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Lay Abstract

Possessing a reliable streamflow forecasting framework is of special importance in various
fields of operational water resources management, non-structural flood mitigation in
particular. Accurate and reliable streamflow forecasts lead to the best possible in-advanced
flood control decisions which can significantly reduce its consequent loss of lives and
properties. The main objective of this research is to develop an enhanced ensemble-based
probabilistic streamflow forecasting approach through proper quantification of predictive
uncertainty using an ensemble of streamflow forecasts. The key contributions are: (1)
implementing multiple diverse forecasts with full coverage of future possibilities in the
Bayesian ensemble-based forecasting method to produce more accurate and reliable
forecasts; and (2) developing an ensemble-based Bayesian post-processing approach to
enhance the hydrologic uncertainty quantification by taking the advantages of multiple
forecasts and initial flow observation. The findings of this study are expected to benefit
streamflow forecasting, flood control and mitigation, and water resources management and

planning.
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Abstract

Streamflow forecasting is a fundamental component of various water resources
management systems, ranging from flood control and mitigation to long-term planning of
irrigation and hydropower systems. In the context of floods, a probabilistic forecasting
system is required for proper and effective decision-making. Therefore, the primary goal
of this research is the development of an advanced ensemble-based streamflow forecasting
framework to better quantify the predictive uncertainty and generate enhanced probabilistic
forecasts. This research started by comprehensively evaluating the performances of various
lumped conceptual models in data-poor watersheds and comparing various Bayesian
Model Averaging (BMA) modifications for probabilistic streamflow simulation. Then,
using the concept of BMA, two novel probabilistic post-processing approaches were
developed to enhance streamflow forecasting performance. The combination of the entropy
theory and the BMA method leads to an entropy-based Bayesian Model Averaging (En-
BMA) approach for enhanced probabilistic streamflow and precipitation forecasting. Also,
the integration of the Hydrologic Uncertainty Processor (HUP) and the BMA methods is

proposed for probabilistic post-processing of multi-model streamflow forecasts.

Results indicated that the MACHBYV and GR4J models are highly competent in simulating
hydrological processes within data-scarce watersheds, however, the presence of the lower
skill hydrologic models is still beneficial for ensemble-based streamflow forecasting. The
comprehensive verification of the BMA approach in terms of streamflow predictions has

identified the merits of implementing some of the previously recommended modifications
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and showed the importance of possessing a mutually exclusive and collectively exhaustive
ensemble. By targeting the remaining limitation of the BMA approach, the proposed En-
BMA method can improve probabilistic streamflow forecasting, especially under high flow
conditions. Also, the proposed HUP-BMA approach has taken advantage of both HUP and
BMA methods to better quantify the hydrologic uncertainty. Moreover, the applicability of
the modified En-BMA as a more robust post-processing approach for precipitation

forecasting, compared to BMA, has been demonstrated.
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Chapter 1. Introduction

1.1 Background

Accurate and reliable streamflow forecasting is receiving particular importance in various
fields of water resources management, flood control and mitigation in particular. Compared
with other natural disasters, flood is the most common natural hazard in Canada leading to
catastrophic environmental and socio-economic damages (Caballero & Rahman, 2014;
Thistlethwaite et al., 2018). Dramatically increasing frequency of extreme events in the
recent decades, mostly caused by climate change, has brought more attention to flood
mitigation measures (Han & Coulibaly, 2017; Reggiani et al., 2009). In general, these
measures are categorized into two groups: structural and non-structural. The structural
measures tried to reduce the negative flood effects by changing the characteristics of the
landscapes, such as constructing flood-control reservoirs and diversions (Heidari, 2009;
Meyer et al., 2012), while the non-structural interventions are more sustainable, less
expensive, and the only effective way for protecting life and property from floods in many
flood-prone regions (Barbetta et al., 2017; Kundzewicz, 2002). One of the most effective
non-structural flood mitigation measures is the application of a reliable flood forecasting
system, where hydrologic and hydraulic models are used for flood predictions. Although
some regional streamflow prediction frameworks have been developed and used in Canada
(Zahmatkesh et al., 2019), there is currently no nationwide flood forecasting and early

warning system.
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One of the integral components of any operational streamflow prediction framework is
rainfall-runoff models (or hydrologic models) which are wused as simplified
characterizations of different hydrologic processes (such as snowmelt, infiltration,
evapotranspiration, runoff, etc.). Thanks to the development of various types of hydrologic
models in the last century, flood forecasting has improved significantly. Classifying
rainfall-runoff models based on their mathematical representations leads to three main
groups. In the category of conceptual models, such as Sacramento soil moisture accounting
(SAC-SMA) (Burnash et al., 1973), McMaster University Hydrologiska Byrans
Vattenbalansavdelning (MAC-HBV) (Samuel et al., 2011), and Hydrologic Engineering
Center’s Hydrologic Modeling System (HEC-HMS) (Scharffenberg, 2016), interconnected
conceptual elements are used for representing different hydrologic components. These
models are popular for flood forecasting due to their low computational cost and simplicity.
The low required input data makes the conceptual models the best option for data-scare
regions (Anshuman et al., 2019; Tegegne et al., 2017). On the other hand, by focusing on
physical characteristics of the hydrologic processes in time and space, the physically-based
distributed models, such as the European hydrological system (SHE) (Abbott et al., 19864,
1986b), have been developed. Reliable practical application of the physically-based models
requires a large amount of data for the proper estimation of the spatially distributed
parameters representing the physical properties of the watershed (Todini, 2011; Young,
2002). Moreover, the black-box models (also known as data-driven models), ranging from
simple linear models to Artificial Neural Network (ANN), analyze the relationships

between inputs (e.g. temperature and precipitation) and the output of interest (e.g.



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

streamflow or water level), without consideration of the catchment physical processes. The
lack of physical interpretation and the strong dependence on the calibration data are the
main concerns of the data-driven models (Shrestha, 2009; Todini, 2011). Although much
progress has been made to improve the capability of different hydrologic models, there are
still lots of simplifications in their structures. Also, each model has parameters that cannot
be perfectly estimated due to errors in historical data. So, no hydrological model can

provide error-free streamflow prediction in all conditions (Chen et al., 2013).

Streamflow forecasting is subject to various sources of uncertainty. Besides the inaccurate
future meteorological forecasts, the imperfection of the hydrologic models, the uncertain
parameters estimation, and the unknown initial conditions are the other important sources
of uncertainties in the case of streamflow prediction (Moradkhani & Sorooshian, 2008).
Decision-making based on a single model deterministic forecast, which only provides a
point estimation of the future value without taking into account the inherent uncertainties,
is very risky and can lead to irreversible economic and social damages (Liu et al., 2018).
So, generating probabilistic forecasts by quantifying and reducing the predictive
uncertainty is one of the most important parts of any operational flood forecasting
framework (Biondi & Todini, 2018). Predictive uncertainty is defined as the conditional
distribution of future unknown values based on the information provided by the forecasting
model(s) (Todini, 2011). Using an ensemble of streamflow predictions (ESP) is one of the
most widely used approaches for quantifying the predictive uncertainty (Madadgar &
Moradkhani, 2014; Michaels, 2015). As a conventional approach, the ESP was generated

by forcing a hydrologic model with multiple meteorological forecasts (Abaza et al., 2013;
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Baran et al., 2019; Fan et al., 2014; Qu et al., 2017) which reflects the uncertainties
associated with forcing inputs. As an alternative and evolving way, multiple hydrologic
models can be used for generating ESP to capture the model structural uncertainties (Jiang
et al., 2018; Seiller et al., 2017; Todini, 2008; Xu et al., 2019). Also, using various
realizations of the model’s parameters or assimilating initial states could be used for
constructing ESP for conceptualizing uncertainties associated with measurement errors and
parameters estimation process (Dong et al., 2013; Pappenberger et al., 2005; Parrish et al.,

2012).

Although, using multiple forecasts, compared to the deterministic one, provides more
information about the future event, it is still required to estimate the correct and reliable
predictive uncertainty for sound and proper decision making (Biondi & Todini, 2018; J.
Liu & Xie, 2014; Reggiani & Weerts, 2008). Therefore, a statistical post-processing
approach, which is used to reduce and quantify the predictive uncertainty, is a crucial
component of any operational forecasting system. A recent review of the various post-
processing approaches can be found in Han and Coulibaly (2017) and Li et al., (2017). In
general, the post-processing methods tried to use the full capability of all available
information to characterize the predictive uncertainty and generate reliable probabilistic
forecasts. Some of these methods, such as the well-known Hydrologic Uncertainty
Processor (HUP) (Krzysztofowicz & Kelly, 2000), use single deterministic forecasts for
generating predictive results (e.g. Krzysztofowicz & Herr, 2001; Krzysztofowicz & Kelly,

2000; Liu et al., 2018; Montanari & Grossi, 2008), while some have been extended to take
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the advantage of considering ensemble streamflow forecasts (e.g. Han and Coulibaly 2019;

Khajehei & Moradkhani, 2017; Raftery et al., 2005; Reggiani et al., 2009; Seo et al., 2006).

Among the latter methods, the Bayesian Model Averaging (BMA) approach (Hoeting et
al., 1999; Raftery et al., 1997, 2005) is the most common and widely used ensemble-based
post-processing method for both meteorological (e.g. Cane et al., 2013; Ji et al., 2019; J.
Liu & Xie, 2014; Ma et al., 2018; Vrugt et al., 2006) and hydrological (Duan et al., 2007,
Jiang et al., 2018; Liang et al., 2013; Sharma et al., 2019) forecasts. By using the weighted
average of the conditional distribution of the predictand based on each ensemble forecast
member, BMA estimates the forecast predictive uncertainty conditioned on the whole
ensemble. Although different modifications have been proposed to enhance the BMA
capability of quantifying predictive uncertainty in the case of dealing with different
hydrometeorological variables (e.g. Soughter et al. (2007), Fraley et al. (2010), and Yang
etal. (2012) for precipitation and Yan and Moradkhani (2016), Madadgar and Moradkhani,
(2014), Vrugt and Robinson (2007), and He et al. (2018) for streamflow), there are still
some inherent assumptions and limitations in the BMA structure which requires further
research to develop a promising probabilistic flood forecasting framework. Besides the
quality of individual members of the forecast ensemble, the characteristics of the whole
ensemble play an important role in the reliable performance of the BMA method. Based
on the law of total probability, as the main assumption of the BMA approach, the two
properties of capturing the whole future variability as well as possessing mutually
independent members of the ensemble are required for generating reliable BMA based

probabilistic forecasts (Madadgar & Moradkhani, 2014; Refsgaard et al., 2012; Sharma et
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al., 2019). Furthermore, the existing limitations in different methods motivate some
research to integrate various techniques for devising a more reliable forecasting approach.
In the context of Bayesian Model Averaging, Sharma et al. (2019), for instance, combines
the Quantile Regression and BMA methods respectively for bias-correcting the ensemble
of daily streamflow forecasts and probabilistically merging them. Another example is the
employment of the data assimilation technique (i.e. Particle Filter) within the BMA
structure to better quantify the predictive uncertainty (Parrish et al., 2012). Also, Ajami et
al. (2007), Yen et al. (2014), and Jiang et al. (2018) developed BMA based methods for
multi-source uncertainty analysis in an integrated manner, however, they have not been

used for operational streamflow forecasting.
1.2 Research Objectives and Thesis Outline

Using the concept of the Bayesian Model Averaging (BMA) approach and aiming at
enhancing the assessment of predictive uncertainty through utilizing an ensemble of
streamflow forecasts, this study focuses on developing a reliable ensemble-based
probabilistic streamflow forecasting/simulation framework. To achieve the primary
objective, the following secondary objectives have been accomplished, which leads to five

journal papers presented in Chapters 2 to 6 of the thesis:

e A literature review on the Bayesian Model Averaging (BMA) concepts and their
applications for streamflow forecasting.

e Developing, investigating, and selecting the appropriate hydrologic models.
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e Examining the current variants of the BMA method for streamflow
forecasting/simulation.

e Proposing Entropy-based BMA method for enhanced probabilistic ensemble
streamflow forecasting.

e Developing multi-model Bayesian post-processor for probabilistic streamflow
forecasting through integrating the Hydrologic Uncertainty Processor (HUP) and
the Bayesian Model Averaging (BMA) approaches.

e Modifying and assessing the Entropy-based BMA method for post-processing

precipitation forecasts.

The thesis is organized into six chapters. After presenting an overview of the background,
scope, and objectives of the research in Chapter 1, Chapter 2 comprehensively compares
the performances of different conceptual hydrologic models for streamflow simulation in
snow-dominated data-poor watersheds and evaluates the reliability of the archived
Canadian Precipitation Analysis (CaPA) as an alternative forcing input of rainfall-runoff
models in the case of sparse ground-based meteorological measurements. Chapter 3
thoroughly assesses the effects of various previously recommended modifications of the
Bayesian Model Averaging approach on the quality of the final BMA-derived probabilistic
streamflow predictions. In Chapter 4, by using the concepts of the Entropy theory, the new
Entropy-based Bayesian Model Averaging (En-BMA) technique has been developed in
order to generate more accurate and reliable streamflow forecasts. Chapter 5 presents a
new ensemble-based Bayesian post-processing approach where a combination of

Hydrologic Uncertainty Processor and Bayesian Model Averaging methods is used for
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better quantifying hydrologic uncertainty and providing more reliable streamflow forecasts.
In chapter 6, by taking a step forward, a modified version of En-BMA approach was

proposed and evaluated for post-processing an ensemble of precipitation forecasts.
1.3 References

Abaza, M., Anctil, F., Fortin, V., & Turcotte, R. (2013). A Comparison of the Canadian
Global and Regional Meteorological Ensemble Prediction Systems for Short-Term
Hydrological Forecasting. Monthly Weather Review, 141(10), 3462-3476.
https://doi.org/10.1175/MWR-D-12-00206.1

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986a).
An introduction to the European Hydrological System — Systeme Hydrologique
Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed
modelling system. Journal of Hydrology, 87(1), 45-59. https://doi.org/10.1016/0022-
1694(86)90114-9

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E., & Rasmussen, J. (1986D).
An introduction to the European Hydrological System — Systeme Hydrologique
Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system.
Journal of Hydrology, 87(1), 61-77. https://doi.org/10.1016/0022-1694(86)90115-0

Ajami, N. K., Duan, Q., & Sorooshian, S. (2007). An integrated hydrologic Bayesian
multimodel combination framework: Confronting input, parameter, and model
structural uncertainty in hydrologic prediction. Water Resources Research, 43(1).
https://doi.org/10.1029/2005WR004745

Anshuman, A., Kunnath-Poovakka, A., & Eldho, T. I. (2019). Towards the use of
conceptual models for water resource assessment in Indian tropical watersheds under
monsoon-driven climatic conditions. Environmental Earth Sciences, 78(9), 282.
https://doi.org/10.1007/s12665-019-8281-5



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Baran, S., Hemri, S., & Ayari, M. E. (2019). Statistical Postprocessing of Water Level
Forecasts Using Bayesian Model Averaging With Doubly Truncated Normal
Components. Water Resources Research, 55(5), 3997-4013.
https://doi.org/10.1029/2018WR024028

Barbetta, S., Coccia, G., Moramarco, T., Brocca, L., & Todini, E. (2017). The multi
temporal/multi-model approach to predictive uncertainty assessment in real-time
flood forecasting. Journal of Hydrology, 551, 555-576.
https://doi.org/10.1016/j.jhydrol.2017.06.030

Biondi, D., & Todini, E. (2018). Comparing Hydrological Postprocessors Including
Ensemble Predictions Into Full Predictive Probability Distribution of Streamflow.
Water Resources Research, 54(12), 9860-9882.
https://doi.org/10.1029/2017WR022432

Burnash, R. J. C., Ferral, R. L., & McGuire, R. A. (1973). A generalized streamflow
simulation system: Conceptual modeling for digital computers. Joint Federal-State

River Forecast Center, United States National Weather Service.

Caballero, W. L., & Rahman, A. (2014). Development of regionalized joint probability
approach to flood estimation: A case study for Eastern New South Wales, Australia.
Hydrological Processes, 28(13), 4001-4010. https://doi.org/10.1002/hyp.9919

Cane, D., Ghigo, S., Rabuffetti, D., & Milelli, M. (2013). Real-time flood forecasting
coupling different postprocessing techniques of precipitation forecast ensembles with
a distributed hydrological model. The case study of may 2008 flood in western
Piemonte, Italy. Natural Hazards and Earth System Sciences, 13(2), 211-220.
https://doi.org/10.5194/nhess-13-211-2013

Chen, X., Yang, T., Wang, X., Xu, C.-Y., & Yu, Z. (2013). Uncertainty Intercomparison
of Different Hydrological Models in Simulating Extreme Flows. Water Resources
Management, 27(5), 1393-14009. https://doi.org/10.1007/s11269-012-0244-5



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Dong, L., Xiong, L., & Zheng, Y. (2013). Uncertainty analysis of coupling multiple
hydrologic models and multiple objective functions in Han River, China. Water
Science and Technology, 68(3), 506-513. https://doi.org/10.2166/wst.2013.255

Duan, Q., Ajami, N. K., Gao, X., & Sorooshian, S. (2007). Multi-model ensemble
hydrologic prediction using Bayesian model averaging. Advances in Water Resources,
30(5), 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014

Fan, F. M., Collischonn, W., Meller, A., & Botelho, L. C. M. (2014). Ensemble streamflow
forecasting experiments in a tropical basin: The S&o Francisco river case study.
Journal of Hydrology, 519, 2906-2919. https://doi.org/10.1016/j.jhydrol.2014.04.038

Fraley, C., Raftery, A. E., & Gneiting, T. (2010). Calibrating Multimodel Forecast
Ensembles with Exchangeable and Missing Members Using Bayesian Model
Averaging. Monthly Weather Review, 138(2), 190-202.
https://doi.org/10.1175/200OMWR3046.1

Han, S., & Coulibaly, P. (2017). Bayesian flood forecasting methods: A review. Journal
of Hydrology, 551, 340-351. https://doi.org/10.1016/j.jhydrol.2017.06.004

He, S., Guo, S., Liu, Z., Yin, J., Chen, K., & Wu, X. (2018). Uncertainty analysis of
hydrological multi-model ensembles based on CBP-BMA method. Hydrology
Research, 49(5), 1636-1651. https://doi.org/10.2166/nh.2018.160

Heidari, A. (2009). Structural master plan of flood mitigation measures. Natural Hazards
and Earth System Sciences, 9(1), 61-75. https://doi.org/10.5194/nhess-9-61-2009

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian Model
Averaging: A Tutorial. Statistical Science, 14(4), 382-401. JSTOR.

Ji, L., Zhi, X., Zhu, S., & Fraedrich, K. (2019). Probabilistic Precipitation Forecasting over
East Asia Using Bayesian Model Averaging. Weather and Forecasting, 34(2), 377—
392. https://doi.org/10.1175/WAF-D-18-0093.1

10



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Jiang, S., Ren, L., Xu, C.-Y., Liu, S., Yuan, F., & Yang, X. (2018). Quantifying multi-
source uncertainties in multi-model predictions using the Bayesian model averaging
scheme. Hydrology Research, 49(3), 954-970. https://doi.org/10.2166/nh.2017.272

Khajehei, S., & Moradkhani, H. (2017). Towards an improved ensemble precipitation
forecast: A probabilistic post-processing approach. Journal of Hydrology, 546, 476—
489. https://doi.org/10.1016/j.jhydrol.2017.01.026

Krzysztofowicz, R., & Herr, H. D. (2001). Hydrologic uncertainty processor for
probabilistic river stage forecasting: Precipitation-dependent model. Journal of
Hydrology, 249(1), 46-68. https://doi.org/10.1016/S0022-1694(01)00412-7

Krzysztofowicz, R., & Kelly, K. S. (2000). Hydrologic uncertainty processor for
probabilistic river stage forecasting. Water Resources Research, 36(11), 3265-3277.
https://doi.org/10.1029/2000WR900108

Kundzewicz, Z. W. (2002). Non-structural Flood Protection and Sustainability. Water
International, 27(1), 3-13. https://doi.org/10.1080/02508060208686972

Li, W., Duan, Q., Miao, C., Ye, A,, Gong, W., & Di, Z. (2017). A review on statistical
postprocessing methods for hydrometeorological ensemble forecasting. WIREs Water,
4(6), e1246. https://doi.org/10.1002/wat2.1246

Liang, Z., Wang, D., Guo, Y., Zhang, Y., & Dai, R. (2013). Application of Bayesian Model
Averaging Approach to Multimodel Ensemble Hydrologic Forecasting. Journal of
Hydrologic Engineering, 18(11), 1426-1436.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000493

Liu, J., & Xie, Z. (2014). BMA Probabilistic Quantitative Precipitation Forecasting over
the Huaihe Basin Using TIGGE Multimodel Ensemble Forecasts. Monthly Weather
Review, 142(4), 1542-1555. https://doi.org/10.1175/MWR-D-13-00031.1

Liu, Z., Guo, S., Xiong, L., & Xu, C.-Y. (2018). Hydrological uncertainty processor based
on a copula function. Hydrological Sciences Journal, 63(1), 74-86.
https://doi.org/10.1080/02626667.2017.1410278

11



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C., Han, Z., & Liu,
R. (2018). Performance of Optimally Merged Multisatellite Precipitation Products
Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau.
Journal of  Geophysical Research:  Atmospheres, 123(2), 814-834.
https://doi.org/10.1002/2017JD026648

Madadgar, S., & Moradkhani, H. (2014). Improved Bayesian multimodeling: Integration
of copulas and Bayesian model averaging. Water Resources Research, 50(12), 9586—
9603. https://doi.org/10.1002/2014WR015965

Meyer, V., Priest, S., & Kuhlicke, C. (2012). Economic evaluation of structural and non-
structural flood risk management measures: Examples from the Mulde River. Natural
Hazards: Journal of the International Society for the Prevention and Mitigation of
Natural Hazards, 62(2), 301-324.

Michaels, S. (2015). Probabilistic forecasting and the reshaping of flood risk management.
Journal  of  Natural Resources Policy Research, 7(1), 41-51.
https://doi.org/10.1080/19390459.2014.970800

Montanari, A., & Grossi, G. (2008). Estimating the uncertainty of hydrological forecasts:
A statistical approach. Water Resources Research, 44(12).
https://doi.org/10.1029/2008 WR006897

Moradkhani, H., & Sorooshian, S. (2008). General Review of Rainfall-Runoff Modeling:
Model Calibration, Data Assimilation, and Uncertainty Analysis. In Hydrological
Modelling and the Water Cycle: Coupling the Atmospheric and Hydrological Models
(pp. 1-24). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77843-
11

Pappenberger, F., Beven, K. J., Hunter, N. M., Bates, P. D., Gouweleeuw, B. T., Thielen,
J., & de Roo, A. P. J. (2005). Cascading model uncertainty from medium range
weather forecasts (10 days) through a rainfall-runoff model to flood inundation
predictions within the European Flood Forecasting System (EFFS). Hydrology and
Earth System Sciences, 9(4), 381-393. https://doi.org/10.5194/hess-9-381-2005

12



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Parrish, M. A., Moradkhani, H., & DeChant, C. M. (2012). Toward reduction of model
uncertainty: Integration of Bayesian model averaging and data assimilation:
TOWARD REDUCTION OF MODEL UNCERTAINTY. Water Resources Research,
48(3). https://doi.org/10.1029/2011WR011116

Qu, B., Zhang, X., Pappenberger, F., Zhang, T., & Fang, Y. (2017). Multi-Model Grand
Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model
Averaging. Water, 9(2), 74. https://doi.org/10.3390/w9020074

Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian
Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133(5),
1155-1174. https://doi.org/10.1175/MWR2906.1

Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian Model Averaging for
Linear Regression Models. Journal of the American Statistical Association, 92(437),
179-191. https://doi.org/10.1080/01621459.1997.10473615

Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Hgjberg, A. L., &
Troldborg, L. (2012). Review of strategies for handling geological uncertainty in
groundwater flow and transport modeling. Advances in Water Resources, 36, 36-50.
https://doi.org/10.1016/j.advwatres.2011.04.006

Reggiani, P., Renner, M., Weerts, A. H., & Gelder, P. A. H. J. M. van. (2009). Uncertainty
assessment via Bayesian revision of ensemble streamflow predictions in the
operational river Rhine forecasting system. Water Resources Research, 45(2).
https://doi.org/10.1029/2007WR006758

Reggiani, P., & Weerts, A. H. (2008). A Bayesian approach to decision-making under
uncertainty: An application to real-time forecasting in the river Rhine. Journal of
Hydrology, 356(1), 56-69. https://doi.org/10.1016/j.jhydrol.2008.03.027

Samuel, J., Coulibaly, P., & Metcalfe, R. A. (2011). Estimation of Continuous Streamflow
in Ontario Ungauged Basins: Comparison of Regionalization Methods. Journal of

13



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Hydrologic Engineering, 16(5), 447-459. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0000338

Scharffenberg, W. (2016). HEC-HMS User’s Manual, Version 4.2. U.S. Army Corps of
Engineers Institute for Water Resources Hydrologic Engineering Center (CEIWR-
HEC).

Seiller, G., Roy, R., & Anctil, F. (2017). Influence of three common calibration metrics on
the diagnosis of climate change impacts on water resources. Journal of Hydrology,
547, 280-295. https://doi.org/10.1016/j.jhydrol.2017.02.004

Seo, D.-J., Herr, H. D., & Schaake, J. C. (2006). A statistical post-processor for accounting
of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrology
and Earth System Sciences Discussions, 3(4), 1987-2035.
https://doi.org/10.5194/hessd-3-1987-2006

Sharma, S., Siddique, R., Reed, S., Ahnert, P., & Mejia, A. (2019). Hydrological Model
Diversity Enhances Streamflow Forecast Skill at Short- to Medium-Range Timescales.
Water Resources Research, 55(2), 1510-1530.
https://doi.org/10.1029/2018WR023197

Shrestha, D. L. (2009). Uncertainty analysis in rainfall-runoff modelling - application of
machine learning techniques: UNESCO-IHE PhD thesis. [PhD. thesis, IHE Delft
Institute for Water Education].
https://www.cabdirect.org/cabdirect/abstract/20123116250

Sloughter, J. M. L., Raftery, A. E., Gneiting, T., & Fraley, C. (2007). Probabilistic
Quantitative Precipitation Forecasting Using Bayesian Model Averaging. Monthly
Weather Review, 135(9), 3209-3220. https://doi.org/10.1175/MWR3441.1

Tegegne, G., Park, D. K., & Kim, Y.-O. (2017). Comparison of hydrological models for
the assessment of water resources in a data-scarce region, the Upper Blue Nile River
Basin.  Journal  of  Hydrology:  Regional  Studies, 14, 49-66.
https://doi.org/10.1016/j.ejrh.2017.10.002

14



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Thistlethwaite, J., Minano, A., Blake, J. A., Henstra, D., & Scott, D. (2018). Application
of re/insurance models to estimate increases in flood risk due to climate change.
Geoenvironmental Disasters, 5(1), 8. https://doi.org/10.1186/s40677-018-0101-9

Todini, E. (2008). A model conditional processor to assess predictive uncertainty in flood
forecasting. International Journal of River Basin Management, 6(2), 123-137.
https://doi.org/10.1080/15715124.2008.9635342

Todini, E. (2011). History and perspectives of hydrological catchment modelling.
Hydrology Research, 42(2-3), 73-85. https://doi.org/10.2166/nh.2011.096

Vrugt, J. A., Gupta, H. V., Nualldin, B., & Bouten, W. (2006). Real-Time Data
Assimilation for Operational Ensemble Streamflow Forecasting. Journal of
Hydrometeorology, 7(3), 548-565. https://doi.org/10.1175/JHM504.1

Vrugt, J. A., & Robinson, B. A. (2007). Treatment of uncertainty using ensemble methods:
Comparison of sequential data assimilation and Bayesian model averaging. Water
Resources Research, 43(1). https://doi.org/10.1029/2005WR004838

Xu, J., Anctil, F., & Boucher, M.-A. (2019). Hydrological post-processing of streamflow
forecasts issued from multimodel ensemble prediction systems. Journal of Hydrology,
578, 124002. https://doi.org/10.1016/j.jhydrol.2019.124002

Yan, H., & Moradkhani, H. (2016). Toward more robust extreme flood prediction by
Bayesian hierarchical and multimodeling. Natural Hazards, 81(1), 203-225.
https://doi.org/10.1007/s11069-015-2070-6

Yang, C., Yan, Z., & Shao, Y. (2012). Probabilistic precipitation forecasting based on
ensemble output using generalized additive models and Bayesian model averaging.
Acta Meteorologica Sinica, 26(1), 1-12. https://doi.org/10.1007/s13351-012-0101-8

Yen, H., Wang, X., Fontane, D. G., Harmel, R. D., & Arabi, M. (2014). A framework for
propagation of uncertainty contributed by parameterization, input data, model
structure, and calibration/validation data in watershed modeling. Environmental
Modelling & Software, 54, 211-221. https://doi.org/10.1016/j.envsoft.2014.01.004

15



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Young, P. C. (2002). Advances in real-time flood forecasting. Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering Sciences, 360(1796), 1433-1450.
https://doi.org/10.1098/rsta.2002.1008

Zahmatkesh, Z., Jha, S. K., Coulibaly, P., & Stadnyk, T. (2019). An overview of river
flood forecasting procedures in Canadian watersheds. Canadian Water Resources
Journal / Revue Canadienne Des Ressources Hydriques, 44(3), 213-229.
https://doi.org/10.1080/07011784.2019.1601598

16



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Chapter 2. Inter-comparison of lumped hydrological models in data-
scarce watersheds using different precipitation forcing data sets: Case

study of Northern Ontario, Canada

Summary of Paper 1: Darbandsari, P., & Coulibaly, P. (2020). Inter-comparison of
lumped hydrological models in data-scarce watersheds using different precipitation forcing
data sets: Case study of Northern Ontario, Canada. Journal of Hydrology: Regional Studies,

31, 100730.

By considering the effects of calibration process and multiple precipitation input scenarios
on the models’ performance, the main goal of this research is it to comprehensively
evaluate and compare various conceptual rainfall-runoff models with distinct structures for
daily stream flow prediction in snow-dominated watersheds with low data availability.
Also, the implementation of the archive Canadian Precipitation Analysis (CaPA) as an

alternative forcing input of the hydrologic models in Northern Ontario, Canada is evaluated.
Key findings of this research are as follows:

e The necessity of considering the effects of calibration process in any model
comparison study is revealed.

e The MACHBYV hydrologic model shows the most consistent results in daily
streamflow simulations, and the GR4J and SACSMA models possess competitive
performances.

e The GR4J model outperformed the other six models for high flow prediction.
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e The HEC-HMS based models possess the relatively lower performances for daily
streamflow simulation.

e The aggregated daily archived CaPA precipitation data is a reliable alternative for
hydrologic modelling in data-poor watersheds.

* The effectiveness of using a more complex snowmelt estimation routine depends

on the structure of the conceptual rainfall-runoff model.
2.1 Abstract

Study Region: Big East River and Black River watersheds in Northern Ontario, Canada as

snow-dominated, data-poor case studies.

Study focus: In this study, seven lumped conceptual models were thoroughly compared in
order to determine the best performing model for reproducing different components of the
hydrograph, including low and high flows in data-poor catchments. All models were
calibrated using five various objective functions for reducing the effects of calibration
process on models’ performance. Additionally, the effects of precipitation, an important
factor, particularly in data-scarce regions, were assessed by comparing two precipitation
input scenarios: (1) low-density ground-based gauge data, and (2) the Canadian
Precipitation Analysis (CaPA) data. The final goal of this study was to compare the effects
of using either the Degree-Day or SNOW17 snowmelt estimation methods on the accuracy

of streamflow simulation.

New hydrological insights: The results indicate that, in general, MACHBYV is the best

performing model at simulating daily streamflow in a data-poor watershed, and both
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SACSMA and GR4J can provide competitive results. Additionally, MACHBYV and GR4J
are superior to the other conceptual models regarding high flow simulation. Moreover, it
was found that incorporating the more complex SNOW17 snowmelt estimation method did
not always enhance the performance of the hydrologic models. Finally, the results also
confirmed the reliability of the CaPA data as an alternative forcing precipitation in the case

of low data availability.

Keywords: Model inter-comparison; Simple conceptual models, Data scarce regions;

Canadian Precipitation Analysis (CaPA); Snowmelt estimation; Canada
2.2 Introduction

Possessing reliable hydrological models is an important issue for operational hydrology
and water resources management (Donnelly-Makowecki & Moore, 1999; Razavi &
Coulibaly, 2017), and this is a unique challenge in data-scarce regions (Adjei et al., 2015).
Various types of rainfall-runoff models, from lumped empirical to fully distributed
physically-based ones, have been designed with different mathematical representations of
hydrological processes (Beven, 2011; Lu et al., 2013; Moradkhani & Sorooshian, 2008).
Empirical or data-driven models are based on mathematical equations not specifically
related to the physical processes of the watershed. Although these models have some
advantages, such as having higher performance efficiency, they are only valid within the
boundaries of the given data (Shrestha & Solomatine, 2009). In contrast, physically-based
distributed models are better at representing spatial variability when characterizing the
water cycle processes, and can produce more reliable results (Moradkhani & Sorooshian,

2008; Smith et al., 2004). Having parameters with physical interpretation and spatial
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variability is the main advantage of physically-based distributed models, however, their
proper estimation requires more computational cost and huge amount of data (Shrestha,
2009), this poses a problem when the area of interest has low data availability (Gan et al.,
2006; Grayson et al., 2002; Tegegne, Park, & Kim, 2017; Young, 2002). Conceptual
lumped models are another group of hydrologic models, which can provide a desirable
alternative to empirical and physically-based distributed models. These models are
commonly based on several interconnected conceptual elements representing different
hydrologic components. There are various conceptual hydrologic models with different
structures and processes, and the popularity of these models is due to their simplicity and

low computational costs.

Inter-comparison of various models is one of the most convenient approaches for assessing
the influence of model structure and aiding in the selection of the best performing model
(Breuer et al., 2009; Garavaglia et al., 2017). Also, through the comparison a multi-model
ensemble can be generated which can then be used for quantifying model structural
uncertainty (Seiller et al., 2012). Various studies have been conducted using model inter-
comparison experiments in the field of streamflow simulation (e.g. Chiew et al., 1993; Das
et al., 2008; Gan et al., 1997; Koch et al., 2016; Michaud & Sorooshian, 1994; Shi et al.,
2011; Suliman et al., 2015; Te Linde et al., 2008; Tegegne et al., 2017a; Vansteenkiste et
al., 2014; Zhang et al., 2016); however, few of them focused on regions with low data
availability. Refsgaard and Knudsen (1996) compared a physically-based distributed, a
lumped conceptual, and a semi-distributed hydrologic models for three data-scarce regions

in Zimbabwe. Their results showed that although using the distributed model provided
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reliable results, it did not outperformed simpler ones in term of streamflow simulation at
the outlet. The study by Tegegne et al. (2017b) found that, through the inter-comparison of
lumped conceptual models with a physically-based semi-distributed model in data poor
catchments, use of a more complex model could not be justified. Anshuman et al. (2019)
proposed considering conceptual over physically-based models in the case of facing
watersheds with low data availability. In addition, comparing a semi-distributed and a
lumped model by Srivastava et al. (2020) again showed the superiority of the lumped model
for hydrological modeling in data-limited basins. Although it can be argued that simple
lumped conceptual hydrologic models could be the best choice for modeling rainfall-runoff
process in data-scarce watersheds, the need of comprehensive comparison of the
performance of various lumped conceptual model structures is strongly felt on regions with

limited data availability.

Furthermore, the applicability of a conceptual hydrologic model is highly related to how
well its parameters are estimated (Sorooshian et al., 1993). Although using a multi-
objective calibration procedure provides valuable information about the parameter
equifinality and uncertainty, there are different studies ranging from flood forecasting (e.g.
Han et al., 2019; Reggiani et al., 2009; Wijayarathne & Coulibaly, 2020) to climate change
assessment (e.g. Ashofteh et al., 2017; Li et al., 2014), where one optimal parameter set is
utilized for streamflow simulation or forecasting. Various performance statistics have been
developed to evaluate the performance of hydrological models and each of them can be
considered as an objective function for estimating parameters (LU et al., 2013; Wo6hling et

al., 2013). Therefore, the selected objective function may affect the performance of the
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calibrated rainfall-runoff model. Although reducing these effects on the model inter-
comparison process seems important for achieving more reliable results (Gan et al., 1997;

Ouermi et al., 2019), it has not received much attention in previous studies.

Reliable and accurate historical forcing data has a considerable effect on the calibration
process and the corresponding model performance (Te Linde et al., 2008). Temperature
can be accurately estimated using the low-density measurements; however, accounting for
the spatial and temporal variability of precipitation is challenging in data-poor watersheds
(Price et al., 2014). Consequently, assessing the potential of utilizing other sources of
precipitation data (e.g., Satellite or Radar-based data) as input into a rainfall-runoff model
seems necessary in the case of limited ground-based observation stations. This has recently
motivated research, in data-scarce regions, to evaluate the influence of using other sources
of precipitation (e.g. Climate Forecast System Reanalysis data (Dile & Srinivasan, 2014;
Fuka et al., 2014), Tropical Rainfall Measuring Mission precipitation analysis (Adjei et al.,
2015; Collischonn et al., 2008; Worglul et al., 2017), and North American Regional
Reanalysis (Choi et al., 2009)) for models calibration. Their general finding is that the
precipitation products provide valuable information for data-scarce regions while their
evaluation at local scale is required due to regional variability of their quality (Lakew et
al., 2020; Sirisena et al., 2018). In addition, by removing possible random and systematic
errors, the application of a bias correction method can enhance the applicability of

precipitation products at regional scale (Habib et al., 2014).

Canada specific, a Canadian Precipitation Analysis (CaPA) data is a gridded precipitation

product, which is generated using various sources of precipitation, such as observations,
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radar data, and forecasts (Mahfouf et al., 2007). There are few studies evaluating CaPA in
terms of hydrologic performance. Eum et al. (2014) applied CaPA into the VIC model for
streamflow simulation of Canadian mountainous catchments. In the case study by Gaborit
et al. (2017), a comparison was made between CaPA and ground-based observations in
terms of the accuracy of runoff predictions using two lumped models. Also, Boluwade et
al. (2018), assessed the reliability of CaPA as forcing of Watflood hydrologic model. In
previous studies, the accuracy of various precipitation products were evaluated, while none
have utilized them in a model inter-comparison experiment for reducing the effects of
forcing input on model performance. Also, assessing precipitation products utilizing
multiple hydrologic models lead to more robust results than their proxy evaluation using

streamflow data and an auxiliary model (Fortin et al., 2018).

The main objective of this study is to evaluate various lumped conceptual models with
different structures for continuous daily streamflow prediction in order to propose the most
suitable one for operational hydrology in watersheds with low data availability. By
focusing on two data-poor watersheds in Northern Ontario, Canada, the performance of
seven different lumped conceptual models are thoroughly compared using different
statistics focusing on low and high flow conditions. In the proposed inter-comparison
framework, we utilized an ensemble of calibrated parameter sets for each hydrologic model,
derived from implementing different objective functions, which reduces the effects of the
calibration process on models’ performance. Also, besides the low-density gauge
measurements, we used CaPA precipitation data as an alternative forcing input in the model

comparison process. This helps us reach more robust conclusions about the direct ability
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of different hydrologic model structures for streamflow simulation. In addition, we have
the opportunity to evaluate the reliability of using CaPA data as an alternative input forcing
precipitation in the case of low available historical meteorological data in Northern Ontario.
Moreover, given that the regions of interest are snow-dominated watersheds, where the
snowmelt freshet is the main cause of floods, using a proper snowmelt estimation routine
in model structure seems necessary for accurate streamflow simulation. Therefore, as a side
objective of this study, a comparison is made between two popular temperature-index
methods, the simple Degree-day (Samuel et al., 2011) and the more complex SNOW17
(Anderson, 2006, 1973), to evaluate their potential for improving stream flow estimation
in snow-dominated basins with low data availability. It is of note that there are lots of
studies comparing temperature index with complex energy balance snowmelt models
(Bowling et al., 2003; Debele et al., 2010; Essery et al., 2013; Troin et al., 2015), while the
comparison between different conceptual methods, where the only required inputs are
temperature and precipitation, has not received much attention (Agnihotri & Coulibaly,

2020).
2.3 Methods
2.3.1 Study Area and data description

The study regions are the Big East River and the Black River watersheds, which have areas
of 620 and 1522 km2, respectively. Both watersheds are located in the
Muskoka/Bracebridge areas of Northern Ontario, Canada (Figure 2-1). The terrain
elevation of the Big East River watershed ranges from 293 to 564 meter above sea level

(masl) while the Black River changes from 221 to 421 masl. There are no major urban
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areas in either watersheds and, with the exception of the southern part of the Black River
used for agriculture, the dominant land cover of two basins are mixed forest vegetation.
There are only Six Environment and Climate Change Canada (EC) meteorological stations
with more than 10 years of reliable data and all are located near, but not within, the
aforementioned watersheds boundaries (Figure 2-1). Each watershed has one hydrometric
station, located at their outlets, confirming the status of low data availability. Based on all
available historical data, the long-term daily mean air temperature of the regions is around
5°C and the warmest and coldest months are February and July, respectively. The
temperature is near or below freezing point from November to March, indicating a need
for modeling snow storage and snowmelt processes. The highest discharge for both
watersheds occurs during spring, indicating the runoff is snowmelt dominated (Table 2-1).
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Figure 2-1 The study areas: Big East River and Black River watersheds (modified after
Darbandsari & Coulibaly, 2019)
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Table 2-1 The details of all utilized datasets and the climate characteristics of different
measurements based on available historical data from 2006 to 2015

. . . Precipitation or Flow (mm/month
Stations Type latitude longitude Range - P - ( )
(years)  Winter Spring Summer  Fall
. 45.14 -79.4 2006-
1
Beatrice P 2015 108 89 81 97
. 45.53 -78.27 2006-
3, Algonquin P 2015 90 73 72 85
c
k=) . 45.03 -78.5 2006-
g Haliburton P 2015 104 85 78 104
[72]
Q  Muskoka P 4V 793 2006- 98 55 72 87
8 2015
Ll 44,21 -78.95 2006-
Sonya P 2015 78 63 67 87
Ravensclife ~ p 3% 7927 2006- 128 106 81 102
2015
CaPA points P - - 22%01%' [77.120F [70,110] [81,111] [96,139]
Outlet (BE)5 FL 45.39 -79.16 2006- 53 92 27 43
2015
Outlet (B |_)5 F 44,71 -79.28 2006- 54 80 15 28
2015
Average monthly Temperature (°C) [-12,-5]*  [-5,12] [16,19] [0,14]

1P and F are the abbreviations of precipitation and flow, respectively.

