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ABSTRACT 

Introduction: As the number of minimally invasive technologies increases in the field of thoracic 

surgery, so have the number of learning curve analyses performed for these innovations. 

Variation in learning curve methodology makes between-study comparisons and evidence 

syntheses difficult. Furthermore, poorly described and reported learning curve analyses make the 

results difficult to apply to different clinical settings. The objective of this systematic review is to 

characterize the variability in the methods used to construct and describe learning curves, with 

the goal of identifying shortcomings and potential areas for improvement in this line of research. 

Methods: A search of Ovid Medline, Ovid Embase, EBSCO CINAHL, and Web of Science was 

performed. Studies of learning curves of anatomical lung resection operations in adult patients 

published in the English language were eligible for inclusion. Two reviewers independently 

assessed studies for eligibility, and extracted relevant data. 

Results: The search yielded 56 articles eligible for inclusion in the present review. A variety of 

methods were used to construct the learning curve, with chronological grouping of cases being 

the most commonly used technique in 22 (39.29%) studies, followed by the cumulative sum 

method, employed in 21 (37.50%) studies. A total of 15 unique metrics were used for learning 

curve analyses; operative time was the most common metric, used in 39 (69.64%) studies. A 

large proportion of studies failed to provide details on learning curve parameters such as 

competency thresholds, surgeon’s prior experience, case complexity, and learning curve 

definition. Considerable heterogeneity was found in the methods and reporting standards of 

learning curve evaluations in minimally invasive thoracic surgery. 

Conflicts of Interest: None.  

Funding Source: Boris Family Centre for Robotic Surgery.
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INTRODUCTION 

Minimally Invasive Surgery 

Minimally invasive surgery is a branch of surgery that involves the coordinated use of 

flexible cameras and mechanical instruments inserted through small incisions made in the 

thoracic cavity or other organ spaces to perform surgical procedures.1 Tiny instruments are 

manipulated by the surgeon and assisting staff based on information that is relayed through a 

fiberoptic camera and displayed by high-definition monitors that facilitate real-time viewing and 

navigation of the surgical field.2 Minimally invasive techniques in thoracic surgery have risen to 

prominence in recent years, nearly replacing open approaches for many procedures. Minimally 

invasive thoracic surgery entails  two main approaches: video-assisted and robot-assisted 

thoracoscopic surgery.3 In video-assisted surgery, a thoracoscopic camera and instruments are 

inserted into 1-2cm intercostal incisions. These instruments are used for a variety of functions 

such as cauterization, visualization, mobilization, stapling, and cutting to facilitate surgical 

procedures.4 Robotic surgery, a more recent minimally invasive innovation, implements similar 

instrumentation through physician-guided movements that are executed by a robot at the 

patient’s bed-side.5  

 

Minimally Invasive Thoracic Surgery  

The field of thoracic surgery has seen a rising trend in the number of cases performed 

through minimally invasive approaches.5 Well established minimally invasive surgical 

procedures, such as video-assisted thoracoscopic surgery have demonstrated oncologic safety 

and efficacy in the field of thoracic surgery. Evidence now lends support to thoracoscopic 

techniques leading to reduced length of stay,6 decreased blood loss,7 improved pain control,8,9 
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and oncologic efficacy,10 notwithstanding improved cosmesis conferred by smaller “keyhole” 

incisions. Furthermore, techniques using the robotic surgical platform such as robot-assisted 

thoracoscopic surgery have additional benefits in the context of lung and mediastinal procedures. 

While obtaining similar outcomes to VATS,11 robotic procedures provide enhanced three-

dimensional visibility, namely for mediastinal procedures,12 improved ergonomics for surgeons, 

increased lymph node clearance,13 and increased degrees of freedom of the wrist during 

operations.14  

With the increasing penetrance of minimally invasive technologies in the operating room, 

issues pertaining to skill acquisition and surgeon education become relevant. Despite pronounced 

advantages, the uptake of minimally invasive surgical procedures and concurrent medical 

curricula are lagging.15-17 High operational costs,18 potentially longer operative times,19 resource 

intensive processes associated with trainee mentorship,20 and a scarcity of robotic surgical 

devices in medical programmes21 serve as barriers to adoption of robotic technologies. In 

addition, many surgeons who prefer VATS or open procedures express reluctance in adopting 

robotic techniques.22 Thus, the ability to adopt new and cutting-edge technology may be 

challenging for minimally invasive thoracic surgeons and medical trainees.  

