3% 95.8% 

Table 4.1 Results of battery fault detection models 
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Chapter 5 – Experimental Setup and Engine Database  

All the experiments and engine data acquisition 

procedures were performed at McMaster’s Center 

for Mechatronics and Hybrid Technology 

(CMHT) by its own test engineers. A rich and 

clean engine-test database was collected and was 

then structured and migrated to the cloud. This 

database can be very useful for AI researchers in 

the future. Not only that this kind of data is not available on the web but collecting a similar amount 

of data would be very costly and time consuming. The engine data was carefully measured and 

organized and was then migrated to a cloud database. The cloud database can be shared remotely 

with other researchers or institutions just by giving access to their email account. The database 

includes both healthy and faulty conditions of physically simulated spark plug and EGR valve 

faults. In this chapter, the experimental setup and the engine data collection process is discussed. 

The experimental setup presents all the equipment and tools as well as the operating conditions 

used to collect engine data. The data collection process describes the data acquisition devices and 

techniques as well as the sensors used for measurements.  

5.1 Ford Engine 

A 2018 Gen 3.0, 5.0L, V8, Ford Coyote engine was utilized during the data collection process. 

The cylinder head was modified to receive pressure transducer ports to measure the pressure inside 

the combustion chamber of selected cylinders.  The general specifications of the engine are 
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summarized in Table 5.1. A piezoelectric pressure transducer (Kistler type 6125C), with a range 

between 0 and 300 bar, was mounted a machined port on cylinder # 1 in order to measure its in-

cylinder pressure.   

Table 5.1 Engine specifications 

Engine Type 2018 Ford Gen 3 Coyote Engine 

Valve-train DOHC, Direct Acting 

Block/head Aluminum/aluminum 

Bore x stroke 3.661 x 3.649 in. 

Displacement 5.038 Liter 

Compression ratio 12:1 

Electronic fuel injection Sequential multiport 

Power (1) 343 kW @ 6750 rpm 

Torque (1) 569 Nm (420 lb.-ft) @ 4500 rpm 

Fuel delivery Direct Injection (DI) and Port Injection (PFI) 

Firing order 1-3-7-2-6-5-4-8 

Engine weight (W/O accessories) 453.0 lb. (205.5 kg) 

 

An AVL type 2614CK optical crank angle encoder was mounted on the free end of the crankshaft 

on the damper pulley.  This encoder had a resolution of 720 x 0.5°. The crank angle encoder was 

used to provide crank angle data in relation to cylinder # 1 Top Dead Center (TDC) that is essential 

for the calculation of crank angle-based results related to the combustion cycle (e.g., combustion 

duration, indicated mean effective pressures, mass fraction of fuel burned and maximum pressure 

magnitude and location).  Figure 5.1 shows the Ford Coyote engine used for data collection. 
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Figure 5.1 Ford Coyote engine 

Looking from the front side of the engine, Cylinder #1 is in the left bottom corner of the engine. 

Moving upwards, Cylinder #2, cylinder #3, and cylinder #4 are listed in the same column all the 

way to the left top corner of the engine where Cylinder #4 is located. Cylinder #5 to cylinder #8 

are listed the same way in the opposite side of the engine. Cylinder #5 marks the right bottom 

corner of the engine while cylinder #8 marks the right top corner. The 4 knock sensors are 

distributed over the 4 corners of the engine. Knock sensor #1 is located inwards next to cylinder 

#1, knock sensor #2 is next to cylinder #5, while knock sensors #3 and #4 are next to cylinders #4 

and #8, respectively. The microphone is facing downwards in a perpendicular position on top of 

the engine. It is horizontally located right in the middle of the engine while it is vertically located 

in between cylinders #1 and #2. The 2 accelerometers are both located on the left bottom side of 

the engine. One is facing downwards in a perpendicular position to the engine, and the other is 
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facing to the left. Figure 5.2 shows the locations of the knock sensors, accelerometers, and 

microphone. 

 

Figure 5.2 Ford engine map 

An EFI Communication Tool (ECT) tool from EFI Technology Co. was used to access the engine 

Control Unit (ECU) and its calibration setup. This tool was used to control and record key ECU 

parameters such as spark timing, engine throttle position and air-to-fuel ratio (AFR).  The engine 

and test cell were instrumented to measure key engine parameters. Several type K and T 

thermocouples were used to measure engine temperature at selected points. A list of the measured 

parameters is presented in Table 5.2. A T-250 HORIBA Titan AC induction dynamometer was 

used to run and load the engine. The maximum torque and speed of the dynamometer were 400 

Nm and 8000 rpm, respectively. The Titan system was equipped with a SPARC engine test stand 

controller and STARS test automation system. These were used to control, monitor, and record 

the engine parameters listed in the previous table. 
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Table 5.2 Engine and test cell instrumentation 

• Engine speed • Engine torque 

• Engine intake airflow • Spark advance/ignition timing 

• Fuel flow rate • Barometric pressure 

• Humidity • Inlet air temperature 

• Inlet air pressure • Intake manifold air temperature 

• Intake manifold air pressure • Fuel rail temperature 

• Ambient air temperature • Engine coolant inlet temperature  

• Engine coolant outlet temperature • Test cell temperature 

• Oil gallery pressure • Oil temperature 

• Exhaust gas temperature (Left bank) • Exhaust gas temperature (Right bank) 

• Fuel rail pressure  • Engine exhaust backpressure 

• Engine intake restriction • Throttle position 

• Pedal position • Battery Voltage 

 

A Kistler KiBox to Go (Type 2893A) analysis system was used along with KiBox Cockpit 

Software to monitor and record engine measurements. These measurements included in-cylinder 

pressure, the output of four (4) engine’s OEM knock sensors, two accelerometers and an optical 

crank angle encoder, from which the crank angle instantaneous velocity was calculated.  The 

Kistler system was also used to perform combustion analysis based on the in-cylinder pressure 

data. 

5.2     Spark Plug Data Collection  

Machine Learning (ML) models are designed to find similarities in each class. Detecting spark 

plug degradation using ML or DL required data which represent the different spark plug fault 

conditions. This includes data of healthy as well as faulty spark plugs. As discussed earlier in the 

introduction, spark plug degradation may happen because of incorrect installation or simply 

because the normal spark plug life comes to an end. Deficiency in other engine parameters such 
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as fuel injectors, air-to-fuel ratio (AFR), engine temperature and pressure can result in spark plug 

failure in the long term. One of the most common symptoms of spark plug degradation is the 

change in the size of the spark plug gap. Thus, spark plugs with different gap sizes had to be 

physically created to introduce the fault to the engine. Three spark plug samples with a standard 

gap, a smaller gap, and a larger gap, respectively, were used to artificially simulate aging. Figure 

3.12 shows the spark plugs which were used in the CMHT lab. The spark plugs represent 3 

different gap sizes which are:  

➢ Gap Size 1 = 0.020”   

➢ Gap Size 2 = 0.050” (Healthy) 

➢ Gap Size 3 = 0.080” 

The 3 different gap sizes represent 3 classes for the neural networks that were built to classify 

good and bad spark plugs. The 3 classes are presented in Figure 5.3 and Table 5.3 along with their 

corresponding gap sizes as follows: 

Class Gap Size 

Fault 1 0.020” 

Healthy 0.050” 

Fault 2 0.080” 

Table 5.3 Spark plug gap sizes 
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Figure 5.3 physically simulated spark plugs 

Data collection occurred at 2 different operating conditions while spark plugs were placed in 

cylinder # 1, namely operating condition 1 and operating condition 2. In condition 1, a constant 

engine speed of 700 rpm and 15% engine load were applied, while in condition 2, a constant speed 

of 1000 rpm and 25% load were applied. The operating conditions are stated below in Table 5.4.  

Table 5.4 Engine operating conditions while collecting spark plug data 

Condition Engine Speed Engine Load 

Operating Condition 1 700 rpm  15% load 

Operating Condition 2 1000 rpm  25% load 

The dynamometer was connected to a visualization software where the data being collected could 

be monitored. A total of 5 sensors were used to collect engine data while running with each of the 

3 spark plug gaps and at each of the 2 operating conditions stated above. The following list 

includes the 10 sensors that were involved during the data collection process:  

1. Knock Sensor 1 

2. Knock Sensor 2 

3. Knock Sensor 3 
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4. Knock Sensor 4 

5. Optical Encoder 

A total of 20 engine cycles per data sample were collected for each fault. Each engine cycle 

contains 144,720 data points per sensor. Having the 5 sensors listed above, the number of data 

points tallies up to more than 700,000 data points per sample. Thousands of samples were collected 

for training and testing which makes billions of data points. All these samples were collected in 

the morning time of the data collection days. An additional set of data with the exact same 

conditions was collected in the afternoon time of the same days. Not all sensors were used for 

training purposes but were collected to build a rich and reliable labeled engine database. The spark 

plug data were collected over eight separate days. Information about the dates and times when the 

data were collected are listed in Table 5.5. The table shows the distribution of the collected data 

over the 8 days and the different operating conditions. 

Table 5.5 Data collection dates and times 

Index Date Morning time Afternoon time 

Day 1 March 10, 2020 9 am to 12 pm 1 pm to 4 pm  

Day 2 March 11, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 3 June 22, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 4 June 23, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 5 June 24, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 6 June 29, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 7 June 30, 2020 9 am to 12 pm 1 pm to 4 pm 

Day 8 July 1st, 2020 9 am to 12 pm 1 pm to 4 pm 



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 93  
 
 

Table 5.6 shows the matrix of the engine database which contains spark plug fault conditions. 

Eight days were collected on the dates and times listed in Table 5.5. Each day consisted of 12 sets 

of data which covered the 3 fault conditions listed in Table 5.3 and the operating conditions listed 

in Table 5.4. Each set of data contained 100 training samples, where each training sample had 20 

engine cycles. This added up to 9,600 training samples per sensor over the 8 days. The same 

number of samples was collected through 5 built-in sensors: 4 knock sensors and 1 optical encoder. 
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Table 5.6 Spark plug data 
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5.3 Spark Plug Data Variability 

As a common practice in data science is to run sanity checks over the collected data to ensure its 

validity and have a sense of its variability. Validity indicates whether data samples of the similar 

tests follow the same pattern, while variability shows different scenarios that the data can be 

exposed to while following the same pattern. Variability can happen because of many reasons 

such as: 

➢ change in temperature. 

➢ change in humidity. 

➢ change of equipment (e.g., sensor, battery, or cord replacement). 

➢ noise; and 

➢ experimental issues (e.g., loose sensor or cord). 

Data samples of similar tests which follow different characterizations (i.e., anomalies) can be 

labeled as variant data. Variant data can have the following characterizations (i.e., symptoms): 

➢ significantly lower sensor voltage amplitudes. 

➢ lower frequencies. 

