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Abstract

Clustering is the process of finding underlying group structure in data. As the scale of

data collection continues to grow, this “big data” phenomenon results in more com-

plex data structures. These data structures are not always compatible with traditional

clustering methods, making their use problematic. This thesis presents methodology

for analyzing samples of four-way and higher data, examples of these more complex

data types. These data structures consist of samples of continuous data arranged in

multidimensional arrays. A large emphasis is placed on clustering this data using

mixture models that leverage tensor-variate distributions to model the data. Pa-

rameter estimation for all these methods are based on the expectation-maximization

algorithm. Both simulated and real data are used for illustration.
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Notation

The following is a summary of the mathematical notation used herein:

� V : A matrix.

� V : An order-D multidimensional array(MDA).

� vec(·): Vectorization of a matrix or MDA.

� d ∈ {1, 2, · · · , D}.

� ∆d : scale matrix for dimension/mode d of a MDA.

� ⊗ : Kronecker product.

�

⊗D
d=1 ∆d = ∆1 ⊗∆2 ⊗ · · · ⊗∆D

� n1 × n2 × · · · × nD = n : Dimensional lengths of a MDA.

� n∗ =
∏D

d=1 nd : The product of all the MDA dimensional lengths.

� ng =
∑N

i=1 zig.

� ‖X‖ : matrix Frobenius norm.

� ‖X‖ : array norm.
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� X×d ∆d : a d-mode matrix product.

� X× Á∆ : a Tucker product.

� en∗i∗ is a unit basis vector of length n∗, with the 1 at index i∗.

� X(1) is a
∏D

d=2 nd × n1 matricization of X.

� X̆(1) = X(1) −M(1)

� X(1)j =
(
In2 ⊗ e>j

⊗D
d=3 ∆

−>
2

d

)
X̆(1)

� n∗3:D =
∏D

d=3 nd

� X̆(1)gi = X(1)i −M(1)g

� X(1)gij =
(
In2 ⊗ e>j

⊗D
d=3 ∆

−>
2

gd

)
X̆(1)gi

� A(1)gj =
(
In2 ⊗ e>j

⊗D
d=3 ∆

−>
2

gd

)
A(1)g

� The superscript l2
Ä
e.g. Xl2

(1)gij

ä
indicates the exchanges of the second and lth

elements in a ⊗ sequence.

� n∗2:D/l =
∏D

d=2
d6=l

nd : The product of all the MDA dimensional lengths from 2 to

D, excluding the lth.

�

⊗D
d=3
d 6=n

∆d is the sequence of ⊗’s from 3 to D, excluding the nth.
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Chapter 1

Introduction

1.1 Data and Clustering

New data collection technologies, such as electronic sensors and wearables, are pro-

ducing rich sources of multivariate data. Such data can be organized in different

ways; as vectors, matrices or multidimensional arrays (MDA), a higher order gen-

eralization of a matrix. These data structures can be viewed as a hierarchy, where

vectors are combined to form matrices and matrices are stacked to form MDAs. A

three dimensional MDA can be visualized as a cube formed by stacking matrices, one

on top of the other. Historically, data has taken the form of vectors and could be

analyzed in a straightforward way, with off-the-shelf statistical techniques. Due to

the “big data” phenomenon, these everyday statistical techniques are not well suited

for the increased dimensionality and complexity of modern data sources (Bouveyron

and Brunet-Saumard, 2014).

Clustering, the practice of elucidating concealed group structure in data, is central

to machine learning, computational statistics and exploratory data analysis (Hastie

1
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et al., 2009). Modernizing clustering methodology to handle higher order data sources

is the prime motivation for the work outlined herein. These modernizations could

make important contributions to many scientific problems, e.g.: recommender sys-

tems, clustering spatio-temporal processes in neuroimaging studies, and creating sub-

groups of patients with similar sensor data patterns in clinical trials. Our method-

ological development, adapt model-based clustering, a popular clustering technique

in the literature, to MDA data. This approach relies on the finite mixture model (see

Section 2.2) which expects that each observation arises from one of a number, G say,

of probability distributions. Using a suitable probability distribution (see Section 2.4

and Chapter 5), we can natively model high-dimensional data, in the form of MDAs.

1.2 Thesis Outline

1.2.1 Chapter 2

Chapter 2 presents the necessary background to understand MDAs, the multilinear

normal distribution, model-based clustering and the expectation-maximization (EM)

algorithm used to estimate its model parameters. Additionally we lay the ground

work for Chapter 5, by detailing how the variance-mean mixture is used to formulate

skewed multivariate distributions.

1.2.2 Chapter 3

Chapter 3 outlines a finite mixture of multilinear normal distributions, including pa-

rameter estimation, model selection and a simulation study detailing its effectiveness

in a variety of sample and MDA sizes. This material is available on arXiv (Tait et al.,

2
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2020).

1.2.3 Chapter 4

Chapter 4 describes a framework for adding constraints to the scale matrices in the

finite mixture of multilinear normal distributions, making them suitable to model

longitudinal data. An applied example is described, were the five-way data is taken

from accelerometers used to characterize patterns of physical activity in children.

This material is available on arXiv (Tait et al., 2020).

1.2.4 Chapter 5

Chapter 5 presents five new tensor-variate skewed distributions, how to estimate their

parameters, a simulation study detailing how they perform across a variety of sample

and MDA sizes and an applied analysis of maple tree images.

1.2.5 Chapter 6

Chapter 6 outlines a finite mixture model of the five tensor-variate skewed distribu-

tions in Chapter 5. We discuss parameter estimation and show simulation results

detailing the models performance on a range of sample and MDA sizes.

1.2.6 Chapter 7

Chapter 7 some concluding remarks and outlines some areas of future research.

3



Chapter 2

Background

2.1 Clustering

Clustering is a form of unsupervised learning (Hastie et al., 2013), where the goal

is to find labels for the observations when known labels are not available — or we

behave as if there are no known labels. The labels indicate an observation’s mem-

bership in a cluster or group. Clustering is also known as unsupervised classification.

Many definitions of a cluster have been proposed. We will define a cluster as a uni-

modal component within a finite mixture model that is appropriate for the data being

analyzed (McNicholas, 2016a).

2.2 Finite Mixture Models

One common method of clustering is referred to as model-based clustering, which

assumes a random variable X originates from a population with G separate sub-

populations. It is a pripori unknown to which of the G sub-populations X comes,

4
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and often the value of G is also unknown. If the number of sub-populations G is

finite, the mixture model density of x, a realization of X, is given by,

f(x|ϑ) =
G∑
g=1

πgfg(x|θg), (2.1)

where the πg are called the mixing proportions and have the following two con-

straints: πg > 0 and
∑G

g=1 πg = 1. The fg(·) are the component densities, and

ϑ = (π1, π2, . . . , πG,θ1,θ2, . . . ,θG) are all the parameters of the mixture model.

Overviews of finite mixture models can be found in Fraley and Raftery (2002),

McLachlan and Peel (2000a) and McNicholas (2016a,b).

In practice, the normal mixture model has been used most frequently. Early works

using the normal mixture models include Wolfe (1965), Baum et al. (1970) and Scott

and Symons (1971). This early adoption was due to the normal distribution’s attrac-

tive mathematical properties. The fg(x|θg) has a density drawn from the multivariate

normal distribution, i.e.,

fg(x|θg) = fg(x|µg,∆g) =
1√

(2π)p|∆g|
exp

ß
−1

2
(x− µg)>∆−1

g (x− µg)
™
. (2.2)

Here x ∈ Rp×1, µg is the mean vector and ∆g is the covariance matrix of the distri-

bution.

2.3 Tensors

Tensors are higher order generalizations of matrices. While some might refer to such

structures as ‘tensors’, and so write about clustering tensor-variate data, we prefer

5
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the nomenclature multidimensional array (MDA) to avoid confusion with the term

‘tensor’ as used in engineering and physics, e.g., tensor fields.

The number of dimensions an MDA has is referred to as its order. An order-D

MDA is equivalent, in our sense, to a D-dimensional array — the D = 2 structure is a

matrix, the D = 3 structure can be regarded as a rectangular cuboid. A rectangular

cuboid is defined as a three-dimensional box, where all the angles are right angles, all

faces are rectangles, and opposite faces are equal (Harris and Stöcker, 1998). A D = 4

structure can be viewed as stacked rectangular cuboids. MDAs can be partitioned

into slices or matrices which are two-dimensional sections of a MDA. This is done by

fixing all but two dimensions of the MDA. Fibers or vectors are created from an MDA

by fixing all but one dimension (Kolda and Bader, 2009). In general, (D + 1)-way

data can be represented using a sample of D-dimensional MDAs. Herein, we restrict

ourselves to MDA data that can be regarded as the realization of continuous random

variables.

For example, four-way data can be a useful way to represent repeated measure-

ments of various attributes over time at different years of a study. This is a common

scenario in biostatistics, where multiple physical and health traits (physical activity,

blood pressure, enzyme levels, etc.) are routinely measured over short periods of time

(e.g., one week) and these short periods may be repeated over a longer period of time

(e.g., annually).

2.4 Tensor-Variate Normal Distribution

As with the univariate, multivariate and matrix variate cases, the tensor-variate nor-

mal distribution (TVND; Hoff et al., 2011), also known as the multilinear normal

6
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distribution (MLND; Ohlson et al., 2013), is the most well-known tensor-variate dis-

tribution. If X is a random order-D MDA, following an MLND, with dimensional

lengths

n1 × n2 × · · · × nD = n

and realization X — which we denote by X ∼ Nn

Ä
M,
⊗D

d=1 ∆d

ä
— its density can

be written

f(X|M,∆1, . . . ,∆D) = (2π)
−n∗

2

D∏
d=1

|∆d|
− n∗

2nd

× exp

{
−1

2
vec(X−M)>

D⊗
d=1

∆−1
d vec(X−M)

}
, (2.3)

where vec(·) is the tensor vectorization operator, M is the mean MDA,

Cov(vec(X )) =
D⊗
d=1

∆d,

n∗ =
∏D

d=1 nd, and
D⊗
d=1

∆d = ∆1 ⊗∆2 ⊗ . . .⊗∆D,

where ⊗ represents the Kronecker product (Ohlson et al., 2013).

One important property is that the exponent in the density function (2.3) can be

rewritten as

tr

[
∆−1

1 X̆>(1)

D⊗
d=2

∆−1
d X̆(1)

]
(2.4)

where V(j) is the matricization along mode j for a MDA V and X̆(1) = X(1) −M(1).

7
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This trace can be further decomposed into

n∗3:D∑
j

tr
î
∆−1

1 X>(1)j∆
−1
2 X(1)j

ó
(2.5)

or
n∗

2:D/n∑
j

tr
[
∆−1

1

Ä
Xn2

(1)j

ä>
∆−1

n Xn2
(1)j

]
, (2.6)

where

X(1)j =

(
In2 ⊗ e>j

D⊗
d=3

∆
−>

2
d

)
X̆(1)

and n∗k:D =
∏D

d=k nd for k ∈ {2, 3}. The details pertaining to these traces are available

in Appendices A.2 and A.3.

Note that, if X is a m× n random matrix then

X ∼ Nm×n(M,Σ,Ψ) ⇐⇒ vec(X ) ∼ φmn(vec(M),Ψ⊗Σ), (2.7)

where Nm×n(·) represents the matrix variate normal distribution with mean matrix

M ∈ Rm×n, row covariance matrix Σ ∈ Rm×m, column covariance matrix Ψ ∈ Rn×n

and φmn(·) represents the multivariate normal distribution of dimension mn. Using

(2.4) and (2.7), we easily arrive at the following theorem.

Theorem 2.4.1 If X is a D-order random MDA of dimension n then the following

statements are equivalent.

1. X ∼ Nn

Ä
M,
⊗D

d=1 ∆d

ä
2. X(j) ∼ Nn∗

nj
×nj

Ä
M(j),

⊗
d6=j ∆d,∆j

ä
3. vec(X(j)) ∼ φn∗

Ä
vec(M(j)),∆j ⊗

⊗
d6=j ∆d

ä
8
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The TVND, an alternative formulation of the MLND described by Hoff et al.

(2011), is defined as

f

(
X|M,

D⊗
d=1

∆d

)
= (2π)

−n∗
2

D∏
d=1

|∆d|
− n∗

2nd

× exp

ß
−1

2

∥∥∥(X−M)× Á∆− 1
2

∥∥∥™ , (2.8)

where ×Á∆−1 is the Tucker product (Kolda and Bader, 2009). The equivalence of the

two exp(·) terms in (2.3) and (2.8) is outlined in Appendix A.4.

2.5 Benefits Over Vectorization

The MDA observations can be vectorized and analyzed as vectorial data; however,

this approach has a few drawbacks. The first is that the scale matrices for each mode

of the MDA, ∆d, allow for the modeling of element dependencies within that mode.

Secondly, by modeling each ∆d individually, the number of free scale parameters is

lessened and the overall Kronecker product structure of
⊗D

d=1 ∆d, leads to sparsity in

the covariance matrix. If we consider a D-order MDA of dimension n, the vectorized

version of this MDA is an n∗ dimensional vector. If no constraints are placed on the

scale matrix, then there would be n∗(n∗+1)/2 free scale parameters that would need to

be estimated. Constraints in the form of eigenvalue decomposition, or implementing a

factor analysis could be placed on the scale matrix; however, these methods would not

give acceptable results when n∗ ≥ 100, which is easily obtained with MDA data (e.g.,

6 × 6 × 4 order-3 MDA). By modeling with a tensor-variate distribution, parameter

estimation of the scale parameters is restricted to estimating D lower dimensional

9
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scale matrices leading to
∑D

d=1 nd(nd + 1)/2 free scale parameters. Therefore, in the

previous case of a 6×6×4 order three MDA, there would be only 36 scale parameters

when using a tensor-variate distribution in comparison to 10,440 scale parameters in

an unconstrained scale matrix when vectorizing.

2.6 Parsimony

In practice, one or more dimensions of the MDA are composed of ordered values,

usually some representation of time. Analogous to McNicholas and Murphy (2010) in

the multivariate case, we use the modified Cholesky decomposition (MCD; Pourah-

madi, 1999) to constrain the number of parameters in the ∆d’s modeling temporal

dimensions of the MDAs. The Cholesky decomposition(Benoıt, 1924) of a positive

definite matrix ∆ is given as

∆d = AA>,

where ∆d ∈ Rnd×nd and the Cholesky factor, A = (aij) is a unique lower triangular

matrix. The statistical interpretation of aij, can be enhanced by considering a mod-

ification to the decomposition, where the Cholesky factors are further decomposed

as W = AD−1, where D = diag(d11, · · · , dndnd) and W is a unit triangular matrix.

This alteration to the decomposition is traditionally called the modified Cholesky

decomposition (MCD) and takes the form

∆d = AD−1DDD−1A> = WD2W>

10
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This factorization is commonly rewritten in one of these two forms

Γ∆dΓ
> = Ξ,∆−1

d = Γ>Ξ−1Γ,

where Ξ = D2 and Γ = W−1. The unique entries in Γ are unconstrained and can be

modeled statistically. This contrasts with the diagonalization of ∆d that results from

the eigendecomposition, where the entries of the orthogonal matrix are constrained.

As outlined in Pourahmadi (1999), the unstructured covariance matrix ∆d can

be modeled in a regression framework, using the MCD. A linear model is used, that

assumes there is an ordered random vector, Zd ∈ Rnd×1, with mean 0 and covariance

∆d. The linear model is given by

Zdt =
t−1∑
k=1

ψtkZdk + εt,

where t = 1, 2, · · · , nd represents the order of Zd, ψtk are the autoregressive (e.g.

regression) coefficients, εt are the uncorrelated prediction errors, Ẑdk−Zdk and the σ2
t ’s

are the innovation variances (e.g., the variances of εt). This model can be expressed

in matrix form as ΓZd = ε, where Γ is a unit diagonal lower triangular matrix that

contains −ψtk below the diagonal. The covariance matrix of ε is given by

Cov(ε) = Cov [ΓZd] = Γ∆dΓ
> = diag(σ2

1, · · ·σ2
nd

) = Ξ.

The regression coefficients, ψtk, are by their nature, unconstrained. To remove

the positive definite constraint on ∆d, Pourahmadi (1999) take the logarithm of the

diagonal entries of Ξ. This is makes for a simple relationship between log Ξ and Ξ,

11
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and changes ∆d from a positive-definite matrix to a symmetric matrix. This simple

relationship is preferable to the relationship between the entries of log ∆d and

∆d = elog ∆d ,

where eX and log X are the matrix exponential and matrix logarithm, respectively.

The parameters of the linear model are modeled with a link function (McCullagh and

Nelder, 1989), given by

h(∆d) = (ψ>2 , · · · ,ψ>nd , log σ2
1, · · · , log σ2

nd
)>,

where ψt = [ψt1, · · · , ψtt−1]. Thus we can model the entries of ∆d as unconstrained

parameters and we end up with an estimator, ∆̂g that retains its positive definite

requirements.

Using the MCD, McNicholas and Murphy (2010) developed an eight member

family of mixture models capable of properly modeling the dependence structure

present in temporal data. The Cholesky-decomposed Gaussian mixture model family

(CDGMM), decomposes each groups precision matrix as

∆−1
gd = Γ>gdΞ

−1
gd Γgd.

The eight members of the CDGMM family come from constraints imposed on either

Γgd and Ξgd, individually or in combination. These constraints include equality across

groups and an isotropic constraint on Ξgd, Ξgd = δgdInd . These constraints have

natural interpretations for temporal data, such as; Ξgd = Ξd suggests the variability

12
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at each time t is the same for all the groups, Γgd = Γd implies the model coefficients,

ψt,k, are the identical for each group g. Of the eight member models, we chose the VVI

and EVI models because they have either variable or equal autoregressive coefficients

between time points for the groups. They both include an isotropic constraint on the

variability at each time point, slightly lowering the number of free parameters being

estimated.

For non-temporal dimensions of the MDA, we examine the VVI, EEE and VVV

models, three members of the 14 Gaussian parsimonious clustering models (GPCM;

Celeux and Govaert, 1995), listed in table 2.1. These models constrain the eigen-

decomposition of the associated scale matrix. The decomposition has the following

form:

∆gd = λgdΓgdDgdΓ
>
gd,

where λgd = |∆gd|
1
nd , Dgd is a diagonal matrix containing the normalized eigenvalues

of ∆gd in decreasing order and Γgd is the corresponding matrix of eigenvectors of ∆gd.

Table 2.1: Covariance structures for the three GPCM models used in Chapter 4.

Model Volume Shape Orientation Free Parameters
VVI λgd ∆gd Gnd
EEE λd ∆d Γd nd(nd + 1)/2
VVV λgd ∆gd Γgd Gnd(nd + 1)/2

The VVI model assumes a diagonal parameterization of the scale matrix. It has

nd free parameters. It was chosen because it has the most general parameterization

with nd parameters and could give a hint towards the importance of modeling the

complete variation in each dimension of the MDA data. The EEE model assumes

that each group has the same scale structure for mode-d of the MDA and, of all the

GPCM constraints with n2
d parameters, is the one with the fewest. The VVV model

13
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is unconstrained and each group has its own unique scale matrix.

