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Abstract

Cluster analysis is the process of finding underlying group structures in a set of

data. Model-based clustering has an array of swiftly growing literature surrounding

this topic; however, a Gaussian mixture model has always been a prevalent model in

model-based clustering literature. More specially, when dealing with high-dimensional

data, the parsimonious Gaussian mixture model has shown great computational ef-

ficiency because the number of covariance parameters is linear with the number of

variables for each model in the family. Parsimonious Gaussian mixture models gen-

eralize the mixture of factor analyzers model. For each group, the number of factors

q has traditionally been held constant. An extension to the parsimonious Gaussian

mixture model family is developed allowing q to be a vector of equal length to the

number of components. Although the parsimonious Gaussian mixture model family

has shown great computational potential, this new extension takes away from the

aforementioned feat with rapidly growing parameter combinations to fit. Parallel

computational techniques are explored throughout this thesis to improve computa-

tional runtime and allow the rapidly growing number of parameter combinations to

be fit in a realistic time frame, especially in the case of high-dimensional data. The

techniques are applied to real data to assess performance and computational efficiency.
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Chapter 1

Introduction

1.1 Cluster Analysis

A cluster can be defined as a collection of data (or observations). Cluster analysis

refers to the process of classifying a set of data into closely related clusters (or groups),

where observations placed within groups are as similar to one another as possible and

observations across groups are as dissimilar as possible. Multiple different methods

for cluster analysis exist in current literature that aim to identify different underlying

group structure within a dataset.

Methods for cluster analysis fall into two broad subcategories: hierarchical versus

non-hierarchical and parametric versus non-parametric. Hierarchical clustering ap-

proaches treat each observation in a set of data as a separate cluster and iteratively

merges the two closest clusters, based on specified similarity and distance measures,

until there is a single cluster. Non-hierarchical clustering approaches have the added

flexibility of splitting and merging clusters. This approach no longer follows a step-

by-step tree like structure, but will optimize results by minimizing or maximizing a

1
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distance-based measure overall. An example of a hierarchical versus non-hierarchical

clustering technique would be hierarchical clustering (Ward, 1963) versus k-means

clustering (MacQueen, 1967; Hartigan and Wong, 1979). Both of these distance-based

approaches can further be categorized as non-parametric clustering methods — al-

though k must be selected in the latter. Although non-parametric, distance-based

approaches are frequently used due to their ease of implementation, approaches less

sensitive to the choice of distance metric are desirable. This is where parametric,

model-based approaches using mixture models fit in. Mixture model-based cluster-

ing based on parametric finite mixture models offer more flexibility in regards to

the dimensionality and complexity of data. Mixture models also fall into the non-

hierarchical category for cluster analysis.

We consider the definition of a cluster to be that given by McNicholas (2016a):

. . . a cluster is a unimodal component within an appropriate finite mix-

ture model.

Mixture model-based approaches offer a great advantage to clustering because they

allow the use of approximate Bayes factors to compare models which gives a sys-

tematic means of selecting model parametrization and the number of clusters (Fraley

and Raftery, 1998). However, McLachlan and Peel (2000) state that applying model-

based clustering when a large number of observed variables are present in the data

may cause it to be over-parametrized and computationally intensive. This is due to

the mixing weights and estimation of the mean vector and covariance matrix for each

component fit.

2
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1.2 Statistical and Parallel Computing

Statistical computing is the process of creating computer algorithms to implement

statistical methods. It is a necessary technique with modern day big data that may

require time intensive calculations such as those mentioned for model-based clustering.

Traditionally, these algorithms are written for serial computation. This would suggest

that all computations are run on a single computer using a single central processing

unit (CPU). Problems are broken down into discrete series of instructions which are

executed sequentially, one at a time.

Parallel computing involves the simultaneous use of multiple computing resources

to solve a problem. The problems are broken down into discrete parts that can

be solved concurrently where each part is executed simultaneously on a different

computing resource. Computing resources can include a single computer with multiple

processors, a number of computers connected across a network, or any combination

thereof. Parallel computing is used for two primary reasons: to reduce computational

time and to solve larger scale problems that typically require more resources, e.g.,

memory.

Parallel computing is done using different levels of granularity, most commonly

fine-grain or coarse-grain. The level of granularity refers to the amount of work per-

formed by a specific task. Fine-grain parallelism breaks down a problem into a large

number of smaller tasks, but requires more resources, while coarse-grain parallelism

would break down the problem into a smaller number of larger tasks using fewer

resources. Consider 10 arrays that must each be summed. Given that 10 processors

are available, a fine-grain parallelism scenario could consist of sending each array to

a different processor to be summed. Coarse-grain parallelism would only require two

3
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processors to be available in which each processor receives five arrays to sum. Note,

this is an inefficient example of parallelism due to the overhead required to communi-

cate tasks between processors because each task can be accomplished more efficiently

than the communication overhead.

Parallel computing is classified by one of four possible computer architectures

using Flynn’s classical taxonomy (Flynn, 1966). These classifications distinguish be-

tween two independent dimensions, instruction and data, where each dimension can

be in a single or multiple state. The focus of parallel computing throughout this

thesis falls under the multiple instruction, multiple data category. Each processor

has the ability to be working on a different set of instructions during the same clock

cycle with a different stream of data.

There are two primary forms of memory architecture in parallel computing, namely

shared memory and distributed memory. Shared memory allows for all processors to

access all memory space as a global address. Sharing information in this architecture

is extremely convenient, but puts a large burden on the programmer to synchronize

constructs to ensure access of the global memory is done safely. It can become in-

creasingly difficult to implement this architecture with larger numbers of processors.

Distributed memory allows for each processor to have local memory where the mem-

ory on the processor does not map to any other space. Memory is scalable with the

number of processors but requires the programmer to account for numerous details

of data communication between processors and the cost of initial distribution.

4
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1.3 Thesis Outline

1.3.1 Chapter 2

Background information is given, including details on finite mixture models, the

expectation-maximization algorithm and variants thereof, and factor analysis in model-

based clustering. Parsimonious Gaussian mixture models are introduced alongside de-

tails of parameter estimation. Computational techniques for improving performance

are reviewed.

1.3.2 Chapter 3

A variational approach for the six of twelve models in the extended parsimonious

Gaussian mixture model family with unconstrained factor loadings that will allow for

the number of factors fit per component to vary is proposed. Parameter estimation

for the six variant models is discussed. The approach is illustrated on real data

using parallel computing techniques to improve performance due to the significant

computational time required to run such models.

1.3.3 Chapter 4

A computational technique for model-based clustering using a hybrid of existing par-

allel computing methods is developed in Julia. Details of how such a technique can be

implemented on a single computer and on a high-performance computer are discussed

and illustrated. The technique is applied to parsimonious Gaussian mixture models

using multiple real data sets to asses it’s performance over existing methods.

5
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1.3.4 Chapter 5

Details of how the technique developed in Chapter 4 was originally developed in

Python are presented. The performance of computational statistics applications using

Python, R, C, and combinations of these three languages is given. New approaches

for the parallelization of existing code in R using Python and Julia are illustrated.

1.3.5 Chapter 6

The ideas and methods developed in this thesis are summarized and suggestions for

future work are discussed.

1.4 Contributions to Literature

The impact on the existing literature of the ideas proposed in this thesis can be

summarized as follows:

• The multi-factor parsimonious Gaussian mixture models developed here offer a

much more flexible approach compared to the standard extended parsimonious

Gaussian mixture model family. By allowing the number of factors fit to vary

in models with unconstrained factor loadings a more accurate model may be fit

to certain types of data while still allowing the standard models with a fixed

number of factors to be chosen as the best model.

• The assessment of a hybrid parallel computing technique for model-based clus-

tering offers insight in to how the future of big data may be handled to opti-

mize computational time. Although heavily dependent on resources available,

6
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an accurate comparison of parallel computing techniques when applied to com-

putational statistical methods is provided.

• Details of how parallel techniques can be applied in both Python and Julia are

illustrated. The application of these techniques shows that even with limited re-

sources, large improvements in computational time can be achieved. Code that

has been previously written in a popular language such as R can be run in par-

allel to improve performance. Reasoning as to why the future of computational

statistics may be diverging from R become apparent.
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Chapter 2

Background

2.1 Mixture Models and Model-Based Clustering

Model-based clustering is a technique for estimating group or cluster memberships,

in which no observations are a priori labeled, based on finite mixture models. Finite

mixture models assume that a population can be modelled as a collection of subpop-

ulations where each subpopulation can be modelled by a statistical distribution. A

random vector X is said to arise from a parametric finite mixture distribution if, for

all x ⊂ X, its density can be written

f(x | ϑ) =
G∑

g=1

πgfg(x | θg),

where πg is the gth mixing proportion satisfying both πg ∈ (0, 1] and
∑G

g=1 πg = 1.

fg(x | θg) is the gth component density, and ϑ = (π1, . . . , πg,θ1, . . . ,θG) denotes the

parameters. The component densities f1(x | θ1), . . . , fG(x | θG) are commonly taken

to be the same type.

8
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A vast amount of work in the field of model-based clustering has been focused on

the use of a Gaussian mixture model. In this case, the gth component density above

is replaced with the density of a random variable from a multivariate Gaussian distri-

bution. The Gaussian mixture model has (G−1)+Gp+Gp(p+1)/2 free parameters,

where G − 1 free parameters come from the estimation of the mixing proportions,

Gp from the estimation of the means, and Gp(p + 1)/2 from the estimation of the

covariances. An extensive review of finite mixture models can be found in McNicholas

(2016b).

2.2 EM Algorithm and Extensions

2.2.1 EM Algorithm for Model-Based Clustering

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an iterative

algorithm used to find maximum likelihood estimates in the presence of missing or

incomplete data. Each iteration of the EM algorithm involves two steps, the expecta-

tion step (E-step) and the maximization step (M-step). In the E-step, the conditional

expected value of the complete-data log-likelihood, Q, is computed. In the M-step,

Q is maximized with respect to the model parameters. The iterations are repeated

until a desired stopping criterion is reached. Possible stopping criteria are discussed

in Section 2.2.5. It is worth noting that Titterington et al. (1985) cite similar ap-

proaches to the EM algorithm that were used by Baum et al. (1970), Orchard and

Woodbury (1972), and Sundberg (1974).

In a model-based clustering scenario, complete-data refers to the combination of

the observed data x1, . . . ,xn along with the unknown labels z1, . . . , zn, where zi =

9
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(zi1, . . . , ziG). Note that zi denotes the group memberships of observation i, where

zig is an indicator variable used to represent whether or not observation xi belongs

to group g. The indicator variable can formally be defined as

zig =


1 if xi belongs to component g,

0 otherwise,

for observations i = 1, . . . , n and components g = 1, . . . , G. The estimation of zig is

considered the primary objective in model-based clustering.

2.2.2 ECM Algorithm

An extension to the EM algorithm, the expectation-conditional maximization (ECM)

algorithm, was introduced by Meng and Rubin (1993) for scenarios in which the

complete-data likelihood is slightly more complicated. The M-step of the EM al-

gorithm here is replaced by a series of computationally more simple conditional-

maximization steps (CM-steps). This is accomplished by conditioning on some of the

parameters being estimated. Meng and Rubin (1993) show that the ECM algorithm

shares properties of the EM algorithm, e.g., each iteration increases the likelihood.

They also show that, although the algorithm may require more iterations to reach

convergence, the overall computation time is faster than that of the EM algorithm.

2.2.3 AECM Algorithm

A further extension to both the EM and ECM algorithm, the alternating expectation-

conditional maximization (AECM) algorithm, was introduced by Meng and van Dyk
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(1997). This variant replaces a single M-step by a series of CM-steps and allows for a

different specification of the complete-data at each stage. Meng and van Dyk (1997)

show that the monotone convergence properties of the EM and ECM algorithms hold

for the AECM algorithm. As with the ECM algorithm, the AECM algorithm has an

increased number of iterations to reach convergence, but can be more computationally

efficient than the EM algorithm. An extensive review of the EM algorithm as well as

the aforementioned and other extensions can be found in McLachlan and Krishnan

(2008).

2.2.4 Woodbury Identity

The AECM algorithm requires the inversion of a p× p matrix Ψ + ΛΛ′ which can be

both computationally expensive when large values of p are present. The Woodbury

identity (Woodbury, 1950) is used in this scenario to avoid potentially problematic

calculation. McNicholas (2016a) shows that given an m × m matrix A, an m × k

matrix U, a k × k matrix C, and a k ×m matrix V, the Woodbury identity states

(A + UCV)−1 = A−1 −A−1U
(
C−1 + VA−1U

)−1
VA−1.

When setting U = Λ, V = Λ′, A = Ψ, and C = Iq, this yields that

(Ψ + ΛΛ′)
−1

= Ψ−1 −Ψ−1Λ
(
Iq + Λ′Ψ−1Λ

)−1
Λ′Ψ−1,

which, in turn, simplifies the problem to the inversion of a q × q matrix, where q is

much less than p, along with some diagonal matrices. A similar identity can also used
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for finding the determinant of the covariance matrix in the AECM algorithm, i.e.,

|Ψ + ΛΛ′| = |Ψ|∣∣Iq −Λ′ (ΛΛ′ + Ψ)−1 Λ
∣∣ .

2.2.5 Stopping Criterion

A variety of stopping criteria have been suggested to determine convergence of the

EM algorithm and its variants. A common approach is to stop the algorithm when

increases in the log-likelihood fall below a certain threshold, ε, after a number of

iterations. This can be written as,

`(k+1) − `(k) < ε. (2.1)

However, (2.1) is more a measure of the “lack of progress” than true convergence

because the log-likelihood can “jump” in a stair-like pattern (McNicholas, 2016a).

More decisive convergence criteria have since been developed to determine if the EM

algorithm has converged. Some well-known approaches revolve around the use of

Aitken’s acceleration (Aitken, 1926). We can use Aitken’s acceleration to estimate

the asymptotic maximum log-likelihood at each iteration of the EM algorithm and

hence to determine whether the algorithm can be stopped or not. At iteration k, the

Aitken acceleration is given by

a(k) =
`(k+1) − `(k)

`(k) − `(k−1)
,
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where `(k) is the log-likelihood value at iteration k. The asymptotic estimate of the

log-likelihood (Böhning et al., 1994) at iteration k + 1 is given by

`(k+1)
∞ = `(k) +

1

1− a(k)
(`(k+1) − `(k)),

where each value is as previously defined. The stopping criterion developed by Lindsay

(1995) suggests that the EM algorithm can be stopped when

`(k)∞ − `(k) < ε, (2.2)

where ε is a small value. An alternative stop is proposed by McNicholas and Murphy

(2010a), which suggests that the algorithm has converged when

`(k+1)
∞ − `(k) < ε, (2.3)

for a small value of ε, conditional on the fact that difference in (2.3) is positive.

McNicholas (2016a) points out that the only case in which the difference can achieve

a negative value is for a(k) > 1, which would not be a reasonable place to stop. It

was shown by McNicholas et al. (2010) that the criterion in (2.3) is at least as strict

as (2.2) since `(k+1) ≥ `(k). It was also shown that the criterion in (2.3) is at least as

strict as the lack of progress criterion in (2.1). The stopping criterion proposed by

McNicholas and Murphy (2010a) will be adopted herein.
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2.3 Model Selection

When using mixture models, an objective criterion is needed to select the ‘best’

model. While Bayes factors are known to have desirable properties for model selection,

they are not evaluated with ease. Instead, the Bayesian information criterion (BIC;

Schwarz, 1978) can be used to approximate the Bayes factor and select the best model.

When comparing two models, the difference in the BIC gives a rough approximation

to the logarithm of the Bayes factor assuming the prior distributions are equal (Kass

and Wasserman, 1995a). Given a model of parameters Θ, the BIC can be written

BIC = 2`(Θ̂)− ρ log n,

where `(Θ̂) is the maximized log-likelihood, Θ̂ is the maximum likelihood estimate of

Θ, ρ is the number of free parameters, and n is the number of observations. The use

of the BIC for model selection is a well known approach in model-based clustering.

