
TYPE-SAFE MODELING FOR OPTIMIZATION



TYPE-SAFE MODELING FOR OPTIMIZATION

By NHAN THAI, B.Eng.

A Thesis Submitted to the School of Graduate Studies in Partial
Fulfilment of the Requirements for

the degree Master of Science

McMaster University © Copyright by Nhan Thai, June 2021



McMaster University MASTER OF SCIENCE (2021) Hamilton, Ontario
(Computer Science)

TITLE: Type-safe modeling for optimization AUTHOR: Nhan Thai, B.Eng
(Hanoi University of Science and Technology) SUPERVISORS: Dr. Christo-
pher Anand and Dr. Wolfram Kahl NUMBER OF PAGES: xi, 67

ii



Abstract

Mathematical optimization has many applications in operations research, image
processing, and machine learning, demanding not only computational efficiency
but also convenience and correctness in constructing complex models. In this
work, we introduce HashedExpression, an open-source algebraic modeling lan-
guage (AML) that allows users to express unconstrained, box-constrained, and
scalar-expressions-constrained optimization problems, aimed at embeddability,
type-safety, and high-performance through symbolic transformation and code
generation. Written in Haskell, a statically-typed, purely functional program-
ming language, HashedExpression places a great emphasis on modeling correct-
ness by providing users with a type-safe, correct-by-construction interface that
uses Haskell type-level programming to express constraints on correctness which
the compiler uses to flag many modelling errors as type errors (at compile time).
We show how type-safety can be added in steps, first matching expressions’
shape and then associated physical units. The library implements symbolic ex-
pressions with a hashed indexing scheme to implement common subexpression
elimination (CSE). It abstracts away details of the underlying lookup table via
monadic type class instances. We explain how using symbolic expressions with
CSE enables performance-enhance transformations and automatic computation
of derivatives without the issue of “expression swelling”. For high-performance
purposes, we generate low-level C/C++ code for symbolic expressions and pro-
vide bindings to open-source optimization solvers such as Ipopt or L-BFGS-B.
We explain how this architecture lays the groundwork for future work on par-
allelization including SIMDization and targetting multi-core CPUs and GPUs,
and other hardware acceleration.

iii



Acknowledgements

First and foremost, I would like to thank Dr. Christopher Anand for his con-
tinuous support, patience, and being a great role model throughout my MSc
study. I would also like to extend my sincere thanks to Dr. Wolfram Kahl for
his guidance and for being an enthusiastic instructor. Their immense knowledge
and experience have inspired me beyond words.

I would also like to acknowledge my fellow students, especially Curtis D’Alves,
who have helped me with this research and writing this dissertation.

Thanks to my friends and for your great ideas, conversations, the pat on
the back, and awesome soccer games.

Thanks to my family, my dad Thành and my mom Thanh, my father-in-law
Thuận, my mother-in-law Nguyệt, for always looking after me and putting my
wellness above all.

And thanks to my wife, Thu Hải, for always being there.

iv



Contents

Abstract iii

Acknowledgements iv

Declaration of Academic Achievement xi

1 Introduction 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals of HashedExpression . . . . . . . . . . . . . . . . . . . . . 5
1.4 Example: Solving Magnetic Resonance Imaging Reconstruction 6

2 Expression Graph 10
2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Common Subexpression Elimination by Hashing . . . . . . . . . 12

3 Expression Composition 16
3.1 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Expression as a Tuple . . . . . . . . . . . . . . . . . . . 16
3.1.2 Handling Hash Collisions . . . . . . . . . . . . . . . . . 17
3.1.3 Problems with Direct Method . . . . . . . . . . . . . . . 20

3.2 Composing with Monad . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 An Alternative Type . . . . . . . . . . . . . . . . . . . . 20
3.2.2 The State Monad . . . . . . . . . . . . . . . . . . . . . . 21

4 Modeling APIs 23
4.1 Type-Level Programming in Haskell . . . . . . . . . . . . . . . . 23

4.1.1 Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Type Families . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.3 Custom Type Errors . . . . . . . . . . . . . . . . . . . . 25

4.2 A Type-safe Modeling API . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Lifting Information To The Type-level . . . . . . . . . . 26
4.2.2 Operator Specification . . . . . . . . . . . . . . . . . . . 27

4.3 Physical Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Type-level or Term-level . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Type-level Value Declarations . . . . . . . . . . . . . . . 33
4.4.2 Unknown Type-level Values . . . . . . . . . . . . . . . . 34
4.4.3 Undecorated API . . . . . . . . . . . . . . . . . . . . . . 35

v



5 Rewriting and Simplification 36
5.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Instance of MonadExpression . . . . . . . . . . . . . . . 37
5.1.2 Implementing Rewriting Rules . . . . . . . . . . . . . . . 38

5.2 Matching and replacing . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Composing and Generalizing . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Composing . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Generalizing . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Semantics-preserving, Confluence, and Termination . . . . . . . 43

6 Computing Derivatives 45
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Reverse mode . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.3 Sharing Computations and Simplification . . . . . . . . 51

7 Code Generation 56
7.1 Interfacing With Optimization Solvers . . . . . . . . . . . . . . 56
7.2 Generating C Code . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.2 Using the generated code . . . . . . . . . . . . . . . . . 60

7.3 Speed up evaluation . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusion and Discussion 64
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Type family implementation of projection 66

Bibliography 68

vi



List of Figures

1.1 AML accepts user-provided models and generates required input
to mathematical optimization solvers . . . . . . . . . . . . . . . 3

1.2 Mistakes in modeling steps but error messages show traces to
internal library codes . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Interactive development in Haskell (VS Code) . . . . . . . . . . 6
1.4 Collected data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Result reconstructed images . . . . . . . . . . . . . . . . . . . . 8

2.1 Each entry in the lookup table corresponds to a subexpression . 12
2.2 Identical terms sharing the same node . . . . . . . . . . . . . . 13
2.3 Expressions are indexed with their hash values under the hood . 15

3.1 A hash conflict between two expressions graphs. The same index
represents different symbolic expressions: y + x on the left and
z + x on the right. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Node with index 67 ((z+x) ∗ 1) being inserted before node with
index 55 (z + x), thus unware of rehashes and end up pointing
to wrong operands . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The correct merge: insert nodes in a topological order and keep
track of rehashes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Different sampling units along different dimensions in a discretiza-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 A successful match for the targeted expression ℜ((x+y)+2i)((x+
y)− 2i). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Construct resulted expression from the substitution and right-
hand side pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Expression node is simplified, and the change 25 -> 13 is added 42
5.4 Expression node is updated based on the changes of operands . 43
5.5 Updated node is simplified, and the change 27 -> 13 is added . 43

6.1 Combining the objective function and its derivatives (MRI re-
construction problem in Section 1.4). . . . . . . . . . . . . . . . 47

6.2 Expression graph and Wengert list of f = x(2x+ 1) + y2 . . . . 48
6.3 Applying reverse accumulation to compute derivatives . . . . . 49
6.4 Computing derivatives result for f = x(2x+ 1) + y2 . . . . . . . 51
6.5 Simplified expression graph of f = x(2x+1)+y2 and its derivatives 52
6.6 Evaluating the objective function (MRI reconstruction problem) 53

vii



6.7 Evaluating the gradient (MRI reconstruction problem) . . . . . 55

7.1 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Simple memory allocation in the C99 code generator . . . . . . 58
7.3 Point-wise operators executed in parallel . . . . . . . . . . . . . 62
7.4 Evaluate expression graphs concurrently across multiple threads. 62

viii



List of Listings

1 Polynominal string hashing . . . . . . . . . . . . . . . . . . . . 14
2 Produce the index for a new expression node . . . . . . . . . . . 15
3 The MonadExpression type class . . . . . . . . . . . . . . . . . 22
4 Example of specifications in type signatures . . . . . . . . . . . 28
5 The Rewrite monad for rewriting expressions. . . . . . . . . . . 37
6 A simplification rule written in function form. . . . . . . . . . . 39
7 The ComputeReverseM monad for computing derivative using the

reverse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8 Processing a node in reverse mode . . . . . . . . . . . . . . . . 54
9 Generating C code . . . . . . . . . . . . . . . . . . . . . . . . . 59

ix



List of Abbreviations

COCONUT Code Construction Tools
AML Algebraic Modeling Language
AMPL A Mathematical Programming Language
GAMS General Algebraic Modeling System
AD Automatic differentiation
YALMIP Yet Another LMI Parser
MRI Magnetic Resonance Imaging
L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno
L-BFGS-B Limited-memory Broyden–Fletcher–Goldfarb–Shanno Bounded
DAG Direct Acyclic Graph
CSE Common Subexpression Elimination
API Application Programming Interface
GHC Glaslow Haskell Compiler
SI International System of Units
SIMD Single Instruction Multiple Data
GPU Graphics Processing Unit
SEM Scanning Electron Microscope
BLAS Basic Linear Algebra Subprograms

x



Declaration of Academic
Achievement

I , Nhan Q. D. Thai, declare this thesis to be my own scholar work, and I have
appropriately acknowledged and cited all material from the work of others (in
articles, books, dissertations, on the internet, etc.).

No part of this work has been published or submitted for a degree at another
institution, and, to the best of my knowledge, this thesis work does not violate
anyone’s copyright.

This thesis is the continuation of the work of Jessica Pavlin’s thesis [56].
My supervisors, Dr. Christopher Anand and Dr. Wolfram Kahl, have provided
advice and support throughout the course of this research project. I completed
all the research work.

xi



Chapter 1

Introduction

Operations Research (including mathematical optimization) become an estab-
lished discipline during World War II, when the British government recruited
scientists to solve problems in critical military operations [5]. The use of math-
ematical optimization has now become critical in the use of many industries,
including: Airline Transportation (routing and flight plans, crew scheduling,
revenue management); Telecommunications (network routing, queue control);
Manufacturing Industry (system throughput and bottleneck analysis, inven-
tory control, production scheduling, capacity planning); Health care (hospital
management, facility design); and Transportation (traffic control, logistics, net-
work flow, airport terminal layout, location planning). And this is a rapidly
growing field. According to the U.S. Bureau of Labor Statistics there is an
expected 25% job increase anticipated between 2019-2029 [38]. The demand
to solve large multi-variate optimization problems requiring a high degree of
expertise is clearly growing. Tackling optimization problems demands not only
expertise and high performance computational resources but also correctness in
modeling them. In this thesis, we introduce HashedExpression, an embedded
algebraic modeling language for expressing and solving large scale optimization
problems. We show that by taking advantage of generative programming tech-
niques in strongly typed languages, our tool enables special functionality not
found in other modeling languages and is powerful to use in many settings.

1.1 Problem Definition
Solving mathematical optimization is a process involving multiple steps often
assisted by the use of algebraic modeling languages (AMLs). However, many
problems exist with the current major AMLs:

1. Embeddability Some of them are standalone and commercial software,
making it difficult to embed them in modern software systems.

2. Type-safety Lacking type-safety, users are prone to making mistakes
when translating their optimization model to the modeling language.

1



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

3. Computation Optimization No clear separation between model and
data, which limits the uses of mathematical properties to reduce and
optimize computations.

4. Performance AMLs built within high-level programming languages often
compromise performance.

With such problems, we seek to use Haskell, a purely functional program-
ming language with a unique set of features, to build an algebraic modeling
language that resolves all of the abovementioned issues.

1.2 Literature Review
In optimization applications, we map the domain-specific problem target to a
real-valued function whose domain is encoded as real vectors together with some
constraints, and bring it to the standard form (1.1). Our task is to translate the
mathematical formulas into machine representation and compute the solution
by an optimization solver. Then, the computed solution is mapped back to the
original domain.

minimize: f(x)
subject to: gi(x) ≤ 0, i = 1, 2, ...,mg

hi(x) = 0, i = 1, 2, ...,mh

(f, gi, hi : Rn −→ R)
(1.1)

This application pipeline relies not only on the power of the optimization
solvers, but also a facility to provide input to such optimizers from the origi-
nal formula (1.1). Traditionally, optimization solvers are written at low-level
to squeeze performance, and manually input the requisite format for them is
tedious, error-prone and does not scale well with problems’ complexity. This
is the motivation of algebraic modeling languages (AMLs), software that pro-
vide a high level interface between the optimization model and solvers. In this
sense, the need for AMLs is analogous to the need for higher-level program-
ming languages on top of assembly languages. AMLs allow domain experts
to express optimization problems in algebraic forms that resemble the original
mathematical expressions. Implementing an AML typically involves translat-
ing user algebraic models, performing necessary transformations, and providing
requisite input to optimization solvers, as shown in Figure 1.1.

The earliest (commercially used) tools for algebraic modeling of optimiza-
tion problems were developed in the late 1970s and early 1980s. AMPL [25] and
GAMS [9], which are still widely used nowadays, are among this list. AMLs
soon proved to be superior to IBM’s matrix generators MPS in handling linear
programming (LP) models [34]. They also became the standard for formulating
general derivative-based nonlinear optimization problems, whose solution relies
on the availability of first-order derivatives ∇f , ∇gi and ∇hi, with support for
automatic differentiation (AD) [30]. These successes set in motion the ongoing

2



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

variables: 
x, y

minimize:
(x - y)^2

data:
…

variables: 
x, y

minimize:
(x - y)^2

data:
…

Optimization 
Solvers

AMLInput model

Problem Classification

Algebraic Transformation

Automatic Differentiation

…

Figure 1.1: AML accepts user-provided models and generates
required input to mathematical optimization solvers

development of many algebraic modeling systems. Understandably, the devel-
opment of AMLs, especially embedded ones, has been going on in parallel with
programming languages in general.

The following is a list of popular AMLs – incomplete but covering the wide
diversity in functionality – being used in both industry and academia to date:

• AMPL and GAMS are among the most popular commercial modeling
software. They provide a standalone modeling language with integrated
tools and control commands, together with support for a growing list of
supported solvers.

• Pyomo [31] is a Python library that provides similar capabilities to AMPL
and GAMS.

• YALMIP [43] is a MATLAB library initially developed for modeling and
solving semidefinite programming (SDP) [62], but has since evolved to
support a wider range of optimization problems.

• The CVX* family [27, 18, 61] targets disciplined convex optimization,
which ensures convexity by establishing a set of rules when constructing
models.

• JuMP [20] targeting high performance and a nice syntax rendered possible
by Julia’s syntactic macros.

• Tensorflow [1] and Pytorch [55], two well-known Python libraries in the
machine learning community, can also largely be used as AMLs for un-
constrained optimization.

AMPL and GAMS provide first-class support for mathematical optimiza-
tion with an established user base in both academia and industry. However,
being standalone systems, they do not compose naturally with modern applica-
tion pipelines, which usually involve connecting different software components
and reusing related problem instances [23, 20]. Moreover, learning how to use
a monolithic modeling system like AMPL and GAMS is considered more chal-
lenging than an embedded AML built in a host language users are familiar
with.

This is why most modern AMLs, such as YALMIP, Pyomo, or Pytorch,
are embedded in Python or MATLAB. With an abundance of packages for

3



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

data processing and visualization plus the popularity of such languages among
the scientific computing community, these solutions are highly approachable
and are easier to compose. However, libraries built on MATLAB and Python
come with performance compromises. A mitigation of this is to use numerical
libraries like NumPy [65] whose implementation is a thinly layered wrapper
around C/C++ kernels, or use domain-specific compilers to accelerate math-
ematical computation (like Tensorflow’s Accelerated Linear Algebra and JAX
[6]). However, it is still confusing for inexperienced users to distinguish between
fast and slow codes.