 

Surgical Learning Curves 

The finding that some minimally invasive procedures result in longer operative times is 

thought to be in large part due to the presence of a learning curve—the period in which surgeons 

are performing at a suboptimal level due to procedure novelty and relative inexperience in the 

technique under study.5,22-24 Thus, physician education and the ability to perform a procedure 

competently are important considerations when making decisions at the patient, physician, and 
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hospital administrator level. New technologies should strike a balance between potential benefits 

accrued to patients and providers, as well as a manageable learning curve that does not put 

patients at undue risk during the skill acquisition period. From a cost-utility perspective, 

incremental improvements in health status afforded to patients by the acquisition of new 

technologies reach an asymptote, whereas costs continue to rise, and the need to optimize quality 

of care becomes paramount.25 Therefore, the evaluation and reporting of the learning curve in 

minimally invasive thoracic surgery, when studied accurately and objectively, can provide 

unique insight into the utility of procedures being considered for adoption. 

Learning curves were first described in the aircraft industry, where they were initially 

used to model the number of man-hours needed to produce a single aircraft unit.26 Since this 

time, the learning curve has been translated from measuring changes in industrial processes into 

a number of other contexts and has since become a practical tool for monitoring healthcare 

processes.27 In the field of surgery, the learning curve characterizes the trajectory of learning, or 

learning-course, of a new procedure over a period of time. Typically, surgeon performance is 

determined using a surrogate measure, such as a process variable (i.e. operative time), and 

variations are observed over a consecutive number of cases. The archetypal learning curve 

includes an initial period of difficulty followed by a period of improvement, after which point 

surgeon performance experiences little change and reaches a point of stability. It is important to 

note that reaching a plateau in the learning curve does not necessarily indicate attainment of skill 

or proficiency, only that the operator demonstrates little to no further improvements.28 Interest in 

characterizing the learning curves for different surgical procedures has risen in recent years due 

to its ability to derive useful information pertaining to surgical quality, patient outcomes, 

physician credentialing, and associated costs and benefits of surgical procedures. 
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Issues of Learning Curve Evaluation in Minimally Invasive Thoracic Surgery 

 Unfortunately, with the increased study of surgical learning curves came increased 

heterogeneity in the methodologies used to characterize them. This heterogeneity in learning 

curve methodology has been well characterized in the surgical literature in areas such as 

minimally invasive abdominal surgery29 and robotic surgery.30 Harrysson et al.29 and Kassite et 

al.30 report substantial heterogeneity in the types of outcomes used in learning curve studies, as 

well as in the statistical strategies and visual depictions used to construct the learning curves. 

This variation in methods between individual studies makes it difficult to compare the learning 

curves of different surgical procedures, which is important for guiding decisions related to 

physician education and the procurement of new surgical technologies. Furthermore, poor 

descriptions of learning curve analyses may also limit the interpretability and applicability of 

results, making it difficult to apply the results to a surgeon’s personal practice.  

Thoracic surgery is an evolving field in which new skills and procedures are continually 

required and employed. While a recent systematic review by Power et al.31 describes the learning 

curves in studies of major robotic lung and mediastinal resections, the methods used to characterize 

these learning curves have yet to be explored. Despite this investigation, the previously described 

heterogeneity precludes the ability to perform between-study comparisons and/or pooling of data 

to estimate an average learning curve of a given minimally invasive thoracic surgical procedure. 

Therefore, this systematic review was conducted to determine the methodological quality of the 

learning curve literature in minimally invasive thoracic surgery.  
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Study Aims 

The objective of this systematic review is to determine how learning curves are assessed 

in the thoracic surgical literature by collecting data on the outcomes and definitions employed, as 

well as the resulting learning curves generated for video and robot-assisted thoracic lung 

resections. Information from this review will help inform the following section of this thesis by 

identifying current trends in the physician education literature as it pertains to surgical learning 

curves. Therefore, the primary purpose of this review is to critically assess the study designs used 

to evaluate learning curves in minimally invasive thoracic surgery, characterize the variables and 

methods used to measure and analyze these learning curves, as well as how learning curves are 

portrayed and graphed.  
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METHODS 

 This systematic review is reported in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines.32 The PRISMA checklist is 

presented in (Appendix 1). The protocol for this review will be made available upon request. 

This review is not registered as it did not meet the eligibility criteria for registration in the 

PROSPERO database.   

