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Lay Abstract 

The operation of a chemical process involves many decisions which are normally distributed into 

levels referred to as process automation hierarchy. The process automation hierarchy levels are 

planning, scheduling, real-time optimization, and control. This thesis addresses two of the levels 

in the process automation hierarchy, which are planning and control. At the planning level, the 

objective is to ensure optimal utilization of raw materials and equipment to reduce production 

cost. At the control level, the objective is to meet and follow process setpoints determined by the 

real-time optimization level. 

The main goals of the thesis are: (1) develop an efficient algorithm to solve a large-scale 

planning problem that incorporates uncertainties in components qualities and products demands 

to reduce the production cost and maximize profit for gasoline blending application. (2) Develop 

a novel hybrid-based model predictive control to improve the control strategy of an industrial 

distillation column that faces flooding issues. 
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Abstract 

Industrial automation systems normally consist of four different hierarchy levels: planning, 

scheduling, real-time optimization, and control. At the planning level, the goal is to compute an 

optimal production plan that minimizes the production cost while meeting process constraints. 

The planning model is typically formulated as a mixed integer nonlinear programming (MINLP), 

which is hard to solve to global optimality due to nonconvexity and large dimensionality 

attributes. Uncertainty in component qualities in gasoline blending due to measurement errors 

and variation in upstream processes may lead to off-specification products which require re-

blending. Uncertainty in product demands may lead to a suboptimal solution and fail in capturing 

some potential profit due to shortage in products supply. While incorporating process 

uncertainties is essential to reducing the production cost and increasing profitability, it comes 

with the disadvantage of increasing the complexity of the MINLP planning model. The key 

contribution in the planning level is to employ the inventory pinch decomposition method to 

consider uncertainty in components qualities and products demands to reduce the production cost 

and increase profitability of the gasoline blend application.  

At the control level, the goal is to ensure desired operation conditions by meeting process 

setpoints, ensure process safety, and avoid process failures. Model predictive control (MPC) is 

an advanced control strategy that utilizes a dynamic model of the process to predict future 

process dynamic behavior over a time horizon. The effectiveness of the MPC relies heavily on 

the availability of a reasonably accurate process model. The key contributions in the control level 

are: (1) investigate the use of different system identification methods for the purpose of 

developing a dynamic model for high-purity distillation column, which is a highly nonlinear 

process. (2) Develop a novel hybrid based MPC to improve the control of the column and 

achieve flooding-free control. 
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Chapter 1: Introduction 

In this chapter, the overall context and objectives of the thesis are presented. First, it introduces 

the process automation hierarchy with its levels, placing more emphasis on the levels related to 

the thesis. Then, the objectives of the thesis are highlighted. Finally, the thesis outline is 

presented. 

1.1. Process Automation Hierarchy  

Process automation is used in chemical engineering processes to maximize the production and 

economic profit while maintaining a desired level of product quality and safety of the process. 

These goals apply to a variety of chemical engineering industries such as refineries, production 

of chemicals, metals, and pharmaceuticals. The principles of automatic control are generic in 

nature and can be applied to different industries, regardless of their method of production or the 

size of the plant. [1] 

The process automation activities can be organized in the form of a hierarchy as presented in 

Figure 1 with the frequency of execution. At higher levels, decisions are made based on the 

objectives of the plant which are typically based on economic objectives. On the other hand, 

decisions at lower levels are made based on the requirements needed to achieve these economic 

objectives and constraints associated with the process. The frequency of execution at higher 

levels are much lower compared to the frequency of execution at lower levels. 

 

Figure 1. Process automation hierarchy 
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The highest level of the process automation hierarchy is the planning level, which focuses on 

economic forecasting and providing production goals. The goal at this level is the optimization 

of the production plan of the plant to maximize the profit by utilizing raw materials, storage 

capacity, and production equipment in the best way possible along a given time horizon, while 

considering current market conditions and forecasts. The time horizon in the planning level is 

typically in months or weeks. The second level of the process automation hierarchy is the 

scheduling level, which focuses on the time of actions and events necessary to execute the 

chosen plan. The goal at this level is to use the production plan obtained from the planning level 

and arrange the manufacturing sequence, while ensuring the feasibility of the chosen plan. The 

time horizon in the scheduling level is typically weeks or days. The third level of the process 

automation hierarchy is the real time optimization (RTO), which uses a steady-state model of the 

plant and the schedule obtained from the scheduling level to minimize the operating cost or 

maximize the operating profit. The goal of the RTO level is to provide the next level with the 

desired setpoints of the key process variables such as products purities. The time horizon in the 

RTO level is typically days to hours. The last level in the process automation hierarchy is the 

control level, which focuses on maintaining the setpoints of the key process variables obtained 

from the RTO level. The control level can be subdivided into two levels: advanced control and 

basic regulatory control. The advanced control typically uses model predictive control (MPC) to 

handle interactions between key process variables and to incorporate process constraints, while 

ensuring the process is operating optimally. The basic regulatory control typically uses standard 

feedback controllers such as P, PI or PID controllers to maintain the setpoints of the key process 

variables and to reject short-term disturbances in the process. The time horizon of the control 

level is typically minutes to seconds. [1] [2]  

The current trend in the planning optimization is to increase the accuracy of the mathematical 

models employed to represent processing units and operational policies, as well as to account for 

process and demand uncertainties in the mathematical model to increase plant profitability. 

While increasing the complexity of the mathematical model and incorporating process 

uncertainty can increase plant profitability, such models might be difficult to optimize using 

commercial solvers. Therefore, another research trend is focused on the development of 

advanced algorithms to efficiently solve complex mathematical models to optimality. Production 

planning optimization models typically require the incorporation of discrete decisions into the 
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optimization model. Also, the production planning model typically requires both linear and 

nonlinear functions to accurately model different phenomenon, such as chemical separations, 

chemical reactions, and material flow through a production facility. Therefore, accurate 

production planning models require using mixed integer nonlinear programming (MINLP) 

models. MINLP models are considered a difficult class of optimization problems due to the 

following reasons: (1) potential need of a large number of partitions to represent the time 

domain, which can result in a model containing thousands of variables. (2) Possible 

nonconvexity, which can introduce multiple local and global optimal points. [3] [4]  

Some of the current trends in the process control of chemical engineering application have 

focused on the use of MPC due to its capability to handle multivariable constrained control 

problems. The effectiveness of the MPC relies heavily on the availability of a reasonably 

accurate process model. Most industrial implementation of MPC technologies have focused on 

linear systems, and limited works have considered nonlinear systems. Two challenges arise from 

the implementation of nonlinear MPC (NMPC) to industrial application: (1) it is difficult, 

expensive, and time-consuming to obtain an exact nonlinear process model. (2) For realistic 

nonlinear processes, the numerically nonlinear constrained optimal control problem in NMPC 

can be hard to solve to optimality in a reasonable time. Therefore, while the topic of NMPC has 

been a very active area in academic research, it is still at the early stage in industrial practices. 

[5] 

1.2. Objectives of the Thesis 

The focus of the thesis is to improve the process automation of chemical engineering 

applications at the planning and control levels. The main contributions of the thesis on the 

process automation hierarchy are highlighted in Figure 2. At the planning level, we consider 

uncertainties in the production plan of gasoline blend application to improve the profitability of 

the plant and utilize the supply-demand pinch algorithm to solve the optimization problem 

efficiently. More specifically:  

1. Consider uncertainty in components qualities and their impact on the product 

specification to avoid making off-specification products and to reduce production cost. 

Also, utilize the supply-demand pinch algorithm to efficiently solve the complex MINLP 

optimization problem.  
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2. Consider uncertainty in the products demands to increase the profitability of the plant by 

capturing uncertain demands using rolling horizon optimization framework. Also, adapt 

the supply-demand pinch algorithm within the rolling horizon optimization approach to 

efficiently solve the complex MINLP optimization problem.  

At the control level, we focus on improving the control strategy of an industrial distillation 

column which faces flooding issues. The goal is to replace the current control strategy which 

uses a basic regulatory control with an advanced control strategy to improve process control of 

the key variables and avoid tower flooding. The contributions at the control level are:  

(1) Compare different system identification methods based on linear subspace identification 

and nonlinear artificial neural network for the purpose of developing a dynamic model 

for advanced control.  

(2) Develop a novel hybrid model based NMPC for the purpose of achieving free flooding 

control for the industrial distillation column.  

 

Figure 2. Thesis contribution on the process automation hierarchy  

1.3. Thesis Outline 

Chapter 1: Introduction. This chapter provides the overall context and the outline of the thesis, 

as well as the objectives of the research. 
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Chapter 2: “Supply-Demand Pinch based Methodology for Multi-Period Planning under 

Uncertainty in Components Qualities with Application to Gasoline Blend Planning”. This 

chapter considers the problem of production planning under uncertainty in components qualities 

for gasoline blending application. First, it presents details about the supply-demand pinch 

concept for production planning used to efficiently optimize the production planning model. 

Then, it describes the mathematical model for the gasoline blend planning problem under 

uncertainty in components qualities. Finally, it shows the capability of the supply-demand pinch 

algorithm to efficiently solve the production planning problem at hand. This work has been 

published in the Computer & Chemical Engineering Journal. 

Chapter 3: “Gasoline Blend Planning under Demand Uncertainty: Aggregate Supply-Demand 

Pinch Algorithm with Rolling Horizon”. This chapter considers the problem of production 

planning under uncertainty in products demands. First, it presents details about the gasoline 

blend planning under uncertainty in product demands, and the concept of rolling horizon utilized 

to consider time-varying uncertainty in products demands. Then, it describes the employment of 

the supply-demand pinch algorithm within the rolling horizon formulation for the purpose of 

efficiently solving the production plan under uncertainty in products demands. Finally, it shows 

the capability of the supply-demand pinch algorithm to efficiently solve the production planning 

under uncertainty in products demands. This work has been published in the Industrial & 

Engineering Chemistry Research Journal. 

Chapter 4: “Adaptive System Identification of Industrial Ethylene Splitter: A comparison of 

Subspace Identification and Artificial Neural Networks”. This chapter considers different data-

driven modeling approaches for control purposes of an industrial ethylene splitter. First, it 

describes the details of the industrial ethylene splitter considered in this work. Then, it presents 

the simulation model developed in Aspen Dynamics that replicates industrial operation to be 

used as a test bed for control purposes. Also, the details of the three different system 

identification methods used and compared are presented. Finally, two adaptive strategies have 

been proposed to allow more recent data to be incorporated into the training approaches. The two 

adaptive strategies show great improvement in the model prediction capabilities for all three 

system identification methods. This work has been published in the Computer & Chemical 

Engineering Journal. 
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Chapter 5: “Flooding and Offset-Free Nonlinear Model Predictive Control of a High-Purity 

Industrial Ethylene Splitter Using a Hybrid Model”. This chapter considers the control problem 

of the industrial ethylene splitter which faces flooding issues. First, it describes the current 

control strategy of the industrial ethylene splitter. Then, it introduces a novel hybrid model based 

NMPC that utilizes a data-driven model for predicting dynamics, and a first principles steady 

state model to capture tower flooding. Finally, it shows the effectiveness of the hybrid model 

based NMPC in controlling the key process variables and avoiding tower flooding when 

compared to the current control strategy. This work has been submitted for publication in the 

Computer & Chemical Engineering Journal. 

Chapter 6: Concluding Remarks. This chapter describes the major contributions, key findings, 

and future work direction of the thesis. 

1.4. References  

[1] Edgar, T. F., & Hahn, J. (2009). Process Automation. In Springer Handbook of 

Automation (pp. 529-543). Springer, Berlin, Heidelberg. 

[2] Huang, R. (2010). Nonlinear model predictive control and dynamic real time optimization for 

large-scale processes. 

[3] Castillo Castillo, P. A. (2020). PLANNING AND SCHEDULING OF CONTINUOUS 

PROCESSES VIA INVENTORY PINCH DECOMPOSITION AND GLOBAL OPTIMIZATION 

ALGORITHMS (Doctoral dissertation). 

[4] Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review and 

comparison of solvers for convex MINLP. Optimization and Engineering, 20(2), 397-455. 

[5] Xi, Y. G., Li, D. W., & Lin, S. (2013). Model predictive control-status and challenges. Acta 

automatica sinica, 39(3), 222-236. 
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Chapter 2: Supply-demand Pinch based Methodology for Multi-

period Planning under Uncertainty in Components Qualities with 

Application to Gasoline Blend Planning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The contents of this chapter have been published in the Computer & Chemical Engineering 

Journal. Reprinted with permission from 

Jalanko, M., & Mahalec, V. (2018). Supply-demand pinch based methodology for multi-period 

planning under uncertainty in components qualities with application to gasoline blend 

planning. Computers & Chemical Engineering, 119, 425-438. 

Copyright 2021 Elsevier 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

8 
 

Abstract 

Uncertainty in component quality in gasoline blending due to measurement errors and variation 

in operation leads to planned blends which may not meet quality specifications and re-blending 

is required. Formulating gasoline blending as chance constrained programming enables a 

decision maker to decide what percentage of blends will be guaranteed to meet the specifications 

and balance the increased cost of blends vs. the cost of having to re-blend the off-spec blends. 

Chance constrained formulation makes the gasoline blend problem nonlinear and nonconvex. In 

this work, we employ a supply-demand pinch-based algorithm to optimize gasoline blend 

planning with uncertainty in components qualities and examine its performance vs. full-space 

model. The supply-demand pinch algorithm decomposes the problem into two sub-problems, 

top-level (NLP) computes optimal blend recipes and the bottom-level (MILP) computes an 

optimal production plan using the recipes computed at the top-level. Computational efficiency of 

the algorithm is verified by case studies. 

Keywords: 

Production planning under uncertainty in raw material qualities; Gasoline blending planning with 

uncertainty in component qualities; Supply-demand pinch; Inventory pinch; Joint Chance 

constrained programming. 
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2.1. Introduction  

Refining plants are a key element in the supply chain of the petroleum industry. In the product 

blending section of the refinery, feedstocks components coming from various upstream processes 

are mixed together to produce different products that meet varying specification. Gasoline 

products contribute 60%-70% of the total revenue of refineries, therefore decreasing the gasoline 

blending costs can greatly impact the profitability of the refinery (Biegler, 2010; Wei Wang, 

Zefei Li, Qiang Zhang, & Yankai Li, 2007). The gasoline blend planning problem requires 

computation of optimal blend recipes and production plan for the planning horizon that minimize 

operation cost while meeting products demands, products qualities specifications, and 

constrained by components supply rates and capacity limitations on the tanks and the blenders. 

The optimal blend recipes associated with the minimal blending cost are highly dependent on the 

component’s qualities. Component’s qualities are not known accurately at the time the plan is 

made due to two factors: (i) changes throughout the planning horizon due to operating conditions 

changes in the upstream processes, and (ii) measuring instruments have inherent measurement 

errors. Ignoring uncertainties and modelling components qualities as nominal parameters might 

lead to produce large volume of products that are off specs. Off specifications products requires 

re-blending which increases operating costs and might affect the schedule and delivery of the 

orders (Wei Wang et al., 2007). In practice, addressing the uncertainty in components qualities 

can be highly beneficial for existing oil refineries that operates without an on-line blending 

analyzer tracking components qualities when blending gasoline products. Since components 

qualities are not being measured, variations in quality values will result in producing high levels 

of off-spec products which adds additional blending cost and delay in their production plan. 

Also, even oil refineries that use on-line analyzer to measure octane number (RON and MON) 

need to consider uncertainty in the component’s qualities due to the inherent error in on-line 

analyzers. The ZX101™ is an octane analyzer from Zeltex, Inc. that measures octane number via 

near-infrared transmission spectroscopy. The analyzer accuracy has ± 0.7 reproducibility and ± 

0.2 repeatability with 95% confidence for RON, and it has ± 0.9 reproducibility and ± 0.3 

repeatability with 95% confidence for MON (Merberg, n.d.). ASTM D2699-18 standard test 

method for measuring RON value has repeatability and reproducibility to exceed 0.2 and 0.7 

respectively for one case in twenty when tests are taken under normal and correct operation. 

ASTM D2700-18 standard for MON has repeatability and reproducibility of exceeding 0.2 and 
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0.9 respectively for one case in twenty when tests are taken under normal and correct operation 

(ASTM international, 2018). Therefore, taking into consideration uncertainty in components 

qualities is required to reduce the number of off-spec blends even when on-line analyzers are 

used. One approach to avoid having off specs products is to add an offset that acts as safety 

margin on the qualities with uncertainties. This approach faces challenging in determining the 

value of the offset for each quality; large offset values guarantee production of on-specs products 

with high probability, but it leads to suboptimal solutions due to large quality giveaway. 

Therefore, it is essential to determine a multi-period production plan model that considers 

uncertainties in components qualities to compute optimal blend recipes associated with minimal 

blending cost which balances between infeasibility and sub optimality. Chance constrained 

formulation is one way to minimize blend cost while controlling the percentage of the off-specs 

blend. Blended products are considered on-specs only if all their qualities are within the required 

range, otherwise the product is considered off-specs. Therefore, to ensure that all uncertain 

feedstocks qualities are within the required range, joint probability constraint formulation is 

required which increases the complexity of the model.  

One approach to solve the gasoline blending problem is to simultaneously compute the blend 

recipes and the blended volume of the products at each period. Such approach leads to large 

MINLP problems which lead to difficulties in computing the optimal solution, especially when 

dealing with nonlinear blending properties. Therefore, such approach has been limited to use 

approximate linear formulation. Li and coworkers developed a slot-based MILP formulation to 

solve the gasoline blend problem as an MILP instead of MINLP using blending indices and 

linear blending correlation to address nonlinear blending properties (Li, Karimi, & Srinivasan, 

2009). Li and Karimi then improved their formulation efficiency and decreased execution time 

by using unit-slots instead of process-slots (Li & Karimi, 2011). Cerda and coworkers developed 

an MINLP continuous time formulation to solve the gasoline blend scheduling problem (Cerdá, 

Pautasso, & Cafaro, 2016). Their formulation is based on floating slots where the slots are 

dynamically allocated to the periods while solving the problem and the MINLP model was 

approximated as an MILP model derived from assuming ideal mixing. Their problem was 

solving using two strategies; the first uses MILP-MINLP solution strategy which gives the 

optimal solution, the second finds a near optimal-solution which uses a MILP-NLP solution 

strategy where the integer variables of the MINLP model are fixed.  
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Another approach to solve the gasoline blending problem is to decompose it into planning and 

scheduling. Glismann and Gruhn presented an integrated optimization model of planning and 

scheduling (Glismann & Gruhn, 2001). At the long-range planning level, a nonlinear 

optimization problem has been solved to maximize profit and the results of this level are the 

optimum production volumes and blend recipes. At the short-term scheduling level, a mixed 

integer linear optimization problem has been solved and the objective is to meet the goals set by 

the long-term planning level. Jia and Ierapetritou presented an MILP model for gasoline blending 

and distribution scheduling with the assumption of having fixed preferred blend recipe (Jia & 

Ierapetritou, 2003). This allowed them to avoid the complexity of the MINLP model wile 

opening the possibility that their solution is not optimal. The drawback of such approach is that 

the blend recipe chosen is not necessarily an optimum blend recipe. Méndez and his coworkers 

presented an integrated MILP model to simultaneously optimize gasoline blending and 

scheduling problem based on discrete or continuous time domain (Méndez, Grossmann, 

Harjunkoski, & Kaboré, 2006). The method dealt with the nonlinearity in some products 

blending properties and variables recipes via LP or MILP iterative procedure. Also, to ensure 

feasibility in some circumstances and minimize the deviation from preferred recipe a penalty 

coefficient for preferred recipe deviation were introduced.  

Castillo and Mahalec introduced the concept of supply-demand pinch points in production 

planning by decomposing the MINLP planning problem into two sub problems (NLP and MILP) 

which are solved in a sequence (Castillo & Mahalec, 2014a). At the top-level, the number of 

periods is delimited by pinch points and the optimal production modes (blend recipes) are 

computed. It should be noted that the number of periods in this top-level formulation is typically 

much lower than the number of periods in a typical multi-period planning model. The lower level 

uses much finer time grid to define the periods; it computes products volumes blended during 

each of the second level periods using the blend recipes computed at the top level. They 

extended their formulation to include a third-level to compute detailed schedule (Castillo & 

Mahalec, 2014b).  

Two methods have been commonly used to model uncertainty in optimization planning 

problems: robust optimization and stochastic optimization. Robust optimization is mainly used 

when the uncertain parameters are bounded, symmetric, and no information known about the 

probability distribution of the uncertain parameters exist. Robust optimization is more 
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conservative due to the lack of knowledge about the distribution of the uncertain parameter. 

Stochastic optimization is mainly used when uncertain parameters follow a known probability 

distribution to obtain a less conservative solution by benefiting from such information (Yang & 

Barton, 2016).  

Monder incorporated uncertainty in gasoline blend optimization using probabilistic programming 

to deal with uncertain parameters existing in multiple constraints assuming single probability 

constraint (Monder, 2001). Monder designed a real-time optimization layer to deal with the 

disturbance (uncertainty) in the feedstock qualities for linear and nonlinear blending rules. Zhang 

and coworkers improved the previous results by dealing with uncertain parameters in multiple 

constraints as a joint probability constraint (Zhang, Monder, & Forbes, 2002). Wang and 

coworkers introduced a new on-line gasoline blending system which solved an off-line 

optimization problem first to give a starting blend recipe and then used an online optimization 

model which incorporates uncertainty in feedstocks qualities to obtain real-time blending recipes 

(Wang et al., 2007). In their work, they utilized a hybrid intelligent algorithm based on Neural 

Network and Genetic Algorithm to overcome the difficulty of solving the chance constraint 

problem. Zhan and Wang solved the gasoline blending problem assuming nonlinear blending 

rules using Particle Swarm Optimization algorithm (Zhao & Wang, 2009). Yang and Barton 

proposed a near-global optimization approach which utilizes chance-constrained formulation to 

so solve a simple gasoline blend planning problem under uncertainty in components qualities for 

a single period (Yang & Barton, 2016).  

This work deals with large scale multi-period gasoline planning problem (off-line blend recipe 

optimization over extended time horizon). The uncertainty in components qualities are dealt with 

using chance constraint programming similarly to the formulation used by (Yang & Barton, 

2016), but our model considers large scale with multi-periods problem and shows how fixing 

production plan based on aggregate demands for each pinch can improves the computations time 

greatly. The large scale problem with multi-periods is solved using two-level algorithm that 

utilizes demand pinch concept introduced by (Castillo & Mahalec, 2014a) to solve the blend 

planning problem when uncertainty in multiple components qualities exist and compare it to 

solving the problem as a single level full space model. The model introduced by (Castillo & 

Mahalec, 2014a) requires contents components qualities along the planning horizon which is not 

realistic since variation in the conditions of upstream processes lead to small variations in the 
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qualities of the feedstocks components. Our model can handle the small variation in component 

qualities the planning horizon.  

At the top-level of the two-level algorithm, the supply-demand pinch points are used to delineate 

the periods where optimal operating states are likely to remain constant. At this level both 

storage tanks and parallel process units are aggregated as inventory pools and single processing 

unit respectively. Nonlinear programming problem (NLP) at this level includes chance 

constrained programming formulation to account for uncertainties in the component qualities. Its 

solution determines optimal blend recipes for each grade of the gasoline products while 

minimizing the total cost of blending. At the bottom-level, an integer linear programming 

problem (MILP) is solved to determine a detailed production plan (how much to produce in each 

unit in each period) based on the blending recipes calculated in the top level. At this level the 

periods are of fixed lengths which are defined by the planner. If the blend recipes calculated at 

the first level result in inventory infeasibilities at the bottom level, then the top-level period 

corresponding to the point of infeasibility is subdivided and the blend recipe at top-level is re-

optimized.  

The remainder of this paper is organized as follows. The gasoline blend planning problem 

addressed in this work is presented in part 2, including detailed description and assumptions. The 

solution approach for the two-level algorithm, the supply-demand pinch point concept, and the 

chance constrained concepts used in this work are described in detail in part 3. The mathematical 

formulations for the chance constrained, the two-level gasoline blend planning model, and the 

single-level full space model that deal with component qualities uncertainty are introduced in 

part 4. Different case studies used to test our model are introduced in part 5. Part 6 contains the 

results of the case studies and the discussion. Part 7 contains the summary, conclusions, and 

suggestions for future work.  

2.2. Problem Statement 

Figure 1 shows a sample gasoline blending system. The system studied in this paper has seven 

feedstocks’ components produced by the upstream processes; they are stored in individual 

component tanks. These components are sent to blenders to produce three different products, 

subject to meeting their quality specifications. Blended products are sent to six storage tanks 

before being shipped to satisfy the required demands. Three of the products storage tanks are 
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dedicated to the three products, while the other three tanks can store any product. The qualities 

monitored are aromatic content (ARO), benzene content (BEN), olefin content (OLF), research 

octane number (RON), motor octane number (MON), rapid vapor pressure (RVP), sulfur content 

(SI) which assumed to blend linearly on a volume basis, while Specific gravity (SGI) is assumed 

to blend linearly on a weight basis. The feedstocks components are assumed to have uncertainty 

in their RON, MON, and BEN qualities, while the other qualities are assumed to be accurately 

known.  

 

Figure 1. Sample of Gasoline Blending System 

The blend planning problem addressed in this paper is described as follows: 

Given: 

(1) A predefined short-term planning horizon (0, H) that is divided into fixed durations time 

periods 1, 2… N.  

(2) A set of blend components, initial inventories, cost, supply flow rates, and properties 

including the uncertainty along the planning horizon.  

(3) A set of products, initial inventories, and their maximum and minimum quality 

specifications.  

(4) A set of demands for each product along the planning horizon.  

(5) A set of components and product storage tanks with their minimum and maximum hold 

ups.  

(6) A set of blenders’ maximum and minimum blending capacity.  

Assumptions are:  
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(1) Refinery production plan model has determined components volumetric flow rate that 

are capable of meeting products demands which meet quality specifications. In addition, 

the volumetric flow rate of each component is piecewise constant. 

(2) Component’s qualities uncertainty are modelled as normal distribution along the 

planning horizon.  

(3) Perfect mixing occurs in the blenders. 

(4) Each order involved only one product and all orders are completed during the blending 

period.  

(5) Products demands are hard constraints; should be met.  

(6) Component and product tanks may receive and feed simultaneously.  

The objective of the algorithm is:  

Obtain optimal blend recipes for all products along the planning horizon when some of the 

feedstock’s qualities have uncertainty. Optimal blend recipes correspond to the recipes that 

minimize the blending cost while meeting the probability of meeting the products specs required 

by the decision maker.  

We need to compute:  

(1) Volumes of each grade of gasoline produced at each period.  

(2) Volumes of each component used to blend each gasoline grade product and which 

blender will carry out the blending process in each period.  

(3) Inventory profiles for the components and gasoline grade products.  

Subject to constraints on:  

(1) Minimum and maximum volume of components and of products in the tanks. 

(2) Minimum and maximum products qualities specifications. 

(3) Minimum and maximum blending capacity (including the idle time required to switch a 

blender from one service to another)  

(4) Maximum delivery rate from blenders to product tanks. 
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2.3. Solution Approach 

A full space MINLP model can be used to solve the multi-period gasoline blend planning 

problem with uncertainty in components qualities for fixed discretized periods along the 

planning horizon. Such model faces computations difficulties obtaining the optimal solution or 

closing optimality gap, especially for large scale cases, due to the nonlinearities in the blend 

recipe calculation stemming from the chance constraint formulation.  

2.3.1.  Supply-demand Pinch Concept  

Utilizing supply-demand pinch concept, aggregation and disaggregation techniques allow us to 

compute an optimal blend recipe in shorter executions times by decomposing the problem into 

two smaller sub-problems. The supply-demand pinch points can be identified by constructing a 

cumulative total demand (CTD) curve which is obtained by adding the cumulative demands of 

all products along the planning horizon. Then a cumulative total average production (CATP) 

curve is constructed as a straight line with a starting point representing initial inventory and 

extending to the point where it is tangent to the CTD curve. The point where CATP and CTD 

curves intersect is called the supply-demand pinch point. At the supply-demand pinch points, the 

slope of the CATP curve changes as shown in Figure 2. Hypothesis is that the optimal blend 

recipe for a time period between the supply-demand pinch points is constant; this indeed is the 

case for linear systems (Castillo & Mahalec, 2014a), while for nonlinear models this leads to 

solutions which are very close to the global optimum (Castillo & Mahalec, 2014a). Aggregate 

blend between the two pinch points is the lowest possible cost blend since it assumes that the 

blend components will be available just in time when they are required to produce the required 

amount of products to meet the demands at a given point in time between the pinch points. If the 

recipe computed from aggregate solution can be used all along the horizon between the two 

pinch points, we are guaranteed to have the lowest cost blend. If it is not possible at any point in 

time between the pinch points to produce the required amount of product based on the aggregate 

recipe, it means that at that time there is not enough of one or more blend components. In order 

to resolve this infeasibility, the aggregate time period is subdivided at the point of infeasibility 

and the problem is resolved. More details about the concept of supply-demand pinch concept 

have been discussed by (Castillo, Kelly. & Mahalec, 2013). The supply-demand pinch concept 

reduces the complexity of the chance constraint formulation by fixing the amount of each 
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product blended which greatly improves computation times since amount of products blended 

directly impact the complexity of the constraints involving the chance constraint formulation.  

 

Figure 2. Example of supply-demand pinch points obtained from constructing CTD and CATP 

curves 

2.3.2. Chance Constrained Formulation  

In this paper, chance constrained formulation is used to satisfy the product qualities constraints at 

a predefined confidence interval chosen by the operator using known probability distribution for 

the uncertain component’s qualities. The joint chance constrained formulation is required to deal 

with uncertainty in components qualities, since products must meet all their quality specification 

to be considered on-specs products. A joint probability constraint requires all products qualities 

to be satisfied with a certain confidence level as shown in problem JCC.  

min
𝑥

𝑓(𝑥)    𝑠. 𝑡. Pr{𝑔𝑖(𝑥, 𝜀) ≥ 𝑏𝑖  , ∀𝑖 = 1, … , 𝑚} ≥ 1 −  𝛼        (JCC)  

Where 𝑓(𝑥) represent the objective function which does not have uncertain parameters, 𝑃𝑟{.} is 

the probability of all constraints being satisfied, 𝑔𝑖(𝑥, 𝜀) represents the product quality value as 

function of the volume of components blended (x) and the uncertain components qualities 

parameters (𝜀), 𝑏𝑖 represents the minimum products quality required, m is the set of uncertain 

qualities, and 𝛼 represent the tolerance for off-specs blend. Since the above joint chance 

constrained formulation is generally intractable, Bonferroni inequality is used to obtain a 

conservative approximation with individual chance constrained formulation (ICC).  

min
𝑥,𝛼𝑖

𝑓(𝑥) 

𝑠. 𝑡. Pr{𝑔𝑖(𝑥, 𝜀) ≥ 𝑏𝑖 } ≥ 1 −  𝛼𝑖   ∀𝑖 ∈ 𝑚 
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∑ 𝛼𝑖𝑖∈𝑚  = 𝛼              (ICC) 

The above ICC formulation will try to minimize the cost of blend, while forcing the sum of 

violation of all uncertain qualities constraints to equal the tolerance for off-specs blend. Under 

the assumption of normal distribution for the uncertain parameters, 𝜀 ~ 𝑁(𝜀̂, ∑), The ICC 

problem can be converted to a deterministic problem (ICCN)  

min
𝑥,𝛼𝑖

𝑓(𝑥) 

𝑠. 𝑡. 𝜀̂𝑇𝑥 −  Ф−1(1 − 𝛼𝑖)√𝑥𝑇∑ 𝑥 ≥ 𝑏𝑖   ∀𝑖 ∈ 𝑚 

∑ 𝛼𝑖𝑖∈𝑚  = 𝛼                               (ICCN) 

Where 𝜀̂ is the mean value of the uncertain parameter, Ф−1 is the inverse cumulative distribution 

function of the standard normal distribution, and ∑ is a matrix of the components qualities 

variances. The above (ICCN) problem is a conservative approximation for the JCC and it 

provides an upper bound to the (JCC), therefore problem requires computing the blend recipes 

and the distribution of the constraints violation specified by the user over all the qualities 

constraints. The above formulation requires a function that describes the inverse cumulative 

distribution Ф−1(1 − 𝛼𝑖) for small values of violation tolerance (𝛼𝑖 = 0.05) which its plot 

shown below. 

 

Figure 3. Inverse cumulative distribution function 

The above function is highly nonlinear, and we approximated into our model using outer 

approximation cutting planes with spacing of 0.001 for the range of 𝛼𝑖 from 0.05 to 0.01 and 

spacing of 0.0001 for the range of 0.01 to 0.0001. To avoid gaps between the cutting planes and 
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the actual cumulative distribution function, smaller spacing between the cutting planes is 

required when the function values are changing rapidly with 𝛼𝑖.  

In this work, the gasoline blend planning problem has been solved using the hierarchical 

framework similar to the one used by (Castillo & Mahalec, 2014a) as shown in Figure 4. The 

top-level computes the optimal blend recipes under uncertainty in components quality after 

delineating the planning time horizon using the supply-demand pinch point concept. The bottom-

level uses the blend recipe computed at the top-level to compute the volume required to be 

blended at each period in the bottom-level (where the time periods at this level are smaller time 

duration and therefore are more than time periods at-top level). If the second level is infeasible 

when using blend recipes from the top level, then the top-level time horizon is subdivided with a 

new period boundary at the point of infeasibility. 

 

Figure 4. Inventory pinch algorithm under uncertainty in components quality 
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2.4. Mathematical Models 

2.4.1. Mathematical model for Supply-demand Pinch Point Model  

In this section, the supply-demand pinch (two-level) model based on (Castillo & Mahalec, 

2014a) model is introduced with modification to incorporate uncertainty in components qualities 

The objective of the top level is to find an optimal blend recipe while meeting products demands 

and quality specifications. At this level, product demand, blend components supply, and blender 

capacity are aggregated values for each of the bottom-level periods. In addition, product storage 

tanks are aggregated into product pools. The solution obtained from this level will minimize the 

blend cost and is a lower bound for the optimal solution. The solution for the problem will be 

infeasible if the amounts of the blend components are not sufficient to blend the products to meet 

the required demand or quality specifications. The objective function of the top-level model, Eq. 

(3), minimizes the cost of all the blend components i used to blend product p during period k.  

min. 𝐵𝑙𝑒𝑛𝑑𝐶𝑜𝑠𝑡𝐿1 =  ∑ (∑ 𝐶𝑜𝑠𝑡(𝑖)𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘)𝑖,𝑝 )𝑘𝜖𝐾𝐶                              (3) 

Subject to:  

The inventory balance equations for blend component i and products p tanks, equations (4) and 

(5).  

∑ 𝐹𝑏𝑐(𝑎, 𝑖)𝑡𝑏𝑐(𝑎, 𝑘)𝑎𝜖𝐾𝐴 + 𝑉𝑏𝑐(𝑖, 𝑘 − 1) − 𝑉𝑏𝑐(𝑖, 𝑘) − ∑ 𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝑃 = 0  ∀𝑖, 𝑘𝜖𝐾𝐶          (4) 

𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) + 𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑘 − 1) − 𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑘) −  𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑔𝑔(𝑝, 𝑘) = 0  ∀𝑝, 𝑘𝜖𝐾𝐶        (5) 

The set 𝑎 stands for a specific supply profile and 𝐹𝑏𝑐(𝑎, 𝑖) is the flow rate according to the 

supply profile 𝑎 for each component. The amount of component flow during period k is equal the 

flow rate multiplied by the duration of the time interval when the supply 𝑎 occurs. The inventory 

constraints for components and products, Eq. (6) and (7). 

𝑉𝑏𝑐
𝑚𝑖𝑛(𝑖)  ≤  𝑉𝑏𝑐(𝑖, 𝑘)  ≤  𝑉𝑏𝑐

𝑚𝑎𝑥(𝑖)        ∀𝑖, 𝑘𝜖𝐾𝐶                       (6a) (6b) 

𝑉𝑝𝑟
𝑚𝑖𝑛(𝑝)  ≤  𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑘)  ≤  𝑉𝑝𝑟

𝑚𝑎𝑥(𝑝)     ∀𝑝, 𝑘𝜖𝐾𝐶                               (7a) (7b) 

The initial inventories in components tanks and products pools, Eq. (8) and (9)  

𝑉𝑏𝑐(𝑖, 𝑘) =  𝑉𝑏𝑐
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖)             ∀𝑖, 𝑘 = 0                      (8) 

𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑘) =  𝑉𝑝𝑜𝑜𝑙
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑝)          ∀𝑝, 𝑘 = 0                     (9) 
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The blend recipe, Eq. (10) defines the blending recipe for each product (the fraction of the 

component in each product). The fraction of each component i in a product p should sum to 1 for 

all products and periods which is forced by Eq. (11). the minimum and maximum blend recipe 

for each product is forced by Eq. (12). 

𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) =  𝑟(𝑖, 𝑝, 𝑘)𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘)    ∀𝑝, 𝑘𝜖𝐾𝐶            (10) 

∑ 𝑟(𝑖, 𝑝, 𝑘)𝑖 = 1                            ∀𝑝, 𝑘𝜖𝐾𝐶                      (11) 

𝑟𝑚𝑖𝑛(𝑖, 𝑝)  ≤ 𝑟(𝑖, 𝑝, 𝑘) ≤ 𝑟𝑚𝑎𝑥(𝑖, 𝑝)          ∀𝑖, 𝑝, 𝑘𝜖𝐾𝐶             (12a) (12b) 

The volumetric and weight basis linear quality constraints for blending with no uncertainty, are 

described by Eq. (13) and (14) respectively. 𝑄𝑏𝑐(𝑖, 𝑠) represents the value of quality s of 

component i, where 𝑄𝑝𝑟
𝑚𝑖𝑛(𝑝, 𝑠) and 𝑄𝑝𝑟

𝑚𝑎𝑥(𝑝, 𝑠) are the minimum and maximum quality s 

specification for product p respectively.  

 𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) 𝑄𝑝𝑟
𝑚𝑖𝑛(𝑝, 𝑠) ≤ ∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝑄𝑏𝑐(𝑖, 𝑠))𝑖 ≤ 𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) 𝑄𝑝𝑟

𝑚𝑎𝑥(𝑝, 𝑠) 

∀𝑝, 𝑠 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑙𝑒𝑛𝑑𝑒𝑑 𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑏𝑎𝑠𝑖𝑠) , 𝑘𝜖𝐾𝐶 

     (13a) (13b) 

 𝑄𝑝𝑟
𝑚𝑖𝑛(𝑝, 𝑠) ∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖))𝑖 ≤ ∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝑄𝑏𝑐(𝑖, 𝑠) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖))𝑖 ≤

 𝑄𝑝𝑟
𝑚𝑎𝑥(𝑝, 𝑠) ∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖))𝑖  

∀𝑝, 𝑠 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑙𝑒𝑛𝑑𝑒𝑑 𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑎𝑠𝑖𝑠) , 𝑘𝜖𝐾𝐶          (14a) (14b) 

The volumetric basis linear quality constraints for blending with uncertainty in components 

qualities using chance constraint formulation, Eq. (15) 

 𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) 𝑄𝑝𝑟
𝑚𝑖𝑛(𝑝, 𝑠) + 𝐶𝐼(𝑠, 𝑝, 𝑘)√∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 2𝑄𝑠𝑡(𝑖, 𝑠)2)𝑖 ≤

∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 𝑄𝑏𝑐(𝑖, 𝑠))𝑖 ≤ 𝑉𝑏𝑙𝑒𝑛𝑑𝑎𝑔𝑔
(𝑝, 𝑘) 𝑄𝑝𝑟

𝑚𝑎𝑥(𝑝, 𝑠) −

𝐶𝐼(𝑠, 𝑝, 𝑘)√∑ (𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) 2𝑄𝑠𝑡(𝑖, 𝑠)2)𝑖               ∀𝑝, 𝑠𝜖𝑆𝑈, 𝑘𝜖𝐾𝐶               (15a) (15b) 

𝐶𝐼(𝑠, 𝑝, 𝑘) is the inverse cumulative normal distribution for all uncertain qualities s of product p 

during period k. One important thing to notice in Eq. (15) is that the term 𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) is a 

parameter since in the supply-demand pinch formulation the amount blended is fixed based on 

aggregated demand. 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

22 
 

Eq. (16) enforces summation of violation of each individual chance constraint to not exceed the 

violation of the joint chance constraint. Eq. (17) represents the outer approximation constraints 

for the inverse cumulative distribution function.  

𝛼𝐽𝐶(𝑝, 𝑘) =  ∑ 𝛼𝐼𝐶(𝑠, 𝑝, 𝑘)𝑠𝜖𝑆𝑈                  ∀𝑝, 𝑘𝜖𝐾𝐶               (16) 

𝐶𝐼(𝑠, 𝑝, 𝑘) ≥ 𝑎(𝑛) ∗ (1 − 𝛼𝐼𝐶(𝑠, 𝑝, 𝑘)) + 𝑏(𝑛)   ∀𝑝, 𝑠𝜖𝑆𝑈, 𝑘𝜖𝐾𝐶, 𝑛         (17) 

The set of equations (3) - (14) describes the top-level model when uncertainty is not considered, 

while equations (3) - (17) represent the top-level model when uncertainty in qualities is 

considered. Solving the top-level computes optimal blend recipes which are fixed when solving 

the bottom-level model. The bottom-level model is used to compute the volume blended in each 

period of the bottom level subject to inventory constraints and threshold blend amount. The 

bottom-level objective function is given by Eq. (18). The objective is to minimize the blend cost 

and ensure that the blend recipes computed at the top level are feasible. The slack variables are 

forced to be positive and the penalty weight of the associated with the product infeasibility 

increase with the number of periods to delay any potential product inventory infeasibility as far 

into the future as possible. Also, the penalty weights associated with the components inventory 

slack variables are much greater than the penalty weights associated with the products inventory 

slack variables to for inventory infeasibilities to be on the products’ side.  

𝐵𝑙𝑒𝑛𝑑𝐶𝑜𝑠𝑡𝐿2 =  ∑ [∑ ∑ 𝐶𝑜𝑠𝑡(𝑖)𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙)𝑖(𝑏𝑙,𝑝)𝜖𝐵𝑃 ]𝑚𝜖𝑀𝐾 +  ∑ [∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑏𝑐 ∗𝑖𝑚𝜖𝑀𝐾

(𝑆𝑏𝑐
+ (𝑖, 𝑚) + 𝑆𝑏𝑐

− (𝑖, 𝑚))] +  ∑ [∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑝𝑟(𝑚) ∗ (𝑆𝑝𝑜𝑜𝑙
+ (𝑝, 𝑚) + 𝑆𝑝𝑜𝑜𝑙

− (𝑝, 𝑚)𝑝 )]𝑚𝜖𝑀𝐾 +

 ∑ [∑ ∑ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑝𝑟(𝑚) ∗ (𝑆𝑝𝑟
+ (𝑗, 𝑝, 𝑚) + 𝑆𝑝𝑟

− (𝑗, 𝑝, 𝑚)𝑗𝑝 )]𝑚𝜖𝑀𝐾                         (18) 

Subject to:  

The inventory balance equations for components, products and tanks with slack variables, Eq. 

(19) to (21). The slack variables should indicate the period where the inventory balance equation 

is violated to indicate the period where infeasibility occurs.  

