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Lay Abstract

An important part of learning any skill is receiving information that helps us recog-

nize mistakes and improve our performance, known as feedback. In fact, feedback

presented as a punishment or reward has been shown to improve an individual’s

ability to learn and retain skills, respectively. Therefore, can combining punishment

and reward feedback benefit both learning and retention? One way to deliver both

types of feedback is using a transition schedule. Some have recommended that tran-

sitioning from punishment to reward feedback would be most effective, while others

have suggested the reverse order. The current study examined whether the order of

receiving punishment and reward feedback affected learning and retention. To test

this, subjects either received punishment-to-reward feedback or reward-to-punishment

feedback during a key-pressing task. Our results did not find conclusive evidence that

the order mattered for learning and retention. Furthermore, the difference between

punishment and reward feedback overall was smaller than previously thought. These

findings highlight that more studies may need to be conducted to get a better under-

standing of whether the order of punishment and reward feedback can benefit both

learning and retention.
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Abstract

Punishment and reward feedback during motor learning tasks appear to have some

beneficial impact on learning and retention, respectively. Therefore, it is possible

that combining punishment and reward feedback would benefit both learning and

retention. Within the sports coaching domain, a combination of punishment and

reward feedback schedule has been suggested to improve performance. According to

the coaching literature, the most effective approach is providing reward-to-punishment

feedback. However, transitioning from punishment-to-reward feedback may be more

effective based on the motor learning literature. The present study examined the

utility of combining punishment and reward feedback through a transition schedule

approach during a serial reaction time task. To test the competing predictions about

feedback order, half the participants received punishment-to-reward feedback and the

other half received the reverse order. Our results revealed that training response time

significantly improved with no significant difference between the order of feedback.

However, both types of feedback order did not improve retention during the same-day

and delayed post-tests. Yet, the non-significant equivalence test indicates that these

findings remain inconclusive. Finally, within-subjects analysis of the punishment and

reward conditions found that training significantly improved response time with no

difference between them. In this case, the equivalence test was significant, revealing
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that the estimated effect was surprisingly small. Overall, the current study failed

to find conclusive evidence that the order of a transition feedback schedule matters

for learning and retention. However, the difference between punishment and reward

conditions may be smaller than previously assumed by motor learning studies.
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Chapter 1

Literature Review

1.1 General introduction

Many of us can still recall the terrifying, yet exciting experience of learning to ride

a bicycle. Rhythmically pushing down on the pedals with your legs to move forward

and navigating the bicycle using the handlebars, while simultaneously balancing on

it and avoiding pedestrians on the street. However, with the guidance of our parents

and months of practice, we begin to master this motor skill. We start riding the

bicycle independently, travelling farther distances, and falling less frequently. Even

after a long break (e.g., hours, days, or years), we can retain the ability to ride a

bicycle with high proficiency. This entire process of learning a new motor skill is

emblematic of a behavioural phenomenon known as motor learning.

Motor learning is an essential part of human behaviour that covers a broad range

of domains. As a result, it has been defined in various ways. According to Magill and

Anderson (2017), motor learning is described as a change in the capability of executing

a skilled movement, through practice, that is inferred from a relatively permanent
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change in performance. It has also been defined as a set of internal processes that

lead to the relatively permanent changes in the ability to produce skilled movements as

a result of practice (Schmidt et al. 2019). Alternatively, motor learning can be viewed

as an umbrella term consisting of two types of learning: (a) skill acquisition, defined

as the formation of a new motor skill through practice, and (b) skill maintenance,

the ability to maintain a consistent level of performance of a skill in a fluctuating

environment (Krakauer et al., 2019). Finally, the cognitive neuroscience literature

refers to motor learning as alterations in the neural architecture of the brain that

lead to a change in the ability to perform a movement (Diedrichsen and Kornysheva,

2015).

Despite the variety of motor learning definitions, there are common features among

them. First, motor learning is the result of practice and/or experience; it leads to the

acquisition of a skilled movement and increases the capability of executing it. Second,

motor learning cannot be directly observed. Given that learning is likely an internal

process, occurring at multiple levels within the nervous system, it is often inferred

from changes in performance (Magill and Anderson, 2017; Schmidt et al., 2019). For

example, an individual’s initial attempts at riding a bicycle often produces awkward

movements and leads to many falls. However, through practice, their movements

and coordination will gradually improve. Therefore, by observing these changes in

performance, it can be inferred that an individual is learning. Third, motor learning

is relatively permanent, that is, the learner should be capable of repeatedly executing

the movement, even after a period without any practice (Diedrichsen and Kornysheva,

2015; Magill and Anderson, 2017; Schmidt et al., 2019).
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Motor learning can be further described based on three different stages that sup-

port the generation of a skilled movement (Krakauer et al., 2019; Wolpert et al., 2011).

The first stage, referred to as goal selection, requires the ability to process sensory

information from the environment and form a movement goal. The next stage, action

selection, an appropriate movement to accomplish that goal is chosen, and finally, the

action execution stage involves the performance of the movement with accuracy and

precision. Consequently, improvements in any of these stages can be characterized as

motor learning (Krakauer et al., 2019).

1.2 Measurement of motor learning

Given that motor learning is defined in a variety of ways, different methods have

been used to infer learning from performance in the laboratory setting. In the field

of kinesiology, motor learning is inferred based on the degree of permanence of the

motor skill (Schmidt et al., 2019). A common method to measure this feature is a

delayed retention test, where the learners execute a practiced skill following a period

of inactivity or rest (i.e., minutes, hours, or days). If there is a high degree of per-

manence, it is inferred that the individual has learned the motor skill (Kantak and

Winstein, 2012; Magill and Anderson, 2017; Schmidt and Bjork, 1992). Therefore,

learning and retention in kinesiology are used interchangeably.

In contrast, the motor neuroscience literature measures motor learning during the

time the individual is practicing the skill (Diedrichsen and Kornysheva, 2015). In this

case, learning is inferred based on changes in performance during the practice period.

Specifically, if there is a significant improvement from the first practice attempt to

the last, it is inferred that learning has occurred (Shmuelof et al., 2012; Diedrichsen
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and Kornysheva, 2015). In contrast, a retention test assesses how well the motor skill

is encoded, stored, and retrieved in the central nervous system. Therefore, learning

and retention in the field of motor neuroscience are considered distinct components

of motor behaviour.

Overall, motor learning is a complex process that can be measured using various

methods. In this thesis, learning and retention are operationally defined in accordance

with the cognitive neuroscience literature as it is research predominantly from this

area that has motivated this thesis. That is, performance changes during training

provide an index of learning and performance changes on a delayed post-test following

a period of no practice provide a measure of retention.

1.3 Motor learning paradigms

The behavioural processes and cortical substrates supporting motor learning have

been studied experimentally using a variety of paradigms in a laboratory setting.

Despite the different paradigms employed, these simple laboratory-based tasks are

presumed to provide fundamental insight into the learning processes involved with

more complex real world-tasks.

Although these simple tasks have enhanced our understanding of the principles

of motor learning, it is important to mention that some have argued that they do

not generalize to real-world tasks. It has been suggested that paradigms with more

complex tasks are likely required to generalize the findings to real world-tasks (Wulf

and Shea, 2002). However, quantifying the complexity of a range of tasks, with

different movement outcomes and task demands, is a challenge because it can be very

subjective across different researchers. For the purpose of this review, the following
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sections will focus on motor adaptation and sequence learning paradigms.

1.3.1 Motor adaptation

The first method developed to record motor adaptation, referred to as a prism adap-

tation task, was in 1867 by Hermann von Helmholtz (Helmholtz, 2013). In prism

adaptation (Harris, 1963; Redding and Wallace, 1993), participants wore goggles that

contained wedge prisms, resulting in the lateral displacement of their visual field to

the left or right, and were instructed to point with their index finger toward visual

targets directly in front of them. Despite prism adaptation providing a clear demon-

stration of motor adaptation (Martin et al., 1996), it was replaced by other tasks that

allowed for more accurate control of a perturbation.

Another approach that has been developed is the force-field adaptation task (Shad-

mehr and Mussa-Ivaldi, 1994). During this task, participants hold the handle of a

robotic manipulandum and make a reaching movement toward a visual target. In

this case, the robotic manipulandum is programmed to apply a force on the hand

that is proportional to the velocity of the movement and directly perpendicular to

the direction of the movement. Although these forces immediately shifted the path

of the reaching movement, participants must adapt to this dynamic perturbation on

future attempts to land on the correct target.

One of the more common experimental paradigms that have been extensively used

to investigate motor adaptation is the visuomotor rotation task (Pine et al., 1996;

Krakauer, 2009). In this paradigm, participants make reaching movements, with

the cursor representing the position of the participant’s hand, to visually displayed

targets. During the reaching movement, a counterclockwise or clockwise rotation is
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imposed on the cursor, relative to the starting position, and participants must learn

to counter the rotation to successfully hit the target.

In all these paradigms, the procedure generally consists of three phases of testing:

(a) pre-training phase, used to measure baseline performance prior to a perturbation

being introduced; (b) training phase, where a perturbation is introduced and partic-

ipants learn to adapt during the training trials; and (c) post-training phase, where

the perturbation is removed (see Figure 1.1A).

Specifically, during pre-training, participants familiarize themselves with the task

and are provided with veridical feedback during the reaching movement. Following

pre-training, a perturbation (e.g., lateral displacement of visual field, force-field, or

cursor rotation) is imposed on the participant’s movement leading to an immediate

directional error. However, participants account for the distorted sensory feedback

following several trials with the perturbation and learn to gradually modify their

movement and compensate for the perturbation. Interestingly, even after the pertur-

bation is removed, participants continue to produce the adaptive movement. But it

gradually declines over time and their movements return to baseline performance, a

behavioural outcome known as aftereffects (Shadmehr et al., 2010).

