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Lay Abstract 

Possessing a reliable streamflow forecasting framework is of special importance in various 

fields of operational water resources management, non-structural flood mitigation in 

particular. Accurate and reliable streamflow forecasts lead to the best possible in-advanced 

flood control decisions which can significantly reduce its consequent loss of lives and 

properties. The main objective of this research is to develop an enhanced ensemble-based 

probabilistic streamflow forecasting approach through proper quantification of predictive 

uncertainty using an ensemble of streamflow forecasts. The key contributions are: (1) 

implementing multiple diverse forecasts with full coverage of future possibilities in the 

Bayesian ensemble-based forecasting method to produce more accurate and reliable 

forecasts; and (2) developing an ensemble-based Bayesian post-processing approach to 

enhance the hydrologic uncertainty quantification by taking the advantages of multiple 

forecasts and initial flow observation. The findings of this study are expected to benefit 

streamflow forecasting, flood control and mitigation, and water resources management and 

planning.  
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Abstract 

Streamflow forecasting is a fundamental component of various water resources 

management systems, ranging from flood control and mitigation to long-term planning of 

irrigation and hydropower systems. In the context of floods, a probabilistic forecasting 

system is required for proper and effective decision-making. Therefore, the primary goal 

of this research is the development of an advanced ensemble-based streamflow forecasting 

framework to better quantify the predictive uncertainty and generate enhanced probabilistic 

forecasts. This research started by comprehensively evaluating the performances of various 

lumped conceptual models in data-poor watersheds and comparing various Bayesian 

Model Averaging (BMA) modifications for probabilistic streamflow simulation. Then, 

using the concept of BMA, two novel probabilistic post-processing approaches were 

developed to enhance streamflow forecasting performance. The combination of the entropy 

theory and the BMA method leads to an entropy-based Bayesian Model Averaging (En-

BMA) approach for enhanced probabilistic streamflow and precipitation forecasting. Also, 

the integration of the Hydrologic Uncertainty Processor (HUP) and the BMA methods is 

proposed for probabilistic post-processing of multi-model streamflow forecasts. 

Results indicated that the MACHBV and GR4J models are highly competent in simulating 

hydrological processes within data-scarce watersheds, however, the presence of the lower 

skill hydrologic models is still beneficial for ensemble-based streamflow forecasting. The 

comprehensive verification of the BMA approach in terms of streamflow predictions has 

identified the merits of implementing some of the previously recommended modifications 
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and showed the importance of possessing a mutually exclusive and collectively exhaustive 

ensemble. By targeting the remaining limitation of the BMA approach, the proposed En-

BMA method can improve probabilistic streamflow forecasting, especially under high flow 

conditions. Also, the proposed HUP-BMA approach has taken advantage of both HUP and 

BMA methods to better quantify the hydrologic uncertainty. Moreover, the applicability of 

the modified En-BMA as a more robust post-processing approach for precipitation 

forecasting, compared to BMA, has been demonstrated. 
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 Introduction 

1.1 Background 

Accurate and reliable streamflow forecasting is receiving particular importance in various 

fields of water resources management, flood control and mitigation in particular. Compared 

with other natural disasters, flood is the most common natural hazard in Canada leading to 

catastrophic environmental and socio-economic damages (Caballero & Rahman, 2014; 

Thistlethwaite et al., 2018). Dramatically increasing frequency of extreme events in the 

recent decades, mostly caused by climate change, has brought more attention to flood 

mitigation measures (Han & Coulibaly, 2017; Reggiani et al., 2009). In general, these 

measures are categorized into two groups: structural and non-structural. The structural 

measures tried to reduce the negative flood effects by changing the characteristics of the 

landscapes, such as constructing flood-control reservoirs and diversions (Heidari, 2009; 

Meyer et al., 2012), while the non-structural interventions are more sustainable, less 

expensive, and the only effective way for protecting life and property from floods in many 

flood-prone regions (Barbetta et al., 2017; Kundzewicz, 2002). One of the most effective 

non-structural flood mitigation measures is the application of a reliable flood forecasting 

system, where hydrologic and hydraulic models are used for flood predictions. Although 

some regional streamflow prediction frameworks have been developed and used in Canada 

(Zahmatkesh et al., 2019), there is currently no nationwide flood forecasting and early 

warning system. 
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One of the integral components of any operational streamflow prediction framework is 

rainfall-runoff models (or hydrologic models) which are used as simplified 

characterizations of different hydrologic processes (such as snowmelt, infiltration, 

evapotranspiration, runoff, etc.). Thanks to the development of various types of hydrologic 

models in the last century, flood forecasting has improved significantly. Classifying 

rainfall-runoff models based on their mathematical representations leads to three main 

groups. In the category of conceptual models, such as Sacramento soil moisture accounting 

(SAC-SMA) (Burnash et al., 1973), McMaster University Hydrologiska Byråns 

Vattenbalansavdelning (MAC-HBV) (Samuel et al., 2011), and Hydrologic Engineering 

Center’s Hydrologic Modeling System (HEC-HMS) (Scharffenberg, 2016), interconnected 

conceptual elements are used for representing different hydrologic components. These 

models are popular for flood forecasting due to their low computational cost and simplicity. 

The low required input data makes the conceptual models the best option for data-scare 

regions (Anshuman et al., 2019; Tegegne et al., 2017). On the other hand, by focusing on 

physical characteristics of the hydrologic processes in time and space, the physically-based 

distributed models, such as the European hydrological system (SHE) (Abbott et al., 1986a, 

1986b), have been developed. Reliable practical application of the physically-based models 

requires a large amount of data for the proper estimation of the spatially distributed 

parameters representing the physical properties of the watershed (Todini, 2011; Young, 

2002). Moreover, the black-box models (also known as data-driven models), ranging from 

simple linear models to Artificial Neural Network (ANN), analyze the relationships 

between inputs (e.g. temperature and precipitation) and the output of interest (e.g. 
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streamflow or water level), without consideration of the catchment physical processes. The 

lack of physical interpretation and the strong dependence on the calibration data are the 

main concerns of the data-driven models (Shrestha, 2009; Todini, 2011). Although much 

progress has been made to improve the capability of different hydrologic models, there are 

still lots of simplifications in their structures. Also, each model has parameters that cannot 

be perfectly estimated due to errors in historical data. So, no hydrological model can 

provide error-free streamflow prediction in all conditions (Chen et al., 2013). 

Streamflow forecasting is subject to various sources of uncertainty. Besides the inaccurate 

future meteorological forecasts, the imperfection of the hydrologic models, the uncertain 

parameters estimation, and the unknown initial conditions are the other important sources 

of uncertainties in the case of streamflow prediction (Moradkhani & Sorooshian, 2008). 

Decision-making based on a single model deterministic forecast, which only provides a 

point estimation of the future value without taking into account the inherent uncertainties, 

is very risky and can lead to irreversible economic and social damages (Liu et al., 2018). 

So, generating probabilistic forecasts by quantifying and reducing the predictive 

uncertainty is one of the most important parts of any operational flood forecasting 

framework (Biondi & Todini, 2018). Predictive uncertainty is defined as the conditional 

distribution of future unknown values based on the information provided by the forecasting 

model(s) (Todini, 2011). Using an ensemble of streamflow predictions (ESP) is one of the 

most widely used approaches for quantifying the predictive uncertainty (Madadgar & 

Moradkhani, 2014; Michaels, 2015). As a conventional approach, the ESP was generated 

by forcing a hydrologic model with multiple meteorological forecasts (Abaza et al., 2013; 
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Baran et al., 2019; Fan et al., 2014; Qu et al., 2017) which reflects the uncertainties 

associated with forcing inputs. As an alternative and evolving way, multiple hydrologic 

models can be used for generating ESP to capture the model structural uncertainties (Jiang 

et al., 2018; Seiller et al., 2017; Todini, 2008; Xu et al., 2019). Also, using various 

realizations of the model’s parameters or assimilating initial states could be used for 

constructing ESP for conceptualizing uncertainties associated with measurement errors and 

parameters estimation process (Dong et al., 2013; Pappenberger et al., 2005; Parrish et al., 

2012). 

Although, using multiple forecasts, compared to the deterministic one, provides more 

information about the future event, it is still required to estimate the correct and reliable 

predictive uncertainty for sound and proper decision making (Biondi & Todini, 2018; J. 

Liu & Xie, 2014; Reggiani & Weerts, 2008). Therefore, a statistical post-processing 

approach, which is used to reduce and quantify the predictive uncertainty, is a crucial 

component of any operational forecasting system. A recent review of the various post-

processing approaches can be found in Han and Coulibaly (2017) and Li et al., (2017).  In 

general, the post-processing methods tried to use the full capability of all available 

information to characterize the predictive uncertainty and generate reliable probabilistic 

forecasts. Some of these methods, such as the well-known Hydrologic Uncertainty 

Processor (HUP) (Krzysztofowicz & Kelly, 2000), use single deterministic forecasts for 

generating predictive results (e.g. Krzysztofowicz & Herr, 2001; Krzysztofowicz & Kelly, 

2000; Liu et al., 2018; Montanari & Grossi, 2008), while some have been extended to take 
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the advantage of considering ensemble streamflow forecasts (e.g. Han and Coulibaly 2019; 

Khajehei & Moradkhani, 2017; Raftery et al., 2005; Reggiani et al., 2009; Seo et al., 2006). 

Among the latter methods, the Bayesian Model Averaging (BMA) approach (Hoeting et 

al., 1999; Raftery et al., 1997, 2005) is the most common and widely used ensemble-based 

post-processing method for both meteorological (e.g. Cane et al., 2013; Ji et al., 2019; J. 

Liu & Xie, 2014; Ma et al., 2018; Vrugt et al., 2006) and hydrological (Duan et al., 2007; 

Jiang et al., 2018; Liang et al., 2013; Sharma et al., 2019) forecasts. By using the weighted 

average of the conditional distribution of the predictand based on each ensemble forecast 

member, BMA estimates the forecast predictive uncertainty conditioned on the whole 

ensemble. Although different modifications have been proposed to enhance the BMA 

capability of quantifying predictive uncertainty in the case of dealing with different 

hydrometeorological variables (e.g. Soughter et al. (2007), Fraley et al. (2010), and Yang 

et al. (2012) for precipitation and Yan and Moradkhani (2016), Madadgar and Moradkhani, 

(2014), Vrugt and Robinson (2007), and He et al. (2018) for streamflow), there are still 

some inherent assumptions and limitations in the BMA structure which requires further 

research to develop a promising probabilistic flood forecasting framework. Besides the 

quality of individual members of the forecast ensemble, the characteristics of the whole 

ensemble play an important role in the reliable performance of the BMA method. Based 

on the law of total probability, as the main assumption of the BMA approach, the two 

properties of capturing the whole future variability as well as possessing mutually 

independent members of the ensemble are required for generating reliable BMA based 

probabilistic forecasts (Madadgar & Moradkhani, 2014; Refsgaard et al., 2012; Sharma et 
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al., 2019). Furthermore, the existing limitations in different methods motivate some 

research to integrate various techniques for devising a more reliable forecasting approach. 

In the context of Bayesian Model Averaging, Sharma et al. (2019), for instance, combines 

the Quantile Regression and BMA methods respectively for bias-correcting the ensemble 

of daily streamflow forecasts and probabilistically merging them. Another example is the 

employment of the data assimilation technique (i.e. Particle Filter) within the BMA 

structure to better quantify the predictive uncertainty (Parrish et al., 2012). Also, Ajami et 

al. (2007), Yen et al. (2014), and Jiang et al. (2018) developed BMA based methods for 

multi-source uncertainty analysis in an integrated manner, however, they have not been 

used for operational streamflow forecasting. 

1.2 Research Objectives and Thesis Outline 

Using the concept of the Bayesian Model Averaging (BMA) approach and aiming at 

enhancing the assessment of predictive uncertainty through utilizing an ensemble of 

streamflow forecasts, this study focuses on developing a reliable ensemble-based 

probabilistic streamflow forecasting/simulation framework. To achieve the primary 

objective, the following secondary objectives have been accomplished, which leads to five 

journal papers presented in Chapters 2 to 6 of the thesis: 

 A literature review on the Bayesian Model Averaging (BMA) concepts and their 

applications for streamflow forecasting. 

 Developing, investigating, and selecting the appropriate hydrologic models. 
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 Examining the current variants of the BMA method for streamflow 

forecasting/simulation. 

 Proposing Entropy-based BMA method for enhanced probabilistic ensemble 

streamflow forecasting. 

 Developing multi-model Bayesian post-processor for probabilistic streamflow 

forecasting through integrating the Hydrologic Uncertainty Processor (HUP) and 

the Bayesian Model Averaging (BMA) approaches. 

 Modifying and assessing the Entropy-based BMA method for post-processing 

precipitation forecasts. 

The thesis is organized into six chapters. After presenting an overview of the background, 

scope, and objectives of the research in Chapter 1, Chapter 2 comprehensively compares 

the performances of different conceptual hydrologic models for streamflow simulation in 

snow-dominated data-poor watersheds and evaluates the reliability of the archived 

Canadian Precipitation Analysis (CaPA) as an alternative forcing input of rainfall-runoff 

models in the case of sparse ground-based meteorological measurements. Chapter 3 

thoroughly assesses the effects of various previously recommended modifications of the 

Bayesian Model Averaging approach on the quality of the final BMA-derived probabilistic 

streamflow predictions. In Chapter 4, by using the concepts of the Entropy theory, the new 

Entropy-based Bayesian Model Averaging (En-BMA) technique has been developed in 

order to generate more accurate and reliable streamflow forecasts. Chapter 5 presents a 

new ensemble-based Bayesian post-processing approach where a combination of 

Hydrologic Uncertainty Processor and Bayesian Model Averaging methods is used for 
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better quantifying hydrologic uncertainty and providing more reliable streamflow forecasts. 

In chapter 6, by taking a step forward, a modified version of En-BMA approach was 

proposed and evaluated for post-processing an ensemble of precipitation forecasts. 
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 Inter-comparison of lumped hydrological models in data-

scarce watersheds using different precipitation forcing data sets: Case 

study of Northern Ontario, Canada 

Summary of Paper 1: Darbandsari, P., & Coulibaly, P. (2020). Inter-comparison of 

lumped hydrological models in data-scarce watersheds using different precipitation forcing 

data sets: Case study of Northern Ontario, Canada. Journal of Hydrology: Regional Studies, 

31, 100730. 

By considering the effects of calibration process and multiple precipitation input scenarios 

on the models’ performance, the main goal of this research is it to comprehensively 

evaluate and compare various conceptual rainfall-runoff models with distinct structures for 

daily stream flow prediction in snow-dominated watersheds with low data availability. 

Also, the implementation of the archive Canadian Precipitation Analysis (CaPA) as an 

alternative forcing input of the hydrologic models in Northern Ontario, Canada is evaluated. 

Key findings of this research are as follows: 

 The necessity of considering the effects of calibration process in any model 

comparison study is revealed. 

 The MACHBV hydrologic model shows the most consistent results in daily 

streamflow simulations, and the GR4J and SACSMA models possess competitive 

performances. 

 The GR4J model outperformed the other six models for high flow prediction. 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

18 

 

 The HEC-HMS based models possess the relatively lower performances for daily 

streamflow simulation.  

 The aggregated daily archived CaPA precipitation data is a reliable alternative for 

hydrologic modelling in data-poor watersheds. 

 The effectiveness of using a more complex snowmelt estimation routine depends 

on the structure of the conceptual rainfall-runoff model. 

2.1 Abstract 

Study Region: Big East River and Black River watersheds in Northern Ontario, Canada as 

snow-dominated, data-poor case studies. 

Study focus: In this study, seven lumped conceptual models were thoroughly compared in 

order to determine the best performing model for reproducing different components of the 

hydrograph, including low and high flows in data-poor catchments. All models were 

calibrated using five various objective functions for reducing the effects of calibration 

process on models’ performance. Additionally, the effects of precipitation, an important 

factor, particularly in data-scarce regions, were assessed by comparing two precipitation 

input scenarios: (1) low-density ground-based gauge data, and (2) the Canadian 

Precipitation Analysis (CaPA) data. The final goal of this study was to compare the effects 

of using either the Degree-Day or SNOW17 snowmelt estimation methods on the accuracy 

of streamflow simulation. 

New hydrological insights: The results indicate that, in general, MACHBV is the best 

performing model at simulating daily streamflow in a data-poor watershed, and both 
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SACSMA and GR4J can provide competitive results. Additionally, MACHBV and GR4J 

are superior to the other conceptual models regarding high flow simulation. Moreover, it 

was found that incorporating the more complex SNOW17 snowmelt estimation method did 

not always enhance the performance of the hydrologic models. Finally, the results also 

confirmed the reliability of the CaPA data as an alternative forcing precipitation in the case 

of low data availability. 

Keywords: Model inter-comparison; Simple conceptual models, Data scarce regions; 

Canadian Precipitation Analysis (CaPA); Snowmelt estimation; Canada 

2.2 Introduction 

Possessing reliable hydrological models is an important issue for operational hydrology 

and water resources management (Donnelly-Makowecki & Moore, 1999; Razavi & 

Coulibaly, 2017), and this is a unique challenge in data-scarce regions (Adjei et al., 2015). 

Various types of rainfall-runoff models, from lumped empirical to fully distributed 

physically-based ones, have been designed with different mathematical representations of 

hydrological processes (Beven, 2011; Lü et al., 2013; Moradkhani & Sorooshian, 2008). 

Empirical or data-driven models are based on mathematical equations not specifically 

related to the physical processes of the watershed. Although these models have some 

advantages, such as having higher performance efficiency, they are only valid within the 

boundaries of the given data (Shrestha & Solomatine, 2009). In contrast, physically-based 

distributed models are better at representing spatial variability when characterizing the 

water cycle processes, and can produce more reliable results (Moradkhani & Sorooshian, 

2008; Smith et al., 2004). Having parameters with physical interpretation and spatial 
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variability is the main advantage of physically-based distributed models, however, their 

proper estimation requires more computational cost and huge amount of data (Shrestha, 

2009), this poses a problem when the area of interest has low data availability (Gan et al., 

2006; Grayson et al., 2002; Tegegne, Park, & Kim, 2017; Young, 2002). Conceptual 

lumped models are another group of hydrologic models, which can provide a desirable 

alternative to empirical and physically-based distributed models. These models are 

commonly based on several interconnected conceptual elements representing different 

hydrologic components. There are various conceptual hydrologic models with different 

structures and processes, and the popularity of these models is due to their simplicity and 

low computational costs. 

Inter-comparison of various models is one of the most convenient approaches for assessing 

the influence of model structure and aiding in the selection of the best performing model 

(Breuer et al., 2009; Garavaglia et al., 2017). Also, through the comparison a multi-model 

ensemble can be generated which can then be used for quantifying model structural 

uncertainty (Seiller et al., 2012). Various studies have been conducted using model inter-

comparison experiments in the field of streamflow simulation (e.g. Chiew et al., 1993; Das 

et al., 2008; Gan et al., 1997; Koch et al., 2016; Michaud & Sorooshian, 1994; Shi et al., 

2011; Suliman et al., 2015; Te Linde et al., 2008; Tegegne et al., 2017a; Vansteenkiste et 

al., 2014; Zhang et al., 2016); however, few of them focused on regions with low data 

availability. Refsgaard and Knudsen (1996) compared a physically-based distributed, a 

lumped conceptual, and a semi-distributed hydrologic models for three data-scarce regions 

in Zimbabwe. Their results showed that although using the distributed model provided 
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reliable results, it did not outperformed simpler ones in term of streamflow simulation at 

the outlet. The study by Tegegne et al. (2017b) found that, through the inter-comparison of 

lumped conceptual models with a physically-based semi-distributed model in data poor 

catchments, use of a more complex model could not be justified. Anshuman et al. (2019) 

proposed considering conceptual over physically-based models in the case of facing 

watersheds with low data availability. In addition, comparing a semi-distributed and a 

lumped model by Srivastava et al. (2020) again showed the superiority of the lumped model 

for hydrological modeling in data-limited basins. Although it can be argued that simple 

lumped conceptual hydrologic models could be the best choice for modeling rainfall-runoff 

process in data-scarce watersheds, the need of comprehensive comparison of the 

performance of various lumped conceptual model structures is strongly felt on regions with 

limited data availability.  

Furthermore, the applicability of a conceptual hydrologic model is highly related to how 

well its parameters are estimated (Sorooshian et al., 1993). Although using a multi-

objective calibration procedure provides valuable information about the parameter 

equifinality and uncertainty, there are different studies ranging from flood forecasting (e.g. 

Han et al., 2019; Reggiani et al., 2009; Wijayarathne & Coulibaly, 2020) to climate change 

assessment (e.g. Ashofteh et al., 2017; Li et al., 2014), where one optimal parameter set is 

utilized for streamflow simulation or forecasting. Various performance statistics have been 

developed to evaluate the performance of hydrological models and each of them can be 

considered as an objective function for estimating parameters (Lü et al., 2013; Wöhling et 

al., 2013). Therefore, the selected objective function may affect the performance of the 
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calibrated rainfall-runoff model. Although reducing these effects on the model inter-

comparison process seems important for achieving more reliable results (Gan et al., 1997; 

Ouermi et al., 2019), it has not received much attention in previous studies. 

Reliable and accurate historical forcing data has a considerable effect on the calibration 

process and the corresponding model performance (Te Linde et al., 2008). Temperature 

can be accurately estimated using the low-density measurements; however, accounting for 

the spatial and temporal variability of precipitation is challenging in data-poor watersheds 

(Price et al., 2014). Consequently, assessing the potential of utilizing other sources of 

precipitation data (e.g., Satellite or Radar-based data) as input into a rainfall-runoff model 

seems necessary in the case of limited ground-based observation stations. This has recently 

motivated research, in data-scarce regions, to evaluate the influence of using other sources 

of precipitation (e.g. Climate Forecast System Reanalysis data (Dile & Srinivasan, 2014; 

Fuka et al., 2014), Tropical Rainfall Measuring Mission precipitation analysis (Adjei et al., 

2015; Collischonn et al., 2008; Worqlul et al., 2017), and North American Regional 

Reanalysis (Choi et al., 2009)) for models calibration. Their general finding is that the 

precipitation products provide valuable information for data-scarce regions while their 

evaluation at local scale is required due to regional variability of their quality (Lakew et 

al., 2020; Sirisena et al., 2018).  In addition, by removing possible random and systematic 

errors, the application of a bias correction method can enhance the applicability of 

precipitation products at regional scale (Habib et al., 2014).  

Canada specific, a Canadian Precipitation Analysis (CaPA) data is a gridded precipitation 

product, which is generated using various sources of precipitation, such as observations, 
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radar data, and forecasts (Mahfouf et al., 2007). There are few studies evaluating CaPA in 

terms of hydrologic performance. Eum et al. (2014) applied CaPA into the VIC model for 

streamflow simulation of Canadian mountainous catchments. In the case study by Gaborit 

et al. (2017), a comparison was made between CaPA and ground-based observations in 

terms of the accuracy of runoff predictions using two lumped models. Also, Boluwade et 

al. (2018), assessed the reliability of CaPA as forcing of Watflood hydrologic model. In 

previous studies, the accuracy of various precipitation products were evaluated, while none 

have utilized them in a model inter-comparison experiment for reducing the effects of 

forcing input on model performance. Also, assessing precipitation products utilizing 

multiple hydrologic models lead to more robust results than their proxy evaluation using 

streamflow data and an auxiliary model (Fortin et al., 2018).  

The main objective of this study is to evaluate various lumped conceptual models with 

different structures for continuous daily streamflow prediction in order to propose the most 

suitable one for operational hydrology in watersheds with low data availability. By 

focusing on two data-poor watersheds in Northern Ontario, Canada, the performance of 

seven different lumped conceptual models are thoroughly compared using different 

statistics focusing on low and high flow conditions. In the proposed inter-comparison 

framework, we utilized an ensemble of calibrated parameter sets for each hydrologic model, 

derived from implementing different objective functions, which reduces the effects of the 

calibration process on models’ performance. Also, besides the low-density gauge 

measurements, we used CaPA precipitation data as an alternative forcing input in the model 

comparison process. This helps us reach more robust conclusions about the direct ability 
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of different hydrologic model structures for streamflow simulation. In addition, we have 

the opportunity to evaluate the reliability of using CaPA data as an alternative input forcing 

precipitation in the case of low available historical meteorological data in Northern Ontario. 

Moreover, given that the regions of interest are snow-dominated watersheds, where the 

snowmelt freshet is the main cause of floods, using a proper snowmelt estimation routine 

in model structure seems necessary for accurate streamflow simulation. Therefore, as a side 

objective of this study, a comparison is made between two popular temperature-index 

methods, the simple Degree-day (Samuel et al., 2011) and the more complex SNOW17 

(Anderson, 2006, 1973), to evaluate their potential for improving stream flow estimation 

in snow-dominated basins with low data availability. It is of note that there are lots of 

studies comparing temperature index with complex energy balance snowmelt models 

(Bowling et al., 2003; Debele et al., 2010; Essery et al., 2013; Troin et al., 2015), while the 

comparison between different conceptual methods, where the only required inputs are 

temperature and precipitation, has not received much attention (Agnihotri & Coulibaly, 

2020). 

2.3 Methods 

2.3.1 Study Area and data description 

The study regions are the Big East River and the Black River watersheds, which have areas 

of 620 and 1522 km2, respectively. Both watersheds are located in the 

Muskoka/Bracebridge areas of Northern Ontario, Canada (Figure 2-1). The terrain 

elevation of the Big East River watershed ranges from 293 to 564 meter above sea level 

(masl) while the Black River changes from 221 to 421 masl. There are no major urban 
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areas in either watersheds and, with the exception of the southern part of the Black River 

used for agriculture, the dominant land cover of two basins are mixed forest vegetation. 

There are only Six Environment and Climate Change Canada (EC) meteorological stations 

with more than 10 years of reliable data and all are located near, but not within, the 

aforementioned watersheds boundaries (Figure 2-1). Each watershed has one hydrometric 

station, located at their outlets, confirming the status of low data availability. Based on all 

available historical data, the long-term daily mean air temperature of the regions is around 

5°C and the warmest and coldest months are February and July, respectively. The 

temperature is near or below freezing point from November to March, indicating a need 

for modeling snow storage and snowmelt processes. The highest discharge for both 

watersheds occurs during spring, indicating the runoff is snowmelt dominated (Table 2-1). 

 

Figure 2-1 The study areas: Big East River and Black River watersheds (modified after 

Darbandsari & Coulibaly, 2019) 
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Table 2-1 The details of all utilized datasets and the climate characteristics of different 

measurements based on available historical data from 2006 to 2015 

Stations Type latitude longitude 
Range 

(years) 

Precipitation or Flow (mm/month) 

Winter Spring Summer Fall 

E
C

C
C

 s
ta

ti
o

n
s4

 

Beatrice P1 
45.14 -79.4 2006-

2015 
108 89 81 97 

Algonquin P 
45.53 -78.27 2006-

2015 
90 73 72 85 

Haliburton P 
45.03 -78.5 2006-

2015 
104 85 78 104 

Muskoka P 
44.97 -79.3 2006-

2015 
98 55 72 87 

Sonya P 
44.21 -78.95 2006-

2015 
78 63 67 87 

Ravenscliffe P 
45.35 -79.27 2006-

2015 
128 106 81 102 

CaPA points 
P 

- - 2006-

2015 
[77,120]2 [70,110] [81,111] [96,139] 

Outlet (BE)5 

F1 
45.39 -79.16 2006-

2015 
53 92 27 43 

Outlet (BL)5 

F 
44.71 -79.28 2006-

2015 
54 80 15 28 

Average monthly Temperature (°C) [-12,-5]3 [-5,12] [16,19] [0,14] 

1 P and F are the abbreviations of precipitation and flow, respectively. 
2 The range of historical seasonal precipitation value derived from all CaPA points shown in Figure 2-1. 
3 The changes of historical average monthly temperature in each season 
4 The meteorological stations are operated by Environment and Climate Change Canada. 
5 The hydrometric stations are operated by the Water Survey of Canada. 

 

Apart from EC meteorological stations, the archive of Canadian Precipitation Analysis 

(CaPA), produced by the Meteorological Service of Canada (Mahfouf et al., 2007), is 

another source of precipitation time series available for both study regions. CaPA is a near 

real-time gridded precipitation analysis based on the combination of observation and 

climate model data with a spatial and temporal resolution of 15 km and 6 hours, 

respectively (Lespinas et al., 2015). CaPA points (i.e., center of each CaPA grid), located 

inside or near both watersheds, are illustrated in Figure 2-1. CaPA provides better spatial 

coverage of both watersheds so considering it as an alternative forcing precipitation input 

may enhance the performance of hydrologic models in the case of limited data 
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measurements. Consequently, two different precipitation input scenarios will be evaluated. 

In the first scenario, the daily precipitation comes from interpolation of the available EC 

meteorological stations to the center of the watersheds using the Inverse Distance 

Weighting (American Society of Civil Engineers, 1996) method. The second scenario 

involves using the Thiessen polygon method (Thiessen, 1911) to generate mean areal 

precipitation with the daily aggregated CaPA data. The primary comparison of two 

scenarios shows that in general, CaPA data underestimates the precipitation amount in 

comparison with EC (Figure 2-2). However, CaPA, specifically in Black River watershed, 

proposes more intense rainfall events. In this study, both aforementioned scenarios are 

separately used to calibrate the models’ parameters and the reliability of using CaPA data 

is evaluated based on the performance of the calibrated models. 
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(a) Big East River watershed 

 

(b) Black River watershed 

Figure 2-2 The comparison of mean areal precipitation of (a) Big East River and (b) 

Black River watersheds derived from EC and CaPA data 
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2.3.2 Rainfall-runoff Models 

The seven structurally different conceptual hydrologic models compared in this study are: 

(1) the Sacramento soil moisture accounting (SACSMA) (Burnash et al., 1973); (2) the 

McMaster University Hydrologiska Byrans Vattenbalansavdelning (MACHBV) (Samuel 

et al., 2011); (3) Génie Rural à 4 Paramètres Journaliers (GR4J) (Perrin et al., 2003); (4) 

the modified version of the Soil moisture and accounting routing (SMARG) (Liang, 1992); 

and three different implementations of the Hydrologic Engineering Center’s Hydrologic 

Modeling System (HEC-HMS) software (Scharffenberg, 2016). These models are chosen 

mainly based on their structural diversity and performances in previous studies. SACSMA 

is widely used for operational flood forecasting in United States (e.g. Day, 1985; Seo et al., 

2003; Vrugt et al., 2006) and it was proven to perform well in Canadian catchments 

(Agnihotri & Coulibaly, 2020; Wijayarathne & Coulibaly, 2020). MACHBV is the 

modified version of HBV (Bergström, 1976) which is specifically developed for enhancing 

streamflow estimation of ungauged basins (Samuel et al., 2012, 2011). SMARG is another 

well-known conceptual model with variable number of soil storage, which is proven to 

provide better performance than its original version in humid and semi-humid regions. (Tan 

& O’Connor, 1996). GR4J is a parsimonious hydrologic model with two conceptual 

storages, and was successfully applied in Canadian cold regions (Gaborit et al., 2017; 

Martel et al., 2020; Seiller et al., 2012). Moreover, HEC-HMS is a widely used platform 

all over the world, which provides several different methods for developing structurally 

different models to simulate rainfall-runoff process (Gyawali & Watkins, 2013; Teng et al., 

2018). The main different characteristics of the structures of these seven models are 
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summarized in Table 2-2. These models possess distinct complexities and their number of 

parameters varies based on their corresponding number of hydrologic processes and 

descriptions. A brief explanation of each model is provided in the following sections. 

It is worthy of note that in all SACSMA, MACHBV, SMARG, and GR4J, the daily 

potential evapotranspiration (PET) was calculated using the simplified Thornthwaite 

equation (Samuel et al., 2011; Thornthwaite, 1948) by multiplying mean daily temperature 

by athorn as the only parameter being determined through calibration process (Table 2-3). 

In addition, the simple Degree-day (DD) snowmelt routine was added to these models for 

representing changes in the snowpack as well as discriminating snow and rainfall. A brief 

explanation of the DD method is presented in Section 2.3.3. 

2.3.2.1 Sacramento Soil Moisture Accounting (SACSMA) 

The SACSMA is a well-known conceptual lumped hydrologic model, which is used by the 

National Weather Service River Forecast System (NWSRFS) for flood forecasting. In this 

model, the surface of the basin is divided into pervious and impervious areas. The soil 

profile of the pervious portion is partitioned into the thin upper and thicker lower zones. A 

total of five state variable reservoirs are used to determine the accumulation of “tension” 

and “free” water storages, representing the water bound and not bound to the soil particles, 

respectively (Caldwell et al., 2015; Razavi & Coulibaly, 2017). Moreover, the Nash 

cascade method is implemented as the routing approach in this model. As can be seen in 

Table 2-3, the model possesses 17 parameters that must be specified by the user or through 

an automatic calibration. 
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Table 2-2 Characteristics of the model structure of seven different conceptual hydrologic 

models used in this study 

Model Conceptual storage Type of flows Routing Evapotranspiration 

SACSMA  Upper soil tension water 

 Upper soil free water 

 Lower soil tension water 

 Lower soil primary free water 

 Lower soil supplemental free 

water 

 Direct flow 

 Surface flow 

 Interflow 

 Baseflow 

 Direct, Surface and 

Interflow: Cascade of 

three linear reservoirs 

Occurred from: 

 Upper soil tension 

water 

 Upper soil free water 

 Lower soil tension 

water 

MACHBV  Soil moisture layer 

 Upper soil reservoir 

 Lower soil reservoir 

 Upper soil flow 

 Lower soil flow 

 Non-linear Equilateral 

triangular weighting 

Occurred from: 

 Soil moisture layer 

SMARG  Multiple soil layers 

 Groundwater storage 

 Direct flow 

 Surface flow 

 Interflow 

 Baseflow 

 Direct, Surface and 

Interflow: cascade of 

multiple reservoirs 

(Nash model) 

 Baseflow: Single linear 

reservoir 

Occurred from: 

 Total precipitation 

 All soil layers 

GR4J  Production soil storage 

 Routing soil storage 

 Fast flow 

 Slow flow 

 Fast flow: Unit 

hydrograph and non-

linear routing storage 

 Slow flow: Unit 

Hydrograph 

Occurred from: 

 Total precipitation 

 Production store 

HEC1  Canopy storage 

 Soil Storage 

 Direct flow 

 Surface flow 

 Baseflow 

 Direct and Surface 

flow: Clark unit 

hydrograph 

 Baseflow: exponential 

recession model 

Occurred from: 

 Canopy storage 

HEC2  Canopy storage 

 Surface Storage 

 Upper zone storage 

 Tension zone storage 

 Direct flow 

 Surface flow 

 Baseflow 

 Direct and Surface 

flow: Clark unit 

hydrograph 

 Baseflow: exponential 

recession model 

Occurred from: 

 Canopy storage 

 Upper zone storage 

 Tension zone storage 

HEC3  Canopy storage 

 Surface Storage 

 Upper zone storage 

 Tension zone storage 

 GW upper layer (GW1) 

 GW lower layer (GW2) 

 Direct flow 

 Surface flow 

 Baseflow GW1 

 Baseflow GW2 

 Direct and Surface 

flow: Clark unit 

hydrograph 

 Two separate single 

linear reservoir for 

both baseflow 

components 

Occurred from: 

 Canopy storage 

 Upper zone storage 

 Tension zone storage 

 

2.3.2.2 McMaster University Hydrologiska Byrans Vattenbalansavdelning (MACHBV) 

The MACHBV is a nonlinear variant of the conceptual HBV model (Bergström, 1976). In 

this model, a soil moisture routine accounts for fluctuations of the soil moisture storage of 

the basin. A response function, comprising upper and lower soil reservoirs, is used for 
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estimating the amount of runoff based on the recharge from soil moisture routine. Finally, 

considering the modified routing routine proposed by Samuel et al. (2012), where the 

nonlinear storage-discharge relationship is considered in the lower layer of deep soil, the 

final streamflow is obtained. These processes are controlled through 10 parameters, shown 

in Table 2-3. More detailed description of the MACHBV model can be found in Samuel et 

al. (2011, 2012). 

2.3.2.3 The modified version of Soil moisture and accounting routing (SMARG) 

The SMARG is a 10-parameter lumped conceptual rainfall-runoff model following the 

structure of its earliest version (i.e., SMAR; (O’Connell et al., 1970)). In this modification, 

a single reservoir groundwater component is added for considering the effects of 

groundwater on total estimated discharge (Liang, 1992). Therefore, it is more reliable in 

humid regions where the groundwater component contributes significantly in generating 

runoff (Tan & O’Connor, 1996). This model uses a nonlinear water balance routine for 

simulating runoff generation process by visualizing the watershed as a stack of horizontal 

soil storage layers. Then, the generated surface runoff is transferred through Nash cascade 

of equal linear reservoirs model (Nash, 1957) while the previously mentioned single linear 

reservoir is used for routing the groundwater discharge. The brief descriptions of the model 

parameters and their initial ranges are provided in Table 2-3. 

2.3.2.4 Génie Rural à 4 Paramètres Journaliers (GR4J) 

The GR4J is a daily conceptual rainfall-runoff model, developed based on the GR3J model 

(Edijanto et al., 1999), with only four parameters needing to be calibrated (Table 2-3). This 
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model consists of three subsequent steps. First, net precipitation and evapotranspiration is 

calculated. Afterward, a portion of net rainfall goes to the one parameter (𝑥1) production 

store where the actual evapotranspiration and percolation are determined. Then, the 

remaining portion of net precipitation and percolation are used for determining discharge. 

A unit hydrograph with time base of 𝑥2 and a one-parameter (𝑥3) non-linear routing store 

transfer 90 percent of the available water as slow flow; while the other ten percent is 

considered as a fast flow and routed by a unit hydrograph with time base of 2 × 𝑥2. Finally, 

after applying the one parameter ( 𝑥4 ) groundwater exchange component, the total 

discharge is computed by adding the two aforementioned routed flows (Perrin et al., 2003). 

Table 2-3 Parameters of the SACSMA, MACHBV, SMARG, and GR4J models and their 

initial and optimized ranges 

Parameter Description Unit 
Initial 

Range 

Optimized 

Range** 

SACSMA  

UZTWM Upper-zone tension water maximum storage mm 1-150 13 - 145 

UZFWM Upper-zone free water maximum storage mm 1-150 4 - 150 

LZTWM Lower-zone tension water maximum storage mm 1-500 2 - 400 

LZFPM Lower-zone free water primary maximum storage mm 1-1000 235 - 979 

LZFSM Lower-zone free water supplemental maximum mm 1-1000 147 - 940 

ADIMP Additional impervious area - 0-0.4 0 - 0.32 

UZK Upper-zone free water lateral depletion rate day-1 0.1-0.5 0.14 - 0.5 

LZPK Lower-zone primary free water lateral depletion rate day-1 
0.0001-

0.025 

0.01 - 0.02 

LZSK Lower-zone supplemental free water lateral depletion rate day-1 0.01-0.25 0.04 - 0.19 

ZPERC Maximum percolation rate - 1-250 4 - 234 

REXP Exponent of the percolation equation - 0.01-6 1 - 5.9 

PCTIM Impervious fraction of the watershed area - 0-0.1 0 - 0.05 

PFREE 
Fraction percolating from upper to lower zone free water 

storage 
days 0-0.6 

0 - 0.57 

Rq Routing coefficient - 0-0.99 0.2 - 0.55 

RIVA* Riparian vegetation area - 0 - 

SIDE* Ratio of deep recharge to channel base flow - 0 - 

RSERV* 
Fraction of lower zone free water not transferable to tension 

water 
- 0.3 

- 
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MACHBV  

fc Maximum for soil water content mm 50-800 54 - 346 

lp/fc Limit for PET to determine actual ET mm/mm 0.1-0.9 0.3 - 0.9 

lsuz 
A threshold value used to control response routing on an upper 

soil reservoir 
mm 1-100 

6 - 90 

cperc Constant Percolation rate parameter mm/day 0.01-6 0.15 - 5.92 

beta A non-linear parameter controlling runoff generation - 0-10 0.9 - 10 

k0 Flow recession coefficient in an upper soil reservoir days 1-30 2 - 30 

k1 Flow recession coefficient in an upper soil reservoir days 2.5-100 6 - 37 

k2 Flow recession coefficient in a lower soil reservoir days 20-1000 346 - 992 

alpha1 An exponent in relation between outflow and storage - 0.5-20 1.1 - 12 

maxbas 
Parameter of a triangle weighting function for modeling a 

routing routine 
days 1-20 

1.3 - 4.4 

SMARG  

T Conversion parameter for calculating potential evaporation - 0-1 0.47 - 0.98 

C Decay coefficient of soil evaporation - 0-1 0.1 - 1 

Z The total depth of all soil layers mm 0.01-500 72 - 495 

H Direct runoff factor - 0-1 0.05 - 0.74 

Y Infiltration capacity mm/day 0-200 24 - 152 

N the Nash Cascade model parameter (number of resorvoirs) - 1-20 1 - 18 

NK number of time step for surface runoff routing days 0-200 4 - 145 

G The groundwater runoff coefficient - 0-1 0.63 - 1 

Kg number of time step for groundwater routing days 0-200 5 - 51 

m* Memory length of the routing response function days 100 - 

GR4J  

x1 Maximum capacity of the production store mm 1-1500 99 - 512 

x2 The groundwater exchange coefficient mm/day -10-5 -6.7 - 2.3 

x3 Maximum capacity of routing store mm 1-500 146 - 439 

x4 The unit hydrograph time base days 0.5-4 2.2 - 3.6 

Simplified Thornwaite's PET formula  

athorn A constant for Thornthwaite’s equation (PET) - 0.1-0.3 0.15 - 0.3 

*Predefined fixed values are used for these parameters based on previous studies 

** Optimized ranges are based on the ensemble of calibrated parameter sets of each model for both watersheds with 

different objective functions and input scenarios(the outlier values are removed) 

 

2.3.2.5 Lumped HEC-HMS based models 

The HEC-HMS software, developed by the US Army Corps of Engineers, is designed for 

both continuous and event-based simulation of the rainfall-runoff process of dendritic 
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watersheds (Scharffenberg, 2016). It is a reliable platform for developing variants of 

lumped and semi-distributed hydrologic models by allowing the user to choose from an 

assortment of methods which can model different components of hydrologic cycles (i.e., 

surface, canopy, loss, transform, baseflow and routing processes). The general structure of 

any continuous hydrologic model developed based on the HEC-HMS framework is 

illustrated in Figure 2-3. As can be seen, the meteorological component, including the 

snow-rainfall discrimination and snowmelt module, estimates the excess water that may 

contribute to runoff generation. Then, the basin component, consisting of the conceptual 

simulations of different physical phenomena, determines the streamflow value at the outlet 

of the watershed. In this study, three lumped, structurally different hydrologic models were 

developed using different combinations of the available baseflow and loss methods in the 

HEC-HMS platform. The first HEC-HMS model, called HEC1 hereafter, uses the Deficit 

and Constant loss method and the Recession baseflow method, while the other two models 

(i.e., HEC2 and HEC3) use the soil moisture accounting loss method with the Recession 

or Linear Reservoir baseflow methods, respectively. The parameters of the utilized 

approaches, presented in Table 2-4, show the total number of 7, 15, and 17 parameters for 

HEC1, HEC2, and HEC3 models, respectively (excluding the parameters of snowmelt 

routine).  