➢ lower standard deviation; and 

➢ lower variance. 

In this research, Sanity checks in both crank and frequency domains were conducted to each 

sample of all the 8 days of data. Almost 60% of the collected data followed the same pattern for 

the same fault conditions, while the rest were relatively different. The days were classified in Table 

5.7. Day 1, 2, 4 and 5 were labeled as set “A” which had very similar data, while day 3, 6, 7 and 
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8 were labeled as set “B” because they had variant characterizations. This section will explain all 

the analytical methods which were conducted to label the data into these 2 sets. 

Set A Set B 

Day 1  

Day 2  

 Day 3 

Day 4  

Day 5  

 Day 6 

 Day 7 

 Day 8 

 

Table 5.7 Regular (Set A) vs variant (Set B) data 

The first basic check was to plot the raw data of the knock sensors and visually search for 

abnormalities. A typical knock sensor signal that results from a healthy spark plug is plotted in 

Figure 5.4 which represents 201 engine cycles collected on day 1. The signal shows a normal 

behavior of a knock sensor # 1 with an average amplitude of 3V, which means that the sample is 

valid. All the data samples of day 1 were checked and no anomalies were observed. The same 

visualization check was conducted over all the 8 days. Figures 5.5 – 5.11 show the raw signals of 

knock sensor # 1 of day 2 to 8, respectively, against day 1:  
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Figure 5.4 Day 1 of raw spark plug data 

 
Figure 5.5 Day 1 of raw spark plug data 
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Figure 5.6 Day 3 of raw spark plug data 

 
Figure 5.7 Day 4 of raw spark plug data 
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Figure 5.8 Day 5 of raw spark plug data 

 
Figure 5.9 Day 6 of raw spark plug data 
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Figure 5.10 Day 7 of raw spark plug data 

 
Figure 5.11 Day 8 of raw spark plug data 

A clear drop in voltage in the crank angle domain was noticed in days 3, 6 and 8. This voltage 

drop introduces an undesired pattern to the signal, which might result in FDD misclassifications 

attributed to the spark plug rather than sensor fault. Therefore, all data samples of days 3, 6 and 8 

were flagged as invalid and were dismissed from the training and testing process. The previous 



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 101  
 
 

analysis was based on knock sensor #1 which showed abnormal behavior and was then replaced 

for further data collection. 

4.3.1 Spark Plug Data Statistical Analysis 

Noisy signals such as knock sensor data may not be easy to visualize using raw data. Therefore, 

further statistical analysis was required to confirm the previous observations in the raw data. Many 

traditional statistical analysis methods can be used for such investigation. Mean value, variance 

and standard deviation are common methods and were used in this investigation. If more 

anomalies were found in this analysis on top of what was observed already in the raw data 

visualization, then further analysis would have been required. However, the statistical analysis 

results matched with those of the visualization. Figure 5.12 shows the results of the statistical 

analysis over spark plug data. All the 8 days almost shared the same mean value. This was because 

even the data samples with lower magnitudes were symmetric around zero voltage, which makes 

the average almost consistent. Therefore, the mean value was not a good tool to see any uncommon 

behavior in the data. Variance was a better indicator for anomalies. It represents the average of the 

squared differences from the mean value. While variance was normal in days 1, 2, 4, 5 and 7, it 

showed noticeable change in day 3, 6 and 8, which confirms the previous visualization method. 

Standard deviation, which represents the square root of the variance, was also used as a statistical 

analysis. Standard deviation shows the deviation of each data point from the mean value. Figure 

5.12 shows a significant drop in standard deviation in days 3, 6 and 8 as well. The results of the 

variance and standard deviation confirmed the same conclusion of the visualization tool. 
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Figure 5.12 Spark Plug Data Statistical Analysis 

5.3.2 Spark Plug Data Distribution Fitter Analysis 

The previous analysis methods were both in the crank angle domain. It was worth looking at the 

data from a different point of view. The frequency domain is a common way to look at the data 

from a different perspective and see information which was not clear in other domains. The 

distribution fitter toolbox in MATLAB was used in this analysis to see how the data looks like in 

the frequency domain. This toolbox provides a visual and interactive approach to fitting univariate 

distributions to data. Figures 5.13 – 5.19 show an example from day 2 to day 8, respectively, 

against day 1, respectively. 
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Figure 5.13 Distribution fitter results of day 1 and 2 of spark plug data 

 

Figure 5.14 Distribution fitter results of day 3 of spark plug data 
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Figure 5.15 Distribution fitter results of day 4 of spark plug data 

 

 

Figure 5.16 Distribution fitter results of day 5 of spark plug data 
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Figure 5.17 Distribution fitter results of day 6 of spark plug data 

 

 

Figure 5.18 Distribution fitter results of day 7 of spark plug data 
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Figure 5.19 Distribution fitter results of day 8 of spark plug data 

The MATLAB-based distribution fitter toolbox confirmed the anomalies in day 3 and 8, but 

showed a normal behavior in day 6, which was not the case in the crank angle domain. Day 7 also 

showed a different pattern, which was not clear in the other domain. This was the reason why it 

was necessary to look at the data in different domains. Therefore, day 7 was also flagged as invalid 

and was not used for training and testing. Only days 1, 2, 4 and 5 were used in the results which 

will be discussed later in this thesis. 

5.4      Exhaust Gas Recirculation (EGR) Valve Data Collection 

The exhaust gas recirculation (EGR) valve is an engine management component. It recirculates 

exhaust gas to the engine intake system to increase engine efficiency. This also reduces the fuel 

consumption rate and lowers NOx emissions. Detecting EGR valve faults using Machine Learning 

(ML) required historical data of the different levels of failure. This included examples of defective 

EGR valves as well as perfectly healthy valves. EGR valves may fail because of several reasons, 
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such as the valve mechanism being stuck open or closed, or the air filter being clogged or dirty. 

Deficiency of other engine parts such as, intake leaks, incorrect vacuum hose connection and 

turbocharger problems may result in EGR valve faults or complete failure. Like any other engine 

part, the EGR valve’s life may simply come to an end after a high amount of mileage. One of the 

symptoms of EGR valve faults is engine knocking.  

The EGR faults were simulated by introducing external CO2 to the engine which results in diluting 

the combustible mixture with CO2 gas. Two levels of CO2 dilution were introduced to the engine: 

Level 1 which represents 5% and Level 2 which represents 10%. Three different levels of CO2 

dilution:  

➢ Level 0 = 0% (Healthy) 

➢ Level 1 = 5% CO2 dilution 

➢ Level 2 = 10% CO2 dilution 

The 3 different EGR levels represent 3 classes for the neural networks which were built to classify 

EGR fault conditions. The 3 classes are presented in Table 5.8 along with their corresponding 

dilution levels as follows: 

Class EGR Level CO2 Dilution 

Healthy Level 0 0% 

Fault 1 Level 1 5% 

Fault 2 Level 2 10% 

Table 5.8 EGR levels 
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Data collection occurred at 2 different operating conditions while EGR faults were being 

introduced to the engine, namely operating condition 1 and operating condition 2. In condition 1, 

a constant engine speed of 700 rpm and 15% engine load were applied, while in condition 2, a 

constant speed of 1000 rpm and 25% load were applied. The operating conditions are stated below 

in Table 5.9.  

Condition Engine Speed Engine Load 

Operating Condition 1 700 rpm  15% load 

Operating Condition 2 1000 rpm  25% load 

Table 5.9 Engine operating conditions while collecting EGR data 

The dynamometer was connected to a visualization software where the collected data could be 

monitored. The same sensors which were used to collect engine data with different spark plugs 

were also used for the EGR fault conditions and each of the operating conditions stated above. A 

matrix showing the collected data in detail is provided in Table 5.10. 
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Table 5.10 EGR data 
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Like spark plug data, another round of analysis had to be conducted over the EGR data to ensure 

its validity. Both crank angle and frequency domain tests were conducted to check the validity of 

every day of the EGR data. Variant samples were found in some days due to experimental and 

technical issues.  

  5.5 EGR Data Variability 

First, the raw knock sensor data were plotted and visually inspected to search for abnormal 

behaviors. Figure 5.20 represents 201 engine cycles of knock sensor # 1 signal that resulted from 

a healthy EGR valve in day 1. The signal shows a normal behavior with an average amplitude of 

3.0 V, which means that the sample was valid. All data samples of day 1 were checked using 

visualization tools and no anomalies were observed in day 1. 

 

Figure 5.20 Day 1 of EGR data 

The same visualization check was conducted over all the 8 days. Figures 5.21 and 5.22 show the 

raw signals of knock sensor # 1 of day 2 and day 3, respectively, both against day 1. Day 2 clearly 

has similar specifications, unlike day 3 which is variant.  
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Figure 5.21 Day 2 of EGR data 

 

Figure 5.22 Day 3 of EGR data 

Voltage drops in day 3, 7 and 8 were noticed in the crank angle domain. This anomaly may lead 

to misclassification since samples of the same class do not share the same patterns. Therefore, all 

data samples of day 3, 7 and 8 were flagged as variant EGR data and were dismissed from the 

training and testing process. All the samples plotted above represented signals of knock sensor #1 

which was replaced for further data collection. 
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5.5.1 EGR Data Statistical Analysis 

The same analysis was conducted to EGR data as well. Figure 5.23 shows the results of the 

statistical analysis over EGR data. All the 8 days had similar mean values. Although voltage 

amplitudes were significantly different, they were all symmetric around zero voltage, which made 

the average almost zero. Therefore, the mean value did not help with seeing any abnormal behavior 

in the data.  

Variance was a better indicator for anomalies. It represents the average of the squared differences 

from the mean value. While variance was normal in days 1, 2, 4, 5 and 6, it showed noticeable 

change in days 3, 7 and 8, which confirms the previous visualization method. Standard deviation, 

which represents the square root of the variance, was also used as a statistical analysis. Standard 

deviation shows the deviation of each data point from the mean value. A significant drop in 

standard deviation in days 3, 7 and 8 was observed. Both variance and standard deviation led to 

the same conclusion of the visualization tool. 

 

Figure 5.23 EGR data statistical analysis 
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5.5.2 EGR Data Fault Signatures 

The EGR data was analyzed in the frequency domain as well using EMSPCA fault signatures to 

extract further information which was not clear in the crank angle domain. The fault signatures 

were used in this analysis to see the data trend in the frequency domain. This feature provides a 

visual representation which showed the deviation of every sample from the healthy baseline, such 

as a healthy EGR data sample from Day 1.  

