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Abstract

One of the crucial challenges for Data Center (DC) operation is inefficient thermal
management which leads to excessive energy waste. The information technology (IT)
equipment and cooling systems of a DC are major contributors to power consumption.
Additionally, failure of a DC cooling system leads to higher operating temperatures,
causing critical electronic devices, such as servers, to fail which leads to significant
economic loss. Improvements can be made in two ways, through (1) better design of a DC
architecture and (2) optimization of the system for better heat transfer from hot servers.
Row-based cooling is a suitable DC configuration that reduces energy costs by
improving airflow distribution. Here, the IT equipment is contained within an enclosure
that includes a cooling unit which separates cold and back chambers to eliminate hot air
recirculation and cold air bypass, both of which produce undesirable airflow distributions.
Besides, due to scalability, ease of implementation, and operational cost, row-based
systems have gained in popularity for DC computing applications. However, a general
thermal model is required to predict spatiotemporal temperature changes inside the DC and

properly apply appropriate strategies. As yet, only primitive tools have been developed that
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are time-consuming and provide unacceptable errors during extrapolative predictions. We
address these deficiencies by developing a rapid, adaptive, and accurate hybrid model by
combining a DDM and the thermofluid transport relations to predict temperatures in a DC.
Our hybrid model has low interpolative prediction errors below 0.7 °C and extrapolative
errors less than one half of black-box models. Additionally, by changing the studied DC
configuration such as cooling unit fans and severs locations, there are a few zones with
prediction error more than 2 °C.

Existing methods for cooling unit fault detection and diagnosis (FDD) are designed
to successfully overcome individually occurring faults but have difficulty handling
simultaneous faults. We apply a gray-box model involves a case study to detect and
diagnose cooling unit fan and pump failure in a row-based DC cooling system. Fast
detection of anomalous behavior saves energy and reduces operational costs by initiating
remedial actions. Cooling unit fans and pumps are relatively low-reliability components,
where the failure of one or more components can cause the entire system to overheat.
Therefore, appropriate energy-saving strategies depend largely on the accuracy and
timeliness of temperature prediction models. We used our gray-box model to produce
thermal maps of the DC airspace for single as well as simultaneous failure conditions,
which are fed as inputs for two different data-driven classifiers, CNN and RNN, to rapidly
predict multiple simultaneous failures. Our FDD strategy can detect and diagnose multiple
faults with accuracy as high as 100% while requiring relatively few simultaneous fault

training data samples.
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Our gray-box model exhibits superior performance compared with black-box models, such
as ANN and NARX models. An application of the gray-box model involves a case study
to detect single and simultaneous cooling unit failures in a row-based cooled DC.

Key words: Data center, row-based, temperature prediction, data-driven, ANN,

CNN, RNN, machine learning, anomaly detection and diagnosis.
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Chapter 1

Introduction

In recent years, the unprecedented growing demand for cloud computing, online
applications, and internet services has led to tremendous growth in size, number, and power
consumption of data centers (DCs). It is estimated that by 2025 DC energy usage will
account for 20% of worldwide consumption [1-3]. This growth generates many concerns
regarding the electricity demand and environmental impacts from the DCs.

The energy density in DCs is very high and can be 10-100 times more than for
conventional office buildings [4]. DC devices draw in raw electric power, produce some
useful work, but more than 98% of the electricity is transformed to low-grade heat which
the thermal management system must remove from the DC and release into the ambient air
[5]. Maintaining a suitable environment for information technology (IT) infrastructure is
the first priority in DC. Based on the ASHRAE guideline, the allowable rack inlet air
temperature is maintained between 20 °C and 24 °C. At high temperatures, local hot spots

can emerge which may lead to IT equipment failure, performance imbalance, excessive
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power consumption, and are a threat to reliability. Thus, cooling systems have a critical
role in continuously maintaining the safe, consistent, and reliable operation of DCs

The cooling required to maintain the IT equipment within a safe operating condition
is one of the major contributors to DC power consumption. Depending on the specific IT
equipment, cooling systems consume 24-60% of the total energy consumed by a DC [6, 7].
Therefore, an inefficient cooling structure leads to significant energy waste. Despite the
liquid cooling technology such as heat reuse and efficient transferring heat, air cooling is
the preferred method employed in DCs, which will remain for the foreseeable future due
to its reliability, simplicity of air handling, lower capital and maintenance costs, and the

uncertainties associated with liquid cooling systems [8-12].

1.1 Air Cooling

Although liquid cooling technology has undergone many improvements over the years, a
large number of DCs still use air cooling systems to maintain the environmental conditions
suitable for IT equipment operation. If a server becomes too hot, onboard logic will turn it
off to prevent damage to the server. Therefore, the heat generated in a server should be
extracted immediately. The cooling occurs in three steps: (1) Server cooling, where the IT
equipment generates heat as the electronic components within them use electricity. Then,
the IT equipment fans draw cold air across the internal components to remove the heat
from the CPU and transfers it to the air flow passing over it. (2) Space cooling, the
computer room air conditioner or handler (CRAC/CRAH) unit provides cold air to the IT

equipment. (3) Finally, at the facility level, heat is rejected outside of the DC.
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The hot aisle/cold aisle configuration is used in DCs to conserve energy and lower
cooling costs by managing airflow. In this design, server racks are lined up in alternating
rows in which the cold air intake side of the servers faces one way and the exhausted hot
air side the other way. Cold aisles face CRAC/CRAH output ducts, while hot aisles face
return ducts. The hot aisle/cold aisle configuration minimizes two major air distribution
problems identified in DCs, i.e, bypass and recirculation, and optimize the thermal
performance of DCs. If the cold air supplied to the IT equipment is insufficient, the hot air
exhausted from servers is recirculated to the IT equipment inlets by the fans inside the
servers, increasing the overall inlet air temperature. Bypass occurs when part of the cold

airflow returns to the cooling unit without contributing at all to server cooling [13, 14].

1.2 DC cooling Architecture

Air cooling technology has improved significantly over the years. For decades, DCs used
raised floor cooling systems to deliver cold air to servers. In a raised floor DC, the cold air
from the CRAC/CRAMH pressurizes the space below the raised floor and forces air through
the perforated tiles that lie in fronts of servers. After passing through the servers, the
exhaust air is returned to the CRAC/CRAH to be cooled. One of the major disadvantages
of using this kind of DCs is cold and hot air mixing, which in turn increases the server inlet
temperature and decreases the efficiency of the cooling system.

To remedy this problem, row-based cooling systems are used, where the cooling
units are located between IT racks or mounted above them in DC cabinets. Thus, delivering
cold air to a row of racks is easier and results in energy- and cost-efficiency. Figure 1-1

shows these two architectures.
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a) Raised floor DC

Figure 1-1: Two different locations to put a cooling unit (architecture) that supplies cool
air directly to the IT equipment [15].

1.3 Data-driven models

The advent of data-driven models (DDMs) has created a major development in the DC
industry where they are being increasingly used as a replacement for CFD simulations and
physics-based models. As a result of the nonlinearity and complexity of the airflow in a
DC, sophisticated models are called to represent the complex relationships among the
system-state (input, internal, and output) variables. The most widely established techniques
which are appropriate for DC study are support vector regression (SVR), Gaussian process
regression (GPR), artificial neural network (ANN), and nonlinear autoregressive

exogenous (NARX) model.
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The SVR algorithm is a regression algorithm that is suitable for both linear and
nonlinear datasets. It attempts to set the error within a certain threshold and minimize the
generalization error bound. Kernel functions in SVR such as linear, poly, and radial basis
functions (RBF) help to find a higher dimensional space for a nonlinear dataset problem in
which turns the dataset related to linear regression in that space.

GPR is a nonparametric kernel-based probabilistic model with a finite collection of
random variables. It is also a powerful predictive tool for data that is highly non-linear.
Several different kernel functions such as rational quadratic, Matérn, squared exponential,
and periodic kernels, each with unique properties and characteristics, can be used when
fitting the model [16].

The most widely established machine learning-based technique is ANN and is a
very effective method for complex and nonlinear systems. It is a highly robust and
sophisticated technique to capture the general trend of the complex input and output
variables. Typically, ANN includes an input layer, some hidden layers, and an output layer
[17]. Each layer consists of a number of neurons and the hidden and output-layer neurons
are each linked to the neurons in the previous layer.

The NARX model has been used in DC for different applications [18, 19]. It is a
neural network with connections from both system inputs and feedbacks from outputs to
model the nonlinearity in a DC. NARX is advantageous in modeling time-series data since
the model (1) is better at discovering long time dependences, (2) is more effective at
learning, (3) has faster convergence, (4) has negligible computational complexity, and (4)

has scalability, making it applicable for large DCs [20-23].
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In this study, ANN, SVR, and GPR techniques are used for pressure forecasting. It
was found that SVR and GPR algorithms are less accurate than ANN. Because SVR and
GPR typically need separate models for each point prediction and then combine them to
obtain a complete profile which is costly in comparison with using a single ANN model
[48]. Besides, SVR and GPR algorithms require some prior knowledge about the system
and input-output relationship to have precise prediction which is difficult to get the
relationship due to the nonlinearity and complexity of the airflow distribution in a DC.
While ANN finds the relationship of the system and makes more accurate predictions.

For the transient case study, NARX is an appropriate model. However, it ignores
important facets of the flow physics and heat transfer that can lead to large prediction errors
in extrapolative predictions. To address this deficiency, a gray-box model is introduced
that combines machine learning with the thermofluid transport equations relevant to predict
transient temperatures. Table 1-1 provides a qualitative comparison of some of the

distinctive features of the four machine learning techniques used in this study.

1.4 System fault detection

Common failures in electronic products can be traced back to thermal-related issues. The
lifespan of electronic components in a DC depends on the environment temperature and is
shortened significantly at high temperatures. Pumps and fans in the cooling systems are
widely used to create cold airflow in electronic products for cooling purposes. Since they
are critical for thermal management in electronic products, the reliability of electronic

products is heavily dependent on the pump and fan reliability [24-27].
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Table 1-1. Summary of DDM methods tested.

Feature ANN SVR GPR NARX
Non-time series | Non-time series | Non-time series . .
Input data Time series data
data data data

Cannot® handle | Cannot handle

Handle multiple . .
P multiple output | multiple output

output points in

Handle multiple
output points in a

Output prediction . points in a points in a .
a single model . . single model
space single model single model
Non-kernel kernel-based Kernel-based Non-kernel based
based method method"” method method
Uncertainty Deterministic Deterministic Stochastic Deterministic

2 SVR and GPR typically require separate models for each point prediction.
b Kernel based methods need some prior knowledge about the system and input-output relationship.

Anomalies are often the result of exceptional system conditions and do not describe
the common functioning of the underlying system. Fast anomaly detection is one of the
key requirements for economical and optimal process operation management. Many neural
network models have been developed to detect faults in a system and shown to be highly
successful. One-class support vector machine (OCSVM) and Nonlinear AutoRegressive
Exogenous (NARX) techniques are two different fault detection techniques that have been
used for different applications [28]. OCSVM is a special variant of the general support
vector machine (SVM) and only uses the normal operation data for training. It constructs
the tightest decision boundary that encloses all data with minimal slacks. If a new sample
locates within the boundary, it is classified as a normal operation point; otherwise, it is
labeled as an abnormality. Since no faulty data is needed for training, the OCSVM can be

trained easily and has been applied widely for fault detection [29].

NARX is a popular machine learning algorithm that characterizes complex

nonlinear mappings between the input and output time-series data. A NARX network with
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embedded memory (tapped delay line) can be utilized to detect faults in a system [30, 31].
First, a NARX network is trained and is used to predict target features given past inputs. If
the distance between the predicted and actual values exceeds a threshold over several

consecutive data samples, an anomaly is detected.

1.5 System fault diagnosis

The fault type can be determined using different DDMs. The data-driven functional models
can classify the value of the response variable, with respect to the different failures. Three
common DDMs for fault diagnosis are ANN, convolutional neural network (CNN), and
recurrent neural network (RNN).

CNN is a feedforward neural network with a set of non-linear transformation
functions that has presented excellent success and high performance to solve many
classification problems [32, 33]. Convolutional networks sometimes offer some significant
advantages over conventional neural networks, especially when it comes to classification
problems. CNN transforms the input into a form that is easier to process, while still
retaining the essential features. The crucial features are extracted by applying the
convolutional filter on the initial inputs where the redundant data are eliminated. This, in
turn, decreases the execution time of the algorithm. Next, a pooling layer is applied where
the spatial size of the convoluted features will be attempted to be reduced. Finally, the
output of the pooling layer needs to be flattened to be used in a regular neural network.

The third type of data-driven methodology for fault diagnosis is RNN [34]. RNNs
possess connections that have loops, feedback, and memory to the networks over time.

This memory allows this type of network to learn and generalize across sequences of inputs
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rather than individual patterns. A state of the art RNN is Long Short-Term Memory (LSTM)
which has shown a better performance than a vanilla RNN [35]. LSTM is trained using

Backpropagation Through Time (BPTT) and overcomes the vanishing gradient problem.