∑ 𝐹𝑏𝑐(𝑎, 𝑖)𝑡𝑏𝑐(𝑎, 𝑚)𝑎𝜖𝐴𝑀 + 𝑉𝑏𝑐(𝑖, 𝑚 − 1) − 𝑉𝑏𝑐(𝑖, 𝑚) − ∑ 𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙) (𝑏𝑙,𝑝)𝜖𝐵𝑃 +

𝑆𝑏𝑐
+ (𝑖, 𝑚) − 𝑆𝑏𝑐

− (𝑖, 𝑚) = 0                   ∀𝑖, 𝑚𝜖𝑀𝐾                     (19) 

∑ 𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)𝑏𝑙𝜖𝐵𝑃 + 𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑚 − 1) − 𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑚) − 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑜𝑜𝑙(𝑝, 𝑚) + 𝑆𝑝𝑜𝑜𝑙
+ (𝑝, 𝑚) −

𝑆𝑝𝑜𝑜𝑙
− (𝑝, 𝑚) = 0                 ∀𝑝, 𝑚𝜖𝑀𝐾                             (20) 
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∑ 𝑉𝑡𝑟𝑎𝑛𝑠(𝑗, 𝑝, 𝑚, 𝑏𝑙)𝑏𝑙𝜖𝐵𝑃 + 𝑉𝑝𝑟(𝑗, 𝑝, 𝑚 − 1) − 𝑉𝑝𝑟(𝑗, 𝑝, 𝑚) −  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑟(𝑗, 𝑝, 𝑚) +

𝑆𝑝𝑟
+ (𝑗, 𝑝, 𝑚) − 𝑆𝑝𝑟

− (𝑗, 𝑝, 𝑚) = 0                 ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾                        (21) 

Eq. (22) fixes the blend recipe to the recipe computed at the top-level where bl is the set of 

blenders, 𝐵𝑃 is set of blender bl that can blend product p, and KM is set of second level periods 

that correspond to the top level period. 

𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙) = 𝑟(𝑖, 𝑝, 𝑘)𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)    ∀𝑖, (𝑏𝑙, 𝑝)𝜖𝐵𝑃, (𝑘, 𝑚)𝜖𝐾𝑀            (22) 

Eq. (23) ensures that a blender can blend 𝑛𝑝(𝑏𝑙) products at max in each period, where the 

binary variable 𝑥(𝑝, 𝑏𝑙, 𝑚) takes value of 1 if product p is blended in blender bl during period m 

and the parameter 𝑐𝑖𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) is the minimum idle time required by blender bl to process 

product p. Eq. (24) to (27) enforce blender capacity constraints. First one enforces the maximum 

blender capacity assuming some idle time equivalent to the product of the maximum blending 

capacity and the minimum idle time required by the blender. The other three equations impose 

constraints on the volume blended due to the minimum and maximum blending rate for the 

blender and some minimum threshold pre-specified by the planner.  

∑ 𝑥(𝑝, 𝑏𝑙, 𝑚)𝑝𝜖𝐵𝑃 ≤ 𝑛𝑝(𝑏𝑙)                ∀𝑏𝑙, 𝑚𝜖𝑀𝐾                       (23) 

∑ 𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)𝑝𝜖𝐵𝑃 +  𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙) ∑ (𝑐𝑖𝑡𝑏𝑙𝑒𝑛𝑑

𝑚𝑖𝑛 (𝑝, 𝑏𝑙)𝑝𝜖𝐵𝑃 𝑥(𝑝, 𝑏𝑙, 𝑚))  ≤

 𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙) 𝑡(𝑚)                     ∀𝑏𝑙, 𝑚𝜖𝑀𝐾                    (24) 

𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≤  𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙) 𝑡(𝑚) 𝑥(𝑝, 𝑏𝑙, 𝑚)           ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾         (25) 

𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≥  𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑏𝑙) 𝑐𝑡𝑏𝑙𝑒𝑛𝑑

𝑚𝑖𝑛 (𝑝, 𝑏𝑙) 𝑥(𝑝, 𝑏𝑙, 𝑚)   ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾        (26) 

𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≥  𝑉𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑏𝑙) 𝑥(𝑝, 𝑏𝑙, 𝑚)                ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾           (27) 

Eq. (28) to (31) enforce constraints on the blender running times, 𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙). First 

constraint forces the running time of a blend to be greater than or equal than the minimum 

running time for the blender. The parameter 𝑐𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) represent the minimum running time 

required by blender bl when processing product p. Eq. (29) and (30) set the limits on the upper 

and lower running time for the blend, while Eq. (31) ensures that running time of the blend at m 

period plus the product changeover times is less than or equal the length of period m.  

𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≥  𝑐𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) 𝑥(𝑝, 𝑏𝑙, 𝑚)         ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾             (28) 

𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≥  
𝑉𝑏𝑙𝑒𝑛𝑑(𝑝,𝑚,𝑏𝑙)

𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙)

             ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾                   (29) 
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𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)  ≤  
𝑉𝑏𝑙𝑒𝑛𝑑(𝑝,𝑚,𝑏𝑙)

𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑏𝑙)

             ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾             (30) 

∑ 𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)𝑝𝜖𝐵𝑃 + ∑ 𝑐𝑖𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) 𝑥(𝑝, 𝑏𝑙, 𝑚)  ≤ 𝑡(𝑚)  ∀𝑏𝑙, 𝑚𝜖𝑀𝐾𝑝𝜖𝐵𝑃          (31) 

Eq. (32) forces the amount of volume blended of product p in blender bl sent to tank j to be equal 

or less than the maximum volume possible to blend in the blender. 𝑣(𝑗, 𝑝, 𝑚, 𝑏𝑙) is a binary 

variable that takes value of 1 if tank j is receiving product p from blender bl during period m. Eq. 

(33) ensure that volume receive by the tanks from blenders is equal to the volume blended for all 

products during all periods. Eq. (34) and (35) state that the volume blended of product p in 

blender bl to be sent to only one product tank during period m and that tank should be either 

empty or already stores that product. 𝑢(𝑗, 𝑝, 𝑚) is binary variable that takes value of 1 if tank j is 

storing product p during period m. 

𝑉𝑡𝑟𝑎𝑛𝑠(𝑗, 𝑝, 𝑚, 𝑏𝑙)  ≤  𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙) 𝑡(𝑚) 𝑣(𝑗, 𝑝, 𝑚, 𝑏𝑙)  ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, (𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾        (32) 

∑ 𝑉𝑡𝑟𝑎𝑠𝑛(𝑗, 𝑝, 𝑚, 𝑏𝑙) (𝑗)𝜖𝐽𝑃 = 𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)         ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾           (33) 

∑ 𝑣(𝑗, 𝑝, 𝑏𝑙, 𝑚) (𝑗)𝜖𝐽𝑃 ≤ 1               ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾                 (34) 

𝑣(𝑗, 𝑝, 𝑏𝑙, 𝑚)  ≤ 𝑢(𝑗, 𝑝, 𝑚)              ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, (𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾                 (35) 

Eq. (36) ensures that the only one product can be stored in component tank j during m period. 

Eq. (37) ensures that the component tank j maximum capacity constraint is satisfied. Eq. (38) 

relates the product pool inventories to the individual product tank inventories. 

∑  𝑢(𝑗, 𝑝, 𝑚) (𝑝)𝜖𝐽𝑃 = 1                    ∀ 𝑗, 𝑚                  (36)  

𝑉𝑝𝑟(𝑗, 𝑝, 𝑚)  ≤  𝑉𝑝𝑟
𝑚𝑎𝑥(𝑗) 𝑢(𝑗, 𝑝, 𝑚)          ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚                       (37) 

𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑚) =  ∑ 𝑉𝑝𝑟(𝑗, 𝑝, 𝑚) (𝑗)𝜖𝐽𝑃          ∀ 𝑝, 𝑚                  (38) 

Eq. (39) and (40) introduce the binary variable 𝑢𝑒(𝑗, 𝑚) which take value of 1 if a product 

transition has taken a place in product tank j at period m. Eq. (41) forces a product transition in 

product tank j to occur if the tank is empty at the end of the previous period. 

𝑢𝑒(𝑗, 𝑚)  ≥  𝑢(𝑗, 𝑝, 𝑚) − 𝑢(𝑗, 𝑝, 𝑚 − 1)         ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾              (39) 

𝑢𝑒(𝑗, 𝑚)  ≥  𝑢(𝑗, 𝑝, 𝑚 − 1) − 𝑢(𝑗, 𝑝, 𝑚)         ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾              (40) 

𝑉𝑝𝑟(𝑗, 𝑝, 𝑚 − 1)  ≤  𝑉𝑝𝑟
𝑚𝑎𝑥(𝑗) (1 − 𝑢𝑒(𝑗, 𝑚))     ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾              (41) 
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Eq. (42a) and (42b) are minimum and maximum inventory constraints for the component’s 

tanks. Eq. (43) is a minimum pool product inventory level constraint. Eq. (44) ensures that the 

component tank j minimum capacity constraint is met. 

𝑉𝑏𝑐
𝑚𝑖𝑛(𝑖)  ≤  𝑉𝑏𝑐(𝑖, 𝑚)  ≤  𝑉𝑏𝑐

𝑚𝑎𝑥(𝑖)           ∀𝑖, 𝑚                (42a) (42b) 

𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑚) ≥  𝑉𝑝𝑜𝑜𝑙
𝑚𝑖𝑛(𝑝)                    ∀𝑝, 𝑚                  (43) 

𝑉𝑝𝑟(𝑗, 𝑝, 𝑚)  ≥  𝑉𝑝𝑟
𝑚𝑖𝑛(𝑗) 𝑢(𝑗, 𝑝, 𝑚)           ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚               (44) 

Eq. (45) states which product p is stored in tank components j at the start of time horizon. Eq. 

(46) and (47) set the volume of the component and product tanks at the start of the time horizon 

respectively. Eq. (48) set the initial blender state, whether the blender is running to blend a 

product p or is idle at the start of time horizon.  

𝑢(𝑗, 𝑝, 𝑚 = 0) =  𝑢𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑗, 𝑝)              ∀(𝑗, 𝑝)𝜖𝐽𝑃                   (45) 

𝑉𝑏𝑐(𝑖, 𝑚 = 0) =  𝑉𝑏𝑐
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖)                   ∀𝑖                 (46) 

𝑉𝑝𝑟(𝑗, 𝑝, 𝑚 = 0) =  𝑉𝑝𝑟
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑗, 𝑝)           ∀(𝑗, 𝑝)𝜖𝐽𝑃               (47) 

𝑥(𝑝, 𝑏𝑙, 𝑚 = 0) = 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑝, 𝑏𝑙)           ∀(𝑗, 𝑝)𝜖𝐽𝑃                (48) 

Eq. (49) ensures that the delivery amount of product p from product tank j during period m does 

not exceed the maximum delivery rate possible. Eq. (50) relates the sum of product volume 

delivered from all product tanks to the amount of product delivered during period m. Eq. (51) set 

the amount of product delivered in period m is equal to a fraction of the total demand. Eq. (52) 

ensures that only the contracted fraction of the demand for order o is shipped. Eq. (53) ensures 

the completion of the order o. Eq. (54) ensures that the fraction delivered of order o is less than 

or equal to the maximum possible delivery.  

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑟(𝑗, 𝑝, 𝑚) ≤  𝐷𝑝𝑟
𝑚𝑎𝑥(𝑗)𝑡(𝑚) 𝑢(𝑗, 𝑝, 𝑚)          ∀(𝑗, 𝑝)𝜖𝐽𝑃, 𝑚𝜖𝑀𝐾           (49) 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑜𝑜𝑙(𝑝, 𝑚) =  ∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑟(𝑗, 𝑝, 𝑚)(𝑗)𝜖𝐽𝑃         ∀𝑝, 𝑚𝜖𝑀𝐾           (50) 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑜𝑜𝑙(𝑝, 𝑚) = ∑ 𝐷𝑒𝑚𝑎𝑛𝑑(𝑜) 𝑜𝑓(𝑜, 𝑚)(𝑂)𝜖𝑂𝑃     ∀𝑝, 𝑚𝜖𝑀𝐾                   (51) 

𝑜𝑓(𝑜, 𝑚) ≤  𝑢𝑜𝑓(𝑜, 𝑚)                               ∀𝑜, 𝑚𝜖𝑀𝐾              (52) 

∑ 𝑜𝑓(𝑜, 𝑚) = 1(𝑚)𝜖𝑀𝐾                             ∀𝑜                (53) 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑜) 𝑜𝑓(𝑜, 𝑚) ≤  𝐷𝑜𝑟𝑑𝑒𝑟
𝑚𝑎𝑥 (𝑜)𝑑𝑡(𝑜, 𝑚)       ∀𝑜, 𝑚𝜖𝑀𝐾         (54) 
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The set of equations (18) to (54) represent the bottom-level model which used to compute the 

volume blended during each period of the second level.  

2.4.2.  Mathematical model for the Full Space Model  

The full-space model under uncertainty can be obtained from the second level model by 

removing Eq. (22) and adding Eq. (11) - (17), and the two following equations:  

∑ 𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙)𝑖 =  𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)       ∀(𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾            (55) 

𝑟𝑚𝑖𝑛(𝑖, 𝑝) 𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙) ≤ 𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙) ≤ 𝑟𝑚𝑎𝑥(𝑖, 𝑝) 𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙)             

∀𝑖, (𝑏𝑙, 𝑝)𝜖𝐵𝑃, 𝑚𝜖𝑀𝐾                  (56a) (56b) 

2.5. Case Studies  

In this work. Two sets of case studies have been solved; the first set (example 1 and 2) considers 

small scale test problems with 3 or 4 periods and 1 blender, while the second set (example 3,4 

and 5) considers large scale test problems with 14 periods and 1 to 3 blenders. For all test 

problems three different models have been solved to study the effect of considering different 

uncertainties in components qualities on optimal solutions and computation times. The first 

model assumes all components qualities to be deterministic, the second model consider 

uncertainty in RON and MON quality, while the third model considers uncertainty in RON, 

MON and BEN. The uncertainty in component’s qualities is assumed to follow a normal 

distribution, with mean values equal their deterministic values and standard deviation equal 1% 

of their mean values. The other qualities are assumed to be known for all cases. The large test 

problems used are taken from (Castillo & Mahalec, 2014a). 

The components qualities and products minimum and maximum qualities are shown in Table 1. 

The qualities specifications for all products are the same except for the minimum RON and 

MON qualities for the three products.  
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Table 1. Component’s qualities and products minimum and maximum qualities 

Property Blend Components 

 ALK BUT HCL HCN LCN LNP RFT 

ARO (%vol aromatics) 0 0 0 25 18 2.974 60.9 

BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5 

MON 93.7 90 79.8 75.8 81.6 66 90.8 

OLF (%vol olefin) 94 92.8 82.3 86.7 92.2 67.8 102 

RON 0 0 0 14 27 0 0 

RVP (psi) 5.15 138 22.335 2.378 13.876 19.904 3.622 

SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 

SUL (%vol sulfur) 0 0 0 0.485 0.078 0.013 0 

 Product Specifications [Min, Max] 

 P1 P2 P3 

ARO (%vol aromatics) [0,60] [0,60] [0,60] 

BEN (%vol benzene) [0,4.4] [0,4.4] [0,4.4] 

MON [81.5,200] [85.5,200] [87.5,200] 

OLF (%vol olefin) [90.4,200] [92.5,200] [95.5,200] 

RON [0,24.2] [0,24.2] [0,24.2] 

RVP (psi) [0,15.6] [0,15.6] [0,15.6] 

SPG [0.73,0.81] [0.73,0.81] [0.73,0.81] 

SI (%vol sulfur) [0,0.1] [0,0.1] [0,0.1] 

Figures 5 to 9 show the cumulative total demand (CTD) and cumulative average total production 

(CATP) for examples 1 to 5. the figures are used to obtain the supply-demand pinch points and 

determine the number of top-level periods and the amount of products blended in each top level 

periods. Examples 1 and 3 have no supply-demand pinch points so the top-level model will have 

only single period, while examples 2 and 4 have one supply-demand pinch point so two top level 

periods will be used. Example 5 cumulative total demand curves resulted in 3 supply-demand 

pinch points, therefore the planning horizon at top level will have 4 periods. 
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Figure. 5– 9. Cumulative total demand and average total production with supply-demand 

pinch points for examples 1 to 5 
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2.6. Results and Discussion 

All case studies have been implemented in GAMS 24.4.1 software. LP and MILP models have 

been solved using CPLEX 12.6 solver, while NLP and MINLP models have been solved using 

Baron 16.8.24 solver. All problems have been solved using desktop computer (Intel ® Core™ 

i5-4690K CPU, 3.50 GHz, and 8.0 GB RAM) running Windows 7 Ultimate. All examples have 

been solved assuming deterministic components qualities, uncertainty in RON and MON 

components qualities, and uncertainty in RON, MON, and BEN components qualities. The 

stopping criteria of 0.01% optimality gap or maximum computational time of 3600 seconds have 

been used.  

Table 2 shows the model size for each test problem for the full-space and the supply-demand 

pinch top and bottom levels. When solving the problem without incorporating uncertainty all 

three models are linear, while inclusion of uncertainty in qualities for the blending components 

results in nonlinear models for the full-space and top-level supply-demand pinch, but not the 

bottom-level since no quality specification constraints are included in that model. Example ID # 

2 and 4 required two iterations for the deterministic case due to infeasibility of the optimal blend 

recipe computed at top-level in the first iteration. Notice that the top-level model was larger in 

size for the second iteration compared to first iteration since the number of periods increased by 

one due to subdividing the single period in top level.  

When solving Example # 2 for the deterministic case with two periods at the top level the recipes 

computed at the top level was infeasible at the third period of the bottom level in product 2 

because we run out of component C3. Therefore, the top-level planning horizon was subdivided 

at the end of period 3 and the top level has been resolved using the blended volume computed at 

the bottom level adjusted by the infeasibility values. The recipes computed at the second 

iteration with the 3 periods at the top level gave a feasible production plan at the bottom level. 

When solving Example # 4 for the deterministic case with two periods at the top level the recipes 

computed shows multiple infeasibilities and the first infeasibility occurs for product 3 at period 2 

due to violating blender capacity. Therefore, the first period of the top level was subdivided, and 

the products blended volume at the top-level periods was obtained from the bottom level solution 

adjusted by the infeasibility. The top level should be resolved using 3 periods which resulted in 

infeasibility in the bottom level in product 1 at period 2, but this blend amount can be moved to 

next period since it is not required for the current period demand. The top-level model should be 
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resolved with the new volume blended for product 1 using 3 periods as in iteration 2. In the third 

iteration the blend recipes computed at top level were feasible and the bottom level model gave 

the optimal production plan. 

Table 2. Full space and supply-demand pinch (two-level) model sizes for all different cases and 

examples 

Example ID 1 2 3 4 5 

Full space (deterministic cases) 

# periods 3 4 14 14 14 

# equations 1,085 1,442 5582 5,597 9,601 

# continuous variables 411 547 2,237 2,237 3,469 

# discrete variables 102 132 432 432 768 

# nonlinear terms 0 0 0 0 0 

Full space (uncertainty in RON and MON cases) 

# periods 3 4 14 14 14 

# equations 3596 4790 17,300 17,315 36,971 

# continuous variables 447 595 2,405 2,405 3,973 

# discrete variables 102 132 432 432 768 

# nonlinear terms 288 384 1,344 1,344 4,032 

Full space (uncertainty in RON, MON and BEN cases) 

# periods 3 4 14 14 14 

# equations 4847 6458 23138 23,153 50,593 

# continuous variables 465 619 2489 2,489 4,225 

# discrete variables 102 132 432 432 768 

# nonlinear terms 378 504 1764 1,764 5,292 

Top-level Pinch Point (deterministic cases) 

Iteration 1 1 2a 1 1 2,3a 1 

# periods 1 2 3 1 2 3 4 

# equations 170 308 446 170 308 446 584 

# continuous variables 64 116 168 64 116 168 220 

# discrete variables 0 0 0 0 0 0 0 

# nonlinear terms 0 0 0 0 0 0 0 

Top-level Pinch Point (uncertainty in RON and MON cases) 

Iteration 1 1 1 1 1 

# periods 1 2 1 2 4 
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# equations 1007 1982 1007 1,982 3,932 

# continuous variables 76 140 76 140 268 

# discrete variables 0 0 0 0 0 

# nonlinear terms 96 192 96 192 384 

Top-level Pinch Point (uncertainty in RON, MON and BEN cases) 

Iteration 1 1 1 1 1 

# periods 1 2 1 2 4 

# equations 1424 2816 1424 2,816 5,600 

# continuous variables 82 152 82 152 292 

# discrete variables 0 0 0 0 0 

# nonlinear terms 126 252 126 252 504 

Bottom-level Pinch Point (All cases) 

# periods 3 4 14 14 14 

# equations 816 1083 4,323 4,338 5,710 

# continuous variables 571 760 2,980 2,980 4,184 

# discrete variables 102 132 432 432 768 

# nonlinear terms 0 0 0 0 0 

a: Second iteration is required since recipes computed at top-level was infeasible when used in the bottom-level, the 

problem was solved again after subdividing the top-level period where infeasibility occurred.  

Table 3 summarizes computational results for all examples with deterministic and uncertainty in 

components qualities cases using the full space and supply-demand pinch models. For 

deterministic case, both models are linear and computations times are less than 5 seconds for all 

examples. For uncertainty in components qualities cases, the supply-demand pinch model 

computed the optimal solution and closed the gap for all examples. The full space model took 

longer to reach the optimal solution and failed in closing the optimality gap for most examples. 

The supply-demand pinch model computed a slightly better solution than the full space model 

for examples 4 and 5. These results shows how effective the supply-demand pinch model in 

reducing the computational times required to compute an optimal solution and closing the gap 

for large size problems. 
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Table 3. Results for supply-demand pinch and full space models  

Example 

ID 
Uncertainty Model 

Supply-demand Pinch 

(BARON) 

Full Space (BARON) 

Total 

Cost ($) 

CPU time (s) Total 

Cost ($) 

CPU 

time (s) 
Gap% 

Time to 

best 

solution 

Top 

Level 

Bottom 

Level 

Demand 

1 

Deterministic 8387.0 0.01 0.09 8387.0 0.10 0.010 - 

Uncertainty in RON 

and MON 

8483.4 0.76 0.08 8483.4 53.28 0.010 6.13 

Uncertainty in RON, 

MON and BEN 

8486.2 1.66 0.08 8486.2 117.64 0.010 13.20 

Demand 

2 

Deterministic 10882.5 0.02a 0.42a 10882.5 0.18 0.010 - 

Uncertainty in RON 

and MON 

11000.8 4.92 0.11 11000.8 1393.19 0.010 20.72 

Uncertainty in RON, 

MON and BEN 

11004.1 16.69 0.11 11004.1 3600.00 0.036 73.06 

Demand 

3 

Deterministic 37193.7 0.01 0.55 37193.7 2.07 0.010 - 

Uncertainty in RON 

and MON 
37621.7 8.40 0.55 37621.9 3600.00 0.18 713.21 

Uncertainty in RON, 

MON and BEN 

37622.1 6.53 0.56 37622.3 3600.00 0.18 885.06 

Demand 

4 

Deterministic 37575.6 0.05a 1.22a 37575.6 1.65 0.010 - 

Uncertainty in RON 

and MON 

38084.6 68.85 0.37 38084.8 3600.00 0.134 601.70 

Uncertainty in RON, 

MON and BEN 

38085.0 98.65 0.39 38085.2 3600.00 0.168 1163.77 

Demand 

5 

Deterministic 36970.5 0.04 0.58 36970.5 4.50 0.010 - 

Uncertainty in RON 

and MON 

37527.8 1714.13 0.50 37528.5 3600.00 0.181 737.95 

Uncertainty in RON, 

MON and BEN 

37528.3 3308.99 2.23 37528.5 3600.00 0.179 2558.29 

a: computation times are the sum of all iterations.  

Another advantage of using the supply-demand pinch algorithm is to minimize the number of 

blending recipes for each product along the planning horizon. The number of recipes computed 

in the supply-demand pinch algorithm are bounded by the number of periods in the top-level 

model. While the full space model might compute the same optimal solution but using a larger 
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number of different blend recipes along the planning horizon. Figures 10 and 11 shows the 

blending recipes computed for example 4 under the case where qualities of RON, MON and 

BEN are assumed to be uncertain for both full space and supply-demand pinch models. The 

figure show that supply-demand pinch model requires blending with two different blend recipes 

over the planning horizon, while the full space model requires four different blending recipes 

along the planning horizon. During period 11, product 2 recipes are not shown since product 2 is 

not blended during this period.  

 

Figure 10. optimal blending recipes computed from full space model for example 4

 

Figure 11. optimal blending recipes computed from the supply-demand pinch model for example 
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Figure 12 shows the relationship between blending cost and probability of producing on-spec 

products for example 4. Higher probability of meeting products specifications specified by the 

operator comes at the cost of higher blending cost. The cost of blending changes at an increasing 

rate when probability of meeting products specification required is higher, that happens due to 

the need of using the expensive components to guarantee meeting the products specifications. 

Optimizer must specify the parameter of probability blending on-spec products after evaluating 

the cost of re-blending for the refinery.  

 

Figure 12. Blending cost ($) versus probability of meeting products specifications (%) for 

example 4 under uncertainty in RON, MON and BEN components qualities 

2.7. Conclusion  

In this paper, joint chance constrained formulation was utilized to solve the gasoline blend 
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space model with BARON solver. Results of this work indicate that the supply-demand pinch-

based approach is likely to be effective in solving the refinery planning problems with 

uncertainties in the crude qualities and the components qualities. Our further work will explore 

this hypothesis.  
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Nomenclature 

Sets and subsets 

i – set of blend components  

p – set of different products 

k – set of periods at top-level  

m – set of periods at bottom-level 

s – set of qualities  

o – set of demand orders  

bl – set of blenders  

j – set of product tanks  

a – set of different supply flow rates of blend components 

n – set of linear function for outer approximation for the inverse cumulative normal distribution  

KC – subset of periods at top-level excluding period 0  

MK – subset of periods at bottom-level excluding period 0  

JP – subset of blender bl that can feed tank j  

BP – subset of blender bl that can produce product p  

KM – subset of periods m (bottom-level periods) that correspond to periods k (top-level periods) 

Continuous variables 

𝐵𝑙𝑒𝑛𝑑𝐶𝑜𝑠𝑡𝐿1 – component cost for top-level model  

𝐵𝑙𝑒𝑛𝑑𝐶𝑜𝑠𝑡𝐿2 – component cost for bottom-level model  

𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑘) – volume of component i into product p at period k  

𝑉𝑐𝑜𝑚𝑝(𝑖, 𝑝, 𝑚, 𝑏𝑙) – volume of component i into product p in blender bl at period m  

𝑉𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙) – volume blended of product p in blender bl at period m 
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𝑉𝑡𝑟𝑎𝑛𝑠(𝑗, 𝑝, 𝑚, 𝑏𝑙) – volume of product p in blender bl transferred to product tank j at period m  

𝑉𝑝𝑟(𝑗, 𝑝, 𝑚) – volume of product p stored in tank j during period m  

𝑉𝑏𝑐(𝑖, 𝑘) – volume stored of component i in period k  

𝑉𝑏𝑐(𝑖, 𝑚) – volume stored of component i in period m  

𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑘) – volume stored in product pool p at the end of period k 

𝑉𝑝𝑜𝑜𝑙(𝑝, 𝑚) – volume stored in product pool p at the end of period m 

𝑟(𝑖, 𝑝, 𝑘) - fraction of component i into product p during period k 

𝑄𝑝𝑟(𝑝, 𝑠, 𝑘) – quality value of property s for product p in period k  

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑜𝑜𝑙(𝑝, 𝑚) – volume of product p shipped at the end of period m  

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑝𝑟(𝑗, 𝑝, 𝑚) – volume of product p shipped from product tank j at the end of period m  

𝑜𝑓(𝑜, 𝑚) – fraction of order o to be delivered during period m  

𝑆𝑏𝑐
+ (𝑖, 𝑚), 𝑆𝑏𝑐

− (𝑖, 𝑚) – positive and negative inventory slack variable of components i during period m  

𝑆𝑝𝑜𝑜𝑙
+ (𝑝, 𝑚), 𝑆𝑝𝑜𝑜𝑙

− (𝑝, 𝑚) – positive and negative inventory slack variable of product pool p during period 

m  

𝑆𝑝𝑟
+ (𝑗, 𝑝, 𝑚), 𝑆𝑝𝑟

− (𝑗, 𝑝, 𝑚) – positive and negative inventory slack variable of product p in product tank j 

during period m 

Integer variables 

𝑡𝑏𝑙𝑒𝑛𝑑(𝑝, 𝑚, 𝑏𝑙) – time required for blend run  

Binary variables  

𝑥(𝑝, 𝑏𝑙, 𝑚) – defines if product p is blended in blender bl during period m  

𝑣(𝑗, 𝑝, 𝑚, 𝑏𝑙) – defines if product p is transferred from blender bl to product tank j during period m 

𝑢(𝑗, 𝑝, 𝑚) – defines if product p is stored in product tank j during period m 

𝑢𝑒(𝑗, 𝑚) – defines if a product transition occurs at product tank j at the beginning of period m  

Parameters  

𝐶𝑜𝑠𝑡(𝑖) – cost of component i 

𝑡(𝑚) – duration of period m  

𝐹𝑏𝑐(𝑎, 𝑖) – supply flow rate of component i during time interval a 

𝑡𝑏𝑐(𝑎, 𝑘) – duration of time interval where component supply flow rate a at period k 

𝑡𝑏𝑐(𝑎, 𝑚) – duration of time interval where component supply flow rate a at period m 
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𝑉𝑏𝑙𝑒𝑛𝑑_𝑎𝑔𝑔(𝑝, 𝑘) – volume blended of product p at period k  

𝐷𝑒𝑚𝑎𝑛𝑑𝑎𝑔𝑔(𝑝, 𝑘) – product p demand at period k 

𝑄𝑏𝑐(𝑖, 𝑠) – quality value of property s for component I  

𝑉𝑏𝑐
𝑚𝑖𝑛(𝑖) – minimum capacity of tank with blend component i 

𝑉𝑏𝑐
𝑚𝑎𝑥(𝑖) – maximum capacity of tank with blend component i 

𝑉𝑝𝑟
𝑚𝑖𝑛(𝑝) – minimum capacity of tank with product p 

𝑉𝑝𝑟
𝑚𝑎𝑥(𝑝) – maximum capacity of tank with product p  

𝑟𝑚𝑖𝑛(𝑖, 𝑝) – minimum fraction of component i in product p  

𝑟𝑚𝑎𝑥(𝑖, 𝑝) – maximum fraction of component i in product p  

𝑄𝑝𝑟
𝑚𝑖𝑛(𝑝, 𝑠) – minimum quality value of property s in product p 

𝑄𝑝𝑟
𝑚𝑎𝑥(𝑝, 𝑠) – maximum quality value of property s in product p 

𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑏𝑙) – minimum blending rate of blender bl  

𝐹𝑏𝑙𝑒𝑛𝑑
𝑚𝑎𝑥 (𝑏𝑙) – maximum blending rate of blender bl 

𝑐𝑖𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) - minimum idle time required by blender to process product p 

𝑐𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑝, 𝑏𝑙) – minimum running time of blender bl for product p𝑉𝑏𝑙𝑒𝑛𝑑

𝑚𝑖𝑛 (𝑏𝑙) – minimum volume blended 

in blender bl 

𝑡𝑏𝑙𝑒𝑛𝑑
𝑚𝑖𝑛 (𝑏𝑙) – maximum volume blended in blender bl 

𝑉𝑝𝑟
𝑚𝑎𝑥(𝑗) – maximum capacity of tank product j 

𝑉𝑝𝑜𝑜𝑙
𝑚𝑖𝑛(𝑝) – minimum capacity of product pool p 

𝐷𝑝𝑟
𝑚𝑎𝑥(𝑗) – maximum delivery rate of tank j  

𝐷𝑜𝑟𝑑𝑒𝑟
𝑚𝑎𝑥 (𝑜) – maximum delivery rate of order o  

𝑉𝑏𝑐
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖) – component i starting inventory 

𝑉𝑝𝑜𝑜𝑙
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑝) – product p starting inventory 

𝑢𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑗, 𝑝) – initial product p in product tank j  

𝑉𝑝𝑟
𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑗, 𝑝) – initial volume of product p in product tank j 

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑝, 𝑏𝑙) – initial product b in blender bl 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) – density of component i  

𝐶𝐼 – z-score of the required confidence interval  
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𝑄𝑠𝑡(𝑖, 𝑠) – standard deviation for uncertain qualities for component i  

𝐷𝑒𝑚𝑎𝑛𝑑(𝑜) – volume of demand o  

𝑛𝑝(𝑏𝑙) – number of products that can be blended in blender bl 

𝑢𝑜𝑓(𝑜, 𝑚) – determine if order o can be delivered during period m  

𝑑𝑡(𝑜, 𝑚) – time available to deliver order o during period m  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑏𝑐 – penalty associated with components inventory infeasibilities  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑝𝑟(𝑚) – penalty associated with products inventory infeasibilities 

  



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

39 
 

Literature Cited 

ASTM international. (2018). ASTM D2699 - 18 Standard Test Method for Research Octane Number of 

Spark-Ignition Engine Fuel. Retrieved August 30, 2018, from 

https://www.astm.org/Standards/D2699.htm 

Biegler, L. T. (2010). Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical 

Processes. Society for Industrial and Applied Mathematics. 

https://doi.org/10.1137/1.9780898719383 

Castillo, P. A. C., & Mahalec, V. (2014). Inventory pinch based, multiscale models for integrated 

planning and scheduling-part I: Gasoline blend planning. AIChE Journal, 60(6), 2158–2178. 

https://doi.org/10.1002/aic.14423 

Castillo, P. A. C., & Mahalec, V. (2014). Inventory pinch based, multiscale models for integrated 

planning and scheduling-part II: Gasoline blend scheduling. AIChE Journal, 60(7), 2475–2497. 

https://doi.org/10.1002/aic.14444 

Castillo, P. A. C., Mahalec, V., & Kelly, J. D. (2013). Inventory pinch algorithm for gasoline blend 

planning. AIChE Journal, 59(10), 3748–3766. https://doi.org/10.1002/aic.14113 

Cerdá, J., Pautasso, P. C., & Cafaro, D. C. (2016). Optimizing Gasoline Recipes and Blending Operations 

Using Nonlinear Blend Models. Industrial & Engineering Chemistry Research, 55(28), 7782–7800. 

https://doi.org/10.1021/acs.iecr.6b01566 

Glismann, K., & Gruhn, G. (2001). Short-Term Planning of Blending Processes: Scheduling and 

Nonlinear Optimization of Recipes. Chemical Engineering & Technology, 24(3), 246–249. 

https://doi.org/10.1002/1521-4125(200103)24:3<246::AID-CEAT246>3.0.CO;2-8 

Jia, Z., & Ierapetritou*, M. (2003). Mixed-Integer Linear Programming Model for Gasoline Blending and 

Distribution Scheduling. https://doi.org/10.1021/IE0204843 

Li, J., & Karimi, I. A. (2011). Scheduling Gasoline Blending Operations from Recipe Determination to 

Shipping Using Unit Slots. Industrial & Engineering Chemistry Research, 50(15), 9156–9174. 

https://doi.org/10.1021/ie102321b 

Li, J., Karimi, I. A., & Srinivasan, R. (2009). Recipe determination and scheduling of gasoline blending 

operations. AIChE Journal, 56(2), NA-NA. https://doi.org/10.1002/aic.11970 

Méndez, C., Grossmann, I., Harjunkoski, I., & Kaboré, P. (2006). A simultaneous optimization approach 

for off-line blending and scheduling of oil-refinery operations. Computers & Chemical Engineering, 

30(4), 614–634. https://doi.org/10.1016/J.COMPCHEMENG.2005.11.004 

Merberg, G. N. (n.d.). Evaluation of the ZX101TM Octane Analyzer. Retrieved from 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

40 
 

https://www.zeltex.com/papers/MerbergOctane.pdf 

Monder, D. S. (2001). Real-Tome Optirniration of Gasoline Blending with Uncertain Parameters. 

Retrieved from http://www.nlc-bnc.ca/obj/s4/f2/dsk3/ftp04/MQ60472.pdf 

Wei Wang, Zefei Li, Qiang Zhang, & Yankai Li. (2007). On-line optimization model design of gasoline 

blending system under parametric uncertainty. In 2007 Mediterranean Conference on Control & 

Automation (pp. 1–5). IEEE. https://doi.org/10.1109/MED.2007.4433757 

Yang, Y., & Barton, P. I. (2016). Integrated crude selection and refinery optimization under uncertainty. 

AIChE Journal, 62(4), 1038–1053. https://doi.org/10.1002/aic.15075 

Zhang, Y., Monder, D., & Fraser Forbes, J. (2002). Real-time optimization under parametric uncertainty: 

A probability constrained approach. Journal of Process Control, 12(3), 373–389. 

https://doi.org/10.1016/S0959-1524(01)00047-6 

Zhao, X., & Wang, Y. (2009). Gasoline Blending Scheduling Based on Uncertainty. In 2009 

International Conference on Computational Intelligence and Natural Computing (pp. 84–87). IEEE. 

https://doi.org/10.1109/CINC.2009.206 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

41 
 

Chapter 3: Gasoline Blend Planning under Demand Uncertainty: 

Aggregate Supply-Demand Pinch Algorithm with Rolling Horizon 
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Abstract 

While most products from oil refineries are produced to meet contracted known demand, there is 

an additional uncertain demand which refineries can satisfy to generate extra profit. Using a 

deterministic model leads to suboptimal solutions since such a model fails to account for future 

additional uncertain demand when making a production plan. In this paper, a rolling horizon 

optimization approach is utilized to develop a production planning model under time-varying 

uncertainty in demand and applied to the gasoline blending problem. The model utilizes loss 

function formulation to account for expected revenue generated from meeting future uncertain 

demand when making a production plan for the current period. Our model considers uncertainty 

to vary with time; demand uncertainty for periods further into the future is higher. In the gasoline 

production planning application under demand uncertainty, our stochastic model makes the 

current period decisions (i.e. blend recipes) based on action of future uncertain demands, 

resulting in meeting higher products demands and higher profits compared to deterministic 

models. The model proposed is a mixed integer nonlinear programming (MINLP), and its size 

depends on the number of periods in the production horizon which leads to computational 

difficulties for cases with large number of periods. Difficulties are resolved by applying a 

supply-demand pinch algorithm to decompose the large MINLP model into two smaller models  

solved in sequence. The supply-demand pinch algorithm allows using local solver which results 

in 2000 to 3000-fold reduction in computation times compared to the full-space algorithm, while 

still achieving solutions within 0.04% from the full space algorithm solutions.  
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3.1. Introduction 

Oil refinery plants are key elements in the supply chain of the petroleum industry. In the final 

section of the refinery, components produced by various upstream processes are mixed together 

to produce different gasoline products that meet varying specification. Gasoline products can 

yield 60%-70% of the total revenue of refineries; therefore, decreasing the gasoline blending 

costs or increasing revenues by satisfying higher product demands level can greatly impact the 

profitability of the refinery1 2. The gasoline blending production plan needs to consider multiple 

external and internal sources of uncertainty. The internal uncertainties come from variation in the 

upstream processes which result in variations in the feedstock flows or qualities over the 

planning horizon. The external uncertainties arise from fluctuations in the crudes market prices, 

gasoline products prices and demands. Therefore, it is important to consider these uncertainties 

when making a production plan for the gasoline blending section. This paper considers the 

gasoline blend planning problem under uncertainty in products demand. Considering uncertainty 

in product demand gives a better estimation of model parameters, which allows improvement of 

the solution validation and practicality. The products demand of each period consists of known 

contracted demand plus additional uncertain demand (spot market). The uncertainty in the 

additional products demand is time-varying uncertainty; where the uncertainty in each period 

increases as we look further into the future. Under the assumption that the additional demand in 

each period follows a normal distribution, the time-varying uncertainty can be modeled using 

higher and higher variances for subsequent time periods. In this paper we deal with the 

production planning problem, under the assumption that the scheduling problem can be solved as 

a second level problem using results obtained from the planning problem. 

The gasoline blend planning problem requires computing optimal blend recipes and production 

plan for the planning horizon that minimizes the operation cost and meets the products demands, 

products qualities specifications, while being constrained by components supply rates and 

capacity limitations on the tanks and the blenders. Modeling an accurate gasoline blend problem 

leads to a large mixed integer nonlinear programming (MINLP) for cases with large number of 

periods; since the model size is dependent on the number of periods. The nonlinearity of the 

model stems from the nonlinear blending properties rules for some of the properties. The large 

MINLP problem leads to difficulties in computing the optimal solution with commercial solvers. 

Different deterministic gasoline blend planning and scheduling problems have been introduced 
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in the literature; Li et al.3 developed a slot-based MILP formulation to solve the gasoline blend 

problem as a MILP instead of MINLP using blending indices and linear blending correlation to 

address nonlinear blending properties. Another approach to solve the gasoline blending problem 

is to decompose the problem into planning and scheduling. Glismann and Gruhn4 presented an 

integrated optimization model of planning and scheduling. Jia and Ierapetritou5 presented a 

MILP model for gasoline blending and distribution schedule with the assumption of having fixed 

preferred blend recipe. This allowed them to avoid the complexity of the MINLP model while 

opening the possibility of their solution being not optimal. That is because such an approach does 

not guarantee that blend recipe chosen is an optimum recipe. Mendez et al.6 presented a novel 

MILP formulation that addresses the simultaneous optimization of blending and scheduling in oil 

refinery using discrete or continuous-time representation. Their original large MINLP problem 

formulation, where nonlinearity comes from nonlinear blending properties, is replaced by a 

sequential MILP approximation. Cerdá et al.7 presented a novel continuous-time MILP 

formulation based on floating time slots to simultaneously optimize both blend recipes and 

scheduling operations. Their proposed approach computes optimal solutions at much lower 

computational costs compared to other previous work. Castillo and Mahalec8 introduced a 

MINLP model to solve the gasoline blend planning problem and used the concept of supply-

demand pinch (also known as inventory pinch) to decompose the MINLP planning model into 

two level models (NLP and MILP) solved in sequence to allow a great reduction in execution 

times compared to solving the full-space MINLP model. The supply-demand pinch concept uses 

an aggregation technique based on the aggregate demand curve to reduce the number of periods 

of top-level model which computes blending recipes, then the bottom-level model computes 

detailed production plan using the recipes computed at the top-level. The supply-demand pinch 

concept is explained further in section 5.  

Rolling horizon procedures have proved their efficiency in solving production planning problem 

when uncertainty in the demands is considered. Rolling horizon approach solves the production 

planning problem in sequence of iterations. In each iteration, the production plan is solved for 

the current and future periods, and current period decisions are implemented, then a one timestep 

forward move is applied and the uncertain parameters are updated based on new available 

information before solving the next iteration. Two rolling horizon strategies have been used in 

the literature based on the prediction horizon length, a fixed-end strategy where the prediction 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cerd%C3%A1%2C+Jaime
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length is varying and moving-end strategy where the prediction length is constant9. The first 

approach suffers from a problem known “End of Horizon Effect”10 which occurs because the last 

iteration has a single period and does not consider any future periods which is not realistic. In 

this work, a fixed end rolling horizon strategy is used, where products volume of the final period 

is assumed to be fixed to allow satisfying demands in future periods. Modeling the production 

plan as a rolling horizon problem without considering the uncertainty in products demands might 

lead to high inventory and low service level11. One way to improve the rolling horizon model 

under uncertainty in demands is to hold safety inventory stocks. The safety inventory stocks can 

improve the task of achieving the service levels required12, but a constant stock inventory level 

might lead to high inventory level13. Another approach to deal with demands uncertainty in 

rolling horizon model is to use stochastic programming with discrete scenarios of the future 

demands14, but such approach might lead to computational difficulties since the problem size 

grows rapidly with increasing number of planning periods and demands scenarios. Chance 

constraint formulation which requires satisfying constraint with specific probability is another 

approach to deal with uncertain demands in a rolling horizon model which assumes that the 

distribution of the uncertain demands is known10. 

In this paper, a fixed-end rolling horizon formulation is used to solve the gasoline blend planning 

problem under uncertainty in products demands. One of the paper’s novelty is the way the 

uncertainty in demand is modeled: it is assumed that products demand consists of contracted 

demand which is certain and must be met, plus additional demand which is uncertain and follows 

a normal distribution. Also, the model considers time-varying uncertainty by assuming that the 

variance of the uncertain additional demand increases for periods further into the future, since it 

is harder to accurately predict the actual products demand for periods far into the future. The 

rolling horizon approach iteratively solves the planning problem in a rolling time horizon mode. 