2.7 Inverse and Generalized Inverse Gaussian Dis-

tributions

The MDA distributions outlined in Chapter 5 and the mixtures of these distributions

discussed in Chapter 6, rely on the generalized inverse Gaussian (GIG) distribution,

and to a lesser extent the inverse Gaussian (IG) distribution. A random variable

Y ∼ IG(δ, γ) has the probability density function

f(y|δ, γ) =
δ√
2π

exp{δγ}y−
3
2 exp

ß
−1

2

Å
δ2

y
+ γ2y

ã™
for y > 0, where δ > 0 and γ > 0.

We will consider two different parameterizations of the GIG distribution. A ran-

dom variable Y ∼ GIG(a, b, λ), where a, b > 0 and λ ∈ R. Its probability density

function can be written as

f(y|a, b, λ) =
(a/b)

λ
2 yλ−1

2Kλ(
√
ab)

exp

ß
−ay + b/y

2

™
,

where

Kλ(u) =
1

2

∫ ∞
0

yλ−1 exp

ß
−u

2

Å
y +

1

y

ã™
dy

is the modified Bessel function of the third kind with index λ.
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The expectations of certain functions of a GIG(a, b, λ) random variable are com-

putationally tractable and will be used for parameter estimation of the skewed tensor-

variate distributions. Examples of such expectations include

E(Y ) =

…
b

a

Kλ+1(
√
ab)

Kλ(
√
ab)

, (2.9)

E (1/Y ) =

…
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

− 2λ

b
, (2.10)

E(log Y ) = log

Ç…
b

a

å
+

1

Kλ(
√
ab)

∂

∂λ
Kλ(
√
ab). (2.11)

To derive the density of the tensor-variate generalized hyperbolic distribution, this

second GIG density function is preferred:

g(y|ω, η, λ) =
(w/η)λ−1

2ηKλ(ω)
exp

ß
−ω

2

Å
w

η
+
η

w

ã™
, (2.12)

where ω =
√
ab and η =

√
a/b (Browne and McNicholas, 2015). To reduce confusion,

we will denote the GIG parameterization in (2.12) by I(ω, η, λ).

2.8 Variance-Mean Mixtures

A m-variate random vector X defined in terms of a variance-mean mixture has a

probability density function of the form

f(x) =

∫ ∞
0

φm(x|µ+ wα, w∆)h(w|θ)dw,
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where the random variable W > 0 has density function h(w|θ) and φm(·) repre-

sents the density function of the m-variate Gaussian distribution. Notably, X can

equivalently be expressed as

X = µ+Wα+
√
WV, (2.13)

where µ is a location parameter, α is the skewness, V ∼ Nm(0,∆) with ∆ as

the scale matrix, and W > 0 has density function h(w|θ). Note that W and V are

independent. The variance-mean mixture can be used to formulate many multivariate

distributions, simply by changing the distribution of W (McNicholas, 2016a).

For example, the m-dimensional normal inverse Gaussian (NIG) distribution,

NIGm(µ,α,∆, δ, γ) is derived by Karlis and Santourian (2009). They use a variance-

mean mixture with W ∼ IG(δ, γ). This derivation has a restriction on the deter-

minant of ∆ to eliminate identifiability problems. To remove this restriction and

maintain identifiability, Karlis and Santourian (2009) set δ = 1, and set γ̃ = γ. This

formulation was also used by O’Hagan et al. (2016). Franczak et al. (2014) use a

variance-mean mixture representation of a (shifted) asymmetric Laplace distribution

for model-based clustering, Murray et al. (2014) use a skew-t distribution, Browne

and McNicholas (2015) use a generalized hyperbolic distribution, etc.

2.9 EM Algorithm

The parameters of the finite mixture models described herein are estimated by the

method of maximum likelihood (ML). The ML estimates are found using the EM

algorithm, a two step iterative algorithm used to calculated the parameter estimates
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in the presence of missing data (Dempster et al., 1977). In the case of the models

described in the following chapters, the missing data are represented by the latent

variables; wig used in the variance-mean mixture formulation described in Section 2.8

and zig which represents the group allocation of each member of the sample, {xi}Ni=1,

in the finite mixture models described in Section 2.2.

In general, finite mixture models have the following observed log-likelihood

`O(ϑ) =
N∑
i=1

log

[
G∑
g=1

πgfg(xi|θg)

]
.

The summation over G inside the logarithm makes parameter estimation difficult. To

make the parameter estimation more tractable, a latent variable, zig is included in

the likelihood formulation to produce the following complete log-likelihood

`C(ϑ) =
N∑
i=1

G∑
g=1

zig log πg +
N∑
i=1

G∑
g=1

zig log fg(xi|θg).

Note, zi ∈ RG×1 is a realization of a random variable, Zi, which follows a multino-

mial distribution with one draw on G categories with probabilities π1, . . . , πG. The

{Zi}Ni=1 random variables are all independent and identically distributed and πg can

be considered the a priori probability that group g contains observation xi.

Using the `C(ϑ), the EM algorithm consists of two steps at each iteration k:

1) E-step: Take Ezig
î
`C(ϑ(k))

ó
. The result of the E-step is often referred to as

the Q function, Q(ϑ(k)).

2) M-step: ϑk+1 = argmaxϑQ(ϑ|ϑ(k)).

For a version of the mixture model in Section 2.2 that uses the MLND as its com-

ponent density, the E-step amounts to replacing the zig values in the `C(ϑ) equations
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by their conditional expectations

E[zig|Xi] = ẑig =
π̂gfMLND(Xi | Mg,∆g1, . . . ,∆gD)∑G
h=1 π̂hfMLND(Xi | Mh,∆h1, . . . ,∆hD)

, (2.14)

Note that the ẑig gives a probability, P[zig = 1|Xi], of each observation i belonging

to a component g, often called the a posteriori probability. To harden up these soft

classifications, the maximum a posteriori (MAP) classification is defined as

MAPi (ẑig) =


1 if g = argmaxh

Ä
{ẑih}Gh=1

ä
,

0 otherwise.

The MAP classifications are often reported as the group labels from a finite mixture

model.

A variant of the EM algorithm, called the expectation-conditional maximization

algorithm (ECM; Meng and Rubin, 1993) can be an attractive alternative to the EM

algorithm when the M-step is computationally complex. The ECM algorithm replaces

the M-step by a series of conditional maximization steps that condition the maximiza-

tion on some of the model parameters. These conditional steps are simpler, which

leads to a reduction in the total compute time used to find the final solution. This

comes at the expense of an increased number of iterations relative to the EM algo-

rithm. The ECM algorithm preserves the appealing monotone convergence properties

of the EM algorithm. The ECM algorithm will be used for parameter estimation in

Chapters 5 and 6.
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Chapter 3

Finite Mixtures of MLNDs

3.1 Model

Building on the material outlined in Sections 2.2, 2.4 and 2.9, we describe a mixture

of MLNDs. In this context, we assume X comes from a population with G subgroups,

all of which come from MLNDs with different parameter values. Given a sample of

N iid random D-dimensional arrays X1, . . . , XN , the log complete-data likelihood for

the model is given by

`C(ϑ) = C +
G∑
g=1

ng log πg −
n∗

2

G∑
g=1

ng

D∑
d=1

1

nd
log(|∆gd|)

− 1

2

G∑
g=1

N∑
i=1

zig

[
vec
(
X(1)i −M(1)g

)> D⊗
d=1

∆−1
gd vec

(
X(1)i −M(1)g

)]
, (3.1)

where C is a constant that does not depend on the parameters.

Depending on the permutation of the MDA we use, the final term in (3.1) can be
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replaced with

−1

2

G∑
g=1

N∑
i=1

zig

n∗3:D∑
j=1

tr
î
∆−1

g1 X>(1)gij∆
−1
g2 X(1)gij

ó
(3.2)

or

−1

2

G∑
g=1

N∑
i=1

zig

n∗
2:D/l∑
j=1

tr
î
∆−1

g1 (Xl2
(1)gij)

>∆−1
gl Xl2

(1)gij

ó
, (3.3)

resulting in three complete-data log-likelihood equations. These equations allow us

to isolate the individual model parameters and enable their estimation.

3.2 Parameter Estimation

The model parameters are all estimated by the method of maximum likelihood using

the EM algorithm outlined in Section 2.9. The M-step update for ϑ are available in

closed form and follow from taking respective first derivatives of the Q function and

setting the resulting expressions to zero. The update for πg is given by π̂g = ng/N .

The respective M-step updates for ∆g1 and ∆g2 involve taking the first derivative of

the Q function that uses (3.2) as its final term. The updates are

∆̂g1 =
n1

n∗ng

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij (3.4)

and

∆̂g2 =
n2

n∗ng

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij, (3.5)
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respectively. The update for ∆gl uses the Q function that adopts (3.3) for its final

term. The update is

∆̂gl =
nl
n∗ng

N∑
i=1

ẑig

n∗
2:D/l∑
j=1

Xl2
(1)gij∆

−1
g1 (Xl2

(1)gij)
>. (3.6)

The M-step update for M(1) uses the Q function equivalent to (3.1) and is given by

M̂(1)g =
1

ng

N∑
i=1

ẑigX(1)i. (3.7)

Detailed derivations of the parameter estimates are available in Appendix B.1.

3.3 Model Selection

The number of groups G in a clustering problem is often unknown a priori. In such

cases, the parameters of a mixture model are typically estimated for different values

of G and some criterion is then used to select G. We use the Bayesian information

criteria (BIC; Schwarz, 1978) to do the model selection. It can be written

BIC = 2l(ϑ̂)− ρ logN , (3.8)

where l(ϑ̂) is the maximized log-likelihood, ρ is the number of free parameters in the

model and N is the number of observations. For our finite mixture of MLNDs,

ρ = (G− 1) +Gn∗ +
G

2

D∑
d=1

nd(nd + 1). (3.9)
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3.4 Identifiability

The scale parameters, ∆gd, in the Kronecker product are unique up to a strictly

positive multiplicative constant (Dutilleul, 1999; Anderlucci et al., 2015; Gallaugher

and McNicholas, 2018a). Indeed, if we let dk > 0 then

D⊗
d=1

∆d =
1∏D

k=2 dk
∆1 ⊗

D⊗
k=2

dk∆k, (3.10)

and the likelihood is unchanged. However, we notice that

D⊗
d=1

∆d =
D⊗
d=1

∆̃d,

where ∆̃d are the terms on the right hand side of (3.10), so the estimate of the Kro-

necker product would be unique. This constraint is imposed once the EM algorithm

has converged. We let dk = 1/δk(1,1), where δk(1,1) is the first entry in ∆k. Another

way of solving this problem of non-identifiability is to set tr(∆d) = nd again for

1 ≤ d ≤ D − 1 (Anderlucci et al., 2015).

3.5 Stopping rule

To stop our EM algorithm, we use a criterion based on the Aitken acceleration

(Aitken, 1926). At iteration t of the EM algorithm, the Aitken acceleration is

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
, (3.11)
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where l(t) is the (observed) log-likelihood at iteration t. Böhning et al. (1994) use a(t)

to calculate an asymptotic estimate of the log-likelihood at iteration t+ 1:

l(t+1)
∞ = l(t) +

1

1− a(t)
(l(t+1) − l(t)). (3.12)

We stop the EM algorithm when

l(t+1)
∞ − l(t) < ε

(Lindsay, 1995; McNicholas et al., 2010).

3.6 Software

We have used version 1.5.3 of the Julia language(https://julialang.org/; Bezan-

son et al., 2017; McNicholas and Tait, 2019), to implement our finite mixture model.

Singular ∆g values were numerically regularized by adding a small positive quan-

tity to the diagonal elements of the matrices (Williams and Rasmussen, 2006). The

regularization is summarized in the following equation:

∆̃ = ∆̂ + εI, (3.13)

where ε ∈ (0, 0.1], ∆̂ is the estimated singular scale matrix, and ∆̃ is the regular-

ized estimate of ∆. We use ε = 0.001 in our implementation. The singularity of

∆̂ was assessed by checking if its inverse condition number is less than machine ep-

silon. This regularization is often done implicitly in software implementations such

as scikit-learn’s GaussianMixture function, written in Python. The value of the
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regularization parameter ε could be tuned. The larger it is, the further the model

results are from the true solution. The positive definiteness of the ∆d matrices was

checked with the Cholesky decomposition. We used Algorithm 4.1 from Blanchard

et al. (2019) to implement the log-sum-exp rule.

3.7 Simulation

We conducted a simulation study to investigate the effect of different sample and

MDA sizes on the following questions:

� Can we effectively estimate the model parameters?

� Can we effectively capture the original group labels?

� How often do singular scale matrices occur and how do singular scale matrices

affect the model results?

Accurately estimating and interpreting the model parameters and labels are common

goals of clustering and as such, are important to the assessment of new models.

We used five-way data in our simulations. The simulations were conducted for

sample sizes N ∈ {60, 90, 120, 180} subjects with three equal sized groups. The n∗

quantity was used to measure the different dimensions of the order four MDAs. Its

values included 256, 625, 1296 and 2401. While these values of n∗ can equate to

any product of dimension lengths, the simplest way to visualize the resulting MDAs

is as an order 4 MDA with four equal dimension lengths of 4, 5, 6 or 7. For each

combination of N and n∗, 250 simulations were conducted.
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Following Definition 2.2 in Ohlson et al. (2013), the simulated data was generated

using the equation

vec(X) = vec(M) +
D⊗
d=1

∆
1
2
du, (3.14)

where u is a vector of iid N (0, 1) random numbers. This is equivalent to the multi-

varite normal model for the vectorized version of the MDA data. This formulation

has the disadvantage of having to recreate the MDA from the vectorized data and

dealing with a potentially large matrix

D⊗
d=1

∆
1
2
d .

If we generate u and M as order-D MDAs, we can use tensor d-mode products to

implement the final term on the right hand side of (3.14) (Kolda and Bader, 2009).

A tensor d-mode product multiplies an MDA by a matrix in mode d and has the

advantage of retaining the mode d structure of the data and not creating one large

matrix from the Kronecker product

D⊗
d=1

∆
1
2
d

and then having to permute the data back into an MDA.

A signal-to-noise ratio of a half was applied to the simulated data prior to anal-

ysis. The ∆d parameters were generated by specifying a diagonal matrix of eigen-

values and a random orthogonal matrix and combining them as you would in an

eigen-decomposition of the scale matrix. An nd × nd orthogonal matrix was created
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by generating n2
d i.i.d. N (0, 1) random values, placing them in a matrix and orthog-

onalizing it with the QR decomposition. We restrict the condition number of these

∆d matrices to be at most 10.

The EM algorithm used to generate the results was initialized with identity matri-

ces for all the scale matrix parameters. The values of ẑig are initialized with k-means

starts, calculated on the vec(Xi) version of the data. The BIC was used to select

the number of groups in our simulation. We checked G ∈ {2, 3, 4, 5} for each com-

bination of N and n∗ and in every instance, G = 3 was chosen. We took advantage

of the Julia’s native distributed computing capabilities to make these simulations

computationally feasible.

We use the relative error to determine how close the estimated model parameters

were to the true parameters. It is defined as

∥∥∥V̂ −V
∥∥∥
F

‖V‖F
,

where ‖·‖F is the Frobenius matrix norm, V̂ is the estimated parameter matrix, and

V is the true parameter matrix used to generate the simulated data. The smaller this

ratio is, the less error is present in the model’s parameter estimates.

Figure 3.1 indicates that for the three groups, over 95% of the values are well

below one, indicating the mean matrices are being estimated accurately. As noted in

Section 3.4, we would expect to be able to accurately estimate

D⊗
d=1

∆gd.

Figure 3.2 shows the relative errors are larger than M(1)g but still consistently between
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Figure 3.1: Empirical cumulative distribution plots of the relative errors for the M(1)g

parameter matrices. The x-axis is plotted on the log2 scale because the distributions
have a very long right tail.

1 and 1.5 for all combinations of N and n∗.

The group labels produced by the finite mixture model were compared to the

simulated group labels via the adjusted Rand index (ARI; Hubert and Arabie, 1985).

Note that the ARI facilitates a quick assessment of the agreement between two par-

titions. For our purposes, it suffices to know that an ARI value of 1 indicates perfect

class agreement and the expected value of the ARI under random classification is 0.

The average ARI for each combination of N and n∗ was at least 0.95, with an overall

average of 0.969 and standard deviation of 0.118.

Given the high-dimensional data being analyzed and the large number of param-

eters being estimated by our model, we expected the “curse of dimensionality” to be
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Figure 3.2: Empirical cumulative distribution plots of relative errors for the
⊗D

d=1 ∆gd

parameter matrices. The x-axis is plotted on the log2 scale because the distributions
have a very long right tail.

a problem, manifesting as ill-conditioned scale matrices. This is some-what attenu-

ated in our model because we are estimating individual ∆d, which are much lower

dimensional than
D⊗
d=1

∆d

and each nd is less than N . Nevertheless, we count the number of simulations that

singular ∆gd occur and investigate how their occurrence affects the results. Figure

3.3 indicates no more than 10% of the simulations had singular ∆d matrices and

large values of N and n∗ resulted in the most occurrences. Singularities happened

at the first iteration of the EM algorithm and would occur in a single group. Prior

to conducting the simulations, we expected that small N and large n∗ values would

have had more singular scale matrices.
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Figure 3.3: Heatmap of the percentage of the 250 simulations with a singular ∆gd

matrix.

When singular scale matrices are present, the mean matrices M(1)g can still be

reliably estimated, as we can see from Figure 3.4a. The distributions have long right

tails but consistently have 95% of the relative errors less than one. As we can see

from figure 3.4b, the scale matrices are more adversely affected than M(1)g. When

singular ∆gd’s occur, the overall errors are closer to 2, with group 1 having the worst

results in low to moderate n∗ values and group 2 at the largest value of n∗.

The mean ARI values are strongly affected by the singular ∆gd values. The results

are summarized in Table 3.1. The summary statistics are calculated across all the

values of N and n∗. When singular ∆gd occur, the ARI and estimates of ∆gd are

adversely affected, making their interpretation suspect.
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(b)
⊗D

d=1 ∆gd

Figure 3.4: Empirical cumulative distribution plots of the relative errors stratified by
the occurrence of a singular ∆gd matrix.

Table 3.1: ARI summaries for models with and without singular ∆gd.

Metric N Mean SD
Overall 4000 0.969 0.118
Singular: Yes 168 0.559 0.008
Singular: No 3822 0.987 0.080

3.8 Discussion

The simulations we performed in Section 3.7 can be viewed through the lens of ex-

perimental design (ED; Wu and Hamada, 2021) as a computer experiment. In this

context, we are doing a 42 factorial design, that has two independent variables, N

and n∗, each with four levels. The experiment has 250 replicates for each factor level

combination. We chose to analyze the results graphically because we are more in-

terested in the practical significance as opposed to the statistical significance of the

results. We kept the signal-to-noise ratio, group size ng and the number of groups G

constant for each combination of factor levels.

30



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

When viewed as an experimental design, our simulation could be improved in a

number of ways. We could use a fractional factorial design to efficiently screen main

effects, two-way and three-way interactions of more than two factors; we could use

blocking, a set of similar experimental units, to explore variation in nested factors

(e.g., ng changes while N and n∗ are held constant); if we had prior knowledge of the

accuracy of the parameter we are estimating, we can more accurately calculate the

number of simulations we need (Burton et al., 2006). This last point is more difficult in

clustering, as few methods report the standard errors of the model parameters. Good

general advice concerning designing simulation studies; including random number

generation, generating data sets for different types of data (e.g., multivariate, time to

event) and performance evaluation are available in Burton et al. (2006) and Morris

et al. (2019).