But while progress has been made in developing user-friendly modeling lan-
guages that don’t compromise performance, another issue has been neglected.
Surveys of bugs in numerical computation with popular libraries (including
NumPy, SciPy, and LAPACK) have found that correctness bugs are the most
frequently occurring and challenging to detect [17]. We hypothesize the inherent
issue with Python and MATLAB modeling libraries that leads to correctness
bugs is that they are built on languages that are mutable and dynamically
typed. A variable can have any type and can point to anything at different
times. Because of this, there are many ways models go wrong, and users have
to run the program to find type errors. However, the reported errors do not
always trace to the line that contains the mistake, as illustrated in Figure 1.2.
We argue that this largely goes against the premise of a modeling language
itself.

Traceback (most recent call last):
  File “…”, line 15, in <module>
    objective.eval()
  File “…”, line 7, in eval
    return self.arg1 + self.arg2
TypeError: unsupported operand 
type(s) for +: 'int' and 'list'

# internal library representation, hidden to users
class Plus:

def __init__(self, arg1, arg2):
self.arg1 = arg1
self.arg2 = arg2

def eval(self):
return self.arg1 + self.arg2

# modeling
x = 1
y = [2, 3]
objective = Plus(x, y)

# the library calls eval() later, also hidden to users
objective.eval()

Figure 1.2: Mistakes in modeling steps but error messages show
traces to internal library codes

JuMP [20] (in Julia) broadly addresses the performance limitation, with
Julia allows explicit type annotation [60] and therefore assists in catching pro-
grammer errors to some extent. However, the language is still dynamically
typed and does not fully address our type-safety concerns. Moreover, we find
JuMP’s macros confusing in some cases, e.g., not every function available in
normal declarations is usable in macro declarations. Another shortcoming of

4



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

JuMP is the lack of support for complex numbers often required in signal pro-
cessing applications involving the Fourier transform.

As such, we feel that a functional programming language with enforced
immutability is intrinsically more suitable concerning the algebraic aspect of
our targeted software category. We identify the following set of features as
particularly invaluable for building our algebraic modeling library:

• Type-safety ensures correctness of constructed optimization models. This
helps users capture errors early in the development cycle where invalid
models will result in compile errors.

• Flexible overloading and custom infix operators for representing math-
ematical expressions.

• Powerful abstraction allows us to manipulate the internal hashed rep-
resentation of expressions while still keeping the code clean and easy to
understand, which is the foundation for us to implement various algebraic
modeling language features.

• Type-level programming and support for type-level natural numbers
allow us to encode various metadata into the type system. Such metadata
could include expressions’ shapes, units, or sampling steps.

These facts lead us to pick Haskell, a statically typed, purely functional pro-
gramming language to embed our modeling language. On top of that, Haskell’s
type system can assist users in constructing their models and provide an inter-
active development environment, e.g., the Haskell compiler informs users which
“type” a to-be-filled value should have (see Figure 1.3). Functions in Haskell
with type signatures can also serve as a good source of documentation, espe-
cially for mathematicians and physicists alike.

1.3 Goals of HashedExpression
The aforementioned drawbacks of existing AMLs and the special capability
offered by the host language Haskell motivated us to develop HashedExpresison,
an AML that:

G1. Allows for type-safe modeling of optimization problems.

G2. Uses concrete syntax as close to the syntax used in mathematical and
physical models as possible.

G3. Has first-class support for multi-dimensional variables and complex num-
bers.

G4. Automatic computation of derivatives.

G5. Allows for efficient performance-enhancing expression transformations.

G6. Generates C code for interfacing with optimization solvers.

5



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 1.3: Interactive development in Haskell (VS Code)

HashedExpression evolved from the Coconut Expression Library (CEL) [56]
which only supported unconstrained optimization. A complete rewrite with
substantial changes has been made compared to the original library. Such im-
provements include introducing phantom types and type-level programming to
enforce a higher level of correctness modeling. Type-safety modeling is added
in steps, first through shape and then with physical units layered on top. The
rewrite has now included supports constrained optimizations (box and general-
form constraints). It also implements reverse-mode automatic differentiation as
opposed to the exterior derivative approach taken by CEL.

In the following chapters, we will discuss how each goal is accomplished.

1.4 Example: Solving Magnetic Resonance
Imaging Reconstruction

In Magnetic Resonance Imaging (MRI) reconstruction problems, we take the
raw data taken from MRI machines and try to construct the original measured
anatomical image. The details of MRI physics is outside the scope of this thesis,
but it suffices to know that the captured data m is a sampled Fourier transform
of the original image.

In this case, our collected data m = a+ bi has shape 128× 128 of complex
numbers. This is read from a real part a (1.4a) and a complex part b (1.4b),
both with shape 128× 128 and are characterized by a 128× 128 mask (1.4c) of
1 for sampled kixels1 and 0 for unsampled kixels.

1A kixel is a sample on a grid in Kristallographie space.

6



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

(a) Real part (logscale) (b) Imaginary part (c) Mask

Figure 1.4: Collected data

Instead of naively taking the inverse Fourier transform, which only gives
us the noisy image (1.5b), we get the reconstruction by solving the following
optimization problem which has a regularization term:

x̂ = argmin
x

∥πmask(FT(x)−m)∥2

+λ
∑
i,j

(
(xi+1,j − xi,j)

2 + (xi,j+1 − xi,j)
2
) (1.2)

subject to:

xlb ⪯ x ⪯ xub (1.3)
where ⪯ denotes the point-wise less than or equal relation.

The loss term ∥πmask(FT(x)−m)∥2 tells us to find the original image x whose
Fourier transform is the measured m, but all the differences in unsampled kixels
are ignored, which is indicated by the operation πmask. The box constraints 1.3
indicates that all the kixels inside the head are positive, and kixels outside are
close to 0 (between allowed noise range). The region of the head is known in
the screening process, represented by 1.5a. The regularization penalizes the
difference between neighbor kixels so that the solution will favour images with
smaller jumps between adjacent kixels.

7



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

(a) Boundary of the head. (b) Naively reconstructed
by taking the inverse

Fourier transform.

(c) Using optimization
problem with regulariza-

tion.

Figure 1.5: Result reconstructed images

The next step is to express our optimization problem in HashedExpression.
First, we declare our target optimization variable x:

-- x has type TypedExpr '[128, 128] R
x = variable2D @128 @128 "x"

Then, we declare the parameters of the problem. In this case, they are the
real part, the imaginary part, and the sampled mask of the MRI signal:

-- these have type TypedExpr '[128, 128] R
a = param2D @128 @128 "a"
b = param2D @128 @128 "b"
mask = param2D @128 @128 "mask"

As x is subjected to box constraints, we also need to declare the bounds for
it as following:

-- these have type Bound '[128, 128]
xLowerBound = bound2D @128 @128 "x_lb"
xUpperBound = bound2D @128 @128 "x_ub"

The regularization term can be expressed by the norm square of the dif-
ference of x and its (both horizontal and vertical) 1-off-rotations (This works
because we know that the edge kixels should all be close to 0):

-- regularization has type TypedExpr Scalar R
regularization = norm2square (rotate (0, 1) x - x)

+ norm2square (rotate (1, 0) x - x)

Then, we construct an OptimizationProblem by providing its objective,
constraints and values for the parameters (which is read from HDF5 [24] files
in this case):

reconstructionMRI :: OptimizationProblem
reconstructionMRI =

8



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

OptimizationProblem
{ objective =

norm2square ((mask +: 0) * (ft (x +: 0) - (a +: b))) + 3000
* regularization,↪→

constraints =
[ x .<= xUpperBound,

x .>= xLowerBound
],

values =
[ a :-> VFile (HDF5 "kspace.h5" "a"),

b :-> VFile (HDF5 "kspace.h5" "b"),
mask :-> VFile (HDF5 "mask.h5" "mask"),
xLowerBound :-> VFile (HDF5 "bound.h5" "lb"),
xUpperBound :-> VFile (HDF5 "bound.h5" "ub")

]
}

We can see a clear resemblance between the original mathematical expres-
sions and corresponding ones2 in HashedExpression. Moreover, expressions are
typed with information of their shape and number type (R or C), which help
in preventing us from constructing invalid expressions.

Finally, we use HashedExpression to generate C code which is then com-
bined with an optimizer to produce the final result (1.5c). In this example, our
optimization problem is convex with box constraints, so we use L-BFGS-B-C
[59], a C implementation of the L-BFGS-B [69, 48] algorithm.

This image reconstruction example shows how our Haskell-embedded AML
can be used to solve a real-world medical imaging problem. Further details of
this example can be found at https://github.com/McMasterU/HashedExpression/
blob/master/app/Examples. The example brain image is from [8, 15].

2The (+:) operation constructs a complex expression from a real part and an imaginary
part; a +: b is equivalent to a+ bi

9

https://github.com/McMasterU/HashedExpression/blob/master/app/Examples
https://github.com/McMasterU/HashedExpression/blob/master/app/Examples


Chapter 2

Expression Graph

Expressions are the basic building blocks of AMLs and automatic differenti-
ation libraries. Generally, operator overloading is used so user constructed
expressions will result in some form of dependency-based data structure, usu-
ally directed acyclic graphs (DAGs). This can be symbolically constructed
ahead of time (and then run many times later) like Pyomo [31], Sympy [46]
and Tensorflow 1.x [1], or eagerly executed and implicitly establish the relation-
ship between nodes as in Pytorch [55] [54]. The expression graphs are useful
for the computation of derivatives and serve as an efficient implementation for
performance optimization.

In HashedExpression, expressions are represented as immutable, pure sym-
bolic directed acyclic graphs, without numerical data associated. This provides
a useful justification for many kinds of algebraic graph operations. Such expres-
sion graphs can be duplicated, merged, or transformed into equivalent ones by
graph rewriting, the technique we will use to accelerate expressions computa-
tions. Automatic computing of derivatives works in the same manner: derive
the expression graph for the derivatives from the original graph.

What makes HashedExpression truly unique however, and where it derives
it’s name, is that expressions are encoded in an indexing-based data structure
that allows for common subexpression elimination (CSE), including subexpres-
sions common between different expressions, such as the objective, constraints
and the derivatives. In the next sections, we will go into details on the imple-
mentation of expression graph, as well as how CSE is enforced by hashing.

2.1 Implementation
Expressions are represented by a graph structure encoded in a node lookup ta-
ble. Each node represents a subexpression. Nodes are indexed by their identifier
NodeID :

-- NodeID is a zero-overhead wrapper of Int
newtype NodeID = NodeID Int
-- IntMap Node is used instead of Map NodeID Node
-- for performance purpose
type ExpressionMap = IntMap Node

10



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Here, the NodeID is a wrapper around Int for type-safety purpose. For ExpressionMap,
we use the strict version of the performant immutable integer map IntMap [53].

The associated Haskell data types for representing nodes are as follow:

-- [] => scalar
-- [n] => 1 dimensional n
-- [m, n] => 2 dimensional mxn
type Shape = [Int]

data ElementType = R | C

data Op
= Var String -- variable with an identifier
| Param String -- parameter with an identifier
| Const Double -- constant
| Sum [NodeID] -- sum
| Prod [NodeID] -- product
| Scale NodeID NodeID -- scale
| RealImag NodeID NodeID -- complex from real and imaginary
| ..

type Node = (Shape, ElementType, Op)

Each node is a tuple of:

• Shape that contains dimensional data of the expression. An empty list
represents a scalar expression, a list of one element [n] represent an one-
dimensional expression of size n, and so on.

• ElementType tells us if the expression has values of real or complex num-
bers.

• Op, an algebraic data type that indicates if the expression is a variable, a
parameter, a constant, or an operator application (together with indices
of its operands).

Each constructor of Op is named after the corresponding mathematical opera-
tion. The order of operands tagged in each constructor matters, and the con-
structor may also contain additional information beside its operands. For exam-
ple, the element-wise power constructor Power Int NodeID contains its integer
exponent, or the piecewise constructor Piecewise [Double] NodeID [NodeID]
contains the list of endpoints that make up the piecewise intervals.

Illustrated in Figure 2.1 is an example of an expression graph. It con-
tains six subexpressions, all of which are scalar and real. Edges are directed
from operands to operators similar to dataflow graphs with the final expres-
sion x(x+ y) log(x+ y). The lookup table structure on the right resembles the
adjacency list representation of graphs: each node has a list of its adjacent
indices.

An expression is therefore identified by a tuple: the underlying expression
lookup table, and its node index:

11



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

41509096:         ([], R, Var “x”)

42080883:         ([], R, Var “y”)

989450128496424:  ([], R, Sum [41509096, 42080883])

1117216945168872: ([], R, Mul [1138089690287577, 3633358430263915])

1138089690287577: ([], R, Mul [41509096, 989450128496424])

3633358430263915: ([], R, Log 98945012849642)

Figure 2.1: Each entry in the lookup table corresponds to a
subexpression

type RawExpr = (ExpressionMap, NodeID)

Expressions can share the same lookup table. Moreover, expression graphs
are not limited to a sink expression, i.e., nodes without outgoing edges.

The representation relies on NodeID lookup key to implement a pointer base
structure required for expression graphs. As such, there is a data structure
invariant we must maintain: operand indices in node entries must also exist in
the expression look up table. All of these details must be abstracted away from
users when constructing expressions, and to library developers when developing
algebraic modeling features.

2.2 Common Subexpression Elimination by
Hashing

Common subexpression elimination (CSE) is a well-known problem in compiler
optimization theory. The task is to find identical expressions and replace them
with a single variable holding the common value, aimed at minimizing the
number of computational steps and memory requirements in the evaluation
of mathematical expressions.

In general programming languages, this problem can be challenging in the
presence of control flow and computational side effects. Fortunately, in our
symbolic and pure representation of mathematical expressions, things are less
tricky. The problem comes down to finding equivalent expression nodes in the
code graph and replacing them with a single entry. As we are dealing with
mathematical expressions, CSE problems arise at different levels:

• Nominal common subexpression elimination: identical symbolic terms
share the same node in the expression graph. An example is shown in
Figure 2.2. The symbolic term x ∗ (y + z) is contained in both A and B
but appears only once in the final expression graph of f .

12



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

• Elimination up to algebraic equivalence of expressions. For instances, due
to commutativity and associativity of addition, x+(y+ z) is the same as
(x+ z)+ y. This will be dealt with using expression rewriting introduced
in Chapter 5.

Figure 2.2: Identical terms sharing the same node

Fortunately, with the way expression graphs are structured, we have a
straightforward way to achieve nominal common subexpression elimination: in-
dex nodes by the hash value of their Node contents, i.e., the tuple (Shape,
ElementType, Op).

This ensures no expression nodes with identical content are stored and in-
dexed more than once in the lookup table, but this fact alone does not prove
that we have achieved nominal common subexpression elimination because
node content does not necessarily correspond one-to-one with the symbolic
expression it represents. For instances, in Figure 2.1, the node with index
989450128496424 represents the symbolic term x + y, but its content is Sum
[41509096, 42080883] under the context that x is at 41509096 and y is at
42080883.

However, we can prove this by using a simple inductive argument. First, we
know that the base constructors:

| Var String
| Param String
| Const Double

correspond one-to-one with the symbolic expressions they represent, so nomi-
nal common subexpression elimination holds with symbolic terms built on such
constructors. For the induction step, let f and g be two identical symbolic
expressions, and assume that the property holds for all subterms of f and g.
Then, we know that identical corresponding subterms of the two are indexed
as the same node in the lookup table. Because of this, the constructed nodes
representing f and g are identical (same operator and same operand indices).

13



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Therefore, they are indexed by the same key. Thus, nominal common subex-
pression elimination holds for all input symbolic expressions.