It is worth mentioning that the only snowmelt method available in the HEC-HMS software 

is the temperature index that is an extension of the degree-day (DD) approach. However, 

unlike the DD approach where a constant snowmelt rate is used for each degree above a 

base temperature, the melting rate in HEC-HMS is determined as a function of an 
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antecedent temperature index (ATI) (Gyawali & Watkins, 2013; Razmkhah et al., 2016). 

As can be seen in Table 2-4, due to the importance of ATI melt rate (ATIMR) function on 

the accuracy of the snowmelt process, 22 different scenarios are defined for the ATIMR 

curve proposed by USACE (Khalida et al., 2014; U.S. Army Corps of Engineers, 1991) 

and the best one is determined through the calibration process. Additionally, all three HEC-

HMS based models use the monthly average PET option in their meteorology models; the 

monthly average was calculated using the Hargreaves equation (Hargreaves & Samani, 

1985), which is proved to be one of the most promising temperature-based PET estimation 

method in cold regions (Almorox et al., 2015). 

 

Figure 2-3 The general structure of HEC-HMS based hydrologic models (Feldman, 

2000; Scharffenberg, 2016) 
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Table 2-4 The parameters of various HEC-HMS hydrologic process and their acceptable 

ranges 

Process Method Description Unit Range 

Canopy Simple 
The maximum storage capacity of canopy mm 0-1500 

PET pan coefficient - 0-10 

Surface Simple The maximum storage capacity of surface mm 0-1500 

Loss 

Deficit & 

Constant 

The maximum storage capacity of the soil mm 0-500 

Percolation rate mm/hr 0.1-5 

SMA 

Maximum infiltration from surface to the soil mm/hr 0-500 

Storage capacity of the soil top layer mm 0-1500 

A part of soil storage not affecting by gravity (Tension 

storage) 
mm 0-1500 

Percolation rate from soil to GW1 layer mm/hr 0-500 

Storage capacity of GW1 layer mm 0-1500 

Percolation rate from GW1 to GW2 layer mm/hr 0.01-500 

Lag time determining lateral outflow from GW1 hr 0.01-10000 

Available storage in the GW2 layer mm 0.01-1500 

Deep percolation mm/hr 0.01-500 

Lag time determining lateral outflow from GW2 hr 0.01-10000 

Transform Clark 
Time of concentration hr 0-1000 

Storage coefficient accounting for storage effects hr 0.01-1000 

Baseflow 

Linear 

Reservoir 

Time coefficient for linear reservoir in GW1 layer hr 0 - 10000 

The number of reservoir used for routing # 1-100 

Time coefficient for linear reservoir in GW2 layer hr 0 - 10000 

The number of reservoir used for routing # 1-100 

Recession 
Recession constant - 0-1 

Ratio of flow to peak flow for resetting base flow - 0-1 

Snowmelt 

T
em

p
er

at
u
re

 I
n
d
ex

 

Temperature for discriminating between snow and rainfall C -2-3 

Melting threshold temperature C -2.5-2 

Melt rate  in the wet rain condition mm.C/day 0 - 10 

Limit for Discriminating between dry rain and wet rain mm/day 0 - 200 

Coefficient for updating the antecedent meltrate index - 0.9-0.9995 

Relationship between meltrate and ATI (ATIMR function) - 
22 

scenarios 

Threshold of rainfall caused rapid change in snow 

temperature 
mm/day 0-20 

Coefficient for updating the antecedent cold content index - 0.4 - 1 

The maximum liquid water capacity in the snowpack % 3 - 10 

Melt rate caused by ground heat mm/day 0 - 2 

Changing temperature in different elevation C/1000m -5 
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2.3.3 Snowmelt routines 

As previously mentioned, due to the significant effects of the snowmelt process on stream 

flows in both Big East River and Black River watersheds, two different temperature-index 

models, requiring only temperature and precipitation data, are selected. Both methods 

possess the same snow-rainfall discrimination procedure where the Upper (𝑇𝑟) and Lower 

(𝑇𝑠) threshold temperatures are used as two calibrating parameters to distinguish between 

snow and rainfall (Samuel et al., 2011). In addition, in both models the amount of rain and 

snow are simply modified by multiplying by rain correction (𝑅𝐶𝐹) and snow correction 

(𝑆𝐶𝐹) factors, respectively. For snowmelt estimation, the Degree-Day (DD) method relies 

on a linear relationship between snowmelt and air temperature (𝑇). If 𝑇 is less than the 

melting temperature threshold (𝑇𝑚), the melt rate is calculated by multiplying difference 

between 𝑇  and 𝑇𝑚  by degree-day factor ( 𝐷𝐷𝐹 ). The SNOW17 approach, however, 

considers some of the physical processes involved in snowmelt (e.g., energy exchange 

between air and snow, the effects of rain on snow, the snowpack heat storage and deficit), 

without needing additional input data (Agnihotri & Coulibaly, 2020; Anderson, 2006). 

During the non-rain period, the same concept as DD is used for melt rate calculation 

whereas the melt factor seasonally changes based on two parameters, maximum (𝑚𝑓𝑚𝑎𝑥) 

and minimum (𝑚𝑓𝑚𝑖𝑛) melt factors. Additionally, the melt during rain is determined by a 

simplified empirical energy balance equation (Shamir & Georgakakos, 2006). Other 

parameters which should be calibrated for SNOW17 include the average wind function 

(𝑢𝑎𝑑𝑗), antecedent snow temperature index (𝑡𝑖𝑝𝑚), maximum negative melt factor (𝑛𝑚𝑓), 
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and the water holding capacity of the snow pack (𝑝𝑙𝑤ℎ𝑐). Detailed descriptions of both 

snow routing approaches can be found in the above-cited references. 

2.3.4 Optimization and Evaluation Processes 

The main purpose of the calibration of a rainfall-runoff model is to select the best parameter 

values by minimizing the difference between observations and model streamflow 

predictions (Chiew et al., 1993). However, the choice of a proper objective function from 

a bunch of well-known performance statistics is not a straightforward task. In this study, 

for decreasing the influence of choosing objective function on models’ inter-comparison, 

five criteria, including Nash Sutcliffe Efficiency (NSE), Nash Volume error (NVE), Kling 

Gupta Efficiency (KGE), Modified Nash Volume Error (MNVE), and Peak Weighted Root 

Mean Square Error (PWRMSE), were selected and considered as different single objective 

functions in order to find the best parameter set for each of the rainfall-runoff models 

(Table 2-5). While the first three metrics are formulated to accurately simulate medium 

flows, the latter two ones focus on providing more accurate high flow simulation. 

 

 

 

 

 

 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

40 

 

Table 2-5 Performance statistics used as objective functions and evaluation criteria 

Criteria Mathematical Formulation Range 

Objective functions   

Nash Sutcliffe Efficiency (𝑁𝑆𝐸)         

(Nash & Sutcliffe, 1970) 1 −
∑ (𝑄𝑠𝑡

−𝑄𝑂𝑖
)

2
𝑁
𝑖=1

∑ (𝑄𝑂𝑖−𝑄𝑂̅̅ ̅̅ )
2𝑁

𝑖=1

  (1) -∞ to 1(2) 

Nash Volume Error (𝑁𝑉𝐸)               

(Samuel et al., 2011) 
0.5𝑁𝑆𝐸 − 0.1𝑉𝐸 + 0.25𝑁𝑆𝐸𝐿 + 0.25𝑁𝑆𝐸𝑆 -∞ to 1 

Kling Gupta Efficiency (𝐾𝐺𝐸)          

(Gupta et al., 2009) 
1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 (3) -∞ to 1 

Modified NVE (𝑀𝑁𝑉𝐸)           

(Darbandsari & Coulibaly, 2019) 
𝑁𝑆𝐸𝑆 − 0.1𝑉𝐸 -∞ to 1 

Peak-weighted root mean square error 

(𝑃𝑊𝑅𝑀𝑆𝐸)                                   

(Cunderlik & Simonovic, 2004) 
(

1

𝑁
(∑(𝑄𝑠𝑖

− 𝑄𝑂𝑖
)

2
𝑁

𝑖=1

×
𝑄𝑂𝑖

+ 𝑄𝑂
̅̅ ̅̅

2𝑄𝑂
̅̅ ̅̅

))

1
2

 0 to +∞ 

Evaluation Criteria   

Volume Error (𝑉𝐸) (Samuel et al., 2011) 
|∑ (𝑄𝑠𝑖

− 𝑄𝑂𝑖
)𝑁

𝑖=1 |

∑ 𝑄𝑂𝑖
𝑁
𝑖=1

 0 to +∞ 

NSE based on squared transformed data 

(𝑁𝑆𝐸𝑆) (Razavi & Coulibaly, 2017) 
1 −

∑ (log(𝑄𝑠𝑖
) − log(𝑄𝑂𝑖

))
2𝑁

𝑖=1

∑ (log(𝑄𝑂𝑖
) − log (𝑄𝑂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1

 -∞ to 1 

NSE based on logarithmic transformed data 

(𝑁𝑆𝐸𝐿) (Razavi & Coulibaly, 2017)  
1 −

∑ (𝑄𝑠𝑖
2 − 𝑄𝑂𝑖

2 )
2𝑁

𝑖=1

∑ (𝑄𝑂𝑖
2 − 𝑄𝑂

2̅̅ ̅̅ )
2

𝑁
𝑖=1

 -∞ to 1 

Peak Error (𝑃𝐸) (Das et al., 2008) 
|𝑄𝑆𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑄𝑂𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

𝑄𝑂𝑚𝑎𝑥
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 (4) 0 to +∞ 

Coefficient of Transferability (𝑇𝑚)       

(Das et al., 2008) 
max (𝑁𝑆𝐸𝐶𝑎𝑙 − 𝑁𝑆𝐸𝑣𝑎𝑙 , 0) 0 to +∞ 

NSE based on flows more than 90 

percentile (𝑁𝑆𝐸90)  1 −
∑ (𝑄𝑠90𝑖

−𝑄𝑂90𝑖
)

2
𝑁
𝑖=1

∑ (𝑄𝑂90𝑖−𝑄𝑂90̅̅ ̅̅ ̅̅ ̅)
2𝑁

𝑖=1

  (5) -∞ to 1 

(1) 𝑄𝑠𝑖
 and 𝑄𝑂𝑖

 respectively represent the observed and simulated flows for day 𝑖. 

(2) Bold and underlined value indicates perfect performance. 

(3) 𝑟: linear correlation coefficient between 𝑄𝑂 and 𝑄𝑠, 𝑎: standard deviation of 𝑄𝑠 over the standard deviation of 

𝑄𝑂, 𝑏: the mean of 𝑄𝑠 over the mean of 𝑄𝑂 

(4) 𝑄𝑆𝑚𝑎𝑥
 and 𝑄𝑂𝑚𝑎𝑥

 show the mean annual observed and simulated peak flows, respectively. 

(5) Observed and simulated flows more than 90 percentile are denoted by 𝑄𝑆90𝑖
 and 𝑄𝑂90𝑖

, respectively. 
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All models are calibrated for the period from 2006 to 2011, with the year 2006 considered 

as warm-up period. The three-year period (2012 to 2015) was used for the validation. The 

dynamically dimensioned search (DDS) algorithm (Tolson & Shoemaker, 2007) was used 

to calibrate the parameters for each model in this study. DDS is a heuristic global single-

solution based search algorithm that was developed to calibrate complex hydrological 

models with a large number of parameters (Arsenault et al., 2014). The main distinguishing 

feature of this method is the transition from global to local search by dynamically rescaling 

the dimension of the search space. The Ostrich calibration toolkit (Matott, 2005) was used 

to run the DDS optimization for each model. 

It is of note that although there are two available automatic calibration algorithms in HEC-

HMS software, they perform poorly in finding the optimized parameter sets, especially 

when there are a relatively high number of parameters to be calibrated (Cunderlik & 

Simonovic, 2004). From the literature, with the exception of Dariane et al. (2016) who 

developed an automatic calibration for the HEC-HMS program based on genetic algorithm, 

there are no studies that calibrate all parameters of a continuous HEC-HMS model with 

snowmelt routine using auto-optimization methods. In this paper, Ostrich, Matlab, HEC-

HMS, and HEC-DSSVue are linked together in order to apply the DDS optimization 

algorithm to calibrate HEC-HMS models (Figure 2-4). 
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Figure 2-4 The general structure of HEC-HMS based hydrologic models (Feldman, 

2000; Scharffenberg, 2016) 

 

Moreover, in this study, seven different evaluation metrics are used for assessing the 

performance of the calibrated models (Table 2-5). Apart from standard 𝑁𝑆𝐸, we utilized 

𝑁𝑆𝐸 calculated based on logarithmic (𝑁𝑆𝐸𝐿) and squared (𝑁𝑆𝐸𝑆) transformed stream 

flows for reflecting the accuracy of low and high flows, respectively. Volume Error (𝑉𝐸) 

assesses the long-term performance of the model simulation and Peak Error (𝑃𝐸) evaluates 

the models’ ability in capturing peak flows. Also, the transferability of a model in time is 

illustrated using the coefficient of transferability (𝑇𝑀) where the lower values show better 

model parameters’ transferability from calibration to validation period. Moreover, for more 

specific evaluation of different models’ ability in reproducing high flows, 𝑁𝑆𝐸  is 
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calculated and compared using the 90 percentile streamflow values (𝑁𝑆𝐸90).  We also 

utilize representative hydrographs and scatterplots, as graphical tools, for visually 

assessing the performance of different models. 

2.4 Results 

2.4.1 Objective functions evaluation 

The combination of seven hydrologic models, two different precipitation input 

scenarios, and five various objective functions leads to 70 different calibrated models for 

each watershed. Evaluating the effect of considering different objective functions is the 

prime step before comparing various hydrologic models. Therefore, a comparison is made 

between the performance of the calibrated models using the five performance criteria in 

Table 2-5 as an objective function for both the Big East River and Black River watersheds 

in the validation period (Figure 2-5). The first thing that stands out from the comparison 

results in both basins is that neither of the objective functions has complete superiority in 

providing the most promising parameters set of all models. Based on the results, it is shown 

that although the 𝑃𝑊𝑅𝑀𝑆𝐸 and 𝑀𝑁𝑉𝐸 statistics give more weights to high flow values, 

using them as an objective function does not significantly improve the performance of the 

calibrated models regarding high flows. Additionally, the models calibrated with those 

metrics (PWRMSE and MNVE) are the worst at modeling low flows, leading to large 

variation in 𝑁𝑆𝐸𝐿 . Moreover, as expected, calibrated models, utilizing 𝑁𝑆𝐸  as an 

objective function, perform well according to 𝑁𝑆𝐸 based performance criteria (i.e., 𝑁𝑆𝐸, 

𝑁𝑆𝐸𝑆, and 𝑁𝑆𝐸𝐿). However, there are some concerns about their performance regarding 
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volume and peak error related measurements, especially in Big East River watershed where 

both 𝑉𝐸  and 𝑃𝐸  uncertainty of 𝑁𝑆𝐸  based calibrated models are relatively large. In 

addition, the comparison of 𝑁𝑆𝐸𝐿 measurements shows that using 𝑁𝑉𝐸  for calibrating 

models outperform the other ones in low flow simulation in both watersheds. The relative 

good performance of the 𝐾𝐺𝐸 based calibrated models is noticeable in Big East River 

while in Black River watershed, they are not the best ones. By looking at all different 

performance criteria simultaneously, it can be seen that using 𝐾𝐺𝐸 and 𝑁𝑉𝐸 provide good 

and reliable performance when considering different aspects of the hydrographs (i.e. low, 

high, and peak flows). However, it is impossible to determine one objective function as the 

best one that can be used for calibrating all hydrologic models in both watersheds.  

For better clarifying the effects of choosing objective function on model results, Table 2-6 

exemplifies the validation performances of MACHBV and SMARG hydrologic models 

being calibrated using 𝑁𝑉𝐸 and 𝐾𝐺𝐸 as objective functions. In Big East River, using 𝑁𝑉𝐸 

provides better parameter estimation of MACHBV while 𝐾𝐺𝐸  performs better for 

SMARG. The opposite is true in Black River watershed where 𝐾𝐺𝐸 and 𝑁𝑉𝐸 are better 

objective functions for MACHBV and SMARG, respectively. The use of 𝑁𝑉𝐸 leads to the 

superiority of MACHBV in Big East River while SMARG perform better if both models 

are calibrated with 𝐾𝐺𝐸 . The same issue arise in Black River where comparing 𝐾𝐺𝐸 

calibrated models shows the advantages of MACHBV over SMARG, however, the same 

performances are achieved in the case of using 𝑁𝑉𝐸. 
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Figure 2-5 Box Plots of different performance criteria and their corresponding ranks for 

simulated daily stream flows by implementing five various objective functions during the 

validation period, derived from seven hydrologic models using two different input 

scenarios for (a) Big East River and (b) Black River watersheds 

 

Table 2-6 The validation performances of MACHBV and SMARG hydrologic models 

being calibrated by using 𝑁𝑉𝐸 and 𝐾𝐺𝐸 as objective functions and ground based 

measurements as forcing precipitation input 

Criteria 

Big East River Black River 

NVE KGE NVE KGE 

MACHBV SMARG MACHBV SMARG MACHBV SMARG MACHBV SMARG 

NSE 0.81 0.74 0.67 0.75 0.65 0.68 0.73 0.65 

NSEL 0.79 0.79 0.36 0.83 0.79 0.76 0.73 0.54 

NSES 0.63 0.50 0.54 0.52 0.33 0.35 0.53 0.31 

VE 0.01 0.07 0.06 0.05 0.01 0.01 0.02 0.01 

PE 0.40 0.48 0.42 0.45 0.44 0.51 0.42 0.47 
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2.4.2  Model Comparison 

The main goal of this study is to find the most promising conceptual hydrologic model in 

data-poor watersheds by reducing the effects of the calibration process on models’ 

performance. Therefore, two types of inter-comparison are made between the seven 

aforementioned hydrologic models. First, we compared all calibrated models with each 

other. Consequently, the twenty calibrated sets of parameters for each hydrologic model 

are considered to create the box plots of the evaluation performance metrics for the 

validation period (Figure 2-6). The most obvious conclusion derived from Figure 2-6 is 

that, in general, the HEC-HMS based models perform worst in comparison to the other 

hydrologic models. This relatively poor performance is more significant when the low 

flows are the main concerns of the simulation. Moreover, regarding high flows, the 

MACHBV shows the best performance while the high capability of the GR4J model in 

high flows simulation cannot be ignored, specifically in the Big East River watershed 

where the 𝑃𝐸 criteria of the GR4J models is the best one. By looking at all six performance 

statistics, the MACHBV is the most consistent hydrologic model for both watersheds and 

can be considered the best rated one. The performance of both the SACSMA and GR4J 

models also provide reliable and valuable results, whereas the HEC based models do not. 
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(a) Big East River watershed 

 

(b) Black River watershed 

Figure 2-6 Box plots of different performance statistics for simulated daily stream flows 

by using different hydrologic models, derived from sets of calibrated parameters based 

on five objective functions and two various input scenarios, for the (a) Big East River and 

(b) Black River watersheds during the validation period 

 

The second type of model inter-comparison is between the best-calibrated set of parameters 

for each model using the EC precipitation input scenario. We chose the best parameter set 

by comparing all the aforementioned performance statistics focusing on the validation 

period. The set of parameters with the best rank and rational condition (i.e., the values of 

different performance measurements are controlled manually and parameters’ set 
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providing unreasonable predictions are ignored) was determined as the best selected one. 

The evaluated performance statistics of the final selected models in both calibration and 

validation periods and the relative comparison between them are presented in Table 2-7 

and Figure 2-7, respectively. What stands out in the results for the Black River watershed 

is that, in general, MACHBV is the best-rated model based on most of the criteria in both 

calibration and validation periods. However, the results are more complex for the Big East 

River watershed, where the GR4J model is the best performing one during the validation 

period while MACHBV, SACSMA and GR4J models perform competitively based on the 

calibration period results. Moreover, regarding high flow-based criteria, MACHBV and 

GR4J respectively provide the best results in Black River and Big East River watersheds. 

In addition, as concluded in the previous comparison, although HEC2 and HEC3, 

compared with HEC1, relatively lead to more reliable results, the three HEC based models 

do not perform as well as the other four conceptual models in either watersheds. 
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Table 2-7 The performance statistics of the best-calibrated models in both watersheds 
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B
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c
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a
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h

ed
 MACHBV 3 0.902 0.85 0.90 0.00 0.14 0.77 0.81 0.79 0.63 0.01 0.40 0.44 

SACSMA 3 0.88 0.85 0.85 0.00 0.19 0.67 0.76 0.82 0.53 0.04 0.46 0.18 

SMARG 5 0.88 0.81 0.86 0.04 0.16 0.71 0.76 0.68 0.55 0.03 0.46 0.27 

GR4J 1 0.88 0.81 0.82 0.00 0.11 0.56 0.79 0.68 0.60 0.02 0.45 0.26 

HEC-1 4 0.84 0.57 0.84 0.00 0.20 0.54 0.72 0.55 0.50 0.15 0.42 -0.07 

HEC-2 4 0.80 0.39 0.85 0.11 0.20 0.55 0.65* 0.10 0.54 0.15 0.38 0.01 

HEC-3 1 0.89 0.49 0.86 0.06 0.23 0.57 0.75 0.78 0.51 0.11 0.44 0.05 

B
ig

 E
a
st

 R
iv

er
 W

a
te

r
sh

ed
 MACHBV 2 0.84 0.76 0.81 0.01 0.05 0.65 0.73 0.73 0.53 0.02 0.42 0.33 

SACSMA 2 0.77 0.79 0.63 0.00 0.27 0.45 0.66 0.79 0.35 0.01 0.47 0.15 

SMARG 4 0.74 0.66 0.72 0.00 0.17 0.54 0.63 0.54 0.37 0.00 0.48 0.20 

GR4J 2 0.82 0.81 0.51 0.00 0.03 0.49 0.79 0.86 0.72 0.01 0.28 0.43 

HEC-1 4 0.68 0.35 0.70 0.04 0.31 0.23 0.55 0.20 0.28 0.01 0.50 0.00 

HEC-2 5 0.67 0.31 0.70 0.03 0.28 0.35 0.62 0.21 0.35 0.05 0.41 0.21 

HEC-3 2 0.60 0.55 0.57 0.00 0.23 0.06 0.71 0.40 0.52 0.09 0.30 0.31 

1 The objective functions lead to the best parameter sets of each model (1 = 𝑁𝑆𝐸; 2 = 𝐾𝐺𝐸; 3 = 𝑁𝑉𝐸; 4 = 𝑀𝑁𝑉𝐸; 5 

= 𝑃𝑊𝑅𝑀𝑆𝐸) 

2 The best and the worst values are bolded and underlined, respectively. 
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(a) Big East River watershed 

 

(b) Black River watershed 

Figure 2-7 The rank of different hydrologic models based on various performance 

statistics in the validation and calibration periods for (a) Big East River and (b) Black 

River watersheds 

 

For a better comparison of different model performance in simulating high flows, scatter 

plots of the simulated and observed daily peak flows (peak flows greater than 75 percentile) 

are illustrated in Figure 2-8. Additionally, for qualitative inspection, Figure 2-9 presents a 

representative portion of the simulated and observed hydrographs based on various 

hydrologic models with their best parameter sets (presented in Table 2-7). As was 
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concluded previously, MACHBV and GR4J show better performance in comparison to the 

other models regarding high flows in both watersheds. However, it is worthy of note that 

even the best hydrologic models possess a clear tendency to underestimate peak flows 

especially in the Black River Watershed. This underestimation can likely be attributed to 

both the models’ structures as well as the quality of forcing input data.  The poor estimation 

of mean areal precipitation, derived from low-density meteorological stations, can lead to 

systematic under/overestimation of stream flows (Collischonn et al., 2008; Tegegne et al., 

2017b). 

 

Figure 2-8 The scatter plots depicting the simulated and observed daily peak flows, 

greater than the 75 percentile, for the whole period (i.e. calibration and validation 

periods) and their fitted regression lines for both Big East River and Black River 

watersheds 
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(a) Big East River watershed 

 

(b) Black River watershed 

Figure 2-9 Observed and simulated daily runoff discharges at the outlet of (a) Black 

River watershed and (b) Big East River Watershed for a representative portion of the 

validation period 

 

2.4.3 The effect of forcing precipitation input (CaPA versus Ground-based stations) 

In the case of low-density meteorological measurements, utilizing other sources of 

data as forcing inputs into hydrologic models is necessary. Here, in order to evaluate the 

reliability of Canadian Precipitation analysis (CaPA) data, a comparison is made between 

the simulation results, derived from the best optimal parameter set of all hydrologic models 

using the two predefined input scenarios. The results, as shown in Figure 2-10, indicate 
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that in general, the CaPA based calibrated models performed approximately similar to the 

calibrated models based on EC data. However, the average transferability statistic implies 

that using CaPA data, in comparison to EC, provides more consistent performance for the 

models during the calibration and validation periods. Also, by focusing on high flows, it 

can be concluded that CaPA based calibrated models performed better specifically in the 

Black River watershed where both 𝑁𝑆𝐸90  and 𝑃𝐸  criteria of CaPA based calibrated 

models possess a noticeable superiority over EC based ones.  

Moreover, the effects of using different precipitation scenarios on model performances are 

separately evaluated for various hydrologic models, using the percentage of improvement 

in low, medium, and high flows. These percentages are respectively defined as the percent 

increase in 𝑁𝑆𝐸𝐿 , 𝑁𝑆𝐸 , and 𝑁𝑆𝐸𝑆  criteria when CaPA is used as forcing input in 

comparison to the EC scenario (Table 2-8). As can be seen, the effects of using CaPA as 

an alternative forcing precipitation input is not consistent with different hydrologic model. 

Regarding high flows, the results shows the advantage of using CaPA for almost all models 

in both Big East River and Black River watersheds, where respectively the average of 18 

and 12 percentage of performance improvement occurs based on 𝑁𝑆𝐸𝑆 criterion. However, 

the effects of implementing CaPA on low flow performance of different models do not 

follow the same trend. In Big East River watershed, using CaPA leads to lower 𝑁𝑆𝐸𝐿 of 

MACHBV, SACSMA, and SMARG while the low flow performance improvement of 

HEC-HMS based models is significantly high. On the other hand, in Black River watershed, 

except HEC2 and HEC3, where implementing EC and CaPA precipitation scenarios 

respectively results in better low flow simulation, other models’ performances regarding 
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low flows does not significantly changes when different input scenarios are used. Besides 

HEC2 with 24% 𝑁𝑆𝐸 based improvement, the general performances of different models 

(i.e. using NSE measurement) do not face significant changes in the case of using CaPA as 

forcing input. 

 

(a) Big East River watershed 

 

(b) Black River watershed 

Figure 2-10 Box plots of different performance measurements for (a) Big East River and 

(b) Black River watersheds using best-estimated parameter set of all hydrologic models. 

These are derived from two input precipitation scenarios: Environment Canada (EC) and 

Canadian Precipitation Analysis (CaPA) 
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Table 2-8 The model performance statistics of different best-calibrated models by 

implementing EC and CaPA precipitation scenarios 

Basin Model 
Obj. Func.1 NSE NSEL NSES 

EC CaPA EC CaPA % I2 EC CaPA I (%) EC CaPA % I 

B
ig

 E
a
st

 R
iv

er
 

MACHBV  3 3  0.73 0.76 4%2 0.73 0.67 -8% 0.53 0.60 13% 

SACSMA 3 1 0.66 0.70 6% 0.79 0.75 -4% 0.35 0.45 29% 

SMARG 5 5 0.63 0.69 9% 0.54 0.38 -30% 0.37 0.43 17% 

GR4J 1 2 0.79 0.78 -1% 0.86 0.87 0% 0.72 0.75 5% 

HEC1 4 1 0.55 0.58 6% 0.20 0.34 72% 0.28 0.35 26% 

HEC2 4 4 0.62 0.67 8% 0.21 0.32 55% 0.35 0.56 59% 

HEC3  1 1  0.71 0.66 -7% 0.40 0.64 59% 0.52 0.41 -21% 

B
la

c
k

 R
iv

er
 

MACHBV 2 5 0.81 0.83 3% 0.79 0.76 -3% 0.63 0.68 7% 

SACSMA 2 1 0.76 0.82 7% 0.82 0.84 2% 0.53 0.62 15% 

SMARG 4 2 0.76 0.80 5% 0.68 0.72 6% 0.55 0.62 12% 

GR4J 2 1 0.79 0.78 -1% 0.68 0.68 -1% 0.60 0.66 8% 

HEC1 4 3 0.72 0.80 11% 0.55 0.57 3% 0.50 0.62 24% 

HEC2 5 1 0.65 0.80 24% 0.10 0.30 181% 0.54 0.58 8% 

HEC3  2 1 0.75 0.74 -2% 0.78 0.61 -22% 0.51 0.54 5% 

1 The objective functions lead to the best parameter sets of each model (1 = 𝑁𝑆𝐸; 2 = 𝐾𝐺𝐸; 3 = 𝑁𝑉𝐸; 4 = 𝑀𝑁𝑉𝐸; 5 

= 𝑃𝑊𝑅𝑀𝑆𝐸). 

2 𝐼 = The percentage of Improvement. Its positive values are underlined. 

 

2.4.4 Evaluation of Snowmelt Estimation Methods: Degree-Day and SNOW17 models 

For assessing the effects of implementing a more complex snowmelt routine, a comparison 

is made between the MACHBV and SACSMA hydrologic models in conjunction with 

Degree-Day (DD) and SNOW17 snowmelt estimation approaches. Four model structures, 

stemming from the combination of two aforementioned hydrologic models and snow 

modules, are calibrated using two predefined input scenarios and five aforementioned 

objective functions in both watersheds.  In order to facilitate the evaluation, the percentages 

of model improvement in medium and high flows were used. The former one is defined as 

a percent increase in 𝑁𝑆𝐸 when the SNOW17 model is implemented in comparison to DD 
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method while the latter one is based on 𝑁𝑆𝐸𝑆  criteria for focusing on high flows, 

specifically. Positive values of model improvement shows the advantage of using the 

SNOW17 method. 

Figure 2-11 presents the model improvements in both calibration and validation periods 

using all calibrated models for each watershed. For the SACSMA, in both watersheds 

during both periods, the median is more than zero indicating enhancement of the model 

performance in the case of adapting the SNOW17 model. However, the positive effect of 

using the SNOW17 model, combined with the MACHBV model structure, cannot be 

concluded. For instance, although the model improvements during the calibration period 

in the Big East River watershed are almost positive, especially regarding high flows, 

opposite results are obtained in the validation period, where the high flow model 

improvement median is around -30 percent. Moreover, in order to complete the assessment, 

a comparison has been made between the best optimal parameter set of each model 

structure (Table 2-9). In line with the previous comparison, the results indicate that 

coupling the SACSMA and SNOW17 provides better results especially in high flows 

where the maximum of approximately 25% improvement occurs. However, the DD 

approach seems to be more appropriate to be used in conjunction with the MACHBV 

model structure especially in the Big East River watershed. In addition, the performance 

of the models regarding the whole hydrographs (i.e., model improvement based on NSE) 

varies between ~-2% and ~8% depicting no specific enhancement of general models’ 

performance in the case of implementing more complex snowmelt models. 
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(a) Big East River 

 

(b) Black River 

Figure 2-11 Box plots of the MACHBV and the SACSMA model improvements in (a) Big 

East River and (b) Black River watersheds using all estimated parameters of the models. 

The positive value of model improvement reveals the positive effect of utilizing the 

SNOW-17 method, while the negative value shows the advantage of the DD approach 
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Table 2-9 The model performance statistics of the best-calibrated SACSMA and MACHBV in conjunction with DD and SNOW-

17 snowmelt methods in both watersheds 

Basin Model Input Snow model 
Calibration Validation 

Model Improvement (%) 

Calibration Validation 

NSE NSES PE NSE NSES PE NSE NSES NSE NSES 

B
la

ck
 R

iv
er

 W
at

er
sh

ed
 

M
A

C
H

B
V

 

EC 
DD 0.90 0.90 0.14 0.81 0.63 0.40 

0.3% 2.6% 1.5% 2.2% 
S17* 0.91 0.92 0.11 0.82 0.65 0.38 

CaPA 
DD 0.90 0.91 0.12 0.83 0.68 0.33 

-0.3% 0.7% -0.1% -0.5% 
S17 0.90 0.91 0.11 0.83 0.67 0.31 

S
A

C
S

M
A

 

EC 
DD 0.88 0.85 0.19 0.76 0.53 0.46 

3.3% 7.8% 7.9% 21.0% 
S17 0.91 0.92 0.11 0.82 0.65 0.38 

CaPA 
DD 0.90 0.89 0.18 0.82 0.62 0.39 

-0.4% 2.1% 1.8% 9.4% 
S17 0.90 0.91 0.11 0.83 0.67 0.31 

B
ig

 E
as

t 
R

iv
er

 W
at

er
sh

ed
s 

M
A

C
H

B
V

 

EC 
DD 0.84 0.81 0.05 0.73 0.53 0.42 

-1.7% 3.6% -3.5% -32.8% 
S17 0.82 0.84 0.12 0.70 0.36 0.33 

CaPA 
DD 0.80 0.79 0.12 0.76 0.70 0.36 

1.9% 5.7% -7.1% -31.1% 
S17 0.81 0.84 0.09 0.70 0.48 0.35 

S
A

C
S

M
A

 

EC 
DD 0.77 0.63 0.27 0.66 0.35 0.47 

9.1% 28.5% 4.8% 12.6% 
S17 0.84 0.82 0.19 0.69 0.40 0.47 

CaPA 
DD 0.74 0.64 0.34 0.70 0.45 0.50 

6.3% 20.4% 2.0% 16.6% 
S17 0.79 0.77 0.22 0.71 0.53 0.45 

* S17 is the abbreviation of SNOW17. 
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2.5 Discussion 

Assessing the effects of different objective functions on model performances 

indicate that in general, using 𝐾𝐺𝐸 and 𝑁𝑉𝐸 as an objective function can provide more 

reliable estimation of different models’ parameters. 𝑁𝑉𝐸 is a combination of 𝑁𝑆𝐸 and 𝑉𝐸 

(Table 2-5) and its best value gives both the lowest difference between computed and 

observed flows and small volume error, (Lindström, 1997; Samuel et al., 2011). 𝐾𝐺𝐸 also 

consider three measures (correlation, bias, and variability) simultaneously and provide 

more consistent results than 𝑁𝑆𝐸 especially in basins where the variability of the observed 

flow is high (Buzacott et al., 2019; Gupta et al., 2009), such as Big East River watershed 

where the streamflow coefficient of variation is 1.21 compared with 1.05 in Black River. 

However, the two aforementioned criteria do not always lead to the best optimal parameter 

sets for different hydrologic models in both watersheds and will affect the performance of 

various models in different manners (Figure 2-5 and Table 2-6). This proves the necessity 

of considering multiple objective functions in model inter-comparison process in order to 

find more robust and comprehensive conclusions.  

Inter-comparison of different conceptual hydrologic models suggests that 

MACHBV is the most consistent model providing reliable low, medium, and high flow 

estimation in both basins. This conclusion is in line with the original purpose of developing 

MACHBV, which was to simulate stream flows of ungauged watersheds in Ontario 

(Samuel et al., 2011, 2012). Also, the parsimonious GR4J model, with the lowest 

complexity, possess competitive performances in both watersheds, especially regarding 

high flow simulation (Figure 2-8 and 2-9). Besides the proven capability of GR4J model 
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structure in daily streamflow simulation (Wijayarathne & Coulibaly, 2020), this advantage 

may be due to the remarkable ability of GR4J to compensate the problem of having poor 

precipitation input. The parameters of GR4J model (i.e. 𝑋1, 𝑋2, and 𝑋3) can be relatively 

distorted through the calibration process in order to provide good results even with limited 

input data (Andréassian et al., 2001; Drogue & Khediri, 2016; Simonneaux et al., 2008). 

This ability is also demonstrated where along with MACHBV, GR4J possesses the lowest 

changes of performance in comparison to other models when CaPA is used as another 

source of precipitation (Table 2-8). On the other hand, compared with other conceptual 

models, the HEC-HMS based ones have relatively poor performances in both watersheds, 

which is more significant in low flow simulation. With HEC1 and HEC2, the possible 

reason of their poor performance, which is more pronounced than HEC3, is the low 

capability of the recession method in accurately estimating base flow. In addition, this may 

be due to the use of the fixed monthly estimated PET for HEC-HMS based models, 

compared with other models where the daily PET is determined during the calibration 

process. Therefore, evaluating the effects of using an external PET estimation model linked, 

and calibrated with HEC-HMS, on the accuracy of streamflow simulation is recommended.  

Evaluating the effects of CaPA as another source of precipitation for both 

watersheds  indicate that the effect of using different input scenarios is not similar for 

different hydrologic models and considering it in model comparison process is required for 

possessing robust conclusions. As previously stated, changing rainfall has the least effect 

on MACHBV and GR4J models (Table 2-8), proving their suitability for study regions 

with low data availability. Also, the reliability of CaPA as another source of precipitation 
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for both watersheds is confirmed by comparing the performance of different hydrologic 

models. CaPA based calibrated models yield better high flow estimation than using sparse 

ground-based measurements for model calibration (Figure 2-10 and Table 2-8). This is 

more obvious in Black River watershed and can be justifiable by the fact that EC based 

input scenario underestimates severe daily rainfall events in the Black River watershed 

(Figure 2-2). In line with previous studies, the results of this study show that using reliable 

spatially distributed data can provides more accurate mean areal precipitation estimates 

and affect the performances of the lumped hydrologic models in data-poor regions 

(Collischonn et al., 2008; Martel et al., 2020). However, more comprehensive evaluation 

of data with high spatial resolution and the effects of its spatial heterogeneity on hydrologic 

model performances required the application of a distributed or semi-distributed 

hydrologic models (Mazzoleni et al., 2019).   

Snowmelt module is an important part of any hydrologic model in snow-dominated 

watersheds. Therefore, this study compared Degree-Day (DD) and more complex 

SNOW17 methods, relying on temperature and precipitation as the only inputs, in 

conjunction with two hydrologic models (i.e. MACHBV and SACSMA). In general, in line 

with Agnihotri and Coulibaly (2020), the results indicate the competitive performance of 

DD in both watersheds, which may be related to the land use characteristics of the regions, 

which are forested. Regarding high flows, the SNOW17 performs better than DD in Black 

River watershed while in Big East River, this superiority is less noticeable and diminishes 

from calibration to validation periods. This may be attributed to the steeper topography of 

the Big East River watershed and not dividing it into different elevation zones (Agnihotri 
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& Coulibaly, 2020; Anderson, 2006). Another possible reason for this outcome is the lack 

of long-term historical data in data-scarce regions. The higher degrees of freedom of 

SNOW17 method, compared with DDM, can lead to parameter overfitting when the length 

of the calibration period is not long enough due to low data availability. 

2.6 Summary and Conclusions 

Inter-comparison of various conceptual hydrologic models for continuous daily 

streamflow simulation in watersheds with low data availability is the main goal of this 

study. Consequently, the performance of seven lumped conceptual rainfall-runoff models 

with different structures (i.e., SACSMA, MACHBV, SMARG, GR4J, and three HEC-

HMS based models) were compared in two data-poor and snow-dominated watersheds, 

Big East River and Black River, located in Northern Ontario, Canada. All models were 

calibrated using five different criteria (i.e. 𝑁𝑆𝐸, 𝐾𝐺𝐸, 𝑁𝑉𝐸, 𝑀𝑁𝑉𝐸 and 𝑃𝑊𝑅𝑀𝑆𝐸) and 

two different input scenarios in order to relax the influence of calibration process on the 

models’ results.  