Distribution analysis was also conducted to observe the variance of the data in variant days. The 

fault signatures of these days were generated and visualized. Figure 5.24 - 5.26 show the average 

fault signature of healthy, level 1 (i.e., fault 1) and level 2 (i.e., fault 2) EGR data samples, 

respectively, of all the 4 knock sensors. Level 1 represents 5% of CO2 dilution while level 2 

represents 10%. The average was taken of days 1, 2, 4 and 5, which were perfectly valid based on 

previous analysis. Fault signatures of healthy data look flat since they were compared to similar 

healthy baselines, while those of level 1 and level 2 CO2 dilution show intense amplitudes which 

explains the effect of the CO2 dilution on engine knocking.  

 

Figure 5.24 Average fault signature of healthy EGR data  



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 114  
 
 

 

Figure 5.25 Average fault signature of fault 1 EGR data  

 

Figure 5.26 Average fault signature of fault 2 EGR data 

To examine the days which were previously flagged as variant, their fault signatures were 

generated. Figure 5.27 shows a healthy, level 1 and level 2 samples from day 7, which is an 

example of fault signatures of variant days which clearly have different patterns than the averaged 

valid fault signatures. This confirmed that there might have been something wrong while 

collecting the data on these days.  
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Figure 5.27 Fault signature of EGR data from day 7 

The fault signatures confirmed the anomalies in day 7 and 8, but showed an acceptable behavior 

in day 6, which was not the case in the crank angle domain.  
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5.6 Summary of Spark Plug and EGR Data Analysis  

Finding new issues in each type of analysis was the reason why it was necessary to look at the 

data in different domains. Some issues were clear in the crank angle domain while others were 

found in the frequency domain. To summarize the conducted analysis, Table 5.11 shows each 

analysis along with the issues found in each day. The red color means significant variance, yellow 

means suspicious and green means identical. To ensure a perfectly clean dataset for training and 

testing, any day with either significant or suspicious issues (i.e., red, and yellow) was flagged as 

variant. Only green days were considered valid. 

 

Table 5.11 Fault signature of EGR data from day 8 

The table shows that days 3, 6, 7 and 8 were all flagged as variant and were not used for training 

and testing. Only days 1, 2, 4 and 5 were used in the training and classification process. The next 

step was to test the capability of the EMSPCA algorithm on diagnosing variant data. Based on the 

results which will be discussed in chapter 8, the algorithm was able to detect faults in regular data 
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samples from day 1,2,4 and 5, as well as variant data samples from day 3, 6, 7 and 8. However, 

the algorithm was not able to diagnose faults using raw fault signatures and Artificial Neural 

Network (ANN). Thus, an invariant AI method was needed to solve this problem.  

As explained earlier, the EMSPCA algorithm generates fault signatures which describe the 

variance of the test sample against healthy baselines. However, this technique works well within 

a certain range of data variability. When the raw sensory data are corrupted and variant beyond 

what is caused by a known fault condition, the ANN could not distinguish between the different 

levels of severity of fault conditions. To remedy this, the ANN was replaced with a CNN as an 

invariant deep learning classifier. The difference between ANN and CNN is the ability to maintain 

high-accuracy classification regardless of data variance. The CNN gains this ability from its max 

pooling layers (see section 2.5.2.) which does not exist in the ANN. Max pooling takes the highest 

value from each patch of an image and ignores the rest of the information in the activation maps. 

This indicates that an important incident has happened in this patch can not tell where exactly it 

happened. This allows changes to the signal due to experimental issues within an acceptable range. 
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Chapter 6 – Spark Plug FDD Using Artificial Intelligence (AI) 

In this chapter, Machine Learning (ML) and Deep Learning (DL) models are used as tools to learn 

from the engine database and detect the degradation of two engine parts: spark plugs and Exhaust 

Gas Recirculation (EGR) valves. 

Detecting spark plug degradation using existing engine sensors was the most difficult problem in 

this research. Spark plug performance degradation is often a consequence of a change in the air 

gap size. Given that the engine has 8 cylinders, the degradation of a single spark plug results in a 

small deviation in the sensory measurements. The biggest challenge was to select a proper learning 

model for each kind of input. For example, Convolutional Neural Networks would not be a proper 

classification model for raw time-series spark plug data since they were designed to classify 

images. Time-series classification models such as Recurrent Neural Networks (RNN) would be a 

better match. Similarly, a proper pre-processing approach is important to emphasize patterns in 

the input data before fitting them to the learning model.  

Two existing sensors were selected to collect engine data while defective spark plugs are placed 

inside the engine: knock sensors and speed sensor. The knock sensors were selected as the primary 

sensors since they can measure engine vibrations and since one of the most common symptoms of 

defective spark plugs is engine knocking. The speed sensor was selected since defective spark 

plugs may cause a change in the pressure inside the combustion chamber and thus, a change in the 

piston power and flywheel speed. 
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Figure 6.1 Hierarchy of spark plug degradation detection models 

Four AI-based models were built to detect spark plug degradation, namely Models S1, S2, S3, and 

S4 (see Figure 6.1). The first three models were trained with the measurements of four knock 

sensors only while the last model was based on speed sensor measurements. The reason why three 

models were made for the knock sensors will be discussed in the results chapter. Model S1 consists 

of McMaster CMHT’s advanced feature extraction algorithm, the Extended Multi-Scale Principal 

Component Analysis (EMSPCA) along with a simple Artificial Neural Network (ANN). Model 

S2 starts with a simple feature engineering layer, followed by a Deep Recurrent Neural Network 

(RNN), called Long Short-Term Memory (LSTM) network. Like the previous model, Model S3 

has a simple feature engineering step and feeds then into a Deep Convolutional Neural Network 

(CNN). Model S4, which uses optical encoder sensory data, consists of a regular Random Forest 

(RF) classifier which was trained on a set of the new Curve Descriptive (CD) features proposed 

in this research.  
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6.1  Spark Plug Degradation Detection Using EMSPCA  

As explained in the introduction chapter, the Extended Multi-Scale Principal Component Analysis 

(EMSPCA) algorithm was previously developed at McMaster’s CMHT research lab. The 

algorithm has shown excellent results in the fault identification of electric motors such as starters 

and alternators [61] and has been used in this research to support FDD of Internal Combustion 

Engines as well.  

One of the contributions of this research was to improve the run time of the CMHT’s EMSPCA 

algorithm to make it more time effective while classifying engine data without affecting the 

performance negatively. For comparison purposes, 300 data samples per class were used to assess 

the time improvements. Having 3 classes of spark plugs (i.e., 0.020”, 0.050”, and 0.080”) resulted 

in having 900 data samples in total to train the model. In 2019, the run time of the original version 

of the EMSPCA algorithm (a.k.a. EMSPCA_v0) was about 1,416 hours (i.e., 59 days) which was 

uncompetitive when compared to other advanced classification algorithms. The first step to 

improve the run time was to look for complex logic operations in the training process that could 

be simplified. The EMSPCA algorithm uses healthy training samples to create healthy baselines 

and applies Wavelet Packet Transform (WPT) to all of them. Then it applies WPT to faulty 

training samples and compares them to all healthy baselines as shown in Figure 6.2. This meant 

that WPT was applied 300 times for 900 training samples, which tallied up to 270,000 times. 

Given the large number of data points in each sample, this explained the high run time. After a 

review of the fault signatures, it became evident that as expected, healthy baselines were very 

similar. The results which come from training the algorithm with multiple healthy baselines were 

therefore almost the same as just using ne baseline. Therefore, the average of all data samples of 
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the same conditions was used as a single baseline. These updates were made to EMSPCA_v1.0 as 

shown in Figure 6.3. 

The next step was to investigate the hardware configurations which were used to run the EMSPCA 

algorithm. EMSPCA_v0 was originally operated on a desktop computer with a 2.3GHz i4 

processor. Given that the algorithm is MATLAB-based, two possible solutions were proposed to 

enhance the run time: Graphical Processing Unit (GPU) and Parallel Computing. At the time of 

this research, MATLAB was supporting GPU functioning for only 500 MATLAB functions. 

Many of the Wavelet Packet Transform (WPT) functions used in the algorithm were not among 

the supported functions.  

MATLAB R2020b offered Parallel Computing for many of its functions. Parallel Computing 

allows a single operation, such as a for loop, to be distributed over multiple cores which run in 

parallel then gathers the results before moving to the next function. However, some operations 

were not eligible for parallel computing due to the nature of the functions inside the for loop. All 

eligible functions were updated to support parallel computing, which resulted in a new version, 

namely EMSPCA_v1.1. This enhanced the original run time by 63%, brining it down to 528 hours. 

A new high-performance desktop computer with an Intel Xeon Gold 5222, 16.5M cache and 

3.8GHz, processor was purchased for the EMSPCA algorithm. The run time on the new computer 

was 288 hours which decreased the original run time by 80%. A new graphics card was installed 

later in the new high-performance computer, which unexpectedly decreased the run time to 96 

hours. 
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Figure 6.2 EMSPCA_v0.0 

 
Figure 6.3 EMSPCA_v1.0 
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The averaging step of the healthy baselines resulted in a new version (a.k.a. EMSPCA_v2.0) 

which decreased the run time to 13 hours, which improved it by 99%. Figure 6.4 shows the logic 

which was followed in EMSPCA_v2.0. An additional version of the algorithm was designed for 

quick verification purposes, namely EMSPCA_v2.1. Only a single healthy baseline was taken 

from all baselines and compared to the training samples. The data samples were always introduced 

to the algorithm in batches. Each batch contains 200 engine cycles which the algorithm splits into 

10 data samples, 20 cycles each. In version EMSPCA_v2.1, only one sample from each batch was 

used for training. This version was only being used to quickly confirm the validity of certain results 

and sometimes for easy-to-expect classification problems. The run time of this version was only 

half an hour. 

Figure 6.5 shows a diagram of the different stages of improving the run time of the EMSPCA 

algorithm from 2019 to 2021. The diagram shows that the run time was decreased from 1,416 

hours in EMSPCA_v0.0 to 0.5 hour in EMSPCA_v2.1, which presents a total decrease of 99.9% 

from the original version. 
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Figure 6.4 EMSPCA_v2.0 

 

Figure 6.5 EMSPCA run time improvements 
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6.2  Spark Plug Degradation Detection Using Deep Learning (DL)  

This model consists of simple feature extraction algorithms along with advanced Deep Learning 

algorithms. The feature extraction algorithms convert raw data into sequential features and heat 

maps that feed into Recurrent Neural Networks (RNN) and Convolutional Neural Networks 

(CNN), respectively. The mission of deep neural networks is to find similarities within features of 

the same class and mapping them accordingly. The same 3 fault conditions, see Figure 6.6, which 

were used to train the PRT classifier were also used to train the deep learning models. 

 

Figure 6.6 Spark plug gaps 

The engine was operated to collect data through existing sensors: 4 knock sensors and 1 optical 

encoder. Each batch of data consists of 200 engine cycles containing 1.4M data points each. Figure 

6.7 shows an example of 1 batch of data collected through a knock sensor.   
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Figure 6.7 Raw knock sensor data (200 engine cycle) 

The signal is extremely noisy which would be very challenging for the neural network to interpret. 