2 The range of historical seasonal precipitation value derived from all CaPA points shown in Figure 2-1.
3 The changes of historical average monthly temperature in each season

4 The meteorological stations are operated by Environment and Climate Change Canada.

5The hydrometric stations are operated by the Water Survey of Canada.

Apart from EC meteorological stations, the archive of Canadian Precipitation Analysis
(CaPA), produced by the Meteorological Service of Canada (Mahfouf et al., 2007), is
another source of precipitation time series available for both study regions. CaPA is a near
real-time gridded precipitation analysis based on the combination of observation and
climate model data with a spatial and temporal resolution of 15 km and 6 hours,
respectively (Lespinas et al., 2015). CaPA points (i.e., center of each CaPA grid), located
inside or near both watersheds, are illustrated in Figure 2-1. CaPA provides better spatial
coverage of both watersheds so considering it as an alternative forcing precipitation input

may enhance the performance of hydrologic models in the case of limited data
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measurements. Consequently, two different precipitation input scenarios will be evaluated.
In the first scenario, the daily precipitation comes from interpolation of the available EC
meteorological stations to the center of the watersheds using the Inverse Distance
Weighting (American Society of Civil Engineers, 1996) method. The second scenario
involves using the Thiessen polygon method (Thiessen, 1911) to generate mean areal
precipitation with the daily aggregated CaPA data. The primary comparison of two
scenarios shows that in general, CaPA data underestimates the precipitation amount in
comparison with EC (Figure 2-2). However, CaPA, specifically in Black River watershed,
proposes more intense rainfall events. In this study, both aforementioned scenarios are
separately used to calibrate the models’ parameters and the reliability of using CaPA data

is evaluated based on the performance of the calibrated models.
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2.3.2 Rainfall-runoff Models

The seven structurally different conceptual hydrologic models compared in this study are:
(1) the Sacramento soil moisture accounting (SACSMA) (Burnash et al., 1973); (2) the
McMaster University Hydrologiska Byrans Vattenbalansavdelning (MACHBYV) (Samuel
et al., 2011); (3) Geénie Rural a 4 Paramétres Journaliers (GR4J) (Perrin et al., 2003); (4)
the modified version of the Soil moisture and accounting routing (SMARG) (Liang, 1992);
and three different implementations of the Hydrologic Engineering Center’s Hydrologic
Modeling System (HEC-HMS) software (Scharffenberg, 2016). These models are chosen
mainly based on their structural diversity and performances in previous studies. SACSMA
is widely used for operational flood forecasting in United States (e.g. Day, 1985; Seo et al.,
2003; Vrugt et al., 2006) and it was proven to perform well in Canadian catchments
(Agnihotri & Coulibaly, 2020; Wijayarathne & Coulibaly, 2020). MACHBYV is the
modified version of HBV (Bergstrom, 1976) which is specifically developed for enhancing
streamflow estimation of ungauged basins (Samuel et al., 2012, 2011). SMARG is another
well-known conceptual model with variable number of soil storage, which is proven to
provide better performance than its original version in humid and semi-humid regions. (Tan
& O’Connor, 1996). GR4J is a parsimonious hydrologic model with two conceptual
storages, and was successfully applied in Canadian cold regions (Gaborit et al., 2017;
Martel et al., 2020; Seiller et al., 2012). Moreover, HEC-HMS is a widely used platform
all over the world, which provides several different methods for developing structurally
different models to simulate rainfall-runoff process (Gyawali & Watkins, 2013; Teng et al.,

2018). The main different characteristics of the structures of these seven models are
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summarized in Table 2-2. These models possess distinct complexities and their number of
parameters varies based on their corresponding number of hydrologic processes and

descriptions. A brief explanation of each model is provided in the following sections.

It is worthy of note that in all SACSMA, MACHBYV, SMARG, and GR4J, the daily
potential evapotranspiration (PET) was calculated using the simplified Thornthwaite
equation (Samuel et al., 2011; Thornthwaite, 1948) by multiplying mean daily temperature
by athorn as the only parameter being determined through calibration process (Table 2-3).
In addition, the simple Degree-day (DD) snowmelt routine was added to these models for
representing changes in the snowpack as well as discriminating snow and rainfall. A brief

explanation of the DD method is presented in Section 2.3.3.
2.3.2.1 Sacramento Soil Moisture Accounting (SACSMA)

The SACSMA is a well-known conceptual lumped hydrologic model, which is used by the
National Weather Service River Forecast System (NWSRFS) for flood forecasting. In this
model, the surface of the basin is divided into pervious and impervious areas. The soil
profile of the pervious portion is partitioned into the thin upper and thicker lower zones. A
total of five state variable reservoirs are used to determine the accumulation of “tension”
and “free” water storages, representing the water bound and not bound to the soil particles,
respectively (Caldwell et al., 2015; Razavi & Coulibaly, 2017). Moreover, the Nash
cascade method is implemented as the routing approach in this model. As can be seen in
Table 2-3, the model possesses 17 parameters that must be specified by the user or through

an automatic calibration.

30



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Table 2-2 Characteristics of the model structure of seven different conceptual hydrologic
models used in this study

Model Conceptual storage Type of flows  Routing Evapotranspiration
SACSMA  eUpper soil tension water eDirect flow e Direct, Surface and Occurred from:
eUpper soil free water oSurface flow Interflow: Cascade of ~ eUpper soil tension
e Lower soil tension water elInterflow three linear reservoirs water
eLower soil primary free water eBaseflow eUpper soil free water
eLower soil supplemental free eLower soil tension
water water
MACHBYV  eSoil moisture layer eUpper soil flow eNon-linear Equilateral ~ Occurred from:
eUpper soil reservoir eLower soil flow triangular weighting Soil moisture layer
eLower soil reservoir
SMARG  eMultiple soil layers eDirect flow e Direct, Surface and Occurred from:
eGroundwater storage eSurface flow Interflow: cascade of e Total precipitation
elnterflow multiple reservoirs ¢ All soil layers
eBaseflow (Nash model)
e Baseflow: Single linear
reservoir
GR4) eProduction soil storage eFast flow e Fast flow: Unit Occurred from:
«Routing soil storage «Slow flow hydrograph and non- e Total precipitation
linear routing storage eProduction store
o Slow flow: Unit
Hydrograph
HEC1 eCanopy storage eDirect flow e Direct and Surface Occurred from:
«So0il Storage eSurface flow flow: Clark unit eCanopy storage
eBaseflow hydrograph
e Baseflow: exponential
recession model
HEC2 eCanopy storage eDirect flow eDirect and Surface Occurred from:
«Surface Storage eSurface flow flow: Clark unit eCanopy storage
eUpper zone storage eBaseflow hydrograph eUpper zone storage
eTension zone storage *Baseflow: exponential 4 Tension zone storage
recession model
HEC3 eCanopy storage eDirect flow e Direct and Surface Occurred from:
eSurface Storage eSurface flow flow: Clark unit eCanopy storage
eUpper zone storage eBaseflow Gw1  hydrograph _ eUpper zone storage
eTension zone storage oBaseflow GW2 *®TWo separate single e Tension zone storage

linear reservoir for

oGW upper layer (GW1)

both baseflow
oGW lower layer (GW2)

components

2.3.2.2 McMaster University Hydrologiska Byrans Vattenbalansavdelning (MACHBV)

The MACHBYV is a nonlinear variant of the conceptual HBV model (Bergstrom, 1976). In
this model, a soil moisture routine accounts for fluctuations of the soil moisture storage of

the basin. A response function, comprising upper and lower soil reservoirs, is used for
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estimating the amount of runoff based on the recharge from soil moisture routine. Finally,
considering the modified routing routine proposed by Samuel et al. (2012), where the
nonlinear storage-discharge relationship is considered in the lower layer of deep soil, the
final streamflow is obtained. These processes are controlled through 10 parameters, shown
in Table 2-3. More detailed description of the MACHBYV model can be found in Samuel et

al. (2011, 2012).
2.3.2.3 The modified version of Soil moisture and accounting routing (SMARG)

The SMARG is a 10-parameter lumped conceptual rainfall-runoff model following the
structure of its earliest version (i.e., SMAR; (O’Connell et al., 1970)). In this modification,
a single reservoir groundwater component is added for considering the effects of
groundwater on total estimated discharge (Liang, 1992). Therefore, it is more reliable in
humid regions where the groundwater component contributes significantly in generating
runoff (Tan & O’Connor, 1996). This model uses a nonlinear water balance routine for
simulating runoff generation process by visualizing the watershed as a stack of horizontal
soil storage layers. Then, the generated surface runoff is transferred through Nash cascade
of equal linear reservoirs model (Nash, 1957) while the previously mentioned single linear
reservoir is used for routing the groundwater discharge. The brief descriptions of the model

parameters and their initial ranges are provided in Table 2-3.
2.3.2.4 Génie Rural a 4 Parametres Journaliers (GR4J)

The GRA4J is a daily conceptual rainfall-runoff model, developed based on the GR3J model

(Edijanto et al., 1999), with only four parameters needing to be calibrated (Table 2-3). This
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model consists of three subsequent steps. First, net precipitation and evapotranspiration is
calculated. Afterward, a portion of net rainfall goes to the one parameter (x1) production
store where the actual evapotranspiration and percolation are determined. Then, the
remaining portion of net precipitation and percolation are used for determining discharge.
A unit hydrograph with time base of x2 and a one-parameter (x3) non-linear routing store
transfer 90 percent of the available water as slow flow; while the other ten percent is
considered as a fast flow and routed by a unit hydrograph with time base of 2 x x2. Finally,
after applying the one parameter (x4) groundwater exchange component, the total

discharge is computed by adding the two aforementioned routed flows (Perrin et al., 2003).

Table 2-3 Parameters of the SACSMA, MACHBYV, SMARG, and GR4J models and their
initial and optimized ranges

Parameter Description Unit IF?;ESL g;gggf ed
SACSMA

UZTWM Upper-zone tension water maximum storage mm 1-150 13-145
UZFWM Upper-zone free water maximum storage mm 1-150 4 -150
LZTWM Lower-zone tension water maximum storage mm 1-500 2-400
LZFPM Lower-zone free water primary maximum storage mm 1-1000 235-979
LZFSM Lower-zone free water supplemental maximum mm 1-1000 147 - 940
ADIMP Additional impervious area - 0-0.4 0-0.32
UzK Upper-zone free water lateral depletion rate day-1 0.1-0.5 0.14-05
LZPK Lower-zone primary free water lateral depletion rate day-1 882(5)1 0.01-0.02
LZSK Lower-zone supplemental free water lateral depletion rate day-1 0.01-0.25 0.04 - 0.19
ZPERC Maximum percolation rate - 1-250 4-234
REXP Exponent of the percolation equation - 0.01-6 1-59
PCTIM Impervious fraction of the watershed area - 0-0.1 0-0.05
PEREE ;?gé(;n percolating from upper to lower zone free water days 0-0.6 0-0.57
Rq Routing coefficient - 0-0.99 0.2-0.55
RIVA* Riparian vegetation area - 0 -

SIDE* Ratio of deep recharge to channel base flow - 0 -

RSERV* Fraction of lower zone free water not transferable to tension 03 -

water
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MACHBV
fc Maximum for soil water content mm 50-800 54 - 346
Ip/fc Limit for PET to determine actual ET mm/mm  0.1-0.9 0.3-09
Isuz A Fhreshold_value used to control response routing on an upper mm 1-100 6-90

soil reservoir
cperc Constant Percolation rate parameter mm/day  0.01-6 0.15-5.92
beta A non-linear parameter controlling runoff generation - 0-10 0.9-10
k0 Flow recession coefficient in an upper soil reservoir days 1-30 2-30
k1 Flow recession coefficient in an upper soil reservoir days 2.5-100 6-37
k2 Flow recession coefficient in a lower soil reservoir days 20-1000 346 - 992
alphal An exponent in relation between outflow and storage - 0.5-20 11-12
maxbas f:l:?ir:]wstforug;ea triangle weighting function for modeling a days 1-20 13-44
SMARG
T Conversion parameter for calculating potential evaporation - 0-1 0.47 - 0.98
C Decay coefficient of soil evaporation - 0-1 01-1
z The total depth of all soil layers mm 0.01-500 72 - 495
H Direct runoff factor - 0-1 0.05-0.74
Y Infiltration capacity mm/day  0-200 24 - 152
N the Nash Cascade model parameter (number of resorvoirs) - 1-20 1-18
NK number of time step for surface runoff routing days 0-200 4-145
G The groundwater runoff coefficient - 0-1 0.63-1
Kg number of time step for groundwater routing days 0-200 5-51
m* Memory length of the routing response function days 100 -
GR4J
x1 Maximum capacity of the production store mm 1-1500 99 - 512
X2 The groundwater exchange coefficient mm/day -10-5 -6.7-2.3
x3 Maximum capacity of routing store mm 1-500 146 - 439
x4 The unit hydrograph time base days 0.5-4 2.2-3.6

Simplified Thornwaite's PET formula
athorn A constant for Thornthwaite’s equation (PET) - 0.1-0.3 0.15-0.3

*Predefined fixed values are used for these parameters based on previous studies

** Optimized ranges are based on the ensemble of calibrated parameter sets of each model for both watersheds with
different objective functions and input scenarios(the outlier values are removed)

2.3.2.5 Lumped HEC-HMS based models

The HEC-HMS software, developed by the US Army Corps of Engineers, is designed for

both continuous and event-based simulation of the rainfall-runoff process of dendritic

34



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

watersheds (Scharffenberg, 2016). It is a reliable platform for developing variants of
lumped and semi-distributed hydrologic models by allowing the user to choose from an
assortment of methods which can model different components of hydrologic cycles (i.e.,
surface, canopy, loss, transform, baseflow and routing processes). The general structure of
any continuous hydrologic model developed based on the HEC-HMS framework is
illustrated in Figure 2-3. As can be seen, the meteorological component, including the
snow-rainfall discrimination and snowmelt module, estimates the excess water that may
contribute to runoff generation. Then, the basin component, consisting of the conceptual
simulations of different physical phenomena, determines the streamflow value at the outlet
of the watershed. In this study, three lumped, structurally different hydrologic models were
developed using different combinations of the available baseflow and loss methods in the
HEC-HMS platform. The first HEC-HMS model, called HEC1 hereafter, uses the Deficit
and Constant loss method and the Recession baseflow method, while the other two models
(i.e., HEC2 and HECS3) use the soil moisture accounting loss method with the Recession
or Linear Reservoir baseflow methods, respectively. The parameters of the utilized
approaches, presented in Table 2-4, show the total number of 7, 15, and 17 parameters for
HEC1, HEC2, and HEC3 models, respectively (excluding the parameters of snowmelt

routine).

It is worth mentioning that the only snowmelt method available in the HEC-HMS software
is the temperature index that is an extension of the degree-day (DD) approach. However,
unlike the DD approach where a constant snowmelt rate is used for each degree above a

base temperature, the melting rate in HEC-HMS is determined as a function of an
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antecedent temperature index (ATI) (Gyawali & Watkins, 2013; Razmkhah et al., 2016).
As can be seen in Table 2-4, due to the importance of ATI melt rate (ATIMR) function on
the accuracy of the snowmelt process, 22 different scenarios are defined for the ATIMR
curve proposed by USACE (Khalida et al., 2014; U.S. Army Corps of Engineers, 1991)
and the best one is determined through the calibration process. Additionally, all three HEC-
HMS based models use the monthly average PET option in their meteorology models; the
monthly average was calculated using the Hargreaves equation (Hargreaves & Samani,
1985), which is proved to be one of the most promising temperature-based PET estimation

method in cold regions (Almorox et al., 2015).
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Figure 2-3 The general structure of HEC-HMS based hydrologic models (Feldman,
2000; Scharffenberg, 2016)
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Table 2-4 The parameters of various HEC-HMS hydrologic process and their acceptable

ranges
Process Method Description Unit Range
. The maximum storage capacity of canopy mm 0-1500
Canopy  Simple o
PET pan coefficient - 0-10
Surface Simple The maximum storage capacity of surface mm 0-1500
Deficit & The maximum storage capacity of the soil mm 0-500
Constant  percolation rate mm/hr 0.1-5
Maximum infiltration from surface to the soil mm/hr 0-500
Storage capacity of the soil top layer mm 0-1500
A part of soil storage not affecting by gravity (Tension mm 0-1500
storage)
Loss Percolation rate from soil to GW1 layer mm/hr 0-500
SMA Storage capacity of GW1 layer mm 0-1500
Percolation rate from GW1 to GW2 layer mm/hr 0.01-500
Lag time determining lateral outflow from GW1 hr 0.01-10000
Available storage in the GW2 layer mm 0.01-1500
Deep percolation mm/hr 0.01-500
Lag time determining lateral outflow from GW2 hr 0.01-10000
Time of concentration hr 0-1000
Transform  Clark . .
Storage coefficient accounting for storage effects hr 0.01-1000
Time coefficient for linear reservoir in GW1 layer hr 0 - 10000
Linear The number of reservoir used for routing # 1-100
Reservoir  Time coefficient for linear reservoir in GW2 layer hr 0 - 10000
Baseflow . .
The number of reservoir used for routing # 1-100
. Recession constant - 0-1
Recession ] .
Ratio of flow to peak flow for resetting base flow - 0-1
Temperature for discriminating between snow and rainfall C -2-3
Melting threshold temperature C -2.5-2
Melt rate in the wet rain condition mm.C/day 0-10
Limit for Discriminating between dry rain and wet rain mm/day 0 - 200
x
§ Coefficient for updating the antecedent meltrate index - 0.9-0.9995
= Relationship between meltrate and ATI (ATIMR function) - 2
Snowmelt = scenarios
& . . .
g. Threshold of rainfall caused rapid change in snow mm/day 0-20
ki temperature
Coefficient for updating the antecedent cold content index - 04-1
The maximum liquid water capacity in the snowpack % 3-10
Melt rate caused by ground heat mm/day 0-2
Changing temperature in different elevation C/1000m -5
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2.3.3 Snowmelt routines

As previously mentioned, due to the significant effects of the snowmelt process on stream
flows in both Big East River and Black River watersheds, two different temperature-index
models, requiring only temperature and precipitation data, are selected. Both methods
possess the same snow-rainfall discrimination procedure where the Upper (T;.) and Lower
(T,) threshold temperatures are used as two calibrating parameters to distinguish between
snow and rainfall (Samuel et al., 2011). In addition, in both models the amount of rain and
snow are simply modified by multiplying by rain correction (RCF) and snow correction
(SCF) factors, respectively. For snowmelt estimation, the Degree-Day (DD) method relies
on a linear relationship between snowmelt and air temperature (T). If T is less than the
melting temperature threshold (T;,,), the melt rate is calculated by multiplying difference
between T and T,, by degree-day factor (DDF). The SNOW17 approach, however,
considers some of the physical processes involved in snowmelt (e.g., energy exchange
between air and snow, the effects of rain on snow, the snowpack heat storage and deficit),
without needing additional input data (Agnihotri & Coulibaly, 2020; Anderson, 2006).
During the non-rain period, the same concept as DD is used for melt rate calculation
whereas the melt factor seasonally changes based on two parameters, maximum (mfmax)
and minimum (mfmin) melt factors. Additionally, the melt during rain is determined by a
simplified empirical energy balance equation (Shamir & Georgakakos, 2006). Other
parameters which should be calibrated for SNOW17 include the average wind function

(uadj), antecedent snow temperature index (tipm), maximum negative melt factor (nmf),
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and the water holding capacity of the snow pack (plwhc). Detailed descriptions of both

snow routing approaches can be found in the above-cited references.
2.3.4 Optimization and Evaluation Processes

The main purpose of the calibration of a rainfall-runoff model is to select the best parameter
values by minimizing the difference between observations and model streamflow
predictions (Chiew et al., 1993). However, the choice of a proper objective function from
a bunch of well-known performance statistics is not a straightforward task. In this study,
for decreasing the influence of choosing objective function on models’ inter-comparison,
five criteria, including Nash Sutcliffe Efficiency (NSE), Nash Volume error (NVE), Kling
Gupta Efficiency (KGE), Modified Nash Volume Error (MNVE), and Peak Weighted Root
Mean Square Error (PWRMSE), were selected and considered as different single objective
functions in order to find the best parameter set for each of the rainfall-runoff models
(Table 2-5). While the first three metrics are formulated to accurately simulate medium

flows, the latter two ones focus on providing more accurate high flow simulation.
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Table 2-5 Performance statistics used as objective functions and evaluation criteria

Criteria Mathematical Formulation Range

Objective functions

2
Nash Sutcliffe Efficiency (NSE) B w1 (s~00,) "

; -0 0 1@
(Nash & Sutcliffe, 1970) sV ( Qoi—%)z

Nash Volume Error (VVE) 0.5NSE — 0.1VE + 0.25NSEL + 0.25NSES -0 to 1
(Samuel et al., 2011)

Kling Gupta Efficiency (KGE) 5 > 5 ) )
(Gupta et al., 2009) 1=y -1D)2+(@-1)2+®b-1) wtol
Modified NVE (MNVE) NSES — 0 1VE otol

(Darbandsari & Coulibaly, 2019)

1
Peak-weighted root mean square error

N —\2
(PWRMSE) 1 Z(QS' _p) x %t 0 to +o0
(Cunderlik & Simonovic, 2004) N\& ™ ‘ 2Q0

Evaluation Criteria

|Z§V=1(Q5i - QOi)|

Volume Error (VE) (Samuel et al., 2011) N 0 to +oo
i=1 QOi
2
NSE based on squared transformed data _ ?’:1(10{%(05,-) - log(QOiD o to1
. . 2 - =
(NSES) (Razavi & Coulibaly, 2017) Iiv=1(10g(QoL~) _ log(QO))
2
NSE based on logarithmic transformed data . ?:1(Q§i ~ Qgi) 1o 1
. . —_— 2 - —
(NSEL) (Razavi & Coulibaly, 2017) ?’:1(Qoi2 _ Q(z))
Peak Error (PE) (Das et al., 2008) M @) 0 to +oo
Qomax
Coefficient of Transferability (T,,) _
(Das et al., 2008) max(NSEcar = NSEya1, 0) Lo too
2
N
NSE based on flows more than 90 1 Zi=1(Qs9oi—Q09oi) ) wtol

percentile (NSE90) Z?’:l(Qmoi—ﬁ)z

(1) Qs, and Qy, respectively represent the observed and simulated flows for day i.
(2) Bold and underlined value indicates perfect performance.

(3) r: linear correlation coefficient between Q, and Q, a: standard deviation of @ over the standard deviation of
Qo, b: the mean of Q¢ over the mean of @,

4) Qs,,,.. @and Qp, show the mean annual observed and simulated peak flows, respectively.

(5) Observed and simulated flows more than 90 percentile are denoted by Qg99, and Qpg,, respectively.
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All models are calibrated for the period from 2006 to 2011, with the year 2006 considered
as warm-up period. The three-year period (2012 to 2015) was used for the validation. The
dynamically dimensioned search (DDS) algorithm (Tolson & Shoemaker, 2007) was used
to calibrate the parameters for each model in this study. DDS is a heuristic global single-
solution based search algorithm that was developed to calibrate complex hydrological
models with a large number of parameters (Arsenault et al., 2014). The main distinguishing
feature of this method is the transition from global to local search by dynamically rescaling
the dimension of the search space. The Ostrich calibration toolkit (Matott, 2005) was used

to run the DDS optimization for each model.

It is of note that although there are two available automatic calibration algorithms in HEC-
HMS software, they perform poorly in finding the optimized parameter sets, especially
when there are a relatively high number of parameters to be calibrated (Cunderlik &
Simonovic, 2004). From the literature, with the exception of Dariane et al. (2016) who
developed an automatic calibration for the HEC-HMS program based on genetic algorithm,
there are no studies that calibrate all parameters of a continuous HEC-HMS model with
snowmelt routine using auto-optimization methods. In this paper, Ostrich, Matlab, HEC-
HMS, and HEC-DSSVue are linked together in order to apply the DDS optimization

algorithm to calibrate HEC-HMS models (Figure 2-4).
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Figure 2-4 The general structure of HEC-HMS based hydrologic models (Feldman,

2000; Scharffenberg, 2016)

Moreover, in this study, seven different evaluation metrics are used for assessing the

performance of the calibrated models (Table 2-5). Apart from standard NSE, we utilized

NSE calculated based on logarithmic (NSEL) and squared (NSES) transformed stream

flows for reflecting the accuracy of low and high flows, respectively. Volume Error (VE)

assesses the long-term performance of the model simulation and Peak Error (PE) evaluates

the models’ ability in capturing peak flows. Also, the transferability of a model in time is

illustrated using the coefficient of transferability (T,,) where the lower values show better

model parameters’ transferability from calibration to validation period. Moreover, for more

specific evaluation of different models’ ability in reproducing high flows, NSE is
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calculated and compared using the 90 percentile streamflow values (NSE90). We also
utilize representative hydrographs and scatterplots, as graphical tools, for visually

assessing the performance of different models.
2.4 Results
2.4.1 Objective functions evaluation

The combination of seven hydrologic models, two different precipitation input
scenarios, and five various objective functions leads to 70 different calibrated models for
each watershed. Evaluating the effect of considering different objective functions is the
prime step before comparing various hydrologic models. Therefore, a comparison is made
between the performance of the calibrated models using the five performance criteria in
Table 2-5 as an objective function for both the Big East River and Black River watersheds
in the validation period (Figure 2-5). The first thing that stands out from the comparison
results in both basins is that neither of the objective functions has complete superiority in
providing the most promising parameters set of all models. Based on the results, it is shown
that although the PWRMSE and MNVE statistics give more weights to high flow values,
using them as an objective function does not significantly improve the performance of the
calibrated models regarding high flows. Additionally, the models calibrated with those
metrics (PWRMSE and MNVE) are the worst at modeling low flows, leading to large
variation in NSEL . Moreover, as expected, calibrated models, utilizing NSE as an
objective function, perform well according to NSE based performance criteria (i.e., NSE,

NSES, and NSEL). However, there are some concerns about their performance regarding
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volume and peak error related measurements, especially in Big East River watershed where
both VE and PE uncertainty of NSE based calibrated models are relatively large. In
addition, the comparison of NSEL measurements shows that using NVE for calibrating
models outperform the other ones in low flow simulation in both watersheds. The relative
good performance of the KGE based calibrated models is noticeable in Big East River
while in Black River watershed, they are not the best ones. By looking at all different
performance criteria simultaneously, it can be seen that using KGE and NVE provide good
and reliable performance when considering different aspects of the hydrographs (i.e. low,
high, and peak flows). However, it is impossible to determine one objective function as the

best one that can be used for calibrating all hydrologic models in both watersheds.

For better clarifying the effects of choosing objective function on model results, Table 2-6
exemplifies the validation performances of MACHBYV and SMARG hydrologic models
being calibrated using NVE and KGE as objective functions. In Big East River, using NVE
provides better parameter estimation of MACHBV while KGE performs better for
SMARG. The opposite is true in Black River watershed where KGE and NVE are better
objective functions for MACHBYV and SMARG, respectively. The use of NVE leads to the
superiority of MACHBYV in Big East River while SMARG perform better if both models
are calibrated with KGE. The same issue arise in Black River where comparing KGE
calibrated models shows the advantages of MACHBYV over SMARG, however, the same

performances are achieved in the case of using NVE.
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Figure 2-5 Box Plots of different performance criteria and their corresponding ranks for
simulated daily stream flows by implementing five various objective functions during the
validation period, derived from seven hydrologic models using two different input
scenarios for (a) Big East River and (b) Black River watersheds

Table 2-6 The validation performances of MACHBV and SMARG hydrologic models
being calibrated by using NVE and KGE as objective functions and ground based
measurements as forcing precipitation input

Big East River Black River
Criteria NVE KGE NVE KGE
MACHBY SMARG | MACHBY SMARG | MACHBY SMARG | MACHBY SMARG

NSE 0.81 0.74 0.67 0.75 0.65 0.68 0.73 0.65
NSEL 0.79 0.79 0.36 0.83 0.79 0.76 0.73 0.54
NSES 0.63 0.50 0.54 0.52 0.33 0.35 0.53 0.31
VE 0.01 0.07 0.06 0.05 0.01 0.01 0.02 0.01
PE 0.40 0.48 0.42 0.45 0.44 0.51 0.42 0.47
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2.4.2 Model Comparison

The main goal of this study is to find the most promising conceptual hydrologic model in
data-poor watersheds by reducing the effects of the calibration process on models’
performance. Therefore, two types of inter-comparison are made between the seven
aforementioned hydrologic models. First, we compared all calibrated models with each
other. Consequently, the twenty calibrated sets of parameters for each hydrologic model
are considered to create the box plots of the evaluation performance metrics for the
validation period (Figure 2-6). The most obvious conclusion derived from Figure 2-6 is
that, in general, the HEC-HMS based models perform worst in comparison to the other
hydrologic models. This relatively poor performance is more significant when the low
flows are the main concerns of the simulation. Moreover, regarding high flows, the
MACHBYV shows the best performance while the high capability of the GR4J model in
high flows simulation cannot be ignored, specifically in the Big East River watershed
where the PE criteria of the GR4J models is the best one. By looking at all six performance
statistics, the MACHBYV is the most consistent hydrologic model for both watersheds and
can be considered the best rated one. The performance of both the SACSMA and GR4J

models also provide reliable and valuable results, whereas the HEC based models do not.
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Figure 2-6 Box plots of different performance statistics for simulated daily stream flows
by using different hydrologic models, derived from sets of calibrated parameters based
on five objective functions and two various input scenarios, for the (a) Big East River and
(b) Black River watersheds during the validation period

The second type of model inter-comparison is between the best-calibrated set of parameters
for each model using the EC precipitation input scenario. We chose the best parameter set
by comparing all the aforementioned performance statistics focusing on the validation
period. The set of parameters with the best rank and rational condition (i.e., the values of

different performance measurements are controlled manually and parameters’ set
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providing unreasonable predictions are ignored) was determined as the best selected one.
The evaluated performance statistics of the final selected models in both calibration and
validation periods and the relative comparison between them are presented in Table 2-7
and Figure 2-7, respectively. What stands out in the results for the Black River watershed
is that, in general, MACHBYV is the best-rated model based on most of the criteria in both
calibration and validation periods. However, the results are more complex for the Big East
River watershed, where the GR4J model is the best performing one during the validation
period while MACHBYV, SACSMA and GR4J models perform competitively based on the
calibration period results. Moreover, regarding high flow-based criteria, MACHBYV and
GRA4J respectively provide the best results in Black River and Big East River watersheds.
In addition, as concluded in the previous comparison, although HEC2 and HECS3,
compared with HEC1, relatively lead to more reliable results, the three HEC based models

do not perform as well as the other four conceptual models in either watersheds.
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Table 2-7 The performance statistics of the best-calibrated models in both watersheds

Calibration Validation
7 £ 2 . .
: MM Eilz 2% 53 B R FosoR OB
s | m -roo 8 m -roo 8

MACHBV 3 0.90° 085 090 0.00 014 0.77 | 0.81 0.79 063 001 040 0.44
E SACSMA 3 0.88 085 085 0.00 019 067 | 076 0.82 053 004 046 0.18
% SMARG 5 088 081 086 004 016 071| 076 0.68 055 0.03 046 027
i GR4J 1 088 081 082 000 011 056 | 0.79 0.68 0.60 0.02 045 0.26
'02: HEC-1 4 084 057 084 000 020 054 | 072 055 050 0.15 042 -007
E HEC-2 4 0.80 0.39 085 0.11 0.20 0.55]| 065" 010 054 045 038 0.01
® HEC-3 1 089 049 086 006 023 057|075 078 051 0.11 044 0.05
- MACHBV 2 084 076 081 0.01 005 065|073 073 053 002 042 033
% SACSMA 2 0.77 079 063 0.00 027 045| 066 0.79 035 001 047 0.15
§ SMARG 4 0.74 066 0.72 0.00 0.17 054 )| 063 054 0.37 000 048 0.20
§ GR4J 2 0.82 081 051 0.00 003 049|079 086 072 001 028 043
g HEC-1 4 068 035 070 004 031 023| 055 0.20 0.28 001 050 0.00
”1 HEC-2 5 067 031 070 0.03 028 035|062 021 035 005 041 021
@ HEC-3 2 060 055 057 000 023 0.06| 071 040 052 0.09 030 0.31

1 The objective functions lead to the best parameter sets of each model (1 = NSE; 2 =KGE; 3=NVE; 4=MNVE;5

= PWRMSE)

2 The best and the worst values are bolded and underlined, respectively.
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Figure 2-7 The rank of different hydrologic models based on various performance
statistics in the validation and calibration periods for (a) Big East River and (b) Black
River watersheds

For a better comparison of different model performance in simulating high flows, scatter
plots of the simulated and observed daily peak flows (peak flows greater than 75 percentile)
are illustrated in Figure 2-8. Additionally, for qualitative inspection, Figure 2-9 presents a
representative portion of the simulated and observed hydrographs based on various

hydrologic models with their best parameter sets (presented in Table 2-7). As was
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concluded previously, MACHBYV and GR4J show better performance in comparison to the
other models regarding high flows in both watersheds. However, it is worthy of note that
even the best hydrologic models possess a clear tendency to underestimate peak flows
especially in the Black River Watershed. This underestimation can likely be attributed to
both the models’ structures as well as the quality of forcing input data. The poor estimation
of mean areal precipitation, derived from low-density meteorological stations, can lead to

systematic under/overestimation of stream flows (Collischonn et al., 2008; Tegegne et al.,
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Figure 2-8 The scatter plots depicting the simulated and observed daily peak flows,
greater than the 75 percentile, for the whole period (i.e. calibration and validation
periods) and their fitted regression lines for both Big East River and Black River
watersheds
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Figure 2-9 Observed and simulated daily runoff discharges at the outlet of (a) Black
River watershed and (b) Big East River Watershed for a representative portion of the
validation period

2.4.3 The effect of forcing precipitation input (CaPA versus Ground-based stations)

In the case of low-density meteorological measurements, utilizing other sources of
data as forcing inputs into hydrologic models is necessary. Here, in order to evaluate the
reliability of Canadian Precipitation analysis (CaPA) data, a comparison is made between
the simulation results, derived from the best optimal parameter set of all hydrologic models

using the two predefined input scenarios. The results, as shown in Figure 2-10, indicate
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that in general, the CaPA based calibrated models performed approximately similar to the
calibrated models based on EC data. However, the average transferability statistic implies
that using CaPA data, in comparison to EC, provides more consistent performance for the
models during the calibration and validation periods. Also, by focusing on high flows, it
can be concluded that CaPA based calibrated models performed better specifically in the
Black River watershed where both NSE90 and PE criteria of CaPA based calibrated

models possess a noticeable superiority over EC based ones.

Moreover, the effects of using different precipitation scenarios on model performances are
separately evaluated for various hydrologic models, using the percentage of improvement
in low, medium, and high flows. These percentages are respectively defined as the percent
increase in NSEL, NSE, and NSES criteria when CaPA is used as forcing input in
comparison to the EC scenario (Table 2-8). As can be seen, the effects of using CaPA as
an alternative forcing precipitation input is not consistent with different hydrologic model.
Regarding high flows, the results shows the advantage of using CaPA for almost all models
in both Big East River and Black River watersheds, where respectively the average of 18
and 12 percentage of performance improvement occurs based on NSES criterion. However,
the effects of implementing CaPA on low flow performance of different models do not
follow the same trend. In Big East River watershed, using CaPA leads to lower NSEL of
MACHBYV, SACSMA, and SMARG while the low flow performance improvement of
HEC-HMS based models is significantly high. On the other hand, in Black River watershed,
except HEC2 and HECS3, where implementing EC and CaPA precipitation scenarios

respectively results in better low flow simulation, other models’ performances regarding
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low flows does not significantly changes when different input scenarios are used. Besides
HEC2 with 24% NSE based improvement, the general performances of different models
(i.e. using NSE measurement) do not face significant changes in the case of using CaPA as

forcing input.
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Figure 2-10 Box plots of different performance measurements for (a) Big East River and
(b) Black River watersheds using best-estimated parameter set of all hydrologic models.
These are derived from two input precipitation scenarios: Environment Canada (EC) and
Canadian Precipitation Analysis (CaPA)
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Table 2-8 The model performance statistics of different best-calibrated models by
implementing EC and CaPA precipitation scenarios

] Obj. Func.? NSE NSEL NSES
Basin Model
EC CaPA | EC CaPA | %12 | EC CaPA | | (%) EC CaPA | %l
MACHBV 3 3 0.73 0.76 4%2% | 0.73 0.67 -8% 0.53 0.60 13%
N SACSMA 3 1 0.66 0.70 6% | 0.79 0.75 -4% 0.35 0.45 29%
(3
-02: SMARG 5 5 0.63 0.69 9% | 054 0.38 -30% | 0.37 0.43 17%
% GR4J 1 2 0.79 0.78 -1% | 0.86 0.87 0% 0.72 0.75 5%
.zu_; HEC1 4 1 0.55 0.58 6% | 0.20 0.34 2% 0.28 0.35 26%
@ HEC2 4 4 0.62 0.67 8% | 0.21 0.32 55% | 0.35 0.56 59%
HEC3 1 1 0.71 0.66 -7% | 0.40 0.64 59% 0.52 041 -21%
MACHBV 2 5 0.81 0.83 3% | 0.79 0.76 -3% 0.63 0.68 %
SACSMA 2 1 0.76  0.82 7% | 082 084 2% 053 0.62 15%
§ SMARG 4 2 0.76 0.80 5% | 0.68 0.72 6% 0.55 0.62 12%
5 GR4J 2 1 079 078 | -1% | 0.68 0.68 -1% 0.60 0.66 8%
Q
f—.g HEC1 4 3 0.72 0.80 11% | 0.55 0.57 3% 0.50 0.62 24%
HEC2 5 1 0.65 0.80 24% | 0.10 0.30 181% | 0.54 0.58 8%
HEC3 2 1 0.75 0.74 -2% | 0.78 0.61 -22% | 0.51 0.54 5%
1 The objective functions lead to the best parameter sets of each model (1 = NSE; 2 =KGE; 3=NVE; 4=MNVE;5
= PWRMSE).

2 I = The percentage of Improvement. Its positive values are underlined.

2.4.4 Evaluation of Snowmelt Estimation Methods: Degree-Day and SNOW17 models

For assessing the effects of implementing a more complex snowmelt routine, a comparison
is made between the MACHBYV and SACSMA hydrologic models in conjunction with
Degree-Day (DD) and SNOW17 snowmelt estimation approaches. Four model structures,
stemming from the combination of two aforementioned hydrologic models and snow
modules, are calibrated using two predefined input scenarios and five aforementioned
objective functions in both watersheds. In order to facilitate the evaluation, the percentages
of model improvement in medium and high flows were used. The former one is defined as

a percent increase in NSE when the SNOW17 model is implemented in comparison to DD
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method while the latter one is based on NSES criteria for focusing on high flows,
specifically. Positive values of model improvement shows the advantage of using the

SNOW17 method.

Figure 2-11 presents the model improvements in both calibration and validation periods
using all calibrated models for each watershed. For the SACSMA, in both watersheds
during both periods, the median is more than zero indicating enhancement of the model
performance in the case of adapting the SNOW17 model. However, the positive effect of
using the SNOW17 model, combined with the MACHBYV model structure, cannot be
concluded. For instance, although the model improvements during the calibration period
in the Big East River watershed are almost positive, especially regarding high flows,
opposite results are obtained in the validation period, where the high flow model
improvement median is around -30 percent. Moreover, in order to complete the assessment,
a comparison has been made between the best optimal parameter set of each model
structure (Table 2-9). In line with the previous comparison, the results indicate that
coupling the SACSMA and SNOW17 provides better results especially in high flows
where the maximum of approximately 25% improvement occurs. However, the DD
approach seems to be more appropriate to be used in conjunction with the MACHBV
model structure especially in the Big East River watershed. In addition, the performance
of the models regarding the whole hydrographs (i.e., model improvement based on NSE)
varies between ~-2% and ~8% depicting no specific enhancement of general models’

performance in the case of implementing more complex snowmelt models.
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Figure 2-11 Box plots of the MACHBYV and the SACSMA model improvements in (a) Big
East River and (b) Black River watersheds using all estimated parameters of the models.
The positive value of model improvement reveals the positive effect of utilizing the
SNOW-17 method, while the negative value shows the advantage of the DD approach
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Table 2-9 The model performance statistics of the best-calibrated SACSMA and MACHBYV in conjunction with DD and SNOW-
17 snowmelt methods in both watersheds

o o Model Improvement (%)
. Calibration Validation —— —
Basin Model Input Snow model Calibration Validation
NSE NSES PE NSE NSES PE NSE NSES NSE NSES
DD 0.90 0.90 0.14 0.81 0.63 0.40
= 5 EC . 0.3% 2.6% 1.5% 2.2%
2 T S17 0.91 0.92 0.11 0.82 0.65 0.38
g 2 DD 0.90 0.91 0.12 0.83 0.68 0.33
kS S CaPA -0.3% 0.7% -0.1% -0.5%
= S17 0.90 0.91 0.11 0.83 0.67 0.31
g DD 0.88 0.85 0.19 0.76 0.53 0.46
04 < EC 3.3% 7.8% 7.9% 21.0%
X % S17 0.91 0.92 0.11 0.82 0.65 0.38
%5 2 DD 0.90 0.89 0.18 0.82 0.62 0.39
) CaPA -0.4% 2.1% 1.8% 9.4%
S17 0.90 0.91 0.11 0.83 0.67 0.31
" DD 0.84 0.81 0.05 0.73 0.53 0.42
=] 5 EC -1.7% 3.6% -3.5% -32.8%
% T S17 0.82 0.84 0.12 0.70 0.36 0.33
ko 2 DD 0.80 0.79 0.12 0.76 0.70 0.36
= a 1.970 9.170 =17 -ol.1l%0
g CaPA 1.9% 5.7% 7.1% 31.1%
=~ S17 0.81 0.84 0.09 0.70 0.48 0.35
(5]
= DD 0.77 0.63 0.27 0.66 0.35 0.47
x < EC 9.1% 28.5% 4.8% 12.6%
@ % S17 0.84 0.82 0.19 0.69 0.40 0.47
L
> g DD 0.74 0.64 0.34 | 0.70 0.45 0.50
s} o CaPA 6.3% 20.4% 2.0% 16.6%
S17 0.79 0.77 0.22 0.71 0.53 0.45

* S17 is the abbreviation of SNOW17.