The comparison results suggest that although the SACSMA and GR4J hydrologic 

models possess competitive performances, MACHBV shows the best results in simulating 

the daily stream flows for both watersheds. Also, the GR4J model shows the highest 

accuracy for high flow prediction in both watersheds. The results also indicate that the 

HEC-HMS based models provide lower performance, especially for low flows. From inter-

comparing the different structures of the HEC-HMS models, using the soil moisture 

accounting and linear reservoir approaches are preferred to Deficit and Constant loss and 

recession methods for continuous daily streamflow simulation. Moreover, alongside model 
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comparison, the evaluation of the effects of using different objective functions shows that 

𝐾𝐺𝐸 and 𝑁𝑉𝐸 are the most consistent criteria leading to reliable parameter estimation with 

reasonable performance regarding different parts of the hydrograph, while comparing 

different model structures require considering the effects of objective function selection. 

Furthermore, the comparison between gauged and CaPA based calibrated models in both 

watersheds indicates the high potential of CaPA data as a good alternative in the case of 

low data availability. CaPA not only provides the same level of performance in general but 

also leads to better results than ground-based data regarding high flows. In addition, due to 

the importance of accurate snowmelt estimation in snow-dominated watersheds, we 

compared the performance of the MACHBV and SACSMA hydrologic models in 

conjunction with Degree-Day method (DD) and more complex SNOW17 snowmelt 

estimation methods in both watersheds. In general, incorporation of SNOW17 does not 

significantly improve the performance of either hydrologic models. By focusing on high 

flows, however, the results show that implementing SNOW17 with SACSMA is 

consistently superior, while the DD method can perform comparably well with MACHBV. 

In general, this study reveals that besides considering the effects of calibration 

process, utilizing different precipitation input scenarios can lead to more robust conclusion 

of model comparison process in data-poor watersheds. The findings of this study suggest 

that MACHBV and GR4J are the most robust lumped conceptual rainfall-runoff models, 

reacting well to poor mean areal rainfall estimation in data-scarce watersheds and 

performing well regarding different aspects of the hydrographs, while the SACSMA also 

reliably simulates streamflow in both watersheds. In addition, this study confirms the high 
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potential of the archived aggregated daily CaPA data to be considered as a hydrologic 

forcing in data-poor watersheds in Northern Ontario. Moreover, another implication of the 

results is that implementing the more complex SNOW17 model for snowmelt estimation 

in watersheds with low data availability does not always provide more reliable results, and 

its effectiveness depends on the hydrologic model structure. 

Limitations of this study are as follows: 

 The study was designed for assessing the general performance of models 

regarding all aspects of hydrographs (i.e. low, medium, and high flows), 

simultaneously. However, inter-comparing various models being calibrated 

regarding different particular class of flows, separately, would be advisable. 

 Although the hydrologic responses of the two considered watersheds are 

not quite similar, the findings of this study remain applicable within the 

same topographic and climatologic conditions. So, we recommend further 

application of the proposed model inter-comparison for different types of 

watersheds (i.e., mountainous, semi-arid, semi-urban) with low data 

availability for providing more comprehensive conclusions.  

 There are other conceptual models with different structures that are worth 

to be investigated in future studies. 

The reliability of Canadian Precipitation Analysis in estimating mean areal precipitation as 

an input of lumped models in data-scarce regions were revealed in this study, however, 

further studies need to be carried out to comprehensively assessed the accuracy of spatial 
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heterogeneity of CaPA data in Northern Ontario, using a distributed or semi-distributed 

hydrologic models. 
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 Inter-Comparison of Different Bayesian Model Averaging 

Modifications in Streamflow Simulation 

Summary of Paper 2: Darbandsari, P., & Coulibaly, P. (2019). Inter-comparison of 

different Bayesian model averaging modifications in streamflow simulation. Water, 11(8), 

1707. 

In the context of streamflow predictions, this research work aims at evaluating the effects 

of various previously recommended Bayesian Model Averaging (BMA) modifications, 

including the implementation of different data transformation approaches, various 

distribution types, heteroscedastic variance, and different BMA parameter estimation 

methods on the reliability and accuracy of BMA predictive results. 

Key findings of this research include: 

 The contributions of different members of the ensemble in the BMA final results 

are not always in accordance with their individual performances, which shows the 

significant importance of establishing an ensemble with independent members, 

capturing the whole observational variability.  

 The expectation-maximization algorithm is a robust optimization method for 

reliably estimating the original BMA parameters. 

 The application of the non-constant (i.e. heteroscedastic) variance enhances the 

capability of the BMA method for quantifying predictive uncertainty, especially for 

high streamflow values. 
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 Applying the data transformation method, in general, leads to more reliable 

predictive results while it reduces the sharpness of the probabilistic high flow 

streamflow predictions. 

 The effects of employing more representative distribution types in the BMA 

formulation are marginal. 

 The combination of data transformation approach and non-constant variance yields 

under confident results with large width of confidence interval bounds in high flows. 

3.1 Abstract 

Bayesian model averaging (BMA) is a popular method using the advantages of forecast 

ensemble to enhance the reliability and accuracy of predictions. The inherent assumptions 

of the classical BMA has led to different variants. However, there is not a comprehensive 

examination of how these solutions improve the original BMA in the context of streamflow 

simulation. In this study, a scenario-based analysis was conducted for assessment of 

various modifications and how they affect BMA results. The evaluated modifications 

included using various streamflow ensembles, data transformation procedures, distribution 

types, standard deviation forms, and optimization methods. We applied the proposed 

analysis in two data-poor watersheds located in northern Ontario, Canada. The results 

indicate that using more representative distribution types do not significantly improve 

BMA-derived results, while the positive effect of implementing non-constant variance on 

BMA probabilistic performance cannot be ignored. Also, higher reliability was obtained 

by applying a data transformation procedure; however, it can reduce the results’ sharpness 

significantly. Moreover, although considering many streamflow simulations as ensemble 
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members does not always enhance BMA results, using different forcing precipitation 

scenarios besides multi-models led to better BMA-based probabilistic simulations in data-

poor watersheds. Also, the reliability of the expectation-maximization algorithm in 

estimating BMA parameters was confirmed. 

Keywords: Bayesian model averaging; multi-model ensemble hydrologic simulation; 

uncertainty analysis; Canada 

3.2 Introduction 

Different types of hydrologic models, varying from empirical and conceptual to fully 

distributed physically based models, have been developed in order to increase the accuracy 

of hydrological forecasts. However, none of these models describe all aspects of 

hydrological processes sufficiently and without avoiding errors. Therefore, it remains 

difficult to choose one of them as superior in all conditions (Chen et al., 2013; Z. Liu et al., 

2016). 

Different uncertainties in rainfall-runoff modeling, arising mostly from parameters, inputs, 

and the structure of the model (Moradkhani & Sorooshian, 2008; Shrestha, 2009), need to 

be quantified reliably and accurately as possible. This can be done by generating a 

streamflow ensemble system (Madadgar & Moradkhani, 2014; Michaels, 2015; Seo et al., 

2006). Although using streamflow ensemble based on multi-input and multi-parameter sets 

can enhance the uncertainty quantification process, it cannot address the uncertainty within 

a single hydrologic model structure (i.e., model structural uncertainty) (Georgakakos et al., 

2004; Vrugt & Robinson, 2007). Consequently, in recent years, some multi-model 
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approaches have been developed in order to find more reliable results by combining 

multiple model forecasts. 

The model averaging approaches can be divided into two main groups. The first one 

includes methods leading to a one-point deterministic result by using the weighted average 

of the deterministic model forecasts or simulations, such as simple model averaging, 

Granger–Ramanathan averaging (Granger & Ramanathan, 1984), and artificial neural 

network (ANN) methods (Shamseldin et al., 1997; Shamseldin & O’Connor, 1999). The 

second group contains combination techniques like Bayesian model averaging (BMA) 

(Hoeting et al., 1999; Raftery, 1993; Raftery et al., 1997, 2005) which quantify the 

predictive uncertainty and provide probabilistic results. In the BMA method, individual 

models are weighted using their likelihood measures and probabilistic results are generated 

by combining the probability distribution of various individual forecasts. It has been shown 

that BMA is one of the most promising multi-model combination approaches in producing 

more reliable and accurate results in comparison to the other methods (Arsenault et al., 

2015; Raftery et al., 2005; Viallefont et al., 2001). 

There are many different fields, from medicine to management, where the BMA method is 

applied (Tian et al., 2014). Bayesian model averaging has been largely used in meteorology 

(Liu & Xie, 2014; Ma et al., 2018; Raftery et al., 2005; Sloughter et al., 2007; Sun et al., 

2018). In recent years, the BMA approach has been applied in various water resources and 

hydrologic studies ranging from groundwater modeling (Neuman, 2003; Rojas et al., 2008; 

Zeng et al., 2016) to flood frequency analysis (Yan & Moradkhani, 2016). Moreover, 

various studies have successfully applied the BMA method in the field of hydrological 
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modelling (Ajami et al., 2007; Dong et al., 2013; Duan et al., 2007; Huo et al., 2019; Liang 

et al., 2013; Najafi & Moradkhani, 2016; Qu et al., 2017; Yen et al., 2014). 

There are some potential issues and limitations for the standard Bayesian model averaging 

approach. One of the main assumptions of the classic BMA methodology is estimation of 

forecast posterior probability distribution by a Gaussian function. It has been raised that 

this assumption leads to inappropriate results in the case of non-normal data, such as 

streamflow or precipitation where skewed distributions (e.g., gamma) are more 

representative. This has motivated some research to relax this assumption by considering 

different types of distributions (Sloughter et al., 2007; Vrugt & Robinson, 2007) or 

applying a data transformation procedure in order to generate approximately normal data 

(Duan et al., 2007; Z. Liang et al., 2013; Qu et al., 2017; Todini, 2008; Yan & Moradkhani, 

2016). Additionally, in the original BMA, a single constant variance for conditional 

probability distribution functions (PDFs) is implemented. This seems to be unsuitable for 

streamflow data where the larger errors are expected regarding high flows. Consequently, 

some studies proposed considering heteroscedastic (non-constant) variance changing 

monotonically with the flow level in order to enhance the predictive performance of the 

BMA model (Vrugt, 2016; Vrugt & Robinson, 2007). Although a significant number of 

studies tried to reduce the effect of the aforementioned assumptions, none have 

comprehensively assessed the sensitivity of BMA methodology in applying various 

aforementioned modifications and how they affect BMA final probabilistic results. 

Moreover, in the original BMA method, the expectation-maximization (EM) algorithm 

(McLachlan & Krishnan, 2008) was proposed to find the optimal values of BMA 
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parameters. However, it is argued that the EM algorithm is not always able to find the 

global solution properly and the final solution is sensitive to the initial values (Duan et al., 

2007; Raftery et al., 2005; Sloughter et al., 2007; Vrugt & Robinson, 2007). As a result, 

some studies have proposed replacing the EM algorithm with other global optimization 

techniques for possessing more reliable solutions solutions (Ebtehaj et al., 2010; Vrugt et 

al., 2008; Vrugt & Robinson, 2007), while no studies have assessed how the accuracy and 

reliability of the BMA results are influenced by this modification. 

Furthermore, the streamflow ensemble for BMA application can be derived in various ways, 

such as utilizing different hydrologic models (Duan et al., 2007; Zhang et al., 2009), 

considering various forcing inputs scenarios (Liang et al., 2013; Neto et al., 2018; Strauch 

et al., 2012), or using different parameter sets of each hydrologic model (Dong et al., 2013). 

It has been claimed that a high number of members in the ensemble does not always 

increase the potential ability of the BMA method (Madadgar & Moradkhani, 2014; 

Neuman, 2003). However, there is no thorough evaluation of how an ensemble generated 

from different sources can affect the performance of the BMA method. 

Although some studies have proposed more complicated BMA-based methods (i.e., 

GLUE-BMA (Rojas et al., 2008), BMA-PF (Parrish et al., 2012, Cop-BMA (Madadgar & 

Moradkhani, 2014), and CBP-BMA (He et al., 2018)), there are still many studies being 

done using the original BMA approach based on the aforementioned modifications. 

Consequently, the need of a comprehensive assessment of the different BMA variants is 

strongly felt. This study aims to fill this gap by closely evaluating how the various 

previously recommended modifications affect the accuracy and reliability of the BMA-
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generated probabilistic results. The conclusions are expected to contribute toward the 

improvement of the knowledge of different BMA variants dealing with streamflow 

simulations and forecasting and provide practical and useful recommendations about the 

effectiveness of various modifications. The organization of this paper is as follows: Section 

3.3 elaborates on all materials and methods used in this study, including the study areas 

and data, the standard BMA method and its various components, the proposed BMA 

scenario-based analysis, the different hydrologic models, and the evaluation performance 

statistics. In Section 3.4, the inter-comparison results of the proposed BMA modifications 

are presented and discussed, and, finally, a summary and conclusion section are provided. 

3.3 Materials and Methods 

3.3.1 Study Area and Data 

The Big East River (620 km2) and the Black River (1522 km2) watersheds, located in the 

northern part of Ontario, Canada, are chosen for the implementation of the proposed BMA 

scenario-based analysis (Figure 3-1). Both basins are mostly forested regions and their 

landscapes are moderately sloped with mean elevations of 450 and 300 meters above sea 

level for the Big East River and Black River watersheds, respectively. The historical daily 

streamflow data at the outlet of both watersheds (the only hydrometric station of each 

watershed) illustrate that high flows mostly occur in April when the snowmelt process 

plays an important role. Moreover, as can be seen from Figure 3-1, the only six available 

Environment Canada (EC) meteorological stations with reliable and sufficient historical 

data are located outside the boundaries of both watersheds. This represents an actual 

condition of watersheds with limited data availability. Analysis of the precipitation and 
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temperature time-series of these six stations approximately shows the annual mean 

precipitation and the daily average temperature of 1050 mm and 5 °C, respectively. 

Moreover, the winter and summer average temperature are −9 °C and 18 °C, respectively, 

showing that all four seasons are defined clearly in both study areas (Figure 3-2). 

 

Figure 3-1 Location map of the Big East River and Black River watersheds 
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Figure 3-2 The box-plot and average of monthly precipitation and the mean monthly 

temperature for the observation period (2006–2015) based on data from six available 

meteorological stations 

 

Besides the ground-based precipitation data, the archive of the daily aggregated form of 

the Canadian Precipitation Analysis (CaPA) was used as an alternative precipitation 

forcing input for hydrologic modeling of both watersheds. The CaPA is a gridded 

precipitation product with a spatial resolution of 15 km produced by the Meteorological 

Service of Canada based on the combination of various data sources, such as radar data, 

climate model data, and observations (Lespinas et al., 2015). It was shown that the archived 

CaPA is a potential reliable source of precipitation for data-scarce regions (Boluwade et 

al., 2018). In order to initially assess the precipitation variability of each basin using 

different datasets, primary analysis was performed. Two mean areal precipitation time-

series for each watershed were derived from interpolated EC ground-based data using an 

inverse distance weighting method (American Society of Civil Engineers, 1996) and the 

CaPA data by applying a Thiessen polygon approach (Thiessen, 1911). As can be seen 
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from Figure 3-3, although CaPA provided more intense rainfalls specifically in the Black 

River watershed, it underestimated the amount of precipitation compared with the EC data 

in both watersheds. Moreover, the calculated daily correlation coefficients between EC- 

and CaPA-derived datasets (0.83 and 0.87 for the Big East River and Black River 

watersheds, respectively) show evidence of a linear relationship. However, by focusing on 

intense rainfall events (precipitation > 10 mm/day), the correlation coefficients were 

dramatically decreased to 0.42 and 0.48 for the Big East River and Black River watersheds, 

respectively. Therefore, there are remarkable differences between two datasets, especially 

at intense rainfall events, suggesting a significant amount of input uncertainty in poor-data 

watersheds. So, the authors used CaPA as a second forcing data for hydrologic models, 

which can help obtain a better quantification of the predictive uncertainty in the rainfall-

runoff process using a Bayesian model averaging approach. 
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(a) (b) 

Figure 3-3 The scatter plots of the mean areal interpolated Environment Canada (EC) 

and Canadian Precipitation Analysis (CaPA) data and their corresponding cumulative 

precipitation of the driest and wettest years during the period 2006–2015 for both the (a) 

Big East River and (b) Black River watersheds 

 

3.3.2 Standard Bayesian Model Averaging Technique 

Bayesian model averaging is a statistical method for estimating probabilistic prediction 

based on various competing forecasts, possessing more reliability and accuracy than initial 

ensemble predictions. In this approach, the weighted averages of the individual forecasts’ 

probability distribution functions (PDFs) are used for generating the posterior distribution 

of forecasting variables. It was claimed through different studies that the higher weights 
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are considered for better performing predictions in the training period (Duan et al., 2007; 

He et al., 2018; Liang et al., 2013; Vrugt et al., 2008; Yen et al., 2014). 

Consider 𝑦 as a quantity which is going to be forecasted (i.e., predictand) and, therefore, 

𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇) denotes the training period of observation with data length 𝑇. Having 

𝐾 different models (i.e., 𝑀 = (𝑀1, 𝑀2, … , 𝑀𝐾)) results in 𝑌𝑓 = (𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾), the 

ensemble of model predictions for the aforementioned training period, where 𝑌𝑀𝑖 =

(𝑦1
𝑀𝑖 , 𝑦2

𝑀𝑖 , … , 𝑦𝑇
𝑀𝑖). Based on the law of total probability and the assumption about the 

independence of different model forecasts, the PDF of the predictand conditioned on the 

models over the given training period can be formulated as follows (Raftery et al., 1997): 

𝑃(𝑦|𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾 , 𝑌) = ∑ 𝑃(𝑦| 𝑌𝑀𝑖 , 𝑌) × 𝑃( 𝑌𝑀𝑖|𝑌)

𝑘

𝑖=1

 (3-1) 

where 𝑃(𝑦|𝑌𝑀𝑖 , 𝑌) is the posterior distribution of 𝑦 given the prediction of model 𝑀𝑖 and 

observed data 𝑌, which simply can be considered as the forecast PDF of y based on model 

𝑀𝑖. Moreover, 𝑃(𝑌𝑀𝑖│𝑌) is the posterior probability or the likelihood of the model’s 𝑀𝑖 

prediction being correct over the training period. Due to the assumption of models’ 

independency, the posterior probabilities of models should sum to unity, ∑ 𝑃( 𝑌𝑀𝑖|𝑌) =𝐾
𝑖=1

1 , and, consequently, they can be considered as weights (i.e., 𝑤𝑖 = 𝑃( 𝑌𝑀𝑖│𝑌) is the 

weight of model 𝑖). Furthermore, in the BMA approach, it is assumed that the model 

forecasts are unbiased, meaning that the expected value of the difference between 

observation and each model forecast should be equal to zero (i.e., 𝐸(𝑌 − 𝑌𝑀𝑖) = 0 for 𝑖 ∈

[1, 𝐾]). So, before BMA implementation, a bias-correction method should be used in order 
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to create an unbiased ensemble of predictions. Although there are several bias-correction 

methods which all can be used for this aim, a linear-regression technique is utilized in the 

original BMA (Raftery et al., 2005). The bias-corrected results, 𝐹𝑀𝑖 = 𝑎𝑖 × 𝑌𝑀𝑖 + 𝑏𝑖 

(where 𝑎𝑖 and 𝑏𝑖 are the coefficients of the linear regression model), are replaced with the 

original model forecasts (𝑌𝑀𝑖). Therefore, the BMA predictive model (Equation 3-1) can 

be rewritten as follows: 

𝑃(𝑦|𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾 , 𝑌) = ∑ 𝑤𝑖 × 𝑃(𝑦| 𝐹𝑀𝑖 , 𝑌)

𝑘

𝑖=1

 (3-2) 

On the other hand, in the original BMA method, it is assumed that the aforementioned 

posterior probability (i.e., 𝑃(𝑦|𝐹𝑀𝑖 , 𝑌) ) follows the normal (Gaussian) distribution, 

𝑔(𝑦|𝐹𝑀𝑖 , 𝜎𝑖
2) , with mean 𝐹𝑀𝑖  and variance 𝜎𝑖

2 , reflecting the uncertainty within the 

individual model 𝑖 . As explained in the introduction, some studies discussed that this 

assumption is a poor choice for a non-Gaussian forecast variable like streamflow. 

Therefore, they proposed implementing more representative distribution types (e.g., 

gamma distribution) or applying data transformation procedures (e.g., the Box–Cox 

transformation method (Box & Cox, 1964)) for transforming data from their original space 

to a Gaussian space. It is worth mentioning that in the case of applying a data 

transformation procedure, the reverting process has to be able to apply in order to revert 

back to the original variable space. 

Finally, based on Equation 3-2 and considering the Gaussian distribution, the BMA 

predictive mean and its associated variance can be determined using the two following 
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equations (Raftery et al., 1997, 2005). The mean value is the weighted average of 

individual predictions, and the BMA variance consists of (1) between-model variance, 

reflecting the spread of the ensemble, and (2) within-model variance that represents the 

uncertainty regarding each model having the best forecast. 

𝐸(𝑦|𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾 , 𝑌) = ∑ 𝑤𝑖 × 𝐹𝑀𝑖

𝑘

𝑖=1

= ∑ 𝑤𝑖 × (𝑎𝑖 × 𝑌𝑀𝑖 + 𝑏𝑖)

𝑘

𝑖=1

 (3-3) 

𝑉𝑎𝑟(𝑦|𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾 , 𝑌) = ∑ 𝑤𝑖 (𝐹𝑀𝑖 − ∑ 𝑤𝑛 × 𝐹𝑀𝑛

𝑘

𝑛=1

)

2𝑘

𝑖=1

+ ∑ 𝑤𝑖

𝑘

𝑖=1

𝜎𝑖
2

=  ∑ 𝑤𝑖 ((𝑎𝑖 × 𝑌𝑀𝑖 + 𝑏𝑖) − ∑ 𝑤𝑛 × (𝑎𝑛 × 𝑌𝑀𝑛 + 𝑏𝑛)

𝑘

𝑛=1

)

2𝑘

𝑖=1

+ ∑ 𝑤𝑖

𝑘

𝑖=1

𝜎𝑖
2 

(3-4) 

Successful implementation of the BMA method relies on the proper estimation of the 

parameters including weights (𝑤𝑖) and variances (𝜎𝑖
2) of each individual prediction (𝑖 =

1, … 𝑘). Following Raftery et al. (2005), in the standard BMA, the EM algorithm is utilized 

in order to maximize the log-likelihood function of the parameter vector (𝜃 = {𝑤𝑖 , 𝜎𝑖
2, 𝑖 =

1,2, . . , 𝐾}) being approximated as follows: 

𝐿(𝜃) = 𝐿𝑜𝑔(𝑃(𝑦|𝑌𝑀1 , 𝑌𝑀2 , … , 𝑌𝑀𝐾 , 𝑌)) = 𝐿𝑜𝑔 (∑ 𝑤𝑖 × 𝑔(𝑦|𝐹𝑀𝑖 , 𝜎𝑖
2)

𝑘

𝑖=1

) (3-5) 

Given that there is no analytical solution for maximizing the summation of the 

aforementioned function over the training period, an iterative procedure such as the EM 
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algorithm was used. In this procedure, the optimization problem was set by introducing a 

latent variable (𝑍𝑘). Apart initialization, this algorithm included an (1) expectation step, 

where the latent variable was calculated based on the current values of parameters, and a 

(2) maximization step, where the parameters were estimated according to the determined 

value of the latent variable (Figure 3-4b). It is worthy of note that, although the EM 

algorithm is computationally efficient, it is argued that using other optimization methods 

can lead to more robust estimation of the parameters. 

According to the above equations, the flowchart of the classical BMA implementation is 

depicted in Figure 3-4a. As previously stated, some studies have been done in order to 

improve the reliability of the standard BMA approach by modifying some parts of the 

BMA structure. However, no comprehensive evaluation has been completed in order to 

clarify the effects of these modifications. 
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(a) (b) 

Figure 3-4 The flowcharts for (a) standard Bayesian model averaging (BMA) and (b) the 

step-by-step procedure of the expectation-maximization (EM) algorithm 
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3.3.3 BMA Scenario-Based Analysis 

In order to achieve the main goal of this research, we designed a BMA scenario-based 

analysis (Table 3-1) to see how the predictive streamflow simulation of the BMA approach 

was affected by modifying or changing some steps of the original BMA procedure. 

Implementation of the proposed evaluation allowed to assess how the accuracy and 

reliability of the BMA probabilistic results are sensitive to considering (1) different 

streamflow ensemble scenarios; (2) various data transformation methods; (3) more 

representative distribution types; (4) different standard deviation definitions; and (5) 

different optimization methods for parameter estimation. These scenarios are chosen in a 

way that cover most of the aforementioned modifications proposed by previous studies 

(explained in Section 3.2). Therefore, the effects of each modification or the combinations 

of modifications on BMA results can be assessed completely through the proposed analysis. 

The following paragraphs present a brief description of all aforementioned modification 

sections. 
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Table 3-1 The BMA scenario-based analysis 

Streamflow 

Ensemble 

Data 

Transformation 

Method 

Distribution 

Type 
Standard Deviation Type 

Optimization 

Method 

Multi-Model 

(M-M1) 

No Transformation 

(T0) 
Normal (C1) Common Constant (V1) Expectation-

Maximization 

Algorithm 

(EM) 

Multi-Model 

Multi-Input 

(M-MI) 

Box–Cox Type 1 

(T1) 
Gamma (C2) Individual Constant (V2) 

Multi-Model 

Multi-

Parameter  

(M-MP) 

Box–Cox Type 2 

(T2) 

Log-Normal 

(C3) 

Common Non-Constant 

(V3) Dynamically 

Dimensioned 

Search (DDS) 

Multi-Model 

Multi-Input 

Multi-

Parameter  

(M-MIP) 

Logarithmic 

Transform (T3) 
Weibull (C4) 

Individual Non-Constant 

(V4) 

Empirical Normal 

Quantile Transform 

(T4) 

 
Common Non-Constant + 

Constant Value (V5) 
 

 
Individual Non-Constant + 

Constant Value (V6) 
 

1 The ID of each scenario is presented in the parentheses 

 

3.3.3.1 Streamflow Ensemble 

As mentioned before, the ensemble can stem from different sources. Apart from 

considering different hydrologic models, various forcing precipitation inputs, as well as 

different reliable parameter sets of each rainfall-runoff model, can be considered for 

generating an ensemble of streamflow simulations. In this study, four different scenarios 

were determined to see how the BMA performance would change by considering a 

different number of ensemble members coming from various sources. In the first scenario, 

which was named “Multi-Model”, the ensemble was only based on different hydrologic 

models. In the two other scenarios (i.e., Multi-Model Multi-Input and Multi-Model Multi-

Parameter), besides multiple hydrologic models, different precipitation datasets and 
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various parameter sets were respectively utilized. Moreover, the last scenario was defined 

using all aforementioned sources (i.e., Multi-Model Multi-Input Multi-Parameter). 

3.3.3.2 Data Transformation Methods 

Four different data transformation procedures were assessed in the case of assuming 

normal function for the posterior distributions. The Box–Cox transformation method is a 

family of power transformations, and one of the common approaches is formulated as 

follows (Box & Cox, 1964): 

𝑍′ = {

𝑍 − 1

𝜆
            𝜆 ≠ 0

log(𝑍)           𝜆 = 0
 (3-6) 

𝑍 and 𝑍′ are the original and transformed data, respectively. 𝜆 is the Box–Cox coefficient 

and its common optimum value will be estimated using (1) observation data (i.e., Type 1) 

or (2) observation and simulations data (i.e., Type 2) by maximizing the log-likelihood 

function. Moreover, in the logarithmic transformation method, the daily streamflow data 

are transformed using natural logarithm in order to make them approximately follow the 

normal distribution. Another data transformation method evaluated in this study was the 

Empirical Normal Quantile Transformation (ENQT) procedure (Krzysztofowicz, 1997). In 

this approach, the transformed data were calculated using the following equation, where 

𝑄−1  is the inverse of the standard normal distribution and the empirical cumulative 

distribution of each value is denoted by 𝑒𝐶𝐷𝐹(𝑍). 

𝑍′ = 𝑄−1(𝑒𝐶𝐷𝐹(𝑍)) (3-7) 
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It is of note that, instead of the empirical distribution, the generalized Pareto distribution is 

fitted to extrapolate the upper tail of the sample in the case of having a value which falls 

outside the range of the calibration data. 

3.3.3.3 Distribution Types 

Apart from using normal distribution, which is the main assumption of the original BMA 

method, the log-normal, gamma, and Weibull distributions are implemented as the 

conditional probability distribution function 𝑃(𝑦|𝐹𝑀𝑖 , 𝑌)  in Equation 3-2. These 

distributions are more representative for highly skewed data such as daily stream flows and 

may lead to better results. 

3.3.3.4 Standard Deviation Types 

In this study, following Vrugt (2016), six various standard deviation parameterizations of 

the forecast distributions were assessed. The terms “common” and “individual” are used 

when all members of the ensembles have the same and distinct standard deviations, 

respectively. The other two terms illustrate if the standard deviations are dependent on the 

magnitude of the streamflow data (“non-constant”) or not (“constant”). Moreover, the last 

two types are defined by adding constant value in order to make the standard deviation be 

more than zero in all cases. The equations of all aforementioned standard deviation types 

and their corresponding number of parameters are presented in Table 3-2. In these 

equations, 𝜎𝑖,𝑗 and 𝑄𝑖,𝑗, respectively, denote the standard deviation and the daily discharge 

of the 𝑖th simulated streamflow at time-step 𝑗. Also, 𝐾 is the total number of members in 

the ensemble. 
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Table 3-2 The definitions and formulations of different standard deviation 

parameterizations 

Standard Deviation Type Formulation BMA parameters 

Common Constant (V11) 𝜎𝑖 = 𝜎 𝜃 = {𝑤𝑖 , 𝜎}   𝑖 ∈ [1, 𝐾] 

Individual Constant (V2) 𝜎𝑖 = {𝜎1, 𝜎2, … , 𝜎𝐾} 𝜃 = {𝑤𝑖 , 𝜎𝑖}   𝑖 ∈ [1, 𝐾] 

Common Non-Constant (V3) 𝜎𝑖,𝑗 = 𝑐 × 𝑄𝑖,𝑗 𝜃 = {𝑤𝑖 , 𝑐}   𝑖 ∈ [1, 𝐾] 

Individual Non-Constant (V4) 𝜎𝑖,𝑗 = 𝑐𝑖 × 𝑄𝑖,𝑗 𝜃 = {𝑤𝑖 , 𝑐𝑖}   𝑖 ∈ [1, 𝐾] 

Common Non-Constant Type 2 (V5) 𝜎𝑖,𝑗 = 𝑐 × 𝑄𝑖,𝑗 + 𝑑 𝜃 = {𝑤𝑖 , 𝑐, 𝑑}   𝑖 ∈ [1, 𝐾] 

Individual Non-Constant Type 2 (V6) 𝜎𝑖,𝑗 = 𝑐𝑖 × 𝑄𝑖,𝑗 + 𝑑𝑖 𝜃 = {𝑤𝑖 , 𝑐𝑖 , 𝑑𝑖}   𝑖 ∈ [1, 𝐾] 

1 The ID of each type is presented in the parentheses. 

 

3.3.3.5 Optimization Methods 

Given the criticism of the EM algorithm regarding its ability to achieve the global optimum 

estimation and its lack of flexibility in applying to the various aforementioned 

modifications, the dynamically dimensioned search (DDS) method (Tolson & Shoemaker, 

2007) was used as the alternative optimization technique for estimating the BMA 

parameters. Dynamically dimensioned search is a single global optimization method which 

finds the optimal solution by dynamically rescaling the search space dimension. Similar to 

the EM algorithm, the log-likelihood of the BMA parameter vector is considered as the 

objective function in the DDS optimization approach. Correspondingly, the DDS 

parameter estimations can be utilized as benchmarks for evaluating the application of the 

EM algorithm. 

3.3.4 Hydrological Models 

Using different hydrologic models for generating an ensemble of competing simulated 

stream flows is the main basis of the BMA approach (Vrugt & Robinson, 2007). As listed 
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in Table 3-3, the seven different rainfall-runoff models implemented in this study are SAC-

SMA, MAC-HBV, SMARG, GR4J, and three HEC-HMS (Scharffenberg, 2016) based 

models. There are different methods available for each part of the hydrologic cycle in the 

HEC-HMS platform. In this study, we used the rational combination of loss (i.e., deficit 

and constant, and soil moisture accounting) and baseflow (i.e., recession and linear 

reservoir) methods for generating the HEC-HMS-based models with different structures. 

In the HEC-HMS type 1 and 2, the recession baseflow method is implemented with the 

deficit and constant and soil moisture accounting loss approaches, respectively, while 

HEC-HMS type 3 is developed using the combination of the soil moisture accounting and 

linear reservoir methods. 

All of the aforementioned models are lumped conceptual ones, which have been shown to 

provide comparable or even better performance in comparison to the more complex models 

(e.g., distributed models) in data-poor watersheds (Anshuman et al., 2019; Refsgaard & 

Knudsen, 1996; Tegegne et al., 2017). Moreover, by adding the simplified Thornwaite 

formula (Samuel et al., 2011; Thornthwaite, 1948) to the first four models and feeding 

HEC-HMS models the average monthly potential evapotranspiration calculated using 

Hargreaves equation (Hargreaves & Samani, 1985), the only inputs to all models are the 

mean areal daily precipitation and temperature. Also, streamflow estimation at the outlet 

of the watershed is the only output of these models. It is worth mentioning that due to the 

importance of the snow accumulation and melt process in cold regions, three different 

snowmelt modules are implemented with different hydrologic models. The available 

temperature-index method in the HEC-HMS software (Scharffenberg, 2016) was used for 
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the three aforementioned HEC-HMS-based models. The simple degree-day snowmelt 

module (DDM) (Samuel et al., 2011) was added to the SMARG and GR4J models, while 

the SACSMA and MACHBV models were combined with the more complex SNOW17 

snowmelt estimation method (Anderson, 1973, 2006) for snow–rainfall discrimination and 

quantifying snowpack changes over the simulation period. 

On the one hand, in the DDM approach, the snowmelt is calculated using a linear 

relationship between snowmelt and air temperature, where a constant melt rate factor is 

considered. However, the antecedent temperature index is used for melt-rate determination 

in the HEC-HMS snowmelt approach (Gyawali & Watkins, 2013). On the other hand, the 

SNOW17 is a process-based temperature-index method that considers different physical 

processes in the snowmelt procedure such as energy exchange between air and snow, heat 

storage and deficit of the snowpack, liquid water storage, etc. Also, upper and lower preset 

temperature thresholds are used for distinguishing between rainfall and snowfall in both 

the DDM and SNOW17 models (Agnihotri, 2018). For a more detailed description of all 

snow routines, the readers are referred to the aforementioned citations. 
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Table 3-3 Hydrologic models used in this study 

Model ID Full Name Reference 
Number of 

Parameters 

SAC-SMA Sacramento Soil Moisture Accounting Burnash et al. (1973) 19 

MAC-HBV 
McMaster University Hydrologiska 

Byrans Vattenbalansavdelning 
Samuel et al. (2012) 15 

SMARG 
Modified Soil Moisture Accounting and 

Routing 
Tan and O’Connor. (1996) 14 

GR4J Génie Rural à 4 Paramètres Journaliers Edijatno et al. (1999) 9 

HEC-HMS1 
Hydrologic Engineering Center’s 

Hydrologic Modeling System-Type 1 

USACE-HEC 

(Scharffenberg, 2016) 
17 

HEC-HMS2 
Hydrologic Engineering Center’s 

Hydrologic Modeling System-Type 2 

USACE-HEC 

(Scharffenberg, 2016) 
25 

HEC-HMS3 
Hydrologic Engineering Center’s 

Hydrologic Modeling System-Type 3 

USACE-HEC 

(Scharffenberg, 2016) 
27 

 

Furthermore, five different objective functions, including Nash–Sutcliffe efficiency (NSE) 

[68], Kling–Gupta efficiency (KGE) (Gupta et al., 2009), Nash volume error (NVE) 

(Samuel et al., 2011), peak-weighted root mean square error (PWRMSE) (Cunderlik & 

Simonovic, 2004), and modified Nash volume error (MNVE) were used through the 

dynamically dimensioned search (DDS) algorithm for finding the optimized parameter sets 

of each individual model. The latter objective function was defined in order to greatly focus 

on high flows by using the NSE based on square of discharge (𝑁𝑆𝐸𝑆): 

𝑀𝑁𝑉𝐸 = 𝑁𝑆𝐸𝑆 − 0.1𝑉𝐸 (3-8) 

where volume error (𝑉𝐸) is: 

𝑉𝐸 =
|∑ (𝑄𝑠𝑖

− 𝑄𝑂𝑖
)𝑁

𝑖=1 |

∑ 𝑄𝑂𝑖
𝑁
𝑖=1

 (3-9) 

and 𝑁𝑆𝐸 based on square of discharge (𝑁𝑆𝐸𝑆) is calculated as follows: 
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𝑁𝑆𝐸𝑆 = 1 −
∑ (𝑄𝑠𝑖

2 − 𝑄𝑂𝑖

2 )
2𝑁

𝑖=1

∑ (𝑄𝑂𝑖
2 − 𝑄𝑂

2̅̅ ̅̅ )
2

𝑁
𝑖=1

 (3-10) 

In the above equations, 𝑄𝑂𝑖
 and 𝑄𝑆𝑖

 are the observed and simulated streamflow, 

respectively, while 𝑁  is the data length. The years 2006 to 2011 were considered the 

calibration period and the validation was carried out for the 2012–2015 (4 years) period. It 

is of note that the best performing parameter set of each individual model, determined 

based on validation results, is utilized for generating multi-model and multi-model multi-

input ensemble scenarios. For a detailed description of the aforementioned hydrologic 

models and objective functions, the readers are referred to the cited references. 

3.3.5 Performance Evaluation Metrics 

Five model evaluation statistics are used for comparing the accuracy, reliability, and 

sharpness of the results of different BMA variants. The accuracy is defined as the error 

between deterministic simulations and their corresponding observations. In this study, 

besides the well-known Nash–Sutcliffe efficiency criteria, 𝑁𝑆𝐸 being calculated according 

to squared (𝑁𝑆𝐸𝑆; Equation 3-10) and logarithmic (𝑁𝑆𝐸𝐿; Equation 3-11) transformed 

streamflow data, were the two other deterministic performance criteria being, respectively, 

focused on the accuracy of the high- and low-flow simulations. 

𝑁𝑆𝐸𝐿 = 1 −
∑ (𝐿𝑛(𝑄𝑠𝑖

) − 𝐿𝑛(𝑄𝑂𝑖
))

2
𝑁
𝑖=1

∑ (𝐿𝑛(𝑄𝑂𝑖
) − 𝐿𝑛(𝑄𝑜)̅̅ ̅̅ ̅̅ ̅̅ ̅)

2𝑁
𝑖=1

 (3-11) 
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𝑄𝑂𝑖
 is the observed variable and 𝑄𝑆𝑖

 represents the simulated variable which is considered 

to be the expected value of the BMA predictive simulation. Also, 𝑁 is the length of the 

dataset. All 𝑁𝑆𝐸-based criteria vary between −∞ and 1 with the best value of 1. 

Furthermore, two other probabilistic performance measurements proposed by Xiong et al. 

(2009) were adopted for quantitative evaluation of the BMA probabilistic results. The 

containing ratio (𝐶𝑅) is defined as the percentage of the observed data which falls within 

the 95% confidence interval, and the average bandwidth (𝐵) is the average width of the 

corresponding bound. The former measures the reliability while the latter is used for 

quantifying the sharpness of the results. Given two forecasts with the same 𝐶𝑅 (i.e., same 

reliability), the one with a smaller 𝐵 shows a greater precision. 

𝐶𝑅 =
𝑁𝑄𝑖𝑛

𝑁
× 100% (3-12) 

𝐵 =
1

𝑁
∑(𝑞𝑢(𝑡) − 𝑞𝑙(𝑡))

𝑁

𝑡=1

 (3-13) 

In the above equations, the number of observations being contained in the 95% confidence 

interval is denoted by 𝑁𝑄𝑖𝑛  𝑞𝑢(𝑡) and 𝑞𝑢(𝑡), respectively, show the upper and lower 

boundaries of the 95% confidence interval at time-step 𝑡. In addition, for evaluating the 

probabilistic performance of different BMA variants regarding high flows, we calculated 

the two aforementioned probabilistic indices using the streamflow values of more than 90 

percentiles (denoted by 𝐶𝑅90 and 𝐵90 for the containing ratio and the average bandwidth, 

respectively). 
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3.4 Results and Discussion 

3.4.1 Choosing the Best Ensemble Scenario 

One of the vague points of the BMA approach in the literature is the optimal number of 

members of the ensemble and how they should be generated. The prime step before 

employing any BMA variants is constructing the most reliable ensemble, which provides 

the best results. Therefore, as the first section of the proposed analysis, the four 

aforementioned scenarios of different streamflow simulation ensembles were used in the 

original BMA for both the Big East River and Black River watersheds, and a comparison 

was made among their results (Table 3-4). Given the two different input scenarios and five 

various parameter sets for each hydrologic model, there were 7, 14, 35, and 70 simulated 

stream flows for the Multi-Model (M-M), Multi-Model Multi-Input (M-MI), Multi-Model 

Multi-Parameter (M-MP), and Multi-Model Multi-Input Multi-Parameter (M-MIP) 

ensemble scenarios, respectively. 