Thus, instead of using every set of data (i.e., 200 engine cycles) as a training sample, each set of 

data was split into 200 separate engine cycles, each is a training sample. Figure 6.8 shows an 

example of 1 engine cycle of a knock sensor containing 7,200 data points, which represents one 

training sample. 

 

Figure 6.8 Raw knock sensor data  
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The sensory data were then transformed to two forms of features as a preparation for 2 different 

Deep Learning algorithms:  

i. Sequential features. 

ii. Heat maps. 

Sequential features maintained the time-series information in the data, which made them a 

good match for a deep Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). 

Heat maps were pre-processed through Mel-frequency Cepstral Coefficients (MFCC). MFCC 

heatmaps are 2-dimensional images which can be a good match for a deep Convolutional 

Neural Network (CNN). Thus, 2 models were developed as shown in Figure 6.9, namely 

Models S2 and S3 (see models in section 1.5): 

1. Sequential features + LSTM-RNN. 

2. MFCC heatmaps + CNN. 

 

Figure 6.9 DNN features Diagram  
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  6.2.1 Spark Plug Degradation Detection Using LSTM-RNNs 

The sequential features were created by applying a moving average to the raw signal. Every 

training sample contained one engine cycle of 7200 data points. Each sample was averaged with 

a window size 10 into 720 points to denoise the signal which made it simpler for the neural network 

to distinguish. This means that every 10 points were average into 1 point throughout the signal. 

The following equation shows the moving average procedure, where n is the number of data 

points.  

     
𝑎1+ 𝑎2+ 𝑎3+⋯+ 𝑎𝑛

𝑛
    eq. (6.1) 

This helped the network focus on the behavior of the signal rather than looking at every single 

point individually. The window size of the moving average is adjustable and can be changed upon 

demand. Figure 6.10 shows a moving averaged knock sensor signal of a single engine cycle.  

 

Figure 6.10 Moving average  

The same denoising methods were dynamically used for other sensors when needed to generate 

sequential features. They were used as an additional hyper parameter to improve the accuracy of 
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the deep learning models. All the featured signals were then normalized between 0 and 1 and fed 

into a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN). 

  6.2.2 Spark Plug Degradation Detection Using CNNs 

The second version of the sensory data, namely heatmaps, was created by applying Mel-Frequency 

Cepstral Coefficients (MFCC). MFCC is often used in machine learning experiments involving 

audio or vibration signals. They are the coefficients that form the envelope of the time power 

spectrum (a.k.a. Mel-frequency Cepstrum) which is representative of the source of vibration or 

audio. Generally, the first 15 coefficients (i.e., lower dimensions) of MFCC are taken as features 

as they represent the envelope of spectra, while higher dimensions which express the spectral 

details are discarded. The following steps are followed to construct Mel-frequency Cepstral 

Coefficients: 

(1) The raw signal is framed into short frames. 

(2) For each frame, the periodogram estimate of the power spectrum is calculated 

through Fast Fourier Transform (FFT). 

(3) The Mel filter bank is applied to the power spectra, and the energy is summed in 

each filter. 

(4) The logarithm of all filter bank energies is taken. 

(5) The Discrete Cosine Transform (DCT) of the log filter bank energies is applied. 

(6) Only DCT coefficients 1-15 are kept, while the rest are discarded. 

The raw signal, referred to as s(n) is framed into short frames creating several samples (n). 

Once it is framed, it is called 𝑠𝑖(𝑛) where i ranges over the number of frames. When the Fast 

Fourier Transform (FFT) is calculated, the resultant is  𝑠𝑖(𝑘)  where i denotes the frame 

http://en.wikipedia.org/wiki/Periodogram
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number corresponding to the crank-angle-domain frame. 𝑃𝑖(𝑘)  is then the power spectrum of 

frame i. To take the Discrete Fourier Transform (implemented though a FFT implementation) 

of the frame, the following equation is performed, where h(n) is an N sample long analysis 

window, and K is the DFT length: 

  eq. (6.2) 

The periodogram-based power spectral estimate for the speech frame 𝑠𝑖(𝑛)  is calculated by: 

     eq. (6.3) 

where the square of the absolute value of the complex Fourier transform is taken. The Mel-

spaced filter bank is then computed, which is a set of triangular filters that are applied to the 

periodogram power spectral estimate. Each vector is mostly zeros but is non-zero for a certain 

section of the spectrum. To calculate filter bank energies, each filter bank is multiplied with 

the power spectrum, then the coefficients are summed. Figure 6.11 shows an example of a 

filter bank. 

 

Figure 6.11 Filter bank example 
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The logarithm of each of the energies is then taken, followed by the Discrete Cosine Transform 

(DCT) of the log filter bank energies where cepstral coefficients are constructed. Only the first 

15 of the resulting features, namely, Mel Frequency Cepstral Coefficients, are kept. Figure 

6.12 shows the block diagram of the MFCC construction process. 

 

Figure 6.12 MFCC  

The resulting MFCC heat maps represent the original data through 2-dimensional image-based 

features which a deep Convolutional Neural Network (CNN) can classify. This strategy allowed 

the CNN to perform time-series classification of spark plug data by converting knock sensor 

signals into images. Figure 6.13 is an example of a training sample which was processed into 

MFCC heatmaps. The heatmaps show different patterns in small and large spark plug gaps. All 

MFCC heatmaps were then fed into a CNN for classification. 
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Figure (6.13) MFCC heat maps example 
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Chapter 7 – Advanced Pre-processing Techniques for Deep Learning 

(DL) Algorithms 

As discussed in chapter 4, the collected data were split into 2 categories: regular data and variant 

data (see section 5.1). An invariant Deep Learning (DL) model was required to detect and diagnose 

variant spark plug data. The Convolutional Neural Network (CNN) was selected as an invariant 

DL model. However, CNN works best with image classification. In this chapter, a novel pre-

processing method is described to convert fault signatures into images to enable CNN 

classification.  

 7.1 Image Pre-processing of Fault Signatures 

The proposed method is one of the novel contributions in this research. The method converts 

EMSPCA fault signatures into a mosaic-like map which graphically represents the same features 

of the fault signatures to the Convolutional Neural Network.  

As described earlier, a fault signature consists of several bins. These bins represent frequency 

components which were generated by the wavelet packet transform (WPT) and principal 

component analysis (PCA) conducted in the EMSPCA process. The components represent the 

variance of each segment in the test sample from its corresponding segment of an original healthy 

baseline. Figure 7.1 shows an example of a fault signature of a knock sensor signal of a faulty 

spark plug with a gap size of 0.020”. 
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Figure 7.1 Spark plug fault signature 

The fault signature shows a bar chart which contains four rows of 16 bins. The four rows represent 

the four engine built-in knock sensors. The dark blue row belongs to knock sensor 1, the light blue 

belongs to knock sensor 2, the green belongs to knock sensor 3 and the yellow belongs to knock 

sensor 4. The number of bins in each row depends on the level of wavelet used in the wavelet 
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packet transform process which was conducted in the EMSPCA algorithm (see section 2.2.3). The 

number of bins is equal to 2 ^ (wavelet level). For example, for a fault signature of wavelet level 

4 like the one in the figure above, the number of bins will be 2 ^ 4 = 16 bins. The amplitude of 

each bin represents the error magnitude compared to healthy baselines. 

The proposed method was designed to deliver the features and information that the fault signature 

carries to the Convolutional Neural Network (CNN) in the form of an image. The image is a top 

view map of the fault signature. The number of rows in the map is equal to the number of rows 

(i.e., sensors) in the fault signature. The number of columns in the map is equal to the columns in 

the fault signature (i.e., number of frequency bins per sensor). The total number of tiles in the map 

is equal to the total number of bins in the fault signature bar chart. The color intensity of each tile 

represents the amplitude (i.e., error magnitude) of its corresponding frequency bin. The final 

product of this method is a mosaic panel which carries fault signature patterns in a form of an 

image as an input to the Convolutional Neural Network (CNN). Figure 7.2 shows an example of 

the mosaic image which was generated for the same fault signature in Figure 7.1. 
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Figure 7.2 Mosaic image of a 0.020” spark plug  

Figure 7.3 shows a fault signature of a healthy sample. When compared to a healthy baseline, a 

healthy test sample has an almost zero variance. Thus, the fault signature shows a flat pattern, 

which means there is the error magnitudes of all bins are almost zero.  
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Figure 7.3 Mosaic image of a healthy gap (0.050”) 

Figure 7.4 represents the mosaic image generated for a fault signature of a large gap size. Since 

both fault conditions, small (i.e., 0.020”) and large (i.e., 0.080”) gaps,  lead to lower engine 

performance caused by engine vibrations. The patterns in the fault signature of both fault 

conditions are relatively close, compared to the healthy signature, but the amplitude of the most 

significant bin of the larger gap is higher than the small gap. Thus, the mosaic image of both fault 

conditions show similar patterns with different color intensities. 
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Figure 7.4 Fault signature of a large gap (0.080”) 

The mosaic method was able to reconstruct patterns from spark plug fault signatures in form of 

images. However, it was not easy for us humans to distinguish similar patterns using individual 

data samples. This is because of the randomness inside the engine cylinder during the combustion 

process may result in showing different patterns within the same fault condition. This explains 

how difficult the spark plug degradation problem was. The CNN model consisted of 4 hidden 

layers: 3 Convolutional layers and 1 Max Pooling layer. The output was taken to 1 Fully 

Connected (FC) layer which consisted of 3 neurons: healthy, fault 1 and fault 2. A Relu activation 

function was used in all hidden layers, while a Softmax function was used in the FC layer. An 

Adam optimizer was used along with a learning rate of 0.001 in this network. 
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Figure 7.5 CNN analyzing mosaic images 

The mosaic images can be used as the input data to the Convolutional Neural Network (CNN) as 

Figure 7.5 shows. However, the performance would not be at its best. In data science, it is very 

important to visualize data before using it for training or testing. Visualization helps researchers 

figure out what pre-processing is needed in order to emphasize patterns. However, there is no pre-

processing technique that solves all data issues. Every problem contains a different kind of data 

which requires unique strategies of feature engineering. Sometimes, data can be too noisy and 

needs filtration. In other cases, it may need averaging, normalization, or smoothing techniques.  

 7.2 Normalization 

To properly see similarities within the 3 fault conditions of the spark plug data, the entire dataset 

was plotted, as shown in Figure 7.6. The graph shows 1860x16 plot. The x-axis represents the 

number of data samples of the training dataset while the y-axis represents the number of frequency 
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bins represented by mosaic images. The graph clearly shows that most peaks are concentrated  in 

a certain range, which may prevent the learning algorithm from being able to classify properly. 