In every iteration, a new production plan is computed for the planning horizon based on newly 

available information about the products demand. The purpose of using rolling horizon model is 

that the planning decisions for future periods cannot be optimal due to the uncertainty in future 

periods demands, therefore obtaining an initial plan for future periods and updating it every time 

new information about the demands are available can lead to near-optimal solutions. The 

optimality and feasibility of the updated plan are highly impacted by the previous plan decisions 

since these previous decisions determine both products and components inventory levels at the 
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beginning of the current horizon. Another contribution is extending the supply-demand pinch 

concept introduced by Castillo and Mahalec8 from the deterministic case to the case where 

uncertainty in demands are considered and make it suitable for a rolling horizon formulation. 

Also, the model modification introduced allows using the supply-demand pinch concept even 

when not all demands can be satisfied which was an assumption required by the model Castillo 

and Mahalec8 developed under the deterministic demand case. In summary, the aim of this work 

is to propose a rolling horizon approach that uses the supply-demand pinch aggregation 

algorithm and apply this approach to a large-scale gasoline blend planning MINLP model under 

products demand uncertainty. 

The rest of this paper is organized as follows. The gasoline blend planning problem addressed in 

this work is presented in section 2, including detailed description and assumptions. Sections 3 

and 4 introduce the revenue calculation under the demand uncertainty and the rolling horizon 

formulation, respectively. The full-space algorithm mathematical model of the gasoline blend 

planning problem is introduced in section 5. Section 6 introduces the supply-demand pinch 

concept, its mathematical models, and our proposed algorithm. Different case studies are 

introduced in section 7. Computations results and discussions for all case studies are presented in 

section 8. Finally, section 9 draws some conclusions and future directions. 

3.2. Problem Statement 

The gasoline blend planning problem presented by Castillo and Mahalec8 is the base of our work, 

with modification to incorporate uncertainty in demands. The system studied in this paper falls 

under the application of short-term planning with 14-period horizon each can be considered as 

one day. Figure 1 shows the gasoline blending system which has seven feedstocks produced by 

upstream processes with fixed flow rate sent to be stored in individual component tanks. These 

components are mixed in a blender to produce three different products (U87, U91, U93), subject 

to meeting their quality specifications. Blended products are sent to six storage tanks before 

being shipped to satisfy products demand. Three of the products storage tanks are dedicated to 

the three products, while the other three tanks can store any product, but only one product at a 

certain time. The qualities monitored and required to be within some bounds for the product to 

be considered on-specs are aromatic content (ARO), benzene content (BEN), olefin content 

(OLF), research octane number (RON), motor octane number (MON), rapid vapour pressure 

(RVP), sulfur content (SI), and Specific gravity (SGI). The product demands are considered to 
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have contracted demand and additional demand that can be sold in the spot market. While 

contracted demand is certain and known at the point when the production plan is made and 

represents the minimum delivered demand required by the plant, the additional demand 

represents the spot market demand for future periods which is uncertain and cannot be predicted 

accurately. In this work, additional products demands are assumed to follow normal distribution. 

Furthermore, our model considers time-varying uncertainty where the variance of the normal 

distribution increases as we look further into the future. This is more suitable to represent the 

real-life case since our prediction of the additional demand is more likely to deviate from the 

realized demand for periods further into the future.  

 

Figure 1. The gasoline blending system 

The gasoline blend planning problem under demand uncertainty considered in this work can be 

described as follows. 

Given: 

(1) A predefined short-term planning horizon (0, H) that is divided into fixed durations time 

periods 1, 2… M.  

(2) A set of blend components with known cost, initial inventories, fixed supply flow rates, and 

fixed quality properties along the planning horizon.  

(3) A set of products with known selling prices, initial inventories, and their maximum and 

minimum quality specifications.  

(4) A set of contracted demands for each product along the planning horizon.  

(5) A set of components and product storage tanks with their minimum and maximum hold-ups.  
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(6) A set of blenders’ maximum and minimum blending capacity.  

Assumptions are:  

(1) Refinery production plan model has determined components volumetric flow rates that are 

capable of meeting products contracted demands but does not have to meet all demand 

(contracted plus additional demands). 

(2) Contracted products demand along the planning horizon are hard constraints (they must be 

met).  

(3) Additional products demands are assumed to follow a normal distribution with increasing 

variance along the planning horizon and are not necessarily satisfied. 

(4) Each order involved only one product and all orders are completed during the blending 

period.  

(5) Perfect mixing occurs in the blenders. 

(6) Blenders can blend all products, but only one product at a time.  

(7) Component and product tanks may receive and feed simultaneously.  

The objective of the algorithm is:  

To maximize the refinery profit by maximizing the revenue from selling products and 

minimizing the cost of blending.  

We need to compute:  

(1) Volumes of each grade of gasoline produced and delivered at each period.  

(2) Volumes of each component used to blend each gasoline grade product and which blender 

will carry out the blending process in each period (blending recipes).  

(3) Inventory profiles for the components and gasoline products.  

Subject to constraints on:  

(1) Minimum delivered demands (contracted demands). 

(2) Minimum and maximum components and products volumes in the tanks. 

(3) Minimum and maximum products qualities specifications.  

(4) Minimum and maximum blending capacity (including the idle time required to switch a 

blender from one service to another)  
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(5) Maximum delivery rate from blenders to product tanks. 

3.3. Revenue Calculation Using Loss Function Under Demand Uncertainty  

The gasoline blend model under uncertainty in products demands requires computing the 

expected revenue of future periods since there is no information available about the exact 

demand. The expected revenue under the case where we hold inventory can be represented as 

follow.  

revenue = E[ ∑ C min(P+I,x)]

∞

x=0

 

Where E is the expectation operator, C is the selling price, P is the production, I is the inventory, 

and x is the products demand. Under the case where the selling prices are fixed, and demand 

follow a density distribution ρ(x), the expected revenue can be reformulated as follows  

revenue = C ∫ min(P+I,x) ρ(x) dx

∞

0

 

Under the case where the demand is lower than or equal production (x≤P+I), the revenue can be 

computed as C ∫ x ρ(x) dx
P+I

0
. While under the case where demand is higher than production 

(x>P+I), the revenue can be computed as C ∫ (P+I) ρ(x) dx
∞

P+I
. Therefore, the equation above can 

be reformulated as follows  

revenue = C[ ∫ x ρ(x) dx

P+I

0

+ ∫ (P+I) ρ(x) dx]

∞

P+I

 

Assuming the mean of demand is μ = ∫ x ρ(x) dx
∞

0
, the revenue equation can be reformulated as 

follows  

revenue = C[μ- ∫ x ρ(x)dx

∞

P+I

+ ∫ (P+I) ρ(x) dx]

∞

P+I

 

revenue = C[μ- ∫ (x-(P+I)) ρ(x) dx]

∞

P

 

The term ∫ (x-(P+I)) ρ(x) dx
∞

P
 is called the loss function. Under the case where the density 

function ρ(x) is normally distributed with mean 𝜇 and standard deviation σ, the loss function can 

be written as follow.  
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∫ (x-(P+I)) ρ(x)dx
∞

P

= σL(
P+I-μ

σ
) 

where L(∙) represents the standard loss function. The revenue can be formulated as follow.  

revenue= C[μ-σL(
P+I-μ

σ
)] 

From the above equation, the actual amount delivered to customers, S, is calculated as follow.  

S = μ-σL(
P+I-μ

σ
) 

The loss function L(
P+I-μ

σ
) cannot be implemented in the optimization model directly. Therefore, 

the loss function should be approximated by a function that can be implemented in the 

optimization problem. Li and Hui15 approximated the standard loss function using four 

polynomial function that has the form of a sixth-order polynomial, where z = 
P+I-μ

σ
 as shown 

below 

Ll(z) = al+blz+ clz
2+dlz

3+elz
4+flz

5+ g
l
z6                l = 1-4     

Figure 2 shows that the four approximated functions bound the actual loss function from below. 

For the revenue maximization problem, the value of the loss function L(∙) is to be minimized, 

therefore the loss function can be formulated as follow.  

L(z) ≥ Ll(z)                  l = 1-4    
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Figure 2. Nonlinear approximation functions of the standard loss function. The standard loss 

function (▬), and its four polynomial approximation functions: L1 (▲), L2 (●) L3 (■) L4 (♦).The 

revenue and loss function approximation equations introduced earlier can be integrated into the 

full-space and the supply-demand pinch models to make them consider uncertainty in the 

products demands. 

3.4. Rolling Horizon Formulation 

The rolling horizon model under products demand uncertainty assumes fixed-end planning 

horizon with discrete time periods, m = 1, …, M. In fixed end rolling horizon, the number of 

periods decreases as we roll forward in the horizon. At the start of each period m, the additional 

demand of period m becomes known, and future periods demand get updated and the variance of 

these demands shrink since we are getting closer to reach these periods. A production plan for 

the current and future periods are computed to maximize the profit of current period and 

expected profit of future periods, and decisions of the current period m are implemented based on 

the result of the optimization problem. The time advances to the beginning of period m+1, with 

the final inventories of the previous period m becoming the initial inventory of the period m+1. 

Let s be defined as the current period and H defined as the last period in the production horizon, 

the rolling horizon algorithm is described as follows:  

Step 1: s = 0, set the initial products and components inventories at period 0.  

Step 2: s = s + 1, where products demand at period s are realized.  
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Step 3: solve the finite production planning horizon with the planning window H-s+1 for periods 

s to H.  

Step 4: The decision variables obtained for period s are final decisions and the inventories at the 

end of period s are considered the initial inventories for the next planning window s+1 to H. 

While the decisions for the periods s+1 to H are tentative decisions.  

Step 5: Return to step 2 and repeat until s = H  

Our planning model considers planning horizon length with 14 periods (H=14) at the first 

iteration; therefore we require solving 14 optimization problems before stopping. Figure 3 shows 

the fixed end rolling horizon formulation used in our work. 

 

Figure 3. Fixed end rolling horizon algorithm 

3.5. Full-Space Algorithm Mathematical Model 

In this section, the full-space algorithm model under uncertainty in demands is presented. The 

full-space algorithm aims to compute a detailed production plan for the whole horizon using a 

single large model.  

Our problem faces the challenge of having multiple optimal solutions; the same optimal profit 

from a single period run can be achieved using different blend recipes, production plan, and 

whether to satisfy product demands for current period or later future periods. Therefore, we solve 

two models in sequence; the first model aims to compute the optimal profit and the second fixes 
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that profit and maximize the amount delivered at the current period in order to maximize current 

period revenue. This is realistic since it is preferable to satisfy current period additional demand 

over satisfying additional future possible demand. 

The full-space model considers a detailed model for both the current period and future periods. 

The objective function of the full space model, Eq. (1), maximizes the refinery profit. The 

revenues of the current and future periods are given by Eqs. (2) and (3) respectively. The cost of 

blending for the current and future periods are given by Eqs. (4) and (5) respectively.  

max. Profit = Current Revenue + Future Revenue − Current Blend Cost −

Future Blend Cost  
(1) 

Subject to 

Current Revenue = ∑ ∑ [SP𝑝 Deliver𝑝,𝑚
pool

]𝑝𝑚∈MC   (2) 

Future Revenue = ∑ ∑ [SP𝑝 Deliver𝑝,𝑚
pool

]p𝑚∈MF   (3) 

Current Blend Cost = ∑ ∑ ∑  [CC𝑖 V𝑖,𝑝,𝑚,𝑏𝑙
comp

]i(bl,p)ϵBP𝑚∈MC   (4) 

Future Blend Cost = ∑ ∑ ∑  [CC𝑖 V𝑖,𝑝,𝑚,𝑏𝑙
comp

]i(bl,p)ϵBP𝑚∈MF   (5) 

The inventory balance equations for blending components, products pools, and products tank are 

given by Eqs. (6-8) respectively. The inventory constraints on components storage tanks are 

enforced by Eq. (9). The minimum products pool inventories are forced by Eq. (10). The 

inventory constraint in each products storage tanks is enforced by Eq. (11), where u(j,p,m) is a 

binary variable that takes a value of 1 if tank j is storing product p during period m and 0 

otherwise. Eq. (12) ensures that only one product p is stored at tank j during period m. The 

products pool inventories are related to the individual product tanks inventories by Eq. (13).  

V𝑖,𝑚
comp_in

+ V𝑖,𝑚−1
bc − V𝑖,𝑚

bc − ∑ V𝑖,𝑝,𝑚,𝑏𝑙
comp

(bl,p)ϵBP = 0  ∀i, m ϵ MA  (6) 

∑ V𝑝,𝑚,𝑏𝑙
blend

bl ϵBP + V𝑝,𝑚−1
pool

− V𝑝,𝑚
pool

− Deliver𝑝,𝑚
pool

= 0  ∀p, m ϵ MA  (7) 

∑ V𝑗,𝑝,𝑚,𝑏𝑙
trans

bl ϵBP +  V𝑗,𝑝,𝑚−1
pr

− V𝑗,𝑝,𝑚
pr

− Deliver𝑗,𝑝,𝑚
pr

=0  ∀(j,p) ϵ JP, m ϵ MA   (8) 

V𝑖
bc_min ≤ V𝑖,𝑚

bc ≤ V𝑖
bc_max  ∀i, m ϵ MA  (9) 
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V𝑝,𝑚
pool

≥ V𝑝
pool_min

  ∀p, m ϵ MA  (10) 

V𝑗
pr_min

 u𝑗,𝑝,𝑚 ≤  V𝑗,𝑝,𝑚
pr

≤  V𝑗
pr_max

 u𝑗,𝑝,𝑚  ∀(j,p) ϵ JP, m ϵ MA  (11) 

∑ u𝑗,𝑝,𝑚p ϵJP =1  ∀j, m ϵ MA  (12) 

V𝑝,𝑚
pool

= ∑ V𝑗,𝑝,𝑚
pr

 j ϵJP   ∀p, m ϵ MA  (13) 

The number of products allowed to be blended in each period is enforced by Eq. (14). The binary 

variable x𝑝,𝑏𝑙,𝑚 takes a value of 1 if product p is blended in blender bl during period m and 0 

otherwise, while np𝑏𝑙 is an integer parameter that represents the allowed number of products to 

be blended. The blender capacity constraints are given by Eqs. (15-17), where the parameter 

cit𝑝,𝑏𝑙
blend_𝑚𝑖𝑛 represents the minimum idle time required by blender bl to process product p. The 

first equation enforces the maximum blender capacity assuming some idle time equivalent to the 

product of the maximum blending capacity and the minimum idle time required by the blender. 

The second and third equations impose constraints on the minimum and maximum blending rate 

for the blender respectively, where the parameter ct𝑝,𝑏𝑙
blend_min represents the minimum running 

time of blender bl for product p. 

∑ x𝑝,𝑏𝑙,𝑚p ϵBP ≤ np𝑏𝑙  ∀bl, m ϵ MA  (14) 

∑ V𝑝,𝑚,𝑏𝑙
blend

p ϵBP + F𝑏𝑙
blend_max ∑ (cit𝑝,𝑏𝑙

blend_𝑚𝑖𝑛
p ϵBP x𝑝,𝑏𝑙,𝑚) ≤

F𝑏𝑙
blend_max t𝑚  

∀bl, m ϵ MA  (15) 

V𝑝,𝑚,𝑏𝑙
blend ≥ F𝑏𝑙

blend_min ct𝑝,𝑏𝑙
blend_min x𝑝,𝑏𝑙,𝑚  ∀(bl,p) ϵ BP, m ϵ MA  (16) 

V𝑝,𝑚,𝑏𝑙
blend ≤  F𝑏𝑙

blend_max t𝑚 x𝑝,𝑏𝑙,𝑚  ∀(bl,p) ϵ BP, m ϵ MA  (17) 

In order to guarantee feasibility, the sum of running time of each blend plus the idle time during 

a single period m must be equal or less than the duration of this m period. t𝑝,𝑚,𝑏𝑙
blend  is an integer 

variable representing the time required for a blend run, which is constrained by given Eqs. (18-

21). The first constraint forces the running time of a blend to be greater than or equal than the 

minimum running time of blender bl for product p. Limits on the upper and lower running time 

for the blend run are given by Eqs. (19-20). while Eq. (21) ensures that running time of the blend 
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at m period plus the product changeover times (idle time) is less than or equal the length of 

period m. 

t𝑝,𝑚,𝑏𝑙
blend ≥  ct𝑝,𝑏𝑙

blend_min x𝑝,𝑏𝑙,𝑚  ∀(bl,p) ϵ BP, m ϵ MA  (18) 

t𝑝,𝑚,𝑏𝑙
blend ≥  

V𝑝,𝑚,𝑏𝑙
blend

F𝑏𝑙
blend_max  ∀(bl,p) ϵ BP, m ϵ MA  (19) 

t𝑝,𝑚,𝑏𝑙
blend ≤  

V𝑝,𝑚,𝑏𝑙
blend

F𝑏𝑙
blend_min  ∀(bl,p) ϵ BP, m ϵ MA  (20) 

∑ t𝑝,𝑚,𝑏𝑙
blend

p ϵBP

+  ∑ (cit𝑝,𝑏𝑙
blend_𝑚𝑖𝑛

p ϵBP

x𝑝,𝑏𝑙,𝑚) ≤ t𝑚  ∀bl, m ϵ MA  (21) 

Eq. (22) forces the volume of product p sent from blender bl to tank j to be equal or less than the 

maximum volume possible to blend in the blender. v𝑗,𝑝,𝑚,𝑏𝑙 is a binary variable that takes a value 

of 1 if tank j is receiving product p from blender bl during period m. Eq. (23) ensure that all 

blended products are sent to product tanks for all products during all periods. Eq. (24) states that 

volume blended of product p in blender bl can be sent to only one product tank during period m, 

while Eq. (25) ensures that this tank should either be empty or already stores that product.  

V𝑗,𝑝,𝑚,𝑏𝑙
trans ≤  F𝑏𝑙

blend_max t𝑚 v𝑗,𝑝,𝑚,𝑏𝑙  ∀(bl,p) ϵ BP, (j,p) ϵ JP, m ϵ MA      (22) 

∑ V𝑗,𝑝,𝑚,𝑏𝑙
trans

j ϵJP =  V𝑝,𝑚,𝑏𝑙
blend   ∀(bl,p) ϵ BP, m ϵ MA  (23) 

∑ v𝑗,𝑝,𝑚,𝑏𝑙j ϵJP ≤ 1  ∀(bl,p) ϵ BP, m ϵ MA  (24) 

v𝑗,𝑝,𝑚,𝑏𝑙 ≤ u𝑗,𝑝,𝑚  ∀(bl,p) ϵ BP, (j,p) ϵ JP, m ϵ MA      (25) 

Since the swing tanks can be used to store different products during different time periods, the 

binary variable ue𝑗,𝑚 is used in Eqs. (26-27) which takes a value of 1 if a product transition has 

taken a place in product tank j at period m. Eq. (28) forces a product transition in product tank j 

to occur if the tank is empty at the end of the previous period. 

ue𝑗,𝑚 ≥  u𝑗,𝑝,𝑚 − u𝑗,𝑝,𝑚−1  ∀(j,p) ϵ JP, m ϵ MA  (26) 

ue𝑗,𝑚 ≥  u𝑗,𝑝,𝑚−1 −  u𝑗,𝑝,𝑚  ∀(j,p) ϵ JP, m ϵ MA  (27) 

V𝑗,𝑝,𝑚−1
pr

≤  V𝑗
pr_max

 (1 − ue𝑗,𝑚)  ∀(j,p) ϵ JP, m ϵ MA  (28) 
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Eq. (29) states which product p is stored in tank components j at the start of the current period. 

Eq. (30) and (31) set the volume of the component and individual product tanks at the start of the 

current period respectively. Eq. (32) set the initial blender state, whether the blender is running to 

blend a product p or is idle at the start of time horizon. 

u𝑗,𝑝,𝑚 =  u𝑗,𝑝
initial  ∀(j,p) ϵ JP, m ϵ M0  (29) 

V𝑖,𝑚
bc =  V𝑖

bc_initial  ∀i, m ϵ M0 (30) 

V𝑗,𝑝,𝑚
pr

=  V𝑗,𝑝
pr_initial

  ∀(j,p) ϵ JP, m ϵ M0  (31) 

x𝑝,𝑏𝑙,𝑚 =  x𝑝,𝑏𝑙
initial  ∀(j,p) ϵ JP, m ϵ M0  (32) 

The blend recipe computations are given by Eq. (33), which defines the blend recipe for each 

product (the fraction of the component used to blend each product). The fraction of each 

component i in a product p should sum to 1 for all products, periods, and blenders which is 

forced by Eq. (34). The minimum and maximum blend recipe for each product is forced by Eq. 

(35). 

V𝑖,𝑝,𝑚,𝑏𝑙
comp

=  r𝑖,𝑝,𝑚,𝑏𝑙 V𝑝,𝑚,𝑏𝑙
blend   ∀i,(bl,p) ϵ BP , m ϵ MA  (33) 

∑ r𝑖,𝑝,𝑚,𝑏𝑙i = 1  ∀i,(bl,p) ϵ BP , m ϵ MA  (34) 

r𝑖,𝑝
min ≤  r𝑖,𝑝,𝑚,𝑏𝑙 ≤  r𝑖,𝑝

max  ∀i,(bl,p) ϵ BP , m ϵ MA  (35) 

The volumetric and weight basis linear quality constraints are described by Eq. (36) and (37) 

respectively. Q𝑖,𝑠
bc represents the value of quality s of component i, where  

Q𝑝,𝑠
pr_min

 and Q𝑝,𝑠
pr_max

 are the minimum and maximum quality s specification for product p 

respectively. For the case where linear blending rules are assumed, only these two constraints are 

required for products qualities. 

V𝑝,𝑚,𝑏𝑙
blend  Q𝑝,𝑠

pr_min
 ≤ ∑ (V𝑖,𝑝,𝑚,𝑏𝑙

comp
 Q𝑖,𝑠

bc)i  ≤ V𝑝,𝑚,𝑏𝑙
blend  

Q𝑝,𝑠
pr_min

  

∀s = linear blended qualities  

(volumetric basis),(bl,p) ϵ BP, m ϵ MA  
(36)  

∑ (V𝑝,𝑚,𝑏𝑙
blend  Density𝑖)i Q𝑝,𝑠

pr_min
 ≤ ∑ (V𝑖,𝑝,𝑚,𝑏𝑙

comp
 i

Q𝑖,𝑠
bc Density𝑖)  ≤ ∑ (V𝑝,𝑚,𝑏𝑙

blend  Density𝑖)i Q𝑝,𝑠
pr_max

  

∀s = linear blended qualities  

(weight basis),(bl,p) ϵ BP, m ϵ MA  
(37) 
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For the case where nonlinear blending rules are considered, RVP is assumed to blend nonlinear 

based on Eq. (38), which can be transformed into linear form as shown in Eq. (39) to reduce 

computations times. While RON and MON properties are assumed to blend nonlinearly 

following the ethyl RT-70 models16. In the ethyl RT-70 model, the products RON and MON 

quality value are functions of the blend components sensitivity (sens𝑖= Q𝑖,𝑅𝑂𝑁
bc - Q𝑖,𝑀𝑂𝑁

bc ), OLF, 

and ARO content. The model parameter values used by Singh et al.16 are: a1= 0.03224, 

a2= 0.00101, a3= 0, a4= 0.04450, a5= 0.00081, and a6= -0.0645 

Q𝑝,𝑠,𝑚,𝑏𝑙
pr

= [∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc1.25

i ]
0.8

  ∀s = "RVP", (bl,p) ϵ BP, m ϵ MA  (38) 

V𝑝,𝑚,𝑏𝑙
blend  Q𝑝,𝑠

pr_min1.25
≤ ∑ (V𝑖,𝑝,𝑚,𝑏𝑙

comp
 i

Q𝑖,𝑠
bc1.25

) ≤ V𝑝,𝑚,𝑏𝑙
blend  Q𝑝,𝑠

pr_max1.25
  

∀s = "RVP", (bl,p) ϵ BP, m ϵ MA  (39) 

Q𝑝,𝑠
pr_min

≤  Q𝑝,𝑠,𝑚,𝑏𝑙
pr

≤  Q𝑝,𝑠
pr_max

  ∀s = "RON", "MON",(bl,p) ϵ BP, m ϵ MA  (40) 

Q𝑝,𝑠,𝑚,𝑏𝑙
pr

=  𝑟𝑝,𝑚,𝑏𝑙
RON_avg

+ a1[sens𝑝,𝑚,𝑏𝑙
RON_avg

− 𝑟𝑝,𝑚,𝑏𝑙
RON_avg

 sens𝑝,𝑚,𝑏𝑙
avg

] +

a2 [Ol𝑝,𝑚,𝑏𝑙
sq_avg

− Ol𝑝,𝑚,𝑏𝑙
avg 2

] + a3 [Ar𝑝,𝑚,𝑏𝑙
sq_avg

− Ar𝑝,𝑚,𝑏𝑙
avg 2

]
2

  

∀s = "RON",  

(bl,p) ϵ BP, m ϵ MA  
(41) 

Q𝑝,𝑠,𝑚,𝑏𝑙
pr

=  𝑟𝑝,𝑚,𝑏𝑙
MON_avg

+ a4[sens𝑝,𝑚,𝑏𝑙
RON_avg

−

𝑟𝑝,𝑚,𝑏𝑙
MON_avg

 sens𝑝,𝑚,𝑏𝑙
avg

] + a5 [Ol𝑝,𝑚,𝑏𝑙
sq_avg

− Ol𝑝,𝑚,𝑏𝑙
avg 2

] +

𝑎6

10000
[Ar𝑝,𝑚,𝑏𝑙

sq_avg
− Ar𝑝,𝑚,𝑏𝑙

avg 2
]

2

  

∀s = "MON",  

(bl,p) ϵ BP, m ϵ MA  
(42) 

𝑟𝑝,𝑚,𝑏𝑙
RON_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

i   ∀s = "RON", (bl,p) ϵ BP, m ϵ MA  (43) 

𝑟𝑝,𝑚,𝑏𝑙
MON_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

i   ∀s = "MON", (bl,p) ϵ BP, m ϵ MA  (44) 

sens𝑝,𝑚,𝑏𝑙
avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 sens𝑖i   ∀(bl,p) ϵ BP,m ϵ MA  (45) 

sens𝑝,𝑚,𝑏𝑙
RON_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

 sens𝑖i   ∀s = "RON", (bl,p) ϵ BP, m ϵ MA  (46) 

sens𝑝,𝑚,𝑏𝑙
MON_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

 sens𝑖i   ∀s = "MON", (bl,p) ϵ BP, m ϵ MA  (47) 

Ol𝑝,𝑚,𝑏𝑙
avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

i   ∀s = "OLF", (bl,p) ϵ BP, m ϵ MA  (48) 
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Ol𝑝,𝑚,𝑏𝑙
sq_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc2

i   ∀s = "OLF", (bl,p) ϵ BP, m ϵ MA  (49) 

Ar𝑝,𝑚,𝑏𝑙
avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc

i   ∀s = "ARO", (bl,p) ϵ BP, m ϵ MA  (50) 

Ar𝑝,𝑚,𝑏𝑙
sq_avg

 = ∑ r𝑖,𝑝,𝑚,𝑏𝑙 Q𝑖,𝑠
bc2

i   ∀s = "ARO", (bl,p) ϵ BP, m ϵ MA  (51) 

The last set of equations considers the constraints required for modeling the demand uncertainty 

and the delivered amount of products. These equations are associated with the loss function 

derivation introduced in section 3, which allows us to consider the loss associated with not 

delivering future uncontracted products demand. In other words, these equations allow the model 

to compute the optimal plan, one that maximize the profit, while considering the uncertainty in 

the uncontracted demand. Eq. (52-53) are used to compute the loss sale expected in future 

periods, where the first equation computes the z-score and the second uses the 6th order 

polynomial approximation to compute the loss value of future demands. Since the uncontracted 

demand is assumed to be normal, the four 6th order polynomial approximation equations that 

compute the loss value of future uncontracted demand can be integrated into our model. Eq. (54) 

considers the current period volume delivered of products, which is equal to the contracted 

demand plus the certain additional demand minus unmet demand. Eq. (55) considers future 

periods delivered volumes of product based on loss function in additional demand and its 

variance. Eq. (56) ensures that our plan will satisfy the contracted demand in current and future 

periods. Eq. (57) ensures that the delivery amount of product p from product tank j during period 

m does not exceed the maximum delivery rate possible. Eq. (58) relates the sum of product 

volume delivered from all product tanks to the amount of product delivered during period m. 

z𝑝,𝑚 = 
∑ V𝑝,𝑚,𝑏𝑙

blend
bl ϵ BP +V𝑝,𝑚−1

pool
−Demand𝑝,𝑚

cont−Demand𝑝,𝑚
add_mean

√Demand𝑝,𝑚
add_Variance

  ∀p, m ϵ MF  (52) 

L𝑝,𝑚 = al+blz𝑝,𝑚+ clz𝑝,𝑚
2+d

l
z𝑝,𝑚

3+e
l
z𝑝,𝑚

4+f
l
z𝑝,𝑚

5+ g
l
z𝑝,𝑚

6  ∀p, m ϵ MF, l=1-4  (53) 

Deliver𝑝,𝑚
pool

 = Demand𝑝,𝑚
cont + Demand𝑝,𝑚

add_mean − Demand𝑝,𝑚
unmet  ∀p, m ϵ MA  (54) 

Deliver𝑝,𝑚
pool

 = Demand𝑝,𝑚
cont+Demand𝑝,𝑚

add_mean −

 L𝑝,𝑚√Demand𝑝,𝑚
add_Variance  

∀p, m ϵ MF  (55) 
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Deliver𝑝,𝑚
pool

 ≥ Demand𝑝,𝑚
cont  ∀p, m ϵ MA  (56) 

Deliver𝑗,𝑝,𝑚
pr

≤ D𝑗
pr_max

 t𝑚 u𝑗,𝑝,𝑚  ∀(j,p) ϵ JP, m ϵ MA  (57) 

Deliver𝑝,𝑚
pool

 = ∑ Deliver𝑗,𝑝,𝑚
pr

j ϵ JP    ∀p, m ϵ MA  (58) 

The set of Eqs. (1-37) and (52-58) represents the full-space model for the linear blending rules 

case. While the set of Eqs. (1-58) not including Eq. (38) represents the full-space model for the 

nonlinear blending rules case. 

3.6. Supply-Demand Pinch Algorithm and its Mathematical Models 

In this section, the supply-demand pinch algorithm which decomposes the full-space MINLP 

model into two-level models in order to reduce execution times while still achieving an optimal 

or close to optimal solutions. The top-level of the supply-demand pinch reduces the number of 

planning periods by aggregating future periods based on the pinch points in the cumulative 

products demands. After computing the recipes from the top-level, these recipes are fixed and 

passed to the bottom-level model to compute optimal production plan if the recipes are feasible. 

The objective function of the top-level model is similar to the full space objective function, Eq. 

(1); it tries to maximize the profit of the refinery. 

There are three sets of constraints in the top-level of the supply-demand pinch model. The first 

set of constraints represents the current detailed period equations, the second set of constraints 

represents the future aggregated period’s equations and the third set of constraint link current and 

future period’s equations.   

The set of constraints that represents the current detailed period equations are similar to the 

constraints of the full space model, but they are written for the current period only (set MC) 

instead of all periods (set MA) and the constraints associated with only future periods are 

dropped. Therefore, the set of constraints of the detailed current period are represented by Eqs. 

(2), (4), (6-37), (54), and (56-58) for the linear blending rules case. The set of constraints of the 

detailed current period are represented by Eqs. (2), (4), (6-51), (54), and (56-58) and not 

including Eq. (38) for the nonlinear blending rules case.  

The set of constraint that represents the future aggregated periods equations which replace all 

detailed future periods constraints are shown here. The future revenue and cost constraints are 

shown in Eqs. (59) and (60) respectively. 
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Future Revenue= ∑ ∑ [SP𝑝 Deliver𝑝,𝑘
pool_agg

]pk   (59) 

Future Blend Cost = ∑ ∑ ∑ [CC𝑖 V𝑖,𝑝,𝑘
comp_agg

]ipk   (60) 

The inventory balance for the components and products pool inventories is shown in Eqs. (61) 

and (62) respectively. The components and pool products inventories capacities constraints are 

enforced by Eqs. (63) and (64) respectively. 

V𝑖,𝑘 
comp_in_agg

+  V𝑖,𝑘−1
bc −  V𝑖,𝑘

bc − ∑ V𝑖,𝑝,𝑘
comp_agg

p  = 0  ∀i, k  (61) 

V𝑝,k
blend_agg

+  V𝑝,𝑘−1
pool

− V𝑝,𝑘
pool

− Deliver𝑝,𝑘
pool_agg

 = 0  ∀p, k  (62) 

V𝑖
bc_min ≤ V𝑖,𝑘

bc ≤ V𝑖
bc_max  ∀i, k  (63) 

V𝑝
pool_min

≤ V𝑝,𝑘
pool

≤  V𝑝
pool_min

  ∀p, k  (64) 

The blend recipe computations for future aggregated periods are enforced by Eqs. (65-67). The 

set of constraints are written in a way that enforces detailed periods within an aggregated period 

to have the same recipe. 

V𝑖,𝑝,𝑘
comp_agg

 = r𝑖,𝑝,𝑘 V𝑝,𝑘
blend_agg

  ∀i, p, k  (65) 

∑ r𝑖,𝑝,𝑘i =1  ∀i, p, k  (66) 

r𝑖,𝑝
min ≤ r𝑖,𝑝,𝑘 ≤  r𝑖,𝑝

max  ∀i, p, k  (67) 

The volumetric and weight basis linear quality constraints are described by Eq. (68) and (69) 

respectively. For the linear blending rules case, only these two constraints are required for 

products qualities. 

V𝑝,𝑘
blend_agg

 Q𝑝,𝑠
pr_min

 ≤ ∑ (V𝑖,𝑝,𝑘
comp_agg

 Q𝑖,𝑠
bc)i  ≤ V𝑝,𝑘

blend_agg
 

Q𝑝,𝑠
pr_min

  

∀s = linear blended qualities 

 (volumetric basis), p, k 
(68) 

∑ (V𝑝,𝑘
blend_agg

 Density𝑖)i Q𝑝,𝑠
pr_min

 ≤ ∑ (V𝑖,𝑝,𝑘
comp_agg

 i

Q𝑖,𝑠
bc Density𝑖)  ≤ ∑ (V𝑝,𝑘

blend_agg
 Density𝑖)i Q𝑝,𝑠

pr_max
  

∀s = linear blended qualities 

 (weight basis), p, k 
(69) 

For the nonlinear blending rules case, the nonlinear blending rules for RVP, RON, and MON are 

given by Eqs. (70-82). 
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V𝑝,𝑘
blend_agg

 Q𝑝,𝑠
pr_min1.25

≤ ∑ (V𝑖,𝑝,𝑘
comp_agg

 Q𝑖,𝑠
bc1.25

) ≤ V𝑝,𝑘
blend_agg

 i

Q𝑝,𝑠
pr_max1.25

  

∀s = "RVP", p, k  (70) 

Q𝑝,𝑠
pr_min

≤  Q𝑝,𝑠,𝑘
pr

≤  Q𝑝,𝑠
pr_max

  ∀s = "RON", "MON", p, k  (71) 

Q𝑝,𝑠,𝑘
pr

=  𝑟𝑝,𝑘
RON_avg

+ a1[sens𝑝,𝑘
RON_avg

− 𝑟𝑝,𝑘
RON_avg

 sens𝑝,𝑘
avg

] +

a2 [Ol𝑝,𝑘
sq_avg

− Ol𝑝,𝑘
avg2

] + a3 [Ar𝑝,𝑘
sq_avg

− Ar𝑝,𝑘
avg2

]
2

  

∀s = "RON", p, k  (72) 

Q𝑝,𝑠,𝑘
pr

=  𝑟𝑝,𝑘
MON_avg

+ a4[sens𝑝,𝑘
RON_avg

− 𝑟𝑝,𝑘
MON_avg

 sens𝑝,𝑘
avg

] +

a5 [Ol𝑝,𝑘
sq_avg

− Ol𝑝,𝑘
avg2

] +
𝑎6

10000
[Ar𝑝,𝑘

sq_avg
− Ar𝑝,𝑘

avg2
]

2

  

∀s = "MON", p, k  (73) 

𝑟𝑝,𝑘
RON_avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc

i   ∀s = "RON", p, k  (74) 

𝑟𝑝,𝑘
MON_avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc

i   ∀s = "MON", p, k  (75) 

sens𝑝,𝑚,𝑏𝑙
avg

 = ∑ r𝑖,𝑝,k sens𝑖i   ∀p, k  (76) 

sens𝑝,𝑘
RON_avg

 = ∑ r𝑖,𝑝,k Q𝑖,𝑠
bc

 sens𝑖i   ∀s = "RON", p, k  (77) 

sens𝑝,𝑘
MON_avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc

 sens𝑖i   ∀s = "MON", p, k  (78) 

Ol𝑝,𝑘
avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc

i   ∀s = "OLF", p, k  (79) 

Ol𝑝,𝑘
sq_avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc2

i   ∀s = "OLF", p, k  (80) 

Ar𝑝,𝑘
avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc

i   ∀s = "ARO", p, k  (81) 

Ar𝑝,𝑘
sq_avg

 = ∑ r𝑖,𝑝,𝑘 Q𝑖,𝑠
bc2

i   ∀s = "ARO", p, k  (82) 

The last set of equations for the top-level supply-demand pinch algorithm considers the 

constraints required for modeling the demand uncertainty and the delivered products volume for 

aggregated future periods. Eq. (83-84) are used to compute the loss sale expected in future 

aggregated. Eq. (85) considers future periods delivered volumes of product based on loss 

function in aggregated additional demand and its aggregated variance. Eq. (86) ensures that our 

plan will satisfy the aggregate contracted demand in future periods. 
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z𝑝,𝑘 = 
V𝑝,𝑘

blend_agg
+V𝑝,k−1

pool
−Demand𝑝,𝑘

cont_agg
−Demand𝑝,𝑘

add_agg_mean

√Demand𝑝,𝑘
add_agg_Variance

  ∀p, k  (83) 

L𝑝,𝑘 = al+blz𝑝,𝑘+ clz𝑝,𝑘
2+d

l
z𝑝,𝑘

3+e
l
z𝑝,𝑘

4+f
l
z𝑝,𝑘

5+ g
l
z𝑝,𝑘

6  ∀p, k, l=1-4  (84) 

Deliverp,k
pool_agg

 = Demand𝑝,𝑘
cont_agg

+Demand𝑝,𝑘
add_agg_mean

−

 L𝑝,𝑘√Demand𝑝,𝑘
add_agg_Variance

  

∀p, k  (85) 

Deliverp,k
pool_agg

 ≥ Demand𝑝,𝑘
cont_agg

  ∀p, k  (86) 

The next set of equations represents the linkage between the detailed current period and 

aggregated future periods. The components and products pool inventories at the end of the 

current detailed period should equal to the initial inventories of the first aggregated period which 

enforced by Eqs. (87-88). Also, the current period is enforced to have the same recipe as the first 

aggregated period if there is no pinch point between them by Eq. (89). 

V𝑖,𝑘−1
bc  = V𝑖,𝑚

bc   ∀i, k ϵ KI, m ϵ MC  (87) 

V𝑝,𝑘−1
pool

 = V𝑝,𝑚
pool

  ∀p, k ϵ KI, m ϵ MC  (88) 

r𝑖,𝑝,𝑘 = r𝑖,𝑝,𝑚,𝑏𝑙  ∀i, (bl,p) ϵ BP, k ϵ KI, m ϵ MC  (89) 

The objective function with the set of constraints (2), (4), (6-37), (54), and (56-58) written for 

current period (set MC), with constraints (59-69) and (83-89) represents the top-level model for 

the supply-demand pinch algorithm under the linear blending rules case. The objective function 

with the set of constraints (2), (4), (6-37), (39-51), (54), and (56-58) written for the current 

period (set MC), with constraints (59-89) represents the top-level model for the supply-demand 

pinch algorithm under the nonlinear blending rules case. 

The bottom level of the supply-demand pinch algorithm uses blend recipes, products inventories 

at the end of supply-demand pinch periods, and amount of delivered products at current period 

computed from top-level period to check the feasibility of blend recipes and compute an optimal 

production plan for the detailed periods model. The bottom-level objective function is to 

maximize the refinery profit and ensure that the blend recipes computed at the top level are 

feasible as shown in Eq. (90). The slack variables introduced are forced to be positive and used 
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to detect if there are infeasibilities in components, products pool, or products tanks inventories. 

The penalty weight associated with components inventory slack variables are much greater than 

penalty weights associated with product inventory slack variables to force inventory 

infeasibilities to be on the products’ sides. Also, the penalty weight associated with product 

infeasibility increase with the number of periods to delay any potential product inventory 

infeasibility as far into the future as possible. 

 max. Profit = Current Revenue + Future Revenue − Current Blend Cost −

Future Blend Cost + ∑ [∑ [Penaltybc (S𝑖,𝑚
bc+ + S𝑖,𝑚

bc−)]i ]m ϵ MA + 

∑ [∑ [Penalty𝑚
pr

 (S𝑝,𝑚
pool+

+ S𝑝,𝑚
pool−

)]p ]m ϵ MA + ∑ [∑ ∑ [Penalty𝑚
pr

 (S𝑗,𝑝,𝑚
pr+

+ S𝑗,𝑝,𝑚
pr−

)]j p ]m ϵ MA   

(90) 

The constraints of the bottom-level model are similar to the constraints of the full space model 

with three modifications: (1) drop the constraints associated with products qualities, recipe 

computation and products amount delivered in current period, since recipes used at this level are 

fixed from the top-level model solution which is known to satisfy the qualities constraints and 

amount delivered of the current period are fixed. (2) Modify some of the constraints to include 

the slack variables to detect where inventory infeasibility occurs. (3) Add constraints to ensure 

that the sum of delivered product amount in future detailed periods equals the delivered amount 

computed of the aggregated periods. The constraints associated with qualities computations, 

recipe computations and products delivered amount of current period, Eqs. (34-51) and (54) are 

dropped, and Eq. (33) is replaced with Eq. (91) which uses fix recipes computed at the top level. 

V𝑖,𝑝,𝑚,𝑏𝑙
comp

 = r𝑖,𝑝,𝑘
fix V𝑝,𝑚,𝑏𝑙

blend   ∀i, (bl,p) ϵ BP,(m,k) ϵ MK  (91) 

Eqs. (6-8) are modified to include slack variables as shown by Eq. (92-94). Eq. (95) ensures that 

the sum of delivered products of future detailed periods is equal to the sum of delivered products 

volume of future aggregated periods corresponding to them. 

V𝑖,𝑚
comp_in

+ V𝑖,𝑚−1
bc − V𝑖,𝑚

bc − ∑ V𝑖,𝑝,𝑚,𝑏𝑙
comp

(bl,p)ϵBP +  S𝑖,𝑚
bc+ − S𝑖,𝑚

bc− = 0  ∀i, m ϵ MA  (92) 

∑ V𝑝,𝑚,𝑏𝑙
blend

bl ϵBP + V𝑝,𝑚−1
pool

− V𝑝,𝑚
pool

− Deliver𝑝,𝑚
pool

+ S𝑝,𝑚
pool+

−

S𝑝,𝑚
pool−

= 0  
∀p, m ϵ MA  (93) 

∑ V𝑗,𝑝,𝑚,𝑏𝑙
trans

bl ϵBP +  V𝑗,𝑝,𝑚−1
pr

− V𝑗,𝑝,𝑚
pr

− Deliver𝑗,𝑝,𝑚
pr

+ S𝑗,𝑝,𝑚
pr+

− ∀(j,p) ϵ JP, m ϵ MA   (94) 
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S𝑗,𝑝,𝑚
pr−

=0  

∑ Deliver𝑝,𝑚
pool

m ∈MK = Deliver𝑝,𝑘
pool_agg

  ∀p, k  (95) 

The objective function (90) and set of constraints (2-5), (9-32), (52-53), (55-58), and (91-95) 

represent the bottom-level model of the supply-demand pinch algorithm for both linear and 

nonlinear blending rules. The bottom-level model is the same for both blending rules cases, since 

the fixed recipes used at this level have already been ensured to meet products qualities whether 

linear or nonlinear blending rules are assumed and there are no qualities computations 

constraints needed at this level. 

