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Abstract
In this thesis we study the matter of hypersensitivity to model structure in the Rosenzweig-
MacArthur predator-prey model, and in particular whether the introduction of stochas-
ticity reduces the sensitivity of the ω-limit sets to small changes in the underlying vector
field. To do this, we study the steady-state probability distributions of stochastic differ-
ential equations driven by a compound Poisson process on a bounded subset of Rn, as
steady-state distributions are analogous to ω-limit sets for stochastic differential equa-
tions. We take a primarily analytic approach, showing that the steady-state distributions
are equivalent to weak measure-valued solutions to a certain partial differential equation.
We then analyze perturbations of the underlying vector field using tools from the theory
of compact operators. Finally, we numerically simulate and compare solutions to both
the deterministic and stochastic versions of the Rosenzweig-MacArthur model.
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Chapter 1

Introduction and Preliminaries

1.1 Background and Introduction
The general form of the classic Rosenzweig-MacArthur (R-M) predator-prey model is

dN

dt
= rN

(
1− N

K

)
− Φ(N)P, dP

dt
= (Φ(N)−m)P (1.1.1)

where N(t) is a measure of the prey population at time t and P (t) is a measure of
the predator population at time t. Each of the parameters r,m, and K appearing in
this pair of equations has a biological interpretation. In the absence of predation, the
prey population grows logistically, with r representing the maximum growth rate and K
the maximum sustainable population. In the absence of prey, the predator population
decreases exponentially at the rate m, which can therefore be interpreted as the death
rate of the predator species. The parameter K is of greatest interest among these three
due to its role in the “paradox of enrichment” [17], where under certain conditions a
higher value for K can lead to large oscillations in N(t) and P (t) while a lower value
results in convergence to a stable equilibrium.

Aside from the three scalar parameters r,m,K, the other unknown component of
this model is the function Φ(N), which in the biological interpretation corresponds to
the rate at which a single predator consumes prey given the current population N of
prey. There have been multiple possible functions Φ(N) proposed for use in this model,
including

ΦH(N) = aHN

1 + bHN
,

ΦI(N) = aI(1− ebIN ),

ΦT (N) = aT tanh(bHN).

We will refer to these functions as Holling type II, Ivlev, and Trigonometric respectively
in order to be consistent with the terminology introduced in [10]. It should be noted
that all three functions are classified as Holling type II according to the definition found
in [12] since they vanish at zero, are non-decreasing, are concave down, and approach
a finite limit as N → ∞. Holling types I, III, and IV refer to other classes of uptake
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functions. Type I consists of linear functions, type III of functions that are concave up
near zero but otherwise similar to type II, and type IV of functions that decrease for N
sufficiently large but are otherwise similar to type II.

With suitable choices for the constants, these functions can be made extremely close
to each other in the sense of the supremum norm. For example, if we set aI = 1, bI = 1.5
and aT = 1, bT = 2, we find that

sup
N∈R+

|ΦI(N)− ΦT (N)|' 0.04.

Despite the similarity of the functions, the asymptotic behaviour of the dynamical system
(1.1.1) depends strongly on exactly what form is chosen for Φ. For example, using the
values aI = 1, bI = 1.5 and aT = 1, BT = 2, we have a stable equilibrium for K < 10.116
if ΦT is the uptake function, while the equilibrium becomes unstable for K > 1.071
if we use ΦI . This “hypersensitivity to model structure” was pointed out in [10], and
represents a significant problem with the model as a reliable predictive tool.

We intend to determine the effect of adding a stochastic noise term to (1.1.1), and
in particular whether the introduction of noise reduces the sensitivity of the long-term
behaviour of the system to perturbations of the uptake function Φ. This approach is
partially inspired by behaviour observed in the SIR model with vital dynamics, another
important dynamical system defined by the differential equations

dS

dt
= 1− µS − βIS, dI

dt
= βIS − (γ + µ)I. (1.1.2)

This version of the SIR model is used to model the behaviour of disease epidemics
over long periods of time. In this form the trajectories of the model (1.1.2) are very
simple, having globally asymptotically stable equilibria as the only ω-limit sets. However,
for certain parameter values, the introduction of even a small stochastic noise term
dramatically alters the behaviour of the system, resulting instead in large-amplitude
oscillations around the equilibrium. The papers [4] and [22] explore this feature of the
SIR model in depth.

Given that this behaviour exists in the SIR model, we conjectured that stochas-
tic noise could resolve the hypersensitivity issue by inducing oscillatory behaviour for
parameter values where the deterministic model predicts convergence to an equilibrium.

To investigate the effects of noise, we will move to the more general setting of a
Poisson-driven SDE on a domain D ∈ Rn as in [13]. This equation takes the form

dY (x, t) = b(Y (x, t)) +
∫

Θ
j(Y (x, t), θ)ω(dθ, dt), Y (x, 0) = x, (1.1.3)

where Θ is a measure space, ω is a Poisson point process on R
+ × Θ and j(x, θ) is a

jump function j : D × Θ → R
n. The differential dY (x, t) in (1.1.3) cannot be defined

rigorously, since the process is discontinuous. Instead, this equation is shorthand for a
certain integral equation that will be defined in the next section. We will show that
the probability distribution of the process Y (x, t) is a measure-valued weak solution of

2

http://www.mcmaster.ca/
http://www.math.mcmaster.ca/
http://www.math.mcmaster.ca/


Masters of Science– Ian Weih-Wadman; McMaster University– Department of
Mathematics

a PDE of the form
∂tµt −∇ · (bµt)− cAµt + cµt = 0 (1.1.4)

where c > 0 is the rate of the Poisson process ω with respect to the time variable t,
and A is a certain linear operator defined from the jump function j(x, θ). The precise
definition of A will be introduced later.

Since SDEs do not have ω-limit sets is the usual sense, we focus instead on time-
invariant probability distributions. Time-invariant probability distributions are analo-
gous to ω-limit sets in that they represent the long-term behaviour of the SDE, after all
transient effects resulting from the initial condition have decayed. Under appropriate
conditions on the jump function j(x, θ), we will be able to prove that there exists a
unique constant measure-valued solution µe to (1.1.4), and hence that there is a unique
time-invariant probability distribution for Y (x, t). Furthermore, we will be able to prove
under reasonable assumptions that the solution µe is not arbitrarily sensitive to pertur-
bations of b and A.