58



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

2.5 Discussion

Assessing the effects of different objective functions on model performances
indicate that in general, using KGE and NVE as an objective function can provide more
reliable estimation of different models’ parameters. NVE is a combination of NSE and VE
(Table 2-5) and its best value gives both the lowest difference between computed and
observed flows and small volume error, (Lindstrom, 1997; Samuel et al., 2011). KGE also
consider three measures (correlation, bias, and variability) simultaneously and provide
more consistent results than NSE especially in basins where the variability of the observed
flow is high (Buzacott et al., 2019; Gupta et al., 2009), such as Big East River watershed
where the streamflow coefficient of variation is 1.21 compared with 1.05 in Black River.
However, the two aforementioned criteria do not always lead to the best optimal parameter
sets for different hydrologic models in both watersheds and will affect the performance of
various models in different manners (Figure 2-5 and Table 2-6). This proves the necessity
of considering multiple objective functions in model inter-comparison process in order to

find more robust and comprehensive conclusions.

Inter-comparison of different conceptual hydrologic models suggests that
MACHBYV is the most consistent model providing reliable low, medium, and high flow
estimation in both basins. This conclusion is in line with the original purpose of developing
MACHBYV, which was to simulate stream flows of ungauged watersheds in Ontario
(Samuel et al., 2011, 2012). Also, the parsimonious GR4J model, with the lowest
complexity, possess competitive performances in both watersheds, especially regarding

high flow simulation (Figure 2-8 and 2-9). Besides the proven capability of GR4J model
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structure in daily streamflow simulation (Wijayarathne & Coulibaly, 2020), this advantage
may be due to the remarkable ability of GR4J to compensate the problem of having poor
precipitation input. The parameters of GR4J model (i.e. X1, X2, and X3) can be relatively
distorted through the calibration process in order to provide good results even with limited
input data (Andreassian et al., 2001; Drogue & Khediri, 2016; Simonneaux et al., 2008).
This ability is also demonstrated where along with MACHBYV, GR4J possesses the lowest
changes of performance in comparison to other models when CaPA is used as another
source of precipitation (Table 2-8). On the other hand, compared with other conceptual
models, the HEC-HMS based ones have relatively poor performances in both watersheds,
which is more significant in low flow simulation. With HEC1 and HEC2, the possible
reason of their poor performance, which is more pronounced than HECS3, is the low
capability of the recession method in accurately estimating base flow. In addition, this may
be due to the use of the fixed monthly estimated PET for HEC-HMS based models,
compared with other models where the daily PET is determined during the calibration
process. Therefore, evaluating the effects of using an external PET estimation model linked,

and calibrated with HEC-HMS, on the accuracy of streamflow simulation is recommended.

Evaluating the effects of CaPA as another source of precipitation for both
watersheds indicate that the effect of using different input scenarios is not similar for
different hydrologic models and considering it in model comparison process is required for
possessing robust conclusions. As previously stated, changing rainfall has the least effect
on MACHBYV and GR4J models (Table 2-8), proving their suitability for study regions

with low data availability. Also, the reliability of CaPA as another source of precipitation
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for both watersheds is confirmed by comparing the performance of different hydrologic
models. CaPA based calibrated models yield better high flow estimation than using sparse
ground-based measurements for model calibration (Figure 2-10 and Table 2-8). This is
more obvious in Black River watershed and can be justifiable by the fact that EC based
input scenario underestimates severe daily rainfall events in the Black River watershed
(Figure 2-2). In line with previous studies, the results of this study show that using reliable
spatially distributed data can provides more accurate mean areal precipitation estimates
and affect the performances of the lumped hydrologic models in data-poor regions
(Collischonn et al., 2008; Martel et al., 2020). However, more comprehensive evaluation
of data with high spatial resolution and the effects of its spatial heterogeneity on hydrologic
model performances required the application of a distributed or semi-distributed

hydrologic models (Mazzoleni et al., 2019).

Snowmelt module is an important part of any hydrologic model in snow-dominated
watersheds. Therefore, this study compared Degree-Day (DD) and more complex
SNOW17 methods, relying on temperature and precipitation as the only inputs, in
conjunction with two hydrologic models (i.e. MACHBY and SACSMA). In general, in line
with Agnihotri and Coulibaly (2020), the results indicate the competitive performance of
DD in both watersheds, which may be related to the land use characteristics of the regions,
which are forested. Regarding high flows, the SNOW17 performs better than DD in Black
River watershed while in Big East River, this superiority is less noticeable and diminishes
from calibration to validation periods. This may be attributed to the steeper topography of

the Big East River watershed and not dividing it into different elevation zones (Agnihotri
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& Coulibaly, 2020; Anderson, 2006). Another possible reason for this outcome is the lack
of long-term historical data in data-scarce regions. The higher degrees of freedom of
SNOW17 method, compared with DDM, can lead to parameter overfitting when the length

of the calibration period is not long enough due to low data availability.
2.6 Summary and Conclusions

Inter-comparison of various conceptual hydrologic models for continuous daily
streamflow simulation in watersheds with low data availability is the main goal of this
study. Consequently, the performance of seven lumped conceptual rainfall-runoff models
with different structures (i.e., SACSMA, MACHBYV, SMARG, GR4J, and three HEC-
HMS based models) were compared in two data-poor and snow-dominated watersheds,
Big East River and Black River, located in Northern Ontario, Canada. All models were
calibrated using five different criteria (i.e. NSE, KGE, NVE, MNVE and PWRMSE) and
two different input scenarios in order to relax the influence of calibration process on the

models’ results.

The comparison results suggest that although the SACSMA and GR4J hydrologic
models possess competitive performances, MACHBYV shows the best results in simulating
the daily stream flows for both watersheds. Also, the GR4J model shows the highest
accuracy for high flow prediction in both watersheds. The results also indicate that the
HEC-HMS based models provide lower performance, especially for low flows. From inter-
comparing the different structures of the HEC-HMS models, using the soil moisture
accounting and linear reservoir approaches are preferred to Deficit and Constant loss and

recession methods for continuous daily streamflow simulation. Moreover, alongside model
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comparison, the evaluation of the effects of using different objective functions shows that
KGE and NVE are the most consistent criteria leading to reliable parameter estimation with
reasonable performance regarding different parts of the hydrograph, while comparing
different model structures require considering the effects of objective function selection.
Furthermore, the comparison between gauged and CaPA based calibrated models in both
watersheds indicates the high potential of CaPA data as a good alternative in the case of
low data availability. CaPA not only provides the same level of performance in general but
also leads to better results than ground-based data regarding high flows. In addition, due to
the importance of accurate snowmelt estimation in snow-dominated watersheds, we
compared the performance of the MACHBV and SACSMA hydrologic models in
conjunction with Degree-Day method (DD) and more complex SNOW17 snowmelt
estimation methods in both watersheds. In general, incorporation of SNOW17 does not
significantly improve the performance of either hydrologic models. By focusing on high
flows, however, the results show that implementing SNOW17 with SACSMA is

consistently superior, while the DD method can perform comparably well with MACHBYV.

In general, this study reveals that besides considering the effects of calibration
process, utilizing different precipitation input scenarios can lead to more robust conclusion
of model comparison process in data-poor watersheds. The findings of this study suggest
that MACHBYV and GR4J are the most robust lumped conceptual rainfall-runoff models,
reacting well to poor mean areal rainfall estimation in data-scarce watersheds and
performing well regarding different aspects of the hydrographs, while the SACSMA also

reliably simulates streamflow in both watersheds. In addition, this study confirms the high
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potential of the archived aggregated daily CaPA data to be considered as a hydrologic

forcing in data-poor watersheds in Northern Ontario. Moreover, another implication of the

results is that implementing the more complex SNOW17 model for snowmelt estimation

in watersheds with low data availability does not always provide more reliable results, and

its effectiveness depends on the hydrologic model structure.

Limitations of this study are as follows:

The study was designed for assessing the general performance of models
regarding all aspects of hydrographs (i.e. low, medium, and high flows),
simultaneously. However, inter-comparing various models being calibrated
regarding different particular class of flows, separately, would be advisable.
Although the hydrologic responses of the two considered watersheds are
not quite similar, the findings of this study remain applicable within the
same topographic and climatologic conditions. So, we recommend further
application of the proposed model inter-comparison for different types of
watersheds (i.e., mountainous, semi-arid, semi-urban) with low data
availability for providing more comprehensive conclusions.

There are other conceptual models with different structures that are worth

to be investigated in future studies.

The reliability of Canadian Precipitation Analysis in estimating mean areal precipitation as

an input of lumped models in data-scarce regions were revealed in this study, however,

further studies need to be carried out to comprehensively assessed the accuracy of spatial
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heterogeneity of CaPA data in Northern Ontario, using a distributed or semi-distributed

hydrologic models.
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Chapter 3. Inter-Comparison of Different Bayesian Model Averaging

Modifications in Streamflow Simulation

Summary of Paper 2: Darbandsari, P., & Coulibaly, P. (2019). Inter-comparison of
different Bayesian model averaging modifications in streamflow simulation. Water, 11(8),

1707.

In the context of streamflow predictions, this research work aims at evaluating the effects
of various previously recommended Bayesian Model Averaging (BMA) modifications,
including the implementation of different data transformation approaches, various
distribution types, heteroscedastic variance, and different BMA parameter estimation

methods on the reliability and accuracy of BMA predictive results.
Key findings of this research include:

* The contributions of different members of the ensemble in the BMA final results
are not always in accordance with their individual performances, which shows the
significant importance of establishing an ensemble with independent members,
capturing the whole observational variability.

* The expectation-maximization algorithm is a robust optimization method for
reliably estimating the original BMA parameters.

* The application of the non-constant (i.e. heteroscedastic) variance enhances the
capability of the BMA method for quantifying predictive uncertainty, especially for

high streamflow values.

79



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

* Applying the data transformation method, in general, leads to more reliable
predictive results while it reduces the sharpness of the probabilistic high flow
streamflow predictions.

e The effects of employing more representative distribution types in the BMA
formulation are marginal.

* The combination of data transformation approach and non-constant variance yields

under confident results with large width of confidence interval bounds in high flows.
3.1 Abstract

Bayesian model averaging (BMA) is a popular method using the advantages of forecast
ensemble to enhance the reliability and accuracy of predictions. The inherent assumptions
of the classical BMA has led to different variants. However, there is not a comprehensive
examination of how these solutions improve the original BMA in the context of streamflow
simulation. In this study, a scenario-based analysis was conducted for assessment of
various modifications and how they affect BMA results. The evaluated modifications
included using various streamflow ensembles, data transformation procedures, distribution
types, standard deviation forms, and optimization methods. We applied the proposed
analysis in two data-poor watersheds located in northern Ontario, Canada. The results
indicate that using more representative distribution types do not significantly improve
BMA-derived results, while the positive effect of implementing non-constant variance on
BMA probabilistic performance cannot be ignored. Also, higher reliability was obtained
by applying a data transformation procedure; however, it can reduce the results’ sharpness

significantly. Moreover, although considering many streamflow simulations as ensemble
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members does not always enhance BMA results, using different forcing precipitation
scenarios besides multi-models led to better BMA-based probabilistic simulations in data-
poor watersheds. Also, the reliability of the expectation-maximization algorithm in

estimating BMA parameters was confirmed.

Keywords: Bayesian model averaging; multi-model ensemble hydrologic simulation;

uncertainty analysis; Canada
3.2 Introduction

Different types of hydrologic models, varying from empirical and conceptual to fully
distributed physically based models, have been developed in order to increase the accuracy
of hydrological forecasts. However, none of these models describe all aspects of
hydrological processes sufficiently and without avoiding errors. Therefore, it remains
difficult to choose one of them as superior in all conditions (Chen et al., 2013; Z. Liu et al.,

2016).

Different uncertainties in rainfall-runoff modeling, arising mostly from parameters, inputs,
and the structure of the model (Moradkhani & Sorooshian, 2008; Shrestha, 2009), need to
be quantified reliably and accurately as possible. This can be done by generating a
streamflow ensemble system (Madadgar & Moradkhani, 2014; Michaels, 2015; Seo et al.,
2006). Although using streamflow ensemble based on multi-input and multi-parameter sets
can enhance the uncertainty quantification process, it cannot address the uncertainty within
a single hydrologic model structure (i.e., model structural uncertainty) (Georgakakos et al.,

2004; Vrugt & Robinson, 2007). Consequently, in recent years, some multi-model
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approaches have been developed in order to find more reliable results by combining

multiple model forecasts.

The model averaging approaches can be divided into two main groups. The first one
includes methods leading to a one-point deterministic result by using the weighted average
of the deterministic model forecasts or simulations, such as simple model averaging,
Granger—Ramanathan averaging (Granger & Ramanathan, 1984), and artificial neural
network (ANN) methods (Shamseldin et al., 1997; Shamseldin & O’Connor, 1999). The
second group contains combination techniques like Bayesian model averaging (BMA)
(Hoeting et al., 1999; Raftery, 1993; Raftery et al., 1997, 2005) which quantify the
predictive uncertainty and provide probabilistic results. In the BMA method, individual
models are weighted using their likelihood measures and probabilistic results are generated
by combining the probability distribution of various individual forecasts. It has been shown
that BMA is one of the most promising multi-model combination approaches in producing
more reliable and accurate results in comparison to the other methods (Arsenault et al.,

2015; Raftery et al., 2005; Viallefont et al., 2001).

There are many different fields, from medicine to management, where the BMA method is
applied (Tian et al., 2014). Bayesian model averaging has been largely used in meteorology
(Liu & Xie, 2014; Ma et al., 2018; Raftery et al., 2005; Sloughter et al., 2007; Sun et al.,
2018). In recent years, the BMA approach has been applied in various water resources and
hydrologic studies ranging from groundwater modeling (Neuman, 2003; Rojas et al., 2008;
Zeng et al., 2016) to flood frequency analysis (Yan & Moradkhani, 2016). Moreover,

various studies have successfully applied the BMA method in the field of hydrological
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modelling (Ajami et al., 2007; Dong et al., 2013; Duan et al., 2007; Huo et al., 2019; Liang

et al., 2013; Najafi & Moradkhani, 2016; Qu et al., 2017; Yen et al., 2014).

There are some potential issues and limitations for the standard Bayesian model averaging
approach. One of the main assumptions of the classic BMA methodology is estimation of
forecast posterior probability distribution by a Gaussian function. It has been raised that
this assumption leads to inappropriate results in the case of non-normal data, such as
streamflow or precipitation where skewed distributions (e.g., gamma) are more
representative. This has motivated some research to relax this assumption by considering
different types of distributions (Sloughter et al., 2007; Vrugt & Robinson, 2007) or
applying a data transformation procedure in order to generate approximately normal data
(Duan etal., 2007; Z. Liang et al., 2013; Qu et al., 2017; Todini, 2008; Yan & Moradkhani,
2016). Additionally, in the original BMA, a single constant variance for conditional
probability distribution functions (PDFs) is implemented. This seems to be unsuitable for
streamflow data where the larger errors are expected regarding high flows. Consequently,
some studies proposed considering heteroscedastic (non-constant) variance changing
monotonically with the flow level in order to enhance the predictive performance of the
BMA model (Vrugt, 2016; Vrugt & Robinson, 2007). Although a significant number of
studies tried to reduce the effect of the aforementioned assumptions, none have
comprehensively assessed the sensitivity of BMA methodology in applying various

aforementioned modifications and how they affect BMA final probabilistic results.

Moreover, in the original BMA method, the expectation-maximization (EM) algorithm

(McLachlan & Krishnan, 2008) was proposed to find the optimal values of BMA
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parameters. However, it is argued that the EM algorithm is not always able to find the
global solution properly and the final solution is sensitive to the initial values (Duan et al.,
2007; Raftery et al., 2005; Sloughter et al., 2007; Vrugt & Robinson, 2007). As a result,
some studies have proposed replacing the EM algorithm with other global optimization
techniques for possessing more reliable solutions solutions (Ebtehaj et al., 2010; Vrugt et
al., 2008; Vrugt & Robinson, 2007), while no studies have assessed how the accuracy and

reliability of the BMA results are influenced by this modification.

Furthermore, the streamflow ensemble for BMA application can be derived in various ways,
such as utilizing different hydrologic models (Duan et al., 2007; Zhang et al., 2009),
considering various forcing inputs scenarios (Liang et al., 2013; Neto et al., 2018; Strauch
etal., 2012), or using different parameter sets of each hydrologic model (Dong et al., 2013).
It has been claimed that a high number of members in the ensemble does not always
increase the potential ability of the BMA method (Madadgar & Moradkhani, 2014;
Neuman, 2003). However, there is no thorough evaluation of how an ensemble generated

from different sources can affect the performance of the BMA method.

Although some studies have proposed more complicated BMA-based methods (i.e.,
GLUE-BMA (Rojas et al., 2008), BMA-PF (Parrish et al., 2012, Cop-BMA (Madadgar &
Moradkhani, 2014), and CBP-BMA (He et al., 2018)), there are still many studies being
done using the original BMA approach based on the aforementioned modifications.
Consequently, the need of a comprehensive assessment of the different BMA variants is
strongly felt. This study aims to fill this gap by closely evaluating how the various

previously recommended modifications affect the accuracy and reliability of the BMA-
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generated probabilistic results. The conclusions are expected to contribute toward the
improvement of the knowledge of different BMA variants dealing with streamflow
simulations and forecasting and provide practical and useful recommendations about the
effectiveness of various modifications. The organization of this paper is as follows: Section
3.3 elaborates on all materials and methods used in this study, including the study areas
and data, the standard BMA method and its various components, the proposed BMA
scenario-based analysis, the different hydrologic models, and the evaluation performance
statistics. In Section 3.4, the inter-comparison results of the proposed BMA modifications

are presented and discussed, and, finally, a summary and conclusion section are provided.
3.3 Materials and Methods
3.3.1 Study Area and Data

The Big East River (620 km?) and the Black River (1522 km?) watersheds, located in the
northern part of Ontario, Canada, are chosen for the implementation of the proposed BMA
scenario-based analysis (Figure 3-1). Both basins are mostly forested regions and their
landscapes are moderately sloped with mean elevations of 450 and 300 meters above sea
level for the Big East River and Black River watersheds, respectively. The historical daily
streamflow data at the outlet of both watersheds (the only hydrometric station of each
watershed) illustrate that high flows mostly occur in April when the snowmelt process
plays an important role. Moreover, as can be seen from Figure 3-1, the only six available
Environment Canada (EC) meteorological stations with reliable and sufficient historical
data are located outside the boundaries of both watersheds. This represents an actual

condition of watersheds with limited data availability. Analysis of the precipitation and

85



Ph.D. Thesis — Pedram Darbandsari

McMaster University — Civil Engineering

temperature time-series of these six stations approximately shows the annual mean

precipitation and the daily average temperature of 1050 mm and 5 °C, respectively.

Moreover, the winter and summer average temperature are —9 °C and 18 °C, respectively,

showing that all four seasons are defined clearly in both study areas (Figure 3-2).
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Figure 3-1 Location map of the Big East River and Black River watersheds
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Figure 3-2 The box-plot and average of monthly precipitation and the mean monthly
temperature for the observation period (2006-2015) based on data from six available
meteorological stations

Besides the ground-based precipitation data, the archive of the daily aggregated form of
the Canadian Precipitation Analysis (CaPA) was used as an alternative precipitation
forcing input for hydrologic modeling of both watersheds. The CaPA is a gridded
precipitation product with a spatial resolution of 15 km produced by the Meteorological
Service of Canada based on the combination of various data sources, such as radar data,
climate model data, and observations (Lespinas et al., 2015). It was shown that the archived
CaPA is a potential reliable source of precipitation for data-scarce regions (Boluwade et
al., 2018). In order to initially assess the precipitation variability of each basin using
different datasets, primary analysis was performed. Two mean areal precipitation time-
series for each watershed were derived from interpolated EC ground-based data using an
inverse distance weighting method (American Society of Civil Engineers, 1996) and the

CaPA data by applying a Thiessen polygon approach (Thiessen, 1911). As can be seen
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from Figure 3-3, although CaPA provided more intense rainfalls specifically in the Black
River watershed, it underestimated the amount of precipitation compared with the EC data
in both watersheds. Moreover, the calculated daily correlation coefficients between EC-
and CaPA-derived datasets (0.83 and 0.87 for the Big East River and Black River
watersheds, respectively) show evidence of a linear relationship. However, by focusing on
intense rainfall events (precipitation > 10 mm/day), the correlation coefficients were
dramatically decreased to 0.42 and 0.48 for the Big East River and Black River watersheds,
respectively. Therefore, there are remarkable differences between two datasets, especially
at intense rainfall events, suggesting a significant amount of input uncertainty in poor-data
watersheds. So, the authors used CaPA as a second forcing data for hydrologic models,
which can help obtain a better quantification of the predictive uncertainty in the rainfall-

runoff process using a Bayesian model averaging approach.
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Figure 3-3 The scatter plots of the mean areal interpolated Environment Canada (EC)
and Canadian Precipitation Analysis (CaPA) data and their corresponding cumulative
precipitation of the driest and wettest years during the period 2006-2015 for both the (a)
Big East River and (b) Black River watersheds

3.3.2 Standard Bayesian Model Averaging Technique

Bayesian model averaging is a statistical method for estimating probabilistic prediction
based on various competing forecasts, possessing more reliability and accuracy than initial
ensemble predictions. In this approach, the weighted averages of the individual forecasts’
probability distribution functions (PDFs) are used for generating the posterior distribution

of forecasting variables. It was claimed through different studies that the higher weights
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are considered for better performing predictions in the training period (Duan et al., 2007;

He et al., 2018; Liang et al., 2013; Vrugt et al., 2008; Yen et al., 2014).

Consider y as a quantity which is going to be forecasted (i.e., predictand) and, therefore,
Y = (31, ¥, ..., yr) denotes the training period of observation with data length T. Having
K different models (i.e., M = (M, M,, ..., My)) results in Y/ = (YM1,yMz2,  YMK) the
ensemble of model predictions for the aforementioned training period, where Y"i =
0y Ly, Based on the law of total probability and the assumption about the
independence of different model forecasts, the PDF of the predictand conditioned on the

models over the given training period can be formulated as follows (Raftery et al., 1997):

k
P(y|YM, Y™z, .. YMK Y = Z P(y| YMi,Y) x P(YMi]Y) (3-1)

=1

where P(y|YMi,Y) is the posterior distribution of y given the prediction of model M; and

observed data Y, which simply can be considered as the forecast PDF of y based on model

M;. Moreover, P(YM: | Y) is the posterior probability or the likelihood of the model’s M;
prediction being correct over the training period. Due to the assumption of models’

independency, the posterior probabilities of models should sum to unity, ¥, P(YMi|Y) =

1, and, consequently, they can be considered as weights (i.e., w; = P(YM: | Y) is the
weight of model i). Furthermore, in the BMA approach, it is assumed that the model
forecasts are unbiased, meaning that the expected value of the difference between
observation and each model forecast should be equal to zero (i.e., E(Y — YMi) =0 fori €

[1,K]). So, before BMA implementation, a bias-correction method should be used in order
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to create an unbiased ensemble of predictions. Although there are several bias-correction
methods which all can be used for this aim, a linear-regression technique is utilized in the
original BMA (Raftery et al., 2005). The bias-corrected results, FMi = q; x YMi + b,
(where a; and b; are the coefficients of the linear regression model), are replaced with the
original model forecasts (Y*). Therefore, the BMA predictive model (Equation 3-1) can

be rewritten as follows:

k
P(y|Y™s, ™2, .. YMK,Y) = Ewi x P(y| FMi,Y) (3-2)

=1

On the other hand, in the original BMA method, it is assumed that the aforementioned
posterior probability (i.e., P(y|FMi,Y)) follows the normal (Gaussian) distribution,
g(y|FMi,6?), with mean FMi and variance o7, reflecting the uncertainty within the
individual model i. As explained in the introduction, some studies discussed that this
assumption is a poor choice for a non-Gaussian forecast variable like streamflow.
Therefore, they proposed implementing more representative distribution types (e.g.,
gamma distribution) or applying data transformation procedures (e.g., the Box—Cox
transformation method (Box & Cox, 1964)) for transforming data from their original space
to a Gaussian space. It is worth mentioning that in the case of applying a data
transformation procedure, the reverting process has to be able to apply in order to revert

back to the original variable space.

Finally, based on Equation 3-2 and considering the Gaussian distribution, the BMA

predictive mean and its associated variance can be determined using the two following
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equations (Raftery et al., 1997, 2005). The mean value is the weighted average of
individual predictions, and the BMA variance consists of (1) between-model variance,
reflecting the spread of the ensemble, and (2) within-model variance that represents the

uncertainty regarding each model having the best forecast.

k k
E(y|YMs, Y™z, . YMK Y) = Z w; X FMi = Z w; X (a; X YMi + b;) (3-3)
i=1 i=1
K k 2k
Var(y|YM,yMz, . YMKY) = Z w; <FMi — Z wy, X FMH) + Z w; o7
i=1 n=1 i=1

2

k k
= 2 W, ((ai X YMi 4 b)) — z Wy, X (a, X YMn + bn)> (3-4)
n=1

i=1

k
+ Z w; aiz
i=1

Successful implementation of the BMA method relies on the proper estimation of the

parameters including weights (w;) and variances () of each individual prediction (i =

1, ... k). Following Raftery et al. (2005), in the standard BMA, the EM algorithm is utilized
2

in order to maximize the log-likelihood function of the parameter vector (8 = {w;,0{,i =

1,2,.., K}) being approximated as follows:

k
L(O) = Log(P(leMl,YMZ, ., YMk, Y)) = Log (Z w; X g(y|FMi,Ui2)> (3-5)

=1

Given that there is no analytical solution for maximizing the summation of the

aforementioned function over the training period, an iterative procedure such as the EM
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algorithm was used. In this procedure, the optimization problem was set by introducing a
latent variable (Z,). Apart initialization, this algorithm included an (1) expectation step,
where the latent variable was calculated based on the current values of parameters, and a
(2) maximization step, where the parameters were estimated according to the determined
value of the latent variable (Figure 3-4b). It is worthy of note that, although the EM
algorithm is computationally efficient, it is argued that using other optimization methods

can lead to more robust estimation of the parameters.

According to the above equations, the flowchart of the classical BMA implementation is
depicted in Figure 3-4a. As previously stated, some studies have been done in order to
improve the reliability of the standard BMA approach by modifying some parts of the
BMA structure. However, no comprehensive evaluation has been completed in order to

clarify the effects of these modifications.
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Figure 3-4 The flowcharts for (a) standard Bayesian model averaging (BMA) and (b) the
step-by-step procedure of the expectation-maximization (EM) algorithm
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3.3.3 BMA Scenario-Based Analysis

In order to achieve the main goal of this research, we designed a BMA scenario-based
analysis (Table 3-1) to see how the predictive streamflow simulation of the BMA approach
was affected by modifying or changing some steps of the original BMA procedure.
Implementation of the proposed evaluation allowed to assess how the accuracy and
reliability of the BMA probabilistic results are sensitive to considering (1) different
streamflow ensemble scenarios; (2) various data transformation methods; (3) more
representative distribution types; (4) different standard deviation definitions; and (5)
different optimization methods for parameter estimation. These scenarios are chosen in a
way that cover most of the aforementioned modifications proposed by previous studies
(explained in Section 3.2). Therefore, the effects of each modification or the combinations
of modifications on BMA results can be assessed completely through the proposed analysis.
The following paragraphs present a brief description of all aforementioned modification

sections.
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Table 3-1 The BMA scenario-based analysis

Data g S
Streamflow Transformation Distribution Standard Deviation Type Optimization
Ensemble Method Type Method
Multi-Model  No Transformation
(M-M1) (T0) Normal (C1) Common Constant (V1) Exp_ect_atiqn-
Maximization
Multi-Model Algorithm
Multi-Input BOX_C(El)_Xl)T ype 1 Gamma (C2) Individual Constant (V2) (EM)
(M-M1)
Multi-Model
Multi- Box-Cox Type 2 Log-Normal Common Non-Constant )
Parameter (T2) (C3) (V3) D_ynaml_cally
(M-MP) Dimensioned
Search (DDS)
Logarithmic . Individual Non-Constant
Multi-Model  Transform (T3)  veibull (C4) (V4)
Multi-Input
Multi—p Ermpirical N | Common Non-Constant +
mpirical Norma Constant Value (V5
Parameter Quantile Transform o v9)
(M-MIP) (T4) Individual Non-Constant +

Constant Value (V6)

1 The ID of each scenario is presented in the parentheses

3.3.3.1 Streamflow Ensemble

As mentioned before, the ensemble can stem from different sources. Apart from
considering different hydrologic models, various forcing precipitation inputs, as well as
different reliable parameter sets of each rainfall-runoff model, can be considered for
generating an ensemble of streamflow simulations. In this study, four different scenarios
were determined to see how the BMA performance would change by considering a
different number of ensemble members coming from various sources. In the first scenario,
which was named “Multi-Model”, the ensemble was only based on different hydrologic
models. In the two other scenarios (i.e., Multi-Model Multi-Input and Multi-Model Multi-

Parameter), besides multiple hydrologic models, different precipitation datasets and
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various parameter sets were respectively utilized. Moreover, the last scenario was defined

using all aforementioned sources (i.e., Multi-Model Multi-Input Multi-Parameter).
3.3.3.2 Data Transformation Methods

Four different data transformation procedures were assessed in the case of assuming
normal function for the posterior distributions. The Box—Cox transformation method is a
family of power transformations, and one of the common approaches is formulated as

follows (Box & Cox, 1964):

Z—1 120
7 ={"71 > (3-6)

log(Z) A=0

Z and Z' are the original and transformed data, respectively. 1 is the Box—Cox coefficient
and its common optimum value will be estimated using (1) observation data (i.e., Type 1)
or (2) observation and simulations data (i.e., Type 2) by maximizing the log-likelihood
function. Moreover, in the logarithmic transformation method, the daily streamflow data
are transformed using natural logarithm in order to make them approximately follow the
normal distribution. Another data transformation method evaluated in this study was the
Empirical Normal Quantile Transformation (ENQT) procedure (Krzysztofowicz, 1997). In
this approach, the transformed data were calculated using the following equation, where
Q71 is the inverse of the standard normal distribution and the empirical cumulative

distribution of each value is denoted by eCDF (Z).

Z' = QY (eCDF(2)) (3-7)
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It is of note that, instead of the empirical distribution, the generalized Pareto distribution is
fitted to extrapolate the upper tail of the sample in the case of having a value which falls

outside the range of the calibration data.
3.3.3.3 Distribution Types

Apart from using normal distribution, which is the main assumption of the original BMA
method, the log-normal, gamma, and Weibull distributions are implemented as the
conditional probability distribution function P(y|FMi,Y) in Equation 3-2. These
distributions are more representative for highly skewed data such as daily stream flows and

may lead to better results.
3.3.3.4 Standard Deviation Types

In this study, following Vrugt (2016), six various standard deviation parameterizations of
the forecast distributions were assessed. The terms “Common” and “individual” are used
when all members of the ensembles have the same and distinct standard deviations,
respectively. The other two terms illustrate if the standard deviations are dependent on the
magnitude of the streamflow data (‘“non-Constant”) or not (“Constant’). Moreover, the last
two types are defined by adding constant value in order to make the standard deviation be
more than zero in all cases. The equations of all aforementioned standard deviation types
and their corresponding number of parameters are presented in Table 3-2. In these

equations, o; ; and Q; ;, respectively, denote the standard deviation and the daily discharge

of the ith simulated streamflow at time-step j. Also, K is the total number of members in

the ensemble.
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Table 3-2 The definitions and formulations of different standard deviation
parameterizations

Standard Deviation Type Formulation BMA parameters
Common Constant (V1Y) o, =0 0 ={w;, 0} i€[1,K]
Individual Constant (V2) o; = {04, 0%, ..., 0%} 0 ={w;,0;} i€[1,K]
Common Non-Constant (V3) 0j =CXQy; 6 ={w;,c} i €[1,K]
Individual Non-Constant (V4) 0pj = ¢ X Qi 0 ={w;, ¢} i€[1,K]
Common Non-Constant Type 2 (V5) oj=cxXQ;+d 0 ={w;,cd} i€[1K]
Individual Non-Constant Type 2 (V6) 0ij = ¢ X Q;j+d; 0 ={w;,c;,d;} i€[1,K]

1 The ID of each type is presented in the parentheses.

3.3.3.5 Optimization Methods

Given the criticism of the EM algorithm regarding its ability to achieve the global optimum
estimation and its lack of flexibility in applying to the various aforementioned
modifications, the dynamically dimensioned search (DDS) method (Tolson & Shoemaker,
2007) was used as the alternative optimization technique for estimating the BMA
parameters. Dynamically dimensioned search is a single global optimization method which
finds the optimal solution by dynamically rescaling the search space dimension. Similar to
the EM algorithm, the log-likelihood of the BMA parameter vector is considered as the
objective function in the DDS optimization approach. Correspondingly, the DDS
parameter estimations can be utilized as benchmarks for evaluating the application of the

EM algorithm.
3.3.4 Hydrological Models

Using different hydrologic models for generating an ensemble of competing simulated

stream flows is the main basis of the BMA approach (Vrugt & Robinson, 2007). As listed
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in Table 3-3, the seven different rainfall-runoff models implemented in this study are SAC-
SMA, MAC-HBYV, SMARG, GR4J, and three HEC-HMS (Scharffenberg, 2016) based
models. There are different methods available for each part of the hydrologic cycle in the
HEC-HMS platform. In this study, we used the rational combination of loss (i.e., deficit
and constant, and soil moisture accounting) and baseflow (i.e., recession and linear
reservoir) methods for generating the HEC-HMS-based models with different structures.
In the HEC-HMS type 1 and 2, the recession baseflow method is implemented with the
deficit and constant and soil moisture accounting loss approaches, respectively, while
HEC-HMS type 3 is developed using the combination of the soil moisture accounting and

linear reservoir methods.

All of the aforementioned models are lumped conceptual ones, which have been shown to
provide comparable or even better performance in comparison to the more complex models
(e.g., distributed models) in data-poor watersheds (Anshuman et al., 2019; Refsgaard &
Knudsen, 1996; Tegegne et al., 2017). Moreover, by adding the simplified Thornwaite
formula (Samuel et al., 2011; Thornthwaite, 1948) to the first four models and feeding
HEC-HMS models the average monthly potential evapotranspiration calculated using
Hargreaves equation (Hargreaves & Samani, 1985), the only inputs to all models are the
mean areal daily precipitation and temperature. Also, streamflow estimation at the outlet
of the watershed is the only output of these models. It is worth mentioning that due to the
importance of the snow accumulation and melt process in cold regions, three different
snowmelt modules are implemented with different hydrologic models. The available

temperature-index method in the HEC-HMS software (Scharffenberg, 2016) was used for
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the three aforementioned HEC-HMS-based models. The simple degree-day snowmelt
module (DDM) (Samuel et al., 2011) was added to the SMARG and GR4J models, while
the SACSMA and MACHBYV models were combined with the more complex SNOW17
snowmelt estimation method (Anderson, 1973, 2006) for snow—rainfall discrimination and

quantifying snowpack changes over the simulation period.

On the one hand, in the DDM approach, the snowmelt is calculated using a linear
relationship between snowmelt and air temperature, where a constant melt rate factor is
considered. However, the antecedent temperature index is used for melt-rate determination
in the HEC-HMS snowmelt approach (Gyawali & Watkins, 2013). On the other hand, the
SNOWT17 is a process-based temperature-index method that considers different physical
processes in the snowmelt procedure such as energy exchange between air and snow, heat
storage and deficit of the snowpack, liquid water storage, etc. Also, upper and lower preset
temperature thresholds are used for distinguishing between rainfall and snowfall in both
the DDM and SNOW17 models (Agnihotri, 2018). For a more detailed description of all

snow routines, the readers are referred to the aforementioned citations.
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Table 3-3 Hydrologic models used in this study

Model ID Full Name Reference Number of
Parameters
SAC-SMA Sacramento Soil Moisture Accounting Burnash et al. (1973) 19
MAC-HBV McMaster University HydroIo_glska Samuel et al. (2012) 15
Byrans Vattenbalansavdelning
SMARG Modified Soil Mmstgre Accounting and Tan and O’Connor. (1996) 14
Routing
GR4J Génie Rural a 4 Parametres Journaliers Edijatno et al. (1999) 9
i Hydrologic Engineering Center’s USACE-HEC
HEC-HMS1 Hydrologic Modeling System-Type 1 (Scharffenberg, 2016) 17
) Hydrologic Engineering Center’s USACE-HEC
HEC-HMS2 Hydrologic Modeling System-Type 2 (Scharffenberg, 2016) 25
HEC-HMS3 Hydrologic Engineering Center’s USACE-HEC 27

Hydrologic Modeling System-Type 3

(Scharffenberg, 2016)

Furthermore, five different objective functions, including Nash—Sutcliffe efficiency (NSE)

[68], Kling—Gupta efficiency (KGE) (Gupta et al., 2009), Nash volume error (NVE)

(Samuel et al., 2011), peak-weighted root mean square error (PWRMSE) (Cunderlik &

Simonovic, 2004), and modified Nash volume error (MNVE) were used through the

dynamically dimensioned search (DDS) algorithm for finding the optimized parameter sets

of each individual model. The latter objective function was defined in order to greatly focus

on high flows by using the NSE based on square of discharge (NSES):

MNVE = NSES — 0.1VE

where volume error (VE) is:

_ |Z§V=1(Q5i - QOi)l

VE
IiV=1 QOi

and NSE based on square of discharge (NSES) is calculated as follows:
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§V=1(Q5?i - QSL’)Z
(002 -Q3)

NSES =1 — (3-10)

In the above equations, @, and Qs, are the observed and simulated streamflow,

respectively, while N is the data length. The years 2006 to 2011 were considered the
calibration period and the validation was carried out for the 2012—2015 (4 years) period. It
is of note that the best performing parameter set of each individual model, determined
based on validation results, is utilized for generating multi-model and multi-model multi-
input ensemble scenarios. For a detailed description of the aforementioned hydrologic

models and objective functions, the readers are referred to the cited references.
3.3.5 Performance Evaluation Metrics

Five model evaluation statistics are used for comparing the accuracy, reliability, and
sharpness of the results of different BMA variants. The accuracy is defined as the error
between deterministic simulations and their corresponding observations. In this study,
besides the well-known Nash-Sutcliffe efficiency criteria, NSE being calculated according
to squared (NSES; Equation 3-10) and logarithmic (NSEL; Equation 3-11) transformed
streamflow data, were the two other deterministic performance criteria being, respectively,

focused on the accuracy of the high- and low-flow simulations.

L, (1n(0s) - 1n(Qo,))”

s (3-11)
¥ (Ln(Qo,) — Ln(Q,))

NSEL =1—
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Qo is the observed variable and Qg, represents the simulated variable which is considered

to be the expected value of the BMA predictive simulation. Also, N is the length of the

dataset. All NSE-based criteria vary between —co and 1 with the best value of 1.

Furthermore, two other probabilistic performance measurements proposed by Xiong et al.
(2009) were adopted for quantitative evaluation of the BMA probabilistic results. The
containing ratio (CR) is defined as the percentage of the observed data which falls within
the 95% confidence interval, and the average bandwidth (B) is the average width of the
corresponding bound. The former measures the reliability while the latter is used for
quantifying the sharpness of the results. Given two forecasts with the same CR (i.e., same

reliability), the one with a smaller B shows a greater precision.

CR = % X 100% (3-12)
1 N
B= N;(qm ~q®) (3-13)

In the above equations, the number of observations being contained in the 95% confidence
interval is denoted by NQ;, q,(t) and q,(t), respectively, show the upper and lower
boundaries of the 95% confidence interval at time-step t. In addition, for evaluating the
probabilistic performance of different BMA variants regarding high flows, we calculated
the two aforementioned probabilistic indices using the streamflow values of more than 90
percentiles (denoted by CR90 and B90 for the containing ratio and the average bandwidth,

respectively).
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3.4 Results and Discussion
3.4.1 Choosing the Best Ensemble Scenario

One of the vague points of the BMA approach in the literature is the optimal number of
members of the ensemble and how they should be generated. The prime step before
employing any BMA variants is constructing the most reliable ensemble, which provides
the best results. Therefore, as the first section of the proposed analysis, the four
aforementioned scenarios of different streamflow simulation ensembles were used in the
original BMA for both the Big East River and Black River watersheds, and a comparison
was made among their results (Table 3-4). Given the two different input scenarios and five
various parameter sets for each hydrologic model, there were 7, 14, 35, and 70 simulated
stream flows for the Multi-Model (M-M), Multi-Model Multi-Input (M-MI), Multi-Model
Multi-Parameter (M-MP), and Multi-Model Multi-Input Multi-Parameter (M-MIP)

ensemble scenarios, respectively.

