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Lay Abstract 

The World Health Organization (WHO) recommends targeting a body mass index (BMI)  

between 18.5 - 24.9 kg/m2 for optimal health. However, this recommendation does not take  

into account individual differences in genetics or biology. Our project aimed to determine 

 whether the optimal BMI, or the BMI associated with the lowest risk of mortality, varies  

due to genetic or biological variation. Analyses were conducted across 387,692 individuals.  

We divided participants into groups according to genetic risk for obesity or clinical biomarker 

profile. Our results show that the optimal BMI varies according to genetic or biomarker profile. 

WHO recommendations do not account for this variation, as the optimal BMI can  

fall under the normal 18.5 - 24.9 kg/m2 or overweight 25.0 – 29.0 kg/m2 WHO BMI categories 

depending on individual genetic or biomarker profile. Thus, there is potential for using genetic 

and/or biomarker profiles to make more precise BMI recommendations for patients.  
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Abstract 

Introduction/Background: Guidelines from the World Health Organization  

currently recommend targeting a body mass index (BMI) between 18.5 and 24.9 kg/m2  

based on the lowest risk of mortality observed in epidemiological studies. However, these 

recommendations are based on population observations and do not take into account  

potential inter-individual differences. We hypothesized that genetic and non-genetic  

differences in adiposity, anthropometric, and metabolic measures result in inter-individual 

variation in the optimal BMI. 

 

Methods: Genetic variants associated with BMI as well as related adiposity,  

anthropometric, and metabolic phenotypes (e.g. triglyceride (TG)) were combined into 

polygenic risk scores (PRS), cumulative risk scores derived from the weighted contributions  

of each variant. 387,692 participants in the UK Biobank were split by quantiles of PRS or 

clinical biomarkers such as C-reactive protein (CRP), and alanine aminotransferase (ALT).  

The BMI linked with the lowest risk of all-cause and cause-specific mortality outcomes (“nadir 

value”) was then compared across quantiles (“Cox meta-regression model”). Our results were 

replicated using the non-linear mendelian randomization (NLMR) model to assess causality.  

 

Results: The nadir value for the BMI–all-cause mortality relationship differed across  

percentiles of BMI PRS, suggesting inter-individual variation in optimal BMI based on  

genetics (p = 0.005). There was a difference of 1.90 kg/m2 in predicted optimal BMI  

between individuals in the top and bottom 5th BMI PRS percentile.  
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Individuals having above and below median TG (p = 1.29×10-4), CRP (p = 7.92 × 10-5), 

 and ALT (p = 2.70 × 10-8 ) levels differed in nadir for this relationship.  

There was no difference in the computed nadir between the Cox meta-regression or  

NLMR models (p = 0.102).  

 

Conclusions: The impact of BMI on mortality is heterogenous due to individual  

genetic and clinical biomarker level differences. Although we cannot confirm that are  

results are causal, genetics and clinical biomarkers have potential use for making more  

tailored BMI recommendations for patients.  
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1.1 Epidemiology and BMI 

Body mass index (BMI) is a measurement used to categorize individuals into one of four 

weight classes: underweight (< 18.5 kg/m2), normal (18.5-24.9 kg/m2), overweight (25-

29.9 kg/m2), or obese (>= 30 kg/m2), based on weight and height1,2. BMI is the current 

metric for determining anthropometric height and weight characteristics in adults2.  It is 

commonly interpreted as an index of individual adiposity or “fatness”2. Due to the 

widespread acceptance in defining specific categories of BMI as health issues such as 

obesity, it has been useful in assessing its association with various outcomes in 

population-based studies and determining specific public health policies 2. Since 1980, the 

global prevalence of people who are overweight or obese has doubled; nearly one-third of 

the world’s population is categorized as overweight or obese, with certain regions 

experiencing this phenomenon more than others8. 

Causes and consequences of obesity not only have a severe impact on the 

individual, but also the health care system as a whole. In Canada, from 1994 to 2006, the 

annual costs of obesity ranged from 1.27 to 11.08 billion CAD38. Various interventions 

are often recommended for obesity and other related chronic conditions (e.g. type 2 

diabetes (T2D), cardiovascular disease (CVD))39,50. Such recommendations include 

nutrition therapy, regular physical activity, psychological treatments, pharmacotherapy, 

and bariatric surgery39,50. Many of these interventions try to motivate obese individuals to 

lose weight, such that they fall into the normal WHO-defined BMI category39. Even if 

effective weight loss interventions were successfully followed through and individuals 

achieve a BMI in this normal range, there is no guarantee that their BMI is optimal for 
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their unique body composition and biology1,2. For example, variation in waist-to-hip ratio 

or lean mass can influence what BMI confers optimal health for individuals, as BMI does 

not take these factors into account1,2.   

The measurement of adiposity has gone through many iterations (e.g. Wt/Ht ratio, 

Wt/Ht1.6) before widespread adoption of the now-familiar BMI weight/height2 ratio (i.e. 

“the Quetelet Index”, named after its inventor Dr. Quetelet in the 1800s) in the mid-1990s 

by the World Health Organization (WHO)2. Nevertheless, the recommended BMI ranges 

for optimal health is subject to debate1,7,9,10.  The ‘ideal’ weight for health has been 

evolving over the years: before 1959, the ideal weight was determined based on height 

class (Wt/Ht ratio); from 1959 to 1983: the relative ‘ideal’ weight increased as height 

class increased, varying by age and gender; finally, from 1983 to the mid-1990s, the 

desirable range was considered to be equivalent to a BMI of < 27 kg/m2. Ever since the 

late 1990s, the desirable range of BMI was set to 18.5-25.0 kg/m2, after it was discovered 

based on observational studies that this was the range that best protected individuals in a 

given population from disease and mortality 2,7.  

 In the mid-2000s, there were an increasing number of epidemiological studies 

calling into question the established WHO-defined desirable range for BMI45.  Up until 

2006, epidemiological studies, such as the Framingham Heart Study, generally found a 

positive relationship between obesity and mortality45. However, since 2006, several 

studies have been showing inverse relationships between BMI and all-cause mortality45. 

In 2018, Bhaskaran et al. showed that in 3.6 million British participants, a J-shaped 

relationship between BMI and all-cause mortality (ACM) was found, with the lowest risk 
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of mortality at a BMI of 25-26 kg/m2, outside of the recommended normal WHO BMI 

recommendation6,7. A J-shaped relationship is the non-linear relationship between an 

independent and dependent variable43. Although used interchangeably in some studies, 

the main difference between a J- and a U-shaped curve is that J-shapes do not have as 

strong of an inverse relationship between the independent and dependent variable at the 

lower extreme compared to a U-shaped curve43.  J-shaped curves have been found 

between alcohol, blood pressure, caloric intake, and BMI and all-cause mortality46. Most 

statistical methods assume that a linear association underlies a given set of data: if the 

data deviates from linearity, it could lead to bias in the final estimation43. Model 

misspecification is a significant issue for both epidemiological and genetic studies, as 

conclusions may be drawn from studies that fit linear models to data not necessarily 

following a linear relationship1,6,34. The relationship between BMI and all-cause mortality 

is considered to be an example of data that does not necessarily fit a linear model6. In 

recent epidemiological and genetic studies, the relationship between BMI and all-cause 

mortality was able to be modelled using non-linear modeling techniques, such as 

restricted cubic spline modeling, which transforms the independent variable (e.g. BMI) 

being examined in order to fit a non-linear model to the data with the smoothest possible 

shape44.  J-shaped relationships were also found between BMI and specific causes of 

mortality, such as cardiovascular or respiratory disease, corroborating with select 

epidemiological studies in the past that determined overweight individuals to have the 

lowest mortality risk in their respective samples2,7. Although discovery of J-shaped 

relationships and optimal thresholds for health between a given exposure and outcome is 
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important from a public health perspective, the way J-shaped relationships are 

communicated to the public holds more precedence46. For example, Bhaskaran et al. 

provided the sample size of participants in each WHO-defined BMI category as part of 

their 3.6 million UK participant cohort: 112,077 individuals were in the underweight 

category, 1,793,989 individuals were in the normal BMI category, 1,151,359 were in the 

overweight category, and 575,249 were in the obese category6. A significantly greater 

proportion of the population have a BMI to the right of the optimal BMI of 25.0 kg/m2 

compared to the left6. From a public health perspective, the J-shape curve is best 

contextualized through sample size differences across BMI categories, detailing the issue 

that is most epidemiologically important to address: in this case, targeting reduction of 

BMI as a priority 43. Nevertheless, while this information may help guide public health 

policymakers on what would be the most pressing epidemiological issue to manage (i.e. 

reducing BMI in the population), there has not been any literature suggesting that such 

interventions are guaranteed to be successful in the long-term35,50,52,53,54,55. For example, 

reduced calorie intake, pharmacological treatments such as semaglutide or orlistat, or 

bariatric surgery have been shown to effectively decrease weight, yet long-term 

maintenance of weight loss can vary significantly among individuals (e.g. due to poor 

treatment adherence, obesogenic environments that promote increased food intake and 

decreased physical activity, and interactions between interventions and patient genetics), 

rendering interventions to be effective in some but not others in a given 

population35,50,52,53,54,55.  J-shaped relationships could also show that not all interventions 

are effective for everyone: while it is true from epidemiological studies that there is no 
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safe level of tobacco or trans-fat consumption against mortality, studies have reported a 

safe level of alcohol consumption or BMI against mortality46. Lowering alcohol 

consumption or reducing BMI may not be the best intervention against mortality for 

everyone if their respective relationships follow a J-shape curve with mortality and there 

is an “optimum” BMI or level of alcohol consumption that provides the lowest mortality 

risk46.  Public health policymakers also need to be careful when recommending 

interventions that take into account both extremes of the J-shaped relationship with 

mortality for a given risk factor46. Caloric intake, which strongly impacts BMI, has a J-

shaped relationship with all-cause mortality, like BMI46. With caloric intake, the left side 

of the J-shaped curve represents deaths due to malnutrition while the right-hand side 

represents deaths due to obesity46. If done ineffectively, interventions to resolve either 

malnutrition or obesity could result in more harm than good46. For instance, there had 

been feeding regimens in Chile set in place to address the malnutrition epidemic in the 

country46. Instead, the feeding regimen resulted in a net increase in overweight and 

obesity in children that were from a higher socioeconomic status background46. As such, 

policymakers should make sure interventions are moderate in their approach, addressing 

both sides of the J-shaped relationship and optimizing the level of positive health 

outcomes.  

 Nevertheless, many of these epidemiological studies are prone to biases such as 

reverse causality or confounding variables (e.g. smoking), making it difficult to infer 

causal relationships between BMI and various different outcomes12.  This further 

contributes to the lack of consensus in the optimal BMI associated with the lowest 
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mortality/disease risk. While many have suggested stronger alternatives to BMI in 

predicting disease risk, such as lean mass (LM) or waist-to-hip ratio (WHR), very few of 

these studies emphasized individual genomic influence in the context of BMI1. 

1.2 The genetics of BMI 

Obesity is a heritable trait3. ~40-70% of the variation in BMI is due to genetic variation3. 

The large genetic variation in BMI may be a significant reason for why interventions for 

obesity may be more effective for some individuals compared to others50,51,53,55.  

Common genetic variation accounts for >20% of variation in BMI3. In 2015, Locke et al. 

determined that 97 loci were significantly associated with BMI at genome-wide 

significance (GWS), accounting for ~2.7% of variation of BMI3. In 2018, Yengo et al. 

included additional data from the UK Biobank (UKB), a European cohort, and found that 

941 independent genetic variants or single nucleotide polymorphisms (SNPs) 

significantly associated with BMI31. These SNPs accounted for ~6.0% of the variation in 

BMI. Nevertheless, individually, genetic variants at genome-wide significance contribute 

very little to phenotypic variance and most of the genetic variation in BMI remains to be 

determined. 

 Despite the low explanatory power of SNPs on BMI variation, SNPs associated 

with BMI are often used in Mendelian randomization (MR) studies to establish causal 

relationships between BMI and a given outcome32. MR is able to establish causal 

relationships due to its application of Mendel’s Law of Independent Assortment, which 

describes how alleles for a given phenotype are randomized at conception32. Such 
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randomization of alleles is akin to how individuals are randomized in a randomized 

control trial (RCT)32. Like RCT, randomization reduces the amount of influence 

confounding or reverse causality has on alleles32. Thus, alleles for a given genotype (often 

in the form of single nucleotide polymorphisms (SNPs)) can be used to make causal 

inferences between an exposure and an outcome32. Sun et al. determined that SNPs 

associated with BMI are positively associated with all-cause mortality through MR1. 