1.3.2 Neural correlates of motor adaptation

There are several learning mechanisms that have been proposed to play an important

role in adaptation including forward model-based learning (Shadmehr et al., 2010) and

more recently, direct policy-based learning (Hadjiosif et al., 2021). A popular theory is

that adaptation is driven by sensory prediction error, which is the difference between

the predicted and the actual movement outcome. In particular, the sensory prediction

6
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Sequence Learning
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Figure 1.1: Illustrative performance curves found in adaptation learning tasks and
sequence learning tasks. (A) Adaptation learning. Adaptation tasks are used to examine
how individuals maintain their performance when a systematic perturbation is introduced into their
learning environment. At the start of the training phase, the perturbation (e.g., force field, cur-
sor rotation, etc) is introduced and causes an immediate directional error. However, participants
gradually modify their movements to compensate for the perturbation, leading to a reduction in
error. At the start of the post-training phase, the perturbation is removed and this results in a
directional error of similar magnitude as in training, but it is now in the opposite direction (i.e.,
aftereffect). The error decreases rather quickly and baseline performance levels are re-established.
(B) Sequence learning. Sequence learning tasks examine how individuals learn to produce a
series of discrete actions as quickly and accurately as possible. In pre-training, individuals familiar-
ize themselves with the task and their baseline performance is established under control conditions
(e.g., no feedback). The training phase is when individuals experience the practice variable being
investigated in the experiment (e.g., feedback schedule). Often two or more manipulations of the
practice variable are used to identify effective motor learning interventions. With the exposure to
the practice variable, error in performance gradually decreases in an exponential fashion over time.
Individuals then perform the post-training phase, which is identical to the pre-training phase. The
post-training phase usually happens following an extended period of no practice (e.g., 24 hours) to
assess the relative permanence of what was learned during the training phase. In the post-training
period, error has ideally stabilized at better-than-baseline levels due to the effects of training.
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error of the movement outcome updates an internal forward model. A forward model

is a system that predicts motor commands based on errors from previous movements

(Shadmehr et al., 2010). In addition, it is widely suggested that forward model-

based learning is dependent upon specific regions of the brain (Taylor and Ivry, 2014;

McDougle et al., 2016). A brain structure that is believed to be involved in computing

sensory prediction error and updating an internal forward model is the cerebellum

(Izawa et al., 2012; Taylor and Ivry, 2014).

Tseng et al. (2007) examined adaptation in healthy controls and participants with

spinocerebellar ataxia, a degenerative neurologic disease, during a visuomotor rotation

task. Compared to the healthy control, the results revealed that the spinocerebellar

ataxia participants exhibited significantly larger errors and a lower rate of adapta-

tion. Furthermore, the severity of the spinocerebellar ataxia participant’s symptoms

correlated with their adaptive capabilities. Participants with more severe cerebellar

symptoms made smaller corrections of their movement errors from trial-to-trial, and

thus, adapted and learned at a lower rate. However, this does not mean that the

cerebellum is solely responsible for motor adaptation. Instead, multiple distributed

cortical structures are likely involved, such as the prefrontal, premotor, and parietal

cortex, functional integrated in order to guide adaptive behaviour (Krakauer et al.,

2004; Diedrichsen, 2005; McDougle et al., 2016). Overall, these findings demonstrate

that the cerebellum plays an essential role and that it could be involved in comput-

ing sensory prediction errors to update an internal forward model during adaptation

(Shadmehr et al., 2010; Tseng et al., 2007).
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1.3.3 Sequence learning

Another type of paradigm that is commonly utilized in the laboratory setting to study

the behavioural characteristics of motor learning are sequence learning tasks.

One type of sequence learning task that has been employed in a laboratory setting

is a simple sequence task. During this task, participants are presented with a single

sequence of actions, typically 4-6 buttons on a keyboard, and instructed to execute

that sequence as fast and accurately as possible. The main finding is that the execu-

tion of the sequential movements improves across practice trials, that is, participants’

performance becomes faster and more accurate (Robertson, 2007).

An additional laboratory-based task that has been developed is a discrete sequence

production task (Verwey, 1999). In this task, participants learn to execute two or more

discrete sequences by responding to successive stimuli associated with buttons on a

keyboard. At first, participants must process each successive stimulus to determine

the correct sequence of actions. However, following several practice trials, they begin

to execute the entire sequence in response to the first stimulus, without processing

later stimuli. Therefore, once participants learn each discrete sequence order, this

task examines the ability to select and produce the appropriate sequence, as fast as

possible, from a group of sequences.

The most common task that has been used to investigate sequence learning is

the serial reaction time task (Nissen and Bullemer, 1987). In the vast majority of

serial reaction time tasks, a visual stimulus is presented at one of the four locations

arranged horizontally on the center of a computer screen. Each stimulus is associated

with one of four buttons on a keyboard directly below the position of the stimulus. At

the start of each trial, one of the stimuli at the four locations is cued by a signal, and
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participants are instructed to press the corresponding button as accurately and fast as

possible. After the response is made, reaction time, used as an index of performance,

is recorded and then there is a fixed delay before the next visual stimulus is presented.

A version of the serial reaction time task will be used in this thesis.

The order of the visual stimuli can be presented as a fixed sequence, in which

the stimuli appear according to a repeating pattern, or random sequence, where the

stimuli are randomly presented. By doing so, it provides a more specific measure

of motor skill learning (Nissen and Bullemer, 1987; Robertson, 2007). Specifically,

the average reaction time typically decreases in an exponential manner across a se-

rial reaction time task (Nissen and Bullemer, 1987). But recently, there is a large

body of evidence that suggests that motor skill learning during sequence reaction

time task occurs from: (a) improvements in the execution of the individual sequence

elements regardless of the pattern, referred to as sequence-independent skill learning,

and (b) larger improvements in the execution of the sequence elements in a specific

pattern, known as sequence-dependent skill learning (Robertson, 2007; Steel et al.,

2016; Robertson, 2007). As a result, by comparing the fixed sequence reaction to the

random sequence reaction, the difference provides a measure to distinguish between

those two forms of learning (Robertson, 2007).

In the sequence learning paradigms, the procedure also typically consists of three

phases of training. First, a pre-training phase is conducted where participants fa-

miliarize themselves with the task and establish their baseline performance. Next,

participants complete the training phase to measure their changes in performance.

During the training phase, reaction time gradually decreases in an exponential fash-

ion over time. Finally, a post-training phase is performed where participants often
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display some degree of permanence of the performance level produced during the

training phase (see Figure 1.1B).

1.3.4 Reaction time and response time

A major limitation of a serial reaction time task is that reaction time, the primary

measure of the task, is often misinterpreted (Chen et al., 2018; Krakauer et al., 2019).

Reaction time is a measure of time between the onset of a stimulus and the initiation

of the movement. Yet, the measure that is actually being recorded is response time.

Response time is the interval between the stimulus onset and the completion of the

action. In this case, the interval from the presentation of the visual stimuli to com-

pletion of the button press. Response time can be further divided into reaction time

and movement time. Movement time refers to the period between the initiation of the

movement and completion of the movement. As a result, changes in response time

can be associated with either a reduction in reaction time, movement time, or a com-

bination of both (Magill and Anderson, 2017; Schmidt et al., 2019). With respect to

the sequence learning task, a reduction in reaction time likely characterizes improve-

ments in selecting the appropriate movement (i.e., improvements in action selection),

while a reduction in movement time may represent improvements in the ability to

execute the sequence movement (i.e., improvements in action execution) (Diedrichsen

and Kornysheva, 2015). However, the current methodology is unable to distinguish

between improvements in these components. Therefore, it is difficult to interpret

the underlying component responsible for the overall improvements. Altogether, it

is clear that the development of a methodology, that can isolate these measures, is

required to gain a deeper understanding of the results (Chen et al., 2018; Wong et al.,
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2015). From this point forward, the outcome measure of the serial reaction time task

will be referred to as response time.

1.3.5 Neural correlates of sequence learning

Identifying cortical regions in relation to sequence learning, as described above, has

been well studied to better understand how these structures contribute to sequence

learning. For example, Doyon et al. (1996) examined the cortical structures associated

with the learning of a serial reaction time task. Using positron emission tomography,

an imaging technique that captures and measures the metabolic activity of the brain

after a radioactive tracer has been absorbed into the bloodstream, the changes in

cerebral blood flow, in response to changes in neural activity, was measured during

learning. Analysis of the positron emission tomography scans revealed a significant

increase in cerebral blood flow, which represents higher neural activity, in the ventral

striatum and dentate nucleus of the cerebellum. As a result, these changes in cerebral

blood flow during learning suggest that both the cerebellum and striatum play a major

role in the learning of a serial reaction time task.

Furthermore, imaging studies have also shown that the cerebellum and striatum

mediate learning during different stages of a serial reaction time task (Doyon et al.,

2002; Ungerleider, 2002; Penhune and Steele, 2012). In fact, Doyon et al. (2002)

investigated, using a functional magnetic resonance imaging scan, the structural cor-

relates of motor skill learning in a serial reaction time task and the timing of their

neural activity. The functional magnetic resonance imaging data, which captures the

metabolic activity of the brain by measuring the changes in the blood oxygenation

level due to neural activity, revealed a significant increase in cerebellar activity in

12
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the early stages of learning. However, neural activity decreased in the cerebellum

near the end of the training phase. In contrast, the striatum only showed signif-

icant activity near the end of training. Taken together, these results suggest that

the cerebellum may be critical for the initial learning phase when the motor skill is

being established, while the striatum may play a larger role during the later stages

of learning and potential for the long-term retention of the skill (Doyon et al., 2002;

Ungerleider, 2002).

In fact, it has been proposed that the cerebellum receives sensory and motor

information and contributes to error correction during the early phase of learning

(Penhune and Steele, 2012). However, as learning proceeds, the contribution from the

cerebellum decreases and the striatum, which is postulated to learn the association

between the visual stimuli and required response, begins to compensate and account

for the bulk of the learning (Penhune and Steele, 2012). In addition, as the movement

is practiced over the course of training, the motor cortex also begins to compensate

and store the representation of the learned movement sequence.

1.4 Feedback characteristics and motor learning

An important aspect of motor skill learning is the information that individuals receive

regarding their movement after it has been completed. This type of information

related to our movements is broadly defined as feedback. The role of feedback is

to provide information that is essential not only for correcting errors, but also for

improving the execution of the movement on the next attempt. As a result, feedback

has been extensively investigated in the motor learning field and can be divided into

two main categories: intrinsic feedback and augmented feedback (Salmoni et al., 1984;
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Magill and Anderson, 2017; Schmidt et al., 2019).

Intrinsic feedback is performance-related information that learners naturally re-

ceive about their movement from various sensory modalities. For example, golfers

know they missed the hole after a putt because they receive visual feedback that the

ball did not go in the hole. In addition, they also receive auditory feedback when

they hear the ball drop, or not drop, in the hole.

Another type of feedback that is provided about the movement in addition to

inherent feedback is augmented feedback. Augmented feedback is information from

an external source, such as coaches or instructors, and supplements intrinsic feedback.

For instance, a golf coach can provide additional information to a golfer about their

technique during the swing or the outcome of the putt. Augmented feedback can

be further classified as knowledge of performance or knowledge of results (Schmidt

et al., 2019). The following sections will provide an overview of these two types of

augmented feedback.

1.4.1 Knowledge of performance

Knowledge of performance is information that is provided to the learner about their

movement characteristics that led to a performance outcome. This type of information

is often presented by expert instructors or motion analysis software and helps the

learner make the appropriate corrections to their movement characteristics, such as

the positioning, timing, and speed of their movement. For example, a golfer might

receive feedback from their coach about the placement of their hands on their club

in order to improve their shot. In fact, researchers have shown that knowledge of

performance feedback enhances learning of a range of motor tasks (e.g., Lindahl,
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1945; Newell et al., 1983; Young and Schmidt, 1992).