Table 3-4 Validation statistics of the BMA model using four ensemble scenarios in both

watersheds
o Big East River Watershed Black River Watershed
Criteria M-MIP M-MP M-MI M-M M-MIP M-MP M-MI M-M
NSE? 0.76 0.74 0.79 0.77 0.82 0.81 0.84 0.81
NSES* 0.45 0.42 0.54 0.49 0.57 0.55 0.62 0.56
NSEL* 0.84 0.84 0.82 0.83 0.79 0.80 0.78 0.77
CR! 0.95 0.94 0.96 0.96 0.92 0.90 0.91 0.88
B! 17 18 19 23 27 28 24 27
CR90* 0.72 0.64 0.73 0.68 0.62 0.46 0.62 0.49
B90! 39 32 38 34 55 48 41 36

L NSE: Nash Sutcliffe efficiency; NSES: NSE based on squared transformed streamflow; NSEL: NSE based on
logarithmic transformed streamflow; CR: containing ratio; B: average bandwidth; CR90: containing ratio based on
stream flows more than 90 percentile; B90: average bandwidth based on stream flows more than 90 percentile
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If the BMA performance based on the Multi-Model (M-M) ensemble scenario is
considered as the benchmark, there was no significant improvement when the performance
statistics focusing on the whole and low discharges were considered. However, by focusing
on the high flow-based criteria, the results show that considering the forcing precipitation
as another source of uncertainty besides hydrologic models enhanced both the deterministic
and probabilistic BMA results. This improvement was more significant in the Black River
watershed, where the accuracy and reliability of the BMA using the M-MI scenario
increased by about 10 and 25 percent based on the NSES and CR90 criteria, respectively.
It is worth mentioning that, all seven additional members of the streamflow simulations
(generated by considering CaPA as forcing inputs of each individual model) being used in
M-MI compared to M-M, possessed lower individual deterministic predictive skills than

existing models in both ensemble scenarios.

Moreover, surprisingly, although the Multi-Model Multi-Parameter ensemble scenario
included all members being utilized in the benchmark scenario, the overall performances
of the BMA method implementing them slightly deteriorated in both watersheds. This may
be due to the main initial assumption of the BMA methodology, where the law of total
probability needs not only collectively exhaustive but also independent members of the
ensemble. Furthermore, using 70 members in a streamflow ensemble (constructed by
considering all aforementioned sources) enhanced the probabilistic performance of the
BMA, specifically in high flows, while its performance was not as reliable and sharp as in

the case where the M-MI scenario was applied.
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Altogether, it can be concluded that the M-MI ensemble scenario was the most appropriate
one, providing better probabilistic and deterministic results. Accordingly, for the rest of the
application of the proposed analysis, the Multi-Model Multi-Input ensemble scenario,
including 14 members of streamflow simulations, was implemented for both watersheds.
As a result, 48 probabilistic streamflow simulations were generated considering the
combination of the different modifications, including distribution, standard deviation, and
data transformation methods (Table 3-1). The parameters for all 48 BMA variants were
calibrated using the DDS optimization method for the period from 2006 to 2011,
considering one year as a warm-up period, and the years 2012 to 2015 were considered for

validation.
3.4.2 BMA Weights versus Models’ Performance Statistics

In the first place, besides assessing the effects of various modifications, a comparison was
made between the BMA weights of different members of the ensemble and the
performance of the corresponding models during the calibration period for both the Big

East River and Black River watersheds (Figure 3-5).

Interestingly, it can be seen that the distributions of the weights amongst different members
do not properly agree with the previous belief, where the weights reflect the models’
performance. For instance, in the Big East River watershed, although M1 was one of the
most promising simulations comparing different performance statistics, its weights were
not predominant compared to other BMA variants. In addition, in the Black River
watershed, M10 had relatively high weights, while its performance was not good in

comparison to the other models. Similarly, the first four members of the ensemble (i.e., M1
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to M4) possessed the most reliable deterministic results, although they received relatively

low weights.

Moreover, closer inspection of the graphs (in Figure 3-5) shows that low flows played an
important role in the determination of the BMA weights, specifically in the Big East River
watershed where the specified weights relatively fit with the NSEL performance statistics.
This may be justifiable by the fact that more than 90 percent of the daily streamflow
observations were less than 25 m®/s while this fraction was around 60 for the Black River

watershed (Figure 3-6).
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Figure 3-6 Empirical cumulative probability distribution of the daily streamflow
observations at the outlet of the Big East River and Black River watersheds

3.4.3 The Effects of Different Modifications

The evaluations of various BMA modifications (i.e., different distribution and standard
deviation types, and data transformation methods) will be provided in this section. As
discussed previously, one recommended solution in order to enhance the performance of
the original BMA approach is using data transformation procedures for generating
approximately normally distributed data. Figure 3-7 compares the accuracy and reliability
of the BMA variants with and without application of data transformation procedures. It can
be recognized that, in general, the BMA deterministic performance did not change
significantly by applying data transformation methods. On the other hand, although the
data transformation caused a remarkable enhancement of the BMA’s reliability in high

flows, the sharpness of the results was largely reduced.
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Further analysis (Figure 3-8) shows that the influence of applying data transformation
modification on the BMA performance is highly related to the types of standard deviation
being implemented in the procedure. In the case of considering common and individual
non-constant variance types (i.e., V3 and V4, respectively), implementation of a data
transformation method leads to under confident and negatively biased probabilistic results.
It is much more recognizable in high flows where the containing ratios of the 95%
confidence interval are around one, while their corresponding bandwidths increase largely.
However, for other types of standard deviations where a constant value can play an
important role, the reliability of the high flows’ simulation is partly improved without a

drastic drop in their sharpness.

Moreover, Table 3-5 represents the performance criteria of different BMA variants, being
developed using normal distribution and variance types V5 and V4, to compare different
data transformation procedures. Based on the results, the only data transformation
procedure providing acceptable probabilistic results with the use of heteroscedastic
standard deviation without a constant value (i.e., V3 and V4) was the empirical normal
quantile transform (i.e., T4) method. However, in general, by looking at the BMA variants
based on variance type V5, as a representative of the other standard deviation forms, none
of the methods appeared superior to the others, indicating that changing the data

transformation approaches had little impact on BMA model performance.
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Figure 3-7 The boxplots of the different evaluation metrics for the BMA streamflow
simulations by implementation (With T) or non-implementation of data transformation
(without T) methods being derived from considering normal distribution and different

proposed standard deviation types for the (a) Big East River and (b) Black River
watersheds during the validation period
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Table 3-5 Probabilistic evaluation criteria of different BMA variants based on different
data transformation methods for both watersheds in the validation period

g Criteria BMA Variant

S C1V5T1 C1Vv5T2 C1V5T3 C1V5T4 C1V4AT1 C1V4T2 C1V4T3 Clv4T4
CR 0.91 0.90 0.91 0.90 0.92 0.93 0.92 0.91
B 25 22 21 24 127 73 53 30

o CR90 0.90 0.88 0.88 0.89 1.00 1.00 1.00 0.98
B90 82 65 60 65 720 364 188 87
CR 0.87 0.88 0.87 0.86 0.91 0.91 0.91 0.88
B 27 27 29 27 46 46 52 30

i CR90 0.84 0.80 0.92 0.85 0.99 1.00 0.99 0.88
B90 66 64 73 64 143 141 170 76
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Figure 3-8 The comparison of different performance statistics for various BMA
modifications generated by considering different standard deviation types and non-
implementation (“Without”) and implementation (“With”) of their corresponding best
data transformation method for the validation period in the (a) Big East River and (b)

Black River watersheds
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Besides using data transformation procedures, the two other BMA modifications evaluated
in this study were considering other distribution types and implementing various standard
deviation forms (Figure 3-9). The comparison between the applications of four different
distribution functions proposed in the scenario-based analysis shows that, in general, the
implementation of the log-normal distribution (i.e., C3) enhances the reliability and
sharpness of the BMA results simultaneously. However, it underestimates when
considering high flows, which is not appropriate in most operational hydrologic fields such
as flood forecasting. As can be seen from the figure, in the case of using a common constant
standard deviation type (i.e., V1), even though the coverage of the 95% confidence interval
slightly increased by applying the Weibull distribution, the model lost its sharpness by
leading to a higher bandwidth in both watersheds. Moreover, by assessing the effects of
using different standard deviation types, it is apparent that considering “non-constant”
types leads to more reliable results especially for high flows. However, using “individual”
variance types does not affect the BMA performance in comparison to their corresponding

“common’’ ones.

Taken together, these results suggest that changing the distribution type of the BMA
posterior probability from normal to more representative ones does not enhance the BMA
probabilistic performance, significantly. However, implementation of “non-constant”
standard deviation types improved the BMA predictive results specifically regarding high

flows.
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Figure 3-9 Comparison of the probabilistic performance of the BMA models being
modified using different distribution and variance types for the validation period in the
(a) Big East River and (b) Black River watersheds

3.4.4 Expectation-Maximization Algorithm versus Dynamically Dimensioned Search

Method

The EM algorithm was implemented in the classical BMA method, which is criticized for
not being able to reach global optimum estimations. Here, as a part of the evaluation, six

different BMA variants were calibrated using the EM algorithm, and a comparison was
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made with the corresponding DDS-based calibrated models. The results, as shown in
Figure 3-10, indicate that the differences among estimated BMA weights using EM and

DDS methods were negligible, and both methods led to the approximately similar optimal

solution.
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Figure 3-10 A comparison of the log-likelihood and weights of the calibrated BMA
models using dynamically dimensioned search (DDS) and expectation-maximization
(EM) algorithms as the optimization process

To specify the logic behind these results, the authors applied the regional sensitivity
analysis (RSA) method (Hornberger & Spear, 1981) to original BMA with “common”
(Figure 3-11) and “individual” (Figure 3-12) constant standard deviation types (i.e.,

C1V1TO and C1V2TO0 BMA variants, respectively). In this method, the Monte Carlo
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simulation technique is used for generating various parameter sample sets, and then, the
samples are divided into two behavioral and non-behavioral ones based on a predefined
threshold. So, qualitative comparison of the empirical cumulative distribution functions
(CDFs) of the behavioral and non-behavioral parameter sets illustrate the most sensitive
parameter(s). The RSA results for both the Big East River and Black River watersheds
reveal that the objective function is significantly sensitive to standard deviation values,

while the models’ weights can be considered non-sensitive parameters.

Therefore, the variation of the log-likelihood function is evaluated by changing the most
sensitive parameters (standard deviations) between their lower and upper bounds while the
other parameters are constant and equal to their nominal values (i.e., the calibrated values).
The results, illustrated in Figure 3-13, show that in all evaluated cases, the negative log-
likelihood, which is the objective function for both optimization processes, is a convex
function so that a local optimization method such as the EM algorithm can lead to global
optimal estimation of parameters. Consequently, although the EM algorithm is considered
a local optimization method, it can estimate the original BMA parameters like other global
optimization techniques. It is of note that the original EM method can only be applied for
the constant variance types and it requires modifications if other distribution or standard
deviation types need to be incorporated. However, DDS or any other global optimization

techniques can be used by different BMA modifications without any difficulty.
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Figure 3-11 The regional sensitivity analysis (RSA) plots for the parameters of the
C1V1TO BMA variant for both the Big East River and Black River watersheds
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Figure 3-13 The changes of the objective function regarding the most sensitive
parameter(s) for the C1V1TO and C1V2T0 BMA variants in both the (a) Big East River
and (b) Black River watersheds

Finally, in order to complete the evaluation and find the most promising types of BMA
modifications, the best combinations were selected for each distribution type and their
performances during the validation period were compared with each other (Table 3-6).
Additionally, for qualitative inspection of the best models, Figure 3-14 illustrates the mean
and the 95% predictive bounds of the BMA streamflow simulations for a representative
portion of the validation period. What stands out in Table 3-6 is that the standard deviation

types in all the best-selected BMA models were the non-constant ones, and most of them

120



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

were the heteroscedastic variance with a constant value (i.e., V5 and V6). Moreover, as
expected based on the previous comparison, although the best BMA modification with data
transformation procedure provided higher reliability, the sharpness of the results partially
deteriorated in high flows in both watersheds. Also, it can be seen that the best BMA model
using the log-normal distribution type underestimated high flows significantly, while its
other performance statistics showed almost the same predictive performance in comparison
to the other best models. It is worthy of note that there was no significant difference among

the accuracy of the various best-selected BMA variants.

Table 3-6 The comparison of the performances of the best-selected BMA types for both
the Big East River and Black River watersheds during the validation period

Criteria NSE NSES NSEL CR B CR90 B90

_ C1V6TO0 0.77 0.49 0.81 0.95 19 0.80 50
é C1V5T4 0.77 0.49 0.82 0.91 21 0.88 60
iz C2VeTO0 0.77 0.49 0.82 0.93 18 0.81 49
.E_j” C3V5T0 0.78 0.54 0.83 0.96 17 0.74 40
C4V5T0 0.77 0.51 0.82 0.93 20 0.83 56
C1VeTO0 0.83 0.60 0.80 0.90 26 0.76 61

E C1V5T2 0.83 0.59 0.80 0.87 27 0.84 66
% C2VeT0 0.83 0.61 0.80 0.89 26 0.75 60
E_Z C3V6T0 0.83 0.61 0.79 0.89 25 0.71 50
C4VATO 0.83 0.59 0.80 0.88 27 0.79 69

Furthermore, as it was concluded beforehand, there was not a significant difference among
the predictive performances of the different BMA variants utilizing various distribution
types. However, the implementation of the gamma distribution type seemed to provide

more balanced and consistent results in comparison to the other ones in this case. It is of
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note that even by comparing the most promising models, which possessed approximately
similar performances, the calibrated weights showed some changes confirming that there

were no specific BMA weight combinations that led to the best results (Figure 3-15).
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Figure 3-14 Time-series of the mean and 95% predictive bounds of daily streamflow
derived from the best-selected BMA models for a representative portion of the validation
period for both the (a) Big East River and (b) Black River watersheds
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Figure 3-15 Scatter plots of different models’ weights derived from the best-selected
BMA variants

3.5 Summary and Conclusions

This study provides the first assessment of the previously proposed modifications for the
original BMA methodology and documents how they affect the probabilistic and
deterministic performance of the BMA-derived results for daily streamflow simulation. A
scenario-based analysis was designed where the application of four diverse streamflow
ensemble scenarios, different data transformation procedures, various distribution types,
six different types of standard deviation, and two optimization algorithms were assessed

thoroughly.

The summary of the obtained results from applying the proposed evaluation into two data-

poor watersheds is as follows:
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1. Comparing different ensemble scenarios indicated that, besides using multi-models,
considering various forcing precipitation scenarios in generating members of an
ensemble leads to better probabilistic and deterministic results in data scarce
regions, where the estimation of mean areal precipitation always comes with
noticeable errors. However, not only using a multi-model multi-parameter scenario
did not provide better results, it also slightly reduced the reliability of the BMA
simulations.

2. In contrast to earlier findings, however, the results showed that the BMA weights
were not completely in accordance with individual model performance. There were
some highly weighted hydrologic models with relatively lower performance in
comparison to the others in both watersheds. In addition, various BMA
modifications led to different combinations of weights and all had almost the same
predictive power.

3. Applying data transformation generally yielded an improvement in the reliability
of the BMA results. However, except for the empirical normal quantile approach,
using other data transformation methods concurrent with implementing non-
constant standard deviation without a constant parameter dramatically deteriorated
the sharpness of the results, specifically in high flows.

4. Incorporation of the more representative distribution types did not show a particular
superiority over the classic BMA method, where the posterior predictive
distributions were assumed to be Gaussian. However, implementing non-constant

standard deviations enhanced the predictive capability of the BMA model,
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especially for high flows that are often of particular attention in operational
hydrology.

5. The expectation-maximization algorithm provided almost the same results as the
dynamically dimensioned search (DSS) method, which showed its ability to
estimate BMA parameters well enough. However, the only drawback was that it
could not easily be applied for all BMA variants when the distribution or standard

deviation types were changed.

In general, the findings of this study suggest that the simulation skill of individual members
are less important than how the whole ensemble captures the variability of the observation
without overlapping. In other words, using ensemble members with diverse simulation
skills can enhance the quality of the BMA results, while simply increasing the number of
members in the ensemble does not always lead to better results. Although possessing high-
performance models is necessary for obtaining reliable results, there is some information
that is only provided by the relatively lower performing models and, consequently,
considering them as members of the ensemble can enhance the BMA’s predictive
performance. The notable BMA weights of some of these models are another convincing
justification for this conclusion. In addition, it was shown that in regions where the network
of meteorological stations was sparse, using other sources of precipitation data, such as
archived radar- or satellite-based products as inputs into the hydrologic models, can lead

to a more exhaustive streamflow ensemble that enhances the BMA’s performance.

Moreover, another implication of these results is that the most effective BMA modification

in the positive direction (i.e., enhancing the predictive performance) is the implementation
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of non-constant standard deviation. Increasing the variance of errors in line with flow level
seems to be more realistic and enhances the reliability of the BMA results significantly for
high flows (an average of 20% improvement in the reliability of high-flow simulations in
both the Big East River and Black River watersheds over the whole period). However,
considering the more representative distribution types does not highly affect the BMA-
derived probabilistic and deterministic results. Moreover, although using data
transformation procedures enhanced the reliability of the results, even more than applying
non-constant variance, it can lead to a notable wide confidence interval width in high flows.
Therefore, much more attention must be paid to the sharpness of the high-flow probabilistic
simulation in the case of implementing data transformation. Furthermore, the results
showed the robustness of the EM algorithm for estimating the original BMA parameters,
while it was not easily applicable to all BMA modifications. Thus, applying a global

optimization method is recommended in the case of using various BMA variants.

Although the two watersheds in this study share approximately the same land use and
climatology, their hydrologic responses are not quite similar and lead to two different
empirical CDFs of streamflow data. Therefore, it can be said that the aforementioned
conclusions about the effects of different modifications on BMA results can be considered
as useful recommendations in future studies. However, in order to provide more
comprehensive conclusions, it is worth applying the proposed BMA modifications analysis
in watersheds with very different topography and climatology (e.g., mountainous or coastal
areas and tropical or semi-arid regions) in future studies. Furthermore, although possessing

mutually exclusive and collectively exhaustive ensemble members is one of the main
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assumptions of the BMA method, no studies have tried to overcome this issue. Although
this study assessed the effects of various ensemble scenarios on BMA performance and
provided fresh insight into the importance of establishing an ensemble with the
aforementioned properties, there has not been a specific method about how these members
should be generated and selected. Consequently, further studies need to be carried out to

establish new ideas for solving this remaining challenge.
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Chapter 4. Introducing entropy-based Bayesian model averaging for

streamflow forecast

Summary of Paper 3: Darbandsari, P., & Coulibaly, P. (2020). Introducing entropy-based

Bayesian model averaging for streamflow forecast. Journal of Hydrology, 591, 125577.

In this study, a new ensemble-based probabilistic post-processing framework is proposed
where an entropy-based selection procedure is implemented to generate an ensemble of
forecasts with mutually exclusive and collectively exhaustive characteristics prior to the
Bayesian Model Averaging (BMA) application. Comparison has been performed between
the traditional BMA and the proposed approach (En-BMA) for probabilistic daily

streamflow forecasting.
Key findings of this research work are:

e Higher information can be provided by generating an ensemble of streamflow
forecasts using various hydrologic models being calibrated by different objective
functions.

e The proposed entropy-based selection procedure can select the subset of forecasts
with high information content and low mutual dependency which are the vital
requirements for reliable performance of the BMA method.

e The proposed En-BMA post-processing approach, compared to the BMA method,

provides more reliable and accurate high flow forecasts.
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e The superiority of the proposed En-BMA method over BMA presents in all lead-

times while it is more noticeable for shorter ones.

4.1 Abstract

Bayesian Model Averaging (BMA) is a well-known statistical post-processing approach
for probabilistically merging individual forecasts. In BMA, the posterior distribution of the
predictand variable is determined by implementing the law of total probability. Therefore,
possessing an ensemble of independent members (mutually exclusive) with the highest
information content about observation variability (collectively exhaustive) is the main
inherent assumption of the original BMA method. Mutually exclusive and collectively
exhaustive are two contradictory criteria. Although constructing an ensemble of members
that fully satisfied these two properties is practically impossible, providing a balance
between them is a key requirement for enhancing the BMA performance. Through coupling
BMA with Shannon entropy of information theory, this study proposes an entropy-based
selection procedure to construct an ensemble of streamflow forecasts by better addressing
the aforementioned contradictory criteria prior to performing the BMA. We investigate the
effects of using ensembles with the aforementioned properties by comparing the results of
original BMA with the proposed entropy-based BMA (En-BMA) for short- to medium-
range daily streamflow forecasts in two different watersheds. The results indicate that the
En-BMA leads to better results particularly for high flow predictions. Both probabilistic
and deterministic high flow forecasts are more accurate and reliable when using the En-
BMA approach. However, for the average flow forecasts, there are no clear differences in

the general performance of both methods. The improvements observed are more
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pronounced for shorter lead-times and less pronounced, but still present, for longer lead

times.

Keywords: Bayesian model averaging; Streamflow forecasting; Uncertainty; Entropy; Information

theory
4.2 Introduction

Reliable streamflow prediction is an essential task for various water management issues,
from flood forecasting and reservoir operation to recreational activities. Various sources of
uncertainties associated with forcing inputs, initial conditions, model parameters, and
model structures affect the reliability of hydrological forecasts (Moradkhani & Sorooshian,
2008; Shrestha, 2009; Xu et al., 2019). Generating an ensemble streamflow prediction
(ESP) is one of the most common approaches for quantifying different uncertainties
(Madadgar & Moradkhani, 2014; Michaels, 2015; Seo et al., 2006). It is shown that an ESP
is more skillful and functional than deterministic systems for operational purposes
(Boucher etal., 2011; Xu et al., 2019). Besides using various meteorological forcing inputs
and perturbing initial states of the model, ESP can be created by utilizing multiple
hydrologic models in order to quantify the model structural uncertainty and prevent

statistical bias of the prediction (Darbandsari & Coulibaly, 2019; Parrish et al., 2012).

Various statistical and post-processing tools have been developed for optimally merging
the individual members of the ESP. Simple averaging (DelSole, 2007) and Granger—
Ramanathan averaging (Granger & Ramanathan, 1984) are the simplest ones providing

one-point deterministic results. However, some more complex methods, such as Bayesian
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Model Averaging (BMA,; (Hoeting et al., 1999; Raftery, 1993; Raftery et al., 1997, 2005)),
generate probabilistic forecasts by quantifying predictive uncertainty. BMA is a statistical
procedure using the weighted average of the probability distribution function (PDF) of
different individual forecasts for generating predictive forecast distributions. In
comparison to the other multi-model combination methods, the higher capability of the
BMA approach in producing more accurate and reliable forecasts has been shown by

various studies (Arsenault et al., 2015; Viallefont et al., 2001).

Exploring the application of the BMA approach in the field of streamflow
predictions/simulations has led to different variants by relaxing some inherent assumptions
of the original BMA. Besides proposing some minor modifications, such as implementing
more representative distribution types (Vrugt & Robinson, 2007) or applying data
transformation (Duan et al., 2007; Liang et al., 2013; Qu et al., 2017), several more
complicated BMA based post-processing methods have been developed, such as
combining BMA and Data Assimilation (Parrish et al., 2012; Rings et al., 2012), Copulas
and BMA (Madadgar & Moradkhani, 2014), and Copula Bayesian Processors with BMA
(He et al., 2018). All BMA variants listed attempt to relax the Gaussian assumption of the
posterior distributions, while there are some fundamental limitations of the original BMA

method which remain.

One of the primary principles of the standard BMA formulations is the law of total
probability. This principle leads to the assumption of possessing mutually exclusive (i.e.
independent), as well as collectively exhaustive (i.e. capturing observation variability)

members of the ensemble. In other words, having an ensemble of members with the least
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shared information and higher capability of covering possible futures, is a potential
requirement for reliable performance of the BMA approach. It has been shown that
selecting independent forecast members enhance the reliability of the BMA results
(Sharma et al., 2019); however, capturing the variability of the observation by using an
ensemble is not possible except by having collectively exhaustive members (Madadgar &
Moradkhani, 2014). Simply constructing a large ensemble of members can provide more
information about observation and relatively assure the latter requirement; while, it may
limit the former one, as the larger number of members can lead to higher redundant
information within the ensemble (Refsgaard et al., 2012). Given the contradiction between
the two criteria, it is impossible to possess a mutually exclusive and collectively exhaustive
ensemble simultaneously. Therefore, constructing an ESP by providing a balance between

the two criteria is necessary and can positively affect the performance of the BMA method.

The information theory, also known as Shannon entropy, was first introduced by Shannon
(1948) and has become very popular in several scientific fields. The definition of the
entropy term in the context of information theory is a measure of uncertainty in a random
variable; and based on the fact that the amount of uncertainty will be reduced if more
information is available, entropy corresponds to the amount of information contained in a
data set (Keum & Coulibaly, 2017a). There are various applications of information theory
in solving different water-related issues (Mishra & Coulibaly, 2009; Singh, 1997). One
common application of entropy in water resources has been to aid in the design of

hydrometric monitoring networks (Alfonso et al., 2010, 2013; Keum et al., 2019; Keum &
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Coulibaly, 2017b; Leach et al., 2015; Li et al., 2012), where gathering high-quality

information with minimal redundancy is the main objective.

This study seeks to establish a new entropy-based selection procedure using the proven
capability of the information theory concept to provide information with minimal
redundancy. The new method will integrate entropy with BMA in order to overcome the
remaining challenge of possessing mutually exclusive and collectively exhaustive (MECE)
ensemble. In the proposed Entropy-based BMA (En-BMA) framework, before estimating
BMA parameters, three entropy measures (joint entropy, total correlation, and
transinformation) are utilized to narrow down the streamflow forecasts for constructing
ensemble with the MECE properties. The applicability and efficiency of the proposed En-
BMA approach have been assessed in two different watersheds for short- to medium-range
(up to 7 days) daily streamflow predictions. By providing a balance between two
conflicting criteria, the results show the superiority of the En-BMA in providing better

probabilistic and deterministic high flow forecasts over the standard BMA approach.

The structure of the paper is as follows. Section 4.3 introduces the underlying concepts of
our new En-BMA method. The experimental setup, including brief explanations of the
study areas, hydrologic models, and different verification metrics, are presented in Section
4.4. Section 4.5 provides the comparison results between original BMA and proposed En-

BMA methods, and finally, the summary and conclusions are drawn in Section 4.6.
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4.3 Methodology
4.3.1 Definition of Entropy terms

As defined in information theory, entropy is a measure of the amount of information
required to describe a random variable. In other words, it is the amount of uncertainty
represented by the probability distribution of a random variable. The basis of the Shannon
entropy is that the information gained from an event with occurrence probability p is
log(1/p). This stems from the fact that the anticipatory uncertainty from an event varies
inversely with its probability. Also, the logarithmic function is the only transition that can
be used in order to make sure that the information gained by the joint occurrence of two

independent events is equal to the sum of the information from each one:

log (W) = log (p(—i1)> + log (@) =— log(p(xl)) — log(p(xz)) (4-1)

Consequently, in the case of a discrete variable (X) with K outcomes with probabilities

(p1, P2, -, PK), the average information of X is denoted by:

1) = 5 log (-——)) = —ipi log() 4-2)

where E(.) is the expectation function and H(X) is the marginal entropy of a single
variable X in bits, because the base of the logarithm is assumed to be equal to 2. Therefore,
marginal entropy is the amount of information gained by knowing a single variable and it

varies between zero, for a deterministic case, and logN, for the most uncertain cases
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(uniformly distributed variables). It is of note that for continuous variables, such as

streamflow data, a finite number of discrete data intervals must be chosen.

A similar procedure is used for calculating the total information content in more than two
variables (e.g, N variables), which is known as joint (multivariate) entropy

(H(Xy, X s Xn)):

H(Xl,Xz, ,XN)
K; K> Kn (4_3)

= Z Z Z P(x1,i1rx2,i2: ...xN‘iN)log (p(xl,il,lel-z, ...xN,l-N))

where p(xy;,, %2, - Xy, ) i the joint probability of all variables and K; (j € [1, N]) is
the number of values or class intervals for variable x; in the case of discrete or continuous

variables, respectively. If there are independent variables, multivariate entropy is equal to
the summation of their marginal entropies and its maximum value will occur in the case of

independent, equally likely variables.

In general, marginal and joint entropies are related as follows:

N
H(X1, X5, .., Xy) = Z H(X;) — C(Xy, Xo, ..., Xn) (4-4)

i=1

where C(X;, X5, ..., Xy) is the total correlation which estimates the amount of duplicated
information in multiple variables. It is of note that increasing the number of variables could
potentially lead to larger total correlation (Figure 4-1). If the number of variables is reduced

to two, Equation 4-4 can be rewritten as follows:
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H(Xsz) = H(X1) + H(X;) — T(X1,X3) (4-5)

where T(X;,X,) is the amount of mutual information (or transinformation) between
variables X; and X,. In other words, it shows the information content of one variable that
is contained in another. Transinformation is symmetric (i.e., T(X;,X,) = T(X,, X;)) and
will be equal to zero when two variables are statistically independent. The larger value of
transinformation depicts the higher dependence between the variables and the maximum
value occurs in the case of functionally dependent variables. Therefore, transinformation

varies in the range of zero to min(H(X,), H(X5)).

For more clarification, Figure 4-1 illustrates the schematic of the various aforementioned
entropy terms for a case of three variables, where the circle sizes indicate the amount of
marginal entropy. As can be seen, transinformation is only meaningful for two variables
(or group of variables) and is not equal to total correlation when we possess three or more
data sets. Moreover, the total correlation is the sum of all order duplications in the system.
Based on the definition of the previously mentioned entropy terms, it can be concluded that
these concepts can be used in order to relax some of the remaining assumptions and

hypotheses of the BMA method (i.e., independent and mutually exclusive predictions).
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(a) Marginal entropy (b) Joint entropy
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C(X1, X3, X3) T(X2,X3) T((X2, X3),X1)
(¢) Total Correlation (d) Transinformation

Figure 4-1 The schematics of (a) marginal entropy, (b) joint entropy, (c) total
correlation, and (d) transinformation

4.3.2 Bayesian Model Averaging with Moving Window

BMA is a probabilistic post-processor where the conditional PDFs of various forecasts are
combined in order to generate more skillful predictions. BMA was first introduced for
statistical linear regression applications (Hoeting et al., 1999; Kass & Raftery, 1995).
Raftery et al. (Raftery et al., 2005) extended the application of BMA to dynamic models.
Given the detailed description of the BMA approach in the literature (Darbandsari &
Coulibaly, 2019; Raftery et al., 2005), we briefly explained the BMA basic concepts for

the sake of completeness.
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Consider the quantity A to be the predictand (i.e., forecasted variable) based on the training
data D and the ensemble of independent predictions = {F;, F,, ..., F}.}. Based on the law of

total probability, the BMA predictive PDF of A can be represented as.

P(4|F,D) =

4

k
P(4|F;, D) x P(F;|D) (4-6)

1

where P(F;|D) is the posterior probability of the forecast F; being correct given the
observational data. This term can be viewed as a weight (w;) reflecting how well the
ensemble member i fits the observations in the training period. Moreover, P(4|F;, D) is
the PDF of the predictand A conditional on the forecast F; and observed data D. In the

standard BMA approach, this posterior probability is assumed to follow the Gaussian

distribution centered at the forecast value with standard deviation g;.

In order to estimate the parameters of the BMA approach, (i.e., weights and variances of
each individual forecast), the Expectation-Maximization (EM) algorithm, proposed by
Raftery etal. (2005), is applied for maximizing the log-likelihood function of the parameter

vector (0):

K
L(0) = Log(P(4|Fy, F,, ..., Fx, D)) = Log <Z w; X g|F;, aﬁ)) (4-7)

=1
M is an iterative approach, including expectation and maximization steps, where a latent
variable is used for searching the optimal values of parameters. Although obtaining a global
optimum solution is not guaranteed, it has been shown that EM is as reliable and efficient

as more complex global optimization techniques (Darbandsari & Coulibaly, 2019; Vrugt

148



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

et al., 2008). For a more detailed description of the EM algorithm, the reader is referred to

the above-cited references.

Using a fixed training set of data leads to a static estimation of the BMA parameters, which
does not change with respect to the hydrologic regime. However, updating the parameters
when new observations are available may provide more reliable results. Therefore,
following Raftery et al. (2005), the moving window approach is implemented where the
shorter window of simulation-observation pairs surrounding each forecast is used as the
recursive training period for calculating BMA parameters. By capturing the time-
dependent relative performance of various members of the ensemble, the BMA with
moving window leads to better probabilistic forecasts (Parrish et al., 2012; Vrugt &

Robinson, 2007).
4.3.3 Entropy-based Bayesian Model Averaging method

As previously stated, establishing a balanced ensemble of forecasts with mutually
exclusive (independent) and collectively exhaustive (capturing the observation variability)
members can potentially lead to more reliable BMA derived predictive forecasts. Here, by
using three aforementioned entropy terms, we introduce an easy-to-implement selection
procedure, through which the generated ensemble can (1) possess minimum redundancy

and (2) assure the highest overall information.

Figure 4-2 represents the proposed Entropy-based selection algorithm for optimally
choosing the subset of forecast members with minimum redundancy and maximum

information for BMA application. As can be seen, the method has a nested loop structure.
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The goal of the inner loop is finding less independent forecasts when the number of selected
members is fixed. Therefore, the total correlation between selected members is considered
as an objective function, and its values for potentially selected subsets (S) are compared in
order to find the optimal one (Sg). Different subsets are initialized by iteratively removing
one member of the candidate forecasts and finally, the subset with the lowest dependence
within its members is the selected one. In other words, the finally omitted member in each
loop possesses the most duplicate information in common with other members, which leads

to the highest redundancy of the ensemble.

In the outer loop, the stopping criteria are defined in order to provide collectively
exhaustive ensemble. Therefore, we introduce two entropy-based ratios. The first is the
ratio of joint entropy of the selected optimal members, derived from the inner loop, to that
of all the candidate members (F = {F,, F,,.., Fx}). This ratio shows how much of the
information contained by the whole ensemble is covered using the selected subset.
Although it illustrates the exhaustiveness of the selected members, it is not a proper term
for representing the amount of information about capturing the variability in the
observations. Therefore, the second criterion is defined as transinformation between the
final selected subset and observations over transinformation between all candidate
members and observations. This provides a better estimation of the maximum information.
However, both ratios must be used together to assure collectively exhaustive criterion in
both calibration and forecasting periods. Figure 4-3 exemplifies the application of the
proposed selection procedure for one forecast by illustrating how different entropy terms

change in both inner and outer loops. As previously stated, the inner loop of the procedure
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determines the best subset of ensemble with minimum total correlation and the outer loop
continues until both stopping criteria are fulfilled. The steady decrease of total correlation
in the outer loop shows selection of less dependent members while the imposed stopping
threshold parameter (f), ensures possessing an ensemble with sufficient information

content.

The integration of the proposed Entropy-based selection algorithm with BMA using the
moving window scheme is presented in Figure 4-4. For each forecast, the moving window
with length N is considered as the training period for implementing the selection procedure
and estimating BMA parameters. The results of the training phase are used during the
forecasting mode, where at first, the ensemble of streamflow forecasts up to T days ahead
are generated using the selected members and deterministic precipitation (Pr) and
temperature (Tr) forecasts, and then, the BMA approach with estimated parameters is
utilized as a post-processor for probabilistically merging the generated forecasts. It is of
note that, in this study, we used observed precipitation and temperature as perfect
deterministic meteorological forecasts. By allowing the selected members to vary for each
forecast, we hope the proposed En-BMA is able to provide better deterministic and
probabilistic results in comparison to the original BMA where the same ensemble is

implemented.
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Figure 4-2 The greedy algorithm of the Entropy-based selection procedure. F =
{F., F,,.., Fx} is the set of all candidate forecast members. m shows the number of
members of the ensemble. S;is a candidate ensemble subset after removing member i.
H(.), C(.) and T(.) respectively are the functions of joint entropy, total correlation and
transinformation
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Figure 4-3 An example of the application of the proposed selection procedure in both (a)
Big East River and (b) Black River watersheds. F and S are the ensembles considering
all and selected members, respectively, and O is the observation. H(.), T(.), and C(.)

respectively show the functions of joint entropy, transinformation and total correlation in

bits

153



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

P e i e T

. Training phase

F, = {?Fll'?plz' ""?FlN}
F, ={9%,9%, .97}

_______________________________

Forecasting phase \

P/ = {PA{+1I PA{+21 '"JPI\{H‘}
T/ = {TJ\.]:+1rTA)rr+21 ""TJ\."f+T}

7

= {HFsy (Fs1 3 Fsy }
F51 {y N+t Y ez oY Tingr

_ foFs ~Fs ~Fs
Fs,= {9 INer Y g oY 2N+T}

.

FK = {)/;Fkltj}szl ---rj}FKN}

U

/ Entropy based Selection Procedure /

U

Se = {Fs,, Fs, e, Fs, }

— [sFs GFs ~Fs
an—{y "N Y TNz Y nN+T}

U

e e e e e e e e e e

BMA Parameters:
/ EM algorithm / E> {w;,a;} @
\ i €[S81,52,.., 5] Predictive forecast J

Figure 4-4 The main flowchart of the Entropy-based Bayesian Model Averaging (En-
BMA) with Moving window scheme. N: moving window length; T: forecast lead-time; K:
total number of candidate members; S,,: the number of selected members; P/ and T/ are

inputs for the selected models

4.4 Experimental Setup
4.4.1 Study Area

The proposed En-BMA approach is applied to the Big East River (BE) and Black River
(BL) basins, located in northern Ontario, Canada (Figure 4-5). BE is a mostly forested area
of 620 km? while BL, with a drainage area of 1522 km?, is covered with the combination
of agricultural lands and natural forests. Both watersheds are moderately sloped with
altitudes approximately changing from 200 to 400 and 200 to 600 meters above sea level
for BE and BL, respectively. From the six available meteorological stations, located around

both watersheds, the mean annual precipitation ranges between 887 to 1249 mm. In
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addition, the average temperature variations from -10.5°C in January to 18.5°C in July
depict the occurrence of all four seasons in both watersheds (Table 4-1). Moreover, in April,
when the temperature rises to above the freezing point and snowmelt begins, the highest
amount of discharge at the outlet of both watersheds can be seen. This depicts the
importance of considering the snowmelt routine in the hydrological modeling of both
watersheds. It is noted that the low-density ground-based stations shows the status of data-
poor watersheds where the conceptual models are the most appropriate ones for rainfall-

runoff modeling (Anshuman et al., 2019; Tegegne et al., 2017).

Black River Black River N
Big East River
. 9 ALGONQUIN PARK %AST GATE
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Figure 4-5 The study areas: Big East River and Black River watersheds
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Table 4-1 The climate characteristics of both basins using all available meteorological
and hydrometric data

Month Precipitation (mm) Mean daily temperature (°C) Discharge (mm)
Mean Max Min Mean Max Min BE outlet  BL outlet
January 81 119 50 -10.2 -9.5 -114 55 62
February 59 75 40 -10.5 -10.0 -11.6 33 35
March 57 63 49 -3.6 -3.2 -4.5 59 64
April 87 96 70 4.5 5.1 3.8 152 125
May 81 87 69 11.9 12.3 11.3 64 51
June 108 122 98 16.2 16.7 15.6 39 22
July 85 97 73 18.5 19.3 17.9 23 15
August 88 105 74 17.5 18.2 16.7 19 8
September 94 109 82 134 14.0 124 21 9
October 117 151 86 7.2 7.7 6.2 41 24
November 92 125 66 0.8 1.2 -0.1 67 52
December 94 122 72 -5.5 -4.9 -7.0 71 65

4.4.2 Ensemble streamflow forecasts

In this study, as presented in Table 4-2, seven different lumped conceptual rainfall-runoff
models, employed for generating an ensemble of streamflow forecasts, are SACSMA,
MACHBYV, SMARG, GR4J and three different configurations of HEC-HMS model. These
models possess unique structural complexities with varying numbers of parameters. Daily
precipitation and temperature are the only inputs to the chosen models, with different
methods used for calculating potential evapotranspiration (PET) depending on the model
(Table 4-2). Moreover, as stated in the previous section, snowmelt is one of the most
important hydrologic processes in our study areas. Therefore, for adding more diversity,
three different snowmelt modules are implemented with various models (Table 4-2). In the

simple degree-day method (DDM; Samuel et al., 2011) which uses five parameters, a linear
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relationship between temperature and the amount of snowmelt is considered. The 10-
parameter snowmelt routine of the HEC-HMS models (Scharffenberg, 2016) uses the
antecedent temperature index for calculating the melt rate. Snow17 (Anderson, 1973, 2006),
including 11 parameters, is a more complex temperature index approach where some of

the snowmelt related physical processes are considered.

Table 4-2 Rainfall-runoff models implemented in this study

Model Reference Number of PET method Snowmelt
parameters routine
SACSMA Burnash et al. (1973) 14 Thornwaltgéfil)m uel etal, Snow17
MACHBV Samuel et al. (2011) 10 Thornwaite Snow17
SMARG Tan and O’Connor (1996) 9 Thornwaite DDM
GR4J Perrin et al. (2003) 4 Thornwaite DDM
Hargreaves (Hargreaves and
*
HECHMS1 Scharffenberg (2016) 7 Samani, 1985) HECHMS
HECHMS2* Scharffenberg (2016) 15 Hargreaves HECHMS
HECHMS3* Scharffenberg (2016) 17 Hargreaves HECHMS

* HECHMSL1.: recession + deficit and constant approaches; HECHMS2: recession + soil moisture accounting
approaches; HECHMS3: linear reservoir + soil moisture accounting approaches

By considering 6 years of historical data (i.e., years 2006-2011) as the calibration period,
we use the dynamically dimensioned search algorithm (Tolson & Shoemaker, 2007) for
estimating models’ parameters using five different objective functions. Kling-Gupta
efficiency (Gupta et al., 2009), Nash-Sutcliffe efficiency (Nash & Sutcliffe, 1970), and
Nash volume error (Samuel et al., 2011) focus on medium flows in different ways, while
modified Nash volume error (MNVE; Darbandsari and Coulibaly, 2019) and peak weighted
root mean square error (PWRMSE; Cunderlik and Simonovic, 2004) are aimed to simulate

high flows more accurate. As shown in Equation 4-8, in MNVE, the combination of volume
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error (VE) and NSE based on squared transformed streamflow (NSE,,., reflecting the

accuracy of high flows) is used:
MNVE = NSEg — 0.1 X VE (4-8)

Also, PWRMSE is formulated as follows:

N =

N —

1 0;,+0
PWRMSE = N(Z(fi —0;)? x 125 ) (4-9)
1=

where N is the data length and f;, O;, and O respectively are the simulated, observed, and
the mean of observed flows. As can be seen, PWRMSE gives higher weights to errors near
the peak flows. Utilizing multiple objective functions can provide better BMA predictions
in different flow ranges (Dong et al., 2013). Combining the seven hydrologic models and
five objective functions leads to a set of 35 calibrated models, this set can then be used to

generate an ensemble of streamflow forecasts.
4.4.3 Performance measures

The accuracy, reliability and sharpness are the most important aspects of any predictive
forecast need to be evaluated. In this study, we used six different evaluation metrics and
some visual graphical tools to cover all of the aforementioned properties. In terms of the
accuracy, three deterministic-based measures, including Nash Sutcliffe Efficiency (NSE),

Volume Error (VE), and the root mean square error (RMSE) are employed:
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(i —0)?
NSE =1 -2 7L 4-10
?I=1(0i - 0)2 ( )

|Z{V=1(fz - Oi)l

N
i=1 0

1 N
N(Z(ﬁ- - oi)2>

where f; and 0;, are respectively the forecast and observed variable. O is the observation

VE =

(4-12)

1/2

RMSE = (4-12)

mean and N is the dataset length. NSE varies between -co and 1 with the best value of 1,
while VE and RMSE possess a range of [0, «] when lower values show better model

performance.

