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Abstract 

One of the crucial challenges for Data Center (DC) operation is inefficient thermal 

management which leads to excessive energy waste. The information technology (IT) 

equipment and cooling systems of a DC are major contributors to power consumption. 

Additionally, failure of a DC cooling system leads to higher operating temperatures, 

causing critical electronic devices, such as servers, to fail which leads to significant 

economic loss. Improvements can be made in two ways, through (1) better design of a DC 

architecture and (2) optimization of the system for better heat transfer from hot servers.  

Row-based cooling is a suitable DC configuration that reduces energy costs by 

improving airflow distribution. Here, the IT equipment is contained within an enclosure 

that includes a cooling unit which separates cold and back chambers to eliminate hot air 

recirculation and cold air bypass, both of which produce undesirable airflow distributions. 

Besides, due to scalability, ease of implementation, and operational cost, row-based 

systems have gained in popularity for DC computing applications. However, a general 

thermal model is required to predict spatiotemporal temperature changes inside the DC and 

properly apply appropriate strategies. As yet, only primitive tools have been developed that 
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are time-consuming and provide unacceptable errors during extrapolative predictions. We 

address these deficiencies by developing a rapid, adaptive, and accurate hybrid model by 

combining a DDM and the thermofluid transport relations to predict temperatures in a DC. 

Our hybrid model has low interpolative prediction errors below 0.7 oC and extrapolative 

errors less than one half of black-box models. Additionally, by changing the studied DC 

configuration such as cooling unit fans and severs locations, there are a few zones with 

prediction error more than 2 oC. 

Existing methods for cooling unit fault detection and diagnosis (FDD) are designed 

to successfully overcome individually occurring faults but have difficulty handling 

simultaneous faults. We apply a gray-box model involves a case study to detect and 

diagnose cooling unit fan and pump failure in a row-based DC cooling system. Fast 

detection of anomalous behavior saves energy and reduces operational costs by initiating 

remedial actions. Cooling unit fans and pumps are relatively low-reliability components, 

where the failure of one or more components can cause the entire system to overheat. 

Therefore, appropriate energy-saving strategies depend largely on the accuracy and 

timeliness of temperature prediction models. We used our gray-box model to produce 

thermal maps of the DC airspace for single as well as simultaneous failure conditions, 

which are fed as inputs for two different data-driven classifiers, CNN and RNN, to rapidly 

predict multiple simultaneous failures. Our FDD strategy can detect and diagnose multiple 

faults with accuracy as high as 100% while requiring relatively few simultaneous fault 

training data samples. 
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Our gray-box model exhibits superior performance compared with black-box models, such 

as ANN and NARX models. An application of the gray-box model involves a case study 

to detect single and simultaneous cooling unit failures in a row-based cooled DC. 

Key words: Data center, row-based, temperature prediction, data-driven, ANN, 

CNN, RNN, machine learning, anomaly detection and diagnosis. 
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Chapter 1  

1 Introduction 

In recent years, the unprecedented growing demand for cloud computing, online 

applications, and internet services has led to tremendous growth in size, number, and power 

consumption of data centers (DCs). It is estimated that by 2025 DC energy usage will 

account for 20% of worldwide consumption [1-3]. This growth generates many concerns 

regarding the electricity demand and environmental impacts from the DCs.  

The energy density in DCs is very high and can be 10-100 times more than for 

conventional office buildings [4]. DC devices draw in raw electric power, produce some 

useful work, but more than 98% of the electricity is transformed to low-grade heat which 

the thermal management system must remove from the DC and release into the ambient air 

[5]. Maintaining a suitable environment for information technology (IT) infrastructure is 

the first priority in DC. Based on the ASHRAE guideline, the allowable rack inlet air 

temperature is maintained between 20 oC and 24 oC. At high temperatures, local hot spots 

can emerge which may lead to IT equipment failure, performance imbalance, excessive 
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power consumption, and are a threat to reliability. Thus, cooling systems have a critical 

role in continuously maintaining the safe, consistent, and reliable operation of DCs 

The cooling required to maintain the IT equipment within a safe operating condition 

is one of the major contributors to DC power consumption. Depending on the specific IT 

equipment, cooling systems consume 24-60% of the total energy consumed by a DC [6, 7]. 

Therefore, an inefficient cooling structure leads to significant energy waste. Despite the 

liquid cooling technology such as heat reuse and efficient transferring heat, air cooling is 

the preferred method employed in DCs, which will remain for the foreseeable future due 

to its reliability, simplicity of air handling, lower capital and maintenance costs, and the 

uncertainties associated with liquid cooling systems [8-12]. 

1.1 Air Cooling 

Although liquid cooling technology has undergone many improvements over the years, a 

large number of DCs still use air cooling systems to maintain the environmental conditions 

suitable for IT equipment operation. If a server becomes too hot, onboard logic will turn it 

off to prevent damage to the server. Therefore, the heat generated in a server should be 

extracted immediately. The cooling occurs in three steps: (1) Server cooling, where the IT 

equipment generates heat as the electronic components within them use electricity. Then, 

the IT equipment fans draw cold air across the internal components to remove the heat 

from the CPU and transfers it to the air flow passing over it. (2) Space cooling, the 

computer room air conditioner or handler (CRAC/CRAH) unit provides cold air to the IT 

equipment. (3) Finally, at the facility level, heat is rejected outside of the DC.   
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The hot aisle/cold aisle configuration is used in DCs to conserve energy and lower 

cooling costs by managing airflow. In this design, server racks are lined up in alternating 

rows in which the cold air intake side of the servers faces one way and the exhausted hot 

air side the other way. Cold aisles face CRAC/CRAH output ducts, while hot aisles face 

return ducts. The hot aisle/cold aisle configuration minimizes two major air distribution 

problems identified in DCs, i.e, bypass and recirculation, and optimize the thermal 

performance of DCs. If the cold air supplied to the IT equipment is insufficient, the hot air 

exhausted from servers is recirculated to the IT equipment inlets by the fans inside the 

servers, increasing the overall inlet air temperature. Bypass occurs when part of the cold 

airflow returns to the cooling unit without contributing at all to server cooling [13, 14]. 

1.2 DC cooling Architecture 

Air cooling technology has improved significantly over the years. For decades, DCs used 

raised floor cooling systems to deliver cold air to servers. In a raised floor DC, the cold air 

from the CRAC/CRAH pressurizes the space below the raised floor and forces air through 

the perforated tiles that lie in fronts of servers. After passing through the servers, the 

exhaust air is returned to the CRAC/CRAH to be cooled. One of the major disadvantages 

of using this kind of DCs is cold and hot air mixing, which in turn increases the server inlet 

temperature and decreases the efficiency of the cooling system.  

To remedy this problem, row-based cooling systems are used, where the cooling 

units are located between IT racks or mounted above them in DC cabinets. Thus, delivering 

cold air to a row of racks is easier and results in energy- and cost-efficiency. Figure 1-1 

shows these two architectures. 
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Figure 1-1: Two different locations to put a cooling unit (architecture) that supplies cool 

air directly to the IT equipment [15]. 

1.3 Data-driven models 

The advent of data-driven models (DDMs) has created a major development in the DC 

industry where they are being increasingly used as a replacement for CFD simulations and 

physics-based models. As a result of the nonlinearity and complexity of the airflow in a 

DC, sophisticated models are called to represent the complex relationships among the 

system-state (input, internal, and output) variables. The most widely established techniques 

which are appropriate for DC study are support vector regression (SVR), Gaussian process 

regression (GPR), artificial neural network (ANN), and nonlinear autoregressive 

exogenous (NARX) model.  

a) Raised floor DC 

b) Row-based cooling DC 
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The SVR algorithm is a regression algorithm that is suitable for both linear and 

nonlinear datasets. It attempts to set the error within a certain threshold and minimize the 

generalization error bound. Kernel functions in SVR such as linear, poly, and radial basis 

functions (RBF) help to find a higher dimensional space for a nonlinear dataset problem in 

which turns the dataset related to linear regression in that space.  

GPR is a nonparametric kernel-based probabilistic model with a finite collection of 

random variables. It is also a powerful predictive tool for data that is highly non-linear. 

Several different kernel functions such as rational quadratic, Matérn, squared exponential, 

and periodic kernels, each with unique properties and characteristics, can be used when 

fitting the model [16]. 

The most widely established machine learning-based technique is ANN and is a 

very effective method for complex and nonlinear systems. It is a highly robust and 

sophisticated technique to capture the general trend of the complex input and output 

variables. Typically, ANN includes an input layer, some hidden layers, and an output layer 

[17].  Each layer consists of a number of neurons and the hidden and output-layer neurons 

are each linked to the neurons in the previous layer.  

The NARX model has been used in DC for different applications [18, 19]. It is a 

neural network with connections from both system inputs and feedbacks from outputs to 

model the nonlinearity in a DC. NARX is advantageous in modeling time-series data since 

the model (1) is better at discovering long time dependences, (2) is more effective at 

learning, (3) has faster convergence, (4) has negligible computational complexity, and (4) 

has scalability, making it applicable for large DCs [20-23].  
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In this study, ANN, SVR, and GPR techniques are used for pressure forecasting. It 

was found that SVR and GPR algorithms are less accurate than ANN. Because SVR and 

GPR typically need separate models for each point prediction and then combine them to 

obtain a complete profile which is costly in comparison with using a single ANN model 

[48]. Besides, SVR and GPR algorithms require some prior knowledge about the system 

and input-output relationship to have precise prediction which is difficult to get the 

relationship due to the nonlinearity and complexity of the airflow distribution in a DC. 

While ANN finds the relationship of the system and makes more accurate predictions. 

For the transient case study, NARX is an appropriate model. However, it ignores 

important facets of the flow physics and heat transfer that can lead to large prediction errors 

in extrapolative predictions. To address this deficiency, a gray-box model is introduced 

that combines machine learning with the thermofluid transport equations relevant to predict 

transient temperatures. Table 1-1 provides a qualitative comparison of some of the 

distinctive features of the four machine learning techniques used in this study. 

1.4 System fault detection  

Common failures in electronic products can be traced back to thermal-related issues.  The 

lifespan of electronic components in a DC depends on the environment temperature and is 

shortened significantly at high temperatures. Pumps and fans in the cooling systems are 

widely used to create cold airflow in electronic products for cooling purposes. Since they 

are critical for thermal management in electronic products, the reliability of electronic 

products is heavily dependent on the pump and fan reliability [24-27].  
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Table 1-1. Summary of DDM methods tested. 

Feature ANN SVR GPR NARX 

Input data 
Non-time series 

data 

Non-time series 

data 

Non-time series 

data 
Time series data 

Output prediction 

space 

Handle multiple 

output points in 

a single model 

Cannota handle 

multiple output 

points in a 

single model 

Cannot handle 

multiple output 

points in a 

single model 

Handle multiple 

output points in a 

single model 

Non-kernel 

based method 

kernel-based 

methodb 

Kernel-based 

method 

Non-kernel based 

method 

Uncertainty Deterministic Deterministic Stochastic Deterministic 

a SVR and GPR typically require separate models for each point prediction. 
b Kernel based methods need some prior knowledge about the system and input-output relationship. 

Anomalies are often the result of exceptional system conditions and do not describe 

the common functioning of the underlying system. Fast anomaly detection is one of the 

key requirements for economical and optimal process operation management. Many neural 

network models have been developed to detect faults in a system and shown to be highly 

successful. One-class support vector machine (OCSVM) and Nonlinear AutoRegressive 

Exogenous (NARX) techniques are two different fault detection techniques that have been 

used for different applications [28]. OCSVM is a special variant of the general support 

vector machine (SVM) and only uses the normal operation data for training. It constructs 

the tightest decision boundary that encloses all data with minimal slacks. If a new sample 

locates within the boundary, it is classified as a normal operation point; otherwise, it is 

labeled as an abnormality. Since no faulty data is needed for training, the OCSVM can be 

trained easily and has been applied widely for fault detection [29].  

NARX is a popular machine learning algorithm that characterizes complex 

nonlinear mappings between the input and output time-series data. A NARX network with 
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embedded memory (tapped delay line) can be utilized to detect faults in a system [30, 31]. 

First, a NARX network is trained and is used to predict target features given past inputs. If 

the distance between the predicted and actual values exceeds a threshold over several 

consecutive data samples, an anomaly is detected.  

1.5 System fault diagnosis  

The fault type can be determined using different DDMs. The data-driven functional models 

can classify the value of the response variable, with respect to the different failures. Three 

common DDMs for fault diagnosis are ANN, convolutional neural network (CNN), and 

recurrent neural network (RNN).  

CNN is a feedforward neural network with a set of non-linear transformation 

functions that has presented excellent success and high performance to solve many 

classification problems [32, 33]. Convolutional networks sometimes offer some significant 

advantages over conventional neural networks, especially when it comes to classification 

problems. CNN transforms the input into a form that is easier to process, while still 

retaining the essential features. The crucial features are extracted by applying the 

convolutional filter on the initial inputs where the redundant data are eliminated. This, in 

turn, decreases the execution time of the algorithm. Next, a pooling layer is applied where 

the spatial size of the convoluted features will be attempted to be reduced. Finally, the 

output of the pooling layer needs to be flattened to be used in a regular neural network.  

The third type of data-driven methodology for fault diagnosis is RNN [34]. RNNs 

possess connections that have loops, feedback, and memory to the networks over time. 

This memory allows this type of network to learn and generalize across sequences of inputs 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

9 

 

rather than individual patterns. A state of the art RNN is Long Short-Term Memory (LSTM) 

which has shown a better performance than a vanilla RNN [35]. LSTM is trained using 

Backpropagation Through Time (BPTT) and overcomes the vanishing gradient problem. 

1.6 Performance metrics  

There is a need to evaluate the performance of the different prediction models using criteria 

such as accuracy rate, error rate, precision, and recall. The accuracy rate is the percentage 

of correct classifications while the error rate is the percentage of incorrect classifications. 

Precision and recall metrics are two important metrics to assess the performance of the 

classifiers. Precision represents the portion of positive samples that were correctly 

classified to the total number of positive predicted samples and recall determines the 

positive correctly classified samples to the total number of positive samples. By combining 

these two terms, a new metric can be obtained to evaluate the performance of the classifiers 

which is called F1-Score. F1-Score is the harmonic mean of precision and recall. 
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Chapter 2  

2 Literature review 

2.1 Thermal modeling and temperature prediction of DCs 

DC designers require an accurate temperature prediction model for energy-efficient real-

time management of computing infrastructure. It is important to examine and evaluate DC 

thermal models before their implementation in high power density computer rooms [36]. 

There are three main methods for predicting temperatures in a DC, including (1) white-box 

[37-42], (2) black-box [43-48], and (3) gray-box models [49-54].  

White-box, or physics-based, models are based on an understanding of physical 

laws and the underlying engineering principles. A white-box model based on 

computational fluid dynamics (CFD) simulations is time-consuming and very expensive 

[55, 56]. In this technique, numerical methods are used to solve the differential equations 

which extract the thermal dynamics of the DC environment. A comprehensive number of 

boundary conditions and parameters need to be considered for both the servers and DC 

room, such as servers and cooling units airflow rates, DC room dimensions, etc. A series 

of DC thermal simulations that used CFD are reviewed by Rambo and Joshi [57]. This 

method is not flexible to changes in the DC, i.e. servers location and statue (on-off) and 

models cannot be re-run for each change due to high computational cost.  
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Black-box models are the mathematical functional relationship between system 

inputs and outputs to predict system operations but without an understanding of the 

underlying physical and thermodynamics principles. They have enough accuracy if 

training data are numerous. Black-box models are used to obtain fast interpolative 

temperature predictions in DCs, however, they have poor accuracy for extrapolative 

datasets. 

A gray-box method is a combination of white-box and black-box models which 

includes some aspects of the system physics. Therefore, extrapolative prediction errors are 

reduced below those of black-box models. A 2D hybrid thermal model is proposed in [51] 

to predict the temperatures around the servers in a DC. Here, the authors considered the 

first law of thermodynamics, as well as sensor observations with the auto-regression model. 

Such an approach can be trained using airflow measurements at the front, or cold ends, of 

servers. However, it is not practical in a DC due to the complexities associated with 

measurements and the negligence of hot air recirculation. Another airflow and temperature 

prediction tool has implemented 3D zonal modeling in [41] but utilizes the zones that are 

too large to accurately predict temperatures at server inlets. The model also requires 

airflows that must be obtained for each prediction through computationally expensive CFD 

simulations.  

Available temperature prediction methods suffer from at least one of the following 

limitations. (1) They are not generic models applicable for several configurations. (2) 

These prediction algorithms are usually inappropriate for transient operation. (3) The 

computational time they require can be of the order of several minutes or even hours, 
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making the models unsuitable for real-time applications. (4) Temperature predictions are 

only available over short durations and not until steady-state conditions are reached. (5) 

Comprehensive effects of all important operating conditions, such as cooling unit set-point, 

airflow, and server workload, are not included. (6) Finally, the methods generally ignore 

important aspects of flow physics and heat transfer.  

2.2 Fault detection and diagnosis of a DC 

Failure in the cooling system reduces IT equipment lifetime, the reliability of the DC and 

increases economic losses. DC designers try to increase system reliability by adding 

cooling units which leads to extra cost. Smart system monitoring for fault detection and 

diagnosis (FDD) can be used to detect and diagnose upcoming failures and schedule 

maintenance actions.  

FDD algorithms can be classified into two categories, (1) independent and (2) 

simultaneous FDD [58, 59]. An independent FDD analyses only one fault type at a time, 

while the simultaneous FDD can detect and diagnose two or more mutually exclusive faults 

occurring concurrently.  

Studies on independent and simultaneous FDD methodology of cooling systems 

can be separated into two categories, namely, model-based and data-driven [60, 61]. In a 

model-based FDD, a physics-based model or semi-empirical mechanistic representation of 

the cooling system is established to simulate the dynamic behavior of the system under the 

normal operation condition. Next, the distance between the system and the mentioned 

model is calculated. Finally, a residual analysis of the distance is conducted to determine 
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if any fault exists in the system. The literature includes numerous instances that use 

mechanistic physical models to diagnose some common faults. Some popular model-based 

FDD techniques include symbolic time-series analysis, interacting multi-model, smooth 

variable state space, cross wavelet transform, and multi-modal decomposition [62]. Despite 

the existence of several model-based FDD strategies, it is often challenging to establish 

accurate physics-based representation to simulate the anomalous behavior of dynamic 

systems in real-time. Furthermore, these methodologies are often prohibitively 

computation-intensive, limiting their implementation in control systems [63]. Therefore, 

data-driven FDD methods have attracted increasing attention.  

Data-driven approaches that currently dominate air-conditioning FDD literature do 

not require considerable model knowledge. By collecting a certain amount of data 

identifying the essential features of the dynamic system, it can learn fault patterns from 

historical information, thereby demonstrating the ability to predict faults [64]. Several 

types of time-series signals such as (a) acoustic, (b) vibration, and (c) electrical signals 

have been used for FDD of an air-conditioning system. However, these methodologies 

have salient drawbacks such as (1) low signal to noise ratio, (2) costly data acquisition 

system for high-frequency mechanical or electrical measurement, (3) availability of single-

point contact measurement for each component, and (4) high computational requirement 

for transforming large time-domain signals to the frequency domain in real-time [65, 66]. 

These drawbacks of the aforementioned techniques are overcome by obtaining real-time 

spatial thermal measurements using temperature probes due to their ease of installation in 

DCs, cost-effectiveness, and low computational post-processing requirements. This 
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dynamic thermal information is used in popular data driven FDD algorithms such as 

principal component analysis (PCA), artificial neural networks (ANN), support vector 

machines (SVM), and combinations of these techniques to identify cooling system faults 

in DC [67, 68]. 

There have been several attempts in the FDD literature to detect a single fault of 

the air-conditioning systems. However, literature on developing algorithms accurately to 

detect two or more simultaneously occurring faults is relatively sparse. Different faults can 

occur simultaneously in many real applications, and cooling units in DCs are no exception 

[69]. The main challenge in simultaneous FDD for the cooling cycle in DCs is that the 

number of combinations of multiple independent faults is large, thereby resulting in 

numerous possible categories of simultaneous fault training patterns. Therefore, the 

acquisition of large-scale datasets for simultaneous faults is difficult and expensive. To the 

best of our knowledge, only a few previous investigations aimed to study simultaneous 

FDD in the cooling systems [70, 71].  

Existing FDD methods suffer from one or more limitations such as, (1) the need for 

historical time series of simultaneous fault data for model training, (2) requirement of an 

experimental set up for data generation, which may affect the health and productivity of 

the system, especially when simultaneous faults occur, (3) establishing an accurate 

systematic physical model is difficult because the real systems become increasingly 

complex which challenges the implementation of an FDD method based on the physical 

method, and (4) the computational time they require can be of the order of several minutes 

or even hours, making the models unsuitable for real-time applications. 
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Chapter 3  

3 Problem statement and research objectives  

Temperature predictions offer a way to optimize server inlet air temperatures and reduce 

energy waste from over-cooling. Row-based cooling architectures for DCs have been made 

available only recently, especially for high-density DCs. Improvement in the thermal 

performance of DCs, e.g., thermal aware workload management, employing model-based 

control methods, fault detection, and testing “what if” scenarios to characterize the 

influence of operating conditions on temperature distribution, require a real-time 

temperature prediction tool. Developing temperature prediction tools for enclosed DCs 

with row-based cooling architectures is another undiscovered area for the thermal 

management of DCs.  

The available temperature prediction methods have six main limitations: (1) They 

are not generic models applicable for several configurations, (2) their prediction algorithms 

are usually inappropriate for transient operation, (3) the computational time they require 

can be of the order of several minutes or even hours, making the models unsuitable for 
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real-time applications, (4) temperature predictions are only available over short durations 

and not until steady-state conditions are reached, (5) comprehensive effects of all important 

operating conditions, such as cooling unit set-point, airflow, and server workload, are not 

included, and (6) the methods generally ignore important aspects of flow physics and heat 

transfer. Therefore, the first and second objectives are to propose steady-state and transient 

gray-box zonal models to obtain real-time temperature distributions inside the DC that are 

confined within an enclosure cooled by row-based cooling units with separated cold and 

hot chambers.  

Studying an application of our three-dimensional gray-box temperature prediction 

model is essential for demonstrating its applicability. The operation of cooling systems is 

of the critical importance to maintain a secure, reliable, and stable environment while 

ensuring energy efficiency and adhering to safety guidelines of computing infrastructures. 

A survey of over 55,000 air conditioning units revealed that more than 90% had 

experienced one or more faults. Cooling units operated under faulty conditions in a DC 

exacerbates its energy consumption and cost, damages the IT equipment while diminishing 

the computing efficiency. Therefore, fast detection of abnormal behavior of cooling units 

in a DC is of great significance. Different faults can occur simultaneously in many real 

applications, and cooling units in DCs are no exception. The main challenge in 

simultaneous FDD for the cooling cycle in DCs is that the number of combinations of 

multiple independent faults is large, thereby resulting in numerous possible categories of 

simultaneous fault training patterns. Therefore, the third objective of this research is to use 
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the gray-box temperature prediction model for studying simultaneous FDD in the cooling 

systems.  
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Chapter 4  

4 Hybrid Surrogate Model for Online Temperature 

and Pressure Predictions in Data Centers 

This chapter is reproduced from “Hybrid Surrogate Model for Online Temperature and 

Pressure Predictions in Data Centers”, Sahar Asgari, Hosein Moazamigoodarzi, Peiying 

Jennifer Tsai, Souvik Pal,  Rong Zheng, Ghada Badawy and Ishwar K. Puri, Published in 

Future Generation Computer Systems, 2021.  

The author of this thesis is the first author and the main contributor of this 

publication. Her main contributions to this work consist of introducing the idea of gray-

box model in a row-based cooling DC, writing the manuscript, formulating the problem, 

conducting the experiments, running CFD simulations, implementing the framework, and 

generating the numerical results. 
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4.1 Abstract   

The increase in cloud computing and big data storage has led to significant growth in data 

center (DC) infrastructure that is now estimated to consume more than 1.5% of the world’s 

electricity. Due to suboptimal DC design and operation, a significant fraction of this energy 

is wasted because of the cooling systems inability to effectively distribute cold air to 

servers. Consequently, additional cooling air must be circulated inside a DC to prevent 

local hot spots, which leads to undercooling at other locations. Row-based cooling is an 

emerging architecture that provides more effective airflow distribution, which lowers 

energy consumption. Since available methods are unsuitable for accurate online 

predictions, a general thermal model is required to predict spatiotemporal temperature 

changes inside a DC and hence optimize airflow distribution for this architecture. Typical 

approaches include physical models, computational fluid dynamics (CFD) simulations, and 

black-box data-driven models (DDMs). All three approaches are limited because they do 

not encapsulate the entirety of relevant operational parameters, are time-consuming and 

can provide unacceptable errors during extrapolative predictions. We address these 

deficiencies by developing a fast, adaptive, and accurate hybrid surrogate model by 

combining a DDM and the thermofluid transport relations to predict temperatures in a DC. 