1.4.2 Knowledge of results

A great deal of research on motor skill learning and feedback has focused on informa-

tion that learners receive regarding the outcome of their movement in relation to the

task goal, known as knowledge of results (Salmoni et al., 1984; Sigrist et al., 2013).

Research studies investigating the impact of knowledge of results feedback during

motor skill learning directly emerged from the work of Thorndike (1927) in exper-

imental psychology. Thorndike (1927) proposed that knowledge of results feedback

was an important component of learning and strengthening the bond between a be-

haviour and the task goal. To explore this, participants were assigned to either a

binary-knowledge of results group or non-knowledge of results group and were ran-

domly presented with strips of paper with different lengths between 3 and 27 cm. The

goal of the experiment was to estimate their lengths using a known 10 cm strip of

paper as the reference. Following the seven blocks of training, it was shown that the

constant error in the binary-knowledge of results group reduced by 61% compared

to the -7% reduction in the non-knowledge of results group. Therefore, providing

evidence that knowledge of results feedback can facilitate learning by strengthening

the bond between a behaviour and an environmental goal.

Within the motor learning research field, there are also different types of knowledge

of results manipulations. One type of manipulation that has received considerable

attention over the years is the frequency of providing knowledge of results (Bilodeau

and Bilodeau, 1958; Salmoni et al., 1984; Winstein and Schmidt, 1990). In fact,

frequency of knowledge of results can be further subdivided into absolute frequency
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and relative frequency. Absolute frequency is the absolute number of times feedback

is presented to the learner over the course of practice. In contrast, relative frequency

refers to the percentage of trials that feedback is provided to learners.

Another type of manipulation that has been examined is the precision of knowl-

edge of results (Salmoni et al., 1984; Luft, 2014). There are three major categories

of knowledge of results precision feedback based on the content of their information.

Binary knowledge of results feedback only informs the learner about whether the out-

come of their movement was correct or incorrect in relation to the task goal (e.g.,

a golfer receiving feedback about whether they got the ball in the hole or missed).

Graded knowledge of results feedback provides different degrees of error based on

categories (e.g., a golfer being informed that their shot was ‘short’, ‘long’, ‘left’, or

‘right’ of the hole). Lastly, finely graded knowledge of results feedback also provides

the degree of error but with numerical units (e.g., a golfer being informed that they

missed the hole by 2.5 cm of the left). Thus, graded knowledge of results feedback

provides directional information whereas finely graded knowledge of results feedback

provides both direction and magnitude information.

To investigate the relationship between the precision of knowledge of results and

motor learning, Bennett and Simmons (1984) instructed participants to perform a

linear positioning task using a slide bar. During the acquisition trials, participants

were randomly divided into four groups: no-knowledge of results, binary knowledge

of results, finely graded knowledge of results, and irrelevant knowledge of results feed-

back, followed by a retention test without feedback. Overall, the study revealed that

participants receiving finely graded feedback produced significantly lower absolute
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error scores compared to the other three groups during acquisition and retention tri-

als. Overall, studies have demonstrated that the presentation and manipulation of

knowledge of results feedback regarding the outcome of a movement is an important

aspect of improving the execution and learning of a motor task (Thorndike, 1927;

Bennett and Simmons, 1984; Magill et al., 1991; Sparrow and Summers, 1992; Weeks

and Kordus, 1998).

1.5 Learning from feedback

Over the past several decades, researchers have begun to investigate the main the-

oretical aspects of learning in relation to feedback. It has been proposed that the

major components are: (a) the learning processes, which refers to the behavioural

mechanisms that support motor learning, and (b) feedback characteristics, specifying

the form in which feedback is presented after the movement is complete. Below, I

provide an overview of two common types of learning processes, known as error-based

learning and reinforcement learning, as well as a discussion of feedback characteristic

manipulations.

1.5.1 Error-based and reinforcement learning

During error-based learning, the sensorimotor system compares the movement out-

come and movement goal, and estimates the direction and magnitude of the error,

known as the sensory prediction error (Wolpert et al., 1995). By doing so, the sen-

sorimotor system knows not only whether the movement missed the goal, but also

the specific way it was missed; allowing it to adjust future movement attempts and
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minimize the sensory prediction error.

A simpler type of learning process that is used to guide learning is a reinforcement

learning process. During this process, the motor system learns which movements to

execute in order to maximize the occurrences of rewards or minimize punishments

(Kaelbling et al., 1996; Sutton and Barto, 2018). For this type of learning process,

the punishment and reward signals provide less information, that is, it only indicates

the success or failure of the movement and does not provide information about the

direction or magnitude of the error. As a result, the motor system adjusts the learner’s

movement on the next attempt, to maximize reward or minimize punishment, through

trial and error (Luft, 2014).

1.5.2 Feedback characteristics

The feedback that learners receive related to their movements can be presented based

on: performance content, motivational value, or a combination of both (Luft, 2014).

Feedback based on performance content is often presented as either binary, graded,

or finely graded error information. For example, an individual throwing darts at a

bullseye could be informed that they either hit/missed the bullseye, were too far to

the left, or were 2 cm to the left from the bullseye, respectively. In contrast, feedback

according to motivational values relies on reward or punishment signals (e.g., gaining

or losing money) in the form of binary information to enhance learning. In this

case, the individual throwing darts would earn $1 (i.e., reward signal) for hitting the

bullseye or lose $1 (i.e., punishment signal) for missing the bullseye. Finally, it can

be presented as a combination of performance content and motivational information.

For instance, after the dart has been thrown, they can receive finely graded error
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information as a monetary reward (e.g., earning $2 for being 2 cm from the bullseye)

or punishment (e.g., losing $2 for being 2 cm from the bullseye).

For tasks that involve an error-based learning process, feedback is often presented

as finely graded error signals to inform the learner about the direction and mag-

nitude of the error (Luft, 2014; Cashaback et al., 2017). However, it is important

to emphasize that the same error can result in different adjustments. For example,

when a golfer hits the ball to the right of the hole, the motor system can adjust the

next movement by changing the movement of the arm, alignment of the shoulders, or

through any combination of adjustments. In addition, even if an error occurred, its

direction and magnitude might not be very clear. Consider the example of learning to

snap your fingers. If you fail to make any sound, it is very difficult to know how you

should adjust the positioning of your fingers to make a sound. In these instances, the

reinforcement learning process is used to guide learning which uses a different form of

feedback characteristic. In a reinforcement learning process, feedback is presented as

reward or punishment based on binary information (Izawa and Shadmehr, 2011; Luft,

2014; Cashaback et al., 2017). For instance, a golfer learning to putt will receive a

reward feedback, for getting the ball in the hole, or a punishment feedback, for miss-

ing the hole. Most importantly, the feedback does not inform the learner about how

close or far the shot was from the hole.

In fact, punishment and reward feedback have been shown to influence motor

learning when applied in different paradigms and presented in various formats. Below,

I highlight some experiments that have focused on motor learning through punishment

and reward feedback.
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1.6 Punishment and reward feedback

1.6.1 Motor adaptation

Recently, studies have begun to investigate punishment and reward feedback in the

domain of motor adaptation to assess the relationship between punishment and re-

ward feedback on motor learning. In fact, it has been proposed that punishment and

reward feedback have dissociable effects on motor learning and retention, respectively

(e.g., Abe et al., 2011).

To test this, Galea et al. (2015) investigated the effects of punishment and reward

on learning using a visuomotor rotation task. In particular, participants were in-

structed to make center-out reaching movements with a cursor toward visual targets.

In the first phase, known as the baseline phase, the participants’ baseline performance

was measured prior to the perturbation being introduced. During the adaptation

phase, a 30° counter clockwise visuomotor rotation was imposed onto the cursor and

the aim was to adapt their reaching movements to the abrupt perturbation. For each

adaptation trial, participants performed the movements with visual feedback of the

cursor and endpoint angular error. In addition, the participants were presented with

feedback after the completion of each adaptation trial depending on their group. The

reward feedback group received money based on their graded endpoint error, the pun-

ishment feedback group lost money based on their graded endpoint error, and finally,

the random positive feedback group randomly gained money irrespective of graded

endpoint error. In the next phase, referred to as the no-vision phase, the perturba-

tion, cursor feedback, and punishment and reward feedback were removed to assess

for retention, where a drift back to baseline level reflected the degree of retention.
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The results revealed that the punishment feedback group led to faster learning of

the perturbation compared to the reward and random positive feedback group. In

contrast, the reward feedback group displayed a significantly slower decay rate during

the no-vision phase, indicating that reward led to greater retention.

However, given that the visual feedback of the cursor is provided throughout

adaptation, participants are also receiving error feedback regarding their reaching

movement. As a result, it is still unclear whether the distinct effects on learning

and retention are attributable to punishment and reward feedback, respectively. To

address this, Song et al. (2020) attempted to investigate the effects of punishment

and reward feedback during a visuomotor rotation task without visual feedback of

the cursor. Following the baseline phase, where the cursor followed the participants’

reaching movement, a 50° counterclockwise rotation was imposed on the cursor with-

out visual feedback. At the end of each adaptation trial, participants in the reward

group received monetary points based on their endpoint error and the punishment

group lost monetary points based on their endpoint error. Consistent with Galea

et al. (2015), Song et al. (2020) found that punishment feedback led to faster adap-

tation compared to reward feedback. However, when participants were re-exposed

to the 50° counterclockwise rotation without visual feedback to assess for retention,

referred to as the re-adaptation phase, there was no significant difference between the

groups.

There may be several different reasons for this inconsistent finding. A possible

explanation is that participants in both studies received a combination of error feed-

back and punishment and reward feedback. As previously discussed, error feedback

is typically presented as finely graded error information, while punishment or reward
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feedback is based on binary information, such as hitting or missing the target. Based

on that distinction, Galea et al. (2015) provided a combination of error feedback,

through visual feedback of the cursor and endpoint angular error, and punishment

and reward feedback. In addition, the participants in both studies gained or lost

money based on their endpoint angular error, which generates both types of feedback.

Therefore, it becomes difficult to separate the effects of error-based and reinforcement

learning processes.