This work could be extended in several methodological directions. For a given

collection of four or five way data, often ρ > N , indicating some form of variable

selection or dimension reduction could be warranted. Variable selection in model

based clustering can be separated into two broad approaches, penalization and model

selection (Fop et al., 2018). Model selection approaches have been shown to be su-

perior to penalization in terms of variable selection and classification (Celeux et al.,

2014) and would be the preferred avenue of future research. Even without variable

selection, our model was able to effectively recover the parameters and labels in our

simulations.

Recently, Mai et al. (2021), introduced a mixture model that clusters MDA data
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using a discriminant analysis, where sparsity is applied to the discriminant tensors

[
M g

g 6=1
−M1

]
× Á∆−1.

The variation of the EM algorithm they use, called DEEM, has an enhanced E-step,

that imposes sparsity on the elements of the discriminant tensor by applying a group

lasso penalty (Yuan and Lin, 2006). The reduction in free parameters that resulted

from the penalty was never reported in the paper, making it difficult to know how

sparse the model parameters were and how much smaller the penalized versus non-

penalized ρ was.
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Figure 3.5: Graphical display of table 1 from Mai et al. (2021).

Over a range of simulations, their DEEM algorithm outperformed the standard

EM algorithm in terms of label (clustering) error. Taking a page from Gelman et al.

(2002), Figure 3.5 summarizes their simulation results, listed in the Table 1 of the

paper. To get a more complete picture of the relative performance, the BIC for

each algorithm should be compared and a more clustering specific metric, like the
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ARI, should be used to compare the model labels to the known group labels. It

would be interesting to see the distribution and median values of the clustering error

rates for both algorithms. It seems plausible that the regularization scheme used in

the DEEM algorithm reduced the tails of the distribution, which would not affect

the median error but would account for the smaller mean error rates. Finally, their

model assumed homogeneous covariances across cluster groups and, as we will see in

Chapter 4, this is not a realistic assumption for real world data.
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Chapter 4

Parsimony Constraints in Finite

Mixtures of MLNDs

4.1 Approach

The number of free parameters, given by (3.9), can be substantial as D and n∗

increase. We denote the mixture model described in Chapter 3 as VVV. We impose

parsimony on the ∆d matrices to improve their interpretability. In practice, one or

more modes of the MDA are composed of ordered values, usually some representation

of time. To account for this, we extend two members of the CDGMM family, described

in Section 2.6, to our mixture model of MLNDs. In our applied problem, described in

Section 4.2, modes 1,3 and 4 of the order-4 MDAs represent temporal measurements.

Mode 2 represents variables and the scale matrix, ∆2, is constrained using the eigen-

decomposition associated with the GPCM family of mixture models described in

Section 2.6.

To apply the VVI model to ∆1g, we start with (3.2) and re-express the terms
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related to ∆1g as:

logLC(ϑ) = C +
n∗

2

G∑
g=1

ng log(δ−1
g1 )− 1

2

G∑
g=1

ngδ
−1
g1 tr

[
Tg1Λg1T

>
g1

]
, (4.1)

where

Λg1 =
1

ng

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij.

After taking the partial derivatives of the Q function associated with (4.1), we end

up with the following expressions:

δ̂g1 =
1

n∗
tr[Tg1Λg1T

>
g1],

Λ
(g)1>
(r−1)×(r−1)Φ

(g)1
(r−1)×1 = −Λ

(g)1
(r−1)×1,

where r = 2, . . . n1, Φg1 is a portion of the unit lower triangular matrix Tg1, which has

n1(n1 − 1)/2 elements to be estimated. The VVI model for ∆1g has Gn1(n1 − 1)/2 +

G free parameters. For the mathematical details, see appendix C.1.1. A similar

derivation for the VVI decomposition of ∆gl is available in appendix C.1.1.

To apply the EVI model to ∆1g, we start with (3.2) and re-express the terms

related to ∆1g as:

logLC(ϑ) = C +
n∗

2

G∑
g=1

ng log(δ−1
g1 )− 1

2

G∑
g=1

ngδ
−1
g1 tr

[
T1Λg1T

>
1

]
,
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where Λg1 is defined as above. The associated expressions are

δ̂g1 =
1

n∗
tr[T1Λg1T

>
1 ],

κ1>
(r−1)×(r−1)Φ

1
(r−1)×1 = −κ1

(r−1)×1,

where the lower triangular elements of T1 are denoted as the κ1 matrix, which has

entries

κ1
ij =

G∑
g=1

ng
δg1

λ
(g)
1ij.

The EVI model for ∆1g has n1(n1 − 1)/2+G free parameters. The mathematical de-

tails are available in Appendix C.1.2. A similar derivation for the EVI decomposition

of ∆gl is available in Appendix C.1.2.

For non-temporal modes of the MDA, the EEE model assumes that each group

has the same scale structure. Starting with (3.2), an EEE model for ∆g2 can be

formulated by reorganizing the equation in terms of ∆g2 as follows:

logLC(ϑ) = C − 1

2

[
N
n∗

n2

log(|∆2|) + tr

{(
G∑
g=1

Λg2

)
∆−1

2

}]
,

where

Λg2 =
1

ng

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij.

Using results from Celeux and Govaert (1995), we find that

∆̂2 =
1

N

G∑
g=1

Λg2∆2. (4.2)

The number of free parameters for the EEE model of ∆g2 is n2(n2 + 1)/2. The
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mathematical details are available in appendix C.2.

The VVI model assumes a diagonal parameterization of the scale matrix. It has

nd free parameters. It was chosen because it has the most general parameterization

with nd parameters and could give a hint towards the importance of modeling the

complete variation in each mode of the MDA data. The VVI model for ∆g2 represents

the scale matrix as λg2Dg2. Reorganizing (3.2), we have

logLC(ϑ) = C − 1

2

[
G∑
g=1

1

λg2
tr
{
Λg2D

−1
g2

}
+ n∗

G∑
g=1

ng log(λg2)

]
.

Using results from Celeux and Govaert (1995), the estimators are given by:

D̂g2 =
diag(Λg2)

|diag(Λg2)| 1
n∗
, (4.3)

λ̂g2 =
|diag(Λg2)| 1

n∗

ng
. (4.4)

The number of free parameters for the VVI model of ∆g2 is Gn2. The mathematical

details are available in Appendix C.2. Parameter estimation for these four parsimo-

nious models is done via the EM algorithm described in Section 3.2.

4.2 CHAMPION Study

The CHAMPION (Cardiovascular Health in children with a chronic inflAMmatory

condition: role of Physical activity, fItness, and inflammatiON) study included youth

between the ages of 7 and 17 years with a single diagnosis of a chronic inflammatory

condition (CIC) including chronic cystic fibrosis (CF), juvenile idiopathic arthritis
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(JIA), inflammatory bowel disease (IBD), or type 1 diabetes mellitus (T1D) recruited

from the McMaster Children’s Hospital. Healthy control participants were recruited

from the general community. The study aims to examine the factors affecting heart

health in common chronic diseases of childhood.

CHAMPION is a cross-sectional, observational study where each participant was

outfitted with an ActiGraph GT3X accelerometer. Accelerations were captured in

the vertical (axis1), anterioposterior (axis2), and mediolateral (axis3) planes. The

three axis values were combined to form the vector magnitude (VM), which is defined

as
√

axis12 + axis22 + axis32. A sample of 83 participants’ accelerometer data was

analyzed. They had a median of seven wear days. Because youth tend to exhibit

short bursts of activity through out the day, understanding intra-day activity patterns

could have important implications for health. With this in mind, we aggregated the

accelerometer data across each participants wear days into the following nested time

periods; four 15 second, six 10 minute and 12 one hour periods (9h–20h). This results

in 288 unique epochs per participant. Because the accelerometer data is all ≥ 0 and

heavily right skewed, we used the square-root transformation to transform the data

before aggregation. The activity counts and VM were aggregated across days by

taking their mean values. The participants steps were summed within each day and

time period, the transformation was applied and the values were averaged across days.

We included the standard deviation (SD) of VM and steps, calculated at the same

time as the mean, to capture the variation in these metrics.

The aggregated accelerometer data was transformed into five-way data, with n1 =

4 being the seconds, n2 = 7 being the metrics, n3 = 6 being the minutes and n4 = 12

being the hours. The seven accelerometer metrics include the three axis counts, steps
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and VM and their respective standard deviations. The n∗ value is 2016, making

this data comparable to the n∗ = 2401 and N = 90 combination in our simulations.

The goal of the analysis was to cluster the youth into groups based on their physical

activity profiles and determine if these groups agree with their clinical groupings or are

capturing additional information about the participants. A visualization of patients

X(2)i matrices are available in Figure 4.1.
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Figure 4.1: Accelerometer data from four random participants in the CHAMPION
study. Four columns from the X(2)i matrices are displayed.

Six different mixture models over 9 different group sizes were assessed. The models

BIC values are summarized in Figure 4.2. A two or three group solution with an

unstructured ∆2g resulted in better clustering solutions, as determined by the BIC.

One group solutions were investigated but proved inferior to the two and three group

models. The model with the largest BIC was the one with two groups and used the
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VVI model for the temporal scale modes and VVV for the accelerometer metrics.

None of the models we investigated had a singular scale matrix.

Number of Groups
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B
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Figure 4.2: BIC by model type and nine different group sizes. The legend is inter-
preted as follows: the first three letters correspond to the temporal scale model and
the last three letters correspond to the scale model used for the accelerometer metrics

To further improve on the clustering solution, we focused on two and three group

solutions where each scale model could have any of the three appropriate options. The

results are displayed in Figure 4.3. Models with unstructured scale matrices for the

second and hour modes are preferred based on the BIC. These modes do not exhibit

patterns of variation consistent with an autoregressive model, despite representing

measurements taken over time. Models that use an autoregressive model to model

the minutes (e.g. VVI or EVI) are consistently preferred. Using a VVV model to

model the variation between the accelerometer metrics is preferred, suggesting the

groups do not exhibit the same pattern of variation across the metrics. The VVI
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Figure 4.3: BIC by group size and model type. Includes horizontal jittering to clarify
the points position. The legend is interpreted as follows: the first three letters cor-
respond to the scale model used for ∆1, the second three letters correspond to the
scale model used for ∆3 and the last three letters correspond to the scale model used
for ∆4

temporal model for ∆3g is preferred over EVI, implying that the groups have different

autoregressive patterns in the minute mode of their MDAs. The final model is a two

group solution with the VVI temporal model for ∆3g and unstructured scale matrices

for the other three modes. With such a small number of groups, it is unlikely our

mixture model is over-fitting the data.

Figure 4.4 indicates group 1 is the group which on average, has the most consis-

tently active participants, moving at higher intensities through out the day. Group 2

exhibits brief periods of intense activity in the mid morning and late afternoon, il-

lustrated by the deep purple bands in the VM and steps columns. Both groups have

similar mean patterns of variation in their steps.
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Figure 4.4: The mode 2 matricized mean MDA, M(2)g, which visualizes the mean
activity patterns of each group’s vector magnitude and steps

Figure 4.5 demonstrates that group 2 has more variation in their accelerometer

metrics, as is evident by the deeper shades of blue and green in its heatmap. This

makes sense in light of the participants periodic bouts of intense movement inter-

spersed with longer periods of little activity. Steps have the most variation of the five

metrics, followed by VM. As expected, VM covaries with the three axis values and

steps covary with axis 1. In group 1, the more active participants, variation in VM

(vm sd) does not covary with any metric except VM, unlike group 2. Variation in

steps (steps sd) does not covary with any metric, including steps in group 1.

Figure 4.6 illustrates the pattern exhibited by the AR coefficients for the 10 minute

intervals are generally decreasing with increasing lag between time points. This is

characteristic of true longitudinal data. In general, the magnitude of the early AR
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Figure 4.5: Represents the variation of the accelerometer metrics, ∆2, plotted by
group. The individual entries of the lower triangular portion of the matrix, δ2ij are
plotted as a heatmap.

relationships are shifted downward in group 2 relative to group 1. This suggests the

AR relationships are slightly stronger in the active participants. Because the two

sub-plots are nearly interchangeable, it is not surprising how similar the BIC results

were for the models that used the VVI and EVI models for this mode. The two

isotropic constraints representing the variation at each time point are nearly identical

between the groups (δ31 = 0.984, δ32 = 0.987) and relatively small in magnitude.

The variation in the four 15 second intervals is visualized in Figure 4.7a. Group 1

exhibits more variation at this time scale. The level of covariation between the in-

tervals remains nearly constant in both groups. This is contrary to the VVI and

EVI temporal models, that would impose decreasing levels of variation as you move

away from the main diagonal. Figure 4.7b displays the variation in the hours. There
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Figure 4.6: The autogressive coefficients from the T3g matrices derived from the 10
minute intervals.
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Figure 4.7: Variation in the four 15s intervals, ∆g1 and the 12 hours, ∆g4.

is little variation in each hour and it remains consistently low through out the day.

Covariation is nearly absent between the hours, which suggests a VVI model from the

GPCM family could be appropriate for this mode of the MDA data. These patterns
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Table 4.1: Cross-tabulation of the clusters (based on MAP estimates) versus the
medical diagnosis groupings.

Cluster Control CF IBD JIA T1D Total(%)
1 7 10 6 12 8 43(52)
2 7 4 11 9 9 40(48)

are evident in both groups and imply that the hour mode does not help distinguish

between the participants in each cluster group. This aligns with the existing obser-

vations that children move in short bursts of activity through out the day and these

patterns are more evident when analyzing higher resolution data at multiple time

scales.

A cross-tabulation of the clusters (based on MAP estimates) versus the medical

diagnosis groupings is given in Table 4.1. Each cluster represents roughly half the

participants. The control and T1D participants are evenly distributed between the

two groups. Group 1, the active participants, has the majority of the CF youth

(71%) while group 2 has the majority of the IBD (65%) youth. The ARI for the

table is 0.0007, indicating that the labels produced by the model are unrelated to the

youth’s membership in one of the five study groupings. This indicates that within

each CIC, there is heterogeneity in the youth’s physical activity profiles. Clinicians

can use this to inform activity recommendations for low fit youth based on their high

fit counterparts that share the same CIC.

The results of the finite mixture of MDAs model could be useful in a number

of ways. Beyond characterizing the covariation in each mode of the samples MDAs,

the group labels can be used in conjunction with traditional statistical models. We

use them as one of four predictors in a quantile regression characterizing the rela-

tionship between predictors and aerobic fitness, defined as maximal oxygen uptake
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Figure 4.8: Empirical cumulative distribution plots of VO2max for all 83 participants
and by cluster group. The green hexagons indicate the following quantiles (τ), used
in our regression model: 10th = 33.4, median/50th = 44.0 and the 90th = 53.3.

or VO2max. VO2max is the gold-standard measurement of cardiorespiratory fitness

and is the maximum rate of oxygen consumption measured during incremental ex-

ercise (VanPutte et al., 2017). Our VO2max values are expressed as a relative rate,

millilitres of oxygen per kilogram of body mass per minute (ml/kg/min). Figure 4.8

indicates: group 1, the active youth, have larger VO2max values across the quan-

tiles which aligns with our expectation that the more active youth would have better

cardiorespiratory fitness; our finite mixture model effectively captured the salient in-

formation about the participants physical activity from the accelerometer data. The

10th = 33.4 and 90th = 53.3 quantiles represent the youth in our sample with low
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Table 4.2: Summary statistics by cluster.

Cluster Age(years) Females VO2max(ml/kg/min)
Mean SD n % Mean SD

1 11.8 2.63 14 33 47.0 6.82
2 14.2 2.05 29 73 40.6 7.10

and high cardiorespiratory fitness.

At the time of writing, we have access to the participants age, sex, study arm and

VO2max values. Basic summary statistics by cluster group are listed in table 4.2.

Group 1 is slightly younger, predominantly male and has higher cardiorespiratory

fitness than group 2. Cluster 2 is older and predominantly female, suggesting daily

patterns of physical activity are different for each sex in our sample. This is consis-

tent with existing literature demonstrating that girls engage in less physical activity

compared with boys, starting as early as the preschool years, in early childhood, as

well as in adolescence (Proudfoot et al., 2019).

The quantile regression results are summarized in Figure 4.9. For the less fit

participants, being in the active group vs the inactive group has a relatively large

and statistically significant effect on VO2max at the 5% level — β = 8.68(95%CI

[0.88; 16.36]) — while being female vs male, trends towards a decreased VO2max —

β = −6.25(95%CI [−13.56; 1.06]). When controlled for the other predictors, the effect

of the study arm and age do not have an important relationship with VO2max. The

effect of age on VO2max is likely muted by the inclusion of our cluster groups, which

differ in age. Similar trends are evident at the median VO2max, with both cluster

group — β = 4.89(95%CI [0.11; 9.67]) — and sex — β = −6.03(95%CI [9.84;−2.21])

— being statistically significant. At the 90th quantile, the high fit youth do not have

any statistically significant relationships between the predictors and VO2max. The
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same trends in MAP and sex are evident here and being in the control group may

confer some increase in cardiorespiratory fitness.

β and 95%CI by τ
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Figure 4.9: Quantile regression coefficients (β), their 95% confidence intervals(CI),
and P -values. The β values for the study arms are relative to the control group.
Interactions between the models main effects were not included due to sample size
restrictions.

In summary, our finite mixture of MDAs model found two groups in the five-way

accelerometer data from the CHAMPION study. One group represents participants

that are consistently active through out the day and another that exhibits long periods

of light activity interspersed with intervals of intense activity. The groups are differen-

tiated by their mean activity profiles, variation at the level of 15 second intervals and

between their accelerometer metrics and the strength of the AR relationships between

their 10 min intervals. These groupings do not agree with the participants clinical

diagnoses, suggesting the accelerometers are capturing information not included in
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these diagnoses. The group labels produced by our model were good predictors of the

participants cardiorespiratory fitness, as measured by VO2max, when the participants

had low to median fitness.

4.3 Discussion

Physical activity data, as measured by accelerometers, was conceptualized as a sam-

ple of five-way data, where each participant has an order-4 MDA made up of their

accelerometer data aggregated over different nested time scales. A finite mixture of

MDAs approach is introduced for clustering a sample of MDA data. These mod-

els are innovative because they allow MDA data to be analyzed in its natural form,

without the need to transform it to meet the limitations of existing model-based clus-

tering methods. Our model provides scientifically relevant parameters for each group,

characterizing the mean MDAs, the variation in each mode of the MDA and labels

that can be used in conjunction with more traditional statistical methods. These pa-

rameters can help non-statisticians make practical decisions and guide their scientific

messaging around the MDA sample being analyzed.