Training data for the DDM is obtained from CFD simulations. An artificial neural network 

(ANN) with the Rectified Linear Unit (ReLU) activation function is shown to predict 

pressure distributions accurately in a row-based cooling DC. These predicted pressures are 

inputs for thermofluid transport equations to determine the temperature distribution. The 

applicability of the model is demonstrated by comparing predictions with experimental 
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measurements that characterize the influence of varying server workload distribution and 

cooling unit operational conditions, i.e., temperature set-point, airflow rate, and fan 

locations, on the temperature distribution. The model can be used to (1) improve cooling 

configuration design, (2) facilitate thermally aware workload management, and (3) test 

“what if” scenarios to characterize the influence of operating conditions on the temperature 

distribution.  

Key words: Data center, data-driven models, row-based cooling architecture, 

temperature prediction, ANN, SVR. 

4.2 Introduction  

Data centers (DCs) play a critical role in facilitating the digital processes that support our 

daily lives and economic productivity. Their rapid growth has led to a significant expansion 

in DC services and facilities [1-3]. The DC industry consumes more than 1.5% of the 

world’s electricity which is estimated to increase by 15-20% annually [4-6]. Although 

liquids provide considerably higher heat transfer than air, most DCs employ air cooling 

due to the simplicity of air handling [7-9]. 

Air cooling systems face two major distribution problems, namely, hot air 

recirculation and cold air bypass, both of which produce undesirable flow distributions [10-

12]. When the cold air supplied to IT equipment is insufficient, hot air exhausted from 

servers recirculates to the cold chamber where it mixes with cold air, thus raising the rack 

inlet temperature. Bypass occurs when a portion of the cold airflow returns to the cooling 

unit without contributing to server cooling. Poor cooling system design and operating 
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conditions result in inadequate air distribution, thus requiring additional cold air to 

maintain the IT equipment safely [13-17]. Ineffective cooling is estimated to be responsible 

for a third of total DC power consumption [5, 8]. 

To remedy this problem, row-based cooling is an emerging architecture that 

minimizes hot and cold air mixing, providing better cold air distribution [18]. Optimizing 

the thermal performance of this architecture requires a model that can predict 

spatiotemporal temperature variations. 

The literature contains several approaches to predict the temperature in a DC [19-

23]: 

1) Simplified physics-based models that are fast computationally, but insufficiently 

adaptive to physical changes within a DC. Due to simplifying assumptions, they 

have relatively poor accuracy [24-28]. 

2) Computational fluid dynamics (CFD) simulations that provide temperature and 

airflow distributions with high precision, but are computationally expensive, 

particularly for large DCs [29-33]. 

3) Data-driven modeling (DDM) methods that provide fast predictions are simple to 

implement and capable of approximating complex functional relationships [34-38]. 

Training data for a DDM is usually obtained from either CFD simulations or 

experiments. The model is then trained to represent the relations among system state 

variables (input, internal, and output) [39, 40]. DDMs are classified as either black-box 

(e.g., with no knowledge of thermodynamics laws) or gray-box (built with partial 
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knowledge of thermodynamics laws) [34, 41]. Black-box DDMs are extensively used to 

provide fast temperature predictions in DCs [42, 43]. They are computationally 

inexpensive. However, since black-box DDMs ignore flow physics and thermodynamics, 

their accuracy for the extrapolative prediction can be inadequate when there are minor 

changes in cooling configurations or IT equipment [24, 44]. 

Gray-box DDMs are built with partially understood physical processes and 

combined with data-driven approximations to predict air temperatures at discrete locations, 

such as server inlets and outlets [45-47]. Even though existing gray-box DDMs for DC 

temperature predictions include some physics, they failed to characterize important 

phenomena, such as hot air recirculation, which can lead to significant prediction error. 

Furthermore, most gray-box DDMs reported in the literature employ regression, which is 

inappropriate for a DC due to the complexity and nonlinearity of the governing equations 

[48]. 

While available methods can predict temperatures, (1) the computational time that 

they require is on the order of several minutes to hours, which is unsuitable for real-time 

applications, (2) they do not include the effects of important operating conditions, such as 

cooling unit set-point, airflow, and server workload and location, (3) they cannot adapt 

reasonably to configuration changes, such as the locations of the cooling unit fans, and (4) 

they usually ignore important facets of flow physics and heat transfer.  

Here, we propose a more general, accurate, and fast surrogate model which 

combines fundamental thermofluid relations with data-driven solutions to make on-the-fly 
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predictions of the steady-state pressures, airflow, and temperature distributions in an 

enclosed DC that utilizes a row-based cooling architecture. CFD simulations are used to 

generate the training dataset. Three machine learning algorithms, Artificial Neural 

Network (ANN), Support Vector Regression (SVR), and Gaussian Process Regression 

(GPR) are employed in conjunction with a 3D zonal model. The applicability of the 

proposed method is demonstrated by investigating the effect of (1) workload distribution, 

(2) operating parameters of the cooling units, (3) server placements, and (4) locations of 

cooling unit fans. The results show that the maximum temperature prediction error is 2.7 

oC and computation time is less than 4 seconds. In summary, the major contributions of 

this study are:  

• Integrating DDMs and physics-based relations to predict DC temperatures. 

• Introducing a very computationally efficient and accurate 3D temperature 

prediction model. 

• Investigating the effects of different server workloads and cooling 

conditions on temperatures. 

• Providing a surrogate model that is adaptive to changes in the locations and 

status of cooling unit fans and server utilization. 

The remainder of this study is organized as follows. Section 2 discusses some of 

the similar researches done in the past. Section3 introduces the proposed surrogate model 

and its framework. Section 4 provides temperature profiles and evaluates the predictions. 

Finally, section 5 summarizes the findings. 
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4.3 Related work 

The literature contains numerous methods to predict DC temperatures that can be broadly 

divided into three categories, i.e., (1) physics-based models, (2) CFD simulations, and (3) 

data-driven models.  

With judicious simplifications of rigorous physical laws, physics-based models are 

able to predict air temperatures at discrete locations in a DC, such as server inlets and 

outlets. An example is the lumped-capacitance mathematical model for predicting server 

inlet and outlet air temperatures [49]. In [49], the server thermal capacitance and 

effectiveness are determined from air temperature measurements at server inlets and outlets. 

A thermodynamics-based lumped capacitance model can provide very rapid predictions 

but with limited spatial information. Such a model is therefore unable to provide the fine-

grained local data required to ensure the reliable operation of every server. Such a 

limitation can be overcome by a zonal method that is an intermediate approach between 

full CFD simulations and a multi-node lumped model [45]. In zonal methods, a DC is 

partitioned into a number of characteristic zones to which fundamental conservation laws 

are applied to predict zonal airflows and temperatures. A physics-based zonal model based 

on mass and energy conservation relations for each zone within the enclosure can predict 

real-time temperatures inside a DC [24]. Although these physics-based models are 

computationally fast, their accuracy is limited due to simplifying assumptions. 

CFD simulations of DCs can predict local temperatures, airflows and pressures, 

characterize the influence of power density and Computer Room Air Conditioning (CRAC) 
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location on DC performance [29, 50]. However, because of its long execution time, a CFD 

simulation has limited utility for simulating a medium to large size DC that contains 

hundreds of racks and thousands of servers. Since thermal outages require immediate 

actions for safe DC operations, faster ways of improving thermal management must be 

identified. 

The literature includes several works that use DDMs, classified as either black-box 

or gray-box models, to predict the temperature distribution in a DC. Black box approaches 

relate outputs, e.g., temperatures, to inputs through equations that ignore the flow physics, 

where training data can be obtained from an experimentally validated CFD model. While 

the interpolative prediction errors from various DDMs are typically low, extrapolative 

prediction errors tend to be much larger [34]. An alternative is offered by an adaptive 

learning-based thermal model that employs a black-box to predict the temperatures of 

critical zones using DC operation variables as inputs [42].  

In contrast, a gray-box method includes some aspects of the system physics to 

predict temperatures so that extrapolative prediction errors are reduced below those of 

black-box models. A 2D hybrid approach that considers the first law of thermodynamics, 

as well as sensor observations, can be used with auto-regression to predict DC temperatures 

[46]. Such a model can be trained using airflow measurements at the front, or cold ends, of 

servers. But it is not practical in a DC due to the complexities associated with 

measurements and the negligence of hot air recirculation. Another airflow and temperature 

prediction tool has implemented 3D zonal modeling in [45] but utilizes the zones that were 

too large to accurately predict temperatures at server inlets. The associated model also 

https://www.sciencedirect.com/topics/engineering/flow-physic


Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

33 

 

requires airflow rates for each prediction that must be obtained through computationally 

expensive CFD simulations.  

To overcome these predictive challenges, for the first time for a DC environment, 

we develop a 3D gray-box zonal model that predicts pressures, airflows, and temperatures, 

which accounts for air recirculation and is computationally efficient.  

4.4 Methodology  

A surrogate thermal model is created using the airflow momentum, mass, and energy 

balance equations, where unknown parameters are estimated using DDMs, as depicted in 

Figure 4-1. First, CFD simulations are validated using experimental measurements for 

different cooling airflows. Then, three DDMs (ANN, SVR, and GPR) are compared to 

determine the more appropriate algorithm, which is then trained to predict pressures. Next, 

the predicted pressures are included in the momentum, mass, and energy relations to predict 

the airflow and temperatures. Finally, the results from the surrogate model are compared 

with experiments.  
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Figure 4-1: Flowchart of the model development for predicting airflow, pressure, and 

temperature. 

4.4.1 In-row cooling architecture and experimental setup 

We instrument an in-row cooling modular DC with thermocouples for temperature 

measurements. Their locations and an airflow schematic are illustrated in Figure 4-2. The 

DC houses five racks and two in-row cooling units that are placed at the left and right ends 

of the enclosure. Each cooling unit contains 3 sets of fans. The enclosure is 3.2 m long, 1.4 

m wide and 2.05 m high. Cold air from the cooling units into the cold chamber is drawn to 
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the servers to cool them, where warm air is generated and expelled into the hot chamber 

and from where it is returned to the cooling units. The racks are partially populated with 

scattered servers and the empty spaces are blocked with blanking panels. Hot air 

recirculation and cold air bypass airflows may occur in the cold and hot chambers due to 

the local pressure differences between these two chambers.  

(a) 

 

(b) 

 

Figure 4-2. Illustration of the experimental row-based cooling DC with 5 racks. (a) 

Thermocouple locations and (b) airflow schematic. The enclosure is 3.2 m long, 1.4 m wide 

and 2.05 m high. 

4.4.2 Computational fluid dynamics (CFD) 

CFD simulations of a row-based cooling DC are performed using ANSYS Fluent 18.0. The 

flow is simulated using the Reynolds Averaged Navier-Stokes (RANS) model in 

combination with the standard k-  turbulent model [51]. For steady-state analysis, the 

second-order upwind scheme is adapted for the convection term and the semi-implicit 

method used for the pressure-linked equation (SIMPLE) algorithm. Mesh sensitivity is 

determined based on the grid convergence index (GCI) for coarse, medium and fine meshes 
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with 2.6 million, 3.3 million, and 4.4 million nodes, respectively. Based on the GCI, the 

intermediate mesh is selected for all simulations for which details are provided in the 

appendix.  

A flow field is characterized by mass, momentum, and total energy balances that 

are described by the continuity, momentum, and energy conservation equations. Solutions 

to the corresponding mathematical equations provide the local velocities, pressures and 

temperatures of the fluid in the modeled domain.  

The conservation of mass for fluid flow is the continuity equation [52],  

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣̅) = 0, (4-1) 

where 𝜌 is the fluid density, 𝑣̅ is the fluid velocity, and 𝑡 is time. Newton’s second law of 

motion is applied to a fluid element that provides the conservation of momentum. When it 

is applied to fluid flow, the momentum equation [52],  

𝜕(𝜌𝑣̅)

𝜕𝑡
+ ∇. (𝜌𝑣̅𝑣̅) = −∇𝑝 + ∇. (𝜏̿) + 𝜌𝑔̅ + 𝐹̅, and (4-2) 

where 𝑝 denotes the static pressure, 𝜏̿ the stress tensor, 𝜌𝑔̅ and 𝐹̅ the gravitational body 

force and external body force. The conservation of energy represents the first law of 

thermodynamics for a control volume and provides the energy equation [53],  

𝜕

𝜕𝑡
(𝜌𝐸) + ∇. (𝑣̅(𝜌𝐸 + 𝑝)) = ∇. (𝑘𝑒𝑓𝑓∇𝑇 − ∑ ℎ𝑛𝐽𝑛̅𝑛 + (𝜏𝑒̿𝑓𝑓. 𝑣̅)) + 𝑆ℎ, (4-3) 

where 𝐸 is the total energy, 𝑘𝑒𝑓𝑓 the effective conductivity, ℎ𝑛 the enthalpy of species n, 

𝐽𝑛̅ the diffusion flux of species n, and 𝑆ℎ the heat of chemical reaction that is assumed to 

be zero. Because of its nonlinearity, additional terms arise in the momentum conservation 

equation that corresponds to turbulent stresses. These additional terms must be related to 
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the averaged flow variables using a turbulence model. We use the standard 𝑘−𝜀 turbulence 

model, which is a two-equation model that provides a general description of turbulence [54, 

55]. The relations for the turbulent kinetic energy k and energy dissipation rate 𝜀 are [56],  

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑣𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[

𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
] + 2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝜌𝜀, and 

(4-4) 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕(𝜌𝜀𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[

𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝐾
2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝐶2𝜀𝜌

𝜀2

𝑘
, 

(4-5) 

where 𝑣𝑖  represents the velocity component in the corresponding direction i, 𝐸𝑖𝑗  the 

component of the rate of deformation, 𝜇𝑡 the eddy viscosity, and 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀, and 𝐶2𝜀 are 

constants. Eq. (4-4) determines the scale of the turbulence, whereas the Eq. (4-5) 

determines the energy in the turbulence. 

The racks of Figure 4-2 are modeled as recirculation boundaries, and the cooling 

units as mass flow inlets and pressure outlets for the cold air supply and the return air, 

respectively. The gaps between the racks that can cause air recirculation if not properly 

sealed, are modeled as porous media using a power-law model [24, 57].  

4.4.3 CFD validation  

Since a row-based DC is sensitive to cooling unit airflow, three different cases are 

considered to validate the CFD simulations, i.e., with (1) high (𝑚̇𝐶𝑈 ≫ ∑ 𝑚̇𝑠), (2) sufficient 

(𝑚̇𝐶𝑈 ≅ ∑ 𝑚̇𝑠), and (3) low (𝑚̇𝐶𝑈 ≪ ∑ 𝑚̇𝑠) flow rates. Due to the emergence of hot spots 

inside the enclosure, the last of these three cases is the most challenging to maintain 

equipment integrity during implementation, and therefore it is used to test model 

robustness. 

https://en.wikipedia.org/wiki/Turbulence
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The temperature differences between CFD predictions and experimental 

measurements are characterized through 𝐸𝑟𝑟 = |𝑇𝐸𝑥𝑝 − 𝑇𝐶𝐹𝐷|. Figure 4-3 presents Err 

values for the cold chamber at different sensor locations. Values of Err are smaller across 

the cold chamber for the high (< 0.6 oC) and sufficient (< 1.1 oC) cooling unit airflows, but 

there is a larger 1.8 oC difference in a single zone for the low airflow, which occurs due to 

hot air recirculation in this region when the pressure is higher in the hot than in the cold 

chamber. Overall, the values of Err are relatively small. 

(a) 

 

(b) 

 

(c) 

 

Figure 4-3. Temperature differences between CFD predictions and experimental 

measurements at the various experimental sensor locations for a) high, b) sufficient, and c) 

low cooling unit airflows. 

4.4.4 Thermal model 

CFD simulations of DCs are complex and computationally expensive. Zonal models offer 

a faster and reasonably accurate alternative. In a zonal model, the DC environment is 

divided into a coarse grid of zones with the assumption that the conditions inside each zone 

are spatially uniform. A set of non-linear coupled equations consisting of mass, momentum, 

and energy conservation equations is applied for each uniform zonal volume [58-60].  
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∑ 𝑚̇𝑗→𝑖 = 0𝑗 , (4-6) 

∑ 𝐹 = ∑ (𝑚̇𝑗→𝑖𝑣𝑗→𝑖)𝑜𝑢𝑡𝑗 − ∑ (𝑚̇𝑗→𝑖𝑣𝑗→𝑖)𝑖𝑛𝑗 , and (4-7) 

∑ 𝑄𝑗→𝑖 + 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 = 𝜌𝑖𝑉𝑖𝑐𝑝
𝜕𝑇𝑖

𝜕𝑡𝑗 , (4-8) 

where 𝑚̇ denotes the interfacial mass flow rate transferred from cell j to cell i, 𝐹 body force, 

𝑣 velocity, 𝜌 density, 𝑄 heat flux, 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 internal heat source, 𝑐𝑝 specific heat capacity, 

𝑉𝑖  cell volume, and 𝑇𝑖  air temperature. The mass conservation equation (Eq. (4-6)) 

illustrates that the amount of mass within the control volume remains constant, i.e., it is 

neither created nor destroyed. The momentum conservation equation (Eq.(4-7)) captures 

that the momentum can only change through the actions of forces, as described by 

Newton's laws of motion. The energy conservation equation (Eq. (4-8)) indicates that while 

energy can be converted from one form to another, the total energy within a control volume 

remains fixed. Integrated forms of conservation laws (Eqs. (4-6) to (4-8)) predict pressures, 

temperatures, and mass flowrates. 

A schematic of the 3D zonal model for a single rack within an enclosure is 

represented for a row-based cooling architecture DC in Figure 4-4. A total of 50 zones are 

created within the cold and hot chambers, where mass flowrates for each zone are obtained 

by applying Eqs. (4-6), (4-7) and (4-8) for temperature (using PYTHON 3.7).  
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(a) 

 

 

 

 

(b) 

 
Figure 4-4. Zonal model for (a) cells and interfaces, and (b) the 3D zonal model around a 

rack. 

4.4.5 Data-driven models 

Due to the nonlinearity and complexity of the airflow distribution in a DC, DDMs are 

suitable for representing the multifaceted relationships among the system-state (input, 

internal, and output) variables. These models can replace CFD simulations and physics-

based models, where the most widely established techniques appropriate for DC 

investigations are SVR, GPR, and ANN [61].  

SVR is a regression algorithm suitable for both linear and nonlinear functions that 

minimizes the generalization error bound subject to error tolerance. Kernel functions in 

SVR, such as linear, polynomial, and radial basis functions (RBF), help find a higher 

dimensional representation for the input data, which transform non-linear relationships into 

linear ones in that space.  
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GPR is a nonparametric kernel-based probabilistic model with a finite collection of 

random variables. It is also a powerful predictive tool for data that is highly non-linear. 

Several different kernel functions such as rational quadratic, Matérn, squared exponential, 

and periodic kernels, each with unique properties and characteristics, can be used when 

fitting the model.  

The most widely established machine learning-based technique for complex and nonlinear 

systems is ANN. The technique is highly robust and sophisticated, being able to reproduce 

the complex general trends for input and output variables. Typically, ANN includes an 

input layer, some hidden layers and an output layer [62]. 

Each layer consists of a number of neurons, where the hidden and output-layer 

neurons are each linked to the neurons in the previous layer. The main challenge with ANN 

is the choice of model complexity. When the number of parameters is far larger than the 

available training data, overfitting may happen. Else, unfitting may occur.  

Since the DC problem includes nonlinear statistical data, SVR and GPR with non-

linear kernel functions, and ANN-based models are compared to determine the more 

appropriate algorithm.  It is worth mentioning that the dataset is generated using 

experimentally validated CFD simulations, where many realistic scenarios are simulated 

to provide the input parameter, i.e., cooling unit airflow, and specify the output parameter, 

which is the static pressure at the different interfaces of a zone. 

Table 4-1 lists the independent and dependent variables. The dataset is divided into 

two portions, 80% of which is used for training and 20% for testing and validation.  
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Table 4-1. Independent and dependent variables for DDMs. 

Independent variable Range Dependent variable 

Cooling unit airflow rate  0.40 – 2.4 (kg/s) 

Static pressures Cooling unit set-point 18 – 22 (oC) 

Servers workload 0 – 100% 

 

4.5 Results and discussion   

4.5.1  Comparison of the data-driven models    

The ANN, GPR, and SVR comparison allows us to select a better algorithm to develop the 

surrogate model. In order to find the optimum combination of DDM parameters, 5-fold 

cross-validation is used. The performance of the model is evaluated by comparing the 

predictions with a set of test data using the root mean square error, 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1 , 
(4-9) 

where 𝑦𝑖 is the observed value, 𝑦̂𝑖 predicted value, and n the number of samples. 

The hyper-parameters of the DDMs are varied. For SVR, three types of kernel 

functions, linear, polynomial, and RBF are explored, for GPR, four types of kernel 

functions, rational quadratic, Matérn, squared exponential, and periodic kernels are 

investigated and for ANN, three different activation functions, Rectified Linear Unit 

(ReLU), tanh, and logistic are considered. The performance of the RBF kernel function in 

SVR depends primarily on two important parameters, penalty (C) and Gaussian kernel 

function (γ), implementation of GPR requires the choice of a suitable kernel function, and 
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ANN is most sensitive to the number of hidden layers and the number of neurons in each 

layer.  

The comparative analysis for the SVR is presented in Figure 4-5. The minimum 

RMSE value of the test dataset for the polynomial and RBF kernel functions are 1.9 Pa and 

1.5 Pa, respectively, which in the polynomial kernel function occur at 5 degrees and in 

RBF kernel function at C = 974 and γ = 6.  

(a) 

 

(b) 

 

Figure 4-5. Comparison of different kernels of the SVR algorithm. (a) RMSE vs 

polynomial degree and (b) RBF kernel with a 3D view of RMSE vs C and γ. 

Figure 4-6 shows the RMSE values in training and testing using each of the four 

kernels, i.e., rational quadratic, Matérn, squared exponential, and periodic kernels. We find 

that the rational quadratic and Matérn kernels reproduce the pressure data more accurately 

than the squared exponential and periodic kernels. The rational quadratic kernel fits to the 

data with 1.45 and 1.78 Pa training and testing RMSE, respectively, while the periodic 

kernel is worse in training as well as testing with 3.14 and 3.49 Pa train and test RMSE, 

respectively. 
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Figure 4-6. GPR algorithm with different kernels: rational quadratic, Matérn, squared 

exponential, and periodic kernels. All samples have length-scale parameter ℓ=1 which 

controls how close two points have to be in order to be considered near and thus be highly 

correlated. 

Figure 4-7 provides results for the ANN algorithm with the testing and training 

datasets. Different activation functions are investigated, where the minimum value of 

RMSEtest is illustrated by the hollow shape. Figure 4-7 (a) and (b) demonstrate the RMSE 

of the testing and training dataset using the ReLU activation function. The minimum 

RMSEtest value occurs with three hidden layers and 16 neurons. When the tanh activation 

function is applied, as shown in Figure 4-7 (c) and (d), RMSEtest first decreases and then 

increases due to overfitting. Here, two hidden layers with 9 neurons each yield the 

minimum RMSEtest. Similarly, in Figure 4-7 (e) and (f) for the logistic activation function, 

the minimum RMSEtest is obtained with one hidden layer with 6 neurons each. 

 

Table 4-2 summarizes the results of the comparative analysis for GPR, SVR, and 

ANN. The minimum RMSEtest = 0.52 with ANN using the ReLU activation function. 

Therefore, the ANN with 3 hidden layers and 16 number of neurons is considered to be 
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more appropriate for our model and thereafter used to predict the pressures. The data flow 

for the surrogate model used to predict pressures and temperatures is depicted in Figure 

4-8.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4-7. Comparison of different activation functions of the ANN algorithm based on 

RMSE vs. the number of neurons in each hidden layer for testing and training data. (a-b) 

ReLU, (c-d) tanh, and (e-f) logistic activation functions. 
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Table 4-2. Results of the comparative analysis of DDMs. 

Algorithm 
Kernel 

function 

Min test 

RMSE 
Algorithm 

Kernel 

function 

Min test 

RMSE 
Algorithm 

Activation 

function 

Min test 

RMSE 

GPR 

Rational 

Quadratic 
1.78 

 

SVR 

Linear 4.27 
 

ANN 

 

ReLU 0.52 

Matérn 2.54 RBF 1.50 tanh 1.13 

Squared 

Exponential 
2.89 Poly 1.23 logistic 1.19 

Periodic 3.49       

 

 

Figure 4-8. The data flow within the surrogate model for prediction used to predict 

pressures and temperatures.  

4.5.2 Sample size required to train ANN 

We produce a labeled dataset from the CFD simulations for cooling unit airflow changes 

in a row-based cooling DC. Each instance in the dataset consists of a collection of pressure 

data at 60 locations for 52 cooling unit airflows. Therefore, the dataset vector contains a 

52×60 matrix. We train the model using different dataset sizes to determine an optimum 

sample size that provides the best trade-off between accuracy and training time. Table 4-3 

shows the average prediction errors as the input data sizes are varied from 24×60 to 52×60. 