It is important to dissociate these two types of feedback because the motor sys-

tem likely relies on either feedback to enhance learning (Izawa and Shadmehr, 2011;

Cashaback et al., 2017). To examine how these signals contribute to motor learning,

Izawa and Shadmehr (2011) manipulated the quality of feedback information during

a motor adaptation task. All participants made reaching movements with a robotic

hand to move a cursor to a visual target and experienced a gradual visuomotor rota-

tion up to 8°. However, the Error group received full visual feedback of the cursor as

well as a reward signal if the cursor hit the target (i.e., high-quality error information),

the End-Point Error group only received visual feedback of the cursor at the endpoint

of their movement along with a reward signal (i.e., intermediate-quality error infor-

mation), and the Reward group was only provided with a reward signal without visual

error feedback (i.e., low-quality error information). Although all groups adapted to

the perturbation, adaptation in the error group was accompanied by a change in the

estimation of their perceived hand position following their movement. Specifically,

they estimated their hand position to be perturbed by 8.8°±-0.6° of the actual posi-

tion. In contrast, the reward group displayed no significant change in their estimation

and the end-point error group was intermediate relative to those groups. Based on
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those results, it is predicted that an error and reward signal can both enhance motor

adaptation, but learners are much more dependent on a reward signal as the quality

of the error signal decreases (Izawa and Shadmehr, 2011).

Cashaback et al. (2017) expanded this work by investigating the influence of re-

ward signals and error signals, when presented in combination or separately, during

a visuomotor reaching task. Specifically, participants reached a visual target using

a robotic manipulandum and their hand was laterally shifted perpendicular to their

movement. During each trial, the participants were either presented with an error

feedback signal (i.e., visual end-point error of the cursor), reward feedback signal

(i.e., target size doubled when cursor hit the target), or a combination of both. It

was shown that both an error feedback and reward feedback signal enhanced adap-

tation during a reaching movement. However, learners appeared to rely on an error

signal, independent of the information quality, when both feedback signals are pro-

vided. Given that Galea et al. (2015) and Song et al. (2020) failed to dissociate these

two types of feedback, participants may have been relying on their endpoint error

feedback instead of the punishment and reward feedback. As a result, it is difficult

to draw clear conclusions about the supposed dissociable effects of punishment and

reward feedback on learning and retention, respectively. In sum, these experiments

highlight the importance of designing experiments that do not confound the provi-

sion of reinforcement feedback with the provision of error feedback when the goal is

to investigate the influence of the former on motor learning.

23



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

1.6.2 Sequence learning

Beyond the domain of motor adaptation, researchers have also begun to investi-

gate the behavioural relationship between reinforcement feedback and motor learning

within the sequence learning field. For example, Wachter et al. (2009) used a se-

rial reaction time task to understand the effects of punishment and reward feedback

on learning and retention. Using a similar method to that of Nissen and Bullemer

(1987), participants were presented with four visual stimuli and instructed to press

one of four buttons associated with the stimuli as quickly and accurately as possible.

In addition, the stimuli were presented in either random sequence or fixed repeating

sequences to minimize explicit knowledge of the sequence.

The experimental task began with a familiarization period, consisting of four

blocks of random sequences without feedback. In addition, each participant’s crite-

rion response time was calculated based on their median response time on the last

block of familiarization. After familiarization, the training period began where par-

ticipants were randomly allocated to a reward, punishment, or control group and

received feedback based on their criterion response time. Specifically, the reward

group received monetary points after each trial if their response time was faster than

their criterion response time. In contrast, the punishment group lost monetary points

after each trial if their response time was slower than their criterion response time.

Furthermore, both groups were presented with either a red or green visual stimulus

indicating that their response time was slower or faster than their criterion response

time, respectively. The control group received an equal number of green and red

stimuli and were informed that they were not based on their performance. Following

the training period, participants performed the last four blocks without feedback.
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Throughout the experiment, response time gain, the difference between the response

time of each trial and the criterion response time, was used as an index of changes in

performance (Wachter et al., 2009).

During the training block, punishment feedback led to a significant drop in re-

sponse time gain, indicating a faster reaction time, compared to the reward and con-

trol groups. In addition, all groups displayed an increase in absolute response time

gain during the last several blocks without feedback. However, the reward group

had a significantly larger absolute response time gain compared to the punishment

and control group. This suggested that punishment feedback enhanced the learning

component of the serial reaction time task, whereas reward feedback enhanced the

retention component.

Steel et al. (2016) also investigated the impact of punishment and reward feed-

back during a serial reaction time task. During familiarization, all the participants

performed three blocks of random sequences without feedback and their criterion

response time was calculated based on the last block of familiarization. Follow-

ing familiarization, the feedback period began with the training phase flanked by

a pre- and post-training phase. During training, the visual stimuli were presented

in six fixed-sequence blocks, whereas pre- and post-training consisted of three blocks

in random–fixed–random sequence order. The difference in response time between

the average of the two random blocks versus the fixed block was used to determine

sequence-specific skill learning. Also, as participants progressed through the feedback

period, their criterion response time was continuously re-calculated after each block

Similar to Wachter et al. (2009), participants were also divided into a reward, pun-

ishment, or control group; however, feedback was presented based on their updated
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criterion response time. To assess retention, participants also performed 1-hour, 24-

hours, and 30-day tests after the training period without feedback.

The results revealed that the mean response time for the punishment group sig-

nificantly decreased across the training phase compared to the reward and control

groups. However, all groups displayed a significant reduction in their mean response

time during the 1 hour, 24 hour, and 30 day retention tests with no difference be-

tween them. These findings demonstrate that punishment feedback likely enhances

the learning aspect of a sequence learning task, but neither reward nor punishment

feedback enhances the retention component. It also suggests that the benefits of

reward feedback may not be as robust as previously suggested by other researchers

(Abe et al., 2011; Galea et al., 2015; Wachter et al., 2009).

However, it is important to acknowledge that these results may not be as definitive

given the methodological limitations in the motor adaptation studies as discussed in

the previous section. Overall, punishment and reward feedback appear to have some

beneficial impact on motor learning within the different domains. In fact, providing a

combination of punishment and reward feedback may produce the proposed benefits

on both learning and retention.

1.6.3 Neural correlates of punishment and reward feedback

Over the past several years, interest has grown in identifying the neural correlates

underlying the effects of reinforcement feedback. It is proposed that the distinct

behavioural effects of reward and punishment feedback are associated with specific

neural networks and cortical structures.

For reward feedback, it has been postulated that the neurotransmitter dopamine,
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primarily released by dopaminergic neurons in the midbrain, plays an important role

in reward-based learning (Wickens et al., 2003; Wachter et al., 2009; Galea et al.,

2015). Specifically, these dopaminergic neurons project and release dopaminergic

signals in response to a reward stimulus into the striatum, a subcortical structure of

the brain known for regulating movement and responses to rewarding stimuli (Wickens

et al., 2003; Wachter et al., 2009). This in turn activates the neurons within the

striatum which project into the motor regions of the cerebral cortex and influence the

motor commands. Most importantly, the continuous recruitment and integration of

neurons within these cortical regions over the course of learning can strengthen and

refine these neural connections; allowing the motor cortex to generate the appropriate

motor commands to gain a reward (Wickens et al., 2003; Bromberg-Martin et al.,

2010).

In contrast, punishing stimuli can alter the dopamine concentration in downstream

cortical regions and lead to behavioural changes to avoid those stimuli in the future

(Bromberg-Martin et al., 2010; Jean-Richard-Dit-Bressel et al., 2018). It is suggested

that serotonin, a neurotransmitter mainly produced by neurons originating in the

raphe nuclei, plays an important role in regulating behaviour that leads to a pun-

ishing experience (Jean-Richard-Dit-Bressel et al., 2018). In fact, the neurons in the

raphe nuclei project into the striatum and release serotonin signals that inhibit the

reward-dopamine pathway. In addition, the raphe nuclei neurons also project to ad-

ditional cortical structures within the temporal lobe and prefrontal cortex, commonly

implicated in punishment-based learning (Jean-Richard-Dit-Bressel et al., 2018), and

influence motor commands to avoid punishing stimuli.

To investigate the cortical structures involved in reward and punishment feedback,
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Wachter et al. (2009) studied another group of participants using the same serial

reaction time procedure as described above. However, an exception to the procedure

was that all participants underwent a functional magnetic resonance imaging scan.

The purpose of the scans was to measure the participant’s brain activity during trials

with and without feedback.

Following the analysis of the functional magnetic resonance imaging data, the

reward group showed a significant increase in activation in the striatum, nucleus

accumbens, and prefrontal cortex during the feedback trials. The punishment group,

however, showed a significant decrease in activation in the striatum, but increased

activation in the insula, a small cortical structure located within the lateral sulcus, and

regions of the prefrontal cortex. The control group showed no difference in activation

in those regions throughout the experiment. Therefore, these results demonstrate

that the behavioural effects of reward and punishment feedback are likely processed

by different neural structures within the brain.

To further investigate the neural mechanisms underlying the effects of reinforce-

ment feedback, Steel et al. (2019) examined the changes in the neural connectivity

after training with reward and punishment feedback. Using the same sequence learn-

ing design as Steel et al. (2016), all participants performed a familiarization block,

pre-test, training, post-test, and 24 hour retention test, with feedback only being

presented during training. In addition, pre- and post-resting state functional mag-

netic resonance imaging scans were also performed to assess the effects of reward and

punishment feedback on neural connectivity.

The analysis of the scans revealed that the neural connectivity for the reward

feedback group increased between the premotor cortex with the striatum, cerebellum,
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and supplementary motor area (located in the dorsomedial region of the frontal lobe),

but decreased between the premotor cortex with the medial temporal lobe and inferior

frontal gyrus (a small portion of the frontal lobe). For the punishment feedback group,

the scans showed the opposite pattern; the neural connectivity decreased between the

premotor cortex with the striatum, cerebellum, and supplementary motor area, but

increased between the premotor cortex with the medial temporal lobe and inferior

frontal gyrus.

Taken together, these findings provide evidence that reward and punishment feed-

back have differential effects on neural connectivity after training. Most importantly,

it also indicates that the differential behavioural effects of reward and punishment

feedback may be mediated by the interaction of distinct neural networks and corti-

cal structures (Steel et al., 2019), rather than being associated with a single cortical

region within the brain (Wickens et al., 2003; Jean-Richard-Dit-Bressel et al., 2018;

Steel et al., 2019).

1.7 Combining punishment and reward feedback

for motor learning

Within the sports world, coaches are always attempting to increase their athlete’s

performance. A common approach that is recommended by coaching guidelines is

providing reward and punishment performance feedback during their training (Burton

and Raedeke, 2008; Williams and Krane, 2015; Chen et al., 2018). By doing so, the

athlete is able to receive valuable information regarding their performance in relation

to the task goal and improve the execution of their movement on the next attempt.
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The manuals within the sports coaching domain suggest that reward feedback

enhances performance by strengthening the bond between the desired movement and

the reward (Burton and Raedeke, 2008; Williams and Krane, 2015). In addition, it

may also increase the athlete’s belief in succeeding at the task, and thus improve their

performance. However, if the reward is not based on performance accomplishments

or is provided excessively, it can potentially make the athlete feel like they are being

manipulated and negatively impact their performance. Alternatively, punishment

feedback likely increases an athlete’s performance by reducing undesirable behaviour

during training. Unfortunately, punishment may lead to a negative attitude towards

the coach if it is overly used during training, which can in turn negatively impact the

training environment and the athlete’s performance.