 

Figure 7.6 Spark plug data before normalization 

Machine learning and Deep Learning algorithms were designed to find trends in the data by 

comparing features of data points, referred to as patterns. However, when features are on 

significantly different scales, the algorithm may not be able to distinguish patterns of different 

classes. Plotting data points of different scales on a single scale might result in a concentration and 

grouping    of data points as shown in the figure above, although there are hidden differences. To 

solve this problem, the scale must be unified throughout the entire training dataset, which requires 

a normalization approach. In this method, a Min-Max normalizer was used to normalize the spark 

plug data.  

Healthy Fault 1 Fault 2 
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Figure 7.7 Spark plug data after normalization 

The normalization step shown in Figure 7.7 clearly increased the granularity of the features within 

different classes and the difference between the data points can be visualized more easily. 

 7.3 Data Augmentation 

As shown in the previous figures, fault signatures typically consist of 16 frequency bins. Deep 

Learning algorithms normally require large amounts of data to achieve high classification 

accuracy. This includes both the number of data samples and the number of informative data points 

per sample. Having a small number of data points like in the fault signatures means more data 

samples are required. In the case of using all the available data samples without reaching the 

desired classification accuracy, data augmentation approaches are needed. Data augmentation can 

be conducted to increase either the size of each data sample (i.e., image), or the number of data 

Fault 1 Fault 2 Healthy 
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samples, or sometimes both. However, data augmentation is only an attempt to increase the 

performance of the model, it does not always solve the problem if the output does not add valuable 

information for the model to learn from. In this method, a few data augmentation approaches were 

conducted. 

  7.3.1  Wavelet Levels 

As explained earlier in this chapter, the number of frequency bins of a fault signature depends on 

the wavelet level. Fault signatures which consist of 16 frequency bins were generated by applying 

wavelets level 4 to the raw signal. A higher wavelet level (i.e., level 6) was applied to the raw 

signal to generate fault signatures with more data points. Figure 7.8 shows an example of the 

difference between fault signatures generated under wavelet levels 4 and 6. Both signatures 

represent the same raw signals from 4 knock sensors. The shorter fault signature consists of 16x4 

data points while the taller one consists of 64x4 data points. 

 
Figure 7.8 Wavelet level 4 vs 6 fault signatures 
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Higher wavelet levels could be achieved to generate bigger fault signatures. However, Wavelet 

Packet Transform (WPT) is a computationally heavy method. Thus, generating hundreds of fault 

signatures at higher wavelet levels (e.g., 8 and 10) was very time consuming. Also, bigger fault 

signatures would only help if the additional data points carried valuable information for the Deep 

Learning algorithm. To answer this question, different wavelet levels were tried, and it was 

observed that wavelet level 4 always provided the best results.  

  7.3.2  Image Size Augmentation 

Another way of data augmentation was to increase the size of mosaic images using common 

practical approaches. Although fault signatures carry information of 4 knock sensors, single 

sensors were also used individually to compare performances in all scenarios. The size of the fault 

signature dropped from 16x4 to 16x1 for single sensors as shown in Figure 7.9. In this case, image 

size augmentation was mandatory. 

 

Figure 7.9 Single sensor fault signature  

Increasing the size of singe-sensor mosaic images was an attempt to emphasize the patterns. This 

was done by repeating the pattern several times along the x-axis to create a bigger image. Figure 

7.10 shows a horizontally augmented mosaic image of a single sensor. 
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Figure 7.10 Horizontally augmented single-sensor mosaic image 

Another way of augmenting the image was to repeat the pattern along y-axis on top of the x-axis. 

This has further increased the size of the image to emphasize the patterns by repetition. Figure 

7.11 shows a horizontally and vertically augmented mosaic image of a single sensor. 

 

Figure 7.11 Horizontally and vertically augmented single-sensor mosaic image 

7.3.3  Number of Samples Augmentation 

As explained earlier in the chapter of experimental data and data collection, engine data was 

collected in form of data sets, each consisting of 200 engine cycles. In most experiments, these 

data sets were split into smaller portions of 20 engine cycles per training sample. This means that 
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10 training samples were constructed from each data set. Decreasing the number of engine cycles 

per training sample was another way to augment the number of data samples.  

Several combinations (e.g., 10 cycles, 4 cycles and 1 cycle per sample) were tried to achieve the 

highest classification accuracy possible. Although the performance of the CNN model depended 

on the amount of information which each combination carries, it is not easy to expect the 

performance of a certain combination without trying. Less engine cycles per sample may result in 

less informative mosaic images. Also, loading each training sample with too much data can lead 

to overfitting or low classification accuracy. Figure 7.12, 7.13 and 7.14 show the difference 

between a single engine cycle per training sample and the one-cycle average of multiple engine 

cycles per sample for a 0.020”, 0.050” and 0.080” respectively. 

The figures show that a single engine cycle per training sample is much noisier than one-cycle 

averages of multiple engine cycles per sample. Noisy signals result in less informative fault 

signatures, which consequently means less informative mosaic images. However, using more 

engine cycles means a smaller number of training samples. Thus, a balanced decision had to be 

made. Filtering raw signals was also used as a pre-processing approach to eliminate the noise of 

training samples with low number of engine cycles. Eliminating noise discards redundant data 

points in noisy raw signals.  
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Figure 7.12 Horizontally augmented single-sensor mosaic image 

 

Figure 7.13 Horizontally augmented single-sensor mosaic image 
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Figure 7.14 Horizontally augmented single-sensor mosaic image 

 

 7.3.4 Mosaic Image Workflow 

The workflow of this method can be summarized in the block diagram shown in Figure 7.15. The 

method started with importing both raw healthy and faulty sensory data. Signals were then 

normalized to unify varying scales of the data. Then the EMSPCA method (see section 2.2.3) was 

applied where fault signatures of both healthy and faulty data were generated. The next step is to 

graphically present fault signatures graphically to the Convolutional Neural Network (CNN) 

through mosaic images.  

Since error magnitudes can significantly vary within different scales, the fault signatures were 

normalized again, which emphasized the granularity of the patterns. The mosaic images were then 

generated from the normalized fault signatures. Image augmentation approaches were applied to 



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 150  
 
 

stretch the images because of the small size of the fault signatures. The output from the image 

augmentation process was the input to the convolutional neural network (see section 2.3.2).  

 
Figure 7.15 Block diagram of EMSPCA-Mosaic-CNN 
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Chapter 8 – Internal Combustion Engine (ICE) FDD Results and Discussions  

In this chapter, the results of the six models which were built to detect spark plug (S1 to S4) and 

EGR valve (E1 and E2) degradation are discussed (see section 1.5). The structure and 

methodology of all the six Al-based models were discussed in chapter 6.  

 8.1 Results of Spark Plug Degradation Detection  

The spark plug degradation detection problem using standard engine sensors only was the most 

challenging problem in this research. Models S1 to S4 (see section 1.5) were developed to detect 

spark plug degradation. In Models S1 to S3, only 4 standard knock sensors of the Ford Coyote 

Engine (see section 5.1) were used. In Model S4, only a single optical encoder of the engine was 

used. Each model consisted of a pre-processing technique, along with a Machine Learning (ML) 

or Deep Learning (DL) classifier. The following results show the performance of each model. 

 8.1.1 Degradation Detection Using EMSPCA 

The theory and structure of the Extended Multi-Scale Principal Component Analysis (EMSPCA) 

were discussed earlier in this thesis (see section 2.2.3). The output from the EMSPCA method was 

fault signatures. Figures 8.1-8.3 show the average fault signatures of the 3 spark plug gaps, 

representing the 3 fault conditions: 

a) Fault 1: 0.020”, incorrect spark plug setup. 

b) Healthy: 0.040”, standard gap. 

c) Fault 2: 0.080”, spark plug degradation. 
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Figure 8.1 Fault signature of a healthy gap (0.050”) 

 
Figure 8.2 Fault signature of a small gap (0.020”) 

 

Figure 8.3 Fault signature of a large gap (0.080”) 
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The 3 fault signatures have distinct patterns in each of the 3 classes. These patterns were used as 

input to the Artificial Neural Network (ANN), representing the machine learning classifier. The 

output layer of the ANN consisted of 3 classes, representing 1 healthy and 2 fault conditions. The 

ML model consisted of a single input layer. The dimensions of the input layer were 4x16, which 

represented the number of sensors x the number of frequency bins.  Three hidden layers were 

designed to calculate the feature weights. The output layer consists of 3 units per sample. Each 

unit provides a probability for the sample to belong to one of the 3 conditions. 

The model was trained with 300 data samples for each of the 3 classes and was then tested using 

a set of unlabeled data to ensure high performance. The results were graphically presented using 

probability bar charts. A test sample that was predicted as category 1 (Healthy) with more than 

50% probability would be considered as a healthy sample. A test sample that gets category 2 (XX 

gap) with more than 50% was a smaller gap. Similarly, category 3 (XX gap) with more than 50% 

goes for a large gap. Figures 8.4 – 8.6 show examples of predictions for 3 samples of class 1, class 

2 and class 3, respectively. 

 
Figure 8.4 EMSPCA results for spark plugs – class 1 
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Figure 8.5 EMSPCA results for spark plugs – class 2 

 

Figure 8.6 EMSPCA results for spark plugs – class 3 

The total average detection rate represents the number of samples which were correctly predicted. 

For example, the charts above show 100% detection rate since all the predicted labels were 

equivalent to the actual labels. The algorithm was tested with data from different days and different 

times of the day to consider the reliability of the model. The model was able to detect and diagnose 

the degradation in 100% of the unseen test samples which were collected on the same day and the 

same morning when the training samples were collected. Another set of 100 test samples which 

were collected in the afternoon of the same day when the training samples were collected. All the 

test samples were detected and diagnosed correctly. Furthermore, the model was able to detect the 
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degradation of 90 out of 100 samples which were collected on the 5th day. Figure 8.7 shows the 

summary confusion matrix of all the tests conducted to evaluate the performance of the EMSPCA 

model in detecting spark plug degradation on regular data of days 1, 2, 4 and 5 (see section 5.1). 

 
Predicted Labels 

Healthy  0.020” 0.080” 
Testing 

Samples 
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Healthy  100% 0% 0% 300 

0.020” 3% 93.6% 10% 300 

0.080” 2% 6% 92.9% 300 

 
Total 95.82% 900 

Avg Detection Rate 

Figure 8.7 Test Confusion matrix of spark plug results using EMSPCA-ANN 

8.1.2 Degradation Detection Using Deep LSTM-RNN 

This section presents the results and discussions on the use of the deep Long Short-Term Memory 

Recurrent Neural Networks (LSTM-RNNs), a.k.a. Model S2 (see section 1.5). As mentioned in 

the previous chapters, all the sensory data were reduced to 720 data points through different feature 

extraction algorithms to ensure consistency of feature dimensions. Those 720 points were used as 

input to the first LSTM layer of the RNN model, then the weights were passed on to the hidden 

LSTM layers. The output from the hidden LSTM layers was taken to fully connected layers to 
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connect all the information coming from each of the features. Figure 8.8 shows the structure of 

the LSTM-RNN model. 