The error decreases with increasing numbers of samples until 44×60 beyond which the 

decrease in prediction errors is negligible. Therefore, the inputs for further investigations 

with the ANN algorithm correspond to a 44×60 matrix. 
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Table 4-3. Average train and test prediction error as the sample size changes. 

Number of samples in the dataset Average train RMSE (Pa) Average test RMSE (Pa) 

24×60 3.50 5.41 

28×60 2.87 3.72 

32×60 1.71 2.54 

36×60 0.97 1.47 

40×60 0.68 1.10 

44×60 0.46 0.52 

48×60 0.45 0.51 

52×60 0.45 0.51 

 

4.5.3 Surrogate model prediction and validation 

Several realistic scenarios are now considered to determine the temperature distributions 

in the cold chamber, where model accuracy is evaluated by comparing the predicted results 

with those obtained from experiments. 

4.5.3.1 Influence of cooling system operating conditions 

Since the cooling unit airflow plays an important role in the temperature distribution of a 

DC, we again consider the high (𝑚̇𝐶𝑈 ≫ ∑ 𝑚̇𝑠), sufficient (𝑚̇𝐶𝑈 ≅ ∑ 𝑚̇𝑠), and low (𝑚̇𝐶𝑈 ≪

∑ 𝑚̇𝑠) airflows for workload and set-point temperature, specified as 100% and 18 oC, 

respectively. Figure 4-9 presents the temperature predictions using the surrogate model and 

temperature differences between model predictions and experiment (∆ = |𝑇Exp − 𝑇𝑀𝑜𝑑𝑒𝑙|) 

for these scenarios.  

The temperature contours are mostly spatially uniform for the high airflow and 

values of ∆ are lower than 0.8 oC (Figure 4-9 (b)). For sufficient airflows, the cold chamber 

pressure is slightly lower than in the hot chamber, leading to hot air recirculation through 
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the gaps between the racks, producing hot zones (Figure 4-9 (c) and (e)). Figure 4-9 (d) 

presents values of ∆, where all zones have differences lower than 1oC.  

For the lowest airflow, Figure 4-9 (f) shows that 22 out of 25 zones have differences 

lower than 2 oC and only three zones have ∆ > 2 oC.  Even for this restrictive case, there is 

a good agreement between the predicted and experiment temperatures. However, due to 

hot air recirculation and the uncertainties of the gap resistances that should be viewed as 

porous media, the predicted temperatures for very few zones are quite different from those 

obtained from the experiments. Both methods reasonably represent how cold air enters the 

cold chamber (from the right and left sides), leads to a temperature profile with higher 

temperature along the middle rack (Rack 3), while side racks (Rack 1 and 5) maintain lower 

temperatures. 

Figure 4-10 summarizes the average values of ∆ at the rack inlets for the three 

cooling unit airflow rates. The middle rack has the largest difference due to hot air 

recirculation and, ∆ increases as airflow decreases. 

Next, the cooling system set-point temperature is increased while the airflow rate 

(𝑚̇𝐶𝑈 ≅ ∑ 𝑚̇𝑠) and the server workloads (100%) are held constant. Figure 4-11 (a-b) presents 

the temperature profiles and ∆ values for a set-point temperature of 18 oC. In Figure 4-11 

(c-d) this setpoint is increased to 22 oC. The 4 oC increase in the set-point increases the 

local temperatures in the entire cold chamber and the average value of ∆ also increases by 

48%. At the higher setpoint temperature, 20 out of 25 zones have ∆ values lower than 1 oC 

and 5 zones have one between 1 oC and 1.5 oC. The mean difference for both cases is lower 
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than 0.8 oC and in both cases, the middle rack has the highest difference. Overall, the results 

from the model are consistent with those from the experiments. 

 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4-9. Effect of cooling unit airflow on the temperature distribution and temperature 

differences between model predictions and experimental results (∆ = |TExp − TModel|) for 

(a-b) high, (c-d) sufficient, and (e-f) low airflow rates. 
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Figure 4-10. Average temperature differences between the model predictions and 

experiments (∆ = |TExp − TModel|) at the rack inlets for the three cooling unit airflow rates. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4-11. Effect of set-point temperature of the cooling unit on the temperature 

distribution and temperature differences between the model predictions and experiments 

(∆ = |TExp − TModel|) for (a-b) set-point at 18 oC and (c-d) at 22 oC. 
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4.5.3.2 Varying server workload 

Figure 4-12 (a-b) presents the cold chamber temperature distribution and ∆ values when 

all servers are operating at a 100% workload (18.9 kW in total), while Figure 4-12 (c-d) 

presents distributions and values of ∆ for 50% workloads (12.6 kW in total). Both cases 

have cooling unit airflow rates of 1.2 kg/s and set-points of 18 oC. Reducing server 

workload decreases the maximum cold chamber temperature from 28.5 oC to 25 oC and the 

average value of ∆ changes 19%. Again, the model is applicable and only a few zones have 

∆ > 1 oC. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4-12. Effect of server workload on temperature distribution and temperature 

differences between the model predictions and experiments (∆ = |TExp − TModel|) for (a-

b) server workloads set at 100% and (c-d) at 50%. 
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4.5.4 Robustness of surrogate model 

Typical DCs contain a dynamic environment in which it is virtually impossible to collect 

data for all scenarios from either experiments or CFD simulations. A simpler predictive 

model must be robust enough to adapt to small changes. To investigate the adaptability of 

the surrogate model to changes, two complex scenarios different from the previous 

scenarios are investigated based on the same model trained in the previous sections. The 

first scenario changes the cooling system configuration and the second one alters the server 

locations. Here, CFD simulation results are compared with those from the surrogate model 

since it is not feasible to conduct experiments for these scenarios. Additionally, a total of 

120 zones are created within the cold and hot chambers to accurately predict temperatures 

at server inlets.  

4.5.4.1 Changing the locations and status of the fans 

There are two row-based cooling units in the DC, at the right and left ends of the cold 

chamber, respectively. Each unit has 3 sets of fans, as shown in Fig. 4-13. Altering their 

locations can significantly change the temperature profile because the airflow distribution 

is changed. Figure 4-13 (a) shows the original configuration of the DC as reported in the 

previous sections where there is sufficient cooling unit airflow rate. In Figure 4-13 (b) and 

(c), the fans in either the right or left cooling units are moved downward, and in Figure 

4-13 (d) the middle fans of the right cooling unit are turned off. 

Figure 4-14 demonstrates that when the fan locations and their status is altered, the 

temperature distribution also changes. In Figure 4-14 (c), changing the locations of right 
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cooling unit fans downward produces hot areas at the tops of racks 3, 4, and 5. Similarly, 

in Figure 4-14 (e), these hot areas appear at the tops of racks 1, 2, and 3. Figure 4-14 (g) 

shows a band of warmer temperatures on the top of rack 3 due to the off-duty middle fan. 

All of these changes increase the temperatures in some areas, particularly where the fans 

are turned off. 

Values of 𝐷 = |𝑇CFD − 𝑇𝑀𝑜𝑑𝑒𝑙|  when the right-hand side fans are moved 

downwards are provided in Figure 4-14 (d). Here, 7 out of 60 zones have 𝐷 > 2 oC, 2 zones 

have 1.5 oC < 𝐷 < 2 oC, and the remainder have 𝐷 < 1.5 oC. Figure 4-14 (f) shows only 1 

zone with 𝐷 > 2 oC, 7 zones with 1.5 oC < 𝐷 <1.8 oC and the rest with 𝐷 < 1.5 oC. For the 

case shown in Figure 4-14 (h), only 2 zones have 𝐷 > 2 oC. These results indicate that the 

surrogate model generalizes satisfactorily to the changes in the locations of the cooling 

system fans and their status. 

4.5.4.2 Changes in server location 

The locations of servers and blanking panels in a rack also impact the airflow and, 

consequently, temperature distribution. Blanking panels in a DC fill the empty spaces in 

the racks and represent solid obstacles to prevent cold air bypass or hot air recirculation. 

The server locations are changed by sparsely distributed (Figure 4-15 (a)) or concentrating 

(Figure 4-15 (b)) to investigate the robustness of the surrogate model. 

Figure 4-16 (a-b) and (c-d) shows that the temperature profiles and hot zones 

change as the server locations are changed from the original sparse locations. With 

concentrated servers, the hot zones spread towards the tops of racks 2, 3, and 4, while the 
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sparsely distributed servers produce a hot zone on top of the rack 3. When aggregated, the 

maximum temperature in the hot areas (25 oC) is lower than when the servers are sparsely 

placed (28.5 oC). Figure 4-16 (d) shows that for only 3 of 60 zones 𝐷 > 2 oC, for 7 zones 1 

oC < 𝐷 < 1.5 oC, and for 50 zones 𝐷 < 1 oC. Thus, the surrogate model is robust to the 

changes in server locations. 

(a) 

Original row-based cooling DC 

 

(b) 

Lower right cooling unit fans 

 

(c) 

Lower left cooling unit fans 

 

(d) 

Turn off middle fan of the right cooling unit 

 

Figure 4-13. Four configurations of the cooling unit fans for the in-row DC cooling 

architecture. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 4-14. The temperature contours and temperature differences between the model 

predictions and CFD simulations (D = |TCFD − TModel|) for (a-b) the original row-based 

cooling DC configuration, (c-d) moving the fans of the right cooling unit downwards, (e-

f) moving the fans of the left cooling unit downwards, and (g-h) turning off the middle fan 

of the right cooling unit. 
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(a) 

Original configuration 

 

(b) 

Servers displacement 

 

Figure 4-15. The two configurations for server locations reconfiguration. (a) The original 

scattered configuration and (b) servers aggregated around specific locations. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4-16. Temperature contours and temperature differences between the model 

predictions and CFD simulations (D = |TCFD − TModel|) when server locations are changed 

from scattered to aggregated in a row-based cooling DC. (a-b) Original scattered 

configuration and (c-d) aggregated servers. 
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4.6 Computation time 

The computing cost is an important aspect of CFD simulations and surrogate model 

predictions. Table 4-4 summarizes the computing time on a personal computer with a Core 

i7-8700 CPU at 3.20 GHz,16 GB memory, and Windows 10 with a 64-bit operating system 

for the case with 100% server utilization, cooling unit temperature 18 oC and airflow rate 

of 1.2 Kg/s. For a typical single steady-state case, CFD simulations and experiments 

require roughly 28,800 and 234,400 seconds, respectively, whereas, in contrast, the 

surrogate zonal model requires only 3.6 seconds. 

Table 4-4. Time to make experimental measurements of pressures and temperatures for a 

typical steady-state case, and the corresponding computational times required to obtain 

predictions from the CFD simulation and the surrogate model. 

Method Time to obtain results for a typical steady-state scenario (second) 

CFD ~ 28,800 

Experiment ~ 234,00 

Surrogate model ~ 4 

 

4.7 Conclusion 

We present a machine learning-based surrogate model to predict the pressure, airflow rate 

and temperature distribution in a modular DC with a row-based cooling architecture. The 

surrogate model is an inexpensive tool that provides predictions at comparable accuracy as 

those from more detailed and computationally expensive CFD simulations. This model can 

be used to (1) improve cooling system design, (2) facilitate thermally aware workload 

management, and (3) test “what if” scenarios to characterize the influence of operational 
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conditions on the temperature distribution. The model applies the mass, momentum, and 

energy conservation equations to each zone for which unknown parameters in the 

conservation equations are obtained from DDMs. The model is developed by (1) collecting 

data from experimentally validated CFD simulations, (2) applying ANN to the data to 

predict pressure, and (3) applying the mass, momentum, and energy conservation relations 

to each zone to determine the zonal temperature.  

Comparing the accuracy of the DDM predictions shows that the ANN algorithm 

with the ReLU activation function is more appropriate for the particular DC configuration. 

The cooling unit operation and server workload are varied to characterize their influence 

on the thermal performance of the DC using the ReLU-based ANN DDM. We determine: 

• The cooling unit airflow rate has the most significant influence on the temperature 

distribution in the cold chamber and DMM accuracy. Increasing the cold air supply 

lowers the average predicted temperature in the cold chamber and improves the 

model accuracy. 

• A 4 oC increment in the set-point temperature of the cooling unit results in an 

average of 4.2 oC rise in the predicted temperature in the front chamber, while the 

average prediction error increases by 48%.  

• A 50% increase in server workload results in a 0.8 oC increment in the average 

temperature in the front chamber and the average temperature prediction error 

changes 19%.  



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

59 

 

• The middle rack (rack 3) has a higher temperature due to hot air recirculation and 

the end racks (racks 1 and 5) have lower temperatures since these racks are adjacent 

to the cooling units.  

The robustness of the surrogate model is demonstrated by investigating the effect of 

server spatial distribution, cooling unit fan locations and on/off status. Our results from the 

adaptability examinations show the following:  

• As the cooling unit fans are moved downwards, hot zones emerge at the tops of 

the racks and the prediction error for a few zones is larger than 2 oC. 

• When the fan in the middle is turned off, a band of warmer temperatures emanates 

from the off-duty middle fan, but the prediction error is larger than 2 oC for only 

2 zones.  

• By changing the server locations from a scattered to an aggregated distribution, 

the spatial locations of hot zones change, but 95% of these zones still have a 

prediction error lower than 1.5 oC.  

Hence, we demonstrate that the surrogate machine learning model can predict 

temperatures rapidly and accurately while adapting to the changes in operating conditions. 

Implementation of this model is promising for understanding DC configurations and their 

operation in order to enhance energy savings. 
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4.10  Appendix 

4.10.1  Mesh independence study 

The accuracy of the results from CFD simulation relies on mesh quality. In order to 

evaluate uncertainties and discretization errors in the simulation, we use the matrix called 

the grid convergence index (GCI) based on Richardson Extrapolation that creates bounds 

for discretization error [63].  

To apply the GCI method, three meshes with different grid spacings h1, h2, and h3 

that represent coarse, medium, and fine meshes, respectively, are built. Each grid spacing 

yields three solutions f1, f2, and f3. The grid refinement factor, 

𝑟𝑘 ,𝑘+1 =
ℎ𝑘+1

ℎ𝑘
 

(A. 4-1) 

is calculated, where k denotes the mesh level. Based on experience, the desired value for r 

is greater than 1.3 [64]. The order of convergence, 

𝑝 =
ln (

𝑓3 − 𝑓2

𝑓2 − 𝑓1
)

ln 𝑟
⁄

 

(A. 4-2) 

The GCI for the fine mesh, 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒 =
𝐹𝑆|𝜀|

(𝑟𝑝 − 1)
 

(A. 4-3) 

where 𝜀 denotes the relative error, 𝐹𝑆 the safety factor, where the range 1.25 ≤ 𝐹𝑆 ≤ 3 is 

recommended [65]. 

The mesh independence study is performed based on the GCI for a row-based 

cooling architecture DC in which the grid is more refined around critical boundaries. Table 
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A. 4-1 provides details for calculating GCIs from Eqs. (A. 4-1) to (A. 4-3) for three meshes 

with 2.6 million, 3.3 million, and 4.4 million nodes, respectively. According to Table A. 

4-1, the numerical uncertainty in the coarse and fine-grid solutions for cold and hot 

chambers reveals that there are no significant differences between these two 𝐺𝐶𝐼12 and 

𝐺𝐶𝐼23 . Both 3.3 million and 4.4 million nodes will lead to similar results while the 

calculations with 4.4 million nodes will result in more computational efforts.  

Figure A. 4-1 and Figure A. 4-2 present the temperature and pressure profiles for 

the three grids with more details, where the numerical uncertainty is indicated by error 

bars. The small values of GCI (GCI < 0.03% for temperature and GCI < 0.04% for 

pressure) reveal that the results of the simulation cannot be improved by refining the mesh. 

Indeed, the average deviations of temperature and pressure within 60 zones are less than 

2% between the medium mesh and fine mesh. Therefore, the medium mesh is selected as 

the optimum mesh for all simulations to reduce computational time. 

Table A. 4-1. Calculation of discretization error. 

Case mesh 
Cells 

number 

Refinement 

factor, r 

GCI-Cold 

chamber 

temperature 

GCI-Hot 

chamber 

temperature 

GCI-Cold 

chamber 

pressure 

GCI-Cold 

chamber 

pressure 

Coarse (1) 2,556,883 

1.40 0.04% 0.06% 0.10% 0.02% 

Medium (2) 3,322,654 

1.40 0.02% 0.03% 0.04% 0.01% 
Fine (3) 4,397,640 
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(a) 

 

(b) 

 

Figure A. 4-1. GCI results for the (a) temperature profile within 60 zones and (b) 

discretization error for the fine-grid solution. 

(a) 

 

(b) 

 

Figure A. 4-2. GCI results for the (a) pressure profile within 60 zones, and (b) discretization 

error for the fine-grid solution. 
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Chapter 5  

5 A Gray-Box Model for Real-Time Transient 

Temperature 

This chapter is reproduced from “A Gray-Box Model for Real-Time Transient 

Temperature”, Sahar Asgari, SeyedMorteza MirhoseiniNejad, Hosein Moazamigoodarzi, 

Rohit Gupta, Rong Zheng and Ishwar K. Puri, Published in  Applied Thermal Engineering, 

2020.  

The author of this thesis is the first author and the main contributor of this 

publication. Her main contributions to this work consist of introducing the idea of using 

gray-box model for transient study, writing the manuscript, formulating the problem, 

conducting the experiments, running CFD simulations, implementing the framework, 

constructing the algorithms, and generating the numerical results. 
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5.1 Abstract  

In response to the need to improve the energy efficiency of data centers (DCs), system 

designers now incorporate solutions such as continuous performance monitoring, 

automated diagnostics, and optimal control. While these solutions must ideally be able to 

predict transient conditions, in particular real time DC temperatures, existing forecasting 

methods are inadequate because they (1) make restrictive assumptions about system 

configurations, (2) are extremely time-consuming for real time applications, (3) are 

accurate only over limited time horizons, (4) fail to accurately model the effects of 

operating conditions, such as cooling unit operation conditions and server workloads, or 

(5) ignore important facets of the flow physics and heat transfer that can lead to large 

prediction errors in extrapolative predictions. To address these deficiencies, we develop a 

gray-box model that combines machine learning with the thermofluid transport equations 

relevant for a row-based cooled DC to predict transient temperatures in server CPUs and 

cold air inlet to the servers. An artificial neural network (ANN) embedded in the gray-box 

model predicts pressures, which provide inputs for the thermofluid transport equations that 

predict the spatio-temporal temperature distributions. The model is validated with 

experimental measurements for different (1) server workload distributions, (2) cooling unit 

set-point temperatures and (3) the airflow of the cooling units. This gray-box model 

exhibits superior performance compared to a conventional zonal temperature prediction 

model and an advanced black-box model that is based on a nonlinear autoregressive 

exogenous model. An application of the gray-box model involves a case study to detect 

cooling unit fan failure in a row-based DC cooling system. 
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Key words: Datacenter, real-time temperature prediction, fault detection, ANN, 

NARX. 

Nomenclature  

 

  

Uppercase letters  𝑘𝑒𝑓𝑓 Effective conductivity  

Cp Specific heat capacity (kJ kg-1 K-1) 𝑚̇ Mass flow rate (kg s-1) 

CU Cooling unit n Server number  

E  Total energy (kJ) 𝑑𝑝 Pressure drop (Pa) 

𝐸𝑖𝑗 Rate of deformation  p Static pressure (Pa) 

F Body force (N) t Time (s) 

𝐽𝑛̅ diffusion flux of species n v Velocity (m s-1) 

𝑀𝐴𝑋𝐴𝐸 Maximum absolute error  

𝑀𝑆𝐸 Mean squared error Subscripts and superscripts (uppercase) 

𝑃̇𝑘 Power consumption of server k (kW) AE Absolute error 

Q Heat flux (kW) EXP Experiment  

𝑄𝑠𝑜𝑢𝑟𝑐𝑒 Internal heat source (kW) Pred Prediction  

𝑆ℎ Heat of chemical reaction (kJ) Pres

s 

Pressure  

𝑆𝑇𝐷𝐴𝐸 Standard deviation of absolute error   

T Absolute temperature (K) Subscripts and superscripts (lowercase) 

𝑇𝑜𝑢𝑡 Server exhaust temperature (K) i Index of zone in x-direction 

𝑇𝑖𝑛 Server inlet temperature (K) j Index of zone in y-direction 

V Volume (m3) n Number of species 

X Thermal mass of server (kJ K-1) s Server  

𝑦̂ Predicted value   

 Greek letters 

Lowercase letters  ρ Density (kg m-3) 

g Gravitational acceleration (m s-2) 𝜏̿ Stress tensor (Pa) 

h Enthalpy (kJ) 𝜀 Energy dissipation rate 

k Turbulent kinetic energy 𝜇𝑡 Eddy viscosity (m2 s-1) 
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5.2 Introduction  

Cloud computing has driven significant growth in data centers (DCs) and consequently 

global energy consumption by DCs accounts for about 3.5 % of worldwide electricity use. 

By 2025 DC energy use is anticipated to account for 20% of worldwide consumption [1-

3]. Depending on the specific IT equipment, cooling units account for 24-60% of the total 

energy consumed by a DC [4, 5] so that ineffective cooling leads to significant energy 

waste [6-8]. While liquid cooling is promising for its effectiveness and offers the possibility 

of heat reuse [9, 10], air cooling is the preferred method employed in DCs, which will 

remain for the foreseeable future due to its reliability, simplicity of air handling, lower 

capital and maintenance costs, and the uncertainties associated with liquid cooling systems 

[11-13]. To decrease the energy consumption of air-cooling systems, the designer must 

consider (1) improving the airflow distribution in a DC and (2) optimizing the system for 

effective heat transfer.  

Improvements in airflow distribution reduce energy costs by favorably influencing 

server CPU temperatures. This is accomplished by using a suitable DC cooling 

configuration, such as a row-based cooling within an enclosure that separates the chilled 

and hot air to eliminate hot air recirculation and cold air bypass, both of which produce 

undesirable airflow distributions [14-18]. Minimizing the total airflow and maximizing 

supply air temperatures improve the efficiency of the air-handler. This optimization 

requires that temperatures must be accurately predicted to apply appropriate strategies 

properly [19]. For example, controllers can be programmed to take actions that minimize 

the airflow and maximize supply air temperatures, while complying with the ASHRAE 
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guideline on the maximum allowable rack inlet air temperature [20, 21]. Fast detection of 

anomalous behavior also saves energy and reduces operational costs by initiating remedial 

actions. Cooling unit fans are relatively low-reliability components, where the failure of 

one or more fans can cause the entire system to overheat. Therefore, appropriate energy-

saving strategies depend largely on the accuracy and timeliness of temperature prediction 

models. 

Several methods are available to predict the temperatures in a DC, including white-

box [22-27], black-box [28-33], and gray-box models [34-39]. White-box, or physics-

based, models are based on an understanding of physical laws and the underlying 

engineering principles. While some white-box models are computationally fast, they 

generally adapt insufficiently to rapid operational changes within a DC. Furthermore, due 

to simplifying assumptions, such models have poor accuracy. In black-box models, system 

inputs and outputs are correlated through a mathematical function to predict system 

operations, but without an understanding of the underlying physical and thermodynamics 

principles. They are accurate if training data are abundant. Black-box models are used to 

obtain fast interpolative temperature predictions in DCs, e.g., steady-state and transient air 

temperatures, but their accuracy in making extrapolative predictions is limited [28, 40].  

Hybrid or gray-box models combine physics-based white-box models with data 

obtained from experiments or simulations to develop approximate model parameter values. 

Thus, gray-box models are more general than black-box models and can provide 

extrapolative predictions with higher accuracy than white-box models. Although existing 

gray-box models for DC temperature predictions include some aspects of physical laws, 
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they fail to characterize important phenomena, such as hot air recirculation, making their 

predictions unreliable. Furthermore, most gray-box models in the literature employ linear 

regression, which is inappropriate for a DC due to the complexity and nonlinearity of the 

governing equations [41]. One model utilizes autoregression to predict transient 

temperatures in a DC with a 2D hybrid approach that represents the first law of 

thermodynamics and also includes sensor observations [35]. It is trained using airflow 

measurements at the front, or cold ends, of servers,  but this is not practical in all DCs due 

to measurement complexities and the model also ignores hot air recirculation [40].  

In summary, existing forecasting methods suffer from one or more of the following 

limitations. (1) They are not generic models applicable for several configurations, (2) their 

prediction algorithms are usually inappropriate for transient operation, (3) the 

computational time they require can be of the order of several minutes or even hours, 

making the models unsuitable for real-time applications, (4) temperature predictions are 

only available over short durations and not until steady-state conditions are reached, (5) 

comprehensive effects of all important operating conditions, such as cooling unit set-point, 

airflow, and server workload, are not included, and (6) the methods generally ignore 

important aspects of flow physics and heat transfer.  