The full-space MINLP algorithm introduced in section 5 can be used to solve the multi-period 

gasoline blend planning problem under uncertainty in demands using a rolling horizon method 

introduced in section 4. The full-space MINLP algorithm assumes detailed decisions for current 

and future periods. This algorithm faces computations difficulties when many periods are 

considered due to the nonlinearities stemming from the nonlinear blending rules equations and 

loss function associated with the uncertainty in products demands in future periods. Therefore, 

the number of periods can be greatly reduced by aggregating the future periods based on the 

supply-demand pinch concept introduced by Castillo and Mahalec8. The supply-demand pinch 

concept is an aggregation and disaggregation techniques that allow us to decompose the large 

MINLP model into two smaller models (top-level and bottom-level models) solved in sequence. 

The supply-demand pinch concept requires identifying the points where demands are at peaks by 

constructing a cumulative total demand (CTD) curve which is obtained by adding the cumulative 

demands of all products along the planning horizon. Then a cumulative total average production 

(CATP) curve is constructed as the tightest piecewise linear overestimation of CTD with a 

starting point representing the initial products inventory. The points where both curves intersect 

are called the supply-demand pinch point, which represents the point of times where the 

aggregate demands have peaked. At the supply-demand pinch points, the slope of the CATP 

curve changes as shown in Figure 4. The hypothesis is that the optimal blend recipe for time 

periods between the supply-demand pinch points (demands peek) is constant. For the nonlinear 

blending rules model, this leads to solutions which are very close to the global optimum8. The 

aggregate blend between the two pinch points is the lowest possible cost blend since it assumes 

that the blend components will be available just in time when they are required to produce the 
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required amount of products to meet the demands at a given point in time between the pinch 

points. If the recipe computed from an aggregate solution can be used all along the horizon 

between the two pinch points, we are guaranteed to have the lowest cost blend. If it is not 

possible at any point in time between the pinch points to produce the required amount of product 

based on the aggregate recipe due to constraints on blend rates, it means that at that time there is 

not enough of one or more blend components. In order to resolve this infeasibility, the aggregate 

time period is subdivided at the point of infeasibility and the problem is resolved. In this work, 

since products demand consist of contracted demand (certain demand) and additional demand 

(uncertain part), the CTD curve is constructed from contracted demand plus the mean of the 

additional demand (expected uncertain demand), and the supply-demand pinch points are 

obtained based on that CTD curve.  

The production plan is solved at each iteration using the supply-demand pinch algorithm, where 

the top-level model is constructed using a detailed model for the current period and aggregated 

periods based on the supply-demand pinch concept for future periods. This allows us to reduce 

the number of future periods greatly compared to the number of periods of the full-space model 

as shown in Figure 5. The gasoline blend planning problem solved using the supply-demand 

pinch concept frameworks is shown in Figure 6. The top-level model is referred to as 

PT(𝑀𝐶, 𝑘), with the 𝑀𝐶 and 𝑘 representing the parameters for the current detailed period and 

future aggregate periods respectively. The middle-level model is referred to as 𝑃𝑀(𝑀𝐶), which 

maximize the profit of the current detailed period 𝑀𝐶. The bottom-level model is referred to as 

𝑃𝐵(𝑚), which ensures that feasibility of blending recipes of detailed periods 𝑚. 
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Figure 4. Example of supply-demand pinch points obtained from constructing cumulative total 

demand (CTD) curve and cumulative average total production (CATP) curve 

Figure 5. Full-space and supply-demand pinch algorithm with rolling horizon 
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Figure 6. Flow chart of the rolling horizon supply-demand pinch algorithm under demand 

uncertainty  
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3.7. Case Studies 

In this work, three different contracted demand patterns have been considered with different 

number of supply-demand pinch points. For each contracted demand pattern, three different 

cases solved with different additional demand generated randomly for both linear and nonlinear 

blending rules. Therefore, 18 different cases have been solved (9 assumes linear blending rules 

and 9 assumes nonlinear blending rules). All these cases have been solved using the full space 

algorithm and the supply-demand pinch algorithm with different solvers to compare the solution 

and computation times of both algorithms. All cases consider 14-period horizon with only 1 

blending unit. The additional demand means values have been assumed to be 20% of the 

contracted demand initially. Then these additional demands for each period have been adjusted 

by generating a random number from their current mean and variance. Therefore, products 

demand further into the future gets adjusted more times compared to demand closer into the 

future. The mean additional demand generated at each iteration is used to generate demand of the 

second iteration (when the second period of the horizon is our current period). One assumption 

that has been considered is that the demand of the last period does not get updated from its value 

from the previous iteration. The reason for this assumption is that when we reach to the last 

period, revenue computed from that period is highly impacted by previous periods recipes used. 

Therefore, the final revenue from the rolling horizon model might highly vary based on what 

recipes have been used in previous periods, which is out of the scope of this paper.  

The nonlinear blending rules cases have been solved using the actual RON, MON and RVP 

values provided by Castillo and Mahalec8. While the linear blending rules cases have been 

solved using the qualities indices by first converting the actual values into their index’s values 

using octane and RVP index correlations given by Li et al.3 Equations (96-98) represent the 

index correlations for octane (RON and MON) and RVP. 

Octane Index = Octane Number + 11.5        0 ≤ octane number ≤ 85           (96) 

Octane Index = e0.0135(Octane Number)+3.422042       octane numner ≥ 85           (97) 

RVP Index = e1,14log (100 RVP)                      (98) 

Figures 7-9 present the cumulative contracted plus additional mean total demand (CTD) and 

cumulative average total production (CATP) for the three different demand patterns. These CTD 

and CATP enable us to identify the supply-demand pinch points. The CTD curve includes the 
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inventory required at the end of the rolling horizon, and the initial CATP point is determined 

from the initial inventory minus the minimum tank inventory. Note that under the two 

assumptions (1) additional demand is only 20% of contracted demand and (2) additional demand 

is initially proportional to contracted demand, the supply-demand pinch points obtained from 

considering both contracted and additional demand are most likely to have the same position as 

when only contracted demand is considered. This allows us to construct the curve only once at 

the beginning of the horizon without the need to reconstruct after every iteration since the pinch 

points are most likely to stay in their position. Even if that was not the case, the algorithm itself 

will handle a slight movement in pinch by showing infeasibilities when the bottom level of the 

supply-demand pinch model is solved. The three demand patterns considered have zero, one, and 

two supply-demand pinch points respectively as shown in figures 7-9.  

 

Figure 7. CTD and CATP for demand pattern 1 (case 1-3) 
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Figure 8. CTD and CATP for demand pattern 2 (case 4-6) 

 

Figure 9. CTD and CATP for demand pattern 3 (case 7-9) 

3.8. Results and Discussion 

All case studies have been implemented in GAMS 25.1.3 software. MINLP models have been 

solved using ANTIGONE 1.1 as a global solver or DICOPT 2 as a local solver, with CPLEX 

12.8 being used as the MILP solver and CONOPT 4.06 as the NLP solver. All problems have 

been solved using a desktop computer (Intel ® Core™ i5-4690K CPU, 3.50 GHz, and 8.0 GB 

RAM) running Windows 10. The stopping criteria of 0.001% optimality gap or maximum 

computational time of 3600 seconds have been used.  
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The linear blending rules cases have been solved using the full-space algorithm and the supply-

demand pinch algorithm using Antigone solver. The nonlinear blending rules cases were solved 

using 4 different strategies as explained here: 

• First strategy: solves the production planning problem using the full space algorithm, 

where the top and bottom models are solved using Antigone solver. 

• Second strategy: an approximation strategy which solves the production planning 

problem using the full-space algorithm, where top and bottom models are solved using 

DICOPT local solver. This strategy solves the top-level of the full space algorithm then 

fix the profits and the volume of products blended compute from top-level model then 

solves the bottom-level model which maximize the demand delivered in current period 

(maximize current period revenue). The reason for fixing the volume blended is that the 

DICOPT solver fails to converge to a feasible solution when the amount of products 

blended were left as variable. 

• Third strategy: solves the production planning problem using supply-demand pinch 

algorithm, where all three models are solved using Antigone solver. 

• Fourth strategy: solves the production planning problem using supply-demand pinch 

algorithm, where all the three models are solved using DICOPT solver. 

Tables 1 and 2 present the models’ size for the first iteration of all different cases for linear and 

nonlinear blending rules, respectively. These tables show comparison between the models’ size 

for the two algorithms (full-space and supply demand pinch) and for the case of linear and 

nonlinear blending rules. For the full-space algorithm, both first and second models have the 

same model size for all cases since they all use 14 periods model (1 current detailed period plus 

13 future detailed periods). The second model in the full-space algorithm has one more equation 

and one more continuous variable compared to the first model which stems from the equation 

associated with maximizing the revenue of the current period. For the supply-demand pinch 

algorithm, the model size of the first and second models in the supply-demand pinch algorithm 

increases with the number of supply-demand pinch points. The number of periods of each first 

and second model in the supply-demand pinch algorithm represents the current detailed period, 

plus the future aggregated periods (ie: cases 4-6 have three total periods; one current detailed 

period and two aggregated future periods, since we have one supply-demand pinch point). For 
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the third model of the supply-demand pinch algorithm, all cases have the same model size since 

they all have 14 periods. Also, the model size for the nonlinear blending rules models compared 

to linear blending rules models have higher number of equations, continuous variables, and 

nonlinear terms. Since all model size shown are for the model in the first iteration, it is important 

to note that the model size of all detailed models reduces as we roll forward in the horizon, while 

the model size of all aggregated models reduces when the current period represents the last 

period of an aggregated period. 

Table 1. Full-space and supply-demand pinch models’ size in the first iteration for linear 

blending rules 
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First Model 

All cases 

14 4358 1982 666 504 

Second Model 14 4359 1983 666 504 
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First Model 

Cases 1-3 

2 498 255 90 39 

Second Model 2 499 256 90 39 

Third Model 14 3022 2432 78 504 

First Model 

Cases 4-6 

3 687 343 138 60 

Second Model 3 688 344 138 60 

Third Model 14 3028 2432 78 504 

First Model 

Cases 7-9 

4 876 431 186 81 

Second Model 4 877 432 186 81 

Third Model 14 3034 2432 78 504 
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Table 2. Full-space and supply-demand pinch models’ size in the first iteration for nonlinear 

blending rules 
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First Model 

All cases 

14 4610 2402 1002 504 

Second Model 14 4611 2403 1002 504 
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First Model 

Cases 1-3 

2 558 315 138 39 

Second Model 2 559 316 138 39 

Third Model 14 3022 2432 78 504 

First Model 

Cases 4-6 

3 777 433 210 60 

Second Model 3 778 434 210 60 

Third Model 14 3028 2432 78 504 

First Model 

Cases 7-9 

4 996 551 282 81 

Second Model 14 4610 2402 1002 504 

Third Model 14 4611 2403 1002 504 

Tables 3 and 4 summarize computational results for both full-space and supply-demand pinch 

algorithms/strategies for all cases under linear and nonlinear blending rules respectively. The 

first iteration solutions represent a single iteration run which can give a fair comparison between 

the different solution algorithms/strategies since they all have the same initial components and 

products inventories, while the rolling horizon solutions represent the solutions obtained from 

rolling forward in the horizon until the final planning period is reached. The computational 

results aim to evaluate the advantage of using the supply-demand pinch algorithm in terms of 

profit solutions and execution times over the full-space algorithm under linear and nonlinear 

blending rules. When comparing the profit solutions and execution times obtained under linear 

blending rules versus nonlinear blending rules, cases under linear blending rules give higher 

profits but have shorter execution times. This means that using linear blending rules might result 
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in producing off-specs products since nonlinear blending rules are more accurate model for how 

the blending in real-life occurs.  

When comparing the profit solutions and execution times under linear blending rules obtained 

from the first iteration, the profits solutions are the same for cases 1-3 and 7-9 and are within 

0.001% for cases 4-6 between the two algorithms, but the supply-demand pinch algorithm gives 

5 to 150-fold reduction in execution times compared to the full-space algorithm for different 

cases. The slight difference in the profits between the two algorithms for cases 4-6 are within the 

optimality gap defined. For rolling horizon solutions, the supply-demand pinch algorithm profit 

solutions are the same as the full-space algorithm for cases 1-3 and 6-9, and within 0.001% for 

cases 4 and 5. The supply-demand pinch algorithm gives 5 to 30-fold reduction in execution 

times compared to the full-space algorithm for different cases. These results show that using the 

supply-demand pinch algorithm under rolling horizon formulation can compute profit solutions 

similar to the full-space algorithm with great reduction in execution times under the linear 

blending rules. 

Under the nonlinear blending rules, the first iteration profit solutions and execution times results 

can give a fair comparison between the four different solution strategies. The first iteration 

solutions obtained from the four different strategies will be compared then the rolling horizon 

solutions will be compared after. Strategy 1 which is based on the full-space algorithm shows 

that the global solver (Antigone) has failed to close the optimality gap for all different cases. The 

optimality gap ranges from 0.8 to 1.8% for the different cases. Strategy 1 is used as the base 

case, so the other three strategies profit solutions and execution times will be compared to 

strategy 1. Strategy 2 which is based on the full-space algorithm shows that the local solver 

(DICOPT) can achieve profits solutions within the optimality gap (0.001%) from strategy 1 for 

all cases. Also, the solver can close the optimality gap and the execution times are less than 100 

seconds for all cases. Strategy 3 which is based on the supply-demand pinch algorithm shows 

that the Antigone solver might still struggle to close the optimality gap even with the supply-

demand pinch algorithm for most cases (cases 1-3 and 4-6) and profits solutions computed are 

lower compared to strategy 1. Strategy 4 which is based on the supply-demand pinch algorithm 

shows that the DICOPT solver can close the optimality gap for all cases and provide the lowest 

execution times compared to all the other three strategies but has lower profits solutions 

compared to strategy 1. The optimal solutions for strategies 3 and 4, which uses the supply-
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demand pinch algorithm, for all cases are within 0.04% lower compared to strategy 1. This 

deteriorates in profits solutions for strategies 3 and 4 stems from the constraint of the supply-

demand pinch model that restrict all aggregated periods to single recipe which impacts the 

expected revenue and cost computed at the first iteration. This reduction in optimal solutions is 

small and come with the advantage of great reductions in execution times, especially when 

DICTOP solver is used. 

For the rolling horizon solutions, the solutions from all strategies are impacted by the amount of 

products blended and delivered, and the blending recipes used in previous periods since they 

impact components and products inventory levels. For that reason, optimal solution of the rolling 

horizon for all four strategies are not consistent with the different cases. In general, the strategy 1 

gives the best profit solutions in most cases, but this strategy suffers from difficulty in closing 

the optimality gap for all cases causing it to have high execution times. strategy 2 can close the 

optimality gap and allows great reduction in execution times compared to strategy 1, but this 

strategy fixes the volume blended at bottom level model which is used to maximize the current 

period revenues based on the top-level solution. This limitation results in not satisfying early 

possible demands compared to strategy 1 as shown in figure 10. Therefore, while strategy 2 

gives great reductions in execution times compared to strategy 1, it suffers from lower optimal 

solutions in general since it might not be able to prioritize current period guaranteed revenues 

over future uncertain revenues. This can be seen in the profit solutions computed for cases 2 and 

7 which are 0.18% and 0.14% lower compared to strategy 1 respectively. The rolling horizon 

solutions for strategy 3 shows that execution times are reduced by 2 to 5-fold only compared to 

strategy 1 for the different cases, since this strategy struggles in closing the optimality gap. This 

can deteriorate the profit solutions computed as shown in case 7 which is 0.15% lower compared 

to strategy 1. Strategy 4 which uses the supply-demand pinch with local solver (DICOPT) allows 

on average 500 to 1000-fold reduction in execution times compared to strategy 3 and compute 

better profit solutions for most cases. Also, strategy 4 achieves solutions within 0.04% compared 

to strategy 1 for all cases, which shows it is more consistent then strategies 2 and 3. This small 

reduction in profit solutions comes with the advantage of 2000 to 3000-fold reduction in 

execution times. This shows that the big advantage of using the supply-pinch algorithm comes 

from enabling the use of local solver to compute solutions close to optimal with great reduction 

in execution times. 
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Figure 10. Products undelivered demands for case # 9 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 
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Table 3. Results for supply-demand pinch and full-space model for linear blending rules 

Demand 

Pattern 
 Full-space algorithm Supply-demand pinch algorithm 

1 

First Iteration Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Revenue (thousands $) 67,668.6 67,617.1 67,625.0 67,668.6 67,617.1 67,625.0 

Cost (thousands $) 44,897.8 44,841.7 44,855.3 44,897.8 44,841.7 44,855.3 

Profit (thousands $) 22,770.8 22,775.4 22,769.6 22,770.8 22,775.4 22,769.6 

Execution time (s) 22.0 17.1 22.8 1.2 1.1 1.1 

Rolling Horizon Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Revenue (thousands $) 67,396.5 67,634.1 67,575.2 67,396.5 67,634.1 67,575.2 

Cost (thousands $) 44,678.7 44,862.3 44,798.6 44,678.7 44,862.3 44,798.6 

Profit (thousands $) 22,717.8 22,771.7 22,776.6 22,717.8 22,771.7 22,776.6 

Execution time (s) 99.8 102.1 167.2 10.5 12.0 11.3 

2 

 

First Iteration Case 4 Case 5 Case 6 Case 4 Case 5 Case 6 

Revenue (thousands $) 76,960.7 76,657.1 76,745.0 76,961.8 76,658.1 76,746.0 

Cost (thousands $) 51,289.0 51,023.1 51,091.1 51,290.2 51,024.3 51,092.3 

Profit (thousands $) 25,671.7 25,633.9 25,653.9 25,671.6 25,633.8 25,653.8 

Execution time (s) 239.4 62.7 73.7 3.0 2.6 2.8 

Rolling Horizon Case 4 Case 5 Case 6 Case 4 Case 5 Case 6 

Revenue (thousands $) 76,870.1 76,513.6 76,780.4 76,855.9 76,514.6 76,778.8 

Cost (thousands $) 51,223.9 50,896.1 51,128.2 51,209.4 50,897.0 51,126.6 

Profit (thousands $) 25,646.2 25,617.5 25,652.2 25,646.5 25,617.6 25,652.2 

Execution time (s) 336.9 377.8 276.1 15.8 17.9 14.5 

3 

First Iteration Case 7 Case 8 Case 9 Case 7 Case 8 Case 9 

Revenue (thousands $) 70,010.7 70,048.7 70,026.3 70,010.7 70,048.7 70,026.3 

Cost (thousands $) 46,491.6 46,529.3 46,512.0 46,491.6 46,529.3 46,512.0 

Profit (thousands $) 23,519.1 23,519.4 23,514.4 23,519.1 23,519.4 23,514.4 

Execution time (s) 364.1 19.9 33.1 2.4 2.7 3.4 

Rolling Horizon Case 7 Case 8 Case 9 Case 7 Case 8 Case 9 

Revenue (thousands $) 70,120.3 70,069.6 70,088.5 70,120.3 70,058.3 70,088.5 

Cost (thousands $) 46,612.4 46,548.6 46,577.8 46,612.4 46,537.3 46,577.8 

Profit (thousands $) 23,507.9 23,521.0 23,510.7 23,507.9 23,521.0 23,510.7 

Execution time (s) 451.9 126.5 135.0 13.3 15.7 22.5 
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Table 4. Results summary for the four different solutions strategies for the nonlinear blending 

rules cases 

3
 

2
 

1
 Demand 

Pattern Rolling Horizon First Iteration  Rolling Horizon First Iteration  Rolling Horizon First Iteration  

 E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

G
ap

 (%
) 

E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

 

E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

G
ap

 (%
) 

E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

 

E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

G
ap

 (%
) 

E
x

ecu
tio

n
 tim

e (s) 

P
ro

fit (th
o

u
san

d
s $

) 

  

3
6

8
4

5
.7

 

2
3

2
8

8
.6

 

1
.5

9
 

7
2

4
5

.7
 

2
3

3
0

3
.2

 

C
ase 7

 

3
0

9
8

0
.2

 

2
5

3
3

7
.1

 

0
.8

6
 

3
6

2
9

.8
 

2
5

3
6

9
.7

 

C
ase 4

 

3
7

2
3

8
.5

 

2
2

5
1

0
.0

 

1
.6

8
 

3
6

4
8

.5
 

2
2

5
5

9
.5

 

C
ase 1

 

S
trateg

y
 1

 

5
9

4
8

9
.1

 

2
3

3
0

4
.2

 

1
.4

7
 

3
6

2
9

.5
 

2
3

3
0

3
.1

 

C
ase 8

 

3
9

9
7

4
.4

 

2
5

3
3

7
.9

 

0
.9

1
 

7
2

0
0

.2
 

2
5

3
3

8
.0

 

C
ase 5

 

3
4

9
8

1
.9

 

2
2

5
6

0
.8

 

1
.7

4
 

3
7

1
0

.1
 

2
2

5
6

3
.5

 

C
ase 2

 

4
6

5
2

4
.6

 

2
3

2
8

5
.2

 

1
.5

2
 

3
6

2
9

.5
 

2
3

3
0

0
.5

 

C
ase 9

 

4
7

8
2

2
.7

 

2
5

3
7

2
.3

 

0
.9

2
 

3
6

2
3

.5
 

2
5

3
8

1
.8

 

C
ase 6

 

3
7

3
4

3
.3

 

2
2

5
6

4
.9

 

1
.5

2
 

3
6

1
9

.9
 

2
2

5
5

9
.7

 

C
ase 3

 

1
0

7
.1

 

2
3

2
5

5
.0

 

- 

1
3

.3
 

2
3

3
0

3
.7

 

C
ase 7

 

1
5

9
.8

 

2
5

3
3

6
.3

 

- 

5
2

.1
 

2
5

3
6

9
.8

 

C
ase 4

 

8
9

.4
 

2
2

5
1

0
.1

 

- 

1
0

.2
 

2
2

5
5

9
.5

 

C
ase 1

 

S
trateg

y
 2

 

1
6

3
.8

 

2
3

3
0

3
.8

 

- 

1
4

.4
 

2
3

3
0

3
.0

 

C
ase 8

 

1
4

1
.2

 

2
5

3
5

5
.3

 

- 

2
6

.8
 

2
5

3
3

8
.7

 

C
ase 5

 

1
4

8
.7

 

2
2

5
2

0
.6

 

- 

2
0

.3
 

2
2

5
5

8
.3

 

C
ase 2

 

1
9

3
.6

 

2
3

2
7

1
.8

 

- 

9
1

.1
 

2
3

3
0

0
.5

 

C
ase 9

 

1
4

2
.5

 

2
5

3
7

2
.1

 

- 

2
2

.4
 

2
5

3
8

1
.9

 

C
ase 6

 

1
6

5
.0

 

2
2

5
6

4
.4

 

- 

1
3

.3
 

2
2

5
5

9
.7

 

C
ase 3

 

1
1

4
1

9
.2

 

2
3

2
5

3
.0

 

- 

3
6

1
3

.6
 

2
3

2
9

8
.7

 

C
ase 7

 

5
4

5
3

.9
 

2
5

3
3

3
.7

 

- 

5
.4

 

2
5

3
6

8
.2

 

C
ase 4

 

2
5

2
2

3
.6

 

2
2

5
0

4
.7

 

- 

3
6

0
1

.2
 

2
2

5
5

1
.4

 

C
ase 1

 

S
trateg

y
 3

 

1
2

4
5

3
.1

 

2
3

2
8

9
.9

 

- 

3
6

3
3

.6
 

2
3

2
9

8
.2

 

C
ase 8

 

1
4

4
8

4
.3

 

2
5

3
5

0
.1

 

- 

3
.9

 

2
5

3
3

7
.6

 

C
ase 5

 

1
0

8
2

7
.8

 

2
2

5
5

3
.8

 

- 

3
6

0
1

.4
 

2
2

5
5

5
.8

 

C
ase 2

 

1
1

6
8

9
.3

 

2
3

2
9

2
.8

 

- 

3
7

2
8

.3
 

2
3

2
9

5
.3

 

C
ase 9

 

1
4

8
4

5
.0

 

2
5

3
7

5
.8

 

- 

7
.2

 

2
5

3
8

0
.3

 

C
ase 6

 

1
0

8
3

9
.7

 

2
2

5
5

7
.5

 

- 

3
6

0
2

.1
 

2
2

5
5

1
.8

 

C
ase 3

 

2
6

.9
 

2
3

2
8

9
.8

 

- 

2
.0

 

2
3

2
9

8
.7

 

C
ase 7

 

1
5

.7
 

2
5

3
2

7
.6

 

- 

2
.9

 

2
5

3
6

8
.2

 

C
ase 4

 

9
.6

 

2
2

5
0

5
.0

 

- 

1
.4

 

2
2

5
5

1
.4

 

C
ase 1

 

S
trateg

y
 4

 

1
6

.3
 

2
3

2
9

6
.7

 

- 

2
.4

 

2
3

2
9

8
.2

 

C
ase 8

 

1
2

.9
 

2
5

3
5

1
.7

 

- 

1
.9

 

2
5

3
3

7
.6

 

C
ase 5

 

1
3

.1
 

2
2

5
5

4
.2

 

- 

1
.5

 

2
2

5
5

5
.8

 

C
ase 2

 

2
2

.3
 

2
3

2
9

1
.4

 

- 

3
.8

 

2
3

2
9

3
.6

 

C
ase 9

 

1
3

.0
 

2
5

3
7

5
.3

 

- 

1
.5

 

2
5

3
8

0
.3

 

C
ase 6

 

1
0

.5
 

2
2

5
5

7
.0

 

- 

1
.4

 

2
2

5
5

1
.8

 

C
ase 3

 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

79 
 

3.9. Conclusions 

In this work, a production plan model for gasoline blend under demand uncertainty has been 

introduced. The formulation utilizes a fixed-end rolling horizon and loss function formulation to 

maximize the refinery ability to satisfy uncertain demand and maximizes its profit. The products 

demand is modeled as two parts; contracted demand (certain) and additional spot market demand 

(uncertain). In addition, the time-varying uncertainty is considered, where the uncertainty in 

demand of the spot market is higher for periods further into the future. The rolling horizon 

formulation is essential to capture the real-life where new information about the future uncertain 

demand is available as we roll forward along the horizon. Two models based on linear and 

nonlinear blending rules are proposed and solved using a full-space algorithm which uses a 

detailed model for all periods in the planning horizon. The full-space algorithm is effective in 

solving the linear blending model but struggles in closing the optimality gap under the nonlinear 

blending causing high execution times. A new supply-demand pinch algorithm is proposed to 

solve the linear and nonlinear blending models more efficiently, which decompose the problem 

into two sub problems solved in sequence using aggregation and disaggregation technique based 

on the supply-demand pinch concept. Under linear blending rules, the supply-demand pinch 

algorithm computes the same profit solutions compared to full space algorithm with 5 to 30-fold 

reduction in execution times. While for nonlinear blending rules, the supply-demand pinch 

algorithm with global solver (Antigone) computes profit solutions within 0.05% compared to full 

space algorithm solutions for most cases, with only 2 to 5-fold reduction in execution times. The 

big advantage of the supply-demand pinch algorithm is its ability to simplify the large MINLP 

model so that local solvers such as DICOPT can be used to compute solutions close to optimal. 

The supply demand pinch algorithm with DICOPT achieved solutions within 0.04% compared to 

full-space algorithm solutions while reducing execution times by 2000 to 3000-fold. 
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Supporting Information. 

Detailed Results for the four different solutions strategies for the case of nonlinear blending 

rules, Components costs and products prices, contracted demand data, product and component 

tanks data, components qualities and products qualities specifications under both linear and 

nonlinear blending rules, blender capacity, penalty coefficients for inventory infeasibility on the 

components and products sides, coefficients for loss function approximation, actual products 

demands for all cases, and undelivered product demands figures (Supporting Info PDF file). 
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Nomenclature 

Sets and indices 

I = {i} Set of blend components 

P = {p} Set of different products 

K = {k | 1,2, …, K} Set of aggregated future periods at top-level  

M = {m | 0,1, …, M} Set of detailed periods at bottom-level (or periods of the full-space 

model) 

S = {s} Set of qualities 

BL = {bl} Set of blenders 

J = {j} Set of product storage tanks 

MA = {m | 1,2, …, M} Subset of M, detailed periods excluding period 0 

M0 = {m | 0} Subset of M, previous period in detailed periods 

MC = {m | 1} Subset of M, current detailed period 

MF = {m | 2,3, …, M} Subset of M, future detailed periods 

KI = {k | 1} Subset of K, the first aggregated period 

JP = {(j, p)} Tank j can store product p 
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BP = {(bl, p)} Blender bl that can produce product p 

MK = {(m, k)} Periods m (bottom-level periods) that contained in each aggregated 

period k (top-level periods) 

Continuous variables 

Profit Refinery profit 

Current Revenue Sales revenue from the current period  

Future Revenue Sales revenue from future periods 

Current Blend Cost  blending cost from current period 

Future Blend Cost  blending cost from future periods 

V𝑖,𝑝,𝑚,𝑏𝑙
comp

 Volume of component i into product p in blender bl at period m 

V𝑝,𝑚,𝑏𝑙
blend  Volume blended of product p in blender bl at period m 

V𝑖,𝑝,𝑘
comp_agg

 Aggregated volume of component i into product p at period k  

V𝑝,k
blend_agg

 Aggregated volume blended of product p at period k 

V𝑗,𝑝,𝑚,𝑏𝑙
trans  Volume of product p in blender bl transferred to product tank j at period m  

V𝑗,𝑝,𝑚
pr

 Volume of product p stored in tank j during the period m  

V𝑖,𝑘
bc Volume stored of component i in period k  

V𝑖,𝑚
bc  Volume stored of component i in period m  

V𝑝,𝑘
pool

 Volume stored in product pool p at the end of period k 

V𝑝,𝑚
pool

 Volume stored in product pool p at the end of period m 

r𝑖,𝑝,𝑚,𝑏𝑙 Fraction of component i into product p at blender bl during period m 

r𝑖,𝑝,𝑘 Fraction of component i into product p during period k 

Q𝑝,𝑠,𝑚,𝑏𝑙
pr

 Quality value of property s for product p in blender bl during period m 

Q𝑝,𝑠,𝑘
pr

 Quality value of property s for product p in period k  
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Deliver𝑝,𝑚
pool

 Volume of product p shipped at the end of period m  

Deliver𝑝,𝑘
pool_agg

  Volume of product p shipped at the end of period k  

Deliver𝑗,𝑝,𝑚
pr

 Volume of product p shipped from product tank j at the end of period m  

Demand𝑝,𝑚
unmet Unmet demand of product p during period m 

z𝑝,𝑚 z-score for product p during period m 

L𝑝,𝑚 Loss value of product p during period m 

z𝑝,𝑘 z-score for product p during period k 

L𝑝,𝑘 Loss value of product p during period k 

S𝑖,𝑚
bc+, S𝑖,𝑚

bc+ Positive and negative inventory slack variable of components i during period 

m 

S𝑝,𝑚
pool+

, S𝑝,𝑚
pool−

 Positive and negative inventory slack variable of product pool p during period 

m 

S𝑗,𝑝,𝑚
pr+

, S𝑗,𝑝,𝑚
pr−

 Positive and negative inventory slack variable of product p in product tank j 

during period m 

Integer variables 

t𝑝,𝑚,𝑏𝑙
blend  Time required for blend run 

Binary variables  

x𝑝,𝑏𝑙,𝑚 Defines if product p is blended in blender bl during period m 

v𝑗,𝑝,𝑚,𝑏𝑙 Defines if product p is transferred from blender bl to product tank j during 

period m 

u𝑗,𝑝,𝑚 Defines if product p is stored in product tank j during period m 

ue𝑗,𝑚 Defines if a product transition occurs at product tank j at the beginning of 

period m 

Parameters  

SP𝑝 Selling Price of product p 
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CC𝑖 Cost of component i 

V𝑖,𝑚
comp_in

 Volume of components i produced during the period m  

V𝑖,𝑘 
comp_in_agg

 Aggregated volume of components i produced during period k  

t𝑚 Duration of period m  

V𝑝,𝑘
blend_agg

 Aggregated volume blended of product p at period k  

Q𝑖,𝑠
bc Quality value of property s for component i  

V𝑖
bc_min

 Minimum capacity of the tank with blend component i 

V𝑖
bc_max

 Maximum capacity of the tank with blend component i 

V𝑝
pr_min

 Minimum capacity of the tank with product p 

V𝑝
pr_max

 Maximum capacity of the tank with product p  

r𝑖,𝑝
min Minimum fraction of component i in product p  

r𝑖,𝑝
max Maximum fraction of component i in product p  

Q𝑝,𝑠
pr_min

 Minimum quality value of property s in product p 

Q𝑝,𝑠
pr_max

 Maximum quality value of property s in product p 

F𝑏𝑙
blend_min

 Minimum blending rate of blender bl  

F𝑏𝑙
blend_max

 Maximum blending rate of blender bl 

cit𝑝,𝑏𝑙
blend_𝑚𝑖𝑛

 Minimum idle time required by blender to process product p 

ct𝑝,𝑏𝑙
blend_min

 Minimum running time of blender bl for product p 

V𝑏𝑙
blend_min

 Minimum volume blended in blender bl 

t𝑏𝑙
blend_min

 Maximum volume blended in blender bl 

V𝑗
pr_min

 Minimum capacity of tank product j 

V𝑗
pr_max

 Maximum capacity of tank product j 
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V𝑝
pool_min

 Minimum capacity of product pool p 

D𝑗
pr_max

 Maximum delivery rate of tank j  

V𝑖
bc_initial

 Component i starting inventory 

V𝑝
pool_initial

 Product p starting inventory 

u𝑗,𝑝
initial Initial product p in product tank j  

V𝑗,𝑝
pr_initial

 Initial volume of product p in product tank j 

x𝑝,𝑏𝑙
initial Initial product p in blender bl 

Density𝑖 Density of component i  

Demand𝑝,𝑚
cont Contracted demand of product p during period m 

Demand𝑝,𝑚
add_mean

 Mean additional demand for product p during period m 

Demand𝑝,𝑚
add_Variance

 Variance of additional demand for product p during period m 

Demand𝑝,𝑘
cont_agg

 Aggregated contracted demand of product p during period k 

Demand𝑝,𝑘
add_agg_mean

 Aggregated mean additional demand of product p during period k 

Demand𝑝,𝑘
add_agg_Variance

 Aggregated variance of additional demand of product p during period k 

np𝑏𝑙  Number of products that can be blended in blender bl 

Penaltybc Penalty associated with components inventory infeasibilities  

Penalty𝑚
pr

 Penalty associated with products inventory infeasibilities 
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Chapter 4: Adaptive System Identification of Industrial Ethylene 

Splitter: A comparison of Subspace Identification and Artificial 

Neural Networks 
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Abstract  

The manuscript considers the problem of data-driven modeling of an ethylene splitter (from an 

industrial plant). The process presently operates with end composition controllers that does not 

work well during process transition. The objective of the present work is to investigate the use of 

different data-driven techniques such as subspace identification and neural network-based 

methods for the purpose of developing a dynamic data-driven model. To this end, first an 

ethylene splitter simulation model is built that replicates industrial operation. The ability of the 

simulation model to capture the key traits of the process dynamics are first established by 

comparing it with data from the plant operation. The simulation model is subsequently utilized to 

work as a test bed for future control purposes and to serve as an additional test of the modeling 

approaches. An online model adaptation scheme is developed to improve the model’s prediction 

capabilities under new operation patterns. 

Keywords: 

Modeling industrial separation unit; system identification; subspace identification; artificial 

neural network; time series prediction 
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4.1. Introduction  

Ethylene (C2H4) is one of the most versatile and widely used petrochemicals in the world today 

and is primarily being used for the manufacturing of polyethylene. The separation of ethylene 

from ethane by the C2 splitter is normally the final step in the production of ethylene, where the 

final products are primarily ethylene in the top stream and ethane in the bottom stream. The top 

ethylene product is then sold, while the bottom ethane is recycled back to upstream processes. 

Separation of ethylene from ethane is one of the most energy intensive separations, which uses 

large distillation column with over 100 trays due to the small difference in relative volatilities of 

ethane and ethylene [1]. Another contributor to the high energy consumption is that the ethylene 

splitter is commonly operated at high-pressure, utilizing closed-cycle propylene 

refrigeration. Optimization of the C2 splitter process is critical to meet desired ethylene product 

purity while maximization the ethylene-ethane separation and the hydraulic processing capacity 

of the tower. Continued push towards operational efficiency of the ethylene splitter process, in 

turn, continues to motivate advanced modeling and control efforts in this direction. Of particular 

interest are modeling approaches that can readily adapt the model to new operating conditions as 

new data becomes available.  

The complexity of C2 splitter operation stems from many reasons: (1) high interaction between 

the top and bottom purities, (2) small difference in relative volatilities of ethane and 

ethylene, (3) slow dynamics of the column, (4) nonlinear dynamic behavior which changes in the 

plant conditions (such as pressure and temperature), and (5) continuous change 

in feed flow and composition. C2 splitter operates with limited capacity and high feed flow 

which can result in exceeding tower capacity causing tower flooding. The ethylene splitter can 

be modeled using first-principles models or data-driven models. The advantage of first-principles 

models is that they can work in a relatively broad range of operations, but such models are 

expensive, hard to develop, and harder to maintain. Therefore, industrial practice has sought to 

pursue data-driven models that are relatively easier to develop and maintain [2]. These 

challenges make the problem of building an accurate model for C2 splitter a hard task to 

accomplish [3]. The critical metric in evaluating the usefulness of such data driven models is 

model validity and extrapolation capabilities, especially when being used for the purpose of 

control and optimization (and not just process monitoring). 
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In the direction of utilizing first principles model for ethylene splitter, Salerno et al. [1] 

developed a rigorous first principles model in Aspen Plus for ethylene splitter. 

Borralho [4] developed a first principles model for the ethylene plant in gPROMS. 

Yan [5] developed a simplified first principles ethylene plant model which includes a thermal 

cracking section, a separation system, and an integrated refrigeration. Wang [6] developed a 

rigorous dynamic simulation for the startup operation of C2 splitter. Choe 

and Luyben [7] developed rigorous dynamic models of C2 splitter that considers the effect of 

vapor holdup in high pressure columns, which is normally ignored. Eliceche et al. [8] studied 

ethylene plant units’ capacities for bottlenecks in the furnaces and ethylene splitter sections 

caused by changes in the feed flow rate and composition. All these contributions, however, used 

only simulations and have not validated their results against plant operation.  

Friedman [9] reviewed the existing contributions in modeling ethylene plant units using various 

data driven models, including subspace identification and artificial neural network-based 

approaches. Huang et al. [10] proposed a closed-loop subspace identification approach through 

an orthogonal projection. Several examples exist of the application of subspace identification 

methods for data driven modeling of distillation columns using simulation data [11, 12, 13]. 

Kanthasamy et al. [14] developed a nonlinear system identification model for pilot plant 

distillation column based on Hammerstein model. The model consists of a nonlinear static 

element followed by a linear dynamic model. The data generated from their first principles 

model was first validated using experimental data before being used as the process model in the 

Hammerstein model parameter estimation. Norquay et al. [15] developed a nonlinear system 

identification model for an industrial ethylene splitter based on Wiener model, which consists of 

a linear dynamic element followed by a nonlinear static element. In their work, they used plant 

data with only two outputs and three inputs along with generated simulation to develop the 

Wiener model and compared it to real plant data. 

Artificial neural networks (ANN) models have been used by many researchers in the context of 

model identification of a distillation column. Many works have utilized simulation data to model 

distillation column using feed forward neural network [16] [17] [18], recurrent neural network 

[19] [20] and nonlinear autoregressive with exogenous inputs (NARX) network architecture [21] 

[22]. Relatively fewer contributions model industrial distillation columns using real process data. 

Savkovic-Stevanovic [23] used plant data to develop a feed forward neural network model for an 
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industrial distillation column. Singh et al. [24] used laboratory data to model a 9-tray binary 

distillation column available in the laboratory using both, feed forward neural network and 

recurrent neural network. Abdullah et al. [25] proposed a feed forward neural network to predict 

the top and bottom product composition of a pilot plant distillation column using simulation data 

and validation against plant data. ANN based Model Predictive Controller (MPC) has also been 

used in other application [26] [27]. In summary, while many contributions have utilized ANN 

models based on either simulation data or real data, limited work has been carried out to validate 

the model with real data from industrial distillation columns and to compare ANN based 

approaches against alternatives such as subspace identification. 

In practice, process operation changes over time due to internal and external conditions which 

can cause deterioration in model predictions. Therefore, the need to continuously updating 

process models, via adaptive modeling algorithm, as time evolves might be necessary to sustain 

the model predictions accuracy. Alanqar et al. [28] proposed an error-triggered on-line model 

identification strategy for linear state-space model to obtain more accurate state predictions for 

nonlinear process systems. The error-triggering was conducted by a moving horizon error 

detector that quantifies the relative prediction error within its horizon and triggers model re-

identification using recent operations when the prediction error exceeds a threshold. Wu et al. 

[29] proposed a machine learning-based predictive control scheme that utilizes an online update 

of the Recurrent Neural Network RNN models to capture process nonlinear dynamics in the 

presence of model uncertainty.  

Motivated by these considerations, in the present manuscript, the ethylene splitter, a distillation 

column with a large number of inputs and output is modelled using different system 

identification methods. The system identification methods studied in this work are subspace 

identification, NARX neural network, and nonlinear RNN. This is achieved in two steps. First, a 

simulation model in Aspen Dynamics is developed to work as a test bed for future control 

purposes and to serve as an additional test of the modeling approaches. The Aspen simulator is 

developed for testing our implemented control strategy, since it cannot be demonstrated directly 

using the real plant. Subsequently, various data driven models are developed and tested against 

both the simulation and the plant data. Finally, two online modelling schemes are developed for 

the purpose of continuously updating the models with new available data to improve their 

predictions capabilities. The two adaptive modeling algorithms are introduced to keep the 
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dynamic model up to date with the most recent operations and these algorithms are adapted for 

our three system identification methods. The rest of the paper is organized as follows. Section 2 

presents an overview of the ethylene plant,the C2 splitter, and the system identification methods. 

Section 3 presents the developed Aspen dynamics-based simulation model and compares the 

simulation results against the plant operation. Section 4 presents the system identification results. 

Section 5 presents the two adaptive strategies for three different system identification methods 

that allow more recent data to be incorporated into the training approaches. Section 6 

demonstrates the importance of using an adaptive modeling scheme when modeling the ethylene 

splitter for the three system identification methods. Finally, concluding remarks are presented in 

section 7. 

4.2. Preliminaries 

In this section, a detailed description of the C2 splitter is provided, followed by a brief review of 

the different system identification methods utilized. 