After proving this main result, we perform some numerical investigations of the
Rosenzweig-MacArthur model with Poisson noise. The numerical approximations for
the distribution µ that we compute indicate that although the noise term helps reduce
the sensitivity, the difference in the steady state distributions resulting from ΦI(N)
and ΦT (N) is still very significant. Therefore, the issue of hypersensitivity cannot be
considered resolved, theoretically or computationally, by the addition of Poisson-driven
stochastic noise.

1.2 Notation and Definitions
Throughout, λ will always refer to the Lebesgue measure on R

n and δx to the Dirac
measure at the point x. If µ is a measure on the measurable space Ω and K ⊂ Ω is
measurable, we denote the restriction of µ to K by µ|K .

We will focus on a single bounded domain D ⊂ Rn and define Z := C0(D)∗. By the
Riesz-Markov-Kakutani representation theorem, this space Z can be identified with the
set of regular signed Borel measures on D, and the norm on Z corresponds to the total
variation norm, which we write ||·||TV .

We will also need to use the much larger space W := BL(D)∗, the dual of the space
BL(D) of bounded Lipschitz functions on D equipped with the norm

||f ||BL(D)= max{sup
x∈D
|f(x)|, L}

where L is the Lipschitz constant of f . Because there is a natural inclusion of I :
C0(D) → BL(D), there is also a natural inclusion I∗ : Z → W . From now on we will
not write this inclusion operator explicitly, and by a slight abuse of notation consider
elements of Z as naturally also belonging to W .

The W -norm is a “natural” norm for the comparison of probability measures on Rn,
since unlike the total variation norm it incorporates the metric on the domain as well as
the probabilities of events. However, the Banach space W also includes elements which
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are not measures, so we must take care not to assume that a general element of W
corresponds to an element of Z.

Throughout this thesis, we will make use of integrals of functions from R to Z.
Since Z is not separable, many Z-valued functions are not Bochner integrable. See
the appendix of [9] for further discussion of Bochner integrability. For our purposes, it
suffices to have the integral exist in a weak sense, so we make the following definition.

Definition 1.2.1. Let µt : [0, T ]→ Z be a Z-valued function. We say that µt is weakly
measurable if ∀f ∈ C0(D), t 7→ 〈f, µt〉 is Lebesgue measurable from [0, T ]→ R. If µt is
weakly measurable and ∫ T

0
||µt||TV dt <∞,

then we can define a bounded linear functional g on C0(D) by

∀f ∈ C0(D), 〈g, f〉 :=
∫ T

0

∫
D
f(x)dµt,

since ∣∣∣∣∣
∫ T

0

∫
D
f(x)dµtdt

∣∣∣∣∣ ≤ ||f ||C0

∫ T

0
||µt||TV dt.

Then g ∈ Z and so we define ∫ T

0
µt = g.

Given a Lipschitz vector field b defined on the bounded domain D ⊂ Rn such that D
is forward-invariant with respect to b, we define Xb(x, t) : [0,∞)→ D to be the unique
flow starting at the point x along the vector field b. That is, Xb(x, t) satisfies

Xb(x, t) = x+
∫ t

0
b(Xb(x, τ))dτ, ∀x ∈ D, t ∈ R.

As in [1], we introduce the pushforward operator X#
b,t : W →W defined by the identity

〈v(x), X#
b,tµ〉C1 = 〈v(Xb(x, t)), µ〉C1 .
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Chapter 2

The Poisson Driven Differential
Equation

We begin by giving the precise definition of the Poisson random measure that will drive
the stochastic component of the SDE (1.1.3). See [6] for a more general discussion of
Poisson-driven stochastic differential equations.
Definition 2.1.1. Let Θ be a measurable space and let G be a probability measure on
Θ. The probability space Ω is defined to be the set of counting measures ω on R

+ × Θ,
and the probability measure P is the unique probability measure on Ω such that for all
K ∈ R+ ×Θ measurable and with [cλ×G](K) <∞,

P(ω(K) = n) = ([cλ×G](K))n

n! e−[cλ×G](K)

and ω(K) = n is independent of ω(K ′) = m if K ∩K ′ = ∅. Additionally, let Ft be the
filtration on Ω defined by A ∈ Ft if and only if ∀ω, ω′ ∈ Ω

ω|[0,T ]×Θ= ω′|[0,T ]×Θ⇒ ω, ω′ ∈ A or ω, ω′ ∈ Ac.

With these definitions, (Ω,Ft,P) is a filtered probability space.
A proof that such a measure P exists and is unique can be found in chapter 3 of [14].

We can now give the rigorous definition of a solution to the Poisson-driven SDE (1.1.3).
For each fixed x ∈ D, the process Y (x, t, ω) : R+ × Ω → D adapted to Ft is defined to
be a solution to (1.1.3) with initial condition x if it satisfies

Y (x, t, ω) = x+
∫ t

0
b(Y (x, τ, ω))dτ +

∫ t

0

∫
Θ
j(Y (x, τ−, ω), θ)dω, ∀t ∈ R+ (2.1.1)

P-almost surely. Here b(x) is a C1(D) vector field for which D is a forward-invariant set,
and j(x, θ) : D×Θ→ R

n is a jump function that depends on the current location of the
process and on the measure space Θ. We make the following assumptions about j.

∀x ∈ D, θ ∈ Θ, x+ j(x, θ) ∈ D
∃α,C > 0, |j(x, θ)− j(y, θ)|≤ C|x− y|α, ∀x, y ∈ D, θ ∈ Θ.

∃σ : D ×D → R :
∫

Θ
f(x+ j(x, θ))dG(θ) =

∫
D
σ(x, y)f(y)dy, ∀x ∈ D.

(2.1.2)
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The first of these assumptions is needed so that the endpoints of the jumps remain in
the bounded domain D. The second ensures that the jump resulting from any point θ
in the measure space Θ is at least α-Hölder continuous with respect to the position x
for some α. Finally, we assume that this jump function admits an x-dependent density
σ.

In the next proposition, we prove that a process Yω(x, t) satisfying (2.1.1) exists.
From here on we will suppress the explicit dependence of Y (x, t, ω) on ω and simply
write Y (x, t).

Proposition 2.1.1. For each x ∈ D there is an Ft-adapted process Y (x, t) : R+ → D
satisfying (2.1.1) a.s. Furthermore, this process has the Markov property.

Proof. Note that for any T > 0 the set [0, T ]×Θ has finite measure under cλ×G, and
therefore

P(ω([0, T ]×Θ) <∞) = 1.