We present a gray-box model for thermal anomaly detection that predicts the 

transient CPU and inlet air temperatures in an enclosed DC by combining fundamental 

thermofluid relations with a data-driven solution. The model employs an artificial neural 

network (ANN) in conjunction with a 3D zonal model to find unknown parameters, and it 

is trained with data obtained from CFD simulations. We compare it with a black-box model 
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based on a nonlinear autoregressive exogenous model (NARX) and a conventional zonal 

model developed in [13], where the airflow within each zone is determined using a 

mechanical resistance circuit analysis. These flowrates contribute to a zonal energy balance 

to predict the temperature of each zone in an in-row cooling unit DC. To demonstrate the 

utility of the gray-box model in data center monitoring, we consider the problem of 

detecting fan failures in a modular data center, using a classifier trained from the 

predictions of the gray-box model. 

All three models perform well for interpolative predictions, but our gray-box model 

outperforms for extrapolative predictions under different scenarios. To the best of our 

knowledge, this is the first study to compare a 3D gray-box model with black-box and 

conventional zonal models for transient temperature predictions in a DC.  

Below, Section 2 introduces the details of the model and its framework. Section 3 

compares the transient CPU and inlet air temperatures using the gray-box and black-box 

models and provides an application of our gray-box model. Finally, Section 4 summarizes 

our conclusions. 

5.3 Methodology  

We develop a gray-box thermal model to predict transient server CPU and inlet air 

temperatures. As depicted in Figure 5-1, pressure data are first collected from 

experimentally validated CFD simulations. These data are used to train an ANN to predict 

pressure in different zones. Next, the predicted pressures are applied in the momentum, 

mass, and energy relations to predict the temperatures.  
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Figure 5-1. Block diagram of the gray-box model for transient temperature predictions. 

5.3.1 System description  

Figure 5-2 presents the configuration of an in-row cooling modular DC that is instrumented 

with 25 thermocouples to obtain air temperature measurements at the front of the racks in 

the cold chamber. Also shown is a schematic of the airflows within the enclosure. The DC 

houses two in-row cooling units that are placed at the left and right ends of the enclosure 

and five racks with 64 servers inside them. The servers are sparsely distributed and their 

CPU temperatures are measured by temperature sensors integrated into the core of the 

servers using the MobaXterm interface software. This software reports and records all on-

board sensors measurements.  

The cooling units draw warm air from the back (hot) chamber, extract heat from it 

and release cold air into the front (cold) chamber. Servers take in the cold air from the cold 

chamber and expel warm air to the hot chamber from where it is returned to the cooling 
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units. The racks are partially populated with servers and the empty spaces are blocked with 

blanking panels. There may be airflow leakage either from the hot to the cold chamber or 

vice versa due to the local pressure differences between these two chambers. 

5.3.2 Computational fluid dynamics (CFD) 

The CFD simulations for a row-based cooling DC are performed using ANSYS Fluent with 

the temperatures and turbulent flow field modeled using energy equations and a realizable 

k- model [42-44]. A mesh independence analysis is performed based on the grid 

convergence index (GCI) for coarse, medium, and fine meshes with 2.6 million, 3.3 million, 

and 4.4 million nodes, respectively. Based on the GCI, an intermediate mesh is selected for 

all simulations. For the transient analysis, the second-order upwind scheme is adopted for 

the convection term and the semi-implicit method used for the pressure-linked equation 

(SIMPLE) algorithm. The racks in Figure 5-2 are modeled as recirculation boundaries, the 

cooling units as mass flow inlets and pressure outlets for the cold air supply and the return 

air, respectively. The gaps between the racks, which can cause air recirculation if not 

properly sealed, are modeled as porous media using a power-law model to account for their 

resistance, 

𝑑𝑝 = −𝐶0|𝑣|𝐶1, (5-1) 

where 𝑑𝑝 denotes the pressure drop across the porous zone, |𝑣| the velocity magnitude, 

and 𝐶0, and 𝐶1 are empirical coefficients determined from experiments [45].  
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Figure 5-2. Schematic of the DC enclosure with five racks and two in-row cooling units. 

(a) Thermocouple locations and (b) top view of the airflow distribution. The enclosure is 

3.2 m long, 1.4 m wide, and 2.05 m high. 

The governing equations for mass, momentum, and energy conservation are [46],  

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣̅) = 0, (5-2) 

𝜕(𝜌𝑣̅)

𝜕𝑡
+ ∇. (𝜌𝑣̅𝑣̅) = −∇𝑝 + ∇. (𝜏̿) + 𝜌𝑔̅ + 𝐹̅, and (5-3) 

a) 

b) 
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𝜕

𝜕𝑡
(𝜌𝐸) + ∇. (𝑣̅(𝜌𝐸 + 𝑝)) = ∇. (𝑘𝑒𝑓𝑓∇𝑇 − ∑ ℎ𝑛𝐽𝑛̅𝑛 + (𝜏𝑒̿𝑓𝑓. 𝑣̅)) + 𝑆ℎ, (5-4) 

where 𝑝 denotes the static pressure, 𝜏̿ the stress tensor, 𝜌𝑔̅ and 𝐹̅ the gravitational body 

force and external body force, 𝐸 the total energy, 𝑘𝑒𝑓𝑓 the effective conductivity, ℎ𝑛 the 

enthalpy of species n, 𝐽𝑛̅  the diffusion flux of species n, and 𝑆ℎ  the heat of chemical 

reaction that is assumed to be zero.  

The relations for the turbulent kinetic energy k and energy dissipation rate 𝜀 are 

[47],  

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑣𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[

𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
] + 2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝜌𝜀, and 

(5-5) 

𝜕(𝜌𝜀)

𝜕𝑡
+

𝜕(𝜌𝜀𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[

𝜇𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝐾
2𝜇𝑡𝐸𝑖𝑗𝐸𝑖𝑗 − 𝐶2𝜀𝜌

𝜀2

𝑘
, 

(5-6) 

where 𝑣𝑖  represents the velocity component in the corresponding direction i, 𝐸𝑖𝑗  the 

component of the rate of deformation, 𝜇𝑡 the eddy viscosity, and 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀, and 𝐶2𝜀 are 

constants. 

5.3.3 Gray-box model 

Even though CFD simulations can predict DC temperatures through white-box models, 

these approaches are computationally very expensive. Zonal models are a faster and 

reasonably accurate alternative, where the DC environment is partitioned into a grid of 

coarse zones with the assumption that the physical quantities inside each zone are spatially 

uniform. A set of nonlinear coupled equations consisting of the mass, momentum, and 

energy conservation relations is applied for each uniform zonal volume [48-50]. Figure 5-3 

depicts the 3D zones inside the enclosure for a row-based cooling architecture DC. A total 
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of 75 zones are created by considering the (1) fronts of servers, (2) backs of servers, and 

(3) servers themselves. Figure 5-2.a presents a schematic of the zones for the middle rack. 

There are 5 zones in front of the rack, 5 zones at the back of that rack, and another 5 zones 

within the rack itself, i.e., there are 15 zones overall. This scheme is followed for all other 

racks. Since the system contains 5 racks, the total number of zones is 155 = 75. Servers 

are scattered in the racks and empty spaces in the racks are blocked by blanking panels in 

the DC configuration that we have investigated. Thus, each zone may contain either a 

single server or more than one server. 

If the inlet and exit airflows are known for each zone, the energy balance equations 

can be applied to determine temperatures. To predict airflows in each zone, data is first 

collected using CFD simulations for a range of variables (Table 5-1). Next, an ANN is 

trained to characterize the relation between the zonal pressures and cooling configuration 

[51].  

Table 5-1. Independent and dependent variables for DDMs. 

Independent variable Range Dependent variable 

Cooling unit airflow rate  0.40 – 2.4 (kg/s) 

Static pressures Cooling unit set-point 16 – 22 (oC) 

Servers workload 0 – 100%  

We select ANNs due to their high capacity to model behaviors of complex and 

nonlinear systems. They are able to reproduce the complex general trends for input and 

output variables. Typically, an ANN consists of an input layer, some hidden layers, and an 
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output layer [52]. Each layer contains a number of neurons, where the hidden and output-

layer neurons are each linked to the neurons in the previous layer. The main challenge with 

ANN is the choice of model complexity. When the number of parameters is far larger than 

the available training data, overfitting may happen, else unfitting may occur. The relevant 

parameters of the ANN are provided in Table 5-2. To train the network, we use the ReLu 

(rectified linear unit) activation function in the intermediate layers and the Levenberg-

Marquardt back-propagation algorithm (LMA) that minimizes nonlinear functions. 

Table 5-2. Parameters of the ANN model. 

Model attributes Details  

Number of Layers 5 

Number of Neurons in Layer 1 - 5 66 – 4 – 16 – 5 – 60  

Activation function Relu (rectified linear unit) 

Training algorithm Levenberg-marquardt back-propagation algorithm 

(LMA) 

 

Given the predicted pressure for each zone by the trained ANN, the inlet and exit 

airflows of each zone can be determined from the mass and momentum conservation 

equations as follow, 

∑ 𝑚̇𝑗→𝑖 = 0𝑗 , and (5-7) 

∑ 𝐹 = ∑ 𝐹𝑃𝑟𝑒𝑠𝑠 + ∑ 𝐹𝐵𝑜𝑑𝑦 = ∑(𝑚̇𝑣)𝑜𝑢𝑡 − ∑(𝑚̇𝑣)𝑖𝑛, (5-8) 

where 𝑚̇𝑗→𝑖  denotes the interfacial mass flow rate transferred from cell j to cell i, 𝐹 

pressure and body forces in x, y, and z direction, 𝑣 velocity, and 𝜌 density. In Eq. (5-7), 

the mass within the control volume is constant. Eq. (5-8) shows that the momentum 
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changes only through the action of forces described by Newton's laws of motion. Table 5-3 

contains expressions for force terms in Eq. (5-8). 

Table 5-3. Expressions for the terms in Eq. (5-8). 

∑ 𝐹 = ∑ 𝐹𝑥 + ∑ 𝐹𝑦 + ∑ 𝐹𝑧   

∑ 𝐹𝑥 = ∑ 𝐹𝑥,𝑃𝑟𝑒𝑠𝑠 + ∑ 𝐹𝑥,𝐵𝑜𝑑𝑦 (Force in x direction) (𝑃𝐴)𝑥,𝑜𝑢𝑡 − (𝑃𝐴)𝑥,𝑖𝑛  

∑ 𝐹𝑦 = ∑ 𝐹𝑦,𝑃𝑟𝑒𝑠𝑠 + ∑ 𝐹𝑦,𝐵𝑜𝑑𝑦 (Force in y direction) (𝑃𝐴)𝑦,𝑜𝑢𝑡 − (𝑃𝐴)𝑦,𝑖𝑛 + 𝜌𝑔  

∑ 𝐹𝑧 = ∑ 𝐹𝑧,𝑃𝑟𝑒𝑠𝑠 + ∑ 𝐹𝑧,𝐵𝑜𝑑𝑦 (Force in z direction) (𝑃𝐴)𝑧,𝑜𝑢𝑡 − (𝑃𝐴)𝑧,𝑖𝑛  

The energy balance for two different types of zones must be considered. For an 

active server, it is, 

𝑋𝑃̇𝑛 − 𝑚̇𝑠,𝑛𝑐𝑃(𝑇𝑜𝑢𝑡,𝑛 − 𝑇𝑖𝑛,𝑛) = 𝑌
𝜕𝑇𝐶𝑃𝑈,𝑛

𝜕𝑡
, (5-9) 

where n denotes the server number, 𝑚̇𝑠,𝑛 is server mass flow rate, 𝑃̇ denotes the total power 

consumption of the corresponding server, X is a coefficient that determines the power usage 

by CPUs, 𝑐𝑃 denotes specific heat capacity, 𝑇𝑜𝑢𝑡,𝑛 is server exhaust temperature, 𝑇𝑖𝑛,𝑛 is 

the temperature of the corresponding cold chamber zone, t is time, and Y is the empirical 

coefficient for the thermal mass of a server available from the literature [13]. The other 

energy balance is for the airside within the in-row cooling unit, 

∑ 𝑄𝑗→𝑖 + 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 = 𝜌𝑖𝑉𝑖𝑐𝑝
𝜕𝑇𝑖

𝜕𝑡𝑗 , (5-10) 

where 𝑄  indicates heat flux, 𝑄𝑠𝑜𝑢𝑟𝑐𝑒  the internal heat source, 𝑉𝑖  cell volume, 𝜌𝑖  the air 

density, and 𝑇𝑖 the air temperature at the inlet of a server. The inputs and outputs of the 

gray-box model are depicted in Figure 5-4. Eq. (5-9) shows that while energy can be 

converted from one form to another, the total energy within the control volume is constant. 

Eq. (5-10) provides the temperature change as server heat is added to the system. Integrated 
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forms of the mass, momentum and energy conservation laws (Eqs. (5-7)-(5-10)) are used 

to predict pressure, temperature, and mass flowrates. 

 

Figure 5-3. 3D zones inside the enclosure of a row-based cooling DC. 

 
Figure 5-4. The data flow within the gray-box model for temperature predictions.  

5.3.4 Failure detection 

Next, we consider a use case of the gray-box model for transient temperature predictions 

during system failure. Failure detection is an essential aspect of highly reliable systems. To 

detect failures, a classification approach can be employed based on the different system 

behaviors during normal and failure conditions. In the classification problem, an instance 

associated with a set of attributes (features) is taken as input and the goal is to assign a 

class label (e.g., normal or abnormal) to that instance. Machine learning models such as 
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ANN can be applied to detect anomalies by learning the spatial and temporal characteristics 

of the temperature distributions for different conditions.  

To gain an understanding of the kinds of features that can be used to distinguish 

different failure scenarios, we use the gray-box model to predict the temperature 

distributions in the cold chamber for normal operating condition and 10 minutes after 

various fan failures. Figure 5-5 shows the corresponding temperature values at different 

locations. Clearly, each type of fan failure, including the case of no failure, has a unique 

signature that can be used to infer which fan has stopped working.  

We generate labeled training data for the gray-box model under normal and 

abnormal (e.g., fan failure) conditions in a row-based cooling DC using CFD simulations. 

Each instance in the training set consists of a collection of temperature readings at 25 

locations every minute during a 10-minute interval and the corresponding label. Therefore, 

each observation is a 25x10 matrix. Furthermore, we use feature selection to determine a 

subset of 13 (out of the 25) sensor locations, which are the most informative for failure 

detection. The input to the classifier is reshaped to a 130x1 vector. We train an ANN with 

one input layer, several hidden layers, and one output layer. At run time, the ANN classifier 

takes real measurements from thermal sensors at target locations as inputs and predicts 

whether a fan failure has occurred and if so which fan it is. In this case study, we assume 

at any time, only one fan can fail.  

5.4 Results and discussion 

We evaluate the fidelity of CFD simulations and the proposed gray-box model, as well as 

the failure prediction algorithm using a row-based modular DC that is depicted in Figure 
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5-2. Twenty-five thermocouples are mounted along the cold chamber to collect 

temperature measurements.  

5.4.1 CFD validation 

To validate the CFD simulations, the airflow through the cooling unit is altered from a high 

value of 1.9 kg/s (𝑚̇𝐶𝑈 ≫ ∑ 𝑚̇𝑠) to a lower value of 0.9 kg/s (𝑚̇𝐶𝑈 ≪ ∑ 𝑚̇𝑠), and its set-point 

temperature from 18ºC to 16ºC after 300 seconds for 100% IT load at 20 kW. The transient 

temperatures from CFD simulations and experimental measurements over a period of 1200 

seconds are shown in Figure 5-6, and the CFD simulations evaluated in Table 5-4 based 

on the following performance comparison metrics [53],  

Maximum absolute error: 

𝑀𝐴𝑋𝐴𝐸 = 𝑀𝐴𝑋|𝑇𝐶𝐹𝐷 − 𝑇𝐸𝑥𝑝|. (5-11) 

Mean squared error: 

𝑀𝑆𝐸 =
1

𝑛
∑(|𝑇𝐶𝐹𝐷 − 𝑇𝐸𝑥𝑝|)

2
. (5-12) 

Standard deviation of absolute error: 

𝑆𝑇𝐷𝐴𝐸 = √ 1

𝑛−1
∑ (|𝑇𝐶𝐹𝐷 − 𝑇𝐸𝑥𝑝| −

1

𝑛
∑|𝑇𝐶𝐹𝐷 − 𝑇𝐸𝑥𝑝|)

2

. 
(5-13) 

Before any change in the cooling unit operating conditions, the maximum 

temperature difference between the CFD simulations and the experimental measurements 

at any location is smaller than 1.5% (0.3 °C), indicating relatively small errors. Hot spot 

formation is unlikely to occur for this case due to an oversupply of cold air, which produces 

a more uniform temperature distribution in the front chamber. After 600 seconds, 𝑀𝐴𝑋𝐴𝐸, 

MSE and 𝑆𝑇𝐷𝐴𝐸  increase slightly, where racks 3 and 4 show greater deviations of the 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

86 

 

predictions from measurements due to hot air recirculation. At 1200 seconds, only a single 

zone has an 8% deviation from experiments with 𝑀𝐴𝑋𝐴𝐸 ≈ 1.83 ºC, values for which are 

lower than 4.5 % for the remaining 20 zones. Therefore, we conclude that the CFD 

simulations provide reasonably accurate predictions of transient temperatures. 

Table 5-4. Performance of CFD simulation. 

 

 𝐭 = 𝟎 Second 𝐭 = 𝟑𝟎𝟎 Seconds 

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 

𝐌𝐀𝐗𝐀𝐄 0.19 0.29 0.29 0.22 0.18 0.18 0.24 0.19 0.20 0.18 

MSE 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 

𝐒𝐭𝐝𝐀𝐄 0.04 0.12 0.09 0.06 0.05 0.04 0.10 0.07 0.06 0.07 

 

𝐭 = 𝟔𝟎𝟎 Seconds 𝐭 = 𝟏𝟐𝟎𝟎 Seconds 

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 

𝐌𝐀𝐗𝐀𝐄 0.25 0.51 1.07 1.06 0.58 0.34 0.57 1.83 1.46 0.74 

MSE 0.03 0.15 0.30 0.28 0.09 0.05 0.20 0.86 0.61 0.13 

𝐒𝐭𝐝𝐀𝐄 0.09 0.11 0.35 0.40 0.23 0.11 0.17 0.62 0.50 0.25 
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Figure 5-5. The temperature profiles for the normal thermal state and six thermal fault 

states induced by the cooling unit fans when the set-point temperature and server workloads 

are set to 17 °C and 100%, respectively.  

a) No Fan Failure b) Fan 1 Failure 

c) Fan 2 Failure d) 

e) f) 

g) 

Fan 3 Failure 

Fan 6 Failure 

Fan 4 Failure Fan 5 Failure 
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Figure 5-6. Temperature distributions provided by the CFD simulations and experimental 

measurements for 25 locations in the front chamber shown in Figure 5-2 (a). 

a) 

b) 

c) 

d) 

Time = 𝟎 Second 

Time = 𝟑𝟎𝟎 Second 

Time = 𝟔𝟎𝟎 Second 

Time = 𝟏𝟐𝟎𝟎 Second 
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5.4.2 Effects of training set size in the gray-box model 

Using the CFD simulations, we produce a labeled dataset for cooling unit airflow changes 

in a row-based cooling DC. Each instance in the dataset consists of a collection of pressures 

at 60 locations for 56 airflows every second during a 10-seconds interval, i.e., a 56x60x10 

tensor. We train the ANN model using different number of airflows to determine the 

optimum sample size that provides the best trade-off between accuracy and training time. 

Table 5-5 shows average prediction error as the input data sizes are varied from 24x60x10 

to 56x60x10. The error decreases with increasing numbers of samples until a 48x60x10, 

beyond which the decrease in prediction error is negligible. Therefore, 48 out of a total 56 

airflows are chosen. 

5.4.3 Baseline black-box model 

In this section, we introduce a state-of-the-art black-box thermal model that can predict 

inlet air and CPU temperatures at successive time steps in an in-row cooling unit DC [40, 

54]. Denoting the input and output vectors at time t by 𝑥𝑡 and 𝑦𝑡, respectively, 𝑥𝑡 consists 

of the cooling unit operational parameters and server workloads, while 𝑦𝑡 includes inlet air 

and CPU temperatures. Given inputs from time t-m to t and outputs (or measurements) 

from time t to t-n, the model predicts the output at time 𝑡 + 1 using the function, 

𝑦̂𝑡+1 = 𝑓(𝑥𝑡, 𝑥𝑡−1, … , 𝑥𝑡−𝑚, 𝑦𝑡, 𝑦𝑡−1, … , 𝑦𝑡−𝑛)      m = 1, 2, 3, … and n = 1, 2, 

3, … . 

 

 

(5-14) 
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Table 5-5. Average train and test prediction errors as the sample size changes. 

Training set size Average train RMSE (Pa) Average test RMSE (Pa) 

24x60x10 3.72 6.02 

28x60x10 2.54 4.24 

32x60x10 1.62 3.57 

36x60x10 1.05 2.19 

40x60x10 0.87 1.40 

44x60x10 0.51 0.74 

48x60x10 0.39 0.48 

52x60x10 0.38 0.51 

56x60x10 0.37 0.65 

The NARX model referred to previously is adopted. Specifically, a neural network 

with connections from both system inputs and feedbacks from outputs is used to model the 

nonlinearity, as shown in Figure 5-7. The closed-loop NARX network with embedded 

memory (tapped delay line) allows multi-step predictions. NARX is advantageous in 

modeling time-series data since the model (1) is better at discovering long time 

dependences, (2) is more effective at learning, (3) has faster convergence, (4) has negligible 

computational complexity, and (4) has scalability, making it applicable for large DCs [55-

58].   

To train the black-boxed model, labeled training data every minute over the past 

720 s is used as shown in Figure 5-2.a. Realistic scenarios are considered to obtain the 

input parameters, i.e., changing workloads for 64 servers, the cooling unit airflows that 

have 6 fans, and the set point temperatures to specify the outputs, which are the inlet air 

temperatures for different zones and server CPU temperatures. Therefore, the input to the 
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neural network contains a 700x71 matrix. We train an open loop NARX neural network 

with a 50-neuron hidden layer, and update the weights and bias values according to 

Levenberg-Marquardt optimization [55].  

 

Figure 5-7. NARX neural network with tapped delay line (TDL) at the input (figure taken 

from [54]).  

 To develop the black-box model, temperature data is obtained from sensors at 20 

second intervals and divided into training and validation sets to determine model 

parameters for different scenarios, such as changing the cooling unit operating conditions 

and server workloads. Once the model is trained, it is used to predict these same scenarios. 

To optimize the performance of the NARX neural network for time-series predictions in 

nonlinear systems, the hyper-parameters for feedback and the neural network should be 

carefully chosen. Another important consideration is the amount of training data. While it 

is expected that with training data obtained over a larger operational duration the model 

will likely capture the system dynamics and thus enable better predictions, this also 

compromises its ability to make early predictions due to a longer ramp-up period. 
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Figure 5-8 shows the average error for the black-box rack inlet temperature 

predictions in terms of deviations from temperature measurements as the durations over 

which the training data are obtained are varied from 300 to 700 seconds after an abrupt 

change in the cooling unit operation and IT load at 60 seconds. The error is large for shorter 

durations, but the larger data length of 700s provides a far more accurate solution. The 

errors for racks 1 and 5 are lower than for the other racks due to their proximity to the 

cooling units where the local temperatures are almost equal to the set-point temperature. 

For the remaining experiments, we select a training data duration of 700 seconds for the 

black-box model.  

 
Figure 5-8. Average prediction error for the rack inlet temperature as a function of training 

data length in the black-box model when operating conditions change abruptly at 60 s. All 

predictions continue until a steady-state condition is reached.  

5.4.4 Transient temperature predictions 

The gray-box, conventional zonal, and baseline black-box models are employed to predict 

transient temperatures of a row-based cooling architecture until a steady-state condition is 
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reached. The predictions of the models are compared with sensor measurements for several 

realistic scenarios. 

5.4.4.1 Influence of cooling unit operating conditions 

The cooling unit operating conditions are critical for DC operation since both airflow paths 

and set-point temperatures influence the thermal environments within the cold and hot 

chambers. Reducing airflows or increasing the set-point temperature typically results in 

higher rack temperatures and thereby higher differences in air temperatures across the racks. 

For this set of experiments, we consider a high cooling unit airflow (80%) with an 18oC 

set-point temperature for t ≤ t0. At times t > t0, the cooling unit airflow and set-point 

temperature decrease to 30% and 16 oC, respectively, but the server workloads remain 

constant at 100%. Here, since the cold chamber pressure is lower than in the hot chamber, 

and hot air recirculation occurs through the gaps between the racks producing hot zones.  