Our hashing scheme is based on polynomial string hashing introduced in the
Rabin-Karp algorithm [35]. Strings are treated as numbers of a given radix, and
a hash is performed by taking the remainder of this number on a modulo. The
radix and modulo are often prime numbers, and the modulo should be as big as
possible, as long as it fits within the range represented by Int. In Haskell, Int
stores 64-bit integers, so the number space should be enough for our practical
uses.

modulo :: Int
modulo = 253931039382791

radix :: Int
radix = 137

hashString :: String -> Int
hashString [] = 0
hashString (x : xs) = (ord x + radix * hashString xs) `mod` modulo

Listing 1: Polynominal string hashing

Nodes are mapped to corresponding ASCII strings. Then, we hash the string
and offset the hash outcome by a multiple of modulo. This offset multiple differs
between Op constructors, so nodes of different operators always have different
hash outcomes. Moreover, for handling hash collisions, the hash function has
an extra argument: the number of rehashing. The following code snippet gives
an outline of our hashing process:

offsetHash :: Int -> Int -> Int
offsetHash offset hash = offset * modulo + hash

hash :: Node -> Int -> Int
hash (shape, et, op) rehashNum =

let -- makeString is injective
str = makeString shape et op rehashNum
-- based on operator constructor
-- e.g. Var -> 0, Param -> 1, Const -> 2
offset = getOpOffset op

in offsetHash offset $ hashString str

When forming a new expression on top of an existing lookup table, we will
use the smallest rehash number (starting from 0) that results in no hash colli-
sions (i.e., the result index is not already associated with a node with different
content). This function is elegantly expressed thanks to Haskell’s lazy evalua-
tion and infinite lists, as shown in Listing 2.

14



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

index :: ExpressionMap -> Node -> Int
index expressionMap node =

head . filter notConflict . map (hash node) $ [0 ..]
where
notConflict id = case lookup expressionMap id of

Just existingNode -> node == existingNode
Nothing -> True

Listing 2: Produce the index for a new expression node

Figure 2.3 illustrates how expressions (expressed in high-level modeling API)
are hashed and indexed in the node lookup table internally. Note that expression
map argument is not explicitly provided to hashIndex; readers should assume
that it starts with an empty lookup table, and the lookup table result of the
previous construction is bound to the next one.

HASH                                                                NodeID

hashIndex ([], R, Var “y”)                                        = 42080883
hashIndex ([10, 10], R, Var “x”)                                  = 228357875963464
hashIndex ([10, 10], R, Scale 42080883 228357875963464)           = 1862671464942377
hashIndex ([10, 10], R, Sum [1862671464942377, 1862671464942377]) = 976769279074719

f =
let y = variable "y"

x = variable2D @10 @10 "x"
z = y *. x
t = y *. x

in z + t

Figure 2.3: Expressions are indexed with their hash values under
the hood

This index-by-content scheme also serves as a good basis for us to implement
common subexpression elimination up to algebraic equivalence. The problem
comes down to rewriting algebraically equivalent terms to the same symbolic ex-
pression, and they’ll automatically get indexed as a single common node. More-
over, by indexing with hash, we can confirm identical symbolic (sub)expressions
in O(1) complexity. This allows for an efficient matching algorithm for term
rewriting which we will discuss in Chapter 5.

15



Chapter 3

Expression Composition

In this chapter, we will discuss possible methods of composing expressions. In
a declarative, symbolic modeling software, this is the foundation underlying
almost every task: from constructing objective functions and constraints to
expression rewriting and computing derivatives. Representing expression graphs
in a hash lookup table gives us fine control over common subexpressions but
also brings with it the challenge of handling possible hash collisions. This
requires additional bookkeeping for the direct method as it involves merging
lookup tables. Moreover, the efficiency of the direct method is questionable
when dealing with expressions sharing the same lookup table. As such, we
will discuss a better computational alternative made possible by the power of
Haskell abstraction, namely monadic structure [64].

3.1 Direct Method

3.1.1 Expression as a Tuple
The direct method deals with a concrete representation of expressions. This is
expressed as a tuple consisting of the underlying expression map (lookup table)
and its node index.

type RawExpr = (ExpressionMap, NodeID)

Treating this encoding as the base type, composing expressions becomes an
algebra on the set of RawExpr. For example, adding two expressions has the
type signature:

add :: RawExpr -> RawExpr -> RawExpr

Then, we can combine expressions with an operator by following this outline:

1. Merge all the operands’ lookup tables into one single lookup table.

2. Create a new node from the operator and operand nodes

3. Find the hash index for the node, as illustrated in Listing 2.

16



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

4. Return the result tuple: the merged lookup table inserted with the created
node (with the key is the hash index), and the hash index itself.

Based on the fact that ExpressionMap is an IntMap which can be merged
using the built-in function IntMap.union, a naive implementation of this algo-
rithm would look like:

add :: RawExpr -> RawExpr -> RawExpr
add (mp1, xID) (mp2, yID) =

let mp = IntMap.union mp1 mp2
node = createSumNode [(mp1, xID), (mp2, yID)]
nID = index mp node

in (IntMap.insert nID mp, NodeID nID)

This implementation is straightforward and simple. It has a linear time
complexity of O(m+n) where m and n are the number of entries in each lookup
table (time complexity of IntMap.union)). However, it fails to account for
possible hash collisions. The two expressions could be constructed separately,
so there is no collision resolving scheme guaranteed between the two lookup
tables. Different nodes representing different symbolic expressions maybe have
the same index in separate lookup tables (see Figure 3.1). Thus, when we merge
the lookup tables this way, one of them will be discarded, therefore yielding an
invalid expressions graph.

ID: 13
Var “x”

ID: 12
Var “y”

ID: 15
Var “z”

ID: 5
Const 1

ID: 4

Const 2

ID: 55
Sum [12, 13]

ID: 55

Sum [15, 13] 

ID: 75
Mul [55, 5]

ID: 13
Var “x”

ID: 67
Mul [55, 5]

Figure 3.1: A hash conflict between two expressions graphs. The
same index represents different symbolic expressions: y + x on

the left and z + x on the right.

3.1.2 Handling Hash Collisions
Nodes must be added from one lookup table to the other lookup table one
by one so that we can resolve hash collisions. Moreover, the order in which
nodes are inserted matters. As node indices are subject to changes (because
of rehashing), these changes must be reflected to all the nodes that depend on
it. Failing to do so may result in operator nodes point to wrong operands, as
shown in Figure 3.2.

Thus, we have to maintain two things when merging two expressions graphs:

17



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

ID: 13
Var “x”

ID: 12
Var “y”

ID: 15
Var “z”

ID: 5
Const 1

ID: 4

Const 2

ID: 55
Sum [12, 13]

ID: 55

Sum [15, 13] 

ID: 75
Mul [55, 5]

ID: 13
Var “x”

ID: 67
Mul [55, 5]

ID: 13
Var “x”

ID: 12
Var “y”

ID: 15
Var “z”

ID: 5
Const 1

ID: 4

Const 2

ID: 55
Sum [12, 13]

ID: 73

Sum [15, 13] 

ID: 75
Mul [55, 5]

ID: 67
Mul [55, 5]

rehash

unaware of 
operand 
rehashes, 
now using the 
wrong operands 

Figure 3.2: Node with index 67 ((z+x)∗1) being inserted before
node with index 55 (z+x), thus unware of rehashes and end up

pointing to wrong operands

1. Nodes must be inserted in a topological order: from independent to de-
pendent.

2. As node indices can be changed, we must maintain additional bookkeep-
ing: a mapping from old node indices to new node indices (if there is a
rehash unfolding) so that subsequent dependent nodes can update their
content accordingly before being inserted into the lookup table.

The following code snippet shows this algorithm:

toTotal :: Map a a -> (a -> a)
toTotal sub x = case lookup sub x of

Just v -> v
_ -> x

mergeExpressionMaps :: ExpressionMap -> ExpressionMap ->
(ExpressionMap, NodeID -> NodeID)↪→

mergeExpressionMaps mp1 mp2 =
let mp2TopoOrderEntries :: [(NodeID, Node)]

mp2TopoOrderEntries = byTopoOrder mp2
f ::

(ExpressionMap, Map NodeID NodeID) ->
(NodeID, Node) ->
(ExpressionMap, Map NodeID NodeID)

f (mp, sub) (oldID, oldNode) =

18



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

let newNode = mapOperands (toTotal sub) oldNode -- update
operands due to possible changes↪→

newID = index mp newNode
in ( IntMap.insert newID newNode mp,

if newID == oldID
then sub
else Map.insert oldID newID sub

)
(resultMp, sub) = foldl f (mp1, Map.empty)

mp2TopoOrderEntries↪→

in (resultMp, toTotal sub)

With this, we can resolve the situation seen in Figure 3.2 resulting in a
correct merge as illustrated in Figure 3.3.

ID: 13
Var “x”

ID: 12
Var “y”

ID: 15
Var “z”

ID: 5
Const 1

ID: 4

Const 2

ID: 55
Sum [12, 13]

ID: 55

Sum [15, 13] 

ID: 75
Mul [55, 5]

ID: 13
Var “x”

ID: 67
Mul [55, 5]

ID: 13
Var “x”

ID: 12
Var “y”

ID: 15
Var “z”

ID: 5
Const 1

ID: 4

Const 2

ID: 55
Sum [12, 13]

ID: 73

Sum [15, 13] 

ID: 75
Mul [55, 5]

ID: 99
Mul [73, 5]

rehash

content 
(and therefore 
hashed index) 
changes
because of 
rehashes

Figure 3.3: The correct merge: insert nodes in a topological
order and keep track of rehashes

The time complexity of this function is O(min(m,n) log(m + n)). We can
easily extend this function to take a list of ExpressionMap. In this case, the
overall time complexity will be O(n log(n)) where n is the total number of nodes
in all lookup tables. So this has an extra logarithm factor compared to the naive
approach.

Then, we can re-implement the addition function as:

add :: RawExpr -> RawExpr -> RawExpr
add (mp1, xID) (mp2, yID) =

let (mp, sub) = mergeExpressionMaps mp1 mp2
xIDupdated = sub xID

19



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

yIDupdated = sub yID
node = createSumNode [(mp, xIDupdated), (mp, yIDupdated)]
nID = index mp node

in (IntMap.insert nID mp, NodeID nID)

3.1.3 Problems with Direct Method
While the discussed method provides a safe way for us to merge different expres-
sion graphs into one and, from there, construct new expressions, it fails to take
into account the case when expressions share the same lookup table. Using the
direct method, we will end up merging the same lookup table to itself unneces-
sarily. Although we can perform a comparison and only merge the two if they
are different, this equality check still takes linear time and therefore does not
solve the issue of redundant computation. This does not scale well, especially
for term rewriting and computing derivatives where we’ll mostly operate on the
same expression graph.

3.2 Composing with Monad

3.2.1 An Alternative Type
Our goal is to find an alternative data structure not just for forming new expres-
sions, but also for rewriting existing expressions and computing the derivatives.
We observe the following things:

1. There should be a single underlying common lookup table. In an im-
mutable and functional programming environment like Haskell, this means
there must be a notion of binding the result of previous computation to
the next computation.

2. Nodes and their hash indices must be introduced to this lookup table
sequentially, so that any hash collision is resolved on the spot, not requir-
ing any extra processing later. Thus, the data structure should be the
computation to yield the node index, not the node index itself.

This suggests: the data structure is best embedded in a Monadic struc-
ture [64]. Instead of representing expressions concretely by:

type RawExpr = (ExpressionMap, NodeID)

We use:

type ExprBuilder = ExpressionMap -> (ExpressionMap, NodeID)

That is, instead of composing concrete instances of expressions, we compose
the builders which would yield such expressions. The argument ExpressionMap
denotes the underlying lookup table upon which this expression is built, and
the result ExpressionMap denotes the result lookup table after the expression is
built. This duo helps us address concern (1). For constructing a new expression,

20



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

the argument would start as an empty map. For rewriting or generating partial
derivatives from an expression, the argument would be the existing lookup table.

For composing expressions (or builders of such in this case) and to address
concern (2), we have the bind function:
-- bind ::
-- (ExpressionMap -> (ExpressionMap, NodeID))
-- -> (NodeID -> (ExpressionMap -> (ExpressionMap, NodeID)))
-- -> (ExpressionMap -> (ExpressionMap, NodeID))
bind :: ExprBuilder -> (NodeID -> ExprBuilder) -> ExprBuilder
bind builder1 mkBuilder2 mp =

let (afterExpr1Mp, nID) = builder1 mp
builder2 = mkBuilder2 nID

in builder2 afterExpr1Mp
As such, when composing expressions we can be certain that expressions

are built (nodes are added) in a given order: first builder (first argument) then
the second builder, where the second builder can be constructed from the result
(NodeID) of the first.

3.2.2 The State Monad
In fact, the types we are using are special cases of the State monad with state
of type ExpressionMap and result of type NodeID, and our bind is actually the
monadic bind (>>=). Thus, we can alias our ExprBuilder to an underlying
monad wrapper of the State monad:

-- the existing State monad
newtype State s a = State {runState :: s -> (a, s)}

instance Monad (State s) where
(>>=) :: State s a -> (a -> State s b) -> State s b
(>>=) = ...

-- our Builder monad
newtype Builder a

= Builder (State ExpressionMap a)
deriving (Functor, Applicative, Monad)

type ExprBuilder = Builder NodeID

buildExpr :: ExprBuilder -> RawExpr
buildExpr (Builder exB) = swap $ runState exB IM.empty

We will have other monads similar to Builder for term rewriting and com-
puting derivatives. Although the monads wrap around the State monad, we
don’t want to expose the full range of operations allowed by the type class
MonadState - which would permit arbitrary changes of state. Instead, what we
can do with our wrapper monads is expressed by the type class MonadExpression:

Within the monad, we can:

21



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

class (Monad m) => MonadExpression m where
introduceNode :: Node -> m NodeID
getContextMap :: m ExpressionMap

Listing 3: The MonadExpression type class

1. Introduce a new expression to the lookup table using introduceNode.

2. Get the information of the underlying lookup table using getContextMap.

3. Composing expression builders (or manipulators) sequentially with the
monadic bind (>>=).

A MonadExpression instance for our monads can be easily provided, as they
are just a wrapper around the State monad, for example with Builder:

instance MonadExpression Builder where
introduceNode node = Builder $ do
mp <- get
let nID = index mp mp
modify' $ IM.insert nID node
return (NodeID nID)

getContextMap = Builder $ get

Finally, we can elegantly write the addition function discussed earlier using
the do notation:

add :: MonadExpression m => m NodeID -> m NodeID -> m NodeID
add operand1 operand2 = do

xID <- operand1
yID <- operand2
mp <- getContextMap
let node = createSumNode [(mp, xID), (mp, yID)]
introduceNode node

And we can use addition for any instance of MonadExpression, e.g., Builder:

-- ExprBuilder = Builder NodeID
(+) :: ExprBuilder -> ExprBuilder -> ExprBuilder
(+) = add

The monad abstraction gives developers a solid framework for manipulat-
ing expressions. Expressions are not composed directly, but the computations
yielding them are composed. Only the final composition is executed to form
an actual expression graph, avoiding the need for dealing with separate lookup
tables and hash collisions between them. Nodes are introduced sequentially,
and each use of introduceNode costs O(log(n)) time. Thus, the overall com-
plexity of constructing a new expression is O(n log(n)) — the same as the direct
method.