Hence, after excluding a P-null set, we may assume that ω|[0,T ]×Θ is supported on a
countable set of points (ti, θi), i ∈ N ordered so that ti < ti+1. Since the vector field
b(x) is Lipschitz and D is forward-invariant under b(x), we can construct the unique flow
Xb(x, t). Then we define Y (x, t) for t ∈ [0, T ] by

Y (x, t) =:
{
X(Y (x, s), t), t ∈ [0, t0)
X(Y (x, ti) + j(Y (x, ti), θi), t− ti)), t ∈ [ti, ti+1).

(2.1.3)

By straightforward calculus the process (2.1.3) satisfies the integral equation (2.1.1) and
is adapted. Furthermore, note that if 0 ≤ s < t, then Y (x, t) can be determined from
only ω|[s,t]×Θ and the value Y (x, s), and hence the process is Markov.

To prove that the density of the process (2.1.3) satisfies an equation of the type
(1.1.4), we follow a martingale argument similar to those introduced in [19]. In the next
proposition, we construct a martingale based on f(Y (x, t), t) for any arbitrary function
f(x, t) ∈ C1(D × R+).

Proposition 2.1.2. If f(x, t) ∈ C1(D × R+) the Ft-adapted process

{
f(Y (x, t), t)−

∫ t

0
ft(Y (x, τ), τ) + b(Y (x, τ)) · ∇f(Y (x, τ), τ))

+ c

∫
D
σ(Y (x, τ), y)f(y)dy − cf(Y (x, τ), τ))dτ,Ft,P

}
(2.1.4)

is a martingale.

Proof. We fix times s, t with 0 ≤ s < t and assume t− s < 1. Throughout this proof we
assume, by excluding a P-null set, that ω([s, t) × Θ) < ∞. Under these circumstances
the process Y (x, t) is piecewise differentiable and so it follows by elementary calculus

6

http://www.mcmaster.ca/
http://www.math.mcmaster.ca/
http://www.math.mcmaster.ca/


Masters of Science– Ian Weih-Wadman; McMaster University– Department of
Mathematics

that

f(Y (x, t), t) = f(Y (x, s), s) +
∫ t

s
ft(Y (x, τ), τ) + b(Y (x, τ)) · ∇f(Y (x, τ), τ))dτ

+
∫ t

s

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)− f(Y (x, τ−), τ))dω(τ, θ) (2.1.5)

almost surely. Therefore, it suffices to show that

E

[ ∫ t

s

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)− f(Y (x, τ−), τ))dω

∣∣∣∣Y (x, s)
]

= c

∫
D
σ(Y (x, τ), y)f(y)dy − cf(Y (x, τ), τ))dτ.

Define the random variable

T0(ω) =
{

sup{r ∈ [s, t) : ω([s, r)×Θ) = 0}, if ω([s, t)×Θ) = 1,
t otherwise.

Applying Grönwall’s inequality, if T0 < t we have

|Y (x, T0−)− Y (x, s)|≤ C(t− s)

where C depends only on b, since Y (x, T0−) = Xb(Y (x, s), T0 − s), and hence if T0 < t
we have

|f(Y (x, T0−) + j(Y (x, T0−), θ))− f(Y (x, s) + j(Y (x, s), θ))|
≤ C(t− s)α, ∀θ ∈ Θ, (2.1.6)

where C depends on b, j, f and α is in (2.1.2). From this we get, ∀r ∈ [s, t),∣∣∣∣E[ ∫ t

s

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)− f(Y (x, τ−), τ))dω

∣∣∣∣Y (x, s), T0 = r

]
−
∫

Θ
f(Y (x, s) + j(Y (x, s), θ))dG(θ)

∣∣∣∣ ≤ C(t− s)α. (2.1.7)

Note that P(ω([s, t)×Θ) > 1) ≤ C(t− s)2 for some C > 0, and also |P(ω([s, t)×Θ) =
1)− c(t− s)|≤ C(t− s)2. By the law of total probability, we obtain∣∣∣∣E [∫ t

s

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)− f(Y (x, τ−), τ))dω(τ, θ)

∣∣∣∣Y (x, s)
]

− (t− s)
∫

Θ
f(Y (x, s) + j(Y (x, s), θ))dG(θ)

∣∣∣∣ ≤ C(t− s)1+α. (2.1.8)
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We can now partition the interval [s, t) into N subintervals [si, si+1) of maximum length
B, and write

E

[∫ t

s

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)− f(Y (x, τ−), τ))dω(τ, θ)

∣∣∣∣Y (x, s)
]

=
N∑
i=1

E

[ ∫ si+1

si

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)

− f(Y (x, τ−), τ))dω(τ, θ)
∣∣∣∣Y (x, s)

]
. (2.1.9)

By the tower property of conditional expectation, the Markov property for Y (x, s), and
(2.1.8), we have∣∣∣∣E[ ∫ si+1

si

∫
Θ
f(Y (x, τ−) + j(Y (x, τ−), θ), τ)

− f(Y (x, τ−), τ))dω(τ, θ)
∣∣∣∣Y (x, s)

]
− (si+1 − si)E

[∫
Θ
f(Y (x, si) + j(Y (x, si), θ))dG(θ)

∣∣∣∣Y (x, s)
] ∣∣∣∣

≤ C(si+1 − si)1+α. (2.1.10)

Observing that the function

si 7→ E

[∫
Θ
f(Y (x, si) + j(Y (x, si), θ))dG(θ)

∣∣∣∣Y (x, s)
]

is Riemann integrable and using the third assumption from (2.1.2), we have the result.

Before continuing, we define the bounded operator A∗ acting on f(x) ∈ C0(D) by

[A∗f ](x) =
∫

Θ
f(x+ j(x, θ))dθ =

∫
D
σ(x, y)f(y)dy.

We require that σ(x, y) satisfies the following set of conditions

∀x, y ∈ D, σ(x, y) ≥ 0

∀x ∈ D,
∫
D
σ(x, y)dy = 1

∀x ∈ D, σ(x, ·) ∈ C1(D)
∃B > 0 : ∀x ∈ D, ||σ(x, ·)||C1(D)< B

σ(x, ·) : D → Z is Lipschitz.

∀E open, E 6= ∅, E ⊂ D,
∫
E

∫
D\E

σ(x, y)dxdy > 0.

(2.1.11)
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The first two conditions here follow immediately from the definition of σ. The third,
fourth, and fifth are smoothness assumptions, ensuring that the distribution of the jumps
the process makes has reasonably regular dependence on the current state of the process.
The final assumption guarantees that there are no boundaries in the domain which the
process cannot "jump across". These assumptions are easily satisfied by most natural
choices of jump function for biological models.

We are now prepared to prove the main result of this section, establishing the rela-
tionship between weak solutions to the PDE (1.1.4) and the stochastic process Y (x, t).