4.2.1. C2 Splitter Process  

In this section, we describe the C2 splitter at Joffre site that separates ethylene from ethane, 

which is normally the final step in the production of ethylene. For a detailed description of the 

ethylene production plant, its main sections, and its chemistry, the reader is referred to [30]. The 

required purity of ethylene usually exceeds 99%. To meet this product specification, the quality 

level is set at a purity level greater than what is required to prevent production of off-spec 

products. To operate at a minimum energy consumption, however, the column is operated as 

close as possible to the maximum impurity level. [31] 

A schematic of the C2 splitter at the Joffre site without the end composition controllers is shown 

in Figure 1. The tower has a temperature controller on tray 85, which measures the temperature 

at that tray and adjusts the reboiler. It also has an ethane composition controller at tray 24, which 

measures the ethane composition at that tray and adjusts the reflux. The tower sump level 

controller is used to adjust the bottom product flow rate to maintain the level of liquid at the 

bottom tower to its set point. The reflux drum level controller adjusts the distillate flow to 

maintain the reflux drum level at its set point.  
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Figure 1. C2 splitter current control strategy 

Table 1 gives a summary of the C2 splitter input (manipulated variables and disturbances) 

variables and output variables. 
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Table 1. C2 splitter input and output variables 

Category Variable Description Units 

Disturbance 

�̇�𝑓𝑒𝑒𝑑 Feed flow from upstream process kg/hr 

𝑇𝑓 Feed temperature °C 

𝑥𝐶2𝐻4
 Mole fraction of ethylene % 

𝑥𝐶2𝐻6
 Mole fraction of ethane % 

𝑃𝑓 Feed pressure bar 

𝑣𝑓 Vapor Fraction % 

�̇�𝐶 Condenser duty Gj/hr 

Manipulated 

variables 

�̇�𝑅 Reflux flow kg/hr 

�̇�𝑅 Reboiler duty Gj/hr 

Outputs 

𝑇𝑡_24 Temperature at tray 24 °C 

𝑇𝑡_37 Temperature at tray 37 °C 

𝑇𝑡_51 Temperature at tray 51 °C 

𝑇𝑡_56 Temperature at tray 56 °C 

𝑇𝑡_85 Temperature at tray 85 °C 

𝑃𝑡_1 Pressure at tray 1 bar 

∆𝑃𝑡𝑜𝑝 Top tower differential pressure bar 

∆𝑃𝑏𝑜𝑡𝑡𝑜𝑚 Bottom tower differential pressure bar 

𝑥𝐶2𝐻4 𝑡_97 Mole fraction of ethylene at tray 97 % 

𝑥𝐶2𝐻6 𝑡_24 Mole fraction of ethane at tray 24 % 

�̇�𝑡𝑜𝑝 Flow rate of top product (ethylene) kg/hr 

𝑇𝑡𝑜𝑝 Temperature of top product (ethylene) °C 

𝑥𝐶2𝐻6 𝑡𝑜𝑝 Mole fraction of ethane of the top product (ethylene) % 

�̇�𝑏𝑜𝑡𝑡𝑜𝑚 Flow rate of bottom product (ethane) kg/hr 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 Temperature of bottom product (ethane) °C 

𝑥𝐶2𝐻6 𝑏𝑜𝑡𝑡𝑜𝑚 Mole fraction of ethylene of the bottom product (ethane) % 
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4.2.2. System identification methods 

Based on how the multi-step prediction is generated, these methods can be classified into two 

categories: direct prediction methods and recursive prediction methods. In the direct prediction 

methods, the model is trained to directly make a multi-step prediction and then used directly to 

make multi-step ahead predictions. However, in recursive prediction methods, the model is 

trained to make a one-step prediction and then used to make multi-step ahead predictions 

recursively. To achieve this, the one step ahead prediction provided by the model is fed back into 

the model as to make the next step prediction. These two strategies normally have trade-off 

between bias and estimation variance. The direct prediction strategy has higher variance because 

it uses fewer observations when estimating the model, while the recursive prediction strategy is 

biased when the process is nonlinear [32]. Recursive models that are built to perform one step 

ahead predictions are generally simpler compared to direct models that are built to perform 

multi-step ahead predictions. Therefore, recursive models generally have a smaller number of 

parameters, making it less powerful and less able to fit any shape, and thus lead to a larger bias. 

On the other hand, the smaller number of parameters lead to smaller sensitivity to the data and 

therefore smaller variance. The direct method normally requires larger number of parameters 

make multi-step ahead predictions, which causes the model to have low bias but large variance 

[33]. Another way to classify the models is whether they map the inputs to outputs directly or 

define states that relate the inputs to outputs. Next, we briefly review the subspace identification, 

the NARX neural network, and the RNN modeling approaches.  

4.2.2.1.  Subspace identification 

In this section, a brief description of the subspace identification method is presented. For a 

detailed description of the subspace identification method utilized in this work, the reader can 

refer to the work of Moonen and De Moor [34], the work of Corbett and Mhaskar [35] and Garg 

and Mhaskar [36] for adaptation of the modeling approach for batch and batch like processes. 

This method falls under state-space models and gathers the input-output trajectories of the 

process to construct a linear time invariant discrete time model. Ultimately, the goal is to 

determine the system matrices (A, B, C and D) for a discrete linear time invariant model of the 

following form:  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (1) 
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𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

where 𝑥 ∈ ℝ 𝑛𝑥 denotes the vector of state variables, 𝑦 ∈ ℝ 𝑛𝑦 denotes the vector of measured 

output variables and 𝑢 ∈ ℝ 𝑛𝑢denotes the vector of manipulated input variables. The sampling 

instance (k) represents the sampling time of the process. The subspace identification algorithm 

consists of two steps. In the first step, a state vector sequence is realized as the intersection of the 

row spaces of two block Hankel matrices constructed from the input and output data. In the 

second step, the system matrices are obtained from the least-square solution of a set of linear 

equations. The subspace identification method has only two hyperparameters that need to be 

chosen- these are the number of states, and the history length of the batch. For prediction for a 

new operation, the states of the underlying model must be estimated using any state estimator. A 

Luenberger observer is utilized in this work.  

4.2.2.2. Artificial Neural Network 

In this section, we review two different neural network architectures that have been commonly 

used in system identification and time series prediction: the NARX neural network and the RNN. 

The NARX neural network is an input-output system identification method. 

The NARX neural network is trained using a feed forward network architecture to perform a 

single step prediction using past output measurements as additional inputs (along with the past 

and current inputs) as shown in eq (2). Once the training is complete, the NARX neural network 

uses closed loop architecture to perform multi-step predictions as shown in eq (3), where the 

predicted outputs are fed back as additional inputs (along with the past and current inputs). There 

are two advantages of training the NARX neural network as a single step with open loop 

architecture. First, the input to the feedforward network is more accurate since we are using the 

true past output values as inputs instead of the predicted. Second, the open-loop structure can be 

modelled as purely feedforward architecture which allows using traditional training algorithm 

such as static backpropagation during training. 

�̂�𝑘 = 𝑓(𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦
, 𝑢𝑘, … , 𝑢𝑘−𝑁𝑢

) (2) 

 

�̂�𝑘 = 𝑓(�̂�𝑘−1, … , �̂�𝑘−𝑁𝑦
, 𝑢𝑘, … , 𝑢𝑘−𝑁𝑢

) 

 

(3) 
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Where 𝑓(. ) is the mapping function of the neural network, �̂�𝑘 is the predicted output of the 

NARX neural network at the time 𝑘 − 1 for the time 𝑘. 𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦
 are the past outputs, 

�̂�𝑘−1, … , �̂�𝑘−𝑁𝑦
 are predicted past outputs, and 𝑢𝑘 , … , 𝑢𝑘−𝑁𝑢

 are the current and past output. 𝑁𝑦 

and 𝑁𝑢 are the number of output and inputs delays. In state-space approach, the relationship that 

maps the input variables to output variables is described by intermediate state variables. In 

an input-output model, the output is expressed directly in terms of the inputs, bypassing the state 

variables. While an input-output model can be expressed in the form of an equivalent state-space 

model and vice versa, the difference in the training algorithm of each model can result in 

different models. 

RNN models use internal states (memory) to process a sequence of inputs and these states 

recursively updates themselves throughout the prediction horizon. Therefore, RNN models, 

similar to linear subspace identification, require a state initialization in order to produce accurate 

predictions. The RNN architecture is considered a generalization of feedforward neural network 

with internal memory and must have feedback connection while training which enables the 

network to do temporal processing and learn time sequences. RNN uses the feedback connection 

from its past decisions to ingest its own outputs as inputs, step after step. The past sequential 

information is preserved in the recurrent network’s hidden state as a memory, which is used 

along with the current input to predict the output. The RNN equation can be defined as follows: 

�̂�𝑘 = 𝑔(�̂�𝑘−1, 𝑢𝑘) 

�̂�𝑘 = 𝐶�̂�𝑘 
(4) 

where 𝑔(. ) is a function that takes current inputs 𝑢𝑘, and previous states �̂�𝑘−1, as inputs to 

predict current state �̂�𝑘. 𝐶 is a matrix that transform the current states �̂�𝑘 to the predicted output 

�̂�𝑘. 

4.3. Modeling Ethylene Splitter 

As noted earlier, the first step was to create a dynamic model for testing of the modeling 

procedure and as a future test bed for feedback control purposes. Since the tower has been 

simulated as an isolated system, the dynamic model needed adjustment to replicate the industrial 

process shown previously in Figure 1 due to two issues. First, the model does not consider the 

effect of the propylene stream through the heat exchanger used to preheat the feed. Second, the 
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tower operates with pressure floating on propylene system capacity which is not included in the 

simulation since no information is available on the propylene stream. The required modifications 

needed to walkaround these two issues are discussed later in this section.  

To develop a dynamic model of our process, the process was first modeled as a steady state 

process in Aspen Plus V10 using the Peng Robinson model for property estimation. The tower 

stage Murphree efficiency has been tuned and a value of 0.9 across the tower was found to 

produce results that are close to the real plant operation. The Aspen Plus model has been 

exported to Aspen Dynamics and then adapted to create a closed-loop process that replicates the 

plant operation. The Aspen Dynamics model generated includes the default tower sump level 

controller and the reflux drum level controller. The two other controllers, tray 85 temperature 

and tray 24 ethane composition controllers, have been implemented in Aspen Dynamics to 

replicate plant’s operation. To deal with the two issues mentioned earlier, a temperature 

controller was added to match the plant feed temperature measurements by adjusting the reboiler 

duty in the heat exchanger before the C2 splitter. Additionally, a simple linear model that 

correlates the tower’s feed rate to the tower’s top pressure based on plant’s measurements has 

been developed and implemented to give the top tower pressure set point based on the flow by 

adjusting the condenser duty. The full process used in of the C2 splitter in Aspen Dynamics is 

shown in Figure 2. Table 2 shows the parameters used in each controller. 
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Table 2. Summary of the parameters used in each controller/block in Aspen Dynamics model 

Controller PV Range Output Range Gain 
Integral 

Time (min) 
Comment 

Tower 

Sump Level 

Controller 

0-100% 0-100% 0.55 55 

Tuned to be slow and not 

very reactive. In the plant it is 

configured as a gap controller 

Reflux 

Level 

Controller 

0-100% 0-100% 2 60 Configured same as plant 

Tray 85 

Temp 

Controller 

-40 – 0 C 0 – 165 GJ/hr 0.3 20 

Model simplification 

manipulates duty. In the 

plant, it manipulates 

propylene flow. Tuned to 

mimic plant dynamic 

behavior 

Tray 24 

Ethane 

Controller 

0 – 5 % 0 – 481.11 Mgh 0.19 15 Configured same as plant 

Feed 

Temperature 

Controller 

-50-0 C -100-100 GJ/hr 1 60 

Tuned to be relatively fast to 

match the feed temperature to 

the real plant temperature 

OVHD 

Pressure 

Controller 

0 – 2500kPa -320 – 0 GJ/hr 1 60 

Tuned to be relatively fast. 

This controller gets remote 

SP from correlation to mimic 

plant behavior 

f(x)     

Linear correlation developed 

that relates tower feed flow 

and pressure. 
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Figure 2. Detailed diagram for the Aspen Dynamics Model 

One of the main difficulties involved with validating our simulation model with the plant’s 

ethylene splitter is that no gas chromatography (GC) is available on the ethylene splitter feed. As 

a result, the feed composition measurements are not available. To address this problem, we 

inferred the feed composition from upstream composition information. Figure 3 shows the C2 

splitter with the relevant upstream processes used to infer the feed composition of the C2 splitter. 

The composition of the deethanizer top stream and the composition of the recycling stream of the 

top second demethanizer are measured and used to infer the feed composition of the C2 splitter. 

The overhead deethanizer stream has ethane, ethylene, acetylene, methane, and propylene 
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components. We assume that the liquid feed stream composition of the second demethanizer is 

the same as the overhead deethanizer stream composition subtracting the acetylene. Then, 

component balance calculations are done around the second demethanizer to obtain the 

composition of the second demethanizer bottom. While this procedure helps us to compute the 

C2 splitter feed composition, it is still not completely accurate and might contribute to the plant-

model mismatch in the C2 splitter output measurements.  

The simulation data has been generated by providing the 2nd demethanizer bottom flow rate, 

temperature, and pressure provided by the plant measurements, along with the feed composition 

inferred from upstream processes as mentioned earlier. The tower feed temperature 

measurements of the plant have been used as the set point for the feed temperature controller. 

Tray 85 temperature and tray 24 ethane composition plant set points have been fixed based on 

the real plant set points. The plant-model mismatch is evaluated by generating plots for all the 

inputs and outputs of the real plant and the model for data from (2019-01-31 2:50) to (2019-02-

17 11:20) with sampling rate of 10 minutes. Figure 4 compares plant measurements to simulation 

results for some of the key variables in the process. It is important to note that due to confidential 

reasons, the feed flow, reflux flow, products flows, and reboiler duty values are normalized 

based on the minimum and maximum value of the plant measurements. The plots of the other 

measurements are shown in the Appendix.  
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Figure 3: Ethylene splitter and relevant upstream processes 
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Figure 4. plant measurements versus simulation results 

Since the simulation uses controllers set points as given to generate closed-loop data, the 

behavior of the manipulated variables is used as a measure of the plant-model mismatch. The 

reflux flow, which is one of the manipulated variables, shows that the simulation data has a 

similar pattern to the plant measurement with some bias. The reboiler duty plant-model result 

(included in the Appendix) is less reliable in evaluating the plant-model mismatch since the 

reboiler duty plant measurement is not measured in the plant but computed using energy balance 
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on the side stream. Tray 97 ethylene composition simulation data seems to closely match the 

plant measurements. The top and bottom flow rates of the plant measurement and simulation 

results match qualitatively. The products composition, ethane mole fraction of ethylene stream 

and ethylene mole fraction of ethane stream, have the same behavior overall with regions 

showing a mismatch between the plant and the simulation. Beyond the possible parameter and 

model structure issues, there are two other key reasons for the plant-model mismatch: (1) the 

feed composition of the tower is not measured, but instead is computed from upstream process 

information. As a result, it might not be the actual tower feed composition. (2) tower separation 

efficiency was assumed to be 0.9 for all trays which is not the case for the real plant. This can be 

confirmed from comparing the ethylene composition mismatch at tray 97 to the ethylene 

composition mismatch at the bottom product. The simulation seems to have higher separation 

compared to the plant at the middle section of the tower which explains why reflux and reboiler 

duty of the plant measurement are higher than the simulation data. The simulation seems to have 

less separation compared to the plant at the tower ends, which can be seen in the top and bottom 

products composition. 

The key illustration (and objective) for the use of the dynamic simulator was to develop a test 

bed that behaves similarly to (and captures the complex behavior of) the plant. Thus, the intent is 

not to perform parameter estimation using plant data and the simulator model structure to 

calibrate the simulator. Rather, it simply establishes that the simulator can be a reasonable stand-

in for plant operation for testing modeling and control implementations. The figures in this 

section establish the success of this objective. 

4.4. Data driven Modeling of the Ethylene Splitter 

In this section, we model the ethylene splitter to evaluate the different system identification 

methods for three different cases: (1) simulated data with 9 inputs shown in Table 1 (Sim9), (2) 

simulated data with only 4 inputs (feed flow, feed temperature, reboiler duty, and reflux flow) 

(Sim4), and (3) plant data with the same 4 inputs as case 2 (Plant4). The Sim9 case study uses all 

of the available tower inputs to model the ethylene splitter, including inputs that are not 

measured in the plant. As for the Sim4 case, we model the ethylene splitter using only the inputs 

measured in the plant to replicate the real ethylene splitter case. Note that in the Sim4 case, the 

other five inputs essentially act as disturbances. In our analysis, we compare Sim9 and Sim4 to 

evaluate the benefits of having more input measurements (such as feed composition, pressure, 
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and vapor fraction) compared to less input measurements. Sim4 and Plant4 are utilized to 

demonstrate the ability of the approach for modeling the simulator and the plant data. For all 

three case studies, the 16 output variables shown earlier in Table 1 are being predicted. The 

metric to evaluate the prediction capability of the methods (and also as a loss function in the NN 

based approaches) is the weighted mean squared error (WMSE) as shown in eq (5). Both training 

and testing datasets were normalized using the maximum and minimum values of each variable 

in the training set as shown in eq (6), so that the WMSE is computed using the normalized 

predicted and actual values.  

𝑊𝑀𝑆𝐸 =  ∑ 𝑊𝑖

𝑖

(�̂�𝑖 − 𝑦𝑖)
2 (5) 

𝑦𝑖 =  
𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 (6) 

where 𝑖 is an index of the output, 𝑊𝑖 is the weight associated with the output 𝑖. �̂�𝑖,𝑦𝑖, and 

𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 are the scaled predicted, the actual scaled, and the measured outputs respectively. 

Each one of the 16 outputs have an assigned weight which is included in the Appendix to 

represents how important this output in our prediction model. The products compositions are 

assigned the highest weights to emphasize their importance compared to the other outputs. In 

order to build a data driven model for our C2 splitter based on the available data and to evaluate 

the impact of the different hyperparameters associated with each model, the first 2,000 data 

points shown in the Figure 4 with sampling rate of 10 minutes are used. More details about the 

training of each system identification method are provided in the corresponding subsections 

below. For clarity, we will use the term training set to refer to the data used in training, the term 

validation set to refer to the data used in estimate the performance of the models with different 

hyperparameters, and testing set to estimate the final performance of our model. In this section 

where different models hyperparameter are investigated we only use training and validation 

datasets which are used for training and evaluating our model's predictions performance.  

Remark – It is important to note that our system identification goal is to predict the 

output for multi-step ahead using the inputs at these steps. In particular, the aim is to 

evaluate our model's capability of predicting 20 steps into the future (equivalent to 3 hours 

and 20 minutes). The ability of the model to provide accurate multi-step ahead predictions is a 

key to its potential use in an MPC. In particular, an MPC formulation utilizes the model and 
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candidate future inputs to predict multi-step future outputs where the number of steps represent 

the prediction horizon. The ability to predict (accurately enough) the future process outputs for a 

candidate future input trajectory, therefore, implies that the model can be used as part of a 

successful MPC implementation. 

All of the training and prediction results have been generated using a desktop computer with 

Windows 10 Pro (Intel ® Xeon ® W-2135 @ 3.70GHz CPU, 128.0 GB RAM, and NVIDIA 

GeForce RTX 2080 Ti GPU). The subspace identification algorithm has been implemented in 

MATLAB R2018b and it uses the CPU during training. The neural network algorithms have 

been implemented in Python using Keras framework and run using Jupyter Notebook (anaconda 

3) and uses the GPU during training. 

4.4.1. Subspace Identification 

The subspace identification approach requires only two hyper-parameters: the number of states 

and the Hankel matrix size (history length). Note that the Hankel matrix size should be slightly 

higher than number of states. One of the benefits of the subspace identification approach is the 

uniqueness of solution. Thus, a given data set, with a given set of hyper parameters gives the 

same solutions (unlike neural network-based approaches). A single run has therefore been used 

for each different choice of these hyperparameters. The training dataset for all case studies are 

1,500 data points, while the validation dataset is 500 data points. Also, the last 20 data points 

from the training dataset are included in the validation dataset to allow states convergence by the 

observer before making predictions as shown in eq 5. The WMSE for the training and validation 

sets have been computed using a 20-step ahead predictions. After every 20 step 

predictions, the measurements at these future time points are utilized to update the states using a 

Luenberger observer and then the predictions are carried out again. The Luenberger observer 

takes the following standard form: 

�̂�𝑘+1 = 𝐴�̂�𝑘 + 𝐵𝑢𝑘 + 𝐿(𝑦𝑘 − �̂�𝑘) (6) 

where A and B are the discrete dynamic system matrices and L is the observer gain matrix. The 

observer gain matrix was computed using pole placement. In this work, we choose to place the 

observer pole for each state on the real axis using a normal distribution and a random location 

between 0 and 0.01. Table 3 reports the WMSE for the different choice of states and Hankel 

Matrix size. The best hyperparameters (number of states-Hankel matrix size) for the Sim9 and 
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Plant4 cases are 8 states and 10 Hankel matrix size. The best hyperparameters for the Sim4 case 

are 12 states and 18 Hankel matrix size. One of the key metrics in comparing our system 

identification methods is the CPU time and complexity of the training process. The training time 

for a single model in all three cases was approximately 22 seconds. Thus, the total training time 

needed to search over the hyperparameters was approximately 308 seconds for each case.  

Table 3. Summary of subspace identification results for hyperparameter optimization 

N
u
m

b
er

 o
f 

st
at

es
 

H
an

k
el

 M
at

ri
x

 S
iz

e 

WMSE 

Sim9 Sim4 Plant4 

T
ra

in
 

V
al

id
at

io
n
 

T
ra

in
in

g
 

T
im

e 

T
ra

in
 

V
al

id
at

io
n
 

T
ra

in
in

g
 

T
im

e 

T
ra

in
 

V
al

id
at

io
n
 

T
ra

in
in

g
 

T
im

e 

2 4 0.068 0.204 21.8 0.340 0.435 21.7 0.337 0.552 21.8 

2 6 0.065 0.160 21.8 0.439 0.393 21.5 0.402 0.641 21.8 

2 8 0.072 0.156 22.0 0.422 0.341 21.7 0.375 0.513 21.9 

4 6 0.061 0.167 21.8 0.076 0.494 21.7 0.163 0.531 22.1 

4 10 0.059 0.157 21.8 0.073 0.500 21.6 0.153 0.498 21.5 

4 14 0.047 0.112 21.8 0.076 0.478 21.5 0.174 0.584 21.5 

8 10 0.051 0.035 21.7 0.147 0.272 21.6 0.083 0.071 21.6 

8 14 0.046 0.040 21.9 0.106 0.208 21.6 0.088 0.073 21.5 

8 18 0.051 0.037 21.8 0.093 0.138 21.7 0.090 0.075 21.7 

12 14 0.035 0.084 21.9 0.101 0.148 21.7 0.164 0.159 21.6 

12 18 0.041 0.060 22.0 0.085 0.109 21.6 0.159 0.121 21.6 

16 18 0.091 0.075 21.9 0.195 0.107 21.7 28.84 44.59 21.7 

16 22 0.318 0.323 22.1 0.217 0.103 21.8 155.0 222.7 21.8 

20 22 0.111 0.098 21.9 0.191 0.162 21.8 0.483 0.448 21.8 

The subspace identification method seems to generate reasonably good predictions for all three 

cases. The subspace identification simulation WMSE results show that Sim9 case predictions are 
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better compared to Sim4. This is expected since the Sim9 model has more inputs information in 

comparison to Sim4, such as feed composition which improves the model prediction capability.  

4.4.2. NARX Neural Network 

The NARX neural network has multiple hyperparameters that need to be optimized such as: 

number of past inputs and output, number of layers, number of cells in each layer, and activation 

function of hidden layers. We considered different architectures with 1, 2, and 3 layers, different 

numbers of past inputs and outputs (6, 10, and 14), and three activation functions in the hidden 

layers which are relu, sigmoid, and tanh. The number of data used to find the best model is the 

same 2,000 data points used in the subspace identification. Similar to the subspace identification, 

the first 1,500 data points were used for training, and the last 500 data points were used for 

validation. The only difference is that a portion of this training set (the last 200 data points) was 

not included directly in the training but used to avoid overfitting (we call it holdout set). Note 

that the holdout set is used to return the model that performed the best on this holdout set so as 

such it is part of the training dataset. The holdout set was chosen to include the last 200 data 

points from the training dataset to ensure that the model is performing well over the most recent 

operations.  

The loss function picked is the weighted mean squared error (WMSE) and the inputs and outputs 

were normalized between values of 0 and 1. Adam optimizer has been adopted to train the neural 

network with initial learning rate of 0.001 and a batch size of 128 was used. The training process 

stops when the number of epochs reaches 5,000. The parameters obtained in a certain epoch that 

perform best on the holdout set are used to evaluate the performance on the validation set. Since 

the neural networks results can vary based on the initialization of the weights, 3 independent runs 

for each case were conducted to evaluate the performance of each case. The four models with the 

best average WMSE on the validation set over the three runs are evaluated further by running an 

additional 30 runs for each case to find the model with the best hypermeters. Figure 5 

summarizes the results obtained for all the best four cases for the 30 independent runes for the 

Sim9, Sim4, and Plant4 cases, respectively. To establish a fair comparison of the NARX neural 

network with the subspace identification results, the WMSEs of the NARX neural 

network model is evaluated on its capability to predict 20-step ahead. Therefore, once the 20-step 

ahead are predicted recursively, the real values of these predictions are realized and used to 

predict the first step from the next prediction horizon. 
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Figure 5: Train and validation WMSE for the best four NARX neural network architecture for 

Sim9, Sim4, and Plant4 

The best model for each case was chosen based on the validation WMSE mean and variance 

results for the 30 runs. The model with the best results for Sim9 case uses 6 past information, one 

hidden layer with 64 cells, and the sigmoid activation function in the hidden layers. The model 

with the best results for Sim4 case uses 14 past information, one hidden layer with 32 cells, and 

the sigmoid activation function in the hidden layers. The model with the best results for Plant4 

case uses 6 past information, two hidden layers with 64 and 32 cells, and the sigmoid activation 

function in the hidden layers. The sigmoid activation function is more suitable for modeling our 
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process due to its ability to provide higher nonlinearity fitting compared to relu and lower range 

compared to tanh. Also, it is important to note that the trained WMSE is lower than the 

validation WMSE which indicates that the model is overfitting on the training sets even with 

using part of it as holdout set. The training time for a single model was roughly 260 seconds. The 

total training time needed to search over the hyperparameters was roughly 28 hours for each 

case. Note that the training for the NARX neural network was performed on the GPU.  

Once the optimal hyperparameters for each case has been found, all the 1,500 data points in the 

training data were used to train the model and a holdout set was not used. The NARX neural 

network method seems to generate reasonably good predictions for all three cases. The NARX 

neural network simulation WMSE results show that Sim9 case predictions are better compared to 

Sim4. This is expected since the Sim9 model has more inputs information such as feed 

composition compared to Sim4, which improves the model prediction capability.  

4.4.3. Recurrent Neural Network 

In this work, our aim is to model the recurrent neural networks (RNNs) as a state-space model 

(similar to subspace identification). While the use of subspace identification and NARX neural 

network methods for dynamic modeling in chemical engineering processes has been well 

studied, the use of RNNs for the same purpose has not been sufficiently pursued. Therefore, 

different RNN training architectures have been investigated before selecting the best architecture 

to use to model our distillation columns. In this section, we will discuss the different strategies to 

train the RNN and introduce our proposed training architecture and its results.  

RNN can be trained as a single-step model or multi-step model. In a single-step setup, the model 

is trained to predict a single output in the future by feeding it the current input and the previous 

state as inputs and the current output as output as shown in eq (6). A single-step model can still 

be used recursively to perform a multi-step prediction. In a multi-step setup, the model is trained 

to predict a sequence of range future outputs using a range of future inputs and previous states. 

The multi-step model can used to do multi-step predictions directly. In this work, we train our 

model as a multi-step prediction model. 

Since the RNN is modeled as a state space model, the initial state of the RNN has a direct effect 

on the immediate and transient response of the network. Since these states do not have any 

meaningful physical property, physical measurements cannot be used directly as the initial 
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values of the hidden states, similar to subspace identification, and state initialization is needed. It 

is important to note that a state-space model is equivalent to an input-output model, but the 

training procedure of the two models generate different results [37]. The work of Sum et. al [38] 

have showed that every RNN can be transformed to a NARX model, and vice versa, under some 

conditions. The common approach to initialize the states of the RNN is the washout method, In 

the washout method, the states are initialized with values of zero or random values and then the 

RNN is run for several steps until the effect of the initial state values wash out. This method 

gives poor state initialization due to two main reasons. First, the predictions during the washout 

period can be too inaccurate to use since they can vary for each input trajectory based on the 

output trajectory. Second, the RNN may experience some unstable situations during the training 

which causes the sates to explode within the washout period. [39]. 

The RNNs is normally trained using the Back-Propagations Through Time (BPTT) algorithm 

which can suffer from a vanishing or exploding gradient [40]. Therefore, Long Short-Term 

Memory cells (LSTMs) are used in this work instead of simple RNN since they can resolve these 

issues [41]. LSTMs facilitate the flow of information throughout a network by employing cells 

equipped with gates to remember, forget, or output information. This causes the LSTM networks 

to have two types of states: cell states and hidden states, where simple RNN networks have only 

hidden states. Throughout the paper we use states to refer to both cell states and hidden states. 

More details about the LSTM networks used in this work can be found in [42]. 

In this work, we utilized two RNNs; the first RNN is used as an observer to find the initial states 

and the second RNN is used as a predictor of future outputs by using the initial states and the 

future inputs. Figure 6 shows the proposed RNN which includes the observer and the predictor 

RNN.  

 

Figure 6: RNN architecture with observer and predictor 
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The observer takes both multi-step of past inputs and outputs to build the states, which are 

passed as initial states to the predictor. The predictor uses these initial states along with multi-

step future inputs to predict multi-step future outputs. In this work, we used the past multi-step of 

the observer (N) to be equal to 10 (similar to the subspace identification), and the multi-step 

predictions of the predictor (F) to be equal to 20 (number of multi-step ahead predictions). We 

chose 20 as the multi-step ahead predictions to make the results comparable to the subspace 

identification and the NARX neural network methods, since both methods were used to 

recursively predict 20 steps ahead.  

RNNs have multiple hyperparameters that need to be optimized such as: number of layers, 

number of cells in each layer, and number of past inputs and outputs used in the observer RNN. 

The number of past inputs and outputs used in the observer RNN is chosen to be 10 to fairly 

compare to the subspace identification. Also, the LSTM implementation used in this work is 

cuDNNLSTM which can only have tanh as the activation function. We have considered different 

architectures for the observer and predictor with 1 and 2 layers. The number of data used to find 

the best model is the same 2,000 data points used in the first two approaches. The first 1,500 data 

points were used for training, where a portion of this training set (the last 200 data points) were 

used as holdout set, similarly to the NARX neural network method. The last 500 data points were 

used for validation. The loss function is the weighted mean squared error (WMSE) and the inputs 

and outputs were normalized between values of 0 and 1. Adam optimizer has been adopted to 

train the neural network with initial learning rate of 0.001, and a batch size of 128. The training 

process stops when the number of epochs reaches 5,000. The parameters obtained in a certain 

epoch that perform best on the holdout set are used to evaluate the performance on the validation 

set. Since the neural networks results can vary based on the initialization of the weights, 3 

independent runs for each case were conducted to evaluate the performance of each case. The 

three cases with the best average WMSE on the validation set over the three runs are evaluated 

further by running 30 additional runs for each case to find the model with the best hypermeters. 

Figure 7 summarizes the results obtained for all the best three cases for the 30 independent runs 

for the Sim9, Sim4, and Plant4 cases respectively.  
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Figure 7: Train and validation WMSE for the best three RNN architectures for Sim9, Sim4, and 

Plant4 

The best model for each case was chosen based on the validation WMSE mean and variance 

results for the 30 runs. The model with the best results for Sim9 and Sim4 cases use one hidden 

layer with 32 cells. The model with the best results for Plant4 uses one hidden layer with 64 

cells. The train WMSE is much lower than the validation WMSE, which indicates that the RNN 

is overfitting on the training data. The training time for a single model was between 600 and 

1,000 seconds based on the model size. The total training time needed to search over the 
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hyperparameters was roughly 28 hours for each case. Note that the training for the RNN was 

performed on the GPU. 

Once the optimal hyperparameters for each case has been found, all of the 1,500 data points in 

the training data have been used to train the model, without the use of holdout set. To alleviate 

overfitting, a dropout technique was used to regularize our neural network training. We applied 

dropout to the hidden states between the LSTM cells between the time steps (horizontal 

connection in Figure 6) on the observer and the predictor. Also, since cuDNNLSTM 

implementation does not support dropout within the recurrent cells, the final LSTM 

implementation used simple LSTM instead of cuDNNLSTM and it was trained on the CPU since 

it was faster than training it on the GPU. The values, 0.8 and 0.2, were used as dropout rates on 

the observer and predictor, respectively. 

4.5. Results and Discussion  

In this section we compare and discuss the results and challenges of the three system 

identification methods. Table 4 gives a summary of the results achieved by the system 

identification methods on the three different case studies. The subspace identification and the 

RNN methods were trained on the CPU, while the NARX neural network was trained on the 

GPU. When comparing each case individually, it can be observed that a higher number of 

parameters results in longer training time and lower WMSE on the training data. The neural 

network methods (NARX and RNN) have better results on the validation dataset compared to 

subspace identification for the Sim9 and Sim4 cases. As for the Plant4, the subspace 

identification showed better results on the validation dataset compared to the neural network 

methods. These results indicate that subspace identification can deal better with measurement 

noise associated with the Plant4 case compared to the simulation cases. Also, it shows that neural 

networks-based approaches (NARX and RNN) are capable of outperforming subspace 

identification when their architectures are optimized to predict these specific data. This shows 

that neural network models with large number of parameters can provide good predictions even 

when trained using small amount of data. 
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Table 4: Summary of the three system identification results on the three different case studies on 

training and validation dataset 

Case Modeling Approach # Parameters 
WMSE 

Train 

WMSE 

validation 

Training 

Time 

Sim9 

Subspace Identification 408 0.051 0.035 21.7 

NARX Neural Network 11,280 0.012 0.018 187.5 

RNN 13,584 0.005 0.008 1174.4 

Sim4 

Subspace Identification 400 0.085 0.109 21.6 

NARX Neural Network  9,648 0.024 0.021 215.5 

RNN 12,304 0.011 0.034 1152.9 

Plant4 

Subspace Identification 288 0.083 0.071 21.6 

NARX Neural Network 10,608 0.047 0.125 215.6 

RNN 40,976 0.018 0.104 1264.9 

Neural network methods (NARX and RNN) require more time to optimize the hyperparameters 

and obtain the final architecture of the model due to two reasons: (1) the training time for a 

single model using neural network methods required approximately an order of magnitude larger 

compared to subspace identification. (2) the training of subspace identification model is stable, 

and the solution generated is unique compared to neural network methods solutions. Therefore, a 

single run is needed to evaluate a specific architecture of subspace identification, while multiple 

runs are needed to evaluate a specific architecture of neural network methods. Also, it is 

important to understand how the testing dataset behaves compared to the training dataset to 

further understand the comparison of the three system identification approaches. 

In order to explain the difference in operations between the training and validation dataset used 

for hyperparameter optimization purposes the score plots of the principal components analysis 

(PCA) based on all the input variables for the Sim9, Sim4, and Plant4 cases are shown in Figure 

8. In this figure, the first two components are used to illustrate the nature of the operating 

patterns in the training and validation dataset. Samples closer to each other represent similar 

operating patterns, while samples farther away from each other have distinct operation patterns. 
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Figure 8. PCA scores plot of inputs variables for the three studied cases for hyperparameters 

optimization  

The figure shows that the validation dataset has similar operating patterns to the training dataset 

for all three cases. Also, it can be observed that simulation and real plant cases with four inputs 

look similar which confirms that while model-plant mismatch exists, as observed in the previous 

section, both data share similar key patterns. This indicates that the results in Table 4 are 

evaluating the models’ capability at interpolating (validation dataset is similar to the training 

dataset).  

Remark – The neural network system identification methods (NARX and RNN) have the 

capability to outperform subspace identification for ethylene splitter when they are trained and 

optimized to predict a specific dataset. This does not show that neural network methods could 

provide better results on “true testing data” (data that has not been used in training or optimizing 

hyperparameters), it only shows that when dealing with steady state data where the dynamic is 

not changing, the neural network methods have the capability to outperform subspace 

identification.  

Next, we evaluate our models’ performance on new data that have not been used in the training 

including hyperparameter optimization, which we call the testing dataset. It is important to note 

that the training data is also different than the one used in the previous results since we always 

aim to use the most recent data available for training. To provide an understanding of the change 

in operations of our training and testing data the score plots of the principal components analysis 

(PCA) based on all the of input variables for the three case studies are shown in Figure 9. In this 

figure, the first two components are used to demonstrate the information about the operating 

patterns in the training and testing data. Samples closer to each other represent similar operating 
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patterns, while samples farther away from each other have distinct operation patterns. This 

shows that for all case studies, the first 260 samples of the testing data are similar to the training 

samples, meaning they have similar operation patterns. While the last 240 samples of the testing 

data are different from the training samples meaning the process is transitioning to new operating 

conditions. Therefore, model capability over the first 260 and last 240 samples are being denoted 

as `interpolation’ and `extrapolation’, respectively. 

Figure 9. PCA scores plot of inputs variables for the three studied cases for online  

Table 5 gives a summary of the results WMSE achieved by the system identification methods on 

the three different case studies for the new unseen testing data. Figures 10 to 12 demonstrate the 

predictions of the top product flow rate and composition on the testing dataset for the three 

different system identification models for the cases Sim9, Sim4, and Plant4 respectively. Note 

that the predictions are updated every 20 sampling instances. Thus, the outputs converge to the 

measured variables every 20 sampling instances, but if the process dynamics are mismatched 

from the model, they diverge again. The subspace identification has better results for Sim9 and 

Plant4 cases compared to neural network methods (NARX and RNN), while neural network 

methods have better results for Sim4 case. For Sim9, subspace identification outperforms neural 

network methods in both interpolation and extrapolation. One reason for such results is that the 

interpolation data still represents slightly different operations compared to the training data as 

can be observed from the Figure 9 PCA scores for the Sim9 case. This means that the neural 

network methods results can deteriorate greatly if the testing data is slightly different than most 

of the training dataset, where subspace identification performance is not impacted as much by 

such small different between the training and testing datasets. For Plant4, the neural network 
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methods seem to outperform subspace identification for interpolation data, but subspace 

outperform neural network for extrapolation data. These results confirm the tendency of NARX 

neural network and RNN to overfit (and thus be better at interpolation) and thus, are not as 

suitable for extrapolation purposes.  

The above also points to a somewhat fundamental limitation with neural 

network models (NARX and RNN). It is observed that they are unable to revert to or naturally 

result in a simpler model when a smaller dataset is available, and more importantly, when the 

dynamics being expressed in the smaller data set are relatively less complex (in the sense that 

they can be adequately expressed using a linear model). In general, neural network models 

(NARX and RNN) have better predictions when using smaller number of input cases (Sim4 and 

Plant4) as opposed to subspace identification. This is mainly due to the small number of training 

examples causing the model to be more prone to overfitting when more input information is 

available. 

Table 5: MSE of the three system identification results and training times on the three 

different case studies on testing dataset 

Case Studies  Data  Subspace Identification  
NARX  

Neural Network  
RNN  

Sim9  

All WMSE 0.518  3.752  4.948  

Interpolation WMSE 0.004  0.017  0.040  

Extrapolation WMSE 1.075  7.798  10.265  

Training Time 21.7 241.3 1060.4 

Sim4  

All WMSE 26.452  0.958  2.419  

Interpolation WMSE 0.025  0.018  0.037  

Extrapolation WMSE 55.080  1.976  4.999  

Training Time 21.6 289.8 1089.7 

Plant4  

All WMSE 0.630  1.499  1.541  

Interpolation WMSE 0.113  0.079  0.088  

Extrapolation WMSE 1.191  3.037  3.115  

Training Time 21.6 313 1858.8 
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Figure 10: Results of the three system identification methods on testing dataset for Sim9 case 
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Figure 11: Results of the three system identification methods on testing dataset for Sim4 case 
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Figure 12: Results of the three system identification methods on testing dataset for Plant4 case 

4.6. Online Model Updating scheme 

In the previous section, we illustrated our different system identification methods for the 

ethylene splitter and analyzed the influence of different hyperparameters on each model’s 

performance. Finally, we evaluated our developed model on new data (testing dataset). In this 

section, we propose different online system identification algorithms to improve the model 

predictions capability and evaluate it. One of the key things to consider when implementing 

system identification online is model validity over time and when it is necessary to update the 

model. An online modeling scheme to keep our model relevant to the most recent operation is 

needed because our model is built based on limited data and there are frequent changes in 

operating patterns causing models’ prediction capability to degrade. Therefore, updating the 

model based on the most recent measurements might server to improve model validity for the 

current process operation. Even in the case where our training data span the full range of process 

operation, some of our disturbance variables are not measured and not considered when building 
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the model. This can cause model degradation when the unmeasured disturbances differ from the 

training data considerably. Finally, the model update becomes fairly useful for the subspace 

identification method since the ethylene separation process is nonlinear and subspace 

identification method generates an inherently linear model. 

Consider n is the set of the initial training samples, and Δn is subset of the training samples that 

corresponds to the initial 20 samples in n. m is the set of the whole testing samples, and Δm is 

subset of the testing samples that corresponds to the initial 20 samples in m. The Δm samples 

correspond to the prediction horizon needed in the MPC implementation, which is assumed to be 

20 in this work. Our online model updating algorithm starts by using the initial training samples 

n to determine the minimum and maximum values of the inputs and outputs variables for 

normalizing purposes. Then the n training samples are normalized and used to build our system 

identification model. Next, the identified model is used to predict the Δm samples outputs using 

their inputs. After the actual values of the testing sample Δm are available, they are added to 

training data n and the first Δn samples of the training data are removed (so that we always have 

1500 samples for training). The model is then re-identified using the new normalized training 

samples n before being used to predict the next Δm testing samples. The training algorithm for 

online scheme is summarized in Algorithm 1. 

Algorithm 1 online model update scheme 

• Use the initial training data (n) to determine the minimum and maximum values of all the 

inputs and outputs variables for normalizing purposes. 

while termination criterion not fulfilled do: 

• Normalize the inputs and output variables of the training data (n) and testing data (Δm) 

using the minimum and maximum value of the initial training data.  

• Train the model using the normalized input variables and normalized output variables of 

the training data. 

• Use the normalized input variables of the Δm testing data to predict the normalized 

output variables. 

• Anti-normalize the normalized output variables to obtain nominal predictions of the 

output variables. 

• Update the training data by removing the first Δn samples and adding Δm samples of 

actual realized values of the testing data. 

• Update the testing data by considering the next Δm samples of the testing data. 

end while 
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While Algorithm 1 can improve the model prediction capability by re-identifying the model 

based on the most recent operations after every Δm samples, a rapid change in the operations, 

unmeasured disturbances specifically, might still result in poor performance since the model is 

only updated after every Δm samples. Therefore, we propose another algorithm based on model 

monitoring and error tracking by comparing model predictions with observed outputs. The idea 

is to trigger model re-identification when the error between the model prediction and observed 

value exceed a specific threshold or after every Δm samples. Since a big change in operation 

conditions can results in triggering re-identification after only a single prediction and recognizing 

that adding that single point to the training data may (and should not) impact the model greatly, 

we put a lower limit (𝑘) on how many new data points are needed before triggering model re-

identification. The online model update with error tracking scheme is summarized in Algorithm 

2. 

 Algorithm 2 online model update with error tracking scheme 

• Use the initial training data (n) to determine the minimum and maximum values of all the 

inputs and outputs variables for normalizing purposes. 

while termination criterion not fulfilled do: 

• Normalize the inputs and output variables of the training data (n) and testing data (Δm) 

using the minimum and maximum value of the initial training data. 

• Train the model using the normalized input variables and normalized output variables of 

the training data. 

• Use the normalized input variables of the Δm testing data to predict the normalized 

output variables. 

• Compute the Weighted Mean Squared Error (WMSE) using the normalized predicted 

output and the normalized observed output for the Δm testing samples. WMSE(𝑖 =
1, … , Δ𝑚). 

• For loop (𝑖 = k, … , Δ𝑚 − 1): 

o if MWSE(𝑖) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: 

▪ Break and return 𝑖 as 𝐼 

o else: I = Δ𝑚 

• Anti-normalize the normalized predicted output variables (1, … , 𝐼) to obtain nominal 

predictions of the output variables. 

• Update the training data by removing the first 𝐼 samples and adding 𝐼 samples of actual 

realized values of the testing data. 