 

Figure 8.8 Structure of the RNN (LSTM) model for spark plugs 

Table 8.1 shows the structure of the Long Short-Term Memory Recurrent Neural Network 

(LSTM-RNN).  

 

Table 8.1 Parameters of the LSTM-RNN model for spark plug degradation detection  
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The table shows the structure and hyperparameters of the model as follows:  

➢ Input layer: 720 units 

➢ 3 Hidden layers: 

o LSTM: 2 layers, 128 units 

o Fully Connected: 1 layer, 64 units (activation function = ‘tanh’) 

➢ Output layer: 3 classes 

➢ Optimizer: ‘RMSProp’ 

➢ Loss: ‘Sparse Categorical Cross-entropy’ 

➢ Epochs = 120 

➢ Batch size = 32 

 

The dataset was split into 3 subsets: 60% for training, 20% for validation and 20% for testing. The 

testing set consisted of 1929 samples to evaluate the model. The entire training set was used to 

train the model. The validation set was not used for training but was used for refinement during 

the training process. After each epoch of training, the model predicts the validation set. The testing 

set was never used for training nor refinement but was held for post-training evaluation of the 

model.  

The RNN model was able to converge very well throughout the training (Figure 8.9) and validation 

(Figure 8.10) processes and was able to achieve a test accuracy of 97.4%. Figure 8.11 shows the 

confusion matrix of the model which shows the predicted labels versus the actual labels of each 

class. These results were based on regular data from days 1, 2, 4 and 5 only (see section 5.1). 
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Figure 8.9 Loss vs epochs – LSTM for spark plugs        Figure 8.10 Accuracy vs epochs -LSTM for spark plugs 

 

Predicted Labels 

Healthy  0.020” 0.080” 
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Healthy  99.9% 0.06% 0.04% 643 

0.020” 0.7% 96.5% 1.9% 643 

0.080” 1.8% 0.4% 97.8% 644 

 
Total 97.4% 1929 

Avg Detection Rate 

Figure 8.11 Test confusion matrix of spark plug results using LSTM-RNN 

  8.1.3 Degradation Detection Using Deep CNNs 

Unlike sequential features, the input to the Convolutional Neural Network was 2-dimensional 

(20x15) heat maps as mentioned in the previous chapters. The heat maps were constructed using 

Mel-Frequency Cepstral Coefficients (MFCC) maps. The CNN model consisted of Convolution 
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and Max Pooling layers from which the output was taken to fully connected layers to connect all 

the information coming from each of the 4 features. Figure 8.12 shows the CNN model structure. 

 

Figure 8.12 Structure of the CNN model for spark plugs 

Table 8.2 shows the structure of the individual layers including the input and output shapes as well 

as the total and individual number of parameters processed per layer: 

Table 8.2 Parameters of the CNN model for spark plug degradation detection 

 

The dataset was split into 60% for training, 20% for validation and 20% for testing. Like in the 

LSTM-RNN model, the training set was all used for training while the validation set was used for 

refinement. The test set was never seen by the model and contained 1929 samples to evaluate the 
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model after the training process is over. Table 8.2 shows the structure and hyperparameters of the 

CNN model which contains the following:  

➢ Input layer: 720 units 

➢ 3 Hidden layers: 

o Conv2D: 2 layers, 32 units 

o Fully Connected: 1 layer, 64 units (activation function = ‘relu’) 

➢ Output layer: 3 classes 

➢ Optimizer: ‘Adam’ 

➢ Loss: ‘Sparse Categorical Cross-entropy’ 

➢ Epochs = 80 

➢ Batch size = 32 

The CNN model was able to converge well through the training and validation process. As Figure 

8.13 shows below.  

 
Figure 8.13 Accuracy and loss – CNN for spark plugs 

The CNN model was able to achieve a test accuracy of 98.8%. Below is the test confusion matrix 

of the model which shows the predicted labels versus the actual labels of each class. 
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Predicted Labels 

Healthy  0.020” 0.080” 
Testing 

Samples 
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Healthy  99.2% 0.4% 1.4% 623 

0.020” 0% 98.0% 2% 656 

0.080” 1.4% 0.4% 99.2% 650 

 
Total 98.8% 1929 

Avg Detection Rate 

Figure 8.14 Test confusion matrix of spark plug results using MFCC-CNN 

Although the EMSPCA model was able to detect spark plug degradation using existing knock 

sensors at high detection rates, it was not able to do so using speed sensors. This was due to the 

nature of the raw speed sensor data for which the EMSPCA model was not a good fit. Therefore, 

another model was required to try and detect spark plug degradation using speed sensors. 

   8.1.4 Degradation Detection Using EMSPCA-Mosaic-CNN 

The EMSPCA-Mosaic-CNN model, which was explained in detail in Chapter 6, was developed 

particularly to solve the data variability problem (see section 5.1). The problem was that some of 

the collected data on specific days (day 3, 6 and 7) had different ranges of voltage amplitudes and 

frequencies due to experimental issues, namely variant data. These 3 days could not be diagnosed 

by any of the AI models in this research. The EMSPCA-Mosaic-CNN is an invariant AI model, 



PhD Thesis – Essam H. Seddik  McMaster University – Mech. Engineering 
------------------------------------------------------------------------------------------------------------------------------------------ 
 

Page | 163  
 
 

inspired by a novel pre-processing method, namely mosaic images (see chapter 6 for description), 

which performs image pre-processing of time series data.  

The training dataset for the EMSPCA-Mosaic-CNN model consisted of data from the standard 4 

knock sensors only, with wavelet level 4 fault signatures, horizontally and vertically augmented 

32x100 mosaic images, at 20 engine cycles per sample. Figure 8.15 shows the augmented mosaic 

image which was used as input to the EMSPCA-Mosaic-CNN model. Each mosaic image was 

augmented twice in the vertical direction and 25 times in the horizontal direction.  

 

Figure 8.15 Horizontally and vertically augmented mosaic image 

The dataset contained 1,860 samples which were split into 80% for training, 20% for validation. 

The model was able achieve a training accuracy of 100% and a validation accuracy of 96%. Figure 

8.16 shows the training accuracy throughout 150 epochs against the validation accuracy. A set of 

28 samples was kept aside for testing. The model was able to detect 25 out of 28 unlabeled test 

samples, which included variant data. Figure 8.17 shows the test confusion matrix. 
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Figure 8.16 Training vs validation accuracy of EMSPCA-Mosaic-CNN using 1-knock mosaic images 

 

Figure 8.17 Training vs validation accuracy of EMSPCA-Mosaic-CNN 

Blind Test: An additional blind test was performed by a CMHT test engineer provided 14 

completely unlabeled samples, which included variant data (see section 5.1) to confirm the 

performance of the EMSPCA-Mosaic-CNN model. The model was able to detect 100% of the 

samples and diagnosed 12 out of 14. Figure 8.18 shows the results of the blind test. 
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Figure 8.18 Blind test accuracy of EMSPCA-Mosaic-CNN 

The EMSPCA-Mosaic-CNN model was able to solve the variability problem in the engine data 

collected in this research, which was described in section 5.1. All data from days 1, 2, 4, and 5 

were diagnosed with high detection rates by different models in this thesis. However, variant data 

from days 3, 6 and 7 could not be diagnosed by any of the models developed earlier. The 

EMSPCA-Mosaic-CNN, which was developed particularly for this problem, was the only model 

which was able to detect and diagnose variant data in different unlabeled tests. 

Below is a comparison between the results from the EMSPCA-ANN and the EMSPCA-Mosaic -

CNN models of the blind test. Both models were trained on the same data provided in Table 8.3 

and were tested blindly as described above. Table 8.4 shows in detail what day each sample 

belongs to. The EMSPCA-Mosaic-CNN has outperformed the EMSPCA-ANN model, especially 
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in the classification of variant data. This explains the impact of the novel mosaic images in this 

research. Figure 8.19 shows a bar chart comparing the performance of both models. 

Table 8.3 Training data for the EMSPCA-Mosaic-CNN blind test on variant data  

 

Table 8.4 Results of EMSPCA-Mosaic-CNN blind test on variant data  

 

 
Figure 8.19 EMSPCA-ANN vs EMSPCA-Mosaic-CNN on variant data 
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8.1.5 Degradation Detection Using Random Forest 

Unlike neural networks, the Random Forest algorithm does not work best with raw time-series 

data. As discussed in Chapter 2, it consists of several decision trees, each works as an individual 

classifier.  

 

Figure 8.20 Random Forest trees 

As shown in Figure 8.20, each tree looks at the data from a different perspective and answers a 

hierarchy of questions until it votes for a label. By the end of the training process, the number of 

predicted labels is equal to the number of trees. The label which gets most votes of all trees 

becomes the final label like Figure 8.21 presents. 

 

Figure 8.21 Random forest majority voting  
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The developer of a Random Forest model must be creative and focus on relevant features which 

emphasize differences between classes. Irrelevant features would make the model computationally 

heavier and will not add value to the final decision. That is because the model will eventually rely 

on relevant features which have the highest correlation with the target. Irrelevant features will 

have low participation in the voting process. For example, building a RF classifier to classify 

images of oranges and bananas, may require the shape, dimensions, and color of the fruit as 

relevant features. However, the background color of the image would not have low participation 

in the voting hierarchy. Random Forest (RF) has an important tool, namely feature importance. 

When the training process is over, this tool provides the user automatically with a list of all the 

input features along with a percentage which describes the weight of the feature towards the final 

vote. 