Despite the potential side effect, the handbooks do not recommend that coaches

should only provide reward feedback and avoid punishment feedback. Instead, they

suggest using a combination of punishment and reward to improve an athlete’s perfor-

mance (Williams and Krane, 2015). Specifically, according to the coaching literature,

reward feedback should be provided early in training and punishment feedback should

only be occasionally presented near the end of training. Based on this prediction from

the coaching literature, this thesis will investigate the utility of providing both pun-

ishment and reward feedback during training using a transition scheduling approach.
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Chapter 2

Introduction

Humans display a remarkable ability to learn a variety of motor skills, such as riding

a bicycle, swimming the butterfly, or throwing a fastball. An essential component of

learning any motor skill is the information learners receive about their movements,

known as feedback. The role of feedback is to provide information that not only helps

the learner identify their movement error in relation to the task goal, but also helps

guide them towards an appropriate movement solution (Magill and Anderson, 2017;

Tresilian, 2012). While feedback frequency manipulations have historically received

considerable attention in motor learning research (for reviews see Salmoni et al., 1984;

Swinnen, 1996; Anderson et al., 2019), the characteristics of how feedback is presented

to learners has seen a surge of interest in the last decade (see Luft, 2014, for a review).

Feedback characteristics can reflect performance-related information and be provided

as binary (e.g., “hit”, “miss”), graded (e.g., “too short”, “too long”), or finely-graded

(e.g., -12.64 cm, 8.03 cm) information. Feedback can also be provided to reflect a

motivational characteristic through either reward (e.g., +5 cents) or punishment (e.g.,
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-5 cents). Finally, feedback can be provided in a way that combines both performance-

related information and motivational value (e.g., monetary gain or loss depends on

the amount of error).

The impact of receiving punishment or reward feedback on motor learning has been

a popular area of research as of late (for a review see Lohse et al., 2019; Wachter et al.,

2009; Abe et al., 2011; Galea et al., 2015; Steel et al., 2016; Izawa and Shadmehr, 2011;

Cashaback et al., 2017, 2019). In a visuomotor adaptation task where participants

had to learn to update their reaching direction to compensate for a rotation applied

to a cursor that represented the movement of their unseen hand, Galea et al. (2015)

found that punishment feedback accelerated learning while adapting to the rotation,

but it was reward feedback that resulted in greater retention of what was learned

during training. Similar findings have also been found during sequence learning, such

as the serial reaction time task (e.g., Abe et al., 2011; Wachter et al., 2009). In

contrast, Steel et al. (2016) found the benefit of punishment feedback on learning the

serial reaction time task, but did not find that feedback type differentially impacted

short (6 hours) or long term (24 hour and 30 day) retention. Their results not only

suggested that punishment feedback may have more reliable effects as compared to

reward feedback (also see Song and Smiley-Oyen, 2017; Song et al., 2020), but that

punishment feedback effects may be task-dependent—beneficial for serial tasks, but

detrimental for continuous tasks (e.g., Abe et al., 2011).

Although the available data surrounding punishment and reward feedback is

mixed, the possibility that punishment and reward feedback have dissociable effects

on learning and retention, respectively, is interesting from both a theoretical and

applied perspective. It highlights that the behavioural outcomes associated with
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punishment and reward feedback not only are likely mediated by separate neural

substrates (Wachter et al., 2009), but also preferentially engage fast and slow learn-

ing systems (Peterson and Seger, 2013; Wachter et al., 2009). Practically, it raises

the question of whether combining punishment and reward feedback during training

would benefit both learning and retention; exceeding that found when provided in

isolation. When designing such a practice environment, it is not entirely clear how

to best combine punishment and reward feedback as neither motor learning theory

(Adams, 1971; Schmidt, 1975; Smith et al., 2006; Wolpert and Flanagan, 2016) nor

prevailing perspectives on scheduling feedback (Salmoni et al., 1984) have directly

addressed this issue.

Within the coaching literature, however, the use of combined punishment and

reward feedback schedules have actually been promoted as a method to improve an

athlete’s skill acquisition (Warren, 1983; Burton and Raedeke, 2008; Williams and

Krane, 2015; Chen et al., 2018). One approach for combining the delivery of both

punishment and reward feedback is through transition schedules. Based on the coach-

ing literature, reward feedback should be provided immediately and often in the early

stages of practice to promote a bond between the reward and appropriate movement

solutions. Punishment feedback should only be introduced later in practice as a means

to eliminate less efficient and less effective movements. This order effect likely relates

to wanting to prevent athlete’s from developing resentment towards their coaches and

dissatisfaction with their learning environment if punishment feedback is provided too

early and too often (Warren, 1983; Williams and Krane, 2015). Alternatively, moving

from punishment feedback to reward feedback could be the more effective transition

schedule based on the laboratory-based motor learning literature (e.g., Galea et al.,
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2015; Wachter et al., 2009; Song et al., 2020; Steel et al., 2016). The faster learning

rate found with punishment feedback results in participants reaching a steady-state

of repeating successful actions earlier in practice (Huang et al., 2011). This means

a greater portion of training is spent repeating these actions, which are further rein-

forced when the switch to reward feedback occurs. This perspective is also consistent

with a stage-dependent role of feedback during practice (e.g., Carter et al., 2014,

2016).

The purpose of the present experiment was to test the utility of combining pun-

ishment and reward feedback through a transition scheduling approach. When deter-

mining when the transition should happen, we opted for the midpoint in training for

two reasons. First, past work showed this to be an effective point to transition from

constant to variable practice during motor skill learning (Lai et al., 2000). Second, it

ensured that independent of transition order, an equal number of practice trials had

the potential to be rewarded and/or punished. By providing half of the participants

with reward-to-punishment feedback and the other half with the reverse order, we

were able to directly test competing predictions about feedback order between the

coaching and motor learning literatures. Based on the coaching literature, reward-to-

punishment feedback should be the most effective. However, in line with the motor

learning literature, we predicted that it would be the punishment-to-reward feedback

order that would be more beneficial for both learning and retention.
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Chapter 3

Methods

We report how we determined our sample size, all data exclusions (if any), all ma-

nipulations, and all measures in the study (Simmons et al., 2012). The experimental

design and analyses were preregistered using the Open Science Framework Registries

and can be viewed here: https://doi.org/10.17605/osf.io/75byt.

3.1 Group sequential design

The present experiment was modeled off the design of Steel et al. (2016). As such,

when defining our smallest effect size of interest we first calculated the effect size

that Steel et al. (2016) had 33% power to detect (Simonsohn, 2015). This returned a

Cohen’s d of 0.62. We then took a more conservative value of d = 0.4 and set this as

our smallest effect size of interest for when planning our sequential analysis (Lakens,

2021). Sequential analyses are a more efficient approach to hypothesis testing than

only analyzing the data a single time once the entire planned sample size has been

collected (Dodge and Romig, 1929; Wald, 1945; Lakens, 2014; Lakens et al., 2021a).
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The parameters of our sequential analysis were set at α = 0.05, β = 0.2, d = 0.4, and

we used the O’Brien-Fleming alpha spending function to control our Type 1 error

rate across our two planned interim analyses (at 33 and 66% of total sample size)

and one final (100% of sample size) analysis. This resulted in sample sizes of 68, 134,

and 202 participants and corresponding alpha levels of 0.0002, 0.012, and 0.046 for

interim analysis 1, interim analysis 2, and the final analysis, respectively.

3.2 Participants

To reach the necessary sample size of 68 participants for interim analysis one, 72

participants had to be recruited, with four having to be removed.1 The 68 participants

(Mage = 21.78 years, SD = 1.79, 30 females) included in the first interim analysis all

self-reported being right-hand dominant and having normal or corrected-to-normal

vision. The order of receiving punishment and reward feedback was counterbalanced

across participants by randomly assigning half of the participants (Mage = 21.62 years,

SD = 1.61, 14 females) to receive reward-to-punishment feedback and the other half

of participants (Mage = 21.94 years, SD = 1.97, 16 females) the reverse order. Prior

to the start of the online experiment, participants gave informed consent through

LimeSurvey and the experiment was approved and conducted in accordance with the

University’s Research Ethics Board. Participants received entry into a lottery (see

Task section below) to win one of six gift cards valued at $50 for their participation.

1One participant was removed because they did not complete the experiment and three partici-
pants had incomplete or no data collected due to server-related issues.
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3.3 Task

The serial reaction time task was created using jsPsych (de Leeuw, 2015) and was ad-

ministered online using Pavlovia (https://pavlovia.org/). The task closely resembled

the version used by Steel et al. (2016), which was a variation of the original version

(Nissen and Bullemer, 1987). Participants were presented with four white boxes ar-

ranged horizontally in the centre of their laptop or computer screen (see Figure 3.1A).

Each white box was associated with one of four keys (H-J-K-L) on their keyboard.

Participants were instructed to position their index, middle, ring, and pinky fingers

of their right-hand on the H, J, K, and L keys, respectively. When one of the squares

changed to black, participants were instructed to press the corresponding key on their

keyboard as quickly and accurately as possible. A trial consisted of a single key press

in response to a visual stimulus and a trial ended once a participant pressed a key or

5000 ms elapsed without a response (i.e., trial timed out). An inter-trial interval of

200 ms was used during which the four empty squares appeared on the screen.

The created jsPsych program controlled the presentation of all instructions and

stimuli, the timing of the experimental protocol, and recorded and saved the data on

the Pavlovia server for later retrieval and offline analysis.

3.4 Procedure

Participants completed two online data collection sessions on consecutive days. Ses-

sion 1 consisted of four phases: familiarization (1 block), pre-test (3 blocks), training

(6 blocks), and post-test (3 blocks). Blocks consisted of 96 trials with the stimuli

presented in either a fixed sequence or a random sequence. During fixed sequence
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Figure 3.1: Overview of the serial reaction time task and procedure. (A) Task setup.
Participants placed the index, middle, ring, and pinky fingers of their right hand on the H,J,K,L
keys on their keyboard, respectively. Four white boxes were first shown to participants. After a
fixed 200 ms interval, one box would change to a black box. This cued the participant to press
the corresponding key as quickly and accurately as possible. On rewarded trials, a green frame
only appeared if the participant’s response was accurate and faster than their performance criterion.
Otherwise, a blank frame appeared around the white boxes. On punished trials, a red frame only
appeared if the participants’ response was inaccurate or slower than their performance criterion.
Otherwise, a blank frame was presented. (B) Overview of experimental sessions. Participants
completed two testing sessions on consecutive days. Day 1 consisted of 4 phases. Familiarization
(FM) consisted of 1 block, Pre-test consisted of 3 blocks, Training consisted of 6 blocks, and Post-test
consisted of 3 blocks. All blocks had 96 trials and feedback was only available during the training
blocks. The trials in a block followed either a random (R) sequence or a fixed (F) sequence. Day 2
had only one phase, which was the delayed Post-test (i.e., retention). This test consisted of 3 blocks
and was identical to the Pre-test and Post-test phases.
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blocks, the stimuli appeared according to a fixed 12 item sequence repeated eight

times. Participants were randomly assigned to one of four possible patterns2 and

performed this same pattern for all fixed sequence blocks. Each fixed sequence block

began at a different position within the repeating sequence to help reduce the de-

velopment of explicit sequence knowledge (Schendan et al., 2003). During random

sequence blocks, the stimuli appeared based on a pseudorandomly generated pattern

such that the same stimuli was never presented on consecutive trials.