  

Search Strategy 

 The search strategy was designed to comprehensively capture studies assessing learning 

curves of minimally invasive thoracic surgical procedures involving anatomical lung resection. A 

literature search was conducted on November 9th, 2020, using four electronic databases: Ovid 

Medline (1946 to November 2021), Ovid Embase (1974 to November 2021), EBSCO CINAHL 

(1961 to November 2021), and Web of Science (1900 to November 2021). Studies published in 

the English language were eligible for inclusion in this review. No other restrictions, date or 

otherwise, were imposed on the database searches. The search strategy was created with the 

assistance of a health sciences librarian (JP), and is presented in Appendix 2 and was informed 

by terms used to index relevant and recently published studies on the subject of this review. 

Titles, abstracts, and full-texts of relevant trials were also assessed for pertinent search terms 

related to the controlled vocabulary and keywords search concepts.  

 

Study Eligibility 

 Studies of anatomical segmental resection, lobectomy, pneumonectomy, wedge resection, 

and combinations of various lung resections (removal of multiple segments or lobes e.g. 
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bilobectomy) in adult patients (aged 18 years or older) were eligible for inclusion. In order to be 

considered a minimally invasive procedure, the surgical approach must have involved 

thoracoscopic port insertion via video- or robot-assisted surgery. Studies of other thoracic 

procedures, including lymphadenectomy, thymectomy or esophagectomy, treatment of 

spontaneous pneumothorax, as well as routine non-therapeutic surgical procedures, such as 

exploratory thoracotomy or laparotomy, endoscopy, bronchoscopy, or organ biopsy were 

considered out-of-scope for the current review and were therefore not included. Studies 

evaluating the learning curve for cardiac surgical procedures were also ineligible for inclusion. 

Cardio-thoracic studies that reported on a subset of thoracic surgical patients were included so 

long as other inclusion criteria were met. Studies were eligible for inclusion regardless of the 

number of surgeons, or surgeries performed. 

To be eligible for inclusion, articles must have addressed the learning curve and formally 

analyzed it by any kind of graph, table, or statistical technique. Study designs eligible for 

inclusion were prospective and retrospective cohort studies, case-series, as well as trials with or 

without a comparator arm. Individual case studies, review articles, letters, and comments were 

not eligible. In cases where the results of the trial were presented in both abstract and full-text 

publication form, the full-text publication was preferentially included and used for data 

extraction. Studies that have been published as a conference abstract with no accompanying full-

text publication were excluded. Studies that were descriptive in nature, or evaluated the learning 

curve of a simulated procedure, as well as animal model studies were ineligible for inclusion in 

this review.  
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Study Selection 

 All articles retrieved from the database search were screened for inclusion eligibility. 

First, two reviewers (PRAM and NM) independently screened a pilot sample of 50 articles for 

potential relevance based on title and abstracts. This was done to ensure inclusion/exclusion 

criteria were applied correctly. After consolidating results from the first 50 articles, the two 

reviewers proceeded to screen the rest of the articles in a similar manner. Those publications 

identified to be potentially relevant underwent a second round of screening by the same two 

independent reviewers, who reviewed the full text of these articles to ensure all inclusion criteria 

were met. Both rounds of screening ended with a meeting between the two reviewers to 

consolidate inclusion/exclusion decisions. Disagreements were resolved through discussion and 

arbitrated by the senior author (WCH) if consensus was not reached. 

 

Data Extraction 

 The main focus of this review was to collect information regarding the learning curve, 

how it was defined, and assessed in the methods section of the studies captured from the search 

strategy. A data extraction form was designed a priori, and the following information about each 

included study was extracted, in duplicate: study population, study design, study intervention, 

learning curve parameters and learning curve results. Information on the following learning 

curve parameters was collected: [1] Learning curve outcomes used (and explicit use of 

definitions), [2] inclusion and description of surgeon’s previous experience, [3] inclusion and 

description of a pre-defined competency threshold, [4] control for confounding, [5] number of 

cases required to overcome the learning curve, [6] and visual depiction of the learning curve. 

These parameters have previously been found to be inconsistently, or under-reported in similar 
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systematic reviews in other surgical specialties.28 For studies that included a CUSUM analysis, 

information on the type of CUSUM chart used, details regarding the parameters used to construct 

the chart, case-mix adjustment, and interpretation of graphs to the reader, was also collected. 

Other information regarding the learning curve, such as the number of phases of the curve, and 

whether the learning curve was overcome, was also collected.  