Table 3-4 Validation statistics of the BMA model using four ensemble scenarios in both 

watersheds 

Criteria 
Big East River Watershed Black River Watershed 

M-MIP M-MP M-MI M-M M-MIP M-MP M-MI M-M 

𝑁𝑆𝐸1 0.76 0.74 0.79 0.77 0.82 0.81 0.84 0.81 

𝑁𝑆𝐸𝑆1 0.45 0.42 0.54 0.49 0.57 0.55 0.62 0.56 

𝑁𝑆𝐸𝐿1 0.84 0.84 0.82 0.83 0.79 0.80 0.78 0.77 

𝐶𝑅1 0.95 0.94 0.96 0.96 0.92 0.90 0.91 0.88 

𝐵1 17 18 19 23 27 28 24 27 

𝐶𝑅901 0.72 0.64 0.73 0.68 0.62 0.46 0.62 0.49 

𝐵901 39 32 38 34 55 48 41 36 

1 𝑁𝑆𝐸 : Nash Sutcliffe efficiency; 𝑁𝑆𝐸𝑆 : 𝑁𝑆𝐸  based on squared transformed streamflow; 𝑁𝑆𝐸𝐿 : 𝑁𝑆𝐸  based on 

logarithmic transformed streamflow;  𝐶𝑅: containing ratio; 𝐵: average bandwidth; 𝐶𝑅90: containing ratio based on 

stream flows more than 90 percentile; 𝐵90: average bandwidth based on stream flows more than 90 percentile 
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If the BMA performance based on the Multi-Model (M-M) ensemble scenario is 

considered as the benchmark, there was no significant improvement when the performance 

statistics focusing on the whole and low discharges were considered. However, by focusing 

on the high flow-based criteria, the results show that considering the forcing precipitation 

as another source of uncertainty besides hydrologic models enhanced both the deterministic 

and probabilistic BMA results. This improvement was more significant in the Black River 

watershed, where the accuracy and reliability of the BMA using the M-MI scenario 

increased by about 10 and 25 percent based on the 𝑁𝑆𝐸𝑆 and 𝐶𝑅90 criteria, respectively. 

It is worth mentioning that, all seven additional members of the streamflow simulations 

(generated by considering CaPA as forcing inputs of each individual model) being used in 

M-MI compared to M-M, possessed lower individual deterministic predictive skills than 

existing models in both ensemble scenarios. 

Moreover, surprisingly, although the Multi-Model Multi-Parameter ensemble scenario 

included all members being utilized in the benchmark scenario, the overall performances 

of the BMA method implementing them slightly deteriorated in both watersheds. This may 

be due to the main initial assumption of the BMA methodology, where the law of total 

probability needs not only collectively exhaustive but also independent members of the 

ensemble. Furthermore, using 70 members in a streamflow ensemble (constructed by 

considering all aforementioned sources) enhanced the probabilistic performance of the 

BMA, specifically in high flows, while its performance was not as reliable and sharp as in 

the case where the M-MI scenario was applied. 
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Altogether, it can be concluded that the M-MI ensemble scenario was the most appropriate 

one, providing better probabilistic and deterministic results. Accordingly, for the rest of the 

application of the proposed analysis, the Multi-Model Multi-Input ensemble scenario, 

including 14 members of streamflow simulations, was implemented for both watersheds. 

As a result, 48 probabilistic streamflow simulations were generated considering the 

combination of the different modifications, including distribution, standard deviation, and 

data transformation methods (Table 3-1). The parameters for all 48 BMA variants were 

calibrated using the DDS optimization method for the period from 2006 to 2011, 

considering one year as a warm-up period, and the years 2012 to 2015 were considered for 

validation. 

3.4.2 BMA Weights versus Models’ Performance Statistics 

In the first place, besides assessing the effects of various modifications, a comparison was 

made between the BMA weights of different members of the ensemble and the 

performance of the corresponding models during the calibration period for both the Big 

East River and Black River watersheds (Figure 3-5). 

Interestingly, it can be seen that the distributions of the weights amongst different members 

do not properly agree with the previous belief, where the weights reflect the models’ 

performance. For instance, in the Big East River watershed, although M1 was one of the 

most promising simulations comparing different performance statistics, its weights were 

not predominant compared to other BMA variants. In addition, in the Black River 

watershed, M10 had relatively high weights, while its performance was not good in 

comparison to the other models. Similarly, the first four members of the ensemble (i.e., M1 
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to M4) possessed the most reliable deterministic results, although they received relatively 

low weights. 

Moreover, closer inspection of the graphs (in Figure 3-5) shows that low flows played an 

important role in the determination of the BMA weights, specifically in the Big East River 

watershed where the specified weights relatively fit with the 𝑁𝑆𝐸𝐿 performance statistics. 

This may be justifiable by the fact that more than 90 percent of the daily streamflow 

observations were less than 25 m3/s while this fraction was around 60 for the Black River 

watershed (Figure 3-6). 
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(a) 

 

(b) 

Figure 3-5 The boxplots of the calibrated BMA weights stem from different BMA 

modifications in comparison with the different performance criteria of each individual 

daily streamflow simulation for (a) the Big East River and (b) Black River watersheds 

during the calibration period 
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Figure 3-6 Empirical cumulative probability distribution of the daily streamflow 

observations at the outlet of the Big East River and Black River watersheds 

 

3.4.3 The Effects of Different Modifications 

The evaluations of various BMA modifications (i.e., different distribution and standard 

deviation types, and data transformation methods) will be provided in this section. As 

discussed previously, one recommended solution in order to enhance the performance of 

the original BMA approach is using data transformation procedures for generating 

approximately normally distributed data. Figure 3-7 compares the accuracy and reliability 

of the BMA variants with and without application of data transformation procedures. It can 

be recognized that, in general, the BMA deterministic performance did not change 

significantly by applying data transformation methods. On the other hand, although the 

data transformation caused a remarkable enhancement of the BMA’s reliability in high 

flows, the sharpness of the results was largely reduced. 
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Further analysis (Figure 3-8) shows that the influence of applying data transformation 

modification on the BMA performance is highly related to the types of standard deviation 

being implemented in the procedure. In the case of considering common and individual 

non-constant variance types (i.e., V3 and V4, respectively), implementation of a data 

transformation method leads to under confident and negatively biased probabilistic results. 

It is much more recognizable in high flows where the containing ratios of the 95% 

confidence interval are around one, while their corresponding bandwidths increase largely. 

However, for other types of standard deviations where a constant value can play an 

important role, the reliability of the high flows’ simulation is partly improved without a 

drastic drop in their sharpness. 

Moreover, Table 3-5 represents the performance criteria of different BMA variants, being 

developed using normal distribution and variance types V5 and V4, to compare different 

data transformation procedures. Based on the results, the only data transformation 

procedure providing acceptable probabilistic results with the use of heteroscedastic 

standard deviation without a constant value (i.e., V3 and V4) was the empirical normal 

quantile transform (i.e., T4) method. However, in general, by looking at the BMA variants 

based on variance type V5, as a representative of the other standard deviation forms, none 

of the methods appeared superior to the others, indicating that changing the data 

transformation approaches had little impact on BMA model performance. 
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(a) 

 

(b) 

Figure 3-7 The boxplots of the different evaluation metrics for the BMA streamflow 

simulations by implementation (With T) or non-implementation of data transformation 

(without T) methods being derived from considering normal distribution and different 

proposed standard deviation types for the (a) Big East River and (b) Black River 

watersheds during the validation period 
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Table 3-5 Probabilistic evaluation criteria of different BMA variants based on different 

data transformation methods for both watersheds in the validation period 

B
a
sin

 

Criteria 
BMA Variant 

C1V5T1 C1V5T2 C1V5T3 C1V5T4 C1V4T1 C1V4T2 C1V4T3 C1V4T4 

BE 

𝐶𝑅 0.91 0.90 0.91 0.90 0.92 0.93 0.92 0.91 

𝐵 25 22 21 24 127 73 53 30 

𝐶𝑅90 0.90 0.88 0.88 0.89 1.00 1.00 1.00 0.98 

𝐵90 82 65 60 65 720 364 188 87 

BL 

𝐶𝑅 0.87 0.88 0.87 0.86 0.91 0.91 0.91 0.88 

𝐵 27 27 29 27 46 46 52 30 

𝐶𝑅90 0.84 0.80 0.92 0.85 0.99 1.00 0.99 0.88 

𝐵90 66 64 73 64 143 141 170 76 
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(a) 

 

(b) 

Figure 3-8 The comparison of different performance statistics for various BMA 

modifications generated by considering different standard deviation types and non-

implementation (“Without”) and implementation (“With”) of their corresponding best 

data transformation method for the validation period in the (a) Big East River and (b) 

Black River watersheds 
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Besides using data transformation procedures, the two other BMA modifications evaluated 

in this study were considering other distribution types and implementing various standard 

deviation forms (Figure 3-9). The comparison between the applications of four different 

distribution functions proposed in the scenario-based analysis shows that, in general, the 

implementation of the log-normal distribution (i.e., C3) enhances the reliability and 

sharpness of the BMA results simultaneously. However, it underestimates when 

considering high flows, which is not appropriate in most operational hydrologic fields such 

as flood forecasting. As can be seen from the figure, in the case of using a common constant 

standard deviation type (i.e., V1), even though the coverage of the 95% confidence interval 

slightly increased by applying the Weibull distribution, the model lost its sharpness by 

leading to a higher bandwidth in both watersheds. Moreover, by assessing the effects of 

using different standard deviation types, it is apparent that considering “non-constant” 

types leads to more reliable results especially for high flows. However, using “individual” 

variance types does not affect the BMA performance in comparison to their corresponding 

“common” ones. 

Taken together, these results suggest that changing the distribution type of the BMA 

posterior probability from normal to more representative ones does not enhance the BMA 

probabilistic performance, significantly. However, implementation of “non-constant” 

standard deviation types improved the BMA predictive results specifically regarding high 

flows. 
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(a) 

 

(b) 

Figure 3-9 Comparison of the probabilistic performance of the BMA models being 

modified using different distribution and variance types for the validation period in the 

(a) Big East River and (b) Black River watersheds 

 

3.4.4 Expectation-Maximization Algorithm versus Dynamically Dimensioned Search 

Method 

The EM algorithm was implemented in the classical BMA method, which is criticized for 

not being able to reach global optimum estimations. Here, as a part of the evaluation, six 

different BMA variants were calibrated using the EM algorithm, and a comparison was 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

117 

 

made with the corresponding DDS-based calibrated models. The results, as shown in 

Figure 3-10, indicate that the differences among estimated BMA weights using EM and 

DDS methods were negligible, and both methods led to the approximately similar optimal 

solution. 

 

Figure 3-10 A comparison of the log-likelihood and weights of the calibrated BMA 

models using dynamically dimensioned search (DDS) and expectation-maximization 

(EM) algorithms as the optimization process 

 

To specify the logic behind these results, the authors applied the regional sensitivity 

analysis (RSA) method (Hornberger & Spear, 1981) to original BMA with “common” 

(Figure 3-11) and “individual” (Figure 3-12) constant standard deviation types (i.e., 

C1V1T0 and C1V2T0 BMA variants, respectively). In this method, the Monte Carlo 
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simulation technique is used for generating various parameter sample sets, and then, the 

samples are divided into two behavioral and non-behavioral ones based on a predefined 

threshold. So, qualitative comparison of the empirical cumulative distribution functions 

(CDFs) of the behavioral and non-behavioral parameter sets illustrate the most sensitive 

parameter(s). The RSA results for both the Big East River and Black River watersheds 

reveal that the objective function is significantly sensitive to standard deviation values, 

while the models’ weights can be considered non-sensitive parameters. 

Therefore, the variation of the log-likelihood function is evaluated by changing the most 

sensitive parameters (standard deviations) between their lower and upper bounds while the 

other parameters are constant and equal to their nominal values (i.e., the calibrated values). 

The results, illustrated in Figure 3-13, show that in all evaluated cases, the negative log-

likelihood, which is the objective function for both optimization processes, is a convex 

function so that a local optimization method such as the EM algorithm can lead to global 

optimal estimation of parameters. Consequently, although the EM algorithm is considered 

a local optimization method, it can estimate the original BMA parameters like other global 

optimization techniques. It is of note that the original EM method can only be applied for 

the constant variance types and it requires modifications if other distribution or standard 

deviation types need to be incorporated. However, DDS or any other global optimization 

techniques can be used by different BMA modifications without any difficulty. 
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Figure 3-11 The regional sensitivity analysis (RSA) plots for the parameters of the 

C1V1T0 BMA variant for both the Big East River and Black River watersheds 

 

  

Figure 3-12 The RSA plots for the parameters of the C1V2T0 BMA variant for both the 

Big East River and Black River watersheds 
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(a) 

 

(b) 

Figure 3-13 The changes of the objective function regarding the most sensitive 

parameter(s) for the C1V1T0 and C1V2T0 BMA variants in both the (a) Big East River 

and (b) Black River watersheds 

 

Finally, in order to complete the evaluation and find the most promising types of BMA 

modifications, the best combinations were selected for each distribution type and their 

performances during the validation period were compared with each other (Table 3-6). 

Additionally, for qualitative inspection of the best models, Figure 3-14 illustrates the mean 

and the 95% predictive bounds of the BMA streamflow simulations for a representative 

portion of the validation period. What stands out in Table 3-6 is that the standard deviation 

types in all the best-selected BMA models were the non-constant ones, and most of them 
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were the heteroscedastic variance with a constant value (i.e., V5 and V6). Moreover, as 

expected based on the previous comparison, although the best BMA modification with data 

transformation procedure provided higher reliability, the sharpness of the results partially 

deteriorated in high flows in both watersheds. Also, it can be seen that the best BMA model 

using the log-normal distribution type underestimated high flows significantly, while its 

other performance statistics showed almost the same predictive performance in comparison 

to the other best models. It is worthy of note that there was no significant difference among 

the accuracy of the various best-selected BMA variants. 

Table 3-6 The comparison of the performances of the best-selected BMA types for both 

the Big East River and Black River watersheds during the validation period 

Criteria NSE NSES NSEL CR B CR90 B90 

B
ig

 E
as

t 
R

iv
er

 C1V6T0 0.77 0.49 0.81 0.95 19 0.80 50 

C1V5T4 0.77 0.49 0.82 0.91 21 0.88 60 

C2V6T0 0.77 0.49 0.82 0.93 18 0.81 49 

C3V5T0 0.78 0.54 0.83 0.96 17 0.74 40 

C4V5T0 0.77 0.51 0.82 0.93 20 0.83 56 

B
la

ck
 R

iv
er

 

C1V6T0 0.83 0.60 0.80 0.90 26 0.76 61 

C1V5T2 0.83 0.59 0.80 0.87 27 0.84 66 

C2V6T0 0.83 0.61 0.80 0.89 26 0.75 60 

C3V6T0 0.83 0.61 0.79 0.89 25 0.71 50 

C4V4T0 0.83 0.59 0.80 0.88 27 0.79 69 

 

Furthermore, as it was concluded beforehand, there was not a significant difference among 

the predictive performances of the different BMA variants utilizing various distribution 

types. However, the implementation of the gamma distribution type seemed to provide 

more balanced and consistent results in comparison to the other ones in this case. It is of 
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note that even by comparing the most promising models, which possessed approximately 

similar performances, the calibrated weights showed some changes confirming that there 

were no specific BMA weight combinations that led to the best results (Figure 3-15). 

 

(a) 

 

(b) 

Figure 3-14 Time-series of the mean and 95% predictive bounds of daily streamflow 

derived from the best-selected BMA models for a representative portion of the validation 

period for both the (a) Big East River and (b) Black River watersheds 
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Figure 3-15 Scatter plots of different models’ weights derived from the best-selected 

BMA variants 

 

3.5 Summary and Conclusions 

This study provides the first assessment of the previously proposed modifications for the 

original BMA methodology and documents how they affect the probabilistic and 

deterministic performance of the BMA-derived results for daily streamflow simulation. A 

scenario-based analysis was designed where the application of four diverse streamflow 

ensemble scenarios, different data transformation procedures, various distribution types, 

six different types of standard deviation, and two optimization algorithms were assessed 

thoroughly. 

The summary of the obtained results from applying the proposed evaluation into two data-

poor watersheds is as follows: 
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1. Comparing different ensemble scenarios indicated that, besides using multi-models, 

considering various forcing precipitation scenarios in generating members of an 

ensemble leads to better probabilistic and deterministic results in data scarce 

regions, where the estimation of mean areal precipitation always comes with 

noticeable errors. However, not only using a multi-model multi-parameter scenario 

did not provide better results, it also slightly reduced the reliability of the BMA 

simulations. 

2. In contrast to earlier findings, however, the results showed that the BMA weights 

were not completely in accordance with individual model performance. There were 

some highly weighted hydrologic models with relatively lower performance in 

comparison to the others in both watersheds. In addition, various BMA 

modifications led to different combinations of weights and all had almost the same 

predictive power. 

3. Applying data transformation generally yielded an improvement in the reliability 

of the BMA results. However, except for the empirical normal quantile approach, 

using other data transformation methods concurrent with implementing non-

constant standard deviation without a constant parameter dramatically deteriorated 

the sharpness of the results, specifically in high flows. 

4. Incorporation of the more representative distribution types did not show a particular 

superiority over the classic BMA method, where the posterior predictive 

distributions were assumed to be Gaussian. However, implementing non-constant 

standard deviations enhanced the predictive capability of the BMA model, 
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especially for high flows that are often of particular attention in operational 

hydrology. 

5. The expectation-maximization algorithm provided almost the same results as the 

dynamically dimensioned search (DSS) method, which showed its ability to 

estimate BMA parameters well enough. However, the only drawback was that it 

could not easily be applied for all BMA variants when the distribution or standard 

deviation types were changed. 

In general, the findings of this study suggest that the simulation skill of individual members 

are less important than how the whole ensemble captures the variability of the observation 

without overlapping. In other words, using ensemble members with diverse simulation 

skills can enhance the quality of the BMA results, while simply increasing the number of 

members in the ensemble does not always lead to better results. Although possessing high-

performance models is necessary for obtaining reliable results, there is some information 

that is only provided by the relatively lower performing models and, consequently, 

considering them as members of the ensemble can enhance the BMA’s predictive 

performance. The notable BMA weights of some of these models are another convincing 

justification for this conclusion. In addition, it was shown that in regions where the network 

of meteorological stations was sparse, using other sources of precipitation data, such as 

archived radar- or satellite-based products as inputs into the hydrologic models, can lead 

to a more exhaustive streamflow ensemble that enhances the BMA’s performance. 

Moreover, another implication of these results is that the most effective BMA modification 

in the positive direction (i.e., enhancing the predictive performance) is the implementation 
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of non-constant standard deviation. Increasing the variance of errors in line with flow level 

seems to be more realistic and enhances the reliability of the BMA results significantly for 

high flows (an average of 20% improvement in the reliability of high-flow simulations in 

both the Big East River and Black River watersheds over the whole period). However, 

considering the more representative distribution types does not highly affect the BMA-

derived probabilistic and deterministic results. Moreover, although using data 

transformation procedures enhanced the reliability of the results, even more than applying 

non-constant variance, it can lead to a notable wide confidence interval width in high flows. 

Therefore, much more attention must be paid to the sharpness of the high-flow probabilistic 

simulation in the case of implementing data transformation. Furthermore, the results 

showed the robustness of the EM algorithm for estimating the original BMA parameters, 

while it was not easily applicable to all BMA modifications. Thus, applying a global 

optimization method is recommended in the case of using various BMA variants. 

Although the two watersheds in this study share approximately the same land use and 

climatology, their hydrologic responses are not quite similar and lead to two different 

empirical CDFs of streamflow data. Therefore, it can be said that the aforementioned 

conclusions about the effects of different modifications on BMA results can be considered 

as useful recommendations in future studies. However, in order to provide more 

comprehensive conclusions, it is worth applying the proposed BMA modifications analysis 

in watersheds with very different topography and climatology (e.g., mountainous or coastal 

areas and tropical or semi-arid regions) in future studies. Furthermore, although possessing 

mutually exclusive and collectively exhaustive ensemble members is one of the main 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

127 

 

assumptions of the BMA method, no studies have tried to overcome this issue. Although 

this study assessed the effects of various ensemble scenarios on BMA performance and 

provided fresh insight into the importance of establishing an ensemble with the 

aforementioned properties, there has not been a specific method about how these members 

should be generated and selected. Consequently, further studies need to be carried out to 

establish new ideas for solving this remaining challenge. 
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 Introducing entropy-based Bayesian model averaging for 

streamflow forecast 

Summary of Paper 3: Darbandsari, P., & Coulibaly, P. (2020). Introducing entropy-based 

Bayesian model averaging for streamflow forecast. Journal of Hydrology, 591, 125577. 

In this study, a new ensemble-based probabilistic post-processing framework is proposed 

where an entropy-based selection procedure is implemented to generate an ensemble of 

forecasts with mutually exclusive and collectively exhaustive characteristics prior to the 

Bayesian Model Averaging (BMA) application. Comparison has been performed between 

the traditional BMA and the proposed approach (En-BMA) for probabilistic daily 

streamflow forecasting. 

Key findings of this research work are: 

 Higher information can be provided by generating an ensemble of streamflow 

forecasts using various hydrologic models being calibrated by different objective 

functions. 

 The proposed entropy-based selection procedure can select the subset of forecasts 

with high information content and low mutual dependency which are the vital 

requirements for reliable performance of the BMA method. 

 The proposed En-BMA post-processing approach, compared to the BMA method, 

provides more reliable and accurate high flow forecasts. 
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 The superiority of the proposed En-BMA method over BMA presents in all lead-

times while it is more noticeable for shorter ones. 

4.1 Abstract 

Bayesian Model Averaging (BMA) is a well-known statistical post-processing approach 

for probabilistically merging individual forecasts. In BMA, the posterior distribution of the 

predictand variable is determined by implementing the law of total probability. Therefore, 

possessing an ensemble of independent members (mutually exclusive) with the highest 

information content about observation variability (collectively exhaustive) is the main 

inherent assumption of the original BMA method. Mutually exclusive and collectively 

exhaustive are two contradictory criteria. Although constructing an ensemble of members 

that fully satisfied these two properties is practically impossible, providing a balance 

between them is a key requirement for enhancing the BMA performance. Through coupling 

BMA with Shannon entropy of information theory, this study proposes an entropy-based 

selection procedure to construct an ensemble of streamflow forecasts by better addressing 

the aforementioned contradictory criteria prior to performing the BMA. We investigate the 

effects of using ensembles with the aforementioned properties by comparing the results of 

original BMA with the proposed entropy-based BMA (En-BMA) for short- to medium-

range daily streamflow forecasts in two different watersheds. The results indicate that the 

En-BMA leads to better results particularly for high flow predictions. Both probabilistic 

and deterministic high flow forecasts are more accurate and reliable when using the En-

BMA approach. However, for the average flow forecasts, there are no clear differences in 

the general performance of both methods. The improvements observed are more 
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pronounced for shorter lead-times and less pronounced, but still present, for longer lead 

times.  

Keywords: Bayesian model averaging; Streamflow forecasting; Uncertainty; Entropy; Information 

theory 

4.2 Introduction 

Reliable streamflow prediction is an essential task for various water management issues, 

from flood forecasting and reservoir operation to recreational activities. Various sources of 

uncertainties associated with forcing inputs, initial conditions, model parameters, and 

model structures affect the reliability of hydrological forecasts (Moradkhani & Sorooshian, 

2008; Shrestha, 2009; Xu et al., 2019). Generating an ensemble streamflow prediction 

(ESP) is one of the most common approaches for quantifying different uncertainties 

(Madadgar & Moradkhani, 2014; Michaels, 2015; Seo et al., 2006). It is shown that an ESP 

is more skillful and functional than deterministic systems for operational purposes 

(Boucher et al., 2011; Xu et al., 2019). Besides using various meteorological forcing inputs 

and perturbing initial states of the model, ESP can be created by utilizing multiple 

hydrologic models in order to quantify the model structural uncertainty and prevent 

statistical bias of the prediction (Darbandsari & Coulibaly, 2019; Parrish et al., 2012). 

Various statistical and post-processing tools have been developed for optimally merging 

the individual members of the ESP. Simple averaging (DelSole, 2007) and Granger–

Ramanathan averaging (Granger & Ramanathan, 1984) are the simplest ones providing 

one-point deterministic results. However, some more complex methods, such as Bayesian 
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Model Averaging (BMA;  (Hoeting et al., 1999; Raftery, 1993; Raftery et al., 1997, 2005)), 

generate probabilistic forecasts by quantifying predictive uncertainty. BMA is a statistical 

procedure using the weighted average of the probability distribution function (PDF) of 

different individual forecasts for generating predictive forecast distributions. In 

comparison to the other multi-model combination methods, the higher capability of the 

BMA approach in producing more accurate and reliable forecasts has been shown by 

various studies (Arsenault et al., 2015; Viallefont et al., 2001). 

Exploring the application of the BMA approach in the field of streamflow 

predictions/simulations has led to different variants by relaxing some inherent assumptions 

of the original BMA. Besides proposing some minor modifications, such as implementing 

more representative distribution types (Vrugt & Robinson, 2007) or applying data 

transformation (Duan et al., 2007; Liang et al., 2013; Qu et al., 2017), several more 

complicated BMA based post-processing methods have been developed, such as 

combining BMA and Data Assimilation (Parrish et al., 2012; Rings et al., 2012), Copulas 

and BMA (Madadgar & Moradkhani, 2014), and Copula Bayesian Processors with BMA 

(He et al., 2018). All BMA variants listed attempt to relax the Gaussian assumption of the 

posterior distributions, while there are some fundamental limitations of the original BMA 

method which remain. 

One of the primary principles of the standard BMA formulations is the law of total 

probability. This principle leads to the assumption of possessing mutually exclusive (i.e. 

independent), as well as collectively exhaustive (i.e. capturing observation variability) 

members of the ensemble. In other words, having an ensemble of members with the least 
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shared information and higher capability of covering possible futures, is a potential 

requirement for reliable performance of the BMA approach. It has been shown that 

selecting independent forecast members enhance the reliability of the BMA results 

(Sharma et al., 2019); however, capturing the variability of the observation by using an 

ensemble is not possible except by having collectively exhaustive members (Madadgar & 

Moradkhani, 2014). Simply constructing a large ensemble of members can provide more 

information about observation and relatively assure the latter requirement; while, it may 

limit the former one, as the larger number of members can lead to higher redundant 

information within the ensemble (Refsgaard et al., 2012). Given the contradiction between 

the two criteria, it is impossible to possess a mutually exclusive and collectively exhaustive 

ensemble simultaneously. Therefore, constructing an ESP by providing a balance between 

the two criteria is necessary and can positively affect the performance of the BMA method. 

The information theory, also known as Shannon entropy, was first introduced by Shannon 

(1948) and has become very popular in several scientific fields. The definition of the 

entropy term in the context of information theory is a measure of uncertainty in a random 

variable; and based on the fact that the amount of uncertainty will be reduced if more 

information is available, entropy corresponds to the amount of information contained in a 

data set (Keum & Coulibaly, 2017a). There are various applications of information theory 

in solving different water-related issues (Mishra & Coulibaly, 2009; Singh, 1997). One 

common application of entropy in water resources has been to aid in the design of 

hydrometric monitoring networks (Alfonso et al., 2010, 2013; Keum et al., 2019; Keum & 
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Coulibaly, 2017b; Leach et al., 2015; Li et al., 2012), where gathering high-quality 

information with minimal redundancy is the main objective. 

This study seeks to establish a new entropy-based selection procedure using the proven 

capability of the information theory concept to provide information with minimal 

redundancy. The new method will integrate entropy with BMA in order to overcome the 

remaining challenge of possessing mutually exclusive and collectively exhaustive (MECE) 

ensemble. In the proposed Entropy-based BMA (En-BMA) framework, before estimating 

BMA parameters, three entropy measures (joint entropy, total correlation, and 

transinformation) are utilized to narrow down the streamflow forecasts for constructing 

ensemble with the MECE properties. The applicability and efficiency of the proposed En-

BMA approach have been assessed in two different watersheds for short- to medium-range 

(up to 7 days) daily streamflow predictions. By providing a balance between two 

conflicting criteria, the results show the superiority of the En-BMA in providing better 

probabilistic and deterministic high flow forecasts over the standard BMA approach. 

The structure of the paper is as follows. Section 4.3 introduces the underlying concepts of 

our new En-BMA method. The experimental setup, including brief explanations of the 

study areas, hydrologic models, and different verification metrics, are presented in Section 

4.4. Section 4.5 provides the comparison results between original BMA and proposed En-

BMA methods, and finally, the summary and conclusions are drawn in Section 4.6. 
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4.3 Methodology 

4.3.1 Definition of Entropy terms 

As defined in information theory, entropy is a measure of the amount of information 

required to describe a random variable. In other words, it is the amount of uncertainty 

represented by the probability distribution of a random variable. The basis of the Shannon 

entropy is that the information gained from an event with occurrence probability 𝑝  is 

log (1/𝑝). This stems from the fact that the anticipatory uncertainty from an event varies 

inversely with its probability. Also, the logarithmic function is the only transition that can 

be used in order to make sure that the information gained by the joint occurrence of two 

independent events is equal to the sum of the information from each one: 

log (
1

𝑝(𝑥1)𝑝(𝑥2)
) = log (

1

𝑝(𝑥1)
) + log (

1

𝑝(𝑥2)
) = − log(𝑝(𝑥1)) − log(𝑝(𝑥2)) (4-1) 

Consequently, in the case of a discrete variable (𝑋) with 𝐾 outcomes with probabilities 

(𝑝1, 𝑝2, … , 𝑝𝐾), the average information of 𝑋 is denoted by: 

𝐻(𝑋) = 𝐸 (log (
1

𝑝1𝑝2 … 𝑝𝑘
)) = − ∑ 𝑝𝑖 log(𝑝𝑖)

𝐾

𝑖=1

 (4-2) 

where 𝐸(. )  is the expectation function and 𝐻(𝑋)  is the marginal entropy of a single 

variable 𝑋 in bits, because the base of the logarithm is assumed to be equal to 2. Therefore, 

marginal entropy is the amount of information gained by knowing a single variable and it 

varies between zero, for a deterministic case, and 𝑙𝑜𝑔𝑁 , for the most uncertain cases 
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(uniformly distributed variables). It is of note that for continuous variables, such as 

streamflow data, a finite number of discrete data intervals must be chosen. 

A similar procedure is used for calculating the total information content in more than two 

variables (e.g., 𝑁  variables), which is known as joint (multivariate) entropy 

(𝐻(𝑋1, 𝑋2, … , 𝑋𝑁)): 

𝐻(𝑋1, 𝑋2, … , 𝑋𝑁)

= ∑ ∑ … ∑ 𝑝(𝑥1,𝑖1
, 𝑥2,𝑖2

, … 𝑥𝑁,𝑖𝑁
) log (𝑝(𝑥1,𝑖1

, 𝑥2,𝑖2
, … 𝑥𝑁,𝑖𝑁

))

𝐾𝑁

𝑖𝑁=1

𝐾2

𝑖2=1

𝐾1

𝑖1=1

 

(4-3) 

where 𝑝(𝑥1,𝑖1
, 𝑥2,𝑖2

, … 𝑥𝑁,𝑖𝑁
) is the joint probability of all variables and 𝐾𝑗 (𝑗 ∈ [1, 𝑁]) is 

the number of values or class intervals for variable 𝑥𝑗 in the case of discrete or continuous 

variables, respectively. If there are independent variables, multivariate entropy is equal to 

the summation of their marginal entropies and its maximum value will occur in the case of 

independent, equally likely variables. 

In general, marginal and joint entropies are related as follows: 

𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝐻(𝑋𝑖)

𝑁

𝑖=1

− 𝐶(𝑋1, 𝑋2, … , 𝑋𝑁) (4-4) 

where 𝐶(𝑋1, 𝑋2, … , 𝑋𝑁) is the total correlation which estimates the amount of duplicated 

information in multiple variables. It is of note that increasing the number of variables could 

potentially lead to larger total correlation (Figure 4-1). If the number of variables is reduced 

to two, Equation 4-4 can be rewritten as follows: 
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𝐻(𝑋1, 𝑋2) = 𝐻(𝑋1) + 𝐻(𝑋2) − 𝑇(𝑋1, 𝑋2) (4-5) 

where 𝑇(𝑋1, 𝑋2)  is the amount of mutual information (or transinformation) between 

variables 𝑋1 and 𝑋2. In other words, it shows the information content of one variable that 

is contained in another. Transinformation is symmetric (i.e., 𝑇(𝑋1, 𝑋2) = 𝑇(𝑋2, 𝑋1)) and 

will be equal to zero when two variables are statistically independent. The larger value of 

transinformation depicts the higher dependence between the variables and the maximum 

value occurs in the case of functionally dependent variables. Therefore, transinformation 

varies in the range of zero to 𝑚𝑖𝑛(𝐻(𝑋1), 𝐻(𝑋2)). 

For more clarification, Figure 4-1 illustrates the schematic of the various aforementioned 

entropy terms for a case of three variables, where the circle sizes indicate the amount of 

marginal entropy. As can be seen, transinformation is only meaningful for two variables 

(or group of variables) and is not equal to total correlation when we possess three or more 

data sets. Moreover, the total correlation is the sum of all order duplications in the system. 

Based on the definition of the previously mentioned entropy terms, it can be concluded that 

these concepts can be used in order to relax some of the remaining assumptions and 

hypotheses of the BMA method (i.e., independent and mutually exclusive predictions). 
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Figure 4-1 The schematics of (a) marginal entropy, (b) joint entropy, (c) total 

correlation, and (d) transinformation 

 

4.3.2 Bayesian Model Averaging with Moving Window 

BMA is a probabilistic post-processor where the conditional PDFs of various forecasts are 

combined in order to generate more skillful predictions. BMA was first introduced for 

statistical linear regression applications (Hoeting et al., 1999; Kass & Raftery, 1995). 

Raftery et al. (Raftery et al., 2005) extended the application of BMA to dynamic models.  

Given the detailed description of the BMA approach in the literature (Darbandsari & 

Coulibaly, 2019; Raftery et al., 2005), we briefly explained the BMA basic concepts for 

the sake of completeness. 
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Consider the quantity ∆ to be the predictand (i.e., forecasted variable) based on the training 

data 𝐷 and the ensemble of independent predictions = {𝐹1, 𝐹2, … , 𝐹𝑘}. Based on the law of 

total probability, the BMA predictive PDF of ∆ can be represented as. 

𝑃(𝛥|𝐹, 𝐷) = ∑ 𝑃(𝛥|𝐹𝑖 , 𝐷) × 𝑃(𝐹𝑖|𝐷)

𝑘

𝑖=1

 (4-6) 

where 𝑃(𝐹𝑖|𝐷)  is the posterior probability of the forecast 𝐹𝑖  being correct given the 

observational data. This term can be viewed as a weight (𝑤𝑖 ) reflecting how well the 

ensemble member 𝑖 fits the observations in the training period. Moreover, 𝑃(𝛥|𝐹𝑖 , 𝐷) is 

the PDF of the predictand ∆ conditional on the forecast 𝐹𝑖  and observed data 𝐷. In the 

standard BMA approach, this posterior probability is assumed to follow the Gaussian 

distribution centered at the forecast value with standard deviation 𝜎𝑖. 

In order to estimate the parameters of the BMA approach, (i.e., weights and variances of 

each individual forecast), the Expectation-Maximization (EM) algorithm, proposed by 

Raftery et al. (2005), is applied for maximizing the log-likelihood function of the parameter 

vector (𝜃): 

𝐿(𝜃) = 𝐿𝑜𝑔(𝑃(𝛥|𝐹1, 𝐹2, … , 𝐹𝐾 , 𝐷)) = 𝐿𝑜𝑔 (∑ 𝑤𝑖 × 𝑔(𝑦|𝐹𝑖 , 𝜎𝑖
2)

𝐾

𝑖=1

) (4-7) 

M is an iterative approach, including expectation and maximization steps, where a latent 

variable is used for searching the optimal values of parameters. Although obtaining a global 

optimum solution is not guaranteed, it has been shown that EM is as reliable and efficient 

as more complex global optimization techniques (Darbandsari & Coulibaly, 2019; Vrugt 
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et al., 2008). For a more detailed description of the EM algorithm, the reader is referred to 

the above-cited references. 

Using a fixed training set of data leads to a static estimation of the BMA parameters, which 

does not change with respect to the hydrologic regime. However, updating the parameters 

when new observations are available may provide more reliable results. Therefore, 

following Raftery et al. (2005), the moving window approach is implemented where the 

shorter window of simulation-observation pairs surrounding each forecast is used as the 

recursive training period for calculating BMA parameters. By capturing the time-

dependent relative performance of various members of the ensemble, the BMA with 

moving window leads to better probabilistic forecasts (Parrish et al., 2012; Vrugt & 

Robinson, 2007). 

4.3.3 Entropy-based Bayesian Model Averaging method 

As previously stated, establishing a balanced ensemble of forecasts with mutually 

exclusive (independent) and collectively exhaustive (capturing the observation variability) 

members can potentially lead to more reliable BMA derived predictive forecasts. Here, by 

using three aforementioned entropy terms, we introduce an easy-to-implement selection 

procedure, through which the generated ensemble can (1) possess minimum redundancy 

and (2) assure the highest overall information. 

Figure 4-2 represents the proposed Entropy-based selection algorithm for optimally 

choosing the subset of forecast members with minimum redundancy and maximum 

information for BMA application. As can be seen, the method has a nested loop structure. 
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The goal of the inner loop is finding less independent forecasts when the number of selected 

members is fixed. Therefore, the total correlation between selected members is considered 

as an objective function, and its values for potentially selected subsets (𝑆) are compared in 

order to find the optimal one (𝑆𝐹). Different subsets are initialized by iteratively removing 

one member of the candidate forecasts  and finally, the subset with the lowest dependence 

within its members is the selected one. In other words, the finally omitted member in each 

loop possesses the most duplicate information in common with other members, which leads 

to the highest redundancy of the ensemble. 

In the outer loop, the stopping criteria are defined in order to provide collectively 

exhaustive ensemble. Therefore, we introduce two entropy-based ratios. The first is the 

ratio of joint entropy of the selected optimal members, derived from the inner loop, to that 

of all the candidate members (𝐹 = {𝐹1, 𝐹2, . . , 𝐹𝐾}). This ratio shows how much of the 

information contained by the whole ensemble is covered using the selected subset. 

Although it illustrates the exhaustiveness of the selected members, it is not a proper term 

for representing the amount of information about capturing the variability in the 

observations. Therefore, the second criterion is defined as transinformation between the 

final selected subset and observations over transinformation between all candidate 

members and observations. This provides a better estimation of the maximum information. 

However, both ratios must be used together to assure collectively exhaustive criterion in 

both calibration and forecasting periods. Figure 4-3 exemplifies the application of the 

proposed selection procedure for one forecast by illustrating how different entropy terms 

change in both inner and outer loops. As previously stated, the inner loop of the procedure 
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determines the best subset of ensemble with minimum total correlation and the outer loop 

continues until both stopping criteria are fulfilled. The steady decrease of total correlation 

in the outer loop shows selection of less dependent members while the imposed stopping 

threshold parameter (𝛽 ), ensures possessing an ensemble with sufficient information 

content. 

The integration of the proposed Entropy-based selection algorithm with BMA using the 

moving window scheme is presented in Figure 4-4. For each forecast, the moving window 

with length 𝑁 is considered as the training period for implementing the selection procedure 

and estimating BMA parameters. The results of the training phase are used during the 

forecasting mode, where at first, the ensemble of streamflow forecasts  up to 𝑇 days ahead 

are generated using the selected members and deterministic precipitation ( 𝑃𝑓 ) and 

temperature (𝑇𝑓 ) forecasts, and then, the BMA approach with estimated parameters is 

utilized as a post-processor for probabilistically merging the generated forecasts. It is of 

note that, in this study, we used observed precipitation and temperature as perfect 

deterministic meteorological forecasts. By allowing the selected members to vary for each 

forecast, we hope the proposed En-BMA is able to provide better deterministic and 

probabilistic results in comparison to the original BMA where the same ensemble is 

implemented. 
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Figure 4-2 The greedy algorithm of the Entropy-based selection procedure. 𝐹 =
{𝐹1, 𝐹2, . . , 𝐹𝐾} is the set of all candidate forecast members. 𝑚 shows the number of 

members of the ensemble. 𝑆𝑖is a candidate ensemble subset after removing member 𝑖. 
𝐻(. ), 𝐶(. ) and 𝑇(. ) respectively are the functions of joint entropy, total correlation and 

transinformation 
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Figure 4-3 An example of the application of the proposed selection procedure in both (a) 

Big East River and (b) Black River watersheds. 𝐹 and 𝑆 are the ensembles considering 

all and selected members, respectively, and 𝑂 is the observation. 𝐻(. ), 𝑇(. ), and 𝐶(. ) 

respectively show the functions of joint entropy, transinformation and total correlation in 

bits 
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Figure 4-4 The main flowchart of the Entropy-based Bayesian Model Averaging (En-

BMA) with Moving window scheme. 𝑁: moving window length; 𝑇: forecast lead-time; 𝐾: 

total number of candidate members; 𝑆𝑛: the number of selected members; 𝑃𝑓 and 𝑇𝑓 are 

inputs for the selected models 

 

4.4 Experimental Setup 

4.4.1 Study Area 

The proposed En-BMA approach is applied to the Big East River (BE) and Black River 

(BL) basins, located in northern Ontario, Canada (Figure 4-5). BE is a mostly forested area 

of 620 km2 while BL, with a drainage area of 1522 km2, is covered with the combination 

of agricultural lands and natural forests. Both watersheds are moderately sloped with 

altitudes approximately changing from 200 to 400 and 200 to 600 meters above sea level 

for BE and BL, respectively. From the six available meteorological stations, located around 

both watersheds, the mean annual precipitation ranges between 887 to 1249 mm. In 
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addition, the average temperature variations from -10.5°C in January to 18.5°C in July 

depict the occurrence of all four seasons in both watersheds (Table 4-1). Moreover, in April, 

when the temperature rises to above the freezing point and snowmelt begins, the highest 

amount of discharge at the outlet of both watersheds can be seen. This depicts the 

importance of considering the snowmelt routine in the hydrological modeling of both 

watersheds. It is noted that the low-density ground-based stations shows the status of data-

poor watersheds where the conceptual models are the most appropriate ones for rainfall-

runoff modeling (Anshuman et al., 2019; Tegegne et al., 2017). 