22



Chapter 4

Modeling APIs

Statically typed programming languages usually come with support for generic
programming [50] allowing us to manipulate values at the type-level that are
evaluated and verified at compile time. This functionality ranges from simple
uses of polymorphic containers in C++, Java to more powerful type and con-
straint combinators found in Typescript or Rust. In Haskell, the type system is
even more powerful: we can program on the Haskell type-level much the same
as we would program on the term-level. Type-level programming in Haskell pro-
vides some functionality used for certified programming in dependently typed
languages like Agda [52] or Idris [7], while at the same time keeping the features
simple enough to be embedded in a general-purpose programming environment.

Haskell’s support for type-level programming is one of the main reasons why
we chose it as the host language for our algebraic modeling language. Our goal
is to implement a type-safe interface for expressing optimization problems. It
is similar to how Servant [45] introduced type-safety to Web API definitions,
or how the Mezza [19] music description library enforces the rules of music
composition on the type level. In this chapter, we will discuss how Haskell helps
us accomplish this by allowing us to lift expression metadata into the type-level
upon which we can express operator specifications and data constraints.

4.1 Type-Level Programming in Haskell
This section gives a brief overview of type-level programming in Haskell.

4.1.1 Kinds
The Haskell type system uses the denotational semantics of a simply typed
lambda calculus system with “one order up”, allowing for the denotation of the
“type of a type” (colloquially referred to as a “kind” in the Haskell community).
So similar to how everything has a type on the term-level, such as True :: Bool
or (+1) :: Int -> Int, all the entities that exists on the type-level (we will
refer to these as “type-level values”) have a kind. We can inspect the kind of a
type in GHCi using the :k command:

23



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

>:k Bool
Bool :: Type

>:k Maybe
Maybe :: Type -> Type

>:k Maybe Int
Maybe Int :: Type

>:k Monad
Monad :: (Type -> Type) -> Constraint

As with types, kinds can be composed with the (->) operator. Most conven-
tional kinds will be nothing more than compositions of the built-in kind Type.
A more interesting kind may be composed with another built-in kind known as
Constraint, which is a special kind used for expressing conditions for functions
and types in general. Generally, a type level value yielding a Constraint kind
is declared in a type class definition. For example:
class Ord a where

compare :: a -> a -> Ordering

sort :: Ord a => [a] -> [a]
Ord is said to have kind Type -> Constraint. When an invocation of

compare or sort on a type-level value a is type-checked, an instance of Ord a
must exist for the type-check to succeed.

In addition to built-in kinds like Type and Constraint, the Haskell compiler
GHC also comes with an extension DataKinds [68] that, when enabled, allows us
to promote term-level declarations to the type level. That is, with the extension
enabled if we define:
data Direction = Forward | Backward
besides creating the type Direction inhabited by 2 values Forward and Backward,
we also get the kind Direction inhabited by 2 type-level values 'Forward and
'Backward (the prefix tick is not required as long as no type with the same
name exists in the name space).
>:t Forward
Forward :: Direction -- Direction as type

>:k 'Forward
'Forward :: Direction -- Direction is also a kind thanks to DataKinds

GHC with DataKinds also has built-in literal support for natural numbers
(kind Nat) and string (kind Symbol):
>:k 42
42 :: Nat

>:k "hello world"
"hello world" :: Symbol

24



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

4.1.2 Type Families
Kinds give us a means for classifying type-level values in the same way that types
are used to classify term-level values. For expressive type-level programming,
we also need the ability to operate on kinds. In GHC, we do so by using
type families [21] - which can be thought of as functions at the type-level. For
example, the reverse direction function normally expressed at term-level:

reverseDirection :: Direction -> Direction
reverseDirection Forward = Backward
reverseDirection Backward = Forward

can be expressed at the type-level as a type family:

type family ReverseDirection (d :: Direction) :: Direction where
ReverseDirection 'Forward = 'Backward
ReverseDirection 'Backward = 'Forward

With kinds and type families, the type system of Haskell is as computa-
tionally expressive as a mini programming language1. Even better, GHC ex-
ports a number of type families to deal with natural numbers such as com-
parison CmpNat :: Nat -> Nat -> ORD, addition (+) :: Nat -> Nat -> Nat
and modulus ((Mod :: Nat -> Nat -> Nat)) which are necessary when deal-
ing with expression shapes. Type families also allows kind polymorphism so we
can have definitions abstracted in their kind parameters, for example:

type family Length (list :: [a]) :: Nat where
Length '[] = 0
Length (x ': xs) = 1 + Length xs

There is also support for unsaturated type family application [36] scheduled
for future GHC versions.

4.1.3 Custom Type Errors
Kinds and type families can be used to encode constraints on the type level
so that invalid programs would result in a compile error. However, the error
content matters. We want the error to be an informative message that reflects
the nature of program domains rather than a generic GHC error. This is even
more desirable for our use case: an embedded modeling language. To resolve
this, GHC provides a special built-in, type-level function:

type family TypeError (msg :: ErrorMessage) :: k
-- ErrorMessage is intended to be used as a kind
data ErrorMessage =

Text Symbol -- Show this text as is
| forall t. ShowType t -- Pretty print a type

1The type system with the UndecidableInstances extension enabled is Turing-complete,
see https://mail.haskell.org/pipermail/haskell/2006-August/018355.html

25

https://mail.haskell.org/pipermail/haskell/2006-August/018355.html


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

| ErrorMessage :<>: ErrorMessage -- Put two chunks of error
message next to each other↪→

| ErrorMessage :$$: ErrorMessage -- Put two chunks of error
message above each other↪→

That is, the type family TypeError takes a value of kind ErrorMessage and
produces a bottom type-level value that can be used as any kind. This can be
put in error cases in our type-level functions, and GHC will reflect the error
message if the program falls into such cases. In the next sections, we will see
how custom compile errors can be used to provide meaningful error messages.

4.2 A Type-safe Modeling API
This section will detail how we exploit Haskell’s type system to provide type-
safety in our embedded algebraic modeling language. Type-safety will help
catch “would-be” correctness bugs at compile time by constraining how expres-
sions are used and constructed in a given context.

4.2.1 Lifting Information To The Type-level
Recall that our data type to represent an expression node is defined as:

data ElementType = R | C

type Shape = [Int]

type Node = (Shape, ElementType, Op)

and the type for constructing expressions is:

type ExprBuilder = Builder NodeID

Nodes contain Shape and ElementType metadata. Because each operation
has a specification of dimension and element type of its inputs and output, this
metadata is important to constrain expression composition. However, the type
for building expressions does not distinguish shape and element type. For the
type system to help with governing constraints and ensure the correctness of
expression constructions, we must lift these pieces of information to the type-
level. To do so, we wrap the existing type inside a new type parameterized by
two phantom type parameters [13]:

newtype TypedExpr (sh :: [Nat]) (et :: ElementType)
= TypedExpr ExprBuilder

• The first parameter (kind [Nat]) holds shape information. This kind is
inhabited by type-level values, e.g. '[] represents a scalar, '[128, 128]
represents a 2D shape of 128× 128, etc.

26



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

• The second parameter - ElementType is the kind promoted from the same
type we are using in the term-level and is inhabited by 2 type-level values
'R and 'C (we can omit the prefix tick).

TypedExpr has kind [Nat] -> ElementType -> Type. A saturated type-
level value of TypedExpr denotes the type of expressions with given shape and
element type. For instance:

TypedExpr '[15, 15, 15] C -- or TypedExpr '[15, 15, 15] 'C

is a 3D expression of shape 15×15×15, and its elements are complex numbers.
Note that such parameters are called phantom types because they only ap-

pear on the left side of the type definition. Using phantom types is a com-
mon practice to decorate existing non-parametric types, allowing us to keep a
somewhat low-level representation of expressions built on graphs, indices, and
monads, while at the same time having metadata on the type-level. The data
constructor TypedExpr is hidden from users to prevent arbitrarily coercing be-
tween expression types. Instead, users can create primitive expressions, i.e.,
variables, parameters, and constants, via predefined functions such as:

variable2D :: forall m n. (KnownNat m, KnownNat n) => String ->
TypedExpr '[m, n] R↪→

variable2D name = TypedExpr $ introduceNode (toShape @'[m, n], R,
Var name)↪→

-- define a variable
x = variable2D @20 @15 "x" -- TypedExpr '[20, 15] R

where the @ sign denotes a type application, allowing us to provide type-level
natural number argument to kind-polymorphic functions like variable2D.

4.2.2 Operator Specification
Using TypedExpr, we can now define mathematical operators that constrain
the shape and element type of their inputs/output. By providing the same type
parameter or explicit type values to the phantom type parameters in TypedExpr
we can constrain which operands must share the same shape or use a specific
element type, i.e.,

27



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

-- element-wise addition
(+) :: TypedExpr sh et -> TypedExpr sh et -> TypedExpr sh et

-- element-wise complex expression from real and imaginary parts
(+:) :: TypedExpr sh R -> TypedExpr sh R -> TypedExpr sh C

-- element-wise exp
exp :: TypedExpr sh R -> TypedExpr sh R

-- Fourier transform
ft :: TypedExpr sh C -> TypedExpr sh C

Listing 4: Example of specifications in type signatures

The examples are self-explanatory: (+) takes and returns expressions of the
same shape and element type, and the Fourier transform ft only accepts a
complex expression and returns a complex expression with the same shape.

Note that as TypedExpr is a phantom type wrapper around ExprBuilder,
we only have to focus on type signatures. Implementation of such functions is
carried out with the monadic construction previously discussed in 3.2, though
some extra wrapping and unwrapping is required.

With the given type signature, adding expressions with mismatched shape
will yield a compile error:

> x = variable2D @10 @10 "x" -- TypedExpr '[10, 10] R
> y = variable2D @20 @10 "y" -- TypedExpr '[20, 10] R
> z = x + y

• Couldn't match type ‘20’ with ‘10’
Expected type: TypedExpr '[10, 10] R

Actual type: TypedExpr '[20, 10] R

More complicated functions may involve type families. Take the scale op-
erator in vector spaces as an example: the first operand is a scalar, the second
operand is a vector, and the operator returns a vector (the same type as the
second operand). This can be encoded as:

(*.) ::
(Scalable etScalar etVector) =>
TypedExpr Scalar etScalar ->
TypedExpr sh etVector ->
TypedExpr sh etVector

The constraint Scalable checks on the compatibility of scalar and vector’s type.
As we know, both Rn and Cn are vector spaces over R, but only Cn is a vector
space over C:

28



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

type family Scalable (etScalar :: ElementType) (etVector ::
ElementType) :: Constraint where↪→

Scalable R e = Satisfied -- Real scalar can scale both real and
complex vectors↪→

Scalable C C = Satisfied -- Complex scalar can only scale
complex vectors↪→

Scalable C R = TypeError (Text "Scaling a real vector by a
complex scalar is not allowed")↪→

This is reflected in GHCi:

> x = variable2D @10 @10 "x" -- TypedExpr '[10, 10] R
> y = variable2D @10 @10 "y" -- TypedExpr '[10, 10] R
> s1 = variable "s1" -- TypedExpr Scalar R
> s2 = variable "s1" -- TypedExpr Scalar R
> s = s1 +: s2 -- TypedExpr Scalar C
> z = s1 *. (x +: y) -- OK, TypedExpr '[10, 10] C
> z2 = s *. x -- Type Error

• Scaling a real vector by a complex scalar is not allowed
• In the expression: s *. x

In an equation for ‘z2’: z2 = s *. x

For functions that require computation and constraints on expression shapes,
more type-level programming is required. For example, the projection opera-
tor involves a custom data kind and a type family for computing the resulting
shape:

data Selector
= All
| Range

Nat -- start
Nat -- end
Nat -- step

| At Nat -- position

project ::
IsSelectors selectors =>
TypedExpr inputShape et ->
TypedExpr (ProjectionShape inputShape selectors) et

where ProjectionShape with kind [Nat] -> [Selector] -> [Nat] calculates
the output shape from the input shape and selectors. The type family also ver-
ifies the validity of indices, e.g., positions must be within the dimension range.
Detailed implementation of ProjectionShape can be found in Appendix A. Pro-
jection gives us a type-safe construction similar to Python’s slicing notation:

x = variable2D @20 @30
-- y = x[0:9, 0:5], has type TypedExpr '[10, 6] R

29



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

y = project @'[Range 0 9 1, Range 0 5 1] x
-- z = x[1, 5], has type TypedExpr Scalar R
z = project @'[At 1, At 5] x
-- t = x[1:2, :], has type TypedExpr '[2, 30] R
t = project @'[Range 1 2 1, All] x

Invalid selectors will result in compile errors:

x = variable2D @20 @30
-- Type Error: end index 30 is out of range in the 1st dimension
y = project @'[Range 10 30 1, At 5] x

• Invalid end index 30, must be in range (0, 20)

With operator constraints and specifications encoded at the type-level, ex-
pressions are therefore correct by construction. Enabling a type-safe API for
constructing optimization problems can be done similarly by specifying the
types of problem components:

1. The objective expression must be a scalar real expression.

2. A general constraint (see equation 1.1) must be a scalar real expression
and take a Double value as lower or upper bound.

3. Box constraints require the bounded variable and the bound to have the
same shape, as illustrated in example 1.4.

4.3 Physical Units
Problems of manipulating expressions with incompatible shape or element type
are solved by encoding such information at the type-level. However, there is
still another source of errors in scientific applications that concerns physicists
and mathematicians: incompatible physical units. Users can still, for example,
construct different expressions that are both real and have the same shape but
were meant to represent different physical signals with disparate units. Adding
them, though allowed in this case, is considered invalid. In this view, expressions
are not simply grids of numbers but are instances representing actual physical
signals. A common interpretation in scientific optimization models, especially
in medical imaging, views expressions as the discretization of real-world physical
signals [47] which entails not only dimensional data but also information about
physical units and sampling.

Our goal is to create another interface with a new set of operations to
form expressions that provide discretization metadata. Doing so first requires
information to be encoded at the type-level.

Physical units The use of a type system to correctly handle physical units
in scientific applications has been around for quite some time [49] with mature
packages dedicated for type-level physical units2. We take an approach similar

2For a list, see https://wiki.haskell.org/Physical_units

30

https://wiki.haskell.org/Physical_units


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

to the Dimensional package of representing physical units as combinations of
seven base units in the International System of Units (SI): the meter (m), the
kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol),
and the candela (cd).

-- unit is intended to be used as a kind
data Unit

= Unit
UMeter -- (length, m - meter)
UKilogram -- (mass, kg - kilogram)
USecond -- (time, s - second)
UAmpere -- (electric current, A - ampere)
UKelvin -- (thermodynamic temperature, K - kelvin)
UMole -- (amount of substance, Mol - mole)
UCandela -- (luminous intensity, cd - candela)

-- TypeInt represents type-level integers
newtype UMeter = M TypeInt
newtype UKilogram = Kg TypeInt
...

Sampling step size Ideally, the sampling step should be encoded as
floating-point numbers, but floating-point type-level literals are not yet sup-
ported in GHC. Although we can resort to TemplateHaskell, we found that
the complication outweighs the benefit. Instead, we use positive fractional
numbers formed by a pair of natural numbers to represent the sampling step.
This also means we will need to perform some extra type-level computation to
bring them to the irreducible form.

data SampleStep = Nat :/: Nat

-- (:/) is used instead (:/:) to check for zero division
-- and bring the fraction to canonical form
type family a :/ b where

a :/ 0 = TypeError (Text "Division to zero: " :<>: ShowType a
:<>: Text "/0")↪→

0 :/ b = TypeError (Text "Sampling step must be positive: " :<>:
Text "0/" :<>: ShowType b)↪→

a :/ b = (a `N.Div` (GCD a b)) :/: (b `N.Div` (GCD a b))

We again use the phantom type parameter technique to form a new expres-
sion type that represents the discretization of physical signals. Dimensional
metadata is not just a list of natural numbers [Nat] but a list of sampling in-
formation for each dimension: number of samples, the sampling step, and the
domain unit along which values are sampled.