However, their findings were obtained through conventional MR methods that only assess 

the linear causal relationship between variables and are unable to account for any non-

linear relationships. The relationship between BMI and all-cause mortality, as 

observational studies have shown, is considered non-linear1,7. In 2017, Staley and Burgess 

developed a non-linear MR (NLMR) method to assess the causal non-linear relationship 

between two variables34. Sun et al. would later use this method to determine whether the 

relationship between BMI and all-cause mortality is causal1. In their study, they showed 

that the J-shaped relationship between BMI and all-cause mortality was causal, with the 

lowest risk of all-cause mortality at a BMI range of ~22-25 kg/m2, with factors such as 

smoking or sex influencing the BMI nadir1. Specific causes of mortality such as 

cardiovascular disease or cancer did not have a J-shaped relationship with BMI, which 

was in contrast with previous epidemiological literature1,7. While results from MR studies 

validate many of the results seen in previous observational studies, they are unable to 

reveal the optimal BMI at the individual level, given that these causal associations 

represent population averages. Furthermore, no study has shown whether individual 
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genetics for either BMI or related factors related to BMI can be used to personalize BMI 

for optimize health (e.g. optimal protection from mortality). 

There have been limited studies that have investigated the beneficial and adverse 

effects of BMI. Non-obese “metabolically unhealthy” individuals (e.g. those 

hyperglycemic and/or dyslipidemic) have worse cardiovascular disease (CVD)-related 

outcomes compared to obese “metabolically healthy” individuals (e.g. those 

normoglycemic and/or having normal lipid levels).  The heterogenous nature of BMI 

could complicate clinical recommendations for BMI, given that global BMI 

recommendations from the WHO may not fully reflect metabolic health. Genetic variants 

that increase BMI had a heterogenous effect on risk for poor metabolic health, with 

certain variants increasing risk and others decreasing it4,7. Therefore, there may be benefit 

in calculating each individual’s ‘optimal’ BMI through genetic risk scores as it may help 

account for the genetic heterogeneity of BMI.  

 

1.3 Biomarkers of BMI 

Although BMI is an easy measurement for general adiposity, studies have shown it might 

not be the most reliable way of quantifying adiposity and consequently, a risk factor of 

disease or mortality7. Non-genetic factors such as clinical biomarker levels are associated 

with BMI and can be used as a more robust proxy for adiposity7.  For example, 

triglyceride (TG), the main constituent of body fat in humans, C-reactive protein (CRP), a 

major marker of inflammation, and alanine aminotransferase (ALT), a marker of liver 
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function, are associated with BMI40,41,42. While it has been assumed that these 

associations are due to the effect BMI has on these biomarkers, rather than these 

biomarkers having an effect on BMI, recent evidence has suggested that this might not 

always be the case: more complex, bi-directional relationships could be present 41,42. For 

example, while the majority of epidemiological studies have shown that ALT is positively 

associated with BMI, results from MR show that ALT is negatively associated with BMI, 

which is contrary to the consensus regarding the BMI-ALT relationship42. More 

importantly, MR indicated that ALT causally impacts BMI, which may not be 

biologically plausible.42  Previous literature has shown that obesity is a major risk factor 

for non-alcoholic fatty liver disease (NAFLD)48,49. Excess adiposity in obese individuals 

leads to adipose tissue dysfunction and insulin resistance, which subsequently leads to 

lipolysis or the breakdown of adipose tissue into free fatty acids49. Free fatty acids and 

leptin levels increase, and adiponectin decreases, leading to intrahepatic accumulation of 

fat49. Excess intrahepatic fat leads to mitochondrial dysfunction and oxidative stress, 

which leads to liver inflammation49. Prolonged inflammation can result in the scarring of 

liver tissue, or fibrogenesis, eventually leading to impaired liver tissue regeneration49. 

Ultimately, impaired regeneration leads to liver cell death and dysfunction49. Higher 

levels of ALT are a marker of liver dysfunction48,49. Thus, results from this MR study 

may have been due to BMI and ALT sharing a common genetic architecture – future 

studies may need to use gene expression analyses such as cis-protein quantitative trait loci 

(pQTL) MR to confirm whether ALT truly has a causal impact on BMI through its 

genetic pathways42,47. Otherwise, the consensus that BMI and ALT are positively 
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correlated, with high ALT as a marker of high BMI, still holds true despite the findings 

from this MR study. MR analyses looking at BMI-TG and BMI-CRP results were largely 

consistent with previous epidemiological literature: BMI influences TG and CRP but the 

reverse is not true40,41,42.  

1.4 Non-genetic components of BMI 

Other non-genetic components associated with BMI include diet, physical 

activity, and sleep. A healthy dietary pattern, such as one rich in fruits and vegetables, 

was negatively associated with BMI, compared to an unhealthy diet, or a diet rich in meat 

and fat35. Lower exercise capacity was found in one study to be a significant risk factor 

for all-cause mortality, theorizing that exercise may influence BMI to impact all-cause 

mortality risk, though this has not been confirmed36. The association between BMI and 

sleep duration can depend on age: a negative and U-shaped association was found in 

young adults (18-29 years old) and middle-aged adults (30-64 years old) respectively37.  

Nevertheless, no study to date has examined the influence of these non-genetic 

factors on individual optimal BMI using epidemiological or genetic tools. 

1.5 Objectives 

The objective of this thesis is to determine whether variation in genetic and non-

genetic factors associated with BMI causes variation in the optimal BMI. Our first 

objective will be to determine whether the optimal BMI varies due to genetic and clinical 

biomarker variation using Cox meta-regression. Our second objective is to determine 
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whether optimal BMI variation due to genetic and clinical biomarker variation is causal 

using non-linear mendelian randomization (NLMR).  

 

1.6 Hypothesis 

For objective 1, genetic and clinical biomarker level differences in adiposity, 

anthropometric, and metabolic measures will result in inter-individual variation in the 

optimal BMI. For objective 2, the NLMR-determined optimal BMI will not be different 

from the Cox meta-regression-determined optimum. For all objectives, the NLMR-

determined optimal BMI and Cox meta-regression-determined optimum will be distinct 

from “normal” WHO BMI recommendations (i.e. 18.5-25 kg/m2).  
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Chapter II: Individualizing BMI Targets Using Genetics and Clinical Biomarkers 
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2.1 Introduction 

In the 2018 study by Bhaskaran et al., all-cause mortality, cancer, cardiovascular disease 

(CVD), and respiratory diseases had a J-shaped relationship with BMI, with the lowest 

risk in the 21-26 kg/m2 range6. The J-shaped relationship also varied by age: individuals 

younger than 70 had an optimal BMI of 23 kg/m2 while individuals aged 70 and older had 

an optimal BMI of 25 kg/m2, even after adjusting for multiple confounding variables, 

such as age, sex, alcohol use, or socioeconomic status 6. Smoking status had a modest 

confounding influence on this relationship: when the population was restricted to those 

who never smoked, the J-shaped curve was slightly less prominent6. With regards to a sex 

effect, the association of BMI with higher risk of mortality was much stronger in males 

compared to females6. Their study is generally consistent with other studies investigating 

the relationship between BMI and mortality, despite varying cohort composition, methods 

of defining BMI between studies, and number and type of covariates adjusted for across 

analyses3,6. Similar to Bhaskaran et al., J-shaped relationships between BMI and mortality 

were found, with the optimal BMI ranging from 20-25 kg/m2, and the most significant 

variation in the relationship occurring between smokers and non-smokers6. Nevertheless, 

these studies assess population trends without consideration for inter-individual variation 

in genetic and non-genetic factors such as clinical biomarkers, physical activity, diet, or 

sleep duration. 

Single nucleotide polymorphisms (SNPs) associated with a certain phenotype can 

be combined by effect size into one aggregated risk score or polygenic risk score (PRS)22. 

PRS are quantitative measures for genetic predisposition to a trait22. Aggregating SNPs 
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addresses the key limitation of modest SNP effects on a given phenotype in most genetic 

studies32. In the context of BMI, PRS can be used to measure individual genetic 

predisposition for high BMI. Indeed, Khera et al. built a PRS for BMI and found that 

mean BMI was 30.0 kg/m2 for individuals within the top 5th percentile of the PRS and 

25.2 kg/m2 for individuals in the bottom 5th percentile22. This confirms that higher 

individual genetic risk correlates with higher BMI in these individuals. However, to the 

best of our knowledge, no study has tested whether genetic variation in BMI (or non-

genetic variation in other adiposity, anthropometric, or metabolic factors) influences the 

relationship between BMI and mortality. 

The objective of this chapter is to determine whether the optimal BMI varies 

based on genetic and non-genetic variation. Our hypothesis is that the optimal BMI will 

vary based on inter-individual variation of these factors.  

 

2.2 Methods 

2.2.1 Study Population 

The UK Biobank (UKB) is a prospective cohort of >500,000 individuals, aged 40-699. 

Comprehensive genotypic and phenotypic data were collected from 2006-20109. The latest 

UKB dataset was issued on October 17th, 2020, and included 388,115 unrelated British 

individuals. At the extreme ends of the BMI spectrum (< 15 kg/m2 or > 50 kg/m2), statistical 

power to detect effect sizes with a reasonable degree of confidence significantly decreases 
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due to small sample size1,7,11. Thus, 423 individuals outside of the 15-50 kg/m2 range were 

excluded from subsequent analyses. The final population sample size for analysis was 

387,692. Outcomes were defined based on the International Classification of Diseases, 10th 

revision (ICD-10) codes as described elsewhere (Table 2.1c)6.       

     Analyses were divided into primary and secondary analyses: the former is 

defined by analyses conducted on 387,692 individuals while the latter refers to subgroup 

and clinical characteristic analyses. In the primary analyses, all-cause mortality, as well as 

cancer, CVD, respiratory disease, and other disease (i.e., death due to diseases/conditions 

other than cancer, CVD, or respiratory disease) mortality were the main outcomes.  In 

secondary analyses, all-cause mortality was the only outcome analyzed. Clinical 

characteristic analyses including waist-to hip ratio (WHR), hemoglobin A1C (Hb1Ac), 

triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), C-

reactive protein (CRP), cholesterol, and alanine aminotransferase (ALT) were used to 

assess non-genetic variation in the optimal BMI. Subgroups were defined based on PRS, 

smoking status, diabetes status, age,  sex, dietary factors, physical activity levels (excess 

metabolic equivalent of task (MET)-h/week), and sleep duration2,6.      

2.2.2 Polygenic Risk Score Calculation 

PRS are quantitative measures for genetic disposition to a certain trait derived from 

the weighted effects of each genetic variant or SNP on the phenotype22. SNPs associated 

with each metabolic phenotype obtained from genome-wide association study (GWAS) 

consortium data were then incorporated into PRS (see Table 2.1a for GWAS sources used 
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to derive the PRS)5,14. LASSOSUM was used to generate PRS, which is a method that uses 

a non-Bayesian penalized regression to generate PRS as described elsewhere14. UKB 

participants were excluded from any selected GWAS data used for PRS, in order to avoid 

circularity. 

 Although GWAS focus on the association of SNPs with a given phenotype (e.g. if 

SNPs have a positive, negative, or neutral association with BMI), they lack the ability to 

account for heterogeneity in effects associated SNPs have on correlated traits (e.g. Type 2 

Diabetes (T2D))4 .GWAS are thus unable to determine whether variants positively 

associated with BMI (“BMI increasing variants”) have a protective effect on a correlated 

phenotype, like T2D4. Regional polygenic correlation (RPC) was used to account for SNP 

effect heterogeneity through the genetic correlation between BMI or T2D4,7. BMI variants 

extracted from GWAS data from the GIANT consortium were divided into three 

polygenically determined categories based on their influence on T2D risk: 1) metabolically 

favourable (MF or BMI-increasing variants associated with decreased T2D risk), 2) 

metabolically deleterious (MD or BMI-increasing variants associated with increased T2D 

risk), and 3) metabolically neutral (MN or BMI-increasing variants with no association 

with T2D risk) (Figure 2.1) 4,7. 

A PRS was created for whole genome and polygenically determined BMI, as well 

as TG, LM, and WHR. 
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2.2.3 Cox Meta-Regression Model 

Non-linear cox proportional hazard models were used to determine the association 

between BMI and mortality outcomes. Deaths were censored if participants had a 

previous diagnosis of CVD, cancer, or respiratory disease6,36. If baseline disease has an 

impact on baseline BMI measurements, this may introduce bias due to reverse causality; 

thus, censoring deaths in this manner accounts for this bias. In a separate sensitivity 

analysis, deaths were additionally censored for participants diagnosed with CVD, cancer, 

or respiratory disease within 2 years of the baseline BMI measurement. This was to take 

into account that disease progression could take time and still result in reverse causation6.  

Our primary model, the minimally adjusted model, included age, sex, and the first 10 

genetic principal components (measure for genetic ancestry). Our secondary model, the 

fully adjusted model, included smoking, UKB assessment centre, alcohol consumption, 

index of multiple deprivation (metric for socioeconomic status (SES)), and diabetes 

status6. An unadjusted model was also used as a sensitivity analysis. Covariates were 

selected based on published evidence and strong association with BMI or mortality (Table 

2.3)6. 