Clinical data, like the data from the CHAMPION study, often includes non-

continuous covariates. These covariates can be informative (e.g., sex, disease status)

and should be included in the clustering solutions whenever possible. One way to

do this would be to model the mean of each mixture component with a linear model

(McNicholas and Subedi, 2012) that incorporates these covariates. The matrix M(1)g

could be modelled using a matrix-variate regression model that models matrix valued

responses (Ding and Cook, 2018). Alternatively, the MDA Mg could be modelled

using a tensor-variate regression model (Li and Zhang, 2017).
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We expect clustering MDA data would benefit from some form of dimension re-

duction. The VVI model that constrained the eigen-decomposition of ∆g2, had nd

vs. n2
d parameters in the EEE and VVV models. Despite this large reduction in free

parameters, the VVI model was not able to improve the performance of the mixture

model, as measured by BIC. Flexibility in how the variation of each mode of the MDA

is modelled is an important feature of these models and results in better clustering

solutions in Section 4.2. We expect this to be true when doing dimension reduction

as well. In this vein, a finite mixture of MDA factor analyzers could be developed,

and can be viewed as an extension of the work of Tang et al. (2013) and Gallaugher

and McNicholas (2018b).
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Chapter 5

Tensor-Variate Skew Distributions

We use the variance-mean mixture formulation, described in Section 2.8, to describe 5

tensor-variate skewed distributions (Gallaugher et al., 2021). These 5 distributions in-

clude the tensor-variate generalized hyperbolic, variance-gamma, shifted asymmetric

Laplace, normal inverse Gaussian and skew t distributions. The abbreviations used

for these distributions are detailed in Table 5.1. Their matrix variate counterparts

are detailed in Gallaugher and McNicholas (2019).

Table 5.1: Distribution abbreviations.

Tensor-Variate Distribution Abbreviation Plot Abbreviation
Normal MLND norm
Generalized hyperbolic TVGH gh
Normal inverse Gaussian TVNIG nig
Shifted asymmetric Laplace TVSAL sal
Skew t TVST st
Variance-gamma TVVG vg

To find the variance-mean mixture formulation, we say an order-D random MDA

X , with dimensions n has a one of the 5 tensor-variate distribution, if X can be
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written as

X = M+WA+
√
WV , (5.1)

where M and A are n dimensional order-D MDAs and V ∼ Nn

Ä
O,
⊗D

d=1 ∆d

ä
. For

each of the five tensor-variate distributions, the distribution of W is summarized in

Table 5.2.

Table 5.2: The distribution of W for each of the five tensor-variate distributions

TVD W Density

TVGH GIG(ω, 1, λ) g(w|ω, 1, λ) = (w)λ−1

2Kλ(ω)
exp

{
−ω

2

(
w + 1

w

)}
TVVG Gamma(γ, γ) f(w|γ, γ) = γγ

Γ(γ)
wγ−1 exp{−γw}

TVSAL Gamma(1, 1) f(w|1, 1) = 1
w

exp{−w}
TVNIG Inv-Gaussian(1, κ) f(w|1, κ) = 2π−

1
2 exp{κ}w− 3

2 exp
{
−1

2

(
1
w

+ κ2w
)}

TVST Inv-Gamma
(
ν
2
, ν

2

)
f(w|ν

2
, ν

2
) =

ν
2

ν
2

Γ( ν
2

)

[
1
w

] ν
2

+1
exp

{
ν

2w

}
It then follows that

X |W = w ∼ Nn

(
M+ wA, w

D⊗
d=1

∆d

)

and thus the joint density of X and W is f(X, w|ϑ) = f(X|W = w)f(w). This

joint density formulation will have a specific form for each of the five tensor-variate

distributions.

5.1 Marginal densities

The mathematical details for the derivation of the TVST marginal distribution are

given in Appendix D.1.1. The derivations for the other distributions would be sim-

ilar with the difference being which distribution of W we start with. The marginal
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densities are listed below, starting with the TVST distribution

fTVST(X|ϑ) =
2
(
ν
2

) ν
2 exp

¶
vec(X−M)>

⊗D
d=1 ∆−1

d vec(A)
©

(2π)
n∗
2

∏D
d=1 |∆d|

n∗
2nd Γ(ν

2
)

Ç
δ(X;M,

⊗D
d=1 ∆−1

d ) + ν

ρ(A,
⊗D

d=1 ∆−1
d )

å− ν+n∗
4

×K− ν+n∗
2

ÑÃ[
ρ(A,

D⊗
d=1

∆−1
d ))

][
δ(X;M,

D⊗
d=1

∆−1
d ) + ν

]é
(5.2)

for ν ∈ R+. For convenience, we will denote this distribution by TVST(M,A,
⊗D

d=1 ∆d, ν).

The density of the TVGH distribution is given by

fTVGH(X|ϑ) =
exp
¶

vec(X−M)>
⊗D

d=1 ∆−1
d vec(A)

©
(2π)

n∗
2

∏D
d=1 |∆d|

n∗
2ndKλ(ω)

Ç
δ(X;M,

⊗D
d=1 ∆−1

d ) + ω

ρ(A,
⊗D

d=1 ∆−1
d ) + ω

åλ−n
∗
2

2

×Kλ−n∗/2

ÑÃ[
ρ(A,

D⊗
d=1

∆−1
d ) + ω)

][
δ(X;M,

D⊗
d=1

∆−1
d ) + ω

]é
(5.3)

for λ ∈ R, ω ∈ R+. We will denote the tensor-variate generalized hyperbolic distri-

bution by TVGH(M,A,
⊗D

d=1 ∆d, λ, ω).

The density of the TVVG distribution is

fTVVG(X|ϑ) =
2γγ exp

¶
vec(X−M)>

⊗D
d=1 ∆−1

d vec(A)
©

(2π)
n∗
2

∏D
d=1 |∆d|

n∗
2nd Γ(γ)

Ç
δ(X;M,

⊗D
d=1 ∆−1

d )

ρ(A,
⊗D

d=1 ∆−1
d ) + 2γ

å γ−n
∗
2

2

×Kγ−n∗/2

ÑÃ[
ρ(A,

D⊗
d=1

∆−1
d ) + 2γ

][
δ(X;M,

D⊗
d=1

∆−1
d )

]é
,

(5.4)

where γ ∈ R+. We will denote this distribution by TVVG(M,A,
⊗D

d=1 ∆d, γ). The
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tensor-variate SAL (TVSAL) distribution would naturally arise as a special case of

the TVVG with γ = 1.

Lastly, the TVNIG distribution has the following density function

fTVNIG(X|ϑ) =
2 exp

¶
vec(X−M)>

⊗D
d=1 ∆−1

d vec(A) + κ
©

(2π)
n∗+1

2

∏D
d=1 |∆d|

n∗
2nd

Ç
δ(X;M,

⊗D
d=1 ∆−1

d ) + 1

ρ(A,
⊗D

d=1 ∆−1
d ) + κ2

å− 1+n∗
4

×K− 1+n∗
2

ÑÃ[
ρ(A,

D⊗
d=1

∆−1
d ) + κ2

][
δ(X;M,

D⊗
d=1

∆−1
d ) + 1

]é
,

(5.5)

where κ ∈ R+. We will use the notation TVNIG(M,A,
⊗D

d=1 ∆d, κ) to refer to this

distribution.

Like with the tensor-variate normal distribution, the skewed distributions are

closely related to their lower order counterparts. These relationships are summarized

in Corollary 5.1.1 (to Theorem 2.4.1):

Corollary 5.1.1 Let TVDn(M,A,
⊗D

d=1 ∆d,θ) represent one of the four skewed ten-

sor distributions of dimension n, where θ represents the additional parameters specific

to the distribution. Let MVDn×p(M,A,Σ,Ψ,θ) represent the corresponding matrix

variate distribution. Finally, let D(µ,α,Σ,θ) represent the corresponding multivari-

ate distribution. The following statements are then equivalent.

1. X ∼ TVDn

Ä
M,A,

⊗D
d=1 ∆d,θ

ä
2. X(j) ∼ MVDn∗

nj
×nj

Ä
M(j),A(j),

⊗
d6=j ∆d,∆j,θ

ä
3. vec(X(j)) ∼ Dn∗

Ä
vec(M(j)), vec(A(j)),∆j ⊗

⊗
d6=j ∆d,θ

ä
54



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

5.2 Expectations

The expectations for these four distributions can be easily calculated using iterative

expectation and equation (5.1). The general form is E[X ] = M+E[W ]A. This leads

to the the following expectations:

X ∼ TVST(M,A,
D⊗
d=1

∆d, ν) =⇒ E[X ] = M+
ν

ν − 2
A (ν > 2), (5.6)

X ∼ TVGH(M,A,
D⊗
d=1

∆d, λ, ω) =⇒ E[X ] = M+
Kλ+1(ω)

Kλ(ω)
A, (5.7)

X ∼ TVVG(M,A,
D⊗
d=1

∆d, γ) =⇒ E[X ] = M+ A, (5.8)

X ∼ TVNIG(M,A,
D⊗
d=1

∆d, κ) =⇒ E[X ] = M+
1

κ
A. (5.9)

These expectations will be used by our software implementation to find the “mean”

MDA for the sample of four or five-way data being analyzed.

Theorem 5.2.1 If we define the D-order MDA Z ∼ N
Ä
O,
⊗D

d=1 Id
ä

we can use a

Tucker product (Kolda and Bader, 2009) to define

V = Z ×∆
1
2 = Z ×1 ∆

1
2
1 ×2 ∆

1
2
2 · · · ×D ∆

1
2
D.

Let an equivalent mode 1 matricized version of V be

V(1) = ∆
1
2
1 Z(1)

(
2⊗

d=D

∆
1
2
d

)>
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and of X be

X(1) = M(1) +WA(1) +
√
WV(1).

Then the following second moments can be found

Cov [vec(X )] = vec(M(1))vec(M(1))
> + E[W ]vec(M(1))vec(A(1))

>

+ E[W ]vec(A(1))vec(M(1))
>

+ E[W 2]vec(A(1))vec(A(1))
> + E[W ]

(
1⊗

d=D

∆d

)
(5.10)

E
î
X(1)X

>
(1)

ó
= M(1)M

>
(1) + E [W ] M(1)A

>
(1) + E [W ] A(1)M

>
(1)

+ E
[
W 2
]
A(1)A

>
(1) + E[W ]∆1 ×

D∏
d=2

tr {∆d} (5.11)

E
î
X>(1)X(1)

ó
= M>

(1)M(1) + E [W ] M>
(1)A(1) + E [W ] A>(1)M(1)

+ E
[
W 2
]
A>(1)A(1) + E[W ]

(
2⊗

d=D

∆d

)
× tr {∆1} (5.12)

The proof of this theorem is given in Appendix D.1.2. Equivalent expressions can be

found for different modes of X by using different matricizations.

5.3 Parameter estimation

We use an expectation conditional maximization (ECM) algorithm (Meng and Rubin,

1993) to estimate the parameters. The ECM algorithm will be described in detail in

Chapter 6. This is due to the fact that we can view these distributions as a special

case of a mixture, where G = 1. The software implementation will be discussed in

Chapter 6 as well.
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We use the BIC, described in Section 3.3, to do the model selection. For these

distributions,

ρ = 2n∗ +
D∑
d=1

nd(nd + 1) + 1.

The identifiability issues and the stopping rule we discussed in Chapter 3 apply here

as well.

5.4 Simulation study

We conduct a simulation study to investigate the effect of different sample and MDA

sizes on our ability to effectively estimate the model parameters. The simulations

are conducted using order-3 MDAs. We consider sample sizes N ∈ {50, 100, 150}.

The n∗ quantity is used to measure the different dimensions of the MDAs. Its values

include 512, 729, 1331, 2197, 3375 and 4813. The simplest way to visualize the

resulting MDAs is an order 3 MDA with three equal dimension lengths of 8, 9, 11,

13, 15 and 17. For each combination of N and n∗, 100 datasets are simulated. We

compare the ECM algorithm for the four skewed tensor-variate distributions to the

flip-flop algorithm for the tensor-variate normal distribution described in (Manceur

and Dutilleul, 2013). Our version of the flip-flop algorithm uses the MLND with

the traces described in Appendix A.2. Like Section 3.7, we use the relative error to

determine how close the estimated model parameters are to the true parameters.

Normal data

We simulate the tensor-variate Normal data using (3.14). A signal-to-noise ratio of

one half was applied to the simulated data prior to analysis. The parameters used to
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simulate the data were generated in the same way as described in Section 3.7.

The ECM and flip-flop algorithms all converge in three iterations. Figure 5.1a

visualizes the mean and 95% confidence intervals for the relative error in E[X ] across

the values of N and n∗. As expected, the flip-flop algorithm (e.g. norm) estimates

M well. The TVGH and TVNIG have nearly identical performance, which does not

degrade as N and n∗ increase in size. The other three tensor-variate models do a poor

job of estimating E[X ]. Their performance worsens as N decreases and n∗ increases.

Figure 5.1b indicates that the distributions of relative errors do not have long tails.
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(b) Empirical distribution plots of the rela-
tive error.

Figure 5.1: Simulation results for the mode 1 matricization of E[X ] (normal).

A different picture emerges when we look at the relative error in
⊗D

d=1 ∆d, visu-

alized in Figure 5.2a. As is clear from (3.10), we can accurately estimate the overall

Kronecker product versus the individual scale matrices. The flip-flop algorithm fairs

poorly relative the ECM algorithms, all of which perform similarly across the range

of sample and MDA sizes. Figure 5.2b indicates all the distributions have small tails

and the flip-flop algorithm is shifted to the right of the other models.
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N by Model
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(b) Empirical distribution plots of the rela-
tive error.

Figure 5.2: Simulation results for
⊗D

d=1 ∆d (normal).

Figure 5.3 summarizes the average BIC values and the models ranks for the 100

simulations, across the values of N and n∗ for each of the models. Based on their BIC

values, the flip-flop algorithm is consistently the top performer, despite doing a poor

job estimating the scale matrices. Of the skewed models, the TVGH and TVNIG

models ranked highest.

Skewed data

We used (5.1) to generate the data from a TVST distribution with ν = 4. The differ-

ent models had a lot of variation in the number of iterations they took to converge to

a solution. Typically the flip-flop algorithm converges in a median of 3 iterations and

the ECM algorithms converge in a median of 4-6 iterations. Figure 5.4 summarizes

the distribution of iterations for all values of N and n∗. The flip-flop algorithm had

long tails for all values of N and n∗, with the longest tails occurring for the small-

est MDAs (n∗ = 512). The tails of the ECM algorithm distributions decrease as
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Figure 5.3: Average BIC and rank of the models for each combination of n∗ and N
(normal).

the sample size increases. Aside from the TVGH, the values of n∗ do not affect the

distribution of iterations.

Figure 5.5a visualizes the mean and 95% confidence intervals for the relative error

in E[X ] across the values of N and n∗. The flip-flop algorithm and the TVNIG model

have reasonable performance. The TVST, TVVG and TVSAL models perform well,

accurately estimating E[X ] in all scenarios. The TVGH results are highly variable.

This can be explained by the array of GIG parameter values learned from the data, re-

sulting in GIG distributions that look nothing like the underlying Inv-Gamma
(
ν
2
, ν

2

)
distribution used to generate the data. See Figures 5.8–5.9b for further details. Fig-

ure 5.5b indicates the distribution of E[X ] have long right tails for the flip-flop

algorithm, TVNIG and TVGH models.
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Iteration by N
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Figure 5.4: Number of iterations for each model by each combination of N and n∗

(skewed).
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(a) Average and 95% confidence intervals
for the relative error.
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(b) Empirical distribution plots of the rela-
tive error.

Figure 5.5: Simulation results for the mode 1 matricization of E[X ] (skewed).
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(a) Average and 95% confidence intervals
for the relative error.
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(b) Empirical distribution plots of the rela-
tive error.

Figure 5.6: Simulation results for
⊗D

d=1 ∆d (skewed).

Figure 5.6a indicates all the skewed tensor-variate models do an excellent job of

estimating
⊗D

d=1 ∆d across the range of N and n∗ values. Their performance degrades

slightly for the two largest values of n∗ . The flip-algorithm has a median relative

error of nearly 32. The distributions of the
⊗D

d=1 ∆d relative errors are displayed in

Figure 5.6b.

It is also possible to visualize the relative error in M(1) and A(1), although we

do not do that here. Their empirical cummulative distribution plots look similar to

Figure 5.5b.

Figure 5.7 indicates the flip-flop algorithm is consistently the poorest performer

among the models, ranking last for each combination of N and n∗. For small to mod-

erate sized MDAs, the TVNIG model consistently ranks the highest. As n∗ reaches

its maximum size, the TVST model overtakes the TVNIG model in the rankings.

The variability in the TVGH E[X ] results, visualized in Figures 5.5a and 5.5b,

can be explained by the array of GIG parameter values learned from the data. Each
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Figure 5.7: Average BIC and rank of the models for each combination of N and n∗

(skewed).
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distributions.
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of the underlying distributions of Wig are visualized in Figure 5.8. Subplot A repre-

sents the distribution that was used to generate the simulated data. Subplots B to D

represent the smallest and largest value(s) of the Wig distribution parameters seen in

the simulations. The TVNIG, TVVG and TVSAL models are learning parameteri-

zations that create densities resembling the inverse gamma density in subplot A. The

shapes of the GIG distributions in subplot D vary considerably, often looking nothing

like the distribution in subplot A.
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(a) GIG: ω = 0.34, λ = 4.99 (TVGH).
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(b) GIG: hω = 4.92, λ = 17.95 (TVGH).

Figure 5.9: Quantile-quantile plot of E(Wi | Xi, ϑ̂) from theWig distributions (skewed).

This dissimilarity of the Wig distributions between the models are reflected in the

E(Wi | Xi, ϑ̂) values learned from the data. Starting with two data sets from the

skewed simulated data, where n∗ = 512 and N = 50, we visualize the distribution of

the E(Wi | Xi, ϑ̂) values and the resulting model performance in Figures 5.9a and 5.9b.

The left hand panel of Figure 5.9a uses a qq-plot to visualize the distribution of the

TVST E(Wi | Xi, ϑ̂) values verses the distribution of the E(Wi | Xi, ϑ̂) values from

the other four tensor-variate distributions. Recall that the data was generated from
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a TVST distribution with ν = 4. The right hand panel includes the model BIC

values. The distribution of the Wig’s from the TVGH model resembles the blue curve

in Figure 5.8 subplot D. This results in values of E(Wi | Xi, ϑ̂) that are divergent

from the TVST values and ultimately, in very poor relative model performance, as

measured by BIC. Contrast this with the results in figure 5.9b where the distribution

of Wig’s from the TVGH model is more akin to the distribution used to generate

the simulated data. In this instance, the qq-plot indicates the distribution of the

E(Wi | Xi, ϑ̂) values between the TVST model and the other models is similar and

the model performance between the 5 models is very comparable.

5.5 Image analysis

As our data analysis example, we chose to analyse RGB images, defined as order-

3 MDAs. The images come from the CIFAR-100 data set(Krizhevsky and Hinton,

2009). We chose images of maple trees that had green or yellow leaves and came

from the following CIFAR-100 class hierarchy: superclass trees→ class maple. These

MDAs had an n∗ = 3072, making them comparable to the n∗ = 3375 results in our

simulation. Figure 5.10 is an example of one of the images in our sample of 207

MDAs.

We used the BIC to select the best model for this data. We can see from Fig-

ure 5.11, the skewed models all outperformed the flip-flop algorithm. The TVNIG

model had the best performance, with a BIC = 2.978× 106.