1.6 Performance metrics

There is a need to evaluate the performance of the different prediction models using criteria
such as accuracy rate, error rate, precision, and recall. The accuracy rate is the percentage
of correct classifications while the error rate is the percentage of incorrect classifications.
Precision and recall metrics are two important metrics to assess the performance of the
classifiers. Precision represents the portion of positive samples that were correctly
classified to the total number of positive predicted samples and recall determines the
positive correctly classified samples to the total number of positive samples. By combining
these two terms, a new metric can be obtained to evaluate the performance of the classifiers

which is called F1-Score. F1-Score is the harmonic mean of precision and recall.
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Chapter 2

Literature review

2.1 Thermal modeling and temperature prediction of DCs

DC designers require an accurate temperature prediction model for energy-efficient real-
time management of computing infrastructure. It is important to examine and evaluate DC
thermal models before their implementation in high power density computer rooms [36].
There are three main methods for predicting temperatures in a DC, including (1) white-box
[37-42], (2) black-box [43-48], and (3) gray-box models [49-54].

White-box, or physics-based, models are based on an understanding of physical
laws and the underlying engineering principles. A white-box model based on
computational fluid dynamics (CFD) simulations is time-consuming and very expensive
[55, 56]. In this technique, numerical methods are used to solve the differential equations
which extract the thermal dynamics of the DC environment. A comprehensive number of
boundary conditions and parameters need to be considered for both the servers and DC
room, such as servers and cooling units airflow rates, DC room dimensions, etc. A series
of DC thermal simulations that used CFD are reviewed by Rambo and Joshi [57]. This
method is not flexible to changes in the DC, i.e. servers location and statue (on-off) and

models cannot be re-run for each change due to high computational cost.
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Black-box models are the mathematical functional relationship between system
inputs and outputs to predict system operations but without an understanding of the
underlying physical and thermodynamics principles. They have enough accuracy if
training data are numerous. Black-box models are used to obtain fast interpolative
temperature predictions in DCs, however, they have poor accuracy for extrapolative
datasets.

A gray-box method is a combination of white-box and black-box models which
includes some aspects of the system physics. Therefore, extrapolative prediction errors are
reduced below those of black-box models. A 2D hybrid thermal model is proposed in [51]
to predict the temperatures around the servers in a DC. Here, the authors considered the
first law of thermodynamics, as well as sensor observations with the auto-regression model.
Such an approach can be trained using airflow measurements at the front, or cold ends, of
servers. However, it is not practical in a DC due to the complexities associated with
measurements and the negligence of hot air recirculation. Another airflow and temperature
prediction tool has implemented 3D zonal modeling in [41] but utilizes the zones that are
too large to accurately predict temperatures at server inlets. The model also requires
airflows that must be obtained for each prediction through computationally expensive CFD
simulations.

Available temperature prediction methods suffer from at least one of the following
limitations. (1) They are not generic models applicable for several configurations. (2)
These prediction algorithms are usually inappropriate for transient operation. (3) The

computational time they require can be of the order of several minutes or even hours,

11
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making the models unsuitable for real-time applications. (4) Temperature predictions are
only available over short durations and not until steady-state conditions are reached. (5)
Comprehensive effects of all important operating conditions, such as cooling unit set-point,
airflow, and server workload, are not included. (6) Finally, the methods generally ignore

important aspects of flow physics and heat transfer.

2.2 Fault detection and diagnosis of a DC

Failure in the cooling system reduces IT equipment lifetime, the reliability of the DC and
increases economic losses. DC designers try to increase system reliability by adding
cooling units which leads to extra cost. Smart system monitoring for fault detection and
diagnosis (FDD) can be used to detect and diagnose upcoming failures and schedule

maintenance actions.

FDD algorithms can be classified into two categories, (1) independent and (2)
simultaneous FDD [58, 59]. An independent FDD analyses only one fault type at a time,
while the simultaneous FDD can detect and diagnose two or more mutually exclusive faults

occurring concurrently.

Studies on independent and simultaneous FDD methodology of cooling systems
can be separated into two categories, namely, model-based and data-driven [60, 61]. In a
model-based FDD, a physics-based model or semi-empirical mechanistic representation of
the cooling system is established to simulate the dynamic behavior of the system under the
normal operation condition. Next, the distance between the system and the mentioned

model is calculated. Finally, a residual analysis of the distance is conducted to determine

12
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if any fault exists in the system. The literature includes numerous instances that use
mechanistic physical models to diagnose some common faults. Some popular model-based
FDD techniques include symbolic time-series analysis, interacting multi-model, smooth
variable state space, cross wavelet transform, and multi-modal decomposition [62]. Despite
the existence of several model-based FDD strategies, it is often challenging to establish
accurate physics-based representation to simulate the anomalous behavior of dynamic
systems in real-time. Furthermore, these methodologies are often prohibitively
computation-intensive, limiting their implementation in control systems [63]. Therefore,

data-driven FDD methods have attracted increasing attention.

Data-driven approaches that currently dominate air-conditioning FDD literature do
not require considerable model knowledge. By collecting a certain amount of data
identifying the essential features of the dynamic system, it can learn fault patterns from
historical information, thereby demonstrating the ability to predict faults [64]. Several
types of time-series signals such as (a) acoustic, (b) vibration, and (c) electrical signals
have been used for FDD of an air-conditioning system. However, these methodologies
have salient drawbacks such as (1) low signal to noise ratio, (2) costly data acquisition
system for high-frequency mechanical or electrical measurement, (3) availability of single-
point contact measurement for each component, and (4) high computational requirement
for transforming large time-domain signals to the frequency domain in real-time [65, 66].
These drawbacks of the aforementioned techniques are overcome by obtaining real-time
spatial thermal measurements using temperature probes due to their ease of installation in

DCs, cost-effectiveness, and low computational post-processing requirements. This
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dynamic thermal information is used in popular data driven FDD algorithms such as
principal component analysis (PCA), artificial neural networks (ANN), support vector
machines (SVM), and combinations of these techniques to identify cooling system faults

in DC [67, 68].

There have been several attempts in the FDD literature to detect a single fault of
the air-conditioning systems. However, literature on developing algorithms accurately to
detect two or more simultaneously occurring faults is relatively sparse. Different faults can
occur simultaneously in many real applications, and cooling units in DCs are no exception
[69]. The main challenge in simultaneous FDD for the cooling cycle in DCs is that the
number of combinations of multiple independent faults is large, thereby resulting in
numerous possible categories of simultaneous fault training patterns. Therefore, the
acquisition of large-scale datasets for simultaneous faults is difficult and expensive. To the
best of our knowledge, only a few previous investigations aimed to study simultaneous
FDD in the cooling systems [70, 71].

Existing FDD methods suffer from one or more limitations such as, (1) the need for
historical time series of simultaneous fault data for model training, (2) requirement of an
experimental set up for data generation, which may affect the health and productivity of
the system, especially when simultaneous faults occur, (3) establishing an accurate
systematic physical model is difficult because the real systems become increasingly
complex which challenges the implementation of an FDD method based on the physical
method, and (4) the computational time they require can be of the order of several minutes

or even hours, making the models unsuitable for real-time applications.
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Chapter 3

Problem statement and research objectives

Temperature predictions offer a way to optimize server inlet air temperatures and reduce
energy waste from over-cooling. Row-based cooling architectures for DCs have been made
available only recently, especially for high-density DCs. Improvement in the thermal
performance of DCs, e.g., thermal aware workload management, employing model-based
control methods, fault detection, and testing “what if” scenarios to characterize the
influence of operating conditions on temperature distribution, require a real-time
temperature prediction tool. Developing temperature prediction tools for enclosed DCs
with row-based cooling architectures is another undiscovered area for the thermal

management of DCs.

The available temperature prediction methods have six main limitations: (1) They
are not generic models applicable for several configurations, (2) their prediction algorithms
are usually inappropriate for transient operation, (3) the computational time they require

can be of the order of several minutes or even hours, making the models unsuitable for
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real-time applications, (4) temperature predictions are only available over short durations
and not until steady-state conditions are reached, (5) comprehensive effects of all important
operating conditions, such as cooling unit set-point, airflow, and server workload, are not
included, and (6) the methods generally ignore important aspects of flow physics and heat
transfer. Therefore, the first and second objectives are to propose steady-state and transient
gray-box zonal models to obtain real-time temperature distributions inside the DC that are
confined within an enclosure cooled by row-based cooling units with separated cold and
hot chambers.

Studying an application of our three-dimensional gray-box temperature prediction
model is essential for demonstrating its applicability. The operation of cooling systems is
of the critical importance to maintain a secure, reliable, and stable environment while
ensuring energy efficiency and adhering to safety guidelines of computing infrastructures.
A survey of over 55,000 air conditioning units revealed that more than 90% had
experienced one or more faults. Cooling units operated under faulty conditions in a DC
exacerbates its energy consumption and cost, damages the IT equipment while diminishing
the computing efficiency. Therefore, fast detection of abnormal behavior of cooling units
in a DC is of great significance. Different faults can occur simultaneously in many real
applications, and cooling units in DCs are no exception. The main challenge in
simultaneous FDD for the cooling cycle in DCs is that the number of combinations of
multiple independent faults is large, thereby resulting in numerous possible categories of

simultaneous fault training patterns. Therefore, the third objective of this research is to use
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the gray-box temperature prediction model for studying simultaneous FDD in the cooling

systems.
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Chapter 4

Hybrid Surrogate Model for Online Temperature

and Pressure Predictions in Data Centers

This chapter is reproduced from “Hybrid Surrogate Model for Online Temperature and
Pressure Predictions in Data Centers”, Sahar Asgari, Hosein Moazamigoodarzi, Peiying
Jennifer Tsai, Souvik Pal, Rong Zheng, Ghada Badawy and Ishwar K. Puri, Published in

Future Generation Computer Systems, 2021.

The author of this thesis is the first author and the main contributor of this
publication. Her main contributions to this work consist of introducing the idea of gray-
box model in a row-based cooling DC, writing the manuscript, formulating the problem,
conducting the experiments, running CFD simulations, implementing the framework, and

generating the numerical results.
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4.1 Abstract

The increase in cloud computing and big data storage has led to significant growth in data
center (DC) infrastructure that is now estimated to consume more than 1.5% of the world’s
electricity. Due to suboptimal DC design and operation, a significant fraction of this energy
is wasted because of the cooling systems inability to effectively distribute cold air to
servers. Consequently, additional cooling air must be circulated inside a DC to prevent
local hot spots, which leads to undercooling at other locations. Row-based cooling is an
emerging architecture that provides more effective airflow distribution, which lowers
energy consumption. Since available methods are unsuitable for accurate online
predictions, a general thermal model is required to predict spatiotemporal temperature
changes inside a DC and hence optimize airflow distribution for this architecture. Typical
approaches include physical models, computational fluid dynamics (CFD) simulations, and
black-box data-driven models (DDMs). All three approaches are limited because they do
not encapsulate the entirety of relevant operational parameters, are time-consuming and
can provide unacceptable errors during extrapolative predictions. We address these
deficiencies by developing a fast, adaptive, and accurate hybrid surrogate model by
combining a DDM and the thermofluid transport relations to predict temperatures in a DC.
Training data for the DDM is obtained from CFD simulations. An artificial neural network
(ANN) with the Rectified Linear Unit (ReLU) activation function is shown to predict
pressure distributions accurately in a row-based cooling DC. These predicted pressures are
inputs for thermofluid transport equations to determine the temperature distribution. The

applicability of the model is demonstrated by comparing predictions with experimental
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measurements that characterize the influence of varying server workload distribution and
cooling unit operational conditions, i.e., temperature set-point, airflow rate, and fan
locations, on the temperature distribution. The model can be used to (1) improve cooling
configuration design, (2) facilitate thermally aware workload management, and (3) test
“what if” scenarios to characterize the influence of operating conditions on the temperature

distribution.

Key words: Data center, data-driven models, row-based cooling architecture,

temperature prediction, ANN, SVR.

4.2 Introduction

Data centers (DCs) play a critical role in facilitating the digital processes that support our
daily lives and economic productivity. Their rapid growth has led to a significant expansion
in DC services and facilities [1-3]. The DC industry consumes more than 1.5% of the
world’s electricity which is estimated to increase by 15-20% annually [4-6]. Although
liquids provide considerably higher heat transfer than air, most DCs employ air cooling

due to the simplicity of air handling [7-9].

Air cooling systems face two major distribution problems, namely, hot air
recirculation and cold air bypass, both of which produce undesirable flow distributions [10-
12]. When the cold air supplied to IT equipment is insufficient, hot air exhausted from
servers recirculates to the cold chamber where it mixes with cold air, thus raising the rack
inlet temperature. Bypass occurs when a portion of the cold airflow returns to the cooling

unit without contributing to server cooling. Poor cooling system design and operating
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conditions result in inadequate air distribution, thus requiring additional cold air to
maintain the IT equipment safely [13-17]. Ineffective cooling is estimated to be responsible

for a third of total DC power consumption [5, 8].