 UKB participants were stratified into quantiles according to each PRS. Twenty 

quantiles were used in the primary analysis while 10 quantiles were used in the secondary 

analyses. Non-linear cox regression analyses between BMI and each mortality outcome 

were conducted within each quantile. In non-linear cox regression, a non-linear model in 

the form of a restricted cubic spline was fit to the data. The BMI associated with the 

lowest risk of mortality was determined for each quantile. A linear regression analysis 
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was then conducted to determine if the BMI-mortality nadir values varied across quantiles 

(Figure 2.2, using the BMI PRS as the example). The linear regression of results obtained 

from Cox regression is where the term “Cox meta-regression,” is derived from. In  

separate sensitivity analyses, primary and secondary analyses were repeated with BMI 

adjusted for each respective PRS used to divide the sample into quantiles. Additionally, 

the population optimal BMI for primary and secondary analyses was determined by 

repeating the above analysis without dividing the population/subgroup by quantiles 

(Figure 2.3).  

Confidence intervals for the population optimal BMI were computed using a 

bootstrapping procedure (Figure 2.3A-C).  Participants in the UKB population were re-

sampled with replacement 10,000 times. The optimal BMI was computed using the Cox 

meta-regression model for each re-sample. 95% confidence intervals were computed from 

the bootstrap distribution generated from these 10,000 optimal BMI values.   

Heterogeneity between subgroups was assessed using a fixed effects meta-

analysis model17,19. All statistical analyses were conducted using R (3.6.0 - 3.6.3). 

Statistical significance was set at two-tailed p values < 0.05.  Bonferroni correction for 

multiple hypothesis testing was set at i) 0.05/7 = 0.007 for our primary analyses, where p 

is divided by the number of PRS analyzed; ii) 0.05/4 = 0.0125 for our cause-specific 

mortality analyses, where p was divided by the number of cause-specific mortality 

outcomes; and at iii) 0.05/60 = 0.0008 for our subgroup analyses, where p was divided by 

the number of subgroups analyzed. 



MSc. Thesis – Irfan Khan, McMaster University - Medical Sciences Graduate Program 

 
 

30 

We completed tertiary analyses to supplement the primary and secondary 

analyses. We determined whether WHR and LM followed a J-shaped relationship with 

mortality outcomes and if so, whether the optimal BMI, if any, varied due to WHR or LM 

PRS variation respectively using the methods mentioned above. The minimally adjusted 

model was used, along with models adjusted for height and height2 to account for the 

strong correlation between lean mass and height as well as non-linear effects of 

height6,44,45. 

For the subgroup analyses, the median value for each continuous variable was 

determined in order to dichotomize UKB participants into two groups based on 

continuous variables such as triglyceride level or sleep duration.  Participants were 

categorized as having levels above or below the median value of a given continuous 

variable and then split into two groups based on their categorization.   

 

2.3 Results 

2.3.1 Optimal BMI across Quantiles of PRS in the UKB Population 

The baseline characteristics of study participants are shown in Table 2.2. The population 

optimal BMI in the UKB was 25.0 kg/m2 [95% CI 24.6-25.5 kg/m2] and 23.7 kg/m2 [23.5 

– 23.9 kg/m2] using the minimally adjusted and unadjusted models, respectively. We tested 

polygenically-determined BMI, as well as TG, LM, and WHR PRS for their influence on 

optimal BMI. The whole genome BMI PRS was significantly associated with optimal BMI 
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variation across quantiles after adjustment for multiple hypothesis testing (0.10 kg/m2 per 

quantile [95% CI 0.04-0.17], P = 0.005 (p < 0.007 for significance); Figure 2.4). Results 

remained consistent after censoring participants diagnosed with cancer, CVD, or 

respiratory disease within 2 years of the baseline BMI measurement (0.11 kg/m2 per 

quantile [95% CI 0.04-0.17], P = 0.003).  Thus, there would be a difference of 1.90 kg/m2 

in the optimal BMI between individuals in the bottom and top 5th BMI PRS percentile. 

Comparing results with the mean BMI, there is a difference of 3.90 kg/m2 in mean BMI 

between bottom and top 5th BMI PRS percentile. Altogether, higher genetic risk for BMI 

is associated with both increased mean and optimal BMI, but the increase in optimal BMI 

is not as pronounced. A person with an optimal BMI of 23.5 kg/m2 in the bottom 5th BMI 

PRS percentile is predicted to have an optimal BMI of 25.4 kg/m2 in the top 5th BMI PRS 

percentile. In other words, an individual in the bottom 5th BMI PRS percentile has an ideal 

BMI target within the normal WHO-defined BMI range; however, an individual in the top 

5th BMI PRS percentile would have an optimal BMI in the overweight range (Figure 2.4).  

Using the minimally adjusted model, the difference in BMI nadir between quantiles 

of the TG PRS was nominally significant (0.10 kg/m2 per quantile [95% CI 0.03-0.17], p 

= 0.01) (Figure 2.4). Results with the TG PRS remained nominally significant with the 

fully adjusted model (0.14 kg/m2 per quantile [95% CI 0.04-0.23], p = 0.009 (p < 0.008 for 

significance)) (Figure 2.4). No other PRS was associated with mortality nadir. 

All analyses looking at the change in optimal BMI per 1-unit increase in a given 

PRS quantile using the minimally adjusted model were either nominally significant or not 

significant, regardless of PRS used.      
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2.3.2 Subgroup Analyses      
The analyses above were repeated for the following UKB subgroups: i) never smokers and 

ever smokers; ii) diabetics and non-diabetics; iii) younger adults (<= 65 years old) and older 

adults (> 65 years old); iv) males and females; v) participants above and below median v.1) 

mean and/or percent carbohydrate, fat, protein, sugar, and energy intake, v.2) physical 

activity (MET-hr/week), v.3) sleep duration (hrs/day), v.4) WHR, TG, LDL, HDL, Hb1Ac, 

CRP, cholesterol, and ALT clinical biomarkers, and v.5) whole genome BMI, 

metabolically favourable BMI, metabolically deleterious BMI, metabolically neutral BMI, 

LM, WHR, and TG PRS. These subgroups were not tested in the primary analyses and we 

only used the minimally adjusted model for testing (Figure 2.5). There were significant 

differences between individuals above and below median TG, C-reactive protein (CRP), 

and alanine aminotransferase (ALT) in population optimal BMI (TG: p heterogeneity: 

1.29×10-4; CRP: p heterogeneity = 7.92×10-5; ALT: p heterogeneity = 2.70×10-8). The 

differences in population optimal BMI mirrored the differences in mean BMI between these 

subgroups (Figure 2.5; TG: p heterogeneity: 0, CRP: p heterogeneity = 0, ALT: p 

heterogeneity = 0). Optimal BMI variation was also present between percentiles of the TG, 

CRP, and ALT traits (Figure 2.7; TG: p heterogeneity: 2.00×10-4, CRP: p heterogeneity =  

1.26×10-6, ALT: p heterogeneity = 5.00×10-4).  

Independent of genetic variation, there were nominally significant differences in 

population optimal BMI between diabetics and non-diabetics and individuals above and 

below median sleep duration; TG, metabolically neutral BMI, and BMI PRS (not shown; 
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diabetes diagnosis: p heterogeneity: 0.0009, sleep duration: p heterogeneity = 0.009, TG 

PRS: p heterogeneity = 0.002, metabolically neutral BMI PRS: p heterogeneity = 0.004, 

and BMI PRS: p heterogeneity = 0.03).  

 

2.3.3 Cause-Specific Analyses 
 

The above analyses were repeated, focusing only on cancer, CVD, respiratory disease, and 

other disease (i.e. death due to all other diseases) mortality using the minimally adjusted 

model (Figure 2.6, shown using the BMI PRS). There were no significant differences 

between mortality subtypes in population optimal BMI or PRS effect per quantile 

(population: p = 0.19	, PRS effect per quantile: p = 0.82). 

 

2.3.4 Tertiary Analyses  
WHR did not follow a J-shaped relationship with all-cause mortality (Figure 2.8a). Thus, 

there was no optimal WHR with which to compare PRS percentiles.  LM followed a W-

shaped relationship (i.e., two inflection points) with all-cause mortality, with the lowest 

risk of mortality at 43.4 kg (Figure 2.8b). Even after adjusting for height and height2, the 

W-shape stayed consistent, although the negative relationship between LM and all-cause 

mortality on the left-hand side of the curve was slightly attenuated (Figure 2.8e and f). 

The W-shape was explained by a sex-specific bimodal distribution in LM, given that the 

nadir at 63.2 kg approximately corresponded with the nadir for LM and all-cause 
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mortality in the males only subgroup at 59.1 kg (Figure 2.8c) and the nadir at 43.4 kg 

approximately corresponded with the nadir for LM and all-cause mortality in the females 

only subgroup at 41.5 kg (Figure 2.8d). However, the optimal LM did not vary with LM 

PRS variation (-0.47 kg/m2 per quantile [95% CI -1.30-0.35], p = 0.24, Figure 2.9).  

2.4 Discussion 

2.4.1 Summary of Results 
The results demonstrate that the BMI that confers the lowest risk for mortality, varies for 

each individual. Specifically, individual genetic variation and circulating triglycerides, C-

reactive protein, and alanine aminotransferase modify the BMI-mortality association. In 

conclusion, the WHO definition of ‘optimal’ BMI may be misleading as it does not account 

for inter-individual variation in genetic or clinical biomarker profile.  

  

2.4.2 Clinical Implications 
First, independent of genetic or clinical factors, UKB participants had an optimal BMI of 

~25.0 kg/m2, which is 0.1 - 6.5 kg/m2 beyond the normal WHO BMI recommendations. 

Our findings are consistent with previous studies and further undermines current 

recommendations of BMI: certain individuals may have an optimal BMI well into the 

WHO overweight BMI range through a combination of population (i.e. UKB) and genetic 

effects6. Higher polygenically determined BMI was associated with increased mean BMI 

and to a lesser degree, increased optimal BMI. Although reducing one’s BMI from the 

mean to the optimal BMI in the top 5th percentile means the difference between a 
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“normal” or “overweight” category, it is unclear whether there is any benefit in reducing 

one’s BMI to the optimum value when the mean BMI value is only 2 kg/m2 higher. 

Further studies should assess the relative benefit of reducing BMI to the genetically-

determined optimum against various disease and mortality outcomes at the individual 

level. 

Second, there is variation in optimum BMI within populations, linked with genetic 

and clinical biomarker variation. Prior studies have challenged the idea that the normal 

18.5 – 24.9 kg/m2 BMI range is always associated with the lowest risk of death after 

demonstrating J-shaped relationships between BMI and mortality outcomes1,6. According 

to our primary results, if a clinician were to set a 22 kg/m2 BMI target for a patient in the 

highest BMI PRS quantile, where the target BMI is actually 26.3 kg/m2, current 

recommendations may not be fitted for the best health interests of this patient, even if 22 

kg/m2 appears to be healthy according to “normal” WHO guidelines. Similarly, it would 

be misguided to set BMI targets based on the population optimum BMI for these 

individuals, which from our primary analyses, is 25.0 kg/m2. From our results, variation 

in circulating TG, CRP, and ALT levels may mean the difference between the optimal 

BMI value being classified as  “normal” or “overweight” according to the WHO, 

although we cannot conclude that this variation in the optimal BMI is causal. Thus, it may 

be misguided to make BMI recommendations strictly based on the WHO guidelines or 

the population optimum BMI for individuals, as their optimal BMI may be above or 

below these thresholds due to genetic or clinical biomarker variation. 
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2.4.3 Research Implications 
Although we see variation in the optimal BMI due to genetic variation, this may be a 

result of individuals having a higher BMI due to higher genetic predisposition for BMI. 

Khera et al. found a positive association between mean BMI and BMI PRS decile22. Our 

study found the same association between mean BMI and PRS quantile, which followed 

the same direction as the association between optimal BMI and PRS quantile. 

Nevertheless, the distinction between the predicted optimal and mean BMI difference 

between individuals in the top and bottom 5th BMI PRS percentile is large enough to 

conclude that changes in optimal BMI do not simply reflect changes in mean BMI. It is 

unknown whether the higher optimal BMI for those with high genetic predisposition is 

beneficial (e.g., metabolically favourable BMI or subcutaneous fat) or detrimental (e.g., 

metabolically deleterious BMI or visceral/abdominal fat). Finally, while we saw 

significant variation in the population optimal BMI due to variation in circulating 

triglyceride (TG) levels, variation in the optimal BMI due to variation in polygenically 

determined TG was nominally significant. Since these results are not causal, it is still 

unclear how much of TG-mediated optimal BMI variation is due to genetics. PRS only 

uses estimates derived from SNPs without taking into account complex interactions of 

these SNPs with the environment, whereas the traits these SNPs are associated with 

encompass variability that SNPs cannot capture36. The PRS for TG is not capturing 

enough of the variation in the optimal BMI as the TG trait itself, reflecting the 

underpowered nature of TG PRS and PRS in general9. The TG trait is better powered at 

capturing optimal BMI variation as it is less prone to misspecification, unlike the PRS, 
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where genetic variants may be associated with traits other than TG via pleiotropic effects. 