Figure 5.12a is the image that results from the estimated E[X ] MDA. The sky, tree

trunk and branches are clearly visible. Contrast this to the heatmap in Figure 5.12b

that visualizes each slice of the estimated E[X ] MDA. The combinations of R, G
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Figure 5.10: An image of a maple tree from the CIFAR-100 data set.
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Figure 5.11: BIC results from the image analysis.

and B values result in the colors displayed in Figure 5.12a. The sky and tree trunk

remain clearly distinguishable.

The location MDA, M, is visualized in Figure 5.13a. Even without the addition

of the scaled skewness MDA A from (5.9), the visualization is clearly a green tree

with a brown trunk and blue sky. The estimated skewness MDA, A, is visualized in

Figure 5.13b. It is clear that each colour slice has different skewness patterns. The
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(a) An image of the E[X ].
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(b) Slices of the E[X ] MDA.

Figure 5.12: Visualizations of the E[X ] MDA from the TVNIG model.

sky tends to have the lowest skewness, a pattern accentuated in the “B” slice. The

“R” slice has the most positive skewness, concentrated in the trunk and body of the

trees.

(a) An image of the location
MDA, M, from the NIG model.
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(b) Slices of the A MDA from the NIG model

Figure 5.13: Visualizations of the M and A MDAs.

The estimated variability in each of the three modes is visualized in Figure 5.14a.
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Each scale matrix, ∆d, is visualized as a heatmap. The rows (∆1), have little varia-

tion. The columns (∆2) exhibit a pattern of covariation consistent with images, one

that decreases as the distance between pixels increases. All three slices (∆3) have a

moderate level of variation. Figure 5.14b displays the three scale matrices {∆d}3
d=1

as correlation matrices {Pd}3
d=1. Despite having little variation, the row dimension of

the image MDAs have a clear correlation pattern. The pattern indicates that entries

close together are positively correlated, as one would expect with image data.
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(a) Scale matrices, ∆d
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(b) Correlation matrices, Pd

Figure 5.14: Visualizations of the variability in each dimension of the MDAs.
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Chapter 6

Finite Mixtures of Tensor-Variate

Skewed Distributions

6.1 Overview

Recall from Section 2.2, in the mixture model framework, the random variable X

originates from a population with G separate sub-populations. Each subgroup has

the same density function, with different parameter values. Given a sample of N i.i.d.

random D-dimensional arrays, X1, . . . , XN , the observed-data likelihood is

LO =
N∏
i=1

G∑
g=1

πgfTVD

(
Xi|Mg,Ag,

D⊗
d=1

∆gd,θg

)
,

where θg are the parameters associated with the distribution of Wig ∈ R+.

Similar to Chapter 3, we proceed as if the data are incomplete by treating the

group allocation zig and Wig as latent variables. This results in a general form for
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the complete likelihood that can be generalized to all 5 tensor-variate distributions

`C(ϑ) = `C1 + C1 + `C2 + C2 + `C3,

where each term is defined as follows:

`C1 =
G∑
g=1

ng log πg

C1 = −Nn
∗

2
log(2π)

`C2 =
G∑
g=1

N∑
i=1

zig log h(wig|θg)

C2 = Constants related to log h(wig|θg)

`C3 = −n
∗

2

G∑
g=1

ng

D∑
d=1

1

nd
log |∆gd|+

1

2

G∑
g=1

N∑
i=1

zigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Ag)

+
1

2

G∑
g=1

N∑
i=1

zigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

zig
wig

vec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

zigwigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag)

The mathematical details leading up these expressions are listed in Appendix E.2.

6.2 Parameter Estimation

Parameter estimation is based on an ECM algorithm, as described below.
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1) Initialization: Initialize the parameters M(1)g,A(1)g,∆gd,θg and ẑig. Set

t = 0.

2) E Step: Update ẑig, aig, big, cig, where

aig = E(Wig | X(1)i, θ̂g), big = E
Å

1

Wig

∣∣∣∣ X(1)i, θ̂g

ã
, cig = E(logWig | X(1)i, θ̂g),

ẑig =
π̂gfTVD

Ä
X(1)i|θ̂g

ä
∑G

h=1 π̂hfTVD

Ä
X(1)i|θ̂g

ä
All the expectations are conditional on current parameter estimates; however, we

do not use iteration-specific notation. Although aig, big, cig are dependent on the

distribution of Wig, it can be shown that

W ST
ig | X(1)i ∼ GIG

(
ρ

(
A(1)g,

D⊗
d=1

∆−1
gd

)
, δ

(
X(1)i; M(1)g,

D⊗
d=1

∆−1
gd

)
+ ν,−(ν + n∗)/2

)
,

WGH
ig | X(1)i ∼ GIG

(
ρ

(
A(1)g,

D⊗
d=1

∆−1
gd

)
+ ω, δ

(
X(1)i; M(1)g,

D⊗
d=1

∆−1
gd

)
+ ω, λ− n∗/2

)
,

WVG
ig | X(1)i ∼ GIG

(
ρ

(
A(1)g,

D⊗
d=1

∆−1
gd

)
+ 2γ, δ

(
X(1)i; M(1)g,

D⊗
d=1

∆−1
gd

)
, γ − n∗/2

)
,

WNIG
ig | X(1)i,∼ GIG

(
ρ

(
A(1)g,

D⊗
d=1

∆−1
gd

)
+ κ2, δ

(
X(1)i; M(1)g,

D⊗
d=1

∆−1
gd

)
+ 1,−(1 + n∗)/2

)
.

These expectations can be calculated using the results given in (2.9)–(2.11).

71



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

3) First CM Step: Update the parameters πg,M(1)g,A(1)g and θg.

π̂g =
ng
N

M̂(1)g =

∑N
i=1 ẑigX(1)i {ābig − 1}∑N

i=1 ẑigābig − n̂g
(6.1)

Â(1)g =

∑N
i=1 ẑigX(1)i

{
b̄− big

}∑N
i=1 ẑigaig b̄− n̂g

(6.2)

The mathematical details related to these updates are given in Appendix E.4. The

updates for the additional parameters, θg, are detailed in Section 6.3.

4) Additional CM Steps: Update ∆gd

∆̂g1 =
n1

n∗n̂g

 N∑
i=1

ẑig

big
n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij + aig

n∗3:D∑
j=1

A>(1)gj∆
−1
g2 A(1)gj

−
n∗3:D∑
j=1

A>(1)gj∆
−1
g2 X(1)gij −

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 A(1)gj


 (6.3)

∆̂g2 =
n2

n∗n̂g

 N∑
i=1

ẑig

big
n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij + aig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 A>(1)gj

−
n∗3:D∑
j=1

X(1)gij∆
−1
g1 A>(1)gj −

n∗3:D∑
j=1

A(1)gj∆
−1
g1 X>(1)gij


 (6.4)
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∆̂gl =
nl
n∗n̂g

 N∑
i=1

ẑig

big
n∗

2:D/l∑
j=1

Xl2
(1)gij∆

−1
g1

Ä
Xl2

(1)gij

ä>
+ aig

n∗
2:D/l∑
j=1

Al2
(1)gj∆

−1
g1

Ä
Al2

(1)gj

ä>
−

n∗
2:D/l∑
j=1

Xl2
(1)gij∆

−1
g1

Ä
Al2

(1)gj

ä>
−

n∗
2:D/l∑
j=1

Al2
(1)gj∆

−1
g1

Ä
Xl2

(1)gij

ä> (6.5)

where n∗3:D =
∏D

d=3 nd,

X(1)gij =

(
In2 ⊗ e>j

D⊗
d=3

∆
−>

2
gd

)
X̆(1)gi,

X̆(1)gi = X(1)i −M(1)g,

A(1)gj =

(
In2 ⊗ e>j

D⊗
d=3

∆
−>

2
gd

)
A(1)g,

∆
− 1

2
d is the Cholesky decomposition of ∆d and ej is a Kronecker product of unit basis

vectors. The superscript l2 indicates the exchanges of the second and lth elements in

the sequence, where 3 ≤ l ≤ D.

The derivations for these updates are given in appendix E.5. The Q functions,

Q(ϑ), used for these derivations are given in equations E.31 and E.34. They take

advantage of the vector to trace conversion we outlined in appendices A.2 and A.3 .

5) Check Convergence: If not converged repeat steps 2–4 until convergence.
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6.3 Updates for the Additional Parameters

TVST

In the case of the TVST distribution, the degrees of freedom νg needs to be updated.

The update for the degrees of freedom cannot be obtained in closed form. Instead we

solve (6.6) for νg to obtain the update.

log
(νg

2

)
+ 1− ϕ

(νg
2

)
− 1

N

N∑
i=1

(big + cig) = 0, (6.6)

where ϕ(·) is the digamma function.

TVGH

In the case of the TVGH distribution, we update λg and ωg. In this case,

`C2g = N log(Kλg(ωg))− λg
N∑
i=1

cig −
1

2
ωg

N∑
i=1

(aig + big) (6.7)

The updates for λg and ωg cannot be obtained in closed form. Numerical methods

for these updates are discussed in Browne and McNicholas (2015) and because the

portion of the likelihood function that includes these parameters is the same as in the

multivariate case, the updates these authors describe can be used directly here.

The updates for λg and ωg rely on the log convexity of Kλg(ωg), Baricz (2010),

in both λg and ωg and maximizing (6.7) via conditional maximization. The resulting
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updates are

λ̂(t+1)
g = cgλ̂

(t)
g

ñ
∂

∂s
log(Ks(ω̂

(t)
g ))

∣∣∣∣
s=λ̂

(t)
g

ô−1

(6.8)

ω̂(t+1)
g = ω̂(t)

g −
ñ
∂

∂s
q(λ̂(t+1)

g , s)

∣∣∣∣
s=ω̂

(t)
g

ô ñ
∂2

∂s2
q(λ̂(t+1)

g , s)

∣∣∣∣
s=ω̂

(t)
g

ô−1

(6.9)

where the derivative in (6.8) is calculated numerically and cg =
∑N

i=1 cig/N . The

partials in (6.9) are described in Browne and McNicholas (2015), and can be written

as

∂

∂ωg
q(λg, ωg) =

1

2
[Rλg(ωg) +R−λg(ωg)− (ag + bg)],

and

∂2

∂ω2
g

q(λg, ωg) =
1

2

ï
Rλg(ωg)

2 − 1 + 2λg
ωg

Rλg(ωg)− 1 +R−λg(ωg)
2 − 1− 2λg

ωg
R−λg(ωg)− 1

ò
,

where Rλg(ωg) = Kλg+1(ωg)/Kλg(ωg).

TVVG

In the case of the TVVG, the update for γg is needed. This update, like the TVST and

TVGH, cannot be obtained in closed form. Instead, the update, γ
(t+1)
g , is obtained

by solving (6.10) for γg:

log(γg) + 1− ϕ(γg) + cg − ag = 0. (6.10)
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TVNIG

Finally, in the TVNIG case, the update for κg can be written in closed form as

κ̂g =
N∑N
i=1 aig

.

6.4 Software

The ECM algorithm is implemented in version 1.5.3 of the Julia programming lan-

guage (https://julialang.org/; Bezanson et al., 2017). Bessel function values are

calculated using 100 digit numbers, made possible by version 1.2.4 of the ArbNumerics.jl

library. We use numerical differentiation to find

∂

∂λ
Kλ(

√
ρδ)

in (2.11). To do the numerical differentiation, the complex step method, (Squire and

Trapp, 1998) is implemented which uses the following approximation for the derivative

of f(x)

f ′(x) ≈ Im

ß
f(x+ ih)

h

™
,

where i =
√
−1. This approximation has O(h2) error and h is not restricted by

rounding errors (e.g., h = 10−50). The only restriction is that the algorithm for

f(x) cannot use complex arithmetic. Similar to Chapter 3, singular ∆gd values were

numerically regularized by adding a small positive quantity to the diagonal elements

of the matrices (Williams and Rasmussen, 2006).

Given the complexity of implementing all five of the mixtures, a lot of effort was
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Figure 6.1: An overview of the variation in logKλ(
√
ab), ∂

∂λ
Kλ(
√
ρδ) and E(Wig)

values we see in our models.

spent on software engineering, to ensuring the code quality was high. Tables such as

6.4 proved useful for implementing the various likelihood functions in a generic and

reusable way.
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To avoid numerical instabilities, where possible, the computations were done on

the log scale. For example, to calculate E (1/Y ), we use the log identity

log(a− c) = log(a) + log
(

1− c

a

)

to convert (2.10) to the log scale as follows

logE (1/Y ) =

ï
1

2
log(a)− 1

2
log(b) + log

Ä
Kλ+1(

√
ab)
ä
− log

Ä
Kλ(
√
ab)
äò

− [log(2) + log(λ)− log(b)]

When …
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

>
2λ

b
,

logE (1/Y ) =
1

2
log(a)− 1

2
log(b) + log

Ä
Kλ+1(

√
ab)
ä
− log

Ä
Kλ(
√
ab)
ä

+

log

ï
1− 2λ√

ab
× exp

¶
logKλ(

√
ab)− logKλ+1(

√
ab)
©ò

and, when

2λ

b
>

…
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

,

logE (1/Y ) = log(2) + log(λ)− log(b) + log

ñ
1−
√
ab

2λ
× exp

¶
logKλ+1(

√
ab)− logKλ(

√
ab)
©ô

.

It should be noted that

log
(

1− c

a

)
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should be implemented with the log1p(x) function, where x = −c/a .

6.5 Simulation

Given the large increase in free parameters that results from taking G = 1 in Chap-

ter 5 to G ≥ 2 in the mixture model, we evaluated the effect of the signal-to-noise

ratio (s2n ∈ {0.5, 2.0}) on the models performance across the following values of

N ∈ {270, 360} and n∗ ∈ {1000, 3375}. Similar to the simulation in Chapter 3, we

set G = 3 and had equal groups sizes, ng ∈ {90, 120}. We created 100 replicates

per combination of signal-to-noise ratio, N and n∗. Similar to the simulation in Sec-

tion 5.4, we generate the data from a TVST distribution with ν = 4. Unlike the

results presented in Chapter 3, we use order-3 MDAs and averaged the results across

the groups to simplify the graphical displays. The normal model is the finite mixture

of MLNDs described in Chapter 3.

Figures 6.2a and 6.2b plot the distribution of the average relative errors for the

mode 1 matricization of E [X], for each signal-to-noise level. When the data is noisy,

smaller MDA sizes have larger errors. These are particularly acute for the normal

model, the TVGH and TVNIG models. This can be explained by the discrepancy in

the underlying distributions of Wig vs the Inv-Gamma (ν/2, ν/2) distribution used to

generate the data, as visualized in Figure 5.8. When there is more signal than noise,

all the three aforementioned models improve their performance. The TVST, TVVG

and TVSAL models are not impacted by any of the changes in the three factors we

varied.

When estimating the average relative error in
⊗D

d=1 ∆gd, the normal fairs rela-

tively poorly compared to its skewed counter parts. This is not surprising given it has
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Figure 6.2: Simulation results for the mode 1 matricization of E [X].

no way of modeling the skewness as captured by Ag and the underlying distribution

of Wig. MDA size n∗ is more impact-full on the error estimates than the sample size

N . The dynamics between these two sizes should be further explored, to give users

of these models usage guidelines.

The group labels produced by the finite mixture model were compared to the

simulated group labels via the ARI. The average ARI for each combination of N and

n∗ was at least 0.93 and 0.84 for the signal-to-noise ratios of 2 and 0.5. The average

ARI values are both close to 1, indicating that in both high and low noise scenarios,

the models can generate group labels that are in agreement with the true groupings

in the data.
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Figure 6.3: Simulation results for
⊗D

d=1 ∆gd.

6.6 Image analysis

As our data analysis example, we chose to analyse RGB images, defined as order-3

MDAs. Analogous to Chapter 5, the images come from the CIFAR-100 data set and

consist of raccoons, maple trees and lawnmowers. This sample of 420 MDAs has three

equal sized groups of 140 images (e.g., ng = 140) were each image has an n∗ equal to

3072. The raw data is visualized in Figure 6.4. This is a difficult clustering problem.

The images share many of the same colors and the colors occur in similar locations

within each image.

Models with G ∈ {1, 2, 3, 4} were compared using the BIC in Figure 6.5a. Two

and four group solutions are preferred. The model with the largest BIC was the

TVVG with G = 4. In Figure 6.5b, the BIC values are plotted against the ARI

values capturing the pairwise agreement between the cluster and image labels. Here

the G = 4 models are clearly preferred when judged by their ARI values. The TVST
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(a) Raccoon (b) Lawn Mower (c) Maple Tree

Figure 6.4: Samples of the raw images being clustered.

model with G = 4 has the best combination of BIC and ARI values and will be used

in the following analysis.
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Figure 6.5: Model selection results from the image analysis.

The cross-tabulations of the clusters versus the image labels for the TVST model

with G = 4 are listed in Table 6.2. Clearly clusters 2 and 3 represent raccoons and

maple trees, respectively. Clusters 1 and 4 represent mixed groupings, with cluster 4

accounting for the majority of the lawnmowers. The ARI value for this table is 0.264.

Each cluster group’s location tensor Mg is visualized in Figure 6.6. Cluster groups

1 and 4 do not resemble any one of the three image types. This is expected after

examining Table 6.2. Cluster group 2 clearly captures images of raccoons that contain
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Table 6.2: Cross-tabulation of the clusters (based on MAP estimates) versus the
image labels.

Cluster Lawn Mower Maple Tree Raccoon
1 24 12 45
2 0 0 7
3 1 101 6
4 115 27 82

red hues.

(a) Group 1 (b) Group 2

(c) Group 3 (d) Group 4

Figure 6.6: Visualizations of the Mg MDAs from the TVST model.

The slices of each cluster groups skewness tensor Ag is visualized in Figure 6.7.

Cluster groups 1 and 4 do not contain any specific skewness patterns. Cluster group 3

has negative skewness around the transition from the trees foliage to the sky. The im-

ages in cluster group 2 have a pronounced skewness pattern, with both large positive

and negative values, which help differentiate them from the other images.

Each group’s three scale matrices are displayed as correlation matrices {Pgd}3
d=1,
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Figure 6.7: The slices of the Ag MDAs from the TVST model.

in Figure 6.8. The correlation between the slices, Pg3, are all highly positive. The

column correlations, Pg2, exhibit the expected pattern for image data in cluster groups

1, 3 and 4. On the other hand, the row correlations, visualized by Pg1, have an atypical

correlation pattern. Entries spaced farther apart exhibit roughly the same correlation

as those located close together. Contrasting skewness patterns and variation in the

rows and columns of the MDA are primarily responsible for producing the cluster

groups we see in Table 6.2.

Given the modest ARI value of the chosen model, we expect that this clustering
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Figure 6.8: The correlation matrices, derived from each ∆gd from the TVST model.

solution could be improved. As discussed in Chapter 3, a regularization scheme that

imposes some kind of sparsity on the model parameters could be beneficial. Given

these images have labels, a semi-supervised classification approach (McNicholas, 2010;

McLachlan and Peel, 2000b) could be another good alternative.