To remedy this problem, row-based cooling is an emerging architecture that
minimizes hot and cold air mixing, providing better cold air distribution [18]. Optimizing
the thermal performance of this architecture requires a model that can predict

spatiotemporal temperature variations.

The literature contains several approaches to predict the temperature in a DC [19-

23]:

1) Simplified physics-based models that are fast computationally, but insufficiently
adaptive to physical changes within a DC. Due to simplifying assumptions, they
have relatively poor accuracy [24-28].

2) Computational fluid dynamics (CFD) simulations that provide temperature and
airflow distributions with high precision, but are computationally expensive,
particularly for large DCs [29-33].

3) Data-driven modeling (DDM) methods that provide fast predictions are simple to

implement and capable of approximating complex functional relationships [34-38].

Training data for a DDM is usually obtained from either CFD simulations or
experiments. The model is then trained to represent the relations among system state
variables (input, internal, and output) [39, 40]. DDMs are classified as either black-box

(e.g., with no knowledge of thermodynamics laws) or gray-box (built with partial
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knowledge of thermodynamics laws) [34, 41]. Black-box DDMs are extensively used to
provide fast temperature predictions in DCs [42, 43]. They are computationally
inexpensive. However, since black-box DDMs ignore flow physics and thermodynamics,
their accuracy for the extrapolative prediction can be inadequate when there are minor

changes in cooling configurations or IT equipment [24, 44].

Gray-box DDMs are built with partially understood physical processes and
combined with data-driven approximations to predict air temperatures at discrete locations,
such as server inlets and outlets [45-47]. Even though existing gray-box DDMs for DC
temperature predictions include some physics, they failed to characterize important
phenomena, such as hot air recirculation, which can lead to significant prediction error.
Furthermore, most gray-box DDMs reported in the literature employ regression, which is
inappropriate for a DC due to the complexity and nonlinearity of the governing equations

[48].

While available methods can predict temperatures, (1) the computational time that
they require is on the order of several minutes to hours, which is unsuitable for real-time
applications, (2) they do not include the effects of important operating conditions, such as
cooling unit set-point, airflow, and server workload and location, (3) they cannot adapt
reasonably to configuration changes, such as the locations of the cooling unit fans, and (4)

they usually ignore important facets of flow physics and heat transfer.

Here, we propose a more general, accurate, and fast surrogate model which

combines fundamental thermofluid relations with data-driven solutions to make on-the-fly
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predictions of the steady-state pressures, airflow, and temperature distributions in an
enclosed DC that utilizes a row-based cooling architecture. CFD simulations are used to
generate the training dataset. Three machine learning algorithms, Artificial Neural
Network (ANN), Support Vector Regression (SVR), and Gaussian Process Regression
(GPR) are employed in conjunction with a 3D zonal model. The applicability of the
proposed method is demonstrated by investigating the effect of (1) workload distribution,
(2) operating parameters of the cooling units, (3) server placements, and (4) locations of
cooling unit fans. The results show that the maximum temperature prediction error is 2.7
°C and computation time is less than 4 seconds. In summary, the major contributions of

this study are:

e Integrating DDMs and physics-based relations to predict DC temperatures.

e Introducing a very computationally efficient and accurate 3D temperature
prediction model.

e Investigating the effects of different server workloads and cooling
conditions on temperatures.

e Providing a surrogate model that is adaptive to changes in the locations and

status of cooling unit fans and server utilization.

The remainder of this study is organized as follows. Section 2 discusses some of
the similar researches done in the past. Section3 introduces the proposed surrogate model
and its framework. Section 4 provides temperature profiles and evaluates the predictions.

Finally, section 5 summarizes the findings.
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4.3 Related work

The literature contains numerous methods to predict DC temperatures that can be broadly
divided into three categories, i.e., (1) physics-based models, (2) CFD simulations, and (3)

data-driven models.

With judicious simplifications of rigorous physical laws, physics-based models are
able to predict air temperatures at discrete locations in a DC, such as server inlets and
outlets. An example is the lumped-capacitance mathematical model for predicting server
inlet and outlet air temperatures [49]. In [49], the server thermal capacitance and
effectiveness are determined from air temperature measurements at server inlets and outlets.
A thermodynamics-based lumped capacitance model can provide very rapid predictions
but with limited spatial information. Such a model is therefore unable to provide the fine-
grained local data required to ensure the reliable operation of every server. Such a
limitation can be overcome by a zonal method that is an intermediate approach between
full CFD simulations and a multi-node lumped model [45]. In zonal methods, a DC is
partitioned into a number of characteristic zones to which fundamental conservation laws
are applied to predict zonal airflows and temperatures. A physics-based zonal model based
on mass and energy conservation relations for each zone within the enclosure can predict
real-time temperatures inside a DC [24]. Although these physics-based models are

computationally fast, their accuracy is limited due to simplifying assumptions.

CFD simulations of DCs can predict local temperatures, airflows and pressures,

characterize the influence of power density and Computer Room Air Conditioning (CRAC)
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location on DC performance [29, 50]. However, because of its long execution time, a CFD
simulation has limited utility for simulating a medium to large size DC that contains
hundreds of racks and thousands of servers. Since thermal outages require immediate
actions for safe DC operations, faster ways of improving thermal management must be
identified.

The literature includes several works that use DDMs, classified as either black-box
or gray-box models, to predict the temperature distribution in a DC. Black box approaches
relate outputs, e.g., temperatures, to inputs through equations that ignore the flow physics,
where training data can be obtained from an experimentally validated CFD model. While
the interpolative prediction errors from various DDMs are typically low, extrapolative
prediction errors tend to be much larger [34]. An alternative is offered by an adaptive
learning-based thermal model that employs a black-box to predict the temperatures of

critical zones using DC operation variables as inputs [42].

In contrast, a gray-box method includes some aspects of the system physics to
predict temperatures so that extrapolative prediction errors are reduced below those of
black-box models. A 2D hybrid approach that considers the first law of thermodynamics,
as well as sensor observations, can be used with auto-regression to predict DC temperatures
[46]. Such a model can be trained using airflow measurements at the front, or cold ends, of
servers. But it is not practical in a DC due to the complexities associated with
measurements and the negligence of hot air recirculation. Another airflow and temperature
prediction tool has implemented 3D zonal modeling in [45] but utilizes the zones that were

too large to accurately predict temperatures at server inlets. The associated model also
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requires airflow rates for each prediction that must be obtained through computationally
expensive CFD simulations.

To overcome these predictive challenges, for the first time for a DC environment,
we develop a 3D gray-box zonal model that predicts pressures, airflows, and temperatures,

which accounts for air recirculation and is computationally efficient.

4.4 Methodology

A surrogate thermal model is created using the airflow momentum, mass, and energy
balance equations, where unknown parameters are estimated using DDMs, as depicted in
Figure 4-1. First, CFD simulations are validated using experimental measurements for
different cooling airflows. Then, three DDMs (ANN, SVR, and GPR) are compared to
determine the more appropriate algorithm, which is then trained to predict pressures. Next,
the predicted pressures are included in the momentum, mass, and energy relations to predict
the airflow and temperatures. Finally, the results from the surrogate model are compared

with experiments.
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Step I Run Experiments
]

Run CFD Simulations |«

]
Validate CFD Simulations

Is Temperature
Error Acceptable?

Step IT Collect Pressure Data through CFD

]
Perform Comparison Analysis on ANN, SVR, and GPR

]
Train the Model to Find Pressure

Use Zonal Model to Predict Pressures, Airflow Rates,
and Temperatures Based on Conservation Laws

Compare Temperatures Predicted from Our Model with Experiment

Figure 4-1: Flowchart of the model development for predicting airflow, pressure, and
temperature.

4.4.1 In-row cooling architecture and experimental setup

We instrument an in-row cooling modular DC with thermocouples for temperature
measurements. Their locations and an airflow schematic are illustrated in Figure 4-2. The
DC houses five racks and two in-row cooling units that are placed at the left and right ends
of the enclosure. Each cooling unit contains 3 sets of fans. The enclosure is 3.2 m long, 1.4

m wide and 2.05 m high. Cold air from the cooling units into the cold chamber is drawn to
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the servers to cool them, where warm air is generated and expelled into the hot chamber
and from where it is returned to the cooling units. The racks are partially populated with
scattered servers and the empty spaces are blocked with blanking panels. Hot air
recirculation and cold air bypass airflows may occur in the cold and hot chambers due to

the local pressure differences between these two chambers.

Cooling Unit
Cooling Unit

L~

Figure 4-2. Illustration of the experimental row-based cooling DC with 5 racks. (a)
Thermocouple locations and (b) airflow schematic. The enclosure is 3.2 m long, 1.4 m wide
and 2.05 m high.

4.4.2 Computational fluid dynamics (CFD)

CFD simulations of a row-based cooling DC are performed using ANSYS Fluent 18.0. The
flow is simulated using the Reynolds Averaged Navier-Stokes (RANS) model in
combination with the standard k-& turbulent model [51]. For steady-state analysis, the
second-order upwind scheme is adapted for the convection term and the semi-implicit
method used for the pressure-linked equation (SIMPLE) algorithm. Mesh sensitivity is

determined based on the grid convergence index (GCI) for coarse, medium and fine meshes
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with 2.6 million, 3.3 million, and 4.4 million nodes, respectively. Based on the GCI, the
intermediate mesh is selected for all simulations for which details are provided in the
appendix.

A flow field is characterized by mass, momentum, and total energy balances that
are described by the continuity, momentum, and energy conservation equations. Solutions
to the corresponding mathematical equations provide the local velocities, pressures and
temperatures of the fluid in the modeled domain.

The conservation of mass for fluid flow is the continuity equation [52],
2+ V.(p7) =0, (4-1)

where p is the fluid density, v is the fluid velocity, and ¢t is time. Newton’s second law of
motion is applied to a fluid element that provides the conservation of momentum. When it

is applied to fluid flow, the momentum equation [52],

a(p?v)

L2 V. (p7D) = —Vp + V.(D) + pg + F, and (4-2)

where p denotes the static pressure, T the stress tensor, pg and F the gravitational body
force and external body force. The conservation of energy represents the first law of
thermodynamics for a control volume and provides the energy equation [53],

2 (pE) + V.(5(oE +p)) = V. (keysVT = T huJr + (Feyy- 17)) + 5, (4-3)
where E is the total energy, k., the effective conductivity, h, the enthalpy of species n,

J the diffusion flux of species n, and S, the heat of chemical reaction that is assumed to
be zero. Because of its nonlinearity, additional terms arise in the momentum conservation

equation that corresponds to turbulent stresses. These additional terms must be related to
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the averaged flow variables using a turbulence model. We use the standard k—e turbulence
model, which is a two-equation model that provides a general description of turbulence [54,

55]. The relations for the turbulent kinetic energy k and energy dissipation rate ¢ are [56],

9(pk) | O(pkvy) _ 9 |pe Ok e (4-4)
at + ax; 9x; [Uk dx; + ZnutEl]El] PE, and

200e) | dpew) _ 0 [weoe] L o oy pop oo (4-5)
Py ox = ox [ogaxj + Cre 2 2 EjjEjj — Coep —,

where v; represents the velocity component in the corresponding direction i, Ej; the
component of the rate of deformation, u, the eddy viscosity, and oy, o, C;,, and C,; are
constants. Eq. (4-4) determines the scale of the turbulence, whereas the Eq. (4-5)
determines the energy in the turbulence.

The racks of Figure 4-2 are modeled as recirculation boundaries, and the cooling
units as mass flow inlets and pressure outlets for the cold air supply and the return air,
respectively. The gaps between the racks that can cause air recirculation if not properly

sealed, are modeled as porous media using a power-law model [24, 57].
4.4.3 CFD validation

Since a row-based DC is sensitive to cooling unit airflow, three different cases are
considered to validate the CFD simulations, i.e., with (1) high (m., » Y. m,), (2) sufficient
(mey = Xmy), and (3) low (m,, « Y. m,) flow rates. Due to the emergence of hot spots
inside the enclosure, the last of these three cases is the most challenging to maintain
equipment integrity during implementation, and therefore it is used to test model

robustness.
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The temperature differences between CFD predictions and experimental
measurements are characterized through Err = |Tgy, — Tcrp|. Figure 4-3 presents Err
values for the cold chamber at different sensor locations. Values of Err are smaller across
the cold chamber for the high (< 0.6 °C) and sufficient (< 1.1 °C) cooling unit airflows, but
there is a larger 1.8 °C difference in a single zone for the low airflow, which occurs due to
hot air recirculation in this region when the pressure is higher in the hot than in the cold

chamber. Overall, the values of Err are relatively small.

(@) (b) (©)

High cooling unit airflow rate Sufficient cooling unit airflow rate Low cooling unit airflow rate

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 1 Rack 2 Rack 3 Rack 4 Rack 5
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Figure 4-3. Temperature differences between CFD predictions and experimental
measurements at the various experimental sensor locations for a) high, b) sufficient, and c)
low cooling unit airflows.