The familiarization phase included one random sequence block. The pre-test and

the post-test both consisted of three blocks: a random sequence block followed by

a fixed sequence block followed by another random sequence block. No feedback

was provided during familiarization, pre-test, or post-test. Before the first block in

the training period, participants were informed that their performance on each trial

would influence their total number of points and that their score at the end of training

could earn extra entries in the gift card lottery. The training phase consisted of six

fixed sequence blocks. Participants were given a 30 s break between all blocks in

the experiment. During these breaks, the phrase “Nice job, take a breather” was

displayed on the screen for 25 s. This message was then replaced with a black cross

for the final 5 s. In the training phase, the participant’s total number of points was

also displayed on the screen during the 30 s break.

Feedback was only provided to participants during the training phase. Half of the

participants received punishment feedback for the first three blocks followed by reward

feedback for the last three blocks. The other half of participants received reward

feedback for the first three blocks and punishment feedback for the last three blocks.

2Pattern 1: J-L-J-H-K-L-H-J-K-H-L-K. Pattern 2: K-L-K-H-J-L-H-K-J-H-L-J. Pattern 3: K-L-
J-K-H-J-H-L-K-J-L-H. Pattern 4: K-L-H-J-L-K-H-L-J-H-K-J.
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Feedback was provided on a trial-by-trial basis based on the participant’s performance

relative to a performance criterion. The initial criterion was computed based on

each participant’s median performance in the final pre-test block. This criterion was

updated after each training block to encourage continuous improvement and keep

participants engaged in the task. Punishment feedback consisted of a red frame

around the four white boxes and was only provided when a response was incorrect or

slower than the performance criterion. Trials that received punishment feedback were

also penalized -0.10 points. Reward feedback consisted of a green frame around the

four white boxes and was only provided when a response was correct and faster than

the performance criterion. Rewarded trials earned participants +0.10 points. Points

were only lost or gained during training and all participants began with 25 points.

Participants were not made aware of their performance criterion or the point value

lost or gained on punished or rewarded trials, respectively.

Session 2 had a single phase, which was the delayed retention test (3 blocks). The

delayed retention phase consisted of three blocks: a random sequence block followed

by a fixed sequence block followed by another random sequence block. No feedback

was provided in the retention phase.

3.5 Data processing and analyses

Our primary measure of interest was response time, which was defined as the time

between stimulus onset and the completion of the participant’s key press.3 The first

key that was depressed after stimulus presentation was considered the participant’s

response. Consistent with Steel et al. (2016), data were first screened for any par-

ticipants that were unresponsive or inaccurate on greater than 50% of the trials. No

40



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

participants were removed after this screening process. For pre-test, post-test, and

delayed retention, the difference in response time between the mean of the two ran-

dom sequence blocks and the mean of the single fixed sequence block was used to

measure sequence specific retention (Robertson, 2007; Steel et al., 2016). For the

training period, mean response time was calculated for each of the six fixed sequence

blocks of 96 trials.

3.5.1 Primary statistical analyses

To test our prediction the punishment-to-reward feedback transition would be more

effective for both learning and retention compared to reward-to-punishment feedback,

we compared the distribution of response times on correct trials in training (Prediction

1) and in retention (Prediction 2). For both of these analyses, the 20% trimmed

means of response times were calculated for each participant. Next, a shift function

(e.g., Rousselet et al., 2017) of the training or retention data was generated. The

shift function compares the difference between two groups at each decile of their

distribution via 95% confidence intervals and plots them as a function of one group.

A family-wise error rate of 5% was maintained using Hochberg’s method (Hochberg,

1988). This strategy ensures that the probability of at least one false positive will

not exceed the nominal level as long as the nominal level is not exceeded for each

quantile (Wilcox et al., 2014). Shift functions are, overall, a more powerful and robust

approach to understand whether groups of observations differ (Rousselet et al., 2017;

3Past research has also defined their primary measure in this way but referred to it as reaction
time. Reaction time, however, is the time between stimulus onset and the initiation of a response
(Magill and Anderson, 2017). In fact, the inability to partition response time into its component
parts, reaction time and movement time, has been argued as a limitation of the serial reaction time
task (Krakauer et al., 2019).
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Rousselet and Wilcox, 2020).

For both analyses, the null hypothesis was rejected if the groups were signifi-

cantly different at any decile. The alternative hypothesis that transitioning from

punishment-to-reward feedback was more effective for learning (Prediction 1) and

retention (Prediction 2) was accepted if those receiving this order had significantly

shorter response times at any decile and no significantly longer response times at any

decile.

Our design also allowed us to run a well-powered, within-subjects analysis of the

typically found learning advantage of punishment feedback as compared to reward

feedback during training. Due to the within-subjects nature of this test, we compared

the distribution of response times from training during the Punishment condition to

the Reward condition using a hierarchical shift function (e.g., Rousselet and Wilcox,

2020). This analysis was conducted using the following steps. First, sample deciles

were computed for each participant and each condition using the Harrel-Davis quantile

estimator (Harrell and Davis, 1982). Second, we subtracted the deciles for the Reward

condition from the Punishment condition for each participant. Third, the distribution

of differences at each decile was analyzed using a one sample t-test. Lastly, the

resulting p-values were evaluated using the critical values from Hochberg’s method

(Hochberg, 1988) to control family-wise error rate. The null hypothesis was rejected

if the conditions were significantly different at any decile using Hochberg’s method.

The alternative hypothesis that punishment feedback was more effective for learning

during training than reward feedback was accepted if the punishment condition had

significantly shorter response times at any decile and no significantly longer response

times at any decile.
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3.5.2 Secondary statistical analyses

We also ran more traditional analyses of (co)variance to facilitate comparisons with

past work. For ANOVA, univariate outliers were screened using the median abso-

lute deviation technique with a pre-specified threshold of three (Leys et al., 2013).

For ANCOVA, both univariate and multivariate outliers were screened. Multivariate

outliers were assessed using the minimum covariance determinant approach with a

pre-specified alpha set to p = 0.01 (Leys et al., 2019). Sensitivity analyses for both

the training and retention data were run with all outliers removed. Results showed

no significant changes with or without outliers included.

To test for a learning advantage of Punishment-to-Reward feedback, mean re-

sponse times were analyzed in a mixed 2 (Order) x 6 (Block) ANOVA with repeated

measures on Block. To test for a retention advantage of Punishment-to-Reward feed-

back, mean response times were analyzed in a mixed 2 (Order) x 2 (Test: Post-test,

Delayed retention) ANCOVA controlling for pre-test. To test for a learning advantage

of punishment feedback, mean response times were analyzed using a 2 (Condition) x

3 (Block) repeated measures ANOVA.
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Chapter 4

Results

4.1 Training

4.1.1 Primary analysis

The shift function on training data (Figure 4.1) revealed no significant difference at

any deciles between the Punishment-to-Reward and Reward-to-Punishment feedback

orders. In addition, the hierarchical shift function (Figure 4.2) revealed no significant

advantage of punishment feedback over reward feedback during training at any decile.

4.1.2 Secondary analyses

During training mean response times (Figure 4.3) decreased across training blocks

for the Punishment-to-Reward and Reward-to-Punishment groups, F (4.32, 285.30) =

27.100, p < .001. Holm’s post-hoc comparisons revealed that Block 1 was significantly

longer than Blocks 2-6 and Blocks 2-4 was significantly longer than Block 6. However,

there was no significant main effect of Order, F (1, 66) = .328, p = .569, or a significant
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Figure 4.1: Feedback order distributions and the associated shift function during
training. (A) Scatterplot. Response time is shown on the x-axis with Punishment-to-Reward
feedback (P-to-R) and Reward-to-Punishment Feedback (R-to-P) on the y-axis. (B) Scatterplot
with deciles of the distribution. Overlayed on the scatterplot from (A), are data for both groups
which has been divided into deciles, shown through faded long vertical black lines. The thicker black
line represents the median. The Reward-to-Punishment group’s deciles were subtracted from the
Punishment-to-Reward group’s matching deciles and connected by coloured lines. If the difference is
negative, indicating longer response times for the Reward-to-Punishment feedback, the connecting
line is purple. If the difference is positive, indicating longer response times for the Punishment-to-
Reward feedback, the connecting line is orange. The superimposed values indicate the difference
for deciles 1 and 9. (C) Shift function. Punishment quantiles of RT in (ms) is shown on the x-
axis, and the difference between Punishment-to-Reward and Reward-to-Punishment groups for each
decile is plotted as a function of Punishment-to-Reward group’s deciles. The superimposed values
indicate the difference for each decile. The coloured vertical lines represent adjusted 95% confidence
intervals.
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Figure 4.2: Hierarchical shift function for punishment versus reward feedback during
training. Punishment and reward feedback were compared using a hierarchical shift function for
each participant. For each decile, the 95% bootstrap confidence intervals and posterior distributions
are illustrated in grey. The blue dots represent the 20% trimmed means and the vertical lines are
95% confidence intervals.
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Block X Order interaction, F (4.32, 285.30) = 2.250 , p = .059. The equivalence test

revealed that the estimated effect was not significantly smaller than our smallest effect

size of interest, t(62.16) = -1.120, p = 0.134. The results were not affected after two

univariate influential cases were removed.

During training mean response times decreased across the three training blocks

for both types of feedback conditions, which was supported by a significant main

effect of Block, F (1.89, 126.38) = 46.146, p < .001. Holm’s post-hoc comparisons

revealed that Block 1 was significantly slower than Blocks 2 and 3. Neither the main

effect of Condition, F (1, 67) = 1.12, p = .294, or the Block X Condition interaction,

F (1.82, 121.82) = .461, p= .613, were significant. The equivalence test was significant,

revealing that the estimated effect was smaller than our smallest effect size of interest,

t(67) = 4.376, p < 0.001. Again, the results were not affected after two univariate

influential cases were removed.