31



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Ti
me
 (
s)

2D slices

Distance (m)

Di
st
an
ce
 (
m)

Figure 4.1: Different sampling units along different dimensions
in a discretization

data Sampling
= D

Nat -- number of samples
SampleStep -- sampling steps
Unit -- domain unit

newtype
UnitExpr
(ds :: [Sampling])
(unit :: Unit) -- range unit
(et :: ElementType) -- real or copmlex

= UnitExpr ExprBuilder

As shown in Figure 4.1, it is possible to have different samplings along
different dimensions. A variable representing this discretization can be:

v =
variable
@'[ D 256 (1 :/ 2000) Meter, -- 1st dimension: distance

D 256 (1 :/ 2000) Meter, -- 2nd dimension: distance
D 100 (1 :/ 60) Second -- 3rd dimension: time

]
@Candela -- range unit: luminance
"x"

32



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

With physical units metadata available on the type-level, we can precisely
formulate point-wise multiplication: the resulting unit should be the product
of its operands’ units.

-- x has type UnitExpr '[D 10 (1 ':/: 2000) Meter] Kilogram R
x = variable @'[D 10 (1 :/ 2000) Meter] @Kilogram "x"

-- x has type UnitExpr '[D 10 (1 ':/: 2000) Meter] Candela R
y = variable @'[D 10 (1 :/ 2000) Meter] @Candela "y"

-- z has type UnitExpr '[ 'D 10 (1 ':/: 2000) (Meter :*: Candela)]
Kilogram 'R↪→

z = x * y

Similarly, the Fourier transform keeps range units but acts on domain units
and sampling steps. A detailed analysis can be found in [47].

-- x has type UnitExpr '[D 10 (1 :/: 2000) Meter] Ampere R
x = variable @'[D 10 (1 :/ 2000) Meter] @Ampere "x"

-- y has type UnitExpr '[D 10 (1 :/: 2000) Meter] Ampere R
y = variable @'[D 10 (1 :/ 2000) Meter] @Ampere "y"

-- z has type UnitExpr '[D 10 (200 :/: 1) (Meter :^: (Negative 1))]
Ampere R↪→

z = dft $ (x +: y)

4.4 Type-level or Term-level
There are trade-offs that must be considered when determining whether to
encode metadata at the type-level or not. In this section we will discuss some
of the drawbacks to encoding data at the type-level and an instance where we
judged term-level encoding to be more appropriate.

4.4.1 Type-level Value Declarations
While having metadata information available in the type level is useful in many
settings, it also comes with a drawback that should not be overlooked: type-level
values must be known at compile-time, or otherwise functions and computations
must be accompanied by corresponding type-level constraints.

For instance, by using projection, we can drop the first/last element of a
one dimensional vector to form new expressions. If they have the same shape
and element type, they can be added together:

problem :: OptimizationProblem
problem =

let
x = variable1D @10 "x" -- TypedExpr 10 R

33



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

y = project @'[Range 1 9 1] x -- TypedExpr 9 R
z = project @'[Range 0 8 1] x -- TypedExpr 9 R
t = y + z . -- TypedExpr 9 R

in
...

All the type-level natural numbers are manually provided in this case, which
can become tedious. Suppose we want to generalize the code on the size of
variable x instead of a fixed number 10. Our suggested way to accomplish this
is by type-level declarations:

type N = 10

problem :: OptimizationProblem
problem =

let
x = variable1D @N "x" -- TypedExpr 10 R
y = project @'[Range 1 (N - 1) 1] x -- TypedExpr 9 R
z = project @'[Range 0 (N - 2) 1] x -- TypedExpr 9 R
t = y + z -- TypedExpr 9 R

in
...

As long as N is known (which is 10), the type system can compute the exact
final shape of y and z and decide if we are allowed to take the sum of them.

4.4.2 Unknown Type-level Values
However, if the value of x’s size is only an unspecified type-level natural value:

problem :: forall n. (KnownNat n) => OptimizationProblem
problem =

let x = variable1D @n "x" -- TypedExpr n R
-- y :: TypedExpr (ProjectionShape '[n] '[Range 1 (n - 1) 1])

R↪→

y = project @'[Range 1 (n - 1) 1] x
-- z :: TypedExpr (ProjectionShape '[n] '[Range 0 (n - 2) 1])

R↪→

z = project @'[Range 0 (n - 2) 1] x
t = y + z -- COMPILE ERROR

in
....

Then the type system cannot verify that the shape of y and z are in fact the
same (as long as n > 1), and will yield a compile error indicate that we can not
perform the operation y + z. In this case, we must accompany the “proof” (in
form of constraints) that their shape should be identical in the problem’s type
signature:

34



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

problem ::
forall n.
( KnownNat n,
0 < n,
(n - 2) < n,
KnownNat ((n + (n - 2)) `Mod` n + 1),
ProjectionShape '[n] '[ 'Range 1 (n - 1) 1]

~ ProjectionShape '[n] '[ 'Range 0 (n - 2) 1]
) =>
OptimizationProblem

problem =
let x = variable1D @n "x"

y = project @'[Range 1 (n - 1) 1] x
z = project @'[Range 0 (n - 2) 1] x
t = y + z -- COMPILED

in
...

4.4.3 Undecorated API
In such instances, the list of constraints we need to provide can grow very quickly
and become too verbose to be expressed, and the more sensible approach to this
problem is to use the undecorated type - expressions without metadata on the
type-level. In this case, the type Expr is just an alias for ExprBuilder, and
creating variables no longer requires type applications:

type Expr = ExprBuilder

variable :: Shape -> String -> Expr
variable shape name = introduceNode (shape, R, Var name)

Then, the optimization with unknown-shape variables can be written as:

problem :: Int -> OptimizationProblem
problem n =

let
x = variable [n] "x" -- Expr
y = project (IntRange 1 (n - 1) 1) x -- Expr
z = project (IntRange 0 (n - 2) 1) x -- Expr
t = y + z -- Expr

in
...

Of course, in this case, the compiler will not be able to spot mismatched
shape (or element type) calculations. However, we can verify all of that when
we run the program to construct the model. Note that this is still safe because
the model is symbolic, and no actual evaluations are performed until the model
is verified for code generation. Nevertheless, we will lose the interactivity with
the Haskell type system.

35



Chapter 5

Rewriting and Simplification

Algebraic simplification aims to obtain equivalent but simpler expressions by
using algebraic properties of mathematical operators and their combinations
[10]. In the context of modeling languages for mathematical optimization, our
chief criteria for discerning the effectiveness of a “simplification” is its reduc-
tion in evaluation complexity and memory consumption. Performing expression
simplification will benefit the resulting expression evaluation by:

1. Reducing evaluation time by eliminating redundant computations. For
instance, 1 ∗ x can be rewritten to x to eliminate an unnecessary multi-
plication (modelers generally do not write expressions like 1 ∗ x directly,
but they can be introduced when computing derivatives or from auxiliary
functions).

2. Replacing expressions that are algebraically equivalent to a single, com-
mon expression and therefore share the computation. For example, x +
(y+z) and (x+y)+z can both be transformed to sum(x, y, z) which will
be indexed to a single expression node. This is common subexpression
elimination via algebraic equivalence as discussed in Chapter 2.

Some optimization and modeling software performs expression simplifica-
tion during expression evaluation, which can be considered a form of dynamic
simplification. Depending on the value of the input, a code graph is derived;
then computation reduction rules and evaluations are applied together, thus re-
quiring simplification logic to take place in low-level code. For instance, Tensor-
Flow [1] delegates algebraic simplification to the C++ graph optimizer Grappler
[39]. Dynamic simplification can be a good tradeoff, introducing more overhead
but with access to runtime values and hence the possibility of yielding better
simplification. However, for a symbolic expression library that performs code
generation like HashedExpression, static analysis and simplification are more
appropriate. First, it allows us to transform expressions once beforehand and
evaluate them multiple times later as opposed to the dynamic simplification
where transformation must happen within a limited time constraint. Moreover,
with symbolic expressions decoupled from actual numerical data, we can carry
out simplifications in the library’s host language Haskell. This is the basis for
a sophisticated rewriting system, allowing us to look for higher-level patterns
which would otherwise require expressive whole-program optimization.

36



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

5.1 Types
In this section, we will delve into the implementation of the type system for
rewriting and simplification. We will also demonstrate how simplification rules
are implemented, one of which is via a match-and-replace pattern language, as
well as how simplification rules are composed and generalized to all nodes in
the expression graph.

5.1.1 Instance of MonadExpression
Rewriting of expressions involves constructing new expressions, and as a direct
consequence of our hashed indexing scheme, we must utilize the framework
introduced in Chapter 2 (i.e., the type class MonadExpression) to create a
convenient interface for performing rewrites. Similar to the Builder monad,
we have a monad Rewrite wrapping around the State monad for rewriting
and simplification. The only difference is the lookup table we feed to the final
computation. For the Builder monad, it is the empty lookup table, and for the
Rewrite monad, it is the original lookup table of the targeted expression.

newtype Rewrite a = Rewrite {unRewrite :: State ExpressionMap a}
deriving (Functor, Applicative, Monad)

-- similar to the Builder monad
instance MonadExpression Rewrite where

introduceNode node = Rewrite $ do
mp <- get
let nID = index mp node
modify' $ IM.insert nID node
return (NodeID nID)

getContextMap = Rewrite $ get

Listing 5: The Rewrite monad for rewriting expressions.

The Rewrite monad shares expression composition logic with the Builder
monad. The type for rewriting an expression is:

type Modification = NodeID -> Rewrite NodeID

We can read the type synonym as: take a node index (a pointer to an
expression), and return another node index (pointer to the rewritten expres-
sion), where the computation happens in the Rewrite monad. In fact, because
State s a is isomorphic to s -> (s, a), the type synonym Modification is
isomorphic to:

NodeID -> ExpressionMap -> (ExpressionMap, NodeID)

which is isomorphic to:

37



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

(ExpressionMap, NodeID) -> (ExpressionMap, NodeID)

In other words, Modification is isomorphic to a function that takes a type
RawExpr = (ExpressionMap, NodeID) (an expression as identified by the un-
derlying lookup table and a node index), and “transforms” it into another
RawExpr.

However, just as we compose expressions by using ExprBuilder instead of
RawExpr, we use Modification for rewriting instead of the endomorphism type
RawExpr -> RawExpr. We make Rewrite an instance of MonadExpression which
allows us to combine rewriting rules without having to deal with hash collisions
and achieve nominal common subexpression elimination. This simple analysis
again shows the powerful abstraction power of Haskell’s type system.

5.1.2 Implementing Rewriting Rules
Now that we have a type to represent rewriting rules, i.e.,

type Modification = NodeID -> Rewrite NodeID

our task is encode rewrite rules as functions of this type. From this type signa-
ture, each rewrite rule will have access to:

1. An argument of type NodeID

2. The function getContextMap :: Rewrite ExpressionMap that provides
the current ExpressionMap via the MonadExpression monad.

Taking this into consideration, we can develop rewrite rules in a fairly systematic
fashion using the following steps:

1. Pattern match on targeted expression, inspecting any data by the given
NodeID and underlying lookup table ExpressionMap

2. Check against any rewriting conditions

3. Construct the resulting expression (in the Rewrite) monad.

The example in Listing 6 illustrates how to implement a rewrite rule that sim-
plifies expressions with zeros and ones that appear in a sum or a product. Note
that in this example, sum_ and product_ are functions that form a sum or
product of expressions defined for MonadExpression instances:

sum_ :: MonadExpression m => [m NodeID] -> m NodeID
product_ :: MonadExpression m => [m NodeID] -> m NodeID

38



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

zeroOneSumProdRule :: Modification
zeroOneSumProdRule nID = withExpressionMap $ \mp ->

case retrieveOp nID mp of
Sum ns

-- remove 0s from sum
-- sum(x, y, z, 0, t, 0) -> sum(x, y, z, t)
| (x : _, []) <- partition (isZero mp) ns -> return x
| (_, nonZeros) <- partition (isZero mp) ns -> sum_ . map

return $ nonZeros↪→

Mul ns
-- remove 1s from product
-- product(x, y, z, 1, t, 1) -> product(x, y, z, t)
| (x : _, []) <- partition (isOne mp) ns -> return x
| (_, nonOnes) <- partition (isOne mp) ns -> product_ . map

return $ nonOnes↪→

-- if contains a 0, collapse to 0
-- product(x, y, z, 0, t, u, v) -> 0
| nId : _ <- filter (isZero mp) ns -> return nId

_ -> return nID

Listing 6: A simplification rule written in function form.

5.2 Matching and replacing
The steps mentioned in the previous section should provide a general outline
suitable to implement any simplification and rewriting rules. However, we want
to take it one step further by deriving a system for rewriting based on match-
and-replace with a syntax that closely resembles that used by mathematicians.
Unlike the traditional Haskell pattern matching notation, it allows us to match
expressions with symbols that could appear more than once. Such repeated
appearances indicate they should be matched by identical expressions.

For instance, the following function expresses the rule that ℜ(a+ b)(a− bi)
should be simplified to (a∗a+b∗b). (Note that this is regarded as a simplification
rule because the right-hand side is less computationally expensive)

simpRule :: Modification
simpRule = fm $ xRe ((a +: b) * (a +: negate b)) |.~~> (a * a + b *

b)↪→

We implement the match-and-replace rewriting system by having a data
type Pattern that reflects the structure of the expressions.

-- similar to Op
data Pattern

= PHole Capture
| PConst Double
| PSum [Pattern]

39



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

| PMul [Pattern]
| PNeg Pattern
| ...

Pattern has similar constructor names and is used to match with data
type Op discussed in chapter 2. However, Pattern does not take into account
common expression sharing and therefore has a straightforward tree structure.
The custom data type also has a special constructor PHole representing symbols
used to match with underlying subexpressions. The corresponding pattern value
of the above simplifications left-hand side is:

-- xRe ((a +: b) * (a +: negate b))
PRealPart

( PMul
(PRealImag (PHole "a") (PHole "b"))
(PRealImag (PHole "a") (PNeg (PHole "b")))

)

Applying a rewriting rule by matching and replacing consists of 2 main steps:

1. First, the targeted expression is matched with the left-hand side of the
rewriting rules to produce a substitution. This is aided by the fact that
identical expressions can be verified in constant time O(1) (simply by com-
paring their hashed indices). Figure 5.1 shows an example of a successful
substitution.

ID: 12
Var “y”

ID: 13
Var “x”

ID: 5

Const 2

ID: 7

Neg 5

ID: 8
Sum [12, 13]

ID: 10
RealImag 8 5

ID: 23
Mul [10, 11]

ID: 57
RealPart 23

ID: 11
RealImag 8 7

PHole “a”

PRealImag

PRealImag

PMul

PRealPart

PNeg

PHole “b” PHole “a” PHole “b”

Substitution:
“a” ——> NodeID 8
“b” ——> NodeID 5

Targeted expression

Left-hand side pattern

Figure 5.1: A successful match for the targeted expression ℜ((x+
y) + 2i)((x+ y)− 2i).

2. Then, the substitution is applied to the right-hand side pattern to con-
struct the result expression, as shown in Figure 5.2.