4.4.4 Thermal model

CFD simulations of DCs are complex and computationally expensive. Zonal models offer
a faster and reasonably accurate alternative. In a zonal model, the DC environment is
divided into a coarse grid of zones with the assumption that the conditions inside each zone
are spatially uniform. A set of non-linear coupled equations consisting of mass, momentum,

and energy conservation equations is applied for each uniform zonal volume [58-60].
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XMy =0, (4-6)

2 F = E(0yivjni) y, — Zi(yoivjsi),,» and (4-7)
aT; -

Zj Qj—>i + Qsource = iniCp Py (4-8)

where i denotes the interfacial mass flow rate transferred from cell j to cell i, F body force,
v velocity, p density, Q heat flux, Qsource Internal heat source, c, specific heat capacity,

V; cell volume, and T; air temperature. The mass conservation equation (Eq. (4-6))
illustrates that the amount of mass within the control volume remains constant, i.e., it is
neither created nor destroyed. The momentum conservation equation (Eq.(4-7)) captures
that the momentum can only change through the actions of forces, as described by
Newton's laws of motion. The energy conservation equation (Eg. (4-8)) indicates that while
energy can be converted from one form to another, the total energy within a control volume
remains fixed. Integrated forms of conservation laws (Egs. (4-6) to (4-8)) predict pressures,
temperatures, and mass flowrates.

A schematic of the 3D zonal model for a single rack within an enclosure is
represented for a row-based cooling architecture DC in Figure 4-4. A total of 50 zones are
created within the cold and hot chambers, where mass flowrates for each zone are obtained

by applying Egs. (4-6), (4-7) and (4-8) for temperature (using PYTHON 3.7).
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Figure 4-4. Zonal model for (a) cells and interfaces, and (b) the 3D zonal model around a
rack.

4.45 Data-driven models

Due to the nonlinearity and complexity of the airflow distribution in a DC, DDMs are
suitable for representing the multifaceted relationships among the system-state (input,
internal, and output) variables. These models can replace CFD simulations and physics-
based models, where the most widely established techniques appropriate for DC

investigations are SVR, GPR, and ANN [61].

SVR is a regression algorithm suitable for both linear and nonlinear functions that
minimizes the generalization error bound subject to error tolerance. Kernel functions in
SVR, such as linear, polynomial, and radial basis functions (RBF), help find a higher
dimensional representation for the input data, which transform non-linear relationships into

linear ones in that space.

40



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

GPR is a nonparametric kernel-based probabilistic model with a finite collection of
random variables. It is also a powerful predictive tool for data that is highly non-linear.
Several different kernel functions such as rational quadratic, Matérn, squared exponential,
and periodic kernels, each with unique properties and characteristics, can be used when
fitting the model.

The most widely established machine learning-based technique for complex and nonlinear
systems is ANN. The technique is highly robust and sophisticated, being able to reproduce
the complex general trends for input and output variables. Typically, ANN includes an

input layer, some hidden layers and an output layer [62].

Each layer consists of a number of neurons, where the hidden and output-layer
neurons are each linked to the neurons in the previous layer. The main challenge with ANN
is the choice of model complexity. When the number of parameters is far larger than the
available training data, overfitting may happen. Else, unfitting may occur.

Since the DC problem includes nonlinear statistical data, SVR and GPR with non-
linear kernel functions, and ANN-based models are compared to determine the more
appropriate algorithm. It is worth mentioning that the dataset is generated using
experimentally validated CFD simulations, where many realistic scenarios are simulated
to provide the input parameter, i.e., cooling unit airflow, and specify the output parameter,
which is the static pressure at the different interfaces of a zone.

Table 4-1 lists the independent and dependent variables. The dataset is divided into

two portions, 80% of which is used for training and 20% for testing and validation.
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Table 4-1. Independent and dependent variables for DDMs.

Independent variable Range Dependent variable
Cooling unit airflow rate 0.40 — 2.4 (kg/s)
Cooling unit set-point 18 - 22 (°C) Static pressures
Servers workload 0 -100%

4.5 Results and discussion

4.5.1 Comparison of the data-driven models

The ANN, GPR, and SVR comparison allows us to select a better algorithm to develop the
surrogate model. In order to find the optimum combination of DDM parameters, 5-fold
cross-validation is used. The performance of the model is evaluated by comparing the

predictions with a set of test data using the root mean square error,

RMSE = \/iz;‘q(yi -2, (4-9)

where y; is the observed value, y; predicted value, and n the number of samples.

The hyper-parameters of the DDMs are varied. For SVR, three types of kernel
functions, linear, polynomial, and RBF are explored, for GPR, four types of kernel
functions, rational quadratic, Matérn, squared exponential, and periodic kernels are
investigated and for ANN, three different activation functions, Rectified Linear Unit
(ReLU), tanh, and logistic are considered. The performance of the RBF kernel function in
SVR depends primarily on two important parameters, penalty (C) and Gaussian kernel

function (y), implementation of GPR requires the choice of a suitable kernel function, and
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ANN is most sensitive to the number of hidden layers and the number of neurons in each

layer.

The comparative analysis for the SVR is presented in Figure 4-5. The minimum
RMSE value of the test dataset for the polynomial and RBF kernel functions are 1.9 Pa and
1.5 Pa, respectively, which in the polynomial kernel function occur at 5 degrees and in

RBF kernel functionat C = 974 andy = 6.

(a) (b)

RMSE (Pa)
12,96

Il Testing data
5k [ Training data b

1.78

10.61

RMSE (Pa)
w
(2q) AaswWA

2 3 4 5 6 7
Polynomial degree

s o

Figure 4-5. Comparison of different kernels of the SVR algorithm. (a) RMSE vs
polynomial degree and (b) RBF kernel with a 3D view of RMSE vs C and y.

Figure 4-6 shows the RMSE values in training and testing using each of the four
kernels, i.e., rational quadratic, Matérn, squared exponential, and periodic kernels. We find
that the rational quadratic and Matérn kernels reproduce the pressure data more accurately
than the squared exponential and periodic kernels. The rational quadratic kernel fits to the
data with 1.45 and 1.78 Pa training and testing RMSE, respectively, while the periodic
kernel is worse in training as well as testing with 3.14 and 3.49 Pa train and test RMSE,

respectively.
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Il Testing data
[ Training data

RMSE (Pa)
N

Figure 4-6. GPR algorithm with different kernels: rational quadratic, Matérn, squared
exponential, and periodic kernels. All samples have length-scale parameter £=1 which
controls how close two points have to be in order to be considered near and thus be highly
correlated.

Figure 4-7 provides results for the ANN algorithm with the testing and training
datasets. Different activation functions are investigated, where the minimum value of
RMSEtes: is illustrated by the hollow shape. Figure 4-7 (a) and (b) demonstrate the RMSE
of the testing and training dataset using the ReLU activation function. The minimum
RMSEtest value occurs with three hidden layers and 16 neurons. When the tanh activation
function is applied, as shown in Figure 4-7 (c) and (d), RMSEs: first decreases and then
increases due to overfitting. Here, two hidden layers with 9 neurons each yield the
minimum RMSEst. Similarly, in Figure 4-7 (e) and (f) for the logistic activation function,

the minimum RMSEgs is obtained with one hidden layer with 6 neurons each.

Table 4-2 summarizes the results of the comparative analysis for GPR, SVR, and
ANN. The minimum RMSEest = 0.52 with ANN using the ReLU activation function.

Therefore, the ANN with 3 hidden layers and 16 number of neurons is considered to be
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more appropriate for our model and thereafter used to predict the pressures. The data flow

for the surrogate model used to predict pressures and temperatures is depicted in Figure

4-8.
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Figure 4-7. Comparison of different activation functions of the ANN algorithm based on
RMSE vs. the number of neurons in each hidden layer for testing and training data. (a-b)

RelLU, (c-d) tanh, and (e-f) logistic activation functions.
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Table 4-2. Results of the comparative analysis of DDMs.

. Kernel Min test . Kernel | Min test . Activation Min test
Algorithm ) Algorithm ) Algorithm ]
function RMSE function | RMSE function RMSE
Rational ]
. 1.78 Linear 4.27 ReLU 0.52
Quadratic
Matérn 2.54 RBF 1.50 ANN tanh 1.13
GPR SVR
Squared o
. 2.89 Poly 1.23 logistic 1.19
Exponential
Periodic 3.49

§
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\/

Cooling Unit Airflow Rates

Pressure

L 4

Zonal Model | Temperature
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Cooling Unit Set-Points ANN

Servers Workload

|

Figure 4-8. The data flow within the surrogate model for prediction used to predict
pressures and temperatures.

4.5.2 Sample size required to train ANN

We produce a labeled dataset from the CFD simulations for cooling unit airflow changes
in a row-based cooling DC. Each instance in the dataset consists of a collection of pressure
data at 60 locations for 52 cooling unit airflows. Therefore, the dataset vector contains a
52x60 matrix. We train the model using different dataset sizes to determine an optimum
sample size that provides the best trade-off between accuracy and training time. Table 4-3
shows the average prediction errors as the input data sizes are varied from 24x60 to 52x60.
The error decreases with increasing numbers of samples until 44x60 beyond which the
decrease in prediction errors is negligible. Therefore, the inputs for further investigations

with the ANN algorithm correspond to a 44x60 matrix.
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Table 4-3. Average train and test prediction error as the sample size changes.

Number of samples in the dataset | Average train RMSE (Pa) | Average test RMSE (Pa)
24x60 3.50 5.41
28%60 2.87 3.72
32x60 1.71 2.54
36x60 0.97 1.47
40x60 0.68 1.10
44x60 0.46 0.52
48x60 0.45 0.51
52x60 0.45 0.51

4.5.3 Surrogate model prediction and validation
Several realistic scenarios are now considered to determine the temperature distributions

in the cold chamber, where model accuracy is evaluated by comparing the predicted results

with those obtained from experiments.

4.5.3.1 Influence of cooling system operating conditions

Since the cooling unit airflow plays an important role in the temperature distribution of a
DC, we again consider the high (m., » Y, ms), sufficient (m, = Y. m,), and low (m,, «
Y.m,) airflows for workload and set-point temperature, specified as 100% and 18 °C,
respectively. Figure 4-9 presents the temperature predictions using the surrogate model and
temperature differences between model predictions and experiment (A = |TEXp - TModel|)

for these scenarios.

The temperature contours are mostly spatially uniform for the high airflow and
values of A are lower than 0.8 °C (Figure 4-9 (b)). For sufficient airflows, the cold chamber

pressure is slightly lower than in the hot chamber, leading to hot air recirculation through
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the gaps between the racks, producing hot zones (Figure 4-9 (c) and (e)). Figure 4-9 (d)

presents values of A, where all zones have differences lower than 1°C.

For the lowest airflow, Figure 4-9 (f) shows that 22 out of 25 zones have differences
lower than 2 °C and only three zones have A > 2 °C. Even for this restrictive case, there is
a good agreement between the predicted and experiment temperatures. However, due to
hot air recirculation and the uncertainties of the gap resistances that should be viewed as
porous media, the predicted temperatures for very few zones are quite different from those
obtained from the experiments. Both methods reasonably represent how cold air enters the
cold chamber (from the right and left sides), leads to a temperature profile with higher
temperature along the middle rack (Rack 3), while side racks (Rack 1 and 5) maintain lower

temperatures.

Figure 4-10 summarizes the average values of A at the rack inlets for the three
cooling unit airflow rates. The middle rack has the largest difference due to hot air

recirculation and, A increases as airflow decreases.

Next, the cooling system set-point temperature is increased while the airflow rate
(m¢y = Y m,) and the server workloads (100%) are held constant. Figure 4-11 (a-b) presents
the temperature profiles and A values for a set-point temperature of 18 °C. In Figure 4-11
(c-d) this setpoint is increased to 22 °C. The 4 °C increase in the set-point increases the
local temperatures in the entire cold chamber and the average value of A also increases by
48%. At the higher setpoint temperature, 20 out of 25 zones have A values lower than 1 °C

and 5 zones have one between 1 °C and 1.5°C. The mean difference for both cases is lower
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than 0.8 °C and in both cases, the middle rack has the highest difference. Overall, the results

from the model are consistent with those from the experiments.
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Figure 4-9. Effect of cooling unit airflow on the temperature distribution and temperature
differences between model predictions and experimental results (A = |TEXp — TMode1|) for
(a-b) high, (c-d) sufficient, and (e-f) low airflow rates.
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Figure 4-10. Average temperature differences between the model predictions and
experiments (A = |Tgxp — Tmodel|) @t the rack inlets for the three cooling unit airflow rates.
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Figure 4-11. Effect of set-point temperature of the cooling unit on the temperature
distribution and temperature differences between the model predictions and experiments
(A = |Texp — Tmodel]) for (a-b) set-point at 18 °C and (c-d) at 22 °C.
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4.5.3.2 Varying server workload

Figure 4-12 (a-b) presents the cold chamber temperature distribution and A values when
all servers are operating at a 100% workload (18.9 kW in total), while Figure 4-12 (c-d)
presents distributions and values of A for 50% workloads (12.6 kW in total). Both cases
have cooling unit airflow rates of 1.2 kg/s and set-points of 18 °C. Reducing server
workload decreases the maximum cold chamber temperature from 28.5 °C to 25 °C and the

average value of A changes 19%. Again, the model is applicable and only a few zones have

A>1°C.
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Figure 4-12. Effect of server workload on temperature distribution and temperature
differences between the model predictions and experiments (A = |TExp - TMode1|) for (a-
b) server workloads set at 100% and (c-d) at 50%.
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4.5.4 Robustness of surrogate model

Typical DCs contain a dynamic environment in which it is virtually impossible to collect
data for all scenarios from either experiments or CFD simulations. A simpler predictive
model must be robust enough to adapt to small changes. To investigate the adaptability of
the surrogate model to changes, two complex scenarios different from the previous
scenarios are investigated based on the same model trained in the previous sections. The
first scenario changes the cooling system configuration and the second one alters the server
locations. Here, CFD simulation results are compared with those from the surrogate model
since it is not feasible to conduct experiments for these scenarios. Additionally, a total of
120 zones are created within the cold and hot chambers to accurately predict temperatures

at server inlets.