 

Figure 4-5 The study areas: Big East River and Black River watersheds 
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Table 4-1 The climate characteristics of both basins using all available meteorological 

and hydrometric data 

Month 
Precipitation (mm) Mean daily temperature (°C) Discharge (mm) 

Mean Max Min Mean Max Min BE outlet BL outlet 

January 81 119 50 -10.2 -9.5 -11.4 55 62 

February 59 75 40 -10.5 -10.0 -11.6 33 35 

March 57 63 49 -3.6 -3.2 -4.5 59 64 

April 87 96 70 4.5 5.1 3.8 152 125 

May 81 87 69 11.9 12.3 11.3 64 51 

June 108 122 98 16.2 16.7 15.6 39 22 

July 85 97 73 18.5 19.3 17.9 23 15 

August 88 105 74 17.5 18.2 16.7 19 8 

September 94 109 82 13.4 14.0 12.4 21 9 

October 117 151 86 7.2 7.7 6.2 41 24 

November 92 125 66 0.8 1.2 -0.1 67 52 

December 94 122 72 -5.5 -4.9 -7.0 71 65 

 

4.4.2 Ensemble streamflow forecasts 

In this study, as presented in Table 4-2, seven different lumped conceptual rainfall-runoff 

models, employed for generating an ensemble of streamflow forecasts, are SACSMA, 

MACHBV, SMARG, GR4J and three different configurations of HEC-HMS model. These 

models possess unique structural complexities with varying numbers of parameters. Daily 

precipitation and temperature are the only inputs to the chosen models, with different 

methods used for calculating potential evapotranspiration (PET) depending on the model 

(Table 4-2). Moreover, as stated in the previous section, snowmelt is one of the most 

important hydrologic processes in our study areas. Therefore, for adding more diversity, 

three different snowmelt modules are implemented with various models (Table 4-2). In the 

simple degree-day method (DDM; Samuel et al., 2011) which uses five parameters, a linear 
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relationship between temperature and the amount of snowmelt is considered. The 10-

parameter snowmelt routine of the HEC-HMS models (Scharffenberg, 2016) uses the 

antecedent temperature index for calculating the melt rate. Snow17 (Anderson, 1973, 2006), 

including 11 parameters, is a more complex temperature index approach where some of 

the snowmelt related physical processes are considered. 

Table 4-2 Rainfall-runoff models implemented in this study 

Model Reference 
Number of 

parameters 
PET method 

Snowmelt 

routine 

SACSMA Burnash et al. (1973) 14 
Thornwaite (Samuel et al., 

2011) 
Snow17 

MACHBV Samuel et al. (2011) 10 Thornwaite Snow17 

SMARG Tan and O’Connor (1996) 9 Thornwaite DDM 

GR4J Perrin et al. (2003) 4 Thornwaite DDM 

HECHMS1* Scharffenberg (2016) 7 
Hargreaves (Hargreaves and 

Samani, 1985) 
HECHMS 

HECHMS2* Scharffenberg (2016) 15 Hargreaves HECHMS 

HECHMS3* Scharffenberg (2016) 17 Hargreaves HECHMS 

* HECHMS1: recession + deficit and constant approaches; HECHMS2: recession + soil moisture accounting 

approaches; HECHMS3: linear reservoir + soil moisture accounting approaches 

 

By considering 6 years of historical data (i.e., years 2006-2011) as the calibration period, 

we use the dynamically dimensioned search algorithm (Tolson & Shoemaker, 2007) for 

estimating models’ parameters using five different objective functions. Kling-Gupta 

efficiency (Gupta et al., 2009), Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970), and 

Nash volume error (Samuel et al., 2011) focus on medium flows in different ways, while 

modified Nash volume error (MNVE; Darbandsari and Coulibaly, 2019) and peak weighted 

root mean square error (PWRMSE; Cunderlik and Simonovic, 2004) are aimed to simulate 

high flows more accurate. As shown in Equation 4-8, in 𝑀𝑁𝑉𝐸, the combination of volume 
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error (𝑉𝐸) and 𝑁𝑆𝐸 based on squared transformed streamflow (𝑁𝑆𝐸𝑠𝑞𝑟𝑡 , reflecting the 

accuracy of high flows) is used: 

𝑀𝑁𝑉𝐸 = 𝑁𝑆𝐸𝑠𝑞𝑟𝑡 − 0.1 × 𝑉𝐸 (4-8) 

Also, 𝑃𝑊𝑅𝑀𝑆𝐸 is formulated as follows: 

𝑃𝑊𝑅𝑀𝑆𝐸 = (
1

𝑁
(∑(𝑓𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

×
𝑂𝑖 + �̅�

2�̅�
))

1
2

 (4-9) 

where 𝑁 is the data length and 𝑓𝑖, 𝑂𝑖, and �̅� respectively are the simulated, observed, and 

the mean of observed flows. As can be seen, 𝑃𝑊𝑅𝑀𝑆𝐸 gives higher weights to errors near 

the peak flows. Utilizing multiple objective functions can provide better BMA predictions 

in different flow ranges (Dong et al., 2013). Combining the seven hydrologic models and 

five objective functions leads to a set of 35 calibrated models, this set can then be used to 

generate an ensemble of streamflow forecasts. 

4.4.3 Performance measures 

The accuracy, reliability and sharpness are the most important aspects of any predictive 

forecast need to be evaluated. In this study, we used six different evaluation metrics and 

some visual graphical tools to cover all of the aforementioned properties. In terms of the 

accuracy, three deterministic-based measures, including Nash Sutcliffe Efficiency (𝑁𝑆𝐸), 

Volume Error (𝑉𝐸), and the root mean square error (𝑅𝑀𝑆𝐸) are employed: 
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𝑁𝑆𝐸 = 1 −
∑ (𝑓𝑖 − 𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖 − �̅�)2𝑁
𝑖=1

 (4-10) 

𝑉𝐸 =
|∑ (𝑓𝑖 − 𝑂𝑖)𝑁

𝑖=1 |

∑ 𝑂𝑖
𝑁
𝑖=1

 (4-11) 

𝑅𝑀𝑆𝐸 = [
1

𝑁
(∑(𝑓𝑖 − 𝑂𝑖)2

𝑁

𝑖=1

)]

1/2

 (4-12) 

where 𝑓𝑖 and 𝑂𝑖, are respectively the forecast and observed variable. �̅� is the observation 

mean and 𝑁 is the dataset length. 𝑁𝑆𝐸 varies between -∞ and 1 with the best value of 1, 

while 𝑉𝐸  and 𝑅𝑀𝑆𝐸  possess a range of [0, ∞] when lower values show better model 

performance. 

Moreover, the mean continuous ranked probability score (CRPS; Hersbach, 2000) 

evaluates the accuracy of the results in a probabilistic way by comparing the cumulative 

distribution of forecasts (𝑃𝑖
𝑓

(𝑥)) and observations (𝑃𝑖
𝑂(𝑥)), determined by using Heaviside 

function (𝐻(𝑥 − 𝑂𝑖)): 

𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫ (𝑃𝑖

𝑓(𝑥) − 𝑃𝑖
𝑂(𝑥))

2
𝑑𝑥

𝑥=+∞

𝑥=−∞

 

𝑁

𝑖=1

 (4-13) 

𝑃𝑖
𝑂(𝑥) = 𝐻(𝑥 − 𝑂𝑖) = {

0    𝑥 < 𝑂𝑖

1    𝑥 ≥ 𝑂𝑖
 (4-14) 

The range for 𝐶𝑅𝑃𝑆 is 0 to ∞ where smaller values indicate better performance. 

The Containing ratio (𝐶𝑅95) and the average Bandwidth (𝐵95) of the 95% confidence 

interval (Xiong et al., 2009) are the two other performance statistics, being used to assess 
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the reliability and sharpness of the probabilistic forecasts, respectively. 𝐶𝑅95 is the ratio 

of the observations, covered by the 95% prediction bound. It ranges between 0 and 1 with 

an optimal value of 0.95.  𝐵95 determines the average width of the aforementioned interval 

and it is negatively oriented, with lower values indicating better forecasts. 

𝐶𝑅95 =
𝑁𝑂𝑖𝑛

𝑁
 (4-15) 

𝐵95 =
1

𝑁
∑(𝑓𝑢(𝑖) − 𝑓𝑙(𝑖))

𝑁

𝑡=𝑖

 (4-16) 

In the above equations, 𝑁𝑂𝑖𝑛
 is the number of observations that have fallen within the 95% 

bound and the upper and lower boundaries of the corresponding bound is denoted by 𝑓𝑢(𝑖) 

and 𝑓𝑙(𝑖), respectively. Simultaneously evaluating these two criteria is vital for providing 

precise conclusions. For instance, a forecast with a good 𝐶𝑅95 may still be underconfident 

by providing high 𝐵95, indicating an overestimation of the uncertainty bound. 

Apart from previously presented verification metrics, we adopted the predictive quantile-

quantile plot (Q-Q plot; Laio and Tamea, 2007) as additional visual statistical verification 

of the forecast reliability, where the comparison is made between forecast and the 

cumulative uniform distributions. The more the Q-Q plot follows the bisector line, the more 

reliable the forecast is. Therefore, another reliability measure (𝛼) can also be calculated 

from a Q-Q plot, which represents the discrepancy between Q-Q plot and the bisector line 

(Renard et al., 2010): 
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𝛼 = 1 − 2 × [
1

𝑁
∑|𝑃𝑖

𝑓(𝑂𝑖) − 𝑈(𝑂𝑡)|

𝑁

𝑖=1

] (4-17) 

𝑃𝑖
𝑓(𝑂𝑖) and 𝑈(𝑂𝑡) respectively determine the non-exceedance probability of the observed 

value using forecast and uniform cumulative distributions. 𝛼 = 1  shows the perfect 

reliability while its worst value is zero. Moreover, the representative hydrographs are 

another tool for assessing both deterministic and probabilistic forecasts visually. 

Furthermore, for more specific evaluation and comparison of different methods’ 

performance regarding high flows, all aforementioned performance measures are also 

determined based on the high flow data (90th percentile of streamflow). 

4.5 Results and Discussion 

4.5.1 Rainfall-Runoff models calibration 

As previously stated, for each hydrologic model, five optimized parameter sets are obtained 

by considering different criteria (i.e. 𝐾𝐺𝐸 , 𝑁𝑆𝐸 , 𝑁𝑉𝐸 , 𝑀𝑁𝑉𝐸 , and 𝑃𝑊𝑅𝑀𝑆𝐸 ) as an 

objective function in the optimization process using the calibration period from 2006 to 

2011. A comparison between the performances of different models, calibrated using 

different objective functions, in the three-years validation period (2012-2015) in terms of 

𝑁𝑆𝐸 , 𝑅𝑀𝑆𝐸 , 𝑉𝐸 , and their corresponding values derived from flows more than 90 

percentile (i.e. 𝑁𝑆𝐸-90, 𝑅𝑀𝑆𝐸-90, and 𝑉𝐸-90) can be found in Figure 4-6. In the Big East 

River watershed, the results, in general, indicate the superiority of GR4J model in 

simulating daily streamflows, however, by focusing on high flows, MACHBV shows the 

most reliable performance. In the Black River, on the other hand, MACHBV is the most 
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consistent model by providing the best results based on almost all performance metrics 

while SACSMA performs competitively regarding high flow simulation. The fact that 

MACHBV was initially developed for streamflow simulation in Ontarian’s ungauged 

basins (Samuel et al., 2011, 2012), can justify the robust performance of MACHBV in both 

watersheds, which are considered as data-scarce regions with low-density ground based 

measurements (Darbandsari & Coulibaly, 2019). 

Morever, comparing the use of different objective functions shows that implementing 𝐾𝐺𝐸 

as an objective function consistently lead to relatively better performance for most of the 

hydrologic models in the Big East River watershed, while its application in the Black River 

is not among the best ones. 𝑁𝑆𝐸 based calibrated models, compared with 𝑁𝑉𝐸, provide 

better results in terms of  𝑁𝑆𝐸  and 𝑅𝑀𝑆𝐸  criteria in both watersheds, however, their 

performances are worst regarding volume error (𝑉𝐸) metric for most of the models. By 

combining 𝑁𝑆𝐸 and 𝑉𝐸 metrics, 𝑁𝑉𝐸 criterion provides a balance among volume error 

and difference between streamflow simulations and their corresponding observations 

(Lindström, 1997; Samuel et al., 2011). Furthermore, the results shows that using objective 

functions focusing on high flows (i.e. 𝑃𝑊𝑅𝑀𝑆 and 𝑀𝑁𝑉𝐸) does not always lead to better 

calibrated models regarding high flows. Overall, the main conclusion that stands out from 

comparing the different objective functions, is that it is practically impossible to select one 

criteria which gives the best optimal parameters sets for all hydrologic models based on 

different performance measurements in both watersheds. Therefore, besides helping in 

finding the best optimal parameter sets for each hydrologic model, using different objective 
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functions provides larger number of ensemble members with higher potential capability in 

capturing future flow possibilities. 

 

Figure 4-6 The performance evaluation of various calibrated hydrologic models for the 

validation period (years 2012-2015) in (a) Big East River and (b) Black River watersheds 
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4.5.2 Multi-model versus Multi-model Multi-objective ensemble scenarios 

Prior to the application of the proposed En-BMA method, we evaluate the effects of using 

multiple objective functions for generating ensemble members to be merged by BMA with 

different moving window lengths. Considering two ensemble scenarios of multi-model (E-

7) and multi-model with multiple parameter sets generated using different objective 

functions (E-35), Figure 4-7 illustrates the performance statistics of the 1-day ahead BMA 

forecasts as a function of the number of days of the moving window for both Big East River 

and Black River watersheds. The most influenced properties of the forecasts, changing 

based on the window length, are the reliability (𝐶𝑅95) and sharpness (𝐵95) of the results. 

Although the shorter training period leads to smaller uncertainty bounds, it highly reduces 

the reliability of the forecasts in both watersheds and both ensemble scenarios. These 

results is qualitatively in line with previous studies (Raftery et al., 2005; Vrugt & Robinson, 

2007) showing that increasing moving window length enhances the reliability of the 

forecasts while it reduces the sharpness. Other performance measures focusing on the 

accuracy of the results show negligible changes regarding the moving window length. 

Therefore, given that a similar trend has been seen for other forecast horizons (up to 7 days), 

we select a length of 100 days where the reliability of the results appears to reach stability, 

beyond which the sharpness of the results deteriorates without significant improvement of 

the containing ratio. 
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Figure 4-7 The comparison of different performance statistics of BMA 1-day ahead 

forecasts using two different ensemble scenarios and different mowing window length in 

(a) Big East River and (b) Black River watersheds. E-7 and E-35 respectively show the 

multi-models and multi-models multi-objectives ensemble scenarios 

 

Moreover, although the superiority of scenario E-35 over E-7 can be seen from Figure 4-

7, a comprehensive comparison of both ensemble scenarios has been made using BMA 

with a 100-day moving window for 1-, 3-, 5-, and 7-day ahead forecasts. It is of note that 

N-day ahead forecasts mean the times series of forecasts for lead-time 𝑁 independently 

and not as aggregated of 1- to N-days ahead. Therefore, all criteria, being calculated based 

on N-day ahead time series of forecasts, only indicate the performance at that particular 

lead-time. The results, as shown in Figure 4-8, indicate that using multiple models with 
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multiple objective functions consistently enhance the probabilistic performance of the 

BMA method for different lead-times in both watersheds. These improvements are also 

apparent in the deterministic performance statistics regarding high flows, especially in the 

Black River watershed. Consequently, it can be concluded that constructing an ensemble 

using multiple models with multiple parameter sets based on different objective functions 

leads to better BMA results. Accordingly, for the En-BMA application, the multi-model 

multi-objective ensemble scenario, including 35 members of streamflow predictions, was 

implemented for both watersheds. 

 

Figure 4-8 The percent improvement of different performance statistics in both Big East 

River and Black River watersheds. The positive value of percent improvement shows the 

positive effect of utilizing E-35 in comparison to E-7 
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4.5.3 The effects of the stopping threshold value on En-BMA 

The main parameter of the proposed En-BMA approach is the stopping threshold value (𝛽), 

which needs to be determined beforehand. Therefore, the sensitivity analysis was carried 

out for different 𝛽 values (i.e., 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99) to assess how selecting 

this threshold can affect the streamflow forecasts. The first noticeable effect of the stopping 

threshold is on the number of selected members (Figure 4-9); by increasing 𝛽 a higher 

numbers of members are selected for BMA application. Larger stopping threshold value 

focuses more on increasing information content of the whole ensemble rather than 

independence of its members, while choosing smaller 𝛽  leads to lower redundant 

information without paying that much attention to the ensemble exhaustiveness.  In 

addition, different performance measurements for the 1-day lead time forecasts are 

presented in Table 4-3. What stands out in this table is that in general, a higher threshold 

leads to sharper forecasts for both watersheds, while the deterministic performance slightly 

deteriorates especially in high flows. Therefore, in this study, the threshold value of 0.95 

was chosen for both watersheds, which provides a balance between the different 

performance statistics. These results indicate the same value of having mutually exclusive 

as well as collectively exhaustive ensemble (Madadgar & Moradkhani, 2014; Refsgaard et 

al., 2012), and indicate the importance of selecting a proper threshold value prior to the 

En-BMA application. 
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Figure 4-9 The average number of selected members and using different stopping 

threshold in (a) Big East River and (b) Black River watersheds 
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Table 4-3 Different performance statistics of 1-day ahead forecasts derived from the proposed En-BMA method with different 

stopping threshold values 

Basin β 
All flows Flows more than 90 percentile 

NSE RMSE VE CRPS CR95 B95 NSE RMSE VE CRPS CR95 B95 

B
ig

 E
as

t 
R

iv
er

 

0.6 0.79 7.8 0.04 2.7 0.95 26 0.71 17.7 0.06 8.3 0.74 37 

0.7 0.8 7.7 0.04 2.6 0.95 25 0.71 17.6 0.06 8.3 0.75 36 

0.8 0.79 7.7 0.03 2.6 0.95 24 0.68 18.6 0.06 8.5 0.76 36 

0.9 0.8 7.6 0.03 2.5 0.94 22 0.67 18.8 0.04 8.6 0.78 35 

0.95 0.79 7.7 0.013 2.3 0.94 17 0.64 19.6 0.03 8.9 0.78 33 

0.97 0.77 8.1 0.04 2.5 0.95 17 0.58 21.2 0.01 9.5 0.77 33 

0.99 0.76 8.3 0.03 2.5 0.94 17 0.56 21.6 0.03 10.2 0.74 32 

B
la

ck
 R

iv
er

 

0.6 0.81 12.4 0.02 4.8 0.92 43 0.46 31.2 0.23 16.0 0.73 56 

0.7 0.81 12.4 0.02 4.7 0.92 42 0.47 31.0 0.22 15.9 0.74 55 

0.8 0.82 12.4 0.02 4.7 0.93 41 0.49 30.5 0.21 15.9 0.72 52 

0.9 0.82 12.4 0.03 4.8 0.92 37 0.47 31.0 0.21 15.5 0.70 49 

0.95 0.81 12.6 0.04 4.5 0.92 34 0.43 32.2 0.22 14.6 0.73 48 

0.97 0.81 12.6 0.04 4.4 0.91 33 0.43 32.3 0.22 14.7 0.72 47 

0.99 0.81 12.7 0.04 4.3 0.9 32 0.41 32.8 0.23 14.7 0.7 47 
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Besides assessing the effects of the stopping threshold, the contribution of each member 

into the forecasts is illustrated in Figure 4-10. A simple comparison between the 

performance of each individual model during the independent validation period (i.e., years 

2012-2015) and the frequency of their selection for forecasting application shows that the 

selection ratios are not completely in accordance with models’ performance, and even some 

relatively lower performing members have been frequently selected based on the proposed 

procedure. This is justifiable by the fact the entropy terms used in the proposed selection 

procedure, evaluate the information content of the whole ensemble rather than focusing on 

individual members. This expresses that besides high-performance models, considering 

some members with unique information is necessary for possessing mutually exclusive and 

collectively exhaustive ensemble (Darbandsari & Coulibaly, 2019). 
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Figure 4-10 The contribution of each member into the forecasts and the 𝑁𝑆𝐸 

performance statistic of each member for the whole validation period based on all flows 

and flows more than 90 percentile in (a) Big East River and (b) Black River watersheds 

 

4.5.4 En-BMA versus BMA 

BMA and the proposed En-BMA method with a stopping threshold of 0.95 are employed 

to forecast the streamflow up to seven days ahead within the validation period in both Big 

East River and Black River watersheds. Figure 4-11 and Figure 4-12 compare the accuracy, 

reliability, and sharpness of the BMA and En-BMA methods using six different 
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performance statistics (presented in Section 4-4). It can be recognized that, in general, 

when all flows are considered, there is a small loss of deterministic performance in the Big 

East River watershed by applying the proposed entropy-based approach, while in the Black 

River, all deterministic measures (i.e. 𝑁𝑆𝐸, 𝑅𝑀𝑆𝐸, and 𝑉𝐸) show marginal advantage of 

En-BMA compared to BMA for all lead-times. However, by focusing on high flows 

(Figure 4-12), the superiority of the En-BMA over BMA in both watersheds is shown based 

on all performance statistics. These improvements exist in all forecasting horizons, but 

more so during shorter lead times (e.g., the 1-day ahead 𝑁𝑆𝐸 improvement of 8% and 65% 

in comparison to 4% and 32% for 7-day ahead forecasts in Big East River and Black River 

watersheds, respectively). 

In terms of probabilistic forecasts, almost the same conclusions can be derived. The general 

performance statistics based on all data (i.e., Figue 4-11) show that applying En-BMA may 

slightly deteriorate the probabilistic performance of the results; however, improvements 

are notable in both watersheds for the high flows (Figure 4-12), especially for shorter 

forecast horizons. For instance, the containing ratios regarding high flows (CR95-90) at 1-

day ahead forecasts improve more than 10% in both watersheds with the same or less 

corresponding bandwidth. This improvement extended to the longer lead times in Black 

River watersheds. However, in the Big East River, although the high flow forecasts 

reliability of the En-BMA approach is better, sharpness was deteriorated. 
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Figure 4-11 Comparison of different performance metrics for 1 to 7 days-ahead 

streamflow forecasting derived from BMA and En-BMA methods in (a) Big East River 

and (b) Black River watersheds. % improvement is defined as the percentage increase 

when using En-BMA instead of BMA, with positive values indicating it was advantageous 

to use En-BMA 

 

As stated previously, the quantile-quantile plot and its corresponding reliability measure 

(𝛼) are also used for comparing the performance of En-BMA and BMA methods. When 

looking at the results derived from all streamflow data (Figure 4-13), there is a negligible 

difference between the performances of both approaches in both watersheds. Although En-

BMA leads to better results in the Big East River watershed, it slightly deteriorates in the 

Black River watershed. However, in term of high flow forecasting (Figure 4-14), the higher 
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reliability of the En-BMA results as compared with BMA is noticeable. The percent 

improvement shown for the 𝛼 values when using the En-BMA approach for 1-day ahead 

forecasts was approximately 13% and 18% in the Big East River and the Black River 

watersheds, respectively. This superiority was shown to decrease with increasing lead-

times; however, a positive percent improvement was still found for all lead-times. It is 

worthy of note that in both the Q-Q plot and the volume error values (Figure 4-12 and 

Figure 4-14, respectively), both BMA and En-BMA methods underestimate high flows in 

the Black River watershed. These underestimations were seen for all calibrated hydrologic 

models used in this study. This may be due to the limitation of the precipitation data in the 

study area. The mean areal forcing precipitation data may not be representative of the actual 

precipitation patterns. Therefore affecting both the En-BMA and BMA results. However, 

it does not affect the comparing process. 
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Figure 4-12 Comparison of different performance metrics for 1 to 7 days-ahead high 

flow forecasting derived from BMA and En-BMA methods in (a) Big East River and (b) 

Black River watersheds. % improvement is defined as the percentage increase when 

using En-BMA instead of BMA, with positive values indicating it was advantageous to 

use En-BMA 
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Figure 4-13 Comparison of the predictive Q-Q plot of different lead times (1-day to 7-

day) derived from BMA and En-BMA results for (a) Big East River and (b) Black River 

watersheds 
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Figure 4-14 Comparison of the predictive Q-Q plot of different lead times (1-day to 7-

day) derived from BMA and En-BMA high flow results for (a) Big East River and (b) 

Black River watersheds 

 

Finally, in order to complete the comparison, Figure 4-15 illustrates a representative 

portion of hydrographs including observed, BMA, and En-BMA derived mean and 95% 

prediction uncertainty for different forecasting horizons (i.e., 1, 3, 5, and 7 days). In line 

with previous conclusions, the plots of different lead times show that in both watersheds, 

En-BMA outperforms BMA in terms of both probabilistic and deterministic performance 

regarding high flow predictions. These outperforming results are more noticeable for 

shorter lead times (1-day and 3-day ahead forecasts). It is worth mentioning that, in general, 

both En-BMA and BMA results have almost the same accuracy and reliability regarding 

low flows in both watersheds. This is due to the fact that the temporal variability of 

streamflow forecasts based on different ensemble members is marginal in low flows and 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

178 

 

narrowing down the ensemble member using En-BMA method does not significantly 

affects the results. On the other hand, however, it can be seen that implementing En-BMA 

leads to less sharp low flow forecasts in comparison to the original BMA, especially in 

base flows after a rainfall event (Figure 4-15). This is justifiable by the fact that the moving 

windows sorounding these days, used in the selection procedure, include high flow events 

which leads to the selected ensemble with larger variability. 

 

Figure 4-15 Time-series of the mean and 95% predictive bounds derived from En-BMA 

and BMA forecasts of various lead times compared with observations from a 

representative period in (a) Big East River and (b) Black River watersheds 
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4.6 Summary and Conclusion 

The multi-model ensemble prediction system is a well-known approach to quantify and 

reduce model structural uncertainty. Among various post-processing methods, Bayesian 

Model Averaging (BMA) is one of the most reliable statistical tools for generating 

predictive forecasts by relatively merging individual ones. In BMA, the law of total 

probability is used for estimating the predictive distribution of the forecast variable as a 

weighted average of the PDF of individual forecasts. Therefore, having mutually exclusive 

and collectively exhaustive members of the ensemble is a fundamental need in order to 

reach more reliable results. However, these two requirements are in conflict with each other, 

so providing a balance between them seems necessary for possessing better BMA based 

predictive forecasts. Given the mentioned challenge, in order to narrow down the 

streamflow forecasts for meeting the two contrasting criteria, this study developed a novel 

entropy-based selection method to be employed prior to the BMA. Since information 

theory measures have shown success in different hydrometric network design applications, 

where the same competing objectives are considered, we utilized three entropy terms (i.e., 

total correlation, joint entropy and transinformation) for generating an independent and 

exhaustive ensemble. In the proposed structure, minimizing total correlation assures the 

minimum redundancy between selected members while joint entropy of members and 

transinformation between members and observation lead to an ensemble with higher 

information. 

We compared the application of the BMA and the proposed En-BMA methods for 

generating probabilistic streamflow forecasts at short- to medium range lead times (1 to 7-
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day ahead forecasts) in two data-poor watersheds, located in Ontario, Canada. Seven 

conceptual lumped hydrologic models with different structures and five different objective 

functions were used to create an ensemble of 35 streamflow forecasts for each watershed. 

We used six different evaluation metrics, the Q-Q plot, and representative hydrographs for 

comprehensively comparing BMA and En-BMA results regarding the whole time series 

and the high flows, separately. The summary of the most important obtained results in both 

watersheds is as follows. 

 The simulation results, comparing the calibrated models using different objective 

functions, as well as the comparison of BMA f with two different ensemble 

scenarios, indicate that using multiplie objective functions for calibrating various 

hydrologic models leads to an ensemble of members with higher diversity, and can 

enhance the BMA performance. This conclusion is in line with previous studies 

suggesting the use of diverse ensemble members in conjunction with BMA (Dong 

et al., 2013; Parrish et al., 2012; Sharma et al., 2019). 

 Evaluating the proposed entropy based selection procedure illustrates the same 

importance of having collectively exhaustive ensemble as mutually exclusive 

members. Besides independency, the number of ensemble members should be large 

enough in order to have enough information about all future possibilities, otherwise, 

the BMA application may be unreliable and leads to overestimation of predicitive 

uncertainties (Madadgar & Moradkhani, 2014; Refsgaard et al., 2012). 

 Comparing the application of BMA and the proposed En-BMA methods in both 

watersheds shows no significant difference between BMA and En-BMA methods 
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when the whole forecast time series is considered. However, in term of high flow 

forecasts, En-BMA provided better deterministic and probabilistic results. Based 

on 𝑁𝑆𝐸 and 𝑅𝑀𝑆𝐸 scores for high flows, the accuracy of the forecasts enhanced 

significantly after implementing En-BMA in both study watersheds. Also, the Q-Q 

plots and the containing ratio measurements indicate higher reliability of the En-

BMA derived probabilistic forecasts for high flows, as compared to BMA, without 

losing its sharpness; this is more apparent at the shorter lead times. 

In general, besides confirming the merits of using multiple models with multiple objectives 

over only considering multi-models for generating an ensemble of streamflow forecasts, 

the results suggest that the proposed En-BMA method outperforms the traditional BMA in 

both deterministic and probabilistic ways, through constructing a mutually exclusive and 

collectively exhaustive ensemble of streamflow forecasts, especially for high flows which 

are of particular interest in operational hydrology. The findings of this study call for further 

studies on employing other entropy measures for generating proper streamflow ensemble 

for BMA applications. In addition, as the proposed entropy based selection procedure is 

not restricted to specific types of variables, apart from streamflow forecasts, further studies 

could employ the proposed method for other variables, such as precipitation and 

temperature, with different time intervals (e.g. hourly). 

Although, both basins, used in this study, have similar climatologic conditions, their 

hydrologic responses are quite different and yield two distinct probability distributions of 

streamflow data, which is the most effective characteristics in the calculation of entropy 

terms and the BMA application. This difference suggests that the findings of this research 
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can be easily generalized to other future studies. Such future applications of the proposed 

En-BMA method should cover diverse watersheds with different climatology, land cover, 

and topography. Furthermore, it is noteworthy that the BMA approach and therefore the 

En-BMA, estimates predictive distribution by using the information derived from an 

ensemble of multi-model streamflow forecasts, while, there are some other valuable 

information, such as the known initial and boundary conditions, that can be used for 

reducing hydrologic uncertainty. This study evaluates the positive direct effects of  

possessing mutually exclusive and collectively exhaustive ensemble on BMA results, 

however, for operational purposes (such as flood forecasting), explicitly deciphering the 

initial condition uncertainty by implementing an updating procedure (e.g. data assimilation 

methods) in conjunction with the proposed En-BMA approach is recommended. 
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 HUP-BMA: An Integration of Hydrologic Uncertainty 

Processor and Bayesian Model Averaging for Streamflow Forecasting 

Summary of Paper 4: Darbandsari, P., & Coulibaly, P. (2021). HUP-BMA: An 

Integration of Hydrologic Uncertainty Processor and Bayesian Model Averaging for 

Streamflow Forecasting. Water Resources Research, under review. 

In this research work, after evaluating the effects of implementing different deterministic 

forecasts within the Hydrologic Uncertainty Processor (HUP) method, a new ensemble-

based Bayesian post-processing (HUP-BMA) approach is proposed where the Bayesian 

Model Averaging concept is used to enhance the uncertainty quantification by combining 

the predictive distributions derived from HUP with different hydrologic models.  

Key findings of this study include: 

 For short lead times and low flow values, the HUP method can compensate the low 

quality of the used deterministic forecasts by generating more accurate and reliable 

probabilistic results. 

 The HUP performance is noticeably affected by the performance of the 

deterministic forecasts in longer lead times and higher flow magnitudes. 

 The proposed HUP-BMA method, compared to HUP, takes the advantage of 

multiple deterministic forecasts for better quantifying hydrologic uncertainty and 

generating more accurate and reliable probabilistic results. 
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 The modified HUP-BMA unconditioned on initial flow values leads to better 

probabilistic forecasts for longer lead times when the dependence between the 

actual and initial flow values is low. 

5.1 Abstract 

Uncertainty quantification and providing probabilistic streamflow forecasts are of 

particular interest for water resource management. The Hydrologic Uncertainty Processor 

(HUP) is a well-known Bayesian approach used to quantify hydrologic uncertainty based 

on observations and deterministic forecasts. This uncertainty quantification is model-

specific; however, utilizing information from multiple hydrologic models should be 

advantageous and should lead to better probabilistic forecasts. Using seven, structurally 

different, conceptual models, this study firstly aims at evaluating the effects of 

implementing different hydrologic models on HUP performance. Secondly, using the 

concepts of the Bayesian Model Averaging (BMA) approach, a multi-model HUP-based 

Bayesian post-processor (HUP-BMA) is proposed where the combination of posterior 

distributions derived from HUP with different hydrologic models are used to better 

quantify the hydrologic uncertainty. All post-processing approaches are applied for 

medium-range daily streamflow forecasting (1 to 14 days ahead) in two watersheds located 

in Ontario, Canada. The results indicate that that the HUP forecasts for short lead-times are 

negligibly affected by implementing different hydrologic models, while with increasing 

lead-time and flow magnitude, they significantly depend on the quality of the deterministic 

forecast. Moreover, the superiority of the proposed HUP-BMA method over HUP is 

demonstrated based on various verification metrics in both watersheds. Additionally, HUP-
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BMA outperformed the original BMA in quantifying hydrologic uncertainty for short lead-

times. However, by increasing lead-time, considering the effects of initial observed flow 

on HUP-BMA formulation may be not beneficial. So, its modified version unconditioned 

on initial observations is preferred. 

Keywords: Uncertainty, Streamflow forecasting, Bayesian Model Averaging, Hydrologic Uncertainty 

Processor 

5.2 Introduction 

Probabilistic streamflow forecasting is of increasing interest in various fields of water 

resources management from real-time flood forecasting to long-term management of water 

systems. Accurate and reliable short- to medium-range streamflow forecasts, with lead-

times ranging from hours to days, can play an important role in flood control, mitigation, 

and early warning systems (Bravo et al., 2009; Thiemig et al., 2015). Unlike deterministic 

forecasts, which provide a point estimation of the river flow, probabilistic forecasts try to 

quantitatively assess the inherent uncertainties associated with the streamflow predictions 

and provide a predictive uncertainty distribution, which is required for reliable and 

informed decision making (Biondi & Todini, 2018; Liu et al., 2018; Reggiani & Weerts, 

2008; Todini, 2008). Predictive uncertainty is defined as the posterior probability 

distribution of future events conditioned on all available information at the time of forecast 

(Todini, 2011). There are various sources of uncertainties within streamflow forecasting 

which can be categorized into two main groups (Krzysztofowicz & Kelly, 2000; Seo et al., 

2006): (1) input (meteorological forcing) uncertainty, and (2) hydrologic uncertainty. Apart 

from the unknown future meteorological variables, other sources of uncertainties, such as 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

193 

 

errors in observational measurements, structure and parameter values of the hydrologic 

model, and initial conditions (Ajami et al., 2007; Madadgar & Moradkhani, 2014; 

Montanari et al., 2009), are aggregated as hydrologic uncertainty and the significance of 

their quantification is dependent on factors such as the forecasting horizon (Biondi & 

Todini, 2018).  

In recent years, various post-processors have been developed for quantifying and reducing 

the uncertainty of hydrological forecasts, which are comprehensively reviewed in Li et al. 

(2017) and Han and Coulibaly (2017). Among these approaches, the Bayesian Forecasting 

System (BFS; Krzysztofowicz, 1999) appears a reliable and robust probabilistic 

forecasting framework, which can explicitly address input and hydrologic uncertainties 

using the precipitation uncertainty processor (PUP; Kelly & Krzysztofowicz, 2000) and 

the hydrologic uncertainty processor (HUP; Krzysztofowicz & Kelly, 2000), respectively. 

Using Bayes theorem, the HUP explicitly quantifies the hydrologic uncertainty by 

providing a posterior distribution for any deterministic forecast, derived from a hydrologic 

model, based on the assumption of possessing a perfect precipitation forecast (Han et al., 

2019; Liu et al., 2018). 

There are several studies that evaluated the application of the HUP for hydrologic 

uncertainty estimation (Biondi et al., 2010; Krzysztofowicz & Herr, 2001; Krzysztofowicz 

& Kelly, 2000; Liu et al., 2016, 2018; Reggiani et al., 2009; Reggiani & Weerts, 2008), 

some of which also improved the HUP procedure. Krzysztofowicz and Herr (2001), for 

instance, proposed the precipitation-dependent version of HUP, which is shown to be more 

efficient. Using the HUP concept, Reggiani et al. (2009) developed the Bayesian Ensemble 
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Uncertainty Processor which implicitly quantifies input uncertainty by aggregating the 

HUP-based posterior distributions of various streamflow forecasts stemming from an 

ensemble of precipitation forecasts. Also, the copula-based HUP, proposed by Liu et al. 

(2018), used the advantage characteristics of copula functions to develop the prior density 

and the likelihood function without transforming data into Gaussian space, which is 

required in the HUP method. Their results show that the proposed modified approach is as 

reliable as HUP in terms of probabilistic streamflow forecast. Although different studies 

investigated HUP from various aspects, very few studies evaluate the effects of using 

different hydrologic models on HUP performance. Recently, by comparing the use of HUP 

with two lumped hydrologic models, Han et al. (2019) show that the quality of a 

deterministic model is an important factor in HUP in order to produce reliable and accurate 

probabilistic forecasts. 

On the other hand, some multi-model post-processing approaches are combining multiple 

model forecasts for generating more reliable results. Multi-models hydrological predictions, 

compared to the single deterministic one, provide more information about the unknown 

future events and can better reflect the uncertainties associated with streamflow forecasting, 

however, the statistical post-processing approach is still required to produce accurate and 

reliable forecasts (Li et al., 2017; Muhammad et al., 2018; Reggiani & Weerts, 2008). 

There are various deterministic model averaging techniques (e.g. Bates-Granger averaging 

(Bates & Granger, 1969), Granger–Ramanathan averaging (Granger & Ramanathan, 1984), 

etc.), which provide one point-estimation of the predictand; however, some post-

processing methods have been developed to treat multi-model streamflow forecasts in a 
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probabilistic way by quantifying predictive uncertainty induced by the imperfection of 

models’ structures. Bayesian Model averaging (BMA) (Raftery, 1993; Raftery et al., 2005) 

is one the most well-known statistical multi-model post-processing approaches which has 

been widely and successfully applied in streamflow simulation and forecasting studies (e.g. 

Darbandsari & Coulibaly, 2019; Duan et al., 2007; Huo et al., 2019; Madadgar & 

Moradkhani, 2014; Parrish et al., 2012; Sharma et al., 2019; Vrugt & Robinson, 2007).  

In BMA, the predictive posterior distribution is quantified as a weighted average of the 

conditional probability distributions of individual forecasts, which are assumed to follow 

the Gaussian distribution. For highly skewed variables like streamflow, the conditional 

probability distribution with the aforementioned assumption is a poor choice. So, various 

studies proposed different BMA modifications, such as implementing other distribution 

types (Vrugt & Robinson, 2007), and applying data transformation procedure (Liang et al., 

2013; Qu et al., 2017), to more complex Copula-embedded BMA (Madadgar & 

Moradkhani, 2014) where any assumption about the distribution shape is relaxed using the 

properties of copula functions. Moreover, addressing the law of total probability as another 

inherent assumption of the BMA approach, Darbandsari and Coulibaly (2020b) recently 

proposed the Entropy-based BMA method where an ensemble with mutually exclusive and 

collectively exhaustive properties is constructed prior to the BMA application, leading to 

better probabilistic high flow forecasts. Also, using the integration of BMA with other 

techniques, some other multi-model methods have been proposed for uncertainty analysis 

and quantifications (e.g. Ajami et al., 2007; Parrish et al., 2012; Poeter & Hill, 2007; Rojas 

et al., 2008; Sharma et al., 2019; Yen et al., 2014). Although BMA and its variants are 
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among the most reliable approaches for estimating predictive uncertainty based on an 

ensemble of forecasts, they do not consider the effects of initial conditions explicitly, and 

the use of external updating procedure is required for better estimation of hydrologic 

uncertainty for operational streamflow forecasting (Darbandsari & Coulibaly, 2020b; 

Todini, 2008; Xu et al., 2019). 

The main objective of this study is to evaluate the benefits of using multiple deterministic 

forecasts within the HUP procedure for better quantifying hydrologic uncertainty. Besides 

evaluating the effects of using different hydrologic models on HUP performance, an 

extension of the Bayesian post-processor is proposed by integrating the HUP and BMA 

approaches (called HUP-BMA hereafter) which can incorporate multi-model ensemble 

streamflow forecasts. Two different watersheds are used as case studies to assess the 

applicability and efficiency of the proposed HUP-BMA method for short- to medium-range 

daily streamflow forecast (1- to 14- days ahead) using different deterministic and 

probabilistic performance criteria. Compared with HUP, which requires a single 

deterministic forecast, the HUP-BMA approach takes the advantage of an ensemble of 

individual predictions to better quantify and reduce the hydrologic uncertainty and enhance 

the accuracy and reliability of streamflow forecasts. Similar to the HUP, the parameters of 

the proposed approach can be calibrated offline and the method can be easily implemented 

for operational use (Han et al., 2019; Krzysztofowicz & Herr, 2001). Moreover, using the 

advantages of the HUP method, this post-processor could be an alternative for BMA in 

operational streamflow forecasting by deciphering the initial condition uncertainty, which 
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leads to the better quantification of the hydrologic uncertainty associated with short-term 

streamflow forecasts. 