Justifications for its use can be found in Leroux (1992), Kass and Wasserman (1995b),

Kass and Wasserman (1995a), and Keribin (2000).

2.4 Performance Assessment

In a true clustering scenario, the group memberships are not known a priori. To

evaluate the effectiveness of the models, data with known group memberships are

treated as unknown. The model is then evaluated using a cross-tabulation of the

maximum a posteriori (MAP) classification of the predicted group memberships and

that of the true group memberships. From the results of the cross-tabulation, the

performance can be quantified though the use of the adjusted Rand index (ARI;
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Hubert and Arabie, 1985). The Rand index (Rand, 1971) alone does not account

for agreement by chance. This is to say that when predicted group memberships are

obtained, there is a chance they would be classified correctly by chance. The Rand

index is based on pairwise agreement, written as

number of pairwise agreements

number of pairs
,

where a value on [0, 1] is obtained, 1 being perfect class agreement. The ARI is used

as it corrects the Rand index for agreement by chance and has an expected value of

0 under random classification while still having a value of 1 for perfect classification.

Steinley (2003) states that the ARI is a better measure of performance for classifi-

cation problems than simply calculating the misclassification rate. General properties

of the ARI can be found in Steinley (2004), who shows that the mean and standard

deviation of the ARI are not altered when changes occur in the number of clusters,

the number of observations, and the percent of observations within each cluster.

2.5 Mixtures of Factor Analyzers and Extensions

2.5.1 Factor Analysis

Factor Analysis (Spearman, 1904) is a data reduction technique that aims to model p

dimensional random variables X1, . . . ,Xn using q dimensional vectors of unobserved

latent variables U1, . . . ,Un where q < p (McNicholas et al., 2010). The factor analysis

model assumes Xi can be modeled as

Xi = µ+ ΛUi + εi,
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for i = 1, . . . , n, where Λ represents a p×q matrix of factor loadings, Ui are the latent

factors which are independent of εi and are independently distributed as N(0, Iq) and

N(0,Ψ), respectively. Note, Ψ is a positive p × p diagonal matrix. From the factor

analysis model, the marginal distribution of Xi can be written as a multivariate

Gaussian with mean µ and covariance ΛΛ′ + Ψ. With the decomposed covariance,

ΛΛ′+Ψ, the number of free covariance parameters shrinks from 1
2
p(p+1) to pq+p−

1
2
q(q − 1) (Lawley and Maxwell, 1962). Lawley and Maxwell (1962) show an overall

reduction of

1

2

[
(p− q)2 − (p+ q)

]
parameters, provided that

(p− q)2 > (p+ q).

See McNicholas (2016a) for a more in-depth review.

2.5.2 Mixture of Factor Analyzers

Similar to the factor analysis model, the mixture of factor analyzers (MFA) model

assumes Xi can be modeled as

Xi = µg + ΛgUig + εig,

with probability πg, for i = 1, . . . , n and g = 1, . . . , G. The parameters remain

unchanged in definition from the aforementioned Factor Analysis model with the

exception of being unique to the component g for g = 1, . . . , G. It follows that the
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joint distribution of X1, . . . ,Xn can be written as

f(x |ϑ) =
G∑

g=1

πg φ(xi |µg,ΛgΛ
′
g + Ψg),

where ϑ represents the model parameters. As with the factor analysis model, the

covariance structure is decomposed as Σg = ΛgΛ
′
g + Ψg.

A mixture of factor analyzers was first introduced by Ghahramani and Hinton

(1997) with the constraint Ψg = Ψ, stating that this constraint can be relaxed. Tip-

ping and Bishop (1997, 1999) introduces mixtures of probabilistic principal compo-

nent analyzers by applying the isotropic constraint Ψg = ψgIp. A fully unconstrained

model was presented by McLachlan and Peel (2000).

2.6 Parsimonious Gaussian Mixture Models

2.6.1 Original PGMM Family

McNicholas and Murphy (2005, 2008) develop an eight-member family of parsimo-

nious Gaussian mixture models (PGMMs) which use the factor analyzers model. By

imposing constraints on Λg and/or Ψg to be equal across components together with

the option to impose the isotropic constraint Ψg = δgIp further reduces the number

of parameters and gives way to the PGMM family (Table 2.1).

2.6.2 Extended PGMM Family

This family of eight models was extended by McNicholas and Murphy (2010b) by

decomposing Ψg = ωg∆g, where ωg ∈ R+ and ∆g is a diagonal matrix satisfying
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Table 2.1: Nomenclature, component covariance matrix structure, and number of free
covariance parameters for eight parsimonious Gaussian mixture models.

PGMM Nomenclature
Λg = Λ Ψg = Ψ Ψg = ψgIp Σg Free Cov. Parameters

C C C ΛΛ′ + ψIp pq − q(q − 1)/2 + 1
C C U ΛΛ′ + Ψ pq − q(q − 1)/2 + p
C U C ΛΛ′ + ψgIp pq − q(q − 1)/2 +G
C U U ΛΛ′ + Ψg pq − q(q − 1)/2 +Gp
U C C ΛgΛ

′
g + ψIp G[pq − q(q − 1)/2] + 1

U C U ΛgΛ
′
g + Ψ G[pq − q(q − 1)/2] + p

U U C ΛgΛ
′
g + ψgIp G[pq − q(q − 1)/2] +G

U U U ΛgΛ
′
g + Ψg G[pq − q(q − 1)/2] +Gp

|∆g| = 1. Similar to the previously given component covariance structure, it can now

be written as

Σg = ΛgΛ
′
g + ωg∆g.

The option to impose all, some, or none of the four constraints, Λg = Λ, ωg =

ω, ∆g = ∆ and ∆g = Ip, gives way to a family of 12 models referred to as the

expanded PGMM (EPGMM) family, see Table 2.2. Imposing any valid combination

of constraints allows for a different number of free parameters in the corresponding

model as well as different levels of parsimony. Parameter estimation for all members

of the PGMM family can be carried out using AECM algorithms. The family of 12

models has been implemented in the pgmm package (McNicholas et al., 2019) available

in R. For a more detailed review of the PGMM family see McNicholas (2016a).

2.6.3 Parameter Estimation

A brief description of parameter estimation using the AECM algorithm is given from

McNicholas (2016a). Allow the complete-data to be the observed data, x1, . . . ,xn,
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Table 2.2: Nomenclature, equivalent PGMM member where applicable (Table 2.1),
and component covariance matrix structure for each member of the expanded PGMM
family.

PGMM Nomenclature
Λg = Λ ∆g = ∆ ωg = ω ∆g = Ip PGMM Equivalent Σg

C C C C CCC ΛΛ′ + ωIp
C C U C CUC ΛΛ′ + ωgIp
U C C C UUC ΛgΛ

′
g + ωIp

U C U C UUC ΛgΛ
′
g + ωgIp

C C C U CCU ΛΛ′ + ω∆
C C U U – ΛΛ′ + ωg∆
U C C U UCU ΛgΛ

′
g + ω∆

U C U U – ΛgΛ
′
g + ω∆g

C U C U – ΛΛ′ + ω∆g

C U U U CUU ΛΛ′ + ωg∆g

U U C U – ΛgΛ
′
g + ω∆g

U U U U UUU ΛgΛ
′
g + ωg∆g

and z1, . . . , zn to be the unknown labels. The mixing proportions, πg, and component

means, µg, will be estimated for g = 1, . . . , G. By using the expected values of the

component membership labels, ẑig, for i = 1, . . . , n and g = 1, . . . , G in the complete

data log-likelihood, the expected value of the complete-data log-likelihood is found

to be

Q1 =
n∑

i=1

G∑
g=1

ẑig[log πg + log φ(xi | µg,ΛgΛ
′

g + Ψg)]

=
G∑

g=1

ng log πg −
np

2
log 2π −

G∑
g=1

ng

2
log |ΛgΛ

′

g + Ψg|

−
G∑

g=1

ng

2
tr{S(ΛgΛ

′

g + Ψg)
−1},
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where ng can be found from the sum of the component membership labels for all

individuals, and

Sg =
1

ng

n∑
i=1

ẑig(xi − µg)(xi − µg)
′. (2.4)

Q1 can then be maximized with respect to the model parameters to obtain

π̂g =
ng

n
and µ̂g =

∑n
i=1 ẑigxi∑n
i=1 ẑig

. (2.5)

For the next stage of the AECM algorithm, estimates of Λg and Ψg are found.

First consider the joint distribution described in McNicholas (2016a),

Xi

Ui

 ∼ N


µ

0

 ,
ΛΛ′ + Ψ Λ

Λ′ Iq


 .

McNicholas (2016a) shows the expected values of the joint distribution to yield

E[Ui | xi] = β(xi − µ) where β = Λ′(ΛΛ′ + Ψ)−1,

and

E[UiU
′

i | xi] = Var[Ui | xi] +E[Ui | xi]E[Ui | xi]
′
= Iq −βΛ +β(xi−µ)(xi−µ)

′
β′.

The latent factors, uig, for i = 1, . . . , n and g = 1, . . . , G are added to the complete-

data log-likelihood and in a similar fashion to the first stage, the expected value of
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the complete-data log-likelihood is obtained to be

Q2 = C +
G∑

g=1

[−ng

2
log |Ψg| −

ng

2
tr{Ψ−1g Sg}

+
n∑

i=1

ẑig(xi − ûg)
′Ψ−1g ΛgE[Uig | xi, zig = 1]

− 1

2
tr{Λ′

gΨ
−1
g Λg

n∑
i=1

ẑigE[UigU
′

ig | xi, zig = 1]}]

= C +
1

2

G∑
g=1

ng[log |Ψ−1g | − tr{Ψ−1g Sg}+ 2 tr{Ψ−1g Λgβ̂gSg}

− tr{Λ′

gΨ
−1
g ΛgΘg}],

where β̂g = Λ̂
′
g(Λ̂gΛ̂

′
g + Ψ̂g)

−1, Θg = Iq − β̂gΛ̂g + β̂gSgβ̂
′

g, and C is a constant with

respect to the Λg and Ψg. Depending on the constraints that are imposed on Λg

and/or Ψg, Q2 can be differentiated with respect to Λ and Ψ−1 to yield the score

functions. From here, McNicholas and Murphy (2010b) show that solving the score

functions when set equal to zero, updates for Λ̂new and Ψ̂
new

are obtained.

For the EPGMM family, parameter estimation is carried out in an analogous

manor for models with PGMM analogues as shown by McNicholas and Murphy

(2010b). Using both

ω̂g = |Ψ̂g|1/p, and

∆̂g = Ψ̂g/|Ψ̂g|1/p,

21



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

updates for each of the eight models can be found. The primary difference in parame-

ter estimation occurs in the second stage of the AECM for the four new models with-

out PGMM analogues. Due to the constraint on ∆g, where |∆g| = 1 a slight change

in the calculation of the estimates is required. McNicholas and Murphy (2010b) de-

scribe this approach in detail through the use of Lagrange multipliers (Lagrange,

1788; Fraleigh, 1990).

By subtracting the Lagrange multiplier with respect to |∆g|−1 from the complete-

data log-likelihood with respect to Λg, ωg, and ∆g under the appropriate constraints,

the Lagrangian can be found. McNicholas and Murphy (2010b) show the Lagrangian

can then be differentiated with respect to Λg, ω
−1
g , ∆−1, and ), where ) is used to de-

note the Lagrangian multiplier, to yield four respective score functions. Setting these

score functions to zero and solving will provide the respective parameter updates. See

McNicholas and Murphy (2008, 2010b) for more extensive details and examples on

parameter estimation of the PGMM and EPGMM families.

2.6.4 Mixture of Infinite Factor Analyzers

A more recent extension of the MFA model is the mixture of infinite factor analyz-

ers (MIFA) model. The MIFA model applies infinite factor analysis (IFA) models

(Bhattacharya and Dunson, 2011) to work around the fact that the value of q must

be pre-specified and held constant across components in the MFA models. Murphy

et al. (2020) states that by applying a multiplicative gamma process (MGP) shrink-

age prior on the loadings matrix in the IFA model, the degree of shrinking loadings

towards zero increases as the column index tends toward infinity allowing infinitely

many factors. The MGP shrinkage prior when applied to the parameter expanded
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loadings matrix also allows the variable ordering to remain unaffected in the com-

ponent covariance matrix. Murphy et al. (2020) use the joint conjugacy property of

the MGP prior to allow for block updates of the loadings matrix where an adaptive

Gibbs sampler is used for truncating the infinite factor loadings matrix. Details on

the application of the MGP prior, the MIFA model and its properties can be found

in Murphy et al. (2020).
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Chapter 3

Multi-Factor Parsimonious

Gaussian Mixture Models

3.1 Introduction

In this chapter, a variational approach for the six of twelve models in the (extended)

PGMM family with unconstrained factor loadings that will allow for the number of

factors fit per component to vary is developed.

Model-based clustering via parsimonious Gaussian mixture models is typically

applied to a data set for a given range of components, factors, and models. There is

potentially a time consuming number of tasks depending on the range of parameters

applied and the size of the data. The total number of tasks in any scenario equals

the product of the length of the number of components, factors, and models that are

to be fit, i.e., for G = 2, . . . , 5, q = 1, . . . , 6, and M ∈ {CCC, . . . ,UUU} there are

4×6×12 = 288 triples, where a triple refers to any combination of G, q, andM. Next,

consider the 6 of 12 models in which the factor loadings are not constrained across
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components. If the number of factors fit for each component is allowed to vary instead

of being held constant, this would vastly increase the number of triples. Applying this

to the previous scenario would suggest that for a model with five components, the

number of factors would now be a vector of length five which can be any combination

of q = 1, . . . , 6, repetition included. For each of the six models with unconstrained

factor loadings and G = 5, there are now 65 = 7776 combinations of q to fit. Overall,

this creates a total number of tasks equal to 56, 088 instead of the original 288 triples.

This approach is infeasible if it is to be done in serial as the computational time taken

to fit all triples would exponentially increase for larger values of G and ranges of q.

To improve computational time, parallel computing techniques are used.

The chapter is outlined as follows. In Section 3.2 six multi-factor PGMMs are pro-

posed. In Section 3.3, the parallel serial and parallel implementation using Julia with

various HPC resources are discussed. In Section 3.4 the proposed method is applied

in both serial and parallel to multiple real data sets. The chapter is concluded with

a comparison of parallel performance and a discussion of the proposed methodology

(Section 3.5.2) .

3.2 Methodology

A simple, but effective extension of the PGMM family is to allow a different number

of factors to be fit for each component. This extension is only possible in the six of

twelve models of the PGMM family for which the factor loadings are not constrained

across components. The six models for which the factor loadings are unconstrained

are the UCC, UCU, UUC, UUU, UCUU, and UUCU models. The six models with

constrained factor loadings and the extension to the six models with unconstrained
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factor loadings will herein be referred to as the multi-factor PGMM (MFPGMM)

family. Instead of fitting q factors for each these models, where the number of factors

would remain the same for each component fitted, q is now a vector of length G, the

number of components to be fit. This gives way to qG possible factor combinations

to be fit for each component size. Estimation of the model parameters for these

six models, via the AECM algorithm, is nearly analogous to that of the PGMM

parameter estimation procedure described by McNicholas and Murphy (2008, 2010b).

The primary difference occurs with the factors loadings, Λg, which are no longer a

p × q matrix, but rather a p × qg matrix of factor loadings, herein denoted as Λgq .

In an elegant fashion, the addition of the new dimension in the factor loading matrix

will become void with the calculation of the component covariance structure. The

component covariance structure can now be written as

Σg = ΛgqΛ
′

gq + ωg∆g.