Proposition 2.1.3. Assume that µx,t : D×R+ → Z is a Z-valued function that satisfies
the equation ∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)f(x, t)dµx,tdt = −f(x, 0) (2.1.12)

for all f(x, t) ∈ C1([0, T ]×D) with f(x, T ) = 0. Then, µx,t ∈M(D) satisfies

E[h(Y (x, t))] =
∫
D
hdµx,t (2.1.13)

for any h ∈ C0(D).

Proof. For each (x, t) ∈ D × R+ define µx,t to be the unique element of Z satisfying
the identity (2.1.13) for each h ∈ C0(D). Let f be any C1(D × [0, T ]) function with
f(x, T ) = 0. Then by Fubini’s theorem and Proposition 2.1.2 we get

E

[
f(Y (x, T ), T )−

∫ T

0
ft(Y (x, t), t) + b(Y (x, t)) · ∇f(Y (x, t), t))

+
∫
D
σ(Y (x, t), y)f(y)dy − cf(Y (x, t), t))dt

]
= −

∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)f(x, t)dµx,tdt = f(x, 0). (2.1.14)

On the other hand, we show in the appendix that the Z-valued solution of (2.1.12) is
unique, which gives the result.

To summarize this section, we have proven that the unique weak solution of (2.1.12)
allows us to compute expectation values of E[h(Y (x, t))] for all C0(D) functions h(x).
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Chapter 3

Stability of Steady State
Probability Distributions

3.1 Existence and Uniqueness of Steady States
We mentioned in the introduction that time-invariant probability distributions were
analogous to ω-limit sets for SDEs. Therefore, our objective now is to investigate the
time-invariant solutions of the equation

∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)v(x, t)dµtdt+
∫
D
v(x, 0)dµ0 = 0,

∀v(x, t) ∈ C1(D × [0, T ]) : v(x, T ) = 0, (3.1.1)

where A is the linear convolution operator introduced in the previous section, b is a
Lipschitz vector field, and c ∈ R+. Before constructing solutions µt to (3.1.1) we must
develop some preliminary results.

Recall that we defined Xb(x, t) to be the flow associated with b and X#
b,t the pushfor-

ward operator associated with the flowXb(x, t). Observe that if µ ∈ Z, then ||X#
b,tµ||TV =

||µ||TV . The next equation summarizes some properties of solutions to (3.1.1).

Proposition 3.1.1. A weakly measurable Z-valued function µt : R+ → Z satisfies
(3.1.1) ∀T > 0 if and only if µt satisfies

µt = e−ctX#
b,tµ0 +

∫ t

0
e−c(t−τ)X#

t−τAµτdτ, ∀t > 0 (3.1.2)

where the integral in the expression (3.1.2) is taken in the sense of (1.2.1). Furthermore,
for each µ0 there exists a unique such µt, and µt satisfies

||ut||TV≤ ||u0||TV , ∀t ∈ R+, (3.1.3)

and ∫
D

1dµt =
∫
D

1dµ0, ∀t ∈ R+. (3.1.4)

Finally, the solution satisfies a semigroup property. That is, if µt is a solution and µ̂t
is another solution with initial data µ̂0 = µs for some s > 0, then µ̂r = µs+r ∀r > 0.

10
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The proof of this proposition is long and mostly straightforward, so we have placed
it in the appendix.

Before proceeding to construct the steady state solutions, we must prove some results
on the operator A that follow from (2.1.11). We begin with a lemma.

Lemma 1. Given any µ ∈ Z, there is a sequence of measures µn, where each µn is a
finite linear combination of point measures, such that ||µn||TV≤ ||µ||TV , and limn→∞||µ−
µn||W= 0.

Proof. For any n, we can partition D into a finite number N of disjoint sets Si such that
diam(Si) ≤ 1/n. For each Si, choose an arbitrary point xi ∈ Si. We then define

µn =:
N∑
i=0

µ(Si)δxi .

It is clear that ||µn||TV≤ ||µ||TV . Define a measure νi by νi(E) = µ(E∩Si), and observe
that

||νi − µ(Si)δxi ||W= sup
||f ||BL(D)=1

∫
Si

fdµ− µ(Si)f(xi) ≤
1
n
||νi||TV ,

since any such f satisfies supx∈Si |f(x)− f(xi)|≤ 1/n. Since
∑
νi = µ, we have

||µ− µn||W≤
N∑
i=0
||νi − µ(Si)δxi ||W≤

1
n

N∑
i=0
||νi||TV = 1

n
||µ||TV .

We are now ready to prove the main properties of A.

Proposition 3.1.2. If σ(x, y) satisfies (2.1.11), and L is the Lipschitz constant associ-
ated with the map σ(x, ·) : D → L1(D), then

∀µ ∈ Z, ||Aµ||TV≤ L||µ||W . (3.1.5)

Furthermore, for all µ ∈ Z, the measure Aµ is absolutely continuous with respect to the
Lebesgue measure on D and its Radon-Nikodym derivative is a continuous function.

Proof. Let v ∈ C0(D) satisfy ||v||C0= 1. By the fifth assumption in (2.1.11),

[A∗v](x) =
∫
D
σ(x, y)v(y)dy

is a Lipschitz function of x with Lipschitz constant L. Then it is clear that∫
D
v(y)dAµ(y) =

∫
D

∫
D
σ(x, y)v(y)dydµ(x) ≤ L||µ||W ,

11
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which suffices to conclude (3.1.5). To prove the second part, we define µn as Lemma (1),
and observe by the third and fourth assumptions in (2.1.11) that Aµn � λ and∣∣∣∣∣∣∣∣dAµndλ

∣∣∣∣∣∣∣∣
C1
≤ B||µ||TV .

By the Arzela-Ascoli theorem, there must be a subsequence µnk and a continuous func-
tion u such that ∣∣∣∣∣∣∣∣dAµnkdλ

− u
∣∣∣∣∣∣∣∣
C0
→ 0.

Since
||Aµ−Aµn||TV≤ L||µ− µn||W ,

we conclude that Aµ = uλ.

Corollary 1. Since Z is dense in W , A extends uniquely to a bounded linear map
W → Z.

In order to obtain steady state solutions, we introduce a linear operator ω : Z → Z
defined by ∫

D
fdω(µ0) = lim

s→∞
1
s

∫ s

0

∫
D
fdµsds.

The following proposition collects some properties of ω that we will need.