Future studies would need to conduct larger and more powered GWAS of TG to 

determine whether or not there is a greater percentage of variation in TG explained by 

genetics that is not able to be captured using relatively smaller sample sizes37. A greater 

percentage of variation in TG explained by genetics will help improve predictive power 

of the PRS, though not to the extent the original TG trait has in predictive power9. 

Of note is that while primary analysis results were significant using the minimally 

adjusted model, they were no longer significant using the fully adjusted and unadjusted 

model. The relationship between BMI PRS quantile and optimal BMI per quantile 

becomes flatter with the fully adjusted and unadjusted model, indicating that certain 

confounders, either unadjusted or adjusted for, have a greater influence on optimal BMI 

variation than genetic variation. It may also mean that if perfectly adjusted for, the 

relationship could become completely neutral, where the optimal BMI does not differ 

with BMI PRS variation. The difference between the unadjusted and minimally adjusted 

models is that age, sex, and genetic ancestry were adjusted for in the latter, meaning 

either one or more of these covariates is introducing bias that underestimates the true 

association between BMI PRS quantile and optimal BMI per quantile. Such covariates are 

known as negative confounders38. However, as all three of these covariates are strongly 

associated with the BMI PRS and we cannot confirm causality using the Cox meta-

regression model, it is difficult to determine which one is responsible for the negative 

confounding6,7. In the fully adjusted model, smoking, alcohol, diabetes status, 

socioeconomic status, and UKB assessment centre were also included along with the 
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covariates included in the minimally adjusted model. Results from our fully adjusted 

model were not significant, meaning one or more of the factors controlled for in the fully 

adjusted model is a significant confounder of the PRS quantile and optimal BMI per 

quantile. Similarly to the minimally adjusted model, as all of these covariates are strongly 

associated with the BMI PRS and causality cannot be confirmed, it is difficult to 

determine which one is responsible for the confounding6,7. Future studies are warranted to 

disentangle the effects of these covariates using well-powered causal inference methods. 

Nevertheless, WHO BMI recommendations are not adjusted for specific covariates2,43. 

This creates complications when determining which model is clinically significant, 

regardless of statistical significance. Although WHO BMI recommendations are not 

adjusted for covariates, the studies that were used to derive these recommendations may 

have been heterogeneous in covariates adjustment2,43. The unadjusted model may reflect 

the closest to what might be seen in a regular patient population, as confounders, such as 

age, sex, or ancestry, are not accounted for when making clinical BMI 

recommendations6,7. However, results from the unadjusted model are also statistically 

unreliable as a result of not controlling for key confounders of BMI6,7. As i) most genetic 

studies control for sex, age, and genetic ancestry and ii) BMI has been historically shown 

to significantly vary by sex, age, and ancestry, the minimally adjusted model may be the 

most balanced model while retaining a reasonable level of external validity for clinical 

populations1,2,6,7. 

 Our results are consistent with previous literature showing that TG, CRP, and 

ALT are associated with BMI12,27,30. While possible mechanisms for how these 
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biomarkers related to BMI have been described previously, it is generally accepted that 

these biomarkers are actually a marker of higher BMI rather than true influences on 

BMI12,27,30. From our results, the differences in mean BMI follow the same trend as the 

differences in optimal BMI. As BMI is highly correlated with TG, CRP and ALT, it is 

unclear whether the increase in optimal BMI in those with higher circulating levels of 

these biomarkers is due to an increase in mean BMI. Although previous genetic and 

epidemiological literature are inconsistent with regards to the directionality of BMI-TG 

and BMI-ALT relationships, the BMI-CRP relationship was found to follow a causal, 

positive association in one study12,27,30,34. As CRP is strongly associated with ALT and 

TG (Appendix Table 2.4), it may be that these biomarkers are mere markers of higher 

BMI. Thus, the difference in BMI nadir between groups above and below median values 

of these biomarkers may or not be reflective of the difference in mean BMI between 

individuals above and below these median values.   

Although WHR and LM did not follow a J-shaped relationship with all-cause 

mortality in the whole UKB population, there was a J-shaped relationship between LM 

and all-cause mortality in both males and females, although causality cannot be 

concluded from these results. WHR and LM have been shown to be stronger than BMI in 

predicting disease and mortality risk, both phenotypically and through genetics2,33. As 

such, consideration of using genetically-predicted WHR and LM in conjunction with BMI 

recommendations may optimize overall adiposity/weight recommendations for patients, 

potentially addressing much of the limitations of BMI as an indicator for ideal weight.  
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2.4.4 Strengths and Limitations 
Our study had notable limitations. First, while efforts were made to reduce reverse 

causality or residual confounding, we still cannot be sure whether our results were 

completely free from these biases6. Factors that BMI or genetic variants associated with 

BMI are sensitive to, such as lung function or eating behaviour, are significantly 

associated with mortality and may alter the BMI-mortality relationship and consequently, 

optimal BMI6,19,39,40.  However, the current WHO BMI recommendations were also 

determined from observational studies2,6. We hypothesize that since the BMI-mortality 

relationship has been previously validated through Mendelian randomization analyses, 

our results may still be relatively robust to these confounders1. Nevertheless, the source 

population (e.g., different quantiles of PRS, different subgroups above and below median 

biomarker values, etc.) used to compute these associations could be the reason for the 

persistent variation in optimal BMI1.  Second, while we used a genetically homogeneous 

British Caucasian population with minimal genetic ancestral confounding, our results 

cannot be easily generalized to other populations7,9,41,42. This is because the BMI and 

consequently, optimal BMI may vary greatly due to differences in genetic ancestry, which 

varies across different ethnic groups7,9,41,42. The predictive power of PRS also varies with 

genetic ancestry: if the GWAS used to derive the PRS was conducted in a given 

discovery cohort, the closer the population being analyzed is to this cohort in genetic 

ancestry, the better the PRS predictivity9. The predictive power of the PRS also decreases 

if frequencies for alleles that impact the trait varies between populations42. Additionally, 

linkage disequilibrium (LD) structures, or the non-random links between alleles of SNPs 
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at different loci on the same chromosome, may also differ between the different 

populations, decreasing PRS predictive power in populations that have a different LD 

structure from the one present in the population used to derive the PRS4,5,42. Hence, using 

PRS to determine the optimal BMI is subject to genetic ancestral influence and this may 

have impacted our results with certain PRS derived from discovery samples not matching 

closely to the UKB9.  Finally, it is not known what type of adiposity the metabolically 

beneficial, deleterious, or neutral BMI encapsulates7. Future studies are needed to 

determine whether the genes associated with these respective scores are related to a 

specific type of fat, such as subcutaneous or visceral fat7. Identifying the type of fat 

presenting greater protection against all-cause mortality for those at the higher end of 

these PRS could help guide recommendations or treatment plans9. Additionally, both the 

whole genome and polygenically determined BMI PRS could also explain a significant 

amount of the variation in key non-fat mass components (e.g., lean mass, water mass). 

Knowing how much variation in non-fat mass components is attributed to these PRS 

might also be useful in making precise BMI recommendations. Thus, future studies 

should seek to determine which genes linked with these PRS associate with a given non-

fat mass component.  

Strengths of our study include the large sample size of the UKB, the opportunity 

for extensive phenotyping (i.e., the detailed and comprehensive analysis of phenotypes 

such as BMI), innovative use of genetic tools in combination with a meta-regression 

framework, and the power of the polygenic risk scores used.  
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2.5 Conclusion and Significance 

The impact of BMI on mortality varies due to individual genetic difference1,7,8. Our 

findings provide support for a more individualized approach to promoting health, especially 

for those that may have a higher risk for death at a BMI falling under the WHO-defined 

normal category. Our study demonstrates that the current WHO recommendations may not 

be universal in achieving optimal BMI, which has potential important implications for 

patient counselling and selection of patients for obesity-related interventions such as 

bariatric surgery10. The use of PRS in general for clinical practice, despite its strong 

potential clinical utility for screening diseases such as CVD or breast cancer, is currently 

unestablished9. We hope our research provides further evidence for support of clinical use 

of PRS to optimize patient health, well-being, and quality of life. Such advances in 

precision medicine could have large implications for public health recommendations for 

BMI: just as the definition of BMI has constantly changed over time due to evidence-based 

medicine, we hope our findings can provide the catalyst to bring change once again. 
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2.7 Figures 

 

 

 

 

 

 

Figure 2.1 - Regional polygenic correlation between BMI and T2D.   

3 different SNPs, each having an effect allele that increases BMI, are shown to be 

correlated with T2D in three ways: increased risk (metabolically deleterious BMI), 

decreased risk (metabolically favourable BMI), or no risk (metabolically neutral BMI) of 

T2D. BMI = body mass index, T2D = type 2 diabetes.   
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Figure 2.2 - Comparing the optimal BMI across quantiles of BMI PRS. 

A) Partition of UKB participants into quantiles of BMI PRS, B) Cox proportional hazards 

regression model used to compute the BMI-all-cause mortality relationship and extract 

the optimal BMI for a given quantile, C) Comparing the optimal BMI between PRS 

quantiles using linear regression (“Cox meta-regression”). Results are also compared to 

the population optimal BMI computed on the entire UKB (orange line).  
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Figure 2.3 - Bootstrapping procedure to calculate confidence intervals for the population 

optimal BMI.  

A) Re-sampling of the UKB population with replacement, followed by computing the 

optimal BMI using the Cox meta-regression model per re-sample. Our sample was 

resampled 10,000 times. B) Bootstrap distribution of the 10,000 optimal BMI values 

generated in A). The frequency for which a nadir value falls under a given population 

optimal BMI value is shown on the y-axis. C) Calculation of 95% confidence intervals 

from the bootstrap distribution, shown for the population optimal BMI for individuals 

above and below median ALT in the UKB. The p value for the heterogeneity test used to 
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compare significant differences in optimal BMI across subgroups is highlighted in 

yellow. The heterogeneity test uses a fixed-effects meta-analysis model. BMI = body 

mass index, UKB = UK Biobank. ALT = alanine aminotransferase.  
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 Population Mean BMI [95% CI]: 

27.4 kg/m2 [27.3 – 27.5 kg/m2] 

 

Population Mean BMI [95% CI]: 

27.4 kg/m2 [27.3 – 27.5 kg/m2] 

 

 

 

Figure 2.4 - Mediation of BMI-mortality relationships by genetics. 

Results are shown for both primary and secondary analyses. β values (95% CI) indicate 

the effect of a 1-unit increase in PRS quantile on BMI nadir value (kg/m2). Bonferroni 

significance is considered at p < 0.007. BMI = body mass index, PRS = polygenic risk 

score.  The purple line represents the meta-regression line, the orange line represents the 

population optimum BMI, and the grey line represents the population mean BMI.  The 

pink line represents the regression line of the association between PRS quantile number 

and the mean BMI per quantile (“average BMI regression line”). Shaded areas represent 

95% CI for the meta-regression and average BMI regression lines. For the fully adjusted 

model, the first quantile was considered an outlier and was subsequently removed.  
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Figure 2.5 - Mediation of optimal and mean BMI by TG, CRP, and ALT levels. 

The population optimal BMI is represented by squares and the mean BMI is represented 

by circles. BMI values are coloured according to the colour of the subgroup name. 

Results from the minimally adjusted model are shown. Bonferroni significance is 

considered at p < 0.0008. TG = triglyceride, CRP = C-reactive protein, ALT = alanine 

aminotransferase, BMI = body mass index, Optimal BMIPhet = fixed effects heterogeneity 

test results comparing the population optimal BMI (kg/m2) between subgroups, Mean 

BMIPhet  = fixed effects heterogeneity test results comparing the mean BMI (kg/m2) 

between subgroups.  Error bars represent 95% CI obtained from bootstrapping analyses. 
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Figure 2.6 - A) The optimal BMI and B) the change in optimal BMI by cause-specific 

mortality. 