5.4.4.1.1 Server inlet air temperature prediction  

Figure 5-9 compares temperature predictions at the 25 sensor locations in the cold chamber 

using the three models until a steady-state condition is reached. The temperatures are 

mostly uniform initially and the models have high accuracy, with lower than 0.3oC 

differences between the predictions and experiments. In the black-box model, the first 700 

s of data are used to train the model and test its interpolative accuracy, while the remainder 

are used to evaluate its extrapolative accuracy. The interpolative error associated with the 

model lies below 0.7oC. As the model progresses beyond duration over which the training 

data are obtained, i.e.,  after 700 s, the black-box model predicts a sudden increase in 

temperature that causes larger differences between the predictions and measurements. In 
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contrast, deviations of the predicted temperatures from measurements are far smaller for 

the gray-box and conventional zonal models, and the average prediction error is about less 

than half that of the black-box model. 

Figure 5-10 presents the average rack inlet temperature prediction errors for the 

aforementioned scenario with the three models, defined as ∆ =
|𝑇𝐸𝑥𝑝−𝑇𝑃𝑟𝑒𝑑|

𝑇𝐸𝑥𝑝
. Before 700 s, 

the gray-box model, the conventional zonal model and the black-box model have a 

maximum ∆ of 3.5%, 4.2% and 2.5%, respectively. After 700 s, ∆ for the black-box model 

is larger than for the gray-box and conventional zonal models and for steady-state 

conditions, all racks show ∆  < 4.3% for the gray-box model and ∆  < 6.5% for the 

conventional zonal model while for the black-box model ∆ > 20.42%. Therefore, the gray-

box model is much more accurate than the conventional zonal model and the black-box 

model for extrapolative predictions. Figure 5-11 provides transient temperature predictions 

for six sensors at arbitrarily chosen different locations. 

We also observe differences in the prediction accuracies at different rack locations. 

For example,  ∆ values are lower for the side racks (racks 1 and 5) since they are close to 

the cooling units while for the middle racks (racks 2, 3, and 4) ∆ is larger due to hot air 

recirculation, which is not accurately modeled.  
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Figure 5-9. Online temperature predictions of the gray-box model (blue solid line), a 

conventional zonal model (green solid line) and a black-box model (red dash line) versus 

temperature measurements from experiments (black solid line) in response to an abrupt 

change in the cooling unit operation at t = t0 + 60 s. 

a) 

b) 

c) 

d) 

Time = 𝒕𝟎 Second 

Time = 𝐭𝟎 + 𝟔𝟎𝟎 Second 

Time = 𝐭𝟎 + 𝟏𝟐𝟎𝟎 Second 

Time = 𝐭𝟎 + 𝟐𝟏𝟎𝟎 Second 
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Figure 5-10. Performance comparison: Temperature prediction errors for three models with 

respect to experimental results, ∆ =
|TExp−TPred|

TExp
, when the cooling unit operation changes 

abruptly at 60 s. 
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Figure 5-11. Transient temperature predictions from three models at different sensor 

locations when the cooling unit operation changes abruptly at 60 s.  
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5.4.4.1.2 Server CPU temperature prediction  

Here, the CPU temperatures are predicted by the gray-box and black-box models until a 

steady-state condition. Since the conventional zonal model developed in [13] does not 

predict CPU temperatures, its results are excluded in this set of experiments. Figure 5-12 

presents CPU temperatures prediction results for two arbitrary chosen servers. Server 23 is 

located at the top of rack 3 and server 45 in the middle of rack 4. The gray-box model has 

a higher accuracy than the black-box model for all times. The values of  ∆ for both models 

for these two servers are summarized in Table 5-6.  

 
Figure 5-12. CPU temperature predictions from the gray-box and black-box models in 

response to a change in the cooling unit operation at 60 s until a steady-state condition is 

reached. 

 

Table 5-6. Relative temperature prediction error between the black-box and gray-box 

models and experimental measurements for servers 23 and 45 in response to a change in 

the cooling unit operation at 60 s. 

 ∆𝐆𝐫𝐚𝐲−𝐛𝐨𝐱 (%) ∆𝐁𝐥𝐚𝐜𝐤−𝐛𝐨𝐱 (%) 

Server 23 1.02 2.71 

Server 45 0.91 2.41 
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5.4.4.2 Influence of IT load on temperature distribution 

When 𝑡 ≤ 𝑡0, all servers operate at a 20% workload (8.6 kW in total) while at time 𝑡 > 𝑡0 

the server workloads increase to 100% (20 kW in total). Both cases have cooling unit 

airflows of 1.2 kg/s and a set-point temperature of 18oC.  

5.4.4.2.1 Server inlet air temperature prediction  

Cold chamber temperature predictions from the gray-box model, the conventional zonal 

model and the black-box model are shown in Figure 5-13. Before 𝑡0 + 700 seconds, all 

models provide good temperature predictions, but after 𝑡0 + 700 the error from the black-

box model increases significantly over time, while it increases initially moderately for the 

gray-box and conventional zonal models but then decreases as the system approaches a 

steady-state condition. Similar observations can be made from Figure 5-14, which shows 

the ∆  values from the three models. Finally, Figure 5-15 shows the transient temperature 

predictions for six sensors, which are chosen arbitrarily at different locations.  
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Figure 5-13. Online temperature predictions from the gray-box (blue solid line) and black-

box (red dash line) models and  experimental temperature measurements (black solid line) 

in response to a change in the server workloads at t = t0 + 60 s. 

Time = 𝐭𝟎 Second 

a) 

b) 

c) 

Time = 𝐭𝟎 + 𝟔𝟎𝟎 Second 

Time = 𝒕𝟎 + 𝟏𝟐𝟎𝟎 Second 
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Figure 5-14. Performance comparison: Temperature prediction errors for three models with 

respect to the experimental result, ∆ =
|TExp−TPred|

TExp
, when the server workloads change at 

time 60 s. 
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Figure 5-15. Transient temperature predictions from three models at different sensor 

locations when the server utilization changes at time 60 s. 
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5.4.4.2.2 Server CPU temperature prediction 

We examine the predicted CPU temperatures for two arbitrarily chosen servers (23 and 45) 

as their workload increases from 20% to 100%. Since the conventional zonal model [13] 

does not predict CPU temperatures, its results are excluded in this set of experiments. The 

CPU temperature prediction results are presented in Figure 5-16 and values of ∆  are 

provided in Table 5-7. The gray-box model is in far better agreement with the experiment 

results. 

 
Figure 5-16. CPU temperature predictions in response to a change in the server workload 

at time 60 s until a steady-state condition is reached from the gray-box and black-box 

models. 

Table 5-7. Relative errors in the temperature predictions between the black-box and gray-

box models and experimental results for servers 23 and 45 in response to a change in the 

server workload at time 60 s. 

 ∆𝐆𝐫𝐚𝐲−𝐛𝐨𝐱 (%) ∆𝐁𝐥𝐚𝐜𝐤−𝐛𝐨𝐱 (%) 

Server 23 0.96 1.74 

Server 45 0.91 1.61 
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5.4.5 Thermal anomaly detection and fault classification 

Recall from Section 2.4 that a neural network is trained to classify different failure 

scenarios.  Table 5-8 summarizes the train and test accuracy rate of the ANN with different 

numbers of hidden layers and neurons in each layer. In the experiments, the ReLu 

activation function is used in the output layer. We find that the ANN with 4 hidden layers 

and 5 neurons has the best performance with the test accuracy and error rate equal to 95% 

and 5%, respectively. Further increasing the number of layers or neurons leads to 

overfitting.  

Table 5-8. Parameters of the ANN classification model and its accuracy. 

# Hidden layer # Neurons Train accuracy Test Accuracy 

1 3 47% 28% 

1 5 48% 31% 

2 3 54% 42% 

2 5 61% 54% 

2 7 74% 69% 

3 3 88% 81% 

3 5 96% 89% 

3 10 100% 81% 

4 3 97% 90% 

4 5 98% 95% 

4 10 100% 89% 

5 3 100% 91% 

5 5 100% 85% 

We evaluate the performance of the fault detection and classification model in 

identifying cooling unit fan failures. Precision and recall metrics can be used to evaluate 

the classification performance. Table 5-9 provides the precision, recall, and Fscore of the 
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resulting ANN classifier. The table indicates the no fan failure condition and the failure of 

the 1st fan have the highest Fscore  of 0.90, implying that these classes can easily be 

distinguished from the rest, while the failure of fan 4 has the least Fscore of 0.74. The 

overall precision, recall, and Fscore for the seven conditions is 0.84.  

A confusion matrix is provided in Table 5-10 which helps determine misclassified 

cases, where the columns represent the actual class for the class number and rows indicate 

the predicted class. The elements of the diagonal contain the total number of correct 

predictions in each class and the remaining entries summarize the number of 

misclassifications into other classes.  

Table 5-9. Multi-class classification precision, recall, and Fscore  for fans failure using 

ANN classifier.  

Class number Class definition Precision Recall Fscore 

1 No fan failure 0.90 0.90 0.90 

2 Fan 1 failure 0.90 0.90 0.90 

3 Fan 2 failure 0.89 0.80 0.84 

4 Fan 3 failure 0.80 0.80 0.80 

5 Fan 4 failure 0.78 0.70 0.74 

6 Fan 5 failure 0.82 0.90 0.86 

7 Fan 6 failure 0.82 0.90 0.86 

Overall  0.84 0.84 0.84 

Table 5-10. Confusion matrix for the studied multi-class classification problem. 

 
Actual class 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

P
re

d
ic

te
d
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la
ss

 Class 1 9 0 0 0 0 1 0 

Class 2 0 9 1 0 0 0 0 

Class 3 0 1 8 0 0 0 0 

Class 4 0 0 0 8 2 0 0 

Class 5 0 0 0 1 7 0 1 

Class 6 1 0 1 0 0 9 0 

Class 7 0 0 0 1 1 0 9 
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5.5 Quantitative and quantitative comparison with related 

works  

Table 5-11 presents a summary of key differences between previous work and our proposed 

method. As previously discussed, computation time and fidelity are two crucial 

performance metrics for different models in real-time control and fault detection 

applications. Although CFD simulations have relatively high spatial resolution, they 

provide reasonable results only after several hours of numerical computation. In contrast, 

depending on the geometry and projected duration of the prediction, conventional zonal 

models take a few as tens of seconds to a few minutes to provide useful temperature 

predictions, although test cases require over an hour of run time to calibrate, optimize and 

tune the model. An investigation of a conventional zonal model reports that it is possible 

to include passive server effects [13], although a passive server has a small influence on 

rates of changes in temperatures and is also not common in a DC because its inclusion 

reduces reliability. Thus, without significantly influencing the accuracy of the results, we 

neglect passive servers. 

For the tested DC scenario, our black-box and gray-box models can make 

predictions in less than 0.5 seconds on a personal computer with a Core i7-8700 3.20 GHz 

CPU and 16 GB memory. Of these two models, the gray-box model has a much higher 

extrapolative prediction accuracy, is adaptive to changes in DC operation, and can 

reproduce airflow leakage, such as hot air recirculation and cold air bypass [51]. Since the 

primary objective of this study is to predict rack inlet temperatures rapidly and accurately, 

the lower spatial resolution is acceptable for our purposes. 
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Table 5-11.  A comparison of DC temperature prediction models in present and past studies. 

Assessment criteria CFD 

simulations 

[44, 59, 60] 

Conventional 

zonal model 

[13] 

Black-box 

model 

[28, 32, 33] 

Present work  

Computation time for one specific scenario > 1 hours > 30 seconds  < 10 seconds  < 0.5 seconds 

Required time for training/calibrating/setup 

the model  

> 5 hours > 1 hours > 1 hour < 1 hour  

Spatial resolution High (<1 mm) Low (> 20 cm)  NA  Low (> 20 cm) 

Duration of testing/training datasets  NA  NA  > 1 hour  < 1 hour 

Interpolative error NA  NA  < 0.5 oC < 0.5 oC 

Extrapolative error NA NA  > 1 oC  < 1.5 oC 

Ability to capture special features 

• Adaptive to changes 

• Able to capture airflow leakages 

through the gaps 

• Effect of passive servers 

 

No 

No   

 

No 

 

Yes 

Yes 

 

Yes 

 

No  

No 

 

No 

 

Yes 

Yes 

 

No 

 

5.6 Conclusion  

We develop a tool for designers and operators to successfully plan, operate, and control the 

transient behavior of a DC. The hybrid model combines conventional thermodynamics 

laws with intelligent algorithms to provide real-time temperature predictions of server 

CPUs and the cold chamber in a modular DC with a row-based cooling architecture. Model 

performance is compared against a conventional zonal model and an advanced data-driven 

black-box model for two scenarios, i.e., (1) changes in cooling unit operation and (2) 

varying server workload. Our findings are summarized below. 

1. When the cooling unit fan speeds are changed from 80% to 30% (decreasing the 

airflow from 1.92 kg/s to 0.96 kg/s) and set-point temperatures decreased from 

18oC to 16oC, all models provide accurate predictions with low interpolative errors 

having values below 0.7oC. However, the black-box model has higher extrapolative 

errors, while the gray-box and conventional zonal models error decreases by half 
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as the system reaches an eventual steady state. Hence, the gray-box and 

conventional zonal models outperforms the black-box model for extrapolative 

predictions. 

2. With the server workload incremented by 80%, all models initially yield a low 

average error for inlet air temperature predictions. However, this error increases 

significantly for the black-box model but decreases for the gray-box and 

conventional zonal model as the system reaches a steady state. Errors in predictions 

of the server CPU temperatures with the gray-box model are approximately half of 

those with the black-box model. Overall, the gray-box model again has a better 

prediction ability than the conventional zonal and black-box models. 

3. Prediction errors for the middle rack (rack 3) are higher due to hot air recirculation 

than for the end racks (racks 1 and 5)  since these racks are adjacent to the cooling 

units.  

4. The gray-box model is applied to detect fan failures. Experimental results 

demonstrate that the classifier trained using predictions from the gray-box model 

achieve precision, recall, and a Fscore  of 0.84 for one normal and 6 abnormal 

conditions. 

We conclude that the performance of the gray-box model is superior to that of a 

pure data-driven black-box and conventional zonal models. Our future work will 

investigate applications of the gray-box model for early fault detection and diagnosis, 

thermal-aware workload management and tests of what-if scenarios to characterize the 
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influence of operating conditions on the CPU and inlet air temperature distribution, and 

model-predictive control for the operation of cooling units. 

5.7 Acknowledgment  

This research was supported by the Natural Sciences and Engineering Research Council 

(NSERC) of Canada under a collaborative research and development (CRD) project, 

Computationally efficient Surrogate Models. We thank colleagues from CINNOS Mission 

Critical Incorporated who provided insight and expertise. 

5.8 References  

[1] Y. Li, X. Wang, P. Luo, and Q. Pan, "Thermal-aware hybrid workload management 

in a green datacenter towards renewable energy utilization," Energies, vol. 12, no. 

8, p. 1494, 2019. 

[2] S. MirhoseiniNejad, H. Moazamigoodarzi, G. Badawy, and D. G. Down, "Joint data 

center cooling and workload management: A thermal-aware approach," Future 

Generation Computer Systems, vol. 104, pp. 174-186, 2020. 

[3] D. Andrews and B. Whitehead, "Data Centres in 2030: Comparative Case Studies 

that Illustrate the Potential of the Design for the Circular Economy as an Enabler 

of Sustainability," in Sustainable Innovation 2019: 22nd International Conference 

Road to 2030: Sustainability, Business Models, Innovation and Design, 2019. 

[4] M. Salim and R. Tozer, "Data Centers' Energy Auditing and Benchmarking-

Progress Update," ASHRAE transactions, vol. 116, no. 1, 2010. 

[5] H. Lu, Z. Zhang, and L. Yang, "A review on airflow distribution and management 

in data center," Energy and Buildings, vol. 179, pp. 264-277, 2018. 

[6] K. Ebrahimi, G. F. Jones, and A. S. Fleischer, "A review of data center cooling 

technology, operating conditions and the corresponding low-grade waste heat 

recovery opportunities," Renewable and Sustainable Energy Reviews, vol. 31, pp. 

622-638, 2014. 

[7] H. M. Daraghmeh and C.-C. Wang, "A review of current status of free cooling in 

datacenters," Applied Thermal Engineering, vol. 114, pp. 1224-1239, 2017. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

110 

 

[8] R. Gupta, S. Asgari, H. Moazamigoodarzi, S. Pal, and I. K. Puri, "Cooling 

architecture selection for air-cooled Data Centers by minimizing exergy 

destruction," Energy, p. 117625, 2020. 

[9] A. Carbó, E. Oró, J. Salom, M. Canuto, M. Macías, and J. Guitart, "Experimental 

and numerical analysis for potential heat reuse in liquid cooled data centres," 

Energy Conversion and Management, vol. 112, pp. 135-145, 2016. 

[10] T. Gao, M. David, J. Geer, R. Schmidt, and B. Sammakia, "Experimental and 

numerical dynamic investigation of an energy efficient liquid cooled chiller-less 

data center test facility," Energy and buildings, vol. 91, pp. 83-96, 2015. 

[11] T. Gao, M. David, J. Geer, R. Schmidt, and B. Sammakia, "A dynamic model of 

failure scenarios of the dry cooler in a liquid cooled chiller-less data center," in 

2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-

THERM), 2015, pp. 113-119: IEEE. 

[12] J. Dai, M. M. Ohadi, D. Das, and M. G. Pecht, OPTIMUM COOLING OF DATA 

CENTERS. Springer, 2016. 

[13] H. Moazamigoodarzi, R. Gupta, S. Pal, P. J. Tsai, S. Ghosh, and I. K. Puri, 

"Modeling temperature distribution and power consumption in IT server enclosures 

with row-based cooling architectures," Applied Energy, vol. 261, p. 114355, 2020. 

[14] K. Dunlap and N. Rasmussen, "Choosing between room, row, and rack-based 

cooling for data centers," APC White Paper, vol. 130, 2012. 

[15] T. Evans, "The different types of air conditioning equipment for IT environments," 

White Paper, vol. 59, pp. 2004-0, 2004. 

[16] J. Cho, J. Yang, and W. Park, "Evaluation of air distribution system's airflow 

performance for cooling energy savings in high-density data centers," Energy and 

buildings, vol. 68, pp. 270-279, 2014. 

[17] I.-N. Wang, Y.-Y. Tsui, and C.-C. Wang, "Improvements of airflow distribution in 

a container data center," Energy Procedia, vol. 75, pp. 1819-1824, 2015. 

[18] J. Cho and B. S. Kim, "Evaluation of air management system's thermal performance 

for superior cooling efficiency in high-density data centers," Energy and buildings, 

vol. 43, no. 9, pp. 2145-2155, 2011. 

[19] M. K. Patterson, R. Weidmann, M. Leberecht, M. Mair, and R. M. Libby, "An 

investigation into cooling system control strategies for data center airflow 

containment architectures," in International Electronic Packaging Technical 

Conference and Exhibition, 2011, vol. 44625, pp. 479-488. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

111 

 

[20] J. Priyadumkol and C. Kittichaikarn, "A Study of Air Flow through Perforated Tile 

for Air Conditioning System in Data Center," in Applied Mechanics and Materials, 

2013, vol. 249, pp. 126-131: Trans Tech Publ. 

[21] R. Schmidt and M. Iyengar, "Server rack rear door heat exchanger and the new 

ASHRAE recommended environmental guidelines," in International Electronic 

Packaging Technical Conference and Exhibition, 2009, vol. 43604, pp. 851-862. 

[22] R. K. Sharma, C. E. Bash, C. D. Patel, R. J. Friedrich, and J. S. Chase, "Balance of 

power: Dynamic thermal management for internet data centers," IEEE Internet 

Computing, vol. 9, no. 1, pp. 42-49, 2005. 

[23] Q. Tang, T. Mukherjee, S. K. Gupta, and P. Cayton, "Sensor-based fast thermal 

evaluation model for energy efficient high-performance datacenters," in 2006 

Fourth International Conference on Intelligent Sensing and Information 

Processing, 2006, pp. 203-208: IEEE. 

[24] H. S. Erden, H. E. Khalifa, and R. R. Schmidt, "A hybrid lumped capacitance-CFD 

model for the simulation of data center transients," Hvac&R Research, vol. 20, no. 

6, pp. 688-702, 2014. 

[25] H. Moazamigoodarzi, S. Pal, S. Ghosh, and I. K. Puri, "Real-time temperature 

predictions in it server enclosures," International Journal of Heat and Mass 

Transfer, vol. 127, pp. 890-900, 2018. 

[26] Z. Song, B. T. Murray, and B. Sammakia, "A compact thermal model for data center 

analysis using the zonal method," Numerical Heat Transfer, Part A: Applications, 

vol. 64, no. 5, pp. 361-377, 2013. 

[27] R. Zhou, Z. Wang, C. E. Bash, and A. McReynolds, "Data center cooling 

management and analysis-a model based approach," in 2012 28th Annual IEEE 

Semiconductor Thermal Measurement and Management Symposium (SEMI-

THERM), 2012, pp. 98-103: IEEE. 

[28] J. Athavale, Y. Joshi, and M. Yoda, "Artificial neural network based prediction of 

temperature and flow profile in data centers," in 2018 17th IEEE Intersociety 

Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 

(ITherm), 2018, pp. 871-880: IEEE. 

[29] J. Moore, J. S. Chase, and P. Ranganathan, "Weatherman: Automated, online and 

predictive thermal mapping and management for data centers," in 2006 IEEE 

international conference on Autonomic Computing, 2006, pp. 155-164: IEEE. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

112 

 

[30] M. Zapater, J. L. Risco-Martín, P. Arroba, J. L. Ayala, J. M. Moya, and R. Hermida, 

"Runtime data center temperature prediction using Grammatical Evolution 

techniques," Applied Soft Computing, vol. 49, pp. 94-107, 2016. 

[31] L. Wang, G. von Laszewski, F. Huang, J. Dayal, T. Frulani, and G. Fox, "Task 

scheduling with ANN-based temperature prediction in a data center: a simulation-

based study," Engineering with Computers, vol. 27, no. 4, pp. 381-391, 2011. 

[32] R. Lloyd and M. Rebow, "Data driven prediction model (ddpm) for server inlet 

temperature prediction in raised-floor data centers," in 2018 17th IEEE Intersociety 

Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 

(ITherm), 2018, pp. 716-725: IEEE. 

[33] J. Athavale, M. Yoda, and Y. Joshi, "Comparison of data driven modeling 

approaches for temperature prediction in data centers," International Journal of 

Heat and Mass Transfer, vol. 135, pp. 1039-1052, 2019. 

[34] Z. Song, B. T. Murray, and B. Sammakia, "A dynamic compact thermal model for 

data center analysis and control using the zonal method and artificial neural 

networks," Applied thermal engineering, vol. 62, no. 1, pp. 48-57, 2014. 

[35] L. Li, C.-J. M. Liang, J. Liu, S. Nath, A. Terzis, and C. Faloutsos, "Thermocast: a 

cyber-physical forecasting model for datacenters," in Proceedings of the 17th ACM 

SIGKDD international conference on Knowledge discovery and data mining, 2011, 

pp. 1370-1378. 

[36] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, "A cyber–physical systems 

approach to data center modeling and control for energy efficiency," Proceedings 

of the IEEE, vol. 100, no. 1, pp. 254-268, 2011. 

[37] J. Chen et al., "A high-fidelity temperature distribution forecasting system for data 

centers," in 2012 IEEE 33rd Real-Time Systems Symposium, 2012, pp. 215-224: 

IEEE. 

[38] L. Parolini, B. Sinopoli, and B. H. Krogh, "Model predictive control of data centers 

in the smart grid scenario," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 10505-

10510, 2011. 

[39] E. Pakbaznia, M. Ghasemazar, and M. Pedram, "Temperature-aware dynamic 

resource provisioning in a power-optimized datacenter," in 2010 Design, 

Automation & Test in Europe Conference & Exhibition (DATE 2010), 2010, pp. 

124-129: IEEE. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

113 

 

[40] S. MirhoseiniNejad, F. M. García, G. Badawy, and D. G. Down, "ALTM: Adaptive 

learning-based thermal model for temperature predictions in data centers," in 2019 

IEEE Sustainability through ICT Summit (StICT), 2019, pp. 1-6: IEEE. 

[41] Z. Jiang et al., "Data-driven thermal model inference with armax, in smart 

environments, based on normalized mutual information," in 2018 Annual American 

Control Conference (ACC), 2018, pp. 4634-4639: IEEE. 

[42] I. ANSYS, "ANSYS fluent 12.0 User’s Guide," New Hampshire: ANSYS INC, 2009. 

[43] Y. Fulpagare and A. Bhargav, "Advances in data center thermal management," 

Renewable and Sustainable Energy Reviews, vol. 43, pp. 981-996, 2015. 

[44] W. A. Abdelmaksoud, H. E. Khalifa, T. Q. Dang, R. R. Schmidt, and M. Iyengar, 

"Improved CFD modeling of a small data center test cell," in 2010 12th IEEE 

Intersociety Conference on Thermal and Thermomechanical Phenomena in 

Electronic Systems, 2010, pp. 1-9: IEEE. 