Proposition 3.1.3. For any µ0 ∈ Z, ω(µ0) is a constant solution of (3.1.1), and
ω(µ0) = µ0 if µ0 is a constant solution of (3.1.1). Furthermore, ω(µ0)� λ and dω(µ0)

dλ ∈
C0(D), and ∫

D
1dµ0 =

∫
D

1dω(µ0).

Finally, if µ0 ≥ 0, then ω(µ0) ≥ 0 and ω(µ0)(E) > 0 for each open set E ⊂ D.

Proof. By the semigroup property of solutions to (3.1.1), given any solution µt with
initial data µ0 to (3.1.1) and any s > 0, the measure

νst =: 1
s

∫ s

0
µt+τdτ

satisfies∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)v(x, t)dνst dt

= 1
s

∫ s

0

∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)v(x, t)dµt+τdt

= −1
s

∫ s

0

∫
D
v(x, 0)µτdτ = −

∫
D
v(x, 0)dνs0.

12
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Additionally, note that

||νst+r − νst ||TV≤
1
s

∣∣∣∣∣∣∣∣∫ t+r

t
µτdτ

∣∣∣∣∣∣∣∣
TV

+ 1
s

∣∣∣∣∣∣∣∣∫ t+s+r

t+s
µτdτ

∣∣∣∣∣∣∣∣
TV

≤ 2r
s
,

so it is clear that∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)v(x, t)dω(µ0)dt

= lim
s→∞

∫ T

0

∫
D

(∂t + b(x) · ∇+ cA∗ − c)v(x, t)dνst dt

= lim
s→∞

−
∫
D
v(x, 0)dνs0 = −

∫
D
v(x, 0)dω(µ0),

and hence ω(µ0) is indeed a steady state solution. By Proposition 3.1.1, this implies
that

ω(µ0) = e−ctX#
b,tω(µ0) +

∫ t

0
e−cτX#

b,τAω(µ0)dτ, ∀t > 0.

We can also take the limit t→∞ in this expression to obtain

ω(µ0) =
∫ ∞

0
e−cτX#

b,τAω(µ0)dτ, (3.1.6)

from which we can conclude that ω(µ0)� λ with continuous Radon-Nikodym derivative.
The map ω is positivity-preserving, as can be easily seen from the fact that µt ≥ 0

for µ0 ≥ 0. Additionally,∫
D

1dω(µ0) = lim
s→∞

1
s

∫ s

0

∫
D

1dµτdτ = 1.

Let E∗ be the union of all open sets E ⊂ D such that [ω(µ0)](E) = 0. Since ω(µ0) ≥ 0
and ω(µ0) 6= 0, if E∗ 6= ∅, we have

[Aω(µ0)](E∗) =
∫
E∗

∫
D\E∗

σ(x, y)dω(µ0)dy > 0,

by the last assumption in (2.1.11). The function

τ 7→ [e−cτX#
b,τAω(µ0)](E∗)

is continuous, non-negative, and not identically zero, and since

[ω(µ0)](E∗) =
∫ ∞

0
[e−cτX#

b,τAω(µ0)](E∗)dτ,

we obtain a contradiction to the claim that [ω(µ0)](E∗) = 0.

We are now ready to prove the main theorem of this section, proving that time-
independent solutions to 3.1.1 are unique up to a scaling constant.

13
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Theorem 1. For any µ1, µ2 ∈ Z, the images ω(µ1), ω(µ2) are linearly dependent.

Proof. Suppose that a measure ν ∈ Z satisfies ν = ω(ν). We take the Hahn-Jordan
decomposition of ν to write ν = ν+ − ν− and we suppose that ν+ and ν− are both
not identically zero. Since ν is in the image of ω, we have that the Radon-Nikodym
derivative of ν with respect to λ exists and is a continuous function, and therefore that
there is some open set E ∈ D such that ν−(E) = 0 and ν+(E) > 0. We write

ν(E) = ν+(E) = [ω(ν+)](E) > [ω(ν+)](E)− [ω(ν−)](E) = [ω(ν)](E),

yielding a contradiction. Now let µ1, µ2 be two measures satisfying µi = ω(µi). Choose
C ∈ R such that ∫

D
1d(µ1 + Cµ2) = 0.

Either µ1 + Cµ2 = 0, in which case ω(µ1) + Cω(µ2) = 0 by linearity of ω, or µ1 + Cµ2
has both positive and negative parts, in which case the preceding discussion leads to a
contradiction.

We are now able to define a measure µe as the unique non-zero element of the image
of ω normalized so that ∫

D
1dµe = 1,

and the operator ω is a projection onto the one-dimensional space spanned by µe.

3.2 The Inhomogeneous Problem in W

To treat perturbations of the invariant solution ue obtained in the previous section, we
must consider the inhomogeneous problem

µ =
∫ ∞

0
e−cτX#

b,τAµdτ + ν (3.2.1)

where ν is an arbitrary element of W , the dual space of Lipschitz functions on D, and µ
is a solution belonging to the same space. To shorten notation, we introduce an operator
S acting on W by

Sµ =
∫ ∞

0
e−cτX#

b,τAµdτ. (3.2.2)

This integral is well-defined as a Bochner integral because W is separable and t 7→
e−ctX#

b,tAµ is continuous from R
+ → W . See [18] for more details on Bochner integra-

bility. The first step toward solving (3.2.1) is to prove that this operator S is compact
under the conditions (2.1.11) on A.

Proposition 3.2.1. For any f ∈ C0(D), the operator S : W → W satisfies |〈Sµ, f〉|≤
C||µ||W ||f ||C0. Therefore for any µ ∈ W , we can identify Sµ with a measure in Z.
Furthermore, S is compact from W →W .
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Proof. Using the estimate 3.1.5 we find that ||X#
b,tAµ||TV = ||Aµ||TV≤ L||µ||W , so it

follows by elementary calculus that

〈Sµ, f〉 =
∫ ∞

0
e−cτ 〈X#

b,τAµ, f〉dτ ≤
L

c
||µ||W ||f ||C0 .

By the Arzela-Ascoli theorem, the inclusion operator BL→ C0(D) is compact, and by
Schauder’s theorem the adjoint of this inclusion operator is compact. It follows that the
space Z = C0(D)∗ is compactly embedded in the space W , and combining this with
that fact that

||Sµ||TV≤
L

c
||µ||W ,

we conclude that S is compact from W to itself.

Having proven compactness, we are ready to use Fredholm theory to give necessary
and sufficient conditions for a solution of (3.2.1) and obtain a bound on the W norm of
the solutions.

Theorem 2. Let ν ∈W satisfy 〈1, ν〉BL = 0. Then a unique solution µ to (3.2.1) exists
with ||µ||W≤ C||ν||W .