4.2 Retention

4.2.1 Primary analysis

Similar to training, the shift function on the retention data (Figure 4.4) failed to

reveal a significant difference between the Punishment-to-Reward (labelled P-to-R)

and Reward-to-Punishment (R-to-P) feedback groups at any decile.
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Figure 4.3: Mean response times during the training period. The mean response time
(ms) across six training blocks of Punishment-to-Reward (blue) and Reward-to-Punishment (orange)
feedback orders. Error bars indicate 95% confidence intervals.
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4.2.2 Secondary analysis

Response times (Figure 4.5) were numerically faster in post-training and retention

compared to pre-test. At all time points, the differences between the Punishment-to-

Reward and Reward-to-Punishment feedback groups were minimal The main effects

of Test, F (1, 65) = .002, p = .962, and Order, F (1, 65) = .050, p = .824, as well as

the Test X Order interaction, F (1, 65) = .031, p = .860, were not significant. The

equivalence test revealed that the estimates of the effect was not significantly smaller

than our smallest effect size of interest, t(66) = 1.510, p = 0.068. These results were

not affected after two univariate and five multivariate influential cases were removed.
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Figure 4.4: Feedback order distributions and the associated shift function during
retention. (A) Scatterplot. Response time is shown on the x-axis with Punishment-to-Reward
feedback (P-to-R) and Reward-to-Punishment feedback (R-to-P) on the y-axis. (B) Scatterplot
with deciles of the distribution. Refer to Figure 4.1 for in depth explanation. (C) Shift
function. Refer to Figure 4.1 for in depth explanation.
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Figure 4.5: Mean response times in pre-test, post-test, and retention. The mean ran-
dom - fixed response time (ms) of the Punishment-to-Reward (large blue circle) and Reward-to-
Punishment (large orange triangle) feedback order during pre-test, post-test, and delayed retention.
The small dots represent the mean random - fixed response times for individual participants in the
Punishment-to-Reward (small blue circle) and Reward-to-Punishment (small orange triangle) feed-
back order. Mean random - fixed response times were derived from the difference in response time
between the mean of the two random sequence blocks and the single fixed sequence block. Vertical
dotted line separates Session 1 and 2. Error bars indicated 95% confidence intervals.
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Chapter 5

Discussion

The main goal of the present experiment was to test whether the order of receiving a

combined punishment and reward feedback schedule differentially impacted sequence

learning and retention. To this end, we designed our pre-registered experiment based

on Steel et al. (2016) as they used a variation of the serial reaction time task (Nis-

sen and Bullemer, 1987), which was amenable to online data collection due to the

COVID-19 global pandemic. This research question was motivated by distinct predic-

tions from the coaching and motor learning literatures. Based on the motor learning

literature, we predicted that a punishment-to-reward feedback order would be more

effective learning and retention. The results of the first interim analysis in our sequen-

tial design did not support this prediction. The data was also not conclusive in terms

of stopping data collection for futility (Lakens et al., 2021b); thus, data collection

will proceed to the second interim analysis. A discussion of our interim one analysis

results follows.
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5.1 No punishment-to-reward feedback advantage

Both the primary (i.e., shift functions) and secondary (i.e., general linear models)

analyses did not support a learning and retention advantage of receiving punishment-

to-reward feedback over reward-to-punishment feedback at this stage in our sequential

design. Based on the motor learning literature (e.g., Galea et al., 2015; Wachter et al.,

2009), we anticipated that the previously found faster learning rate with punishment

feedback would have resulted in participants reaching a steady-state of repeating suc-

cessful actions earlier in practice, and such actions would then be reinforced once the

transition to reward feedback occurred. However, this does not seem to be the case.

Instead, those in the Reward-to-Punishment group had numerically faster response

times in multiple training blocks than those in the Punishment-to-Reward group.

Although such trends were not significant based on the parameters of our statistical

tests, they are in line with the predictions of the coaching literature. Specifically,

it has been argued that rewards should be used early and often in training to form

and strengthen its relationship with the desired movement (e.g., Warren, 1983; Bur-

ton and Raedeke, 2008). Following this, punishment feedback can be introduced in

the later stages of training to reduce undesired movements and also prevent athlete’s

from developing negative feelings towards their coaches had punishment been used

too early in the learning process (Williams and Krane, 2015). Thus, at this point if

an order effect truly exists, we did not have the statistical power to detect an effect

of this size. Further, it seems plausible that effect could be in the opposite direction

to our predictions based on current trends in the data. Alternatively, it is possible

that there is no effect to be detected and instead, just receiving both punishment and

reward feedback, irrespective of order, during training is beneficial. Unfortunately,

53



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

we cannot rule out such a possibility at this time as the results of our equivalence

test were inconclusive. That is, the current estimate was not statistically equivalent

to zero based on our smallest effect size of interest.

5.2 Punishment feedback did not benefit the learn-

ing process

Past motor learning research has shown that punishment feedback not only leads to

a faster learning rate (e.g., Galea et al., 2015), but also better overall learning during

training (e.g., Steel et al., 2016; Song et al., 2020). The results from our hierarchical

shift function (Rousselet and Wilcox, 2020) did not replicate this training-related

advantage of punishment feedback. This failed replication (see also Abe et al., 2011)

was surprising given our choice of a more powerful statistical test (Rousselet and

Wilcox, 2020) and that other researchers have actually argued that the training-

related benefits of punishment feedback are more robust than those associated with

reward feedback (e.g., Steel et al., 2016; Song and Smiley-Oyen, 2017; Song et al.,

2020; Steel et al., 2019).

The learning benefits of punishment feedback have been linked to loss aversion

(Kahneman and Tversky, 1979, 1984). Loss aversion describes the behavioural phe-

nomenon of avoiding choices that might result in losses, even when equal or larger

gains are available (De Martino et al., 2010; Kahneman and Tversky, 1979; Tversky

and Kahneman, 1981). Past research has used monetary (e.g., 5 cents) gains and

losses on feedback trials, whereas in the present experiment we used ±0.10 points on

feedback trials. Although this decision was largely a logistical one, it is possible that
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losing points does not have the same motivational salience as losing cents, and our

participants therefore did not experience the same aversion to punished trials as those

in previous experiments (e.g., Galea et al., 2015; Steel et al., 2016; Wachter et al.,

2009). To increase the motivational salience of our administration of feedback, we

informed participants that a good point score at the end of the training period would

earn them more entries into the gift card lottery, thereby increasing their chances of

winning one of the six gift cards. Whether this incentive is as effective as using mon-

etary incentives is unclear; however, we encourage researchers to use monetary gains

and losses rather than points in future research as this will ensure greater consistency

in methods when drawing conclusions relative to previous research.

5.3 Statistical power and design issues

While any of the above mentioned reasons may have contributed to the outcomes

found with our first interim look, a more general explanation may be that the effects

associated with reward and punishment feedback during motor learning are much

smaller than previously estimated. Although we only collected 33% of our intended

sample size, and thus our design is underpowered relative to our smallest effect size

of interest (d = 0.4), our sample of 34 participants per group is much larger than the

median (n = 21) of the research that motivated and informed our experiment. Our

sample size was 2.8 times that of Steel et al. (2016), which had one of the smaller

sample sizes per group (n = 12) of previous research. Interestingly, our 33% of our

total planned sample size for our group sequential design exceeds the recommendation

that replication experiments should aim for 2.5 times the sample size of the original

experiment (Simonsohn, 2015). Small sample sizes can result in underpowered designs
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and therefore in comparison to larger sample sizes, significant results are more likely

to be a Type 1 error (Lakens et al., 2021a; Simmons et al., 2011a). In other words,

researchers may conclude that an effect is present when in reality there is not an

effect.

Experimental designs with low statistical power (see Lohse et al., 2016, for a dis-

cussion specific to motor learning) are a challenge when interpreting the available

research for at least three other reasons. First, there is greater variability around the

effect sizes that are estimated. This contributes to the magnitude of an effect being

overestimated (Lohse et al., 2016; Gelman and Carlin, 2014),1 which might have been

the case in one or more of the experiments in this area of research. Some support

for this notion is that when we calculated our smallest effect size of interest based on

what Steel et al. (2016) had 33% power to detect, this resulted in a d of 0.62. This

would suggest that the effect of punishment and reward feedback in motor learning

is larger than the effect that men weigh more than women (d = 0.56; Simmons et al.,

2013). Second, underpowered designs are susceptible to making a signed error (i.e.,

Type S error, where the significant finding of an experiment is estimated in the incor-

rect direction (Gelman and Carlin, 2014). Lastly, it can lead to low reproducibility

of results (Button et al., 2013; Lohse et al., 2016; Open Science Collaboration, 2015).

To address this issue, researchers are encourage to disclose the rationale behind their

sample size, analysis plan, data exclusion criteria, and data manipulations (e.g., Mu-

nafò et al., 2017; Lakens, 2021; Button et al., 2013; Simmons et al., 2011b). By doing

so, it will allow other researchers to gain a better understanding of the reported effects

and increase the transparency regarding researcher degrees of freedom.

1Gelman and Carlin (2014) termed this a Type M error.
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Chapter 6

Conclusion

Overall, the current study failed to find conclusive evidence that the order of re-

ceiving a combined punishment and reward feedback schedule matters for learning

and retention. However, contrary to previous studies, the true difference between

the punishment and reward feedback condition during training may be smaller than

previously thought.

6.1 Limitations

A limitation in the current study is that the retention interval, the time between the

end of training and the retention test, is not uniform across all the participants. In

fact, some participants may have had a retention interval greater or less than 24 hours

depending on when they completed the next-day post test. However, previous studies

have demonstrated that retention of a motor skill is likely sleep dependent (Kami

et al., 1995; Fischer et al., 2002; Walker et al., 2002). Specifically, performance during

a retention test benefits from a period of sleep, independent of whether participants
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slept during the day or night (Fischer et al., 2002). Therefore, it is unlikely that a

non-uniform retention interval impacted our findings.

Another limitation is that we failed to separate response time into its individual

parts, reaction time and movement time. Accordingly, a change in response time may

have been associated with a change in reaction time, movement time, or a combination

of both. Furthermore, a change in reaction time or movement time might represent

a change in action selection (i.e., choosing the appropriating movement) or action

execution (i.e., the ability to execute the movement), respectively (Diedrichsen and

Kornysheva, 2015; Krakauer et al., 2019). However, the current study was unable

to address these questions because we did not distinguish between the individual

measures.

6.2 Future directions

Future work should consider investigating whether the order of a transition feedback

schedule has trivial effects on specific elements of response time. According to (Chen

et al., 2018), punishment and reward feedback could be affecting only reaction time,

movement time, or a combination of both. As a result, designing a task that can

isolate these specific components would allow researchers to gain a greater under-

standing of the impact of a combined punishment and reward feedback schedule on

motor learning.
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Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D.,

Percie du Sert, N., Simonsohn, U., Wagenmakers, E.-J., Ware, J. J., and Ioannidis,

J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour,

1(1), 0021.