40



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

ID: 12
Var “y”

ID: 13
Var “x”

ID: 5

Const 2

ID: 7

Neg 5

ID: 8
Sum [12, 13]

ID: 73
Sum [37, 51]

ID: 37
Mul [8, 8]

ID: 51
Mul [5, 5]

ID: 10
RealImag 8 5

ID: 23
Mul [10, 11]

ID: 57
RealPart 23

ID: 11
RealImag 8 7

PHole “a”

PMul

PSum

PHole “a” PHole “b”

PMul

PHole “b”

Substitution:
“a” ——> NodeID 8
“b” ——> NodeID 5

Right-hand side pattern

Targeted expression

Result expression

Figure 5.2: Construct resulted expression from the substitution
and right-hand side pattern

We also allow a guarded style to construct rewriting rules similar to Haskell
guard’s to make the system more expressive, e.g:

rule :: Modification
rule = fm $ x *. (y *. z) |. sameElementType [x, y] ~~> (x * y) *.

z↪→

All in all, we find this extra rewriting subsystem brings several advan-
tages. As library developers, we find it convenient to write algebraic simpli-
fication rules. Moreover, by providing a syntax that is similar to mathematical
notations, it is possible to allow domain experts to provide such high-level
performance-enhancing transformations together with their optimization mod-
els.

5.3 Composing and Generalizing

5.3.1 Composing
Composing rewriting rules is relatively straightforward. This is accomplished
by a single fold:

chainModifications :: [Modification] -> Modification
chainModifications = foldr (>=>) return

where

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

is a left-to-right composition of two functions under a monadic context.

41



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

5.3.2 Generalizing
We can combine simplification rules using a simple fold and a monadic compo-
sition, but we also want such combined rules to apply to all nodes in the expres-
sion graph rather than a single individual expression node. As such, we need a
function that turns a rewriting rule into a transformation that accepts an input
expression graph and returns another expression graph where the rewriting rule
has been applied to all nodes. Moreover, due to the dependency-structure of the
expression graph, we also need to keep track of the changes that occur. In other
words, given a node index in the old graph, we want to know the corresponding
node index in the rewritten graph:

generalizeModification ::
Modification ->
ExpressionMap ->
(ExpressionMap, NodeID -> NodeID)

The traversal order matters, and rewriting changes in any node must be re-
flected to nodes dependent on it. Because of this, generalizeModification is a
fold over the nodes sorted in topological order - from independent to dependent.
Upon applying a fold on a node:

1. First, operands of the current node are updated if they have been rewrit-
ten.

2. Then, apply the rewriting rules to the node with rewritten operands.

3. If the node has changed as a result of these steps, add a new pair to the
update list.

The process is illustrated in Figure 5.3, 5.4 and 5.5. First, the node repre-
senting the symbolic expression x ∗ 1 is rewritten to the node x.

ID: 13
Var “x”

ID: 25
Mul [13, 7]

ID: 27
Sum [25, 7]

ID: 7

Const 1

ID: 8

Const 0 rule = chainModifications 
[ fm $ a * 1 |.~~> a, 
  fm $ a + 0 |.~~> a
]

Current node

rewritten to

Changes:
25 ——> 13

Figure 5.3: Expression node is simplified, and the change 25 ->
13 is added

Moving on to the next node in the topological order, the node representing
(x∗1)+0 finds its operands modified, and updates itself to the new node x+0.

42



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

ID: 13
Var “x”

ID: 25
Mul [13, 7]

ID: 27
Sum [25, 7]

ID: 37
Sum [13, 8]

ID: 7

Const 1

ID: 8

Const 0 rule = chainModifications 
[ fm $ a * 1 |.~~> a, 
  fm $ a + 0 |.~~> a
]

Current node

Changes:
25 ——> 13

updated to

Figure 5.4: Expression node is updated based on the changes of
operands

Then, the updated node is rewritten to the node x, and the change is reflected
in the accumulated changes.

ID: 25
Mul [13, 7]

ID: 27
Sum [25, 7]

ID: 37
Sum [13, 8]

ID: 7

Const 1

ID: 8

Const 0 rule = chainModifications 
[ fm $ a * 1 |.~~> a, 
  fm $ a + 0 |.~~> a
]

Current node

Changes:
25 ——> 13
27 ——> 13

updated to

ID: 13
Var “x”

rewritten to

Figure 5.5: Updated node is simplified, and the change 27 ->
13 is added

5.4 Semantics-preserving, Confluence, and
Termination

In the context of an algebraic rewriting system, three properties of interest are:

1. Semantics-preserving: whether rewriting rules preserve the mathematical
meaning of input expressions, i.e., the rewritten expression should evalu-
ate to the same result as the original expression.

2. Termination: whether the process of applying rewriting rules terminates.

3. Confluence: whether expressions are rewritten to the same result no mat-
ter the order of rewriting rules applied to it.

43



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

In HashedExpression, semantics-preserving and termination are tested and
enforced programmatically. For semantics-preserving, it makes heavy use of
QuickCheck [14], a property-based testing library, to verify against simplifica-
tion rules as well as combinations of them. For each rule or combination of
rules, a large number of random expressions and variables-substituted values
are generated. Then, using a built-in interpreter, it will verify if the rewritten
expression and the original expression evaluate to the same value.

Termination is enforced by applying the set of rewriting rules exhaustively
and repeatedly with an additional “fuel” parameter. The process will terminate
when none of the rewriting rules can apply, or after the maximum “fuel” times
rules are applied, whichever comes first. In the future, when we allow users to
provide custom rewriting rules along with their optimization instances, we will
need to add a detection system that provides feedback if the rewriting causes
cycles or, e.g., if the process diverges with the expression’s size increasing after
every iteration.

The confluence property is the hardest property to enforce or prove, and this
is outside the scope of this thesis and will be left for future work. One direction
would be to use the semi-decidable Knuth-Bendix algorithm [37]. However,
not all rewriting rules are written using the pattern language (for example,
see Listing 6), and with conditional term-rewriting allowed (using the guarded
style), more consideration must be taken. Nevertheless, the confluence property
is not a must-have in the context of a symbolic AML with code generation.
The reason is that expressions’ evaluation time varies between code generators,
computer architectures, and runtime factors, especially when parallelization is
involved. Thus, a single, unique normal form implied by the confluence property
does not mean it is the most efficient form in terms of evaluation time.

44



Chapter 6

Computing Derivatives

6.1 Background
Recall the standard form of optimization problems:

minimize: f(x)
subject to: gi(x) ≤ 0, i = 1, 2, ...,mg

hi(x) = 0, i = 1, 2, ...,mh

(f, gi, hi : Rn −→ R)

Automatic computation of derivatives is another essential part of algebraic
modeling software. Optimization algorithms and solvers rely on the compu-
tation of the objective function’s gradient ∇f and constraints’ gradients ∇gi
(and sometimes the Hessians of the objective function). Lacking the ability to
automatically derive gradients, users are left with the error-prone and time-
consuming task of manually calculating and inputting derivatives. Thus, it is
usually mandatory for algebraic modeling software to include support for the
automatic computation of derivatives.

Methods for computing derivatives are usually classified into 3 categories:
(1) numerical differentiation, (2) symbolic differentiation, and (3) automatic
differentiation. Numerical differentiation uses finite difference approximations
and is the easiest method to implement. However, this method has the least
accuracy due to floating-point round-off and truncation errors [57]. Alterna-
tively, symbolic differentiation, available in computer algebra systems such as
Mathematica [67] or Maple [12], operates on the symbolic expressions and pro-
duces symbolic derivative expressions using the chain rule. On the other hand,
automatic differentiation also uses the chain rule but produces the numerical
derivatives during evaluation time by accumulation of values instead of dealing
with symbolic expressions [4], and often comes in 2 modes: forward and reverse.
Automatic differentiation is probably the most common method and is available
in most AMLs and machine learning libraries like JuMP or PyTorch.

There is a common belief that automatic differentiation is by nature more
efficient than symbolic differentiation because the latter has the problem of
expression swelling [29, 4, 16]. However, the claim is only true if expression

45



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

representation does not allow for common expressions sharing. This is ad-
dressed in the paper [40] and it is indicated that the two types of differentiation
use the same set of techniques and only differ in output representation, i.e.,
symbolic differentiation targets derivative expressions while automatic differen-
tiation targets their numeric computed values.

Many Haskell libraries support automatic computation of derivatives, with
the ad package [2] being the most established and popular. The ad package im-
plements different automatic differentiation modes and can also produce sym-
bolic derivatives when used with the symbolic numeric type. For our purposes,
we want support for multi-dimensional variables, the ability to extend the list
of operators and extract the resulting expression graphs. Unfortunately, to the
best of our knowledge, none of the current solutions offer that functionality.

HashedExpression implements its own derivative computation module. It
takes the hybrid approach by using the reverse accumulation method (the same
technique used in reverse-mode automatic differentiation) to work out the sym-
bolic derivative expressions. Then, the result can be combined and simplified
together with the original objective function (see Figure 6.1). In this chapter,
we will go over the reverse-mode technique, how it is implemented in our cur-
rent expression data structure. We will show why producing symbolic derivative
expressions can be advantageous compared to producing numerical derivative
values.

6.2 Method

6.2.1 Reverse mode
The reverse accumulation method (or reverse mode differentiation) to compute
first-order derivatives was first published by Seppo Linnainmaa in 1976 [28]. The
algorithm gives an outline of how to compute derivatives of functions f : Rn →
Rm in m reversal sweeps, and requires a data structure to store information
about all intermediate variables, otherwise known as a Wengert list [66]. In our
case, we only target scalar functions (m = 1) for the both objective function
and general constraints, so only a single pass is necessary. For the latter, the
requisite data structure is encoded in our expression graph representation.

The algorithm works by computing the partial derivative of the target scalar
function f with respect to all intermediate variables vi = ∂f

∂vi
(corresponding to

nodes in our expression graphs) in the reverse order of the computational graph.
For each intermediate node, e.g., v(x, y), the derivative of v = ∂f

∂v
is fixed. Then,

the (cumulative) derivatives of its operands are calculated using the chain rule:

x =
∂f

∂x
=

∂f

∂v

∂v

∂x
= v

∂v

∂x
(6.1)

y =
∂f

∂y
=

∂f

∂v

∂v

∂y
= v

∂v

∂y
(6.2)

46



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.1: Combining the objective function and its derivatives
(MRI reconstruction problem in Section 1.4).

The process starts with f = 1, and upon visiting an intermediate node
v, its derivative v is finalized by taking the sum of all cumulative derivatives
contributed from (previously traversed) nodes dependent on it.

Take the scalar function f = x(2x+1)+y2 for example, its expression graph
and corresponding Wengert list is illustrated in Figure 6.2. From the reverse
order of the computation graph, we compute derivatives of all expression nodes
by the mechanics described in Figure 6.3.

However, most practical optimization problems use higher dimensional vari-
ables, and in HashedExpression, we also want to support complex variables.
Fortunately, the reverse method works just as well with higher dimensional
variables with some modifications. The partial derivative is generalized to the
vectorized form:

x =
∂f

∂x =


∂f
∂x1
∂f
∂x2...
∂f
∂xn


And the chain rule in equation 6.1 instead takes the Vector-Jacobian product
form:

47



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Wengert list

Figure 6.2: Expression graph and Wengert list of f = x(2x +
1) + y2

x =
∂f

∂x = JTv

where

J =
∂v
∂x =


∂v1
∂x1

. . . ∂v1
∂xn... . . . ...

∂vn
∂x1

. . . ∂vn
∂xn



The Jacobian J has size m ∗ n and might be impractical to calculate, espe-
cially in image processing problems. Fortunately, most operators do not require
explicit computation of the Jacobian, but can instead directly work out a vec-
torized representation of the Jacobian product JTv. For example, consider the
point-wise sin operator:

v = sin(x) =


sin(x1)
sin(x2)

...
sin(xn)


the Jacobian is:

J =

cos(x1) . . . 0
... . . . ...
0 . . . cos(xn)



48



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.3: Applying reverse accumulation to compute deriva-
tives

without explicitly computing J, we can obtain the derivative:

x = JTv = cos(x) ∗ v
where (∗) is the point-wise multiplication operator.

Complex variables are actually a special case of higher dimensional variables
that we can treat as 2-parts of an extra dimension. The derivative of a complex
expression z = a + bi is defined as:

z =
∂f

∂z =
∂f

∂a + i
∂f

∂b =


∂f
∂a1

+ i ∂f
∂b1

∂f
∂a2

+ i ∂f
∂b2...

∂f
∂an

+ i ∂f
∂bn


The chain rule applies similarly, although additional conjugations and other

complex number operations may be involved.

6.2.2 Implementation
The process involves creating derivative expressions as we traverse over the code
graph. To have a convienient interface to do this we create another instance of
MonadExpression:

49



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

data ComputeDState = ComputeDState
{ contextMap :: ExpressionMap,
cumulativeDerivatives :: Map NodeID [NodeID],
partialDerivativeMap :: Map String NodeID

}

newtype ComputeReverseM a = ComputeReverseM (State ComputeDState a)
deriving Monad↪→

instance MonadExpression (State ComputeDState) where
-- similar to the Rewrite monad
introduceNode node = ...
getContextMap = ComputeReverseM $ gets contextMap

Listing 7: The ComputeReverseM monad for computing derivative
using the reverse mode

The ComputeReverseM monad shares expressions composing logic with all
the instances of MonadExpression we have seen throughout this thesis. We also
need to manage the cumulative derivatives contributed from dependent nodes
to their operand nodes through the cumulativeDerivatives mapping.

The rest is actually quite straightforward. We follow the reverse order topo-
logical sort of the original expression graph, and for each node:

1. Finalize the derivative expression of current node, which is the sum of all
cumulative derivatives incurred previously from nodes dependent on the
current node.

2. Pattern match on the operator, and use the chain rule and contribute
derivative expressions to its operands.

This is illustrated in Listing 8. We can see a close resemblance to the written
process shown in the right side of Figure 6.3.

In a sense, the algorithm can be thought of as traditional reverse-mode au-
tomatic differentiation but executed in the ComputeReverseM monad. Instead of
producing numerical values, we produce symbolic derivative expressions which
are added to the common lookup table. Figure 6.4 shows an (unsimplified)
result of computing derivatives for f = x(2x+ 1) + y2.

It is worth noting that graphs, tapes, and mutations are not required to
implement reverse-mode differentiation as Conal Elliott elegantly shows in the
paper “The Simple Essence of Automatic Differentiation” [22]. The author
defines computational categories shared between operators and their derivative
formulas. As such, functions written in the defined categorical vocabulary take
two forms: one to evaluate itself, and another to evaluate both its original value
and derivatives. However, we have yet to find compatible uses of the paper’s
method in our modeling library, since we need explicit control of the expression
graph for simplification and code generation.

50



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.4: Computing derivatives result for f = x(2x+ 1) + y2

6.2.3 Sharing Computations and Simplification
As identical expressions are indexed to the same node, we avoid the issue of
expression swelling that is often considered to be a drawback of symbolic dif-
ferentiation techniques. Having symbolic derivative expressions also means:

1. We can apply rewriting rules to simplify and remove redundant compu-
tations of computed derivative expressions.

2. By combining multiple functions and their derivative expressions, we can
share computations of not only the objective function f and its derivatives
∇f , but also the problem’s constraints gi and their derivatives ∇gi.

Consider the example f = x(2x+1)+y2. Generally, reverse-mode automatic
differentiation will run a computation equivalent to the graph in Figure 6.4
(unless algebraic checks are performed, but doing so would incur extra running
time). In contrast, if we obtain the symbolic derivative expressions we can
apply rewriting rules and simplify them to the graph shown in Figure 6.5. The
original has to evaluate 17 operators, whereas the simplified one only requires 8.