• Update the testing data by removing the first 𝐼 samples and adding the next 𝐼 samples of 

the testing data. 

end while 
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One challenge with the two algorithms introduced is it needs to check if the most recent data 

have sufficient excitation to obtain a reliable model. In this work, the subspace identification 

algorithm checks if there is sufficient excitation in the data before applying system identification. 

It is important to note that one of the tuning parameters in the subspace identification is the 

number of states. Therefore, for some given choice of number of states, the method may report 

that the data is not sufficiently excited, so it will only identify a model which is ‘consistent’ with 

the observed excitation. As for the neural network methods, model re-identification uses the 

previous identified model which was trained on previous data (supposedly have enough 

excitement) as a starting point then modifies these parameters by training the network on the 

more recent data. Thus, the network should still preserve some of the learning that was done on 

the initial data which has sufficient excitement. In the present implementation, the subspace 

identification has always showed that excitation was sufficient to reidentify a new model every 

time model re-identification was required. One reason that our data was informative to trigger 

system identification always is due to the relatively high disturbance (feed flow, feed 

temperature, feed composition, etc.). 

4.7. Ethylene Splitter Online Modeling Scheme Results 

To demonstrate the online modeling schemes introduced in the previous section, we use the same 

training and testing datasets used earlier for the three case studies. In this section, we consider 

1,500 training samples (𝑛) for case studies Sim9, Sim4, and Plant4. Also, we consider 500 

testing samples (𝑚) for testing all case studies. The 500 testing samples are predicted recursively 

20 samples (Δ𝑚) at a time with an updated model. The 20 samples which correspond to a 

duration of 3 hours and 20 minutes represent the prediction horizon needed in the MPC 

implementation.  

4.7.1. Online Subspace Identification Results 

In this section, we implement the two proposed online model update algorithms using the 

subspace identification method and compare it to the results obtained without model update to 

show the effectiveness of our algorithms. The threshold parameter in Algorithm 2 used to trigger 

model re-identification before 20 steps are picked based on the WMSE computed from Section 

4. The thresholds for the three cases (Sim9, Sim4, and Plant4) were chosen to be 1.5 times the 

WMSE value computed in Section 4. This was chosen to control the number of model re-
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identification triggers since it was occurring too frequently due to high noise possibly. One thing 

to note is that Algorithm 2 predictions are expected to be better compared to no model update 

predictions for two factors; (1) updating the model based on most recent operations makes the 

model learns more relevant information on how the system is behaving at these operating 

conditions. (2) every time model re-identification is triggered; the observer is used to estimate 

the current state variables which improve the predictions. In order to show the impact of the first 

factor (model update) separately, we run another algorithm (Algorithm 3) that uses triggered 

steps obtained from Algorithm 2 to re-estimate the states at these steps before making 

predictions. Table 6 shows the WMSE for the no-model update versus our three algorithms over 

the 500 samples, the first 260 samples, and the last 240 samples.  

For all three cases (Sim9, Sim4, and Plant4), the WMSE results show that frequently updating 

the model based on the more recent operations can greatly improve the predictions when the 

process is going to a new operation mode (extrapolation). When comparing the extrapolation 

WMSE results for the no update method with Algorithm 3, we can see that reinitializing the 

states using the observer is a factor in improving the prediction but model reupdate is still the 

key factor, which can be observed from comparing the WMSE from Algorithm 2 versus 

Algorithms 3. Also, model reupdate does not give significant (if any) improvement on 

interpolation dataset. Another thing to observe is that Sim9 results are greatly better than Sim4, 

which shows the benefits of having some future inputs information (especially tower feed 

composition) on the model prediction capabilities. One unforeseen key result was that the 

subspace identification generated better extrapolation predictions for Plant4 compared to Sim4 

with the model update and without. One reason for such results might be because the real plant 

data goes through data compression, causing it to be constant for some period of time if it is not 

changing much, which is easier to predict for the linear subspace identification model. The 

model seems to need more frequent re-identification when going through extrapolation data 

compared to interpolation, as expected. Also, Sim4 and Plant 4 cases need more frequent model 

reupdates compared to Sim9 because they do not have information about the feed composition 

which is important when predicting products compositions. Figures 13 and 14 show the subspace 

identification results for Plant4 case on interpolation and extrapolation datasets, respectively. For 

brevity purposes, the results for Sim4 and Sim9 cases are not included. The dash horizontal lines 

in the figures represent where system re-identification occurred in Algorithm 2. Also, it is 
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important to note that subspace re-identification takes the same time reported in Table 5 since it 

requires identifying the model from scratch. 

Table 6: WMSE for subspace identification method with no model update versus the other 

three algorithms 

Case 

Studies 
Data No Update Algorithm 1 Algorithm 2 Algorithm 3 

Algorithm 2 

re-

identificatio

n trigger 

Sim9 

 

All 0.518 0.043 0.024 0.415 39 

Interpolation 0.004 0.003 0.003 0.004 13 

Extrapolation 1.075 0.087 0.046 0.861 26 

Sim4 

 

All 26.452 0.737 0.404 23.922 44 

Interpolation 0.025 0.021 0.019 0.018 13 

Extrapolation 55.080 1.512 0.822 49.819 31 

Plant4 

 

All 0.630 0.235 0.092 0.319 58 

Interpolation 0.113 0.094 0.056 0.070 17 

Extrapolation 1.191 0.387 0.130 0.588 41 
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Figure 13. Extrapolation data prediction with subspace identification for the real plant data with 

no update and the three algorithms 

 

Figure 14. Interpolation data prediction with subspace identification for the real plant data with 

no update and the three algorithms 
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4.7.2. Online NARX Neural Network and RNN Results 

In this section, we implement the two proposed online model update algorithms using the NARX 

neural network and RNN methods and compare them to the results obtained with no model 

update to show the effectiveness of our algorithms on these neural network system identification 

methods. When performing model reupdate in subspace identification, the model is identified 

from scratch every time the model reupdate is performed. When reupdating the model for neural 

network methods, the model parameters of the last identified model are used to initialize the 

parameters of the new model before training it on the new training data for only 500 epochs. This 

is done to lower training time and utilize the information that have already been captured by the 

previous training runs. The threshold parameter in Algorithm 2 used to trigger model re-

identification before 20 steps are picked based on the WMSE computed from Section 4. The 

thresholds for the three cases (Sim9, Sim4, and Plant4) were chosen to be 1.5 times the WMSE 

value computed in Section 4. This was chosen to control the number of model re-identification 

triggers since it was occurring too frequently due to high noise possibly. Table 7 and 8 shows the 

WMSE for the no-model update versus our three algorithms for the NARX neural network and 

RNN methods, respectively.  

Tables 7 and 8 show that for all three cases (Sim9, Sim4, and Plant4), frequently updating the 

model based on the more recent operations can greatly improve the predictions when the process 

is going to a new operation mode (extrapolation). Also, model reupdate does not give significant 

(if any) improvement on interpolation dataset, similar to subspace identification. One unforeseen 

key result was that NARX neural network and RNN gives better predictions on Sim4 compared 

to Sim9 for the no update method, which is opposite to the results obtained from subspace 

identification. One reason for such results is that the NARX neural network and RNN are 

overfitting when they are provided with more inputs information causing them to generate bad 

results and model reupdating becomes more necessary. RNN model seems to be more prone to 

overfitting compared to the NARX neural network model which might be due to our chosen 

architecture (RNN has a greater number of parameters than NARX neural network). This can be 

observed from the fact that both models are performing closely similar on interpolation dataset, 

but NARX neural network outperform RNN on extrapolation dataset. Also, both models seem to 

have similar performance on Plant4 and Sim4 cases, where subspace identification performance 

on Plant4 was greatly better than Sim4. Figures 15 and 16 show the NARX neural network 
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results on Plant4 case for interpolation and extrapolation respectively. Figures 17 and 18 show 

the RNN results on Plant4 case for interpolation and extrapolation respectively. Also, it is 

important to note that system re-identification takes tenth the time reported in Table 5. This is 

because when reupdating the model, the model parameters of the last identified model are used 

to initialize the parameters of the new model before training for only 500 epochs as opposed to 

using 5,000 epochs when training the model for the first time.  

Remark – The results obtained from the three system identification methods show that subspace 

identification is the least prone to overfitting, while RNN is the most prone to overfitting. This is 

because of the structure of the model (linear versus nonlinear), the number of parameters, and the 

training algorithm. RNN and NARX neural network can outperform subspace identification 

when the testing data are similar to the majority of the training data, but their performance starts 

deteriorating greatly when testing data behavior discrepancy increases compared to training data. 

Reducing the number of parameters, increasing the number of training points that behave similar 

to the testing data, and decreasing the number of training points that behave differently compared 

to testing data, might help greatly in improving the neural network model's capability to 

extrapolate. Also, using data compression on the inputs before RNN model can improve model 

performance.  

Table 7: WMSE for NARX neural network method with no model update versus the other two 

algorithms 

Case Study Data No 

Update 

Algorithm 

1 

Algorithm 

2 

Algorithm 2 re-

identification trigger  

Simulation 9 

Inputs 

 

All 3.752 0.137 0.064 59 

Interpolation 0.017 0.005 0.004 14 

Extrapolation 7.798 0.279 0.130 45 

Simulation 4 

Inputs 

 

All 0.958 0.227 0.080 48 

Interpolation 0.018 0.019 0.012 14 

Extrapolation 1.976 0.453 0.153 34 

Plant 4 Inputs 

 

All 1.499 0.219 0.088 40 

Interpolation 0.079 0.084 0.056 15 

Extrapolation 3.037 0.365 0.123 25 
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Table 8: WMSE for RNN method with no model update versus the other two algorithms 

Case Study Data 
No 

Update 

Algorithm 

1 

Algorithm 

2 

Algorithm 2 re-

identification trigger 

Simulation 9 

Inputs 

 

All 4.948 0.575 0.272 62 

Interpolation 0.040 0.012 0.006 18 

Extrapolation 10.265 1.186 0.561 44 

Simulation 4 

Inputs 

 

All 2.419 0.359 0.112 48 

Interpolation 0.037 0.017 0.009 13 

Extrapolation 4.999 0.730 0.224 35 

Plant 4 Inputs 

 

All 1.541 0.222 0.141 43 

Interpolation 0.088 0.060 0.053 15 

Extrapolation 3.115 0.398 0.236 28 

 

Figure 15. Interpolation data prediction with NARX neural network for the real plant data with 

no update and the two algorithms 
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Figure 16. Extrapolation data prediction with NARX neural network for the real plant data with 

no update and the two algorithms 

 

Figure 17. Interpolation data prediction with RNN for the real plant data with no update and the 

two algorithms 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

132 
 

Figure 18. Extrapolation data prediction with RNN for the real plant data with no update and the 

two algorithms 

Figure 19 demonstrates the improvement achieved from our two system adaption algorithms 

compared to no model update for the three system identification methods on 20 steps ahead 

prediction. The figure shows that frequent model updates for our three system identification 

methods can improve the prediction of the top ethane composition.  
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Figure 19. Compare true and predicted ethane compositions for the three different model update 

strategies using the different system identification methods. 

4.8. Conclusions 

In this paper, three different system identification methods (subspace identification, NARX 

neural network, and RNN) have been developed for modeling industrial ethylene splitter. The 

system identification methods have been adapted to fit simulated and real plant data to compare 

and show their capability at developing dynamic model for both data. The results show that 

linear subspace identification method can provide the best predictions in general for the dynamic 

systems due to their capability of extrapolating, while neural networks methods are highly prone 

to overfitting and faces issues in generalizing to new process behavior. Also, subspace 

identification requires greatly less time to optimize the hyperparameter compared to neural 
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network methods due to their uniqueness and the time required for training. Finally, two adaptive 

strategies have been proposed for the three different system identification methods to allow more 

recent data to be incorporated into the training approaches. The two adaptive strategies show 

great improvement in the model prediction capabilities for all the three system identification 

methods. Also, for the case where only a small amount of training data is available, single model 

architecture for subspace identification method combined with the adaptation strategy can 

perform well at both interpolation and extrapolation data. On the other hand, neural network 

methods can benefit from having large architecture (number of cells in a layer) when 

interpolating but this causes the results to be poor when extrapolating. This suggests that 

different neural network architectures may be needed for interpolation data and extrapolation 

data if it is possible to detect whether the current and future operation is already represented in 

the training data or not.  
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Chapter 5: Flooding and Offset-Free Nonlinear Model Predictive 

Control of a High-Purity Industrial Ethylene Splitter Using a 

Hybrid Model 
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Abstract  

This work aims to achieve flooding free control for an industrial ethylene splitter. The tower 

operates at high capacity and faces flooding issues due to feed disturbances. This work develops 

a replacement of the current control strategy with an offset-free Nonlinear Model Predictive 

Control (OF-NMPC) to improve the control and avoid flooding. The key idea is to develop an 

OF-NMPC that uses a hybrid model comprising of a Nonlinear Autoregressive Network 

(NARX) for predicting dynamics, and a first principles steady state model to capture flooding. 

The steady state model relates tower internal flow to the manipulated variables and is 

incorporated as a constraint within the OF-NMPC. The effectiveness of the proposed OF-NMPC 

is demonstrated on an Aspen simulation model which is shown to capture the key traits of the 

real plant. The simulation results demonstrate the ability of the proposed hybrid model based 

OF-NMPC design to achieve flooding free control. 

Keywords: 

Control of industrial separation unit; Hybrid model; Nonlinear model predictive control; 

Distillation column flooding control 
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5.1. Introduction  

Distillation columns are commonly used in chemical plants to separate various chemical 

mixtures. Some distillation columns are required to have high and constant level of products’ 

purities (Fuentes and Luyben, 1983), while keeping high level of throughputs. Frequently, 

industries over-reflux their distillation columns to meet product purity specifications. As a result 

of the over-reflux, industries use 30% to 50% more energy than necessary to meet the product 

specification (Dr. James B. Riggs, 2000), which may reduce their production capacity limit. 

Effective control of distillation columns can avoid the need to over-reflux and reduce energy 

usage. Another common problem facing distillation columns is flooding, which occurs due to 

excessive accumulation of liquid inside the column. Flooding can decrease separation efficiency 

and cause products’ purities to go off specifications (Emerson Process Management, 2009). This 

work considers the ethylene splitter (C2 splitter) located at Joffre site in Alberta. A C2 splitter is 

used to separate ethylene from ethane during the final step in the production of ethylene. The 

ethylene product is drawn from the top of the tower to be sold in the market as a final product, 

while the ethane product is drawn from the bottom of the tower to be recycled to upstream 

processes. An advanced control strategy is critical to meeting the required ethylene product 

purity, maximizing energy usage efficiency, and considering hydraulic processing capacity of the 

tower. The complexity of operation and control of a C2 splitter stem from many reasons: (1) high 

interaction between top and bottom products’ purities, (2) small difference in relative volatilities 

of ethane and ethylene, (3) slow and nonlinear dynamics of the column, and (4) disturbances of 

feed flow, composition, and enthalpy, which can strongly affect products’ purities. Additionally, 

the C2 splitter studied operates with limited capacity and high feed flow, which can cause 

flooding in the tower. In summary, the C2 splitter at the Joffre site faces challenges in 

maintaining constant products’ purities and faces flooding issues. 

In the process industry, Proportional-Integral-Differential (PID) controllers are widely used due 

to their simplicity and effectiveness (Balaji and Rajaji, 2013) in solving most single variable 

control tasks with small order dynamics and small or no deadtime (Valancia-Palomo, G.; 

Rossiter, 2007). However, PID controllers may be ineffective in controlling complex processes 

with multiple inputs and outputs, and processes that exhibit large deadtime. PID controllers 

directly compare the measured output value with a reference output value and use the difference 

between these values (the error) to adjust manipulated variables in order to minimize the error 
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between the measured output value and its setpoint (Efheij et al., 2019). The parameters of the 

PID controllers used in the calculation of the manipulated variables must be tuned to provide an 

effective control of the output, which is not an easy task. 

On the other hand, a Model Predictive Control (MPC) utilizes a dynamic model of the process, 

which can be identified using system identification, to predict process output variables over the 

prediction horizon based on the input variables (manipulated variables) (Efheij et al., 2019). The 

MPC’s goal is to calculate a control action (i.e. manipulate variables moves) that minimizes the 

error between the predicted output variables and their setpoints over a finite horizon. Therefore, 

the effectiveness of the MPC relies heavily on the availability of a reasonably accurate process 

model (Bequette, 2007). MPC algorithms based on linear dynamic model may be ineffective in 

controlling nonlinear processes that operate over a wide range of operational conditions. 

Therefore, MPC algorithms based on a nonlinear dynamic model may be essential to effectively 

controlling such processes (Tian et al., 2014). Developing a nonlinear model that precisely 

matches the plant dynamics is unachievable in most cases, and a plant-model mismatch is 

inevitable (Badwe et al., 2010). Furthermore, unmeasured process disturbances can widen the 

mismatch between the plant and the model, and subsequently degrade the MPC’s performance 

(Tian et al., 2014). Yousefi et al. (Yousefi et al., 2015) studied the effect of model-plant 

mismatch on the performance of control systems. Therefore, various methods have been 

proposed in literature to address the offset problem caused by plant-model mismatch or 

unmeasured disturbances (Faanes and Skogestad, 2005) (González et al., 2008) (Maeder and 

Morari, 2010) (Muske and Badgwell, 2002) (Huang et al., 2010). One method that has been 

widely used in industrial MPC implementation (Bequette, 2007) is shifting the set points to 

compensate for the plant-model mismatch. Qin and Badgwell (Qin and Badgwell, 2003) 

provided an overview of industrial MPC technology. Also, Forbes et al. (Forbes et al., 2015) 

examined established and emerging trends in the industrial applications of MPC. 

Several works have focused specifically on the control of distillation columns. Taqvi et al. 

(Ammar Taqvi et al., 2019) addressed the various disturbances and operational difficulties of 

distillation columns. Meenakshi et al. (Meenakshi et al., 2013) used an MPC-based subspace 

identification method to control an ethylene splitter. The work of Riggs (Dr. James B. Riggs, 

2000) determined that a MPC works better than Proportional-Integral (PI) controllers when one 

product purity is more important than the other, while PI controllers work better when both 
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product purities are equally important. Chen et al. (Chen et al., 2010) developed a nonlinear 

MPC strategy for distillation based on the assumption of full-state feedback and demonstrated 

the performance advantages of their nonlinear MPC compared to linear MPC. Ramesh et al. 

(Ramesh et al., 2009) developed a nonlinear model-based control scheme using Nonlinear 

Autoregressive Network with Exogenous Inputs (NARX) model to control a distillation column. 

Foss and Cong (Foss and Cong, 1999) developed a nonlinear model predictive control based on a 

multi-model structure through first principles modeling and estimated the model parameters 

using data generated by a rigorous model. 

Compared to other distillation columns, high-purity distillation columns are hard to model due to 

their strong nonlinearity and transition dynamics between different operation points. Xiong et al. 

(Xiong et al., 2014) introduced multiple model-based approaches under the framework of the 

expectation maximization algorithm to model a high purity distillation column. Sirniwas et al. 

(Ravi Sriniwas et al., 1995) used nonlinear autoregressive models with exogenous inputs 

(NARX) to identify a model for the high purity distillation column and used nonlinear MPC to 

control the process. Bachans et al. (Bachnas et al., 2014) reviewed different data-driven linear 

parameter-varying modeling approach for a high purity distillation column. 

In previous work, we studied different system identification methods to use within a MPC 

(Jalanko et al., 2021) to improve process control of the ethylene splitter. Also, we developed a 

simulation model in Aspen dynamics to use as a test bed for control purposes and demonstrated 

that the simulator behaves similar to the real distillation column. The previous results, however, 

did not consider the tower flooding. The flooding in the studied tower is caused by excessive 

accumulation of liquid at the bottom section of the tower. Flooding can be recognized in 

distillation columns by a sharp increase in differential pressure, a loss of bottom product flow, a 

degradation in the separation of products, or a change in the column temperature profile (Kister, 

1990). The use of data-driven models to predict the previously mentioned measurements to 

identify tower flooding is a potential route towards flooding control. However, data-driven 

models may suffer from poor predictions under flooding conditions due to the limited amount of 

flooding operation data available to be used during model training. Therefore, this work aims to 

develop a hybrid model that uses first principles model to avoid tower flooding and a data-driven 

model to control the products’ purities. 
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Several works have also considered the topic of hybrid modeling. Patel et al. (Patel et al., 2020) 

developed a hybrid model that incorporates a first principles model in the identification of 

subspace-based state space model. Ghosh et.al (Ghosh et al., 2019) developed a hybrid modeling 

framework that uses data-drive modeling approach to predict the error between the output 

generated by the first-principles model and the plant output. The following works have also 

considered hybrid modeling approaches for different processes (Su et al., 1992) (Zhang et al., 

2019) (Tsen et al., 1996) (Psichogios and Ungar, 1992) (Hassanpour et al., 2020) (Wu et al., 

2020). These works have either integrated first-principles knowledge directly in their data-driven 

models or have used data-driven models to model the error between their first principles model 

outputs and the process outputs. The goal of achieving flooding free control, however, is not 

readily achievable using these approaches. In summary, while control designs exist for simple 

distillation columns, the problem of control while handling flooding and accounting for 

nonlinear and complex behavior (all of which are present in high purity distillation columns such 

as the ethylene splitter) have not been addressed. 

Motivated by these considerations, in the present manuscript, we develop an offset-free 

Nonlinear Model Predictive Control (OF-NMPC) based on NARX prediction model to improve 

the control of our studied distillation column and avoid tower flooding. First, data that represents 

flooding behavior using the Aspen simulator is generated. The generated data from the simulator 

is compared to the plant measurements to establish that the simulator captures the process 

dynamics. Then, we generate rich data by exciting the system (applying RGS signal on the 

manipulated variables) to develop a predictive model to the simulator. This data is first used to 

identify a linear model using subspace identification. However, our experiments showed that the 

linear subspace model is not sufficiently accurate for this application, hence a nonlinear model is 

developed using NARX to ensure accurate predictions. An OF-NMPC based NARX model is 

implemented to control the products’ purities and its performance is compared to the PI 

controller’s result. OF-NMPC performed quite well in the region away from the flowing 

conditions. In order to eliminate occasional excursions in the flooding region, the internal liquid 

flow rate at the tray where flooding occurs is calculated via a first principles model as a function 

of reflux flow and reboiler duty. This linear model is added as a constraint in our MPC to 

eliminate the internal increases to the point where the tower flooding occurs. Note that this 

approach is different from existing hybrid modeling approaches in the sense that the first-



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

145 
 

principles model and the data-driven model are identified independently, and both are used 

models within a MPC framework. The remainder of the paper is organized as follows: Section 2 

provides an overview of the preliminaries relevant to this work. Specifically, Section 2.1 presents 

a brief description of the C2 splitter. Section 2.2 presents the developed Aspen dynamics-based 

simulation model and compares the simulation results against the plant operation under flooding 

scenario. Section 3 introduces the hybrid modeling scheme and the hybrid model-based OF-

NMPC. Specifically, Section 3.1 provides the background of system identification based on 

NARX. Section 3.2 presents the developed steady-state model used within our OF-MPC to avoid 

flooding. Section 3.3 presents the hybrid model-based OF-NMPC approach used in this work. 

Section 4 present the system identification and OF-NMPC results with and without flooding 

constraint and compares it to the PI controller strategy results. Finally, Section 5 presents 

concluding remarks.  

5.2. Preliminaries 

This section describes the C2 splitter process with its current control strategy. Next, it introduces 

the Aspen dynamic simulation model, then presents results generated from the Aspen dynamic 

simulation and compares it to the plant measurements. 

5.2.1. C2 Splitter Process 

This section describes the C2 splitter at Joffre site, which is the final step in the production of 

ethylene. The reader can refer to the work of Abedi (Abedi, 2007) for a detail description of the 

ethylene production plant, its main sections, and its chemistry. A schematic of the C2 splitter at 

the Joffre site without the end composition controllers is presented in Figure 1. The towers 

currently have the following PI controllers:  

• Temperature controller at tray 85, which measures the temperature at that tray and adjusts 

the reboiler duty to maintain the temperature at its setpoint. 

• Ethane composition controller at tray 24, which measures the ethane composition at that 

tray and adjusts the reflux flow to maintain the composition at its setpoint.  

• Tower sump level controller at the bottom of the tower, which adjusts the bottom product 

flow rate to maintain the level of liquid at the bottom tower at its setpoint.  

• The reflux drum level controller at the distillate, which adjusts the distillate flow to 

maintain the reflux drum level at its setpoint. 
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Figure 1. C2 splitter current control strategy 

5.2.2. Modeling the Ethylene Splitter 

As noted earlier, the first step was to create a dynamic model that captures the complex behavior 

of the plant to be used as a test bed to demonstrate the benefit of the proposed control strategy 

and show that it can avoid tower flooding. The ethylene splitter is simulated in Aspen Plus V10 

as an isolated system and imported into Aspen Dynamics. Since the ethylene splitter is simulated 

as an isolated system, as presented in Figure 2, the dynamic model needed some adjustments to 

replicate the industrial process. The reader can refer to the previous work (Jalanko et al., 2021) 

for more details on modeling the ethylene splitter and for a detailed discussion on the reasons 

behind plant-simulation mismatch. Due to the lack of gas chromatography (GC) on the ethylene 
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splitter feed, the feed composition is not measured/known. Therefore, the feed composition was 

inferred using upstream process information via mass, mole, and energy balances. This can result 

in a mismatch between the simulation and the plant results. Another factor that contributed to the 

plant-simulation mismatch is that simulator assumes that the tower’s feed only has ethane and 

ethylene, while the real process is known to have a small amount of methane, propylene, and 

propane. Table 1 gives a summary of the C2 splitter input variables (manipulated variables and 

disturbances) and output variables used in this work. 

 

 

Figure 2. detailed diagram for the Aspen dynamics model 
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The simulation data was generated by providing the bottom of the 2nd demethanizer flow rate, 

temperature, and pressure provided by the plant measurements, along with the composition 

inferred from upstream processes. In the previous work (Jalanko et al., 2021), the tower feed 

temperature measurements of the plant were used as the set point for the feed temperature 

controller which adjusts the duty of the heat exchanger. In this work, the heat duty was fixed 

since it provided a better match between the simulation and the plant data results. Tray 85 

temperature and tray 24 ethane composition plant setpoints were fixed based on the real plant 

setpoints. The plant-model mismatch was evaluated by generating plots for all the inputs and 

outputs of the real plant and the model under flooding operation with a sampling rate of 10 

minutes. Figures 3 and 4 compare the plant inputs and outputs measurements, respectively, to the 

simulation results under normal and flooding conditions. It is important to note that for 

confidentiality purposes, the feed flow, reflux flow, and reboiler duty values were standardized. 

While the comparison between the plant and simulation model was presented in previous work 

(Jalanko et al., 2021) under free flooding operations, it was necessary to evaluate the 

effectiveness of the Aspen simulator to behave similarly to the real plant under flooding 

operations. 
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Table 1. C2 splitter input and output variables 

Category Variable Description Units 

Disturbance 

�̇�𝐹 Feed flow from upstream process kg/hr 

𝑇𝐹 Feed temperature °C 

𝑥𝐶2𝐻4 𝐹 Feed mole fraction of ethylene % 

𝑃𝐹 Feed pressure bar 

𝑣𝐹 Feed Vapor Fraction % 

Manipulated 

variables 

�̇�𝑅 Reflux flow kg/hr 

𝑥 Reboiler duty Gj/hr 

Outputs 

𝑇𝑡24 Temperature at tray 24 °C 

𝑇𝑡37 Temperature at tray 37 °C 

𝑇𝑡51 Temperature at tray 51 °C 

𝑇𝑡56 Temperature at tray 56 °C 

𝑇𝑡85 Temperature at tray 85 °C 

𝑃𝑡_1 Pressure at tray 1 bar 

∆𝑃𝑡𝑜𝑝 Top tower differential pressure bar 

∆𝑃𝑏𝑜𝑡 Bottom tower differential pressure bar 

𝑥𝐶2𝐻4 𝑡97 Mole fraction of ethylene at tray 97 % 

𝑥𝐶2𝐻6 𝑡24 Mole fraction of ethane at tray 24 % 

�̇�𝑡𝑜𝑝 Flow rate of top product (ethylene) kg/hr 

𝑇𝑡𝑜𝑝 Temperature of top product (ethylene) °C 

𝑥𝐶2𝐻6 𝑡𝑜𝑝 Mole fraction of ethane of the top product (ethylene) % 

�̇�𝑏𝑜𝑡 Flow rate of bottom product (ethane) kg/hr 

𝑇𝑏𝑜𝑡 Temperature of bottom product (ethane) °C 

𝑥𝐶2𝐻4 𝑏𝑜𝑡 Mole fraction of ethylene of the bottom product 

(ethane) 

% 

�̇�𝐿 𝑡102 Liquid flow at tray 102 kg/hr 

�̂̇�𝐿 𝑡102 Predicted Liquid flow at tray 102 kg/hr 
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Figure 3. plant measurement inputs versus simulation inputs  
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Figure 4. plant measurement outputs versus simulation outputs 

The feed flow and composition of the simulation presented in Figure 3 perfectly match the plant 

measurements since they were specified based on the plant measurements. The feed temperature 

of the simulation is completely different from the plant measurements and that is due to fixing 

the heat duty of the heat exchanger. The heat duty of the heat exchanger was fixed since it 

provided closer simulation outputs results to the plant. The discrepancy between the simulation 

and plant feed temperature is mainly due to the fact that the simulation only considers ethylene 

and ethane in the feed and ignores the small amount of other compositions. Since the simulation 

uses controllers setpoint from the real plant to generate closed-loop data, the behaviour of the 

manipulated variables can be used to measure the plant-model mismatch. The standardized 

reflux flow and reboiler duty show that the simulation behaves similarly to the real plant with 

some bias. The bias is shown clearly when plotting the nominal values of the reflux flow and 

reboiler as opposed to the standardized values, which is not provided due to confidential reasons. 
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The reboiler duty plant-model is less reliable in evaluating the plant-model mismatch compared 

to reflux flow since the reboiler duty plant measurement is not measured in the plant but 

computed using energy balance on the side stream. The controlled variables, ethane composition 

at tray 24 and temperature at tray 85, have the same behaviour overall with regions showing a 

mismatch between the plant and the simulation. The mismatch may be caused by the tuning 

parameters used in the controllers. The product’s composition, ethane mole fraction of ethylene 

stream, and ethylene mole fraction of ethane stream, have the same behaviour overall with bias 

and some regions showing a mismatch between the plant and the simulation. Beyond the 

possible parameter and model structure issues, there are three other key reasons for the plant-

model mismatch: (1) the feed composition of the tower is not measured, but instead is inferred 

from upstream process information. As a result, it might not be the actual tower feed 

composition. (2) The feed composition considers that the feed contains only ethane and ethylene 

and ignores the small amount of methane, propylene, and propane which is the reason for the 

large bias in the bottom product composition. (3) Tower separation efficiency was assumed to be 

0.9 for all trays which may not be the case for the real plant. Note that the above results are only 

to establish that the simulation captures the key aspects of the plant dynamics making the 

simulation match the plant data quantitatively is not the focus or contribution of the present 

work. 

5.3. OF-NMPC based on Hybrid Model 

In this section, OF-NMPC with its hybrid model are introduced. First, the NARX system 

identification method is described, and the results obtained from system identification are 

presented. Next, the steady-state model used to capture tower flooding is presented. Finally, the 

OF-NMPC based on the hybrid model is presented. 

5.3.1. System Identification Using NARX Model 

Artificial Neural Networks (ANNs) have received significant attention in the area of modeling 

and identification of dynamic systems in the recent years. Recurrent Neural Networks (RNNs) 

have been the main approach to model dynamic systems. RNN models are effective in modeling 

dynamic systems due to their structure which provides the network with a dynamic memory 

through delayed feedback loop. In this work, a NARX network was utilized to identify a 

dynamic model of the process to be used within OF-NMPC. The NARX network was trained 
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using a feed forward network architecture to perform a single step prediction using past output 

measurements as additional inputs (along with the past and current inputs) as shown in Eq. (1) 

below: 

�̂�𝑘 = 𝑓(𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦
, 𝑢𝑘−1, … , 𝑢𝑘−𝑁𝑢

) (1) 

where 𝑓(. ) is the mapping function of the neural network, �̂�𝑘 is the predicted output of the 

NARX neural network at the time 𝑘 − 1 for the time 𝑘. 𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦
 are the past outputs, and 

𝑢𝑘−1, … , 𝑢𝑘−𝑁𝑢
 are the past inputs. 𝑁𝑦 and 𝑁𝑢 are the number of output and input delays. Once 

the training is complete, the NARX network uses closed-loop architecture to perform multi-step 

predictions as shown in Eq. (2), where the predicted outputs are fed back as additional inputs 

(along with the past and current inputs). There are two advantages of training the NARX network 

as a single step with open-loop architecture. First, the input to the feedforward network is more 

accurate since the true past output values are used as inputs instead of the predicted outputs. 

Second, the open-loop structure can be modelled as purely feedforward architecture which 

allows the use of traditional training algorithm such as static backpropagation during training, 

and takes the following form: 

�̂�𝑘 = 𝑓(�̂�𝑘−1, … , �̂�𝑘−𝑁𝑦
, … , 𝑢𝑘−𝑁𝑢

) (2) 

where �̂�𝑘−1, … , �̂�𝑘−𝑁𝑦
 are predicted past outputs. The NARX model can be classified as an input-

output model, where the output is expressed directly in terms of the inputs. In this work, we set 

𝑁𝑢 and 𝑁𝑦 to equal 1. The NARX model is trained using rich data for model identification 

purposes by exciting the system inputs (reflux flow and reboiler duty) using the Random 

Gaussian Signal (RGS). In this work, the RGS signal was utilized instead of Pseudo Random 

Binary Sequence (PRBS) since it has been shown in practice to perform better at capturing 

nonlinear dynamics as opposed to PRBS, which is better for processes with linear dynamics 

(Shariff et al., 2013). Once the data used for system identification is generated the inputs and 

outputs were standardized before being fed to the NARX network. The structure of the network 

(number of hidden layers and number of neurons), and the activation function of the hidden 

layers were chosen by trial and error. 

The inputs of the NARX model are the two manipulated variables (reflux flow and reboiler 

duty), and the disturbances (feed flow, feed ethylene composition, and feed temperature). The 
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outputs of the NARX model are the ethane composition at tray 18, the temperature at tray 85, the 

top product ethane composition, and the bottom product ethylene composition. The NARX 

network is employed using MATLAB machine learning and deep learning toolbox. To this end, 

the input and the output data samples are first standardized before training the open-loop NARX 

network. One hidden layer with 6 neurons is utilized in the NARX network. The hyperbolic 

tangent activation function (tanh) is used in the hidden layer, and the linear activation function is 

used in the output layer. The Levenberg-Marquardt algorithm is used to train the NARX 

network. 1,500 data points are used for training and 300 data points are used for validation. The 

validation inputs (standardized reflux flow, standardized reboiler duty, standardized feed flow, 

feed ethylene composition, and feed temperature) are presented in Figure 5. The measured and 

predicted outputs (ethane composition at tray 18, the temperature at tray 85, the top product 

ethane composition, and the bottom product ethylene composition) are presented in Figure 6. 

The results show that the disturbances have a major impact on the output measurements. Also, 

the NARX model has the capability to capture the process dynamics. 
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Figure 5. validation of manipulated and disturbance variables under RGS signal in the 

manipulated variables 
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Figure 6. validation of output results under RGS signal in the manipulated variables 

5.3.2. Steady State Model 

In this section, the steady-state model used in the OF-NMPC controller is presented (see Figure 7 

for a visual depiction of how the steady state model has been developed and the information it 

needs from the Aspen Plus model and the dynamic model). To this end, empirical correlations, 

and information from Aspen Plus model and dynamic model are used to compute the steady state 

liquid flow at tray 102 in the tower (the flooding tray). The steady state model is first developed 

in Aspen Plus V10 using the Peng Robinson model for property estimation. The tower stage 

Murphree efficiency is set to a value of 0.9 to give close results to the real plant operation. The 

Aspen Plus model is used to generate a base case set of data with normal operations for the input 

and output streams and internal tower liquid and vapor flows. Specifically, the data generated 

are: (1) base case temperatures, (2) base case liquid and vapour stream mass enthalpies, and (3) 
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liquid and vapour specific heat capacities. These parameters are assumed to be constant, 

therefore, the Aspen Plus model is only needed to run once to get these parameters. The steady 

state model developed assumes that: (1) the pressure across the tower is constant, and (2) the 

specific heat capacities of the liquid and vapour are independent of temperature. With these 

assumptions, the Kirchhoff’s Law can be used to adjusted enthalpies of all streams with change 

in temperature measurements as shown below: 

ℎ = ℎ0 + 𝐶𝑃,𝐿(𝑇 − 𝑇0) (3) 

𝐻 = 𝐻0 + 𝐶𝑃,𝑉(𝑇 − 𝑇0) (4) 

where ℎ and 𝐻 are the adjusted heat enthalpies of the liquid and vapour, and ℎ0 and 𝐻0 are the 

base case liquid and vapour enthalpies obtained from Aspen Plus under normal operations. 𝐶𝑃,𝐿 

and 𝐶𝑃,𝑉 are the heat capacities of liquid and vapour which are obtained from Aspen Plus. 𝑇, 𝑇0 

are the measured temperature and the base case temperature, respectively. The Aspen Plus model 

requires the following inputs for base case operation:  

• Feed flow rate, temperature, composition, pressure, vapour fraction, reflux flow, and reboiler 

duty. 

• Products flow rates and purities. 

The other information needed in the steady-state model are obtained from the dynamic model or 

the plant measurements when implemented on the real plant. This information needs to be 

updated with the recent available measurements. The measurements needed from the dynamic 

model are the feed disturbances (feed flow, feed temperature, and feed vapor fraction), the top 

and product temperatures, and tray 2, 24, 85, and 102 temperatures. Temperatures of tray 2 and 

tray 102 are not measured in the plant, therefore, we approximate them with linear interpolation 

using the closest measured tray temperature and the base case temperature as shown in Eqs. (5) 

and (6). Tray 2 temperature is computed using top product temperature and tray 24 temperature. 

Tray 102 temperature is computed using bottom product temperature and tray 85 temperature. 

𝑇𝑡2 = (
𝑇𝑡24 − 𝑇𝑡𝑜𝑝

𝑇𝑡24
0 − 𝑇𝑡𝑜𝑝

0 ) (𝑇𝑡2
0 − 𝑇𝑡𝑜𝑝

0 ) + 𝑇𝑡𝑜𝑝 (5) 

𝑇𝑡102 = (
𝑇𝑏𝑜𝑡 − 𝑇𝑡85

𝑇𝑏𝑜𝑡
0 − 𝑇𝑡85

0 ) (𝑇𝑡102
0 − 𝑇𝑡85

0 ) + 𝑇𝑡85 (6) 
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The steady state model used within the OF-NMPC is developed using mass and energy balances. 

The mass and energy balance equations for the distillation tower are used to compute the top and 

bottom products flow. The mass and energy balances of the distillation column are shown in Eqs. 

(7) and (8), respectively.  

�̇�𝐹 =  �̇�𝑡𝑜𝑝 + �̇�𝑏𝑜𝑡 (7) 

(1 − 𝑣𝐹)ℎ𝐹�̇�𝐹 + 𝑣𝐹𝐻𝐹�̇�𝐹 +  �̇�𝑅 =  �̇�𝐶 + ℎ𝑡𝑜𝑝�̇�𝑡𝑜𝑝 + ℎ𝑏𝑜𝑡�̇�𝑏𝑜𝑡 (8) 

where ℎ𝐹 and 𝐻𝐹 are the liquid and vapour heat enthalpies of the feed, respectively. ℎ𝑡𝑜𝑝 and ℎ𝑏𝑜𝑡 

are the liquid heat enthalpies of the top and bottom products, respectively, 𝑣𝐹 is the feed vapour 

fraction, and �̇�𝐶 is the condenser heat duty. The goal is to compute the top and bottom product 

flows as a function of reflux flow and reboiler duty. The feed flow rate in the plant is measured, 

and the vapour fraction in the plant is not measured in the plant but cab be inferred from 

upstream process measurements and feed tower conditions. The heat enthalpies of the feed, 

products, internal liquid and vapour flows are estimated using the base case data and their 

associated measured temperatures assuming constant pressure as shown in Eqs. (3) and (4). The 

condenser duty �̇�𝐶 is approximated using Eq. (9). 

𝑄𝑐 = (�̇�𝑡𝑜𝑝 + �̇�𝑅)(𝐻𝑡2 − ℎ𝑡𝑜𝑝) (9) 

where 𝐻𝑡2 and ℎ𝑡𝑜𝑝 are the vapour heat enthalpy at tray 2 and liquid heat enthalpy of the top 

product, respectively, which are estimated using Eqs. (3) and (4). Note that computing these 

enthalpies requires knowing the temperature; the temperature of the top product is measured, 

while the temperature of the vapour stream at tray 2 is approximated using the linear 

interpolation equation, Eq. (5).  

Substitute Eq. (7) and Eq. (9) into Eq. (8) and solve for top product flow 𝐹𝑡𝑜𝑝 gives us the 

following equation: 

�̇�𝑡𝑜𝑝 =  
(1 − 𝑣𝐹)ℎ𝐹�̇�𝐹 + 𝑣𝐹𝐻𝐹�̇�𝐹 +  �̇�𝑅 − (𝐻𝑡2 − ℎ𝑡𝑜𝑝)�̇�𝑅 − ℎ𝑏𝑜𝑡�̇�𝐹

𝐻𝑡2 − ℎ𝑏𝑜𝑡
 

(10) 

Once the top product flow �̇�𝑡𝑜𝑝 is computed, Eq. (7) can be used to compute the bottom product 

flow �̇�𝑏𝑜𝑡. 
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Once both top and bottom products flow are known, the liquid flow at tray 102 can be computed 

using mass and energy balances at the bottom of the tower which are shown in Eqs. (11) and 

(12). 

�̇�𝐿 𝑡102 =  �̇�𝑉_103 + �̇�𝑏𝑜𝑡 (11) 

�̇�𝑅 + ℎ𝑡102�̇�𝐿 𝑡102 = 𝐻103�̇�𝑉 𝑡103 + ℎ𝑏𝑜𝑡�̇�𝑏𝑜𝑡 (12) 

where �̇�𝐿 𝑡102 is the liquid flow at tray 102 and �̇�𝑉 𝑡103 is the vapour flow coming from the 

reboiler.  

Substitute Eq. (11) into Eq. (12) gives us the following equation: 

�̇�𝐿 𝑡102(𝐻𝑡103 − ℎ𝑡102) =  �̇�𝑅 + (𝐻𝑡103 − ℎ𝐵)(�̇�𝐹 − �̇�𝑡𝑜𝑝) (13) 

�̇�𝐿 𝑡102 as a function of �̇�𝑅 and �̇�𝑅 by can be determined by using E. (10) and Eq. (13) as 

follows: 

�̇�𝐿 𝑡102(𝐻𝑡103 − ℎ𝑡102) + (𝐻𝑡103 − ℎ𝑏𝑜𝑡) (
((1 − 𝑣𝐹)ℎ𝐹 + 𝑣𝐹𝐻𝐹 − ℎ𝑏𝑜𝑡)�̇�𝐹

𝐻𝑡2 − ℎ𝑏𝑜𝑡
− �̇�𝐹)

=  [
 (𝐻𝑡103 − ℎ𝑏𝑜𝑡)(𝐻𝑡2 − ℎ𝑡𝑜𝑝)

𝐻𝑡2 − ℎ𝑏𝑜𝑡
] �̇�𝑅 + [1 −

(𝐻𝑡103 − ℎ𝑏𝑜𝑡)

𝐻𝑡2 − ℎ𝑏𝑜𝑡
] �̇�𝑅 

(14) 

Eq. (14) can be written in a matrix form with �̇�𝑅 and �̇�𝑅 being the variables. This equation 

requires the left side to be greater than the right side to avoid flooding. The final flooding 

equation is shown in Eq. (15).  