The following provides a description of the changes in calculations required to

compute the estimates for the six aforementioned models. Given that the addition

of the new dimension in the factor loading becomes void in the calculation of the

covariance structure, there are no changes to the first stage of the AECM algorithm.

Jumping ahead to the second stage of the AECM, consider the UCUU model, the

complete-data log-likelihood can be written as

Q2 = C +
1

2

G∑
g=1

ng[p logω−1g + log |∆−1| − ω−1g tr{∆−1Sg}

+ 2ω−1g tr{∆−1Λgq β̂gqSg} − ω−1g tr{Λ′

gq∆
−1ΛgqΘgq}],
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where β̂gq = Λ̂
′
gq(Λ̂gqΛ̂

′
gq +ω̂g∆)−1 and Θgq = Iq−β̂gqΛ̂gq +β̂gqSgβ̂

′

gq . The Lagrangian

can be written as

L(Λgq , ωg,∆, λ) = Q2(Λgq , ωg,∆)− )(|∆| − 1),

where ) is the Lagrangian multiplier. The Lagrangian can then be differentiated with

respect to Λgq , ω
−1
g , ∆−1, and ) to yield four respective score functions

S1(Λgq , ωg,∆, )) =
∂L

∂Λgq

=
G∑

g=1

ng

ωg

[∆−1Sgβ̂
′

gq −∆−1ΛgqΘ̃gq ],

S2(Λgq , ωg,∆, )) =
∂L

∂ω−1g

=
ng

2
[pωg − tr{∆−1Sg}+ 2 tr{∆−1Λgq β̂gqSg} − tr{Λ′

gq∆
−1ΛgqΘgq}],

S3(Λgq , ωg,∆, )) =
∂L

∂∆−1

=
1

2

G∑
g=1

ng[∆− ω−1g S
′

g + 2ω−1g Λgq β̂gqSg − ω−1g ΛgqΘ
′

gqΛ
′

gq ] + λ|∆|∆,

S4(Λgq , ωg,∆, )) =
∂L

∂)

= |∆| − 1.

Setting these score functions to zero and solving will provide the respective parameter
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updates. The parameter updates are as follows:

S1(Λ̂
new
gq , ω̂g, ∆̂, )) = 0 =⇒ Λ̂new

gq = Sgβ̂
′

gΘ
−1
gq ,

S2(Λ̂
new
gq , ω̂new

g , ∆̂, )) = 0 =⇒ ω̂new
g =

1

p
tr{∆̂

−1
Sg − ∆̂

−1
Λ̂new

gq β̂gqSg},

diag{S3(Λ̂
new
gq , ω̂new

g , ∆̂
new
, ))} = 0 =⇒ ∆̂

new
=

1

n+ 2)|∆̂
new
|

G∑
g=1

ng

ω̂new
g

diag{Sg − Λ̂new
gq β̂gqSg},

=
1

n+ 2)

diag{
G∑

g=1

ng

ω̂new
g

[Sg − Λ̂new
gq β̂gqSg]},

S4(Λ̂
new
gq , ω̂new

g , ∆̂
new
, )new) = 0 =⇒ |∆̂

new
| = 1.

Given that ∆̂
new

is a diagonal matrix with the constraint found by setting S4 equal

to zero, it is found that

) =
1

2

( p∏
j=1

ξj

) 1
p

− n

 ,
where ξj is the jth element along the diagonal of the matrix

G∑
g=1

ng

ω̂new
g

[Sg − Λ̂new
gq β̂gqSg].

See McNicholas and Murphy (2008, 2010b) for further details and examples on how

parameter estimation is carried out for the PGMM family.

Derivations for the remaining five models with unconstrained factor loadings are

all done in a similar fashion. The following gives an idea of what these estimates look

like for the remaining models. For Model UUCU, the parameter estimates are given
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by

Λ̂new
gq = Sgβ̂gqΘ

−1
gq ,

(ω̂)new =
1

p

G∑
g=1

π̂g tr{∆̂
−1
g (Sg − Λ̂new

gq β̂gqSg)},

∆̂
new

g =
1

(ω̂)new(1 + 2)g/ng)
diag{Sg − Λ̂newβ̂gqSg},

where

)g =
ng

2

 1

(ω̂)new

(
p∏

j=1

ξgj

) 1
p

− 1

 ,
where ξgj is the jth element along the diagonal of the matrix Sg − Λ̂newβ̂gqSg.

For Model UCC with Ψg = Ψ = ψIp, the parameter estimates are given by

Λ̂new
gq = Sgβ̂

′

gqΘ
−1
gq ,

(ω̂)new =

∣∣∣∣∣1pIp

G∑
g=1

π̂g tr{Sg − Λ̂new
gq β̂gqSg}

∣∣∣∣∣
1/p

,

∆̂
new

=
1

|1
p
Ip
∑G

g=1 π̂g tr{Sg − Λ̂new
gq β̂gqSg}|1/p

1

p
Ip

G∑
g=1

π̂g tr{Sg − Λ̂new
gq β̂gqSg} = Ip.
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For Model UCU with Ψg = Ψ, the parameter estimates are given by

Λ̂new
gq = Sgβ̂

′

gqΘ
−1
gq ,

(ω̂)new =

∣∣∣∣∣
G∑

g=1

π̂g diag{Sg − Λ̂new
gq β̂gqSg}

∣∣∣∣∣
1/p

,

∆̂
new

=
1

|
∑G

g=1 π̂g diag{Sg − Λ̂new
gq β̂gqSg}|1/p

G∑
g=1

π̂g diag{Sg − Λ̂new
gq β̂gqSg}.

For Model UUC with Ψg = ψgIp, the parameter estimates are given by

Λ̂new
gq = Sgβ̂

′

gqΘ
−1
gq ,

(ω̂)newg =

∣∣∣∣1pIp tr{Sg − Λ̂new
gq β̂gqSg}

∣∣∣∣1/p ,
∆̂

new
=

1

|1
p
Ip tr{Sg − Λ̂new

gq β̂gqSg}|1/p
1

p
Ip tr{Sg − Λ̂new

gq β̂gqSg} = Ip.

For Model UUU with no constraints imposed, the parameter estimates are given

by

Λ̂new
gq = Sgβ̂

′

gqΘ
−1
gq ,

(ω̂)newg =
∣∣∣ diag{Sg − Λ̂new

gq β̂gqSg}
∣∣∣1/p ,

∆̂
new

g =
1

| diag{Sg − Λ̂new
gq β̂gqSg}|1/p

diag{Sg − Λ̂new
gq β̂gqSg}.

The MFPGMM models will be applied to real data in Section 3.4 with the results

analyzed and compared to the performance of the original PGMM models.
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3.3 Implementation

3.3.1 Julia

Before diving into the parallelization technique used throughout this chapter, a broad

description of how the technique is being implemented will be given. Work in this

thesis was conducted using version 1.3 of Julia (Bezanson et al., 2017; McNicholas and

Tait, 2019). Julia is a high-performance, dynamic programming language that is built

for numerical analysis. It offers many of the features that a user would expect to see

in a statistical computing language such as R (R Core Team, 2019), but also offers

the flexibility that one would experience with languages such as C and Python. A key

feature of Julia is that it supports distributed computing with or without the use of a

message passing interface. A message passing interface has been used to conduct this

work for reasons that will become more apparent in Chapter 4. Note, it is possible

to accomplish a similar style of parallelization using the Distributed package.

3.3.2 HPC Cluster

In order to visualize the forms of communication discussed in the following sections,

the generic layout of a HPC is provided. Referring to Figure 3.1, an illustration of

a HPC containing a head node and five individual nodes is given. All HPCs have

a head node, typically labelled as the rank 0 node, which is not commonly used in

computations, but used to distribute the tasks for computation. Although the head

node may be of a similar size (available resources, e.g., number of processors) to

the worker nodes, only one processor may be needed to distribute such tasks. The

individual nodes, which make up the HPC as a whole, each contain a certain number
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of processors (and threads) that can be used for computation. Referring to Figure 3.1,

each of the five nodes are considered to be comprised of five individual processors.

Excluding the head node, all individual nodes have the same system architecture.

Head Node

Node  1 Node  2 Node  3 Node  4 Node  5

Figure 3.1: The generic layout of a high performance computer.

For the purposes of this thesis, all code has been run on a HPC that is comprised

of a head node, which is substantially less powerful than the compute nodes, and 16

compute nodes. The head node is mainly a storage server (Dell PowerEdge R740xd),

with two 10-core Intel Xeon Silver 4114 processors and 12× 8G DDR4/2400 DIMMs.

The 16 compute nodes are dual-socket, Intel® Xeon® Gold 6148 CPUs with a clock

speed of 2.40GHz. Each socket contains 20 cores without hyper-threading enabled.
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They also contain 12× 16G DDR4/2666 memory, a total of 192G, and 100Gb Infini-

band. This is part of the PowerEdge C6400 family. Hyper-threading is a feature of

some Intel CPUs that allows one physical CPU to appear as if it were two logical

CPUs. Each compute node appears to have 80 cores with hyper-threading enabled

even though there are only 40 logical cores. Hyper-threading has the potential to

negatively impact results because it splits resources by turning physical cores into

two virtual cores and as such, will not be considered throughout this chapter as it

may only be used in selective cases.

3.3.3 Message Passing Interface

Message passing interface (MPI) is a communication protocol that allows for point-

to-point message passing and operations that are sent to a user-specified group of

processes. Processes are named by their rank in the relevant group where communi-

cation is occurring. A communicator which houses groups and communication con-

tent (scoping) information provides important safety measures that are necessary and

useful for building up library-orientated parallel code (Gropp et al., 1999). MPI is a

dominant form of parallel programming used today for high performance computing

(HPC) due to the flexibility it offers in terms of inter-node communication. A simple

and very common parallel programming paradigm used in conjunction with MPI is re-

ferred to as “master-slave”. Using a HPC, where multiple nodes are available, assigns

the rank 0 node to be the “master” node and all other nodes to be the “slave” nodes.

Communication is costly in terms of time and therefore communication between the

master and slave is limited to when the slave is requesting a new job and when the

slave is sending results back to the master. There is no communication occurring
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between slaves at any point during this process. Refer to Gropp et al. (1999) for an

in-depth look at MPI.

The description of an HPC cluster was given in Section 3.3.2. Using this descrip-

tion, a simplistic illustration of the MPI parallelism technique can be given. Consider

the scenario in which a HPC is tasked to perform a computation on a range of 25

values. The tasks can be completed independently of one another, meaning there

are 25 tasks to be completed. A single processor from the head node can evenly

distribute the 25 tasks across the HPC where each processor receives its own task,

this would also be considered as fine-grain parallelism. The processors will then work

simultaneously to complete their task and send the results back to the single pro-

cessor on the head node. Note that if these jobs were small, say taking the square

root of a value, then using this form of parallelization would be extremely costly in

terms of communication. Not only would the processors individually requesting a job

take a lengthy amount of time, but the processors would also have to individually

communicate with the single processor on the head node to return the results. These

jobs would be done more efficiently in serial due to the overhead created from the

communication required in parallel.

There are two implementations of MPI software, Open-MPI and MPICH. The

MPI parallelization technique has been implemented using version 3.2.1 of MPICH

which does not support InfiniBand communication. This is primarily due to issues

with Unified Communication X (UCX), a widely used communication framework for

HPC protocols. Julia developer documents state that the profiler uses SIGUSR2

for sampling, while the garbage collector uses SIGSEGV for thread synchronization.

Some up-to-date versions of UCX and Open-MPI, which are not available on the HPC
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cluster used, can potentially resolve this issue by disabling UCX from intercepting the

SIGSEGV error signal prior to launching the Julia environment. Without the use of

InfiniBand, there is the potential for lower throughput and increased latency between

MPI communications.

3.3.4 Slurm

The Simple Linux Utility for Resource Management (SLURM), now referred to as the

Slurm workload manager or just Slurm, is an open-source job scheduler for Linux. It is

used by many HPCs for cluster management and job scheduling. All jobs throughout

this chapter are run using Slurm to allocate the number of resources accordingly

which is done prior to executing the code. Due to Julia being in the earlier stages of

its life, users are unable to add processes (unless using Distributed) and threads (Julia

pre version 1.5) at run time. Both the number of processes and threads can be set

using Slurm prior to run time in order to have these resources available to Julia at

launch.

Slurm is highly advanced and offers the capability to run code in parallel by dis-

tributing tasks using its scheduler. This is a feature that is not considered throughout

this chapter due to how the tasks must be implemented. Slurm offers multiple ways

to run a parallel job that involve the use of an array or job packing. Since parallel

code must be executed using the srun command, which executes multiple tasks simul-

taneously, instead of distributing them individually, the same user input arguments

for the MFPGMM code will be read by each process and run multiple times. To

prevent this, while still sending each triple to a different process, a significant amount

of work would be required prior to the execution of each parallel run.
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A Slurm array allows the user to specify a range of job ID values where only a

single input value is changed and will be taken as input. In order to make use of

this type of parallelization, the job ID would be required to point to a specific triple

that the process will take as input arguments. A packed job would involve the user

writing a predetermined for loop, containing the input arguments, using the --exclusive

argument of srun to schedule independent processes inside of a Slurm job allocation.

The key problem here is that the q vector is changing in combination and length

frequently. The depth of a nested for loop would not be able to change as the vector

length increased and if the full range of q is sent, there is no option to keep track of

which combination of factors is run, i.e., they would all be run multiple times.

Although the job array approach could be done by writing all input arguments

to a large file where each job ID will correspond to a line in the file containing the

input arguments, this creates potential issues. There would be a significant amount of

idle threads as component sizes increase and new starting values are calculated prior

to job execution. Both approaches require use of the srun command which executes

multiple tasks simultaneously; therefore, each result would be placed in a separate

output file. Further work would be required to sort through these output files to

obtain the best starting value or result which could be unrealistic depending on the

number of triples to run. It is also well known that creating short jobs, approximately

ten minutes or less, using an array will incur a large overhead. The implementation

described in Section 3.3.3 is able to prevent all of the aforementioned issues from

occurring while also allowing the parallel code to be run on a computer that does not

have a scheduler installed.
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3.3.5 Parallel Design

There are multiple ways to initiate an MPI environment for Julia from the command

line. For the purposes of this section, the MPI environment is created using a batch

script containing the following commands:

#!/bin/bash

#SBATCH --time=7-00:00:00

#SBATCH --nodes="numproc"

#SBATCH --ntasks-per-node="numtask"

#SBATCH --cpus-per-task=1

#SBATCH --mem-per-cpu=0

mpiexec julia driver_file.jl input_variables

The batch script example will initialize a job that may take up to seven days with

numproc nodes and numtask tasks per node where each task will use a single CPU.

This is equivalent to saying that numproc × numtask processes will be started, where

one CPU acts as the master and the remaining as the slaves. This batch script will

also request all available memory on the allocated nodes for each CPU to use.

When using any form of parallelization in Julia, the environment variable for the

number of threads to use is set before run time using the Linux command:

export JULIA_NUM_THREADS="numthread"

where numthread represents the value for the desired number of threads to initialize.

It is vital to note that some packages in Julia may already be written in parallel. In

order to avoid oversubscribing threads which will drastically deteriorate performance,

the Linux command:
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BLAS.set_num_threads(1)

must be set at run time to limit the BLAS package to a single thread and allow

Julia to handle all parallelization. Unless otherwise stated, we assume the number of

threads for the environment outside of Julia, even in serial, to be set to 1 herein as

this may otherwise alter the performance.

To find the best member of the PGMM family, the goal is to maximize the BIC over

the triple (M, G,q), where each triple will be sent to a different process (McNicholas

et al., 2010). M represents the model in question, G the number of components,

and q, a vector of length G, containing the factors. The proceeding pseudocodes

show the design of the parallel implementation. First, consider the function main()

(Algorithm 5) in Appendix A.