The remainder of the paper is as follows. In section 5.3, the underlying concepts of the 

applied methodologies (e.g. HUP and BMA), an overview of the proposed HUP-BMA, 

and a detailed explanation of various evaluation metrics for assessing the performance of 

forecasts are given. Section 5.4 presents the experimental setup, including brief 

descriptions of the case studies and data, and the employed rainfall-runoff models. Section 

5.5 discussed the results, and the summary and conclusions are presented in Section 5.6. 

5.3 Methods 

5.3.1 Hydrologic Uncertainty Processor 

Hydrologic uncertainty processor (HUP), firstly introduced by Krzysztofowicz and Kelly 

(2000), is a Bayesian method for quantifying the hydrologic uncertainty conditioned on 

initial observation and a deterministic prediction, based on the assumption that the 

precipitation uncertainty is zero. In other words, HUP aims to estimate hydrologic 

uncertainty using real-time observations and a deterministic forecast from a hydrologic 

model. Given the detailed information about the HUP method in the literature 

(Krzysztofowicz, 2002; Krzysztofowicz & Kelly, 2000), a brief explanation of its basic 

concepts is provided for the sake of completeness. 

Let 𝑌0 be the observed river discharge at the initial date of forecast (i.e. 𝑛 = 0) and 𝑌 =

(𝑌1, 𝑌2, … , 𝑌𝑁)  is the vector of the actual river discharge at forecasting times 1 to 𝑁 . 

Similarly, �̂� = (�̂�1, �̂�2, … , �̂�𝑁) , denoted as the model river discharge, is the vector of 
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estimates of 𝑌𝑛: 𝑛 = (1,2, … , 𝑁) derived from the output of a deterministic hydrologic 

model based on the perfect precipitation forecast. The realizations of the above mentioned 

random variables 𝑌0, 𝑌𝑛, and �̂�𝑛 are respectively presented by 𝑦0, 𝑦𝑛, and �̂�𝑛. Using Bayes 

theorem, the HUP procedure tries to quantify hydrologic uncertainty by supplying posterior 

densities of the actual river discharge at lead-time 𝑛 (𝑦𝑛), as the quantity to be forecasted, 

conditioned on �̂�𝑛 = �̂�𝑛, and 𝑌0 = 𝑦0 (Krzysztofowicz, 1999): 

𝜑𝑛(𝑦𝑛|�̂�𝑛, 𝑦0) =
𝑓𝑛(�̂�𝑛|𝑦𝑛, 𝑦0)𝑔𝑛(𝑦𝑛|𝑦0)

𝜅𝑛(�̂�𝑛|𝑦0)
 (5-1) 

where 𝑔𝑛(𝑦𝑛|𝑦0) is the prior uncertainty of the actual river discharge at lead-time 𝑛 given 

the observation 𝑌0 = 𝑦0, and 𝑓𝑛(�̂�𝑛|𝑦𝑛, 𝑦0) is the likelihood of model river discharge. The 

expected density of the model river discharge conditional on the observed initial discharge 

(𝜅𝑛(�̂�𝑛|𝑦0)) can be determined as a function of the prior density and the likelihood function, 

using the law of total probability: 

𝜅𝑛(�̂�𝑛|𝑦0) = ∫ 𝑓𝑛(�̂�𝑛|𝑦𝑛, 𝑦0)𝑔𝑛(𝑦𝑛|𝑦0)𝑑𝑦𝑛

+∞

−∞

 (5-2) 

Through the HUP process, the following main steps have been taken to estimate the 

aforementioned posterior density: 

Normal Quantile Transform 

HUP is a meta-Gaussian model where the families of conditional densities are assumed to 

follow the Gaussian distribution after transforming data into a Normal space (Biondi et al., 

2010; Kelly & Krzysztofowicz, 2000; Krzysztofowicz & Herr, 2001). Therefore, the 
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Normal Quantile Transform (NQT) is used as a primary step of the HUP method for 

converting 𝑌𝑛  and �̂�𝑛  into the Normal space (random variates 𝑋𝑛  and �̂�𝑛  respectively) 

using the following equations: 

𝑋𝑛 = 𝑄−1(𝛤𝑛(𝑌𝑛))      ∀ 𝑛 ∈ {0,1,2, … , 𝑁} (5-3) 

�̂�𝑛 = 𝑄−1 (𝛬̅
𝑛(�̂�𝑛))      ∀ 𝑛 ∈ {1,2, … , 𝑁} (5-4) 

where 𝑄−1(. )  is the inverse of standard normal distribution and 𝛤𝑛  and  𝛬̅
𝑛  are the 

marginal distributions of the actual and model river discharges at lead-time 𝑛, respectively. 

NQT is one of the most general transformation approach (Krzysztofowicz, 1997), which 

has been applied successively in analyzing streamflow forecast uncertainty (Kelly & 

Krzysztofowicz, 1997; Liang et al., 2013; Montanari & Brath, 2004; Reggiani et al., 2009). 

This conversion makes the HUP formulation reliable for variables with any types of 

marginal distributions, and heteroscedastic and nonlinear dependence structure, which are 

necessary features for streamflow forecasting (Krzysztofowicz & Herr, 2001). The lower 

case letters 𝑥𝑛 and �̂�𝑛, indicate the experimental values (realizations) of the transformed 

variates 𝑋𝑛 and �̂�𝑛, respectively. 

Prior density and likelihood function in the transformed space 

As can be seen from Equation 5-1, proper estimations of the prior density and the likelihood 

function are the key requirements for the Bayes theorem application. In the HUP, by 

assuming the strictly stationary lag-one Markovian process, the stochastic dependence 
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structure between each two consecutive actual river discharges in the transformed space 

(i.e. 𝑋𝑛 and 𝑋𝑛−1) is governed by: 

𝑋𝑛 = 𝑐𝑛 × 𝑋𝑛−1 + 휀𝑛      ∀ 𝑛 ∈ {1,2, … , 𝑁} (5-5) 

where 𝑐𝑛 is the parameter and 휀𝑛 is an independent normally distributed variate with mean 

zero and variance 1 − 𝑐𝑛
2. Based on the stationary assumption and successive application 

of the aforementioned lag-one process, the transition density ( 𝑟𝑄𝑛
(𝑥𝑛|𝑥𝑛−1) ) and 

consequently the prior density (𝑔𝑄𝑛
(𝑥𝑛|𝑥0)) in the Gaussian space is estimated as follows: 

𝑟𝑄𝑛
(𝑥𝑛|𝑥𝑛−1) =

1

(1 − 𝑐𝑛
2)0.5

𝑞 (
𝑥𝑛 − 𝑐𝑛𝑥𝑛−1

(1 − 𝑐𝑛
2)0.5

) (5-6) 

𝑔𝑄𝑛
(𝑥𝑛|𝑥0) =

1

𝑡𝑛
0.5 𝑞 (

𝑥𝑛 − 𝐶𝑛𝑥0

𝑡𝑛
0.5 ) (5-7) 

Subscript 𝑄 denotes a density in the space of transformed variates. 𝑞(. ) is the standard 

normal density function, and 𝐶𝑛  and 𝑡𝑛  are dependent parameters calculated by 

(Krzysztofowicz & Herr, 2001): 

𝐶𝑛 = ∏ 𝑐𝑖

𝑛

𝑖=1

 (5-8) 

𝑡𝑛 = 1 − 𝐶𝑛
2 (5-9) 

For estimating the likelihood function, the linear regression is used for characterizing the 

dependence structure between the transformed actual (𝑋𝑛) and model (�̂�𝑛) river discharges: 
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�̂�𝑛 = 𝑎𝑛 × 𝑋𝑛 + 𝑑𝑛 × 𝑋0 + 𝑏𝑛 + 𝜃𝑛      ∀ 𝑛 ∈ {1,2, … , 𝑁} (5-10) 

where, 𝜃𝑛 is an independent normally distributed variate with mean zero and variance 𝜎𝑛
2, 

and 𝑎𝑛, 𝑑𝑛, and 𝑏𝑛 are the regression parameters. Therefore, the likelihood function of the 

predictand 𝑥𝑛 in Normal space is determined as follows: 

𝑓𝑄𝑛
(�̂�𝑛|𝑥𝑛, 𝑥0) =

1

𝜎𝑛
𝑞 (

�̂�𝑛 − (𝑎𝑛𝑥𝑛 + 𝑑𝑛𝑥0 + 𝑏𝑛)

𝜎𝑛
) (5-11) 

Posterior density in transformed space 

After estimating  the prior density (Equation 5-7) and the likelihood function (Equation 5-

11), which are both normal-linear, the theory of conjugate families of distribution (DeGroot, 

2005) is utilized to derive the closed-form expression of the posterior density in the 

transformed space through Bayes theorem (Krzysztofowicz & Kelly, 2000): 

𝜑𝑄𝑛
(𝑥𝑛|�̂�𝑛, 𝑥0) =

1

𝑇𝑛
𝑞 (

𝑥𝑛 − (𝐴𝑛�̂�𝑛 + 𝐷𝑛𝑥0 + 𝐵𝑛)

𝑇𝑛
) (5-12) 

where 𝐴𝑛, 𝐵𝑛, 𝐷𝑛, and 𝑇𝑛 are the parameters which are determined as follows: 

𝐴𝑛 =
𝑎𝑛𝑡𝑛

2

𝑎𝑛
2𝑡𝑛

2 + 𝜎𝑛
2
 (5-13) 

𝐵𝑛 =
−𝑎𝑛𝑏𝑛𝑡𝑛

2

𝑎𝑛
2𝑡𝑛

2 + 𝜎𝑛
2
 (5-14) 

𝐷𝑛 =
𝐶𝑛𝜎𝑛

2 − 𝑎𝑛𝑑𝑛𝑡𝑛
2

𝑎𝑛
2𝑡𝑛

2 + 𝜎𝑛
2

 (5-15) 
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𝑇𝑛 = (
𝑡𝑛

2𝜎𝑛
2

𝑎𝑛
2𝑡𝑛

2 + 𝜎𝑛
2

)

0.5

 (5-16) 

Transform back to the original space 

Using the Jacobian of transformation, the estimated posterior density in the Gaussian space 

( 𝜑𝑄𝑛
(𝑥𝑛|�̂�𝑛, 𝑥0) ), is converted back to the original space for determining the meta-

Gaussian posterior distribution (𝛷𝑛(𝑦𝑛|�̂�𝑛, 𝑦0)), which becomes (Krzysztofowicz & Kelly, 

2000): 

𝛷𝑛(𝑦𝑛|�̂�𝑛, 𝑦0)

= 𝑄 (
𝑄−1(𝛤𝑛(𝑦𝑛)) − 𝐴𝑛𝑄−1(𝛬̅

𝑛(�̂�𝑛)) − 𝐷𝑛𝑄−1(𝛤𝑛(𝑦0)) − 𝐵𝑛

𝑇𝑛
) 

(5-17) 

Same as Equations 5-3 and 5-4, 𝛤𝑛 and 𝛬̅
𝑛 are the marginal distributions for the actual (𝑦𝑛) 

and the model (�̂�𝑛) river discharge variates at forecasting time 𝑛. 

Altogether, using a joint sample of realizations {(𝑦0, 𝑦1, … , 𝑦𝑁; �̂�1, … , �̂�𝑁)} , which is 

formed based on historically observed discharges and the output of the deterministic 

hydrologic model, the estimation procedure of the HUP method for forecasting time 𝑛 =

(1,2, … , 𝑁) includes: (1) estimating the marginal prior distributions (i.e. 𝛤𝑛, and 𝛬̅
𝑛), (2) 

transforming training data into the Gaussian space using the NQT approach (Equations 5-

3 and 5-4), (3) estimating  the prior densities and the likelihood functions parameters in the 

transformed space (i.e. 𝑐𝑛 , 𝑎𝑛 , 𝑏𝑛 , 𝑑𝑛  and 𝜎𝑛  in Equations 5-5 to 5-11), and (4) 

determining the parameters of the posterior densities using Equations 5-13 to 5-16 (i.e. 𝐴𝑛, 
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𝐵𝑛, 𝐷𝑛, 𝑇𝑛). These estimated parameters can then be utilized in the forecasting mode for 

probabilistic streamflow forecasting up to 𝑁 days ahead. 

The precipitation-dependent HUP, proposed by Krzysztofowicz and Herr (Krzysztofowicz 

& Herr, 2001), is a two-branch procedure based on the non-occurrence (𝑣 = 0) and 

occurrence (𝑣 = 1) of precipitation. Before the HUP estimation procedure, the training 

period is divided into two groups of data with and without the occurrence of precipitation 

in their initial date. Two sets of HUP parameters are then separately estimated for each 

branch (i.e. 𝛤𝑛,𝑣, 𝛬̅
𝑛,𝑣, 𝑐𝑛,𝑣 , 𝑎𝑛,𝑣 , 𝑏𝑛,𝑣 , 𝑑𝑛,𝑣 , 𝐴𝑛,𝑣 , 𝐵𝑛,𝑣 , 𝐷𝑛,𝑣 , 𝑇𝑛,𝑣  ∀ 𝑣 ∈ {0.1} ). The 

probabilistic forecasts have been generated using the first branch (𝑣 = 0) if there is no 

precipitation while the second branch (𝑣 = 1) is utilized for streamflow forecasting in the 

case of precipitation occurrence. By better capturing the model structural uncertainty and 

explicitly considering the effects of transition between the recession and the rising limbs 

of the hydrographs, the precipitation-dependent HUP has better predictive capabilities than 

the independent one (Biondi et al., 2010; Krzysztofowicz & Herr, 2001). Therefore, the 

precipitation-dependent HUP, abbreviated as HUP hereafter, is used in this study. 

5.3.2 Multi-model Bayesian processor (HUP-BMA) 

As previously stated, the HUP procedure employs a deterministic hydrologic model to 

quantify the hydrologic uncertainty and generate the posterior distribution. However, there 

are various structurally different hydrologic models, and using all information derived from 

multi-model ensemble predictions can enhance the reliability and accuracy of the 

probabilistic forecasts (Ajami et al., 2007; Dong et al., 2013; Jiang et al., 2018). Here, by 
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implementing the concept of the Bayesian Model Averaging (BMA) method (Raftery, 

1993), the HUP-derived posterior distributions based on multiple hydrologic models are 

integrated in order to estimate the final predictive distribution conditioned on the initially 

observed flow and multi-model streamflow forecasts ensemble. 

Bayesian Model Averaging (BMA) is one of the most well-known multi-model post-

processing approaches where the combination of forecast conditional densities, derived 

from different models, are weighted for generating the final posterior distribution. 

Following the law of total probability, the BMA predictive distribution of a forecasted 

variable  at lead-time 𝑛  (𝑦𝑛 ) conditioned on the ensemble of 𝐾  different multi-model 

forecasts (𝑀𝑛 = (�̂�𝑛
1, �̂�𝑛

2, … , �̂�𝑛
𝐾)) is defined as follows (Raftery et al., 2005): 

𝑃(𝑦𝑛|𝑀𝑛) = ∑ 𝑤𝑖 × 𝑃(𝑦𝑛|�̂�𝑛
𝑖 )

𝐾

𝑖=1

 (5-18) 

where, 𝑤𝑖 are the BMA weights need to be estimated, showing how well the forecast �̂�𝑛
𝑖  

fits the observation in the calibration period. 𝑃(𝑦𝑛|�̂�𝑛
𝑖 ) is the forecast (or conditional) 

probability distribution of the predictand 𝑦𝑛 given the ensemble member �̂�𝑛
𝑖 . In the original 

BMA, this conditional density (i.e. 𝑃(𝑦𝑛|�̂�𝑛
𝑖 ))  is assumed to be approximately normally 

distributed with mean 𝜇𝑛
𝑖 = 𝜌1,𝑛

𝑖 + 𝜌2,𝑛
𝑖 �̂�𝑛

𝑖  and variance 𝜏2
𝑛
𝑖

. 𝜌1,𝑛
𝑖 , 𝜌2,𝑛

𝑖  are the bias 

correction coefficients, which are estimated by a simple linear regression of 𝑦𝑛 on �̂�𝑛
𝑖  in 

the calibration period. Therefore, Equation 5-18 can be rewritten as follows: 
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𝑃(𝑦𝑛|𝑀𝑛) = ∑ 𝑤𝑖 × 𝑁(𝑦𝑛|𝜇𝑛
𝑖 , 𝜏2

𝑛
𝑖

)

𝐾

𝑖=1

 (5-19) 

The parameters of the standard BMA approach, including weights (𝑤𝑖) and variances (𝜏2
𝑛
𝑖

) 

of each member 𝑖 ∈ {1,2, … , 𝐾} , are estimated through the Expectation-Maximization 

(McLachlan & Krishnan, 2008) iterative algorithm where a two-step procedure is used for 

searching the optimal parameter values by maximizing the log-likelihood function (Figure 

5-1a). The assumption of the Gaussian conditional probability distribution (i.e. 

𝑃(𝑦𝑛|�̂�𝑛
𝑖 )~𝑁(𝑦𝑛|𝜇𝑛

𝑖 , 𝜏2
𝑛
𝑖

)) in the original development of the BMA method might not be 

a proper choice for river discharge. Therefore, using more representative distribution (e.g. 

Gamma) (Vrugt & Robinson, 2007) or applying a data transformation procedure (Duan et 

al., 2007; Qu et al., 2017; Roy et al., 2017; Sharma et al., 2019; Todini, 2008) is 

recommended in order to achieve more reliable results. 

As previously mentioned, using the basic concept of BMA, this study tried to merge an 

ensemble of posterior distributions derived from the application of the HUP (Equation 5-

17) in conjunction with 𝐾 different models (i.e. 𝛷𝑛
𝑖 (𝑦𝑛|�̂�𝑛

𝑖 , 𝑦0) ∀ 𝑖 ∈ {1,2, … , 𝐾}) in order 

to generate reliable and accurate predictive forecasts. Therefore, the parametric conditional 

normal distributions (𝑁(𝑦𝑛|𝜇𝑛
𝑖 , 𝜏2

𝑛
𝑖

)  ∀ 𝑖 ∈ {1,2, … , 𝐾}) in Equation 5-19 are replaced by 

pre-estimated HUP derived posterior probabilities in Equation 5-17, and the final PDF 

conditioned on all forecast members ( 𝛷𝑛(𝑦𝑛|𝑀𝑛, 𝑦0); 𝑀𝑛 = (�̂�𝑛
1, �̂�𝑛

2, … , �̂�𝑛
𝐾) ) is 

determined by: 
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𝛷𝑛(𝑦𝑛|𝑀𝑛, 𝑦0) = ∑ 𝑤𝑖 × 𝛷𝑛
𝑖 (𝑦𝑛|�̂�𝑛

𝑖 , 𝑦0)

𝐾

𝑖=1

 (5-20) 

As can be seen, in the proposed HUP-embedded-BMA, called HUP-BMA hereafter, the 

weights are the only BMA parameters that need to be estimated. So, the modified EM 

algorithm, proposed by Madadgar and Moradkhani (2014), is used where in contrast with 

standard EM, the pre-specified HUP-based posterior probabilities remain the same for all 

the iterations (Figure 5-1b). Compared with BMA, the proposed HUP-BMA method does 

not need the external applications of the linear bias correction and data transformation 

because these processes have been already embedded in the HUP procedure. Additionally, 

compared with BMA, the HUP-BMA quantifies the initial condition uncertainty by 

explicitly implementing the initial state knowledge (i.e. actual river discharge at time zero). 

Figure 5-2 illustrates the calibration process of the proposed HUP-BMA approach. As can 

be seen, for each forecast lead-time 𝑛, after dividing data into two groups based on the 

occurrence (𝑣 = 1) and non-occurrence (𝑣 = 0) of precipitation, the HUP calibration 

procedure is done for each member of the streamflow forecast ensemble. The estimated 

HUP parameters are then utilized for calculating the posterior distributions based on 

different members over the whole calibration period. Finally using the estimated HUP 

derived densities, the modified EM algorithm is employed for determining the BMA 

parameters (𝑤𝑖,𝑛,𝑣). It is worthy of note that two sets of weights are determined for each 

branch of data with and without precipitation occurrence. Finally, the offline calibrated 

HUP-BMA method can be executed online for streamflow forecasting based on multiple 

deterministic forecasts derived from various hydrologic models. Using all the information 
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obtained from different models, the proposed HUP-BMA procedure can better estimate the 

hydrologic uncertainty and provide more accurate and reliable forecasts. 

 

Figure 5-1 The step-by-step procedure of (a) the standard Expectation-Maximization 

(EM) and (b) the modified EM algorithms at forecasting time 𝑛. 𝑧 is a latent variable, 𝐾 

is the number of ensemble members, 𝑇 is the length of the calibration period, and 𝑇ℎ is 

the pre-specified tolerance level 
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Figure 5-2 The flow chart of the proposed HUP-BMA calibration process. 𝑇 is the length 

of the calibration period, 𝐾 is the number of forecasts ensemble members, and 𝑁 is the 

length of the forecasting horizons 

 

5.3.3 Performance evaluation metrics 

In this study, we utilize eight different criteria in order to assess the forecast performance 

of different post-processing approaches in terms of accuracy, reliability, and sharpness as 
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the three main important aspects of any probabilistic predictions (Elshall et al., 2018). 

Accuracy is defined as the level of agreement between forecasts and their corresponding 

observations. Considering the mean value of predictive distribution as the deterministic 

forecast, the well-known Nash Sutcliffe Efficiency (𝑁𝑆𝐸) and the Mean Absolute Error 

(𝑀𝐴𝐸) criteria are calculated to deterministically evaluate the accuracy of the forecasts: 

𝑁𝑆𝐸 = 1 −
∑ (𝐹𝑡 − 𝑂𝑡)2𝑁

𝑡=1

∑ (𝑂𝑡 − �̅�)2𝑁
𝑡=1

 (5-21) 

𝑀𝐴𝐸 =
∑ (|𝐹𝑡 − 𝑂𝑡|)𝑁

𝑡=1

𝑁
 (5-22) 

In the above equation, 𝑁  is the length of time series, 𝑂𝑡  and 𝐹𝑡  respectively are the 

observed and forecasted variables, and �̅� shows the mean of the observed flows. 𝑁𝑆𝐸, 

possessing a range of (−∞, 1], reflects how well the forecast represents the observed data 

by considering the observation mean as the benchmark. The higher 𝑁𝑆𝐸 values correspond 

to the better predictions while its negative values occur when the residuals of the forecast 

are larger than observation variance (Nash & Sutcliffe, 1970; Strauch et al., 2012). 

Although 𝑁𝑆𝐸 gives more weights to lager errors (Krause et al., 2005; Seiller et al., 2012), 

𝑀𝐴𝐸  is the absolute criteria which provides a more balanced error measurements for 

assessing the average performance (Kisi & Cimen, 2011; Willmott & Matsuura, 2005). It 

varies between 0 and +∞ with the best value of 0. Also, 𝑁𝑆𝐸 of log-transformed (𝑁𝑆𝐸𝐿) 

and squared-transformed (𝑁𝑆𝐸𝑆) streamflows are used as two other deterministic metrics 

emphasizing on the accuracy of the lower and higher forecasted flow values, respectively 

(Darbandsari & Coulibaly, 2020a; Razavi & Coulibaly, 2017). 
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Moreover, two probabilistic-based measures, the mean continuous ranked probability score 

(𝐶𝑅𝑃𝑆) (Hersbach, 2000) and the average deviation amplitude (𝐴𝐷𝐴95) (Xiong et al., 

2009) are used to evaluate the accuracy of the predictive forecasts: 

𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫ (𝑃𝑡

𝐹(𝑥) − 𝑃𝑡
𝑂(𝑥))

2
𝑑𝑥

𝑥=+∞

𝑥=−∞

 

𝑁

𝑡=1

, 𝑃𝑡
𝑂(𝑥) = 𝐻(𝑥 − 𝑂𝑡) (5-23) 

𝐴𝐷𝐴95 =
1

𝑁
∑ |

1

2
(𝑞𝑡

𝑢 + 𝑞𝑡
𝑙) − 𝑂𝑡|

𝑁

𝑡=1

 (5-24) 

where, 𝑃𝑡
𝐹(. )  and 𝑃𝑡

𝑂(. )  represent the probability distributions of the forecasted and 

observed flows, respectively, and 𝐻(𝑥 − 𝑂𝑡) is the Heaviside function, being equal to zero 

if 𝑥 < 𝑂𝑡, and 1 otherwise.  𝑞𝑡
𝑙 and 𝑞𝑡

𝑢 are the lower and upper boundaries of the 95 percent 

prediction bound. The 𝐶𝑅𝑃𝑆 is the average of the squared error of the forecast cumulative 

probability distributions compared to the observation, and 𝐴𝐷𝐴95  calculates the 

discrepancy between the middle point of the confidence bound and observations. Both 

criteria have a negative orientation, in which the better forecasts receive lower values. 

Reliability and sharpness are the other two important aspects of any probabilistic forecast. 

In this study, the containing ratio (𝐶𝑅95), defined as the ratio of observations enveloped 

by 95% confidence interval, and the average bandwidth (𝐵𝑊95), representing the average 

width of the corresponding bound, are adopted to respectively evaluate the reliability and 

sharpness of the predictive forecast (Xiong et al., 2009): 

𝐶𝑅95 =
𝑁𝑂𝑖𝑛

𝑁
 (5-25) 
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𝐵𝑊95 =
1

𝑁
∑(𝑞𝑡

𝑢 − 𝑞𝑡
𝑙)

𝑁

𝑡=1

 (5-26) 

𝑁𝑂𝑖𝑛
 is the number of observations covered by the 95% confidence bound, and all other 

variables are defined similar to the previous equations. Simultaneous evaluation of these 

two metrics is necessary for providing the right conclusions. For 𝐶𝑅95, varies between 0 

and 1, the value closer to 95% is preferable, however, it can lead to overestimation of the 

uncertainty with a large prediction bound (i.e. large 𝐵𝑊95). On the other hand, the 

forecasts with a narrow confidence interval (i.e. smaller 𝐵𝑊95) can be overconfident if 

the ratio of covering is low (Parrish et al., 2012). 

5.4 Experimental Setup 

5.4.1 Study area and data 

We carried out the aforementioned post-processing approaches on two hydrologic basins 

located in Northern Ontario, Canada: (1) Big East River, and (2) Black River watersheds. 

Apart from the southern part of Black River, which is used for agricultural purposes, the 

dominant area of both watersheds is mixed forest vegetation. There are no meteorological 

stations within the boundaries of either basin (Figure 5-3). These two watersheds are poorly 

gauged. Low-density ground-based measurements can be used for estimating temperature 

while capturing the temporal and spatial variability of precipitation required more reliable 

data (Price et al., 2014). Therefore, the archived daily aggregated Canadian Precipitation 

Analysis (CaPA) data (Mahfouf et al., 2007) was used to estimate the mean areal 

precipitation of both watersheds. CaPA, with a temporal and spatial resolution of 6 hours 
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and 15 km, respectively, is a precipitation product generated based on the combination of 

observations and climate model data (Lespinas et al., 2015), which has been demonstrated 

to have reliable performance as precipitation forcing of hydrologic models in Canadian 

catchments (Boluwade et al., 2018; Darbandsari & Coulibaly, 2020a; Eum et al., 2014). 

The geophysical and climate characteristics of both basins are summarized in Table 5-1. 

As can be seen, temperature changes indicate the presence of all four seasons in the study 

areas. Moreover, the seasonal precipitation amount in spring is less than in the other 

seasons; however, the flow is the highest. This shows the significant impact of the 

snowmelt process on the hydrological characteristics of both regions. Furthermore, 

although the climatologic conditions of both basins are almost the same, they possess quite 

distinct hydrologic responses leading to the outlet streamflow values with very different 

statistical characteristics (Figure 5-4). 
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Figure 5-3 Location map of the Big East River and Black River watersheds 

 

Table 5-1 Geophysical and climatic characteristics of the Big East River and Black River 

watersheds 

Characteristics 
Basins 

Big East River Black River 

Area (km2) 620 1522 

Elevation range (m.a.s.l) [290-570] [220-420] 

Average Slope (m/km) 10.2 4.9 

Data period 2006-2015 2006-2015 

Long-term seasonal statistics Spring Summer Fall Winter Spring Summer Fall Winter 

Average precipitation (mm/season) 218 248 310 247 210 223 272 239 

Average daily temperature (C) 3.5 16.7 6.2 -10.1 4.2 17.1 7.1 -8.5 

Average outlet flow (mm/season) 275 82 129 159 240 45 85 162 

Average of daily flow (m3/s) 21.4 6.4 10.2 12.7 46.1 8.7 16.5 31.7 
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Figure 5-4 The empirical PDF and CDF of the daily streamflow observation at the outlet 

of the Big East River (BE) and Black River (BL) watersheds and their corresponding 

statistical measures 

 

5.4.2 Hydrological models 

With no climatic and hydrometric stations within the basins and lack of some geographical 

information, such as soil data, both watersheds can be categorized as data-scarce regions 

where conceptual models are more suitable for simulating the rainfall-runoff process 

(Refsgaard & Knudsen, 1996; Srivastava et al., 2020; Tegegne et al., 2017). In this study, 

we used seven structurally different conceptual hydrologic models with various 

parameterizations for streamflow forecasting in both basins (Table 5-2). The 4-parameter 

parsimonious GR4J model, with the least complexity among the others, relies on two 

conceptual storages and the unit hydrograph concept for simulating the whole rainfall-

runoff process (Perrin et al., 2003), and it was proven to perform well in regions with low 
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data availability (Anshuman et al., 2019; Darbandsari & Coulibaly, 2020a). SMARG, the 

modified version of the SMAR model (O’Connell et al., 1970) with superior ability in 

semi-humid and humid regions (Tan & O’Connor, 1996), uses the variable number of soil 

layers for generating surface and groundwater runoffs, being respectively transferred using 

the Nash cascade of variable linear reservoirs and a single linear reservoir. MACHBV, the 

nonlinear version of HBV (Bergström, 1976), originally developed for better simulation of 

stream flows of ungauged basins in Canada (Samuel et al., 2011, 2012), includes a single 

soil moisture storage, and a two-layer response function for estimating the runoff value and 

the non-linear Equilateral triangular weighting function for flow routing. In the well-known 

SACSMA model, widely used for flood forecasting (Dong-Jun Seo et al., 2003; Vrugt et 

al., 2006; Wijayarathne & Coulibaly, 2020), five soil storage layers and the Nash cascade 

of three linear reservoirs are utilized for simulating the hydrologic processes of the basin 

(Razavi & Coulibaly, 2017). Moreover, various available conceptual approaches for 

modeling different components of rainfall-runoff cycles make the HEC-HMS software a 

reliable platform for generating structurally different models (Scharffenberg, 2016; Teng 

et al., 2018). Therefore, here, the first HEC-HMS based model (i.e. HEC1) combines the 

Deficit and Constant loss method and the Recession baseflow method while the 

conjunction of the soil moisture accounting with the Recession and Linear Reservoir 

baseflow methods are used for developing the other two configurations (i.e. HEC2 and 

HEC3, respectively). 

Moreover, as can be seen in Table 5-2, two potential evapotranspiration estimation 

methods are used with different models, so the daily mean areal precipitation and 
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temperature are the only inputs of the models. Also, due to the importance of the snowmelt 

process in both study regions, three different snowmelt routines, being employed in 

conjunction with different models, are the simple degree-day (Samuel et al., 2011), the 

HEC-HMS snowmelt routine (Scharffenberg, 2016), and Snow-17 (Anderson, 2006) with 

five, ten, and eleven user-specified parameters, respectively. Different complexities of the 

snowmelt methods lead to more diverse hydrological models. Further descriptions of all 

hydrologic models as well as the utilized snow routing approaches can be found in the 

above-cited references. 

Table 5-2 The main characteristics of the hydrologic models implemented in this study 

Model 

Number of 

Conceptual 

Storages 

Number of 

optimized 

parameters 

Snowmelt 

estimation 

routine 

PET 

estimation 

method 

Reference 

SMARG Variable 9 Degree-Day 1* Tan and O’Connor (1996) 

GR4J 2 4 Degree-Day 1 Perrin et al., (2003) 

MACHBV 3 10 Snow-17 1 Samuel et al. (2011) 

SACSMA 5 14 Snow-17 1 Burnash et al. (1973) 

HEC1** 2 7 HEC-HMS 2* Scharffenberg (2016) 

HEC2** 4 15 HEC-HMS 2 Scharffenberg (2016) 

HEC3** 6 17 HEC-HMS 2 Scharffenberg (2016) 

* 1: Simplified Thornwaite formula (Samuel et al., 2011); 2: Hargreaves formula (Hargreaves & Samani, 1985) 

** Three different HEC-HMS configurations 

 

The dynamically dimensioned search optimization algorithm (Tolson & Shoemaker, 2007) 

is used for automatically estimating the models’ parameters based on the 6-year calibration 

period (2006-2011). Three different performance evaluation metrics, including Nash 

Sutcliffe Efficiency (𝑁𝑆𝐸), Kling Gupta Efficiency (𝐾𝐺𝐸) (Gupta et al., 2009) and Nash 

Volume Error (𝑁𝑉𝐸) (Samuel et al., 2011) are used as various single objective functions 
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in the calibration process, leading to three different optimized sets of parameters for each 

hydrologic model at each watershed. Finally, the best parameter set of each hydrologic 

model is selected by visually comparing the performance of three potential parameter sets 

using the whole observed and simulated hydrographs as well as the Mean Absolute Error 

(MAE; Equation 5-22) and the Nash Sutcliff Efficiency (NSE; Equation 5-21) as the 

overall performance measurements. This helps us achieve more robust conclusions about 

the potential capability of each rainfall-runoff model by avoiding the possible systematic 

errors or over-parameterization issues which may be caused by the automatic optimization 

process (Gan et al., 1997; Ouermi et al., 2019; Wöhling et al., 2013). 

Similar to 𝑁𝑆𝐸 (Equation 5-21), both 𝐾𝐺𝐸 and 𝑁𝑉𝐸 criteria are positively oriented with 

the best value of 1, which are formulated as follows: 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝑎 − 1)2 + (𝑏 − 1)2 (5-27) 

𝑁𝑉𝐸 = 0.5 × 𝑁𝑆𝐸 + 0.25 × 𝑁𝑆𝐸𝑆 + 0.25 × 𝑁𝑆𝐸𝐿 − 0.1 × 𝑉𝐸 (5-28) 

where 𝑟 is the linear correlation coefficient between observed (𝑂𝑡) and simulated (𝐹𝑡) flows 

and 𝑎  and 𝑏  respectively denote the ratios of the standard deviation and mean of the 

simulated flows to the corresponding statistics of the observations. Also, the Volume Error 

(𝑉𝐸) is defined as: 

𝑉𝐸 =
|∑ 𝐹𝑡 − 𝑂𝑡

𝑁
𝑡=1 |

∑ 𝑂𝑡
𝑁
𝑡=1

 (5-27) 

where 𝑁 is the length of the calibration period. 
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5.5 Results and Discussion 

5.5.1 Rainfall-runoff models calibration 

The best optimal parameter set for each hydrologic model was selected after manually 

comparing the three estimated sets derived from using various objective functions. Using 

the final calibrated parameters, Table 5-3 presents the performance of different hydrologic 

models for the streamflow simulation at the outlet of the Big East River and the Black 

River watersheds in both calibration and validation periods. In addition, for visual 

inspection, Figure 5-5 illustrates the hydrographs of the observed and simulated 

streamflows for the year 2013, as a representative portion of the validation period, in both 

watersheds. In the Big East River watershed, although MACHBV performance is as 

accurate as GR4J in the calibration period, all criteria over the validation period (Table 5-

3) show the notable superiority of GR4J over the other hydrologic models regarding 

different aspects of hydrographs (i.e. low and high flows). The comparison of the 

representative hydrographs (Figure 5-5) also shows the relatively better performance of the 

GR4J model in capturing high flows. This may be due to the demonstrated ability of the 

GR4J model to reliably cope with the problem of having poor mean areal precipitation 

estimates, as the main issue in data-scarce regions. Despite its relative simplicity, the GR4J 

parameters are sufficiently flexible to compensate for the over and underestimation of the 

mean areal precipitation (see Andréassian et al., 2001; Drogue & Khediri, 2016). Moreover, 

besides GR4J, the MACHBV and the SACSMA models performed competitively 

regarding low flow simulation in the validation period while the other four models (i.e. 
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SMARG, HEC1, HEC2, and HEC3) tend to over- or under- predict the low flows (Table 

5-3 and Figure 5-5). 

In the Black River watershed, there is no significant difference between the general 

performances of different hydrologic models over the validation period (𝑁𝑆𝐸 values range 

from 0.78 to 0.83 compared to 0.58 to 0.78 in the Big East River watershed). However, by 

focusing on low and high flows separately, the discrepancies between the model 

performances become more apparent. The 𝑁𝑆𝐸𝐿 values in both calibration and validation 

periods suggest that MACHBV and SACSMA are capable of simulating low flows more 

accurately in the Black River watershed. Regarding high flows, however, performances in 

calibration and validation are not the same. Both MACHBV and SACSMA provide the 

highest performance in capturing high flows during the calibration period (𝑁𝑆𝐸𝑆 = 0.91), 

while, over the validation period, GR4J performs as well as the SAC-SMA model in high 

flow simulation. Similar to the Big East River watershed, the GR4J can better capture the 

peak flows (Figure 5-5) in the Black River watershed. 

Overall, the GR4J model provides the most reliable results in the Big East River watershed 

for both calibration and validation periods, however, there are still some streamflow events 

that are better estimated by relatively lower performing models (Figure 5-5). In the Black 

River watershed, on the other hand, although MACHBV and SACSMA performed slightly 

better in the validation period, it is hard to select one of the models as the most robust one 

regarding different aspects of the hydrograph. Altogether, as it is visually recognizable 

from Figure 5-5, using an ensemble of multi-model streamflow predictions, compared to 
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the individual ones, can provide more information about the observation using the 

properties of various hydrologic models. 