Proof. Let µ ∈W be a solution of

µ− Sµ = 0.

By Proposition 3.2.1, Sµ can be identified with an element of Z and hence we must have
that µ ∈ Z as well. By Theorem 1, the space of such solutions in Z to µ− Sµ = 0 has
dimension one. Since S is compact, I − S is a Fredholm operator and hence

µ− Sµ = ν

is solvable for ν ∈ W if and only if ν is orthogonal to the null space of I − S∗, and this
null space must be one-dimensional as well [7]. It is easy to check that the constant
function 1 is in the null space of I − S∗, so the orthogonality condition 〈1, ν〉BL = 0 is
a necessary and sufficient condition for the inhomogeneous problem to have a solution,
and for some C > 0, we have ||µ||W≤ C||ν||W

Next, we look at the stability of the unique steady-state solutions with respect to
perturbations of both the vector field b and the linear operator A. In other words, if ue
is the unique normalized constant solution of (3.1.2), and ûe is the unique normalized
constant solution of

µt = e−ctX̂#
b,tµ0 +

∫ t

0
e−c(t−τ)X̂#

t−τ Âµτdτ, ∀t > 0, (3.2.3)

where Xb̂(x, t) is the flow associated with b̂ ∈ C1(D), we are seeking a bound on ||ue −
ûe||W in terms of c, b, b̂ and A, Â.
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Theorem 3. Assume that ûe is a solution of (3.2.3) normalized so ||ûe||TV = 1, and
that Â is a bounded map from W → Z. Let L be the Lipschitz constant associated with
b, and let ||b− b̂||L∞< 1. Then, if c > L,

||ue − ûe||W≤ C1||b− b̂||L∞+C2||A− Â||op(Z,Z).

If c = L,

||ue − ûe||W≤ C1||b− b̂||L∞ log(||b− b̂||L∞)2 + C2||b− b̂||L∞+C3||A− Â||op(Z,Z).

Finally, if c < L, we define

α =
(

1 + c

L− c

)−1
,

then

||ue − ûe||W ≤ −C1||b− b̂||1−αL∞ log(||b− b̂||L∞) + C2||b− b̂||+C3||A− Â||op(Z,Z).

All constants Ci are positive and depend only on b, c, A.

Proof. We define ρ =: ue − ûe and observe that ρ satisfies

ρ =
∫ ∞

0
e−cτX#

b,τAρ+ ν (3.2.4)

where
ν =

∫ ∞
0

e−cτ
[
X#
b,τ (A− Â)ûe + (X#

b,τ − X̂
#
b,τ )Âûe

]
dτ.

We see that the equation (3.2.4) is identical to the inhomogeneous problem (3.2.1).
Therefore to estimate the difference ||ρ||W , it suffices to estimate ||ν||W . We note that
the first term in ν satisfies∣∣∣∣∣∣∣∣∫ ∞

0
e−cτX#

b,τ (cA− cÂ)ûedτ
∣∣∣∣∣∣∣∣
W
≤ ||A− Â||op(Z,Z),

since ||û||TV = 1. Bounding the second term is slightly more complex. Since theW norm
is weaker than the TV norm and the operator X#

b,t preserves total variation, we have

||(X#
b,τ −X

#
b̂,τ

)cÂûe||W≤ ||(X#
b,τ − X̂

#
b,τ )cÂûe||TV≤ 2c. (3.2.5)

In addition,
||(X#

b,τ − X̂
#
b,τ )Âûe||W≤ c||b− b̂||L∞τeLτ , (3.2.6)

which can be proved using Grönwall’s inequality as in Lemma 3.8 of [11]. To shorten
the notation, we define

J =:
∫ ∞

0
e−cτ (X#

b,τ − X̂
#
b,τ )Âûe.
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Assume first that L < c. Then using (3.2.6) to write

||J ||W≤
∫ ∞

0
||b− b̂||L∞τe−(c−L)τ Âûedτ,

we get the first result. If L = c, we set β = 1
c log(||b − b̂||L∞) and divide the integral J

into

||J ||W≤
∫ β

0
||b− b̂||L∞τdτ +

∫ ∞
β

2e−cτdτ

≤ C1||b− b̂||L∞ log(||b− b̂||L∞)2 + C2||b− b̂||L∞ ,

where we used (3.2.6) to estimate the first term and (3.2.5) to estimate the second.
Finally, the argument for L > c is similar to the case L = c. Setting

β = −α log(||b− b̂||L∞)
L− c

,

we get

||J ||W≤
∫ β

0
||b− b̂||L∞τe(L−c)τdτ +

∫ ∞
β

2e−cτdτ

≤ −C1||b− b̂||1−αL∞ log(||b− b̂||L∞) + C2||b− b̂||L∞ , (3.2.7)

where C1, C2 > 0. Furthermore, it is clear that 〈1, ν〉BL = 0 and so by Theorem 2 we
get the result.
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Chapter 4

Numerical Analysis of a
Stochastic
Rosenzweig-MacArthur Model

Now we return to the particular case of the Rosenzweig-MacArthur model to numerically
investigate the sensitivity of the predator-prey system with respect to perturbations. In
particular, we will focus on the different behaviours exhibited by the Ivlev and Trigono-
metric uptake functions. Recall that these functions are defined by

ΦI(N) = 1− e−2N , ΦT (N) = tanh(1.5N)

and note that supN∈R+ |ΦI(N)−ΦT (N)|' 0.04. We then define a family of vector fields
on D parameterized by γ ∈ [0, 1] by

bγ(N,P ) =
[
rN

(
1− N

K

)
− (γΦT (N) + (1− γ)ΦI(N))P

((γΦT (N) + (1− γ)ΦI(N)−m)P.

]
(4.1.1)

From this point on, we fix K = 3, m = 1.48, r = 1. The region [0, 3]2 is a forward
invariant set for all the vector fields bγ for γ ∈ [0, 1], so we define D = [0, 3]2. If no
stochastic term is included, we find that for K, r,m fixed at these values, γ = 0 results
in a periodic orbit and γ = 1 results in a stable equilibrium, with a bifurcation occurring
near γ = 0.34.

In order to numerically model the stochastic version, we must make a particular
choice of jump function j(x, θ). We choose Θ = [0, 1]2 and G = λ, and then set

j(N,P, θ) = (M(N) + η(N + 0.1)φ(θ1),M(P ) + η(P + 0.1)φ(θ2))

where φ : [0, 1]→ [0, 1] and ∀x ∈ [0, 3],M(x)+x+(x+0.1)η < 3 andM(x)+x > 0. This
form of j is chosen so that size of the jumps in either population is roughly proportional
to the population size, and the size of the jumps in the predator population and prey
populations are independent. We choose φ such that φ ◦ dλ = 30x2(1− x2)dλ.