This function will initialize the MPI environment within Julia while obtaining the

size of the resources available and ranks of each processor. It then proceeds to define

the master (rank 0 processor) which will farm out jobs to slaves, i.e., all processors

excluding the rank 0 processor. Once the jobs are complete, the MPI environment

waits for all processors to join together before finalizing the environment (required to

successfully exit the code).

The master() (Algorithm 6) and slave() (Algorithm 7) functions found in Ap-

pendix A give a rough idea how the MPI process is applied to the methodology

presented in Section 3.2. The master process is responsible for communication to the

slaves which includes creating an array of all triples to run, distribution of tasks, as

well as collecting results and storing them. The slave processes are responsible for

the execution of each job and communicating results back to the master.
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3.4 Applications

3.4.1 Overview

The methodology for the MFPGMM models developed in Section 3.2, in combination

with the MPI implementation discussed in Section 3.3, will now be applied to multiple

real data sets. Considering that each triple will be sent to a different process, fine-

grain parallelism is being applied for the MPI technique. The performance of the

new techniques will be analyzed and compared. In addition, the serial versus parallel

performance of each run will then be evaluated by its speed-up. The speed-up can

be calculated by taking the serial runtime and dividing by the parallel runtime. In

an ideal world, the expected scaling would be one to one, i.e., for each processor

added the speed-up would increased by one. Each data set will be run using all 12

MFPGMM models for a range of components and factors. The runs will contain an

even number of random starts, half of which will be random using the CUU model

and the other half done using k-means, and will be repeated for a specified number

of total loops. The results of the MFPGMM models will be compared to that of the

MIFA models (Section 2.6.4), using 10 random k-means starts and run for a total

of 10 loops, to illustrate the difference in solutions. The MIFA model results will be

restricted for only non-empty components as it has the potential to fit multiple empty

components which will skew results.

3.4.2 Coffee Data Analyses

The Coffee data (Streuli, 1973, as cited in McNicholas (2016a)) shows 12 chemical

properties of 43 coffee beans collected across 29 countries. There are two types of
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beans measured, 36 of which are Arabica beans and 7 Robusta beans. The twelve

chemical properties collected are shown in Table 3.1.

Table 3.1: Twelve chemical properties of the coffee data.

Water Bean Weight Caffeine
Fat Trigonelline Mineral Content
pH Value Extract Yield Free Acid
Chlorogenic Acid Neochlorogenic Acid Isochlorogenic Acid

The MFPGMM models are fit to the Coffee data for G = 2, . . . , 4 components and

q = 1, . . . , 4 factors. This is done for 10 random starts, five of which are k-means and

the remaining five are random starts using the CUU model. This is repeated for a

total of five loops, resulting in 11040 runs. The BIC of −996.64 chose the UCU model

as the best model for G = 2 components and q = [1, 2] factors. This suggests that the

Arabica bean is best described using a single factor, while the Robusta bean requires

two factors. A cross-tabulation of the corresponding MAP classifications versus the

true classes can be seen in Table 3.2. An ARI of 1 is found, meaning it achieved

perfect classification.

For comparison purposes, under the same run conditions with fixed factors, a

BIC of −1007.68 (∆BIC = 11.04) chose a CCUU model with G = 3 components

and q = 1 factors. This resulted in an ARI of 0.43, where all Robusta beans were

correctly classified, but Arabica beans were taken to be two separate groups as seen

in Table 3.3.

Applying the MIFA models for the same parameters results in a perfect classifica-

tion (identical solution to Table 3.2 with ARI = 1) for each of the 10 runs, selecting a

two component model with q = [4, 4]. The notable difference here is that the MIFA

approach has fixed factors across components and requires additional factors.
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Table 3.2: Cross-tabulation of the
MAP classifications (A-B) asso-
ciated with the selected PGMM
with multiple factors against true
classes for the Coffee data.

A B
Arabica 36 0
Robusta 0 7

Table 3.3: Cross-tabulation of the
MAP classifications (A-C) asso-
ciated with the selected PGMM
with fixed factors against true
classes for the Coffee data.

A B C
Arabica 25 0 11
Robusta 0 7 0

The initial parallel implementation, using MPI, for this analysis was done using

210 cores, 209 of these cores were considered to be slaves. A speed-up of 24.6 was

found by dividing the serial run time of 1920 seconds by the parallel run time of 78

seconds. This result is nowhere near linear, but this is expected due to the increased

overhead that would be accumulated from MPI communications considering the data

has limited observations and variables meaning calculations will finish more swiftly.

3.4.3 Italian Wine Data Analyses

The Italian Wine dataset is a chemical analysis of 178 wines grown from the same

region in Italy, but derived from three different cultivars. The size and cultivars are

59 Barolo, 71 Grignolino, and 48 Barbera. The dataset contains the results of 27

constituents found within each of the three wines, see Table 3.4 for a list of these

constituents.

The Italian Wine data was fit for all MFPGMM models with G = 2, . . . , 5 compo-

nents and q = 1, . . . , 5 factors over 10 random starts, and repeated for 5 loops. This

resulted in a total of 118600 triples run. The BIC of −23280.40 chose a CUU model

with G = 3 components and q = 4 factors as the best model. The MAP classifica-

tions, seen in Table 3.5, achieves an ARI of 0.95 which is a near perfect classification
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Table 3.4: Twenty-seven constituents of the Italian Wine data.

Alcohol Sugar-free extract Fixed acidity
pH Malic Acid Uronic acids
Tartaric Acid Hue Calcium
Potassium Alkalinity of ash Chloride
Phosphate Magnesium Total phenols
Nonflavonoid phenols Flavonoids Proanthocyanins
OD280/OD315 of diluted wines OD280/OD315 of flavonoids Color intensity
Ash Glycerol 2-3-butanediol
Total nitrogen Proline Methanol

with only three misclassifications.

Table 3.5: Cross-tabulation of the
MAP classifications (A-C) asso-
ciated with the selected PGMM
against true classes for the Italian
Wine data.

A B C
Barolo 59 0 0
Grignolino 2 68 1
Barbera 0 0 48

Table 3.6: Cross-tabulation of the
MAP classifications (A-C) associ-
ated with the most frequent MIFA
model against true classes for the
Italian Wine data.

A B C
Barolo 58 1 0
Grignolino 11 60 0
Barbera 0 0 48

Applying the MIFA models under the same run conditions produces a mean ARI

of 0.62. In the 10 runs, an incorrect number of components is chosen in 7 scenarios.

The component sizes are frequently taken to be either 2 or 5, where the 5 component

scenario typically has 1 or 2 empty components that are ignored for the calculation of

the results. The number of factors per component is frequently held at 5 with select

scenarios containing one component with only 4 factors. The most frequent result of

the 10 runs can be seen in Table 3.6 where an approximate ARI of 0.80 is found.

The MPI implementation was again done using 209 slaves and one master which

had a run time of 2672 seconds. The serial implementation had a run time of 245437
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seconds resulting in a speed-up of 91.86.

3.4.4 Italian Olive Oil Data Analyses

The Italian Olive Oil dataset contains the percentage composition of fatty acids re-

ported by Forina and Tiscornia (1982) and Forina et al. (1983). The eight constituents

of the lipid fraction can be seen in Table 3.7.

Table 3.7: Eight fatty acids from the Italian Olive Oil data.

Oleic acid Arachidic acid Stearic acid
Palmitic acid Linoleic acid Eicosenoic acid
Palmitoleic acid Linolenic acid

The data contains 572 samples of Italian olive oils that have been collected from

three regions, 323 from Southern Italy, 98 from Sardinia, and 151 from Northern

Italy. Each of these regions comprises a total of nine different areas. The 323 samples

from Southern Italy are composed of 25 from North Apulia, 56 from Calabria, 206

from South Apulia, and 36 from Sicily. The Sardinia samples are split into 65 from

Inland Sardinia and 33 from Coastal Sardinia. Finally, Northern Italy is made up of

51 samples from Umbria, 50 from East Liguria, and 50 from West Liguria.

The Italian Olive Oil data will be explored through a cluster analysis on both the

aforementioned regions and areas. For the olive oil sorted by region, all 12 models

were fitted for G = 2, 3 components, q = 1, . . . , 8 factors, eight random starts, and

five loops. This created a total of 18400 triples. The BIC of −5557.56 chose a UCU

model with G = 3 components, and q = [4, 7, 7] factors. This implies that the

Southern Italy olive oil can be described with three fewer factors than the Sardinia

and Northern Italy olive oils. Referring to the classification table, see Table 3.8, an
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ARI of 1 is achieved. Note, even though models with fixed factors also achieves an

ARI of 1, the BIC is slightly worse at −5586.25 (∆BIC = 28.69).

When applying the MIFA models under the same conditions a mean ARI of 0.87

is found. The MIFA models commonly chose the incorrect component size of G = 2

and hold the number of factors constant at q = 8. Two cases did produce an ARI

of 1 when a three-component model was chosen using q = [8, 8, 3] factors. Using 210

cores, a speed-up of 61.03 is achieved from a serial run time of 42842 seconds and a

parallel run time of 702 seconds.

Table 3.8: Cross-tabulation of the
MAP classifications (A-C) asso-
ciated with the selected PGMM
against true classes for the Italian
Olive Oil data by region.

A B C
Southern Italy 323 0 0
Sardinia 0 98 0
Nothern Italy 0 0 151

Table 3.9: Cross-tabulation of the
MAP classifications (A-B) associ-
ated with the most frequent MIFA
model against true classes for the
Italian Olive Oil data by region.

A B
Southern Italy 323 0
Sardinia 0 98
Nothern Italy 0 151

In a similar fashion, the MFPGMM models are fitted for G = 9 components,

q = 1, . . . , 3 factors, six random starts, and two loops resulting in 236268 runs. The

BIC of −4573.23 chose a UUU model with q = [2, 1, 2, 2, 2, 3, 1, 3, 3] factors. The

classification table (Table 3.10) shows the results of classifying the olive oils by area

and achieves an ARI of 0.77. When clustering the olive oils by area with fixed factors,

a more significant difference is seen. A BIC of −5550.35 (∆BIC = 977.12) chose a

UUU model with q = 3 factors, resulting in an ARI of 0.62.

Applying the MIFA models to the Italian Olive Oil when classified by area had a

mean ARI of 0.76. In eight runs q = [3, 3, 3, 3, 3, 3, 2, 3, 3] factors were chosen, while

the remaining two runs selected 2 factors for the fourth component. Although the
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number of components was fixed at G = 9, the MIFA model produced two to three

empty components in all 10 runs. The most frequent result can be seen in Table 3.11

with three empty components achieving an approximate ARI of 0.78.

Table 3.10: Cross-tabulation of the MAP classifications (A-I) associated with the
selected PGMM against true classes for the Italian Olive Oil data by area.

A B C D E F G H I
North Apulia 23 2 0 0 0 0 0 0 0
Calabria 0 55 1 0 0 0 0 0 0
South Apulia 0 1 186 3 0 16 0 0 0
Sicily 9 13 3 11 0 0 0 0 0
Inland Sardinia 0 0 0 0 65 0 0 0 0
Coastal Sardinia 0 0 0 0 33 0 0 0 0
East Liguria 0 0 0 0 0 0 47 3 0
West Liguria 0 0 0 0 0 0 23 27 0
Umbria 0 0 0 0 0 0 10 0 41

Table 3.11: Cross-tabulation of the MAP classifications (A-F) associated with the
most frequent MIFA model against true classes for the Italian Olive Oil data by area.

A B C D E F
North Apulia 25 0 0 0 0 0
Calabria 55 1 0 0 0 0
South Apulia 11 195 0 0 0 0
Sicily 35 1 0 0 0 0
Inland Sardinia 0 0 0 65 0 0
Coastal Sardinia 0 0 0 33 0 0
East Liguria 0 0 0 0 39 11
West Liguria 0 0 0 0 0 50
Umbria 0 0 48 0 3 0

When clustering the olive oil by region, due to the fact that there are nine regions,

the large number of triples run prevents this task from being run in serial within a

reasonable amount of time. As it will be discussed in Section 3.5, the size of the data

and parallel run time under similar conditions gives a general idea of how long the
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serial run time will be. The parallel run time for this analysis was 16730 seconds or

4.65 hours. If this was to achieve a reasonably low estimated speed-up of around 100,

the resulting serial run time would be 19.36 days. A perfect speed-up of 209 would

suggest the run time in serial would take 40.47 days.

3.4.5 Alon Colon Cancer Data Analyses

The Alon dataset (Alon et al., 1999) contains the gene expression data for 62 samples

from colon-cancer patients that were analyzed with an Affymetrix oligonucleotide

Hum6000 array. A subset of 461 genes, predetermined by McNicholas and Murphy

(2010b), are used from the 6500 genes in the data for the original study. This dataset

contains five different clusterings as stated by McNicholas and Murphy (2010b) in

correspondence with McLachlan et al. (2002). Two classifications are considered in

these analyses, the first clustering being where tissues samples are classified by the

type of tissue, i.e., tumor or normal. There are 40 tumor samples and 22 normal

samples. The second clustering comes from a change of protocol during the exper-

iment(Getz et al., 2000; McLachlan et al., 2002). In this clustering, tissue samples

1−11 and 41−51 were collected from the first 11 patients using a poly detector. The

remaining 40 samples were collected from patients using total extraction of RNA.

The Alon Colon Cancer data was fitted with all MFPGMM models for G =

2, . . . , 3 components, q = 1, . . . , 8 factors, six random starts, and two loops resulting

in 7296 triples. The BIC of −70181.93 chose a CUU model with G = 2 components

and q = 8 factors as the best model. Upon applying the MIFA models for the same

parameters, a two-component model MIFA model with q = 8 factors held constant

across components was chosen. Both the MFPGMM and MIFA models show poor
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performance when clustering tissue samples by type with ARI values near 0.

When classified by extraction technique, an improvement in clustering can see in

the results. Table 3.12 shows an ARI of 0.29 is achieved where all samples extracted

by poly detector are classified perfectly and approximately two-thirds of the samples

taken using total extraction of RNA are correctly classified. Comparing this to the

classification estimates from the chosen MIFA model, an average ARI of 0.13 is found

from the results in Table 3.13.

Table 3.12: Cross-tabulation of
the MAP classifications (A-B) as-
sociated with the selected PGMM
against true classes for the Alon
Colon Cancer data classified by
extraction technique.

A B
Total extraction of RNA 26 14
Poly detector 0 22

Table 3.13: Cross-tabulation of
the MAP classifications (A-B) as-
sociated with the most frequent
MIFA model against true classes
for the Alon Colon Cancer data
classified by extraction technique.

A B
Total extraction of RNA 21 19
Poly detector 0 22

Again, using 210 processors, a speed-up of 115.63 was achieved where the parallel

run time was 1837 seconds and the serial run time was 212407 seconds.

3.4.6 Golub Data Analyses

The Golub dataset (Golub et al., 1999) contains the gene expression data for 72 tissue

samples from acute leukemia patients that were analyzed using an Affymetrix array.

From these samples, 47 are acute lymphoblastic leukaemia tissues and 25 are acute

myeloid leukaemia tissues. A subset of 2030 genes, predetermined by McNicholas and

Murphy (2010b), are used from the 7129 genes in the original data.

The Golub data was fitted with all MFPGMM models for G = 2 components,
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q = 1, . . . , 10 factors, 10 random starts, and one loop. This created a total of

760 triples run. Note that the number of components here is fixed because Mc-

Nicholas and Murphy (2010b) state that the BIC is not effective for estimating G

in high-dimensional applications because the penalty term dominates. The BIC of

−408539.61 chose a CUC model with G = 2 components and q = 4 factors as the

best model. Referring to Table 3.14, an ARI of 0.84 was found. Although a worse

BIC value, ∆BIC = 5869.77, the exact same performance can be seen in the two-

component UUC model with q = [1, 1]. This is however not the best choice as the

second best model with a BIC of −408996.64 (∆BIC = 457.03) chose a CCC model

with G = 2 components and q = 4 factors, obtaining an ARI of 0.89.