As we are dealing with multi-dimensional expressions, the significance of
computations sharing is shown not only in the number of operators common
between the objective function and its derivatives, but also the number of prim-
itive machine operations shared between them. If we consider the number of
primitive machine multiplications, in the MRI reconstruction example:

• The simplified graph for evaluating the objective function is shown in
Figure 6.6. It has 21 operators and requires approximately 573441 ma-
chine multiplications (how to approximate: for instance, with expres-
sions of shape 128× 128, each point-wise multiplication requires 16384 ∗

51



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.5: Simplified expression graph of f = x(2x + 1) + y2

and its derivatives

(number of operands - 1) machine multiplications, each dot product re-
quires 16384, and the Fourier transform requires 16384 ∗ log(16384) =
229376).

• The simplified graph for evaluating the gradient is shown in Figure 6.7.
It has 33 operators and requires approximately 1114112 machine multi-
plications.

• The combined expression graph of both values is illustrated in Figure
6.1. It has 41 operators and requires approximately 1179649 machine
multiplications.

Thus, compared with if we were to evaluate the objective function and its
gradient separately, evaluating the combined graph reduces the number of op-
erators by 24% and reduces the number of machine multiplications by 30%.

52



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.6: Evaluating the objective function (MRI reconstruc-
tion problem)

53



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

process :: NodeID -> ComputeReverseM ()
process n = do

--- finalize the derivative expression of the current node
diffN <-
if nID == rootID

then one
else do

derivativeParts <- Map.lookup nID <$> gets
cumulativeDerivatives↪→

-- Sum all the derivative parts incurred by its parents
case derivativeParts of

Just [d] -> from d
Just ds -> sum_ $ map from ds
_ -> zero

....
case op of
Var name -> setPartialDerivative n diffN
Sum args -> do

forM_ args $ \x -> do
let diffX = diffN
addDerivative x diffX

Mul args -> do
forM_ (removeEach args) $ \(x, rest) -> do

productRest <- product_ $ map from rest
case et of

R -> do
diffX <- from diffN * from productRest
addDerivative x diffX

C -> do
diffX <- from diffN * conjugate (from productRest)
addDerivative x diffX

Sin x -> do
diffX <- from diffN * cos (from x)
addDerivative x diffX

Cos x -> do
diffX <- from diffN * (- sin (from x))
addDerivative x diffX

...

Listing 8: Processing a node in reverse mode

54



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

Figure 6.7: Evaluating the gradient (MRI reconstruction prob-
lem)

55



Chapter 7

Code Generation

7.1 Interfacing With Optimization Solvers
The last component of our algebraic modeling language is code generation.
The module is responsible for transforming symbolic expressions (encoded as
directed acyclic graphs) into source code which can be compiled with third-party
optimization solvers. Similar to CVXGEN [44] or Modelica [3], HashedExpres-
sion combines a modeling language with code generation because it allows for
(1) high-performance gain with low-level C/C++ code and (2) the possibility to
combine with other optimization systems (because code generation is backend-
agnostic, we can generate evaluation code in any language and/or numerical
libraries).

With code generation, we can finally construct a process to solve optimiza-
tion problems. First, the problem (in the standard form 1.1) is passed through
pre-processing and symbolic manipulation steps that:

1. Perform necessary validations.

2. Compute the symbolic derivative expressions ∇f and ∇gi as described in
Chapter 6.

3. Perform simplification and rewriting as described in Chapter 5, and merge
everything into a single expression graph to account for node sharing.

The result is an expression graph containing the objective function, con-
straints and their respective gradients. Then, the code generator turns it into
evaluation code which can be integrated with numerical optimization algorithms
to produce the final result, as illustrated in Figure 7.1. Code generation can
also perform transformations to further speed up evaluation. Such could in-
clude rewriting combinations of operations to custom nodes that are evaluated
by special hardware instructions, or collapsing a sequence of nodes into one
single computation to save memory.

Although code generation is backend-agnostic, for granular control on per-
formance and portability with optimization solver interfaces, we will mainly fo-
cus on generating low-level C/C++ code. In the next sections, we will present
an implementation of a simple C code generator and discuss opportunities that
can be employed to speed up evaluation in future generators.

56



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

. . . . . evaluate_objective()

evaluate_objective_and_gradient()

evaluate_general_constraints()

evaluate_general_constraints_jacobian()

evaluate_everything()

. . . . .

GENERATE USED BY OPTIMIZATION SOLVERS

(LBFGS, LBFGS-B, IPOPT, …)

Figure 7.1: Code generation

7.2 Generating C Code
In this first release of HashedExpression, we include a fully working code gener-
ator that produces C code in the C99 standard. In this version, computations
are sequential, and operations on higher dimensional variables are computed in
elementary for-loops. For extra performance gain and convenient data inter-
facing, the Fourier transform is carried out using the FFTW3 library [26], and
dataset input-output is facilitated by the HDF5 [24] format and library. Plain
text format is also supported.

7.2.1 Implementation
HashedExpression provides a type class interface for defining different code gen-
erators. The first argument (codeConfig) is the code generator’s configuration,
the second argument (Problem) is the pre-processed optimization problem (see
the steps mentioned at 3) , and the third (ValMap) contains parameter values
and initial points for variables:

class Codegen codegenConfig where
generateProblemCode ::
codegenConfig ->
-- the preprocessed optimization problem
Problem ->
-- values of parameters and variables
ValMap ->
-- if success, generate necessary files to the given filepath
Either String (FilePath -> IO ())

instance Codegen CSimpleConfig where
....

The CSimple code generator implements this interface via its configuration
type CSimpleConfig. The code generation algorithm consists of two parts.
First, initCodegen bootstraps an optimization problem’s metadata and mem-
ory allocation as a simple scheme that concatenates storage for every subexpres-
sion evaluated into two regions: one for real expressions and one for complex
expressions (see Figure 7.2).

57



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

data Address
= AddressReal Offset -- allocated in `double ptr*`
| AddressComplex Offset -- allocated in `complex double ptr_c*`

data CSimpleCodegen = CSimpleCodegen
{ cExpressionMap :: ExpressionMap,

cAddress :: NodeID -> Address,
totalReal :: Int, -- total number of real

numbers↪→

totalComplex :: Int, -- total number complex
numbers↪→

(!!) :: NodeID -> Index -> Text, -- utility for accessing code
config :: CSimpleConfig

}

initCodegen :: CSimpleConfig -> ExpressionMap -> [NodeID] ->
CSimpleCodegen↪→

initCodegen config mp variableIDs = ...

Then, we generate the code to evaluate each node (each represents a subex-
pression) in the graph by topological order so that dependent nodes are resolved
first, as shown in Listing 9. This also utilizes computation sharing because all
nodes are evaluated once and their values persist throughout the entire process.

. . . . .

. . . . .

. . . . .

double ptr*

complex double ptr_c*

Figure 7.2: Simple memory allocation in the C99 code generator

58



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

evaluating :: CSimpleCodegen -> [NodeID] -> Text
evaluating CSimpleCodegen {..} rootIDs =

codeCToText $ Scoped $ map genCode $ topologicalSortManyRoots
(cExpressionMap, rootIDs)↪→

where
(!!) :: NodeID -> Index -> Text
sizeOf :: NodeID -> Int
for :: Text -> Int -> [CCode] -> CCode
....
genCode :: NodeID -> CCode
genCode n =

let (_, et, op) = retrieveNode n cExpressionMap
in case op of

...
Sum args ->

let sumAt i = T.intercalate " + " $ map (!! i) args
in for i (sizeOf n) [(n !! i) := sumAt i]

Mul args ->
let prodAt i = T.intercalate " * " $ map (!! i) args
in for i (sizeOf n) [(n !! i) := prodAt i]

Neg arg ->
for i (sizeOf n) [(n !! i) := ("-" <> (arg !! i))]

....

Listing 9: Generating C code

59



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

7.2.2 Using the generated code
The code generator produces a single, primary C file problem.c that contains
all the data definitions and functions needed for computing the optimization
problem. Optimization solvers can import this file and call these functions as
needed. Data definitions include information such as the working space arrays
(ptr for real expressions and ptr_c for complex expressions), variable metadata
(e.g., their name, indices, and partial derivatives indices in the working space),
and constraint-related information:

...
const char* var_name[NUM_HIGH_DIMENSIONAL_VARIABLES] = { "theta1",

"theta0" };↪→

const int var_size[NUM_HIGH_DIMENSIONAL_VARIABLES] = { 1, 1 };

const int var_offset[NUM_HIGH_DIMENSIONAL_VARIABLES] = { 0, 1 };
const int partial_derivative_offset[NUM_HIGH_DIMENSIONAL_VARIABLES]

= { 1075, 1074 };↪→

const int objective_offset = 1076;

double ptr[MEMORY_NUM_DOUBLES];
complex double ptr_c[MEMORY_NUM_COMPLEX_DOUBLES];
....

The C file exports functions that evaluate the objective and constraint func-
tions (as well as their gradients), i.e., f , ∇f , gi, and ∇gi. Solvers can evaluate
each of them in separation, or evaluate them together to take advantage of
sharing.

void evaluate_partial_derivatives_and_objective() { ... };
void evaluate_objective() { ... };
void evaluate_partial_derivatives() { ... };
void evaluate_scalar_constraints() { ... };
void evaluate_scalar_constraints_jacobian() { ... };
...

All of the functions operate on a shared memory space with inputs and
outputs implicitly defined. If the optimization solver wants to evaluate the
objective function, it will need to write the values of variables into their allo-
cated spot (determined by ptr and var_offset), run the evaluate_objective
function, and read the evaluated objective value in ptr[objective_offset].

Once the C file is generated, we can link it with C/C++ optimization solvers
to produce the final result. These solvers are often interfaced via callback
functions, and our task is to fill in these callback functions with appropriate
calls to the functions defined in problem.c. For instance, the following code
snippet demonstrates how one could interface with the libLBFGS solver:

#include <lbfgs.h>
#include "problem.c"

60



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

...

static lbfgsfloatval_t evaluate(void *instance,
const lbfgsfloatval_t *x,
lbfgsfloatval_t *g,
const int n,
const lbfgsfloatval_t _step) {

evaluate_partial_derivatives_and_objective();
int i;
int cnt = 0;
for (i = 0; i < NUM_HIGH_DIMENSIONAL_VARIABLES; i++) {
memcpy(g + cnt, ptr + partial_derivative_offset[i], var_size[i]

* sizeof(double));↪→

cnt += var_size[i];
}

return ptr[objective_offset];
}

int main() {
..
lbfgsfloatval_t *x = ptr + VARS_START_OFFSET;.
ret = lbfgs(N, x, &fx, evaluate, progress, NULL, &param);
...

}

In the initial release, we provide template files with autotools configuration
(i.e., Makefiles) for automated building with the following solvers 1:

• Our custom implementation of the gradient descent algorithm [58].

• libLBFGS, a C implementation of L-BFGS [51, 42]

• LBFGS-b, a C implementation L-BFGS-B [69, 48]

• Ipopt, an C/C++ solvers using the interior-point method [63].

This allows end-users to “plug-and-play” with their solver of choice, by simply
dropping the generated problem.c into one of our pre-made templates and
running make. And since these templates are simple, well commented C/C++
code with free and open source licenses users can easily customize or integrate
them to suit their applications needs.

7.3 Speed up evaluation
The current C generator implementation should be considered an “-O0” level of
optimization (optimize for compile-time over execution-time), and many aspects

1Source code is available at https://github.com/McMasterU/HashedExpression/tree/
master/solvers

61

https://github.com/McMasterU/HashedExpression/tree/master/solvers
https://github.com/McMasterU/HashedExpression/tree/master/solvers


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

of it can be improved to speed up evaluation and make solving optimization
problems more efficient overall.

High dimensional variables present an opportunity to implement “embar-
rassing parallelism”. For certain operators, especially point-wise operators, com-
putations among high dimensional values have no interdependency. Thus, we
can handle these computations in parallel (see Figure 7.3). For this kind of
data parallelism, we can accelerate computation with either single instruction,
multiple data (SIMD) instructions or GPU programming.

. . .

. . .

. . .

Figure 7.3: Point-wise operators executed in parallel

In addition to data parallelism with SIMD and GPU, we can introduce mul-
tithreading to evaluate different parts of computations concurrently. This relies
on the fact that the produced acyclic graph (DAG) structure has a dependency
order that can be used for concurrency control. From the expression graph,
we can perform a graph analysis and split the work into multiple threads (see
Figure 7.4) which can be run in different processing units.

THREAD 1 THREAD 2

Figure 7.4: Evaluate expression graphs concurrently across mul-
tiple threads.

Another performance factor is memory allocation. Currently, all subexpres-
sions are allocated in a shared memory pool that is far from optimal size since

62



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

the lifetimes of many intermediate values in a computation do not overlap. Al-
though not implemented, we have a proposed solution to overcome this. First,
we schedule the order of evaluation to determine lifetimes of subexpressions
(each of which is an interval that begins when the subexpression is evaluated
and ends when the subexpression is last used to compute another subexpres-
sion). Then, we can run the disjoint interval partitioning algorithm [11] to find
the minimum number of partitions of mutually-disjointed intervals, and allo-
cate the same memory space (with the size of the biggest subexpression) for all
subexpressions in a partition. Furthermore, we can skip memory for interme-
diate expressions that are only used once, and their evaluation can instead be
performed in-registers.

63



Chapter 8

Conclusion and Discussion

In this thesis, we have developed a full-scale algebraic modeling software for
solving optimization problems. The library is built on the purely functional
programming language Haskell that is endowed with facilities for powerful ab-
straction, flexible overloading, and type-level programming. Such features have
allowed us to deliver advances in modeling and solving optimization problems,
accomplishing the goals we had for HashedExpression as stated 1.3 in the in-
troduction:
G1. We achieve type-safety by embedding the modeling language in Haskell.

Moreover, we also developed type systems for expressions that capture
metadata on the type-level preventing the construction of invalid expres-
sions. We included 3 versions of expression type systems for modeling:
one version without type-level metadata, one with shape & element type
information, and the third adding physical units. Users can choose to
model optimization problems using any of them, depending on the source
of the problem and importance of correctness.

G2. Haskell operator overloading is used, and with support for custom in-
fix operators, the syntax closely resembles conventional notation used by
mathematicians and physicists.

G3. We have built a system that supports multi-dimensional variables and
complex numbers, expressions are always accompanied with their shape
and element type information.

G4. The reverse accumulation method is implemented to produce symbolic
derivative expressions, and thanks to automatic common subexpression
elimination, we avoid the problem of “expression swelling“.

G5. We have developed a module for rewriting and simplifying symbolic ex-
pressions and extended it with a system of rewriting using matching and
replacing.

G6. We included a C code generator and showed how to integrate it with
different optimization solvers. The current version, although lacking par-
allelization and an efficient memory allocation scheme, can be used to test
and cross-validate future code generators.

64



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

In this thesis, we have dissected the implementation of each component
included in HashedExpression, emphasizing approaches available in a pure lan-
guage like Haskell. We see that all the modules that involve the construction
of expressions (modeling APIs, expression rewriting, and computing deriva-
tives) rely on a monadic type class MonadExpression and use the State monad
to control mutation without violating the purity of the language. We have un-
folded a solid framework that brings together type-safety for modeling, symbolic
manipulation for simplification and automatic computation of derivatives and
low-level code generation for performance.

HashedExpression joins the family of the Coconut project written in Haskell
and has been being used in other scheduling projects as well as Scanning
Electron Microscope (SEM) imaging problems. The project is open-source
and can be found at the Github repository https://github.com/McMasterU/
HashedExpression.