In a semi-supervised classification scenario, suppose we know the labels for K of

the N MDAs and the sample is ordered as X1, . . . , XK , XK+1, . . . , XN . We know the
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first K zig values and can write the observed-data likelihood as

LO =
K∏
i=1

G∏
g=1

[
πgfTVD

(
Xi|Mg,Ag,

D⊗
d=1

∆gd,θg

)]zig

×
N∏

j=K+1

G∑
h=1

πhfTVD

(
Xj|Mh,Ah,

D⊗
d=1

∆hd,θh

)
,

where θg are the parameters associated with the distribution of Wig ∈ R+. Parameter

estimation, identifiability, etc., follow in a comparable fashion to the clustering case

described above. As the ratio K/N increases, we would expect the ARI of the solution

to approach one.
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Chapter 7

Conclusions

In this thesis, we present novel methods to cluster MDA data in its native form

without the need for vectorization to satisfy the dated requirements of off-the-shelf

clustering techniques. The first topic was formulating a mixture model for four-way

and higher data that uses the MDA structure to estimate each groups mean MDA

and the variation in each mode of the MDA data. Additionally we produce labels

that can be used to define homogenous subgroups in the sample. We further extend

this model to properly model temporal patterns of variation in specific modes of the

MDA data, a common scenario with real world data.

We then characterize five novel tensor-variate skewed distributions and construct

a mixture model for each of them. These distributions have the advantage of being

able to model skewness in the MDA data and have heavier tails than the MLND.

This provides the users of our models the advantage of being able to properly cluster

their data in the presence of non-normal MDA data. Given the paucity of techniques

for assessing tensor-variate normality and whether it is a valid assumption for a given

sample of data, this could have important implications for applied data analysis.
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As we mentioned in Chapter 3, our models, especially the skewed ones, could

benefit from some form of sparsity constraints. Existing approaches to this problem

come in two flavors, keeping the data in MDA form and sparsifying the estimated

parameters (Mai et al., 2021) or using some form of tensor decomposition (Kolda

and Bader, 2009) on the MDA data and developing a probabilistic model for the

components of the decomposition (Hoff et al., 2016; Hinrich and Mørup, 2019). Given

that model selection approaches have been shown to be superior to penalization in

terms of variable selection (Celeux et al., 2014), methodology akin to the latter is our

preferred direction of future research.

Another promising avenue of research would be to use envelope methods (Cook,

2018) to formulate a finite mixture model for MDA data. Envelope methods are a

relatively new research area in multivariate analysis, with the goal of jointly mod-

eling parameters of interest and the covariance structure in the data using a low-

dimensional subspace. This subspace captures all the relevant information about the

parameters and could be an effective and concise means of doing regularization and

parameter estimation in one model.
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Appendix A

Tensor Manipulations

A.1 Vectorization Equivalences

If we have an order-3 MDA, X, its vectorization can be represented as:

vec(X) =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

xi1i2i3(en1
i1
⊗ en2

i2
⊗ en3

i3
),

where xi1i2i3 is (i1, i2, i3)th element of X and en1
i1

, en2
i2

and en3
i3

are unit basis vectors of

size n1, n2 and n3 respectively.

Noting vec(ab>) = b⊗ a, we can see that

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

xi1i2i3(en1
i1
⊗ en2

i2
⊗ en3

i3
) =

n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

xi1i2i3(en2
i2
⊗ en3

i3
)en1>
i1

=vec(X(1)),

where X(1) is the mode one matricization of X. Note that this is the transpose of X(1)

in Kolda and Bader (2009), due to the unit basis vectors being in the opposite order.

This hints at the fact that Kronecker products are permutation invariant. This result
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generalizes to order-D MDAs by expressing vec(X) as follows:

vec(X) =
∑
ID

xID

(
en1
i1
⊗

D⊗
d=2

endid

)
(A.1)

where ID = {i1, . . . , iD : 1 ≤ ij ≤ nj, 1 ≤ j ≤ D}.

A.2 From Vectorization to Trace

Noting that trA>S = vec(A)>vec(S),

vec(X̆)>
D⊗
d=1

∆−1
d vec(X̆) = vec(X̆(1))

>
D⊗
d=1

∆−1
d vec(X̆(1)) =

vec(X̆(1))
>vec

(
D⊗
d=2

∆−1
d X̆(1)∆

−1
1

)
= tr

[
X̆>(1)

D⊗
d=2

∆−1
d X̆(1)∆

−1
1

]
=

tr

[
∆−1

1 X̆>(1)

D⊗
d=2

∆−1
d X̆(1)

]
. (A.2)

In (A.2), we have isolated ∆1. To isolate ∆2, the following manipulations are
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done to (A.2):

D⊗
d=2

∆−1
d = ∆−1

2 ⊗
D⊗
d=3

∆−1
d = (In2∆

−1
2 In2)⊗

[
D⊗
d=3

∆
− 1

2
d In∗3:D

D⊗
d=3

∆
−>

2
d

]
=

(In2∆
−1
2 In2)⊗

 D⊗
d=3

∆
− 1

2
d

n∗3:D∑
j

ej1e>j

D⊗
d=3

∆
−>

2
d

 =⇒

n∗3:D∑
j

tr

[
∆−1

1 X̆>(1)

(
In2 ⊗

D⊗
d=3

∆
− 1

2
d ej

)
∆−1

2

(
In2 ⊗ e>j

D⊗
d=3

∆
−>

2
d

)
X̆(1)

]
=

n∗3:D∑
j

tr
î
∆−1

1 X>(1)j∆
−1
2 X(1)j

ó
(A.3)

where X(1)j =
(
In2 ⊗ e>j

⊗D
d=3 ∆

−>
2

d

)
X̆(1).

A.3 Tensor Commutation Operator

The tensor commutation operator (TCO), K, is introduced in Ohlson et al. (2013).

It is an orthogonal matrix that interchanges basis vectors and scale matrices in a

sequence of Kronecker products. The TCO has two useful properties we will leverage

below; Kgn = K
>
ng and Kgn ×Kng = In∗ . For example,

Kigin

Ñ
ig−1⊗
j=i1

e
nj
ij
⊗ e

ng
ig
⊗

in−1⊗
k=ig+1

enkik ⊗ ennin ⊗
iD⊗

l=in+1

enlil

é
=Ñ

ig−1⊗
j=i1

e
nj
ij
⊗ ennin ⊗

in−1⊗
k=ig+1

enkik ⊗ e
ng
ig
⊗

iD⊗
l=in+1

enlil

é
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where i1 < ig < in < iD, and

Kgn

(
D⊗
d=1

∆d

)
Kng =(

g−1⊗
d1=1

∆d1 ⊗∆n ⊗
n−1⊗

d2=g+1

∆d2 ⊗∆g ⊗
D⊗

d3=n+1

∆d3

)

where 1 < g < n < D.

The TCO is similar to the commutation matrix, outlined in Abadir and Magnus

(2005). We use the TCO to permute the elements of equations A.2 and A.3

vec(X)n2 = K2n

[∑
ID

xID

(
en1
i1
⊗

D⊗
d=2

endid

)]
=
∑
ID

xIDK2n

(
en1
i1
⊗

D⊗
d=2

endid

)

=
∑
ID

xID

(
en1
i1
⊗ ennin ⊗

n−1⊗
j=3

e
nj
ij
⊗ en2

i2
⊗

D⊗
k=n+1

enkik

)

=
∑
ID

xID

Ö
en1
i1
⊗ ennin ⊗

D⊗
d=3
d6=n

endid

è
This formulation results in a permutation of the mode 1 matrix, X(1) that we designate

Xn2
(1). We can use the TCO to modify the initial quadratic form in (A.2) as follows:

vec(X̆)>
D⊗
d=1

∆−1
d vec(X̆) = vec(X̆)>In∗

D⊗
d=1

∆−1
d In∗vec(X̆) =

vec(X̆)>K>2nK2n

D⊗
d=1

∆−1
d Kn2K2nvec(X̆) =

(
vec(X)n2

)> ∆1 ⊗∆n ⊗
D⊗
d=3
d6=n

∆−1
d

 vec(X)n2 (A.4)
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Following the same steps between (A.2) and (A.3), we get the following trace:

n∗
2:D/n∑
j

tr
[
∆−1

1

Ä
Xn2

(1)j

ä>
∆−1

n Xn2
(1)j

]
,

which can be used to isolate and produce a closed form estimate of ∆n.

A.4 From Vectorization to Array Norm

When writing the density of the tensor-variate normal, many papers (e.g. Hoff et al.,

2011) use an array norm as an alternative to the initial quadratic form in equation

A.3. The array norm is comparable to the matrix Frobenius norm, which is commonly

denoted as ‖X‖ =
√
〈X,X〉, where 〈·〉 is the array inner product. The details of the

equivalence is detailed below:

vec(X̆)>
1⊗

d=D

∆−1
d vec(X̆) = vec(X̆)>vec

(
∆−1

1 X̆(1)

2⊗
d=D

∆−1
d

)
=

vec(X̆)>vec
Ä
X̆×1 ∆−1

1 ×2 ∆−1
2 · · · ×d ∆−1

D

ä
= vec(X̆)>vec

Ä
X̆× Á∆−1

ä
=

〈X̆, X̆× Á∆−1〉 = 〈X̆, X̆× Á∆− 1
2 × Á∆−>2 〉 = 〈X̆× Á∆− 1

2 , X̆× Á∆− 1
2 〉 =∥∥∥X̆× Á∆− 1

2

∥∥∥2

, (A.5)

where ×d∆−1
d indicates a d-mode matrix product (e.g., ∆−1

d X̆(d)) and ×Á∆−1 is the

Tucker product. The mathematical details associated with these products are outlined

in Kolda (2006).
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Appendix B

Mixtures of Tensor-Variate Normal

Distributions

B.1 Mixture of Tensor-Variate Normal Distribu-

tions

B.1.1 `C(ϑ)

Noting that ng =
∑N

i=1 zig and N =
∑G

g=1 ng,

`C(ϑ) =
G∑
g=1

N∑
i=1

zig log πg +
G∑
g=1

N∑
i=1

zig log f(Xi|Θg)

=
G∑
g=1

ng log πg +
G∑
g=1

N∑
i=1

zig

[
−n

∗

2
log(2π)− n∗

2

D∑
d=1

1

nd
log |∆gd|

−1

2
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)

]
,
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which we can write as

`C(ϑ) =
G∑
g=1

ng log πg −
Nn∗

2
log(2π)− n∗

2

G∑
g=1

ng

D∑
d=1

1

nd
log |∆gd|

− 1

2

G∑
g=1

N∑
i=1

zigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg).

B.2 Q function

We have

Q(ϑ) =
G∑
g=1

n̂g log πg −
Nn∗

2
log(2π)− n∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd|

− 1

2

G∑
g=1

N∑
i=1

ẑigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg), (B.6)

where ẑig and n̂g are estimates of their respective quantities.

B.2.1 M(1)g update

We can write

Q(ϑ) = C − 1

2

G∑
g=1

N∑
i=1

ẑig

[
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)

]

= C − 1

2

G∑
g=1

N∑
i=1

ẑig

[
−vec(X(1)i)

>
D⊗
d=1

∆−1
gd vec(M(1)g)− vec(M(1)g)

>
D⊗
d=1

∆−1
gd vec(X(1)i)

+vec(M(1)g)
>

D⊗
d=1

∆−1
gd vec(M(1)g)

]
.
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After a little work, we have

Q(ϑ) = C − 1

2

G∑
g=1

N∑
i=1

ẑig

[
−2 tr

{
X>(1)i

D⊗
d=1

∆−1
gd M(1)g

}
+ tr

{
M>

(1)g

D⊗
d=1

∆−1
gd M(1)g

}]
.

Now,

∂

∂M(1)g

Q(ϑ) = −1

2

G∑
g=1

N∑
i=1

ẑig

[
−2 tr

{
X>(1)i

D⊗
d=1

∆−1
gd dM(1)g

}
+ tr

{
dM>

(1)g

D⊗
d=1

∆−1
gd M(1)g

}

+ tr

{
M>

(1)g

D⊗
d=1

∆−1
gd dM(1)g

}]

= −1

2

G∑
g=1

N∑
i=1

ẑig

[
−2 tr

{
X>(1)i

D⊗
d=1

∆−1
gd dM(1)g

}
+ 2 tr

{
M>

(1)g

D⊗
d=1

∆−1
gd dM(1)g

}]

=
G∑
g=1

N∑
i=1

ẑig

[
D⊗
d=1

∆−1
gd X(1)i −

D⊗
d=1

∆−1
gd M(1)g

]
.

Solving for M(1)g,

n̂g

D⊗
d=1

∆−1
gd M(1)g =

N∑
i=1

ẑig

D⊗
d=1

∆−1
gd X(1)i

D⊗
d=1

∆gd × n̂g
D⊗
d=1

∆−1
gd M(1)g =

D⊗
d=1

∆gd ×
N∑
i=1

ẑig

[
D⊗
d=1

∆−1
gd X(1)i

]

M(1)g =
1

n̂g

N∑
i=1

ẑigX(1)i.

The estimate of M(1)g is

M̂(1)g =
1

n̂g

N∑
i=1

ẑigX(1)i.
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B.3 ∆gd updates

Recall that

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd| −

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)ij∆

−1
g2 X(1)ij],

and note the following differentials:

dX−1 = −X−1dXX−1, d log |X| = trX−1dX.

B.3.1 ∆g1 update

∂

∂∆g1

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g
n1

log |∆g1| −
1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)ij∆

−1
g2 X(1)ij]

= −n
∗

2

G∑
g=1

n̂g
n1

tr∆−1
g1 d∆g1 +

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 d∆g1∆

−1
g1 X>(1)ij∆

−1
g2 X(1)ij]

= −n
∗

2

G∑
g=1

n̂g
n1

tr∆−1
g1 d∆g1 +

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)ij∆

−1
g2 X(1)ij∆

−1
g1 d∆g1]

= −n
∗

2

G∑
g=1

n̂g
n1

∆−>g1 +
1

2

G∑
g=1

∆−>g1

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)ij∆
−>
g2 X(1)ij∆

−>
g1

Note ∆−>g∗ = ∆−1
g∗ .

n∗

2

n̂g
n1

∆−1
g1 =

1

2
∆−1

g1

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)ij∆
−1
g2 X(1)ij∆

−1
g1
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To solve for ∆g1, we start by multiplying both sides by ∆g1 from the left and the

right:

n∗

2

n̂g
n1

∆g1 =
1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)ij∆
−1
g2 X(1)ij

∆̂g1 =
n1

n∗n̂g

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)ij∆
−1
g2 X(1)ij

B.3.2 ∆g2 update

∂

∂∆g2

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g
n2

log |∆g2| −
1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)ij∆

−1
g2 X(1)ij]

= −n
∗

2

G∑
g=1

n̂g
n2

tr∆−1
g2 d∆g2 +

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)ij∆

−1
g2 d∆g2∆

−1
g2 X(1)ij]

= −n
∗

2

G∑
g=1

n̂g
n2

tr∆−1
g2 d∆g2 +

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g2 X(1)ij∆

−1
g1 X>(1)ij∆

−1
g2 d∆g2]

= −n
∗

2

G∑
g=1

n̂g
n2

∆−>g2 +
1

2

G∑
g=1

∆−>g2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)ij∆
−>
g1 X>(1)ij∆

−>
g2 .

Solving gives

n∗

2

n̂g
n2

∆−1
g2 =

1

2
∆−1

g2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)ij∆
−1
g1 X>(1)ij∆

−1
g2 .
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To solve for ∆g2, we start by multiplying both sides by ∆g2 from the left and the

right:

n∗

2

n̂g
n2

∆g2 =
1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)ij∆
−1
g1 X>(1)ij

∆̂g2 =
n2

n∗n̂g

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)ij∆
−1
g1 X>(1)ij.

B.3.3 ∆gl update

This derivation starts with a different version of Q(ϑ), given by:

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd|−

1

2

G∑
g=1

N∑
i=1

ẑig

n∗
2:D/l∑
j=1

tr
[
∆−1

g1

Ä
Xl2

(1)ij

ä>
∆−1

gl Xl2
(1)ij

]
(B.7)

Starting with (B.7) and following the steps laid out above to find ∆̂g2, we get the

following estimator of ∆gl:

∆̂gl =
nl
n∗n̂g

N∑
i=1

ẑig

n∗3:D∑
j=1

Xl2
(1)ij∆

−1
g1

Ä
Xl2

(1)ij

ä>
.
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Appendix C

Scale Matrix Modifications

C.1 Cholesky decomposition

These aside from the Q(ϑ) expressions, these derivations are similar to those in

McNicholas and Murphy (2010). In our analysis, the ∆g2 matrix does not represent

a temporal dimension of the multi-dimensional array and will not be represented by

a Cholesky decomposition in our models.

C.1.1 VVI

∆g1

To derive the VVI model for ∆g1, we start with the following two terms from Q(ϑ):

I II

−n
∗

2

G∑
g=1

n̂g
n1

log(|∆g1|) −1

2

G∑
g=1

tr

∆−1
g1

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)ij∆
−1
g2 X(1)ij

 (C.8)
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We define:

� Λg1 = 1
n̂g

∑N
i=1 ẑig

∑n∗3:D
j=1 X>(1)ij∆

−1
g2 X(1)ij

� Ag1 = T>g1δ
−1
g1 In1×n1Tg1

The Q(ϑ) function is now:

Q(ϑ) = C +
n∗

2

G∑
g=1

n̂g log(δ−1
g1 )− 1

2

G∑
g=1

n̂gδ
−1
g1 tr

[
Tg1Λg1T

>
g1

]
. (C.9)

To find the estimator of δg1, δ̂g1 we take the partial derivative of (C.9) w.r.t to δ−1
g1 ,

equate the result to zero and solve for δ−1
g1 . We find

δ̂g1 =
1

n∗
tr[Tg1Λg1T

>
g1].

To find the estimator of Tg1, T̂g1, we take the partial derivative of (C.9) w.r.t to

Tg1:

∂

∂Tg1

Q(ϑ) = −1

2

G∑
g=1

n̂gδ
−1
g1

î
tr
{
dTg1Λg1T

>
g1

}
+ tr

¶
Tg1Λg1 (dTg1)>

©ó
= −

G∑
g=1

n̂gδ
−1
g1

î
tr
¶
Λg1T

>
g1 (dTg1)>

©ó
= −

G∑
g=1

n̂g
δg1

[Tg1Λg1] .

The matrix, Tg1, is a unit-lower diagonal matrix. So for r = 2, 3, . . . , n1 we have:
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
φ

(g)1
r1

φ
(g)1
r2

...

φ
(g)1
r,r−1

 = −


λ

(g)1
11 λ

(g)1
21 · · · λ

(g)1
r−1,1

λ
(g)1
12 λ

(g)1
22 · · · λ

(g)1
r−1,2

...
...

. . .
...

λ
(g)1
1,r−1 λ

(g)1
2,r−1 · · · λ

(g)1
r−1,r−1



−1 
λ

(g)1
r1

λ
(g)1
r2

...

λ
(g)1
r,r−1

 .

This is equivalent to solving the following system of equations for Φ
(g),1
(r−1)×1:

Λ
(g)1>
(r−1)×(r−1)Φ

(g)1
(r−1)×1 = −Λ

(g)1
(r−1)×1.

Note: Λ
(g)1
(r−1)×(r−1) is symmetric because λ

(g)1
ij = λ

(g)1
ji .

The number of free parameters is

G

ï
n1(n1 − 1)

2

ò
+G.