A significant decrease in performance can be seen from the chosen MIFA model

(Table 3.15) for this particular scenario. A mean ARI of 0.21 is found where a two-

component model is chosen with q = 10 factors held constant across components in

all cases.

Table 3.14: Cross-tabulation of
the MAP classifications (A-B) as-
sociated with the selected PGMM
against true classes for the Golub
data.

A B
ALL 45 2
AML 1 24

Table 3.15: Cross-tabulation of
the MAP classifications (A-B) as-
sociated with the most frequent
MIFA model against true classes
for the Golub data.

A B
ALL 30 17
AML 2 23

With 209 slaves and one master process, a parallel run time of 4971 seconds was

achieved. A serial run time of 271336 seconds was found, resulting in a speed-up of

54.58.
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3.4.7 Breast Cancer Data Analyses

The Wisconsin Diagnostic Breast Cancer (WDBC) dataset (Street et al., 1993) con-

tains information for 569 tumors samples that are classified as either malignant or

benign. There exists 357 benign and 212 malignant instances in the data. The data

are clustered using a subset of the variables from the original study. The variables

used are five real-valued features of the cell nucleus being radius (mean of distances

from center to points on the perimeter), texture (standard deviation of gray-scale

values), perimeter, area, and smoothness (local variation in radius lengths).

This data is used as a comparison between the techniques used and is not consid-

ered for performance. The WDBC data was again fitted with all MFPGMM models

for G = 2, 3 components and q = 1, . . . , 4 factors over two random starts and two

loops. Note that fitting q = 4 factors requires that the assumption (p− q)2 > p+ q be

relaxed as the MIFA models typically require a wider range of factors in implemen-

tation. The BIC of −9227.03 chose a three-component UCU model with q = [2, 3, 4]

factors, resulting in an approximate ARI of 37.26 seen in Table 3.16. When compared

to the PGMM approach with fixed factors, results are nearly identical where a three-

component UCU model is chosen with q = 3 factors. There is a total of 4 different

classifications resulting in an approximate ARI of 36.87

Table 3.16: Cross-tabulation of
the MAP classifications (A-C) as-
sociated with the selected PGMM
against true classes for the WDBC
data.

A B C
Malignant 163 47 2
Benign 8 196 153

Table 3.17: Cross-tabulation of
the MAP classifications (A-C) as-
sociated with the most frequent
MIFA model against true classes
for the WDBC data.

A B
Malignant 167 45
Benign 11 346
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Comparing this to the MIFA approach, the results can be seen in Table 3.17. A

mean ARI of 63.95 is achieved across 10 runs with G = 2 components and q = 4

factors held constant. The improvement in ARI is due to the selection of a two-

component model over a three-component model. Although unavailable, the third

component found in the MFPGMM model may be due to an underlying type of

benign tumor because the groups are fairly distinct overall.

3.5 Discussion

3.5.1 Parallel Run Time Comparison

Throughout Section 3.4, the serial run time and parallel run time using MPI with

209 slaves was given. The speed-up when applied to real data alongside the efficiency

with the addition of new cores was also explored. Tables B.1, B.2, B.3, B.4, &

B.5 in Appendix B show the run time in seconds, the speed-up from serial, and

the efficiency using 90, 150, 210, 270, 330 cores alongside some additional trials. A

comparison between all datasets can be seen in Figures 3.2, 3.3, & 3.4. All figures

show the same generic pattern; more cores will result in a higher speed-up, but a

lower efficiency. The biggest difference can be seen in Table B.2, where going from 90

to 330 cores saves just over an hour of run time. This brings up the question, what is

more important, the speed-up or the efficiency? If resources are not of concern, using

a substantial amount of cores will almost always provide a greater speed-up, but this

does have a limit.

Consider the Coffee data, a very small data set, where 11040 triples are run. Minor

speed-ups are seen from 90 all the way to 330 cores, but at 420 cores the speed-up
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has decreased. Using only 5 cores for the same amount of work results in a speed-up

of 2.5, but has a greater efficiency considering it has completed in less than half the

time of the serial run. In all scenarios, even the Golub data with 72 tissue samples

and 2030 genes, it requires 90 or less cores to achieve an efficiency of 37.55% or more

meaning that even with minor resources a significant amount of time can be saved.

Next, consider the Italian Wine data with 178 wines, 27 constituents, and 118600

triples. Speed-ups can be seen from 90 to 980 (using hyper-threading) cores, but with

little gain. From 420 to 980 cores, only 224 seconds are saved. This is primarily due

to the increased communication cost by adding more cores. The master process is

unable to send and receive information significantly faster with 980 cores than what

occurred with 420 cores.

Overall, there are many variables to consider when trying to choose the optimal

number of MPI processes to start. Variables such as the size of the data which

may caused increased communication time, the time per iteration, the number of

iterations which is large dependent on the starting values, the resources available,

and the number of triples run can all play large factors in this decision. Efficient

speed-ups can be seen with little to no resources, but significantly reductions in run

time can be brought about by larger resources. The examples discussed within this

chapter show little correlation in regards to determining an optimal strategy as many

factors can not yet be predetermined.

3.5.2 Discussion

A new technique in which the number of factors per component may vary for PGMMs

where the factor loadings are unconstrained has been developed in Section 3.2. The
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Figure 3.2: The serial and parallel runtimes for Coffee, Wine, Olive Oil, Alon, and
Golub datasets plotted against the dashed-line for ideal scaling using the mean average
serial runtime.

technique has been applied to six real data sets in Section 3.4 where it performed as

well as, if not better than, the original models with fixed factors for all components

under the same random starts and run conditions. This is to say that although the

new models were chosen in four of seven run scenarios, a model with constrained

factor loadings can still be chosen if it better represents the data. The technique was

implemented in both serial and parallel scenarios to show how it may be unrealistic to
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Figure 3.3: The speed-up per number of cores for Coffee, Wine, Olive Oil, Alon, and
Golub datasets plotted against the dashed-line representing linear speed-up.

run a large number of triples on a large data set without having more resources avail-

able, but even a minor amount of resources can reduce the run time by a significant

amount.

The technique was compared to the MIFA approach and outperformed it in all

but one scenario. The drawback to the MIFA approach, although more time efficient,

is that it commonly selects the incorrect number of components and will frequently

fit empty components, even though this can be restricted. In addition, the number

of factors required by each component is almost always overestimated.
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Figure 3.4: The efficiency per number of cores for Coffee, Wine, Olive Oil, Alon, and
Golub datasets plotted against the dashed-line representing perfect efficiency.
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Chapter 4

Hybrid Parallelization of PGMMs

4.1 Introduction

New types of big data along with the rapidly growing literature on model-based

clustering techniques bring computational performance and efficiency into question.

Parallel computing allows for the execution of multiple calculations to occur simul-

taneously. This is commonly done in programming languages through the use of

a MPI, described in Chapter 3 and Open Multi-Processing (OpenMP), but rarely

done using a hybrid of both MPI and OpenMP. Model-based clustering techniques

where models can be run independently is a great example of an approach that can

take full advantage of hybrid parallelization. Motivation for this idea comes from

model-based clustering via parsimonious Gaussian mixture models (McNicholas and

Murphy, 2008) where each triple can be run independently of each other.
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4.2 Implementation

4.2.1 OpenMP

A well known method of parallel programming is Open Multi-Processing (OpenMP),

an application programming interface which supports multi-platform shared memory

multiprocessing programming. OpenMP allows for users to parallelize their code

without having to rewrite their code entirely. OpenMP is an implementation of

multi-threading, meaning a parent thread forks a number of predetermined children

threads and divides jobs between them. A fork refers to the operation of a process

creating a copy of itself which becomes a child process of the calling process. Although

OpenMP is much easier to implement in terms of code as it does not require carefully

constructed communication such as MPI, it has potential disadvantages in large scale

scenarios due to shared memory. For a detailed look at OpenMP refer to Chapman

et al. (2007).

Referring to Figure 4.2, OpenMP communication can be thought of as what would

occur within each node excluding the head node. OpenMP must take place on in-

dividual nodes as MPI communication would be required to send additional tasks

outside of the node. Consider the previously described scenario where 25 tasks must

be completed. OpenMP would consist of a processor forking itself to all other proces-

sors, this can be thought of as the processor creating duplicates of itself. Processors

are typically considered to be threads in a HPC scenario, although, this is not always

the case. Each processor that is part of the fork would take a portion of the 25 values

and complete the task before saving the result, commonly to a shared array. In the

case where there are more tasks than processors, once a processor has completed a
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specific task, it will take a new task from the shared memory space and continue this

process until all tasks are completed. Theoretically, this form of parallelization should

occur much faster than MPI parallelization because tasks can be plucked from shared

memory. The disadvantage to this technique is that it is limited by the number of

processors and memory contained on a single node as well as the parts of the global

memory space that can be accessed concurrently.

4.2.2 Multithreading in Julia

Julia offers a variety of multi-threading implementations as part of its base package and

user-written packages. In the example given in Section 4.2.1, it was mentioned that

each processor would take a portion of the 25 values. The way in which the portion

is taken refers to the type of scheduling used by the multi-threading implementation.

There are two types of scheduling, namely static and dynamic. Static scheduling

would mean that all jobs are allocated at compilation time, without any knowledge

regarding the length of the job, and are evenly distributed across the given resources.

If there are 25 jobs and 5 processors, each processes will be given five jobs regardless

of size or duration. Dynamic scheduling is a scheduling algorithm where jobs are

allocated at execution time in order to reduce wait times and optimize resources.

This can be thought of as being on a first-come first-serve basis for new work when

current jobs are completed and returned.

In version 1.3 of Julia there are two multi-threading macros that are part of the

base packages. These macros are @threads and @spawn which are both considered

experimental in this version (@threads is no longer considered experimental in more

recent versions). The @threads macro is a simplistic implementation of a parallel
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for loop which currently only offers static scheduling. In order to take advantage of

a scheduling system similar to dynamic scheduling, the @spawn macro can be used.

This macro will spawn a given task on any available thread, but is primarily built

for operations that require nested parallelism where asynchronous events must be

spawned and have an impending call to wait for the result of this task. In order to turn

this into a dynamic scheduling where each of the tasks are independent, the @spawn

macro can be wrapped inside a synchronous for loop so that one task per thread

will be spawned for the given number of threads and will complete all tasks before

joining back to the main thread. The following pseudocode gives a simple example

of this. A similar implementation of this pseudocode is used in the multithreading

implementation as it prevents any race conditions from occurring between threads

because variables created within threads are private and results are saved to different

memory locations. A race condition would occur if multiple threads attempted to

alter a piece of memory at the same time.

Algorithm 1: Dynamic scheduling with @spawn

Function Main():
Create array of tasks
@sync begin

for i in 1:number of tasks
Threads.@spawn begin

results = do work here
save results[i] = results

end
end

end

Using the Alon dataset described in Section 3.4 and fitting 240 triples as described

in Section 4.4.2, Figure 4.1 shows the workload distribution per thread by comparing
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the iterations completed using @spawn and @threads.
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Figure 4.1: Iterations per thread using different base multithreading implementations
in Julia.

There are other packages available in Julia that may complete such tasks, but have

the potential to be deprecated with upcoming versions of Julia. The ThreadPools

package is a great example of this. This package exposes three similar macros

that mimic the actions of Julia’s base threading module. These macros include the

@bthreads macro which is a mirror of @threads where the main thread is free, the

@qthreads macro which is a dynamic scheduling version of @threads for non-uniform

jobs, and the @qbthreads macro which is again dynamic scheduling with the main

thread free.
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There has been limited work done impacting the overall performance of multi-

threading between version 1.3.0 and 1.5.2, and many features remain experimental.

Reasons to maintain the use of version 1.3.0 will become apparent in the following

sections. Notable benefits from the more recent versions include the ability to add

threads at run time, which would prevent idle threads on the master node, and the

ability to set scheduling in the @threads macro. An important detail to note is

that @threads scheduling still only offers static scheduling, but plans for dynamic

scheduling have been proposed by Julia developers.

4.3 Methodology

4.3.1 Hybrid Parallelization

Perhaps it is clear at this point why a hybrid of the aforementioned parallel methods

is ideal. A hybrid of MPI and OpenMP offers a “best of both worlds” scenario. The

hybrid approach is best suited for HPC clusters where MPI is used for parallelism

across nodes and OpenMP is exploited within the node. Hybrid parallelization allows

for the combination of distributed memory parallelization on the node inter-connect

with shared memory parallelization inside of each node, i.e., taking advantage of the

ideal attributes from both parallelization techniques.

Referring to Figure 4.2, hybrid parallelization is illustrated as it would occur on

a HPC. Again, consider the previously mentioned scenario where there are 25 tasks

to be completed. In the hybrid parallelization approach, these tasks can quickly be

divided up into groups of five by the head node which would then be sent to individual

nodes using MPI parallelization. Once the compute node receives one of the five tasks
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Figure 4.2: Hybrid MPI and OpenMP communication occurring within a HPC.

it would use OpenMP parallelization to complete all five tasks simultaneously and

only have to send one message back, e.g., a shared array containing the results, to

the head node. Next, this approach is described as it would occur in a model-based

clustering scenario via PGMMs.

It was mentioned in Section 3.3.4 that the user is unable to add processes using

the MPI package and threads using the Base.Threads package at run time. Due to

this, the number of processes and threads are set using Slurm prior to launching Julia

which does create a minor problem. The master process, even though it only requires

one process and no threads, will still be allocated the same number of threads as each

of the slaves. These threads, which are actually CPUs, will remain idle throughout

the computation and potentially hinder the hybrid performance slightly. This is to

say that in a hybrid scenario given N processes and T threads, N − 1 processes will

61



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

use all available threads, while one process (the master) will have T − 1 idle threads.

Until such environment variables can be set after run time, there is no alternative to

this option.

To reiterate from Chapter 3, McNicholas et al. (2010) states that to find the

best member of the PGMM family, the goal is to maximize the BIC over the triple

(M, G, q), where each triple will be sent to a different process. The pseudocode in

Appendix A can be thought of as containing three important steps of the hybrid

parallelization process. The first step being the function of the rank zero node on the

HPC cluster. This node takes the job of the master and will provide jobs to slaves

who are free in addition to collecting results from these slaves. The second step being

the nonzero rank nodes who take the job of a slave. The slaves send tags to the

master indicating that they are either free and requesting a job or have completed a

job and are returning results. Combining steps one and two are what makes up MPI

parallelization. The third step is what occurs within the slave nodes. Here, once the

slave has received a job, OpenMP parallelism would occur within the compute node

using Algorithm 1 where each individual task from the for loop will be spawned on a

processor once it becomes available. The master process that receives the information

sent via MPI will then fork itself to all available threads. Note, each processor on a

compute node is treated as a thread. The MPI parallelization sends a range of M

and G to the slave, but only one specific q. The master process on the slave node then

duplicates itself with a total ofM×G jobs to available processes. The master process

on the slave node will then gather all results upon completion and return the best

result to the master process on the head node. Note, the pseudocode in Appendix A

can be completed by using a probe command on slave nodes to see when they have
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results to return or are free to start a new task, but is instead accomplished using an

open call to receive.

4.4 Applications

4.4.1 Overview

The hybrid parallelization technique described in Section 3.3.3 will now be applied to

two real data sets and have its performance analyzed. For each analysis, OpenMP,

MPI, and the hybrid approach will be run. MPI will be run for 40, 80, 120, 160, 200,

and 240 processes. OpenMP will be run for 5, 10, 15, and 20 threads (processors).