45.4.1 Changing the locations and status of the fans

There are two row-based cooling units in the DC, at the right and left ends of the cold
chamber, respectively. Each unit has 3 sets of fans, as shown in Fig. 4-13. Altering their
locations can significantly change the temperature profile because the airflow distribution
is changed. Figure 4-13 (a) shows the original configuration of the DC as reported in the
previous sections where there is sufficient cooling unit airflow rate. In Figure 4-13 (b) and
(c), the fans in either the right or left cooling units are moved downward, and in Figure

4-13 (d) the middle fans of the right cooling unit are turned off.

Figure 4-14 demonstrates that when the fan locations and their status is altered, the

temperature distribution also changes. In Figure 4-14 (c), changing the locations of right
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cooling unit fans downward produces hot areas at the tops of racks 3, 4, and 5. Similarly,
in Figure 4-14 (e), these hot areas appear at the tops of racks 1, 2, and 3. Figure 4-14 (g)
shows a band of warmer temperatures on the top of rack 3 due to the off-duty middle fan.
All of these changes increase the temperatures in some areas, particularly where the fans

are turned off.

Values of D = |Tcgp — Tmoaerl When the right-hand side fans are moved
downwards are provided in Figure 4-14 (d). Here, 7 out of 60 zones have D > 2 °C, 2 zones
have 1.5 °C < D < 2°C, and the remainder have D < 1.5 °C. Figure 4-14 (f) shows only 1
zone with D > 2 °C, 7 zones with 1.5 °C < D <1.8 °C and the rest with D < 1.5 °C. For the
case shown in Figure 4-14 (h), only 2 zones have D > 2 °C. These results indicate that the
surrogate model generalizes satisfactorily to the changes in the locations of the cooling

system fans and their status.

4.5.4.2 Changes in server location

The locations of servers and blanking panels in a rack also impact the airflow and,
consequently, temperature distribution. Blanking panels in a DC fill the empty spaces in
the racks and represent solid obstacles to prevent cold air bypass or hot air recirculation.
The server locations are changed by sparsely distributed (Figure 4-15 (a)) or concentrating

(Figure 4-15 (b)) to investigate the robustness of the surrogate model.

Figure 4-16 (a-b) and (c-d) shows that the temperature profiles and hot zones
change as the server locations are changed from the original sparse locations. With

concentrated servers, the hot zones spread towards the tops of racks 2, 3, and 4, while the
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sparsely distributed servers produce a hot zone on top of the rack 3. When aggregated, the
maximum temperature in the hot areas (25 °C) is lower than when the servers are sparsely
placed (28.5 °C). Figure 4-16 (d) shows that for only 3 of 60 zones D > 2 °C, for 7 zones 1
°C <D < 1.5 °C, and for 50 zones D < 1 °C. Thus, the surrogate model is robust to the

changes in server locations.

(a) (b)

Original row-based cooling DC Lower right cooling unit fans

Cooling Unit
Cooling Unit
Cooling Unit

Cooling Unit

(c) (d)

Lower left cooling unit fans Turn off middle fan of the right cooling unit

Cooling Unit

Cooling Unit
Cooling Unit
Cooling Unit

/

Figure 4-13. Four configurations of the cooling unit fans for the in-row DC cooling
architecture.
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Figure 4-14. The temperature contours and temperature differences between the model
predictions and CFD simulations (D = |Terp — Tmodell) for (a-b) the original row-based
cooling DC configuration, (c-d) moving the fans of the right cooling unit downwards, (e-
f) moving the fans of the left cooling unit downwards, and (g-h) turning off the middle fan
of the right cooling unit.
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Figure 4-15. The two configurations for server locations reconfiguration. (a) The original
scattered configuration and (b) servers aggregated around specific locations.
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Figure 4-16. Temperature contours and temperature differences between the model
predictions and CFD simulations (D = |Tcpp — Tmoder]) When server locations are changed
from scattered to aggregated in a row-based cooling DC. (a-b) Original scattered
configuration and (c-d) aggregated servers.
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4.6 Computation time

The computing cost is an important aspect of CFD simulations and surrogate model
predictions. Table 4-4 summarizes the computing time on a personal computer with a Core
i7-8700 CPU at 3.20 GHz,16 GB memory, and Windows 10 with a 64-bit operating system
for the case with 100% server utilization, cooling unit temperature 18 °C and airflow rate
of 1.2 Kg/s. For a typical single steady-state case, CFD simulations and experiments
require roughly 28,800 and 234,400 seconds, respectively, whereas, in contrast, the

surrogate zonal model requires only 3.6 seconds.

Table 4-4. Time to make experimental measurements of pressures and temperatures for a
typical steady-state case, and the corresponding computational times required to obtain
predictions from the CFD simulation and the surrogate model.

Method Time to obtain results for a typical steady-state scenario (second)
CFD ~ 28,800
Experiment ~ 234,00
Surrogate model ~4

4.7 Conclusion

We present a machine learning-based surrogate model to predict the pressure, airflow rate
and temperature distribution in a modular DC with a row-based cooling architecture. The
surrogate model is an inexpensive tool that provides predictions at comparable accuracy as
those from more detailed and computationally expensive CFD simulations. This model can
be used to (1) improve cooling system design, (2) facilitate thermally aware workload

management, and (3) test “what if” scenarios to characterize the influence of operational
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conditions on the temperature distribution. The model applies the mass, momentum, and
energy conservation equations to each zone for which unknown parameters in the
conservation equations are obtained from DDMs. The model is developed by (1) collecting
data from experimentally validated CFD simulations, (2) applying ANN to the data to
predict pressure, and (3) applying the mass, momentum, and energy conservation relations

to each zone to determine the zonal temperature.

Comparing the accuracy of the DDM predictions shows that the ANN algorithm
with the ReLU activation function is more appropriate for the particular DC configuration.
The cooling unit operation and server workload are varied to characterize their influence

on the thermal performance of the DC using the ReLU-based ANN DDM. We determine:

e The cooling unit airflow rate has the most significant influence on the temperature
distribution in the cold chamber and DMM accuracy. Increasing the cold air supply
lowers the average predicted temperature in the cold chamber and improves the
model accuracy.

e A 4°C increment in the set-point temperature of the cooling unit results in an
average of 4.2 °C rise in the predicted temperature in the front chamber, while the
average prediction error increases by 48%.

e A 50% increase in server workload results in a 0.8 °C increment in the average
temperature in the front chamber and the average temperature prediction error

changes 19%.
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e The middle rack (rack 3) has a higher temperature due to hot air recirculation and
the end racks (racks 1 and 5) have lower temperatures since these racks are adjacent

to the cooling units.

The robustness of the surrogate model is demonstrated by investigating the effect of
server spatial distribution, cooling unit fan locations and on/off status. Our results from the

adaptability examinations show the following:

e As the cooling unit fans are moved downwards, hot zones emerge at the tops of
the racks and the prediction error for a few zones is larger than 2 °C.

e When the fan in the middle is turned off, a band of warmer temperatures emanates
from the off-duty middle fan, but the prediction error is larger than 2 °C for only
2 Zones.

e By changing the server locations from a scattered to an aggregated distribution,
the spatial locations of hot zones change, but 95% of these zones still have a

prediction error lower than 1.5 °C.

Hence, we demonstrate that the surrogate machine learning model can predict
temperatures rapidly and accurately while adapting to the changes in operating conditions.
Implementation of this model is promising for understanding DC configurations and their

operation in order to enhance energy savings.
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4.10 Appendix

4.10.1 Mesh independence study

The accuracy of the results from CFD simulation relies on mesh quality. In order to
evaluate uncertainties and discretization errors in the simulation, we use the matrix called
the grid convergence index (GCI) based on Richardson Extrapolation that creates bounds

for discretization error [63].

To apply the GCI method, three meshes with different grid spacings hz, hz, and hs
that represent coarse, medium, and fine meshes, respectively, are built. Each grid spacing
yields three solutions fi, f, and f3. The grid refinement factor,

LT (A. 4-1)
Tk k+1 = hy

is calculated, where k denotes the mesh level. Based on experience, the desired value for r

is greater than 1.3 [64]. The order of convergence,

in(2=5) (A 4-2)
- =)/
Inr
The GCI for the fine mesh,
F. A. 4-3
GClyine slel ( )

T GP—1)
where ¢ denotes the relative error, Fs the safety factor, where the range 1.25 < F < 3is

recommended [65].

The mesh independence study is performed based on the GCI for a row-based

cooling architecture DC in which the grid is more refined around critical boundaries. Table

66



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

A. 4-1 provides details for calculating GCls from Egs. (A. 4-1) to (A. 4-3) for three meshes
with 2.6 million, 3.3 million, and 4.4 million nodes, respectively. According to Table A.
4-1, the numerical uncertainty in the coarse and fine-grid solutions for cold and hot
chambers reveals that there are no significant differences between these two GCI,, and
GCI,5. Both 3.3 million and 4.4 million nodes will lead to similar results while the

calculations with 4.4 million nodes will result in more computational efforts.

Figure A. 4-1 and Figure A. 4-2 present the temperature and pressure profiles for
the three grids with more details, where the numerical uncertainty is indicated by error
bars. The small values of GCI (GCI < 0.03% for temperature and GCI < 0.04% for
pressure) reveal that the results of the simulation cannot be improved by refining the mesh.
Indeed, the average deviations of temperature and pressure within 60 zones are less than
2% between the medium mesh and fine mesh. Therefore, the medium mesh is selected as

the optimum mesh for all simulations to reduce computational time.

Table A. 4-1. Calculation of discretization error.

. GCI-Cold GCl-Hot | GCI-Cold | GCI-Cold
Cells Refinement
Case mesh chamber chamber chamber chamber
number factor, r
temperature | temperature | pressure pressure
Coarse (1) | 2,556,883
1.40 0.04% 0.06% 0.10% 0.02%
Medium (2) | 3,322,654
. 1.40 0.02% 0.03% 0.04% 0.01%
Fine 3) | 4,397,640 ’ ° ° °
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Figure A. 4-1. GCI results for the (a) temperature profile within 60 zones and (b)
discretization error for the fine-grid solution.
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Figure A. 4-2. GCl results for the (a) pressure profile within 60 zones, and (b) discretization
error for the fine-grid solution.

68



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

Chapter 5

A Gray-Box Model for Real-Time Transient

Temperature

This chapter is reproduced from “A Gray-Box Model for Real-Time Transient
Temperature ”, Sahar Asgari, SeyedMorteza MirhoseiniNejad, Hosein Moazamigoodarszi,
Rohit Gupta, Rong Zheng and Ishwar K. Puri, Published in Applied Thermal Engineering,

2020.

The author of this thesis is the first author and the main contributor of this
publication. Her main contributions to this work consist of introducing the idea of using
gray-box model for transient study, writing the manuscript, formulating the problem,
conducting the experiments, running CFD simulations, implementing the framework,

constructing the algorithms, and generating the numerical results.
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5.1 Abstract

In response to the need to improve the energy efficiency of data centers (DCs), system
designers now incorporate solutions such as continuous performance monitoring,
automated diagnostics, and optimal control. While these solutions must ideally be able to
predict transient conditions, in particular real time DC temperatures, existing forecasting
methods are inadequate because they (1) make restrictive assumptions about system
configurations, (2) are extremely time-consuming for real time applications, (3) are
accurate only over limited time horizons, (4) fail to accurately model the effects of
operating conditions, such as cooling unit operation conditions and server workloads, or
(5) ignore important facets of the flow physics and heat transfer that can lead to large
prediction errors in extrapolative predictions. To address these deficiencies, we develop a
gray-box model that combines machine learning with the thermofluid transport equations
relevant for a row-based cooled DC to predict transient temperatures in server CPUs and
cold air inlet to the servers. An artificial neural network (ANN) embedded in the gray-box
model predicts pressures, which provide inputs for the thermofluid transport equations that
predict the spatio-temporal temperature distributions. The model is validated with
experimental measurements for different (1) server workload distributions, (2) cooling unit
set-point temperatures and (3) the airflow of the cooling units. This gray-box model
exhibits superior performance compared to a conventional zonal temperature prediction
model and an advanced black-box model that is based on a nonlinear autoregressive
exogenous model. An application of the gray-box model involves a case study to detect

cooling unit fan failure in a row-based DC cooling system.
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Key words: Datacenter, real-time temperature prediction, fault detection, ANN,

NARX.