Moreover, the mean continuous ranked probability score (CRPS; Hersbach, 2000)
evaluates the accuracy of the results in a probabilistic way by comparing the cumulative
distribution of forecasts (Pif(x)) and observations (P (x)), determined by using Heaviside
function (H(x — 0,)):

x=+00

N
CRPS = %Z f (P @) - P? (x))2 d, (4-13)

i=1 y=—c0

0 x<0i

PP(x) =H(x—0;) = {1 x=0;

(4-14)

The range for CRPS is 0 to co where smaller values indicate better performance.

The Containing ratio (CR95) and the average Bandwidth (B95) of the 95% confidence

interval (Xiong et al., 2009) are the two other performance statistics, being used to assess
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the reliability and sharpness of the probabilistic forecasts, respectively. CR95 is the ratio
of the observations, covered by the 95% prediction bound. It ranges between 0 and 1 with
an optimal value of 0.95. B95 determines the average width of the aforementioned interval

and it is negatively oriented, with lower values indicating better forecasts.

NOin _
CR95 = m (4-15)
1 N
B95 = NZ(fu(i) — £(D) (4-16)

In the above equations, Ny, is the number of observations that have fallen within the 95%

bound and the upper and lower boundaries of the corresponding bound is denoted by f,, (i)
and f; (i), respectively. Simultaneously evaluating these two criteria is vital for providing
precise conclusions. For instance, a forecast with a good CR95 may still be underconfident

by providing high B95, indicating an overestimation of the uncertainty bound.

Apart from previously presented verification metrics, we adopted the predictive quantile-
quantile plot (Q-Q plot; Laio and Tamea, 2007) as additional visual statistical verification
of the forecast reliability, where the comparison is made between forecast and the
cumulative uniform distributions. The more the Q-Q plot follows the bisector line, the more
reliable the forecast is. Therefore, another reliability measure (a) can also be calculated
from a Q-Q plot, which represents the discrepancy between Q-Q plot and the bisector line

(Renard et al., 2010):
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N
1
a=1-2x NZW(OJ —U(0y)| (4-17)

Pl.f (0;) and U(0,) respectively determine the non-exceedance probability of the observed

value using forecast and uniform cumulative distributions. @ = 1 shows the perfect
reliability while its worst value is zero. Moreover, the representative hydrographs are
another tool for assessing both deterministic and probabilistic forecasts visually.
Furthermore, for more specific evaluation and comparison of different methods’
performance regarding high flows, all aforementioned performance measures are also

determined based on the high flow data (90" percentile of streamflow).
4.5 Results and Discussion
4.5.1 Rainfall-Runoff models calibration

As previously stated, for each hydrologic model, five optimized parameter sets are obtained
by considering different criteria (i.e. KGE, NSE, NVE, MNVE, and PWRMSE) as an
objective function in the optimization process using the calibration period from 2006 to
2011. A comparison between the performances of different models, calibrated using
different objective functions, in the three-years validation period (2012-2015) in terms of
NSE, RMSE, VE, and their corresponding values derived from flows more than 90
percentile (i.e. NSE-90, RMSE-90, and VE-90) can be found in Figure 4-6. In the Big East
River watershed, the results, in general, indicate the superiority of GR4J model in
simulating daily streamflows, however, by focusing on high flows, MACHBYV shows the

most reliable performance. In the Black River, on the other hand, MACHBY is the most
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consistent model by providing the best results based on almost all performance metrics
while SACSMA performs competitively regarding high flow simulation. The fact that
MACHBYV was initially developed for streamflow simulation in Ontarian’s ungauged
basins (Samuel et al., 2011, 2012), can justify the robust performance of MACHBY in both
watersheds, which are considered as data-scarce regions with low-density ground based

measurements (Darbandsari & Coulibaly, 2019).

Morever, comparing the use of different objective functions shows that implementing KGE
as an objective function consistently lead to relatively better performance for most of the
hydrologic models in the Big East River watershed, while its application in the Black River
is not among the best ones. NSE based calibrated models, compared with NVE, provide
better results in terms of NSE and RMSE criteria in both watersheds, however, their
performances are worst regarding volume error (VE) metric for most of the models. By
combining NSE and VE metrics, NVE criterion provides a balance among volume error
and difference between streamflow simulations and their corresponding observations
(Lindstrom, 1997; Samuel et al., 2011). Furthermore, the results shows that using objective
functions focusing on high flows (i.e. PWRMS and MNVE) does not always lead to better
calibrated models regarding high flows. Overall, the main conclusion that stands out from
comparing the different objective functions, is that it is practically impossible to select one
criteria which gives the best optimal parameters sets for all hydrologic models based on
different performance measurements in both watersheds. Therefore, besides helping in

finding the best optimal parameter sets for each hydrologic model, using different objective
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functions provides larger number of ensemble members with higher potential capability in

capturing future flow possibilities.

Average Rank “KGE ¢NSE ~NVE xMNVE o©PWRMSE

1 7 15 7 0.2
- x 6
0 13
0.8 u] e = 0.15
= =
L 8 e 8 ¢ g R L 'z
206 % g |o 8 4% 3 X% o R B 4 B oo
g N = 9 -8 ® 2 |o o 5 ?
0.4 e i o 005 |
2 ! 2 le)
x
02 1 5 1 p Lm
06 7 40 7 035
0.4 o 6 » 6 0.3
02.2 8 8 g o ¥ X s¥ P sE 025
o o x s & g o
& x S8 LE A g § 0
m 0 s 4% @30 44 N
7 o 2 ? = Eols
“ 02 3 ® 8 x el 9] 38 ol Lo
= 25 & g 2 o R X = &
0.4 2 o2 0.05
O
06 1 20 - 1 o Lo
oz g = s =z g = = w
£ 2 2 £ E EE £t E 2 £ E B B £
£ 8§ g2 ¢ &z € 2 5 8 B & & £
> 2 8 Z B & = 2 9 L B B 2 =
z o5 g 2 8 2 z 3 g £ 8 A
505 505 =
Hydrologic Models Hydrologic Models
(a) Big East River watershed
Average Rank “KGE ¢NSE ~NVE xMNVE oPWRMSE
0.9 7 18 7 02
<
6 ] 6
08 - @ & 4 o . 16 o B .- 0.15
Q [u o g g
mo_ X 8 X U‘é % * % i Cl;g =
707 o 48 214 5 8 [0 o 4% H ool
= o g (|, Ej =] | he N ) = o
06 < = 2 . 8 =3
6 12 ® 0.05
2 v 2 8
0.5 1 10 1 0
0.6 7 50 7 0.4
04 8 2 0 6 45 g o 6 035
- = o
o 02 B2 0 e SE R Bkl s §> 03
o 2 o L& @t x O | @ §yas
@0 b 4% B x X o 48 4025
? X o o 215 u] - =
<02 x| 28 & g o ° 3 g 02
0.4 o |9 18,7 = o 2" 015 | &
- o e 5 & 15 1
06 L 1 25 1 0.1 Lo
SR EEEE B EEEEE £
£ 8 5 E & & B ¢ 2 5 E ¢ ¢ & ¢
> 2 8 5 B g B o2 9 g 72 B =
Z2 & s - "~ Z @ s - v = ]
Hydrologic Models Hydrologic Models

(b) Black River watershed

o0

xX O

o

LIS"AHHOVIN

OXE

LISAHHOVIN

o
o

%

4 g B
<
fe]

% x

-3

& [X

ol |a |DO

[m]

Q v
g
E;E.
g & E
v 5 E
o

Hydrologic Models

&
[ B - ]
x
B
x
|l |0
4
&
=]
*X
g 4a
x| o
o
o =»w =T
= 2 &
Pt
g & E
° & 8
g

Hydrologic Models

KO O

EIX

TSWHOAH

O

TSWHOHH

0

£SIWHDEH

£SWHOHH

=~

B IV R S VA

—_ M W B L o

L S T I - N L 7 B S T - N

Huey ofeIany

yuey] oFeIaAy

uey] Sferany

yuey] aderoay

Figure 4-6 The performance evaluation of various calibrated hydrologic models for the
validation period (years 2012-2015) in (a) Big East River and (b) Black River watersheds
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4.5.2 Multi-model versus Multi-model Multi-objective ensemble scenarios

Prior to the application of the proposed En-BMA method, we evaluate the effects of using
multiple objective functions for generating ensemble members to be merged by BMA with
different moving window lengths. Considering two ensemble scenarios of multi-model (E-
7) and multi-model with multiple parameter sets generated using different objective
functions (E-35), Figure 4-7 illustrates the performance statistics of the 1-day ahead BMA
forecasts as a function of the number of days of the moving window for both Big East River
and Black River watersheds. The most influenced properties of the forecasts, changing
based on the window length, are the reliability (CR95) and sharpness (B95) of the results.
Although the shorter training period leads to smaller uncertainty bounds, it highly reduces
the reliability of the forecasts in both watersheds and both ensemble scenarios. These
results is qualitatively in line with previous studies (Raftery et al., 2005; Vrugt & Robinson,
2007) showing that increasing moving window length enhances the reliability of the
forecasts while it reduces the sharpness. Other performance measures focusing on the
accuracy of the results show negligible changes regarding the moving window length.
Therefore, given that a similar trend has been seen for other forecast horizons (up to 7 days),
we select a length of 100 days where the reliability of the results appears to reach stability,
beyond which the sharpness of the results deteriorates without significant improvement of

the containing ratio.
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Figure 4-7 The comparison of different performance statistics of BMA 1-day ahead
forecasts using two different ensemble scenarios and different mowing window length in
(a) Big East River and (b) Black River watersheds. E-7 and E-35 respectively show the
multi-models and multi-models multi-objectives ensemble scenarios

Moreover, although the superiority of scenario E-35 over E-7 can be seen from Figure 4-
7, a comprehensive comparison of both ensemble scenarios has been made using BMA
with a 100-day moving window for 1-, 3-, 5-, and 7-day ahead forecasts. It is of note that
N-day ahead forecasts mean the times series of forecasts for lead-time N independently
and not as aggregated of 1- to N-days ahead. Therefore, all criteria, being calculated based
on N-day ahead time series of forecasts, only indicate the performance at that particular

lead-time. The results, as shown in Figure 4-8, indicate that using multiple models with
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multiple objective functions consistently enhance the probabilistic performance of the
BMA method for different lead-times in both watersheds. These improvements are also
apparent in the deterministic performance statistics regarding high flows, especially in the
Black River watershed. Consequently, it can be concluded that constructing an ensemble
using multiple models with multiple parameter sets based on different objective functions
leads to better BMA results. Accordingly, for the En-BMA application, the multi-model
multi-objective ensemble scenario, including 35 members of streamflow predictions, was

implemented for both watersheds.
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Figure 4-8 The percent improvement of different performance statistics in both Big East
River and Black River watersheds. The positive value of percent improvement shows the
positive effect of utilizing E-35 in comparison to E-7
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4.5.3 The effects of the stopping threshold value on En-BMA

The main parameter of the proposed En-BMA approach is the stopping threshold value (58),
which needs to be determined beforehand. Therefore, the sensitivity analysis was carried
out for different g values (i.e., 0.6, 0.7, 0.8, 0.9, 0.95, and 0.99) to assess how selecting
this threshold can affect the streamflow forecasts. The first noticeable effect of the stopping
threshold is on the number of selected members (Figure 4-9); by increasing 8 a higher
numbers of members are selected for BMA application. Larger stopping threshold value
focuses more on increasing information content of the whole ensemble rather than
independence of its members, while choosing smaller g leads to lower redundant
information without paying that much attention to the ensemble exhaustiveness. In
addition, different performance measurements for the 1-day lead time forecasts are
presented in Table 4-3. What stands out in this table is that in general, a higher threshold
leads to sharper forecasts for both watersheds, while the deterministic performance slightly
deteriorates especially in high flows. Therefore, in this study, the threshold value of 0.95
was chosen for both watersheds, which provides a balance between the different
performance statistics. These results indicate the same value of having mutually exclusive
as well as collectively exhaustive ensemble (Madadgar & Moradkhani, 2014; Refsgaard et
al., 2012), and indicate the importance of selecting a proper threshold value prior to the

En-BMA application.
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Figure 4-9 The average number of selected members and using different stopping
threshold in (a) Big East River and (b) Black River watersheds
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Table 4-3 Different performance statistics of 1-day ahead forecasts derived from the proposed En-BMA method with different
stopping threshold values

Basin B All flows Flows more than 90 percentile

NSE RMSE VE CRPS CR95 B95 NSE RMSE VE CRPS CR9% B95

0.6 0.79 7.8 0.04 2.7 0.95 26 0.71 17.7 0.06 8.3 0.74 37

_ 0.7 0.8 7.7 0.04 2.6 0.95 25 0.71 17.6 0.06 8.3 0.75 36
é 0.8 0.79 7.7 0.03 2.6 0.95 24 0.68 18.6 0.06 8.5 0.76 36
7 0.9 0.8 7.6 0.03 2.5 0.94 22 0.67 18.8 0.04 8.6 0.78 35
.UEJ’ 0.95 0.79 7.7 0.013 2.3 0.94 17 0.64 19.6 0.03 8.9 0.78 33
- 0.97 0.77 8.1 0.04 25 0.95 17 0.58 21.2 0.01 9.5 0.77 33
0.99 0.76 8.3 0.03 25 0.94 17 0.56 21.6 0.03 10.2 0.74 32

0.6 0.81 124 0.02 4.8 0.92 43 0.46 31.2 0.23 16.0 0.73 56

0.7 0.81 124 0.02 4.7 0.92 42 0.47 31.0 0.22 15.9 0.74 55

g 0.8 0.82 124 0.02 4.7 0.93 41 0.49 30.5 0.21 15.9 0.72 52
§ 0.9 0.82 124 0.03 48 0.92 37 0.47 31.0 0.21 155 0.70 49
% 0.95 0.81 12.6 0.04 45 0.92 34 0.43 32.2 0.22 14.6 0.73 48
0.97 0.81 12.6 0.04 4.4 0.91 33 0.43 32.3 0.22 14.7 0.72 47

0.99 0.81 12.7 0.04 43 0.9 32 0.41 32.8 0.23 14.7 0.7 47
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Besides assessing the effects of the stopping threshold, the contribution of each member
into the forecasts is illustrated in Figure 4-10. A simple comparison between the
performance of each individual model during the independent validation period (i.e., years
2012-2015) and the frequency of their selection for forecasting application shows that the
selection ratios are not completely in accordance with models’ performance, and even some
relatively lower performing members have been frequently selected based on the proposed
procedure. This is justifiable by the fact the entropy terms used in the proposed selection
procedure, evaluate the information content of the whole ensemble rather than focusing on
individual members. This expresses that besides high-performance models, considering
some members with unique information is necessary for possessing mutually exclusive and

collectively exhaustive ensemble (Darbandsari & Coulibaly, 2019).
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Figure 4-10 The contribution of each member into the forecasts and the NSE
performance statistic of each member for the whole validation period based on all flows
and flows more than 90 percentile in (a) Big East River and (b) Black River watersheds

4.5.4 En-BMA versus BMA

BMA and the proposed En-BMA method with a stopping threshold of 0.95 are employed
to forecast the streamflow up to seven days ahead within the validation period in both Big
East River and Black River watersheds. Figure 4-11 and Figure 4-12 compare the accuracy,

reliability, and sharpness of the BMA and En-BMA methods using six different

171



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

performance statistics (presented in Section 4-4). It can be recognized that, in general,
when all flows are considered, there is a small loss of deterministic performance in the Big
East River watershed by applying the proposed entropy-based approach, while in the Black
River, all deterministic measures (i.e. NSE, RMSE, and VE) show marginal advantage of
En-BMA compared to BMA for all lead-times. However, by focusing on high flows
(Figure 4-12), the superiority of the En-BMA over BMA in both watersheds is shown based
on all performance statistics. These improvements exist in all forecasting horizons, but
more so during shorter lead times (e.g., the 1-day ahead NSE improvement of 8% and 65%
in comparison to 4% and 32% for 7-day ahead forecasts in Big East River and Black River

watersheds, respectively).

In terms of probabilistic forecasts, almost the same conclusions can be derived. The general
performance statistics based on all data (i.e., Figue 4-11) show that applying En-BMA may
slightly deteriorate the probabilistic performance of the results; however, improvements
are notable in both watersheds for the high flows (Figure 4-12), especially for shorter
forecast horizons. For instance, the containing ratios regarding high flows (CR95-90) at 1-
day ahead forecasts improve more than 10% in both watersheds with the same or less
corresponding bandwidth. This improvement extended to the longer lead times in Black
River watersheds. However, in the Big East River, although the high flow forecasts

reliability of the En-BMA approach is better, sharpness was deteriorated.
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Figure 4-11 Comparison of different performance metrics for 1 to 7 days-ahead
streamflow forecasting derived from BMA and En-BMA methods in (a) Big East River
and (b) Black River watersheds. % improvement is defined as the percentage increase

when using En-BMA instead of BMA, with positive values indicating it was advantageous
to use En-BMA

As stated previously, the quantile-quantile plot and its corresponding reliability measure
() are also used for comparing the performance of En-BMA and BMA methods. When
looking at the results derived from all streamflow data (Figure 4-13), there is a negligible
difference between the performances of both approaches in both watersheds. Although En-
BMA leads to better results in the Big East River watershed, it slightly deteriorates in the

Black River watershed. However, in term of high flow forecasting (Figure 4-14), the higher
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reliability of the En-BMA results as compared with BMA is noticeable. The percent
improvement shown for the a values when using the En-BMA approach for 1-day ahead
forecasts was approximately 13% and 18% in the Big East River and the Black River
watersheds, respectively. This superiority was shown to decrease with increasing lead-
times; however, a positive percent improvement was still found for all lead-times. It is
worthy of note that in both the Q-Q plot and the volume error values (Figure 4-12 and
Figure 4-14, respectively), both BMA and En-BMA methods underestimate high flows in
the Black River watershed. These underestimations were seen for all calibrated hydrologic
models used in this study. This may be due to the limitation of the precipitation data in the
study area. The mean areal forcing precipitation data may not be representative of the actual
precipitation patterns. Therefore affecting both the En-BMA and BMA results. However,

it does not affect the comparing process.
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Figure 4-12 Comparison of different performance metrics for 1 to 7 days-ahead high
flow forecasting derived from BMA and En-BMA methods in (a) Big East River and (b)
Black River watersheds. % improvement is defined as the percentage increase when
using En-BMA instead of BMA, with positive values indicating it was advantageous to
use En-BMA
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Figure 4-13 Comparison of the predictive Q-Q plot of different lead times (1-day to 7-
day) derived from BMA and En-BMA results for (a) Big East River and (b) Black River
watersheds
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Figure 4-14 Comparison of the predictive Q-Q plot of different lead times (1-day to 7-
day) derived from BMA and En-BMA high flow results for (a) Big East River and (b)
Black River watersheds

Finally, in order to complete the comparison, Figure 4-15 illustrates a representative
portion of hydrographs including observed, BMA, and En-BMA derived mean and 95%
prediction uncertainty for different forecasting horizons (i.e., 1, 3, 5, and 7 days). In line
with previous conclusions, the plots of different lead times show that in both watersheds,
En-BMA outperforms BMA in terms of both probabilistic and deterministic performance
regarding high flow predictions. These outperforming results are more noticeable for
shorter lead times (1-day and 3-day ahead forecasts). It is worth mentioning that, in general,
both En-BMA and BMA results have almost the same accuracy and reliability regarding
low flows in both watersheds. This is due to the fact that the temporal variability of

streamflow forecasts based on different ensemble members is marginal in low flows and
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narrowing down the ensemble member using En-BMA method does not significantly
affects the results. On the other hand, however, it can be seen that implementing En-BMA
leads to less sharp low flow forecasts in comparison to the original BMA, especially in
base flows after a rainfall event (Figure 4-15). This is justifiable by the fact that the moving
windows sorounding these days, used in the selection procedure, include high flow events

which leads to the selected ensemble with larger variability.
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Figure 4-15 Time-series of the mean and 95% predictive bounds derived from En-BMA
and BMA forecasts of various lead times compared with observations from a
representative period in (a) Big East River and (b) Black River watersheds
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4.6 Summary and Conclusion

The multi-model ensemble prediction system is a well-known approach to quantify and
reduce model structural uncertainty. Among various post-processing methods, Bayesian
Model Averaging (BMA) is one of the most reliable statistical tools for generating
predictive forecasts by relatively merging individual ones. In BMA, the law of total
probability is used for estimating the predictive distribution of the forecast variable as a
weighted average of the PDF of individual forecasts. Therefore, having mutually exclusive
and collectively exhaustive members of the ensemble is a fundamental need in order to
reach more reliable results. However, these two requirements are in conflict with each other,
so providing a balance between them seems necessary for possessing better BMA based
predictive forecasts. Given the mentioned challenge, in order to narrow down the
streamflow forecasts for meeting the two contrasting criteria, this study developed a novel
entropy-based selection method to be employed prior to the BMA. Since information
theory measures have shown success in different hydrometric network design applications,
where the same competing objectives are considered, we utilized three entropy terms (i.e.,
total correlation, joint entropy and transinformation) for generating an independent and
exhaustive ensemble. In the proposed structure, minimizing total correlation assures the
minimum redundancy between selected members while joint entropy of members and
transinformation between members and observation lead to an ensemble with higher

information.

We compared the application of the BMA and the proposed En-BMA methods for

generating probabilistic streamflow forecasts at short- to medium range lead times (1 to 7-
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day ahead forecasts) in two data-poor watersheds, located in Ontario, Canada. Seven

conceptual lumped hydrologic models with different structures and five different objective

functions were used to create an ensemble of 35 streamflow forecasts for each watershed.

We used six different evaluation metrics, the Q-Q plot, and representative hydrographs for

comprehensively comparing BMA and En-BMA results regarding the whole time series

and the high flows, separately. The summary of the most important obtained results in both

watersheds is as follows.

The simulation results, comparing the calibrated models using different objective
functions, as well as the comparison of BMA f with two different ensemble
scenarios, indicate that using multiplie objective functions for calibrating various
hydrologic models leads to an ensemble of members with higher diversity, and can
enhance the BMA performance. This conclusion is in line with previous studies
suggesting the use of diverse ensemble members in conjunction with BMA (Dong
et al., 2013; Parrish et al., 2012; Sharma et al., 2019).

Evaluating the proposed entropy based selection procedure illustrates the same
importance of having collectively exhaustive ensemble as mutually exclusive
members. Besides independency, the number of ensemble members should be large
enough in order to have enough information about all future possibilities, otherwise,
the BMA application may be unreliable and leads to overestimation of predicitive
uncertainties (Madadgar & Moradkhani, 2014; Refsgaard et al., 2012).

Comparing the application of BMA and the proposed En-BMA methods in both

watersheds shows no significant difference between BMA and En-BMA methods
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when the whole forecast time series is considered. However, in term of high flow
forecasts, En-BMA provided better deterministic and probabilistic results. Based
on NSE and RMSE scores for high flows, the accuracy of the forecasts enhanced
significantly after implementing En-BMA in both study watersheds. Also, the Q-Q
plots and the containing ratio measurements indicate higher reliability of the En-
BMA derived probabilistic forecasts for high flows, as compared to BMA, without

losing its sharpness; this is more apparent at the shorter lead times.

In general, besides confirming the merits of using multiple models with multiple objectives
over only considering multi-models for generating an ensemble of streamflow forecasts,
the results suggest that the proposed En-BMA method outperforms the traditional BMA in
both deterministic and probabilistic ways, through constructing a mutually exclusive and
collectively exhaustive ensemble of streamflow forecasts, especially for high flows which
are of particular interest in operational hydrology. The findings of this study call for further
studies on employing other entropy measures for generating proper streamflow ensemble
for BMA applications. In addition, as the proposed entropy based selection procedure is
not restricted to specific types of variables, apart from streamflow forecasts, further studies
could employ the proposed method for other variables, such as precipitation and

temperature, with different time intervals (e.g. hourly).

Although, both basins, used in this study, have similar climatologic conditions, their
hydrologic responses are quite different and yield two distinct probability distributions of
streamflow data, which is the most effective characteristics in the calculation of entropy

terms and the BMA application. This difference suggests that the findings of this research
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can be easily generalized to other future studies. Such future applications of the proposed
En-BMA method should cover diverse watersheds with different climatology, land cover,
and topography. Furthermore, it is noteworthy that the BMA approach and therefore the
En-BMA, estimates predictive distribution by using the information derived from an
ensemble of multi-model streamflow forecasts, while, there are some other valuable
information, such as the known initial and boundary conditions, that can be used for
reducing hydrologic uncertainty. This study evaluates the positive direct effects of
possessing mutually exclusive and collectively exhaustive ensemble on BMA results,
however, for operational purposes (such as flood forecasting), explicitly deciphering the
initial condition uncertainty by implementing an updating procedure (e.g. data assimilation

methods) in conjunction with the proposed En-BMA approach is recommended.
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Chapter 5. HUP-BMA: An Integration of Hydrologic Uncertainty

Processor and Bayesian Model Averaging for Streamflow Forecasting

Summary of Paper 4: Darbandsari, P., & Coulibaly, P. (2021). HUP-BMA: An
Integration of Hydrologic Uncertainty Processor and Bayesian Model Averaging for

Streamflow Forecasting. Water Resources Research, under review.

In this research work, after evaluating the effects of implementing different deterministic
forecasts within the Hydrologic Uncertainty Processor (HUP) method, a new ensemble-
based Bayesian post-processing (HUP-BMA) approach is proposed where the Bayesian
Model Averaging concept is used to enhance the uncertainty quantification by combining

the predictive distributions derived from HUP with different hydrologic models.
Key findings of this study include:

e For short lead times and low flow values, the HUP method can compensate the low
quality of the used deterministic forecasts by generating more accurate and reliable
probabilistic results.

e The HUP performance is noticeably affected by the performance of the
deterministic forecasts in longer lead times and higher flow magnitudes.

e The proposed HUP-BMA method, compared to HUP, takes the advantage of
multiple deterministic forecasts for better quantifying hydrologic uncertainty and

generating more accurate and reliable probabilistic results.
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e The modified HUP-BMA unconditioned on initial flow values leads to better
probabilistic forecasts for longer lead times when the dependence between the

actual and initial flow values is low.
5.1 Abstract

Uncertainty quantification and providing probabilistic streamflow forecasts are of
particular interest for water resource management. The Hydrologic Uncertainty Processor
(HUP) is a well-known Bayesian approach used to quantify hydrologic uncertainty based
on observations and deterministic forecasts. This uncertainty quantification is model-
specific; however, utilizing information from multiple hydrologic models should be
advantageous and should lead to better probabilistic forecasts. Using seven, structurally
different, conceptual models, this study firstly aims at evaluating the effects of
implementing different hydrologic models on HUP performance. Secondly, using the
concepts of the Bayesian Model Averaging (BMA) approach, a multi-model HUP-based
Bayesian post-processor (HUP-BMA) is proposed where the combination of posterior
distributions derived from HUP with different hydrologic models are used to better
quantify the hydrologic uncertainty. All post-processing approaches are applied for
medium-range daily streamflow forecasting (1 to 14 days ahead) in two watersheds located
in Ontario, Canada. The results indicate that that the HUP forecasts for short lead-times are
negligibly affected by implementing different hydrologic models, while with increasing
lead-time and flow magnitude, they significantly depend on the quality of the deterministic
forecast. Moreover, the superiority of the proposed HUP-BMA method over HUP is

demonstrated based on various verification metrics in both watersheds. Additionally, HUP-
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BMA outperformed the original BMA in quantifying hydrologic uncertainty for short lead-
times. However, by increasing lead-time, considering the effects of initial observed flow
on HUP-BMA formulation may be not beneficial. So, its modified version unconditioned
on initial observations is preferred.

Keywords: Uncertainty, Streamflow forecasting, Bayesian Model Averaging, Hydrologic Uncertainty

Processor

5.2 Introduction

Probabilistic streamflow forecasting is of increasing interest in various fields of water
resources management from real-time flood forecasting to long-term management of water
systems. Accurate and reliable short- to medium-range streamflow forecasts, with lead-
times ranging from hours to days, can play an important role in flood control, mitigation,
and early warning systems (Bravo et al., 2009; Thiemig et al., 2015). Unlike deterministic
forecasts, which provide a point estimation of the river flow, probabilistic forecasts try to
guantitatively assess the inherent uncertainties associated with the streamflow predictions
and provide a predictive uncertainty distribution, which is required for reliable and
informed decision making (Biondi & Todini, 2018; Liu et al., 2018; Reggiani & Weerts,
2008; Todini, 2008). Predictive uncertainty is defined as the posterior probability
distribution of future events conditioned on all available information at the time of forecast
(Todini, 2011). There are various sources of uncertainties within streamflow forecasting
which can be categorized into two main groups (Krzysztofowicz & Kelly, 2000; Seo et al.,
2006): (1) input (meteorological forcing) uncertainty, and (2) hydrologic uncertainty. Apart

from the unknown future meteorological variables, other sources of uncertainties, such as
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errors in observational measurements, structure and parameter values of the hydrologic
model, and initial conditions (Ajami et al., 2007; Madadgar & Moradkhani, 2014;
Montanari et al., 2009), are aggregated as hydrologic uncertainty and the significance of
their quantification is dependent on factors such as the forecasting horizon (Biondi &

Todini, 2018).

In recent years, various post-processors have been developed for quantifying and reducing
the uncertainty of hydrological forecasts, which are comprehensively reviewed in Li et al.
(2017) and Han and Coulibaly (2017). Among these approaches, the Bayesian Forecasting
System (BFS; Krzysztofowicz, 1999) appears a reliable and robust probabilistic
forecasting framework, which can explicitly address input and hydrologic uncertainties
using the precipitation uncertainty processor (PUP; Kelly & Krzysztofowicz, 2000) and
the hydrologic uncertainty processor (HUP; Krzysztofowicz & Kelly, 2000), respectively.
Using Bayes theorem, the HUP explicitly quantifies the hydrologic uncertainty by
providing a posterior distribution for any deterministic forecast, derived from a hydrologic
model, based on the assumption of possessing a perfect precipitation forecast (Han et al.,

2019; Liu et al., 2018).

There are several studies that evaluated the application of the HUP for hydrologic
uncertainty estimation (Biondi et al., 2010; Krzysztofowicz & Herr, 2001; Krzysztofowicz
& Kelly, 2000; Liu et al., 2016, 2018; Reggiani et al., 2009; Reggiani & Weerts, 2008),
some of which also improved the HUP procedure. Krzysztofowicz and Herr (2001), for
instance, proposed the precipitation-dependent version of HUP, which is shown to be more

efficient. Using the HUP concept, Reggiani et al. (2009) developed the Bayesian Ensemble
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Uncertainty Processor which implicitly quantifies input uncertainty by aggregating the
HUP-based posterior distributions of various streamflow forecasts stemming from an
ensemble of precipitation forecasts. Also, the copula-based HUP, proposed by Liu et al.
(2018), used the advantage characteristics of copula functions to develop the prior density
and the likelihood function without transforming data into Gaussian space, which is
required in the HUP method. Their results show that the proposed modified approach is as
reliable as HUP in terms of probabilistic streamflow forecast. Although different studies
investigated HUP from various aspects, very few studies evaluate the effects of using
different hydrologic models on HUP performance. Recently, by comparing the use of HUP
with two lumped hydrologic models, Han et al. (2019) show that the quality of a
deterministic model is an important factor in HUP in order to produce reliable and accurate

probabilistic forecasts.

On the other hand, some multi-model post-processing approaches are combining multiple
model forecasts for generating more reliable results. Multi-models hydrological predictions,
compared to the single deterministic one, provide more information about the unknown
future events and can better reflect the uncertainties associated with streamflow forecasting,
however, the statistical post-processing approach is still required to produce accurate and
reliable forecasts (Li et al., 2017; Muhammad et al., 2018; Reggiani & Weerts, 2008).
There are various deterministic model averaging techniques (e.g. Bates-Granger averaging
(Bates & Granger, 1969), Granger—Ramanathan averaging (Granger & Ramanathan, 1984),
etc.), which provide one point-estimation of the predictand; however, some post-

processing methods have been developed to treat multi-model streamflow forecasts in a
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probabilistic way by quantifying predictive uncertainty induced by the imperfection of
models’ structures. Bayesian Model averaging (BMA) (Raftery, 1993; Raftery et al., 2005)
is one the most well-known statistical multi-model post-processing approaches which has
been widely and successfully applied in streamflow simulation and forecasting studies (e.g.
Darbandsari & Coulibaly, 2019; Duan et al., 2007; Huo et al., 2019; Madadgar &

Moradkhani, 2014; Parrish et al., 2012; Sharma et al., 2019; Vrugt & Robinson, 2007).

In BMA, the predictive posterior distribution is quantified as a weighted average of the
conditional probability distributions of individual forecasts, which are assumed to follow
the Gaussian distribution. For highly skewed variables like streamflow, the conditional
probability distribution with the aforementioned assumption is a poor choice. So, various
studies proposed different BMA modifications, such as implementing other distribution
types (Vrugt & Robinson, 2007), and applying data transformation procedure (Liang et al.,
2013; Qu et al., 2017), to more complex Copula-embedded BMA (Madadgar &
Moradkhani, 2014) where any assumption about the distribution shape is relaxed using the
properties of copula functions. Moreover, addressing the law of total probability as another
inherent assumption of the BMA approach, Darbandsari and Coulibaly (2020b) recently
proposed the Entropy-based BMA method where an ensemble with mutually exclusive and
collectively exhaustive properties is constructed prior to the BMA application, leading to
better probabilistic high flow forecasts. Also, using the integration of BMA with other
techniques, some other multi-model methods have been proposed for uncertainty analysis
and quantifications (e.g. Ajami et al., 2007; Parrish et al., 2012; Poeter & Hill, 2007; Rojas

et al., 2008; Sharma et al., 2019; Yen et al., 2014). Although BMA and its variants are
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among the most reliable approaches for estimating predictive uncertainty based on an
ensemble of forecasts, they do not consider the effects of initial conditions explicitly, and
the use of external updating procedure is required for better estimation of hydrologic
uncertainty for operational streamflow forecasting (Darbandsari & Coulibaly, 2020b;

Todini, 2008; Xu et al., 2019).

The main objective of this study is to evaluate the benefits of using multiple deterministic
forecasts within the HUP procedure for better quantifying hydrologic uncertainty. Besides
evaluating the effects of using different hydrologic models on HUP performance, an
extension of the Bayesian post-processor is proposed by integrating the HUP and BMA
approaches (called HUP-BMA hereafter) which can incorporate multi-model ensemble
streamflow forecasts. Two different watersheds are used as case studies to assess the
applicability and efficiency of the proposed HUP-BMA method for short- to medium-range
daily streamflow forecast (1- to 14- days ahead) using different deterministic and
probabilistic performance criteria. Compared with HUP, which requires a single
deterministic forecast, the HUP-BMA approach takes the advantage of an ensemble of
individual predictions to better quantify and reduce the hydrologic uncertainty and enhance
the accuracy and reliability of streamflow forecasts. Similar to the HUP, the parameters of
the proposed approach can be calibrated offline and the method can be easily implemented
for operational use (Han et al., 2019; Krzysztofowicz & Herr, 2001). Moreover, using the
advantages of the HUP method, this post-processor could be an alternative for BMA in

operational streamflow forecasting by deciphering the initial condition uncertainty, which
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leads to the better quantification of the hydrologic uncertainty associated with short-term

streamflow forecasts.

The remainder of the paper is as follows. In section 5.3, the underlying concepts of the
applied methodologies (e.g. HUP and BMA), an overview of the proposed HUP-BMA,
and a detailed explanation of various evaluation metrics for assessing the performance of
forecasts are given. Section 5.4 presents the experimental setup, including brief
descriptions of the case studies and data, and the employed rainfall-runoff models. Section

5.5 discussed the results, and the summary and conclusions are presented in Section 5.6.
5.3 Methods
5.3.1 Hydrologic Uncertainty Processor

Hydrologic uncertainty processor (HUP), firstly introduced by Krzysztofowicz and Kelly
(2000), is a Bayesian method for quantifying the hydrologic uncertainty conditioned on
initial observation and a deterministic prediction, based on the assumption that the
precipitation uncertainty is zero. In other words, HUP aims to estimate hydrologic
uncertainty using real-time observations and a deterministic forecast from a hydrologic
model. Given the detailed information about the HUP method in the literature
(Krzysztofowicz, 2002; Krzysztofowicz & Kelly, 2000), a brief explanation of its basic

concepts is provided for the sake of completeness.

Let Y, be the observed river discharge at the initial date of forecast (ie.n =0)and Y =
(Y1, Y, ..., Yy) is the vector of the actual river discharge at forecasting times 1 to N.

Similarly, ¥ = (Y,,Y,, ..., Yy), denoted as the model river discharge, is the vector of
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estimates of Y,;:n = (1,2, ..., N) derived from the output of a deterministic hydrologic
model based on the perfect precipitation forecast. The realizations of the above mentioned
random variables Y,, Y, and ¥,, are respectively presented by y,, ¥,,, and ,,. Using Bayes
theorem, the HUP procedure tries to quantify hydrologic uncertainty by supplying posterior
densities of the actual river discharge at lead-time n (y;,,), as the quantity to be forecasted,

conditioned on ¥,, = 9,,, and Y, = y, (Krzysztofowicz, 1999):

fn(yn |ynr yo)gn(yn |J’0)
Kn(f’nb’o)

(pn(ynlj}n' }’0) = (5'1)

where g, (v, |yo) is the prior uncertainty of the actual river discharge at lead-time n given
the observation Y, = y,, and f,, (3, |y, ¥o) is the likelihood of model river discharge. The
expected density of the model river discharge conditional on the observed initial discharge
(P y0)) can be determined as a function of the prior density and the likelihood function,

using the law of total probability:

+00

Kn(Tnlyo) = f faGnlyns ¥0) Gn nlyo)dyn (5-2)
Through the HUP process, the following main steps have been taken to estimate the
aforementioned posterior density:
Normal Quantile Transform

HUP is a meta-Gaussian model where the families of conditional densities are assumed to
follow the Gaussian distribution after transforming data into a Normal space (Biondi et al.,

2010; Kelly & Krzysztofowicz, 2000; Krzysztofowicz & Herr, 2001). Therefore, the
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Normal Quantile Transform (NQT) is used as a primary step of the HUP method for
converting Y, and ¥, into the Normal space (random variates X,, and X,, respectively)

using the following equations:

X, =Q YY) vne{012..N} (5-3)
%, =0 (4(%)) vne(12..N} (5-4)

where Q~1(.) is the inverse of standard normal distribution and I;, and A, are the
marginal distributions of the actual and model river discharges at lead-time n, respectively.
NQT is one of the most general transformation approach (Krzysztofowicz, 1997), which
has been applied successively in analyzing streamflow forecast uncertainty (Kelly &
Krzysztofowicz, 1997; Liang et al., 2013; Montanari & Brath, 2004; Reggiani et al., 2009).
This conversion makes the HUP formulation reliable for variables with any types of
marginal distributions, and heteroscedastic and nonlinear dependence structure, which are
necessary features for streamflow forecasting (Krzysztofowicz & Herr, 2001). The lower
case letters x,, and X,,, indicate the experimental values (realizations) of the transformed

variates X,, and X,,, respectively.
Prior density and likelihood function in the transformed space

As can be seen from Equation 5-1, proper estimations of the prior density and the likelihood
function are the key requirements for the Bayes theorem application. In the HUP, by

assuming the strictly stationary lag-one Markovian process, the stochastic dependence
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structure between each two consecutive actual river discharges in the transformed space

(i.e. X;, and X,,_,) is governed by:
Xpo=cp XXp_ 1+, Vne{l2 .., N} (5-5)

where c,, is the parameter and ¢,, is an independent normally distributed variate with mean
zero and variance 1 — c2. Based on the stationary assumption and successive application

of the aforementioned lag-one process, the transition density (7, (xnlx,—1)) and

consequently the prior density (gq, (x,|x0)) in the Gaussian space is estimated as follows:

1 Xn — CpnXn—1
rQn(xnIxn—l) = (1 _ C121)0'5 q( (1 _ Crzl)ol5 ) (5-6)
1 X, — C,Xx
9o, (xnlxe) = 7054 (nTsno> (5-7)
n n

Subscript Q denotes a density in the space of transformed variates. g(.) is the standard
normal density function, and C, and t, are dependent parameters calculated by

(Krzysztofowicz & Herr, 2001):

C, = ﬁ C (5-8)

i=1
ty=1—C? (5-9)

For estimating the likelihood function, the linear regression is used for characterizing the

dependence structure between the transformed actual (X,,) and model (X,,) river discharges:
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X,=a,xX,+d, XXy +b,+6, Vne{l2.., N} (5-10)

where, 6,, is an independent normally distributed variate with mean zero and variance o2,
and a,, d,,, and b,, are the regression parameters. Therefore, the likelihood function of the

predictand x,, in Normal space is determined as follows:

fonGinlns%0) = —4 (5-11)

n

5511 - (anxn + dnxo + bn)
On

Posterior density in transformed space

After estimating the prior density (Equation 5-7) and the likelihood function (Equation 5-
11), which are both normal-linear, the theory of conjugate families of distribution (DeGroot,
2005) is utilized to derive the closed-form expression of the posterior density in the

transformed space through Bayes theorem (Krzysztofowicz & Kelly, 2000):

1 [(x,— (A, X, + D,x,+ B
§0Qn(xn|fn’x0) =+ q n ~ (Ann o ) (5-12)
Ty Ty
where A, B,,, D,,, and T,, are the parameters which are determined as follows:
antn
S L— 5-13
" adit} + o 6-13)
—a,b,t?
n= "3 ;l n nz (5-14)
azts + o
Cr02 — apd,t?