∆gl

To find the VVI model for ∆gl, we start with the following two terms from the

permuted version of (C.8):

I II

− n∗

2nl

G∑
g=1

n̂g log(|∆gl|) −1

2

G∑
g=1

tr

∆−1
gl

N∑
i=1

ẑig

n∗
2:D/l∑
j=1

Xl2
(1)ij∆

−1
g1 (Xl2

(1)ij)
>


We define:

� Λgl = 1
n̂g

∑N
i=1 ẑig

∑n∗
2:D/l

j=1 Xl2
(1)ij∆

−1
g1 (Xl2

(1)ij)
>

� Agl = T>glδ
−1
gl Inl×nlTgl
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and following similar steps outlined for ∆g1 above, we find the Q(ϑ) function is

Q(ϑ) = C +
n∗

2

G∑
g=1

n̂g log(δ−1
gl )− 1

2

G∑
g=1

n̂gδ
−1
gl tr

[
TglΛglT

>
gl

]
, (C.10)

the estimator for δgl is

δ̂gl =
1

n∗
tr[TglΛglT

>
gl], (C.11)

and the second score function is:

S2(δgl,Tgl) = − n̂g
δgl

TglΛgl. (C.12)

We can find the sub-diagonal components of Tgl by solving the following system

of equations for Φ
(g)l
(r−1)×1:

Λ
(g)l>
(r−1)×(r−1)Φ

(g)l
(r−1)×1 = −Λ

(g)l
(r−1)×1

The number of free parameters is:

G

ï
nl(nl − 1)

2

ò
+G.

If ∆g2 was VVI, the derivation would be similar to ∆gl except we would start

with the first two terms in (C.8).
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C.1.2 EVI

∆g1

Starting with (C.8) and Λg1 from Section C.1.1, we define

Ag1 = T>1 δ
−1
g1 In1×n1T1

and use these quantities to find the following Q(ϑ) function

Q(ϑ) = C +
n∗

2

G∑
g=1

n̂g log(δ−1
g1 )− 1

2

G∑
g=1

n̂gδ
−1
g1 tr

[
T1Λg1T

>
1

]
. (C.13)

The estimator of δg1, δ̂g1, is found by taking the partial derivative of (C.13) w.r.t

to δ−1
g1 , equating it to zero and solving for δg1:

δ̂g1 =
1

n∗
tr[T1Λg1T

>
1 ]. (C.14)

Taking the partial derivative of (C.13) w.r.t to T1, we find the second score

function is:

S2(δg1,T1) = −T1

G∑
g=1

n̂g
δg1

Λg1 (C.15)

Note the following:

Φ1 = {φ1ij}, elements of T1 to be estimated.

κ1
ij =

G∑
g=1

ngλ
(g)
1ij

δg1
.
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Then, for r = 1, 2, . . . , n1, we have:


φ1
r1

φ1
r2

...

φ1
r,r−1

 = −


κ1

11 κ1
21 · · · κ1

r−1,1

κ1
12 κ1

22 · · · κ1
r−1,2

...
...

. . .
...

κ1
1,r−1 κ1

2,r−1 · · · κ1
r−1,r−1



−1 
κ1
r1

κ1
r2

...

κ1
r,r−1

 ,

where r = 2, 3, . . . , n1. This is equivalent to solving the following system of equations

for Φ1
(r−1)×1:

κ1,>
(r−1)×(r−1)Φ

1
(r−1)×1 = −κ1

(r−1)×1

The number of free parameters is:

n1(n1 − 1)

2
+G

∆gl

Starting with the permuted version of (C.8) and Λgl defined in Section C.1.1, we

define

Agl = T>l δ
−1
gl Inl×nlTl

and use these quantities to find the following Q(ϑ) function:

Q(ϑ) = C +
n∗

2

G∑
g=1

n̂g log(δ−1
gl )− 1

2

G∑
g=1

n̂gδ
−1
gl tr

[
TlΛglT

>
l

]
, (C.16)

the estimator of δgl:

δ̂gl =
1

n∗
tr[TlΛglT

>
l ], (C.17)
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and the second score function S2(δg1,T1):

S2(δgl,Tl) = −Tl

G∑
g=1

n̂g
δgl

Λgl. (C.18)

If we note,

κlij =
G∑
g=1

ngλ
(g)
lij

δgl
,

then we can solve the following system of equations for Φl
(r−1)×1, for r = 1, 2, . . . , nl.

κl>(r−1)×(r−1)Φ
l
(r−1)×1 = −κl(r−1)×1

This gives the sub-diagonal elements of Tl.

Note: κl(r−1)×(r−1) is symmetric because κlij = κlji.

The number of free parameters is:

nl(nl − 1)

2
+G.

Note: If ∆g2 was EVI, the derivation would be similar to ∆gl except we would

start with a modified version of (C.13).

C.2 Eigen-Decomposition

∆n∗×n∗ = ΓAΓ> = λΓDΓ>

where:

� λ = |∆|
1
n∗ and represents the volume.
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� D = |∆|−
1
n∗ In∗A and represents the shape.

– D is a diagonal matrix that contains the normalized eigen-values of ∆ in

decreasing order.

– |D| = 1

� Γ are the ordered eigen-vectors of ∆ and represent the orientation

In our applied example, the eigen decompositions describe below are applied to

∆g2 because they do not represent a temporal dimension of the multidimensional

arrays.

VVI

Starting with (C.8), we define:

� Λg2 =
∑N

i=1 ẑig
∑n∗3:D

j=1 X(1)ij∆
−1
g1 X>(1)ij

� Ag2 = ∆−1
g2 = λ−1

g2 D−1
g2
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The two terms in (C.8) can be decomposed as follows:

I II

− n∗

2n2

G∑
g=1

n̂g log(|A−1
g2 |) −1

2

G∑
g=1

tr
[
∆−1

g2 Λg2

]
n∗

2n2

G∑
g=1

n̂g log(|Ag2|) −1

2

G∑
g=1

(λ−1
g2 ) tr

[
Λg2D

−1
g2

]
n∗

2n2

G∑
g=1

n̂g log(|(λ−1
g2 )D−1

g2 |) · · ·

− n∗

2n2

G∑
g=1

n̂g log((λ−1
g2 )n2) · · ·

−n
∗

2

G∑
g=1

n̂g log(λg2) · · ·

The Q(ϑ) function is now

Q(ϑ) = C +−1

2

[
G∑
g=1

1

λg2
tr
{
Λg2D

−1
g2

}
+ n∗

G∑
g=1

n̂g log(λg2)

]
. (C.19)

Using the expressions for λkBk on page 12 of Celeux and Govaert (1995), the estima-

tors of Dg2 and λg2 are:

D̂g2 =
diag(Λg2)

|diag(Λg2)| 1
n∗
,

λ̂g2 =
|diag(Λg2)| 1

n∗

ng
,

where d = n∗, Wk = Λg2 and nk = n̂g.

109



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

EEE

Starting with equation C.8 for the Q(ϑ), we can define

� Λg2 =
∑N

i=1 ẑig
∑n∗3:D

j=1 X(1)ij∆
−1
g1 X>(1)ij

� ∆g2 = λ2Γ2D2Γ
>
2

The Q(ϑ) can be rewritten as:

Q(ϑ) = C − 1

2

[
N
n∗

n2

log(|∆2|) + tr

{(
G∑
g=1

Λg2

)
∆−1

2

}]
. (C.20)

The common variance matrix is defined in Celeux and Govaert (1995) as:

∆̂2 =
1

N

G∑
g=1

Λg2

where W =
∑G

g=1 Λg2 and d = n∗

n2
.

The number of free parameters is

n2(n2 + 1)

2
.
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Appendix D

Skew Distributions

D.1 Skewed Distributions

D.1.1 Derivation details for the tensor variate skew t distri-

bution

X is a random MDA with a TVSTn(M,A,
⊗D

d=1 ∆d, ν). X can be written as

X = M+WA+
√
WV ,

whereM and A are n dimensional MDAs, V ∼ Nn

Ä
O,
⊗D

d=1 ∆d

ä
andW ∼ Inv-Gamma

(
ν
2
, ν

2

)
.

The inverse Gamma density has the form:

f(w|a, b) =
ba

Γ(a)
w−(a+1) exp

ï
− b
w

ò
.
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It then follows that

X |W = w ∼ Nn

(
M+ wA, w

D⊗
d=1

∆d

)
.

Joint density

The joint density of X and W is

f(X, w|ϑ) = f(X|W = w)f(w)

= (2π)
−n∗

2

D∏
d=1

[wnd |∆d|]
− n∗

2nd

× exp

{
−1

2
vec(X−M− wA)>

1

w

D⊗
d=1

∆−1
d vec(X−M− wA)

}

×
ν
2

ν
2

Γ(ν
2
)

ï
1

w

ò ν
2

+1

exp

ß ν
2

w

™
=

ν
2

ν
2

(2π)
n∗
2

∏D
d=1 |∆d|

n∗
2nd Γ(ν

2
)
· w−

Ä
ν+n∗

2
+1
ä

× exp

{
− 1

2w

(
vec(X−M− wA)>

D⊗
d=1

∆−1
d vec(X−M− wA) + ν

)}
(D.21)

The intermediate steps pertaining to the determinant of the scale matrices are :

D∏
d=1

|w∆d|
− n∗

2nd =
D∏
d=1

[wnd |∆d|]
− n∗

2nd = w−
n∗
2

D∏
d=1

|∆d|
− n∗

2nd

Using the following identities:

� vec(A + E) = vec(A) + vec(E)

� vec(αA) = αvec(A)
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the exponential term in (D.21) can be written as:

exp

{
− 1

2w

(
vec(X−M− wA)>

D⊗
d=1

∆−1
d vec(X−M− wA) + ν

)}
=

exp

{
− 1

2w

([
vec(X−M)> − wvec(A)>

] D⊗
d=1

∆−1
d [vec(X−M)− wvec(A)] + ν

)}
=

exp

{
− 1

2w

(
vec(X−M)>

D⊗
d=1

∆−1
d vec(X−M)− wvec(X−M)>

D⊗
d=1

∆−1
d vec(A)

−wvec(A)>
D⊗
d=1

∆−1
d vec(X−M) + w2vec(A)>

D⊗
d=1

∆−1
d vec(A) + ν

)}
=

exp

{
− 1

2w

(
vec(X−M)>

D⊗
d=1

∆−1
d vec(X−M)− 2wvec(X−M)>

D⊗
d=1

∆−1
d vec(A)

+w2vec(A)>
D⊗
d=1

∆−1
d vec(A) + ν

)}

Grouping the terms that incorporate w facilitates the integration in Section D.1.1.

exp

{
vec(X−M)>

D⊗
d=1

∆−1
d vec(A)

}
×

exp

{
−1

2

[
vec(X−M)>

⊗D
d=1 ∆−1

d vec(X−M) + ν

w
+ wvec(A)>

D⊗
d=1

∆−1
d vec(A)

]}

If we define

δ(·) = vec(X−M)>
⊗D

d=1 ∆−1
d vec(X−M) ρ(·) = vec(A)>

⊗D
d=1 ∆−1

d vec(A),
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then the following expression is obtained:

exp

{(
vec(X−M)>

D⊗
d=1

∆−1
d vec(A)

)}

× exp

{
−1

2

[
δ(X;M,

⊗D
d=1 ∆−1

d ) + ν

w
+ wρ(A;

D⊗
d=1

∆−1
d )

]}
(D.22)

Marginal Density

Building on (D.21) and (D.22), the marginal density of X is

f(X) =

∫ ∞
0

f(X, w)dw

=
ν
2

ν
2

(2π)
n∗
2

∏D
d=1 |∆d|

n∗
2nd Γ(ν

2
)

exp

{
vec(X−M)>

D⊗
d=1

∆−1
d vec(A)

}

×
∫ ∞

0

w−
Ä
ν+n∗

2
+1
ä

exp

{
−1

2

[
δ(X;M,

⊗D
d=1 ∆−1

d ) + ν

w
+ wρ(A,

D⊗
d=1

∆−1
d )

]}
dw.

(D.23)

Using the following change of variables, we can rearrange the integral in (D.23):

u du
√
ρ(A,

⊗D
d=1 ∆−1

d )√
δ(X;M,

⊗D
d=1 ∆−1

d )+ν
w

√
ρ(A,

⊗D
d=1 ∆−1

d )√
δ(X;M,

⊗D
d=1 ∆−1

d )+ν
dw
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Integral term 1 Integral term 2

w−
Ä
ν+n∗

2
+1
ä

exp
¶
−1

2

î
δ(·)+ν
w

+ wρ(·)
ó©
dwï√

δ(·)+ν√
ρ(·)

u

ò−Ä ν+n∗
2

+1
ä

exp

ß
−1

2

ï√
δ(·)+ν

√
δ(·)+ν

√
ρ(·)

w
√
ρ(·)

+
w
√
ρ(·)
√
ρ(·)
√
δ(·)+ν√

δ(·)+ν

ò™
dwïî

δ(·)+ν
ρ(·)

ó 1
2

ò−Ä ν+n∗
2

+1
ä
u−
Ä
ν+n∗

2
+1
ä

exp

ß
−1

2

ï√
δ(·)+ν

√
ρ(·)

u
+
√
ρ(·)
√
δ(·) + νu

ò™
dwî

δ(·)+ν
ρ(·)

ó−Ä ν+n∗
4

+ 1
2

ä
u−
Ä
ν+n∗

2
+1
ä

exp

ß
−
√
δ(·)+ν

√
ρ(·)

2

[
u+ 1

u

]™î δ(·)+ν
ρ(·)

ó 1
2 du

Putting the two terms together, we have:

∫ ∞
0

ï
δ(·) + ν

ρ(·)

ò−Ä ν+n∗
4

+ 1
2

ä
u−
Ä
ν+n∗

2
+1
ä ïδ(·) + ν

ρ(·)

ò 1
2

exp

®
−
√
δ(·) + ν

√
ρ(·)

2

ï
u+

1

u

ò´
du =ï

δ(·) + ν

ρ(·)

ò− ν+n∗
4
∫ ∞

0

u−
Ä
ν+n∗

2
+1
ä

exp

®
−
√
δ(·) + ν

√
ρ(·)

2

ï
u+

1

u

ò´
du

The integral is now a Bessel function of the second kind. We can write the marginal

density, f(X) as:

fTVST(X|ϑ) =
2
(
ν
2

) ν
2 exp

¶
vec(X−M)>

⊗D
d=1 ∆−1

d vec(A)
©

(2π)
n∗
2

∏D
d=1 |∆d|

n∗
2nd Γ(ν

2
)

Ç
δ(X;M,

⊗D
d=1 ∆−1

d ) + ν

ρ(A,
⊗D

d=1 ∆−1
d )

å− ν+n∗
4

×K− ν+n∗
2

ÑÃ[
ρ(A,

D⊗
d=1

∆−1
d ))

][
δ(X;M,

D⊗
d=1

∆−1
d )) + ν

]é
. (D.24)
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D.1.2 Expectations

We define the following terms; n2:D =
∏D

d=2 nd, ∆̆ =
⊗2

d=D ∆d and ∆̆
1
2 =

⊗2
d=D ∆

1
2
d .

E
[
vec(X )vec(X )>

]
= E

[
vec(X(1))vec(X(1))

>]
= E

[{
vec(M(1)) +Wvec(A(1)) +

√
W (∆̆

1
2 ⊗∆

1
2
1 )vec(Z(1))

}
×{

vec(M(1))
> +Wvec(A(1))

> +
√
Wvec(Z(1))

>(∆̆
1
2 ⊗∆

1
2
1 )>
}]

= vec(M(1))vec(M(1))
> + E[W ]vec(M(1))vec(A(1))

>

+ E[W ]vec(A(1))vec(M(1))
> + E[W 2]vec(A(1))vec(A(1))

>

+ E[W ](∆̆
1
2 ⊗∆

1
2
1 )E

[
vec(Z(1))vec(Z(1))

>] (∆̆
1
2 ⊗∆

1
2
1 )>

= vec(M(1))vec(M(1))
> + E[W ]vec(M(1))vec(A(1))

>

+ E[W ]vec(A(1))vec(M(1))
>

+ E[W 2]vec(A(1))vec(A(1))
> + E[W ]

(
1⊗

d=D

∆d

)
.

E
î
X(1)X

>
(1)

ó
= E
ï{

M(1) +WA(1) +
√
W∆

1
2
1 Z(1)∆̆

1
2

}
×
{

M(1) +WA(1) +
√
W∆

1
2
1 Z(1)∆̆

1
2

}>ò
= M(1)M

>
(1) + E [W ] M(1)A

>
(1) + E [W ] A(1)M

>
(1) + E

[
W 2
]
A(1)A

>
(1)

+ E[W ]∆
1
2
1 E
î
Z(1)∆̆Z>(1)

ó
∆
>
2
1
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The Z(1) term can be broken into row vectors, z(1) ∈ R1×n2:D .

E
î
z(1)∆̆z>(1)

ó
= E
î

tr
¶
z>(1)z(1)∆̆

©ó
= tr

¶
E
î
z>(1)z(1)

ó
∆̆
©

= tr
¶
In2:D

∆̆
©

= tr
¶
∆̆
©
,

E
î
Z(1)∆̆Z>(1)

ó
= In1 × tr

¶
∆̆
©

= In1 × tr

{
2⊗

d=D

∆d

}
= In1 ×

D∏
d=2

tr {∆d} ,

E
î
X(1)X

>
(1)

ó
= M(1)M

>
(1) + E [W ] M(1)A

>
(1) + E [W ] A(1)M

>
(1) + E

[
W 2
]
A(1)A

>
(1)

+ E[W ]∆1 ×
D∏
d=2

tr {∆d}

E
î
X>(1)X(1)

ó
= E
ï{

M(1) +WA(1) +
√
W∆

1
2
1 Z(1)∆̆

1
2

}>
×
{

M(1) +WA(1) +
√
W∆

1
2
1 Z(1)∆̆

1
2

}ò
= M>

(1)M(1) + E [W ] M>
(1)A(1) + E [W ] A>(1)M(1) + E

[
W 2
]
A>(1)A(1)

+ E[W ]∆̆
>
2 E
î
Z>(1)∆1Z(1)

ó
∆̆

1
2

The Z>(1) term can be broken into row vectors, z>(1) ∈ R1×n1 .