Nomenclature

Uppercase letters

Cp
cu
E
Ey;
F

Jn
MAX,z
MSE
Py

Q

QSO’LLTC@

Sh

STD,z
T

Tout

= X < 3
S

Specific heat capacity (kJ kg K1)
Cooling unit

Total energy (kJ)

Rate of deformation

Body force (N)

diffusion flux of species n
Maximum absolute error

Mean squared error

Power consumption of server k (kW)
Heat flux (kW)

Internal heat source (KW)

Heat of chemical reaction (kJ)

Standard deviation of absolute error
Absolute temperature (K)

Server exhaust temperature (K)
Server inlet temperature (K)
Volume (md)

Thermal mass of server (kJ K1)
Predicted value

Lowercase letters

g9
h

k

Gravitational acceleration (m s72)
Enthalpy (kJ)
Turbulent Kinetic energy

Kers
m

n

dp
P

t

Vv

Effective conductivity
Mass flow rate (kg s™)
Server number
Pressure drop (Pa)
Static pressure (Pa)
Time (s)

Velocity (m s™)

Subscripts and superscripts (uppercase)

AE
EXP
Pred

Pres
S

Absolute error
Experiment
Prediction
Pressure

Subscripts and superscripts (lowercase)

J
n
S

Index of zone in x-direction
Index of zone in y-direction
Number of species

Server

Greek letters

Mmoo

Density (kg m™®)
Stress tensor (Pa)
Energy dissipation rate
Eddy viscosity (m? s?)
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5.2 Introduction

Cloud computing has driven significant growth in data centers (DCs) and consequently
global energy consumption by DCs accounts for about 3.5 % of worldwide electricity use.
By 2025 DC energy use is anticipated to account for 20% of worldwide consumption [1-
3]. Depending on the specific IT equipment, cooling units account for 24-60% of the total
energy consumed by a DC [4, 5] so that ineffective cooling leads to significant energy
waste [6-8]. While liquid cooling is promising for its effectiveness and offers the possibility
of heat reuse [9, 10], air cooling is the preferred method employed in DCs, which will
remain for the foreseeable future due to its reliability, simplicity of air handling, lower
capital and maintenance costs, and the uncertainties associated with liquid cooling systems
[11-13]. To decrease the energy consumption of air-cooling systems, the designer must
consider (1) improving the airflow distribution in a DC and (2) optimizing the system for

effective heat transfer.

Improvements in airflow distribution reduce energy costs by favorably influencing
server CPU temperatures. This is accomplished by using a suitable DC cooling
configuration, such as a row-based cooling within an enclosure that separates the chilled
and hot air to eliminate hot air recirculation and cold air bypass, both of which produce
undesirable airflow distributions [14-18]. Minimizing the total airflow and maximizing
supply air temperatures improve the efficiency of the air-handler. This optimization
requires that temperatures must be accurately predicted to apply appropriate strategies
properly [19]. For example, controllers can be programmed to take actions that minimize

the airflow and maximize supply air temperatures, while complying with the ASHRAE
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guideline on the maximum allowable rack inlet air temperature [20, 21]. Fast detection of
anomalous behavior also saves energy and reduces operational costs by initiating remedial
actions. Cooling unit fans are relatively low-reliability components, where the failure of
one or more fans can cause the entire system to overheat. Therefore, appropriate energy-
saving strategies depend largely on the accuracy and timeliness of temperature prediction

models.

Several methods are available to predict the temperatures in a DC, including white-
box [22-27], black-box [28-33], and gray-box models [34-39]. White-box, or physics-
based, models are based on an understanding of physical laws and the underlying
engineering principles. While some white-box models are computationally fast, they
generally adapt insufficiently to rapid operational changes within a DC. Furthermore, due
to simplifying assumptions, such models have poor accuracy. In black-box models, system
inputs and outputs are correlated through a mathematical function to predict system
operations, but without an understanding of the underlying physical and thermodynamics
principles. They are accurate if training data are abundant. Black-box models are used to
obtain fast interpolative temperature predictions in DCs, e.g., steady-state and transient air

temperatures, but their accuracy in making extrapolative predictions is limited [28, 40].

Hybrid or gray-box models combine physics-based white-box models with data
obtained from experiments or simulations to develop approximate model parameter values.
Thus, gray-box models are more general than black-box models and can provide
extrapolative predictions with higher accuracy than white-box models. Although existing

gray-box models for DC temperature predictions include some aspects of physical laws,
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they fail to characterize important phenomena, such as hot air recirculation, making their
predictions unreliable. Furthermore, most gray-box models in the literature employ linear
regression, which is inappropriate for a DC due to the complexity and nonlinearity of the
governing equations [41]. One model utilizes autoregression to predict transient
temperatures in a DC with a 2D hybrid approach that represents the first law of
thermodynamics and also includes sensor observations [35]. It is trained using airflow
measurements at the front, or cold ends, of servers, but this is not practical in all DCs due

to measurement complexities and the model also ignores hot air recirculation [40].

In summary, existing forecasting methods suffer from one or more of the following
limitations. (1) They are not generic models applicable for several configurations, (2) their
prediction algorithms are usually inappropriate for transient operation, (3) the
computational time they require can be of the order of several minutes or even hours,
making the models unsuitable for real-time applications, (4) temperature predictions are
only available over short durations and not until steady-state conditions are reached, (5)
comprehensive effects of all important operating conditions, such as cooling unit set-point,
airflow, and server workload, are not included, and (6) the methods generally ignore

important aspects of flow physics and heat transfer.

We present a gray-box model for thermal anomaly detection that predicts the
transient CPU and inlet air temperatures in an enclosed DC by combining fundamental
thermofluid relations with a data-driven solution. The model employs an artificial neural
network (ANN) in conjunction with a 3D zonal model to find unknown parameters, and it

is trained with data obtained from CFD simulations. We compare it with a black-box model
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based on a nonlinear autoregressive exogenous model (NARX) and a conventional zonal
model developed in [13], where the airflow within each zone is determined using a
mechanical resistance circuit analysis. These flowrates contribute to a zonal energy balance
to predict the temperature of each zone in an in-row cooling unit DC. To demonstrate the
utility of the gray-box model in data center monitoring, we consider the problem of
detecting fan failures in a modular data center, using a classifier trained from the

predictions of the gray-box model.

All three models perform well for interpolative predictions, but our gray-box model
outperforms for extrapolative predictions under different scenarios. To the best of our
knowledge, this is the first study to compare a 3D gray-box model with black-box and

conventional zonal models for transient temperature predictions in a DC.

Below, Section 2 introduces the details of the model and its framework. Section 3
compares the transient CPU and inlet air temperatures using the gray-box and black-box
models and provides an application of our gray-box model. Finally, Section 4 summarizes

our conclusions.

5.3 Methodology

We develop a gray-box thermal model to predict transient server CPU and inlet air
temperatures. As depicted in Figure 5-1, pressure data are first collected from
experimentally validated CFD simulations. These data are used to train an ANN to predict
pressure in different zones. Next, the predicted pressures are applied in the momentum,

mass, and energy relations to predict the temperatures.
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Run Experiments and CFD Simulations

Validate CFD Simulations

Is Temperature
Error Acceptable?

Collect Pressure Data through CFD

|
Apply ANN Algorithm to Predict Pressures

Use Momentum Equations to Calculate Mass Flow Rates

Use Energy Balance Equation to Predict Transient Temperatures

Figure 5-1. Block diagram of the gray-box model for transient temperature predictions.

5.3.1 System description

Figure 5-2 presents the configuration of an in-row cooling modular DC that is instrumented
with 25 thermocouples to obtain air temperature measurements at the front of the racks in
the cold chamber. Also shown is a schematic of the airflows within the enclosure. The DC
houses two in-row cooling units that are placed at the left and right ends of the enclosure
and five racks with 64 servers inside them. The servers are sparsely distributed and their
CPU temperatures are measured by temperature sensors integrated into the core of the
servers using the MobaXterm interface software. This software reports and records all on-

board sensors measurements.

The cooling units draw warm air from the back (hot) chamber, extract heat from it
and release cold air into the front (cold) chamber. Servers take in the cold air from the cold

chamber and expel warm air to the hot chamber from where it is returned to the cooling
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units. The racks are partially populated with servers and the empty spaces are blocked with
blanking panels. There may be airflow leakage either from the hot to the cold chamber or

vice versa due to the local pressure differences between these two chambers.
5.3.2 Computational fluid dynamics (CFD)

The CFD simulations for a row-based cooling DC are performed using ANSY'S Fluent with
the temperatures and turbulent flow field modeled using energy equations and a realizable
k-¢ model [42-44]. A mesh independence analysis is performed based on the grid
convergence index (GCI) for coarse, medium, and fine meshes with 2.6 million, 3.3 million,
and 4.4 million nodes, respectively. Based on the GCI, an intermediate mesh is selected for
all simulations. For the transient analysis, the second-order upwind scheme is adopted for
the convection term and the semi-implicit method used for the pressure-linked equation
(SIMPLE) algorithm. The racks in Figure 5-2 are modeled as recirculation boundaries, the
cooling units as mass flow inlets and pressure outlets for the cold air supply and the return
air, respectively. The gaps between the racks, which can cause air recirculation if not
properly sealed, are modeled as porous media using a power-law model to account for their

resistance,
dp = —Co|v|, (5-1)

where dp denotes the pressure drop across the porous zone, |v| the velocity magnitude,

and C,, and C, are empirical coefficients determined from experiments [45].
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Figure 5-2. Schematic of the DC enclosure with five racks and two in-row cooling units.
(a) Thermocouple locations and (b) top view of the airflow distribution. The enclosure is
3.2m long, 1.4 m wide, and 2.05 m high.

The governing equations for mass, momentum, and energy conservation are [46],

2 +V.(p7) =0, (5-2)
%28 V. (pi5) = —Vp + V. () + pg + F. and (5-3)

78



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

2 (pE) + V.(5(pE +p)) = V. (keffVT — S hdn + (B 17)) + S, (5-4)
where p denotes the static pressure, 7 the stress tensor, pg and F the gravitational body
force and external body force, E the total energy, k. the effective conductivity, h,, the
enthalpy of species n, J, the diffusion flux of species n, and S, the heat of chemical
reaction that is assumed to be zero.

The relations for the turbulent kinetic energy k and energy dissipation rate € are

[47],

el | ek _ 2| O B (5-5)
et Tom ox; [ak ox; + 2uE;;E;; — pe, and

2pe) | 2pew) _ 0 [ )y o foy pp o pS (5-6)
ot + ax; 0x;j [agaxj + Clgle“ltEUEl] Coep P

where v; represents the velocity component in the corresponding direction i, Ej; the

component of the rate of deformation, u, the eddy viscosity, and oy, o, C,, and C,, are

constants.

5.3.3 Gray-box model

Even though CFD simulations can predict DC temperatures through white-box models,
these approaches are computationally very expensive. Zonal models are a faster and
reasonably accurate alternative, where the DC environment is partitioned into a grid of
coarse zones with the assumption that the physical quantities inside each zone are spatially
uniform. A set of nonlinear coupled equations consisting of the mass, momentum, and
energy conservation relations is applied for each uniform zonal volume [48-50]. Figure 5-3

depicts the 3D zones inside the enclosure for a row-based cooling architecture DC. A total
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of 75 zones are created by considering the (1) fronts of servers, (2) backs of servers, and
(3) servers themselves. Figure 5-2.a presents a schematic of the zones for the middle rack.
There are 5 zones in front of the rack, 5 zones at the back of that rack, and another 5 zones
within the rack itself, i.e., there are 15 zones overall. This scheme is followed for all other
racks. Since the system contains 5 racks, the total number of zones is 15x5 = 75. Servers
are scattered in the racks and empty spaces in the racks are blocked by blanking panels in
the DC configuration that we have investigated. Thus, each zone may contain either a

single server or more than one server.

If the inlet and exit airflows are known for each zone, the energy balance equations
can be applied to determine temperatures. To predict airflows in each zone, data is first
collected using CFD simulations for a range of variables (Table 5-1). Next, an ANN is
trained to characterize the relation between the zonal pressures and cooling configuration
[51].

Table 5-1. Independent and dependent variables for DDMs.