[
 (𝐻𝑡103 − ℎ𝑏𝑜𝑡)(𝐻𝑡2 − ℎ𝑡𝑜𝑝)

𝐻𝑡2 − ℎ𝑏𝑜𝑡

1 −
(𝐻𝑡103 − ℎ𝑏𝑜𝑡)

𝐻𝑡2 − ℎ𝑏𝑜𝑡

] [
�̇�𝑅

�̇�𝑅
]

≤ [�̇�𝐿 𝑡102
𝑚𝑎𝑥 (𝐻𝑡103 − ℎ𝑡102) + (𝐻𝑡103 − ℎ𝑏𝑜𝑡) (

((1 − 𝑣𝐹)ℎ𝐹 + 𝑣𝐹𝐻𝐹 − ℎ𝑏𝑜𝑡)�̇�𝐹

𝐻𝑡2 − ℎ𝑏𝑜𝑡

− �̇�𝐹)] 

(15) 

where �̇�𝐿 𝑡102
𝑚𝑎𝑥  is the maximum liquid flow allowed at tray 102 to avoid tower flooding. 
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Figure 7. steady-state model implementation within OF-NMPC 

In summary, the steady state model uses the following variables, parameters, and inputs to 

compute the liquid flow rate at tray 102, �̇�𝐿 𝑡102: 

• Process measured variables: feed flow �̇�𝐹, feed vapour fraction 𝑣𝐹, temperatures of the feed 

𝑇𝐹, top product 𝑇𝑡𝑜𝑝, bottom product 𝑇𝑏𝑜𝑡, tray 24 𝑇𝑡24, and tray 85 𝑇𝑡85. The temperatures 

are used to compute the enthalpies of the streams as shown in Eqs. (3) and (4). 

• Base case parameters: 

o Temperatures of the feed 𝑇𝐹
0, top product 𝑇𝑡𝑜𝑝

0 , bottom product 𝑇𝑏𝑜𝑡
0 , tray 2 𝑇𝑡2

0 , tray 24 

𝑇𝑡24
0 , tray 85 𝑇𝑡85

0 , tray 102 𝑇𝑡102
0 .  
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o Enthalpies of the vapour feed 𝐻𝐹
0, liquid feed ℎ𝐹

0 , liquid top product ℎ𝑡𝑜𝑝
0 , liquid bottom 

product ℎ𝑏𝑜𝑡
0 , vapour at tray 2 𝐻𝑡2

0 , liquid at tray 102 ℎ𝑡102
0 , vapour at tray 103 𝐻𝑡103

0 .  

o Liquid heat capacity of feed 𝐶𝑃,𝐿 𝐹 , top product 𝐶𝑃,𝐿 𝑡𝑜𝑝, bottom product 𝐶𝑃,𝐿 𝑏𝑜𝑡, and 

tray 102 𝐶𝑃,𝐿 𝑡102, vapour heat capacity of feed 𝐶𝑃,𝑉 𝐹, tray 2 𝐶𝑃,𝑉 𝑡2, and tray 103 

𝐶𝑃,𝑉 𝑡103.  

• The temperatures of tray 2 𝑇𝑡2, and tray 102 𝑇𝑡102 are approximated with linear interpolation 

using the closest measured tray temperature as shown in Eqs. (5) and (6). Then, these 

temperatures are used to compute the enthalpies of the stream as shown in Eqs. (3) and (4). 

It is important to note that since the steady state model requires output measurements such as 

product temperatures, the information used from the dynamic model is obtained from the 

previous timestep measurements. Figure 8 shows the actual liquid flow at tray 102, the predicted 

liquid flow at tray 102 computed from the steady state model using current measurement and 

previous timestep measurement, and the flooding flow assumed. The flooding flow was assumed 

to be 470,000 kg/hr. These flow profiles are based on the results obtained from controlling the 

tower using the two PI controllers. The results show that steady-state model can capture the trend 

of the actual flow, albeit with some bias. Also, the results show that using the previous timestep 

measurements as opposed to the current step measurements (some of them will not be available 

yet) do not impact the steady state liquid flow at tray 102. This demonstrates that the steady state 

model can be implemented within the proposed OF-NMPC to avoid tower flooding. While the 

computed liquid flow at tray 102 shows somewhat a similar trend to the actual liquid flow at tray 

102, there is a bias in the model which is shown in Figure 9. The bias seems to be somewhat 

constant with some fluctuation at a value of 2000 kg/hr under normal operations. However, when 

the tower is reaching pre-flooding or under flooding, the bias values seem to fluctuate rapidly 

which is believed to be due to the accumulation of the liquid inside the tower making the steady 

state calculations unreliable. Further details about mitigating the issue of bias in the steady-state 

calculation versus the actual flow are discussed in Section 4. 

Remark 1. The steady-state calculation has roughly constant bias at normal operation (similar 

feed flow), but this bias increases or decreases based on the feed flow due to the accumulation of 

the liquid inside the tower. This is mainly because the steady-state calculation does not capture 
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the dynamic of the process, and only uses previous timestep measurements. This shows that the 

steady-state calculations are unreliable under high and fast disturbance in the feed flow.  

 

Figure 8. a comparison of the actual liquid flow and steady state computed liquid flow 

at tray 102 

 

Figure 9. bias of the actual liquid flow and steady state computed liquid flow with delay 

at tray 102 
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5.3.3. OF-NMPC Formulation based on Hybrid Model  

The objective of the OF-NMPC is to utilize the hybrid model (NARX model and steady-state 

model) in MPC implementation to achieve offset free and flooding free control. The NMPC 

implementation is shown in Figure 10. The NMPC based on hybrid model formulation can be 

described as follows:  

min
𝑢𝑘,.,𝑢𝑘+𝑃

∑ [‖�̂�𝑘+𝑗 − 𝑦𝑘+𝑗
𝑆𝑃 ‖

𝑄𝑦

2
+ ‖𝑢𝑘+𝑗 − 𝑢𝑘+𝑗−1‖

𝑅𝑢

2
]

𝑃

𝑗=0

 

(16) 

𝑠. 𝑡. �̂�𝑘 = 𝑓 (𝑦𝑘−1, … , 𝑦𝑘−𝑁𝑦
, … , 𝑢𝑘−𝑁𝑢

) ∀ 𝑘 = 1 (17) 

�̂�𝑘 = 𝑓 (�̂�𝑘−1, … , �̂�𝑘−𝑁𝑦
, … , 𝑢𝑘−𝑁𝑢

)  ∀ 𝑘 = 2, … , 𝑃 (18) 

[
 (𝐻𝑡103 − ℎ𝑏𝑜𝑡)(𝐻𝑡2 − ℎ𝑡𝑜𝑝)

𝐻𝑡2 − ℎ𝑏𝑜𝑡
1 −

(𝐻𝑡103 − ℎ𝑏𝑜𝑡)

𝐻𝑡2 − ℎ𝑏𝑜𝑡

] 𝑢𝑘

≤ [�̇�𝐿 𝑡102
𝑚𝑎𝑥 (𝐻𝑡103 − ℎ𝑡102) + (𝐻𝑡103 − ℎ𝑏𝑜𝑡) (

((1 − 𝑣𝐹)ℎ𝐹 + 𝑣𝐹𝐻𝐹 − ℎ𝑏𝑜𝑡)�̇�𝐹

𝐻𝑡2 − ℎ𝑏𝑜𝑡
− �̇�𝐹)]  ∀ 𝑘

= 1, … , 𝑃  

(19) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥   ∀ 𝑘 = 1, … , 𝑃 (20) 

where 𝑃 represents the prediction horizon, 𝑦𝑘+𝑗
𝑆𝑃  is the desired setpoint values for the outputs, 

�̂�𝑘+𝑗 is the prediction of output, 𝑄𝑦 and 𝑅𝑢 are the penalty matrices corresponding to the output 

deviations from the setpoints and the rate of change in the inputs, and 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 represent 

the lower and upper bounds of the manipulated inputs. It should be noted that the NARX-based 

predictive model computes multi-step ahead predictions. Thus, the initial values of inputs and 

outputs are fed to the model using the last current measured values and then the values of the 

outputs are calculated one step ahead as shown in the Eq. (17). Afterwards, the predicted outputs, 

along with candidate future input values are fed to the model to predict the outputs two steps 

ahead. Subsequently, this procedure is performed recursively to predict the outputs multi-steps 

ahead up to the prediction horizon as shown in the Eq. (18). Eq. (19) limits the liquid flow at tray 

102 to avoid tower flooding. Eq. (20) constraint limits the inputs with upper and lower bounds.  

The current control strategy may fail to effectively control the distillation column due to process-

plant mismatch. Furthermore, unmeasured disturbances can result in a gap between the model 

and the process which may lead to degradation in the NMPC performance. In this work, we 
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adapt a widely used offset free scheme in industrial NMPC implementation which shifts the set 

points using constant bias to compensate for plant-model mismatch. The bias is computed by 

comparing the measured process output 𝑦𝑘 and the predicted process output �̂�𝑘 at the current 

sampling instant 𝑘 as 

𝑒𝑘 =  �̂�𝑘 − 𝑦𝑘 (21) 

Once the bias is computed at the sampling instant 𝑘, this bias is assumed to remain constant in 

the future (for the MPC calculations) and the set point is modified as: 

𝑦𝑘+𝑗
𝑆𝑃 = 𝑦𝑆𝑃 + 𝑒𝑘 ,      1 ≤ 𝑗 ≤ 𝑃  (22) 

Subsequently, this bias is continuously updated to modify the set points accordingly.  

 

Figure 10: OF-NMPC implementation on the distillation column 
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5.4. Results of the hybrid model based OF-NMPC 

In this section, the proposed OF-NMPC strategy is implemented on the ethylene splitter model in 

Aspen dynamics with the goal of maintaining ethylene purity at the desired level and avoiding 

flooding. The four controlled variables in our system are the top and bottom products’ 

compositions (𝑥𝐶2𝐻6 𝑡𝑜𝑝 and 𝑥𝐶2𝐻4 𝑏𝑜𝑡) and the two controlled variables by the PI controllers 

(𝑥𝐶2𝐻6 𝑡_24 and 𝑇𝑡85). The two manipulated variables are the reflux flow and reboiler duty 

(�̇�𝑅 and �̇�𝑅). The optimization problem of the NMPC is solved using fmincon solver in 

MATLAB. The optimization problem uses the previous timestep manipulated variables solutions 

as an initial guess to reduce execution times. The NMPC parameters are chosen as follows: 

sampling time 𝑇𝑠 = 10 mins, prediction horizon 𝑃 = 4, Outputs penalty 𝑄𝑦 = diag([1e2, 1e2, 

1e10, 1e5]), and change in inputs penalty 𝑅𝑢 = diag([1e-4, 1e4]). These penalties are chosen 

based on the magnitude of the variable and its importance. The manipulated inputs constraints 

were chosen as follows: �̇�𝑅 ∈ [360,000 460,000] and �̇�𝑅 ∈ [120 150]. The setpoints of the 

outputs were chosen as follows: [5e-4, 1e-2, 0.0145, -20.8]. Note that these setpoints change 

after every iteration due to the off-set free feature based on the difference between the model 

predicted output and the process actual output from the previous timestep. The OF-NMPC results 

is first generated without including the flooding constraint which is included in the Appendix. 

These results show that OF-NMPC control strategy can improve the top product purity control 

but fails to eliminate tower flooding. Therefore, incorporate the steady-state model within the 

OF-NMPC is essential to achieve flooding free control. 

The results of the OF-NMPC strategy with constraint are generated using different constrained 

value of the highest allowed liquid flow at tray 102, which demonstrate different level of 

conservatism to avoid tower flooding. The values were chosen to be 470000 kg/hr (low 

conservatism), 464000 kg/hr (medium conservatism), and 458000 kg/hr (high conservatism). 

The results of the OF-NMPC strategy with flooding constraint using different level of 

conservatism compared to PI controller strategy are presented in Figure 11. The results show that 

a more conservative control results in higher deviation of the products purities from their desired 

set points. This is expected as a tighter constraint on the flow at tray 102 prevents the OF-NMPC 

from increasing the reflux flow and reboiler duty to maintain the products purities at their desired 

level. The results of the actual and computed liquid flow at tray 102 via the steady-state model 
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for the PI control strategy and OF-NMPC with flooding constraints at different maximum liquid 

flow threshold are presented in Figure 12. The results show that to avoid tower flooding 

(maintain actual liquid flow at tray 102 below 47000 kg/hr), the flooding constraint must be set 

at 458000 kg/hr to account for the bias between the actual and computed liquid flow at tray 102. 

Remark 2. In the present formulation, a trade-off that exists between the two goals: maintain the 

products’ purities at their desired setpoints and avoid tower flooding. At high tower feed, the 

reflux flow and reboiler duty should be increased to maintain the products purities at the desired 

level. However, increase in reflux flow and reboiler duty causes the liquid flow at tray 102 to 

increase, possibly causing flooding. The avoidance of tower flooding being important for the 

process, the present formulation ends up sacrificing control performance to achieve flooding free 

control, motivating the modified MPC formulation presented later in the paper. 
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Figure 11. comparison of the manipulated and controlled variables measurements of OF-

NMPC control strategy with different level of conservatism versus PI controllers strategy  
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Figure 12. comparison of actual and computed liquid flow at tray 102 of OF-NMPC with 

different level of conservatism versus PI controllers strategy 

In order to measure the effectiveness of the results shown earlier, three metrics are used to 

evaluate the different control strategies: (1) the variation in the ethylene product purity which 

was computed using the standard deviation formula. Lower variation in ethylene product purities 
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indicates that products purities are consistent and does not vary which is desirable. (2) The 

number of instances where flooding is observed, where a flooding instance corresponds to any 

timestep the liquid flow at tray 102 measured exceeds 470000 kg/hr. (3) The sum of tray 102 

loading above the flooding threshold (470,000 kg/hr) at all flooding instances. Table 2 

summarizes the performance of the PI control strategy versus the OF-NMPC strategy with and 

without flooding constraint using the three metrics. The results show that OF-NMPC can achieve 

better control of the top product purities compare to PI control strategy. Also, the results show 

that OF-NMPC with no constraint and low conservatism level constraint results in higher 

instances of flooding. However, increasing conservatism to medium can lower the instance of 

flooding compared to PI controllers strategy. OF-NMPC with high conservatism can avoid tower 

flooding, but it significantly impacts the control of the top products’ purity compared to other 

OF-NMPC strategies.  

Table 2: Performance summary of proposed OF-NMPC strategy with and without flooding 

constraint versus PI controllers strategy 

Strategy 

SD of ethylene 

product purity 

(10−5) 

# Flooding 

instances 

Tray loading above 

the flooding 

constraint (kg/hr) 

PI controllers 3.72 11 97445 

OF-NMPC with no constraint 2.09 17 208210 

OF-NMPC with constraint (low 

conservatism) 
2.52 16 76577 

OF-NMPC with constraint (medium 

conservatism) 
2.88 7 16467 

OF-NMPC with constraint (high 

conservatism) 
3.36 0 0 

In order to reduce the bias between the actual liquid flow at tray 102 and the liquid flow at tray 

102 computed from the steady state equation, we next propose adding a bias to the steady state 

calculation model. The goal of the bias is to improve the steady state calculations of liquid flow 

at tray 102 by considering the tower feed flow rate and whether the tower operation is under 
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accumulation or depletion of liquid. To indicate whether the tower’s current operation is 

resulting in accumulation or depletion of liquid at 𝑗 time step, we use the most recent 

measurements of the feed flow and the products flow using this formula shown below: 

𝐴𝑐𝑐𝑢𝑚(𝑗) =  �̇�𝐹(𝑗 − 1) − �̇�𝑡𝑜𝑝(𝑗 − 1) − �̇�𝑏𝑜𝑡(𝑗 − 1) (23) 

where 𝐴𝑐𝑐𝑢𝑚 is a variable that tracks liquid accumulation or depletion amount. If the tower feed 

flow rate �̇�𝐹(𝑗 − 1), is higher than the sum of the products flow rate �̇�𝑡𝑜𝑝(𝑗 − 1) +

�̇�𝑏𝑜𝑡(𝑗 − 1)then liquid is being accumulated in the tower. However, if the sum of the products 

flow rate is higher than the feed flow rate, liquid is being depleted from the tower. Under normal 

ranges of feed flow rate, we expect that minimal or no liquid accumulation or depletion is 

happening in the tower. Therefore, we only add this bias under these two conditions: (1) the feed 

flow rate is higher than normal operation and liquid accumulation is happening and, (2) the feed 

flow rate is lower than normal operation and liquid depletion is happening. The steady state 

calculation with added bias rules is shown below: 

�̂̇�𝐿 𝑏𝑖𝑎𝑠 𝑡102(𝑗) = �̂̇�𝐿 𝑡102(𝑗) + 𝐴𝑐𝑐𝑢𝑚(𝑗),  𝑖𝑓 �̇�𝐹(𝑗 − 1) > 150000 & 𝐴𝑐𝑐𝑢𝑚(𝑗) > 0 (24) 

�̂̇�𝐿 𝑏𝑖𝑎𝑠 𝑡102(𝑗) = �̂̇�𝐿 𝑡102(𝑗) + 𝐴𝑐𝑐𝑢𝑚(𝑗),  𝑖𝑓 �̇�𝐹(𝑗 − 1) < 148000 & 𝐴𝑐𝑐𝑢𝑚(𝑗) < 0 (25) 

�̂̇�𝐿 𝑏𝑖𝑎𝑠 𝑡102(𝑗) = �̂̇�𝐿 𝑡102(𝑗),            Otherwise (26) 

This modification can be implemented within our OF-NMPC by replacing the variable �̇�𝐿 𝑡102
𝑚𝑎𝑥  

shown in the OF-NMPC formulation by �̇�𝐿 𝑡102
𝑚𝑎𝑥 − 𝐴𝑐𝑐𝑢𝑚(𝑗) if one of two earlier conditions 

apply. This modification reduced the maximum bias in the liquid flow at tray 102 from 

approximately 10000 kg/hr to around 6000 kg/hr. 

Another concept we utilize in this work is control banding, which is used to reduce the chances 

of flooding by trying to stay away from the flooding constraint. The control banding considers 

different levels of conservatism based on how close the tower is from flooding. In this work, we 

consider two levels of bands which we refer to as high band and low band. High band and low 

band are considered when the liquid flow at tray 102 is within 0.75% and 1.5% from the flooding 

flow, respectively. This percentage is computed using liquid flooding flow at tray 102 and the 

last step predicted liquid flow at tray 102 using the following form.  

𝐵𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 =  (
�̇�𝐿 𝑡102

𝑚𝑎𝑥 − �̂̇�𝐿 𝑏𝑖𝑎𝑠 𝑡102(𝑗 − 1)

�̇�𝐿 𝑡102
𝑚𝑎𝑥 )  100% 

(27) 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

171 
 

where 𝐵𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 is a percentage that measures how close the tower is to flooding. 𝐵𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 will 

have a value between 0% and 100%, where lower values indicates that the tower is close to 

flooding. When 𝐵𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 is lower than 1.5%, the level of conservatism is increased by adjusting 

�̇�𝐿 𝑡102
𝑚𝑎𝑥  using the following formulas: 

[
 (𝐻𝑡103 − ℎ𝑏𝑜𝑡)(𝐻𝑡2 − ℎ𝑡𝑜𝑝)

𝐻𝑡2 − ℎ𝑏𝑜𝑡
1 −

(𝐻𝑡103 − ℎ𝑏𝑜𝑡)

𝐻𝑡2 − ℎ𝑏𝑜𝑡

] 𝑢𝑘

≤ [(1 − 𝛼𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔)�̇�𝐿 𝑡102
𝑚𝑎𝑥 (𝐻𝑡103 − ℎ𝑡102)

+ (𝐻𝑡103 − ℎ𝑏𝑜𝑡) (
((1 − 𝑣𝐹)ℎ𝐹 + 𝑣𝐹𝐻𝐹 − ℎ𝑏𝑜𝑡)�̇�𝐹

𝐻𝑡2 − ℎ𝑏𝑜𝑡
− �̇�𝐹)] 

(28) 

𝛼𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 =  (
�̂̇�𝐿 𝑏𝑖𝑎𝑠 𝑡102(𝑗 − 1) − 0.985�̇�𝐿 𝑡102

𝑚𝑎𝑥

0.985�̇�𝐿 𝑡102
𝑚𝑎𝑥 ) 

(29) 

The level of conservatism is increased further when 𝐵𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 is lower than 0.75% by 

constraining the upper bound of both reflux flow and reboiler duty within OF-NMPC to their 

current value. This will prevent OF-NMPC to make moves that increase reflux flow and reboiler 

duty. Throughout the rest of the paper, we will refer to the OF-NMPC control strategy with 

modification on the steady state calculation as strategy 1, and to OF-NMPC control strategy with 

modification on the steady state calculations and control banding as strategy 2.  

Figures 13 and 14 present the results of the OF-NMPC with strategy 1 and strategy 2 versus the 

PI control strategy. The highest allowed liquid flow at tray 102 was set to a value of 464000 

kg/hr, which was chosen based on the roughly 6000 kg/hr bias. The results show that both 

strategies 1 and 2 achieve more stable top product composition and eliminate the big spikes 

observed in the top product composition with PI control strategy. Also, strategy 1 eliminates 

most of the flooding instances and the liquid flow at tray 2 gets close to 470000 kg/hr, and 

slightly goes over the amount in one instance. However, strategy 2 can eliminate the flooding 

completely as the liquid flow at tray 102 reaches close to 470000 kg/hr but does not exceed the 

470000 kg/hr limit. Table 3 summarizes the performance of the PI control strategy versus 

strategy 1 and strategy 2. The results show that strategy 2 can avoid tower flooding completely 

and achieve good control over the top product purities.  
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Figure 13. comparison of the manipulated and controlled variables measurements of strategies 1 

and 2 versus PI controller strategy 
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Figure 14. comparison of the actual and computed liquid flow at tray 102 of strategy 1 and 2 

versus PI controllers strategy 

Table 3: performance summary of the two proposed strategies versus PI controllers strategy 

Strategy 
SD of ethylene 

product purity (10−5) 

Flooding 

instance 

Tray loading above the 

flooding constraint (kg/hr) 

PI controllers 3.72 11 97445 

Strategy 1 2.90 1 1378.7 

Strategy 2 2.77 0 0 
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5.5. Conclusions  

This paper presents a novel hybrid OF-NMPC that utilizes dynamic NARX model, and a first 

principles steady-state model. The NARX model is used for predicting dynamics and control 

products purities, and the first principles steady-state model is used to capture and avoid tower 

flooding. To this end, the OF-NMPC strategy shows its superior performance in improving 

ethylene product composition control and avoid tower flooding when compared to the PI control 

strategy, which is currently used in the tower. The OF-NMPC strategy performance is improved 

by adding a bias to the steady state model that considers whether liquid is being accumulated or 

depleted in the tower. Also, control banding is included into the OF-NMPC to further improve 

the control of the tower and avoid flooding. The hybrid model based OF-NMPC control strategy 

is shown to perform better than the current PI control strategy both in terms of maintaining 

product purity and achieve free flooding control. 
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Chapter 6: Concluding Remarks 

This chapter highlights the contributions and key findings of the thesis and directions for future 

research.  

6.1. Contributions and Key Findings 

The focus of the thesis is to improve the process automation of chemical engineering 

applications at the planning and control levels. Chapters 2 and 3 consider the impact of 

uncertainty on production planning. While chapters 4 and 5 consider advanced modeling and 

control strategies. The contributions and key findings of Chapter 2 can be summarized as 

follows: 

• Develop a methodology that utilizes joint chance constrained formulation to allow the 

production planner to decide the certainty which they will produce on-spec products 

versus the cost of re-manufacturing the product if it is not on-spec.  

• Adapt the supply-demand pinch algorithm to solve large-scale production planning 

problems under uncertainty in components qualities in efficient times.  

• The supply-demand pinch algorithm reduces the computational times required to 

compute the optimal solutions by at least 5-fold compared to the full-space model.  

• The supply-demand pinch algorithm computes slightly better optimal solutions 

compared to the full-space model for large-scale problems due to the incapability of 

commercial solvers to close the optimality gap for such large-scale problems.  

• The supply-demand pinch algorithm solutions have a lower number of blending recipes 

for each product along the planning horizon compared to the full-space model solutions. 

Chapter 3 contributions and key findings can be summarized as follows:  

• Develop a methodology that utilizes rolling horizon framework and loss function 

formulation to maximize the refinery’s ability to satisfy uncertain products demands and 

maximize its profit. Also, the model developed considers time-varying uncertainty in 

products demands to capture real-world scenarios where new information about the 

future uncertain demand is available as we move forward in time.  
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• Develop a novel supply-demand pinch algorithm to solve the production planning 

problem under uncertainty in products demands using linear and nonlinear blending rules 

in efficient times. 

• Under linear blending rules, the supply-demand pinch algorithm reduces the 

computational times required to compute the optimal solutions by at least 5- to 30-fold 

compared to the full-space model.  

• Under nonlinear blending rules, the supply-demand pinch algorithm allows using a local 

solver to reduce computation times by 2000- to 3000-fold compared to the full-space 

model, while still achieving solutions within 0.04% from the full-space model solutions. 

Chapter 4 contributions and key findings can be summarized as follows: 

• Compare three different system identification methods (Subspace identification, NARX, 

and RNN) for the purpose of developing a dynamic data-driven model of industrial 

ethylene splitter using closed-loop data. 

• Propose two adaptive modeling schemes to improve the model’s prediction capability by 

incorporating more recent data into the training approaches.  

• The subspace identification method outperforms neural network-based methods due to its 

capability of extrapolating, while neural network-based methods are prone to overfitting 

and face issues in generalizing to new process behaviour.  

• The subspace identification method requires significantly less time to optimize the 

hyperparameters (~ 6 minutes) compared to neural network-based methods (~ 28 hours).  

Chapter 5 contributions and key findings can be summarized as follows: 

• Develop a novel hybrid model based OF-NMPC that utilizes a dynamic NARX model to 

predict process dynamics and control products purities, and a first principles steady-state 

model to capture and avoid tower flooding. 

• Demonstrate the effectiveness of the proposed control strategy to improve the control 

strategy of industrial ethylene splitter and avoid flooding on an Aspen simulation model 

which is shown to capture the key traits of the real plant. 
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• Improve the performance of the steady-state model used to capture tower flooding by 

using some heuristic to consider whether liquid is being accumulated or depleted in the 

tower, include control banding concept to ensure free flooding control.  

• The proposed control strategy is shown to perform better than the current PI control 

strategy currently used in terms of maintaining ethylene product purity and achieving free 

flooding control.  

6.2. Future Research 

In this section, directions for future work in both the production planning and control are 

outlined. For the production planning under uncertainty:  

• In chapters 2 and 3, we consider the production planning under uncertainty in 

components qualities and products demands separately. Future work could consider 

developing a single methodology that can consider both uncertainty in components 

qualities and products demands combined.  

• In chapters 2 and 3, we show that employing the supply-demand pinch algorithm can 

greatly reduce execution times for production planning of gasoline blend under 

uncertainty. Future work could investigate the effectiveness of applying the supply-

demand pinch algorithm in solving the refinery planning problem under uncertainties in 

crude qualities and products demands. Refinery planning problems are much larger than 

gasoline blend planning problem and the incorporation of uncertainty can further increase 

the complexity of these models making them hard to solve using commercial solvers. 

Therefore, the work introduced in this thesis can be a first step toward solving refinery 

planning problems under uncertainty.  

For the advanced modeling and control:  

• In chapter 4, we consider the use of different data-driven model on closed-loop data 

using direct method. The main problem of the closed loop system is the existence of 

correlation between the input and disturbances which can impact the accuracy of our 

identified model. Future work can consider comparing these different data-driven models 

using open-loop data or some other methods for closed loop identification such as 

indirect method, joint input output method, or two stage method. One issue with using 

open-loop data from the real process is the cost associated with running the plant in 
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open-loop to generate rich data. Some of the future work can consider building a data-

driven model from open-loop data generated from the simulator since such data can be 

generated with no cost and use closed-loop data obtained from the real plant to modify 

the simulator data-driven model accordingly to match the real plant process. Another 

potential future work can investigate the different in performance of the three different-

data driven models when integrated with first-principles knowledge. 

• In chapter 5, we propose a hybrid model based OF-NMPC to improve the control 

strategy of industrial ethylene splitter that faces flooding issues. The proposed control 

strategy utilizes NARX model that uses feed disturbance measurements to predict key 

controlled variables. One future research direction is to incorporate a disturbance model 

into our proposed OF-NMPC that uses upstream processes information to improve input 

disturbance used in the NARX model. This should improve the NARX model capability 

to product future controlled variables based on the proposed manipulated variables 

moves, thus improve process control. Some of future work can consider implementing 

feedforward control strategy that manipulates the feed flow disturbance to avoid flooding 

and compare the effectiveness of such control strategy to our proposed strategy. Another 

potential future work can investigate the use of multiple first principles steady-state 

models for different operation patterns as opposed to the use of a single model with fixed 

parameters. The idea is to modify the parameters of the steady-state model by running 

Aspen Plus under different operations and use the parameters that correspond to the 

current process operations. 
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Appendix A: Supporting Information for Chapter 2 

Table A.1. Components data: Cost, initial inventory, inventory limits, properties, supply rates for Ex. 1 

& 2 

Components ALK BUT HCL HCN LCN LNP RFT 

Cost ($/bbl) 30 12 20 22 25 20 25 

Initial Inventory (kbbl) 30 20 20 10 30 20 50 

Minimum Inventory (kbbl) 5 5 5 5 5 5 5 

Maximum Inventory (kbbl) 150 75 50 50 150 100 150 

ARO (%vol aromatics) 0 0 0 25 18 2.974 74.9 

BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5 

MON 93.7 90 79.8 75.8 81.6 66 90.8 

OLF (%vol olefin) 0 0 0 14 27 0 0 

RON 94 92.8 82.3 86.7 92.2 67.8 102 

RVP (psi) 5.15 138 22.335 2.378 13.876 19.904 3.622 

SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 

SI (%vol sulfur) 0 0 0 0.485 0.078 0.013 0 

Supply Rate (kbbl/day) (Ex. 1 &2) 7 7 20 15 30 10 45 
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Table A.2. Components data: Supply rates along the planning horizon for Ex. 3 - 5 

Components ALK BUT HCL HCN LCN LNP RFT 

Period kbbl/day 

1 25 7 0 3 27 20 45 

2 25 7 0 3 27 20 45 

3 25 7 0 3 27 20 45 

4 20 5 3 5 25 18 40 

5 15 3 7 9 20 22 35 

6 15 3 7 9 20 22 35 

7 15 3 7 9 20 22 35 

8 20 5 3 5 25 18 40 

9 20 5 3 5 25 18 40 

10 25 7 0 3 27 22 45 

11 25 7 0 3 27 22 45 

12 25 7 0 3 27 22 45 

13 20 5 3 5 25 18 40 

14 20 5 3 5 25 18 40 
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Table A.3. Products storage tanks data 

Products 
Storable 

products 

Min. hold 

up (kbbl) 

Max. hold 

up (kbbl) 

Max. 

delivery rate 

(kbbl/hour) 

Initial 

inventory 

(Ex.1 &2) 

Initial 

inventory 

(Ex.3 - 5) 

Initial 

product 

Tank1 U87 10 70 10 10 40 U87 

Tank2 U91 10 70 10 10 70 U91 

Tank3 U93 10 70 10 20 30 U93 

Tank4 
U87, U91, 

U93 
0 

40 10 20 30 U87 

Tank5 
U87, U91, 

U93 
0 

40 10 10 40 U91 

Tank6 
U87, U91, 

U93 
0 

40 10 10 30 U91 

  

Table A.4. Products data: properties  

Products Product 1 Product 2 Product 3 

ARO (%vol aromatics) [min, max] [0,60] [0,60] [0,60] 

BEN (%vol benzene) [min, max] [0,5.9] [0,5.9] [0,5.9] 

MON [min, max] [81.5,200] [85.7,200] [87.5,200] 

OLF (%vol olefin) [min, max] [0,24.2] [0,24.2] [0,24.2] 

RON [min, max] [90.4,200] [92.5,200] [95.5,200] 

RVP (psi) [min, max] [0,15.6] [0,15.6] [0,15.6] 

SPG [min, max] [0.73,0.81] [0.73,0.81] [0.73,0.81] 

SI (%vol sulfur) [min, max] [0,0.1] [0,0.1] [0,0.1] 
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Table A.5. Demand profile (kbbl) 

Example Product 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 U87 50 50 60 - - - - - - - - - - - 

U91 50 70 80 - - - - - - - - - - - 

U93 10 20 30 - - - - - - - - - - - 

2 U87 50 80 40 70 - - - - - - - - - - 

U91 50 80 40 45 - - - - - - - - - - 

U93 10 30 15 20 - - - - - - - - - - 

3 U87 60 50 50 80 50 60 60 50 75 50 50 50 80 100 

U91 50 80 70 30 50 0 40 30 30 50 40 40 30 50 

U93 30 30 0 0 40 40 0 35 30 0 0 40 30 40 

4 U87 70 70 50 70 70 60 60 60 50 70 120 0 50 70 

U91 50 50 50 30 30 50 50 30 30 50 50 30 30 50 

U93 30 30 45 30 40 0 0 35 30 0 30 35 0 30 

5 U87 100 70 80 100 40 30 40 110 0 50 70 100 0 50 

U91 50 80 70 50 30 30 30 50 30 30 30 35 30 30 

U93 30 30 45 30 0 30 30 30 30 0 0 30 30 30 
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Appendix B: Supporting Information for Chapter 3 

Table B.1. Detailed Results for the four different solutions strategies for the cases with nonlinear 

blending rules 
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Table B.2. Components costs and products prices 

Component/Product ALK BUT HCL HCN LCN LNP RFT U87 U91 U93 

Price (thousands $/kbbl) 30 12 20 22 23 18 25 32 35 37 

Table B.3. Demand contracted data 

Example Product Period 
Contracted 

Demand (kbbl) 

Minimum Delivery Rate 

Dorder
max (kbbl/h) 

Maximum Delivery Rate 

Dorder
max (kbbl/h) 1 2 3 

Order        

O1 U87 1 60 80 60 1 10 

O2 U87 2 50 60 70 1 10 

O3 U87 3 40 60 60 1 10 

O4 U87 4 40 80 70 1 10 

O5 U87 5 50 70 40 1 10 

O6 U87 6 50 65 50 1 10 

O7 U87 7 40 60 50 1 10 

O8 U87 8 50 85 70 1 10 

O9 U87 9 55 80 60 1 10 

O10 U87 10 40 35 30 1 10 

O11 U87 11 40 30 40 1 10 

O12 U87 12 50 40 40 1 10 

O13 U87 13 80 35 50 1 10 

O14 U87 14 40 40 60 1 10 

O15 U91 1 50 50 40 1 10 

O16 U91 2 60 40 50 1 10 

O17 U91 3 50 50 60 1 10 

O18 U91 4 30 30 70 1 10 

O19 U91 5 40 40 30 1 10 

O20 U91 6 40 50 30 1 10 

O21 U91 7 40 40 30 1 10 
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O22 U91 8 30 70 50 1 10 

O23 U91 9 30 80 50 1 10 

O24 U91 10 40 30 20 1 10 

O25 U91 11 30 35 30 1 10 

O26 U91 12 40 35 50 1 10 

O27 U91 13 30 30 30 1 10 

O28 U91 14 30 30 30 1 10 

O29 U93 1 30 30 40 1 10 

O30 U93 2 30 30 40 1 10 

O31 U93 3 30 30 40 1 10 

O32 U93 4 30 35 60 1 10 

O33 U93 5 40 30 20 1 10 

O34 U93 6 30 30 30 1 10 

O35 U93 7 30 30 20 1 10 

O36 U93 8 35 40 30 1 10 

O37 U93 9 30 45 50 1 10 

O38 U93 10 30 30 20 1 10 

O39 U93 11 30 30 20 1 10 

O40 U93 12 40 35 30 1 10 

O41 U93 13 30 45 20 1 10 

O42 U93 14 30 30 30 1 10 
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Table B.4. Product and component tank data 

Product or 

Component 

Tank 

Initial 

Product 

Initial 

Stock 

Vini 

(kbbl) 

Supply rate of 

components (kbbl/day) 
Min. 

Capacity 

Vmin 

(kbbl) 

Max. 

Capacity 

Vmax 

(kbbl) 

Storable 

Products 

(Set JP) 

Min. 

Delivery 

Rate 

Dpr
min 

(kbbl/h) 

Max. 

Delivery 

Rate 

Dpr
max 

(kbbl/h) 

Case 

1-3 

Case 

4-6 

Case 

7-9 

Tk1 P1 70 - - - 10 70 P1 2 10 

Tk2 P2 40 - - - 10 70 P2 2 10 

Tk3 P3 40 - - - 10 70 P3 2 10 

Tk4 P1 10 - - - 0 40 P1-P3 1 7 

Tk5 P2 10 - - - 0 40 P1-P3 1 7 

Tk6 P2 10 - - - 0 40 P1-P3 1 7 

ALK ALK 30 19.5 22.5 20.25 5 150 - - - 

BUT BUT 20 5.2 6 5.4 5 75 - - - 

HCL HCL 20 7.8 9 8.1 5 50 - - - 

HCN HCN 10 7.8 9 8.1 5 50 - - - 

LCN LCN 30 20.8 24 21.6 5 150 - - - 

LNP LNP 20 19.5 22.5 20.25 5 100 - - - 

RFT RFT 50 49.4 57 51.3 5 150 - - - 
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Table B.5. Component’s qualities and products qualities specifications for nonlinear blending 

cases 

Property Blend Components 

 ALK BUT HCL HCN LCN LNP RFT 

ARO (%vol aromatics) 0 0 0 25 18 2.974 74.9 

BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5 

MON 93.7 90 79.8 75.8 81.6 66 90.8 

RON 95 93.8 82.3 86.7 93.2 67.8 103 

OLF (%vol olefin) 0 0 0 14 27 0 0 

RVP (psi) 5.15 138 22.335 2.378 13.876 19.904 3.622 

SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 

SUL (%vol sulfur) 0 0 0 0.485 0.078 0.013 0 

Property Product Specifications [Min, Max] 

 U87 U91 U93 

ARO (%vol aromatics) [0,60] [0,60] [0,60] 

BEN (%vol benzene) [0,5.9] [0,5.9] [0,5.9] 

MON [81.5,200] [85.5,200] [87.5,200] 

RON [91.4,200] [94.5,200] [97.5,200] 

OLF (%vol olefin) [0,24.2] [0,24.2] [0,24.2] 

RVP (psi) [0,15.6] [0,15.6] [0,15.6] 

SPG [0.73,0.81] [0.73,0.81] [0.73,0.81] 

SI (%vol sulfur) [0,0.1] [0,0.1] [0,0.1] 
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Table B.6. Component’s qualities and products qualities specifications for linear blending cases 

Property Blend Components 

 ALK BUT HCL HCN LCN LNP RFT 

ARO (%vol aromatics) 0 0 0 25 18 2.974 74.9 

BEN (%vol benzene) 0 0 0 0.5 1 0.595 7.5 

MON INDEX 108.53 103.24 91.3 87.3 93.1 77.5 104.36 

RON INDEX 110.45 108.67 93.8 98.74 107.8 79.3 123.04 

OLF (%vol olefin) 0 0 0 14 27 0 0 

RVP INDEX 2.25 11.47 4.65 1.54 3.68 4.4 1.89 

SPG 0.703 0.584 0.695 0.791 0.744 0.677 0.818 

SUL (%vol sulfur) 0 0 0 0.485 0.078 0.013 0 

Property Product Specifications [Min, Max] 

 U87 U91 U93 

ARO (%vol aromatics) [0,60] [0,60] [0,60] 

BEN (%vol benzene) [0,5.9] [0,5.9] [0,5.9] 

MON INDEX [93,455.79] [97.42,455.79] [99.81,455.79] 

RON INDEX [105.21,455.79] [109.7,455.79] [114.24,455.79] 

OLF (%vol olefin) [0,24.2] [0,24.2] [0,24.2] 

RVP INDEX [0,3.9] [0,3.9] [0,3.9] 

SPG [0.73,0.81] [0.73,0.81] [0.73,0.81] 

SI (%vol sulfur) [0,0.1] [0,0.1] [0,0.1] 

 

Table B.7. Minimum inventory for each period 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

U87 10 10 10 10 10 10 10 10 10 10 10 10 10 40 

U91 10 10 10 10 10 10 10 10 10 10 10 10 10 40 

U93 10 10 10 10 10 10 10 10 10 10 10 10 10 40 
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Table B.8. Blender capacities 

Blender A 

Maximum blending rate (kbbl/day) 9 

Minimum blending rate (kbbl/day) 5 

Minimum blend allowed for one product (kbbl/day) 30 

Minimum waiting (idle) time before blending new product (h) 1 

Minimum running time of blender for a product (h) 6 

 

 

 

Table B.9. Penalty coefficients for inventory infeasibility on the components and products sides 

Component/Product Period values 

Components penalty 1-14 1.00E+09 

Products Penalty 

1 1.80E+08 

2 1.70E+08 

3 1.60E+08 

4 1.50E+07 

5 1.40E+07 

6 1.30E+07 

7 1.20E+07 

8 1.10E+06 

9 1.00E+05 

10 9.00E+04 

11 8.00E+04 

12 5.00E+04 

13 1.00E+04 

14 5.00E+03 
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Table B.10. The coefficient of the four polynomial functions that approximate the standard loss 

function 

 L1 (-∞,-3] L2 (-3,0] L3 (0,3] L4 (3,∞] 

ai 0 0.39893 0.398924 0 

bi -1 -0.5004 -0.49952 0 

ci 0 0.19653 0.196346 0 

di 0 -0.0084 0.008484 0 

ei 0 -0.028 -0.02795 0 

fi 0 -0.0078 0.007732 0 

gi 0 -0.0007 -0.0007 0 
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Table B.11. Contracted demand and additional demand simulation for case # 1 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 U87 60.00 50.00 40.00 40.00 50.00 50.00 40.00 50.00 55.00 40.00 40.00 50.00 80.00 40.00 

U91 50.00 60.00 50.00 30.00 40.00 40.00 40.00 30.00 30.00 40.00 30.00 40.00 30.00 30.00 

U93 30.00 30.00 30.00 30.00 40.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 30.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 U87 12.00 10.00 8.00 8.00 10.00 10.00 8.00 10.00 11.00 8.00 8.00 10.00 16.00 8.00 

U91 10.00 12.00 10.00 6.00 8.00 8.00 8.00 6.00 6.00 8.00 6.00 8.00 6.00 6.00 

U93 6.00 6.00 6.00 6.00 8.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 6.00 6.00 