E
î
z>(1)∆1z(1)

ó
= E
î

tr
¶
z(1)z

>
(1)∆1

©ó
= tr

¶
E
î
z(1)z

>
(1)

ó
∆1

©
= tr {In1∆1} = tr {∆1}

E
î
Z>(1)∆1Z(1)

ó
= In2:D

× tr {∆1} ,

E
î
X>(1)X(1)

ó
= M>

(1)M(1) + E [W ] M>
(1)A(1) + E [W ] A>(1)M(1) + E

[
W 2
]
A>(1)A(1)

+ E[W ]∆̆× tr {∆1}
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Appendix E

Mixtures of Tensor-Variate Skew

Distributions

E.1 log f (Xi, wig|Θg) for the TVST

log f(Xi,wig|Θg) = −n
∗

2
log(2π)− n∗

2

D∑
d=1

1

nd
log |∆gd|

+
νg
2

log(
νg
2

)− log
(

Γ
(νg

2

))
−
Å
n∗

2
+
νg
2

+ 1

ã
log(wig)−

νg
2wig

+
1

2
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Ag) +

1

2
vec(Ag)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2wig
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)−

wig
2

vec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag).
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E.2 `C(ϑ)

Noting that ng =
∑N

i=1 zig and N =
∑G

g=1 ng, the complete log-likelihood for the

TVST distribution is

`C(ϑ) =
G∑
g=1

N∑
i=1

zig log πg +
G∑
g=1

N∑
i=1

zig log f(Xi, wig|Θg)

=
G∑
g=1

ng log πg +
G∑
g=1

N∑
i=1

zig

[
−n

∗

2
log(2π)− n∗

2

D∑
d=1

1

nd
log |∆gd|

+
νg
2

log(
νg
2

)− log
(

Γ
(νg

2

))
−
Å
n∗

2
+
νg
2

+ 1

ã
log(wig)−

νg
2wig

+
1

2
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Ag) +

1

2
vec(Ag)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2wig
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)−

wig
2

vec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag)

]
(E.25)

The complete-data log-likelihood, `C(ϑ), can be broken into a general form for all

five tensor-variate mixture models by making the following groupings of the terms;

constants unrelated to the parameters, h(wig|ϑ) terms and terms with tensor/matrix
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parameters:

`C1 =
G∑
g=1

ng log πg,

C1 = −Nn
∗

2
log(2π)

`C2 =
G∑
g=1

N∑
i=1

zig log h(wig|θg),

C2 = Constants related to log h(wig|θg),

`C3 = −n
∗

2

G∑
g=1

ng

D∑
d=1

1

nd
log |∆gd|+

1

2

G∑
g=1

N∑
i=1

zigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Ag)

+
1

2

G∑
g=1

N∑
i=1

zigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

zig
wig

vec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

zigwigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag).

In the case of the TVST, `C2 and C2 are:

`C2 =
G∑
g=1

N∑
i=1

zig

ï
νg
2

log
(νg

2

)
− log

(
Γ
(νg

2

))
−
(νg

2

)
log(wig)−

νg
2wig

ò
=

G∑
g=1

ng

[νg
2

log
(νg

2

)
log
(

Γ
(νg

2

))]
−

G∑
g=1

νg
2

N∑
i=1

ï
zig log(wig)−

zig
wig

ò
C2 =

G∑
g=1

N∑
i=1

zig

ï
−
Å
n∗

2

ã
log(wig)− log(wig)

ò
= −
Å
n∗

2
+ 1

ã G∑
g=1

N∑
i=1

zig log(wig),
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where wig is a constant and νg is the parameter. Now we have

`C(ϑ) = `C1 + C1 + `C2 + C2 + `C3.

E.3 Q function

Note that

aig = E(Wig | Xi, ϑ̂) big = E
Å

1

Wig

∣∣∣∣ Xi, ϑ̂ã cig = E(logWig | Xi, ϑ̂).

Now, the Q(ϑ) function for the TVST is given by

Q(ϑ) =
G∑
g=1

n̂g log πg −
Nn∗

2
log(2π)

+
G∑
g=1

N∑
i=1

ẑig

ï
νg
2

log
(νg

2

)
− log

(
Γ
(νg

2

))
−
Å
n∗

2
+
νg
2

+ 1

ã
cig −

νg
2
big

ò
− n∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd|+

1

2

G∑
g=1

N∑
i=1

ẑigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Ag)

+
1

2

G∑
g=1

N∑
i=1

ẑigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

ẑigbigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

ẑigaigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag), (E.26)

where ẑig and n̂g are estimates of their respective quantities.
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E.4 M(1)g and A(1)g updates

Note:

vec(X−M)> = vec(X)> − vec(M)> trA>S = vec(A)>vec(S) trA>S = trS>A

E.4.1 M(1)g update

We have

Q(ϑ) = C +
1

2

G∑
g=1

N∑
i=1

ẑigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Ag)

+
1

2

G∑
g=1

N∑
i=1

ẑigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

− 1

2

G∑
g=1

N∑
i=1

ẑigbigvec(Xi −Mg)
>

D⊗
d=1

∆−1
gd vec(Xi −Mg)

= C −
G∑
g=1

N∑
i=1

ẑig

[
tr

{
A>(1)g

D⊗
d=1

∆−1
gd M(1)g

}]

− 1

2

G∑
g=1

N∑
i=1

ẑigbig

[
−2 tr

{
X>(1)i

D⊗
d=1

∆−1
gd M(1)g

}
+ tr

{
M>

(1)g

D⊗
d=1

∆−1
gd M(1)g

}]
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and so

∂

∂M(1)g

Q(ϑ) = −
G∑
g=1

N∑
i=1

ẑig

[
tr

{
A>(1)g

D⊗
d=1

∆−1
gd dM(1)g

}]

− 1

2

G∑
g=1

N∑
i=1

ẑigbig

[
−2 tr

{(
X>(1)i

D⊗
d=1

∆−1
gd −M>

(1)g

D⊗
d=1

∆−1
gd

)
dM(1)g

}]

= −
G∑
g=1

N∑
i=1

ẑig

[
D⊗
d=1

∆−1
gd A(1)g

]

+
G∑
g=1

N∑
i=1

ẑigbig

[
D⊗
d=1

∆−1
gd X(1)i −

D⊗
d=1

∆−1
gd M(1)g

]
.

We now have

M̂(1)g =

∑N
i=1 ẑigbigX(1)i − n̂gÂ(1)g∑N

i=1 ẑigbig
. (E.27)

E.4.2 A(1)g update

Now, we can write

Q(ϑ) = C +
1

2

G∑
g=1

N∑
i=1

ẑig

[
vec(Xi −Mg)

>
D⊗
d=1

∆−1
gd vec(Ag) + vec(Ag)

>
D⊗
d=1

∆−1
gd vec(Xi −Mg)

]

− 1

2

G∑
g=1

N∑
i=1

ẑigaigvec(Ag)
>

D⊗
d=1

∆−1
gd vec(Ag)

= C +
G∑
g=1

N∑
i=1

ẑig

[
tr

{
X>(1)i

D⊗
d=1

∆−1
gd A(1)g

}
− tr

{
M>

(1)g

D⊗
d=1

∆−1
gd A(1)g

}]

− 1

2

G∑
g=1

N∑
i=1

ẑigaig

[
A>(1)g

D⊗
d=1

∆−1
gd A(1)g

]
,
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and so

∂

∂A(1)g

Q(ϑ) =
G∑
g=1

N∑
i=1

ẑig

[
tr

{(
X>(1)i

D⊗
d=1

∆−1
gd −M>

(1)g

D⊗
d=1

∆−1
gd

)
dA(1)g

}]

−
G∑
g=1

N∑
i=1

ẑigaig

[
A>(1)g

D⊗
d=1

∆−1
gd dA(1)g

]

=
G∑
g=1

N∑
i=1

ẑig

[
D⊗
d=1

∆−1
gd X(1)i −

D⊗
d=1

∆−1
gd M(1)g

]
−

G∑
g=1

N∑
i=1

ẑigaig

[
D⊗
d=1

∆−1
gd A(1)g

]
.

We have

Â(1)g =

∑N
i=1 ẑigX(1)i − n̂gM̂(1)g∑N

i=1 ẑigaig
. (E.28)

E.4.3 Solve Equations for Final Updates

We have two equations with two unknown parameters, A(1)g and M(1)g. We define

the following quantities:

ā =
1

n̂g

N∑
i=1

ẑigaig b̄ =
1

n̂g

N∑
i=1

ẑigbig.

Substituting (E.28) into (E.27),

M̂(1)g =

∑N
i=1 ẑigbigX(1)i − n̂g

[∑N
i=1 ẑigX(1)i−n̂gM̂(1)g∑N

i=1 ẑigaig

]
∑N

i=1 ẑigbig

=

∑N
i=1 ẑigbigX(1)i∑N

i=1 ẑigbig
−
∑N

i=1 ẑigX(1)i

ā
∑N

i=1 ẑigbig
+

n̂gM̂(1)g

ā
∑N

i=1 ẑigbig
.
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We can write

M̂(1)g

ñ
1− n̂g

ā
∑N

i=1 ẑigbig

ô
=

∑N
i=1 ẑigbigX(1)i∑N

i=1 ẑigbig
−
∑N

i=1 ẑigX(1)i

ā
∑N

i=1 ẑigbig

and so

M̂(1)g =

∑N
i=1 ẑigbigX(1)i∑N

i=1 ẑigbig
−
ā
∑N

i=1 ẑigbigX(1)i

n̂g
−
∑N

i=1 ẑigX(1)i

ā
∑N

i=1 ẑigbig

+

∑N
i=1 ẑigX(1)i

n̂g

=

ñ∑N
i=1 ẑigX(1)i {ābig − 1}∑N

i=1 ẑigābig

ô
−
ñ∑N

i=1 ẑigX(1)i {ābig − 1}
n̂g

ô
.

That is,

M̂(1)g =

∑N
i=1 ẑigX(1)i {ābig − 1}∑N

i=1 ẑigābig − n̂g
. (E.29)

Now, substituting (E.27) into (E.28),

Â(1)g =

∑N
i=1 ẑigX(1)i − n̂g

[∑N
i=1 ẑigbigX(1)i−n̂gÂ(1)g∑N

i=1 ẑigbig

]
∑N

i=1 ẑigaig

=

∑N
i=1 ẑigX(1)i∑N
i=1 ẑigaig

−
∑N

i=1 ẑigbigX(1)i∑N
i=1 ẑigaig b̄

+
n̂gÂ(1)g∑N
i=1 ẑigaig b̄

.

We can write

Â(1)g

ñ
1− n̂g∑N

i=1 ẑigaig b̄

ô
=

∑N
i=1 ẑigX(1)i∑N
i=1 ẑigaig

−
∑N

i=1 ẑigbigX(1)i∑N
i=1 ẑigaig b̄
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and so

Â(1)g =

∑N
i=1 ẑigX(1)i∑N
i=1 ẑigaig

−
b̄
∑N

i=1 ẑigX(1)i

n̂g
−
∑N

i=1 ẑigbigX(1)i∑N
i=1 ẑigaig b̄

+

∑N
i=1 ẑigbigX(1)i

n̂g

=

ñ∑N
i=1 ẑigX(1)i

{
b̄− big

}∑N
i=1 ẑigaig b̄

ô
−
ñ∑N

i=1 ẑigX(1)i

{
b̄− big

}
n̂g

ô
.

That is,

Â(1)g =

∑N
i=1 ẑigX(1)i

{
b̄− big

}∑N
i=1 ẑigaig b̄− n̂g

. (E.30)

E.5 ∆gd updates

Q(ϑ) = Q1 +C1 + Q2 +C2 −
n∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd|

+
1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
1 X>(1)gij∆

−1
2 A(1)gj]

+
1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
1 A>(1)gj∆

−1
2 X(1)gij]

− 1

2

G∑
g=1

N∑
i=1

ẑigbig

n∗3:D∑
j=1

tr[∆−1
1 X>(1)gij∆

−1
2 X(1)gij]

− 1

2

G∑
g=1

N∑
i=1

ẑigaig

n∗3:D∑
j=1

tr[∆−1
1 A>(1)gj∆

−1
2 A(1)gj] (E.31)

where Q∗ is the Q function version of `C∗.
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E.5.1 ∆g1 update

Note the following differentials:

dX−1 = −X−1dXX−1 d log |X| = trX−1dX

We can write

∂

∂∆g1

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g
n1

tr∆−1
g1 d∆g1 −

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)gij∆

−1
g2 A(1)gj∆

−1
g1 d∆g1]

− 1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g1 A>(1)gj∆

−1
g2 X(1)gij∆

−1
g1 d∆g1]

+
1

2

G∑
g=1

N∑
i=1

ẑigbig

n∗3:D∑
j=1

tr[∆−1
g1 X>(1)gij∆

−1
g2 X(1)gij∆

−1
g1 d∆g1]

+
1

2

G∑
g=1

N∑
i=1

ẑigaig

n∗3:D∑
j=1

tr[∆−1
g1 A>(1)gj∆

−1
g2 A(1)gj∆

−1
g1 d∆g1]

= −n
∗

2

G∑
g=1

n̂g
n1

∆−>g1 −
1

2

G∑
g=1

∆−>g1

N∑
i=1

ẑig

n∗3:D∑
j=1

A>(1)gj∆
−>
g2 X(1)gij∆

−>
g1

− 1

2

G∑
g=1

∆−>g1

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)gij∆
−>
g2 A(1)gj∆

−>
g1

+
1

2

G∑
g=1

∆−>g1

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X>(1)gij∆
−>
g2 X(1)gij∆

−>
g1

+
1

2

G∑
g=1

∆−>g1

N∑
i=1

ẑigaig

n∗3:D∑
j=1

∆−>g1 A>(1)gj∆
−>
g2 A(1)gj∆

−>
g1
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Note ∆−>g1 = ∆−1
g1 and solve for ∆g1:

n∗

2

n̂g
n1

∆−1
g1 = −1

2
∆−1

g1

N∑
i=1

ẑig

n∗3:D∑
j=1

A>(1)gj∆
−1
g2 X(1)gij∆

−1
g1

− 1

2
∆−1

g1

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 A(1)gj∆

−1
g1

+
1

2
∆−1

g1

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij∆

−1
g1

+
1

2
∆−1

g1

N∑
i=1

ẑigaig

n∗3:D∑
j=1

∆−1
g1 A>(1)gj∆

−1
g2 A(1)gj∆

−1
g1

Multiply both sides by ∆g1 from the left and the right:

n∗

2

n̂g
n1

∆g1 = −1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

A>(1)gj∆
−1
g2 X(1)gij −

1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 A(1)gj

+
1

2

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij +

1

2

N∑
i=1

ẑigaig

n∗3:D∑
j=1

A>(1)gj∆
−1
g2 A(1)gj

The update for ∆g1, i.e., ∆̂g1, is:

∆̂g1 =
n1

n∗n̂g

 N∑
i=1

ẑig

big
n∗3:D∑
j=1

X>(1)gij∆
−1
g2 X(1)gij + aig

n∗3:D∑
j=1

A>(1)gj∆
−1
g2 A(1)gj

−
n∗3:D∑
j=1

A>(1)gj∆
−1
g2 X(1)gij −

n∗3:D∑
j=1

X>(1)gij∆
−1
g2 A(1)gj


 . (E.32)
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E.5.2 ∆g2 update

Now,

∂

∂∆g2

Q(ϑ) = −n
∗

2

G∑
g=1

n̂g
n2

tr∆−1
g2 d∆g2 −

1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g2 A(1)gj∆

−1
g1 X>(1)gij∆

−1
g2 d∆g2]

− 1

2

G∑
g=1

N∑
i=1

ẑig

n∗3:D∑
j=1

tr[∆−1
g2 X(1)gij∆

−1
g1 A>(1)gj∆

−1
g2 d∆g2]

+
1

2

G∑
g=1

N∑
i=1

ẑigbig

n∗3:D∑
j=1

tr[∆−1
g2 X(1)gij∆

−1
g1 X>(1)gij∆

−1
g2 d∆g2]

+
1

2

G∑
g=1

N∑
i=1

ẑigaig

n∗3:D∑
j=1

tr[∆−1
g2 A(1)gj∆

−1
g1 A>(1)gj∆

−1
g2 d∆g2]

= −n
∗

2

G∑
g=1

n̂g
n2

∆−>g2 −
1

2

G∑
g=1

∆−>g2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)gij∆
−>
g1 A>(1)gj∆

−>
g2

− 1

2

G∑
g=1

∆−>g2

N∑
i=1

ẑig

n∗3:D∑
j=1

A(1)gj∆
−>
g1 X>(1)gij∆

−>
g2

+
1

2

G∑
g=1

∆−>g2

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X(1)gij∆
−>
g1 X>(1)gij∆

−>
g2

+
1

2

G∑
g=1

∆−>g2

N∑
i=1

ẑigaig

n∗3:D∑
j=1

A(1)gj∆
−>
g1 A>(1)gj∆

−>
g2

129



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

Note ∆−>g2 = ∆−1
g2 . Solve for ∆g2:

n∗

2

n̂g
n2

∆−1
g2 = −1

2
∆−1

g2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 A>(1)gj∆

−1
g2

− 1

2
∆−1

g2

N∑
i=1

ẑig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 X>(1)gij∆

−1
g2

+
1

2
∆−1

g2

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij∆

−1
g2

+
1

2
∆−1

g2

N∑
i=1

ẑigaig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 A>(1)gj∆

−1
g2

Multiply both sides by ∆g2 from the left and the right:

n∗

2

n̂g
n2

∆g2 = −1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 A>(1)gj −

1

2

N∑
i=1

ẑig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 X>(1)gij

+
1

2

N∑
i=1

ẑigbig

n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij +

1

2

N∑
i=1

ẑigaig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 A>(1)gj.

The update for ∆g2, i.e., ∆̂g2 is:

∆̂g2 =
n2

n∗n̂g

 N∑
i=1

ẑig

big
n∗3:D∑
j=1

X(1)gij∆
−1
g1 X>(1)gij + aig

n∗3:D∑
j=1

A(1)gj∆
−1
g1 A>(1)gj

−
n∗3:D∑
j=1

X(1)gij∆
−1
g1 A>(1)gj −

n∗3:D∑
j=1

A(1)gj∆
−1
g1 X>(1)gij


 . (E.33)

130



PhD Thesis - Peter A. Tait McMaster - Mathematics and Statistics

E.5.3 ∆gl update

Q(ϑ) = `C1 + C1 + QC2 +C2 −
n∗

2

G∑
g=1

n̂g

D∑
d=1

1

nd
log |∆gd|

+
1

2

G∑
g=1

N∑
i=1

ẑig

n∗
2:D/l∑
j=1

tr
[
∆−1

g1

Ä
Xl2

(1)gij

ä>
∆−1

gl Al2
(1)gj

]

+
1

2

G∑
g=1

N∑
i=1

ẑig

n∗
2:D/l∑
j=1

tr
[
∆−1

g1

Ä
Al2

(1)gj

ä>
∆−1

gl Xl2
(1)gij

]

− 1

2

G∑
g=1

N∑
i=1

ẑigbig

n∗
2:D/l∑
j=1

tr
[
∆−1

g1

Ä
Xl2

(1)gij

ä>
∆−1

gl Xl2
(1)gij

]

− 1

2

G∑
g=1

N∑
i=1

ẑigaig

n∗
2:D/l∑
j=1

tr
[
∆−1

g1

Ä
Al2

(1)gj

ä>
∆−1

gl Al2
(1)gj

]
. (E.34)

Using equation E.34, we follow the same steps as we outlined for ∆̂g2 to get the

update for ∆gl, i.e., ∆̂gl:

∆̂gl =
nl
n∗n̂g

 N∑
i=1

ẑig

big
n∗

2:D/l∑
j=1

Xl2
(1)gij∆

−1
g1

Ä
Xl2

(1)gij

ä>
+ aig

n∗
2:D/l∑
j=1

Al2
(1)gj∆

−1
g1

Ä
Al2

(1)gj

ä>
−

n∗
2:D/l∑
j=1

Xl2
(1)gij∆

−1
g1

Ä
Al2

(1)gj

ä>
−

n∗
2:D/l∑
j=1

Al2
(1)gj∆

−1
g1

Ä
Xl2

(1)gij

ä> .
(E.35)
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