One can check that ||bT ||C1< 12 and ||bI ||C1< 12, so by setting the jump frequency
parameter as c = 12 we guarantee that the system is in the first case, c > L, from
Theorem 3.
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Now suppose that µγ,c is the unique steady state solution of

∂tµt −∇ · (bγµt)− cAµt + cµt = 0. (4.1.2)

We next define an approximation to µγ,c that is convenient for numerical calculations.

Definition 4.1.1. Consider the stochastic process Yγ,c(x, t) satisfying

Y (x, t, ω) = x+
∫ t

0
bγ(Y (x, τ, ω))dτ +

∫ t

0

∫
Θ
j(Y (x, τ−, ω), θ)dω, ∀t ∈ R+

and let yγ,c(t) be a single realization of this process. Furthermore, let ti, 0 ≤ i ≤ N be
an increasing sequence of times in [0, T ] and let xj , 0 ≤ j ≤ M be a finite collection
of points in D, and for any x ∈ D define Q(x) to be argminxj |x − xj |. We define the
approximate steady state measure µ̃e by

µ̃γ,c =: 1
N

N∑
i=0

δQ(yγ,c(ti)).

Equivalently, this defines a set of coefficients αj , 0 ≤ j ≤M such that

µ̃γ,c =
M∑
j=0

αjδxj . (4.1.3)

This form of µ̃γ,c is usually the most convenient to use.

We use an evenly-spaced grid on [0, 3]2 as the set of points xj , and evenly-spaced
time steps for the times ti.

Figures 4.1 and 4.2 show the densities of the approximate solutions for various γ
values, with and without stochasticity. Note that a similar change occurs over a much
smaller range of γ values when the stochasticity is removed.

We then repeat this numerical process with a new parameterized family of vector
fields, this time interpolating between the Ivlev and Holling type II uptake functions.
We use

ΦH(N) = 3.05N
1 + 2.68N

and this time we have supN∈R+ |ΦI(N) − ΦH(N)|' 0.06. We then define a family of
vector fields on D parameterized by ν ∈ [0, 1] by

bν(N,P ) =
[
rN

(
1− N

K

)
− (νΦH(N) + (1− ν)ΦI(N))P

((νΦH(N) + (1− ν)ΦI(N)−m)P.

]
(4.1.4)

Figures 4.3 and 4.4 show the densities of the approximate solutions for various ν val-
ues, with and without stochasticity. In figure 4.2, we can see at γ = 0.5 the process very
rarely leaves a small region around the equilbirium, while at γ = 0.2 the process shows
periodic behaviour. A similar behaviour is observed in figure 4.4. Comparing this with
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γ = 0.34 γ = 0.32 γ = 0.3 γ = 0.28

γ = 0.26 γ = 0.24 γ = 0.22 γ = 0.2

Figure 4.1: ω-limit sets for the deterministic equation with uptake func-
tion Φ(N) = γΦT (N) + (1− γ)ΦI(N).

the deterministic results in figures 4.1 and 4.3, we see that the introduction of stochas-
ticity has not produced the kind of qualitative change that it does in, for example, the
SIR model with vital dynamics. Therefore, despite the quantitative estimates developed
in the earlier sections, we cannot conclude that this form of stochasticity resolves the
qualitative issue of hypersensitivity to model structure.
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γ = 0.5 γ = 0.48 γ = 0.46 γ = 0.44

γ = 0.42 γ = 0.4 γ = 0.38 γ = 0.36

γ = 0.34 γ = 0.32 γ = 0.3 γ = 0.28

γ = 0.26 γ = 0.24 γ = 0.22 γ = 0.2

Figure 4.2: Densities of approximate time-invariant probability dis-
tributions with jump frequency c = 12 and uptake function Φ(N) =
γΦT (N) + (1− γ)ΦI(N).
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ν = 0.8 ν = 0.82 ν = 0.84 ν = 0.86

ν = 0.88 ν = 0.9 ν = 0.92 ν = 0.94

Figure 4.3: ω-limit sets for the deterministic equation with uptake func-
tion Φ(N) = νΦH(N) + (1− ν)ΦI(N).
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ν = 0.64 ν = 0.66 ν = 0.68 ν = 0.7

ν = 0.72 ν = 0.74 ν = 0.76 ν = 0.78

ν = 0.8 ν = 0.82 ν = 0.84 ν = 0.86

ν = 0.88 ν = 0.9 ν = 0.92 ν = 0.94

Figure 4.4: Densities of approximate time-invariant probability dis-
tributions with jump frequency c = 12 and uptake function Φ(N) =
νΦH(N) + (1− ν)ΦI(N) .
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Chapter 5

Discussion

Although the introduction of Poisson-driven stochasticity to the ODE model provides
a bound on the sensitivity of the steady-state probability distributions to changes in
the vector field, the numerical results show that this alone does not resolve the issue
of sensitivity to model structure. For example, in figure 4.2 the time-invariant prob-
ability distribution is concentrated near a single attracting point when γ = 0.5, but
concentrates near a periodic attractor at γ = 0.2. This mirrors the transition we see in
the deterministic case in figure 4.1, and so the qualitative behaviour differs between the
Ivlev and Trigonometric models to a similar degree, both with and without stochasticity.
Thus hypersensitivity is present in the Poisson-driven SDE variant of R-M model.

There are many other ways that stochasticity could be incorporated into the R-M
model, and a different probabilistic approach could be more successful. One approach
is through agent-based models which simulate individual predator and prey agents in a
probabilistic framework, as in the paper [8]. Agent-based models circumvent the need
for a choice of function φ, but the increased complexity of such models still leaves room
for the possibility of excessive sensitivity to minor changes in model structure. If such
sensitivity is indeed present in agent-based models, this could provide insight into the
origins of hypersensitivity in ODE models. This is particularly relevant to the Ivlev
and Holling II models, both of which can be derived from scaling limits of agent-based
models.