 

Results from the minimally adjusted model are shown. Bonferroni significance is 

considered at p < 0.0125. CVD = cardiovascular disease, other disease= mortality due to 

diseases/conditions other than cancer, cardiovascular disease, or respiratory disease. BMI 

= body mass index, PRS = polygenic risk score. Error bars represent 95% CI obtained 

from bootstrapping analyses in 2.6 A) and the meta-regression line in 2.6 B). For 2.6 B),  

β values (95% CI) indicate the effect of a 1-unit increase in PRS quantile on BMI nadir 

value (kg/m2). 
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Percentiles of Clinical Biomarker Analyses 

Biomarker: TG  

 

Beta [95% CI]: 0.16 [0.09-0.23] 

 

p = 2.00 × 10-4 

 

Population Optimum BMI [95% CI]: 

25.0 kg/m2 [95% CI 24.6-25.5 kg/m2] 

 

Population Mean BMI [95% CI]: 

27.4 kg/m2 [27.3 – 27.5 kg/m2] 

 

Biomarker: CRP  

 

Beta [95% CI]: 0.20 [0.14-0.26] 

 

p = 1.26 × 10-6 
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Figure 2.7 – Variation in optimal BMI across 20 quantiles of TG, ALT, and CRP. β 

values (95% CI) indicate the effect of a 1-unit increase in a clinical biomarker quantile on 

BMI nadir value (kg/m2). The minimally adjusted model was used. Bonferroni 
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significance is considered at p < 0.0008. BMI = body mass index, TG = triglyceride, CRP 

= C-reactive protein, ALT = alanine aminotransferase, PRS = polygenic risk score.  The 

purple line represents the meta-regression line, the orange line represents the population 

optimum BMI, and the grey line represents the population mean BMI.  The pink line 

represents the regression line of the association between clinical biomarker quantile 

number and the mean BMI per quantile (“average BMI regression line”). Shaded areas 

represent 95% CI for the meta-regression and average BMI regression lines.  
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Figure 2.8 –The relationship between a) WHR and b) LM, respectively, and all-cause 

mortality. The relationship between LM and all-cause mortality in c) males and d) 

females is also shown. WHR = Waist-to-hip ratio, LM = lean mass, HR = hazard ratio for 

all-cause mortality. The minimally adjusted model was used. Figure 2.8e) and f) shows 

the W-shaped relationship for LM adjusted for height and height2 respectively. For Figure 

2.8 a), WHR values that were considered outliers were removed, reducing the number of 

deaths and controls in the overall sample to 22,957 and 364,097 respectively.  
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Figure 2.9 – Variation in optimal LM between quantiles of LM PRS.  β values (95% CI) 

indicate the effect of a 1-unit increase in PRS quantile on LM nadir value (kg). The 

minimally adjusted model was used. Significance is considered at p < 0.05. LM = whole 

body lean mass, PRS = polygenic risk score.  The purple line represents the meta-
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regression line. The pink line represents the regression line of the association between 

PRS quantile number and the mean LM per quantile (“average LM regression line”). 

Shaded areas represent 95% CI for the meta-regression and average LM regression lines.  
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Chapter III: Optimizing BMI Recommendations Using Genetics and Clinical 

Biomarkers - A Mendelian Randomization Approach 
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3.1 Introduction 

Well-powered epidemiological studies are able to confer strong insights into key 

relationships in nature. Several large epidemiological studies found that BMI and all-

cause mortality had a J-shaped relationship, with the optimal BMI, or the lowest risk of 

mortality, being between 20-25 kg/m2 3,6. The J-shaped relationship holds true with 

various specific causes of deaths, as well as after stratifying the population by age, sex, 

and smoking status3,6. Nevertheless, epidemiological studies are prone to biases like 

residual confounding, which includes confounders such as smoking in the case of BMI 

and all-cause mortality relationships, or reverse causality, creating difficulty in inferring 

causality3,6.   

 Genetic variants comprising our individual genotypes are randomly inherited from 

our parents32. Alleles for a given genotype, in the form of a single nucleotide 

polymorphism (SNP), are randomized at the time of gamete formation32. Mendel’s 

second law of independent assortment explains this process as genetic variants are 

inherited independent of other characteristics or potential confounding influences32. 

Mendelian randomization (MR) is based on this law: if SNPs either change the level or 

mirror the biological effects of the phenotype that is linked with the outcome, then the 

variants should be causally associated with the outcome, at least to the extent predicted by 

their impact on the phenotype32. In this sense, MR is “nature’s” equivalent to a 



MSc. Thesis – Irfan Khan, McMaster University - Medical Sciences Graduate Program 

 
 

66 

randomized control trial (RCT) (Appendix Figure 3.1) 32,38. Unlike RCT, where 

individuals are randomized and split into an exposed group receiving the intervention and 

control group receiving no intervention or placebo, genotypes are randomized in MR, 

with the exposure group having the risk allele for the given phenotype (i.e. increased 

BMI) and the control group having the alternate or null allele (i.e. no effect on BMI)32,38. 

For both MR and RCT, this randomization allows for confounders to be equivalent 

between the two groups32. When the outcome is examined between the two groups using 

either method, a potentially causal or unconfounded conclusion can be reached, provided 

that certain assumptions are met for either method32,39.  

 In order for MR estimates to be considered valid, three primary assumptions must 

be met32. The genetic variants must be associated with the exposure, there can be no 

unmeasured confounders of the association between the variants and the outcome, and the 

variants must affect the outcome only through the outcome of interest32. A secondary 

assumption that must be met is that random mating occurs in the population being 

analyzed, though this is not often discussed in the literature as a primary assumption for 

MR12,21. While the first assumption can be confirmed by assessing the strength of the 

association between the genetic variants and the exposure, the latter two assumptions are 

difficult to prove due to horizontal pleiotropy, or when a single genetic variant influences 

the exposure and outcome through independent pathways33. While there are various 

methods to detect and account for pleiotropy, it cannot be completely avoided and is 

considered a key limitation in MR studies33. Nevertheless, MR studies allow researchers 
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to assess the relationship between multiple variables with as little confounding as 

possible, thus being able to make causal inferences with a high degree of confidence, 

despite potential pleiotropy33.  

 Traditional MR analyses have shown a positive relationship between BMI and all-

cause mortality that varies significantly across different WHO-defined BMI categories. 

Overweight and obese individuals have a 5% and 9% higher risk of mortality respectively 

while underweight and low normal weight participants have a 34% and 14% lower risk 

respectively1. While this analysis suggests that higher BMI is associated with higher 

mortality risk, traditional MR methods do not take into account the J-shaped nature of the 

BMI-all-cause mortality relationship found in previous epidemiological studies1. 

Traditional MR methods are thus insufficient to draw conclusions about non-linear 

relationships.  

 In 2017, Staley and Burgess developed a modelling method for MR that takes into 

account non-linear relationships between a given exposure and outcome1. In one study, 

this model successfully recreated the J-shaped relationship between BMI and all-cause 

mortality previously seen in epidemiological research, even after exclusion of deaths due 

to cancer and cardiovascular disease1. Thus, the J-shaped relationship between BMI and 

all-cause mortality was determined to be causal1. However, a J-shaped relationship was 

only found in the smokers UKB subgroup, not the never smokers subgroup, where a 

positive relationship was found instead1. Smoking is still a significant confounder in this 

J-shaped relationship, despite using NLMR1. Overall, this study simultaneously shows the 
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strengths and limitations of using NLMR for BMI-all-cause mortality relationships1. 

While it was able to replicate prior epidemiological analyses, it did not completely 

account for all possible confounding or potential pleiotropic influences, like smoking1. 

Nevertheless, even with the confounding influence of smoking, the J-shaped curve is 

likely the true relationship between BMI and all-cause mortality as large, well-powered 

genetic and epidemiological studies produced consistent results, with the optimum BMI 

within a range of 22-25 kg/m2 1. However, Sun et al did not compare the optimal BMI 

computed from NLMR with the optimal BMI computed using traditional epidemiological 

methods (i.e. Cox regression)1,6. Individual variation in the optimum BMI computed 

using NLMR due to factors strongly linked with BMI, such as sleep, physical activity, or 

diet, was also not explored6. Metabolically healthy and unhealthy BMI may also influence 

the BMI-mortality relationship computed by NLMR, which could make a difference in 

terms of recommendations for potential weight loss interventions targeting the optimal 

BMI11.  

The first objective of this chapter is to determine the optimal BMI using the 

NLMR model. The second objective is to compare the optimal BMI computed from 

NLMR with the optimal BMI computed using the Cox meta-regression model. The third 

objective is to determine whether the NLMR-derived optimal BMI varies due to 

individual genetic and non-genetic variation.  
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3.2 Methods 

3.2.1 UK Biobank Study Population 

Details describing the UK Biobank study population can be found in Section 2.2.1. 

3.2.2 Polygenic Risk Score Calculations 

 
Details describing polygenic risk score calculations can be found in Section 2.2.2.  

3.2.3 Non-Linear Mendelian Randomization 
The results from traditional Mendelian randomization (MR) analyses are calculated via 

the Wald ratio: 𝛽	 = 	 !"#$%&'	~	*+,
-./%0"1'	~	*+,

19. The numerator is the estimated association of our 

genetic variants, in the form of polygenic risk scores (PRS), with the outcome while the 

denominator is the estimated association of the PRS with the exposure19. The Wald ratio 

is the quantified causal estimate between an exposure and an outcome. However, we used 

non-linear Mendelian randomization (NLMR) to investigate the causal effects of our risk 

factors (e.g. BMI) on our outcomes (e.g. all-cause mortality or ACM). 

Unlike traditional MR, NLMR uses non-linear modelling to capture causal 

relationships that are non-linear in nature1, 11. Suppose BMI is the exposure and we are 

using the BMI PRS as our genetic variants for NLMR. First, the UKB population is 

stratified by quantiles of BMI.11. However, the population cannot be stratified into 

quantiles of the regular BMI phenotype, as such an approach may induce an association 

between the BMI PRS and outcome even if it was not present prior to stratification11. 
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Instead, the population was stratified into centiles of the BMI residual variation, or 

residuals of BMI after regressing on the BMI PRS (genetic-free BMI or the non-genetic 

component of BMI).1,11.  Second, within each genetic-free BMI centile, the causal 

association between BMI and the outcome (e.g. ACM), or local average causal estimate 

(LACE), was estimated via the following formula: 𝐿𝐴𝐶𝐸	 = 	 !"#$%&'	~	234	*+,
-./%0"1'	~	234	*+,

11. The 

numerator is the estimated association of the BMI PRS with the outcome (e.g. ACM) 

while the denominator is the estimated association of the BMI PRS with the exposure 

(e.g. BMI) in the UKB11,20. Third, the causal relationship between the exposure and the 

outcome was determined from the LACEs computed per centile11.  Two distinct methods 

can be used to accomplish this: the fractional polynomial and the piecewise linear 

model11. The fractional polynomial method uses a smoothing spline to fit non-linear 

relationships between the exposure and the outcome11. The method first uses a meta-

regression analysis where the LACE estimates, itself a product of regression, is being 

regressed against the mean BMI value within each genetic-free BMI stratum11. The line 

or curve of best-fit for this meta-regression is the best-fitting fractional polynomial 

function for the relationship11. The meta-regression between LACEs and mean BMI per 

quantile represents the derivative of the true exposure-outcome relationship, or the 

instantaneous slope of the tangent line to the true non-linear model fitting the BMI- all-

cause mortality relationship11,45. Thus, the integral or anti-derivative of this best-fitting 

fractional polynomial function, or the true non-linear relationship between BMI and all-

cause mortality derived from its derivative function, was then taken, using a smoothing 
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spline, producing the true exposure-outcome relationship (e.g. Figure 3.1)11,46.  The 

piecewise linear method is generated by having each genetic-free BMI stratum contribute 

to a line segment whose tangent or derivative is the LACE estimate for that stratum11. The 

function is constrained to be continuous, with each line segment starting from where the 

previous ended11. One method is preferred over the other depending on prior belief or 

evidence of the nature of the true exposure-outcome relationship11. If the relationship is 

believed to be smooth, then the fractional polynomial should be used; otherwise, the 

piecewise linear should be used11. Since a large number of epidemiological studies show 

a smooth non-linear relationship between BMI and many mortality outcomes, only the 

fractional polynomial NLMR was used for these analyses1,10,21. The exposure-outcome 

relationship is considered significantly non-linear if the fractional polynomial non-

linearity p-value is <0.007 (the Bonferroni adjustment for p values for primary analyses in 

Chapter II is used here and is described in further detail in 2.2.3)1. If significant, we 

conclude that a non-linear model fits the data better than a linear model1.  

The optimal BMI, or BMI associated with the lowest risk of a given mortality 

outcome, was extracted from the true exposure-outcome relationship computed by 

NLMR. Confidence intervals for the optimal BMI were computed using the bootstrapping 

procedure described in Figure 2.3. 

The covariate models used for NLMR analyses were the same as the ones 

described in Chapter II, except the fully adjusted model, which included smoking and 

UKB assessment centre as additional covariates to the minimally adjusted model only.  
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The only exposures that were used for NLMR analyses were BMI and its 

metabolically favourable, deleterious, and neutral BMI subcategories. Thus, the PRS 

associated with these phenotypes were the only ones utilized in NLMR analyses. The 

outcomes and subgroups used in our primary, secondary, and tertiary analyses, as well as 

our other methods for statistical analyses, were the same as the ones used in Chapter II.  

 For our primary analyses, centiles were used to partition the UKB into genetic-

free BMI quantiles while 50 quantiles were used for our secondary analyses. For our 

tertiary analyses, centiles were used when partitioning the UKB into genetic-free 

exposure quantiles while 50 quantiles were used for our sex-specific analyses.  