242 2
agt; + of
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2 2 0-5
T, = (L) (5-16)

aitz + o}
Transform back to the original space

Using the Jacobian of transformation, the estimated posterior density in the Gaussian space
(g, (xn|%n, x0)), is converted back to the original space for determining the meta-
Gaussian posterior distribution (@,, (v, |7, ¥o)), Which becomes (Krzysztofowicz & Kelly,

2000):

D, VP ¥o)

o <Q—1(rn<yn)) — 4007 (An(3)) = PaQ (L) - Bn> (&-17)
T

Same as Equations 5-3 and 5-4, I;, and A,, are the marginal distributions for the actual (y,,)

and the model (3,,) river discharge variates at forecasting time n.

Altogether, using a joint sample of realizations {(yq, y1, .-, Yn; 1, ---» ¥n)}, Which is
formed based on historically observed discharges and the output of the deterministic
hydrologic model, the estimation procedure of the HUP method for forecasting time n =
(1,2, ..., N) includes: (1) estimating the marginal prior distributions (i.e. I;,, and A,,)), (2)
transforming training data into the Gaussian space using the NQT approach (Equations 5-
3 and 5-4), (3) estimating the prior densities and the likelihood functions parameters in the
transformed space (i.e. ¢,, a,, b,, d, and g, in Equations 5-5 to 5-11), and (4)

determining the parameters of the posterior densities using Equations 5-13 to 5-16 (i.e. 4,,,
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B,, D,,, T,,). These estimated parameters can then be utilized in the forecasting mode for

probabilistic streamflow forecasting up to N days ahead.

The precipitation-dependent HUP, proposed by Krzysztofowicz and Herr (Krzysztofowicz
& Herr, 2001), is a two-branch procedure based on the non-occurrence (v = 0) and
occurrence (v = 1) of precipitation. Before the HUP estimation procedure, the training
period is divided into two groups of data with and without the occurrence of precipitation
in their initial date. Two sets of HUP parameters are then separately estimated for each
branch (i.e. Iy, Apy Cnvs Ay s buvs Ay Anvs Buvs Dny, Tny Y v €{0.1}). The
probabilistic forecasts have been generated using the first branch (v = 0) if there is no
precipitation while the second branch (v = 1) is utilized for streamflow forecasting in the
case of precipitation occurrence. By better capturing the model structural uncertainty and
explicitly considering the effects of transition between the recession and the rising limbs
of the hydrographs, the precipitation-dependent HUP has better predictive capabilities than
the independent one (Biondi et al., 2010; Krzysztofowicz & Herr, 2001). Therefore, the

precipitation-dependent HUP, abbreviated as HUP hereafter, is used in this study.
5.3.2 Multi-model Bayesian processor (HUP-BMA)

As previously stated, the HUP procedure employs a deterministic hydrologic model to
quantify the hydrologic uncertainty and generate the posterior distribution. However, there
are various structurally different hydrologic models, and using all information derived from
multi-model ensemble predictions can enhance the reliability and accuracy of the

probabilistic forecasts (Ajami et al., 2007; Dong et al., 2013; Jiang et al., 2018). Here, by
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implementing the concept of the Bayesian Model Averaging (BMA) method (Raftery,
1993), the HUP-derived posterior distributions based on multiple hydrologic models are
integrated in order to estimate the final predictive distribution conditioned on the initially

observed flow and multi-model streamflow forecasts ensemble.

Bayesian Model Averaging (BMA) is one of the most well-known multi-model post-
processing approaches where the combination of forecast conditional densities, derived
from different models, are weighted for generating the final posterior distribution.
Following the law of total probability, the BMA predictive distribution of a forecasted
variable at lead-time n (y,,) conditioned on the ensemble of K different multi-model

forecasts (M,, = (91, 92, ..., §K)) is defined as follows (Raftery et al., 2005):

K
PORIM) = D wi x P(3n94) (5-18)
i=1

where, w; are the BMA weights need to be estimated, showing how well the forecast 9.
fits the observation in the calibration period. P(y,|9}) is the forecast (or conditional)
probability distribution of the predictand y,, given the ensemble member $;. In the original

BMA, this conditional density (i.e. P(y,|9)) is assumed to be approximately normally

distributed with mean ul, = pi, + p5 9% and variance 2l pin, pi, are the bias
correction coefficients, which are estimated by a simple linear regression of y,, on ! in

the calibration period. Therefore, Equation 5-18 can be rewritten as follows:
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K
PORIM) = D wi x NOyulih, 72) (5-19)

=1

The parameters of the standard BMA approach, including weights (w;) and variances (rzil)
of each member i € {1,2,...,K}, are estimated through the Expectation-Maximization
(McLachlan & Krishnan, 2008) iterative algorithm where a two-step procedure is used for
searching the optimal parameter values by maximizing the log-likelihood function (Figure
5-1a). The assumption of the Gaussian conditional probability distribution (i.e.
P(yn|y;;)~N(yn|y;'l,12;)) in the original development of the BMA method might not be
a proper choice for river discharge. Therefore, using more representative distribution (e.g.
Gamma) (Vrugt & Robinson, 2007) or applying a data transformation procedure (Duan et
al., 2007; Qu et al., 2017; Roy et al., 2017; Sharma et al., 2019; Todini, 2008) is

recommended in order to achieve more reliable results.

As previously mentioned, using the basic concept of BMA, this study tried to merge an

ensemble of posterior distributions derived from the application of the HUP (Equation 5-
17) in conjunction with K different models (i.e. ®}(y, |9, v0) ¥V i € {1,2, ...,K}) in order
to generate reliable and accurate predictive forecasts. Therefore, the parametric conditional
normal distributions (N(ynm;'l,rzil) Vie{l2,..,K}) in Equation 5-19 are replaced by
pre-estimated HUP derived posterior probabilities in Equation 5-17, and the final PDF
conditioned on all forecast members ( @,(y,,IM,,,v0); M, = (L, 92, ....9K) ) is

determined by:
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K
@uOlMn, ¥0) = ) wi X B} (394 v0) (5-20)

=1

As can be seen, in the proposed HUP-embedded-BMA, called HUP-BMA hereafter, the
weights are the only BMA parameters that need to be estimated. So, the modified EM
algorithm, proposed by Madadgar and Moradkhani (2014), is used where in contrast with
standard EM, the pre-specified HUP-based posterior probabilities remain the same for all
the iterations (Figure 5-1b). Compared with BMA, the proposed HUP-BMA method does
not need the external applications of the linear bias correction and data transformation
because these processes have been already embedded in the HUP procedure. Additionally,
compared with BMA, the HUP-BMA quantifies the initial condition uncertainty by

explicitly implementing the initial state knowledge (i.e. actual river discharge at time zero).

Figure 5-2 illustrates the calibration process of the proposed HUP-BMA approach. As can
be seen, for each forecast lead-time n, after dividing data into two groups based on the
occurrence (v = 1) and non-occurrence (v = 0) of precipitation, the HUP calibration
procedure is done for each member of the streamflow forecast ensemble. The estimated
HUP parameters are then utilized for calculating the posterior distributions based on
different members over the whole calibration period. Finally using the estimated HUP
derived densities, the modified EM algorithm is employed for determining the BMA
parameters (w; ,,,,). It is worthy of note that two sets of weights are determined for each
branch of data with and without precipitation occurrence. Finally, the offline calibrated
HUP-BMA method can be executed online for streamflow forecasting based on multiple

deterministic forecasts derived from various hydrologic models. Using all the information
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obtained from different models, the proposed HUP-BMA procedure can better estimate the

hydrologic uncertainty and provide more accurate and reliable forecasts.
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Figure 5-1 The step-by-step procedure of (a) the standard Expectation-Maximization
(EM) and (b) the modified EM algorithms at forecasting time n. z is a latent variable, K
is the number of ensemble members, T is the length of the calibration period, and Th is

the pre-specified tolerance level
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Estimate BMA parameter (W, ,,,,) using modified Expectation-Maximization algorithm

Figure 5-2 The flow chart of the proposed HUP-BMA calibration process. T is the length
of the calibration period, K is the number of forecasts ensemble members, and N is the
length of the forecasting horizons

5.3.3 Performance evaluation metrics

In this study, we utilize eight different criteria in order to assess the forecast performance

of different post-processing approaches in terms of accuracy, reliability, and sharpness as
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the three main important aspects of any probabilistic predictions (Elshall et al., 2018).
Accuracy is defined as the level of agreement between forecasts and their corresponding
observations. Considering the mean value of predictive distribution as the deterministic
forecast, the well-known Nash Sutcliffe Efficiency (NSE) and the Mean Absolute Error

(MAE) criteria are calculated to deterministically evaluate the accuracy of the forecasts:

Itv=1(Ft - Ot)2

NSE =1 — — 5-21
¥ (0.~ 0) (-21)

N —
g — Z20F =0 52

In the above equation, N is the length of time series, O, and F; respectively are the
observed and forecasted variables, and O shows the mean of the observed flows. NSE,
possessing a range of (—oo, 1], reflects how well the forecast represents the observed data
by considering the observation mean as the benchmark. The higher NSE values correspond
to the better predictions while its negative values occur when the residuals of the forecast
are larger than observation variance (Nash & Sutcliffe, 1970; Strauch et al., 2012).
Although NSE gives more weights to lager errors (Krause et al., 2005; Seiller et al., 2012),
MAE is the absolute criteria which provides a more balanced error measurements for
assessing the average performance (Kisi & Cimen, 2011; Willmott & Matsuura, 2005). It
varies between 0 and +oo with the best value of 0. Also, NSE of log-transformed (NSEL)
and squared-transformed (NSES) streamflows are used as two other deterministic metrics
emphasizing on the accuracy of the lower and higher forecasted flow values, respectively

(Darbandsari & Coulibaly, 2020a; Razavi & Coulibaly, 2017).
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Moreover, two probabilistic-based measures, the mean continuous ranked probability score
(CRPS) (Hersbach, 2000) and the average deviation amplitude (ADA95) (Xiong et al.,

2009) are used to evaluate the accuracy of the predictive forecasts:

xX=+0o

N
CRPS = %Z f (PF@) - Pto(x))zdx ,PO(x) = H(x — 0,) (5-23)

t=1 y=—00

1% (1
ADA95 = Nz yz(q# +qt) — O, (5-24)
t=1

where, PF(.) and PP (.) represent the probability distributions of the forecasted and
observed flows, respectively, and H(x — 0,) is the Heaviside function, being equal to zero
if x < 0,, and 1 otherwise. q} and g¥ are the lower and upper boundaries of the 95 percent
prediction bound. The CRPS is the average of the squared error of the forecast cumulative
probability distributions compared to the observation, and ADA95 calculates the
discrepancy between the middle point of the confidence bound and observations. Both

criteria have a negative orientation, in which the better forecasts receive lower values.

Reliability and sharpness are the other two important aspects of any probabilistic forecast.
In this study, the containing ratio (CR95), defined as the ratio of observations enveloped
by 95% confidence interval, and the average bandwidth (BW95), representing the average
width of the corresponding bound, are adopted to respectively evaluate the reliability and

sharpness of the predictive forecast (Xiong et al., 2009):

N,
— _Oin 5-25
CR95 m (5-25)
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N
1
BW9S =~ (¥ - 4}) (5-26)
t=1

Ny, is the number of observations covered by the 95% confidence bound, and all other
variables are defined similar to the previous equations. Simultaneous evaluation of these
two metrics is necessary for providing the right conclusions. For CR95, varies between 0
and 1, the value closer to 95% is preferable, however, it can lead to overestimation of the
uncertainty with a large prediction bound (i.e. large BW95). On the other hand, the
forecasts with a narrow confidence interval (i.e. smaller BW95) can be overconfident if

the ratio of covering is low (Parrish et al., 2012).
5.4 Experimental Setup
5.4.1 Study area and data

We carried out the aforementioned post-processing approaches on two hydrologic basins
located in Northern Ontario, Canada: (1) Big East River, and (2) Black River watersheds.
Apart from the southern part of Black River, which is used for agricultural purposes, the
dominant area of both watersheds is mixed forest vegetation. There are no meteorological
stations within the boundaries of either basin (Figure 5-3). These two watersheds are poorly
gauged. Low-density ground-based measurements can be used for estimating temperature
while capturing the temporal and spatial variability of precipitation required more reliable
data (Price et al., 2014). Therefore, the archived daily aggregated Canadian Precipitation
Analysis (CaPA) data (Mahfouf et al., 2007) was used to estimate the mean areal

precipitation of both watersheds. CaPA, with a temporal and spatial resolution of 6 hours

211



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

and 15 km, respectively, is a precipitation product generated based on the combination of
observations and climate model data (Lespinas et al., 2015), which has been demonstrated
to have reliable performance as precipitation forcing of hydrologic models in Canadian

catchments (Boluwade et al., 2018; Darbandsari & Coulibaly, 2020a; Eum et al., 2014).

The geophysical and climate characteristics of both basins are summarized in Table 5-1.
As can be seen, temperature changes indicate the presence of all four seasons in the study
areas. Moreover, the seasonal precipitation amount in spring is less than in the other
seasons; however, the flow is the highest. This shows the significant impact of the
snowmelt process on the hydrological characteristics of both regions. Furthermore,
although the climatologic conditions of both basins are almost the same, they possess quite
distinct hydrologic responses leading to the outlet streamflow values with very different

statistical characteristics (Figure 5-4).
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Figure 5-3 Location map of the Big East River and Black River watersheds

Table 5-1 Geophysical and climatic characteristics of the Big East River and Black River

watersheds

Characteristics

Basins

Big East River Black River
Area (km2) 620 1522
Elevation range (m.a.s.l) [290-570] [220-420]
Average Slope (m/km) 10.2 49
Data period 2006-2015 2006-2015
Long-term seasonal statistics Spring  Summer Fall Winter Spring Summer Fall Winter
Average precipitation (mm/season) 218 248 310 247 210 223 272 239
Average daily temperature (C) 35 16.7 6.2 -10.1 4.2 17.1 71 -85
Average outlet flow (mm/season) 275 82 129 159 240 45 85 162
Average of daily flow (m3/s) 21.4 6.4 10.2 127 46.1 8.7 165 317
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Figure 5-4 The empirical PDF and CDF of the daily streamflow observation at the outlet

of the Big East River (BE) and Black River (BL) watersheds and their corresponding
statistical measures

5.4.2 Hydrological models

With no climatic and hydrometric stations within the basins and lack of some geographical
information, such as soil data, both watersheds can be categorized as data-scarce regions
where conceptual models are more suitable for simulating the rainfall-runoff process
(Refsgaard & Knudsen, 1996; Srivastava et al., 2020; Tegegne et al., 2017). In this study,
we used seven structurally different conceptual hydrologic models with various
parameterizations for streamflow forecasting in both basins (Table 5-2). The 4-parameter
parsimonious GR4J model, with the least complexity among the others, relies on two
conceptual storages and the unit hydrograph concept for simulating the whole rainfall-

runoff process (Perrin et al., 2003), and it was proven to perform well in regions with low
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data availability (Anshuman et al., 2019; Darbandsari & Coulibaly, 2020a). SMARG, the
modified version of the SMAR model (O’Connell et al., 1970) with superior ability in
semi-humid and humid regions (Tan & O’Connor, 1996), uses the variable number of soil
layers for generating surface and groundwater runoffs, being respectively transferred using
the Nash cascade of variable linear reservoirs and a single linear reservoir. MACHBYV, the
nonlinear version of HBV (Bergstrém, 1976), originally developed for better simulation of
stream flows of ungauged basins in Canada (Samuel et al., 2011, 2012), includes a single
soil moisture storage, and a two-layer response function for estimating the runoff value and
the non-linear Equilateral triangular weighting function for flow routing. In the well-known
SACSMA model, widely used for flood forecasting (Dong-Jun Seo et al., 2003; Vrugt et
al., 2006; Wijayarathne & Coulibaly, 2020), five soil storage layers and the Nash cascade
of three linear reservoirs are utilized for simulating the hydrologic processes of the basin
(Razavi & Coulibaly, 2017). Moreover, various available conceptual approaches for
modeling different components of rainfall-runoff cycles make the HEC-HMS software a
reliable platform for generating structurally different models (Scharffenberg, 2016; Teng
et al., 2018). Therefore, here, the first HEC-HMS based model (i.e. HEC1) combines the
Deficit and Constant loss method and the Recession baseflow method while the
conjunction of the soil moisture accounting with the Recession and Linear Reservoir
baseflow methods are used for developing the other two configurations (i.e. HEC2 and

HECS3, respectively).

Moreover, as can be seen in Table 5-2, two potential evapotranspiration estimation

methods are used with different models, so the daily mean areal precipitation and
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temperature are the only inputs of the models. Also, due to the importance of the snowmelt
process in both study regions, three different snowmelt routines, being employed in
conjunction with different models, are the simple degree-day (Samuel et al., 2011), the
HEC-HMS snowmelt routine (Scharffenberg, 2016), and Snow-17 (Anderson, 2006) with
five, ten, and eleven user-specified parameters, respectively. Different complexities of the
snowmelt methods lead to more diverse hydrological models. Further descriptions of all
hydrologic models as well as the utilized snow routing approaches can be found in the

above-cited references.

Table 5-2 The main characteristics of the hydrologic models implemented in this study

Number of Number of Snowmelt PET
Model Conceptual optimized estimation estimation Reference
Storages parameters routine method
SMARG Variable 9 Degree-Day 1* Tan and O’Connor (1996)
GR4J 2 4 Degree-Day 1 Perrin et al., (2003)
MACHBV 3 10 Snow-17 1 Samuel et al. (2011)
SACSMA 5 14 Snow-17 1 Burnash et al. (1973)
HEC1** 2 7 HEC-HMS 2* Scharffenberg (2016)
HEC2** 4 15 HEC-HMS 2 Scharffenberg (2016)
HEC3** 6 17 HEC-HMS 2 Scharffenberg (2016)

* 1: Simplified Thornwaite formula (Samuel et al., 2011); 2: Hargreaves formula (Hargreaves & Samani, 1985)
** Three different HEC-HMS configurations

The dynamically dimensioned search optimization algorithm (Tolson & Shoemaker, 2007)
is used for automatically estimating the models’ parameters based on the 6-year calibration
period (2006-2011). Three different performance evaluation metrics, including Nash
Sutcliffe Efficiency (NSE), Kling Gupta Efficiency (KGE) (Gupta et al., 2009) and Nash

Volume Error (NVE) (Samuel et al., 2011) are used as various single objective functions
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in the calibration process, leading to three different optimized sets of parameters for each
hydrologic model at each watershed. Finally, the best parameter set of each hydrologic
model is selected by visually comparing the performance of three potential parameter sets
using the whole observed and simulated hydrographs as well as the Mean Absolute Error
(MAE; Equation 5-22) and the Nash Sutcliff Efficiency (NSE; Equation 5-21) as the
overall performance measurements. This helps us achieve more robust conclusions about
the potential capability of each rainfall-runoff model by avoiding the possible systematic
errors or over-parameterization issues which may be caused by the automatic optimization

process (Gan et al., 1997; Ouermi et al., 2019; Wohling et al., 2013).

Similar to NSE (Equation 5-21), both KGE and NVE criteria are positively oriented with

the best value of 1, which are formulated as follows:

KGE=1-(r-12+(a—-1)2+ (b—1)2 (5-27)
NVE = 0.5 x NSE + 0.25 x NSES + 0.25 X NSEL — 0.1 x VE (5-28)

where r is the linear correlation coefficient between observed (0,) and simulated (F;) flows
and a and b respectively denote the ratios of the standard deviation and mean of the
simulated flows to the corresponding statistics of the observations. Also, the Volume Error

(VE) is defined as:

_IZL, R -0

VE
t210;

(5-27)

where N is the length of the calibration period.
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5.5 Results and Discussion
5.5.1 Rainfall-runoff models calibration

The best optimal parameter set for each hydrologic model was selected after manually
comparing the three estimated sets derived from using various objective functions. Using
the final calibrated parameters, Table 5-3 presents the performance of different hydrologic
models for the streamflow simulation at the outlet of the Big East River and the Black
River watersheds in both calibration and validation periods. In addition, for visual
inspection, Figure 5-5 illustrates the hydrographs of the observed and simulated
streamflows for the year 2013, as a representative portion of the validation period, in both
watersheds. In the Big East River watershed, although MACHBYV performance is as
accurate as GR4J in the calibration period, all criteria over the validation period (Table 5-
3) show the notable superiority of GR4J over the other hydrologic models regarding
different aspects of hydrographs (i.e. low and high flows). The comparison of the
representative hydrographs (Figure 5-5) also shows the relatively better performance of the
GR4J model in capturing high flows. This may be due to the demonstrated ability of the
GRA4J model to reliably cope with the problem of having poor mean areal precipitation
estimates, as the main issue in data-scarce regions. Despite its relative simplicity, the GR4J
parameters are sufficiently flexible to compensate for the over and underestimation of the
mean areal precipitation (see Andréassian et al., 2001; Drogue & Khediri, 2016). Moreover,
besides GR4J, the MACHBV and the SACSMA models performed competitively

regarding low flow simulation in the validation period while the other four models (i.e.
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SMARG, HEC1, HEC2, and HEC3) tend to over- or under- predict the low flows (Table

5-3 and Figure 5-5).

In the Black River watershed, there is no significant difference between the general
performances of different hydrologic models over the validation period (NSE values range
from 0.78 to 0.83 compared to 0.58 to 0.78 in the Big East River watershed). However, by
focusing on low and high flows separately, the discrepancies between the model
performances become more apparent. The NSEL values in both calibration and validation
periods suggest that MACHBYV and SACSMA are capable of simulating low flows more
accurately in the Black River watershed. Regarding high flows, however, performances in
calibration and validation are not the same. Both MACHBYV and SACSMA provide the
highest performance in capturing high flows during the calibration period (NSES = 0.91),
while, over the validation period, GR4J performs as well as the SAC-SMA model in high
flow simulation. Similar to the Big East River watershed, the GR4J can better capture the

peak flows (Figure 5-5) in the Black River watershed.

Overall, the GR4J model provides the most reliable results in the Big East River watershed
for both calibration and validation periods, however, there are still some streamflow events
that are better estimated by relatively lower performing models (Figure 5-5). In the Black
River watershed, on the other hand, although MACHBYV and SACSMA performed slightly
better in the validation period, it is hard to select one of the models as the most robust one
regarding different aspects of the hydrograph. Altogether, as it is visually recognizable

from Figure 5-5, using an ensemble of multi-model streamflow predictions, compared to
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the individual ones, can provide more information about the observation using the

properties of various hydrologic models.

Temporal parameter transferability of the different models is compared using the
coefficient of transferability (Das et al., 2008), which is calculated as a difference between
the NSE values in the calibration and validation periods (i.e. T = max(NSE;y —
NSEy,;,0)) where the lower value is better. This criterion shows that the models’
performances deteriorate from calibration to validation period and these losses of
performance do not occur in the same way in different models and different regions (Table
5-3). For instance, the HEC1 model possesses the highest loss of performance in the Big
East River watershed, making it the poorest model in the validation period, while, in Black
River, it is among the models with the lowest performance alteration between calibration
and validation periods. Therefore, for possessing more robust results and conclusions, the
validation period is only used for the application of the aforementioned post-processing
approaches (i.e. HUP, BMA, and HUP-BMA) by dividing it into calibration (2012-2014)

and forecasting (2014-2015) phases.
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Table 5-3 The performances of different calibrated hydrologic models for both
calibration (2006-2011) and validation (2012-2015) periods in the Big East River and
Black River watersheds

Basin Period Criteria SMARG  GR4J HEC1 HEC2 HEC3 MACHBVY SACSMA

Obj. Func.! KGE NSE ~ NVE  NSE  NSE NVE KGE
NSE 0.69 081 067 0.68 0.68 0.81 0.79
£ NSEL 0.04 0.78 067 0.64 0.62 0.71 0.62
5 <—§ NSES 0.60 067 062 0.64 0.63 0.84 0.77
@ MAE 5.0 35 4.9 4.7 4.6 3.6 4.0
& NSE 0.69 078 058 0.67 0.66 0.70 0.71
B - NSEL 0.38 087 054 0.47 0.64 0.78 0.78
§ NSES 0.43 075 035 0.56 0.41 0.48 0.53
MAE 51 3.7 6.4 5.7 4.7 4.7 4.6
Transferability (T) 0 0.03 0.12 0.01 0.02 0.11 0.08
Obj. Func. NSE KGE ~ NSE  NSE  NSE NVE NVE
NSE 0.87 084 084 0.88 0.89 0.90 0.90
g NSEL 0.70 0.75  0.03 0.63 0.18 0.83 0.83
. § NSES 0.87 062 075 0.88 0.88 091 0.91
2 MAE 6.6 6.9 7.3 6.5 6.2 5.8 6.1
E NSE 0.80 0.78 080 0.80 0.81 0.80 0.83
“ = NSEL 0.72 068 057 0.49 0.03 0.83 0.81
;E NSES 0.62 066  0.62 0.58 0.61 0.63 0.67
MAE 8.0 8.8 7.7 7.6 7.2 7.3 7.0
Transferability (T) 0.07 0.06  0.04 0.08 0.08 0.10 0.07

1 The objective function, which provides the best optimal parameter set of each rainfall-runoff model.
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Figure 5-5 Observed and simulated hydrographs of the daily streamflow derived from
different hydrologic models for the year 2013 of the validation period in (a) Big East
River and (b) Black River watersheds

5.5.2 Calibration of the HUP and HUP-BMA methods

As previously stated, the time-period of 2012 to 2014 was used in order to calibrate
different post-processing approaches. As the first step of estimating HUP parameters, after

dividing the data based on the precipitation indicator (v), the marginal distributions for

222



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

actual (y,,,) and forecasted river discharges of different hydrologic models (§;,) for each
lead-time n, need to be separately estimated. For this purpose, the modified version of the
Shapiro-Wilk statistic (Ashkar & Aucoin, 2012) is utilized for testing the goodness of fit
of ten various distributions, and the most suitable distribution function is the one with the
largest MSW value. MSW test is shown to be a powerful approach for selecting the best
distributions in the case of possessing non-Gaussian data with small sizes (Ashkar &
Aucoin, 2012; Han et al., 2019). As an example, the best-selected distributions for each
sample of data (i.e. actual y,,,, and forecasted ;, streamflow values) at lead-time n = 1
and their corresponding MSW statistics are presented in Table 5-4. It is of note that, due to
the presence of no gaps in data and using observation as the perfect precipitation forecasts,
the statistics of each variates do not change significantly as a function of lead-time. So, the
aforementioned estimation procedure leads to the same best marginal distribution functions

with slightly different parameters for different lead-times n = (2,3, ..., N).
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Table 5-4 Sample statistics and their selected prior marginal distributions for lead-time

n=1
V=0 V=1
Basin | Variate

Mean  s.d!  Distribution MSW2 | Mean  s.d. Distribution MSW

hy 11.7 14.3 BS® 0.984 14.7 18.7 LL 0.996

sSMAR 12.3 146  Weibull 0.995 145 162 GP 0.994

spRY 120 120 BS 0974 | 156 177 LN 0.994

L% sHECL 15.6 13.9  Weibull 0.970 16.5 144  BS 0.979
',%D shEC2 15.4 152  GEV 0.990 15.6 152 GEV 0.993
SHEC3 111 13.8 LN 0.984 13.8 15.2 Kernell 0.984

sMac 12.4 14.8 Kernel 0.962 151 18.0 LN 0.987

s34¢ 13.3 15.1 BS 0.992 16.2 16.8 BS 0.996

hy 23.6 324 Weibull 0.976 29.1 284  Gamma 0.984

sz MAR 271 245  Gamma 0.986 31.0 239 Gamma 0.996

SfR‘” 26.9 261 BS 0.988 30.8 248 GEV 0.989

L% sHECL 23.9 243  GP 0.962 27.3 229 GEV 0.981
hg; sHEC2 24.1 240 GP 0.964 28.0 236 GEV 0.980
SHEC3 22.3 24.7 Kernell 0.937 26.7 24.4 Kernel 0.974

sMAC 25.5 265 GP 0.986 29.9 269  Gamma 0.988

s3A¢ 25.9 253  Gamma 0.983 29.0 248  Gamma 0.994

1 s.d is the abbreviation of standard deviation
2 MSW = Modified Shapiro-Wilk statistic with the perfect value of 1.

3 BS=Binaum-Saunders; LL=Log-Logistic; GP=Generalized Pareto; LN=Log-Normal; GEV=Generalized Extreme
Value

After estimating the regression parameters of the prior density (i.e. Equation 5-5) and the
likelihood function (i.e. Equation 5-10) in the Gaussian space, the parameters of the HUP
posterior distributions are determined using Equations 5-13 to 5-16 for each deterministic
forecast based on different hydrologic models (Figure 5-6). The increasing trends in A and
decreasing trends in D for both branches of data (i.e. v = {0,1}) and all hydrologic models,
which are more pronounced in the Big East River watershed, show that the initial river

discharge (hy) is less informative and the forecasts are more affected by s,, when lead-time
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increases. Parameter B is also estimated to be very close to zero in all cases for both
watersheds. This is the outcome of the zero estimation of the intercept parameter of the
likelihood functions (b in Equation 5-10), which is the obvious consequence of
transforming data into the standard normal space where the expected value for the intercept
is always zero; so, this parameter can be ignored in the HUP formulation in future studies

(Mrugt et al., 2008).

(a) Big East River watershed
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Figure 5-6 The precipitation-dependent HUP posterior distribution parameters with
different hydrologic models in both (a) Big East River and (b) Black River watersheds
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Using the HUP derived posterior distributions from different hydrologic models in the
calibration period (years 2012-2014), the BMA parameters (i.e. weights) were separately
estimated for each branch of data based on the modified expectation-maximization
algorithm. As can be seen in Figure 5-7, in the Big East River watershed, GR4J possesses
the highest weights in almost all cases, especially when precipitation occurs. This can be
justifiable by the fact that in the Big East River watershed, the GR4J model noticeably
outperformed all other hydrologic models, which is more pronounced regarding high flows
(Table 5-3). Besides HEC1 and HEC2, the weights of MACHBYV are always zero in Big
East River, while it shows relatively good potential in forecasting streamflow compared to
the other models. This result may stem from the inherent assumption of the BMA
formulation, which is about possessing independent members with the ability to capture
observational variability (Darbandsari & Coulibaly, 2019; Lu et al., 2013; Madadgar &
Moradkhani, 2014; Refsgaard et al., 2012). A high-performance model may receive a low
weight due to its similar error structure with another model in the calibration period, while
a member with relatively lower forecasting skill may assign a higher weight by providing

unique information to the ensemble.

In the Black River watershed, on the other hand, there is not a specific hydrologic model
receiving the highest weights, which is due to the fact that the general performances of all
models are relatively good in this basin (Table 5-3). In the case of precipitation occurrence
(v = 1), MACHBYV and HEC3 gained relatively larger weights compared to the other
models for almost all the lead-times, while the weights of SACSMA, as one of the best

performing model in the Black River watershed, are not significant, again showing the
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importance of possessing exclusive information. If no precipitation occurs (v = 0), the
GRA4J weights are the largest one in the shorter lead-times (i.e. n = {1,2,3}), however, by
increasing the lead-time the HEC3 model became the dominant one. Although HEC3 has
relatively lower performance, especially regarding low flows (Table 5-3) in the Black River
watershed, its high weights stem from the reliable performances of the HUP method in
conjunction with HEC3, which will be shown in section 5.5.3. It is worth mentioning that,
as will be discussed in the following sections, there are not many differences between the
HUP results from different hydrologic models for shorter lead-times, which makes it less

important how the BMA weights are distributed among different models.

(a) Big East River watershed
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Figure 5-7 The determined HUP-BMA weights of different hydrologic models in (a) Big
East River and (b) Black River watersheds (v is the indicator of the precipitation
occurrence)

227



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

5.5.3 HUP-BMA versus HUP

Both calibrated HUP-BMA and HUP in conjunction with different hydrologic models were
employed for probabilistically forecasting daily stream flows up to 14 days ahead during
the one-year (2015) verification period in both Big East River and Black River watersheds.
Under the assumption of perfect precipitation forecasts, the forecasting here is essentially
hindcasting, which focuses on estimating the hydrologic uncertainty (Liu et al., 2018; Han
et al., 2019). Using the performance criteria, proposed in Section 5.3.3, Figures 5-8 and 5-
9 compared the accuracy of the streamflow forecasts derived from different post-
processing approaches deterministically and probabilistically, respectively. Also, the
reliability and sharpness of the predictive forecasts are simultaneously compared in Figure
5-10 using the containing ratio (CR95) and the average bandwidth (BW95) criteria.
Additionally, for qualitative comparison, Figure 5-11 shows a representative portion of the
observations and probabilistic forecasts derived from the HUP-BMA method and the HUP

method in conjunction with SMAR, GR4J, and HEC3 rainfall-runoff models.

In general, the results show that the increasing hydrologic uncertainty for longer lead-times
causes the deterioration of the accuracy of the forecasts derived from all post-processing
approaches, which is expected; however, the relative deterioration between sequential lead-
time steps decreases as lead-time increases (Han et al., 2019). Considering HUP-BMA as
an example, the relative differences of MAE and CRPS statistics between lead-times 1 and
2 respectively are 67% and 70% for Big East River and 66% and 53% for Black River,
while the same differences between lead-times 10 and 11 are around 2% for both metrics

in both watersheds. Additionally, the reliability of the forecasts (evaluated by CR95
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measurements) do not follow any specific trend with increasing lead-time, while increasing
BW95 as a function of n shows that all approaches lead to worse probabilistic forecasts

with less sharpness in longer lead-times (Figure 5-10).

General comparison of the HUP results, using all performance metrics, shows that the
differences between the HUP-derived forecasts based on different hydrologic models are
not noticeable in short lead-times. This result, which is confirmed by the sample 1-day
ahead forecasted hydrographs illustrated in Figure 5-11, may be due to the fact that the
HUP predictions for short forecasting horizons are mostly influenced by the observed
actual river discharge (y,) rather than the forecast derived from the hydrologic model (¥,,).
However, by increasing lead-time, the influence of modeled river flow becomes more
pronounced, and consequently, selecting a hydrologic model clearly affects the HUP

performance (Figures 5-8 to 5-11).

In the Big East River watershed, HUP with the GR4J model has the same forecasts
accuracy as the HUP-BMA method (Figure 5-8, 5-9, and 5-11), with similar sharpness and
less reliability (Figure 5-10), this is not surprising as the GR4J model was already
performing the best (Table 5-3). On the other hand, in the Black River watershed, HEC3
was not the best performing model, however, in comparison with other hydrologic models,
its application in conjunction with HUP leads to the most reliable and accurate results for
the different lead-times (Figure 5-8 to 5-11). It is worthy of note that although HEC3
performed relatively poor regarding low flows (Table 5-3), the HUP-HEC3 possesses the
highest NSEL values, compared with other HUP-based results. Also, as can be seen in

Figure 5-11, the HUP method leads to almost similar base flow forecasts regardless of the
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implemented hydrologic models. In line with Han et al., (2019), this result confirms the
capability of the HUP structure in generating reliable low flow forecasts while the modeled
deterministic results are not relatively good. On the other hand, however, the implemented
hydrologic model noticeably affects the performances of the HUP method regarding high
flow predictions (Figure 5-11). These effects are more pronounced for longer lead-times
when the initial condition of flow is less effective. Besides the quality of the hydrologic
models, the inefficiency of conditioning the prior density and the likelihood function to the
initial river discharge, as another reason for the poor performances of HUP-based post-
processing methods for high flow forecasting at longer lead-times in the Big East River
watershed, will be discussed in the following section. Altogether, in both watersheds, the
HUP-BMA method always performed as well as or better than the best HUP and
hydrologic model combination regarding the accuracy, reliability, and sharpness of the
probabilistic streamflow forecasts. This demonstrates the robust ability of HUP-BMA to
use all beneficial information derived from HUP based on different models for better
quantifying hydrologic uncertainty and producing enhanced probabilistic streamflow

forecasts.
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Figure 5-8 Deterministic performances of the proposed HUP-BMA compared with HUP

with different hydrologic models using various criteria (i.e. MAE, NSE, NSEL, NSES)

for short- to mid-range streamflow forecasts (1 to 14 days ahead) in (a) Big East River
and (b) Black River watersheds
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(a) Big East River watershed
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Figure 5-9 Comparison of the accuracy of probabilistic forecasts derived from the
proposed HUP-BMA and HUP based on different hydrologic models using two
performance metrics (i.e. ADA95 and CRPS) for 1to 14 days ahead in (a) Big East River
and (b) Black River watersheds
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Figure 5-10 Comparing the reliability (CR95) and sharpness (BW95) of the proposed
HUP-BMA and HUP with different hydrologic models for 1- to 14- days ahead
probabilistic streamflow forecasts in (a) Big East River and (b) Black River watersheds
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Figure 5-11 Time-series of the mean and 95% confidence bounds of 1-, 7-, and 14-days
ahead streamflow forecasts derived from HUP-BMA, and HUP in conjunction with,
SMAR, GR4J, and HEC3 hydrologic models, compared with the observation from a

representative part of the verification period in (a) Big East River and (b)Black River
watersheds
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5.5.4 The modified HUP-BMA unconditioned on initial observation

For assessing the effects of using the initial condition on the proposed HUP-BMA
formulation, the performance of the HUP-BMA method is compared with the BMA
approach, which is not explicitly taking into account the initial observation. Figure 5-12
illustrates the percentage of performance improvement, defined as the percent
enhancement in different evaluation metrics when HUP-BMA is used as a post-processing
approach, compared to BMA, in both Big East River and Black River watersheds. In
general, except for the CR95 criterion, the percent improvements based on all performance
metrics show a decreasing trend by increasing lead-time in both watersheds, confirming
the previously aforementioned fact that the performance of HUP-BMA deteriorates for
longer lead-times. In the Big East River watershed, comparing the accuracy of the forecasts,
using all deterministic (i.e. NSE, NSEL, NSES, and MAE) and probabilistic (i.e. CRPS
and ADA95) measures shows that although HUP-BMA outperformed BMA in shorter
lead-times, the proposed HUP-BMA provides relatively worse results for n larger than 6.
In terms of reliability and sharpness, HUP-BMA provides sharper results with the same
reliability for short lead-times, however, increasing lead-time leads to the same
probabilistic performance of BMA and HUP-BMA. In the Black River watershed, the same
trend as Big East River is observed where the differences between the performances of
HUP-BMA and BMA are decreased by increasing lead-times in both deterministic and
probabilistic manners, however, the advantage of HUP-BMA over BMA still presents for

longer lead-times.
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The observed performance deterioration of HUP-BMA, compared with BMA, by
increasing lead-time probably comes from the main structural difference between these
two approaches, which is taking into account the initially observed discharge in the HUP-
BMA formulation, and as previously stated, this consideration does not positively affect
the forecasts for longer lead-times. Comparing the correlation coefficient of the initial river
discharge (i.e. y,) with the actual river discharge at lead-time n (i.e. y,,; n = {1, ...,N})
confirms that increasing lead-time causes lower dependence between these two variables.
This deterioration is more noticeable in the Big East River watershed where the correlation
coefficient is less than 0.5 for n larger than six. However, the larger area and the slighter
slope of the Black River watershed (Table 5-1), leads to a higher correlation among flows
(with the lowest value of 0.51 for n = 14). This result can justify the relatively worse
performances of HUP-BMA, compared with BMA, in Big East River for streamflow

forecasting at longer lead-times.

To solve this issue in the Big East River watershed, inspired from Reggiani et al. (2009),
the modified HUP-BMA is proposed based on the unconditioned HUP procedure where
both prior density and likelihood function are no longer conditioned on y, for n > 6 (i.e.
parameters c,, in Equation 5-5 and d,, in Equation 5-10 are zero for both branches (i.e. v =
{0,1}) at n > 6). As expected, a comparison between the performances of HUP-BMA and
the modified HUP-BMA in the Big East River watershed for 7 to 14 days ahead (Figure 5-
13) shows that the accuracy of streamflow forecasts significantly enhance by using the
modified HUP-BMA, especially regarding high flows in longer lead-times (e.g. percent

improvement based on NSE and NSES at n = 14 are more than 20 and 60 percent,
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respectively). Regarding reliability and sharpness, although the modified version leads to
forecasts with slightly higher reliability (better CR95), its higher average bandwidth shows
the lower sharpness in the case of implementing unconditioned HUP. Moreover,
comparisons between the modified HUP-BMA and the BMA method using different
performance metrics (Figure 5-13) indicate the same overall behaviors of both methods.
Except for ADA95, indicating the superiority of the modified HUP-BMA method over
BMA, and CRPS, which shows the slight advantage of using BMA, all other measurements

indicate negligible difference between the performances of the two methods.

Finally, as a visual inspection, Figure 5-14 illustrates a representative part of the observed
and 14-day ahead forecasted streamflow hydrographs, derived from the HUP-BMA, the
modified HUP-BMA, and the BMA methods. In line with previous conclusions, the plots
indicate the superiority of the modified HUP-BMA method in producing better
probabilistic and deterministic high flow forecasts over the original HUP-BMA. Figure 5-
14 is also indicated the almost same performance of the modified HUP-BMA and the BMA
approaches in quantifying hydrologic uncertainty. Although, there are still some
differences between the formulations of the modified HUP-BMA and the BMA methods,
the comparable performance of both approaches is expected as the overall structure of both
methods is somewhat similar after removing the effects of the initial condition in the
modified HUP-BMA approach. It is worthy of note that the lead-time when the modified
version of the HUP-BMA is beneficial is a function of the watershed characteristics (e.g.
the characteristics of the hydrographs) and should be separately assessed and specified for

each study.
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Figure 5-12 Comparing the performance of HUP-BMA and BMA using the percent
improvement of different criteria and the correlation between the actual flow H, and

H,Vn={12,..