Alternatively, in the article [2] the authors use a probabilistic approach to examine
sensitivity to random small perturbations of the uptake function. This work reveals that
the different bifurcation behaviours of the Ivlev, Holling II, and trigonometric models
are not at all exceptional among possible uptake functions. Instead, they find that a
randomly selected perturbation of the uptake function typically has a high chance of
changing the stability of the coexistence equilibrium, even if the perturbation is very
small in size.
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Appendix A

Proof of Proposition 3.1.1

Proof. We begin by proving that any solution to (3.1.2) solves (3.1.1). First observe
that for any v(x, t) ∈ BL(D × [0, T ]) we have

∂tv(Xb(x, t), t) = vt(Xb(x, t)) + b(Xb(x, t)) · ∇v(Xb(x, t), t)

by the definition of the flow Xb(x, t). Then for any µ ∈ Z, now assuming v(x, T ) = 0,
we compute

∫ T

0

∫
D

(∂t + b(x) · ∇ − c)v(x, t)d
(
e−ctX#

b,tµ
)
dt

=
∫ T

0

∫
D
e−ct (vt(Xb(x, t), t) + b(Xb(x, t)) · ∇v(Xb(x, t), t)− cv(Xb(x, t), t)) dµdt

=
∫ T

0

∫
D
∂t(e−ctv(Xb(x, t), t))dµdt = −

∫
D
v(x, 0)dµ. (A0.1)

Furthermore, we can use a similar argument to show

∫ T

0

∫ t

0

∫
D

(∂t + b(x) · ∇ − c)v(x, t)d
(
e−c(t−τ)X#

t−τAµτ
)
dτdt

=
∫ T

0

∫ T

τ

∫
D
∂t(e−c(t−τ)v(Xb(x, t− τ), t))d (Aµτ ) dtdτ

= −
∫ T

0

∫
D
A∗v(x, τ)dµτdτ. (A0.2)

Assuming µt satisfies (3.1.2), we find that the L.H.S of (3.1.1) can be written as

∫ T

0

∫
D

(∂t + b(x) · ∇ − c)v(x, t)d
(
e−ctX#

b,tµ0
)
dt

+
∫ T

0

∫ t

0

∫
D

(∂t + b(x) · ∇ − c)v(x, t)d
(
e−c(t−τ)X#

t−τAµτ
)
dτdt

+
∫ T

0

∫
D
A∗v(x, t)dµt +

∫
D
v(x, 0)dµ0, (A0.3)

which simplifies to 0 by (A0.1) and (A0.2). Next, we prove existence. The equation
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(3.1.2) can be solved by a standard iterative procedure. Define a sequence of Z-valued
functions νn(t) : R+ → Z by

ν0(t) = e−ctX#
b,tµ0,

and
νn(t) =

∫ t

0
e−c(t−τ)X#

t−τAνn−1(τ)dτ.

We prove by induction that these integrals are well-defined in the sense of (1.2.1),
and give a bound on their growth. Assume that νn(t) is well-defined for all t ∈ R+ and
satisfies

||νn(t)||TV≤
tn||A||nop(Z,Z)

n! .

Then ∀f ∈ C0(D), t ∈ R+ the function

τ 7→
∫
D
e−c(t−τ)A∗f(Xb(x, t− τ))dνn−1(τ)

is continuous for τ ∈ [0, t] and hence νn(t) is well-defined for ∀t ∈ R+. Additionally,
for f ∈ C0(D)∣∣∣∣∫

D
f(x)dνn+1(t)

∣∣∣∣ =
∣∣∣∣∫
D

∫ t

0
e−c(t−τ)φ(Xt−τ , τ)dAνn(τ)

∣∣∣∣
≤
∫ t

0
||φ(Xt−τ , τ)||C0(D)||A||op(Z,Z)||νn(t)||TV

≤ ||f ||C0(D)
tn+1||A||n+1

op(Z,Z)
(n+ 1)! . (A0.4)

Since the base case ν0(t) is clearly defined and bounded in TV by 1 the induction
argument is complete. It follows that the series

µt =
∞∑
n=0

ψn(t).

is uniformly convergent with respect to the total variation norm on any bounded
time interval [0, T ], and therefore satisfies the integral equation (3.1.2) in the sense of
(1.2.1). Note that if µ ≥ 0 then Aµ ≥ 0 and also

||Aµ||TV =
∫
D

∫
D
σ(x, y)dµ(x)dy = ||µ||TV .

It follows then that if µ0 ≥ 0 then µt ≥ 0 for all t, and from (3.1.2) we see that

||µ0||TV = ||µt||TV , ∀t ∈ R+.

Applying the Hahn-Jordan decomposition to µ0, (3.1.3) and (3.1.4) follow by linear-
ity.
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Finally, we prove the uniqueness of µt. It suffices to prove that µ0 = 0 implies that
µt = 0 for all t ∈ R+. We achieve this by constructing a solution v(x, t) ∈ C1(D× [0, T ])
to

(∂t − b(x) · ∇ − (cA∗ − c))v(x, t) = p(x, t),
x, t ∈ D × [0, T ], v(x, 0) = 0. (A0.5)

for an arbitrary p(x, t) ∈ C1(D× [0, T ]). Then using v(x, T − t) as a test function in
(3.1.1), we obtain ∫ T

0

∫
D
p(x, T − t)dµt = 0

∀p(x, t) ∈ C1(D × [0, T ]) if µ0 = 0, which suffices to conclude that µt = 0, since C1

is dense in C0.
To construct v(x, t), we assume it is a solution of

v(x, t) =
∫ t

0
[cA∗v](Xb(x, t− τ), τ)− cv(Xb(x, t− τ), τ)+p(Xb(x, t− τ), t− τ)dτ. (A0.6)

Once again we can construct a solution of this equation by an iterative process. We
will not repeat the argument here since it is standard.

To show that v(x, t) satisfying (A0.6) solves (A0.5), assume that y ∈ D is such that
X(y,−t) is well-defined. Substituting X(y,−t) into (A0.6) gives

v(X(y,−t), t) =
∫ t

0
[cA∗v](X(y,−τ), τ)− cv(X(y,−τ), τ) + p(X(y,−τ), τ)dτ, (A0.7)

and differentiating this entire expression with respect to t we obtain

vt(X(y,−t), t)− b(X(y,−t)) · ∇v(X(y,−t), t)
= [cA∗v](X(y,−t), t)− cv(X(y,−t), t) + p(X(y,−t), t). (A0.8)

For every x ∈ D and t ∈ R+, there is some y ∈ D such that x = X(y,−t). This
implies that v(x, t) solves (A0.5) for each (x, t) ∈ D× [0, T ]. Since any solution of (3.1.2)
solves (3.1.1), and the solution of (3.1.1) is unique, it follows that the solution of (3.1.2)
that we constructed is the unique solution of both formulations, completing the only if.

The semigroup property follows easily from the uniqueness of the solution.
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