Newell, K., Quinn, J., Sparrow, W., and Walter, C. (1983). Kinematic information

feedback for learning a rapid arm movement. Human Movement Science, 2(4),

255–269.

Nissen, M. J. and Bullemer, P. (1987). Attentional requirements of learning: Evidence

from performance measures. Cognitive Psychology, 19(1), 1–32.

Open Science Collaboration (2015). Estimating the reproducibility of psychological

science. Science, 349(6251), aac4716.

Penhune, V. B. and Steele, C. J. (2012). Parallel contributions of cerebellar, striatal

and M1 mechanisms to motor sequence learning. Behavioural Brain Research,

226(2), 579–591.

Peterson, E. J. and Seger, C. A. (2013). Many hats: intratrial and reward level-

dependent BOLD activity in the striatum and premotor cortex. Journal of Neuro-

physiology, 110(7), 1689–1702.

Pine, Z. M., Krakauer, J. W., Gordon, J., and Ghez, C. (1996). Learning of scaling

factors and reference axes for reaching movements:. NeuroReport, 7(14), 2357–2362.

Redding, G. M. and Wallace, B. (1993). Adaptive Coordination and Alignment of

Eye and Hand. Journal of Motor Behavior, 25(2), 75–88.

66



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Robertson, E. M. (2007). The Serial Reaction Time Task: Implicit Motor Skill Learn-

ing? Journal of Neuroscience, 27(38), 10073–10075.

Rousselet, G. A. and Wilcox, R. R. (2020). Reaction Times and other Skewed Dis-

tributions. Meta-Psychology, 4.

Rousselet, G. A., Pernet, C. R., and Wilcox, R. R. (2017). Beyond differences in

means: robust graphical methods to compare two groups in neuroscience. preprint,

Neuroscience.

Salmoni, A. W., Schmidt, R. A., and Walter, C. B. (1984). Knowledge of results and

motor learning: A review and critical reappraisal. Psychological Bulletin, 95(3),

355–386.

Schendan, H. E., Searl, M. M., Melrose, R. J., and Stern, C. E. (2003). An fMRI

Study of the Role of the Medial Temporal Lobe in Implicit and Explicit Sequence

Learning. Neuron, 37(6), 1013–1025.

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological

Review, 82(4), 225–260.

Schmidt, R. A. and Bjork, R. A. (1992). New conceptualizations of practice: Common

principles in three paradigms suggest new concepts for training. Psychological

Science, 3(4), 207–218.

Schmidt, R. A., Lee, T. D., Winstein, C. J., Wulf, G., and Zelaznik, H. N. (2019).

Motor control and learning: a behavioral emphasis. Human Kinetics, Champaign,

IL, sixth edition edition.

67



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Shadmehr, R. and Mussa-Ivaldi, F. (1994). Adaptive representation of dynamics

during learning of a motor task. The Journal of Neuroscience, 14(5), 3208–3224.

Shadmehr, R., Smith, M. A., and Krakauer, J. W. (2010). Error Correction, Sensory

Prediction, and Adaptation in Motor Control. Annual Review of Neuroscience,

33(1), 89–108.

Shmuelof, L., Krakauer, J. W., and Mazzoni, P. (2012). How is a motor skill learned?

Change and invariance at the levels of task success and trajectory control. Journal

of Neurophysiology, 108(2), 578–594.

Sigrist, R., Rauter, G., Riener, R., and Wolf, P. (2013). Augmented visual, auditory,

haptic, and multimodal feedback in motor learning: a review. Psychonomic Bulletin

& Review, 20(1), 21–53.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011a). False-positive psychology:

undisclosed flexibility in data collection and analysis allows presenting anything as

significant. Psychological Science, 22(11), 1359–1366.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2011b). False-Positive Psychology:

Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything

as Significant. Psychological Science, 22(11), 1359–1366.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2012). A 21 word solution.

Available at SSRN: https://ssrn.com/abstract=2160588.

Simmons, J. P., Nelson, L. D., and Simonsohn, U. (2013). Life after P-Hacking.

Available at SSRN: https://ssrn.com/abstract=2160588.

68



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Simonsohn, U. (2015). Small Telescopes: Detectability and the Evaluation of Repli-

cation Results. Psychological Science, 26(5), 559–569.

Smith, M. A., Ghazizadeh, A., and Shadmehr, R. (2006). Interacting Adaptive Pro-

cesses with Different Timescales Underlie Short-Term Motor Learning. PLoS Biol-

ogy, 4(6), e179.

Song, Y. and Smiley-Oyen, A. L. (2017). Probability differently modulating the

effects of reward and punishment on visuomotor adaptation. Experimental Brain

Research, 235(12), 3605–3618.

Song, Y., Lu, S., and Smiley-Oyen, A. L. (2020). Differential motor learning via

reward and punishment. Quarterly Journal of Experimental Psychology, 73(2),

249–259.

Sparrow, W. A. and Summers, J. J. (1992). Performance on Trials without Knowledge

of Results (KR) in Reduced Relative Frequency Presentations of KR. Journal of

Motor Behavior, 24(2), 197–209.

Steel, A., Silson, E. H., Stagg, C. J., and Baker, C. I. (2016). The impact of reward

and punishment on skill learning depends on task demands. Scientific Reports,

6(1), 36056.

Steel, A., Silson, E. H., Stagg, C. J., and Baker, C. I. (2019). Differential impact of

reward and punishment on functional connectivity after skill learning. NeuroImage,

189, 95–105.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: an introduction.

69



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Adaptive computation and machine learning series. The MIT Press, Cambridge,

Massachusetts, second edition edition.

Swinnen, S. P. (1996). Information feedback for motor skill learning: A review. In

H. N. Zelaznik, editor, Advances in motor learning and control, pages 37–66. Human

Kinetics.

Taylor, J. A. and Ivry, R. B. (2014). Cerebellar and prefrontal cortex contributions

to adaptation, strategies, and reinforcement learning. Progress in Brain Research,

210, 217–253.

Thorndike, E. L. (1927). The Law of Effect. The American Journal of Psychology,

39(1/4), 212.

Tresilian, J. (2012). Sensorimotor control and learning: An introduction to the be-

havioral neuroscience of action. Palgrave Macmillan.

Tseng, Y.-w., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., and Bastian, A. J.

(2007). Sensory Prediction Errors Drive Cerebellum-Dependent Adaptation of

Reaching. Journal of Neurophysiology, 98(1), 54–62.

Tversky, A. and Kahneman, D. (1981). The framing of decisions and the psychology

of choice. Science, 211(4481), 453–458.

Ungerleider, L. (2002). Imaging Brain Plasticity during Motor Skill Learning. Neu-

robiology of Learning and Memory, 78(3), 553–564.

Verwey, W. B. (1999). Evidence for a multistage model of practice in a sequen-

tial movement task. Journal of Experimental Psychology: Human Perception and

Performance, 25(6), 1693–1708.

70



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Wachter, T., Lungu, O. V., Liu, T., Willingham, D. T., and Ashe, J. (2009). Dif-

ferential Effect of Reward and Punishment on Procedural Learning. Journal of

Neuroscience, 29(2), 436–443.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathemat-

ical Statistics, 16(2), 117–186.

Walker, M. P., Brakefield, T., Morgan, A., Hobson, J., and Stickgold, R. (2002).

Practice with Sleep Makes Perfect. Neuron, 35(1), 205–211.

Warren, W. E. (1983). Coaching and motivation: a practical guide to maximum

athletic performance. Prentice-Hall, Englewood Cliffs, N.J.

Weeks, D. L. and Kordus, R. N. (1998). Relative Frequency of Knowledge of Per-

formance and Motor Skill Learning. Research Quarterly for Exercise and Sport,

69(3), 224–230.

Wickens, J. R., Reynolds, J. N., and Hyland, B. I. (2003). Neural mechanisms of

reward-related motor learning. Current Opinion in Neurobiology, 13(6), 685–690.

Wilcox, R. R., Erceg-Hurn, D. M., Clark, F., and Carlson, M. (2014). Comparing

two independent groups via the lower and upper quantiles. Journal of Statistical

Computation and Simulation, 84(7), 1543–1551.

Williams, J. M. and Krane, V. (2015). Applied sport psychology: personal growth to

peak performance. McGraw-Hill Education, New York, seventh edition edition.

Winstein, C. J. and Schmidt, R. A. (1990). Reduced frequency of knowledge of re-

sults enhances motor skill learning. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 16(4), 677–691.

71



M.Sc. Thesis – R.S. Sidhu McMaster University – Kinesiology

Wolpert, D., Ghahramani, Z., and Jordan, M. (1995). An internal model for sensori-

motor integration. Science, 269(5232), 1880–1882.

Wolpert, D. M. and Flanagan, J. R. (2016). Computations underlying sensorimotor

learning. Current Opinion in Neurobiology, 37, 7–11.

Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011). Principles of sensori-

motor learning. Nature Reviews Neuroscience, 12(12), 739–751.

Wong, A. L., Lindquist, M. A., Haith, A. M., and Krakauer, J. W. (2015). Explicit

knowledge enhances motor vigor and performance: motivation versus practice in

sequence tasks. Journal of Neurophysiology, 114(1), 219–232.

Wulf, G. and Shea, C. H. (2002). Principles derived from the study of simple skills

do not generalize to complex skill learning. Psychonomic Bulletin & Review, 9(2),

185–211.

Young, D. E. and Schmidt, R. A. (1992). Augmented Kinematic Feedback for Motor

Learning. Journal of Motor Behavior, 24(3), 261–273.

72


	Lay Abstract
	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Literature Review
	General introduction
	Measurement of motor learning
	Motor learning paradigms
	Motor adaptation
	Neural correlates of motor adaptation
	Sequence learning
	Reaction time and response time
	Neural correlates of sequence learning

	Feedback characteristics and motor learning
	Knowledge of performance
	Knowledge of results

	Learning from feedback
	Error-based and reinforcement learning
	Feedback characteristics

	Punishment and reward feedback
	Motor adaptation
	Sequence learning
	Neural correlates of punishment and reward feedback

	Combining punishment and reward feedback for motor learning

	Introduction
	Methods
	Group sequential design
	Participants
	Task
	Procedure
	Data processing and analyses
	Primary statistical analyses
	Secondary statistical analyses


	Results
	Training
	Primary analysis
	Secondary analyses

	Retention
	Primary analysis
	Secondary analysis


	Discussion
	No punishment-to-reward feedback advantage
	Punishment feedback did not benefit the learning process
	Statistical power and design issues

	Conclusion
	Limitations
	Future directions