Choosing the right model for each kind of data is key to success. In this model, only one existing 

speed sensor (i.e., optical encoder) was used to detect spark plug degradation. As discussed earlier, 

Random Forest (RF) works best with descriptive features rather than time series data. The input 

features to the RF model had to be extracted from the raw signal of the speed sensor. Figure 8.22 

shows an example of a raw speed sensor signal when both small and large spark plug gaps were 

placed in the engine while running. 
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Figure 8.22 Engine speed sensor single-cycle data 

The raw speed sensor data consists of a sinusoidal signal. Both small and large spark plug gaps 

follow the same trend and the difference in amplitude is not big. Thus, the following curve-shape 

description features were calculated: 

 

➢ First Voltage 

➢ Last Voltage 

➢ Minimum Voltage 

➢ Maximum Voltage 

➢ Average of peaks 

➢ Average of dips  

➢ Overall Mean Voltage 

➢ First - Min  

➢ Last - Min 

➢ Area under the curve 

➢ Maximum - Minimum 

➢ Maximum - First 
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➢ Maximum - Last 

➢ Maximum - Mean 

➢ Average of peaks - Minimum 

➢ Average peaks - First 

➢ Average of peaks - Last 

➢ Average of peaks - Mean 

➢ Mean - Minimum 

➢ Mean - First  

➢ Crank Angle at Maximum 

➢ Crank Angle at Minimum 

➢ Maximum - Minimum (Angles) 

➢ Maximum - First (Angles) 

➢ Standard Deviation of the engine cycle 

➢ 2* Standard Deviation of the engine cycle 

➢ 3* Standard Deviation of the engine cycle 

➢ Speed at 25% of the crank angles 

➢ Speed at 50% of the crank angles 

➢ Speed at 75% of the crank angles 

Feeding the Random Forest model with curve-shape description features resulted in a detection 

rate of 88.89%. This means that in every 100 vehicles, the proposed model can accurately classify 

almost 89 vehicles as either healthy or degrading spark plug. Prior knowledge about vehicles with 

degrading spark plugs can prevent the vehicle from low performance and may result in serious 

engine damage. Figure 8.23 shows the confusion matrix of the Curve Description Random Forest 
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(CD-RF) model in detecting spark plug degradation using regular data from day 1, 2, 4, and 5 only 

(see section 5.1). 

 

Predicted Labels 

Healthy  0.020” 0.080” 
Testing 

Samples 

A
ct

u
a

l 
L

a
b

el
s Healthy  98.8% 0.8% 0.4% 258 

0.020” 0.1% 82.5% 17.4% 258 

0.080” 5.6% 12.2% 82.2% 258 

 
Total 88.89% 774 

Avg Detection Rate 

Figure 8.23 Test confusion matrix of spark plug results using CD-RF 

 

8.2 Results of EGR Valve Degradation Detection  

 

Figure 8.24 EGR degradation detection - Models E1 and E2 
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Two models were proposed to detect degradation of EGR valves: Model E1 and Model E2 (see 

section 1.5) as shown in Figure 8.24. Model E1 consists of the EMSPCA algorithm along with an 

Artificial Neural Network (EMSPCA-ANN). Model E2 starts with a pre-processing layer of Fast 

Fourier Transform and Principal Component Analysis (FFT-PCA), followed by an ANN. Both 

models used standard knock sensors to classify EGR faults.  

  8.2.1 EGR Degradation Detection Using EMSPCA 

Using the EMSPCA algorithm, fault signatures of EGR valve were generated for each of the EGR 

levels: Healthy, level 1 CO2 dilution (i.e., fault 1) and level 2 CO2 dilution (i.e., fault 2). Figure 

8.25 – 8.27 show the average fault signatures of 3 fault conditions: 

 
Figure 8.25 Fault signature of a healthy EGR valve (Level 0) 

 
Figure 8.26 Fault signature of EGR level 1 
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Figure 8.27 Fault signature of EGR level 2 

Like the spark plug fault signatures, flat frequency bins were generated for healthy EGR valves 

(i.e., level 0). This confirms that the deviation of a healthy data sample from the healthy baseline 

is close to zero. The next fault signature presents a data sample of a level 1 EGR. Many bins in 

knock sensors 1,3, and 4 show deviations from the baseline. However, knock sensor 2 shows the 

most significant deviations. The bin shows a maximum error magnitude of about 0.5. The last fault 

signature represents level 2 EGR, which shows similar deviations to the level 1 EGR in knock 

sensors 1,3, and 4. Sensor 2 again shows a maximum error magnitude of almost 0.6. Although the 

difference between level 0 and 1 is very noticeable, the difference between levels 1 and 2 is not 

big, which makes the diagnosis of the fault more difficult than detecting it. These fault signatures 

were used as input to the Artificial Neural Network (ANN), representing the machine learning 

model. The output layer of the ANN consisted of 3 classes:  

a) Class 1: Level 0 EGR (i.e., healthy). 

b) Class 2: Level 1 EGR (i.e., 5% Co2 dilution). 

c) Class 3: Level 2 EGR (i.e., 10% Co2 dilution). 

The ML model shown in Figure 8.28 consisted of a single input layer. The dimensions of the input 

layer were 4x16, which represented the number of sensors x the number of fault signature bins.  
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Three hidden layers were designed to calculate the feature weights. The output layer consisted of 

3 units per sample. Each unit provided a probability for the sample to belong to one of the 3 

conditions. 

 

Figure 8.28 ANN for EGR degradation detection 

The results of the EMSPCA-ANN model for EGR valve degradation detection are presented 

below. Figure 8.29, 8.30 and 8.31 show example of the probability bar charts provided for a 

healthy, fault 1, and fault 2 test samples, respectively. The sample with the highest probability 

becomes the final label to the test sample. 

 

Figure 8.29 EMSPCA predictions for EGR degradation detection – class 1 
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Figure 8.30 EMSPCA predictions for EGR degradation detection – class 2 

 

Figure 8.31 EMSPCA predictions for EGR degradation detection – class 3 

The total average detection rate represents the number of samples which were correctly predicted. 

The EMSPCA-ANN model achieved 100% detection rate. The algorithm was tested with test data 

samples from the same day, same time of the day, different days, and different times of the day to 

consider the reliability of the model. The model was still able to detect and diagnose the 

degradation in 100% of the test samples, explained in the confusion matrix in Figure 8.32. 
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Predicted Labels 

Healthy  Level 1 Level 2 
Testing 

Samples 
A

ct
u

a
l 

L
a

b
el

s 

Healthy  100% 0% 0% 300 

Level 1 0% 100% 0% 300 

Level 2 0% 0% 100% 300 

 
Total 100% 900 

Avg Detection Rate 

Figure 8.32 Test accuracy for EGR valve using EMSPCA-ANN 

  8.2.2 EGR Degradation Detection Using FFT-PCA 

Although the FFT-PCA model is simpler than the EMSPCA algorithm, it was able to detect 

degradation in many of the EGR test samples. This could not happen with spark plug problem 

since their faults were more difficult to detect. In this model, the raw signal was converted to the 

frequency domain and then turned into ten unitless principal components which described 

significant features in the original signal. Figure 8.33 shows an example of the difference in 

amplitude between level 1 EGR and level 2 EGR in the frequency domain. The same tests which 

were conducted with the EMSPCA-ANN algorithm were repeated for the FFT-PCA model. The 

model was trained with 300 data samples for each of the 3 classes and was then tested using a set 

of unlabeled data to assess its performance. Figure 8.34 shows the confusion matrix of the EGR 

tests using the FFT-PCA method. 
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Figure 8.33 Frequency analysis of level 1 vs level 2 EGR 

 

 

Predicted Labels 

Healthy  Level 1 Level 2 
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Samples 
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s Healthy  100% 0% 0% 300 

Level 1 0% 100% 0% 300 

Level 2 0% 0% 100% 300 

 
Total 100% 900 

Avg Detection Rate 

Figure 8.34 Test accuracy for EGR valve – EMSPCA 
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 8.3 Summary of FDD Results 

This section provides a summary of the results of all the models developed and implemented to 

detect each of the following problems: Spark Plug Degradation and EGR degradation. 

 

  8.3.1 Summary of Spark Plug Degradation Results 

Four models were developed and discussed to detect spark plug degradation. Table 8.5 shows the 

performance of each of the models along with the sensors used and run times. Although EMSPCA, 

LSTM, and CNN all showed excellent performances using existing knock sensors, the 

Convolutional Neural Network (CNN) had the highest performance and run time. Random Forest 

was the only model which was able to detect spark plug degradation using the built-in engine 

speed sensor due to the nature of the data. The model showed a detection rate of almost 89%. 

Table 8.5 Summary of spark plug degradation detection results 

 

All the results listed in the table were based on engine data of days 1, 2, 4 and 5 which had similar 

amplitudes and frequencies. These models were not able to diagnose variant data such as days 3, 
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6, 7 and 8. The novel method, referred to as the EMSPCA-Mosaic-CNN, were able to achieve 

96% detection rate, using all the available dataset, including variant data. 

  8.3.2 Summary of EGR Results 

For the EGR problem, two models were developed to detect EGR valve degradation. Table 8.6 

shows the performance of each model along with the sensors used, run time. Both models achieved 

a detection rate of 100%. 

Table 8.6 summary of EGR results 
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Chapter 9 - Conclusions and Future Work 

This chapter provides a summary of the research, novel contributions, implementations, and 

results of the Fault Detection and Diagnosis (FDD) solutions proposed in this thesis. Also, 

recommendations for future work are suggested.  

 9.1 Conclusions of The Research 

This research proposed Artificial Intelligence (AI) based solutions for fault detection and 

diagnosis of three vehicle parts: 12v accessory battery, spark plugs and Exhaust Gas Recirculation 

(EGR) valve. While developing these solutions, useful datasets were collected, and novel pre-

processing techniques were invented to solve specific yet important classification problems. Eight 

Machine Learning (ML) and Deep Learning (DL) based Fault Detection and Diagnosis (FDD) 

models were developed in this research, summarized in Figure 9.1: 

 
Figure 9.1 AI-based FDD models 
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The project started by a research collaboration between McMaster’s Center for Mechatronics and 

Hybrid Technology (CMHT) and Geotab Inc., a world telematics leader. Geotab was looking for 

a research-based solution for their customers who suffered from on-duty failures of their 

commercial vehicle batteries. They wanted a solution which detects upcoming battery failures,  

 For this research, all the data was collected and stored by Geotab. The collected dataset contained 

both healthy and breakdown data. The healthy samples were cranking voltage history signals of 

vehicles which had healthy batteries, while breakdown data contained vehicles which had on-duty 

battery failures. Although data filtration was not easy, the lack of labels was a bigger problem, 

which were required to train the supervised learning models developed to detect battery 

degradation. 

Two Machine Learning based models were developed as follows. Model B1 detected previous 

breakdowns in data samples and labeled them; and Model B2 detected ongoing battery 

degradation. Model B1 was able to detect 99.4% of the vehicles with previous breakdowns, while 

Model B2 was able to predict 95.8% of upcoming battery failures. The key to success of Model 

B2 was a novel pre-processing technique for Random Forest (RF) classifiers, which were not 

designed to classify time-series data. The pre-processing technique, namely Curve Description 

Random Forest (CD-RF), enabled time-series classification using Random Forest (RF) classifiers. 

The technique suggested a special set of features, namely Curve Description (CD) features which 

allowed the classifier to look at the data from a different point of view and extract distinguishable 

patterns.  