8.1 Future Work
The library is in active development. There is much work to be done and
many interesting directions and features to be explored. First, we need to
implement parallelized and memory-efficient versions of code generation and
perform benchmarking between code generators. These implementations will
make use of existing, established BLAS [41] numerical libraries like CBLAS. We
also consider generating code for high-level libraries and programming languages
that have built-in parallelism and GPU support, e.g CuPy, a NumPy-like library
that uses GPU calculations, or Futhark, a purely functional data-parallel array
language [32], and benchmark them with low-level C code in the scope of solving
optimization problems. Moreover, by targeting code generation to numerical
libraries that support sparse linear algebra, we can allow users to work with
sparse multi-dimensional expressions.

For symbolic manipulation, currently, we have a long list of predefined sim-
plification rules. In the future, we want to allow users to add new simplification
rules specific to their problem domain to further optimize computations, sim-
ilar to GHC’s RULES pragma [33]. However, as opposed to GHC that makes
no attempt to verify that programmer-specified rules are valid, we can use
QuickCheck property-based testing to generate random expressions, and verify
them against the custom simplification rules.

Another consideration is the mechanism for operational extensibility. Cur-
rently, all mathematical functions are built-in and library developers are the
ones to implement and extend the list of supported operators. We want to give
this capability to users as well. In another words, we will need to re-parameterize
the type system so that users can define custom operators and provide the rule
to compute their derivatives. However, as our system is symbolic, it also means
they will need to provide code generation rules to evaluate them. Therefore,
this feature should be used only by advanced users, and, in the meantime, users
can introduce new operators by contributing to the open-source project.

65

https://github.com/McMasterU/HashedExpression
https://github.com/McMasterU/HashedExpression


Appendix A

Type family implementation of
projection

data Selector
= All
| Range Nat Nat Nat
| At Nat

type family IsSelectors (selectors :: [Selector]) where
IsSelectors _ = Satisfied

type family Require (conditions :: [(Bool, ErrorMessage)]) (val ::
k) :: k where↪→

Require '[] val = val
Require ('(condition, errorMessage) : cs) val =
IfThenElse condition (Require cs val) (TypeError errorMessage)

type family ProjectionShape (inputShape :: [Nat]) (selectors ::
[Selector]) :: [Nat] where↪→

ProjectionShape '[] '[] = '[]
ProjectionShape '[] _ = TypeError (Text "Shape and selector

dimensions mismatch")↪→

ProjectionShape _ '[] = TypeError (Text "Shape and selector
dimensions mismatch")↪→

ProjectionShape (n : ns) (All : ss) = n : ProjectionShape ns ss
ProjectionShape (n : ns) (At pos : ss) =
Require

'[ '( CmpNat pos n == LT,
Text "Invalid index " :<>: ShowType pos

:<>: Text ", must be in range (0, "
:<>: ShowType n
:<>: Text ")"

)
]

66



M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

(ProjectionShape ns ss)
ProjectionShape (n : ns) (Range start end step : ss) =
Require

'[ '( CmpNat start n == LT,
Text "Invalid start index "

:<>: ShowType start
:<>: Text ", must be in range (0, "
:<>: ShowType n
:<>: Text ")"

),
'( CmpNat end n == LT,

Text "Invalid end index "
:<>: ShowType end
:<>: Text ", must be in range (0, "
:<>: ShowType n
:<>: Text ")"

),
'(CmpNat 0 step == LT, Text "Step must be positive")

]
((((n + end - start) `Mod` n) `Div` step + 1) :

ProjectionShape ns ss)↪→

67



Bibliography

[1] Martín Abadi et al. “Tensorflow: A system for large-scale machine learn-
ing”. In: 12th {USENIX} symposium on operating systems design and
implementation ({OSDI} 16). 2016, pp. 265–283.

[2] ad: Automatic Differentiation. https://hackage.haskell.org/package/
ad. (Accessed on 04/01/2021).

[3] Johan Åkesson et al. “Modeling and optimization with Optimica and
JModelica. org—Languages and tools for solving large-scale dynamic opti-
mization problems”. In: Computers & Chemical Engineering 34.11 (2010),
pp. 1737–1749.

[4] Atilim Gunes Baydin et al. “Automatic differentiation in machine learn-
ing: a survey”. In: Journal of machine learning research 18 (2018).

[5] Dennis E Blumenfeld, Debra A Elkins, and Jeffrey M Alden. “Mathemat-
ics and operations research in industry”. In: Focus 24.2 (2004), pp. 10–
12.

[6] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.2.5. 2018. url: http://github.com/google/jax.

[7] Edwin Brady. “Idris, a general-purpose dependently typed programming
language: Design and implementation.” In: J. Funct. Program. 23.5 (2013),
pp. 552–593.

[8] BrainWeb: Simulated Brain Database. url: http : / / www . bic . mni .
mcgill.ca/brainweb/.

[9] Anthony Brook, David Kendrick, and Alexander Meeraus. “GAMS, a
user’s guide”. In: ACM Signum Newsletter 23.3-4 (1988), pp. 10–11.

[10] Bruno Buchberger and Rüdiger Loos. “Algebraic simplification”. In: Com-
puter algebra. Springer, 1982, pp. 11–43.

[11] Francesco Cafagna and Michael H Böhlen. “Disjoint interval partitioning”.
In: The VLDB Journal 26.3 (2017), pp. 447–466.

[12] Bruce W Char et al. Maple V library reference manual. Springer Science
& Business Media, 2013.

[13] James Cheney and Ralf Hinze. First-class phantom types. Tech. rep. Cor-
nell University, 2003.

[14] Koen Claessen and John Hughes. “QuickCheck: a lightweight tool for
random testing of Haskell programs”. In: Acm sigplan notices 46.4 (2011),
pp. 53–64.

68

https://hackage.haskell.org/package/ad
https://hackage.haskell.org/package/ad
http://github.com/google/jax
http://www.bic.mni.mcgill.ca/brainweb/
http://www.bic.mni.mcgill.ca/brainweb/


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

[15] Chris A Cocosco et al. “Brainweb: Online interface to a 3D MRI simulated
brain database”. In: NeuroImage. Citeseer. 1997.

[16] George F Corliss. “Applications of differentiation arithmetic”. In: Relia-
bility in Computing. Elsevier, 1988, pp. 127–148.

[17] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. “A compre-
hensive study of real-world numerical bug characteristics”. In: 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE. 2017, pp. 509–519.

[18] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded mod-
eling language for convex optimization”. In: The Journal of Machine
Learning Research 17.1 (2016), pp. 2909–2913.

[19] DimaSamoz/mezzo: A Haskell library for typesafe music composition.
https://github.com/DimaSamoz/mezzo. (Accessed on 01/26/2021).

[20] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A modeling lan-
guage for mathematical optimization”. In: SIAM Review 59.2 (2017),
pp. 295–320.

[21] Richard A Eisenberg and Jan Stolarek. “Promoting functions to type
families in Haskell”. In: ACM SIGPLAN Notices 49.12 (2014), pp. 95–
106.

[22] Conal Elliott. “The simple essence of automatic differentiation”. In: Pro-
ceedings of the ACM on Programming Languages 2.ICFP (2018), pp. 1–
29.

[23] Hans J Ferreau et al. “Embedded optimization methods for industrial
automatic control”. In: IFAC-PapersOnLine 50.1 (2017), pp. 13194–13209.

[24] Mike Folk et al. “An overview of the HDF5 technology suite and its ap-
plications”. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases. 2011, pp. 36–47.

[25] Robert Fourer, David M Gay, and Brian W Kernighan. “AMPL. A mod-
eling language for mathematical programming”. In: (2003).

[26] Matteo Frigo and Steven G Johnson. “The design and implementation of
FFTW3”. In: Proceedings of the IEEE 93.2 (2005), pp. 216–231.

[27] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. 2014.

[28] Andreas Griewank. “Who invented the reverse mode of differentiation”.
In: Documenta Mathematica, Extra Volume ISMP (2012), pp. 389–400.

[29] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, 2008.

[30] Andreas Griewank et al. “On automatic differentiation”. In: Mathematical
Programming: recent developments and applications 6.6 (1989), pp. 83–
107.

[31] William E Hart, Jean-Paul Watson, and David L Woodruff. “Pyomo:
modeling and solving mathematical programs in Python”. In: Mathemat-
ical Programming Computation 3.3 (2011), p. 219.

69

https://github.com/DimaSamoz/mezzo


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

[32] Troels Henriksen et al. “Futhark: purely functional GPU-programming
with nested parallelism and in-place array updates”. In: Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. 2017, pp. 556–571.

[33] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by the
rules: rewriting as a practical optimisation technique in GHC”. In: Haskell
workshop. Vol. 1. 2001, pp. 203–233.

[34] Josef Kallrath. Algebraic Modeling Systems: Modeling and Solving Real
World Optimization Problems. Vol. 104. Springer Science & Business Me-
dia, 2012.

[35] Richard M Karp and Michael O Rabin. “Efficient randomized pattern-
matching algorithms”. In: IBM journal of research and development 31.2
(1987), pp. 249–260.

[36] Csongor Kiss et al. “Higher-order type-level programming in Haskell”.
In: Proceedings of the ACM on Programming Languages 3.ICFP (2019),
pp. 1–26.

[37] Donald E Knuth and Peter B Bendix. “Simple word problems in universal
algebras”. In: Automation of Reasoning. Springer, 1983, pp. 342–376.

[38] U.S. Bureau of Labor Statistics. Operations Research Analysts. 2020. url:
https://www.bls.gov/ooh/math/operations-research-analysts.htm#
tab-6 (visited on 09/01/2020).

[39] Rasmus Munk Larsen and Tatiana Shpeisman. “TensorFlow Graph Op-
timizations”. In: (2019).

[40] Sören Laue. “On the equivalence of forward mode automatic differenti-
ation and symbolic differentiation”. In: arXiv preprint arXiv:1904.02990
(2019).

[41] Chuck L Lawson et al. “Basic linear algebra subprograms for Fortran
usage”. In: ACM Transactions on Mathematical Software (TOMS) 5.3
(1979), pp. 308–323.

[42] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method
for large scale optimization”. In: Mathematical programming 45.1-3 (1989),
pp. 503–528.

[43] Johan Lofberg. “YALMIP: A toolbox for modeling and optimization in
MATLAB”. In: 2004 IEEE international conference on robotics and au-
tomation (IEEE Cat. No. 04CH37508). IEEE. 2004, pp. 284–289.

[44] Jacob Mattingley and Stephen Boyd. “CVXGEN: A code generator for
embedded convex optimization”. In: Optimization and Engineering 13.1
(2012), pp. 1–27.

[45] Alp Mestanogullari et al. “Type-level web APIs with servant: an exercise
in domain-specific generic programming”. In: Proceedings of the 11th ACM
SIGPLAN Workshop on Generic Programming. 2015, pp. 1–12.

[46] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ
Computer Science 3 (2017), e103.

70

https://www.bls.gov/ooh/math/operations-research-analysts.htm#tab-6
https://www.bls.gov/ooh/math/operations-research-analysts.htm#tab-6


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

[47] Maryam Moghadas. “Type-safety for inverse imaging problems”. PhD the-
sis. 2012.

[48] José Luis Morales and Jorge Nocedal. “Remark on “Algorithm 778: L-
BFGS-B: Fortran subroutines for large-scale bound constrained optimiza-
tion””. In: ACM Transactions on Mathematical Software (TOMS) 38.1
(2011), pp. 1–4.

[49] Takayuki Muranushi and Richard A Eisenberg. “Experience report: Type-
checking polymorphic units for astrophysics research in Haskell”. In: ACM
SIGPLAN Notices 49.12 (2014), pp. 31–38.

[50] David R Musser and Alexander A Stepanov. “Generic programming”.
In: International Symposium on Symbolic and Algebraic Computation.
Springer. 1988, pp. 13–25.

[51] Jorge Nocedal. “Updating quasi-Newton matrices with limited storage”.
In: Mathematics of computation 35.151 (1980), pp. 773–782.

[52] Ulf Norell. Towards a practical programming language based on dependent
type theory. Vol. 32. Citeseer, 2007.

[53] Chris Okasaki and Andrew Gill. “Fast Mergeable Integer Maps”. In: In
Workshop on ML. 1998, pp. 77–86.

[54] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).
[55] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep

learning library”. In: Advances in neural information processing systems.
2019, pp. 8026–8037.

[56] Jessica L. M. Pavlin. “Symbolic Generation of Parallel Solvers for Uncon-
strained Optimization”. MSc Thesis. McMaster University, Department
of Computing and Software, 2012.

[57] Alexander Ramm and Alexandra Smirnova. “On stable numerical differ-
entiation”. In: Mathematics of computation 70.235 (2001), pp. 1131–1153.

[58] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: arXiv preprint arXiv:1609.04747 (2016).

[59] stephenbeckr/L-BFGS-B-C: L-BFGS-B, converted from Fortran to C, with
Matlab wrapper. https://github.com/stephenbeckr/L- BFGS- B- C.
(Accessed on 01/06/2021).

[60] Types · The Julia Language. https://docs.julialang.org/en/v1/
manual/types/.

[61] Madeleine Udell et al. “Convex Optimization in Julia”. In: SC14 Workshop
on High Performance Technical Computing in Dynamic Languages (2014).
arXiv: 1410.4821 [math-oc].

[62] Lieven Vandenberghe and Stephen Boyd. “Semidefinite programming”. In:
SIAM review 38.1 (1996), pp. 49–95.

[63] Andreas Wächter and Lorenz T Biegler. “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming”. In: Mathematical programming 106.1 (2006), pp. 25–57.

71

https://github.com/stephenbeckr/L-BFGS-B-C
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/types/
https://arxiv.org/abs/1410.4821


M.Sc. Thesis - Nhan Thai; McMaster University - Computing and Software

[64] Philip Wadler. “Monads for functional programming”. In: International
School on Advanced Functional Programming. Springer. 1995, pp. 24–52.

[65] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy
array: a structure for efficient numerical computation”. In: Computing in
science & engineering 13.2 (2011), pp. 22–30.

[66] Robert Edwin Wengert. “A simple automatic derivative evaluation pro-
gram”. In: Communications of the ACM 7.8 (1964), pp. 463–464.

[67] Stephen Wolfram et al. The MATHEMATICA® book, version 4. Cam-
bridge university press, 1999.

[68] Brent A Yorgey et al. “Giving Haskell a promotion”. In: Proceedings of
the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation. 2012, pp. 53–66.

[69] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization”. In: ACM Transactions on
Mathematical Software (TOMS) 23.4 (1997), pp. 550–560.

72


	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Introduction
	Problem Definition
	Literature Review
	Goals of HashedExpression
	Example: Solving Magnetic Resonance Imaging Reconstruction

	Expression Graph
	Implementation
	Common Subexpression Elimination by Hashing

	Expression Composition
	Direct Method
	Expression as a Tuple
	Handling Hash Collisions
	Problems with Direct Method

	Composing with Monad
	An Alternative Type
	The State Monad


	Modeling APIs
	Type-Level Programming in Haskell
	Kinds
	Type Families
	Custom Type Errors

	A Type-safe Modeling API
	Lifting Information To The Type-level
	Operator Specification

	Physical Units
	Type-level or Term-level
	Type-level Value Declarations
	Unknown Type-level Values
	Undecorated API


	Rewriting and Simplification
	Types
	Instance of MonadExpression
	Implementing Rewriting Rules

	Matching and replacing
	Composing and Generalizing
	Composing
	Generalizing

	Semantics-preserving, Confluence, and Termination

	Computing Derivatives
	Background
	Method
	Reverse mode
	Implementation
	Sharing Computations and Simplification


	Code Generation
	Interfacing With Optimization Solvers
	Generating C Code
	Implementation
	Using the generated code

	Speed up evaluation

	Conclusion and Discussion
	Future Work

	Type family implementation of projection
	Bibliography