The hybrid approach will then be run for 3, 5, 7, 9, and 11 processes each with 5, 10,

and 15 threads. For both the MPI and hybrid approach with N processes, there is

one master process and N − 1 slaves.

The performance of each run will then be evaluated using speed-up. In the case

of hybrid parallelization where there exists idle threads, speed-up will be calculated

excluding these threads. The speed-up of each technique will be graphed and super-

imposed with linear speed-up. Linear speed-up is an ideal scenario where the addition

of each slave process/thread would add an additional speed-up of one.

4.4.2 Alon Data Analyses

The Alon dataset described in Section 3.4 is used again for analyses. PGMMs are

fit for G = 2, 3, q = 1, . . . , 10, and M ∈ CCC, . . . ,UUU . This implies that there are

2 × 10 × 12 or 240 tasks to be completed in total. OpenMP will complete tasks for

the number of threads given while storing results in a shared array and plucking new
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tasks from the shared memory. MPI will complete tasks for the number of processes

given before sending results back to the master and requesting a new job. While for

the hybrid approach with N processes, N − 1 tasks, for a total of q, will be requested

through MPI communication and 2×12 or 24 tasks will be completed using OpenMP

by each slave node.

The serial time taken to run pgmm on the Alon data is approximately 2084 seconds

or 35 minutes. Referring to Table 4.1, the results of applying MPI parallelization to

run pgmm on the Alon data can be seen. The best result found under MPI paralleliza-

tion uses 240 processes, i.e., a master and 239 slaves. The time taken is 193 seconds

which results in an approximate speed-up of 10.8. Referring to Table 4.2, the results

can be seen when run using OpenMP parallelization. An approximate speed-up of

3.6 is found using 20 threads. For comparative purposes, using these 20 processors

under MPI parallelization results in a time of 408 seconds and a speed-up of 5.1.

Note, under OpenMP parallelization, using all of the logical cores on a given node

does not produce superior results and is not always possible. Using 25 threads is not

a possibility for the given scenario due to memory consumption.

The performance from the application of the hybrid approach can be seen in

Table 4.3. With similar overall resources sizes, a comparable, yet slightly better,

speed-up to that of MPI can be achieved in some hybrid scenarios. The best result,

being 183 seconds, is found using 11 processes and 15 threads. The speed-up of this

hybrid scenario is 11.39. A comparison of all results can be seen in Figure 4.3.

Note that the serial time taken using R is approximately 2.29 hours. For com-

parative purposes, a plot is also shown of the superimposed speed-up values as they

would be viewed in comparison to the pgmm package in R, see Figure 4.4. It can be
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Table 4.1: Time taken using MPI parallelization to run pgmm on the Alon data for
different numbers of processes.

MPI Time Results
Number of
Processes

Time in
Seconds

40 284
80 228
120 233
160 204
200 222
240 193

Table 4.2: Time taken using OpenMP parallelization to run pgmm on the Alon data
for different numbers of threads.

OpenMP Time Results
Number of
Threads

Time in
Seconds

5 796
10 637
15 587
20 579

Table 4.3: Time taken in seconds using hybrid parallelization to run pgmm on the Alon
data for different numbers of slaves/threads.

Hybrid Parallelization Time Results

Number of
Slaves

Number of
Threads

5 10 15 20

2 506 410 373 401
4 298 257 236 241
6 265 211 219 201
8 236 193 187 188
10 193 195 183 183

seen that the speed-up is actually hyper-linear for OpenMP and the hybrid model

with two slaves when a smaller number of processes/threads are present.
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Figure 4.3: Graph of speed-up using OpenMP, MPI, and hybrid parallelization tech-
niques for the Alon data.

4.4.3 Golub Data Analyses

The Golub dataset described in Section 3.4 is again used for analysis. PGMMs are

fit for G = 2, 3, q = 1, . . . , 10, and M ∈ CCC, . . . ,UUU . This implies that there are

2× 10× 12 or 240 tasks to be completed in total. The serial time taken to run pgmm

on the Golub data is approximately 54523 seconds or 15.15 hours. Note that R fails

to produce a result after a serial time of approximately 54.65 hours, over three and a

half times the length taken by Julia.

Referring to Table 4.4, the results of applying MPI parallelization to run pgmm on

the Golub data can be seen. The best result is achieved for 200 processes, i.e., a master
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Figure 4.4: Graph of speed-up using OpenMP, MPI, and hybrid parallelization tech-
niques for the Alon data in comparison to the pgmm package in R.

and 199 slaves. The time taken is 5167 seconds which results in an approximate speed-

up of 10.6. Referring to Table 4.5, the results can be seen when run using OpenMP

parallelization. A speed-up of 2.4 is achieved using 10 threads. Note, using 20 threads

produces a memory consumption error for the size of this data.

A significant difference in results can be seen in Table 4.6 from the application of

the hybrid approach. With fewer overall processes and threads, a greater speed-up can

be achieved in almost all hybrid scenarios. The best result being 2970 seconds which is

found using 11 processes and 15 threads, achieving a speed-up of 18.4. Comparing this

to MPI parallelization using 160 processes, the difference in speed-up is an increase

of 8.4 using 9 fewer CPUs (one process is only acting as the master and contains 14
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idle CPUs). A comparison of all results can be seen in Figure 4.5.

Table 4.4: Time taken using MPI parallelization to run pgmm on the Golub data for
different numbers of processes.

MPI Time Results
Number of
Processes

Time in
Seconds

40 8587
80 6022
120 5528
160 5474
200 5167
240 6990

Table 4.5: Time taken using OpenMP parallelization to run pgmm on the Golub data
for different numbers of threads.

OpenMP Time Results
Number of
Threads

Time in
Seconds

5 27873
10 22808
15 25805
20 NA

4.5 Performance Analysis

In Section 3.3.3 and Section 4.2.1, two parallel techniques, OpenMP and MPI, were

explored. Both techniques serve a key purpose in parallel programming, but give way

to the hybrid technique used in Section 4.3.1.

The hybrid technique showed a comparable speed-up to that of the larger scale

MPI scenarios using the smaller Alon dataset, but when using a larger dataset, i.e.,
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Table 4.6: Time taken in seconds using hybrid parallelization to run pgmm on the
Golub data for different numbers of slaves/threads.

Hybrid Parallelization Time Results

Number of
Slaves

Number of
Threads

5 10 15

2 17136 11360 9548
4 9362 6953 5430
6 7769 5493 4557
8 5706 5049 3559
10 4584 3366 2970
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Figure 4.5: Graph of speed-up using OpenMP, MPI, and hybrid parallelization tech-
niques for the Golub data.

Golub, the hybrid technique was shown to outperform these scenarios by larger mar-

gins. The disadvantage to the hybrid technique at this stage is that the number
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Figure 4.6: Graph of speed-up using OpenMP, MPI, and hybrid parallelization tech-
niques for the Golub data in comparison to the pgmm package in R.

of MPI processes is limited to the number of available nodes due to processor and

memory constraints for threading within nodes.

In the case of the Golub data, the increase from 2 slaves and 5 threads to 10 slaves

and 15 threads saved 14166 seconds or 3.9 hours of computation time. Although this

may not seem like much, in terms of overall performance these hybrid approaches

saved 37387 seconds or 10.4 hours and 51553 seconds or 14.3 hours, respectively.

Applying these methods can potentially save hours or days of computation time

depending on the size of the data and the number of triples.

At the time of writing, Julia is currently on version 1.5.2, but the work done

in this thesis can not be accomplished using this version. The up-to-date version
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of Julia is not currently compatible with MPICH and would require the Open-MPI

implementation of MPI software, but due to the aforementioned segmentation faults

caused within the UCX environment this is not a possibility.

In order to analyze performance, namely during the application of multithreading

parallelization, third party software was needed. The default profiler in Julia does not

work with parallel code and requires additional packages to interpret results, even

when in serial. Julia has limited compatibility with third party profiling software,

i.e., Intel VTune, OProfile, and perf are the only available options. Intel Vtune was

used to analyze the results throughout this chapter. The significant downside to

the use of a third party profiling software on Julia is that it is a just-in-time (JIT)

compiled language meaning that a significant amount of the time spent measuring

performance is measuring the compilation of different packages and functions at run

time. Options such as using the PackageCompiler module in version 1.4.1 were

considered to reduce run time, but this proved inefficient as it does not pre-compile

in parallel and will recompile functions when new data is used or dimensions change

during computation. e.g., for an increased number of factors. Performance was

measured for the weaker results using the Alon data. When running the VTune

concurrency analysis on the multithreading version using 20 threads for the @threads

and @spawn macro in base, approximate concurrency values of 8 and 18 were obtained,

respectively. The concurrency value is the average number of CPUs active during the

elapsed execution time. Applying each macro to the Golub data for a master with

10 slaves and 15 threads resulted in runtimes of 3250, and 2970 seconds, respectively.

The difference between the macros is an approximate speed-up of 1.6. The @spawn

macro shows an improvement over the predetermined static scheduling used by the
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@threads macro in almost all scenarios.

Referring to Table 4.7 a “manual” profiling of the serial code is done in order to

see what functions are costly to the overall performance. The UUCU model is the

most costly for overall time, a breakdown of the cost per function in the model can

be seen in Table 4.7. Although the UUCU is a more expensive function due to the

number of iterations, it is not costly in comparison when based on the average time

per number of calls (ncalls). Unfortunately, this form of manual profiling is unable to

be done in parallel, but Table 4.7 provides a good comparison to the time spent on

certain function calls in parallel that accumulate similar times to the UUCU model.

To give a better comparison to parallel profiling techniques used in VTune, Table 4.8

shows the most cost expensive functions “under the hood” of Julia during the serial

run time. The most expensive function, dgemm , is used by the linear algebra package

(LAPACK) for matrix multiplication while the remaining functions are Julia functions

to free and allocate memory, as well as use the garbage collector. Next, Table 4.9 &

4.10 show the performance results of running VTune on the multithreaded with 20

threads for the Alon data while Table 4.11 & 4.12 show the MPI results.

Table 4.9 shows the collective call time for all threads to the top six most expensive

functions/call stacks. Some calls like dgemm kernel are referenced twice because they

are called from different stacks, while the second most expensive stack, although

unknown by VTune, has calls to Julia’s jl apply for command execution and the

garbage collector. For a more in-depth look at multithreading the memory access

is analyzed, it can be seen from Table 4.10 that majority of the time is spent in or

waiting for the garbage collector. Even though Julia has made garbage collection safe

for threading, it is only thread safe because it requires a mutex (or lock) which is
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Table 4.7: Profiling PGMM for the Alon data in serial.

Time Allocations

Function ncalls Total % Total Average Total % Total Average

update UUCU 20 456s 21.2% 22.8s 931GiB 22.7% 46.66GiB

↪→ update z12 26.6k 142s 6.62% 5.35ms 482GiB 11.8% 18.6MiB

↪→ woodbury2 4.30M 105s 4.91% 24.5µs 309GiB 7.54% 75.4KiB

↪→ update delta3 34.7k 109s 5.09% 3.15ms 167GiB 4.06% 4.92MiB

↪→ update omega2 34.7k 97.6s 4.55% 2.81ms 110GiB 2.69% 3.25MiB

↪→ update sg 13.3k 86.0s 4.01% 6.47ms 132GiB 3.22% 10.2MiB

↪→ update mu 13.3k 6.41s 0.30% 482µs 26.2GiB 0.64% 2.02MiB

↪→ update theta 34.7k 5.87s 0.27% 169µs 0.97GiB 0.02% 29.2KiB

↪→ update lambda 34.7k 4.47s 0.21% 129µs 1.81GiB 0.04% 54.8KiB

↪→ update det2 34.7k 1.12s 0.05% 32.4µs 2.88GiB 0.07% 87.0KiB

↪→ update beta2 34.7k 964ms 0.04% 27.8µs 2.78GiB 0.07% 84.0KiB

↪→ update beta2 34.7k 937ms 0.04% 27.0µs 2.78GiB 0.07% 84.0KiB

↪→ update CUCU 20 329s 15.3% 16.5s 526GiB 12.8% 26.3GiB

update lambda CUU 7.36k 97.7s 4.55% 13.3ms 62.6GiB 1.53% 8.71MiB

↪→ update z11 14.7k 66.5s 3.10% 4.52ms 194GiB 4.74% 13.5MiB

↪→ woodbury2 2.32M 56.2s 2.62% 24.2µs 160GiB 3.91% 72.5KiB

↪→ update delta3 18.7k 61.2s 2.85% 3.26ms 90.0GiB 2.20% 4.92MiB

↪→ update omega 18.7k 60.9s 2.84% 3.25ms 89.9GiB 2.19% 4.91MiB

↪→ update sg 7.36k 34.2s 1.60% 4.65ms 71.5GiB 1.74% 9.94MiB

↪→ update mu 7.36k 3.63s 0.17% 493µs 14.2GiB 0.35% 1.97MiB

↪→ update theta 18.7k 3.12s 0.15% 167µs 507MiB 0.01% 27.7KiB

↪→ update det2 18.7k 647ms 0.03% 34.5µs 1.47GiB 0.04% 82.5KiB

↪→ update beta2 18.7k 542ms 0.03% 28.9µs 1.42GiB 0.03% 79.7KiB

↪→ update beta2 18.7k 555ms 0.03% 29.6µs 1.42GiB 0.03% 79.7KiB
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Table 4.8: Hotspot profiling PGMM for the Alon data in serial.

Function CPU Time
dgemm 1165s
jl apply 495s
int free 56s
int malloc 29s

malloc consolidate 22s
jl gc pool alloc 22s
sweep page 20s

a synchronization primitive that limits access to a certain resource when multiple

threads may try to use it concurrently. In the case of Julia’s garbage collector, only

one thread may access it at a time while other threads requiring access will be put

in a queue to gain control over the resource. Julia documentation further states that

“compute-bound, non-memory-allocating tasks can prevent garbage collection from

running in other threads that are allocating memory which may further slow the

garbage collection process”.

Table 4.9: Hotspot profiling PGMM for the Alon data using OpenMP.

Function CPU Time
dgemm kernel 0 1178s
Outside of known module 1124s
dgemm ker0 660s
jl mutex wait 301s
madvise 282s

maybe collect 144s

In the case of the MPI implementation, Table 4.11 shows that, again, much of the

time is spent doing matrix multiplication, and waiting for the MPI finalize to execute

which means that all processes have completed their tasks (inclusive of the master)

and the program is ready to complete. Note that the poll function is directly related

to MPID Finalize as it is polling for communication. Consider the memory access
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Table 4.10: Memory access profiling PGMM for the Alon data using OpenMP.

Function CPU Time Instructions Retired CPI Rate CPU Frequency

jl safepoint wait gc 416s 43173600000 7.111 0.308

jl mutex wait

↪→ jl mutex lock 333s 41709600000 15.232 0.796

memfd:julia-codegen 82s 187473600000 0.228 0.217

dgemm kernel 60s 147408000000 0.192 0.196

jl mutex wait

↪→ jl mutex lock 53s 6597600000 16.135 0.842

jl safepoint wait gc 39s 487200000 54.640 0.305

shown in Table 4.12, the CPI Rate of all functions, which is the cycles per instruction

(CPI) retired, is close to zero with an overall average of 0.016. Intel states that a

CPI of 1 is typically considered acceptable for HPC performance. There is minimal

contention here for communication with the main process as sending and receiving

information is accomplished very quickly with the added benefit of multiple processes

having the ability to run their own garbage collector concurrently to one another.

Table 4.11: Hotspot profiling PGMM for the Alon data using MPI.

Function CPU Time
dgemm 2549s
MPID Finalize 2345s
jl apply 989s
poll 227s

MPIDI CH3I Progress 210s
MPI Recv 154s
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Table 4.12: Memory access profiling PGMM for the Alon data using MPI.