Two ICE problems were also targeted in this research due to the limited scope of data gathering 

involving Geotab. These were Spark plug degradation detection and Exhaust Gas Recirculation 
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(EGR) valve failure. Since cost reduction was a main objective in this research, one of the biggest 

challenges was to solve these problems by only using built-in engine sensors. No external sensors 

or transducers were allowed to keep the cost of the solution to a potential user low. Thus, two 

kinds of standard sensors were selected for data collection: knock sensors and speed sensors. Four 

knock sensors and a single optimal encoder were used to collect data in this research. All data 

were collected by McMaster’s Center for Mechatronics and Hybrid Technology (CMHT) test 

engineers using a 5.0L Ford Coyote Engine. An engine database was then built which contained 

data on both healthy and artificially induced fault conditions. The fault conditions contained both 

parts: spark plugs degradation and EGR valve fault, with each being operated under 3 conditions 

(two faulty and one healthy condition). 

The engine database was then structured, uploaded, and stored on the cloud and was designed to 

import and export data directly to and from the AI-based models. The models were also operated 

on cloud virtual machines which enabled faster computation. This enabled a complete fault 

detection system implemented on the cloud. Sharing the cloud database which contains billions of 

engine data points can be as quick as few minutes. 

Four models, including Deep Learning (DL) algorithms, were developed to detect spark plug 

degradation, three of which require 4 standard knock sensors, while the last one requires a single 

optical encoder. Model S1 (see Figure 9.1) consisted of the Extended Multi-Scale Principal 

Component Analysis (EMSPCA) along with an Artificial Neural Network (ANN). Model S2 

started by simple sequential features, followed by a deep Long Short-Term Memory Recurrent 

Neural Networks (LSTM-RNN). Model S3, which achieved the highest performance, contained a 

new approach of image pre-processing time-series data using Mel-frequency Cepstral Coefficients 
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(MFCC) along with a deep Convolutional Neural Network (CNN). Model S4 used the novel Curve 

Description Random Forest [CD-RF] pre-processing technique, which allowed RF to detect spark 

plug degradation using the standard optimal encoder, after no other model was able to do so. 

Although all 4 models showed excellent performances, Model S3 (i.e., MFCC-CNN), achieved 

almost 99% detection and diagnosis rate. 

All the previous models were able achieve excellent performance while classifying data with 

limited variability. Once some variability was introduced to some data samples, namely variant 

data, all 4 models failed to classify these samples. Therefore, an invariant AI model was developed 

to handle spark plug degradation detection with respect to data variability. CNN is a popular 

invariant Deep Learning (DL) model; however, CNN was designed to classify images. Thus, a 

novel pre-processing method was invented, namely mosaic images, to enable the use of CNN with 

EMSPCA. This model, namely EMSPCA-Mosaic-CNN, has outperformed all the others tried in 

this research by detecting spark plug faults in variant data with 96% detection rate. This model 

has solved the data variability issue. 

Finally, the EGR problem was solved using 2 models: Model E1 and E2 (see Figure 9.1). Model 

E1 consisted of EMSPCA along with an ANN, while Model E2 contained a Fast Fourier 

Transform (FFT) with Principal Component Analysis (PCA) for pre-processing, along with an 

ANN. Both models were able to detect EGR condition with 100% success rate. 

 9.2 Recommendations and Future Work  

In this research, the developed ML and DL models were able to achieve high detection rates with 

experimental data gathered over 7 days of testing. Although thousands of samples were generated 
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in these 7 days, Machine Learning algorithms can achieve better results if more data is available. 

More data does not always mean better results if the data is irrelevant, redundant, invalid, 

unlabeled, poor, or do not carry useful information. Thus, the first recommendation for upcoming 

researchers is to collect more labeled, relevant, diverse, and rich data. As a beginning, more days 

of data should be collected from the same engine. Then, different operating conditions should be 

included such as other engine speeds, loads temperatures and humidity levels. Switching sensors 

as well as data acquisition devices and cords would be useful to include more for inducing 

experimental variability. As a next step data from different engines should be collected. More data 

would result in the proposed models of this research achieving higher performances. Another 

recommendation is to explore more data augmentation strategies for the novel EMSPCA-Mosaic-

CNN method proposed in this research.  
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Appendix A - Cloud-based Communications and Data Storage Strategies 

Data management is necessary when it comes to Big Data. Collecting large amounts of data 

requires proper data storage and governance. Building a clean and rich database of engine data is 

one of the contributions in this research. Not only that a cloud database will be useful for future 

research projects in the CMHT lab but can also help automotive researchers all over the world 

who suffer from the lack of data availability. Another great advantage of the cloud database is that 

huge amounts of data can be shared with anyone, anywhere in the world, just by adding the user 

email to the sharing list. No need to physically copy data or even sending them remotely. The 

owner of the database gets full control on what exactly will be shared with the other person. 

A.1 Cloud-based Engine Database 

The Spark Plug and EGR data contain billions of data points which were stored in standard data 

folders on the CMHT server. The CMHT lab will continue collecting more engine data moving 

forward which include new engine faults and the amount of data points might reach trillions of 

data point. Copying all these data from the CMHT server to local computers to run classification 

models was a challenge. Therefore, the database was migrated to the cloud for better data storage 

and management. The top 3 cloud service providers in the world in 2020 were: Microsoft Azure, 

Google Cloud Platform (GCP), and Amazon Web Services (AWS). These providers offer different 

cloud services and cloud-based applications such as cloud storage, cloud database, live notebooks, 

virtual machines (VM), and data analysis tools.  

Two main cloud services were needed in this project: Cloud database and virtual machines. The 

cloud database was needed for data storage and online querying while virtual machines were 
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needed to run the classification models suggested in this project. Although Amazon Web Services 

(AWS) offers cloud storage, it did not offer online database querying at the time of this research. 

Thus, the options were narrowed down to Microsoft Azure and Google Cloud Platform (GCP). 

Both providers offered cloud databases and virtual machines (VM), however, GCP offered 

cheaper pricing. Therefore, Google Cloud Platform (GCP) was selected as the cloud service 

provider for this project. Migrating the local database to GBQ was a great solution for storing and 

managing big data on local computers since it has unlimited storage capacity. The cloud database 

application in GCP is called Google Big Query (GBQ). GBQ consists of a hierarchy of projects, 

datasets and tables as shown in Figure A.1: 

 

Figure A.1 GBQ hierarchy 

 

 

 

Google BigQuery (GBQ) 

Cloud Database

Project 1 Project 2

Dataset 1 Dataset 2

Table 1 Table 2 Table 3 Table 4 Table 5

Dataset 3 Dataset 4

Project 3
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A.2  Data Migration to Google Big Query Cloud Database 

Migrating a huge amount of data to the cloud would not be easy if done manually. The fresh data 

collected from the engine previously used to be stored in the CMHT server as multi-dimensional 

MAT files which are not accepted by Google Big Query (GBQ). Therefore, a cloud migration 

process was developed using MATLAB scripts and Command Prompt.  

A MATLAB script was developed to convert all data files of the same category into CSV files 

after removing any redundant information. The CSV file contains single synchronized table that 

includes all the relevant sensory data which may be used for further analysis. The CSV files are 

created with the same names of the original data files to avoid confusions during the process. Users 

are only required to click the RUN button in MATLAB and all the work will be done 

automatically. 

The next step is to use a single-line CMD command in Google Cloud SDK Shell, which connects 

local computers to the cloud platform. The CMD command takes all CSV files of the same 

category and uploads them directly to the corresponding GBQ datasets and tables, which are 

named with the same names of the original data files. The following Figure A.2 shows a screenshot 

from Google Big Query (GBQ) Cloud Database. 
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Figure A.2 Screenshot of Google BigQuery database 
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 A.3 Pulling Data from Cloud Database 

The following diagram in Figure A.3 presents the data uploading process which was used in this 

research: 

 

Figure A.3 Data from engine to the cloud 

 

Python-based fault classification models, such as Deep Convolutional Neural Networks (CNNs), 

Deep Recurrent Neural Networks (RNNs) and Random Forest (RF) were designed to pull data 

from Google BigQuery (GBQ). The communications between Python and GBQ were all published 

and available online on the official website of Google Cloud Platform (GCP). However, pulling 

data from GBQ to MATLAB-based fault classification models, such as Extended Multi-Scale 

Principal Component Analysis (EMSPCA), was another challenge. 

MathWorks Co. and Google Cloud Platform do not have communication protocols between their 

platforms. However, a GitHub repository which connects MATLAB to several cloud service 

providers was invented by other researchers [91]. The repository contains packages and 

instructions to connect MATLAB to Google Cloud Platform (GCP). Communications between 
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MATLAB and GCP were achieved as shown in Figure A.5 and GBQ tables were loaded into 

MAT-format. A few pre-requisites such as installing Git Desktop, JAVA, and Maven packages 

were required. 

A.4   Cloud Execution of FDD Models on Virtual Machines (VM) 

Building a cloud database on GBQ was a great solution to the storage and data management issues 

on local computers. However, loading large data tables from GBQ back into MATLAB or Python 

to run FDD and classification models on local computers was not the best practice. Thus, virtual 

machines had to be created on Google Cloud Platform (GCP) to close the loop and conduct all 

communications on the cloud without needing local computers. Figure A.4 shows the workflow 

of the cloud-based model. 

 

Figure A.4 Data pipeline diagram 
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Figure A.5 Loading GBQ table in Matlab 
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Virtual machines (VM) are remote computers with fully customizable specifications which can be 

assembled and purchased on the cloud. VMs are physically created in Data Centers which are in 

specific countries around the world. Using Remote Desktop Connections, virtual machines can be 

accessed from any computer device, tablet, or even smart phone. The application on Google Cloud 

Platform (GCP) where virtual machines can be created and operated is called Google Compute 

Engine (GCE). Capacity of the Central Processing Unit (CPU), number of cores, disk size, 

memory and even operating system can all be adjusted based on the user needs. Even after creating 

and running the VM, most specifications can be changed according to current needs. VM operating 

system are available in Windows, Ubuntu, or Linux. Figure A.6 shows a screenshot of the virtual 

machine (VM) specifications. 

All the FDD and classification models which were built in this thesis were executed on cloud 

virtual machines (VM) using Google Cloud Engine (GCE). This has enhanced the processing time 

and the ease of communications between the different stages of an FDD model. One of the best 

advantages of GCE is that disks can be copied to other virtual machines. This prevents the user 

from losing any installed packages or any stored data. However, communications are only allowed 

among disks and virtual machines in the same data center location. For example, disks which were 

created in a data center in a US zone can not be used in a VM in Asia. 

Virtual machines give the user the flexibility to access their remote computers from any device 

anywhere in the world. This means that not only the cloud engine database can be easily shared 

with other researchers, but also the MATLAB-based or Python-based FDD and classification 

models. This can be done by sharing the VM credentials with the desired individual or institution. 

Figure A.7 shows a screenshot of a ML model running on a virtual machine (VM). 
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Figure A.6 Virtual machine specifications 
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Figure A.7 Screenshot of a ML model on Virtual Machine (VM) 
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