Independent variable Range Dependent variable
Cooling unit airflow rate 0.40 — 2.4 (kg/s)
Cooling unit set-point 16 - 22 (°C) Static pressures
Servers workload 0 —100%

We select ANNSs due to their high capacity to model behaviors of complex and
nonlinear systems. They are able to reproduce the complex general trends for input and

output variables. Typically, an ANN consists of an input layer, some hidden layers, and an
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output layer [52]. Each layer contains a number of neurons, where the hidden and output-
layer neurons are each linked to the neurons in the previous layer. The main challenge with
ANN is the choice of model complexity. When the number of parameters is far larger than
the available training data, overfitting may happen, else unfitting may occur. The relevant
parameters of the ANN are provided in Table 5-2. To train the network, we use the ReLu
(rectified linear unit) activation function in the intermediate layers and the Levenberg-
Marquardt back-propagation algorithm (LMA) that minimizes nonlinear functions.

Table 5-2. Parameters of the ANN model.

Model attributes Details

Number of Layers 5

Number of Neurons in Layer1-5 66-4—-16-5-60

Activation function Relu (rectified linear unit)

Training algorithm Levenberg-marquardt back-propagation algorithm
(LMA)

Given the predicted pressure for each zone by the trained ANN, the inlet and exit
airflows of each zone can be determined from the mass and momentum conservation

equations as follow,
Z] mj_)i = O, and (5-7)
2F =Y Fpress +2 FBody = 2N(MV) gye — 2(MV) 5, (5-8)

where m;_,; denotes the interfacial mass flow rate transferred from cell j to cell i, F

pressure and body forces in X, y, and z direction, v velocity, and p density. In Eq. (5-7),

the mass within the control volume is constant. Eqg. (5-8) shows that the momentum
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changes only through the action of forces described by Newton's laws of motion. Table 5-3

contains expressions for force terms in Eq. (5-8).

Table 5-3. Expressions for the terms in Eq. (5-8).

LF=YFE+XE+XF

Z Fx = Z Fx,Press + Z Fx,Body (FOI’CG in x direCtion) (PA)x,out - (PA)x,in

Y E =X F press + X F, poay (Force iny direction) (PA)y out — (PA)yim + pg
2 F; = X F, press + X Fzpoay (Force in z direction) (PA) z,0ut — (PA)z,in

The energy balance for two different types of zones must be considered. For an

active server, it is,

. . aT n -
XP, —mgpcp (Tout,n - Tin,n) =Yy (5-9)

e
where n denotes the server number, 1 ,, is server mass flow rate, P denotes the total power
consumption of the corresponding server, X is a coefficient that determines the power usage
by CPUs, cp denotes specific heat capacity, Ty, IS server exhaust temperature, T;, ,, IS
the temperature of the corresponding cold chamber zone, t is time, and Y is the empirical
coefficient for the thermal mass of a server available from the literature [13]. The other

energy balance is for the airside within the in-row cooling unit,

aTi )
2]' Qj—>i + Qsource = iniCp Fr (5 10)

where Q indicates heat flux, Qq,.rce the internal heat source, V; cell volume, p; the air
density, and T; the air temperature at the inlet of a server. The inputs and outputs of the
gray-box model are depicted in Figure 5-4. Eq. (5-9) shows that while energy can be
converted from one form to another, the total energy within the control volume is constant.

Eq. (5-10) provides the temperature change as server heat is added to the system. Integrated
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forms of the mass, momentum and energy conservation laws (Egs. (5-7)-(5-10)) are used

to predict pressure, temperature, and mass flowrates.

Figure 5-3. 3D zones inside the enclosure of a row-based cooling DC.

‘ Cooling Unit Airflow Rates>

. . ; Zonal
‘ Cooling Unit Set-Points ANN Pressure Temperature
Model
| Servers Workload >

Figure 5-4. The data flow within the gray-box model for temperature predictions.

5.3.4 Failure detection

Next, we consider a use case of the gray-box model for transient temperature predictions
during system failure. Failure detection is an essential aspect of highly reliable systems. To
detect failures, a classification approach can be employed based on the different system
behaviors during normal and failure conditions. In the classification problem, an instance
associated with a set of attributes (features) is taken as input and the goal is to assign a

class label (e.g., normal or abnormal) to that instance. Machine learning models such as
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ANN can be applied to detect anomalies by learning the spatial and temporal characteristics
of the temperature distributions for different conditions.

To gain an understanding of the kinds of features that can be used to distinguish
different failure scenarios, we use the gray-box model to predict the temperature
distributions in the cold chamber for normal operating condition and 10 minutes after
various fan failures. Figure 5-5 shows the corresponding temperature values at different
locations. Clearly, each type of fan failure, including the case of no failure, has a unique
signature that can be used to infer which fan has stopped working.

We generate labeled training data for the gray-box model under normal and
abnormal (e.g., fan failure) conditions in a row-based cooling DC using CFD simulations.
Each instance in the training set consists of a collection of temperature readings at 25
locations every minute during a 10-minute interval and the corresponding label. Therefore,
each observation is a 25x10 matrix. Furthermore, we use feature selection to determine a
subset of 13 (out of the 25) sensor locations, which are the most informative for failure
detection. The input to the classifier is reshaped to a 130x1 vector. We train an ANN with
one input layer, several hidden layers, and one output layer. At run time, the ANN classifier
takes real measurements from thermal sensors at target locations as inputs and predicts
whether a fan failure has occurred and if so which fan it is. In this case study, we assume

at any time, only one fan can fail.

5.4 Results and discussion

We evaluate the fidelity of CFD simulations and the proposed gray-box model, as well as

the failure prediction algorithm using a row-based modular DC that is depicted in Figure
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5-2. Twenty-five thermocouples are mounted along the cold chamber to collect

temperature measurements.

5.4.1 CFD validation

To validate the CFD simulations, the airflow through the cooling unit is altered from a high
value of 1.9 kg/s (m, » Y, m,) to a lower value of 0.9 kg/s (m., « X, m,), and its set-point
temperature from 18°C to 16°C after 300 seconds for 100% IT load at 20 kW. The transient
temperatures from CFD simulations and experimental measurements over a period of 1200
seconds are shown in Figure 5-6, and the CFD simulations evaluated in Table 5-4 based
on the following performance comparison metrics [53],

Maximum absolute error:

MAX g = MAX|Tcrp — Trap|- (5-11)

Mean squared error:
1 2 -
MSE = =3 (|Terp = Texp|) "™ (5-12)

Standard deviation of absolute error:

2 (5-13)
STDyg = \/ﬁz (lTCFD - TExpl - %ZlTCFD - TExpl) .

Before any change in the cooling unit operating conditions, the maximum
temperature difference between the CFD simulations and the experimental measurements
at any location is smaller than 1.5% (0.3 °C), indicating relatively small errors. Hot spot
formation is unlikely to occur for this case due to an oversupply of cold air, which produces
a more uniform temperature distribution in the front chamber. After 600 seconds, MAX g,

MSE and STD,g increase slightly, where racks 3 and 4 show greater deviations of the
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predictions from measurements due to hot air recirculation. At 1200 seconds, only a single

zone has an 8% deviation from experiments with MAX,; =~ 1.83 °C, values for which are

lower than 4.5 % for the remaining 20 zones. Therefore, we conclude that the CFD

simulations provide reasonably accurate predictions of transient temperatures.

Table 5-4. Performance of CFD simulation.

t = 0 Second t = 300 Seconds
Rack1 | Rack2 | Rack3 | Rack4 | Rack5 | Rack1l | Rack2 | Rack3 | Rack4 | Rack5
MAX 5 0.19 0.29 0.29 0.22 0.18 0.18 0.24 0.19 0.20 0.18
MSE 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01
Std,g 0.04 0.12 0.09 0.06 0.05 0.04 0.10 0.07 0.06 0.07
t = 600 Seconds t = 1200 Seconds
Rack1 | Rack2 | Rack3 | Rack4 | Rack5 | Rack1l | Rack2 | Rack 3 | Rack4 | Rack5
MAX g 0.25 0.51 1.07 1.06 0.58 0.34 0.57 1.83 1.46 0.74
MSE 0.03 0.15 0.30 0.28 0.09 0.05 0.20 0.86 0.61 0.13
Std,g 0.09 0.11 0.35 0.40 0.23 0.11 0.17 0.62 0.50 0.25
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Figure 5-5. The temperature profiles for the normal thermal state and six thermal fault
states induced by the cooling unit fans when the set-point temperature and server workloads
are set to 17 °C and 100%, respectively.
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Figure 5-6. Temperature distributions provided by the CFD simulations and experimental

measurements for 25 locations in the front chamber shown in Figure 5-2 (a).
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5.4.2 Effects of training set size in the gray-box model

Using the CFD simulations, we produce a labeled dataset for cooling unit airflow changes
in a row-based cooling DC. Each instance in the dataset consists of a collection of pressures
at 60 locations for 56 airflows every second during a 10-seconds interval, i.e., a 56x60x10
tensor. We train the ANN model using different number of airflows to determine the
optimum sample size that provides the best trade-off between accuracy and training time.
Table 5-5 shows average prediction error as the input data sizes are varied from 24x60x10
to 56x60x10. The error decreases with increasing numbers of samples until a 48x60x10,
beyond which the decrease in prediction error is negligible. Therefore, 48 out of a total 56

airflows are chosen.

5.4.3 Baseline black-box model

In this section, we introduce a state-of-the-art black-box thermal model that can predict
inlet air and CPU temperatures at successive time steps in an in-row cooling unit DC [40,
54]. Denoting the input and output vectors at time t by x;, and y;, respectively, x; consists
of the cooling unit operational parameters and server workloads, while y, includes inlet air
and CPU temperatures. Given inputs from time t-m to t and outputs (or measurements)
from time t to t-n, the model predicts the output at time t + 1 using the function,

Veer = e, Xe—1) voir Xt Voo Yeets = Vi—n) m=1,2,3 ...andn=1,2, (5-14)

3, ...
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Table 5-5. Average train and test prediction errors as the sample size changes.

Training set size Average train RMSE (Pa) Average test RMSE (Pa)
24x60x10 3.72 6.02
28x60x10 2.54 4.24
32x60x10 1.62 3.57
36x60x10 1.05 2.19
40x60x10 0.87 1.40
44x60x10 0.51 0.74
48x60x10 0.39 0.48
52x60x10 0.38 0.51
56x60x10 0.37 0.65

The NARX model referred to previously is adopted. Specifically, a neural network
with connections from both system inputs and feedbacks from outputs is used to model the
nonlinearity, as shown in Figure 5-7. The closed-loop NARX network with embedded
memory (tapped delay line) allows multi-step predictions. NARX is advantageous in
modeling time-series data since the model (1) is better at discovering long time
dependences, (2) is more effective at learning, (3) has faster convergence, (4) has negligible
computational complexity, and (4) has scalability, making it applicable for large DCs [55-

58].

To train the black-boxed model, labeled training data every minute over the past
720 s is used as shown in Figure 5-2.a. Realistic scenarios are considered to obtain the
input parameters, i.e., changing workloads for 64 servers, the cooling unit airflows that
have 6 fans, and the set point temperatures to specify the outputs, which are the inlet air

temperatures for different zones and server CPU temperatures. Therefore, the input to the
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neural network contains a 700x71 matrix. We train an open loop NARX neural network
with a 50-neuron hidden layer, and update the weights and bias values according to

Levenberg-Marquardt optimization [55].

oo -

oo -

Figure 5-7. NARX neural network with tapped delay line (TDL) at the input (figure taken
from [54]).

To develop the black-box model, temperature data is obtained from sensors at 20
second intervals and divided into training and validation sets to determine model
parameters for different scenarios, such as changing the cooling unit operating conditions
and server workloads. Once the model is trained, it is used to predict these same scenarios.
To optimize the performance of the NARX neural network for time-series predictions in
nonlinear systems, the hyper-parameters for feedback and the neural network should be
carefully chosen. Another important consideration is the amount of training data. While it
is expected that with training data obtained over a larger operational duration the model
will likely capture the system dynamics and thus enable better predictions, this also

compromises its ability to make early predictions due to a longer ramp-up period.
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Figure 5-8 shows the average error for the black-box rack inlet temperature
predictions in terms of deviations from temperature measurements as the durations over
which the training data are obtained are varied from 300 to 700 seconds after an abrupt
change in the cooling unit operation and IT load at 60 seconds. The error is large for shorter
durations, but the larger data length of 700s provides a far more accurate solution. The
errors for racks 1 and 5 are lower than for the other racks due to their proximity to the
cooling units where the local temperatures are almost equal to the set-point temperature.
For the remaining experiments, we select a training data duration of 700 seconds for the

black-box model.
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Figure 5-8. Average prediction error for the rack inlet temperature as a function of training
data length in the black-box model when operating conditions change abruptly at 60 s. All
predictions continue until a steady-state condition is reached.

5.4.4 Transient temperature predictions

The gray-box, conventional zonal, and baseline black-box models are employed to predict

transient temperatures of a row-based cooling architecture until a steady-state condition is

92



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

reached. The predictions of the models are compared with sensor measurements for several

realistic scenarios.