A modification to the standard NLMR method was used as an alternative method 

for modeling the non-linear relationship between BMI and mortality outcomes across our 

primary and secondary analyses. Instead of a fractional polynomial function being fit to 

the mean BMI per quantile and LACE relationship, a quadratic model was fitted as it may 

provide more stability and power, while retaining a simple framework. The quadratic 

model was identical to the original NLMR model, but instead of fitting the best-fitting 

fractional polynomial function to the LACE-mean BMI per quantile relationship, a linear 

regression model was fit, since this would be the derivative of the quadratic model 

(Figure 3.6). The BMI at which the linear regression line crosses the 0 LACE point would 

be the optimal BMI, as this represents the inflection point between the lower and upper 

extreme of the J-shaped curve (Figure 3.6). Once we have extracted the optimal BMI, we 

computed the 95% calibration interval, which is the inverse of the confidence interval, as 
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we are trying to find the variability in the independent variable, rather than the dependent 

variable.40  

3.3 Results 

3.3.1 Primary Analyses 

Consistent with previous literature, a significant J-shaped relationship between BMI and 

all-cause mortality was found using NLMR using the minimally adjusted model and BMI 

PRS (fractional polynomial non-linearity p-value = 0.0002, Figure 3.1). A significant 

relationship was also found using the fully adjusted model, but not the unadjusted model 

(fully adjusted model: p = 0.0006; unadjusted: 0.653). The J-shaped relationship was 

nominally significant using the metabolically neutral (MN) BMI PRS, fully adjusted for 

covariates (p = 0.04).  

 

3.3.2 Comparison with the Cox Meta-Regression Model 

When comparing the optimal BMI computed from the Cox meta-regression model in 

Chapter II and the one computed using NLMR, there were no significant differences 

between the two BMI values (p heterogeneity = 0.102, Figure 3.2).  

3.3.3 Cause-Specific Analyses 

Our above analyses were repeated, looking only at cancer, cardiovascular disease, 

respiratory disease, and other disease (i.e. all other diseases) mortality using the minimally 
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adjusted model and the BMI PRS. There were no significant differences between mortality 

subtypes in population optimal BMI using NLMR (p heterogeneity = 0.38, Figure 3.3). 

3.3.4 Secondary Analyses 

Using the minimally adjusted model and BMI PRS, the difference in the population 

optimal BMI between smokers and non-smokers was nominally significant (p 

heterogeneity = 0.003). There was a significant J-shaped relationship between BMI and 

all-cause mortality in smokers only and a positive linear relationship in non-smokers only 

(fractional polynomial non-linearity p value in smokers only: 0.0005; fractional 

polynomial non-linearity p value in non-smokers only: 0.129, Figure 3.4a-b).  

3.3.5 Tertiary Analyses 

 
The W-shaped and J-shaped relationship between LM and all-cause mortality found in 

our whole UKB population and sex-specific subgroup analyses respectively using Cox 

meta-regression were not found using NLMR, whether height or height2 was adjusted for 

or not (fractional polynomial non-linearity p > 0.05 across all analyses).  

 

3.3.6 Non-Linear Mendelian Randomization Sensitivity Analysis 

 
After constructing bootstrapped confidence intervals for the optimal BMI extracted from 

the BMI-all-cause mortality relationship using the BMI PRS, there were certain 
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bootstrapped samples where the NLMR analysis did not output a J-shaped relationship 

between BMI and all-cause mortality (Figure 2.3). Rather, a positive linear relationship 

was outputted, meaning no optimal BMI would be extracted other than the lowest BMI 

value across the relationship, which was often ~15 kg/m2, in the WHO-defined 

underweight BMI category. This phenomenon occurred in both our primary and 

secondary analyses.  

Our bootstrapped samples often had different mortality:control ratios (i.e. the ratio 

of the number of deaths to the number of people alive in the sample) from each other 

within a given UKB subgroup. For example, bootstrap samples #2 and #6 within the 

younger adults (age <=65) UKB subgroup had a mortality:control ratio of 15,167: 

313,292 and 15,287: 313,172 respectively. Nevertheless, this small fluctuation of 120 

deaths between the two samples meant the difference between a significant J-shaped 

curve in sample #2 with a nadir of 22.8 kg/m2 and a positive linear relationship in sample 

#6 with the lowest BMI being 15.1 kg/m2 (Figure 3.5a-b).  

For certain subgroups, like those below median WHR and above median LDL 

levels, the mean of the bootstrap distribution used to compute confidence intervals was 

far from the original nadir estimate. For example, those below the median WHR ratio in 

the UKB had a BMI nadir value of 15.0 kg/m2, which falls in the underweight WHO BMI 

category, with the mean of the bootstrap distribution being 26.4 kg/m2, which falls under 

the overweight WHO BMI category. For those above median LDL levels, the nadir value 

was 15.0 kg/m2 while the mean of the bootstrap distribution was 20.2 kg/m2, falling in the 

normal BMI range.  



MSc. Thesis – Irfan Khan, McMaster University - Medical Sciences Graduate Program 

 
 

76 

3.3.7 Calibration Interval Computation 

Results using the quadratic model to fit the mean BMI per quantile and the local average 

causal estimate for the BMI-all-cause mortality relationship are shown in Figure 3.6. The 

differences in optimal BMI computed using the quadratic model for NLMR between 

individuals above and below median TG, CRP, and ALT are shown in Figure 3.7. The 

lower confidence interval bound for the optimal BMI computed in UKB participants 

below median TG and ALT levels was negative (Figure 3.7).  

3.4 Discussion 

3.4.1 Summary of Results 

There was no significant difference between Cox meta-regression and NLMR models in 

computed population optimal BMI. The results found using NLMR were consistent with 

previous literature, but additionally, we discovered that metabolically neutral BMI may 

play a role in driving the J-shaped relationship between BMI and all-cause mortality. 

However, as our results were found to be nominally significant, we cannot draw further 

conclusions and thus, future studies need to explore the link between metabolically 

neutral BMI and the J-shaped BMI-mortality relationship.  

 

3.4.2 The causal J-shaped relationship between BMI and all-cause mortality 
The J-shaped relationship between BMI and all-cause mortality is causal, given that the 

NLMR-derived BMI-all-cause mortality relationship is analogous in shape to the 
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epidemiologically-derived curve, consistent with previous studies1,6. One explanation for 

why a J-shaped relationship exists between BMI and all-cause mortality may be that for 

certain cause-specific mortality outcomes, there is a monotonic increase in mortality risk 

with increasing BMI, while for other mortality outcomes, there is a monotonic decrease in 

risk with increasing BMI1,6,42. This may lead to genetically-increased BMI increasing 

mortality risk for the former, but decreasing mortality risk for the latter, thus shifting the 

optimal BMI value to the right.  The epidemiological and genetic literature conflict in 

terms of the directionality of certain mortality outcomes with BMI. For example, 

epidemiological studies have found that many cardiovascular disease and cancer mortality 

outcomes had J-shaped relationships with BMI, while one NLMR study by Sun et al 

found that there was no relationship between cancer mortality and BMI and a positive 

association between BMI and cardiovascular disease mortality. It should be noted that 

Sun et al did not assess the relationship between BMI and different cardiovascular or 

cancer mortality outcomes, unlike other epidemiological studies. In our analyses, we were 

unable to assess cause-specific mortality outcomes beyond cancer, cardiovascular disease, 

or respiratory disease as there were less than 1000 deaths for all other mortality outcomes, 

which is insufficient for both epidemiological and NLMR analyses. Given both analyses 

require the population to be split into multiple quantiles, the sample size per quantile 

would be too small and underpowered to detect any meaningful association. Thus, it 

remains unclear which mortality outcomes are contributing to either end of the J-shaped 

relationship between BMI and all-cause mortality. Future studies should address this 

question in larger, better powered populations.  
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 Not only could mortality outcomes modulate the J-shaped relationship, but also 

body composition measures, such as lean mass, which BMI does not account for1,6,42. 

Several studies have speculated that the lower end of the J-shaped BMI-all-cause 

mortality relationship may be due to lean mass loss or cachexia, which may be related to 

a number of different factors, such as age-related sarcopenia or smoking. No study has 

been done to identify whether specific body compositional change drives the upper or 

lower extreme of the J-shaped curve. However, studies have demonstrated an inverse 

relationship between lean mass and mortality, and one study showed that after adjusting 

for muscle mass, the optimal BMI shifts to the left towards the normal WHO-defined 

BMI category44. Thus, the loss of lean mass explaining the lower extreme of the J-shaped 

curve is supported by the epidemiological literature. However, our analyses showed that 

while lean mass and the BMI PRS were strongly correlated, a positive relationship was 

seen between the two, which is in contrast to previous literature. BMI, fat mass, and lean 

mass are all highly correlated with each other, both epidemiologically and at the genetic 

level42. Genetic variants for BMI could affect both fat and non-fat mass (i.e. lean mass) 

components42. Thus, even with Mendelian randomization, because it is not clear whether 

certain BMI genetic variants exclusively impact lean mass or fat mass, it can be difficult 

to assess the genetic effect of individual body composition components on all-cause 

mortality42. All of the clinical biomarkers we analyzed had a significant positive 

association with lean mass except total cholesterol, LDL, and HDL. Although HDL has 

been shown to be inversely related to BMI in epidemiological literature, total cholesterol, 

LDL, and HDL are highly correlated at the epidemiological and genetic level, and thus, 
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their specific impact on lean mass or BMI, and by extension, all-cause mortality cannot 

be delineated27. Furthermore, the epidemiologically determined W-shaped and J-shaped 

relationship between LM and all-cause mortality found in the whole UKB population and 

our sex-specific subgroups respectively using Cox meta-regression were not causal 

according to results found using NLMR. Therefore, the specific body composition 

component that is responsible for driving the lower end of the J-shape curve remains 

undetermined. Future studies should aim to either use or develop specific genetic 

techniques to delineate the genetic effect of lean mass, fat mass, cholesterol, LDL, and 

HDL on their effect on all-cause mortality. Knowing which body composition drives both 

the lower and upper end of the J-shaped curve can have profound public health 

implications: BMI recommendations can be tailored specifically to account for low 

muscle mass or high fat mass.  

3.4.3 Limitations of the bootstrapping method to generate confidence intervals 

Since our results show that the optimal BMI computed with the Cox meta-regression 

model and NLMR are not significantly different, it may appear that the optimal BMI of 

~22-25 kg/m2 is causal, but the limitations behind our methodology cast doubt on how 

confident we are in making this conclusion. After constructing bootstrapped confidence 

intervals for the optimal BMI extracted from the BMI-all-cause mortality relationship 

using the BMI PRS, there were certain bootstrapped samples where the NLMR analysis 

did not output a non-linear relationship between BMI and all-cause mortality. Rather, a 

positive linear relationship was outputted, with the optimal BMI in the underweight WHO 
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BMI category. Our sensitivity analyses show that the NLMR model is hypersensitive to 

small fluctuations in the number of deaths, casting doubt on the stability of the model.  

For many subgroups, the mean of the bootstrap distribution used to compute 

confidence intervals was often quite far from the original nadir estimate. Large 

differences between the two values indicates that the original BMI nadir is biased, again 

casting doubt on the stability of NLMR. It also creates great difficulty in making 

comparisons between subgroups, due to the lack of power. Therefore, any variation in the 

NLMR-derived optimal BMI due to genetic or clinical biomarker variation cannot be 

reliably concluded.  

The sample size per quantile may be the source of bias present in our NLMR 

analyses: we are ultimately limited by the size of the overall UKB cohort as the same 

issues occurred separating the UKB into 50 or 100 quantiles. As such, future studies 

should replicate this analysis in larger sample sizes to determine whether the NLMR 

improves in stability with increasing sample size, and by extension, number of deaths per 

quantile. This can facilitate better comparison between subgroups if confidence intervals 

are more precise as a result of having greater power.  

3.4.4 Calibration interval method for computing confidence intervals  

The NLMR model fits a smooth spline curve based on the integral computed from the 

LACE versus mean BMI per quantile meta-regression analysis, which uses a fractional 

polynomial model for the meta-regression34. However, due to the aforementioned 

instability of the fractional polynomial model in fitting the data across multiple bootstrap 
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samples with varying number of deaths and controls, we believed a quadratic model may 

provide more stability and power. After assessing the BMI-all-cause mortality 

relationship within the UKB and select subgroups using this method, we determined that 

the results were even more unstable than the results found using the initial bootstrapping 

method. The lower confidence interval bound for the optimal BMI computed in UKB 

participants below median TG levels was negative, which is not possible as BMI cannot 

be negative (Figure 3.7). Overall, we determined that, despite its limitations, the initial 

method of using bootstrapping to compute confidence intervals for the population optimal 

BMI is the most ideal.  