,14} in (a) Big East River and (b) Black River watersheds. The percent

improvement is defined as the percentage of improvement when using HUP-BMA instead
of BMA, with positive values indicating the advantage of using HUP-BMA
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Figure 5-13 Comparison of different performance metrics for 7 to 14 days-ahead
streamflow forecasting derived from HUP-BMA, modified HUP-BMA, and BMA in Big
East River watershed. Percent improvement is defined as the percentage of improvement
when using modified HUP-BMA instead of HUP-BMA or BMA, with positive values
indicating the advantages of using modified HUP-BMA
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Figure 5-14 Time-series of the mean and 95% confidence bounds of 14-days ahead
streamflow forecasts derived from HUP-BMA, modified HUP-BMA, and BMA, compared
with observations, from a representative portion of the verification period in the Big East

River watershed

5.6 Summary and Conclusion

Considering hydrologic uncertainty is one of the main steps for generating reliable
probabilistic streamflow forecasts. The Hydrologic Uncertainty Processor (HUP) is a well-
known approach for quantifying hydrologic uncertainty by providing a posterior
distribution conditioned on the initial observation and a deterministic model forecast.
However, various structurally different hydrologic models can be used in conjunction with
the HUP and significantly affect its capability of providing reliable and accurate
probabilistic forecasts. Considering seven conceptual hydrologic models with different
structures, this study assessed the effects of implementing different models combined with
the HUP on streamflow forecasting. Also, a new multi-model Bayesian processor (HUP-
BMA) is proposed by using the concept of the Bayesian Model Averaging (BMA)
approach, where the HUP-derived posterior distributions based on various models are
combined in order to generate the final predictive forecasts. All post-processing approaches

are utilized for daily streamflow forecasting up to 14 days ahead in two study regions in
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Northern Ontario, Canada, and their performances are compared using various

deterministic and probabilistic verification metrics. The summary of the most important

conclusions based on the detailed analysis of the results are as follows:

In general, although the HUP was proven as a robust approach for quantifying
hydrologic uncertainty, its performance is influenced by the hydrologic model
selected and used for generating the deterministic forecast. To some extent, the
HUP method can compensate for the low quality of the deterministic forecast,
however, this capability will reduce by increasing lead-time and flow values, so the
predictive results are more affected by selecting the most promising hydrologic
model for longer lead-times and high flows.

Comparing the application of HUP-BMA and the HUP based on various hydrologic
models in both watersheds indicated that the proposed HUP-BMA method
compensates for the dependence of the HUP results on the quality of the hydrologic
model. Using the advantages of multiple models, HUP-BMA always provides
better or similar deterministic and probabilistic forecasts, compared with the HUP
combined with different models.

For shorter lead-times, considering the effects of initially observed discharge in
HUP-BMA formulation leads to a better quantification of hydrologic uncertainty,
compared with the original BMA, where the only information used is a multi-model
ensemble of deterministic forecasts. However, by increasing lead-time, this
superiority is reduced and conditioning the formulations on initial river discharge

becomes less beneficial and can lead to deteriorating predictions. So, considering
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unconditioned prior density and likelihood function in the HUP as well as in the
HUP-BMA formulation for longer lead-times is showing as a potential approach
for better quantifying hydrologic uncertainty and producing the most accurate

probabilistic forecasts.

In general, the findings of this study suggest that while retaining all the advantages of the
HUP method, the proposed HUP-BMA approach addresses the effects of selecting a single
hydrologic model by using the information derived from a multi-model ensemble of
streamflow forecasts to better quantify hydrologic uncertainty. Also, by explicitly
considering the effects of initial observations, the HUP-BMA method, compared with
BMA, better estimates the hydrologic uncertainty in short-range streamflow forecasts.
However, for longer lead-times, the unconditioned revision of HUP-BMA formulation may
lead to more accurate results. Although the hydrologic responses of both poorly-gauged
watersheds are quite different, evaluation of the proposed multi-model Bayesian processor
in regions with different climatologic and topographic conditions needs to be carried out
in future studies. Moreover, additional verification of the proposed method for case studies
with longer time-series of data and higher temporal resolution is advisable for further
research to better understanding the processor. The proposed HUP-BMA method includes
a segregated calibration of the HUP parameters and weights while developing and
evaluating an integrated calibration structure, where all HUP-BMA parameters are
estimated simultaneously, could lead to better results and worth being investigated in the
future studies. Moreover, this study was designed to relatively assess the performances of

the proposed HUP-BMA for estimating hydrologic uncertainty, however, its evaluation in
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conjunction with the probabilistic precipitation forecasts (or ensemble of precipitation
forecasts) for quantifying total predictive uncertainty requires further studies. In addition,
providing criteria as a function of characteristics of the observed hydrograph, for
systematically determining the specific lead-time after which the unconditioned version of

the processor is more beneficial, requires further studies.
5.7 Acknowledgments

We acknowledge that this work was supported by the Natural Science and Engineering
Research Council (NSERC) of Canada, grant NSERC Canadian FloodNet (NETGP-
451456). The authors would like to thank James Leach for his support with reviewing and
editing the manuscript, and Shasha Han for providing Matlab source code for the HUP
processor. Historical daily streamflow observation at the outlet of both watersheds can be
obtained from Water Survey of Canada
(https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html). Daily temperature
data for the selected stations is provided by Environment and Climate Change Canada
(https://climate.weather.gc.ca/historical_data/search_historic_data_e.html). The Canadian
Precipitation Analysis (CaPA) data can be obtained from the Canadian Surface Prediction

Archive (CasPAr) website (https://caspar-data.ca/).
5.8 References

Ajami, N. K., Duan, Q., & Sorooshian, S. (2007). An integrated hydrologic Bayesian
multimodel combination framework: Confronting input, parameter, and model
structural uncertainty in hydrologic prediction. Water Resources Research, 43(1).
https://doi.org/10.1029/2005WR004745

242



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Anderson, E. A. (2006). Snow Accumulation and Ablation Model — SNOW-17. Natl. Ocean.
Atmospheric  Adm.  Natl.  Weather  Serv.  Silver  Springs  MD.

https://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22snow17.pdf

Andréassian, V., Perrin, C., Michel, C., Usart-Sanchez, I., & Lavabre, J. (2001). Impact of
imperfect rainfall knowledge on the efficiency and the parameters of watershed
models. Journal of Hydrology, 250(1), 206-223. https://doi.org/10.1016/S0022-
1694(01)00437-1

Anshuman, A., Kunnath-Poovakka, A., & Eldho, T. I. (2019). Towards the use of
conceptual models for water resource assessment in Indian tropical watersheds under
monsoon-driven climatic conditions. Environmental Earth Sciences, 78(9), 282.
https://doi.org/10.1007/s12665-019-8281-5

Ashkar, F., & Aucoin, F. (2012). Choice between competitive pairs of frequency models
for use in hydrology: A review and some new results. Hydrological Sciences Journal,
57(6), 1092-1106. https://doi.org/10.1080/02626667.2012.701746

Bates, J. M., & Granger, C. W. J. (1969). The Combination of Forecasts. OR, 20(4), 451—
468. JSTOR. https://doi.org/10.2307/3008764

Bergstrom, S. (1976). Development and Application of a Conceptual Runoff Model for
Scandinavian Catchments. Lund,Sweden: Lund Institute of Technology/Univ. of Lund,
A, 52.
https://www.researchgate.net/publication/255274162_Development_and_Applicatio

n_of _a_Conceptual_Runoff_Model_for_Scandinavian_Catchments

Biondi, D., & Todini, E. (2018). Comparing Hydrological Postprocessors Including
Ensemble Predictions Into Full Predictive Probability Distribution of Streamflow.
Water Resources Research, 54(12), 9860-9882.
https://doi.org/10.1029/2017WR022432

Biondi, D., Versace, P., & Sirangelo, B. (2010). Uncertainty assessment through a

precipitation dependent hydrologic uncertainty processor: An application to a small

243



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

catchment in southern Italy. Journal of Hydrology, 386(1), 38-54.
https://doi.org/10.1016/j.jhydrol.2010.03.004

Boluwade, A., Zhao, K.-Y., Stadnyk, T. A., & Rasmussen, P. (2018). Towards validation
of the Canadian precipitation analysis (CaPA) for hydrologic modeling applications
in the Canadian Prairies. Journal of Hydrology, 556, 1244-1255.
https://doi.org/10.1016/j.jhydrol.2017.05.059

Bravo, J. M., Paz, A. R., Collischonn, W., Uvo, C. B., Pedrollo, O. C., & Chou, S. C.
(2009). Incorporating Forecasts of Rainfall in Two Hydrologic Models Used for
Medium-Range Streamflow Forecasting. Journal of Hydrologic Engineering, 14(5),
435-445. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000014

Burnash, R. J. C,, Ferral, R. L., & McGuire, R. A. (1973). A generalized streamflow
simulation system: Conceptual modeling for digital computers. Joint Federal-State
River Forecast Center, United States National Weather Service.

Darbandsari, P., & Coulibaly, P. (2019). Inter-Comparison of Different Bayesian Model
Averaging Modifications in Streamflow Simulation. Water, 11(8), 1707.
https://doi.org/10.3390/w11081707

Darbandsari, P., & Coulibaly, P. (2020a). Inter-comparison of lumped hydrological models
in data-scarce watersheds using different precipitation forcing data sets: Case study
of Northern Ontario, Canada. Journal of Hydrology: Regional Studies, 31, 100730.
https://doi.org/10.1016/j.ejrh.2020.100730

Darbandsari, P., & Coulibaly, P. (2020b). Introducing entropy-based Bayesian model
averaging for streamflow forecast. Journal of Hydrology, 591, 125577.
https://doi.org/10.1016/j.jhydrol.2020.125577

Das, T., Bardossy, A., Zehe, E., & He, Y. (2008). Comparison of conceptual model
performance using different representations of spatial variability. Journal of
Hydrology, 356(1), 106—118. https://doi.org/10.1016/j.jhydrol.2008.04.008

DeGroot, M. H. (2005). Optimal Statistical Decisions. John Wiley & Sons.

244



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Dong, L., Xiong, L., & Zheng, Y. (2013). Uncertainty analysis of coupling multiple
hydrologic models and multiple objective functions in Han River, China. Water
Science and Technology, 68(3), 506-513. https://doi.org/10.2166/wst.2013.255

Drogue, G., & Khediri, W. B. (2016). Catchment model regionalization approach based on
spatial proximity: Does a neighbor catchment-based rainfall input strengthen the
method?  Journal  of  Hydrology: Regional  Studies, 8, 26-42.
https://doi.org/10.1016/j.ejrh.2016.07.002

Duan, Q., Ajami, N. K., Gao, X., & Sorooshian, S. (2007). Multi-model ensemble
hydrologic prediction using Bayesian model averaging. Advances in Water Resources,
30(5), 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014

Elshall, A. S., Ye, M., Pei, Y., Zhang, F., Niu, G.-Y., & Barron-Gafford, G. A. (2018).
Relative model score: A scoring rule for evaluating ensemble simulations with
application to microbial soil respiration modeling. Stochastic Environmental
Research and Risk Assessment, 32(10), 2809-2819. https://doi.org/10.1007/s00477-
018-1592-3

Eum, H.-l1., Dibike, Y., Prowse, T., & Bonsal, B. (2014). Inter-comparison of high-
resolution gridded climate data sets and their implication on hydrological model
simulation over the Athabasca Watershed, Canada. Hydrological Processes, 28(14),
4250-4271. https://doi.org/10.1002/hyp.10236

Gan, T. Y., Dlamini, E. M., & Biftu, G. F. (1997). Effects of model complexity and
structure, data quality, and objective functions on hydrologic modeling. Journal of
Hydrology, 192(1), 81-103. https://doi.org/10.1016/S0022-1694(96)03114-9

Granger, C. W., & Ramanathan, R. (1984). Improved Methods of Combining Forecasts:
ABSTRACT. Journal of Forecasting (Pre-1986); Chichester, 3(2), 197-204.

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the

mean squared error and NSE performance criteria: Implications for improving

245



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

hydrological modelling. Journal of  Hydrology, 377(1), 80-91.
https://doi.org/10.1016/j.jhydrol.2009.08.003

Han, S., & Coulibaly, P. (2017). Bayesian flood forecasting methods: A review. Journal
of Hydrology, 551, 340-351. https://doi.org/10.1016/j.jhydrol.2017.06.004

Han, S., Coulibaly, P., & Biondi, D. (2019). Assessing Hydrologic Uncertainty Processor
Performance for Flood Forecasting in a Semiurban Watershed. Journal of Hydrologic
Engineering, 24(9), 05019025. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0001828

Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from

Temperature. Applied Engineering in Agriculture, 1(2), 96-99.

Hersbach, H. (2000). Decomposition of the Continuous Ranked Probability Score for
Ensemble Prediction Systems. Weather and Forecasting, 15(5), 559-570.
https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2

Huo, W., Li, Z., Wang, J., Yao, C., Zhang, K., & Huang, Y. (2019). Multiple hydrological
models comparison and an improved Bayesian model averaging approach for
ensemble prediction over semi-humid regions. Stochastic Environmental Research
and Risk Assessment, 33(1), 217-238. https://doi.org/10.1007/s00477-018-1600-7

Jiang, S., Ren, L., Xu, C.-Y., Liu, S., Yuan, F., & Yang, X. (2018). Quantifying multi-
source uncertainties in multi-model predictions using the Bayesian model averaging
scheme. Hydrology Research, 49(3), 954-970. https://doi.org/10.2166/nh.2017.272

Kelly, K. S., & Krzysztofowicz, R. (1997). A bivariate meta-Gaussian density for use in
hydrology.  Stochastic  Hydrology and  Hydraulics, 11(1), 17-31.
https://doi.org/10.1007/BF02428423

Kelly, K. S., & Krzysztofowicz, R. (2000). Precipitation uncertainty processor for
probabilistic river stage forecasting. Water Resources Research, 36(9), 2643-2653.
https://doi.org/10.1029/2000WR900061

246



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Kisi, O., & Cimen, M. (2011). A wavelet-support vector machine conjunction model for
monthly streamflow forecasting. Journal of Hydrology, 399(1), 132-140.
https://doi.org/10.1016/j.jhydrol.2010.12.041

Krause, P., Boyle, D. P., & Base, F. (2005). Comparison of different efficiency criteria for
hydrological model assessment. Advances in Geosciences, 5, 89-97.

Krzysztofowicz, R. (1997). Transformation and normalization of variates with specified
distributions. Journal of Hydrology, 197(1), 286-292. https://doi.org/10.1016/S0022-
1694(96)03276-3

Krzysztofowicz, R. (1999). Bayesian theory of probabilistic forecasting via deterministic
hydrologic  model. ~ Water  Resources Research, 35(9), 2739-2750.
https://doi.org/10.1029/1999WR900099

Krzysztofowicz, R. (2002). Bayesian system for probabilistic river stage forecasting.
Journal of Hydrology, 268(1), 16—40. https://doi.org/10.1016/S0022-1694(02)00106-
3

Krzysztofowicz, R., & Herr, H. D. (2001). Hydrologic uncertainty processor for
probabilistic river stage forecasting: Precipitation-dependent model. Journal of
Hydrology, 249(1), 46-68. https://doi.org/10.1016/S0022-1694(01)00412-7

Krzysztofowicz, R., & Kelly, K. S. (2000). Hydrologic uncertainty processor for
probabilistic river stage forecasting. Water Resources Research, 36(11), 3265-3277.
https://doi.org/10.1029/2000WR900108

Lespinas, F., Fortin, V., Roy, G., Rasmussen, P., & Stadnyk, T. (2015). Performance
Evaluation of the Canadian Precipitation Analysis (CaPA). Journal of
Hydrometeorology, 16(5), 2045-2064. https://doi.org/10.1175/JHM-D-14-0191.1

Li, W., Duan, Q., Miao, C., Ye, A,, Gong, W., & Di, Z. (2017). A review on statistical
postprocessing methods for hydrometeorological ensemble forecasting. WIREs Water,
4(6), e1246. https://doi.org/10.1002/wat2.1246

247



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Liang, Z., Wang, D., Guo, Y., Zhang, Y., & Dali, R. (2013). Application of Bayesian Model
Averaging Approach to Multimodel Ensemble Hydrologic Forecasting. Journal of
Hydrologic Engineering, 18(11), 1426-1436.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000493

Liu, Z., Guo, S., Xiong, L., & Xu, C.-Y. (2018). Hydrological uncertainty processor based
on a copula function. Hydrological Sciences Journal, 63(1), 74-86.
https://doi.org/10.1080/02626667.2017.1410278

Liu, Z., Guo, S., Zhang, H., Liu, D., & Yang, G. (2016). Comparative Study of Three
Updating Procedures for Real-Time Flood Forecasting. Water Resources
Management, 30(7), 2111-2126. https://doi.org/10.1007/s11269-016-1275-0

Lu, D., Ye, M., Meyer, P. D., Curtis, G. P., Shi, X., Niu, X.-F., & Yabusaki, S. B. (2013).
Effects of error covariance structure on estimation of model averaging weights and
predictive performance. Water Resources Research, 49(9), 6029-6047.
https://doi.org/10.1002/wrcr.20441

Madadgar, S., & Moradkhani, H. (2014). Improved Bayesian multimodeling: Integration
of copulas and Bayesian model averaging. Water Resources Research, 50(12), 9586—
9603. https://doi.org/10.1002/2014WR015965

Mahfouf, J.-F., Brasnett, B., & Gagnon, S. (2007). A Canadian precipitation analysis
(CaPA) project: Description and preliminary results. Atmosphere-Ocean, 45(1), 1-17.
https://doi.org/10.3137/a0.v450101

McLachlan, G., & Krishnan, T. (2008). The EM Algorithm and Extensions (2 edition).
Wiley-Interscience.

Montanari, A., & Brath, A. (2004). A stochastic approach for assessing the uncertainty of
rainfall-runoff simulations. Water Resources Research, 40(1).
https://doi.org/10.1029/2003WR002540

Montanari, A., Shoemaker, C. A., & Giesen, N. van de. (2009). Introduction to special

section on Uncertainty Assessment in Surface and Subsurface Hydrology: An

248



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

overview of issues and challenges. Water Resources Research, 45(12).
https://doi.org/10.1029/2009WR008471

Muhammad, A., Stadnyk, T. A., Unduche, F., & Coulibaly, P. (2018). Multi-Model
Approaches for Improving Seasonal Ensemble Streamflow Prediction Scheme with
Various Statistical Post-Processing Techniques in the Canadian Prairie Region. Water,
10(11), 1604. https://doi.org/10.3390/w10111604

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models
part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290.
https://doi.org/10.1016/0022-1694(70)90255-6

O’Connell, P. E., Nash, J. E., & Farrell, J. P. (1970). River flow forecasting through
conceptual models part Il - The Brosna catchment at Ferbane. Journal of Hydrology,
10(4), 317-329. https://doi.org/10.1016/0022-1694(70)90221-0

Ouermi, K. S., Paturel, J.-E., Adounpke, J., Lawin, A. E., Goula, B. T. A., & Amoussou,
E. (2019). Comparison of hydrological models for use in climate change studies: A
test on 241 catchments in West and Central Africa. Comptes Rendus Geoscience,
351(7), 477-486. https://doi.org/10.1016/j.crte.2019.08.001

Parrish, M. A., Moradkhani, H., & DeChant, C. M. (2012). Toward reduction of model
uncertainty: Integration of Bayesian model averaging and data assimilation:
TOWARD REDUCTION OF MODEL UNCERTAINTY. Water Resources Research,
48(3). https://doi.org/10.1029/2011WR011116

Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model
for streamflow simulation. Journal of Hydrology, 279(1), 275-2809.
https://doi.org/10.1016/S0022-1694(03)00225-7

Poeter, E. P., & Hill, M. C. (2007). MMA, A Computer Code for Multi-Model Analysis (TM
6-E3). United States Geological Survey - Nevada, Henderson, Nevada.
https://doi.org/10.2172/920086

249



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Price, K., Purucker, S. T., Kraemer, S. R., Babendreier, J. E., & Knightes, C. D. (2014).
Comparison of radar and gauge precipitation data in watershed models across varying
spatial and temporal scales. Hydrological Processes, 28(9), 3505-3520.
https://doi.org/10.1002/hyp.9890

Qu, B., Zhang, X., Pappenberger, F., Zhang, T., & Fang, Y. (2017). Multi-Model Grand
Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model
Averaging. Water, 9(2), 74. https://doi.org/10.3390/w9020074

Raftery, A. E. (1993). Bayesian Model Selection in Structural Equation Models. In Testing
Structural Equation Models (Vol. 154, pp. 163-180). SAGE.

Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian
Model Averaging to Calibrate Forecast Ensembles. Monthly Weather Review, 133(5),
1155-1174. https://doi.org/10.1175/MWR2906.1

Razavi, T., & Coulibaly, P. (2017). An evaluation of regionalization and watershed
classification schemes for continuous daily streamflow prediction in ungauged
watersheds. Canadian Water Resources Journal / Revue Canadienne Des Ressources
Hydriques, 42(1), 2—20. https://doi.org/10.1080/07011784.2016.1184590

Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Hgjberg, A. L., &
Troldborg, L. (2012). Review of strategies for handling geological uncertainty in
groundwater flow and transport modeling. Advances in Water Resources, 36, 36-50.
https://doi.org/10.1016/j.advwatres.2011.04.006

Refsgaard, J. C., & Knudsen, J. (1996). Operational Validation and Intercomparison of
Different Types of Hydrological Models. Water Resources Research, 32(7), 2189-
2202. https://doi.org/10.1029/96 WR00896

Reggiani, P., Renner, M., Weerts, A. H., & Gelder, P. A. H. J. M. van. (2009). Uncertainty
assessment via Bayesian revision of ensemble streamflow predictions in the
operational river Rhine forecasting system. Water Resources Research, 45(2).
https://doi.org/10.1029/2007WR006758

250



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Reggiani, P., & Weerts, A. H. (2008). A Bayesian approach to decision-making under
uncertainty: An application to real-time forecasting in the river Rhine. Journal of
Hydrology, 356(1), 56-69. https://doi.org/10.1016/j.jhydrol.2008.03.027

Rojas, R., Feyen, L., & Dassargues, A. (2008). Conceptual model uncertainty in
groundwater modeling: Combining generalized likelihood uncertainty estimation and
Bayesian  model  averaging. @ Water  Resources  Research,  44(12).
https://doi.org/10.1029/2008 WR006908

Roy, T., Serrat-Capdevila, A., Gupta, H., & Valdes, J. (2017). A platform for probabilistic
Multimodel and Multiproduct Streamflow Forecasting. Water Resources Research,
53(1), 376-399. https://doi.org/10.1002/2016 WR019752

Samuel, J., Coulibaly, P., & Metcalfe, R. A. (2011). Estimation of Continuous Streamflow
in Ontario Ungauged Basins: Comparison of Regionalization Methods. Journal of
Hydrologic Engineering, 16(5), 447-459. https://doi.org/10.1061/(ASCE)HE.1943-
5584.0000338

Samuel, J., Coulibaly, P., & Metcalfe, R. A. (2012). Identification of rainfall-runoff model
for improved baseflow estimation in ungauged basins. Hydrological Processes, 26(3),
356-366. https://doi.org/10.1002/hyp.8133

Scharffenberg, W. (2016). HEC-HMS User’s Manual, Version 4.2. U.S. Army Corps of
Engineers Institute for Water Resources Hydrologic Engineering Center (CEIWR-
HEC).

Seiller, G., Anctil, F., & Perrin, C. (2012). Multimodel evaluation of twenty lumped
hydrological models under contrasted climate conditions. Hydrology and Earth
System Sciences, 16(4), 1171-1189. https://doi.org/10.5194/hess-1116-1171-2012

Seo, D.-J., Herr, H. D., & Schaake, J. C. (2006). A statistical post-processor for accounting
of hydrologic uncertainty in short-range ensemble streamflow prediction. Hydrology
and Earth System Sciences Discussions, 3(4), 1987-2035.
https://doi.org/10.5194/hessd-3-1987-2006

251



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Seo, D.-J., Koren, V., & Cajina, N. (2003). Real-Time Variational Assimilation of
Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting.
Journal of Hydrometeorology, 4(3), 627-641. https://doi.org/10.1175/1525-
7541(2003)004<0627:RVAOHA>2.0.CO;2

Sharma, S., Siddique, R., Reed, S., Ahnert, P., & Mejia, A. (2019). Hydrological Model
Diversity Enhances Streamflow Forecast Skill at Short- to Medium-Range Timescales.
Water Resources Research, 55(2), 1510-1530.
https://doi.org/10.1029/2018WR023197

Srivastava, A., Deb, P., & Kumari, N. (2020). Multi-Model Approach to Assess the
Dynamics of Hydrologic Components in a Tropical Ecosystem. Water Resources
Management, 34(1), 327-341. https://doi.org/10.1007/s11269-019-02452-z

Strauch, M., Bernhofer, C., Koide, S., Volk, M., Lorz, C., & Makeschin, F. (2012). Using
precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation.
Journal of Hydrology, 414-415, 413-424.
https://doi.org/10.1016/j.jhydrol.2011.11.014

Tan, B. Q., & O’Connor, K. M. (1996). Application of an empirical infiltration equation in
the SMAR conceptual model. Journal of Hydrology, 185(1), 275-295.
https://doi.org/10.1016/0022-1694(95)02993-1

Tegegne, G., Park, D. K., & Kim, Y.-O. (2017). Comparison of hydrological models for
the assessment of water resources in a data-scarce region, the Upper Blue Nile River
Basin.  Journal  of  Hydrology: Regional  Studies, 14, 49-66.
https://doi.org/10.1016/j.ejrh.2017.10.002

Teng, F., Huang, W., & Ginis, I. (2018). Hydrological modeling of storm runoff and
snowmelt in Taunton River Basin by applications of HEC-HMS and PRMS models.
Natural Hazards, 91(1), 179-199. https://doi.org/10.1007/s11069-017-3121-y

252



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Thiemig, V., Bisselink, B., Pappenberger, F., & Thielen, J. (2015). A pan-African medium-
range ensemble flood forecast system. Hydrology and Earth System Sciences, 19(8),
3365-3385. https://doi.org/10.5194/hess-19-3365-2015

Todini, E. (2008). A model conditional processor to assess predictive uncertainty in flood
forecasting. International Journal of River Basin Management, 6(2), 123-137.
https://doi.org/10.1080/15715124.2008.9635342

Todini, E. (2011). History and perspectives of hydrological catchment modelling.
Hydrology Research, 42(2-3), 73-85. https://doi.org/10.2166/nh.2011.096

Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for
computationally efficient watershed model calibration. Water Resources Research,
43(1). https://doi.org/10.1029/2005WR004723

Vrugt, J. A, Diks, C. G. H., & Clark, M. P. (2008). Ensemble Bayesian model averaging
using Markov Chain Monte Carlo sampling. Environmental Fluid Mechanics, 8(5),
579-595. https://doi.org/10.1007/s10652-008-9106-3

Vrugt, J. A., Gupta, H. V., Nualldin, B., & Bouten, W. (2006). Real-Time Data
Assimilation for Operational Ensemble Streamflow Forecasting. Journal of
Hydrometeorology, 7(3), 548-565. https://doi.org/10.1175/JHM504.1

Vrugt, J. A., & Robinson, B. A. (2007). Treatment of uncertainty using ensemble methods:
Comparison of sequential data assimilation and Bayesian model averaging. Water
Resources Research, 43(1). https://doi.org/10.1029/2005WR004838

Wijayarathne, D. B., & Coulibaly, P. (2020). Identification of hydrological models for
operational flood forecasting in St. John’s, Newfoundland, Canada. Journal of
Hydrology: Regional Studies, 27, 100646. https://doi.org/10.1016/j.ejrh.2019.100646

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model performance.
Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079

253



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Wohling, T., Samaniego, L., & Kumar, R. (2013). Evaluating multiple performance criteria
to calibrate the distributed hydrological model of the upper Neckar catchment.
Environmental Earth Sciences, 69(2), 453-468. https://doi.org/10.1007/s12665-013-

2306-2

Xiong, L., Wan, M., Wei, X., & O’Connor, K. M. (2009). Indices for assessing the
prediction bounds of hydrological models and application by generalised likelihood
uncertainty estimation / Indices pour évaluer les bornes de prévision de modeles
hydrologiques et mise en ceuvre pour une estimation d’incertitude par vraisemblance
généralisée. Hydrological Sciences Journal, 54(5), 852-871.
https://doi.org/10.1623/hysj.54.5.852

Xu, J., Anctil, F., & Boucher, M.-A. (2019). Hydrological post-processing of streamflow
forecasts issued from multimodel ensemble prediction systems. Journal of Hydrology,
578, 124002. https://doi.org/10.1016/j.jhydrol.2019.124002

Yen, H., Wang, X., Fontane, D. G., Harmel, R. D., & Arabi, M. (2014). A framework for
propagation of uncertainty contributed by parameterization, input data, model
structure, and calibration/validation data in watershed modeling. Environmental
Modelling & Software, 54, 211-221. https://doi.org/10.1016/j.envsoft.2014.01.004

254



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Chapter 6. Assessing Entropy-based Bayesian Model Averaging Method

for Probabilistic Precipitation Forecasting

Summary of Paper 4: Darbandsari, P., & Coulibaly, P. (2021). The Application of the
(Modified) Entropy-based Bayesian Model 1 Averaging Method for Probabilistic

Precipitation Forecasting. Journal of Hydrometeorology, under review.

The main goal of this research work is to investigate the applicability of a variant of the
Entropy-based Bayesian Model Averaging (En-BMA) approach for precipitation
forecasting. Some modifications are proposed to enhance the En-BMA method for post-
processing ensemble of precipitation forecasts. After verifications of seven different
individual forecasts, comparison has been made between the sub-daily probabilistic
precipitation forecasts derived from the modified En-BMA and the widely used traditional

BMA methods.
Key findings of this research work include:

e Among different precipitation forecasts, the Regional Ensemble Prediction System
(REPS) appeared to be the most robust one for the Northern Ontario regions, while
none of them can be selected as the most accurate one in all lead times and locations.

e Implementing the proposed modifications enhances the performances of the En-

BMA in the case of precipitation forecasting.
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e Considering the whole time series of forecasts, both modified En-BMA and BMA
methods shows competitive performances with the former outperforming the latter

on extreme or large precipitation events.

6.1 Abstract

Bayesian Model Averaging (BMA) is a popular ensemble-based post-processing approach
where the weighted average of the individual members is used to generate predictive
forecasts. As the BMA formulation is based on the law of total probability, possessing the
ensemble of forecasts with mutually exclusive and collectively exhaustive properties is one
of the main BMA inherent assumptions. Trying to meet these requirements led to the
entropy-based BMA (En-BMA) approach. En-BMA uses the entropy-based selection
procedure to construct an ensemble of forecasts with the aforementioned characteristics
before the BMA implementation. This study aims at investigating the potential of the En-
BMA approach for post-processing precipitation forecasts. Some modifications are
proposed to make the method more suitable for precipitation forecasting. Considering the
6-hour accumulated precipitation forecasts with lead times of 6 to 24 hours from seven
different models, we evaluate the effects of the proposed modifications and
comprehensively compared the probabilistic forecasts, derived from the BMA and the
modified En-BMA methods in two different watersheds. The results, in general, indicate
the advantage of implementing the proposed modifications in the En-BMA structure for
possessing more accurate precipitation forecasts. Moreover, the superiority of the modified
En-BMA method over BMA in generating predictive precipitation forecasts is

demonstrated based on different performance criteria in both watersheds and all forecasting
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horizons. These outperforming results of the En-BMA are more pronounced for large

precipitation values which are particularly important for hydrologic forecasting.
6.2 Introduction

Accurate and reliable precipitation forecasting is fundamental for various operational water
resources management tasks, flood control and mitigation in particular (Cuo et al., 2011;
Shrestha et al., 2013; Steenbergen & Willems, 2014). The inherent uncertainties associated
with precipitation forecasts, which mostly stem from the initial conditions and model
structures (Jha et al., 2018; Taillardat et al., 2016), make it difficult to incorporate
deterministic forecasts without uncertainty quantification into practical applications. This
limitation shows the importance of generating reliable probabilistic precipitation forecasts
that meet the needs of users. One of the most common approaches for quantifying different
uncertainties and generating probabilistic forecasts is ensemble forecasting (Han &
Coulibaly, 2020; Ji et al., 2019; Yang et al., 2012). Constructing ensemble prediction
systems (EPS) can effectively enhance uncertainty estimation (Ma et al., 2018; Robertson
et al., 2013). Besides an ensemble of forecasts from a single model with different initial
conditions, EPS can be generated using multiple forecasting models, which leads to a better
quantification of predictive uncertainty (Liu & Xie, 2014; Saedi et al., 2020; Xu et al., 2019;

Yang et al., 2012).

Deriving reliable probabilistic forecasts from EPS requires the application of a post-
processing approach, which utilizes the full capability of the ensemble for quantifying
predictive uncertainty (Liu & Xie, 2014; Scheuerer & Hamill, 2015). Bayesian Model

Averaging (BMA) is one of the most widely used ensemble post-processing approach,
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which was first proposed for merging multiple statistical models (Hoeting et al., 1999; Kass
& Raftery, 1995) and then, it was extended for dynamical models and forecast ensembles
(Raftery et al., 2005). By using the full information of the forecasts’ ensemble, BMA
generates reliable and sharp predictive distribution through weighted averaging of the
posterior distributions conditioned on different individual members. The BMA weights are
determined by the conditional probability of each member given observation, which

represents the forecasting skills of the member in the training period.

Given that the original BMA uses the Gaussian function to estimate the posterior
probabilities (Raftery et al., 2005), it is not reliable for precipitation where the predictive
distribution is not normal (high possibility of being zero and highly skewed for non-zero
values; (Sloughter et al., 2007; Yang et al., 2012)). In order to relax the aforementioned
assumption, the BMA method was modified for skewed variables, such as precipitation,
through proper modeling of the distribution. Sloughter et al. (2007) developed BMA for
precipitation using a two-stage strategy, where the predictive distributions of each forecast
are modeled by a mixture of a point mass at zero and a gamma distribution for positive
values. The capability of the proposed BMA variant for generating reliable probabilistic
precipitation forecasts was shown by various studies (Aminyavari & Saghafian, 2019;
Fraley et al., 2010; Ji et al., 2019; Liu & Xie, 2014; Saedi et al., 2020; Vogel et al., 2018).
Besides, Yang et al. (2012) used the Tweedie distribution, which can simultaneously model
the probability of precipitation and its amount. Moreover, stratifying precipitation forecasts
using threshold values (Ji et al., 2019) or ensemble spread (Zhu et al., 2015) was

recommended for possessing more reliable results especially for heavy events.
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Although some studies tried to extend the BMA applicability for precipitation forecasting
by properly modeling the predictive distribution functions, there are some more inherent
assumptions in the BMA scheme that require some attention. BMA is based on the law of
total probability (Raftery et al., 2005), and consequently, for reliable performance of the
BMA, an ensemble with independent members (exclusiveness) and high coverage of the
observation variability (exhaustiveness) is required (Darbandsari & Coulibaly, 2020a;
Refsgaard et al., 2012). In other words, an ensemble of forecasts with mutually exclusive
and collectively exhaustive properties can lead to better BMA results. However, these two
properties are in contradiction with each other. Simply increasing the number of members
can relatively assure the latter property (exhaustiveness), while this may contravene the
exclusiveness requirement by increasing the redundant information within the ensemble
(Madadgar & Moradkhani, 2014). Therefore, generating a balanced EPS with the two
aforementioned properties seems necessary in any BMA applications. Recently,
Darbandsari and Coulibaly (2020a) proposed an entropy-based Bayesian model averaging
(En-BMA) approach to relax the assumption of possessing a mutually exclusive and
collectively exhaustive ensemble. Prior to the BMA application, the optimal subset of
members is selected using three different entropy terms by simultaneously minimizing the
redundant information between members while keeping the overall information amounts
at the highest level. Their study shows the superiority of their proposed approach over

BMA for daily streamflow forecasting.

So far, no studies have assessed the En-BMA approach for probabilistic precipitation

forecasting. The main objective of this work is to propose a modified version of the
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entropy-based BMA method for post-processing ensemble of precipitation forecasts. The
multi-model EPS that incorporates the precipitation forecasts of seven different numerical
models are used to evaluate the applicability of the modified En-BMA for sub-daily
precipitation forecasting in two basins located in Ontario, Canada. Besides assessing the
performance of individual forecasts and showing the importance of using an ensemble
system, the relative performance of the modified En-BMA, compared with BMA, shows
the advantages of possessing ensemble precipitation forecasts with mutually exclusive and
collectively exhaustive properties for generating more accurate ensemble-based
probabilistic results. The remainder of the paper is organized as follows. Section 6.3
presents the underlying concepts of the BMA and the En-BMA post-processing approaches.
In section 6.4, we briefly describe the study areas and data. Section 6.5 discusses the results,
including the comprehensive comparison of BMA and En-BMA, and a summary and

conclusions are presented in Section 6.6.
6.3 Methodology
6.3.1 Bayesian Model Averaging (BMA) for precipitation forecast

Bayesian Model Averaging (BMA; (Hoeting et al., 1999; Raftery et al., 2005)) is a
statistical post-processing approach where a weighted combination of the predictive
distribution functions from different competing individual forecasts is used for generating
more reliable probabilistic results. In the original BMA, the posterior distribution of
forecasted variable y given K different forecasts ensemble (F = {fi,f2, .., fx}) IS

formulated using the law of total probability (Raftery et al., 2005):
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k
PO for s fi¥) = ) Wi X POYIf, ) 6-1)

where w; is the BMA weight, which presents the forecasting skill of the corresponding
ensemble member (f;) over the training period Y, and P(y|f;, Y) is the posterior distribution
of y conditioned on individual forecast i. The aforementioned posterior distributions are
assumed to follow a Gaussian distribution in the original BMA (Raftery et al., 2005), while
various studies show that this is a poor choice for precipitation forecasts with a large
number of zero values and highly skewed distributions for positive dates. Sloughter et al.
(Sloughter et al., 2007) proposed one of the most well-known BMA variants for
precipitation where the main modification includes replacing the Gaussian distribution
with a mixture of a point mass at zero and the gamma distribution, and transforming data
using cube root. So, the main equation of the BMA can be rewritten as follows (Sloughter

et al., 2007):

POIAL f2r i fo Y )

Nl

w;
im1 (6-2)

x (P(y = 0If) xI[y = 0] + P(y > OIf) x g: 'Ifi)

x Iy > 0])

y" and fx respectively shows the cube root of observations and forecasts and I[. ] is the

general indicator function which will be unity if the condition inside the bracket holds.
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P(y = 0|f;") and P(y > 0|f;) respectively represents the probability of no precipitation
and probability of precipitation given the forecast member f; which is estimated using

logistic regression (Sloughter et al., 2007):

P(v = 0| f/
logitP(y = 0|f]) = Ingg,>—():?'; =ag +ay; X fi +ay X6 (6-3)
_(Liffi=0
&_%#ﬁio (6-4)

&; is the second predictor variable (Equation 6-4), which is considered to enhance the
logistic regression performance (Sloughter et al., 2007). Also ay;, a4;, and a,; are the
member specific parameters that need to be estimated by logistic regression based on the

training data.

In the case of occurring precipitation, the posterior distribution of the cubic root of
precipitation conditioned on each ensemble member i is modeled using the gamma
distribution (g;(y'|f;)) with the following mean (u;) and variance (g7) (Sloughter et al.,

2007):
Hi = bo; + by;f! (6-5)
ol =co +c1if; (6-6)

b,; and b,; are the parameters which need to be estimated separately for each ensemble
member i using a simple linear regression between the cube root of non-zero observations
(y") as predicant and the cubic root of the corresponding forecasts (f;’) as the predictor over

the training period. ¢, and c; are the variance parameters, which are used to capture the

262



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

heteroscedastic characteristics of the standard deviations as a function of the predictor

values (Sloughter et al., 2007; Vrugt & Robinson, 2007).

Weights (w;) and variance parameters (c, and c,) are determined using the modified

expectation-maximization (EM) algorithm by maximizing the log-likelihood function

(L(Wir Co» Cl)):

L(Wil Co» Cl) = LOg (Z P(yllfllJfZIJ :f[é;Y)> (6'7)

EM is an iterative algorithm (Figure 6-1). After initialization, the latent variable (z) is
calculated using the current values of the parameters in the expectation step. In the
maximization step, the updated value of z is used to calculate the weights while the
variance parameters are estimated numerically by maximizing the objective function
(Equation 6-7) using the updated weights. The EM algorithm is not a global optimization
method, and its sensitivity to the initial parameter values could lead to local maxima
(Sloughter et al., 2007; Vrugt et al., 2008), so it can be replaced with a global optimization
technique for possessing more robust estimation. In this study, the application of the
dynamically dimensioned search (DDS) optimization method (Tolson & Shoemaker, 2007)
as an alternative for the modified EM algorithm is evaluated. The global optimal solution
in the DDS approach is determined by dynamically rescaling the dimension of the search

space.

263



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Initialization
Initiate log-likelihood:L, (w2, c2, ¢?) = 37_; log(T, w?, x g(hen|fin. 20))

|

j=1

—

Expectation

j-1 2/-1
Win *4 hf,n‘ftnlrlﬂ

Fori= {12 ..,K}&t={12 .., T}z, =
on = Y IW; xQ(htnlftanZJ ' }

'

Maximization

- 1)F0r£-{12 K}) w;’ﬂ=—2’f_lzm
t (2) Numerically estimate c1 and c2 (Objective function: In(w{ w c1 62)
Il
- v
S i i 2
Update log-likelihood: Ln(w{-‘n,cl,cz log (21 - w X g (h;_n fenr T;_n))
!

No Convergence:

1(69) —1(6¢""Y) <Th

/ Final estimated parameters: W; e Cv cz /

Figure 6-1 The modified Expectation-Maximization algorithm (after Sloughter et al.,
2007)

Altogether, the proper estimation of the BMA parameters includes three main steps: using
the training data, (1) the linear regression is used for estimating b,; and b;; parameters, (2)
the ay;, a,;, and a,; parameters are estimated using logistic regression, and (3) weights (w;)
and variance parameters (c, and c,) are determined based on the EM algorithm. It is worthy
of note that the moving window scheme is used for defining the training period. The sliding

window of observation-forecast pairs before the initial date is taken as the recursive
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training period. Therefore, selecting the optimal window length is the initial step before the

BMA implementation.
6.3.2 Entropy-based BMA for precipitation forecast

As previously mentioned, possessing a mutually exclusive and collectively exhaustive
ensemble of forecasts is a prerequisite for proper implementation of the BMA
postprocessor. In the Entropy-based Bayesian Model Averaging (En-BMA) approach,
which is initially proposed for streamflow forecasting (Darbandsari & Coulibaly, 2020a),
an optimal subset of forecasts ensemble with lower dependency and higher information
content was selected before applying the BMA method. Since detailed descriptions of the
En-BMA concepts are provided in Darbandsari and Coulibaly (2020a), a brief overview of
this approach and the proposed modifications to make it more suitable for precipitation

forecasting are presented here.