Data were extracted independently, in duplicate by two reviewers (PRAM and NM), and 

results were consolidated. Since the primary focus of this review was to describe the way that the 

learning curve has been reported in the literature, no quality assessment of the included articles 

was performed. Data was stored in an electronic data collection form (Microsoft Excel 365, 

2021, Redmond, WA, USA). 

 

Dealing with Missing Data 

Data abstraction from full-text articles was completed for all included studies. In the case 

that data was not made available in the full-text, an attempt was made to retrieve missing data by 

contacting corresponding authors with request for further information (i.e. unpublished results). 

 

Risk of Bias in Individual Studies 

Since this review is concerned with the methods used to assess the learning curve, rather 

than the results obtained from the learning curve analyses, risk of bias was not assessed. 
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Synthesis of Results 

We performed descriptive statistics to summarize the information collected from the 

included studies. Learning curve outcomes were classified according to the Donabedian Quality 

of Care model. Outcomes that overlapped multiple domains, or that combined multiple outcomes 

into a single measure (i.e. surgical failure), were classified as “composite” outcomes. Due to the 

nature of this review, and in line with the purpose of characterizing the methods used to study 

surgical learning curves in thoracic surgery, a meta-analysis was not performed. All statistical 

analyses were performed using IBM® SPSS® Statistics software (version 21.0) and all graphs 

were generated using SPSS® and Tableau Desktop (version 2021.1) on mac.  

 

Donabedian Classification 

The Donabedian Quality of Care model, originally described by Dr. Avedis Donabedian 

in 1966 is a conceptual framework used to measure quality of care in healthcare settings.33 The 

model, depicted as a target, places the performance of physicians and other related healthcare 

practitioners as the “bull’s-eye”, with different factors, such as setting, patient adherence, and 

level of familial/community support, influencing the quality of healthcare, encircling the target 

(Appendix 3). These integrative elements of quality assessment are further characterized into 

three disparate yet connected domains: “structure”, “process”, and “outcome”.25 Structure refers 

to capital, both human and material, as well as the organizational setting in which care is sought. 

Process refers to the provision of healthcare and the processes involved in diagnoses and 

treatment. Outcome refers to any change in health status of patients and populations by the way 

of effective care. The Donabedian framework has been widely implemented and validated in a 

number of healthcare contexts, including cardiac,34 emergency,35 and rectal surgery.36 
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RESULTS 

Search Results 

 The electronic database search yielded a total of 1614 articles. After the title/abstract and 

full-text review screening phases, 56 articles remained eligible for inclusion in the present 

systematic review37-92. The PRISMA flow chart is presented in Appendix 4. 

 

Characteristics of included studies 

 Characteristics of the included studies are presented in Table 1 and Appendix 5. The final 

sample of included articles consisted of 50 retrospective and prospective cohort studies and 6 

consecutive case-series. The included studies were published between the years 1993-2020, 

however the vast majority of studies (39/56; 69.64%) were published from 2016 onward (Table 1 

and Appendix 6). Learning curve studies in thoracic minimally invasive surgery were mostly 

performed in Asia (23/56; 41.07%), followed by Europe (16/56; 28.57), and North America 

(12/56; 21.43%). Video-assisted surgery was the most common surgical approach, used in over 

half (38/56; 67.86%) of the included studies, followed by robot-assisted surgery in 17 (30.36%) 

of the studies. Only one study (1.79%) evaluated the learning curve of both video- and robot-

assisted thoracic surgery. Lobectomies were the most commonly performed surgeries, followed 

by segmentectomy, in 37 (66.07%) and 8 (14.29%) of included studies, respectively.  
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Table 1. Characteristics of Included Studies 

N=56 studies, unless otherwise stated Total 

Sample Size 
 

Number of participants per study, n (%)  
  

1-50 patients 4 (7.14) 
50-100 patients 15 (26.79) 

100-250 patients 21 (37.50) 
>250 patients 16 (28.57) 

Study Information  

Total patients included, n 41,060 
Year of publication, median (25-75%) 2017 (2011-2020) 
Study Location, (%)  

Asia 23 (41.07) 
Europe 16 (28.57) 

North America 12 (21.43) 
South America 2 (3.57) 

Multiple 3 (5.36) 

Surgeons  

Number of surgeon(s) per study, n (%)  
  

1 28 (50.00) 
1-5 11 (19.64) 
≥5 4 (7.14) 

Non-Specified 13 (23.21) 
  

Previous Training Reported, n (%) 38 (67.86) 
Type of previous training, n (%); N=38  
  

Video-Assisted 17 (44.74) 
Open 4 (10.53) 