It
er

at
io

n
 

1
 

U87 13.66 8.74 7.45 7.48 8.65 9.85 5.22 10.22 11.45 7.92 8.37 10.26 16.63 7.62 

U91 9.81 10.52 9.09 6.46 7.78 8.05 8.46 6.90 5.64 8.90 4.49 7.72 6.99 3.82 

U93 4.91 6.34 3.78 3.65 7.92 5.73 5.15 7.47 6.10 9.20 5.63 7.46 5.76 5.52 

It
er

at
io

n
 

2
 

U87  10.65 5.75 9.19 10.18 8.02 5.42 11.61 10.88 8.07 7.84 8.12 16.60 7.41 

U91  10.68 9.49 6.50 8.60 6.98 10.17 6.85 1.86 8.50 3.91 7.04 7.10 3.45 

U93  4.47 2.44 1.79 7.46 6.42 6.36 6.04 5.59 11.39 4.85 6.01 4.23 4.83 

It
er

at
io

n
 

3
 

U87   7.65 8.75 10.35 8.00 6.91 12.17 10.67 9.27 7.57 8.86 14.60 6.72 

U91   9.30 6.52 5.98 6.05 9.99 8.74 2.20 8.07 4.06 7.04 8.27 4.13 

U93   2.21 2.03 7.50 6.36 7.39 6.84 4.39 11.32 4.90 5.18 3.59 4.74 

It
er

at
io

n
 

4
 

U87    7.03 10.63 7.67 7.05 14.07 9.38 9.60 7.75 8.62 14.30 5.94 

U91    7.42 4.44 5.54 10.56 6.73 2.90 9.15 5.29 5.07 6.52 4.69 

U93    2.30 6.20 6.37 7.34 5.32 5.30 11.49 4.67 5.11 3.85 4.45 

It
er

at
io

n
 

5
 

U87     7.63 7.01 6.39 13.65 8.37 9.46 6.64 8.38 15.76 5.17 

U91     4.85 4.75 12.02 7.21 1.57 8.61 5.95 5.19 5.41 3.98 

U93     6.20 6.37 7.34 5.32 5.30 11.49 4.67 5.11 3.85 4.45 

It
er

at
io

n
 

6
 

U87      7.03 8.87 13.52 8.00 9.86 6.05 6.90 16.43 5.29 

U91      4.75 12.02 7.21 1.57 8.61 5.95 5.19 5.41 3.98 

U93      6.81 9.89 5.88 4.94 12.05 3.80 4.89 4.91 4.55 

It
er

at
io

n
 

7
 

U87       8.87 13.52 8.00 9.86 6.05 6.90 16.43 5.29 

U91       11.32 7.38 1.06 7.53 5.32 4.73 5.44 4.34 

U93       10.28 4.79 4.69 12.96 5.01 6.34 4.32 6.95 

It
er

at
io

n
 

8
 

U87        13.31 9.02 7.53 5.96 4.34 17.59 6.22 

U91        5.99 1.10 7.60 5.07 3.89 6.02 3.24 

U93        3.09 4.86 14.01 4.36 7.08 5.02 7.12 

It
er

at
io

n
 

9
 

U87         9.29 6.68 7.29 5.43 17.54 4.39 

U91         1.32 8.82 4.06 3.27 5.85 2.62 

U93         5.86 13.06 3.41 7.28 4.55 7.70 

It
er

at
io

n
 

1
0
 

U87          4.93 6.14 6.06 19.28 4.33 

U91          7.75 3.54 3.05 6.01 3.35 

U93          13.41 4.03 6.79 4.57 8.82 

It
er

at
io

n
 

1
1
 

U87           4.63 5.47 19.72 6.02 

U91           2.36 2.08 5.31 2.02 

U93           3.30 6.59 3.14 10.39 

It
er

at
io

n
 

1
2
 

U87            6.56 19.08 6.32 

U91            2.13 6.13 1.70 

U93            8.70 0.64 11.23 

It
er

at
io

n
 

1
3
 

U87             19.26 6.30 

U91             4.90 1.64 

U93             0.08 12.33 

It
er

at
io

n
 

1
4
 

U87              6.30 

U91              1.64 

U93              12.33 
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Table B.12. Contracted demand and additional demand simulation for case # 2 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 60.00 50.00 40.00 40.00 50.00 50.00 40.00 50.00 55.00 40.00 40.00 50.00 80.00 40.00 

U91 50.00 60.00 50.00 30.00 40.00 40.00 40.00 30.00 30.00 40.00 30.00 40.00 30.00 30.00 

U93 30.00 30.00 30.00 30.00 40.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 30.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 12.00 10.00 8.00 8.00 10.00 10.00 8.00 10.00 11.00 8.00 8.00 10.00 16.00 8.00 

U91 10.00 12.00 10.00 6.00 8.00 8.00 8.00 6.00 6.00 8.00 6.00 8.00 6.00 6.00 

U93 6.00 6.00 6.00 6.00 8.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 6.00 6.00 

It
er

at
io

n
 

1
 

U87 12.55 8.25 8.75 7.79 11.30 10.24 8.45 10.91 9.47 8.60 9.17 9.55 16.35 8.12 

U91 11.66 12.26 11.21 5.66 7.51 7.20 10.23 5.28 8.45 6.22 4.70 7.45 7.20 6.44 

U93 5.79 6.65 6.06 7.41 7.48 6.39 5.96 6.75 5.76 5.98 6.36 10.18 5.27 4.13 

It
er

at
io

n
 

2
 

U87  9.69 8.17 8.22 11.07 9.20 8.40 9.85 9.15 7.68 10.94 8.61 16.79 8.52 

U91  10.62 11.47 4.94 6.78 6.77 9.25 4.70 8.84 6.22 4.46 7.59 8.83 5.51 

U93  7.61 6.32 6.85 8.95 4.47 5.23 6.69 5.93 8.18 4.68 9.02 4.73 4.04 

It
er

at
io

n
 

3
 

U87   8.01 7.16 8.99 9.46 7.41 9.76 9.66 7.60 11.62 9.89 17.04 8.75 

U91   10.64 3.99 7.75 5.67 10.05 5.31 9.67 7.50 4.51 9.73 8.70 6.07 

U93   4.70 5.39 9.43 5.99 3.64 6.55 6.13 8.85 5.82 10.08 5.09 3.77 

It
er

at
io

n
 

4
 

U87    6.76 8.69 8.25 6.99 9.45 8.74 8.28 11.24 10.22 15.47 8.61 

U91    4.76 6.64 5.17 9.65 6.55 9.13 7.42 4.71 8.16 9.09 6.01 

U93    7.60 9.79 7.39 4.49 6.30 6.00 8.17 5.02 9.92 4.96 2.22 

It
er

at
io

n
 

5
 

U87     8.50 7.67 6.14 10.53 8.49 7.76 9.45 10.81 17.42 9.98 

U91     9.46 5.18 11.27 6.63 9.46 6.85 4.37 9.75 7.72 4.61 

U93     9.79 7.39 4.49 6.30 6.00 8.17 5.02 9.92 4.96 2.22 

It
er

at
io

n
 

6
 

U87      6.95 5.54 13.78 7.88 8.32 11.35 8.75 16.80 9.24 

U91      5.18 11.27 6.63 9.46 6.85 4.37 9.75 7.72 4.61 

U93      6.19 6.34 6.19 6.04 8.72 5.04 9.57 4.88 1.16 

It
er

at
io

n
 

7
 

U87       5.54 13.78 7.88 8.32 11.35 8.75 16.80 9.24 

U91       9.97 6.98 8.75 6.70 3.16 8.33 8.57 5.46 

U93       7.81 6.99 6.08 6.53 4.43 11.37 4.37 0.00 

It
er

at
io

n
 

8
 

U87        11.66 8.78 8.48 10.73 7.87 13.80 8.07 

U91        8.14 8.39 7.15 4.24 9.23 7.06 5.39 

U93        5.92 4.90 6.13 3.55 13.09 4.72 0.53 

It
er

at
io

n
 

9
 

U87         8.73 7.38 12.19 8.15 14.15 6.82 

U91         9.62 6.95 5.77 8.93 5.92 4.65 

U93         4.58 6.16 3.57 12.17 5.32 0.00 

It
er

at
io

n
 

1
0
 

U87          7.17 11.53 7.47 14.31 8.05 

U91          6.72 4.82 8.98 6.13 3.29 

U93          7.49 4.49 12.77 5.56 0.56 

It
er

at
io

n
 

1
1
 

U87           11.61 7.55 14.89 7.99 

U91           3.69 8.37 6.46 2.78 

U93           5.24 13.40 5.55 0.00 

It
er

at
io

n
 

1
2
 

U87            8.24 15.90 7.88 

U91            9.51 6.26 1.19 

U93            12.08 4.93 0.00 

It
er

at
io

n
 

1
3
 

U87             16.08 8.77 

U91             5.18 0.00 

U93             5.22 0.00 

It
er

at
io

n
 

1
4
 

U87              8.77 

U91              0.00 

U93              0.00 
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Table B.13. Contracted demand and additional demand simulation for case # 3 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 60.00 50.00 40.00 40.00 50.00 50.00 40.00 50.00 55.00 40.00 40.00 50.00 80.00 40.00 

U91 50.00 60.00 50.00 30.00 40.00 40.00 40.00 30.00 30.00 40.00 30.00 40.00 30.00 30.00 

U93 30.00 30.00 30.00 30.00 40.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 30.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 12.00 10.00 8.00 8.00 10.00 10.00 8.00 10.00 11.00 8.00 8.00 10.00 16.00 8.00 

U91 10.00 12.00 10.00 6.00 8.00 8.00 8.00 6.00 6.00 8.00 6.00 8.00 6.00 6.00 

U93 6.00 6.00 6.00 6.00 8.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 6.00 6.00 

It
er

at
io

n
 

1
 

U87 12.11 9.38 9.08 8.07 10.54 8.45 7.72 9.75 10.06 7.92 10.13 11.77 15.70 7.35 

U91 9.39 12.60 10.34 5.16 6.93 5.65 6.76 5.47 6.57 8.90 5.27 7.13 6.15 4.44 

U93 7.35 7.47 7.06 5.92 7.89 8.43 6.52 7.74 4.59 4.28 5.58 8.46 6.89 5.14 

It
er

at
io

n
 

2
 

U87  9.77 10.63 5.92 9.44 6.80 7.61 10.49 11.12 6.31 9.19 10.80 15.21 8.11 

U91  13.94 10.70 5.98 8.43 7.31 6.54 4.87 7.04 8.00 6.30 7.27 5.47 6.36 

U93  7.33 8.22 6.06 10.51 10.27 6.71 7.09 4.99 4.83 5.45 7.19 6.44 4.38 

It
er

at
io

n
 

3
 

U87   10.44 6.20 10.76 7.69 6.71 10.33 10.25 6.37 8.63 11.42 15.01 8.71 

U91   9.71 4.94 7.01 9.54 4.68 5.10 6.92 8.04 6.49 8.08 5.23 7.22 

U93   7.77 4.67 10.78 8.83 5.98 7.36 3.90 3.78 7.06 6.93 6.39 5.44 

It
er

at
io

n
 

4
 

U87    7.79 10.84 7.60 6.67 10.59 10.36 6.72 7.70 12.27 15.15 6.98 

U91    5.42 8.39 9.18 5.10 5.73 6.72 6.47 7.42 7.98 5.28 6.85 

U93    4.40 10.76 8.43 6.43 7.87 3.32 5.01 7.26 7.96 5.51 6.23 

It
er

at
io

n
 

5
 

U87     11.04 8.50 8.85 10.44 9.83 6.52 8.81 11.77 17.39 5.93 

U91     9.05 9.40 5.59 3.12 6.04 5.42 8.68 7.34 5.02 5.72 

U93     10.76 8.43 6.43 7.87 3.32 5.01 7.26 7.96 5.51 6.23 

It
er

at
io

n
 

6
 

U87      7.53 9.12 10.35 8.22 6.83 9.67 12.10 16.80 6.32 

U91      9.40 5.59 3.12 6.04 5.42 8.68 7.34 5.02 5.72 

U93      9.75 7.40 7.24 2.75 5.35 7.17 10.04 6.37 6.41 

It
er

at
io

n
 

7
 

U87       9.12 10.35 8.22 6.83 9.67 12.10 16.80 6.32 

U91       7.20 2.30 6.91 4.11 8.76 8.79 4.42 7.68 

U93       7.16 7.35 0.69 6.49 6.64 9.16 6.66 6.52 

It
er

at
io

n
 

8
 

U87        10.38 8.32 6.84 10.82 11.52 17.78 5.61 

U91        1.99 7.62 5.09 8.85 7.14 2.88 8.63 

U93        6.88 2.12 7.37 7.02 9.94 7.47 5.72 

It
er

at
io

n
 

9
 

U87         7.26 6.29 10.30 9.33 18.63 4.32 

U91         8.19 6.76 9.52 6.55 0.88 8.98 

U93         0.00 8.18 5.85 9.99 7.67 5.97 

It
er

at
io

n
 

1
0
 

U87          7.09 11.34 7.86 18.12 3.14 

U91          5.82 9.96 6.30 2.63 9.87 

U93          7.81 4.82 10.14 8.63 6.77 

It
er

at
io

n
 

1
1
 

U87           12.55 6.94 19.52 4.06 

U91           10.54 5.12 2.64 10.75 

U93           6.60 9.47 8.59 7.62 

It
er

at
io

n
 

1
2
 

U87            6.90 20.78 5.72 

U91            6.37 3.93 10.55 

U93            8.44 6.86 8.75 

It
er

at
io

n
 

1
3
 

U87             21.14 5.79 

U91             2.69 12.49 

U93             6.51 9.21 

It
er

at
io

n
 

1
4
 

U87              5.79 

U91              12.49 

U93              9.21 
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Table B.14. Contracted demand and additional demand simulation for case # 4 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 80.00 60.00 60.00 80.00 70.00 65.00 60.00 85.00 80.00 35.00 30.00 40.00 35.00 40.00 

U91 50.00 40.00 50.00 30.00 40.00 50.00 40.00 70.00 80.00 30.00 35.00 35.00 30.00 30.00 

U93 30.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 45.00 30.00 30.00 35.00 45.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 16.00 12.00 12.00 16.00 14.00 13.00 12.00 17.00 16.00 7.00 6.00 8.00 7.00 8.00 

U91 10.00 8.00 10.00 6.00 8.00 10.00 8.00 14.00 16.00 6.00 7.00 7.00 6.00 6.00 

U93 6.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 9.00 6.00 6.00 7.00 9.00 6.00 

It
er

at
io

n
 

1
 

U87 15.68 11.13 11.12 15.99 13.92 13.17 11.52 17.80 17.87 6.38 7.64 9.91 8.47 8.15 

U91 9.43 8.41 8.72 8.52 8.31 7.57 4.94 14.04 13.91 7.80 7.02 6.43 7.21 8.13 

U93 6.30 6.11 4.15 7.94 5.54 6.50 5.40 7.50 9.25 6.12 4.89 6.18 8.86 6.94 

It
er

at
io

n
 

2
 

U87  11.24 11.91 16.51 14.74 12.42 10.09 18.97 17.82 5.52 7.74 9.77 9.57 7.42 

U91  7.62 9.68 8.08 6.97 7.59 6.73 15.07 15.43 6.84 6.00 8.90 5.81 6.42 

U93  6.19 4.26 6.54 5.50 6.53 5.96 5.57 8.93 6.16 5.16 7.02 9.09 7.47 

It
er

at
io

n
 

3
 

U87   13.43 16.21 15.84 11.69 9.78 20.48 17.70 6.70 9.05 10.28 10.67 7.69 

U91   8.05 5.82 4.81 7.99 8.87 14.79 13.81 7.17 5.24 8.51 4.74 7.74 

U93   4.32 5.56 6.05 6.69 6.25 5.04 7.52 4.58 5.29 5.49 8.13 6.98 

It
er

at
io

n
 

4
 

U87    16.23 17.07 12.08 7.64 20.67 19.24 8.40 9.61 10.81 11.54 7.40 

U91    7.78 6.32 7.17 10.72 13.72 14.05 6.72 5.18 8.31 5.17 8.11 

U93    5.83 4.59 7.11 4.59 7.13 7.33 3.29 6.54 5.59 7.27 7.44 

It
er

at
io

n
 

5
 

U87     18.03 12.40 7.59 20.67 19.15 9.74 8.46 10.90 12.18 6.58 

U91     5.11 6.80 10.06 13.05 14.40 6.19 4.40 8.63 3.78 7.13 

U93     4.59 7.11 4.59 7.13 7.33 3.29 6.54 5.59 7.27 7.44 

It
er

at
io

n
 

6
 

U87      11.78 5.51 20.15 18.06 9.65 9.63 11.30 12.48 5.56 

U91      6.80 10.06 13.05 14.40 6.19 4.40 8.63 3.78 7.13 

U93      7.82 4.52 7.46 8.52 2.87 7.27 7.51 7.21 7.52 

It
er

at
io

n
 

7
 

U87       5.51 20.15 18.06 9.65 9.63 11.30 12.48 5.56 

U91       10.45 13.28 16.48 6.25 5.46 9.33 2.04 6.79 

U93       4.15 7.35 7.31 3.75 5.67 7.60 7.20 8.07 

It
er

at
io

n
 

8
 

U87        20.31 18.76 9.99 9.90 11.15 12.41 6.91 

U91        14.22 17.75 8.14 6.47 8.26 2.07 5.35 

U93        9.29 8.28 4.37 6.66 5.35 5.12 8.14 

It
er

at
io

n
 

9
 

U87         18.84 10.83 11.17 11.58 11.28 6.11 

U91         17.84 7.44 5.64 9.85 0.49 3.91 

U93         8.53 3.66 8.24 4.81 4.67 8.87 

It
er

at
io

n
 

1
0
 

U87          11.21 10.20 10.11 11.70 8.28 

U91          8.68 4.94 9.98 0.98 4.06 

U93          2.48 9.50 3.38 1.60 8.94 

It
er

at
io

n
 

1
1
 

U87           10.95 10.40 11.13 7.38 

U91           5.42 8.48 1.38 3.88 

U93           9.97 4.60 1.55 9.62 

It
er

at
io

n
 

1
2
 

U87            8.78 12.59 7.23 

U91            6.87 1.30 5.95 

U93            5.15 0.57 9.84 

It
er

at
io

n
 

1
3
 

U87             13.64 9.32 

U91             0.25 5.52 

U93             0.11 10.13 

It
er

at
io

n
 

1
4
 

U87              9.32 

U91              5.52 

U93              10.13 
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Table B.15. Contracted demand and additional demand simulation for case # 5 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 80.00 60.00 60.00 80.00 70.00 65.00 60.00 85.00 80.00 35.00 30.00 40.00 35.00 40.00 

U91 50.00 40.00 50.00 30.00 40.00 50.00 40.00 70.00 80.00 30.00 35.00 35.00 30.00 30.00 

U93 30.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 45.00 30.00 30.00 35.00 45.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 16.00 12.00 12.00 16.00 14.00 13.00 12.00 17.00 16.00 7.00 6.00 8.00 7.00 8.00 

U91 10.00 8.00 10.00 6.00 8.00 10.00 8.00 14.00 16.00 6.00 7.00 7.00 6.00 6.00 

U93 6.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 9.00 6.00 6.00 7.00 9.00 6.00 

It
er

at
io

n
 

1
 

U87 17.23 12.00 12.27 14.90 14.36 14.58 13.32 17.19 15.50 7.54 5.72 8.54 7.07 7.98 

U91 11.02 6.75 8.74 5.13 8.44 9.78 8.71 12.41 14.68 7.15 6.64 8.00 4.82 5.49 

U93 6.91 5.02 7.11 6.33 6.15 6.68 6.90 7.12 9.63 7.32 5.96 6.53 7.85 5.22 

It
er

at
io

n
 

2
 

U87  11.66 12.34 15.87 14.51 13.92 11.60 16.44 13.82 6.68 5.34 7.10 8.19 8.26 

U91  8.00 9.09 5.37 8.81 10.27 8.21 12.77 13.76 8.99 5.18 8.41 6.09 4.97 

U93  6.16 7.81 7.57 5.75 6.60 7.35 7.44 9.97 7.04 5.29 5.46 8.95 4.03 

It
er

at
io

n
 

3
 

U87   11.89 16.83 15.35 13.38 12.15 16.77 13.40 7.31 5.47 6.38 7.71 6.73 

U91   10.40 5.32 9.41 10.34 7.83 12.51 13.44 8.51 6.64 7.71 4.46 4.97 

U93   7.95 6.92 5.16 6.48 9.89 6.51 11.67 6.82 6.63 6.08 9.64 4.87 

It
er

at
io

n
 

4
 

U87    16.95 17.44 14.30 8.95 16.87 12.78 7.76 6.03 7.67 5.66 6.99 

U91    3.47 9.02 9.16 8.04 11.77 13.33 9.13 6.31 6.43 4.66 3.88 

U93    7.28 5.79 6.94 12.02 5.22 11.99 6.93 9.35 6.30 9.17 5.03 

It
er

at
io

n
 

5
 

U87     16.66 16.47 9.06 17.83 13.16 7.33 7.59 7.78 6.96 6.79 

U91     8.49 9.95 7.70 10.98 13.30 9.12 6.48 4.64 4.52 3.35 

U93     5.79 6.94 12.02 5.22 11.99 6.93 9.35 6.30 9.17 5.03 

It
er

at
io

n
 

6
 

U87      16.16 9.07 19.03 14.82 7.54 7.87 10.55 6.59 8.12 

U91      9.95 7.70 10.98 13.30 9.12 6.48 4.64 4.52 3.35 

U93      7.77 12.44 4.79 13.59 7.00 9.66 5.12 10.55 5.99 

It
er

at
io

n
 

7
 

U87       9.07 19.03 14.82 7.54 7.87 10.55 6.59 8.12 

U91       6.66 9.40 13.25 10.30 7.65 5.97 4.32 4.52 

U93       13.50 6.59 13.35 4.55 9.90 6.38 10.36 4.50 

It
er

at
io

n
 

8
 

U87        18.48 13.60 6.49 7.61 9.79 7.61 7.22 

U91        8.93 12.07 11.70 6.41 4.26 3.68 5.30 

U93        6.46 13.52 5.10 8.88 5.20 9.00 3.70 

It
er

at
io

n
 

9
 

U87         13.52 7.18 5.80 9.44 8.62 6.46 

U91         11.81 11.29 7.58 4.97 2.65 4.61 

U93         13.48 4.32 6.74 6.31 9.19 3.35 

It
er

at
io

n
 

1
0
 

U87          6.47 4.82 8.76 6.60 7.99 

U91          13.92 6.89 5.01 3.34 3.29 

U93          5.70 6.84 5.68 7.92 2.31 

It
er

at
io

n
 

1
1
 

U87           5.92 10.78 7.69 8.30 

U91           5.38 4.55 3.81 4.48 

U93           7.23 5.92 7.70 1.02 

It
er

at
io

n
 

1
2
 

U87            10.83 8.75 9.86 

U91            4.42 4.72 6.68 

U93            6.05 5.89 0.48 

It
er

at
io

n
 

1
3
 

U87             8.89 8.07 

U91             4.40 8.61 

U93             4.40 0.15 

It
er

at
io

n
 

1
4
 

U87              8.07 

U91              8.61 

U93              0.15 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

200 
 

Table B.16. Contracted demand and additional demand simulation for case # 6 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 80.00 60.00 60.00 80.00 70.00 65.00 60.00 85.00 80.00 35.00 30.00 40.00 35.00 40.00 

U91 50.00 40.00 50.00 30.00 40.00 50.00 40.00 70.00 80.00 30.00 35.00 35.00 30.00 30.00 

U93 30.00 30.00 30.00 35.00 30.00 30.00 30.00 40.00 45.00 30.00 30.00 35.00 45.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 16.00 12.00 12.00 16.00 14.00 13.00 12.00 17.00 16.00 7.00 6.00 8.00 7.00 8.00 

U91 10.00 8.00 10.00 6.00 8.00 10.00 8.00 14.00 16.00 6.00 7.00 7.00 6.00 6.00 

U93 6.00 6.00 6.00 7.00 6.00 6.00 6.00 8.00 9.00 6.00 6.00 7.00 9.00 6.00 

It
er

at
io

n
 

1
 

U87 18.10 11.63 12.81 16.61 13.39 13.93 11.16 15.13 17.45 8.16 6.83 7.47 6.32 7.74 

U91 9.46 7.85 10.60 5.32 7.02 12.32 7.79 14.80 16.13 5.70 6.99 7.72 6.78 6.15 

U93 6.52 4.88 6.72 8.06 5.94 5.26 6.68 8.77 10.07 4.53 5.44 7.85 10.09 7.02 

It
er

at
io

n
 

2
 

U87  10.33 12.06 16.74 13.55 14.69 11.79 15.02 17.19 7.44 7.07 8.12 6.22 8.26 

U91  7.06 11.18 6.12 8.16 12.28 10.45 15.57 15.08 6.67 7.50 6.93 7.52 5.39 

U93  3.84 7.51 7.21 5.70 5.97 7.89 9.32 11.28 2.61 3.62 8.84 10.18 7.71 

It
er

at
io

n
 

3
 

U87   11.35 15.39 13.54 13.69 12.32 14.93 16.67 7.08 7.00 7.88 7.71 8.84 

U91   10.89 6.67 9.09 12.22 9.54 14.52 14.74 5.88 6.88 7.99 8.04 5.41 

U93   5.01 6.79 6.66 5.66 8.45 9.02 11.13 2.41 5.19 10.81 10.80 6.19 

It
er

at
io

n
 

4
 

U87    14.76 13.80 13.22 11.12 16.85 18.97 6.91 6.75 8.33 6.50 8.60 

U91    6.04 6.98 12.39 9.91 15.13 14.32 7.22 6.39 6.88 7.92 6.17 

U93    8.23 6.65 5.49 8.63 10.37 9.99 3.54 4.25 10.58 11.09 5.34 

It
er

at
io

n
 

5
 

U87     13.26 12.05 11.59 17.01 18.11 5.26 8.49 7.92 6.68 9.60 

U91     6.38 13.33 9.14 12.82 15.91 8.83 5.71 5.98 9.07 6.02 

U93     6.65 5.49 8.63 10.37 9.99 3.54 4.25 10.58 11.09 5.34 

It
er

at
io

n
 

6
 

U87      11.41 12.43 18.96 17.84 5.12 8.41 8.07 6.53 10.52 

U91      13.33 9.14 12.82 15.91 8.83 5.71 5.98 9.07 6.02 

U93      5.03 8.03 9.50 10.08 4.42 3.87 10.07 10.66 4.71 

It
er

at
io

n
 

7
 

U87       12.43 18.96 17.84 5.12 8.41 8.07 6.53 10.52 

U91       8.05 13.85 15.43 8.83 6.29 7.51 8.23 6.61 

U93       7.94 8.66 9.43 3.58 2.96 8.66 9.29 5.76 

It
er

at
io

n
 

8
 

U87        18.52 18.22 5.67 9.10 7.11 7.08 11.11 

U91        12.44 14.03 9.72 6.69 6.41 6.89 7.85 

U93        10.03 10.65 3.57 3.49 10.04 8.79 5.14 

It
er

at
io

n
 

9
 

U87         18.08 5.69 8.96 7.65 7.85 12.44 

U91         13.74 11.39 6.11 7.02 6.88 6.81 

U93         10.86 3.54 3.67 10.14 8.27 4.47 

It
er

at
io

n
 

1
0
 

U87          6.94 9.11 7.39 6.01 14.51 

U91          9.91 5.08 6.82 6.76 5.22 

U93          3.95 3.54 9.20 7.36 3.47 

It
er

at
io

n
 

1
1
 

U87           8.66 7.23 4.63 14.41 

U91           4.73 7.14 7.28 5.17 

U93           3.57 9.35 8.23 1.66 

It
er

at
io

n
 

1
2
 

U87            8.10 3.43 14.38 

U91            5.30 6.26 6.40 

U93            8.37 9.25 3.02 

It
er

at
io

n
 

1
3
 

U87             3.22 15.10 

U91             7.68 7.50 

U93             10.47 2.96 

It
er

at
io

n
 

1
4
 

U87              15.10 

U91              7.50 

U93              2.96 
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Table B.17. Contracted demand and additional demand simulation for case # 7 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 60.00 70.00 60.00 70.00 40.00 50.00 50.00 70.00 60.00 30.00 40.00 40.00 50.00 60.00 

U91 40.00 50.00 60.00 70.00 30.00 30.00 30.00 50.00 50.00 20.00 30.00 50.00 30.00 30.00 

U93 40.00 40.00 40.00 60.00 20.00 30.00 20.00 30.00 50.00 20.00 20.00 30.00 20.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 12.00 14.00 12.00 14.00 8.00 10.00 10.00 14.00 12.00 6.00 8.00 8.00 10.00 12.00 

U91 8.00 10.00 12.00 14.00 6.00 6.00 6.00 10.00 10.00 4.00 6.00 10.00 6.00 6.00 

U93 8.00 8.00 8.00 12.00 4.00 6.00 4.00 6.00 10.00 4.00 4.00 6.00 4.00 6.00 

It
er

at
io

n
 

1
 

U87 12.05 12.73 10.47 13.18 8.98 8.49 10.71 13.90 11.08 6.96 6.93 7.04 10.05 11.31 

U91 11.03 10.47 12.69 14.13 5.74 4.84 4.62 9.99 10.68 4.60 4.94 10.14 5.87 7.32 

U93 9.03 10.22 8.44 11.71 4.36 5.66 3.73 3.83 7.58 3.77 4.13 5.72 4.64 6.99 

It
er

at
io

n
 

2
 

U87  11.77 9.32 11.08 9.15 7.57 9.95 16.57 11.00 5.08 6.37 5.78 9.58 10.00 

U91  10.13 11.29 13.52 7.37 3.69 1.56 11.02 9.02 5.59 3.75 9.04 6.03 7.28 

U93  9.07 7.60 12.51 1.94 4.80 3.27 5.07 8.16 2.69 4.02 5.60 4.43 7.54 

It
er

at
io

n
 

3
 

U87   9.43 12.08 9.75 6.95 10.04 17.16 11.38 5.90 5.80 7.11 9.13 11.06 

U91   9.72 14.15 5.76 3.32 0.47 12.47 9.08 6.66 1.55 7.82 7.06 5.27 

U93   8.69 11.70 4.45 4.91 3.59 4.26 9.26 1.98 2.67 5.70 3.29 6.16 

It
er

at
io

n
 

4
 

U87    11.13 9.86 5.72 8.09 16.35 10.76 5.99 5.30 6.28 8.09 11.66 

U91    15.97 5.34 2.83 0.00 13.09 10.32 6.61 1.16 8.84 6.44 5.28 

U93    10.48 5.56 4.98 4.55 5.02 9.88 0.90 1.32 6.69 2.96 6.15 

It
er

at
io

n
 

5
 

U87     10.34 6.68 8.68 16.33 9.88 6.04 5.53 6.11 6.60 11.92 

U91     2.92 1.86 0.00 13.13 10.94 8.83 0.00 7.33 6.96 2.93 

U93     5.56 4.98 4.55 5.02 9.88 0.90 1.32 6.69 2.96 6.15 

It
er

at
io

n
 

6
 

U87      9.05 7.19 15.33 9.86 6.47 5.34 7.26 6.29 11.77 

U91      1.86 0.00 13.13 10.94 8.83 0.00 7.33 6.96 2.93 

U93      5.10 2.91 5.35 8.54 0.00 1.22 7.10 3.90 6.71 

It
er

at
io

n
 

7
 

U87       7.19 15.33 9.86 6.47 5.34 7.26 6.29 11.77 

U91       0.15 13.70 9.89 8.67 0.54 8.24 5.62 2.93 

U93       3.86 3.65 10.81 0.88 0.06 5.78 3.26 6.99 

It
er

at
io

n
 

8
 

U87        13.95 8.74 7.50 6.55 8.25 5.80 11.62 

U91        14.27 9.56 8.87 0.76 8.24 6.06 2.15 

U93        4.56 9.66 0.03 0.00 5.33 5.13 5.82 

It
er

at
io

n
 

9
 

U87         8.71 7.04 4.53 8.68 4.50 11.31 

U91         10.42 8.25 0.27 9.32 6.80 0.44 

U93         10.27 0.68 0.00 4.89 4.77 4.61 

It
er

at
io

n
 

1
0
 

U87          8.35 4.86 9.20 5.81 10.60 

U91          8.52 0.05 7.84 6.61 2.21 

U93          1.86 0.00 2.38 3.97 5.88 

It
er

at
io

n
 

1
1
 

U87           4.50 10.03 6.90 8.50 

U91           0.30 6.30 6.65 2.08 

U93           0.00 2.99 4.32 6.64 

It
er

at
io

n
 

1
2
 

U87            9.12 6.83 7.15 

U91            5.68 5.52 3.85 

U93            2.66 4.43 6.41 

It
er

at
io

n
 

1
3
 

U87             7.79 7.06 

U91             4.80 4.03 

U93             5.26 5.29 

It
er

at
io

n
 

1
4
 

U87              7.06 

U91              4.03 

U93              5.29 



Ph.D. Thesis – Mahir Jalanko     McMaster University – Chemical Engineering 

202 
 

Table B.18. Contracted demand and additional demand simulation for case # 8 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 60.00 70.00 60.00 70.00 40.00 50.00 50.00 70.00 60.00 30.00 40.00 40.00 50.00 60.00 

U91 40.00 50.00 60.00 70.00 30.00 30.00 30.00 50.00 50.00 20.00 30.00 50.00 30.00 30.00 

U93 40.00 40.00 40.00 60.00 20.00 30.00 20.00 30.00 50.00 20.00 20.00 30.00 20.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 12.00 14.00 12.00 14.00 8.00 10.00 10.00 14.00 12.00 6.00 8.00 8.00 10.00 12.00 

U91 8.00 10.00 12.00 14.00 6.00 6.00 6.00 10.00 10.00 4.00 6.00 10.00 6.00 6.00 

U93 8.00 8.00 8.00 12.00 4.00 6.00 4.00 6.00 10.00 4.00 4.00 6.00 4.00 6.00 

It
er

at
io

n
 

1
 

U87 10.79 12.89 11.57 13.57 8.25 10.12 10.08 13.12 11.12 4.91 8.23 8.31 12.54 12.67 

U91 8.66 10.57 12.70 13.37 7.82 6.40 6.07 9.40 10.45 4.17 7.31 10.98 5.79 5.38 

U93 8.99 5.47 7.91 10.91 5.12 5.37 3.51 6.11 7.67 3.50 2.29 6.17 4.79 4.99 

It
er

at
io

n
 

2
 

U87  14.04 10.40 11.14 9.52 9.65 10.22 12.99 11.26 3.50 9.43 7.04 12.26 13.05 

U91  9.15 11.60 14.39 7.77 7.15 7.45 7.02 11.81 4.42 7.39 9.66 6.36 2.68 

U93  5.34 8.80 10.00 6.80 4.22 4.88 5.40 6.60 3.38 1.78 6.93 7.69 3.56 

It
er

at
io

n
 

3
 

U87   12.08 12.80 8.17 8.14 9.39 12.67 11.65 5.22 8.25 7.43 9.90 13.84 

U91   10.15 13.75 8.75 8.02 7.74 7.09 11.71 4.88 8.65 9.72 6.99 4.19 

U93   9.64 12.55 5.79 3.20 4.28 6.46 5.55 2.07 0.00 7.23 6.79 4.98 

It
er

at
io

n
 

4
 

U87    13.59 7.28 9.73 8.26 11.65 12.08 5.31 8.82 8.09 10.42 14.66 

U91    13.46 9.29 8.01 6.76 6.78 11.31 5.03 9.47 10.31 7.77 5.42 

U93    11.00 5.27 3.29 5.08 6.72 5.57 0.50 0.00 7.11 7.00 6.60 

It
er

at
io

n
 

5
 

U87     8.04 12.72 9.39 11.57 12.78 4.91 9.83 8.00 10.01 15.46 

U91     9.21 9.46 9.35 7.35 11.16 3.56 9.82 10.61 7.66 4.77 

U93     5.27 3.29 5.08 6.72 5.57 0.50 0.00 7.11 7.00 6.60 

It
er

at
io

n
 

6
 

U87      13.53 7.32 12.70 13.49 4.43 10.09 6.91 10.88 15.49 

U91      9.46 9.35 7.35 11.16 3.56 9.82 10.61 7.66 4.77 

U93      2.39 5.70 8.91 5.42 0.00 0.00 6.75 6.35 7.38 

It
er

at
io

n
 

7
 

U87       7.32 12.70 13.49 4.43 10.09 6.91 10.88 15.49 

U91       8.69 8.61 12.14 4.46 8.46 7.95 8.59 6.32 

U93       4.54 9.32 6.69 1.77 0.14 6.18 6.98 8.94 

It
er

at
io

n
 

8
 

U87        10.54 13.50 3.02 10.40 7.27 12.24 14.25 

U91        8.37 12.19 3.34 8.98 8.26 7.89 6.48 

U93        9.52 6.86 1.31 0.55 6.07 5.28 8.81 

It
er

at
io

n
 

9
 

U87         12.88 3.53 11.42 6.55 13.03 13.60 

U91         10.71 3.49 7.79 8.52 7.85 6.33 

U93         7.17 0.00 0.12 4.54 4.70 10.00 

It
er

at
io

n
 

1
0
 

U87          3.61 14.11 5.44 13.70 13.89 

U91          3.59 9.77 7.54 7.76 5.78 

U93          0.00 0.00 4.31 5.07 10.18 

It
er

at
io

n
 

1
1
 

U87           14.57 5.25 14.22 13.92 

U91           9.84 7.91 6.45 4.80 

U93           0.00 3.33 4.43 9.84 

It
er

at
io

n
 

1
2
 

U87            5.16 15.98 13.54 

U91            9.77 8.55 4.86 

U93            4.42 1.85 10.72 

It
er

at
io

n
 

1
3
 

U87             15.33 15.65 

U91             8.14 3.66 

U93             1.83 11.56 

It
er

at
io

n
 

1
4
 

U87              15.65 

U91              3.66 

U93              11.56 
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Table B.19. Contracted demand and additional demand simulation for case # 9 
 Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

C
o
n

tr
ac

te
d
 

D
em

an
d
 

U87 60.00 70.00 60.00 70.00 40.00 50.00 50.00 70.00 60.00 30.00 40.00 40.00 50.00 60.00 

U91 40.00 50.00 60.00 70.00 30.00 30.00 30.00 50.00 50.00 20.00 30.00 50.00 30.00 30.00 

U93 40.00 40.00 40.00 60.00 20.00 30.00 20.00 30.00 50.00 20.00 20.00 30.00 20.00 30.00 

A
d

d
it

io
n

al
 

M
ea

n
 

D
em

an
d
 

U87 12.00 14.00 12.00 14.00 8.00 10.00 10.00 14.00 12.00 6.00 8.00 8.00 10.00 12.00 

U91 8.00 10.00 12.00 14.00 6.00 6.00 6.00 10.00 10.00 4.00 6.00 10.00 6.00 6.00 

U93 8.00 8.00 8.00 12.00 4.00 6.00 4.00 6.00 10.00 4.00 4.00 6.00 4.00 6.00 

It
er

at
io

n
 

1
 

U87 12.31 15.03 11.92 13.57 8.25 8.76 11.20 12.52 12.16 6.96 6.85 7.61 10.19 12.55 

U91 6.94 10.37 12.07 12.66 6.26 7.12 5.18 10.90 10.18 1.49 5.45 10.62 5.17 4.19 

U93 8.08 7.09 7.75 11.36 4.49 6.50 4.56 6.78 12.12 3.06 3.29 5.90 3.13 6.66 

It
er

at
io

n
 

2
 

U87  15.74 10.26 12.97 6.13 8.14 11.27 12.91 10.62 6.67 8.37 7.57 11.56 12.22 

U91  9.98 11.88 12.25 5.36 6.16 5.98 12.61 9.29 1.18 5.78 10.02 5.81 5.22 

U93  7.58 7.06 10.81 3.85 5.70 5.18 5.97 11.84 3.08 3.46 6.99 2.92 8.56 

It
er

at
io

n
 

3
 

U87   9.70 13.01 6.12 6.75 11.17 14.02 11.24 5.54 7.60 6.63 10.52 11.27 

U91   12.79 12.02 6.11 6.47 4.41 12.79 10.52 1.87 4.16 10.16 5.72 3.49 

U93   6.79 11.23 3.46 5.01 5.58 5.46 10.45 3.78 2.19 7.66 3.75 8.42 

It
er

at
io

n
 

4
 

U87    12.47 5.50 8.30 12.76 13.45 9.82 5.71 7.79 6.93 8.05 12.23 

U91    11.35 5.90 6.56 5.11 13.24 11.28 2.02 3.41 9.66 5.12 2.95 

U93    11.00 2.69 5.35 5.75 5.60 11.65 4.86 3.16 7.35 5.01 6.92 

It
er

at
io

n
 

5
 

U87     5.47 7.28 12.34 13.52 8.80 6.37 8.78 7.45 5.99 11.33 

U91     5.81 6.27 4.63 13.01 11.53 1.47 1.46 11.80 5.16 1.89 

U93     2.69 5.35 5.75 5.60 11.65 4.86 3.16 7.35 5.01 6.92 

It
er

at
io

n
 

6
 

U87      7.51 12.81 13.13 8.38 5.80 9.19 8.39 4.49 11.20 

U91      6.27 4.63 13.01 11.53 1.47 1.46 11.80 5.16 1.89 

U93      5.77 5.12 4.95 11.26 5.74 2.54 8.64 4.12 8.47 

It
er

at
io

n
 

7
 

U87       12.81 13.13 8.38 5.80 9.19 8.39 4.49 11.20 

U91       3.80 12.84 11.22 2.18 2.46 11.50 5.16 2.88 

U93       6.70 3.63 12.33 4.91 1.18 8.93 1.88 7.97 

It
er

at
io

n
 

8
 

U87        12.75 7.37 5.12 8.69 8.13 5.20 10.85 

U91        11.72 11.88 1.48 3.12 12.13 2.71 3.80 

U93        5.10 11.65 4.55 0.00 9.64 3.29 7.26 

It
er

at
io

n
 

9
 

U87         7.33 4.70 8.33 8.77 3.80 12.04 

U91         10.85 0.79 4.29 12.13 1.86 3.68 

U93         11.66 3.44 0.00 10.91 1.82 7.61 

It
er

at
io

n
 

1
0
 

U87          5.67 10.88 10.69 3.19 11.41 

U91          0.92 4.49 13.11 2.17 4.63 

U93          3.87 1.01 9.42 0.57 6.16 

It
er

at
io

n
 

1
1
 

U87           10.75 11.83 4.09 10.81 

U91           4.39 12.84 2.48 4.49 

U93           0.00 8.66 2.28 4.98 

It
er

at
io

n
 

1
2
 

U87            10.44 4.75 9.56 

U91            13.09 2.04 5.64 

U93            7.62 2.53 2.98 

It
er

at
io

n
 

1
3
 

U87             3.54 10.39 

U91             1.31 4.66 

U93             1.79 3.97 

It
er

at
io

n
 

1
4
 

U87              10.39 

U91              4.66 

U93              3.97 
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case # 1: all demands is satisfied (graph not included) 

 

Figure B.1. Products undelivered demands for case # 2 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 

 

 Figure B.2. Products undelivered demands for case # 3 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 
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 Figure B.3. Products undelivered demands for case # 4 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 

 

 Figure B.4. Products undelivered demands for case # 5 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 
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Figure B.5. Products undelivered demands for case # 6 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93  

 

Figure B.6. Products undelivered demands for case # 7 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 
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Figure B.7. Products undelivered demands for case # 8 using the four method of nonlinear 

blending rules for products ■ U87, ■ U91, and ■ U93 
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Appendix C: Supporting Information for Chapter 4 

Table C.1. Weights of predicted output variables 

Output Weight 

𝑇𝑡_24 3 

𝑇𝑡_37 3 

𝑇𝑡_51 3 

𝑇𝑡_56 3 

𝑇𝑡_85 5 

𝑃𝑡_1 2 

∆𝑃𝑡𝑜𝑝 2 

∆𝑃𝑏𝑜𝑡𝑡𝑜𝑚 2 

𝑥𝐶2𝐻4 𝑡_97 5 

𝑥𝐶2𝐻6 𝑡_24 5 

�̇�𝑡𝑜𝑝 3 

𝑇𝑡𝑜𝑝 3 

𝑥𝐶2𝐻6 𝑡𝑜𝑝 10 

�̇�𝑏𝑜𝑡𝑡𝑜𝑚 3 

𝑇𝑏𝑜𝑡𝑡𝑜𝑚 3 

𝑥𝐶2𝐻4 𝑏𝑜𝑡𝑡𝑜𝑚 10 
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Appendix D: Supporting Information for Chapter 5 

 

Figure D.1. comparison of the manipulated and controlled variables measurements of OF-

NMPC control strategy with no flooding constraint versus PI controllers strategy 
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Figure D.2. comparison of the actual and computed liquid flow at tray 102 of OF-

NMPC control strategy versus PI controllers strategy 

 

 

 

 