Function CPU Time Instructions Retired CPI Rate CPU Frequency

MPIDI CH3I Progress 127s 419642400000 0.000 0.000

jl unwrap unionall 42s 66470400000 0.048 0.031

obviously disjoint 36s 70740000000 0.042 0.034

MPID nem tcp connpoll 34s 171247200000 0.000 0.000

jl obvious subtype 26s 98440800000 0.018 0.028

4.6 Discussion

Overall, the performance of serial execution in Julia is far too efficient to fully realize

the speed-ups obtained from parallel programming techniques. The MPI efficiency in

Julia may look weak, but performance will continue to improve with the application

to larger data sets. A large gap was seen in the CPI rates with overall averages going

from 0.016 using MPI to 1.471 using OpenMP, suggesting this is where most of the

downfall in the hybrid technique has come from. Considering that Julia is very early

in its life cycle, there are many additional potential problems that could be occurring

within the multithreading implementation.

From the VTune analysis, 31.2% of pipeline slots, hardware resources needed to

process one micro-op such as a missing piece of information, were memory bound

stalls. DRAM bandwidth bound, a metric for the percentage of elapsed time commu-

nicating with the main memory, attributed 11.6% of overall execution time. A total

of 716893011 last-level cache (LLC) misses were found during execution time, more

than three times the number of misses in serial. The LLC is the last and longest la-

tency memory level where each miss must be filled by the local or remote DRAM with

a substantial latency attributed to it. Phenomena in parallel programming, namely

false sharing and cache coherency, are plausible issues contributing to these problems.
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False sharing refers to a performance hindering pattern that occurs in HPCs with

distributed, coherent caches. While a thread attempts to access data that is unique to

itself, but this data shares a cache block with other data that are read and/or altered

by other threads, the system may force the thread to wait for access despite the lack

of conflict. This causes memory stalls and will significantly reduce run time without

proper synchronization.The processors on the HPC used are part of the Skylake family

where there are three levels of cache in the subsystem memory for these processors.

Each core has an L1 and L2 cache with an L3 cache shared among the cores. In

OpenMP applications, copies of the same cache can be present in the L1 or L2 cache

for multiple cores.

Cache coherency refers to the shared memory of resources that are stored across

multiple caches. For example, although all results are stored in a different part

of an array in the code and one thread will not interfere with another, when one

thread updates the array, this may force a similar thread updating another portion

to be invalidated. This is a typical disadvantage when it comes to scaling hybrid

parallelization that uses threading within nodes in comparison to MPI parallelization

alone. When a core in the Skylake processor family updates information stored in

a shared cache it typically invalidates all other cores that possess this memory, even

when the core resides in a different socket. This would force a core that later needs

this data on its local L1 and/or L2 cache to refer to the main memory to create a new

copy of the information. These two phenomenons will cause significant performance

delays because they are both hardware related, and can not always be remedied in

shared memory programs.
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Chapter 5

Parallelization with Python and

Comparative Approaches

5.1 Introduction

The methodology presented throughout this thesis, namely Chapter 4, was not orig-

inally intended to have been accomplished using Julia. The author had originally set

out to complete the goals in this thesis using Python 3. Many attempts had been made

to improve performance before the decision to move to another language, i.e., Julia,

was made. Although a much more established language with many great qualities,

Python posed many challenges for model-based clustering in both serial and parallel

implementations.

This chapter is outlined as follows. In Section 5.2 two approaches to parallelization

with Python are discussed, one a naive approach that led to implementing model-based

clustering via PGMMs in parallel using a combination of programming languages,

followed by a native Python approach to compare and improve the results using the
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previous combination of languages. In Section 5.3 both proposed approaches will be

illustrated in serial and parallel in order to compare and contrast the benefits of each

in Section 5.4.

5.2 Methodology

5.2.1 Implementations

With the idea in mind to create the MFPGMM approach as developed in Chapter 3

of this thesis, the first problem was to make the runtime realistic for the multitude of

triples that would have to be run. The pgmm package developed in R by (McNicholas

et al., 2019) could be altered to suit the approach, but at the cost of days of compu-

tational time. The work in McNicholas et al. (2010) had shown that improvements in

performance were obtainable using MPI parallelization and the goal was to expand on

this approach and implement hybrid parallelization to further improve performance

using the pgmm package in R, but with a more established language for its parallel

performance, i.e., Python.

Python has no inherently “pleasant” way of communicating with other languages

such as R and/or C, especially when a transfer of data is required between the lan-

guages. Python does however have several modules that allow communication with the

operating system which can be used to run external processes. The more up-to-date

method used for this implementation is the subprocess module (older modules such

as os may produce similar results). Within the subprocess module is the ‘Popen’

class that allows the execution of external programs as a child process. A child pro-

cess refers to any process that is started via a parent process which is part of the main
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program. The advantage of the Popen class is that it takes ‘args’ as a parameter,

allowing the arguments for the child process to be specified before the program is

executed on the command line. From the Python subprocess documentation, the

args parameter must always be specified and contain a string of program arguments.

Consider Algorithm 2, this function shows how a number of arguments can be

effectively sent to R via the command line when using the Popen class. Arguments

that may vary in size from run-to-run or for different PGMM models, e.g., the data

(represented as x), are written to a text file as a string under specific naming conven-

tions that correspond to the component size and number of factors. This is important

for other arguments to ensure they are reading the correct files without causing a race

condition to read or write, and allows for universal use of the code with different data

sets. Command line arguments specified in Popen are read into R followed by the

appropriate text files while being converted to matrices and numeric values. From R,

the pgmm executable file, written in C, attached to the pgmm library is run for the given

parameters and results are again written to name specific text files which Python will

read once it receives a completion signal from the communicate action appended to

the subprocess.Popen function. Note that all tasks run from subprocess are asyn-

chronous and some form of interaction or wait is required to have the tasks finish

before importing results.

Analogous to that of the code used in Chapter 4, a native version of PGMMs was

developed in Python that negated the use of the subprocess module that will become

clear in Section 5.3. The decision to use a message passing inference over distributed

computing in Julia was inspired by the original implementation developed in Python

and will not be described in detail because they are nearly identical. The primary

80



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

Algorithm 2: The subprocess.Popen function used within Python to com-
municate with external programs.

Function run pgmm(x, z, bic, kls, q8, p, g8, n, model, cluster, llambda, psi,
tol):

np.savetxt(“x” + str(g8) + str(q8) + str(model) + “.txt”, x)
np.savetxt(“z” + str(g8) + str(q8) + str(model) + “.txt”, z)
np.savetxt(“kls” + str(g8) + str(q8) + str(model) + “.txt”, kls)
np.savetxt(“lam temp” + str(g8) + str(q8) + str(model) + “.txt”,
llambda)

if (isinstance(psi, float) == True):
np.savetxt(“psi temp” + str(g8) + str(q8) + str(model) + “.txt”,
psi[None])

else:
np.savetxt(“psi temp” + str(g8) + str(q8) + str(model) + “.txt”, psi)

p4 = subprocess.Popen([”Rscript –vanilla run pgmm prc2.R %s %s %s
%s %s %s %s %s %s %s %s %s %s” % (“x” + str(g8) + str(q8) +
str(model), “z” + str(g8) + str(q8) + str(model), str(bic), “kls” +
str(g8) + str(q8) + str(model), str(q8), str(p), str(g8), str(n),
str(model), str(cluster), “lam temp” + str(g8) + str(q8) + str(model),
“psi temp” + str(g8) + str(q8) + str(model), str(tol))],
stdout=subprocess.PIPE, stdin=subprocess.PIPE,
shell=True).communicate()[0]

zbest = pd.read csv(“zbest” + str(g8) + str(q8) + str(model) + “.txt”,
sep=“ ”, header=None)

zbest = np.asarray(zbest)
bic best = pd.read csv(“bicbest” + str(g8) + str(q8) + str(model) +
“.txt”, sep=“ ”, header=None)

bic best = np.asarray(bic best)
lmbda best = pd.read csv(“lambdabest” + str(g8) + str(q8) +
str(model) + “.txt”, sep=“ ”, header=None)

lmbda best = np.asarray(lmbda best)
psi best = pd.read csv(“psibest” + str(g8) + str(q8) + str(model) +
“.txt”, sep=“ ”, header=None)

psi best = np.asarray(psi best)
return None, zbest, bic best, lmbda best, psi best
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difference between the languages, and a deciding factor when it came to move away

from Python, can be seen in the shared memory parallelism for which Python was not

designed with in mind. The following section details the parallel framework applied

to the two aforementioned implementations.

5.2.2 Parallel Framework

Shared memory parallelism in Python does exist within the ‘Threading’ module where

it will share mutable objects, i.e., dictionaries, created using the same memory address

when attempting to access it. The downfall when it comes to using Python for shared

memory parallelism is that in order to make threads attempting to access this memory

address safe, and free of race conditions, a global interpreter lock (GIL) is used. A

GIL is a mechanism used by Python to ensure that only one thread is executing

bytecode (Python source code after compilation) at a time. In other words, although

threading gives the appearance of being run in parallel, the source code is being run in

serial fashion. Threading in Python does have potential advantages if the targets were

executables outside of the native environment, but for the native implementation of

an iterative model the runtime will suffer.

Perhaps a step away, but in the right direction, from shared memory parallelism

is the use of the Multiprocessing module. Pointers are objects that store a memory

address and are the standard way to accomplish shared memory parallelism, but they

are forbidden between processes to allow for safe memory access. In addition, by

preventing the use of a shared pointer between processes it also allows for variables

created within processes to remain local. To accomplish shared memory parallelism

between processes, inter-thread communication can be used where multiple pointers
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to one memory address would exist. The Multiprocessing module is very similar

to the @spawn macro described in Chapter 4 in the sense that it will spawn processes

for tasks. This module allows for both local and remote concurrency which negates

the GIL from threading. Note, there are multiple available methods for starting a

process, e.g., fork and spawn, but this chapter will focus on the use of forking as it is

the recommended and default method of Linux based operating systems.

There are two primary classes within the Multiprocessing module, i.e., Process

and Pool. The Pool class uses a group of specified workers to execute a process, while

the Process class itself will only spawn a Process object. The Pool class will start a

process by calling apply or map on the process, while the Process class must have

each process called by a .start() for Python to allocate the process. Both methods

require a .join() to wait for all processes to complete before resuming the code run

on the parent process. When using a Pool, the results must be retrieved using .get()

while the Process class has a main process, also referred to as the parent, that owns

a dictionary which can be shared to each process to store results in. Algorithms 3

& 4 show the ease of implementation for multiprocessing in Python. As in the Julia

implementation,

export OMP_NUM_THREADS=1

must be called prior to execution which is identical to

BLAS.set_num_threads(1)

called within Julia to prevent oversubscribing. Although this is distributed memory, it

requires no call to a process laucher, e.g., mpiexec or mpirun, in order to accomplish

process based parallelism as it would in a MPI framework.
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Algorithm 3: Application of the Process class in the Multiprocessing

module for an array of tasks in Python.

Function parallel pgmm(data, rg=range(g min, g max), rq=range(q min,
q max), rt=range(t min, t max), n, p, seed):

triples = [rg, rq, rt]
set tuple = list(itertools.product(*triples))
set tuple = np.asarray(set tuple)
index = range(0, len(set tuple))
set tuple = np.c [set tuple, index]
mgr = multiprocessing.Manager()
results save = mgr.dict()
jobs = [multiprocessing.Process
(target=work, args=(data, j[0], j[1], j[3], n, p, seed, j[4], results save))
for j in set tuple
]
for j in jobs:
j.start()
for j in jobs:
j.join()

Algorithm 4: Application of the Pool class in the Multiprocessing module
for an array of tasks in Python.

Function parallel pgmm(data, rg=range(g min, g max), rq=range(q min,
q max), rt=range(t min, t max), n, p, seed, ntasks node):

triple = [rg, rq, rt]
set tuple = list(itertools.product(*triple))
set tuple = np.asarray(set tuple)
index = range(0, len(set tuple))
set tuple = np.c [set tuple, index]
with multiprocessing.Pool(processes=ntasks node) as pool:
jobs = [pool.apply async
(work, args=(data, j[0], j[1], j[2], n, p, seeder, j[3]))
for j in set tuple
]
pool.close()
pool.join()
results save = [p.get() for p in jobs]
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When starting tasks contained within jobs using the Process class, there is no

limitation to the number of available CPUs. Although this can be beneficial at times,

ideally there will only be one job running per available CPU. The Poll class limits

applications to a group of workers which asynchronously apply tasks to free workers

within the group, i.e., the number of available CPUs. The Pool class also has benefits

when applied for model-based clustering because only the processes under execution

are kept in the memory, while if the task contained less repetition and smaller amounts

of data the Process class would be more beneficial.

Referring to the hybrid pseudocode for the master-slave paradigm in Appendix A,

the slave in Python would simply contain one of the algorithms described throughout

this section in place of the shared memory parallelism algorithm used by Julia in

Chapter 4. The applications in Section 5.3 will be completed using the Pool class

shown in Algorithm 4.

5.3 Application

The Alon dataset described in Section 3.4 is used again for analyses in order to

accurately compare performance. PGMMs are fit for G = 2, 3, q = 1, . . . , 10, and

M ∈ CCC, . . . ,UUU for a total of 240 tasks. The Multiprocessing module will be

applied using an identical numbers of processes(threads) as in Section 4.4 while the

serial and MPI implementations remain unchanged.
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5.3.1 Combined Implementation

The serial time taken to calculate the speed-up for these results will use the same

time found in the R application, i.e., 2.29 hours, because the combined implementation

primarily uses Python for parallelization while tasks are run through R. The combined

approach would require at least two CPUs to be available in order to spawn a task.

This would not truly be considered a serial implementation because the performance

would suffer due to increased communication required for each triple preventing an

accurate comparison from being given.

In Section 3.3.3 Open-MPI and MPICH implementations for MPI software were

discussed. The latter was used for Julia, but the former must be used for Python

which brings about many issues due to the interaction between this software and UCX

memory hooks. Some issues can be negated, but at the potential cost of performance.

When running parallel code, almost all circumstances are identical to Chapter 4 in

terms of modules and resources excluding the MPI software. When using a MPI, tags

can be passed through to each node using the -mca switch which allows parameters to

be passed to Modular Component Architecture (MCA) modules which directly impact

runtime. To avoid the use of UCX, the MPI point-to-point management layer (pml)

must be set to ob1. ob1 is a a component in the PML framework that is used to select

a communication protocol that is based on the message to send and the MPI point-to-

point Byte Transfer Layer (BTL) components. The BTL communication device used

to transport messages must be set to openib and self. The openib BTL component is

used to select InfiniBand communication and self is set for loopback communication

(this must always be set). These communication protocols will prevent almost all

segmentation faults, but it can be seen from results listed as NA that it will not
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prevent all errors from occurring.

Referring to Tables 5.1, 5.2, & 5.3 the performance of MPI, multiprocessing, and

hybrid parallelization can be seen, respectively. It is clear from the results that

MPI is dominant if resources are readily available, but Multiprocessing is more

efficient. It is also important to consider that if MPI is the sole form of parallelization,

resources must double the number of processes or else a segmentation fault will occur

when trying to fork tasks outside of Python, i.e., for every process there are two

CPUs assigned. While when using the Multiprocessing module, this is not required

because tasks are forked and not transported using a MPI. The best speed-up achieved

from Multiprocessing is 12.4 using 20 processes which is equivalent to that of MPI

using 20 processes, but 40 CPUs. The disadvantage of Multiprocessing is the lack

of scaling when compared to MPI. Starting half of the total tasks at the same time

using MPI achieves a speed-up of approximately 27.5 which provides a negligible

increase in performance from starting between 60 and 100 processes.

Table 5.1: Time taken using MPI parallelization to run pgmm on the Alon data for
different numbers of processes outside of Python.