5.4.4.1 Influence of cooling unit operating conditions

The cooling unit operating conditions are critical for DC operation since both airflow paths
and set-point temperatures influence the thermal environments within the cold and hot
chambers. Reducing airflows or increasing the set-point temperature typically results in
higher rack temperatures and thereby higher differences in air temperatures across the racks.
For this set of experiments, we consider a high cooling unit airflow (80%) with an 18°C
set-point temperature for t < t,. At timest > t,, the cooling unit airflow and set-point
temperature decrease to 30% and 16 °C, respectively, but the server workloads remain
constant at 100%. Here, since the cold chamber pressure is lower than in the hot chamber,

and hot air recirculation occurs through the gaps between the racks producing hot zones.

5.4.4.1.1 Server inlet air temperature prediction

Figure 5-9 compares temperature predictions at the 25 sensor locations in the cold chamber
using the three models until a steady-state condition is reached. The temperatures are
mostly uniform initially and the models have high accuracy, with lower than 0.3°C
differences between the predictions and experiments. In the black-box model, the first 700
s of data are used to train the model and test its interpolative accuracy, while the remainder
are used to evaluate its extrapolative accuracy. The interpolative error associated with the
model lies below 0.7°C. As the model progresses beyond duration over which the training
data are obtained, i.e., after 700 s, the black-box model predicts a sudden increase in

temperature that causes larger differences between the predictions and measurements. In
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contrast, deviations of the predicted temperatures from measurements are far smaller for
the gray-box and conventional zonal models, and the average prediction error is about less
than half that of the black-box model.

Figure 5-10 presents the average rack inlet temperature prediction errors for the

aforementioned scenario with the three models, defined as A = M. Before 700 s,
Exp

the gray-box model, the conventional zonal model and the black-box model have a
maximum A of 3.5%, 4.2% and 2.5%, respectively. After 700 s, A for the black-box model
is larger than for the gray-box and conventional zonal models and for steady-state
conditions, all racks show A < 4.3% for the gray-box model and A < 6.5% for the
conventional zonal model while for the black-box model A >20.42%. Therefore, the gray-
box model is much more accurate than the conventional zonal model and the black-box
model for extrapolative predictions. Figure 5-11 provides transient temperature predictions

for six sensors at arbitrarily chosen different locations.

We also observe differences in the prediction accuracies at different rack locations.
For example, A values are lower for the side racks (racks 1 and 5) since they are close to
the cooling units while for the middle racks (racks 2, 3, and 4) A is larger due to hot air

recirculation, which is not accurately modeled.
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Figure 5-9. Online temperature predictions of the gray-box model (blue solid line), a
conventional zonal model (green solid line) and a black-box model (red dash line) versus
temperature measurements from experiments (black solid line) in response to an abrupt
change in the cooling unit operation at t = t, + 60 s.
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Figure 5-10. Performance comparison: Temperature prediction errors for three models with
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Figure 5-11. Transient temperature predictions from three models at different sensor

locations when the cooling unit operation changes abruptly at 60 s.
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5.4.4.1.2 Server CPU temperature prediction

Here, the CPU temperatures are predicted by the gray-box and black-box models until a
steady-state condition. Since the conventional zonal model developed in [13] does not
predict CPU temperatures, its results are excluded in this set of experiments. Figure 5-12
presents CPU temperatures prediction results for two arbitrary chosen servers. Server 23 is
located at the top of rack 3 and server 45 in the middle of rack 4. The gray-box model has
a higher accuracy than the black-box model for all times. The values of A for both models

for these two servers are summarized in Table 5-6.

a) Server 23 b) Server 45
T2 68
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70l v 66 Ak
o ak 1) any
g e o 64
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Figure 5-12. CPU temperature predictions from the gray-box and black-box models in
response to a change in the cooling unit operation at 60 s until a steady-state condition is
reached.

Table 5-6. Relative temperature prediction error between the black-box and gray-box
models and experimental measurements for servers 23 and 45 in response to a change in
the cooling unit operation at 60 s.

AGray—box (%) ABlack—box (%)
Server 23 1.02 2.71
Server 45 0.91 241
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5.4.4.2 Influence of IT load on temperature distribution

When t < t,, all servers operate at a 20% workload (8.6 kW in total) while at time t > ¢,
the server workloads increase to 100% (20 kW in total). Both cases have cooling unit

airflows of 1.2 kg/s and a set-point temperature of 18°C.

5.4.4.2.1 Server inlet air temperature prediction

Cold chamber temperature predictions from the gray-box model, the conventional zonal
model and the black-box model are shown in Figure 5-13. Before t, + 700 seconds, all
models provide good temperature predictions, but after t, + 700 the error from the black-
box model increases significantly over time, while it increases initially moderately for the
gray-box and conventional zonal models but then decreases as the system approaches a
steady-state condition. Similar observations can be made from Figure 5-14, which shows
the A values from the three models. Finally, Figure 5-15 shows the transient temperature

predictions for six sensors, which are chosen arbitrarily at different locations.
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Figure 5-13. Online temperature predictions from the gray-box (blue solid line) and black-
box (red dash line) models and experimental temperature measurements (black solid line)
in response to a change in the server workloads at t = t, + 60 s.
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Figure 5-15. Transient temperature predictions from three models at different sensor

locations when the server utilization changes at time 60 s.
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5.4.4.2.2 Server CPU temperature prediction

We examine the predicted CPU temperatures for two arbitrarily chosen servers (23 and 45)
as their workload increases from 20% to 100%. Since the conventional zonal model [13]
does not predict CPU temperatures, its results are excluded in this set of experiments. The
CPU temperature prediction results are presented in Figure 5-16 and values of A are

provided in Table 5-7. The gray-box model is in far better agreement with the experiment

results.
a) b)
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Figure 5-16. CPU temperature predictions in response to a change in the server workload
at time 60 s until a steady-state condition is reached from the gray-box and black-box
models.

Table 5-7. Relative errors in the temperature predictions between the black-box and gray-
box models and experimental results for servers 23 and 45 in response to a change in the
server workload at time 60 s.

AGray—box (%) ABlack—box (%)
Server 23 0.96 1.74
Server 45 0.91 1.61

103



Ph.D. Thesis — Sahar Asgari; McMaster University — Mechanical Engineering

5.4.5 Thermal anomaly detection and fault classification

Recall from Section 2.4 that a neural network is trained to classify different failure
scenarios. Table 5-8 summarizes the train and test accuracy rate of the ANN with different
numbers of hidden layers and neurons in each layer. In the experiments, the RelLu
activation function is used in the output layer. We find that the ANN with 4 hidden layers
and 5 neurons has the best performance with the test accuracy and error rate equal to 95%
and 5%, respectively. Further increasing the number of layers or neurons leads to
overfitting.

Table 5-8. Parameters of the ANN classification model and its accuracy.

# Hidden layer | # Neurons | Train accuracy | Test Accuracy
1 3 47% 28%
1 5 48% 31%
2 3 54% 42%
2 5 61% 54%
2 7 74% 69%
3 3 88% 81%
3 5 96% 89%
3 10 100% 81%
4 97% 90%
4 98% 95%
4 10 100% 89%
5 3 100% 91%
5 5 100% 85%

We evaluate the performance of the fault detection and classification model in
identifying cooling unit fan failures. Precision and recall metrics can be used to evaluate

the classification performance. Table 5-9 provides the precision, recall, and Fg., . Of the
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resulting ANN classifier. The table indicates the no fan failure condition and the failure of

the 1% fan have the highest Fs..e Of 0.90, implying that these classes can easily be

distinguished from the rest, while the failure of fan 4 has the least Fy o Of 0.74. The

overall precision, recall, and F., for the seven conditions is 0.84.

A confusion matrix is provided in Table 5-10 which helps determine misclassified

cases, where the columns represent the actual class for the class number and rows indicate

the predicted class. The elements of the diagonal contain the total number of correct

predictions in each class and the remaining entries summarize the number of

misclassifications into other classes.

Table 5-9. Multi-class classification precision, recall, and Fg.,.. for fans failure using
ANN classifier.

Class number  Class definition Precision Recall Fscore
1 No fan failure 0.90 0.90 0.90

2 Fan 1 failure 0.90 0.90 0.90

3 Fan 2 failure 0.89 0.80 0.84

4 Fan 3 failure 0.80 0.80 0.80

5 Fan 4 failure 0.78 0.70 0.74

6 Fan 5 failure 0.82 0.90 0.86

7 Fan 6 failure 0.82 0.90 0.86
Overall 0.84 0.84 0.84

Table 5-10. Confusion matrix for the studied multi-class classification problem.

Actual class
Class1 | Class2 | Class3 | Class4 | Class5 | Class 6 | Class 7
Class 1 9 0 0 0 0 1 0
@ | Class 2 0 9 1 0 0 0 0
g Class 3 0 1 8 0 0 0 0
2 Class 4 0 0 0 8 2 0 0
S Class 5 0 0 0 1 7 0 1
& Class 6 1 0 1 0 0 9 0
Class 7 0 0 0 1 1 0 9
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5.5 Quantitative and quantitative comparison with related

works

Table 5-11 presents a summary of key differences between previous work and our proposed
method. As previously discussed, computation time and fidelity are two crucial
performance metrics for different models in real-time control and fault detection
applications. Although CFD simulations have relatively high spatial resolution, they
provide reasonable results only after several hours of numerical computation. In contrast,
depending on the geometry and projected duration of the prediction, conventional zonal
models take a few as tens of seconds to a few minutes to provide useful temperature
predictions, although test cases require over an hour of run time to calibrate, optimize and
tune the model. An investigation of a conventional zonal model reports that it is possible
to include passive server effects [13], although a passive server has a small influence on
rates of changes in temperatures and is also not common in a DC because its inclusion
reduces reliability. Thus, without significantly influencing the accuracy of the results, we

neglect passive servers.

For the tested DC scenario, our black-box and gray-box models can make
predictions in less than 0.5 seconds on a personal computer with a Core i7-8700 3.20 GHz
CPU and 16 GB memory. Of these two models, the gray-box model has a much higher
extrapolative prediction accuracy, is adaptive to changes in DC operation, and can
reproduce airflow leakage, such as hot air recirculation and cold air bypass [51]. Since the
primary objective of this study is to predict rack inlet temperatures rapidly and accurately,

the lower spatial resolution is acceptable for our purposes.
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Table 5-11. A comparison of DC temperature prediction models in present and past studies.

Assessment criteria CFD Conventional Black-box  Present work
simulations zonal model model
[44, 59, 60] [13] [28, 32, 33]
Computation time for one specific scenario > 1 hours > 30 seconds <10seconds < 0.5 seconds
Required time for training/calibrating/setup > 5 hours > 1 hours > 1 hour <1 hour
the model
Spatial resolution High (<1mm) Low (>20cm) NA Low (> 20 cm)
Duration of testing/training datasets NA NA > 1 hour <1 hour
Interpolative error NA NA <0.5°C <05°C
Extrapolative error NA NA >1°C <15°C
Ability to capture special features
e  Adaptive to changes No Yes No Yes
e  Able to capture airflow leakages No Yes No Yes
through the gaps
e Effect of passive servers No Yes No No

5.6 Conclusion

We develop a tool for designers and operators to successfully plan, operate, and control the
transient behavior of a DC. The hybrid model combines conventional thermodynamics
laws with intelligent algorithms to provide real-time temperature predictions of server
CPUs and the cold chamber in a modular DC with a row-based cooling architecture. Model
performance is compared against a conventional zonal model and an advanced data-driven
black-box model for two scenarios, i.e., (1) changes in cooling unit operation and (2)

varying server workload. Our findings are summarized below.

1. When the cooling unit fan speeds are changed from 80% to 30% (decreasing the
airflow from 1.92 kg/s to 0.96 kg/s) and set-point temperatures decreased from
18°C to 16°C, all models provide accurate predictions with low interpolative errors
having values below 0.7°C. However, the black-box model has higher extrapolative

errors, while the gray-box and conventional zonal models error decreases by half
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as the system reaches an eventual steady state. Hence, the gray-box and
conventional zonal models outperforms the black-box model for extrapolative
predictions.

2. With the server workload incremented by 80%, all models initially yield a low
average error for inlet air temperature predictions. However, this error increases
significantly for the black-box model but decreases for the gray-box and
conventional zonal model as the system reaches a steady state. Errors in predictions
of the server CPU temperatures with the gray-box model are approximately half of
those with the black-box model. Overall, the gray-box model again has a better
prediction ability than the conventional zonal and black-box models.

3. Prediction errors for the middle rack (rack 3) are higher due to hot air recirculation
than for the end racks (racks 1 and 5) since these racks are adjacent to the cooling
units.

4. The gray-box model is applied to detect fan failures. Experimental results
demonstrate that the classifier trained using predictions from the gray-box model
achieve precision, recall, and a Fg.,. Of 0.84 for one normal and 6 abnormal

conditions.

We conclude that the performance of the gray-box model is superior to that of a
pure data-driven black-box and conventional zonal models. Our future work will
investigate applications of the gray-box model for early fault detection and diagnosis,

thermal-aware workload management and tests of what-if scenarios to characterize the
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influence of operating conditions on the CPU and inlet air temperature distribution, and

model-predictive control for the operation of cooling units.
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