[45] H. Moazamigoodarzi, P. J. Tsai, S. Pal, S. Ghosh, and I. K. Puri, "Influence of 

cooling architecture on data center power consumption," Energy, vol. 183, pp. 525-

535, 2019. 

[46] R. Temam, "Navier-Stokes equations: Theory and numerical analysis(Book)," 

Amsterdam, North-Holland Publishing Co.(Studies in Mathematics and Its 

Applications, vol. 2, p. 510, 1977. 

[47] D. C. Wilcox, Turbulence modeling for CFD. DCW industries La Canada, CA, 

1998. 

[48] A. C. Megri and F. Haghighat, "Zonal modeling for simulating indoor environment 

of buildings: Review, recent developments, and applications," Hvac&R Research, 

vol. 13, no. 6, pp. 887-905, 2007. 

[49] F. M. White, "Viscous flow in ducts," Fluid mechanics, vol. 3, 1999. 

[50] E. Wurtz, L. Mora, and C. Inard, "An equation-based simulation environment to 

investigate fast building simulation," Building and Environment, vol. 41, no. 11, pp. 

1571-1583, 2006. 

[51] S. Asgari et al., "Hybrid surrogate model for online temperature and pressure 

predictions in data centers," Future Generation Computer Systems, vol. 114, pp. 

531-547. 

[52] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of artificial neural networks. 

MIT press, 1997. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

114 

 

[53] A. Afram and F. Janabi-Sharifi, "Gray-box modeling and validation of residential 

HVAC system for control system design," Applied Energy, vol. 137, pp. 134-150, 

2015. 

[54] A. Di Piazza, M. C. Di Piazza, and G. Vitale, "Solar and wind forecasting by NARX 

neural networks," Renewable Energy and Environmental Sustainability, vol. 1, p. 

39, 2016. 

[55] E. Diaconescu, "The use of NARX neural networks to predict chaotic time series," 

Wseas Transactions on computer research, vol. 3, no. 3, pp. 182-191, 2008. 

[56] H. Xie, H. Tang, and Y.-H. Liao, "Time series prediction based on NARX neural 

networks: An advanced approach," in 2009 International conference on machine 

learning and cybernetics, 2009, vol. 3, pp. 1275-1279: IEEE. 

[57] S. M. Guzman, J. O. Paz, and M. L. M. Tagert, "The use of NARX neural networks 

to forecast daily groundwater levels," Water resources management, vol. 31, no. 5, 

pp. 1591-1603, 2017. 

[58] J. M. P. Menezes Jr and G. A. Barreto, "Long-term time series prediction with the 

NARX network: An empirical evaluation," Neurocomputing, vol. 71, no. 16-18, pp. 

3335-3343, 2008. 

[59] G. Varsamopoulos, M. Jonas, J. Ferguson, J. Banerjee, S. K. Gupta, and I. Lab, 

"Using transient thermal models to predict cyberphysical phenomena in data 

centers," Sustainable Computing: Informatics and Systems, vol. 3, no. 3, pp. 132-

147, 2013. 

[60] R. Wang et al., "Toward Automated Calibration of Data Center Digital Twins: A 

Neural Surrogate Approach," arXiv preprint arXiv:2001.10681, 2020. 

 

 

 

 

 

 

 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

115 

 

 

 

 

 

Chapter 6  

6 A Data-Driven Approach to Simultaneous Fault 

Detection and Diagnosis in Data Centers 

This chapter is reproduced from “A Data-Driven Approach to simultaneous Fault 

Detection and Diagnosis in Data Centers”, Sahar Asgari, Rohit Gupta,  Ishwar K, Puri, 

and Rong Zheng, Published in Applied Soft Computing, 2021.  

Her main contributions to this work consist of introducing the idea of using gray-

box model for single and simultaneous fault detection and diagnosis, writing the 

manuscript, conducting the experiments, implementing the framework, constructing the 

algorithms, and generating the numerical results. 
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6.1 Abstract 

The failure of cooling systems in data centers (DCs) leads to higher indoor temperatures, 

causing crucial electronic devices to fail, and produces a significant economic loss. To 

circumvent this issue, fault detection and diagnosis (FDD) algorithms and associated 

control strategies can be applied to detect, diagnose, and isolate faults. Existing methods 

that apply FDD to DC cooling systems are designed to successfully overcome individually 

occurring faults but have difficulty in handling simultaneous faults. These methods either 

require expensive measurements or those made over a wide range of conditions to develop 

training models, which can be time-consuming and costly. We develop a rapid and accurate, 

single and multiple FDD strategy for a DC with a row-based cooling system using data-

driven fault classifiers informed by a gray-box temperature prediction model. The gray-

box model provides thermal maps of the DC airspace for single as well as a few 

simultaneous failure conditions, which are used as inputs for two different data-driven 

classifiers, CNN and RNN, to rapidly predict multiple simultaneous failures. The model is 

validated with testing data from an experimental DC. Also, the effect of adding Gaussian 

white noise to training data is discussed and observed that even with low noisy environment, 

the FDD strategy can diagnose multiple faults with accuracy as high as 100% while 

requiring relatively few simultaneous fault training data samples. Finally, the different 

classifiers are compared in terms of accuracy, confusion matrix, precision, recall and F1-

score. 

Key words: Data center, Fault diagnosis, Classification, Time-series analysis, 

Gray-box model. 
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Nomenclature  

 

  

ANN Artificial neural network IT Information technology 

BPTT Backpropagation through time LSTM Long short-term memory 

CFD Computational fluid dynamics lpm Liter per minute 

CNN Convolutional neural network NARX Nonlinear AutoRegressive 

Exogenous 

DC Data center PCA Principal component analysis 

DDM Data-driven model OCSVM One-class support vector 

machine 

FDD Fault detection and diagnosis  RBF Radial basis function 

HPC High-performance computing RNN Recurrent neural network 

IRC In-row cooling SVM Support vector machine 

 

6.2 Introduction  

With the advent of big data, three-dimensional electronic chip stacking, increased interest 

in tensor processing and deep learning algorithms, worldwide computing loads on the data 

centers (DCs), and high-performance computing (HPC) clusters are increasing 

significantly. By 2025, DC energy use is anticipated to account for 20% of worldwide 

consumption [1-3]. Cooling systems contribute to 24-60% of the total energy consumed by 

computing infrastructures [4, 5]. The efficient operation of cooling systems is critical for 

providing a secure, reliable, and stable DC environment while ensuring energy efficiency 

and compliance with safety guidelines for computing infrastructures. 

The primary causes of failures in air-cooled computing equipment include (1) large 

temperature and humidity fluctuations that decrease equipment lifetime, and (2) the 

presence of hot (temperature) spots leading to automatic shutdown of the information 
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technology (IT) equipment [6-9]. Failures of IT equipment can be mitigated by endowing 

cooling systems with fault detection and isolation (FDI) capacity to ensure self-sustaining 

DC operation and resilience. A large survey of air conditioning units revealed that more 

than 90% had experienced one or more faults [10]. Cooling units that operate under faulty 

conditions in a DC exacerbate the energy consumption and cost, and damage the IT 

equipment, diminishing computing efficiency [11]. Therefore, there is a pressing need to 

develop effective fault detection and diagnosis (FDD) solutions for cooling systems in 

DCs.  

There are two classes of FDD algorithms, (1) independent and (2) simultaneous 

FDD [12, 13]. The first considers only a single fault type at a time, while the latter can 

detect two or more mutually exclusive faults occurring simultaneously. Studies on FDD 

can be further separated into two categories, i.e., model-based and data-driven [14-17]. In 

a model-based FDD [18-20], a semi-empirical mechanistic representation of the system or 

a physics-based model is established to characterize the dynamic system behaviors under 

normal operations. Thereafter, characteristic anomalies in the system are detected and 

diagnosed from the deviations of real-time process outputs from the predicted normal 

conditions. Popular model-based FDD techniques include symbolic time-series analysis, 

interacting multi-model, smooth variable state space, cross wavelet transform, and multi-

modal decomposition [14, 15, 21]. Despite the existence of several model-based FDD 

solutions, it is often challenging to establish intricate and accurate physics-based 

representations for anomalous behaviors of dynamic systems. These methodologies are 
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also often prohibitively computation-intensive, limiting their implementation in control 

systems to real-time diagnostics [22, 23].  

Several types of time-series signals, such as (a) acoustic, (b) vibration, and (c) 

electrical signals have been used for FDD of air-conditioning systems. Data-driven 

approaches such as principal component analysis (PCA), artificial neural networks (ANN), 

support vector machines (SVM), and combinations of these techniques have been applied 

to identify cooling system faults in DCs [24-27]. However, these methods suffer from 

multiple drawbacks, e.g., (1) poor signal to noise ratio, (2) prohibitively expensive data 

acquisition equipment required for high-frequency mechanical/electrical measurements, (3) 

lack of single-point contact measurements for each component, and (4) high computational 

requirement for transforming large time-domain signals to the frequency domain in real-

time [13, 28-30]. Issues (2) and (3) can be partly overcome by obtaining real-time spatial 

thermal measurements since temperature probes can be readily installed in DCs, are cost-

effective, and require low computational post-processing. 

In contrast to the vast FDD literature about single fault detection in the air-

conditioning systems, reports on algorithms that accurately detect two or more 

simultaneously occurring faults are sparse. Faults can occur simultaneously in many real 

applications, where cooling units in DCs are no exception [31, 32]. The main challenge for 

simultaneous FDD in DCs is that the number of combinations of multiple faults is large, 

resulting in numerous possible fault patterns. Acquiring large-scale datasets for 

simultaneous faults required for data-driven models is both difficult and expensive. Besides, 
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data collection during faulty conditions can adversely affect the health and productivity of 

the system, particularly when simultaneous faults occur.  

Here, we develop a novel hybrid FDD framework to detect and diagnose multiple 

simultaneous faults in DC cooling units. To mitigate the shortage of faulty data in real 

systems, we extend a previously proposed 3D gray-box transient model by explicitly 

modeling cooling unit control for multi-rack DCs equipped with in-row cooling (IRC) units. 

The resulting model allows for the generation of simulated data under normal, fan, or 

chiller pump failures in the presence of diverse server workloads. Model parameters are 

calibrated using experimental data obtained from real systems during their normal 

operation.  

In this study, to detect arbitrary faults, two data-driven models are considered, one-

class SVM (OCSVM) and a Nonlinear AutoRegressive Exogenous (NARX) neural 

network model. To diagnose single or simultaneous failures, we train a 2D convolutional 

neural network (2D-CNN) and a recurrent neural network (RNN) model. The first uses 2D-

CNN for feature exaction and the second has long short-term memory (LSTM) to capture 

long-term temporal dependencies. Additionally, the robustness of the proposed models to 

noisy environments is investigated by adding Gaussian white noise that is the most 

common type of noise [33].  

We instrument an enclosed modular DC with 25 temperature sensors. The modular 

DC contains 64 active servers spread across five racks and two IRC units on each side. 

Experimental data is collected every 30 s under both normal and multiple fault conditions 
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to validate the proposed models. The OCSVM and NARX models can respectively detect 

faults with 100% accuracy after 300s and 270s after the onset of faults. For single 

component failure, both 2D-CNN and RNN models can achieve 100% accuracy when the 

models are trained and tested with 540s and 420s of data, respectively. In the case of two 

failures, the RNN and CNN models provide high accuracy up to 100% with 540s and 600s 

of training data, respectively. To the best of our knowledge, this is the first study to leverage 

a gray-box model to generate data to train models for individual and simultaneous FDD in 

a DC cooling system. In summary, the major contributions of this paper lie in: 

• Extension of a previous 3D gray-box model [34, 35] by utilizing cooling unit 

control to provide thermal maps of the DC airspace for single as well as 

simultaneous failure conditions. 

• Introduction of a hybrid FDD framework using a 3D gray-box transient model to 

detect and diagnose faults. 

• Development of a rapid and accurate, single and multiple FDD strategy by using 

both single failure and a few simultaneous failures in the training data. 

• Investigation of the robustness of the models in noisy environments.  

The remaining sections are organized as follows. Section 2 introduces in-row 

cooling unit DCs and the hybrid FDD framework and its implementation. Sections 3 and 4 

presents the analysis and discussion of results. Finally, Section 5 summarizes our 

conclusions. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

122 

 

6.3 Methodology  

6.3.1  A modular data center architecture with in-row cooling units  

A modular DC contains several server racks, an uninterruptable power supply, power 

distribution cabinets, power distribution units, air conditioners (in-row coolers in this case), 

and additional equipment that operates independently and provides network, cabling, and 

monitoring functions. This class of DCs is gaining in popularity due to improved efficiency, 

flexibility and expandability, and ease of maintenance.  

Figure 6-1 a and b depict an enclosed modular DC geometry equipped with five 

racks (2  1  0.6 m3) and two IRC units on each side with a fixed speed pump and control 

valve to regulate the water flow rate. The red dots indicate the positions of the temperature 

sensing probes across the half-width of the cold and hot chambers. In the front chamber, 

cold air delivered by the IRC units is drawn into the servers. In the back chamber, warm 

air exits the servers and is returned to the IRC units. There are 64 servers in total. Rack 

number 2 contains 12 servers and the rest have 13 servers each. The racks are partially 

populated with these servers and empty spaces are covered with blanking panels to 

minimize hot and cold air mixing. However, leakage flows are present inside the enclosure 

through the air-blocking brushes, either from the back to the front chamber or vice versa 

across the aisles, depending on the pressure difference across them [36, 37]. Figure 6-1 c 

shows the energy interactions across different components in the DC. Each of the IRC units 

includes 3 fans and a fin-tube heat exchanger to transfer the heat from hot air to chilled 

water stream. The IRC units are equipped with temperature sensors to measure the return 

air temperature. A setpoint is set for those sensors so that the control system in the units 
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can adjust the fan speed and the chilled water valve to better match the IT load and server 

inlet air temperature requirement.  

 
Figure 6-1. (a) Three-dimensional schematic representation of the DC considered for the 

case study. The red dots indicate positions of the temperature probes across half-width of 

the cold chamber, (b) top cross-sectional view showing salient airflows inside the enclosure, 

and (c) IRC schematic. The enclosure is 3.2 m long, 1.4 m wide, and 2.05 m high.  

a)  

b)  

c)  
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6.3.2 Gray-box temperature prediction 

For predicting DC thermal conditions, zonal models represent an intermediate approach 

between the lumped system and more precise but time-consuming computational fluid 

dynamics (CFD) models. For a gray-box prediction, the DC environment is partitioned into 

coarse-grained control volumes, assuming that the physical properties inside each control 

volume are spatially uniform. A set of nonlinear coupled equations consisting of the mass, 

momentum, and energy conservation relations is applied for each uniform zonal volume 

[38]. Figure 6-2 shows the three-dimensional zones inside the enclosure for a row-based 

cooling architecture DC. A total of 95 zones are created by considering the (1) fronts and 

(2) backs of servers and cooling units, and the (3) servers themselves.  

 

Figure 6-2. Zones considered for temperature prediction in the cold (front) chamber and 

back (hot) chamber inside the DC enclosure equipped with IRC units. 

An artificial neural network (ANN) model has been trained to characterize the 

relation between the zonal pressures and cooling configuration using data from CFD 
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simulations [34]. With the predicted pressure for each zone obtained from the trained ANN, 

the inlet and exit airflows of each zone at time t1 can be reconstructed by applying mass 

and momentum balance across these zones and servers for which details are provided in 

the appendix, which is obtained from [34].  

To characterize the effects of the failures of cooling system components in our 

analysis, we also incorporate transient cooling system control in the gray-box model. The 

IRC units situated within the DC contain an air-water heat exchanger and fans to extract 

heat from the DC. The waterside of the heat exchanger is fed with the building chilled 

water supply using a circulation pump. The gray-box model representing the spatial airside 

temperature is coupled with the waterside through a transient energy balance for the IRC 

heat exchanger. Details on the transient energy balance for the airside of the IRC heat 

exchangers can be found in the appendix, which is obtained from [39]. The data flow within 

the gray-box model is depicted in Figure 6-3. 

 

Figure 6-3. The data flow within the gray-box model for temperature predictions. 

 
1 Unless specified otherwise, time index t is omitted from the equations in the appendix.  
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6.3.3 Fault types 

Common failures in electronic products can be traced back to thermal-related issues.  The 

lifespans of electronic components in a DC is significantly shortened when the 

environment contains high-temperature areas or there are high-temperature fluctuations. 

Pumps and fans are widely used to maintain cold airflow that cools electronic equipment. 

Since pump and fan reliability is critical for the proper thermal management and reliability 

of IT equipment [40-43], we consider pump and fan(s) failures and assess their impact on 

the system operations. Seven types of faults and their combination are investigated, leading 

to a total of 21 fault classes and one normal class. 

Figure 6-4 shows the temperature distributions under normal conditions, failure of 

fan 2 and failure of the chiller pump 540 s after the onset of the failure, as predicted by the 

gray-box model and measured from our experiments in a modular DC. The predictions and 

measurements are in close agreement. Different failures have different spatial implications, 

which can be distinguished from the temperature distributions during normal operation. 

These spatial patterns serve as the basis of the FDD application. 

6.3.4 Hybrid simultaneous FDD 

6.3.4.1 Solution overview  

The development of a simultaneous FDD model consists of four main steps as shown in 

Figure 6-5. First, time-series temperature data under normal, single, and simultaneous fault 

conditions are simulated using the gray-box temperature prediction model and 

experimental set up [35]. Second, fault classification models are trained using faulty data. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

127 

 

We consider two deep neural networks, namely, a 2D-CNN model and an RNN model as 

described in section 6.3.4.4. Thirdly, an off-line fault detection model is trained with 

normal data only. During the operational phase, windowed measurements collected from 

thermal sensors in the modular DC are taken as inputs for the fault detection model. If a 

fault is detected, the fault classification model is further applied to identify the types of that 

fault. Alternatively, one can train an online fault detection model with the assumption that 

the system, at least initially, operates under normal conditions. The online model is then 

utilized to detect faults in the next window. If no fault is detected, the model is updated 

with new data. Otherwise, the fault classification model is applied to determine the type of 

fault. The details of each step follow.  

6.3.4.2 Training data generation 

The temperature data at 25 sensor locations are simulated at 30-second intervals using the 

three-dimensional gray-box temperature prediction model described in Section 6.3.2. 

Experiments show that smaller sampling intervals have only marginal impacts on the 

accuracy of the resulting model. For robustness, measurements with random initial seeds 

and server utilizations are collected under normal, single, and simultaneous fault conditions. 

In total, 200 instances of transient data are generated, each lasting 10 minutes. 
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a) Normal 

Gray-box model 

 

Experiment 

 

∆ = |𝑻𝑬𝒙𝒑 − 𝑻𝑴𝒐𝒅𝒆𝒍|/𝑻𝑬𝒙𝒑 

 

b) Fan 2 failure 

Gray-box model 

 

Experiment 

 

∆ = |𝑻𝑬𝒙𝒑 − 𝑻𝑴𝒐𝒅𝒆𝒍|/𝑻𝑬𝒙𝒑 

 

c) Pump failure 

Gray-box model 

 

Experiment 

 

∆ = |𝑻𝑬𝒙𝒑 − 𝑻𝑴𝒐𝒅𝒆𝒍|/𝑻𝑬𝒙𝒑 

 

Figure 6-4. Temperature distribution predicted by the gray-box model and measured from 

our experimental modular DC at t = 540s and prediction error (∆ = |TExp − TModel|/TExp) 

under (a) normal, (b) fan 2 failure and (3) pump failure conditions. 
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Figure 6-5. Schematic of the FDD strategy. 

6.3.4.3 Fault detection 

Anomalies are often the result of exceptional system conditions and do not describe the 

common functioning of the underlying system. Fast anomaly detection is one of the key 

requirements for economical and optimal process operation management. Many neural 

network models have been developed to detect faults in a system and shown to be highly 

successful. We consider OCSVM and NARX techniques. OCSVM is a special variant of 

the general SVM and only uses the normal operation data for training. It constructs the 

tightest decision boundary that encloses all data with minimal slacks. If a new sample 

locates within the boundary, it is classified as a normal operation point; otherwise, it is 

labeled as an abnormality. Since no faulty data is needed for training, the OCSVM can be 

trained easily and has been applied widely for fault detection [44].  

Formally, let 𝑥𝑖, 𝑖 = 1,2, … , 𝑛 be normal data points. OCSVM aims to solve the 

following optimization problem, 
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min
𝑟,𝑐,𝜁

𝑟2 +
1

𝜐𝑛
∑ 𝜁𝑖

𝑛
𝑖=1 , s.t., ‖Φ(𝑥𝑖) − 𝑐‖2 ≤ 𝑟2 + 𝜁𝑖 , ∀𝑖 = 1,2, … , 𝑛, (6-1) 

where Φ(∙) is a kernel function and 𝜐 is a hyper-parameter that sets an upper bound on the 

fraction of outliers (i.e., training examples regarded out-of-class) [45, 46]. Here, we adopt 

a radial basis function (RBF) kernel 

NARX is a popular machine learning algorithm that characterizes complex 

nonlinear mappings between the input and output time-series data. A NARX network with 

embedded memory (tapped delay line) can be utilized to detect faults in a system [47, 48]. 

First, a NARX network is trained and is used to predict target features given past inputs. If 

the distance between the predicted and actual values exceeds a threshold over several 

consecutive data samples, an anomaly is detected. In this work, we consider a NARX 

model illustrated in Figure 6-6, which has been previously used in transient temperature 

prediction for DCs [49].  

 

Figure 6-6. NARX neural network with tapped delay line (TDL) at the input (reproduced 

with permission from [49]). 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

131 

 

6.3.4.4 Fault classification  

A data-driven model (DDM) is a technique that enables learning from a set of observations. 

The main concept of a DDM is to find relationships between the system state variables 

(input, internal, and output) without or with partial knowledge of the physical behavior of 

the system. Due to the nonlinearity and complexity of the temperature distribution in a DC, 

DDMs are suitable for representing the multifaceted relationships among the system-state 

variables. Our goal is to find data-driven functional models that classify the value of the 

response variables, say temperature, with respect to the pump and fans failures. Due to the 

spatial and temporal locality of the data, CNN and RNN models are our choices of DDMs 

for fault classification.  

6.3.4.4.1 Convolutional neural network (CNN) 

CNN is a feedforward neural network with a set of non-linear transformation functions 

which has enjoyed much success and demonstrated high performance for solving many 

classification problems [50, 51]. It transforms the input into a form which is easier to 

process, while still retaining the essential features. The crucial features are extracted by 

applying convolutional filters on the initial inputs. Next, a pooling layer is applied to reduce 

the spatial size of the convoluted features. Finally, the output of the pooling layer must be 

flattened to be further processed by fully connected layers and an output layer.  

The structure of the CNN employed in this study is shown in Figure 6-7a. Input 

data is of the form (number of samples, height, width, depth). There are 175 training 

samples, where each sample is a tensor of shape (5, 5, D). In an input sample, the first and 

second dimensions contain the measurements of sensors arranged in a 5x5 matrix at a time 
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instance. The depth of the tensors D corresponds to the length of the time window for a 30s 

sampling interval. Based on hyperparameter tuning, the best results are obtained with 

four convolutional layers (C1–C4), two max-pooling layers (max-pooling 1 and max-

pooling 2), and one fully connected layer. The convolutional layers have kernel sizes of 

33 and 22 with ReLu activation function which is followed by a max-pooling layer 

which acts as the feature extractor. Finally, one fully connected layer is applied which 

performs non-linear transformations of the extracted features and acts as the classifier. It 

also contains a Softmax activation function (or normalized exponential function), which 

outputs a probability value for each of the classification labels. The network is trained by 

minimizing the sum cross-entropy loss for all training samples.  

6.3.4.4.2 Recurrent neural network (RNN) 

Since the input data is inherently time series data, we also provide an RNN model [52]. 

RNNs possess connections that have loops, feedback, and memory over time. 

Incorporating memory allows this type of network to learn and generalize across sequences 

of inputs. A commonly used RNN is Long Short-Term Memory (LSTM), which has shown 

a better performance than vanilla RNNs [53]. LSTM is trained using Backpropagation 

Through Time (BPTT) and overcomes the vanishing gradient problem. 

Here, we use 2D-CNN for feature extraction from raw temperature measurements 

of 25 sensors at each time instance. The generated features then serve as inputs to LSTM 

which outputs the probability of each class. The training set contains a total of 175 samples, 

where each sample is a 5x5 matrix with D channels, across t timesteps. Therefore, the input 

shape is (175, t, 5, 5, D). According to hyperparameter tuning, the 2D-CNN contains 2 

https://www.sciencedirect.com/topics/engineering/convolutional-layer
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convolutional layers, one max-pooling layer, and one fully connected layer. The LSTM is 

trained with 1 hidden layers of 70 neurons and a ReLu activation function.  