3.4.5 Other limitations 

While NLMR studies are less susceptible to residual confounding and reverse causality 

influences, our genetic instruments may still be subject to pleiotropy1. While vertical 

pleiotropy allows for a reliable causal inference as it involves genetic variants associated 

with an exposure (e.g. BMI) to impact a trait (e.g. systolic blood pressure) immediately 

downstream of the outcome to influence the outcome (e.g. coronary heart disease), 

horizontal pleiotropy, or the scenario where genetic variants influence the exposure and 

outcome through independent pathways, is a major concern in MR studies32,33. It is 

especially problematic with PRS: while PRS have the potential for improving genetic risk 

prediction as it includes multiple genetic variants associated with the trait to improve 

predictive power, pleiotropic influences can reduce the validity of PRS for MR33. 

Depending on the p value threshold used to select SNPs for the PRS, which impacts the 
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number of SNPs included in the final PRS, a mixture of true and false positive SNP-

exposure associations may arise and this could introduce strong horizontal pleiotropic 

effects when the PRS is used in analyses33.  Due to horizontal pleiotropy, it can be very 

difficult to disentangle the effects of BMI from other traits strongly associated with BMI, 

like TG, lean mass, or WHR, on mortality outcomes. Previous studies have raised 

concerns regarding the pleiotropic nature of BMI genetic variants, where variants can 

either be associated with fat mass or non-fat mass components42. However, prior NLMR 

studies have confirmed very little evidence of pleiotropy within BMI genetic variants, so 

pleiotropy is unlikely to have had a significant impact on our results1. Since MR estimates 

lifetime trends within individuals in a population as opposed to individual points in time, 

we cannot conclude that the trends we see in our results vary with time1. Finally, the other 

limitations mentioned at the end of chapter II also apply here.   

 

3.5 Conclusion and Significance  

Consistent with previous studies, a causal non-linear relationship between BMI and all-

cause mortality was found in the whole UKB sample. It is difficult to make conclusions 

based on the results obtained from our other NLMR analyses due to the limitations of the 

model. Future studies should use larger and better powered studies to definitively confirm 

this and allow for more stable NLMR performance with respect to generating confidence 

and calibration intervals from bootstrapping. If a causal basis for our epidemiological 

analyses in Chapter II were to be confirmed, it would increase the level of confidence in 
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having individual genetic and clinical biomarker variation considered alongside 

traditional BMI recommendations. Such a discovery would lead to more precise 

recommendations, which could positively impact health care outcomes related to obesity 

and malnutrition, reducing the overall burden and cost to the health care system and 

increasing the quality of life for many patients.   
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3.7 Figures 

 

Figure 3.1 - The BMI – all-cause mortality relationship using non-linear mendelian 

randomization (NLMR) in the UKB. 

The minimally adjusted model was used, with age, sex, and the first 10 principal 

components as covariates. The BMI PRS was used. Grey lines indicate 95% confidence 

intervals. Odds ratios for all-cause mortality are computed from determining the odds of 

all-cause mortality across the BMI distribution compared to the odds of all-cause 

mortality at the reference BMI of 25 kg/m2, where the OR at this reference point is 1. 

Fractional polynomial non-linearity p value = 0.0002. BMI = body mass index, UKB = 

UK Biobank, PRS = polygenic risk score, BMIref = the reference BMI of 25 kg/m2.  
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Figure 3.2 -  Comparing the computed population optimal BMI using the Cox meta-

regression and NLMR models. 

P heterogeneity  = 0.102. Heterogeneity was assessed using a fixed effects meta-analysis 

model. The minimally adjusted model was used, with age, sex, and the first 10 principal 

components as covariates. The BMI PRS was used. BMI = body mass index, PRS = 

polygenic risk score. Error bars represent 95% confidence intervals generated from 

bootstrapping analyses.  
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Figure 3.3 – Differences between the population optimal BMI against cause-specific 

mortality using NLMR. 

The minimally adjusted model was used, with age, sex, and the first 10 principal 

components as covariates. The BMI PRS was used. p heterogeneity = 0.38. Other 

mortality refers to deaths other than from cancer, cardiovascular disease, or respiratory 

disease.  Heterogeneity was assessed using a fixed effects meta-analysis model. Error bars 
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represent 95% confidence intervals generated from bootstrapping analyses. BMI = body 

mass index, CVD = cardiovascular disease, PRS = polygenic risk score.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MSc. Thesis – Irfan Khan, McMaster University - Medical Sciences Graduate Program 

 
 

96 

 

A)          B) 

 

Figure 3.4 – The relationship between BMI and all-cause mortality in the UKB A) 

smokers only and B) never smokers only using NLMR. 

The minimally adjusted model was used, with age, sex, and the first 10 principal 

components as covariates. The BMI PRS was used. Grey lines indicate 95% confidence 

intervals. Odds ratios for all-cause mortality are computed from determining the odds of 

all-cause mortality across the BMI distribution compared to the odds of all-cause 

mortality at the reference BMI of 25 kg/m2, where the OR at this reference point is 1. 

Fractional polynomial non-linearity p value for smokers only = 0.0005; for non-smokers 

only = 0.129. BMI = body mass index, UKB = UK Biobank, BMIref = the reference BMI 

of 25 kg/m2. 
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A)                 B) 

 

Figure 3.5 -  BMI-all-cause mortality relationships outputted from bootstrapped samples 

A) #2 and B) #6 of the younger adult (age <= 65) subgroup of the UKB using NLMR. 

The minimally adjusted model was used, with sex and the first 10 principal components 

as covariates. The BMI PRS was used. Grey lines indicate 95% confidence intervals. 

Odds ratios for all-cause mortality are computed from determining the odds of all-cause 

mortality across the BMI distribution compared to the odds of all-cause mortality at the 

reference BMI of 25 kg/m2, where the OR at this reference point is 1. Fractional 

polynomial non-linearity p value for sample #2 = 0.001; for sample #6 = 1. BMI = body 

mass index, UKB = UK Biobank, BMIref = the reference BMI of 25 kg/m2. 
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Figure 3.6 - Derivative of the quadratic model fit between mean BMI per quantile and the 

local average causal estimate for the BMI-all-cause mortality relationship. 

The derivative is the linear model fit between the independent and dependent variable 

(purple line). The BMI associated with the point where the linear model predicts a LACE 

of 0 is where the optimal BMI resides, as the LACE of 0 indicates the point of inflection 

between the decreasing and the increasing component of the J-shaped curve (dark blue 

line). LACE = local average causal estimate, BMI = body mass index.  
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Figure 3.7 - Comparison of the population optimal BMI and UKB participants above and 

below median TG, CRP, and ALT levels using the quadratic model for NLMR.  

Results from the minimally adjusted model are shown. Bonferroni significance is 

considered at p < 0.0008. TG = triglyceride, CRP = C-reactive protein, ALT = alanine 

aminotransferase, BMI = body mass index. Error bars represent 95% CI obtained from 

bootstrapping analyses. Note that because of the unreliable confidence intervals, no 

heterogeneity tests were completed.  
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4.1 Summary of Main Findings 

Our results show that the optimal BMI for the BMI–all-cause mortality relationship 

varied due to genetic variation in BMI (0.10 kg/m2 per quantile [95% CI 0.04-0.17], P = 

0.005; Figure 2.4). There is a difference of 1.90 kg/m2 in predicted optimal BMI between 

individuals in the top and bottom 5th BMI PRS percentile. Variation in circulating TG, 

CRP, and ALT levels was associated with variation in the optimal BMI for the BMI-all-

cause mortality relationship (above/below median biomarker level analyses: TG -  p 

heterogeneity: 1.29×10-4; CRP - p heterogeneity =7.92 × 10-5; ALT- p heterogeneity = 

2.70 × 10-8; percentile of clinical biomarker analyses: TG -  p heterogeneity: 2.00 × 10-4; 

CRP - p heterogeneity =1.26 × 10-6; ALT- p heterogeneity = 5.00 × 10-4). The population 

optimal BMI computed using the Cox regression model does not significantly differ from 

the population optimal BMI computed using the non-linear mendelian randomization 

(NLMR) model (p heterogeneity = 0.102). Metabolically neutral BMI appeared to 

modestly contribute to optimal BMI variation using both the Cox meta-regression and 

NLMR model, although the results were nominally significant and thus warrant further 

investigation.  

 

4.2 Clinical Implications 

BMI recommendations made by the WHO were determined by previous epidemiological 

studies that reached a consensus as to which BMI range conferred the lowest mortality 

risk2,6. However, recent epidemiological studies have shown that the lowest risk of 

mortality may be around the 25-26 kg/m2 range, which falls under the WHO-defined 
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overweight category of BMI6.  Such studies already gave rise to the notion that WHO 

categories may be inadequate to capture the ideal BMI range in the population. Our study 

demonstrated further evidence of what the WHO BMI recommendations fail to capture: 

individual genetic and clinical biomarker level variation. This is significant because it 

raises the question on whether or not genotyping and/or biochemical profiling can be used 

to make more precise BMI recommendations for individuals. 

 While our study further highlights the flaws with the WHO BMI 

recommendations, it cannot itself serve as the basis for change in clinical BMI 

recommendations. First, the results we have obtained from the Cox meta-regression are 

observational, meaning they are subject to residual confounding or reverse causality1,6. 

We thought that replicating our results using NLMR, which models the non-linear causal 

relationship between BMI and all-cause mortality, could help overcome these biases1. 

While our NLMR analyses were consistent with previous literature, overall, NLMR 

analyses were not consistent with our Cox meta-regression model (i.e. epidemiological) 

analyses, leaving the question of whether or not our results using Cox meta-regression 

were truly unconfounded.  

 The fact that the population optimal BMI computed in the UKB did not differ 

between the Cox meta-regression and NLMR model may have suggested that the 

computed optimal BMI was causal or unconfounded. However, as described in Chapter 

III, the NLMR is highly sensitive to small changes in sample size, calling into question its 

stability to produce reliable confidence intervals for an accurate comparison between the 

two nadir values. Furthermore, the quadratic model for the NLMR offered significantly 
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less stability than the default fractional polynomial model. This is because for our 

quadratic model, we made the strong assumption that the underlying model was still J-

shaped. Since the quadratic model is more simplistic in design compared to the fractional 

polynomial model, if this assumption were correct, this model would have allowed for a 

more precise and powered analysis. However, given the instability of the quadratic 

model, it is likely that this assumption was not met. Thus, this model, however more 

powered, lacks the validity found in the original fractional polynomial method.  Overall, 

we cannot conclude that our results obtained from Cox meta-regression are causal 

because of these limitations. Further studies should use more larger and more well 

powered studies when using causal frameworks like NLMR to replicate our analyses, as 

sample size, particularly in terms of number of deaths per sample, was most likely not 

large enough to maintain stability in computing bootstrapped estimates of the optimal 

BMI. If such a study confirmed that our results were causal, this would make for a 

stronger case for using genetics and clinical biomarkers when making BMI 

recommendations in the future.  

The use of PRS in general for clinical practice, despite its strong potential clinical 

utility for screening diseases such as CVD or breast cancer, is currently unestablished and 

controversial31. In several cohorts, clinical use of PRS is most useful for individuals with 

a higher predisposition to a disease/condition, providing potential therapeutic advantage 

for those in the early stages of the disease/condition in particular: treatment options or 

understanding of the disease progression can thus be guided through PRS9. The strongest 

example of this can be seen with CVD: for example, when examining the use of statin, a 
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cholesterol-lowering medication to manage CVD, in reducing the risk of the first 

coronary event, several studies demonstrated that the reduction in relative risk for the first 

coronary event using statin is higher for those with a higher genetic risk for CVD, which 

is consistent with previous epidemological literature highlighting the stronger beneficial 

effect of statins in those with diabetes, hypertension, or high C-reactive protein (CRP) 

levels9. In the United Kingdom (UK), mammogram screening for breast cancer is offered 

to women over the age of 47, where the mean 10-year breast cancer risk is approximately 

2.6%9. One study by Mavaddat et al. showed that 20% of women with the highest genetic 

risk for breast cancer according to their PRS reached the 2.6% mean 10-year breast 

cancer risk before the age of 40, while 20% of women with the lowest PRS for breast 

cancer never reached this risk9. This study demonstrates that PRS for breast cancer can be 

used to profile a subgroup of women at high-risk for breast cancer that would benefit 

from mammogram screening for breast cancer at an earlier age than what the current UK 

public health guidelines provide9. In fact, there are available commercial breast cancer 

risk tests that use PRS: riskScoreTM and AmbryScore9. There is potential for use of PRS 

in conjunction with pre-existing WHO BMI recommendations for reasons analogous to 

breast cancer risk: genetics can capture information that the WHO BMI recommendations 

cannot and thus, could be useful in making more accurate recommendations. However, to 

our knowledge, the results obtained from the current study is the only existing source of 

evidence to support using PRS for this purpose. More research is needed before PRS can 

be hoped to be considered as an adjunct to current clinical BMI recommendations.  
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4.3 Research Implications 

There was variation in the optimal BMI due to variation in triglyceride (TG), C-reactive 

protein (CRP), and alanine aminotransferase (ALT) using the Cox meta-regression model. 