MPI Time Results
Number of
Processes

Time in
Seconds

20 667
40 769
60 354
80 330
100 301
120 300

The hybrid scenario does not outperform Multiprocessing or MPI in Python for

any scenarios because the forced usage of Open-MPI software and the distributed
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Table 5.2: Time taken using the Multiprocessing module to run pgmm on the Alon
data for different numbers of processes outside of Python.

Multiprocessing Time Results
Number of
Processes

Time in
Seconds

5 2560
10 1571
15 1245
20 667

messaging within MPI processes acquire too much overhead in comparison to using

only one form of parallelization.

Table 5.3: Time taken in seconds using hybrid parallelization to run pgmm on the Alon
data for different numbers of slaves/processes outside of Python.

Hybrid Parallelization Time Results

Number of
Slaves

Number of
Processes

5 10 15 20

2 2667 1956 1267 1193
4 2685 2018 1485 1237
6 1367 1875 1371 1171
8 1431 1686 1179 1035
10 NA 1438 1157 998

5.3.2 Native Python

The serial time taken to run pgmm on the Alon data is approximately 4189 seconds

or 1.2 hours, just less than half of the time taken using R. Referring to Tables 5.4,

5.5, & 5.6 the results of each parallel application for the given number of processes

can be seen. A visible improvement in performance can be seen from the results in
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Section 5.3.1. Although the overhead acquired by using MPI parallelization far ex-

ceeds that of Multiprocessing, it is still vastly improved and required for the hybrid

approach. The Multiprocessing implementation achieved a speed-up of 6.6 using 20

processes where the decrease in performance can be attributed to the increased serial

performance. MPI parallelization achieved an approximate speed-up of 19, almost

triple that of Multiprocessing, but with a significant loss in efficiency.

Table 5.4: Time taken using MPI parallelization to run pgmm on the Alon data for
different numbers of processes in native Python.

MPI Time Results
Number of
Processes

Time in
Seconds

40 419
80 285
120 246
160 235
200 234
240 220

Table 5.5: Time taken using the Multiprocessing class to run pgmm on the Alon data
for different numbers of processes in native Python.

Multiprocessing Time Results
Number of
Processes

Time in
Seconds

5 1795
10 1057
15 729
20 636

It can still be seen that hybrid parallelization acquired far too much overhead for

similar reasons to that of Section 5.3.1. It is prevalent that the more Multiprocessing

processes started, the greater the performance gain.
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Table 5.6: Time taken in seconds using hybrid parallelization to run pgmm on the Alon
data for different numbers of slaves/processes in native Python.

Hybrid Parallelization Time Results

Number of
Slaves

Number of
Processes

5 10 15 20

2 1648 1253 879 711
4 1656 1030 749 655
6 826 1015 717 692
8 850 1068 822 679
10 NA 872 737 661

5.4 Discussion

In this chapter, two approaches were considered for the implementation of PGMMs

in Python using multiple parallelization techniques. Between the two approaches with

multiple forms of parallelization, the native Python implementation using Multiprocessing

for parallelization demonstrated superior performance over all others, but lacked the

opportunity for scaling. MPI parallelization showed improved results when applied

to the native implementation of PGMMs and with the addition of more processes,

but showed decreased efficiency with scaling.

Python has long since been known as a standard programming language that offers

immense flexibility, but has never been known for its speed. While other program-

ming languages such as C and Julia are compiled languages, Python is an interpreted

language. Interpreted code is known to be slower than machine code used by com-

piled languages because it takes a plethora of instructions to execute an interpreted

instruction versus a simple machine instruction. An interpreted language will acquire

a greater amount of overhead upon execution as it runs through the code line by line
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performing tasks such as removing blank space, removing comments, and allocating

memory prior to execution. While compiled language can be directly converted into

machine code and executed.

To add further difference between the languages, C is a purely compiled language

that requires an additional step for manual compilation prior to execution, while

Julia is JIT compiled as mentioned in Section 4.5. JIT compilation minimizes the

gap between compiled and interpreted languages as it attempts to give the appear-

ance of an interpreted language while still offering the performance of a compiled

language, but it is not without its downfalls. JIT compiled languages have overhead

related to compilation during runtime and visible delays in startup time. The work

completed throughout this chapter brought into question whether or not the hybrid

parallelization could be further improved, which led to the use of Julia throughout

this thesis.
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Chapter 6

Conclusion

6.1 Summary

The work developed in this thesis represents a significant contribution to the grow-

ing body of literature on computational statistics for model-based clustering with

independent models.

In Chapter 3, a new technique in which the number of factors per component may

vary for PGMMs where the factor loadings are unconstrained is introduced. This

is a novel approach which is applicable to any scenario in which the PGMM family

may be fit, but allows for more flexible solutions. This work also demonstrated the

computational benefit of applying such models to high-dimensional data in parallel.

In Chapter 4, hybrid parallelization that allows for the combination of distributed

memory parallelization on the node inter-connect with shared memory parallelization

inside of each node is developed in Julia. The approach demonstrated how improved

computational runtime can be obtained using less resources in comparison to OpenMP
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and MPI parallelization alone. The serial and parallel performance of Julia was ana-

lyzed using third party software, i.e., VTune, to find where computational efficiency

becomes a concern.

In Chapter 5, the parallelization techniques detailed in Chapter 4 are shown as

they were originally implemented in Python using multiple different approaches. This

chapter sheds light on the downfall of hybrid parallelization in Python, or lack thereof.

A comparison of the different programming languages used throughout this thesis and

the benefits of Julia for model-based clustering is brought to fruition. The combined

approach discussed throughout Chapter 5 can also be made applicable to Julia with

the language’s unique ability to execute R code directly within the Julia environment.

Making a strong case for the departure from standalone R as a mainstream statistical

programming language.

6.2 Future Work

6.2.1 Improving Parallel Efficiency and Determining Opti-

mal Resources

Throughout this thesis, it has been shown that computational runtime can be vastly

improved by applying parallel computing techniques, but there is a visible decrease

in efficiency with scaling. Consider the hybrid parallelization results in Chapter 4

for the Alon data, the difference between 50 CPUs and 200 CPUs is 10 seconds and

offers no practical gain in efficiency. Ideally, the runtime per model for the size of

the data can be averaged, given that communication time is relatively consistent, and

resources can be adjusted (if available) to determine the optimal number of resources
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to use when the gain of those resources falls below a specified percentage.

Julia has many upcoming advancements as well as the removal of certain limi-

tations, some of which were discussed in Chapter 4, which will provide significant

improvement in threading and allow for further efficiency. Although the hybrid sce-

nario has proven to be efficient, OpenMP may be a far more practical option when it

comes to parallel model-based clustering. Implementing large-scale OpenMP paral-

lelization on substantially larger HPC nodes such as those available on IBM BlueGene

system would provide more insight into this topic.

6.2.2 Applications to Big Data and Other Model-Based Clus-

tering Techniques

Parallel model-based clustering can be extremely useful with new sets of increasingly

larger data being gathered around the world. The speed-up from applications to larger

datasets showed increasingly better performance. It would be interesting to study

the application of these techniques to scenarios which may take weeks or months to

complete due to the size of the data. This may also call into question the effectiveness

of the BIC for estimation of component sizes with higher dimensional data which may

provide the opportunity to apply other techniques in parallel. Parallelization can not

only be applied to larger data, but to different model-based clustering techniques with

multiple parameters that involve any form of tuning or prolonged runtime where each

instance can be run independently.
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Appendix A

Functions from Parallel Code

Algorithm 5: The main() Function

Function Main():
MPI.Init()
comm = MPI.COMM WORLD
size = MPI.Comm size(comm)
rank = MPI.Comm rank(comm)
if rank == 0 then

master(comm, size, rank)
else

slave(comm, size, rank)

MPI.Barrier(comm)
MPI.Finalize()
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Algorithm 6: The master() Function

Function Master():
read input arguments
while closed workers < total workers do

probe all slaves
read the status of the slave
if slave is waiting for master then

get the source of the slave
receive message from the respective slave
if slave is looking for work then

if there are random starts required then
send random or k−means start parameters to slave
send data to slave
increase random start index

else if starts are complete and there are jobs to do then
send a triple parameters for the slave to work on
if q is a vector then

send vector for q to slave
send data to slave
increase job index

else
let the slave know it is time to close
increase closed workers index

else if slave is returning a job then
receive (BIC, G, q, M) from slave
if q == −1 then

receive q vector of length G
receive n×G matrix of z
if BIC > Saved BIC then

update results
else if slave is returning a start then

receive (BIC, G, q, M) from slave
receive z start matrix from slave
if BIC Start > Saved BIC Start then

update z start matrix

Print final results
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Algorithm 7: The slave() Function

Function Slave():
while true do

send request for work to master
receive job from master
read status of job
if task is a job and factor loadings are constrained then

receive parameters for job
receive z start matrix
receive data
run AECM for respective triple
send BIC and parameters to master
send z to master

else if task is a job and factor loadings are unconstrained then
receive parameters for job
receive q vector matrix
receive z start matrix
receive data
run AECM for respective triple
send BIC and parameters to master
send z to master

else if task is a k−means start then
receive parameters for job
receive data
run AECM for respective triple
send BIC and parameters to master
send z to master

else if task is a random start then
receive parameters for job
receive data
run AECM for respective triple
send BIC and parameters to master
send z to master

else if task is empty then
close slave
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Appendix B

Multi-Factor PGMM Results

Table B.1: Time taken using MPI parallelization to run mf-pgmm on the coffee data
for different numbers of processes.

Number of
Cores

Time in
Seconds

Speed-Up
(% usage)

1 (Serial) 1920 NA
5 768 2.5(62.50%)
90 99 19.40(21.80%)
150 85 22.59(15.16%)
210 78 24.6(11.77%)
270 76 25.26(9.39%)
330 71 27.04(8.22%)
420 74 25.95(6.19%)
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Table B.2: Time taken using MPI parallelization to run mf-pgmm on the Italian Wine
data for different numbers of processes.

Number of
Cores

Time in
Seconds

Speed-Up
(% usage)

1 (Serial) 245437 NA
90 5412 45.35(50.96%)
150 3610 67.99(45.63%)
210 2672 91.86(43.74%)
270 2151 114.1(42.42%)
330 1781 137.81(41.89%)
420 1463 167.76(39.94%)
980 1239 198.09(20.23%)

Table B.3: Time taken using MPI parallelization to run mf-pgmm on the Italian Olive
Oil data for different numbers of processes.

Number of
Cores

Time in
Seconds

Speed-Up
(% usage)

1 (Serial) 42842 NA
90 1282 33.42(37.55%)
150 913 46.92(31.49%)
210 702 61.03(29.2%)
270 618 69.32(25.77%)
330 540 79.34(24.11%)

Table B.4: Time taken using MPI parallelization to run mf-pgmm on the Alon for
different numbers of processes.

Number of
Cores

Time in
Seconds

Speed-Up
(% usage)

1 (Serial) 212407 NA
90 3860 55.03(61.83%)
150 2473 85.89(57.64%)
210 1837 115.63(55.32%)
270 1497 141.89(52.75%)
330 1286 165.17(50.20%)
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Table B.5: Time taken using MPI parallelization to run mf-pgmm on the Golub data
for different numbers of processes.

Number of
Cores

Time in
Seconds

Speed-Up
(% usage)

1 (Serial) 271336 NA
90 7057 38.45(43.20%)
150 5506 49.28(33.07%)
210 4971 54.58(26.12%)
270 4658 58.25(21.65%)
330 4162 65.19(19.82%)
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Lagrange, J. L. (1788). Méchanique Analitique. Chez le Veuve Desaint, Paris.

103



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

Lawley, D. N. and Maxwell, A. E. (1962). Factor analysis as a statistical method.

Journal of the Royal Statistical Society: Series D, 12(3), 209–229.

Leroux, B. G. (1992). Consistent estimation of a mixing distribution. The Annals of

Statistics, 20(3), 1350–1360.

Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. In NSF-

CBMS Regional Conference Series in Probability and Statistics, volume 5. Hayward,

California: Institute of Mathematical Statistics.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Statistics, pages 281–297, Berkeley. University

of California Press.

McLachlan, G. J. and Krishnan, T. (2008). The EM Algorithm and Extensions. Wiley,

New York, 2 edition.

McLachlan, G. J. and Peel, D. (2000). Mixtures of factor analyzers. In Proceedings

of the Seventh International Conference on Machine Learning, pages 599–606, San

Francisco. Morgan Kaufmann.

McLachlan, G. J., Bean, R. W., and Peel, D. (2002). A mixture model-based approach

to the clustering of microarray expression data. Bioinformatics, 18(3), 412–422.

McNicholas, P. D. (2016a). Mixture Model-Based Classification. Chapman &

Hall/CRC Press, Boca Raton.

McNicholas, P. D. (2016b). Model-based clustering. Journal of Classification, 33.

104



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

McNicholas, P. D. and Murphy, T. B. (2005). Parsimonious Gaussian mixture models.

Technical Report 05/11, Department of Statistics, Trinity College Dublin, Dublin,

Ireland.

McNicholas, P. D. and Murphy, T. B. (2008). Parsimonious Gaussian mixture models.

Statistics and Computing, 18(3), 285–296.

McNicholas, P. D. and Murphy, T. B. (2010a). Model-based clustering of longitudinal

data. The Canadian Journal of Statistics, 38(1), 153–168.

McNicholas, P. D. and Murphy, T. B. (2010b). Model-based clustering of microarray

expression data via latent Gaussian mixture models. Bioinformatics, 26(21), 2705–

2712.

McNicholas, P. D. and Tait, P. A. (2019). Data Science with Julia. Chapman &

Hall/CRC Press, Boca Raton.

McNicholas, P. D., Murphy, T. B., McDaid, A. F., and Frost, D. (2010). Serial

and parallel implementations of model-based clustering via parsimonious Gaussian

mixture models. Computational Statistics and Data Analysis, 54(3), 711–723.

McNicholas, P. D., ElSherbiny, A., McDaid, A. F., and Murphy, T. B. (2019). pgmm:

Parsimonious Gaussian Mixture Models. R package version 1.2.4.

Meng, X.-L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM

algorithm: a general framework. Biometrika, 80, 267–278.

Meng, X.-L. and van Dyk, D. (1997). The EM algorithm — an old folk song sung to a

fast new tune (with discussion). Journal of the Royal Statistical Society: Series B,

59(3), 511–567.

105



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

Murphy, K., Viroli, C., and Gormley, I. C. (2020). Infinite mixtures of infinite factor

analysers. Bayesian Analysis, 15(3), 937–963.

Orchard, T. and Woodbury, M. A. (1972). A missing information principle: The-

ory and applications. In L. M. Le Cam, J. Neyman, and E. L. Scott, editors,

Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Prob-

ability, Volume 1: Theory of Statistics, pages 697–715. University of California

Press, Berkeley.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.

Journal of the American Statistical Association, 66(336), 846–850.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,

6(2), 461–464.

Spearman, C. (1904). The proof and measurement of association between two things.

American Journal of Psychology, 15, 72–101.

Steinley, D. (2003). Local optima in k-means clustering: What you don’t know may

hurt you. Psychological methods, 8(3), 294–304.

Steinley, D. (2004). Properties of the Hubert-Arabie adjusted Rand index. Psycho-

logical Methods, 9, 386–396.

Street, W., Wolberg, W. H., and Mangasarian, O. L. (1993). Nuclear feature extrac-

tion for breast tumor diagnosis. volume 1905, pages 861–870. International Society

for Optics and Photonics, SPIE.

106



PhD Thesis - Tyler Roick McMaster - Mathematics and Statistics

Streuli, H. (1973). Der heutige stand der kaffeechemie. In Association Scientifique

International du Cafe, 6th International Colloquium on Coffee Chemisrty, pages

61–72, Bogatá, Columbia.
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