Temporal parameter transferability of the different models is compared using the 

coefficient of transferability (Das et al., 2008), which is calculated as a difference between 

the 𝑁𝑆𝐸  values in the calibration and validation periods (i.e. 𝑇 = 𝑚𝑎𝑥(𝑁𝑆𝐸𝐶𝑎𝑙 −

𝑁𝑆𝐸𝑉𝑎𝑙 , 0) ) where the lower value is better. This criterion shows that the models’ 

performances deteriorate from calibration to validation period and these losses of 

performance do not occur in the same way in different models and different regions (Table 

5-3). For instance, the HEC1 model possesses the highest loss of performance in the Big 

East River watershed, making it the poorest model in the validation period, while, in Black 

River, it is among the models with the lowest performance alteration between calibration 

and validation periods. Therefore, for possessing more robust results and conclusions, the 

validation period is only used for the application of the aforementioned post-processing 

approaches (i.e. HUP, BMA, and HUP-BMA) by dividing it into calibration (2012-2014) 

and forecasting (2014-2015) phases. 
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Table 5-3 The performances of different calibrated hydrologic models for both 

calibration (2006-2011) and validation (2012-2015) periods in the Big East River and 

Black River watersheds 

Basin Period Criteria SMARG GR4J HEC1 HEC2 HEC3 MACHBV SACSMA 

B
ig

 E
as

t 
R

iv
er

 

Obj. Func.1 KGE NSE NVE NSE NSE NVE KGE 

C
al

ib
ra

ti
o
n

 NSE 0.69 0.81 0.67 0.68 0.68 0.81 0.79 

NSEL 0.04 0.78 0.67 0.64 0.62 0.71 0.62 

NSES 0.60 0.67 0.62 0.64 0.63 0.84 0.77 

MAE 5.0 3.5 4.9 4.7 4.6 3.6 4.0 

V
al

id
at

io
n

 

NSE 0.69 0.78 0.58 0.67 0.66 0.70 0.71 

NSEL 0.38 0.87 0.54 0.47 0.64 0.78 0.78 

NSES 0.43 0.75 0.35 0.56 0.41 0.48 0.53 

MAE 5.1 3.7 6.4 5.7 4.7 4.7 4.6 

Transferability (T) 0 0.03 0.12 0.01 0.02 0.11 0.08 

B
la

ck
 R

iv
er

 

Obj. Func. NSE KGE NSE NSE NSE NVE NVE 

C
al

ib
ra

ti
o
n
 NSE 0.87 0.84 0.84 0.88 0.89 0.90 0.90 

NSEL 0.70 0.75 0.03 0.63 0.18 0.83 0.83 

NSES 0.87 0.62 0.75 0.88 0.88 0.91 0.91 

MAE 6.6 6.9 7.3 6.5 6.2 5.8 6.1 

V
al

id
at

io
n
 

NSE 0.80 0.78 0.80 0.80 0.81 0.80 0.83 

NSEL 0.72 0.68 0.57 0.49 0.03 0.83 0.81 

NSES 0.62 0.66 0.62 0.58 0.61 0.63 0.67 

MAE 8.0 8.8 7.7 7.6 7.2 7.3 7.0 

Transferability (T) 0.07 0.06 0.04 0.08 0.08 0.10 0.07 

1 The objective function, which provides the best optimal parameter set of each rainfall-runoff model. 
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Figure 5-5 Observed and simulated hydrographs of the daily streamflow derived from 

different hydrologic models for the year 2013 of the validation period in (a) Big East 

River and (b) Black River watersheds 

 

5.5.2 Calibration of the HUP and HUP-BMA methods 

As previously stated, the time-period of 2012 to 2014 was used in order to calibrate 

different post-processing approaches. As the first step of estimating HUP parameters, after 

dividing the data based on the precipitation indicator (𝑣), the marginal distributions for 
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actual (𝑦𝑛𝑣) and forecasted river discharges of different hydrologic models (�̂�𝑛𝑣
𝑖 ) for each 

lead-time 𝑛, need to be separately estimated. For this purpose, the modified version of the 

Shapiro-Wilk statistic (Ashkar & Aucoin, 2012) is utilized for testing the goodness of fit 

of ten various distributions, and the most suitable distribution function is the one with the 

largest MSW value. MSW test is shown to be a powerful approach for selecting the best 

distributions in the case of possessing non-Gaussian data with small sizes (Ashkar & 

Aucoin, 2012; Han et al., 2019). As an example, the best-selected distributions for each 

sample of data (i.e. actual 𝑦𝑛𝑣 and forecasted �̂�𝑛𝑣
𝑖  streamflow values) at lead-time 𝑛 = 1  

and their corresponding MSW statistics are presented in Table 5-4. It is of note that, due to 

the presence of no gaps in data and using observation as the perfect precipitation forecasts, 

the statistics of each variates do not change significantly as a function of lead-time. So, the 

aforementioned estimation procedure leads to the same best marginal distribution functions 

with slightly different parameters for different lead-times 𝑛 = (2,3, … , 𝑁). 
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Table 5-4 Sample statistics and their selected prior marginal distributions for lead-time 

𝑛 = 1 

Basin Variate 
𝑉 = 0 𝑉 = 1 

Mean s.d1 Distribution MSW2 Mean s.d. Distribution MSW 

B
ig

 E
as

t 

ℎ1 11.7 14.3 BS3 0.984 14.7 18.7 LL 0.996 

𝑠1
𝑆𝑀𝐴𝑅 12.3 14.6 Weibull 0.995 14.5 16.2 GP 0.994 

𝑠1
𝐺𝑅4𝐽

 12.0 12.0 BS 0.974 15.6 17.7 LN 0.994 

𝑠1
𝐻𝐸𝐶1 15.6 13.9 Weibull 0.970 16.5 14.4 BS 0.979 

𝑠1
𝐻𝐸𝐶2 15.4 15.2 GEV 0.990 15.6 15.2 GEV 0.993 

𝑠1
𝐻𝐸𝐶3 11.1 13.8 LN 0.984 13.8 15.2 Kernell 0.984 

𝑠1
𝑀𝐴𝐶  12.4 14.8 Kernel 0.962 15.1 18.0 LN 0.987 

𝑠1
𝑆𝐴𝐶  13.3 15.1 BS 0.992 16.2 16.8 BS 0.996 

B
ig

 E
as

t 

ℎ1 23.6 32.4 Weibull 0.976 29.1 28.4 Gamma 0.984 

𝑠1
𝑆𝑀𝐴𝑅 27.1 24.5 Gamma 0.986 31.0 23.9 Gamma 0.996 

𝑠1
𝐺𝑅4𝐽

 26.9 26.1 BS 0.988 30.8 24.8 GEV 0.989 

𝑠1
𝐻𝐸𝐶1 23.9 24.3 GP 0.962 27.3 22.9 GEV 0.981 

𝑠1
𝐻𝐸𝐶2 24.1 24.0 GP 0.964 28.0 23.6 GEV 0.980 

𝑠1
𝐻𝐸𝐶3 22.3 24.7 Kernell 0.937 26.7 24.4 Kernel 0.974 

𝑠1
𝑀𝐴𝐶  25.5 26.5 GP 0.986 29.9 26.9 Gamma 0.988 

𝑠1
𝑆𝐴𝐶  25.9 25.3 Gamma 0.983 29.0 24.8 Gamma 0.994 

1 s.d is the abbreviation of standard deviation 

2 MSW = Modified Shapiro-Wilk statistic with the perfect value of 1. 

3 BS=Binaum-Saunders; LL=Log-Logistic; GP=Generalized Pareto; LN=Log-Normal; GEV=Generalized Extreme 

Value 

 

After estimating the regression parameters of the prior density (i.e. Equation 5-5) and the 

likelihood function (i.e. Equation 5-10) in the Gaussian space, the parameters of the HUP 

posterior distributions are determined using Equations 5-13 to 5-16 for each deterministic 

forecast based on different hydrologic models (Figure 5-6). The increasing trends in 𝐴 and 

decreasing trends in 𝐷 for both branches of data (i.e. 𝑣 = {0,1}) and all hydrologic models, 

which are more pronounced in the Big East River watershed, show that the initial river 

discharge (ℎ0) is less informative and the forecasts are more affected by 𝑠𝑛 when lead-time 
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increases. Parameter 𝐵  is also estimated to be very close to zero in all cases for both 

watersheds. This is the outcome of the zero estimation of the intercept parameter of the 

likelihood functions ( 𝑏  in Equation 5-10), which is the obvious consequence of 

transforming data into the standard normal space where the expected value for the intercept 

is always zero; so, this parameter can be ignored in the HUP formulation in future studies 

(Vrugt et al., 2008). 

 

Figure 5-6 The precipitation-dependent HUP posterior distribution parameters with 

different hydrologic models in both (a) Big East River and (b) Black River watersheds 
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Using the HUP derived posterior distributions from different hydrologic models in the 

calibration period (years 2012-2014), the BMA parameters (i.e. weights) were separately 

estimated for each branch of data based on the modified expectation-maximization 

algorithm. As can be seen in Figure 5-7, in the Big East River watershed, GR4J possesses 

the highest weights in almost all cases, especially when precipitation occurs. This can be 

justifiable by the fact that in the Big East River watershed, the GR4J model noticeably 

outperformed all other hydrologic models, which is more pronounced regarding high flows 

(Table 5-3). Besides HEC1 and HEC2, the weights of MACHBV are always zero in Big 

East River, while it shows relatively good potential in forecasting streamflow compared to 

the other models. This result may stem from the inherent assumption of the BMA 

formulation, which is about possessing independent members with the ability to capture 

observational variability (Darbandsari & Coulibaly, 2019; Lu et al., 2013; Madadgar & 

Moradkhani, 2014; Refsgaard et al., 2012). A high-performance model may receive a low 

weight due to its similar error structure with another model in the calibration period, while 

a member with relatively lower forecasting skill may assign a higher weight by providing 

unique information to the ensemble. 

In the Black River watershed, on the other hand, there is not a specific hydrologic model 

receiving the highest weights, which is due to the fact that the general performances of all 

models are relatively good in this basin (Table 5-3). In the case of precipitation occurrence 

(𝑣 = 1), MACHBV and HEC3 gained relatively larger weights compared to the other 

models for almost all the lead-times, while the weights of SACSMA, as one of the best 

performing model in the Black River watershed, are not significant, again showing the 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

227 

 

importance of possessing exclusive information. If no precipitation occurs (𝑣 = 0), the 

GR4J weights are the largest one in the shorter lead-times (i.e. 𝑛 = {1,2,3}), however, by 

increasing the lead-time the HEC3 model became the dominant one. Although HEC3 has 

relatively lower performance, especially regarding low flows (Table 5-3) in the Black River 

watershed, its high weights stem from the reliable performances of the HUP method in 

conjunction with HEC3, which will be shown in section 5.5.3. It is worth mentioning that, 

as will be discussed in the following sections, there are not many differences between the 

HUP results from different hydrologic models for shorter lead-times, which makes it less 

important how the BMA weights are distributed among different models. 

 

Figure 5-7 The determined HUP-BMA weights of different hydrologic models in (a) Big 

East River and (b) Black River watersheds (𝑣 is the indicator of the precipitation 

occurrence) 
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5.5.3 HUP-BMA versus HUP 

Both calibrated HUP-BMA and HUP in conjunction with different hydrologic models were 

employed for probabilistically forecasting daily stream flows up to 14 days ahead during 

the one-year (2015) verification period in both Big East River and Black River watersheds. 

Under the assumption of perfect precipitation forecasts, the forecasting here is essentially 

hindcasting, which focuses on estimating the hydrologic uncertainty (Liu et al., 2018; Han 

et al., 2019). Using the performance criteria, proposed in Section 5.3.3, Figures 5-8 and 5-

9 compared the accuracy of the streamflow forecasts derived from different post-

processing approaches deterministically and probabilistically, respectively. Also, the 

reliability and sharpness of the predictive forecasts are simultaneously compared in Figure 

5-10 using the containing ratio (𝐶𝑅95) and the average bandwidth (𝐵𝑊95) criteria. 

Additionally, for qualitative comparison, Figure 5-11 shows a representative portion of the 

observations and probabilistic forecasts derived from the HUP-BMA method and the HUP 

method in conjunction with SMAR, GR4J, and HEC3 rainfall-runoff models. 

In general, the results show that the increasing hydrologic uncertainty for longer lead-times 

causes the deterioration of the accuracy of the forecasts derived from all post-processing 

approaches, which is expected; however, the relative deterioration between sequential lead-

time steps decreases as lead-time increases (Han et al., 2019). Considering HUP-BMA as 

an example, the relative differences of 𝑀𝐴𝐸 and 𝐶𝑅𝑃𝑆 statistics between lead-times 1 and 

2 respectively are 67% and 70% for Big East River and 66% and 53% for Black River, 

while the same differences between lead-times 10 and 11 are around 2% for both metrics 

in both watersheds. Additionally, the reliability of the forecasts (evaluated by 𝐶𝑅95 
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measurements) do not follow any specific trend with increasing lead-time, while increasing 

𝐵𝑊95 as a function of 𝑛 shows that all approaches lead to worse probabilistic forecasts 

with less sharpness in longer lead-times (Figure 5-10). 

General comparison of the HUP results, using all performance metrics, shows that the 

differences between the HUP-derived forecasts based on different hydrologic models are 

not noticeable in short lead-times. This result, which is confirmed by the sample 1-day 

ahead forecasted hydrographs illustrated in Figure 5-11, may be due to the fact that the 

HUP predictions for short forecasting horizons are mostly influenced by the observed 

actual river discharge (𝑦0) rather than the forecast derived from the hydrologic model (�̂�𝑛). 

However, by increasing lead-time, the influence of modeled river flow becomes more 

pronounced, and consequently, selecting a hydrologic model clearly affects the HUP 

performance (Figures 5-8 to 5-11). 

In the Big East River watershed, HUP with the GR4J model has the same forecasts 

accuracy as the HUP-BMA method (Figure 5-8, 5-9, and 5-11), with similar sharpness and 

less reliability (Figure 5-10), this is not surprising as the GR4J model was already 

performing the best (Table 5-3). On the other hand, in the Black River watershed, HEC3 

was not the best performing model, however, in comparison with other hydrologic models, 

its application in conjunction with HUP leads to the most reliable and accurate results for 

the different lead-times (Figure 5-8 to 5-11). It is worthy of note that although HEC3 

performed relatively poor regarding low flows (Table 5-3), the HUP-HEC3 possesses the 

highest 𝑁𝑆𝐸𝐿 values, compared with other HUP-based results. Also, as can be seen in 

Figure 5-11, the HUP method leads to almost similar base flow forecasts regardless of the 
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implemented hydrologic models. In line with Han et al., (2019), this result confirms the 

capability of the HUP structure in generating reliable low flow forecasts while the modeled 

deterministic results are not relatively good. On the other hand, however, the implemented 

hydrologic model noticeably affects the performances of the HUP method regarding high 

flow predictions (Figure 5-11). These effects are more pronounced for longer lead-times 

when the initial condition of flow is less effective. Besides the quality of the hydrologic 

models, the inefficiency of conditioning the prior density and the likelihood function to the 

initial river discharge, as another reason for the poor performances of HUP-based post-

processing methods for high flow forecasting at longer lead-times in the Big East River 

watershed, will be discussed in the following section. Altogether, in both watersheds, the 

HUP-BMA method always performed as well as or better than the best HUP and 

hydrologic model combination regarding the accuracy, reliability, and sharpness of the 

probabilistic streamflow forecasts. This demonstrates the robust ability of HUP-BMA to 

use all beneficial information derived from HUP based on different models for better 

quantifying hydrologic uncertainty and producing enhanced probabilistic streamflow 

forecasts. 
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Figure 5-8 Deterministic performances of the proposed HUP-BMA compared with HUP 

with different hydrologic models using various criteria (i.e. 𝑀𝐴𝐸, 𝑁𝑆𝐸, 𝑁𝑆𝐸𝐿, 𝑁𝑆𝐸𝑆) 

for short- to mid-range streamflow forecasts (1 to 14 days ahead) in (a) Big East River 

and (b) Black River watersheds 
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Figure 5-9 Comparison of the accuracy of probabilistic forecasts derived from the 

proposed HUP-BMA and HUP based on different hydrologic models using two 

performance metrics (i.e. 𝐴𝐷𝐴95 and 𝐶𝑅𝑃𝑆) for 1to 14 days ahead in (a) Big East River 

and (b) Black River watersheds 

 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

233 

 

 

Figure 5-10 Comparing the reliability (𝐶𝑅95) and sharpness (𝐵𝑊95) of the proposed 

HUP-BMA and HUP with different hydrologic models for 1- to 14- days ahead 

probabilistic streamflow forecasts in (a) Big East River and (b) Black River watersheds 
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Figure 5-11 Time-series of the mean and 95% confidence bounds of 1-, 7-, and 14-days 

ahead streamflow forecasts derived from HUP-BMA, and HUP in conjunction with, 

SMAR, GR4J, and HEC3 hydrologic models, compared with the observation from a 

representative part of the verification period in (a) Big East River and (b)Black River 

watersheds 
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5.5.4 The modified HUP-BMA unconditioned on initial observation 

For assessing the effects of using the initial condition on the proposed HUP-BMA 

formulation, the performance of the HUP-BMA method is compared with the BMA 

approach, which is not explicitly taking into account the initial observation. Figure 5-12 

illustrates the percentage of performance improvement, defined as the percent 

enhancement in different evaluation metrics when HUP-BMA is used as a post-processing 

approach, compared to BMA, in both Big East River and Black River watersheds. In 

general, except for the 𝐶𝑅95 criterion, the percent improvements based on all performance 

metrics show a decreasing trend by increasing lead-time in both watersheds, confirming 

the previously aforementioned fact that the performance of HUP-BMA deteriorates for 

longer lead-times. In the Big East River watershed, comparing the accuracy of the forecasts, 

using all deterministic (i.e. 𝑁𝑆𝐸, 𝑁𝑆𝐸𝐿, 𝑁𝑆𝐸𝑆, and 𝑀𝐴𝐸) and probabilistic (i.e. 𝐶𝑅𝑃𝑆 

and 𝐴𝐷𝐴95) measures shows that although HUP-BMA outperformed BMA in shorter 

lead-times, the proposed HUP-BMA provides relatively worse results for 𝑛 larger than 6. 

In terms of reliability and sharpness, HUP-BMA provides sharper results with the same 

reliability for short lead-times, however, increasing lead-time leads to the same 

probabilistic performance of BMA and HUP-BMA. In the Black River watershed, the same 

trend as Big East River is observed where the differences between the performances of 

HUP-BMA and BMA are decreased by increasing lead-times in both deterministic and 

probabilistic manners, however, the advantage of HUP-BMA over BMA still presents for 

longer lead-times. 
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The observed performance deterioration of HUP-BMA, compared with BMA, by 

increasing lead-time probably comes from the main structural difference between these 

two approaches, which is taking into account the initially observed discharge in the HUP-

BMA formulation, and as previously stated, this consideration does not positively affect 

the forecasts for longer lead-times. Comparing the correlation coefficient of the initial river 

discharge (i.e. 𝑦0) with the actual river discharge at lead-time 𝑛 (i.e. 𝑦𝑛;  𝑛 = {1, … , 𝑁}) 

confirms that increasing lead-time causes lower dependence between these two variables. 

This deterioration is more noticeable in the Big East River watershed where the correlation 

coefficient is less than 0.5 for 𝑛 larger than six. However, the larger area and the slighter 

slope of the Black River watershed (Table 5-1), leads to a higher correlation among flows 

(with the lowest value of 0.51 for 𝑛 = 14). This result can justify the relatively worse 

performances of HUP-BMA, compared with BMA, in Big East River for streamflow 

forecasting at longer lead-times. 

To solve this issue in the Big East River watershed, inspired from Reggiani et al. (2009), 

the modified HUP-BMA is proposed based on the unconditioned HUP procedure where 

both prior density and likelihood function are no longer conditioned on 𝑦0 for 𝑛 > 6 (i.e. 

parameters 𝑐𝑛 in Equation 5-5 and 𝑑𝑛 in Equation 5-10 are zero for both branches (i.e. 𝑣 =

{0,1}) at 𝑛 > 6). As expected, a comparison between the performances of HUP-BMA and 

the modified HUP-BMA in the Big East River watershed for 7 to 14 days ahead (Figure 5-

13) shows that the accuracy of streamflow forecasts significantly enhance by using the 

modified HUP-BMA, especially regarding high flows in longer lead-times (e.g. percent 

improvement based on 𝑁𝑆𝐸  and 𝑁𝑆𝐸𝑆  at 𝑛 = 14  are more than 20 and 60 percent, 
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respectively). Regarding reliability and sharpness, although the modified version leads to 

forecasts with slightly higher reliability (better CR95), its higher average bandwidth shows 

the lower sharpness in the case of implementing unconditioned HUP. Moreover, 

comparisons between the modified HUP-BMA and the BMA method using different 

performance metrics (Figure 5-13) indicate the same overall behaviors of both methods. 

Except for 𝐴𝐷𝐴95, indicating the superiority of the modified HUP-BMA method over 

BMA, and 𝐶𝑅𝑃𝑆, which shows the slight advantage of using BMA, all other measurements 

indicate negligible difference between the performances of the two methods. 

Finally, as a visual inspection, Figure 5-14 illustrates a representative part of the observed 

and 14-day ahead forecasted streamflow hydrographs, derived from the HUP-BMA, the 

modified HUP-BMA, and the BMA methods. In line with previous conclusions, the plots 

indicate the superiority of the modified HUP-BMA method in producing better 

probabilistic and deterministic high flow forecasts over the original HUP-BMA. Figure 5-

14 is also indicated the almost same performance of the modified HUP-BMA and the BMA 

approaches in quantifying hydrologic uncertainty. Although, there are still some 

differences between the formulations of the modified HUP-BMA and the BMA methods, 

the comparable performance of both approaches is expected as the overall structure of both 

methods is somewhat similar after removing the effects of the initial condition in the 

modified HUP-BMA approach. It is worthy of note that the lead-time when the modified 

version of the HUP-BMA is beneficial is a function of the watershed characteristics (e.g. 

the characteristics of the hydrographs) and should be separately assessed and specified for 

each study. 
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Figure 5-12 Comparing the performance of HUP-BMA and BMA using the percent 

improvement of different criteria and the correlation between the actual flow 𝐻0 and 

𝐻𝑛 ∀ 𝑛 = {1,2, … ,14} in (a) Big East River and (b) Black River watersheds. The percent 

improvement is defined as the percentage of improvement when using HUP-BMA instead 

of BMA, with positive values indicating the advantage of using HUP-BMA 

 

 

Figure 5-13 Comparison of different performance metrics for 7 to 14 days-ahead 

streamflow forecasting derived from HUP-BMA, modified HUP-BMA, and BMA in Big 

East River watershed. Percent improvement is defined as the percentage of improvement 

when using modified HUP-BMA instead of HUP-BMA or BMA, with positive values 

indicating the advantages of using modified HUP-BMA 
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Figure 5-14 Time-series of the mean and 95% confidence bounds of 14-days ahead 

streamflow forecasts derived from HUP-BMA, modified HUP-BMA, and BMA, compared 

with observations, from a representative portion of the verification period in the Big East 

River watershed 

 

5.6 Summary and Conclusion 

Considering hydrologic uncertainty is one of the main steps for generating reliable 

probabilistic streamflow forecasts. The Hydrologic Uncertainty Processor (HUP) is a well-

known approach for quantifying hydrologic uncertainty by providing a posterior 

distribution conditioned on the initial observation and a deterministic model forecast. 

However, various structurally different hydrologic models can be used in conjunction with 

the HUP and significantly affect its capability of providing reliable and accurate 

probabilistic forecasts. Considering seven conceptual hydrologic models with different 

structures, this study assessed the effects of implementing different models combined with 

the HUP on streamflow forecasting. Also, a new multi-model Bayesian processor (HUP-

BMA) is proposed by using the concept of the Bayesian Model Averaging (BMA) 

approach, where the HUP-derived posterior distributions based on various models are 

combined in order to generate the final predictive forecasts. All post-processing approaches 

are utilized for daily streamflow forecasting up to 14 days ahead in two study regions in 
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Northern Ontario, Canada, and their performances are compared using various 

deterministic and probabilistic verification metrics. The summary of the most important 

conclusions based on the detailed analysis of the results are as follows: 

 In general, although the HUP was proven as a robust approach for quantifying 

hydrologic uncertainty, its performance is influenced by the hydrologic model 

selected and used for generating the deterministic forecast. To some extent, the 

HUP method can compensate for the low quality of the deterministic forecast, 

however, this capability will reduce by increasing lead-time and flow values, so the 

predictive results are more affected by selecting the most promising hydrologic 

model for longer lead-times and high flows. 

 Comparing the application of HUP-BMA and the HUP based on various hydrologic 

models in both watersheds indicated that the proposed HUP-BMA method 

compensates for the dependence of the HUP results on the quality of the hydrologic 

model. Using the advantages of multiple models, HUP-BMA always provides 

better or similar deterministic and probabilistic forecasts, compared with the HUP 

combined with different models. 

 For shorter lead-times, considering the effects of initially observed discharge in 

HUP-BMA formulation leads to a better quantification of hydrologic uncertainty, 

compared with the original BMA, where the only information used is a multi-model 

ensemble of deterministic forecasts. However, by increasing lead-time, this 

superiority is reduced and conditioning the formulations on initial river discharge 

becomes less beneficial and can lead to deteriorating predictions. So, considering 
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unconditioned prior density and likelihood function in the HUP as well as in the 

HUP-BMA formulation for longer lead-times is showing as a potential approach 

for better quantifying hydrologic uncertainty and producing the most accurate 

probabilistic forecasts. 

In general, the findings of this study suggest that while retaining all the advantages of the 

HUP method, the proposed HUP-BMA approach addresses the effects of selecting a single 

hydrologic model by using the information derived from a multi-model ensemble of 

streamflow forecasts to better quantify hydrologic uncertainty. Also, by explicitly 

considering the effects of initial observations, the HUP-BMA method, compared with 

BMA, better estimates the hydrologic uncertainty in short-range streamflow forecasts. 

However, for longer lead-times, the unconditioned revision of HUP-BMA formulation may 

lead to more accurate results. Although the hydrologic responses of both poorly-gauged 

watersheds are quite different, evaluation of the proposed multi-model Bayesian processor 

in regions with different climatologic and topographic conditions needs to be carried out 

in future studies. Moreover, additional verification of the proposed method for case studies 

with longer time-series of data and higher temporal resolution is advisable for further 

research to better understanding the processor. The proposed HUP-BMA method includes 

a segregated calibration of the HUP parameters and weights while developing and 

evaluating an integrated calibration structure, where all HUP-BMA parameters are 

estimated simultaneously, could lead to better results and worth being investigated in the 

future studies. Moreover, this study was designed to relatively assess the performances of 

the proposed HUP-BMA for estimating hydrologic uncertainty, however, its evaluation in 
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conjunction with the probabilistic precipitation forecasts (or ensemble of precipitation 

forecasts) for quantifying total predictive uncertainty requires further studies. In addition, 

providing criteria as a function of characteristics of the observed hydrograph, for 

systematically determining the specific lead-time after which the unconditioned version of 

the processor is more beneficial, requires further studies. 
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 Assessing Entropy-based Bayesian Model Averaging Method 

for Probabilistic Precipitation Forecasting 

Summary of Paper 4: Darbandsari, P., & Coulibaly, P. (2021). The Application of the 

(Modified) Entropy-based Bayesian Model 1 Averaging Method for Probabilistic 

Precipitation Forecasting. Journal of Hydrometeorology, under review. 

The main goal of this research work is to investigate the applicability of a variant of the 

Entropy-based Bayesian Model Averaging (En-BMA) approach for precipitation 

forecasting. Some modifications are proposed to enhance the En-BMA method for post-

processing ensemble of precipitation forecasts. After verifications of seven different 

individual forecasts, comparison has been made between the sub-daily probabilistic 

precipitation forecasts derived from the modified En-BMA and the widely used traditional 

BMA methods. 

Key findings of this research work include: 

 Among different precipitation forecasts, the Regional Ensemble Prediction System 

(REPS) appeared to be the most robust one for the Northern Ontario regions, while 

none of them can be selected as the most accurate one in all lead times and locations. 

 Implementing the proposed modifications enhances the performances of the En-

BMA in the case of precipitation forecasting. 
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 Considering the whole time series of forecasts, both modified En-BMA and BMA 

methods shows competitive performances with the former outperforming the latter 

on extreme or large precipitation events. 

6.1 Abstract 

Bayesian Model Averaging (BMA) is a popular ensemble-based post-processing approach 

where the weighted average of the individual members is used to generate predictive 

forecasts. As the BMA formulation is based on the law of total probability, possessing the 

ensemble of forecasts with mutually exclusive and collectively exhaustive properties is one 

of the main BMA inherent assumptions. Trying to meet these requirements led to the 

entropy-based BMA (En-BMA) approach. En-BMA uses the entropy-based selection 

procedure to construct an ensemble of forecasts with the aforementioned characteristics 

before the BMA implementation. This study aims at investigating the potential of the En-

BMA approach for post-processing precipitation forecasts. Some modifications are 

proposed to make the method more suitable for precipitation forecasting. Considering the 

6-hour accumulated precipitation forecasts with lead times of 6 to 24 hours from seven 

different models, we evaluate the effects of the proposed modifications and 

comprehensively compared the probabilistic forecasts, derived from the BMA and the 

modified En-BMA methods in two different watersheds. The results, in general, indicate 

the advantage of implementing the proposed modifications in the En-BMA structure for 

possessing more accurate precipitation forecasts. Moreover, the superiority of the modified 

En-BMA method over BMA in generating predictive precipitation forecasts is 

demonstrated based on different performance criteria in both watersheds and all forecasting 
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horizons. These outperforming results of the En-BMA are more pronounced for large 

precipitation values which are particularly important for hydrologic forecasting. 

6.2 Introduction 

Accurate and reliable precipitation forecasting is fundamental for various operational water 

resources management tasks, flood control and mitigation in particular (Cuo et al., 2011; 

Shrestha et al., 2013; Steenbergen & Willems, 2014). The inherent uncertainties associated 

with precipitation forecasts, which mostly stem from the initial conditions and model 

structures (Jha et al., 2018; Taillardat et al., 2016), make it difficult to incorporate 

deterministic forecasts without uncertainty quantification into practical applications. This 

limitation shows the importance of generating reliable probabilistic precipitation forecasts 

that meet the needs of users.  One of the most common approaches for quantifying different 

uncertainties and generating probabilistic forecasts is ensemble forecasting (Han & 

Coulibaly, 2020; Ji et al., 2019; Yang et al., 2012). Constructing ensemble prediction 

systems (EPS) can effectively enhance uncertainty estimation (Ma et al., 2018; Robertson 

et al., 2013). Besides an ensemble of forecasts from a single model with different initial 

conditions, EPS can be generated using multiple forecasting models, which leads to a better 

quantification of predictive uncertainty (Liu & Xie, 2014; Saedi et al., 2020; Xu et al., 2019; 

Yang et al., 2012). 

Deriving reliable probabilistic forecasts from EPS requires the application of a post-

processing approach, which utilizes the full capability of the ensemble for quantifying 

predictive uncertainty (Liu & Xie, 2014; Scheuerer & Hamill, 2015). Bayesian Model 

Averaging (BMA) is one of the most widely used ensemble post-processing approach, 
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which was first proposed for merging multiple statistical models (Hoeting et al., 1999; Kass 

& Raftery, 1995) and then, it was extended for dynamical models and forecast ensembles 

(Raftery et al., 2005). By using the full information of the forecasts’ ensemble, BMA 

generates reliable and sharp predictive distribution through weighted averaging of the 

posterior distributions conditioned on different individual members. The BMA weights are 

determined by the conditional probability of each member given observation, which 

represents the forecasting skills of the member in the training period. 

Given that the original BMA uses the Gaussian function to estimate the posterior 

probabilities (Raftery et al., 2005), it is not reliable for precipitation where the predictive 

distribution is not normal (high possibility of being zero and highly skewed for non-zero 

values; (Sloughter et al., 2007; Yang et al., 2012)). In order to relax the aforementioned 

assumption, the BMA method was modified for skewed variables, such as precipitation, 

through proper modeling of the distribution. Sloughter et al. (2007) developed BMA for 

precipitation using a two-stage strategy, where the predictive distributions of each forecast 

are modeled by a mixture of a point mass at zero and a gamma distribution for positive 

values. The capability of the proposed BMA variant for generating reliable probabilistic 

precipitation forecasts was shown by various studies (Aminyavari & Saghafian, 2019; 

Fraley et al., 2010; Ji et al., 2019; Liu & Xie, 2014; Saedi et al., 2020; Vogel et al., 2018). 

Besides, Yang et al. (2012) used the Tweedie distribution, which can simultaneously model 

the probability of precipitation and its amount. Moreover, stratifying precipitation forecasts 

using threshold values (Ji et al., 2019) or ensemble spread (Zhu et al., 2015) was 

recommended for possessing more reliable results especially for heavy events. 
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Although some studies tried to extend the BMA applicability for precipitation forecasting 

by properly modeling the predictive distribution functions, there are some more inherent 

assumptions in the BMA scheme that require some attention. BMA is based on the law of 

total probability (Raftery et al., 2005), and consequently, for reliable performance of the 

BMA, an ensemble with independent members (exclusiveness) and high coverage of the 

observation variability (exhaustiveness) is required (Darbandsari & Coulibaly, 2020a; 

Refsgaard et al., 2012). In other words, an ensemble of forecasts with mutually exclusive 

and collectively exhaustive properties can lead to better BMA results. However, these two 

properties are in contradiction with each other. Simply increasing the number of members 

can relatively assure the latter property (exhaustiveness), while this may contravene the 

exclusiveness requirement by increasing the redundant information within the ensemble 

(Madadgar & Moradkhani, 2014). Therefore, generating a balanced EPS with the two 

aforementioned properties seems necessary in any BMA applications. Recently, 

Darbandsari and Coulibaly (2020a) proposed an entropy-based Bayesian model averaging 

(En-BMA) approach to relax the assumption of possessing a mutually exclusive and 

collectively exhaustive ensemble. Prior to the BMA application, the optimal subset of 

members is selected using three different entropy terms by simultaneously minimizing the 

redundant information between members while keeping the overall information amounts 

at the highest level. Their study shows the superiority of their proposed approach over 

BMA for daily streamflow forecasting. 

So far, no studies have assessed the En-BMA approach for probabilistic precipitation 

forecasting. The main objective of this work is to propose a modified version of the 
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entropy-based BMA method for post-processing ensemble of precipitation forecasts. The 

multi-model EPS that incorporates the precipitation forecasts of seven different numerical 

models are used to evaluate the applicability of the modified En-BMA for sub-daily 

precipitation forecasting in two basins located in Ontario, Canada. Besides assessing the 

performance of individual forecasts and showing the importance of using an ensemble 

system, the relative performance of the modified En-BMA, compared with BMA, shows 

the advantages of possessing ensemble precipitation forecasts with mutually exclusive and 

collectively exhaustive properties for generating more accurate ensemble-based 

probabilistic results. The remainder of the paper is organized as follows. Section 6.3 

presents the underlying concepts of the BMA and the En-BMA post-processing approaches. 

In section 6.4, we briefly describe the study areas and data. Section 6.5 discusses the results, 

including the comprehensive comparison of BMA and En-BMA, and a summary and 

conclusions are presented in Section 6.6. 

6.3 Methodology 

6.3.1 Bayesian Model Averaging (BMA) for precipitation forecast 

Bayesian Model Averaging (BMA; (Hoeting et al., 1999; Raftery et al., 2005)) is a 

statistical post-processing approach where a weighted combination of the predictive 

distribution functions from different competing individual forecasts is used for generating 

more reliable probabilistic results. In the original BMA, the posterior distribution of 

forecasted variable 𝑦  given 𝐾  different forecasts ensemble ( 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝐾} ) is 

formulated using the law of total probability (Raftery et al., 2005): 
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𝑃(𝑦|𝑓1, 𝑓2, … , 𝑓𝑘, 𝑌 ) = ∑ 𝑤𝑖 × 𝑃(𝑦|𝑓𝑖 , 𝑌)

𝑘

𝑖=1

 (6-1) 

where 𝑤𝑖 is the BMA weight, which presents the forecasting skill of the corresponding 

ensemble member (𝑓𝑖) over the training period 𝑌, and 𝑃(𝑦|𝑓𝑖 , 𝑌) is the posterior distribution 

of 𝑦 conditioned on individual forecast 𝑖. The aforementioned posterior distributions are 

assumed to follow a Gaussian distribution in the original BMA (Raftery et al., 2005), while 

various studies show that this is a poor choice for precipitation forecasts with a large 

number of zero values and highly skewed distributions for positive dates. Sloughter et al. 

(Sloughter et al., 2007) proposed one of the most well-known BMA variants for 

precipitation where the main modification includes replacing the Gaussian distribution 

with a mixture of a point mass at zero and the gamma distribution, and transforming data 

using cube root. So, the main equation of the BMA can be rewritten as follows (Sloughter 

et al., 2007): 

𝑃(𝑦′|𝑓1
′, 𝑓2

′, … , 𝑓𝐾
′ , 𝑌 )

= ∑ 𝑤𝑖

𝑘

𝑖=1

× (𝑃(𝑦 = 0|𝑓𝑖
′) × I[y = 0] + 𝑃(𝑦 > 0|𝑓𝑖

′) × 𝑔𝑖(𝑦′|𝑓𝑖
′)

× I[y > 0]) 

(6-2) 

 

𝑦′ and 𝑓𝐾
′  respectively shows the cube root of observations and forecasts and I[. ] is the 

general indicator function which will be unity if the condition inside the bracket holds. 
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𝑃(𝑦 = 0|𝑓𝑖
′) and 𝑃(𝑦 > 0|𝑓𝑖

′) respectively represents the probability of no precipitation 

and probability of precipitation given the forecast member 𝑓𝑖
′ which is estimated using 

logistic regression (Sloughter et al., 2007): 

𝑙𝑜𝑔𝑖𝑡𝑃(𝑦 = 0|𝑓𝑖
′) = log

𝑃(𝑦 = 0|𝑓𝑖
′)

𝑃(𝑦 > 0|𝑓𝑖
′)

= 𝑎0𝑖 + 𝑎1𝑖 × 𝑓𝑖
′ + 𝑎2𝑖 × 𝛿𝑖 (6-3) 

𝛿𝑖 = {
1 𝑖𝑓 𝑓𝑖 = 0
0 𝑖𝑓 𝑓𝑖 ≠ 0

 (6-4) 

𝛿𝑖  is the second predictor variable (Equation 6-4), which is considered to enhance the 

logistic regression performance (Sloughter et al., 2007). Also 𝑎0𝑖 , 𝑎1𝑖 , and 𝑎2𝑖  are the 

member specific parameters that need to be estimated by logistic regression based on the 

training data. 

In the case of occurring precipitation, the posterior distribution of the cubic root of 

precipitation conditioned on each ensemble member 𝑖  is modeled using the gamma 

distribution (𝑔𝑖(𝑦′|𝑓𝑖
′)) with the following mean (𝜇𝑖) and variance (𝜎𝑖

2) (Sloughter et al., 

2007): 

𝜇𝑖 = 𝑏0𝑖 + 𝑏1𝑖𝑓𝑖
′ (6-5) 

𝜎𝑖
2 = 𝑐0 + 𝑐1𝑓𝑖 (6-6) 

𝑏0𝑖 and 𝑏1𝑖 are the parameters which need to be estimated separately for each ensemble 

member 𝑖 using a simple linear regression between the cube root of non-zero observations 

(𝑦′) as predicant and the cubic root of the corresponding forecasts (𝑓𝑖
′) as the predictor over 

the training period. 𝑐0 and 𝑐1 are the variance parameters, which are used to capture the 
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heteroscedastic characteristics of the standard deviations as a function of the predictor 

values (Sloughter et al., 2007; Vrugt & Robinson, 2007). 

Weights (wi ) and variance parameters (𝑐0  and 𝑐1 ) are determined using the modified 

expectation-maximization (EM) algorithm by maximizing the log-likelihood function 

(𝐿(𝑤𝑖 , 𝑐0, 𝑐1)): 

𝐿(𝑤𝑖 , 𝑐0, 𝑐1) = 𝐿𝑜𝑔 (∑ 𝑃(𝑦′|𝑓1
′, 𝑓2

′, … , 𝑓𝐾
′ , 𝑌 )

𝐾

𝑖=1

) (6-7) 

EM is an iterative algorithm (Figure 6-1). After initialization, the latent variable (𝑧) is 

calculated using the current values of the parameters in the expectation step. In the 

maximization step, the updated value of 𝑧  is used to calculate the weights while the 

variance parameters are estimated numerically by maximizing the objective function 

(Equation 6-7) using the updated weights. The EM algorithm is not a global optimization 

method, and its sensitivity to the initial parameter values could lead to local maxima 

(Sloughter et al., 2007; Vrugt et al., 2008), so it can be replaced with a global optimization 

technique for possessing more robust estimation. In this study, the application of the 

dynamically dimensioned search (DDS) optimization method (Tolson & Shoemaker, 2007) 

as an alternative for the modified EM algorithm is evaluated. The global optimal solution 

in the DDS approach is determined by dynamically rescaling the dimension of the search 

space. 
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Figure 6-1 The modified Expectation-Maximization algorithm (after Sloughter et al., 

2007) 

 

Altogether, the proper estimation of the BMA parameters includes three main steps: using 

the training data, (1) the linear regression is used for estimating 𝑏0𝑖 and 𝑏1𝑖 parameters, (2) 

the 𝑎0𝑖, 𝑎1𝑖, and 𝑎2𝑖 parameters are estimated using logistic regression, and (3) weights (𝑤𝑖) 

and variance parameters (𝑐1 and 𝑐2) are determined based on the EM algorithm. It is worthy 

of note that the moving window scheme is used for defining the training period. The sliding 

window of observation-forecast pairs before the initial date is taken as the recursive 
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training period. Therefore, selecting the optimal window length is the initial step before the 

BMA implementation. 

6.3.2 Entropy-based BMA for precipitation forecast 

As previously mentioned, possessing a mutually exclusive and collectively exhaustive 

ensemble of forecasts is a prerequisite for proper implementation of the BMA 

postprocessor. In the Entropy-based Bayesian Model Averaging (En-BMA) approach, 

which is initially proposed for streamflow forecasting (Darbandsari & Coulibaly, 2020a), 

an optimal subset of forecasts ensemble with lower dependency and higher information 

content was selected before applying the BMA method. Since detailed descriptions of the 

En-BMA concepts are provided in Darbandsari and Coulibaly (2020a), a brief overview of 

this approach and the proposed modifications to make it more suitable for precipitation 

forecasting are presented here. 

The En-BMA method focuses on constructing the optimal ensemble of forecasts for BMA 

application using different entropy terms. Without any prior assumption about the 

statistical characteristics of the data sets, entropy provides a measure of the corresponding 

information content included in the data (Leach et al., 2015; Mishra & Coulibaly, 2009; 

Singh, 1997). Based on the Shannon entropy of information theory (Shannon, 1948), the 

marginal entropy shows the amount of information retained by a single variable (𝐻(𝑋)), 

while in the case of more than two variables (e.g. 𝑋1, 𝑋2, … , 𝑋𝑁), the term, joint entropy 

(𝐻(𝑋1, 𝑋2, … , 𝑋𝑁)), is defined as a measure of the overall information content gained from 

knowing all variables. The highest possible joint entropy value of multiple variables will 
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be equal to the sum of their marginal entropies in the case of possessing independent 

variables (Keum et al., 2019; Li et al., 2012). The relationship between marginal entropy 

and joint entropy leads to the definition of the total correlation (𝐶(𝑋1, 𝑋2, … , 𝑋𝑁)), which 

is a measure of the redundant information in multiple variables (Alfonso et al., 2013; Keum 

& Coulibaly, 2017): 

𝐶(𝑋1, 𝑋2, … , 𝑋𝑁) = ∑ 𝐻(𝑋𝑖)

𝑁

𝑖=1

− 𝐻(𝑋1, 𝑋2, … , 𝑋𝑁) (6-8) 

In the case of possessing two variables (or groups of variables), the total correlation is 

transformed to the transinformation ( 𝑇(𝑋1, 𝑋2) ) which represents the amount of 

dependence between two variables (or groups of variables): 

𝑇(𝑋1, 𝑋2) = 𝐻(𝑋1) + 𝐻(𝑋2) − 𝐻(𝑋1, 𝑋2) (6-9) 

The transinformation changes between zero, for fully independent variables, and 

min(𝐻(𝑋1), 𝐻(𝑋2)), in the case of functionally dependent ones (Darbandsari & Coulibaly, 

2020b). 

Considering individual forecasts and observation data sets as different variables, the 

aforementioned entropy terms can be used to generate an ensemble of forecasts with 

maximum information and minimum redundancy. For achieving this goal, the entropy-

based selection algorithm with a nested loop structure is developed (Darbandsari & 

Coulibaly, 2020b). In this algorithm, two stopping criteria (the joint entropy of the selected 

subset over the joint entropy of all forecasts, and the ratio of the transinformation between 

selected members (as a group of variables) and observations to that of all candidates and 
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observations) are used to prevent the loss of information (Figure 6-2a). Also, in the original 

procedure, the total correlation is implemented as an objective function of the inner loop 

to select the optimal ensemble with the lowest redundant information among subsets with 

the same number of members.  