TG, CRP, and ALT have shown to be positively associated with BMI in previous 

literature12,27,30. However, no consensus has been reached in the literature regarding the 

directionality of certain relationships due to inconsistency between epidemiological and 

MR studies12,27,30. Our results found using the Cox meta-regression model were not 

replicated using the NLMR model as we were significantly underpowered for our NLMR 

analyses; thus, we cannot make further conclusions about the biological significance 

behind the results nor confirm or deny the inconsistency between epidemiological and 

MR studies. Higher levels of TG, CRP, and ALT may be reflective of individuals having 

higher BMI due to the strong correlation between these biomarkers and BMI; thus, when 

we select individuals above median concentrations of these biomarkers, the optimal BMI 

may be higher because individuals have a higher BMI to begin with12,27,30. Whether this 

higher nadir value is causal remains unanswered. Our results should be replicated using 

NLMR in larger studies with greater mortality:control ratios for stronger power. If it is 

true that clinical biomarkers play a significant causal role in optimal BMI variation, then 

biochemical profiling may be also considered as an adjunct to existing clinical BMI 

recommendations.  
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4.4 Limitations and Future Directions 

Although the UKB is a large, genetically homogenous cohort with opportunities for 

expansive phenotyping, the sample may not be large enough for NLMR analyses to have 

power, considering the model relies on the sample size per quantile, and by extension, the 

number of deaths per quantile34. The issue surrounding limited sample size was 

manifested within the limitations of both the quadratic and fractional polynomial-based 

models for NLMR when producing bootstrapped confidence intervals, making it harder to 

conclude causality in our epidemiological analyses. Future studies should replicate our 

findings in larger, more powered studies, especially with larger mortality:control ratios to 

address these limitations. While there were many efforts made to reduce confounders, 

because all of our results are observational, we cannot be sure whether our studies are still 

subject to significant residual confounding, horizontal pleiotropic effects, or 

environmental factors strongly associated with either BMI or SNPs associated with BMI, 

such as lung function or eating behaviour, especially when we were not powered enough 

to confirm causality using NLMR. However, since the BMI-mortality relationship has 

been validated through mendelian randomization analyses in previous studies, our results 

may still be relatively robust to these confounders1,19,37,38. Future studies should explore 

how other potential confounders of BMI may influence the optimal BMI to confirm this, 

especially potential confounders currently unavailable in the UKB. While we used a large 

genetically homogeneous British Caucasian population with minimal genetic ancestral 

confounding, our results cannot be easily generalized to other populations for which the 

optimal BMI varies greatly due to genetic ancestry. This limitation also applies for our 
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PRS9. Future studies should replicate our analyses in multi-ethnic studies to prove 

generalizability of our findings in non-British Caucasian populations. Studies have not 

determined what type of adiposity the metabolically beneficial, deleterious, or neutral 

BMI encapsulates9. Future studies need to determine whether the genes associated with 

metabolically favourable, deleterious, or neutral BMI PRS are related to a specific type of 

fat, such as subcutaneous or visceral fat, as this could provide more information on which 

type of fat presents greater protection against mortality for those at the higher end of these 

PRS or how metabolically neutral BMI is contributing to the genetic variation in BMI, 

which could further help guide recommendations or treatment plans9. There are also 

several practical limitations in using PRS in the clinical setting. Using PRS in a 

framework that consists of integrating genotype and whole-genome sequence data into 

clinical records, computing an individual PRS for the patient and interpreting the score 

against an appropriate genome reference population is not yet justified in the literature 

and offers a challenge in terms of practical implementation9. More importantly, such a 

reference population may not be available as a point of comparison, leaving PRS 

computed for individuals in certain populations to be left uninterpreted and thus, not 

useful9. The usefulness of PRS for clinical screening in those with non-European ancestry 

and those that are genetically admixed (i.e. having genetic ancestry from two or more 

previously isolated populations, thus having ancestors from multiple sources) is also not 

clear from the current literature, limiting applicability to populations outside of European 

descent, which can further weaken the case of bringing PRS into clinical practice for BMI 

recommendations, as this is true with most obesity genetic studies1,33.   
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4.5 Final Remarks 

We hope our research provides further evidence for support of clinical use of PRS to 

optimize patient health, well-being, and quality of life. Although more research needs to 

be conducted, such advances in precision medicine could have large implications for 

public health recommendations for BMI. Obesity has been linked with increased 

hospitalization and usage of medical services35. In 2016, one study showed that 

annualized health care expenditures were $1,496 USD higher for those who were obese 

compared to those in the normal weight category35. Much of the excessive health care 

utilization and expenditures associated with obesity were explicated by chronic 

condition/illness and poor health, either as a cause or consequence of obesity35. Obesity is 

considered a preventable condition35. BMI is also used to determine eligibility for obesity 

treatments, such as bariatric surgery10. Helping individuals set a BMI target that works 

best for them based on their unique characteristics can optimize their health and 

prevention of the negative health care outcomes associated with obesity, both in terms of 

the medical cost for the individual and economic cost to the health care system. Positive 

consequences of achieving an ideal BMI potentially include improved cardiovascular, 

metabolic, and mental health2. Using genetic and clinical biomarkers to adjust BMI 

recommendations could also set precedence for re-consideration of the existing BMI cut-

off points for specific obesity interventions, like bariatric surgery10. As BMI may not be 

the best indicator of ideal weight given its limitations, WHR or LM, which have been 
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shown to be better at predicting risk for disease and/or mortality compared to BMI, may 

be considered for use alongside BMI recommendations to address much of what BMI 

cannot account for, both through the traits themselves and through genetics. The sex-

specific J-shaped relationship between LM and all-cause mortality indicates that there 

might be an optimal amount of lean mass to obtain and that this optimum differs between 

males and females.  Although these results are not confirmed to be causal, they 

nevertheless still show how other body composition measurements could be potentially 

useful in informing clinical BMI recommendations. Just as the definition of BMI has 

constantly changed over time due to evidence-based medicine, we hope our findings can 

provide the catalyst to bring change once again. 
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Figure 3.8 -  Comparing Mendelian Randomization and Randomized Control Trial 

Methodology. 
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Table 2.1 – A list of a) GWAS consortia used to derive PRS, b) exposures, c) outcomes, 

 and d) clinical biomarker variables used 

a) 

Phenotype GWAS Consortia Name 

Body mass index (BMI, including 

metabolically favourable, deleterious, 

and neutral BMI) 

Genetic Investigation of ANthropometric Traits 

(GIANT)1 

Triglyceride (TG) Million Veteran Program (MVP)5 

Whole body lean mass (LM) GEnetic Factors for OSteoporosis Consortium 

(GEFOS)6 

Waist-to-hip ratio (WHR) Genetic Investigation of ANthropometric Traits 

(GIANT)1 

 

b)  

Phenotype UKB Field ID/ICD-10 Code 

BMI 21001-0.0 

Sex 31-0.0 

Age 21022-0.0 
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LM 23101-0.0 

Smoking Status 20116-0.0 

Diabetes 2443-0.0 and ICD-10 Code E1[0-4] 

Alcohol 1558-0.0 

Index of Multiple Deprivation 

(IMD) 

IMD data from England: 26410-0.0 

IMD data from Scotland: 26427-0.0 

IMD data from Wales: 26426-0.0 

UKB Assessment Centre 54-0.0 

Height 50-0.0 

 

c)  

Mortality Outcome UKB Field ID/ICD-10 Code 

All-Cause Mortality 40000-0.0 

Cardiovascular Mortality ICD-10 Code: I 

Cancer Mortality ICD-10 Code: C 

Respiratory Disease Mortality ICD-10 Codes: J00-09, J10-19, J20-22, J23-29, J3-9 
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Other Mortality* All ICD-10 Codes except I, C, and J00-09, J10-19, J20-22, 

J23-29, J3-9 

 

d)  

Clinical Biomarker UKB Field ID/ICD-10 Code 

Triglycerides (TG) 30870-0.0 

Low-density lipoprotein (LDL) 30780-0.0 

High-density lipoprotein (HDL) 30760-0.0 

Hemoglobin 1Ac (Hb1Ac) 30750-0.0 

C-reactive protein (CRP) 30710-0.0 

Cholesterol 30690-0.0 

Alanine Aminotransferase 30620-0.0 

WHR 48-0.0 and 49-0.0 

 

Table 2.2 - Baseline characteristics of participants in the UK Biobank (UKB) 
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Baseline characteristics All UKB 

participants 

All deaths      Controls 

Number of participants 387,692 23,094 364,598 

Percentage (%) of men 177,346 (45.7) 13,732 (59.5) 163,614(44.9) 

Mean (SD) age at 

baseline (years) 

56.9 (8.0) 61.8(6.3) 56.6(8.0) 

Mean (SD) body mass 

index (kg/m2) 

27.4 (4.6) 28.1(5.1) 27.3(4.6) 

Mean (SD) whole body 

lean mass (kg) 

53.4 (11.5) 55.3(11.6) 53.2(11.5) 

Mean (SD) whole body 

fat mass (kg) 

24.8 (9.3) 25.6(10.0) 24.8(9.3) 

Mean (SD) waist-to-hip 

ratio 

0.87 (0.1) 0.91(0.1) 0.87(0.1) 

Percentage (%) of ever 

smokers 

175,504 (45.3) 14,229 (61.6) 161,275 (44.2) 
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Percentage (%) of 

people with diabetes 

26,162 (6.7) 3,960 (17.1) 

  

22,022 (6.1) 

Demographics of 

alcohol consumption 

Daily or almost 

daily: 

82,221(21.2) 

  

Three or four 

times a week: 

93,938 (24.2) 

  

Once or twice a 

week: 102,714 

(26.5) 

 

 

One to three 

times a month: 

43,078 (11.1) 

 

Daily or almost 

daily: 

5,473 (23.7) 

  

Three or four times a 

week: 4,621 (20.0) 

  

Once or twice a 

week: 5,450 

(23.6) 

  

One to three times a 

month: 

2,204 (9.5) 

 Special occasions 

only: 

2,983 

(12.9) 

Daily or almost daily: 

76,748(21.1) 

  

Three or four times a 

week: 89,317 (24.5) 

  

Once or twice a week: 

97,264 

(26.7) 

  

One to three times a 

month: 40,874 (11.2) 

  

Special occasions 

only: 37,743 

(10.4) 

Never: 22,652 

(6.21) 
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Special 

occasions only: 

40,726(10.5) 

Never: 25,015 

(6.5) 

 

Never: 2,363 (10.2) 

Mean (SD) Index of 

Multiple Deprivation** 

16.5 (13.6) 19.5(15.8) 16.5(13.6) 

 

Table 2.3 - Association between BMI and major covariates used in analyses.  

 

For binary covariates, the odds ratio (OR) was reported; for continuous covariates, the 

beta regression coefficient (β) was reported. Significance was set at p < 0.05. PC = 

principal component, IMD = index of multiple deprivation, UKB = UK Biobank, BMI = 

body mass index.  

 

Covariate ~ BMI 

Association 

β/OR P Adjusted R-

squared 

Age ~ BMI 0.08 < 2 × 10-16 0.002378 

Sex ~ BMI 1.04 < 2 × 10-16 N/A 
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PC1 ~ BMI 3.13 × 10-3 1.99 × 10-8 7.87 × 10-5 

PC2 ~ BMI -0.001 0.0227 1.08 × 10-5 

PC3 ~ BMI -0.002 4.8 × 10-5 4.8 × 10-5 

PC4 ~ BMI 0.018 < 2 × 10-16 0.0008194 

PC5 ~ BMI 0.041 < 2 × 10-16 0.0008179 

PC6 ~ BMI -0.001 0.00215 2.17 × 10-5 

PC7 ~ BMI 0.0005 0.434 -9.999 × 10-7 

PC8 ~ BMI -0.001 0.0926 4.715 × 10-6 

PC9 ~ BMI -0.009 1.74 × 10-8 7.935 × 10-5 

PC10 ~ BMI 0.003 0.001207 2.445 × 10-5 

IMD ~ BMI 0.370 < 2 × 10-16 0.01604 

Smoking Status ~ 

BMI 

1.03 < 2 × 10-16 N/A 

Diabetes ~ BMI 1.16 < 2 × 10-16 N/A 

UKB Assessment 

Centre ~ BMI 

1.05 0.000161 N/A 
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Table 2.4 – Collinearity between alanine aminotransferase, C-reactive protein, and 
triglyceride phenotypes. CRP = C-reactive protein, ALT = alanine aminotransferase, TG 
= triglyceride, β = beta regression coefficient.  

 

Covariate ~ BMI 

Association 

β P 

CRP ~ ALT 0.02 < 2 × 10-16 

CRP ~ TG 0.32 < 2 × 10-16 

ALT ~ TG 3.63 < 2 × 10-16 

 

 