At run time, all the classifiers take real-time measurements from thermal sensors at 

target locations as inputs and predict the kind of failure that will occur. Additionally, all 

steps of the classification problems are implemented in Python 3.8 using Keras with 

Tensorflow backend, and the model is trained by Adam optimizer as well as the cross-

entropy loss function [54].  

6.3.4.5 Experimental conditions for FDD validation  

Figure 6-1 shows a schematic representation of the experimental DC containing 5 IT racks 

with 2 IRC units. The experimental operating conditions for racks and cooling units are 

provided in Table 6-1 and 6-2, respectively. The experimental dataset consists of a 

collection of temperature readings at 25 locations in the front chamber taken at every 30 

seconds over a 10-minute duration. 

6.4 Results  

6.4.1  Thermal characteristics of faults   

We use the gray-box model to predict the temperature distributions in the cold chamber 

during normal operating conditions and various failures. Several statistical values of 

temperature measurements over a 10-minute period after the onset of single faults or for 

normal operations are summarized in Table 6-3. Clearly, the statistics are distinctive so 

that it is possible to tell apart categories of failures or the no failure condition. For example, 

in Table 6-3, the mean temperature from the gray-box model and experiment under normal 
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operating condition is 18.45 °C and 18.41°C, respectively while for any faulty situation it 

is above 19.45 °C. The standard deviations of temperatures for faulty states are also 

significantly higher than that during normal conditions. Pump failures are even more 

prominent with the minimum and maximum temperatures at 24.75 °C and 32.75 °C for the 

gray-box model and 24.54 °C and 31.99 °C for the experimental results, when the 

minimum and maximum temperatures deviate from the normal operating condition by 40% 

and 55%, respectively. As a result of spatial fluctuations in the velocity field, the resulting 

temperatures vary at specific time instants.  

Table 6-4 presents statistics of temperature measurements over a 10-minute period 

after the onset of two faults and for a normal condition. Again, each type of failure has a 

unique signature that can be used to infer the category of the failure that has occurred. 

According to Table 6-4, for multiple failures, the mean of cold chamber temperatures 

increases significantly beyond 21 °C. Moreover, two simultaneous fan failures result in a 

higher standard deviation. Comparing Table 6-3 and Table 6-4, we also observe that 

concurrent faults generally result in higher mean and maximum temperatures and larger 

standard deviations.  

Table 6-1. IT Racks operating conditions. 

Rack Volume flow rate of air (m3 s-1) IT load (kW) 

1 0.22 3.6 

2 0.20 4.0 

3 0.24 4.1 

4 0.20 3.9 

5 0.22 3.8 

 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

135 

 

6.4.2 Assessment of fault detection methodologie  

We investigate the effectiveness of the OCSVM and NARX in fault detection. In OCSVM, 

25 data instances under normal operation condition are used as training data to build the 

fault detection model. The OCSVM is trained with radial basis function (RBF) kernel 

function, gamma of 0.04 and 𝑛𝑢 = 0.01 . An open-loop NARX neural network with 

embedded memory (tapped delay line) from our prior work is used to detect faults [35].  

Table 6-2. IRC unit operating conditions under normal and faulty scenarios. 

Case Cooling unit Air flow rate (m3 s-1) Water flow rate (lpm) 

Normal operation 

Left 0.51 

32 

Right 0.51 

One fan failure 

Left 0.51 

32 

Right 0.34 

Two fans failure 

Left 0.51 

32 

Right 0.17 

Pump failure 

Left 0.51 

0 

Right 0.51 

Pump and one fan 

failure 

Left 0.51 

0 

Right 0.34 
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Figure 6-7. The Architecture of neural networks employed in this study. a) CNN and b) 

RNN. 

 

 

 

a)  

b)  
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Table 6-3. Salient thermal features of no-fault single fault states over 10 minutes. 

Fault 

types 

Mean (°C) 
Standard 

deviation (°C) 
Minimum (°C) Maximum (°C) 

Exp. Model Exp. Model Exp. Model Exp. Model 

Fan 1 19.48 19.62 2.17 2.27 17.24 17.36 26.01 26.52 

Fan 2 19.51 19.82 1.69 1.88 17.88 17.92 24.71 25.11 

Fan 3 20.02 20.34 2.25 2.36 17.68 17.79 26.14 26.81 

Fan 4 20.54 20.65 2.74 2.91 17.47 17.50 28.22 28.92 

Fan 5 19.66 19.75 1.17 1.22 17.73 17.85 22.71 22.88 

Fan 6 20.96 21.06 2.78 2.86 17.71 17.86 28.76 29.02 

Pump 27.86 28.02 1.13 1.34 24.54 24.75 31.99 32.75 

Normal 18.41 18.45 0.98 0.97 17.61 17.69 21.10 21.19 
 

Table 6-4. Salient thermal features of multiple fault states induced in the cooling unit fans 

and pump after 10 minutes. 

Fault 

types 

Mean (°C) 
Standard 

deviation (°C) 
Minimum (°C) Maximum (°C) 

Exp. Model Exp. Model Exp. Model Exp. Model 

Fans 1 

and 2 
20.62 21.07 2.44 2.88 17.55 17.75 27.02 27.52 

Fans 1 

and 6 
22.01 22.68 3.58 3.77 17.65 17.75 31.19 31.94 

Fans 2 

and 4 
21.98 22.91 3.49 3.82 17.72 17.92 31.27 31.73 

Pump 

and 

Fan 1 

27.85 28.50 2.23 2.41 24.21 24.75 35.07 35.88 

Pump 

and 

Fan 5 

28.04 28.45 1.48 1.66 25.09 25.75 31.30 31.38 

Normal 18.41 18.45 0.98 0.97 17.61 17.69 21.10 21.19 

210 test samples from the testbed are used to evaluate the models, among which 20 

instances are from normal conditions, 140 instances contain single failure data (20 per 

failure) and 50 instances with simultaneous faulty data. Figure 6-8 shows the performance 

of fault detection based on OCSVM and NARX when the training data length changes 

from 120 to 360 s. Figure 6-8 represents that the faults are successfully detected by both 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

138 

 

models. NARX detects faults with 100% accuracy and F1-Score using 270 s of data, while 

OCSVM requires data for 30 s more. ROC curves, shown in Figure 6-9, evaluate the trade-

off between true and false-positive rates of the two algorithms. With 270 s of data, the 

AUC of NARX and OCSVM are 0.989 and 0.945, respectively. With 300 s of data, both 

models achieve an AUC of close to 1.00 which demonstrates the classifiers perfect fault 

detection ability. 

We further evaluate the time to train and make predictions using both algorithms. 

The experiments are conducted on a desktop PC with a Core i7-8700 CPU at 3.20 GHz,16 

GB memory, and Windows 10 with a 64-bit operating system.  From Table 6-5, we see 

that OCSVM is more time-efficient due to lower average training and running times and 

CPU memory consumption. Since NARX must be trained at run-time, the total time to 

detect a fault is the sum of training time, inference time and the time to collect sufficient 

measurement data for prediction. In contrast, OCSVM is pre-trained and thus the total time 

to detect a fault is only the sum of inference time and the time to collect sufficient 

measurement data for prediction. Therefore, OCSVM is more favorable despite being 

slightly less data efficient.  
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Figure 6-8. Results obtained for fault detection using OCSVM and NARX techniques when 

the training data length changes from 120 to 360 s. 

Table 6-5. Computation time comparison for the OCSVM and NARX neural networks. 

Algorithm 
Average Training Time 

(Seconds) 

Average Detection Time 

(Seconds) 

OCSVM ~ 3 ~ 0.01 

NARX ~ 800 ~ 0.18 

 

a)  

b)  
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Figure 6-9. Performance of the fault detection algorithms after times (a) 270 s and (b) 300 

s. 

6.4.3 Comparison of fault diagnosis methodologies: Single-fault   

We now investigate independent faults that occur one at a time using experimental data to 

evaluate the accuracy of the FDD model in a modular DC with an IRC that is depicted in 

Figure 6-1. 

6.4.3.1 Effects of training data duration   

To explore the relationship between the duration of training and testing data on independent 

fault diagnosis performance, a comparative study is performed. Figure 6-10 shows the 

average F1-Scores and accuracy with different data durations for the CNN and RNN 

a)  

b)  
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algorithms. As shown in the figure, the diagnosis performance degrades with decreasing 

data duration due to insufficient information for classification. RNN is more data-efficient 

than CNN since the average F1-Scores and accuracy rate of the RNN model are 100% 

using 420 s of training samples. In comparison, 540 s of data is needed for CNN to reach 

close to 100% average F1-Scores and accuracy rate.  

 
Figure 6-10. Independent fault diagnosis results with different sizes of training samples: (a) 

Average F1-Scores (%) and (b) Average accuracy rate (%). 

6.4.3.2 Influence of initial time of training data  

Table 6-6 shows the performance of the two deep learning models (CNN and RNN) as the 

initial timestamp of the training data is changed while the duration is held constant (i.e., 
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300 s). Both models have around 100% average accuracy when the training starts from 200 

s and 300 s.  However, by shifting the initial time to 0 s, the performance of the CNN and 

RNN models decreases to 80% and 91%, respectively. Shifting the time window towards 

zero seconds diminishes the probability of finding a characteristic temporal change in the 

temperature profile which is used as signatures for detecting component failure.  

 

Figure 6-11. Independent fault diagnosis results with different sizes of training samples: (a) 

Average F1-Scores (%) and (b) Average accuracy rate (%). 

 

a)  

b)  
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Table 6-6. Comparison of the performance of the neural network model for different initial 

times for the training data (single failure scenario). 

 Average accuracy rate (%) 

Training data duration (s) CNN RNN 

0 - 300 80 91 

100 - 400 89 94 

200 - 500 98 100 

300 - 600 100 100 

Figure 6-12 shows the confusion matrix results for the CNN and RNN models for 

different training data length. The matrix compares the actual target values corresponding 

to experimentally triggered scenarios with those predicted by the data-driven model. The 

diagonal of a confusion matrix corresponds to correctly predicted fault classes. As seen in 

Figure 6-12, when the training data length is short, the number of misclassified testing 

samples is high.  Most misclassifications are among fan faults and confusion between pump 

and fan failure is rare and non-existent with RNN for data duration no less than 300s. This 

implies that pump failures lead to distinctive spatial and temporal characteristics from fan 

failures.  



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

144 

 

 
Figure 6-12. Performance of the CNN and RNN with different noise inputs when the 

training data lengths are a) 600s and b) 300 s. 

6.4.3.3 Effect of adding noise in training dataset  

In this section, Gaussian noise with standard deviations of 0.1, 0.5, 2, and 3 °C is added to 

the training dataset only for single fault detection. As seen in Figure 6-12, for a longer 

training duration (600 s), adding noise does not have a significant influence on the models 

performance. However, with a shorter duration (300 s), the average accuracy rate degrades 

by 24% and 26% for the RNN and CNN models, respectively. The degraded performance 

under large Gaussian noises can be attributed to the different distributions of the training 
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and testing data (also called domain gap). In practice, such a domain gap can be reduced 

by selecting a proper noise variance in training data based on the characteristics of the 

thermocouples used. 

6.4.4 Comparison of fault diagnosis methodologies: Multiple faults 

6.4.4.1 Effect of training data duration 

Table 6-3 reveals seven single failure types, where the possible number of combinations of 

two simultaneously occurring fault in the system is as high as 128.  We evaluate the ability 

of the proposed single-fault classifiers for detecting multiple faults. If the top-2 softmax 

output of the classifier is above a pre-defined threshold, two faults are identified. As 

baseline models, we also train one CNN and one RNN model with similar architecture as 

those in Section 6.3.4.4 but output 128 classes instead of 7. To distinguish the models, we 

call the models with 128 output classes CNN2 and RNN2, and the original models which 

use a minimal number of simultaneous fault samples CNN1 and RNN1. CNN2 and RNN2 

are trained with 350 instances of data generated by the gray-box model. While CNN1 and 

RNN1 are trained with 190 instances, among which 175 of them contain single failure data 

(25 per failure) and 15 contain the simultaneous faulty data of Table 6-4. All four models 

are evaluated using experimental data from the testbed. 

Figure 6-13 shows the classifier performance for various data durations. Generally, 

it is observed that the average accuracy rate for all models increases as data are available 

over longer durations. As expected, CNN2 and RNN2  outperform CNN1 and RNN1 in most 

cases since they are trained with enough multi-fault data. Similar to the single-fault 
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scenarios, RNN1 is more data-efficient than CNN1 and can achieve 100% accuracy with 

540 s of data. 

The superior performance of CNN2 and RNN2 for multi-fault diagnosis comes at 

the cost of longer data preparation times to generate the needed training data from the gray-

box model and longer training time, as summarized in Table 6-7. All computation time is 

collected from the same desktop PC described in Section 6.3.4.4. 

Table 6-7. Data preparation and computation time comparison for multiple FDD models. 

Algorithm 

Average required time to 

collect and prepare data from 

gray-box model (s) 

Average running 

time to train (s) 

Average running 

time to obtain results 

of a class (s) 

CNN1 ~ 105000 ~ 18 ~ 0.3 

RNN1 ~ 105000 ~ 10 ~ 0.2 

CNN2 ~ 2025000 ~ 1500 ~ 0.3 

RNN2 ~ 2025000 ~ 100 ~ 0.2 

 

6.4.4.2 Influence of initial time of training data 

Table 6-8 presents average accuracy of the proposed CNN1, RNN1, CNN2, and RNN2 

models with details of the training duration when two failures occur in the system. The 

initial time of the training data impacts the model accuracy, with a larger effect on the 

CNN1 and RNN1 models since there are fewer simultaneous failure scenarios in the training 

data. When the training time window lies between 300 s to 600 s, the average accuracy of 

both CNN2 and RNN2 is 100%, whereas for CNN1 and RNN1 it is 88% and 93%, 

respectively, but which decreases significantly by shifting the initial time for training. 
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a) 

 

b) 

 

c) 

 

Figure 6-13. Multiple fault diagnosis performance with varying sizes of training samples. 
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Table 6-8. Comparison of the performance of the neural network model for different initial 

times of the training data (Simultaneous failure scenarios). 

 Average accuracy rate (%) 

Training data duration (s) CNN1 RNN1 CNN2 RNN2 

0 - 300 61 70 75 82 

100 - 400 64 76 80 91 

200 - 500 72 87 92 98 

300 - 600 88 93 100 100 

 

6.4.4.3 Effect of adding noise in training data 

Figure 6-14 shows the performance of the state of the art deep learning-based models when 

Gaussian noise with standard deviations of 0.1, 0.5, 2, and 3 °C added to the training 

datasets. When the training duration is 600 s, with small amounts of noise, all algorithms 

perform well, i.e., with greater than 92% accuracy. However, as the noise increases, the 

performance is degraded by up to 28%. For a training data length of 300 s, adding noise 

impacts the performance significantly, where adding 3 °C noise decreases the average 

accuracy to 40% and 50% for CNN1 and CNN2, respectively. Overall, the RNN model 

outperforms the CNN in the presence of larger amounts of noise 
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Figure 6-14. Performance of the CNN1, RNN1, CNN2 and RNN2 with different noise 

inputs when the training data lengths are a) 600s and b) 300 s. 

6.5 Discussion 

The air temperature at the front inlets of a typical server in a DC must be in the 20 C – 30 

C range to avoid thermal redlining [55]. Every 10 C increase over 21 C decreases the 

long-term reliability of electronics by 50% [56]. The higher temperatures produce failures 

that have detrimental effects on hardware performance and reliability. Failure occurrence 

can potentially cost a company millions of dollars for each minute its network and data are 

unavailable. Apart from the immediate financial cost, the impact of reduced productivity, 
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lost opportunities, brand damage, and potential data loss that can affect a business for years 

to come. 

We provide a specific FDD approach that can handle multiple simultaneous faults 

in DC cooling units. One unique contribution is the rapid diagnosis of multiple faults with 

high accuracy while requiring relatively few simultaneous fault training data samples. We 

also incorporate cooling system control into a previously proposed 3D gray-box transient 

model [34, 35] to gather normal and faulty data for multi-rack DCs equipped with in-row 

cooling (IRC) units. 

The detection and diagnosis of faults requires four steps. First, regular and abnormal 

temperature data are recorded by using the previous 3D gray-box transient model. Next, 

two deep neural networks are considered, namely, a 2D-CNN and an CNN-LSTM to 

identify salient patterns in the normal or faulty time series data. Third, the OCSVM fault 

detection model is used. Finally, if a fault is detected, the fault classification model is 

applied further to identify the type of that fault. 

We utilized training data from the 3D gray-box model and testing data from the 

real-world data center presented in Section 2 to validate the FDD model. To avoid 

overfitting, the k-fold cross validation technique is used for which model evaluation is 

taken as the average of k model evaluation from each of the k folds of the data. The result 

depends on the complexity of the fault and the characteristics of the different faults. For 

instance, the accuracy rate of single fault types is high using short training data lengths, 

which indicates that the method detects and diagnoses the fault sufficiently rapidly even 
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with a training set of shorter duration. However, for multiple fault conditions, a longer 

training data length is required to reach a desirable accuracy. The results of the methods 

are compared with those obtained previously in Table 6-9. 

The methodology is general and can be applied to other types of DCs, such as the 

rack mountable cooling unit (RMCU) and overhead air delivery (OHAD) DCs [57]. Due 

to the generality and robustness of the methodology, the method is applicable for many 

different systems and FDD problems, such as residential cooling units and different 

industrial HVAC systems [58, 59]. 

Table 6-9. Comparison between the results of the method with previous results. 

Reference Fault type Method Simultaneous 

faulty data in 

training dataset 

Simultaneous 

failure 

Average accuracy 

of FDD 

(%) 

[60] Actuator: Cooling and 

heating coil, air damper, 

return fan 

Decision tree NA No 97 

[61] Actuator: Cooling and 

heating coil, air damper, 

return fan  

Supervised 

auto-encoder 

NA No 98 

[58] Actuator and Sensor 

faults 

KPCA and RBF 

neural network 

Yes Yes 99 

[59] Actuator, Sensor and 

coil faults 

Shallow neural 

network (SNN) 

Yes  Yes 29 

Proposed 

method 

Actuator: Cooling and 

heating coil and return 

fan 

2D-CNN and 

RNN 

A few Yes  100 

 

6.6 Conclusion  

We have developed a low-cost FDD methodology for a gray-box model and machine 

learning model to detect and diagnose single and multiple faults in the cooling system of a 
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DC. The methodology utilizes a gray-box temperature prediction model of the system to 

generate a training dataset for FDD. Salient findings include:  

1. Fault detection using OCSVM and NARX is highly accurate. However, OCSVM 

is advantageous due to its low run-time computation cost.  

2. For single failure diagnosis, classifier performance diminishes with decreasing 

data duration. The average F1-Score and accuracy of the RNN and CNN models 

get to 100% using 480 s and 540 s of training samples, respectively. 

3. For multiple failure detection, the classifiers trained with single fault training data 

and a few simultaneous fault samples (i.e., CNN1 and RNN1) can achieve an 

average accuracy as high as 100% with 600 s of data. Though the CNN and RNN 

models trained with data from two simultaneous faults have a higher average 

accuracy rate of 100%, they incur the cost of significantly higher data preparation 

and training time.  

4. RNN models are generally more data-efficient than CNN models. This may be 

attributed to parameter sharing and their ability to capture temporal correlation in 

time series data.  

The results show that the FDD strategy can detect multiple failures trained with 

single and limited number of simultaneous fault data. Therefore, specific fault-tolerant 

control actions can be applied based on the faults that are diagnosed in the system to reduce 

operation and maintenance costs. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

153 

 

6.7 Acknowledgment  

This research was supported by the Natural Sciences and Engineering Research Council 

(NSERC) of Canada under a Collaborative Research and Development (CRD) project, 

Computationally Efficient Surrogate Models. 

6.8 References  

[1] Y. Li, X. Wang, P. Luo, and Q. Pan, "Thermal-aware hybrid workload management 

in a green datacenter towards renewable energy utilization," Energies, vol. 12, no. 

8, p. 1494, 2019. 

[2] S. MirhoseiniNejad, H. Moazamigoodarzi, G. Badawy, and D. G. Down, "Joint data 

center cooling and workload management: A thermal-aware approach," Future 

Generation Computer Systems, vol. 104, pp. 174-186, 2020. 

[3] D. Andrews and B. Whitehead, "Data Centres in 2030: Comparative Case Studies 

that Illustrate the Potential of the Design for the Circular Economy as an Enabler 

of Sustainability," in Sustainable Innovation 2019: 22nd International Conference 

Road to 2030: Sustainability, Business Models, Innovation and Design, 2019. 

[4] M. Salim and R. Tozer, "Data Centers' Energy Auditing and Benchmarking-

Progress Update," ASHRAE transactions, vol. 116, no. 1, 2010. 

[5] H. Lu, Z. Zhang, and L. Yang, "A review on airflow distribution and management 

in data center," Energy and Buildings, vol. 179, pp. 264-277, 2018. 

[6] M. Kheradmandi and D. G. Down, "Data driven fault tolerant thermal management 

of data centers," in 2020 International Conference on Computing, Networking and 

Communications (ICNC), 2020, pp. 736-740: IEEE. 

[7] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder, 

"Temperature management in data centers: Why some (might) like it hot," in 

Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international 

conference on Measurement and Modeling of Computer Systems, 2012, pp. 163-

174. 

[8] W. Torell, K. Brown, and V. Avelar, "The unexpected impact of raising data center 

temperatures," Write paper 221, Revision, 2015. 

[9] H. Moazamigoodarzi, P. J. Tsai, S. Pal, S. Ghosh, and I. K. Puri, "Influence of 

cooling architecture on data center power consumption," Energy, vol. 183, pp. 525-

535, 2019. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

154 

 

[10] J. Proctor, "Residential and small commercial central air conditioning; rated 

efficiency isn’t automatic," in Presentation at the Public Session. ASHRAE Winter 

Meeting, January, 2004, vol. 26. 

[11] G. Singh, T. C. A. Kumar, and V. Naikan, "Efficiency monitoring as a strategy for 

cost effective maintenance of induction motors for minimizing carbon emission and 

energy consumption," Reliability Engineering & System Safety, vol. 184, pp. 193-

201, 2019. 

[12] Z. Zhang, S. Li, Y. Xiao, and Y. Yang, "Intelligent simultaneous fault diagnosis for 

solid oxide fuel cell system based on deep learning," Applied Energy, vol. 233, pp. 

930-942, 2019. 

[13] H. Li and J. E. Braun, "A methodology for diagnosing multiple simultaneous faults 

in vapor-compression air conditioners," HVAC&R Research, vol. 13, no. 2, pp. 369-

395, 2007. 

[14] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, "A review of 

process fault detection and diagnosis: Part I: Quantitative model-based methods," 

Computers & chemical engineering, vol. 27, no. 3, pp. 293-311, 2003. 

[15] V. Venkatasubramanian, R. Rengaswamy, and S. N. Kavuri, "A review of process 

fault detection and diagnosis: Part II: Qualitative models and search strategies," 

Computers & chemical engineering, vol. 27, no. 3, pp. 313-326, 2003. 

[16] R.-E. Precup, P. Angelov, B. S. J. Costa, and M. Sayed-Mouchaweh, "An overview 

on fault diagnosis and nature-inspired optimal control of industrial process 

applications," Computers in Industry, vol. 74, pp. 75-94, 2015. 

[17] A. Albu, R.-E. Precup, and T.-A. Teban, "Results and challenges of artificial neural 

networks used for decision-making and control in medical applications," Facta 

Universitatis, Series: Mechanical Engineering, vol. 17, no. 3, pp. 285-308, 2019. 

[18] J. Schein, S. T. Bushby, N. S. Castro, and J. M. House, "A rule-based fault detection 

method for air handling units," Energy and buildings, vol. 38, no. 12, pp. 1485-

1492, 2006. 

[19] P. T Agami Reddy PhD, "Development and evaluation of a simple model-based 

automated fault detection and diagnosis (FDD) method suitable for process faults 

of large chillers/discussion," ASHRAE Transactions, vol. 113, p. 27, 2007. 

[20] Y. Zhao, S. Wang, F. Xiao, and Z. Ma, "A simplified physical model-based fault 

detection and diagnosis strategy and its customized tool for centrifugal chillers," 

HVAC&R Research, vol. 19, no. 3, pp. 283-294, 2013. 

[21] Y. Yu, D. Woradechjumroen, and D. Yu, "A review of fault detection and diagnosis 

methodologies on air-handling units," Energy and Buildings, vol. 82, pp. 550-562, 

2014. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

155 

 

[22] A. Beghi, R. Brignoli, L. Cecchinato, G. Menegazzo, M. Rampazzo, and F. 

Simmini, "Data-driven fault detection and diagnosis for HVAC water chillers," 

Control Engineering Practice, vol. 53, pp. 79-91, 2016. 

[23] Z. Du, B. Fan, X. Jin, and J. Chi, "Fault detection and diagnosis for buildings and 

HVAC systems using combined neural networks and subtractive clustering 

analysis," Building and Environment, vol. 73, pp. 1-11, 2014. 