The En-BMA method focuses on constructing the optimal ensemble of forecasts for BMA
application using different entropy terms. Without any prior assumption about the
statistical characteristics of the data sets, entropy provides a measure of the corresponding
information content included in the data (Leach et al., 2015; Mishra & Coulibaly, 2009;
Singh, 1997). Based on the Shannon entropy of information theory (Shannon, 1948), the
marginal entropy shows the amount of information retained by a single variable (H (X)),
while in the case of more than two variables (e.g. X;, X,, ..., Xy), the term, joint entropy
(H (X1, X5, ..., Xy)), is defined as a measure of the overall information content gained from

knowing all variables. The highest possible joint entropy value of multiple variables will
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be equal to the sum of their marginal entropies in the case of possessing independent
variables (Keum et al., 2019; Li et al., 2012). The relationship between marginal entropy
and joint entropy leads to the definition of the total correlation (C (X1, X5, ..., Xy)), which
is a measure of the redundant information in multiple variables (Alfonso et al., 2013; Keum

& Coulibaly, 2017):

N
CXp Xy o) Xy) = z H(X,) = H(Xy, Xg oo, Xny) (6-8)

i=1

In the case of possessing two variables (or groups of variables), the total correlation is
transformed to the transinformation ( T(X;,X,)) which represents the amount of

dependence between two variables (or groups of variables):
T(Xy,X;) = H(Xy) + H(X3) — H(X1, X3) (6-9)

The transinformation changes between zero, for fully independent variables, and
min(H(Xl), H(Xz)), in the case of functionally dependent ones (Darbandsari & Coulibaly,

2020D).

Considering individual forecasts and observation data sets as different variables, the
aforementioned entropy terms can be used to generate an ensemble of forecasts with
maximum information and minimum redundancy. For achieving this goal, the entropy-
based selection algorithm with a nested loop structure is developed (Darbandsari &
Coulibaly, 2020b). In this algorithm, two stopping criteria (the joint entropy of the selected
subset over the joint entropy of all forecasts, and the ratio of the transinformation between

selected members (as a group of variables) and observations to that of all candidates and
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observations) are used to prevent the loss of information (Figure 6-2a). Also, in the original
procedure, the total correlation is implemented as an objective function of the inner loop
to select the optimal ensemble with the lowest redundant information among subsets with

the same number of members.

In this study, an alternative objective function based on joint entropy is also evaluated. At
first glance, it seems that defining the cost function of the inner loop based on the joint
entropy will not lead to the lowest shared information. However, using joint entropy before
the total correlation can prevent information loss resulting from removing members. So,
with the same amount of information content, the final selected subset using the modified
objective function possesses a lower number of members with a lower total correlation
value, compared to the original version. As a representative example, shown in Figure 6-
2b, the total correlation of the four-member optimal subset, derived from the modified
selection procedure, is around 60 percent lower than the corresponding value of the final
selected subset (including six members) from the original method, while the overall

information content of both optimal subsets is at the same level.

Moreover, another modification that is applied in this study is about where the entropy-
based selection procedure will be implemented. In the original En-BMA method, the
selection procedure has been used prior to the BMA application (Figure 6-3a). As shown
in Figure 6-3b, here we proposed an alternative framework, where the first step of the BMA
procedure for precipitation, a linear regression, has been applied before narrowing down
the ensemble members. In other words, the variables, being used in the selection procedure

are the non-zero cubic root transformed and linear regressed forecasts and observation. As
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the BMA posterior distribution for precipitation forecasts is defined based on the

aforementioned data (Equation 6-2), their characteristics as an ensemble play an important

role in the BMA performance, and considering them in the selection algorithm could lead

to better results.

(Modified) Entropy-based selection Algorithm
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(b) An example of the application of the selection procedure

Figure 6-2 The (modified) entropy-based selection procedure: (a) the Pseudo Code and
(b) examples of their applications
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Figure 6-3 The structure of (a) the original and (b) the modified entropy-based BMA

6.3.3 Verification metrics

methods

In this study, different evaluation metrics, including Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), Pearson Correlation Coefficient (PCC), and Continuous

Ranked Probability Score (CRPS) are used for the verification analysis of various post-

processing approaches. MAE, RMSE, and PCC are the deterministic measures which are

formulated as follows:

1 N
MAE = N;(lft -0,
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N 2
_(1 02 6-11
RMSE = N(Z(ft 0.) ) (6-11)

[ZItV=1(0t - 6)(ft B f)]

PCC =
\/ZItV=1(Ot - 6)2 Itvzl(ft - f)z

(6-12)

where O, and f; are the observation and forecast (the mean of the predictive distributions
of probabilistic forecasts), and O and f are respectively the observation and forecast mean
over the verification period. RMSE reflects the closeness between observation and forecast
by giving more weights to large values (Coulibaly et al., 2005), while MAE is a more
balanced criterion, assessing the average model performance using the difference between
forecast and observation (Willmott & Matsuura, 2005). Both MAE and RMSE varies
between 0 and +oo with the best value of 0. PCC, possessing a range of [-1,1], shows the
linear dependency between forecasts and observed value (Verkade et al., 2013). The better
forecasts possess higher PCC values while its negative values reflects the inverse

correlation.

CRPS is a probabilistic-based criterion, which is defined as the squared error of the

probability distributions of the forecast (Ptf ) compared to the observed one (P?) (Hersbach,

2000):
N+

CRPS = %Z f (P ) — P? (x))2 d, (6-13)

t=1 —00
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CDFP(x) = H(x — 0,) (6-14)

H(x — 0,) in Equation 6-14 is the Heaviside function, being equal to 1 if x > O, and 0
otherwise. CRPS, with a range of 0 to +oo, is negatively oriented where smaller values
correspond to the better predictions. Besides the previously stated performance criteria, we
use the reliability plot (Laio & Tamea, 2007) as a graphical tool for assessing the statistical
reliability of the probabilistic forecasts. Also, its corresponding metric (o), changing
between 0 and 1 with the best value of 1, reflects the reliability of the forecasts by
calculating the difference between the reliability plot (forecasts cumulative probability

distribution) and the bisector line (cumulative uniform distribution):

_ 1N

To facilitate the comparison of different post-processing approaches, the percentage of
performance improvement, called percent improvement hereafter, is used. This term is
defined based on different performance metrics as percent improvements of their values in

the case of using one method, compared with another.
6.4 Study areas and data

We assessed the applications of the BMA and the (Modified) En-BMA for the post-
processing ensemble of mean-areal sub-daily precipitation forecasts in the Big East River
and the Black River watersheds, with the catchment areas of approximately 600 and 1500
km?, respectively. As can be seen in Figure 6-4, both watersheds are located in Northern

Ontario, Canada, and can be considered as poorly-gauged basins as there are no
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meteorological stations within their boundaries. So, the Canadian Precipitation Analysis
(CaPA) data are used as a reference dataset for verifying precipitation forecasts in both
regions. CaPA is a 6-hourly precipitation product with a spatial resolution of 15 km, which
is generated based on the combination of various precipitation sources (Lespinas et al.,
2015; Mahfouf et al., 2007). Its reliability as an alternative to weather stations in Canadian
data-poor catchments was shown by various studies (Darbandsari & Coulibaly, 2020b;

Eum et al., 2014).

In this study, seven different numerical weather prediction systems, employed for
generating an ensemble of precipitation forecasts, are Global Deterministic Prediction
System (GDPS), Global Ensemble Prediction System (GEPS), Global Forecast System
(GFS), Global Ensemble Forecasting System Reforecast Project Version 2 (GEFS),
Regional Deterministic Prediction System (RDPS), Regional Ensemble Prediction System
(REPS), and High-resolution Regional Deterministic Prediction System (HRDPS). Table
6-1 represents the detailed features of the aforementioned products. The seven-member 6-
hr accumulated precipitation forecasts ensemble with lead times of 6 to 24 hours, issued at
0000 UTC, are used in this study. The verification period is from 2019/07/03 to 2020/08/31.
We use the means of the single model ensemble forecasts (i.e. GEPS, REPS, and GEFS)
for comparing their performances with deterministic models (i.e. GDPS, RDPS, GFS) and
constructing the multi-model ensemble. It is of note that the spatially averaged predictions
and verification data over each basin, which is determined using the Thiessen polygon
approach (Thiessen, 1911), are considered as the mean areal precipitation data and be used

for evaluating different post-processing methods.
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Figure 6-4 The location maps of the Big East River and Black River watersheds

Table 6-1 The detailed descriptions of the numerical weather prediction models used in

this study
Resolution Base Time Forecast o o

NWP spatial Temporal  (UTC) length (hr) Availability Organization
GDPS ~25 km 1 hourly 00, 12 0-240 From 2019/07/03  CMC!

GEPS ~50 km 1 hourly 00, 12 0-384 From 2018/09/19 CMC

GFS ~27 km 3 hourly 00, 06,12,18 0-384 From 2015/01/15 NOAA?
GEFS  ~50km  3hourly 00 0-192 From 2000/01/01  NOAA

REPS ~15 km 1 hourly 00, 12 0-72 From 2019/07/03 CMC

RDPS ~10 km 1 hourly 00,06,12,18 0-84 From 2015/01/01 CMC
HRDPS ~25km 1 hourly 00,06,12,18 0-48 From 2017/05/22  CMC

1 Canadian Meteorological Centre

2 National Oceanic and Atmospheric Administration
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6.5 Results and Discussions
6.5.1 Individual model performance

Before evaluating the post-processing approaches, a primary comparison was made
between the performances of different individual forecasts in terms of MAE, PCC, and
RMSE (Figure 6-5). In general, the results in both basins indicate that REPS leads to the
most consistent precipitation forecasts based on most of the criteria at different forecasting
horizons. This is in line with Abaza et al. (Abaza et al., 2013), showing the REPS potential
for precipitation forecasting in Canadian catchments. Also, GEPS performs competitively
in both watersheds. Regarding MAE and RMSE, the GEFS model provides accurate results
in both basins, however, the PCC criterion in the Big East River watershed shows the
relatively poor performance of GEFS compared to the other forecasts. Moreover, the
HRDPS forecasts are relatively accurate for lead-times 6 and 12; however, its performance
is among the worst ones for longer lead-times (i.e. 18 and 24), especially in the Big East
River watershed. Although the performances of GFS in the Big East River watershed are
relatively reliable, it possesses the lowest skill for precipitation forecasts in Black River,

especially for 6-, 12-, and 18-hours ahead forecasts.

Altogether, the main conclusion, standing out from comparing various individual models,
is that neither of the models has complete superiority to provide the most promising
precipitation forecasts in both basins and for different lead-times. Although in general, the
REPS model can be considered as the good performing one, it does not always provide the

best results based on different verification metrics. Therefore, selecting the best model is
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practically impossible. This shows the importance of using an ensemble of multi-model

forecasts instead of relying on individual ones (Liu & Xie, 2014; Qu et al., 2017).
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Figure 6-5 Comparison of different performance measurements for 6 to 24 hours-ahead
forecasts derived from different forecasting models in (a) Big East River and (b) Black
River watersheds

6.5.2 BMA evaluation

Following Raftery et al.(Raftery et al., 2005), a temporal moving window, including
sample data from N previous days, is used for estimating BMA parameters. So,
determining the optimal window length (N) is the primary and important step prior to the
applications of the BMA (and En-BMA). As the optimal length of moving window varies

based on areas and data sets, it should be specifically determined for each study (Liu &
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Xie, 2014; Sloughter et al., 2007). Here, by using different evaluation metrics, we compare
the performance of BMA as a function of the moving window length (Figure 6-6). In line
with previous studies (Raftery et al., 2005; Schmeits & Kok, 2010; Sloughter et al., 2007,
Vrugt & Robinson, 2007), the results in both Big East River and Black River watersheds
show that increasing the length of training period leads to better BMA results in terms of
different performance metrics. However, these trends of improvements decrease with

increasing moving window length.

Moreover, as previously mentioned, the BMA formulation, proposed for precipitation
forecasting is based on the linear regression between observation and forecasts in non-zero
precipitation dates. Therefore, a sufficient number of non-zero precipitation dates is
required for the proper estimation of the regression parameters. As expected, by increasing
the length of the moving window, the number of dates with precipitation occurrence
increases (Figure 6-6), which can be one of the main reasons for better BMA performance
with higher N values in the case of forecasting precipitation. It is worthy of note that
although larger moving window length provides higher information, it could be impractical
in the real world, due to the limited length of available time-series (Xu et al., 2019). In this
study, we select a 100-day moving window for the applications of both BMA and En-BMA

methods.
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Figure 6-6 The performance statistics of the BMA 6-hour ahead forecasts and the
number of non-zero precipitation dates as a function of moving window length in (a) Big
East River and (b) Black River watersheds

Besides the length of the training period, how well the BMA parameters are estimated can
also have noticeable effects on the results. The modified EM algorithm is proposed for
estimating BMA parameters, while it is argued that this method may have some difficulty
in finding the global optimal estimations. Here, in order to evaluate the capability of the
modified EM method in estimating BMA parameters, a dynamically dimensioned search
(DDS) global optimization method is considered as the benchmark, and a comparison is
made between BMA models calibrated with both approaches. The results in both basins,
as shown in Figure 6-7, indicate that both methods lead to approximately similar
parameters and objective function values. Therefore, the modified EM algorithm is
sufficiently reliable for estimating BMA parameters. This conclusion is in line with
Darbandsari and Coulibaly (2019) where an in-depth analysis in the case of streamflow

forecasting shows that the log-likelihood is a convex function of the most sensitive BMA
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parameters, leading to the reliable performance of the local optimization technique, such

as the EM algorithm.

wy

Wy

Wy

0.4

W ooz

01

p=ClJ

0.2k, g8

05
DDS

=1

02 04
DDS

(a) Big East River watershed

Wy 08 ws

EM
DDS

0.8 £

. z &

& 04 p
& 02 f

05 1 U : 0.5
DDS DDS

G
0.2 04

DDS

(b) Black River watershed

Figure 6-7 A comparison of the BMA parameters and the objective function
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The contribution of each forecast member into the BMA predictive results is determined

by its corresponding estimated weights. Figure 6-8 simply compared the average weights

of different models with their performances in both basins at different lead-times. What

stands out in this figure is that the weights are not completely following the performance

of individual members. There are some cases where members with relatively lower

performance, possess higher weights and vice versa. For example, HRDPS, which was

selected as the worst model in the Big East River watershed at lead-time 24 (Section 6.5.1),
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has relatively high weights compared with the other members. On the other hand, GEFS
possesses the most accurate 6-hour ahead forecasts in Black River; however, lower BMA
weights are allocated to it. These results show that apart from the forecasting skills of
individual models, the diversity of the ensemble members also plays an important role in

the BMA application (Darbandsari & Coulibaly, 2020b; Sharma et al., 2019).
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Figure 6-8 he average BMA weights and the MAE performance statistics of each member
at different forecasting horizons in (a) Big East River and (b) Black River watersheds

6.5.3 En-BMA evaluation

In both En-BMA and its modified version, the only parameter that needs to be specified is
the stopping threshold value (B). This parameter is used as a criterion that is not allowed to
be violated, and implicitly shows the maximum amount of information that we want to

keep in the system. We evaluate the effects of choosing different threshold values as the
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first step of the implementation of the En-BMA and the Modified En-BMA (M-EnBMA)
methods for forecasting precipitation. As can be seen from Figure 6-9, the average number
of selected members is noticeably affected by changing the stopping threshold value. As
expected, increasing B leads to a higher number of selected members; however, this
increase does not follow the same trend using both En-BMA and M-EnBMA methods. The
M-EnBMA approach has a lower number of selected members, compared to En-BMA, in
the case of using the same threshold value. This is justifiable by the fact of using joint
entropy as the objective function in the inner loop of the modified selection procedure
(Figure 6-3), which helps to keep information at the highest possible level by narrowing

the ensemble down.

Also, using MAE and CRPS measurements, the performances of both post-processing
approaches in producing 6-hour ahead forecasts have been evaluated as a function of f
(Figure 6-9). The En-BMA predictions in both basins indicate that using threshold values
less than 0.9 leads to unreliable precipitation forecasts and the values of 0.9 and 0.95
provide the best results. On the other hand, in the case of applying M-EnBMA, the
improving trend of the performances continues by increasing 3. The f = 0.99 leads to the
selection of around 4 members (on average) with the best performances in both basins. So,
for the rest of this study, the threshold values of 0.95 and 0.99 were respectively selected

for En-BMA and M-EnBMA applications in both watersheds.
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Figure 6-9 The effects of stopping threshold values on the average number of selected
members and the performances of the 6-hour ahead forecasts, derived from (a) the En-
BMA and (b) the modified En-BMA post-processing methods in both Big East River and

Black River watersheds

Prior to the weights, how frequently an individual member is selected shows its
participation in generating predictive forecasts in the case of using entropy-based
approaches. The M-EnBMA selection ratios of various members in both basins at different
lead-times, as shown in Figure 6-10, are not always in accordance with their corresponding
individual performance (Figure 6-5). REPS, as the most promising model in both

watersheds, does not possess the predominant ratios of selection. As another example in
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the Big East River watershed, HRDPS contribution in the final selected ensemble is
relatively high, while its performances at lead-time 18 and 24 hours are among the worst
ones. In conclusion, these results indicate that even the low-skill models could have some
unique information, and their presence in the ensemble is required to meet the collectively
exhaustive and mutually exclusive properties. Also, the distribution of the average En-
BMA weights amongst the selected members does not properly agree with their
corresponding selection ratios (Figure 6-10), while their comparison with the BMA
weights shows a positive relationship between them. This may be due to the fact that the

same structure as the original BMA is utilized in the proposed entropy-based methods.
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Figure 6-10 The average weights and selection ratio of each member in the case of
applying the modified En-BMA (M-EnBMA) approach and a comparison between the M-
EnBMA and BMA weights in both Big East River and Black River watersheds at different

forecasting horizons (6 to 24 hours ahead).
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For evaluating the proposed modifications, we made a comparison between the En-BMA
and the M-EnBMA methods using the percent improvements based on different metrics
where positive values show the advantages of applying modifications (Table 6-2). The
results in both watersheds indicate the superiority of the modified version over the original
one based on all performance metrics. This advantage exists in all forecasting horizons by
providing 2 to 15 percent performance improvement in general. No relationship can be
found between improvements and the forecasting horizons. In the Big East River watershed,;
the highest improvement can be seen in the 12 hr ahead forecasts, where MAE, RMSE, and
CRPS indicate more than 10 percent of improvement. However, in the Black River
watershed, the largest difference between En-BMA and M-EnBMA occurs at lead-time 18
(MAE, PCC, and RMSE improve more than 10 percent). Altogether, it is concluded that
using the proposed modifications in the En-BMA structure leads to better precipitation
forecasting. So, the modified En-BMA method is considered for the rest of this paper to be

compared with the BMA approach.

Table 6-2 The percentage of improvements derived from using the modified En-BMA
instead of BMA based on different performance metrics in both Big East River and Black
River watersheds at different forecasting horizons (6 to 24 hours ahead)

Basin Big East River Black River
. Percent Improvement (%)* Percent Improvement (%)
Lead-time (hr)
MAE PCC RMSE CRPS MAE PCC RMSE CRPS

6 4.1 2.0 2.0 35 8.2 2.4 3.6 2.3

12 12.8 7.7 11.8 115 53 2.5 2.6 4.7

18 6.6 4.9 4.9 29 12.3 14.5 14.0 8.4

24 24 6.4 2.2 2.8 2.4 3.6 3.6 7.0

1 The positive values of percent improvement indicate the advantage of using M-EnBMA over En-BMA.
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6.5.4 Modified En-BMA versus BMA

BMA and the proposed modified En-BMA, called M-EnBMA hereafter, are implemented
to post-process the ensemble of 6-hourly accumulated precipitation forecasts up to 24 hours
ahead within the verification period (2019/07/03 to 2020/08/31). Using four different
criteria, presented in Section 6.3.3, Figure 6-11 compared the performance of both methods
in the Big East River and the Black River watersheds. The main conclusion that stands out
from the comparison in both watersheds and different lead-times is that in general, all
performance statistics show the superiority of M-EnBMA over BMA. The percentages of
performance improvement based on various metrics are always positive showing the
advantage of using M-EnBMA compared with BMA for post-processing precipitation

forecasts.

These enhancements are not constant as a function of different performance metrics. The
CRPS criterion, which assesses the accuracy of the probabilistic forecasts, shows an
average of 5% consistent enhancements in all forecasting horizons at both basins. However,
the percent improvements based on the other three deterministic-based measurements (i.e.
MAE, PCC, and RMSE), vary as a function of forecasting horizons. In the Big East River
watershed, the greatest superiority of M-EnBMA over BMA occurs for 18 hours ahead
forecasts (the MAE, PCC, and RMSE improvements are respectively 8%, 9%, and 8%)
while, both BMA and M-EnBMA methods leads to almost similar results at lead-time 24.

In Black River, on the other hand, the lowest difference between BMA and M-EnBMA
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methods can be seen at 18 hours ahead forecasts where almost the same results are derived
from both approaches.
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Figure 6-11 Comparison of different performance measurements for 6 to 24 hours-ahead
forecasts derived from the BMA and the modified En-BMA (M-EnBMA) methods in (a)
Big East River and (b) Black River watersheds. The positive value of % improvement
shows the advantage of using M-EnBMA instead of BMA

Also, to specifically evaluate the performances of both methods in reproducing high
precipitation values, MAE is calculated and compared using precipitation values more than
90 percentile (MAE,,) and values more than 5 mm (MAE<). These comparisons in general,
as presented in Table 6-3, again show that M-EnBMA is better in terms of forecasting large
values. These enhancements are more pronounced compared to the ones calculated using
the whole data. In the case of 24 hours ahead forecasts in the Big East River and 18 hours
ahead forecasts in the Black River watershed, as both methods possess the same overall
performance based on the whole verification period (Figure 6-11), the MAEq, and MAE

improvements are also marginal. However, in most of the other forecasting horizons in
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both basins, the highest improvements can be seen based on MAE,, and MAE<, compared
to MAE. For instance, at 12-hour ahead forecasts, MAE shows around five percent of
improvement in both basins, while the MAE,, and MAE5 improvements respectively are

6% and 12% in the Big East River and 11% and 10% in the Black River watershed.

Table 6-3 The performance statistics of the BMA and the modified En-BMA (M-EnBMA)
focusing high precipitation values in both Big East River and Black River watersheds at
different forecasting horizons (6 to 24 hours ahead)

Basin Lead-time Method MAEq,* Improvement MAE_s' Improvement
(hr) (%)’ (%)
BMA 1.93 3.26
6 10.3 15.2
M-EnBMA  1.73 3.84
BMA 1.79 3.40
12 51 11.7
M-EnBMA  1.70 3.01
BE®
BMA 2.83 4.95
18 10.3 7.5
M-EnBMA 254 4.58
BMA 421 6.14
24 1.4 3.0
M-EnBMA  4.15 5.95
BMA 2.23 4.26
6 4.3 6.9
M-EnBMA  2.13 3.97
BMA 2.72 5.64
12 11.1 9.9
BL: M-EnBMA 241 5.08
BMA 2.08 3.65
18 2 2.7
M-EnBMA  2.04 3.80
BMA 4.17 6.16
24 2.7 38.3
M-EnBMA  4.06 38

1 MAEy, and MAE. 5 are the MAE calculated respectively based on values more than 90 percentile and 5 mm
2 The positive values of percent improvement indicate the advantage of using M-EnBMA over BMA.
3 BE and BL are the abbreviations of Big East River and Black River watersheds, respectively.

Moreover, Figures 6-12 and 6-13 evaluate the statistical reliability of both BMA and M-

EnBMA methods using the reliability diagram and its corresponding reliability
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measurements (o) respectively in the Big East River and the Black River watersheds.
Comparing the BMA and the M-EnBMA results based on all precipitation data indicates
the same reliability of both approaches in both watersheds and all forecasting horizons.
However, by focusing on large values, the superiority of M-EnBMA over BMA in terms
of generating reliable probabilistic forecasts is noticeable. Using precipitation data more
than 90 percentile illustrates the slight enhancement of the reliability of the probabilistic
forecasts in the case of applying M-EnBMA, compared to BMA (around 5% improvement
in o values in most of the lead-times in both basins). Also, in the Big East River watershed,
except for 24 hours ahead forecasts, where the difference between the reliability of BMA
and M-EnBMA is negligible, the percent improvement of o for forecasting large
precipitation values (more than 5 mm) are always more than 10% (Figure 6-12). The same
conclusion derived from the Black River watershed where the implementation of M-
EnBMA leads to 21%, 27%, 15%, and 18% improvement in the reliability of 6-, 12-, 18-
and 24-ahead forecasts of more than 5 mm precipitation values (Figure 6-13). It is worthy
of note that all predictive reliability plots fell above the uniform line, which indicates that
both BMA and M-EnBMA possess negative biases by under-predicting the precipitation
values at different lead-times. These under-estimations are more pronounced by focusing
on larger values (Figure 6-13), which stem from the presence of the negative biases in all

individual precipitation forecasts in both basins.

287



Ph.D. Thesis — Pedram Darbandsari McMaster University — Civil Engineering

Lo Lead-time = 6 hr Lead-time = 12 hr Lead-time = 18 hr Lead-time = 24 hr
M-EnBMA /// M-EnBMA y, i M-EnBMA 7 M-EnBMA
08 —BMA ’ —BMA A —BMA —BMA ~

=
>~

—06 >
=3 =
=
= 04 Z
0.2 Agua = 0.86 4 appa = 0.82 f agya = 0.81 / ttgpn = 0.74
00 @ p-prpma = 0.85 pg-gnpua = 0.81 y-gnpua =0.84 Api-gngma = 0.75
Lo —
ey
./_i g
0.8 %
— 0.6 §
Z 2
= 04 -]
/
0.2 Apys = 0.59 / apya = 0.52 / agya = 0.57 appa = 0.47 g;
@ p-gnpma = 0.63 X p—pnpma = 0.56 / @y pupma = 0.61 @y-pnpma =044 &
0.0
Lo
0.8 =
=
=06 - o
= E
= 04 | -
‘ S
02 apa = 044 tpya = 0.43 tpya = 0.49 apua = 0.29 =
@y pnpma = 053 @p-gnmma = 0.50 ®p—gnpma = 0.56 @y —gnama = 0.30
0.0

0.0 02 04 0.6 0.8 L0 0.0 02 0.4 0.6 0.8 10 00 0.2 0.4 0.6 0.8 10 00 0.2 0.4 0.6 038 1.0
Forecast Probability Forecast Probability Forecast Probability Forecast Probability

Figure 6-12 The reliability plot and their corresponding « values at different forecasting
horizons (6 to 24 hours ahead), derived from both BMA and modified M-EnBMA (M-
EnBMA) results regarding the whole time-series, values more than 90 percentile, and

values more than 5 mm in the Big East River watershed
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Figure 6-13 The reliability plot and their corresponding « values at different forecasting
horizons (6 to 24 hours ahead), derived from both BMA and modified En-BMA (M-
EnBMA) results regarding the whole time-series, values more than 90 percentile, and
values more than 5 mm in the Black River watershed

6.6 Summary and Conclusion

Bayesian Model Averaging (BMA) is one of the most common post-processing approaches
in hydro-meteorological studies, which uses the weighted average of predictive
distributions based on individual members to produce probabilistic forecasts. As the BMA
formulation is based on the law of total probability, it requires independent members
(mutually exclusive) with a high capability of capturing the future variability (collectively
exhaustive) for producing more accurate forecasts. In this study, the modified version of

the entropy-based BMA (En-BMA) method is proposed for precipitation forecasting where
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a modified entropy-based selection procedure is used within the BMA structure in order to
select the optimal subset of forecasts by keeping the information of the ensemble in the
highest possible level with the lowest redundancy. Considering seven different 6-hourly
accumulated precipitation forecasts up to 24 hours ahead in two study areas, in Ontario,
Canada, this study assessed the effects of the proposed modifications and provide a
comprehensive comparison between the modified En-BMA and BMA in generating

predictive precipitation forecasts.

From the initial comparison of individual forecasts, we found that although REPS can be
considered as the most robust precipitation forecasts in both study regions, it is not possible
to select one model as the best one for all forecasting horizons and locations, confirming
the advantage of possessing an ensemble of multi-model forecasts. Moreover, the results
indicate that applying the proposed modifications in the En-BMA structure tended to
improve the accuracy of the forecasts in all forecasting horizons and both watersheds,
compared to the original En-BMA. The modified entropy-based selection procedure
constructs the optimal subset of the ensemble with a lower number of members (i.e. lower
redundant information), compared to the original one, while the information content is at
the same level. This provides a better balance between the mutually exclusive and
collectively exhaustive properties and consequently leads to better results. Lastly, we
compared the forecasts from the modified En-BMA and the BMA methods. Considering
the whole forecast time series, we found that the modified En-BMA provides slightly more
accurate precipitation forecasts while in terms of reliability, both methods possess the same

performance. However, by focusing on large precipitation values, which are receiving
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particular attention in hydrology, there is a significant advantage of implementing the
modified En-BMA method over the BMA approach for generating more reliable and

accurate probabilistic precipitation forecasts.

As the structure of the proposed entropy-based selection procedure is not limited to
variables with any specific characteristics, the findings of this research can be generalized
to other future studies where the application of the BMA with point-mass and a gamma
distribution is reliable. Covering watersheds with various climatologic conditions and
forecasts with shorter (e.g. hourly) or longer (e.g. daily) temporal resolution is

recommended in future applications of the proposed En-BMA method.
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Chapter 7. Conclusions and Recommendations

7.1 Conclusions

This thesis was mainly focused on the development of a novel probabilistic ensemble
streamflow forecasting framework to reliably quantify and reduce predictive uncertainty
by using the full potential of the forecasts ensemble. The study areas in this research cover
the Big East River and Black River watersheds as snow-dominated data-poor catchments
situated in Northern Ontario, Canada. First, after developing and evaluating various
conceptual hydrologic models and examining different variants of the Bayesian Model
Averaging (BMA) method, the promising Entropy-based BMA (En-BMA) post-processing
approach was proposed for enhanced probabilistic streamflow forecasting where entropy
theory concepts are used for relaxing the remaining limitations of the BMA method. Then,
by taking advantage of both BMA and the Hydrologic Uncertainty Processor (HUP)
methods, an ensemble-based Bayesian post-processor was developed for better quantifying
the predictive uncertainty in the context of streamflow forecasting. Last, the proposed En-
BMA method was modified to be used as a post-processor for enhancing ensemble
precipitation forecasts. The outcomes of this study are expected to benefit the hydrology
community at large, the operational streamflow forecasting centers, and could also be
integrated into any flood forecasting and early warning systems. The main findings of the

five thesis chapters are summarized as follows:
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7.1.1 Conceptual hydrologic models in data-scare regions

e Using various objective functions for calibrating parameters and estimating the
mean areal precipitation in different ways possess heterogeneous effects on the
performances of various conceptual hydrologic models. So, considering these
effects in any model inter-comparison process is required and leads to more
consistent findings and conclusions.

e Comparing five different objective functions shows the advantages of using Nash
Volume Error (NVE) and Kling Gupta Efficiency (KGE) for calibrating models’
parameters used for continuous daily streamflow simulation.

e Among seven structurally different conceptual models, MACHBYV provides the
most robust streamflow predictions by providing relatively accurate results
regarding low, medium, and high flows in data-poor watersheds. Focusing on high
flows indicates the competitive performances of the GR4J model.

e HEC-HMS based models lead to the relatively worst results. The poor
performances of three HEC-HMS based models, especially regarding low flows,
may stem from the poor estimation of the base flow and the use of pre-specified
monthly PET in their structures.

e Incorporation of the snowmelt method in hydrologic modeling of snow-dominated
watersheds is a necessary task. However, using a more complex snow routine does
not always lead to better streamflow predictions. The advantages of using more
complex snowmelt methods depend on the structure of the hydrologic model, which

shows the importance of comparing different snowmelt approaches regardless of
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their complexity, to evaluate their compatibility with the selected rainfall-runoff
model.

The reliability and suitability of the CaPA precipitation data to be considered as
forcing inputs of the hydrologic models in regions with sparse ground-based
measurements was confirmed in Northern Ontario, Canada. The calibrated models
using CaPA data lead to better streamflow simulation compared to the ones being

calibrated based on the ground-based observations.

7.1.2 Bayesian Model Averaging method for streamflow simulation/forecasting

Bayesian Model Averaging is a well-known probabilistic ensemble-based post-
processing approach taking the advantages of multiple forecasts for reliably
quantifying the predictive uncertainty and generating probabilistic results.

As the main input of the BMA method, the ensemble of streamflow simulations has
a direct impact on the accuracy and reliability of the BMA derived predictive results.
Besides the simulation skill of different models, the diversity of the ensemble
members and the capability of the ensemble, as a whole, to capture the
observational variability are the important features to enhance the results. In the
context of streamflow simulation in data-scarce regions, using multiple inputs and
multiple models for constructing members of an ensemble leads to better BMA
results.

Among various modifications being proposed to enhance the BMA method dealing
with streamflow data, implementation of the heteroscedastic variance improves the

BMA predictive performance. Also, incorporating data transformation procedure,
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in general, improves the reliability while there are some concerns about the
sharpness of the BMA predictive results, especially regarding high flows.
Simultaneous application of non-constant variance and data transformation
modifications is not recommended as it significantly deteriorates the sharpness of
the probabilistic results.

The expectation-maximization algorithm is an efficient method for reliably
estimating BMA parameters and there is no need for using a more complex global

optimization approach.

7.1.3 Entropy-based BMA for probabilistic streamflow forecasting

An Entropy-based Bayesian Model Averaging (En-BMA) approach, integrating
entropy theory concepts and BMA, is proposed to provide enhanced probabilistic
streamflow forecasts.

The combination of multiple objective functions and multiple hydrologic models
generates a more diverse ensemble of streamflow forecasts with a higher capability
of capturing future possibilities and yields more reliable and accurate BMA
probabilistic results.

By keeping the information content while reducing the redundancy within the
ensemble, the proposed entropy-based selection procedure narrows down the
streamflow forecasts for providing a balance between the mutually exclusive and
collectively exhaustive properties which are the inherent assumptions of the BMA

method.
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Although both BMA and En-BMA methods generate comparable streamflow
forecasts in general, different performance evaluation metrics show the superiority
of the proposed En-BMA method over BMA, for providing better probabilistic and
deterministic high flow forecasts. The advantages of En-BMA can be seen in all
forecasting horizons, while it is less obvious as lead time increases.

The proposed entropy-based selection method is a non-parametric procedure
without any assumptions about the distributions of the variable. So, it can be
integrated with any variant of the BMA method to be suitably used for other types

of variables (e.g. precipitation, soil moisture, and snowmelt).

7.1.4 HUP-embedded BMA for streamflow probabilistic forecasting

HUP is a statistical post-processing approach that relied on a deterministic
streamflow forecast for quantifying predictive uncertainty and providing
probabilistic results. The effects of the forecasting skills of the deterministic
hydrologic model on the HUP predictive performance are negligible in terms of
low flow forecasting. However, by focusing on high flows, using a better
performing rainfall-runoff model vyields significantly better HUP-derived
probabilistic forecasts, especially in longer lead times.

Making the most of the respective strengths of both HUP and BMA methods, the
HUP embedded BMA (HUP-BMA) was proposed to provide more reliable and
accurate probabilistic streamflow forecasts by implicitly taking into account the
effects of initial conditions and taking the advantages of considering multiple

forecasts.
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The superiority of the proposed HUP-BMA method over both HUP and BMA
approaches for short-range streamflow forecasts is shown by various deterministic
and probabilistic performance metrics. However, increasing lead-time and reducing
the dependence of the actual flow with the initial observation lead to the
deterioration of the HUP-BMA performance. In the latter case, removing the
dependence of the HUP-BMA formulation on initial flow values is beneficial and
improves the ability of the method to generate more reliable and accurate

probabilistic forecasts.

7.1.5 Modified Entropy-based BMA for probabilistic precipitation forecasting

The modified entropy-based selection procedure is proposed to better meet the
mutually exclusive and collectively exhaustive requirements of the BMA method.
The implementation of the proposed selection procedure within the structure of the
BMA variant for precipitation leads to the modified version of the Entropy-based
BMA method for probabilistic precipitation forecasting.

The proposed modifications are required to make the En-BMA method suitable for
reliable and accurate ensemble-based probabilistic precipitation forecasting. As
indicated by various performance measurements, the modified En-BMA provides
more accurate post-processed precipitation forecasts in all lead times, compared to
the original En-BMA.

Various deterministic evaluation metrics based on the whole forecasting period
show slight improvements of the results in the case of applying the modified En-

BMA compared with BMA, while both methods produce comparable probabilistic
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forecasts in term of reliability scores. By focusing on high precipitation values,
however, the advantages of implementing the modified En-BMA over BMA are
noticeable in terms of generating both deterministic and probabilistic sub-daily

precipitation forecasts.

7.1.6 General Conclusions

The general conclusions and contributions of this thesis are as follows:

MACHBY and GR4J are the most robust rainfall-runoff models for simulating the
hydrological processes of watersheds with low data availability in northern Ontario
watersheds.

The archive of CaPA data is a reliable source of precipitation in Northern Ontario,
Canada, which can be used as an alternative forcing inputs of rainfall-runoff models
in regions with sparse ground-based measurements.

The proposed entropy-based BMA post-processing approach yields enhanced
probabilistic high flow forecasting by relaxing the assumption of having a mutually
exclusive and collectively exhaustive ensemble of forecasts.

The modified entropy-based BMA method is proposed for generating enhanced
probabilistic precipitation forecasts, which shows large forecast improvement on
high precipitation values.

Short-term streamflow forecasting using the proposed HUP-embedded BMA post-

processor is more reliable and accurate than both HUP and BMA methods.
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e Formulating HUP-BMA without considering the effects of initial values is
identified to produce better probabilistic medium-range streamflow forecasts

especially in watersheds with a short time of concentration.
7.2 Recommendations for Future Research

This thesis is a primary step in the process of developing a reliable probabilistic streamflow
forecasting framework to be used in the Canadian Adaptive Flood Forecasting and Early
Warning System (CAFFEWS). Therefore, great efforts are still required to achieve this
objective. One of the primary sources of uncertainty in hydrologic modeling is the forcing
inputs, precipitation in particular. Apart from the unknown future precipitation, there are
errors in observation data that can significantly affect the quality of the streamflow
simulation/forecasting process. This effect is more noticeable in regions without a dense
ground-based meteorological network (Sirisena et al., 2018; Tegegne et al., 2017; Worqlul
et al., 2017). Therefore, besides CaPA, which is identified as a reliable alternative source
of precipitation, there are some other ways of deriving precipitation data, such as the radar-
based and satellite-based precipitation estimates, that should be deeply evaluated as forcing

inputs of hydrologic models in data-poor watersheds in Canada.

The proposed entropy-based selection procedure is the initial step of using the entropy
concept for overcoming the mutually exclusive and collectively exhaustive assumptions of
the BMA approach. Further improvements can be achieved by revising the proposed
selection structure or implementing other entropy measures, such as Net Information

(Markus et al., 2003). As another interesting topic, following up on the last study of this
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thesis (Chapter 6), the segregated structure of the proposed entropy-based selection
procedure encourage future studies to investigate the combination of the proposed selection
method with various BMA variant, such as Copula-embedded BMA (Madadgar &

Moradkhani, 2014).

As shown in Chapters 3 and 4 of this thesis, the proposed En-BMA and HUP-BMA
methods produce reliable post-processed streamflow forecasts, however, a more
comprehensive evaluation has yet to be performed in various types of watersheds, in terms
of size, climatologic conditions, and geography. The additional interesting research topic
would be the integration of the proposed En-BMA and HUP-BMA methods to take
advantage of both systems for generating enhanced ensemble-based probabilistic
streamflow forecasts. The proper combination of these two methods can reduce the two
important limitations of the BMA approach by considering a mutually exclusive and
collectively exhaustive ensemble of forecasts in conjunction with the effects of initial flow
values and could lead to a better quantification of predictive uncertainty associated with
streamflow forecasting. Also, it is worth to examine the implementation of a reliable bias-
correction method prior to the application of either HUP-BMA and En-BMA methods as
recent studies showed the advantages of using bias-corrected forecasts in ensemble-based

post-processing approaches (e.g. Han & Coulibaly, 2019; Sharma et al., 2019).

Moreover, the unknown future meteorological forcing input of hydrological models is one
of the main sources of uncertainty within streamflow forecasting and it is required to be
reduced and quantified in any operational flood forecasting framework. Generating an

ensemble of streamflow forecasts using multiple precipitation products and multiple
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hydrologic models is one way of accounting for the aforementioned issue; and has recently
received particular interests in the context of Bayesian Model Averaging (e.g. Awol et al.,
2021; Roy et al., 2017; Sharma et al., 2019; Xu et al., 2019). Therefore, as another topic of
considerable interest, the application of the proposed ensemble-based Bayesian post-
processing methods (i.e. En-BMA and HUP-BMA\) in conjunction with multi-input multi-
model streamflow forecasts as a platform for probabilistic streamflow forecasting could be
evaluated. Lastly, an advanced Bayesian ensemble probabilistic streamflow forecasting
framework could be developed by taking the advantage of probabilistic post-processing of
both precipitation and streamflow forecasts. The appropriate implementation of the well-
post-processed probabilistic precipitation forecasts in a multi-model streamflow
forecasting method can greatly reduce and quantify the predictive uncertainty and lead to
enhanced streamflow forecast. The proposed En-BMA method would be a good choice for
developing the aforementioned streamflow forecasting framework as it is a reliable

approach in the context of both streamflow and precipitation data.
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