In this study, an alternative objective function based on joint entropy is also evaluated. At 

first glance, it seems that defining the cost function of the inner loop based on the joint 

entropy will not lead to the lowest shared information. However, using joint entropy before 

the total correlation can prevent information loss resulting from removing members. So, 

with the same amount of information content, the final selected subset using the modified 

objective function possesses a lower number of members with a lower total correlation 

value, compared to the original version. As a representative example, shown in Figure 6-

2b, the total correlation of the four-member optimal subset, derived from the modified 

selection procedure, is around 60 percent lower than the corresponding value of the final 

selected subset (including six members) from the original method, while the overall 

information content of both optimal subsets is at the same level. 

Moreover, another modification that is applied in this study is about where the entropy-

based selection procedure will be implemented. In the original En-BMA method, the 

selection procedure has been used prior to the BMA application (Figure 6-3a). As shown 

in Figure 6-3b, here we proposed an alternative framework, where the first step of the BMA 

procedure for precipitation, a linear regression, has been applied before narrowing down 

the ensemble members. In other words, the variables, being used in the selection procedure 

are the non-zero cubic root transformed and linear regressed forecasts and observation. As 
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the BMA posterior distribution for precipitation forecasts is defined based on the 

aforementioned data (Equation 6-2), their characteristics as an ensemble play an important 

role in the BMA performance, and considering them in the selection algorithm could lead 

to better results. 

 

Figure 6-2 The (modified) entropy-based selection procedure: (a) the Pseudo Code and 

(b) examples of their applications 
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Figure 6-3 The structure of (a) the original and (b) the modified entropy-based BMA 

methods 

 

6.3.3 Verification metrics 

In this study, different evaluation metrics, including Mean Absolute Error (𝑀𝐴𝐸), Root 

Mean Squared Error (𝑅𝑀𝑆𝐸), Pearson Correlation Coefficient (𝑃𝐶𝐶), and Continuous 

Ranked Probability Score (𝐶𝑅𝑃𝑆) are used for the verification analysis of various post-

processing approaches. 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 𝑃𝐶𝐶 are the deterministic measures which are 

formulated as follows: 

𝑀𝐴𝐸 =
1

𝑁
∑(|𝑓𝑡 − 𝑂𝑡|)

𝑁

𝑡=1

 (6-10) 
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𝑅𝑀𝑆𝐸 = (
1

𝑁
(∑(𝑓𝑡 − 𝑂𝑡)2

𝑁

𝑖=1

))

1
2

 (6-11) 

𝑃𝐶𝐶 =
[∑ (𝑂𝑡 − �̅�)(𝑓𝑡 − 𝑓)̅𝑁

𝑡=1 ]

√∑ (𝑂𝑡 − �̅�)2𝑁
𝑡=1 ∑ (𝑓𝑡 − 𝑓)̅

2𝑁
𝑡=1

 
(6-12) 

where 𝑂𝑡 and 𝑓𝑡 are the observation and forecast (the mean of the predictive distributions 

of probabilistic forecasts), and �̅� and 𝑓 ̅are respectively the observation and forecast mean 

over the verification period. 𝑅𝑀𝑆𝐸 reflects the closeness between observation and forecast 

by giving more weights to large values (Coulibaly et al., 2005), while 𝑀𝐴𝐸 is a more 

balanced criterion, assessing the average model performance using the difference between 

forecast and observation (Willmott & Matsuura, 2005). Both 𝑀𝐴𝐸  and 𝑅𝑀𝑆𝐸  varies 

between 0 and +∞ with the best value of 0. 𝑃𝐶𝐶, possessing a range of [-1,1], shows the 

linear dependency between forecasts and observed value (Verkade et al., 2013). The better 

forecasts possess higher 𝑃𝐶𝐶  values while its negative values reflects the inverse 

correlation. 

𝐶𝑅𝑃𝑆  is a probabilistic-based criterion, which is defined as the squared error of the 

probability distributions of the forecast (𝑃𝑡
𝑓
) compared to the observed one (𝑃𝑡

𝑂) (Hersbach, 

2000): 

𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫ (𝑃𝑡

𝑓(𝑥) − 𝑃𝑡
𝑂(𝑥))

2
𝑑𝑥

+∞

−∞

𝑁

𝑡=1

 (6-13) 
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𝐶𝐷𝐹𝑡
𝑂(𝑥) = 𝐻(𝑥 − 𝑂𝑡) (6-14) 

𝐻(𝑥 − 𝑂𝑡) in Equation 6-14 is the Heaviside function, being equal to 1 if 𝑥 > 𝑂𝑡, and 0 

otherwise. 𝐶𝑅𝑃𝑆, with a range of 0 to +∞, is negatively oriented where smaller values 

correspond to the better predictions. Besides the previously stated performance criteria, we 

use the reliability plot (Laio & Tamea, 2007) as a graphical tool for assessing the statistical 

reliability of the probabilistic forecasts. Also, its corresponding metric (α), changing 

between 0 and 1 with the best value of 1, reflects the reliability of the forecasts by 

calculating the difference between the reliability plot (forecasts cumulative probability 

distribution) and the bisector line (cumulative uniform distribution): 

𝛼 = 1 − 2 × (
1

𝑁
∑ 𝑃𝑡

𝑓(𝑂𝑖) − 𝑈(𝑂𝑡)

𝑁

𝑡=1

) (6-15) 

To facilitate the comparison of different post-processing approaches, the percentage of 

performance improvement, called percent improvement hereafter, is used. This term is 

defined based on different performance metrics as percent improvements of their values in 

the case of using one method, compared with another. 

6.4 Study areas and data 

We assessed the applications of the BMA and the (Modified) En-BMA for the post-

processing ensemble of mean-areal sub-daily precipitation forecasts in the Big East River 

and the Black River watersheds, with the catchment areas of approximately 600 and 1500 

km2, respectively. As can be seen in Figure 6-4, both watersheds are located in Northern 

Ontario, Canada, and can be considered as poorly-gauged basins as there are no 
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meteorological stations within their boundaries. So, the Canadian Precipitation Analysis 

(CaPA) data are used as a reference dataset for verifying precipitation forecasts in both 

regions. CaPA is a 6-hourly precipitation product with a spatial resolution of 15 km, which 

is generated based on the combination of various precipitation sources (Lespinas et al., 

2015; Mahfouf et al., 2007). Its reliability as an alternative to weather stations in Canadian 

data-poor catchments was shown by various studies (Darbandsari & Coulibaly, 2020b; 

Eum et al., 2014). 

In this study, seven different numerical weather prediction systems, employed for 

generating an ensemble of precipitation forecasts, are Global Deterministic Prediction 

System (GDPS), Global Ensemble Prediction System (GEPS), Global Forecast System 

(GFS), Global Ensemble Forecasting System Reforecast Project Version 2 (GEFS), 

Regional Deterministic Prediction System (RDPS), Regional Ensemble Prediction System 

(REPS), and High-resolution Regional Deterministic Prediction System (HRDPS). Table 

6-1 represents the detailed features of the aforementioned products. The seven-member 6-

hr accumulated precipitation forecasts ensemble with lead times of 6 to 24 hours, issued at 

0000 UTC, are used in this study. The verification period is from 2019/07/03 to 2020/08/31. 

We use the means of the single model ensemble forecasts (i.e. GEPS, REPS, and GEFS) 

for comparing their performances with deterministic models (i.e. GDPS, RDPS, GFS) and 

constructing the multi-model ensemble. It is of note that the spatially averaged predictions 

and verification data over each basin, which is determined using the Thiessen polygon 

approach (Thiessen, 1911), are considered as the mean areal precipitation data and be used 

for evaluating different post-processing methods. 
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Figure 6-4 The location maps of the Big East River and Black River watersheds 

 

Table 6-1 The detailed descriptions of the numerical weather prediction models used in 

this study 

NWP 
Resolution Base Time  

 (UTC) 

Forecast 

length (hr) Availability Organization 
Spatial Temporal 

GDPS ~25 km 1 hourly 00, 12  0 – 240  From 2019/07/03 CMC1 

GEPS ~50 km 1 hourly 00, 12  0 – 384  From 2018/09/19 CMC 

GFS ~27 km 3 hourly 00, 06, 12, 18  0 – 384 From 2015/01/15 NOAA2 

GEFS ~50 km 3 hourly 00 0 – 192 From 2000/01/01 NOAA 

REPS ~15 km 1 hourly 00, 12  0 – 72 From 2019/07/03 CMC 

RDPS ~10 km 1 hourly 00, 06, 12, 18  0 – 84 From 2015/01/01 CMC 

HRDPS ~2.5 km 1 hourly 00, 06, 12, 18  0 – 48 From 2017/05/22 CMC 

1 Canadian Meteorological Centre 

2 National Oceanic and Atmospheric Administration 
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6.5 Results and Discussions 

6.5.1 Individual model performance 

Before evaluating the post-processing approaches, a primary comparison was made 

between the performances of different individual forecasts in terms of 𝑀𝐴𝐸, 𝑃𝐶𝐶, and 

𝑅𝑀𝑆𝐸 (Figure 6-5). In general, the results in both basins indicate that REPS leads to the 

most consistent precipitation forecasts based on most of the criteria at different forecasting 

horizons. This is in line with Abaza et al. (Abaza et al., 2013), showing the REPS potential 

for precipitation forecasting in Canadian catchments. Also, GEPS performs competitively 

in both watersheds. Regarding 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸, the GEFS model provides accurate results 

in both basins, however, the 𝑃𝐶𝐶  criterion in the Big East River watershed shows the 

relatively poor performance of GEFS compared to the other forecasts. Moreover, the 

HRDPS forecasts are relatively accurate for lead-times 6 and 12; however, its performance 

is among the worst ones for longer lead-times (i.e. 18 and 24), especially in the Big East 

River watershed. Although the performances of GFS in the Big East River watershed are 

relatively reliable, it possesses the lowest skill for precipitation forecasts in Black River, 

especially for 6-, 12-, and 18-hours ahead forecasts. 

Altogether, the main conclusion, standing out from comparing various individual models, 

is that neither of the models has complete superiority to provide the most promising 

precipitation forecasts in both basins and for different lead-times. Although in general, the 

REPS model can be considered as the good performing one, it does not always provide the 

best results based on different verification metrics. Therefore, selecting the best model is 
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practically impossible. This shows the importance of using an ensemble of multi-model 

forecasts instead of relying on individual ones (Liu & Xie, 2014; Qu et al., 2017). 

 

Figure 6-5 Comparison of different performance measurements for 6 to 24 hours-ahead 

forecasts derived from different forecasting models in (a) Big East River and (b) Black 

River watersheds 

 

6.5.2 BMA evaluation 

Following Raftery et al.(Raftery et al., 2005), a temporal moving window, including 

sample data from 𝑁  previous days, is used for estimating BMA parameters. So, 

determining the optimal window length (𝑁) is the primary and important step prior to the 

applications of the BMA (and En-BMA). As the optimal length of moving window varies 

based on areas and data sets, it should be specifically determined for each study (Liu & 
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Xie, 2014; Sloughter et al., 2007). Here, by using different evaluation metrics, we compare 

the performance of BMA as a function of the moving window length (Figure 6-6). In line 

with previous studies (Raftery et al., 2005; Schmeits & Kok, 2010; Sloughter et al., 2007; 

Vrugt & Robinson, 2007), the results in both Big East River and Black River watersheds 

show that increasing the length of training period leads to better BMA results in terms of 

different performance metrics. However, these trends of improvements decrease with 

increasing moving window length. 

Moreover, as previously mentioned, the BMA formulation, proposed for precipitation 

forecasting is based on the linear regression between observation and forecasts in non-zero 

precipitation dates. Therefore, a sufficient number of non-zero precipitation dates is 

required for the proper estimation of the regression parameters. As expected, by increasing 

the length of the moving window, the number of dates with precipitation occurrence 

increases (Figure 6-6), which can be one of the main reasons for better BMA performance 

with higher 𝑁 values in the case of forecasting precipitation. It is worthy of note that 

although larger moving window length provides higher information, it could be impractical 

in the real world, due to the limited length of available time-series (Xu et al., 2019). In this 

study, we select a 100-day moving window for the applications of both BMA and En-BMA 

methods. 
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Figure 6-6 The performance statistics of the BMA 6-hour ahead forecasts and the 

number of non-zero precipitation dates as a function of moving window length in (a) Big 

East River and (b) Black River watersheds 

 

Besides the length of the training period, how well the BMA parameters are estimated can 

also have noticeable effects on the results. The modified EM algorithm is proposed for 

estimating BMA parameters, while it is argued that this method may have some difficulty 

in finding the global optimal estimations. Here, in order to evaluate the capability of the 

modified EM method in estimating BMA parameters, a dynamically dimensioned search 

(DDS) global optimization method is considered as the benchmark, and a comparison is 

made between BMA models calibrated with both approaches. The results in both basins, 

as shown in Figure 6-7, indicate that both methods lead to approximately similar 

parameters and objective function values. Therefore, the modified EM algorithm is 

sufficiently reliable for estimating BMA parameters. This conclusion is in line with 

Darbandsari and Coulibaly (2019) where an in-depth analysis in the case of streamflow 

forecasting shows that the log-likelihood is a convex function of the most sensitive BMA 
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parameters, leading to the reliable performance of the local optimization technique, such 

as the EM algorithm. 

 

Figure 6-7 A comparison of the BMA parameters and the objective function 

(loglikelihood) values derived from the modified expectation-maximization (EM) 

algorithm and the dynamically dimensioned search (DDS) method in (a) Big East River 

and (b) Black River watersheds 

 

The contribution of each forecast member into the BMA predictive results is determined 

by its corresponding estimated weights. Figure 6-8 simply compared the average weights 

of different models with their performances in both basins at different lead-times. What 

stands out in this figure is that the weights are not completely following the performance 

of individual members. There are some cases where members with relatively lower 

performance, possess higher weights and vice versa. For example, HRDPS, which was 

selected as the worst model in the Big East River watershed at lead-time 24 (Section 6.5.1), 
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has relatively high weights compared with the other members. On the other hand, GEFS 

possesses the most accurate 6-hour ahead forecasts in Black River; however, lower BMA 

weights are allocated to it. These results show that apart from the forecasting skills of 

individual models, the diversity of the ensemble members also plays an important role in 

the BMA application (Darbandsari & Coulibaly, 2020b; Sharma et al., 2019). 

 

Figure 6-8 he average BMA weights and the MAE performance statistics of each member 

at different forecasting horizons in (a) Big East River and (b) Black River watersheds 

 

6.5.3 En-BMA evaluation 

In both En-BMA and its modified version, the only parameter that needs to be specified is 

the stopping threshold value (β). This parameter is used as a criterion that is not allowed to 

be violated, and implicitly shows the maximum amount of information that we want to 

keep in the system. We evaluate the effects of choosing different threshold values as the 
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first step of the implementation of the En-BMA and the Modified En-BMA (M-EnBMA) 

methods for forecasting precipitation. As can be seen from Figure 6-9, the average number 

of selected members is noticeably affected by changing the stopping threshold value. As 

expected, increasing β leads to a higher number of selected members; however, this 

increase does not follow the same trend using both En-BMA and M-EnBMA methods. The 

M-EnBMA approach has a lower number of selected members, compared to En-BMA, in 

the case of using the same threshold value. This is justifiable by the fact of using joint 

entropy as the objective function in the inner loop of the modified selection procedure 

(Figure 6-3), which helps to keep information at the highest possible level by narrowing 

the ensemble down. 

Also, using 𝑀𝐴𝐸  and 𝐶𝑅𝑃𝑆  measurements, the performances of both post-processing 

approaches in producing 6-hour ahead forecasts have been evaluated as a function of β 

(Figure 6-9). The En-BMA predictions in both basins indicate that using threshold values 

less than 0.9 leads to unreliable precipitation forecasts and the values of 0.9 and 0.95 

provide the best results. On the other hand, in the case of applying M-EnBMA, the 

improving trend of the performances continues by increasing β. The 𝛽 = 0.99 leads to the 

selection of around 4 members (on average) with the best performances in both basins. So, 

for the rest of this study, the threshold values of 0.95 and 0.99 were respectively selected 

for En-BMA and M-EnBMA applications in both watersheds. 
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Figure 6-9 The effects of stopping threshold values on the average number of selected 

members and the performances of the 6-hour ahead forecasts, derived from (a) the En-

BMA and (b) the modified En-BMA post-processing methods in both Big East River and 

Black River watersheds 

 

Prior to the weights, how frequently an individual member is selected shows its 

participation in generating predictive forecasts in the case of using entropy-based 

approaches. The M-EnBMA selection ratios of various members in both basins at different 

lead-times, as shown in Figure 6-10, are not always in accordance with their corresponding 

individual performance (Figure 6-5). REPS, as the most promising model in both 

watersheds, does not possess the predominant ratios of selection. As another example in 
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the Big East River watershed, HRDPS contribution in the final selected ensemble is 

relatively high, while its performances at lead-time 18 and 24 hours are among the worst 

ones. In conclusion, these results indicate that even the low-skill models could have some 

unique information, and their presence in the ensemble is required to meet the collectively 

exhaustive and mutually exclusive properties. Also, the distribution of the average En-

BMA weights amongst the selected members does not properly agree with their 

corresponding selection ratios (Figure 6-10), while their comparison with the BMA 

weights shows a positive relationship between them. This may be due to the fact that the 

same structure as the original BMA is utilized in the proposed entropy-based methods. 

 

Figure 6-10 The average weights and selection ratio of each member in the case of 

applying the modified En-BMA (M-EnBMA) approach and a comparison between the M-

EnBMA and BMA weights in both Big East River and Black River watersheds at different 

forecasting horizons (6 to 24 hours ahead). 
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For evaluating the proposed modifications, we made a comparison between the En-BMA 

and the M-EnBMA methods using the percent improvements based on different metrics 

where positive values show the advantages of applying modifications (Table 6-2). The 

results in both watersheds indicate the superiority of the modified version over the original 

one based on all performance metrics. This advantage exists in all forecasting horizons by 

providing 2 to 15 percent performance improvement in general. No relationship can be 

found between improvements and the forecasting horizons. In the Big East River watershed; 

the highest improvement can be seen in the 12 hr ahead forecasts, where 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, and 

𝐶𝑅𝑃𝑆  indicate more than 10 percent of improvement. However, in the Black River 

watershed, the largest difference between En-BMA and M-EnBMA occurs at lead-time 18 

(𝑀𝐴𝐸, 𝑃𝐶𝐶, and RMSE improve more than 10 percent). Altogether, it is concluded that 

using the proposed modifications in the En-BMA structure leads to better precipitation 

forecasting. So, the modified En-BMA method is considered for the rest of this paper to be 

compared with the BMA approach. 

Table 6-2 The percentage of improvements derived from using the modified En-BMA 

instead of BMA based on different performance metrics in both Big East River and Black 

River watersheds at different forecasting horizons (6 to 24 hours ahead) 

Basin Big East River Black River 

Lead-time (hr) 
Percent Improvement (%)1 Percent Improvement (%) 

MAE PCC RMSE CRPS MAE PCC RMSE CRPS 

6 4.1 2.0 2.0 3.5 8.2 2.4 3.6 2.3 

12 12.8 7.7 11.8 11.5 5.3 2.5 2.6 4.7 

18 6.6 4.9 4.9 2.9 12.3 14.5 14.0 8.4 

24 2.4 6.4 2.2 2.8 2.4 3.6 3.6 7.0 

1 The positive values of percent improvement indicate the advantage of using M-EnBMA over En-BMA. 
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6.5.4 Modified En-BMA versus BMA 

BMA and the proposed modified En-BMA, called M-EnBMA hereafter, are implemented 

to post-process the ensemble of 6-hourly accumulated precipitation forecasts up to 24 hours 

ahead within the verification period (2019/07/03 to 2020/08/31). Using four different 

criteria, presented in Section 6.3.3, Figure 6-11 compared the performance of both methods 

in the Big East River and the Black River watersheds. The main conclusion that stands out 

from the comparison in both watersheds and different lead-times is that in general, all 

performance statistics show the superiority of M-EnBMA over BMA. The percentages of 

performance improvement based on various metrics are always positive showing the 

advantage of using M-EnBMA compared with BMA for post-processing precipitation 

forecasts. 

These enhancements are not constant as a function of different performance metrics. The 

𝐶𝑅𝑃𝑆  criterion, which assesses the accuracy of the probabilistic forecasts, shows an 

average of 5% consistent enhancements in all forecasting horizons at both basins. However, 

the percent improvements based on the other three deterministic-based measurements (i.e. 

𝑀𝐴𝐸, 𝑃𝐶𝐶, and 𝑅𝑀𝑆𝐸), vary as a function of forecasting horizons. In the Big East River 

watershed, the greatest superiority of M-EnBMA over BMA occurs for 18 hours ahead 

forecasts (the 𝑀𝐴𝐸 , 𝑃𝐶𝐶, and 𝑅𝑀𝑆𝐸  improvements are respectively 8%, 9%, and 8%) 

while, both BMA and M-EnBMA methods leads to almost similar results at lead-time 24. 

In Black River, on the other hand, the lowest difference between BMA and M-EnBMA 
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methods can be seen at 18 hours ahead forecasts where almost the same results are derived 

from both approaches. 

 

Figure 6-11 Comparison of different performance measurements for 6 to 24 hours-ahead 

forecasts derived from the BMA and the modified En-BMA (M-EnBMA) methods in (a) 

Big East River and (b) Black River watersheds. The positive value of % improvement 

shows the advantage of using M-EnBMA instead of BMA 

 

Also, to specifically evaluate the performances of both methods in reproducing high 

precipitation values, 𝑀𝐴𝐸 is calculated and compared using precipitation values more than 

90 percentile (𝑀𝐴𝐸90) and values more than 5 mm (𝑀𝐴𝐸5). These comparisons in general, 

as presented in Table 6-3, again show that M-EnBMA is better in terms of forecasting large 

values. These enhancements are more pronounced compared to the ones calculated using 

the whole data. In the case of 24 hours ahead forecasts in the Big East River and 18 hours 

ahead forecasts in the Black River watershed, as both methods possess the same overall 

performance based on the whole verification period (Figure 6-11), the 𝑀𝐴𝐸90 and 𝑀𝐴𝐸5 

improvements are also marginal. However, in most of the other forecasting horizons in 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

286 

 

both basins, the highest improvements can be seen based on 𝑀𝐴𝐸90 and 𝑀𝐴𝐸5, compared 

to 𝑀𝐴𝐸 . For instance, at 12-hour ahead forecasts, 𝑀𝐴𝐸  shows around five percent of 

improvement in both basins, while the 𝑀𝐴𝐸90 and 𝑀𝐴𝐸5 improvements respectively are 

6% and 12% in the Big East River and 11% and 10% in the Black River watershed. 

 

Table 6-3 The performance statistics of the BMA and the modified En-BMA (M-EnBMA) 

focusing high precipitation values in both Big East River and Black River watersheds at 

different forecasting horizons (6 to 24 hours ahead) 

Basin Lead-time 

(hr) 

Method 𝑴𝑨𝑬𝟗𝟎
1 Improvement 

(%)2 

𝑴𝑨𝑬<𝟓 1 Improvement 

(%)2 

BE3 

6 
BMA 1.93 

10.3 
3.26 

15.2 
M-EnBMA 1.73 3.84 

12 
BMA 1.79 

5.1 
3.40 

11.7 
M-EnBMA 1.70 3.01 

18 
BMA 2.83 

10.3 
4.95 

7.5 
M-EnBMA 2.54 4.58 

24 
BMA 4.21 

1.4 
6.14 

3.0 
M-EnBMA 4.15 5.95 

BL3 

6 
BMA 2.23 

4.3 
4.26 

6.9 
M-EnBMA 2.13 3.97 

12 
BMA 2.72 

11.1 
5.64 

9.9 
M-EnBMA 2.41 5.08 

18 
BMA 2.08 

2 
3.65 

2.7 
M-EnBMA 2.04 3.80 

24 
BMA 4.17 

2.7 
6.16 

38.3 
M-EnBMA 4.06 3.8 

1 𝑀𝐴𝐸90 and 𝑀𝐴𝐸>5 are the 𝑀𝐴𝐸 calculated respectively based on values more than 90 percentile and 5 mm 

2 The positive values of percent improvement indicate the advantage of using M-EnBMA over BMA. 

3 BE and BL are the abbreviations of Big East River and Black River watersheds, respectively. 

 

Moreover, Figures 6-12 and 6-13 evaluate the statistical reliability of both BMA and M-

EnBMA methods using the reliability diagram and its corresponding reliability 
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measurements (α) respectively in the Big East River and the Black River watersheds. 

Comparing the BMA and the M-EnBMA results based on all precipitation data indicates 

the same reliability of both approaches in both watersheds and all forecasting horizons. 

However, by focusing on large values, the superiority of M-EnBMA over BMA in terms 

of generating reliable probabilistic forecasts is noticeable. Using precipitation data more 

than 90 percentile illustrates the slight enhancement of the reliability of the probabilistic 

forecasts in the case of applying M-EnBMA, compared to BMA (around 5% improvement 

in α values in most of the lead-times in both basins). Also, in the Big East River watershed, 

except for 24 hours ahead forecasts, where the difference between the reliability of BMA 

and M-EnBMA is negligible, the percent improvement of α for forecasting large 

precipitation values (more than 5 mm) are always more than 10% (Figure 6-12). The same 

conclusion derived from the Black River watershed where the implementation of M-

EnBMA leads to 21%, 27%, 15%, and 18% improvement in the reliability of 6-, 12-, 18- 

and 24-ahead forecasts of more than 5 mm precipitation values (Figure 6-13). It is worthy 

of note that all predictive reliability plots fell above the uniform line, which indicates that 

both BMA and M-EnBMA possess negative biases by under-predicting the precipitation 

values at different lead-times. These under-estimations are more pronounced by focusing 

on larger values (Figure 6-13), which stem from the presence of the negative biases in all 

individual precipitation forecasts in both basins. 
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Figure 6-12 The reliability plot and their corresponding α values at different forecasting 

horizons (6 to 24 hours ahead), derived from both BMA and modified M-EnBMA (M-

EnBMA) results regarding the whole time-series, values more than 90 percentile, and 

values more than 5 mm in the Big East River watershed 

 



Ph.D. Thesis – Pedram Darbandsari                  McMaster University – Civil Engineering 

289 

 

 

Figure 6-13 The reliability plot and their corresponding α values at different forecasting 

horizons (6 to 24 hours ahead), derived from both BMA and modified En-BMA (M-

EnBMA) results regarding the whole time-series, values more than 90 percentile, and 

values more than 5 mm in the Black River watershed 

 

6.6 Summary and Conclusion 

Bayesian Model Averaging (BMA) is one of the most common post-processing approaches 

in hydro-meteorological studies, which uses the weighted average of predictive 

distributions based on individual members to produce probabilistic forecasts. As the BMA 

formulation is based on the law of total probability, it requires independent members 

(mutually exclusive) with a high capability of capturing the future variability (collectively 

exhaustive) for producing more accurate forecasts. In this study, the modified version of 

the entropy-based BMA (En-BMA) method is proposed for precipitation forecasting where 
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a modified entropy-based selection procedure is used within the BMA structure in order to 

select the optimal subset of forecasts by keeping the information of the ensemble in the 

highest possible level with the lowest redundancy. Considering seven different 6-hourly 

accumulated precipitation forecasts up to 24 hours ahead in two study areas, in Ontario, 

Canada, this study assessed the effects of the proposed modifications and provide a 

comprehensive comparison between the modified En-BMA and BMA in generating 

predictive precipitation forecasts. 

From the initial comparison of individual forecasts, we found that although REPS can be 

considered as the most robust precipitation forecasts in both study regions, it is not possible 

to select one model as the best one for all forecasting horizons and locations, confirming 

the advantage of possessing an ensemble of multi-model forecasts. Moreover, the results 

indicate that applying the proposed modifications in the En-BMA structure tended to 

improve the accuracy of the forecasts in all forecasting horizons and both watersheds, 

compared to the original En-BMA. The modified entropy-based selection procedure 

constructs the optimal subset of the ensemble with a lower number of members (i.e. lower 

redundant information), compared to the original one, while the information content is at 

the same level. This provides a better balance between the mutually exclusive and 

collectively exhaustive properties and consequently leads to better results. Lastly, we 

compared the forecasts from the modified En-BMA and the BMA methods. Considering 

the whole forecast time series, we found that the modified En-BMA provides slightly more 

accurate precipitation forecasts while in terms of reliability, both methods possess the same 

performance. However, by focusing on large precipitation values, which are receiving 
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particular attention in hydrology, there is a significant advantage of implementing the 

modified En-BMA method over the BMA approach for generating more reliable and 

accurate probabilistic precipitation forecasts. 

As the structure of the proposed entropy-based selection procedure is not limited to 

variables with any specific characteristics, the findings of this research can be generalized 

to other future studies where the application of the BMA with point-mass and a gamma 

distribution is reliable. Covering watersheds with various climatologic conditions and 

forecasts with shorter (e.g. hourly) or longer (e.g. daily) temporal resolution is 

recommended in future applications of the proposed En-BMA method. 
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 Conclusions and Recommendations 

7.1 Conclusions 

This thesis was mainly focused on the development of a novel probabilistic ensemble 

streamflow forecasting framework to reliably quantify and reduce predictive uncertainty 

by using the full potential of the forecasts ensemble. The study areas in this research cover 

the Big East River and Black River watersheds as snow-dominated data-poor catchments 

situated in Northern Ontario, Canada. First, after developing and evaluating various 

conceptual hydrologic models and examining different variants of the Bayesian Model 

Averaging (BMA) method, the promising Entropy-based BMA (En-BMA) post-processing 

approach was proposed for enhanced probabilistic streamflow forecasting where entropy 

theory concepts are used for relaxing the remaining limitations of the BMA method. Then, 

by taking advantage of both BMA and the Hydrologic Uncertainty Processor (HUP) 

methods, an ensemble-based Bayesian post-processor was developed for better quantifying 

the predictive uncertainty in the context of streamflow forecasting. Last, the proposed En-

BMA method was modified to be used as a post-processor for enhancing ensemble 

precipitation forecasts. The outcomes of this study are expected to benefit the hydrology 

community at large, the operational streamflow forecasting centers, and could also be 

integrated into any flood forecasting and early warning systems. The main findings of the 

five thesis chapters are summarized as follows: 
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7.1.1 Conceptual hydrologic models in data-scare regions 

 Using various objective functions for calibrating parameters and estimating the 

mean areal precipitation in different ways possess heterogeneous effects on the 

performances of various conceptual hydrologic models. So, considering these 

effects in any model inter-comparison process is required and leads to more 

consistent findings and conclusions. 

 Comparing five different objective functions shows the advantages of using Nash 

Volume Error (𝑁𝑉𝐸) and Kling Gupta Efficiency (𝐾𝐺𝐸) for calibrating models’ 

parameters used for continuous daily streamflow simulation. 

 Among seven structurally different conceptual models, MACHBV provides the 

most robust streamflow predictions by providing relatively accurate results 

regarding low, medium, and high flows in data-poor watersheds. Focusing on high 

flows indicates the competitive performances of the GR4J model. 

 HEC-HMS based models lead to the relatively worst results. The poor 

performances of three HEC-HMS based models, especially regarding low flows, 

may stem from the poor estimation of the base flow and the use of pre-specified 

monthly PET in their structures. 

 Incorporation of the snowmelt method in hydrologic modeling of snow-dominated 

watersheds is a necessary task. However, using a more complex snow routine does 

not always lead to better streamflow predictions. The advantages of using more 

complex snowmelt methods depend on the structure of the hydrologic model, which 

shows the importance of comparing different snowmelt approaches regardless of 
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their complexity, to evaluate their compatibility with the selected rainfall-runoff 

model. 

 The reliability and suitability of the CaPA precipitation data to be considered as 

forcing inputs of the hydrologic models in regions with sparse ground-based 

measurements was confirmed in Northern Ontario, Canada. The calibrated models 

using CaPA data lead to better streamflow simulation compared to the ones being 

calibrated based on the ground-based observations. 

7.1.2 Bayesian Model Averaging method for streamflow simulation/forecasting 

 Bayesian Model Averaging is a well-known probabilistic ensemble-based post-

processing approach taking the advantages of multiple forecasts for reliably 

quantifying the predictive uncertainty and generating probabilistic results. 

 As the main input of the BMA method, the ensemble of streamflow simulations has 

a direct impact on the accuracy and reliability of the BMA derived predictive results. 

Besides the simulation skill of different models, the diversity of the ensemble 

members and the capability of the ensemble, as a whole, to capture the 

observational variability are the important features to enhance the results. In the 

context of streamflow simulation in data-scarce regions, using multiple inputs and 

multiple models for constructing members of an ensemble leads to better BMA 

results. 

 Among various modifications being proposed to enhance the BMA method dealing 

with streamflow data, implementation of the heteroscedastic variance improves the 

BMA predictive performance. Also, incorporating data transformation procedure, 
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in general, improves the reliability while there are some concerns about the 

sharpness of the BMA predictive results, especially regarding high flows. 

Simultaneous application of non-constant variance and data transformation 

modifications is not recommended as it significantly deteriorates the sharpness of 

the probabilistic results. 

 The expectation-maximization algorithm is an efficient method for reliably 

estimating BMA parameters and there is no need for using a more complex global 

optimization approach. 

7.1.3 Entropy-based BMA for probabilistic streamflow forecasting 

 An Entropy-based Bayesian Model Averaging (En-BMA) approach, integrating 

entropy theory concepts and BMA, is proposed to provide enhanced probabilistic 

streamflow forecasts. 

 The combination of multiple objective functions and multiple hydrologic models 

generates a more diverse ensemble of streamflow forecasts with a higher capability 

of capturing future possibilities and yields more reliable and accurate BMA 

probabilistic results. 

 By keeping the information content while reducing the redundancy within the 

ensemble, the proposed entropy-based selection procedure narrows down the 

streamflow forecasts for providing a balance between the mutually exclusive and 

collectively exhaustive properties which are the inherent assumptions of the BMA 

method. 
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 Although both BMA and En-BMA methods generate comparable streamflow 

forecasts in general, different performance evaluation metrics show the superiority 

of the proposed En-BMA method over BMA, for providing better probabilistic and 

deterministic high flow forecasts. The advantages of En-BMA can be seen in all 

forecasting horizons, while it is less obvious as lead time increases. 

 The proposed entropy-based selection method is a non-parametric procedure 

without any assumptions about the distributions of the variable. So, it can be 

integrated with any variant of the BMA method to be suitably used for other types 

of variables (e.g. precipitation, soil moisture, and snowmelt). 

7.1.4 HUP-embedded BMA for streamflow probabilistic forecasting 

 HUP is a statistical post-processing approach that relied on a deterministic 

streamflow forecast for quantifying predictive uncertainty and providing 

probabilistic results. The effects of the forecasting skills of the deterministic 

hydrologic model on the HUP predictive performance are negligible in terms of 

low flow forecasting. However, by focusing on high flows, using a better 

performing rainfall-runoff model yields significantly better HUP-derived 

probabilistic forecasts, especially in longer lead times. 

 Making the most of the respective strengths of both HUP and BMA methods, the 

HUP embedded BMA (HUP-BMA) was proposed to provide more reliable and 

accurate probabilistic streamflow forecasts by implicitly taking into account the 

effects of initial conditions and taking the advantages of considering multiple 

forecasts. 
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 The superiority of the proposed HUP-BMA method over both HUP and BMA 

approaches for short-range streamflow forecasts is shown by various deterministic 

and probabilistic performance metrics. However, increasing lead-time and reducing 

the dependence of the actual flow with the initial observation lead to the 

deterioration of the HUP-BMA performance. In the latter case, removing the 

dependence of the HUP-BMA formulation on initial flow values is beneficial and 

improves the ability of the method to generate more reliable and accurate 

probabilistic forecasts. 

7.1.5 Modified Entropy-based BMA for probabilistic precipitation forecasting 

 The modified entropy-based selection procedure is proposed to better meet the 

mutually exclusive and collectively exhaustive requirements of the BMA method. 

The implementation of the proposed selection procedure within the structure of the 

BMA variant for precipitation leads to the modified version of the Entropy-based 

BMA method for probabilistic precipitation forecasting. 

 The proposed modifications are required to make the En-BMA method suitable for 

reliable and accurate ensemble-based probabilistic precipitation forecasting. As 

indicated by various performance measurements, the modified En-BMA provides 

more accurate post-processed precipitation forecasts in all lead times, compared to 

the original En-BMA. 

 Various deterministic evaluation metrics based on the whole forecasting period 

show slight improvements of the results in the case of applying the modified En-

BMA compared with BMA, while both methods produce comparable probabilistic 
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forecasts in term of reliability scores. By focusing on high precipitation values, 

however, the advantages of implementing the modified En-BMA over BMA are 

noticeable in terms of generating both deterministic and probabilistic sub-daily 

precipitation forecasts. 

7.1.6 General Conclusions 

The general conclusions and contributions of this thesis are as follows: 

 MACHBV and GR4J are the most robust rainfall-runoff models for simulating the 

hydrological processes of watersheds with low data availability in northern Ontario 

watersheds. 

 The archive of CaPA data is a reliable source of precipitation in Northern Ontario, 

Canada, which can be used as an alternative forcing inputs of rainfall-runoff models 

in regions with sparse ground-based measurements. 

 The proposed entropy-based BMA post-processing approach yields enhanced 

probabilistic high flow forecasting by relaxing the assumption of having a mutually 

exclusive and collectively exhaustive ensemble of forecasts. 

 The modified entropy-based BMA method is proposed for generating enhanced 

probabilistic precipitation forecasts, which shows large forecast improvement on 

high precipitation values. 

 Short-term streamflow forecasting using the proposed HUP-embedded BMA post-

processor is more reliable and accurate than both HUP and BMA methods. 
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 Formulating HUP-BMA without considering the effects of initial values is 

identified to produce better probabilistic medium-range streamflow forecasts 

especially in watersheds with a short time of concentration. 

7.2 Recommendations for Future Research 

This thesis is a primary step in the process of developing a reliable probabilistic streamflow 

forecasting framework to be used in the Canadian Adaptive Flood Forecasting and Early 

Warning System (CAFFEWS). Therefore, great efforts are still required to achieve this 

objective. One of the primary sources of uncertainty in hydrologic modeling is the forcing 

inputs, precipitation in particular. Apart from the unknown future precipitation, there are 

errors in observation data that can significantly affect the quality of the streamflow 

simulation/forecasting process. This effect is more noticeable in regions without a dense 

ground-based meteorological network (Sirisena et al., 2018; Tegegne et al., 2017; Worqlul 

et al., 2017). Therefore, besides CaPA, which is identified as a reliable alternative source 

of precipitation, there are some other ways of deriving precipitation data, such as the radar-

based and satellite-based precipitation estimates, that should be deeply evaluated as forcing 

inputs of hydrologic models in data-poor watersheds in Canada. 

The proposed entropy-based selection procedure is the initial step of using the entropy 

concept for overcoming the mutually exclusive and collectively exhaustive assumptions of 

the BMA approach. Further improvements can be achieved by revising the proposed 

selection structure or implementing other entropy measures, such as Net Information 

(Markus et al., 2003). As another interesting topic, following up on the last study of this 
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thesis (Chapter 6), the segregated structure of the proposed entropy-based selection 

procedure encourage future studies to investigate the combination of the proposed selection 

method with various BMA variant, such as Copula-embedded BMA (Madadgar & 

Moradkhani, 2014). 

As shown in Chapters 3 and 4 of this thesis, the proposed En-BMA and HUP-BMA 

methods produce reliable post-processed streamflow forecasts, however, a more 

comprehensive evaluation has yet to be performed in various types of watersheds, in terms 

of size, climatologic conditions, and geography. The additional interesting research topic 

would be the integration of the proposed En-BMA and HUP-BMA methods to take 

advantage of both systems for generating enhanced ensemble-based probabilistic 

streamflow forecasts. The proper combination of these two methods can reduce the two 

important limitations of the BMA approach by considering a mutually exclusive and 

collectively exhaustive ensemble of forecasts in conjunction with the effects of initial flow 

values and could lead to a better quantification of predictive uncertainty associated with 

streamflow forecasting. Also, it is worth to examine the implementation of a reliable bias-

correction method prior to the application of either HUP-BMA and En-BMA methods as 

recent studies showed the advantages of using bias-corrected forecasts in ensemble-based 

post-processing approaches (e.g. Han & Coulibaly, 2019; Sharma et al., 2019). 

Moreover, the unknown future meteorological forcing input of hydrological models is one 

of the main sources of uncertainty within streamflow forecasting and it is required to be 

reduced and quantified in any operational flood forecasting framework. Generating an 

ensemble of streamflow forecasts using multiple precipitation products and multiple 
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hydrologic models is one way of accounting for the aforementioned issue;  and has recently 

received particular interests in the context of Bayesian Model Averaging (e.g. Awol et al., 

2021; Roy et al., 2017; Sharma et al., 2019; Xu et al., 2019). Therefore, as another topic of 

considerable interest, the application of the proposed ensemble-based Bayesian post-

processing methods (i.e. En-BMA and HUP-BMA) in conjunction with multi-input multi-

model streamflow forecasts as a platform for probabilistic streamflow forecasting could be 

evaluated. Lastly, an advanced Bayesian ensemble probabilistic streamflow forecasting 

framework could be developed by taking the advantage of probabilistic post-processing of 

both precipitation and streamflow forecasts. The appropriate implementation of the well-

post-processed probabilistic precipitation forecasts in a multi-model streamflow 

forecasting method can greatly reduce and quantify the predictive uncertainty and lead to 

enhanced streamflow forecast. The proposed En-BMA method would be a good choice for 

developing the aforementioned streamflow forecasting framework as it is a reliable 

approach in the context of both streamflow and precipitation data. 
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