[24] D. Li, Y. Zhou, G. Hu, and C. J. Spanos, "Fault detection and diagnosis for building 

cooling system with a tree-structured learning method," Energy and Buildings, vol. 

127, pp. 540-551, 2016. 

[25] S. Wang and F. Xiao, "AHU sensor fault diagnosis using principal component 

analysis method," Energy and Buildings, vol. 36, no. 2, pp. 147-160, 2004. 

[26] Z. Du, X. Jin, and Y. Yang, "Wavelet neural network-based fault diagnosis in air-

handling units," Hvac&R Research, vol. 14, no. 6, pp. 959-973, 2008. 

[27] W.-Y. Lee, J. M. House, and N.-H. Kyong, "Subsystem level fault diagnosis of a 

building's air-handling unit using general regression neural networks," Applied 

Energy, vol. 77, no. 2, pp. 153-170, 2004. 

[28] C.-S. A. Gong et al., "Feature extraction of rotating apparatus using acoustic 

sensing technology," in 2019 Eleventh International Conference on Ubiquitous and 

Future Networks (ICUFN), 2019, pp. 254-256: IEEE. 

[29] N. Baydar and A. Ball, "Detection of gear failures via vibration and acoustic signals 

using wavelet transform," Mechanical Systems and Signal Processing, vol. 17, no. 

4, pp. 787-804, 2003. 

[30] Y. Li, J. X. Gu, D. Zhen, M. Xu, and A. Ball, "An evaluation of gearbox condition 

monitoring using infrared thermal images applied with convolutional neural 

networks," Sensors, vol. 19, no. 9, p. 2205, 2019. 

[31] H. Li and J. E. Braun, "Decoupling features and virtual sensors for diagnosis of 

faults in vapor compression air conditioners," International Journal of 

Refrigeration, vol. 30, no. 3, pp. 546-564, 2007. 

[32] I. Velibeyoglu, H. Y. Noh, and M. Pozzi, "A graphical approach to assess the 

detectability of multiple simultaneous faults in air handling units," Energy and 

Buildings, vol. 184, pp. 275-288, 2019. 

[33] A. Neelakantan et al., "Adding gradient noise improves learning for very deep 

networks," arXiv preprint arXiv:1511.06807, 2015. 

[34] S. Asgari et al., "Hybrid surrogate model for online temperature and pressure 

predictions in data centers," Future Generation Computer Systems, vol. 114, pp. 

531-547, 2021. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

156 

 

[35] S. Asgari, S. MirhoseiniNejad, H. Moazamigoodarzi, R. Gupta, R. Zheng, and I. K. 

Puri, "A gray-box model for real-time transient temperature predictions in data 

centers," Applied Thermal Engineering, vol. 185, p. 116319, 2021. 

[36] R. Gupta, H. Moazamigoodarzi, S. MirhoseiniNejad, D. G. Down, and I. K. Puri, 

"Workload management for air-cooled data centers: An energy and exergy based 

approach," Energy, vol. 209, p. 118485, 2020. 

[37] H. Moazamigoodarzi, R. Gupta, S. Pal, P. J. Tsai, S. Ghosh, and I. K. Puri, 

"Modeling temperature distribution and power consumption in IT server enclosures 

with row-based cooling architectures," Applied Energy, vol. 261, p. 114355, 2020. 

[38] A. C. Megri and F. Haghighat, "Zonal modeling for simulating indoor environment 

of buildings: Review, recent developments, and applications," Hvac&R Research, 

vol. 13, no. 6, pp. 887-905, 2007. 

[39] H. Moazamigoodarzi, S. Pal, S. Ghosh, and I. K. Puri, "Real-time temperature 

predictions in it server enclosures," International Journal of Heat and Mass 

Transfer, vol. 127, pp. 890-900, 2018. 

[40] X. Tian, "Cooling fan reliability: failure criteria, accelerated life testing, modeling 

and qualification," in RAMS'06. Annual Reliability and Maintainability Symposium, 

2006., 2006, pp. 380-384: IEEE. 

[41] X. Jin, E. W. Ma, T. W. Chow, and M. Pecht, "An investigation into fan reliability," 

in Proceedings of the IEEE 2012 Prognostics and System Health Management 

Conference (PHM-2012 Beijing), 2012, pp. 1-7: IEEE. 

[42] X.-q. Wen and L.-r. You, "A residual lifetime prediction method of cooling fan 

based on the operating point offset distance," in 2016 Chinese Control and Decision 

Conference (CCDC), 2016, pp. 2972-2976: IEEE. 

[43] R. Fezai, K. Abodayeh, M. Mansouri, H. Nounou, and M. Nounou, "Fault diagnosis 

of biological systems using improved machine learning technique," International 

Journal of Machine Learning and Cybernetics, pp. 1-14, 2020. 

[44] S. Yin, X. Zhu, and C. Jing, "Fault detection based on a robust one class support 

vector machine," Neurocomputing, vol. 145, pp. 263-268, 2014. 

[45] Y. Xiao, H. Gao, and Y. Yan, "Indirect Gaussian kernel parameter optimization for 

one-class SVM in fault detection," in Third International Workshop on Pattern 

Recognition, 2018, vol. 10828, p. 108280K: International Society for Optics and 

Photonics. 

[46] J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the 

support of a high-dimensional distribution," Technical Report MSR-T R-99–87, 

Microsoft Research (MSR), 1999. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

157 

 

[47] P. Bangalore, S. Letzgus, D. Karlsson, and M. Patriksson, "An artificial neural 

network‐based condition monitoring method for wind turbines, with application to 

the monitoring of the gearbox," Wind Energy, vol. 20, no. 8, pp. 1421-1438, 2017. 

[48] Y. Cui, P. Bangalore, and L. B. Tjernberg, "An anomaly detection approach based 

on machine learning and scada data for condition monitoring of wind turbines," in 

2018 IEEE International Conference on Probabilistic Methods Applied to Power 

Systems (PMAPS), 2018, pp. 1-6: IEEE. 

[49] A. Di Piazza, M. C. Di Piazza, and G. Vitale, "Solar and wind forecasting by NARX 

neural networks," Renewable Energy and Environmental Sustainability, vol. 1, p. 

39, 2016. 

[50] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning. nature 521 (7553), 436-444," 

Google Scholar Google Scholar Cross Ref Cross Ref, 2015. 

[51] S. Li, G. Liu, X. Tang, J. Lu, and J. Hu, "An ensemble deep convolutional neural 

network model with improved DS evidence fusion for bearing fault diagnosis," 

Sensors, vol. 17, no. 8, p. 1729, 2017. 

[52] J. T. Connor, R. D. Martin, and L. E. Atlas, "Recurrent neural networks and robust 

time series prediction," IEEE transactions on neural networks, vol. 5, no. 2, pp. 

240-254, 1994. 

[53] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, 

vol. 9, no. 8, pp. 1735-1780, 1997. 

[54] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, "The importance 

of skip connections in biomedical image segmentation," in Deep learning and data 

labeling for medical applications: Springer, 2016, pp. 179-187. 

[55] F. Robert, "Alternating cold and hot aisles provides more reliable cooling for server 

farms," White Paper, Uptime Institute, 2000. 

[56] M. K. Patterson, "The effect of data center temperature on energy efficiency," in 

2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena 

in Electronic Systems, 2008, pp. 1167-1174: IEEE. 

[57] R. Gupta, S. Asgari, H. Moazamigoodarzi, S. Pal, and I. K. Puri, "Cooling 

architecture selection for air-cooled Data Centers by minimizing exergy 

destruction," Energy, vol. 201, p. 117625, 2020. 

[58] A. Montazeri and S. M. Kargar, "Fault detection and diagnosis in air handling using 

data-driven methods," Journal of Building Engineering, vol. 31, p. 101388, 2020. 

[59] U. Ghose and U. Bisht, "Performance Evaluation of Various ANN Architectures 

Using Proposed Cost Function," in 2020 8th International Conference on 

Reliability, Infocom Technologies and Optimization (Trends and Future 

Directions)(ICRITO), 2020, pp. 732-737: IEEE. 



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

158 

 

[60] R. Yan, Z. Ma, Y. Zhao, and G. Kokogiannakis, "A decision tree based data-driven 

diagnostic strategy for air handling units," Energy and Buildings, vol. 133, pp. 37-

45, 2016. 

[61] W.-S. Yun, W.-H. Hong, and H. Seo, "A data-driven fault detection and diagnosis 

scheme for air handling units in building HVAC systems considering undefined 

states," Journal of Building Engineering, vol. 35, p. 102111, 2021. 

[62] E. Wurtz, L. Mora, and C. Inard, "An equation-based simulation environment to 

investigate fast building simulation," Building and Environment, vol. 41, no. 11, pp. 

1571-1583, 2006. 

 

6.9 Appendix 

6.9.1 Transient gray-box thermal model   

An artificial neural network (ANN) model has been trained to characterize the relation 

between the zonal pressures and airflows using data from CFD simulations [34]. With the 

predicted pressure for each zone obtained from the trained ANN, the inlet and exit airflows 

of each zone at time t can be reconstructed by applying mass and momentum balance 

across these zones [34].  

𝑚̇(𝑖+1,𝑗)→(𝑖,𝑗)
𝑓

+ 𝑚̇(𝑖−1,𝑗)→(𝑖,𝑗)
𝑓

+ 𝑚̇(𝑖,𝑗+1)→(𝑖,𝑗)
𝑓

+ 𝑚̇(𝑖,𝑗−1)→(𝑖,𝑗)
𝑓

+ 𝑚̇𝑙 − 𝑚̇𝑠 = 0, (6-A.1) 

𝑚̇(𝑖+1,𝑗)→(𝑖,𝑗)
𝑏 + 𝑚̇(𝑖−1,𝑗)→(𝑖,𝑗)

𝑏 + 𝑚̇(𝑖,𝑗+1)→(𝑖,𝑗)
𝑏 + 𝑚̇(𝑖,𝑗−1)→(𝑖,𝑗)

𝑏 + 𝑚̇𝑙 + 𝑚̇𝑠 = 0, and (6-A.2) 

∑ 𝐹 = ∑(𝑚̇𝑣)𝑜𝑢𝑡 − ∑(𝑚̇𝑣)𝑖𝑛 , (6-A.3) 

where 𝑚̇(𝑖+1,𝑗)→(𝑖,𝑗) and 𝑚̇(𝑖−1,𝑗)→(𝑖,𝑗) are the mass flows in the x-direction, 𝑚̇(𝑖,𝑗+1)→(𝑖,𝑗) 

and 𝑚̇(𝑖,𝑗−1)→(𝑖,𝑗) represent the mass flows in the y-direction, 𝑚̇𝑠 mass flowrate of a server, 

𝑚̇𝑙 the leakage airflow, 𝐹 body force, 𝑚̇ interfacial mass flux, and 𝑣 velocity across zones. 

 
 Unless specified otherwise, time index t is omitted from the equations.  
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Subsequently, the energy balance for the zones in front and back of servers can be 

utilized to predict temperatures [39, 62].  

𝜌𝑎𝐶𝑝,𝑎𝑉𝑖 (
𝑇𝑖,𝑗

𝑓
(𝑡)−𝑇𝑖,𝑗

𝑓
(𝑡−∆𝑡)

∆𝑡
) = Φ1

𝑓
(𝑡 − ∆𝑡) + Φ2

𝑓
(𝑡 − ∆𝑡) + Φ3

𝑓
(𝑡 − ∆𝑡) + Φ4

𝑓
(𝑡 −

∆𝑡) + Φ5
𝑓

(𝑡 − ∆𝑡) + Φ6
𝑓

(𝑡 − ∆𝑡), and  

(6-A.4) 

𝜌𝑎𝐶𝑝,𝑎𝑉𝑖 (
𝑇𝑖,𝑗

𝑏 (𝑡)−𝑇𝑖,𝑗
𝑏 (𝑡−∆𝑡)

∆𝑡
) = Φ1

𝑏(𝑡 − ∆𝑡) + Φ2
𝑏(𝑡 − ∆𝑡) + Φ3

𝑏(𝑡 − ∆𝑡) + Φ4
𝑏(𝑡 −

∆𝑡) + Φ5
𝑏(𝑡 − ∆𝑡) + Φ6

𝑏(𝑡 − ∆𝑡) , 

(6-A.5) 

where 𝜌𝑎 indicates the density of air, 𝑉𝑖 zonal volume, 𝑇𝑖,𝑗
𝑓

 inlet air temperature of a server, 

𝑇𝑖,𝑗
𝑏  the air temperature at the back of a server, and Φ the energy transport term that depends 

on the relative pressure, mass flow rate and temperature of the respective zone and spatial 

direction.  Table 6- A.1 contains expressions for each term included in Eqs. 6-A.4 and 6-

A.5.  

The energy balance for an active server, a source of heat, is, 

𝑋𝑃̇(𝑖,𝑗) − 𝑚̇(𝑖,𝑗)
𝑠 𝑐𝑝,𝑎 (𝑇(𝑖,𝑗)

𝑓
− 𝑇(𝑖,𝑗)

𝑏 ) = 𝑌
𝑑𝑇𝐶𝑃𝑈,(𝑖,𝑗)

𝑑𝑡
, (6-A.6) 

where 𝑚̇(𝑖,𝑗)
𝑠  denotes the server mass flow rate, 𝑃̇(𝑖,𝑗) the total power consumption of the 

corresponding server, X a coefficient that determines the power usage by CPUs,  𝑐𝑝,𝑎 

specific heat capacity, 𝑇𝑖,𝑗
𝑓

 inlet air temperature of a server, 𝑇𝑖,𝑗
𝑏  the air temperature at the 

back of a server, t time, and Y an empirical coefficient for the thermal mass of a server that 

is available from the literature [35].  
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To characterize the effects of the failures of cooling system components in our 

analysis, we also incorporate cooling system control in the gray-box model. The IRC units 

situated within the DC contain an air-water heat exchanger and fans to extract heat from 

the DC. The waterside of the heat exchanger is fed with the building chilled water supply 

using a circulation pump. The gray-box model representing the spatial airside temperature 

is coupled with the waterside through a transient energy balance for the IRC heat exchanger. 

The transient energy balance for the airside of the IRC heat exchanges reveals [39],  

𝑋𝑎

2
(

𝑇ℎ,𝑎(𝑡) − 𝑇ℎ,𝑎(𝑡 − ∆𝑡)

∆𝑡
+

𝑇𝑐,𝑎(𝑡) − 𝑇𝑐,𝑎(𝑡 − ∆𝑡)

∆𝑡
)

= −
𝑈𝐴

2
(𝑇ℎ,𝑎(𝑡 − ∆𝑡) + 𝑇𝑐,𝑎(𝑡 − ∆𝑡) − 𝑇𝑐,𝑤 − 𝑇ℎ,𝑤(𝑡 − ∆𝑡))  

+ 𝜌𝑎𝐶𝑝,𝑎𝑄̇𝑎 (𝑇ℎ,𝑎(𝑡 − ∆𝑡) − 𝑇𝑐,𝑎(𝑡 − ∆𝑡)), 

(6-A.7) 

and the energy balance for the waterside leads to 

𝑋𝑤

2
(

𝑇ℎ,𝑤(𝑡) − 𝑇ℎ,𝑤(𝑡 − ∆𝑡)

∆𝑡
)

=
𝑈𝐴

2
(𝑇ℎ,𝑎(𝑡 − ∆𝑡) + 𝑇𝑐,𝑎(𝑡 − ∆𝑡) − 𝑇𝑐,𝑤 − 𝑇ℎ,𝑤(𝑡 − ∆𝑡))

+ 𝜌𝑤𝐶𝑝,𝑤𝑄̇𝑤 (𝑇𝑐,𝑤 − 𝑇ℎ,𝑤(𝑡 − ∆𝑡)). 

(6-A.8) 

here 𝑋𝑤 = 𝜌𝑤𝐶𝑝,𝑤𝑉𝑤 and 𝑋𝑎 = 𝜌𝑎𝐶𝑝,𝑎𝑉𝑎 are the thermal masses of water and air inside the 

IRC unit, 𝜌𝑤  and 𝜌𝑎  densities of water and air, 𝐶𝑝,𝑤  and 𝐶𝑝,𝑎  specific heat capacities of 

water and air, 𝑄̇𝑤 and 𝑄̇𝑎 the flowrate of water and air prescribed by the DC control system 

(distributed across two IRC units), 𝑇ℎ,𝑤 and 𝑇𝑐,𝑤 the hot and chilled water temperatures, 

𝑇ℎ,𝑎 and 𝑇𝑐,𝑎 the hot air return and cold air supply temperatures, ∆𝑡 the time step, 𝑈𝐴 the 
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product of universal heat transfer coefficient and the contact area between the two 

interacting fluid media i.e., air and water. The value of 𝑈𝐴 as a function of 𝑄̇𝑎 and 𝑄̇𝑤 is 

obtained from our previous work [37]. In Eqs. (6-A.7) and (6-A.8), 𝑇𝑐,𝑎 varies with server 

utilization as the return air temperature to the IRC units is changed. 

Table 6-A.2. Expressions for the terms in Eqs. 6-A.4 and 6-A.5. 

Φ1→6
𝑓

 Φ1→6
𝑏  

Φ1
𝑓

 (Horizontal energy transport in the front chamber) Φ1
𝑏 (Horizontal energy transport in the back chamber) 

[𝑃𝑖+1,𝑗
𝑓

− 𝑃𝑖,𝑗
𝑓

] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖+1,𝑗)→(𝑖,𝑗)
𝑓

𝑇𝑖+1,𝑗
𝑓

 [𝑃𝑖+1,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑏 ] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖+1,𝑗)→(𝑖,𝑗)
𝑏 𝑇𝑖+1,𝑗

𝑏  

[𝑃𝑖+1,𝑗
𝑓

− 𝑃𝑖,𝑗
𝑓

] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖+1,𝑗)
𝑓

𝑇𝑖,𝑗
𝑓

 [𝑃𝑖+1,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑏 ] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖+1,𝑗)
𝑏 𝑇𝑖,𝑗

𝑏  

Φ2
𝑓

 (Horizontal energy transport in the front chamber) Φ2
𝑏 (Horizontal energy transport in the back chamber) 

[𝑃𝑖−1,𝑗
𝑓

− 𝑃𝑖,𝑗
𝑓

] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖−1,𝑗)→(𝑖,𝑗)
𝑓

𝑇𝑖−1,𝑗
𝑓

 [𝑃𝑖−1,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑏 ] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖−1,𝑗)→(𝑖,𝑗)
𝑏 𝑇𝑖−1,𝑗

𝑏  

[𝑃𝑖−1,𝑗
𝑓

− 𝑃𝑖,𝑗
𝑓

] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖−1,𝑗)
𝑓

𝑇𝑖,𝑗
𝑓

 [𝑃𝑖−1,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑏 ] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖−1,𝑗)
𝑏 𝑇𝑖,𝑗

𝑏  

Φ3
𝑓

 (Vertical energy transport in the front chamber) Φ3
𝑏 (Vertical energy transport in the back chamber) 

[𝑃𝑖,𝑗+1
𝑓

− 𝑃𝑖,𝑗
𝑓

] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗+1)→(𝑖,𝑗)
𝑓

𝑇𝑖,𝑗+1
𝑓

 [𝑃𝑖,𝑗+1
𝑏 − 𝑃𝑖,𝑗

𝑏 ] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗+1)→(𝑖,𝑗)
𝑏 𝑇𝑖,𝑗+1

𝑏  

[𝑃𝑖,𝑗+1
𝑓

− 𝑃𝑖,𝑗
𝑓

] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖,𝑗+1)
𝑓

𝑇𝑖,𝑗
𝑓

 [𝑃𝑖,𝑗+1
𝑏 − 𝑃𝑖,𝑗

𝑏 ] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖,𝑗+1)
𝑏 𝑇𝑖,𝑗

𝑏  

Φ4
𝑓

 (Vertical energy transport in the front chamber) Φ4
𝑏 (Vertical energy transport in the back chamber) 

[𝑃𝑖,𝑗−1
𝑓

− 𝑃𝑖,𝑗
𝑓

] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗−1)→(𝑖,𝑗)
𝑓

𝑇𝑖,𝑗−1
𝑓

 [𝑃𝑖,𝑗−1
𝑏 − 𝑃𝑖,𝑗

𝑏 ] ≥ 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗−1)→(𝑖,𝑗)
𝑏 𝑇𝑖,𝑗−1

𝑏  

[𝑃𝑖,𝑗−1
𝑓

− 𝑃𝑖,𝑗
𝑓

] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖,𝑗−1)
𝑓

𝑇𝑖,𝑗
𝑓

 [𝑃𝑖,𝑗−1
𝑏 − 𝑃𝑖,𝑗

𝑏 ] < 0 𝐶𝑝,𝑎𝑚̇(𝑖,𝑗)→(𝑖,𝑗−1)
𝑏 𝑇𝑖,𝑗

𝑏  

Φ5
𝑓

 (Energy exchange due to leakage flow in the front 

chamber) 

Φ5
𝑏 (Energy exchange due to leakage flow in the back 

chamber) 

[𝑃𝑖,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑓
] ≥ 0 𝐶𝑝,𝑎𝑚̇𝑖,𝑗

𝑏→𝑓
𝑇𝑖,𝑗

𝑏  [𝑃𝑖,𝑗
𝑓

− 𝑃𝑖,𝑗
𝑏 ] ≥ 0 𝐶𝑝,𝑎𝑚̇𝑖,𝑗

𝑓→𝑏
𝑇𝑖,𝑗

𝑓
 

[𝑃𝑖,𝑗
𝑏 − 𝑃𝑖,𝑗

𝑓
] < 0 𝐶𝑝,𝑎𝑚̇𝑖,𝑗

𝑓→𝑏
𝑇𝑖,𝑗

𝑓
 [𝑃𝑖,𝑗

𝑓
− 𝑃𝑖,𝑗

𝑏 ] < 0 𝐶𝑝,𝑎𝑚̇𝑖,𝑗
𝑏→𝑓

𝑇𝑖,𝑗
𝑏  

Φ6
𝑓

 (Energy exchange due to server suction in the front 

chamber) 

Φ6
𝑏 (Energy exchange due to server exhaust in the back 

chamber) 

−𝐶𝑝,𝑎𝑚̇𝑖,𝑗
𝑠 𝑇𝑖,𝑗

𝑓
 𝐶𝑝,𝑎𝑚̇𝑖,𝑗

𝑠 𝑇𝑖,𝑗
𝑓

+ 𝑃̇𝑖,𝑗
𝑠  
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Chapter 7  

7 Conclusions and future directions 

7.1 Conclusions 

Row-based cooling architecture with enclosure is well established in the DC industry. 

Therefore, we present a gray-box model to predict the thermal behavior inside a row-based 

cooled DC running arbitrary workloads and equipped with different distributions of servers. 

The effect of cooling unit operating conditions and IT loads on the temperature distribution 

is investigated. The model is validated by comparison with experiments, where the 

maximum difference between predictions and measurements is less than 7%. The model 

facilitates real-time control algorithms developed for IT enclosures with row-based cooling 

architectures. We also compare our methodology with different black-box models as well 

as a conventional zonal model. The results show that the gray-box model exhibits superior 

performance in terms of accuracy and computational time. 

Additionally, we used our model to automatically detect and diagnose single and 

multiple failures in the cooling units of DC. The gray-box model provides thermal maps of 
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the DC airspace for normal and single failure conditions, used as inputs for two different 

data-driven classifiers, namely, CNN and RNN, to predict multiple failures rapidly. Two 

fault detection algorithms, OCSVM and NARX, are compared which OCSVM showed 

superiority over NARX in aspect of computation time and accuracy rate.  

In summary, our gray-box model exhibits superior performance compared with 

black-box models, such as ANN and NARX models. An application of the gray-box model 

involves a case study to detect single and simultaneous cooling unit failures in a row-based 

cooled DC. The schematic steps of the study is shown in Figure 7.1. 

 

Figure 7-1. Schematic steps of the study.  



Ph.D. Thesis – Sahar Asgari; McMaster University – Mechanical Engineering 

164 

 

7.2 Future directions 

The results and findings in this work indicate that improving thermal behavior models in 

DC shows considerable potential for future development. Therefore, the following avenues 

for future research are recommended based on the results of this research: 

• Improving the proposed gray-box model by considering zones for brushes between 

racks and implement mass and momentum equations. 

• CFD model calibration using neural net approaches to improve the model accuracy 

• Extending the proposed gray-box model for different kinds of DCs, such as raised-

floor and rack-mountable cooling unit DCs. 

• Developing a single gray-box model able to predict thermal behavior for different 

DCs. 

• Using the model to estimate exergy destruction of a DC and the potential of waste 

heat recovery.  

• Employing the proposed models for thermal aware workload management in DCs. 

• Developing model predictive controllers (MPC) for DCs with row-based cooling 

architectures using the proposed model. 

 

 

   

 