Mixed 12 (31.58) 
Technique not specified 5 (13.16) 

Surgery  

Approach, n (%)  
  

Robot-Assisted 17 (30.36) 
Video-Assisted 27 (48.21) 

   Uniportal Video-Assisted 11 (19.64) 
Robot/Video-Assisted 1 (1.79) 

  
Type of operation, n (%)  
  

Lobectomy/Bilobectomy 37 (66.07) 
Segmentectomy/Subsegmentectomy 8 (14.29) 

Multiple/Pneumonectomy 11 (19.64) 
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Learning Curve Characterization  

Learning Curve Methods 

 Complete results of the methods used to characterize the learning curve are provided in 

Table 2. The most common method used to construct the learning curve was chronological 

grouping of cases (split-group analysis), which was performed in 22 (39.29%) studies. This 

approach involves dividing consecutive surgical cases into two or more groups (i.e. early and late 

phase, tertiles, etc.), and comparing outcomes between these groupings. The cumulative sum 

(CUSUM) method was the second most commonly used approach, used in 21 (37.50%) studies. 

A total of 6 (10.71%) studies reported using methods to control for confounding variables, 

including imputation, stratification, and risk-adjustment through logistic regression modelling.  

 Competency thresholds were reported in 35 (62.5%) studies and were most commonly 

used in CUSUM learning curve evaluations. The most frequent method to construct competency 

thresholds was through the identification of the inflection point or plateau on the CUSUM curve 

(21/35; 60.00%). Control limits and using a pre-defined number of cases were each used in 6/35; 

(17.14%) of studies that included a competency threshold. Significant improvement in measured 

outcomes was used as competency threshold in the remaining 2/35 (5.7%) studies. 

 While 21 (37.50%) studies exclusively used chronological grouping as the method to 

construct the learning curve, an additional 24 (42.86%) studies used a combination of 

chronological grouping and another statistical technique to evaluate the learning curve. For 

example, many studies (16/56, 28.57%) used the CUSUM method to construct the learning 

curve, and then divided the curve into phases to compare outcomes between the different phases 

in the learning process. In these cases, the different phases of the learning curve were identified 

using one of the aforementioned competency threshold techniques. The median number of 
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learning curve phases was 2 (Interquartile Range (IQR), 2-3). Of these 45 studies, 43 (95.56%) 

used some form of parametric or non-parametric statistical test to assess differences between 

these groupings. Table 2 summarizes the number of divisions used in chronological groupings of  

 the learning curves by frequency. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: CUSUM, cumulative sum. 

 

Table 2. Learning Curve Study Methodology  

N=56 studies, unless otherwise stated  
  
Study Methodology Total 
Learning curve method, n (%)  
  

Chronological Grouping only  22 (39.29) 
CUSUM + Chronological Grouping 16 (28.57) 

Regression 7 (12.50) 
CUSUM only 5 (8.93) 

Weighted Average 2 (3.57) 
Other 4 (7.14) 

  
Competency Threshold Type, n (%); N=35  

  

Plateau/Inflection Point 21 (60.00) 
Control Limit 6 (17.14) 

Pre-defined Number of Cases 6 (17.14) 
Significant Improvement in Outcome 2 (5.71) 

  
Graphical Representation, n (%); N=46  
  

Line/Bar/Scatter/Box plot 16 (34.78) 
CUSUM curve 16 (34.78) 

Regression  4 (8.70) 
Kaplan-Meier Curve 3 (6.52) 

Receiver-Operating Curve 1 (2.17) 
Multiple 6 (13.04) 

  
Control for Confounding, n (%); N=6  
  

Risk-adjusted model 4 (66.70) 
Stratification 1 (16.70) 

Imputation 1 (16.70) 
  
Split-group Analysis  
Number of studies split into phases, n (%) 45 (80.36) 
  
Number of phases, n (%); N=45   
  

2 phases 24 (53.33) 
3 phases 14 (31.11) 
4 phases 5 (11.11) 
5 phases 2 (4.44) 
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 Learning Curve Outcomes  

 Across the 56 included studies, a total of 15 unique outcomes were used for the learning 

curve analyses. The median number of learning curve outcomes used in the included studies was 

1 (IQR, 1-2) (Appendix 7). The most commonly used learning curve outcome was operative 

time, which was used in 39 (69.64%) of the included studies. The remaining outcomes were 

much less frequently reported, each appearing in <10 studies. Six (10.71%) studies reported at 

least one composite outcome, comprised of two or more individual endpoints combined into a 

single outcome. The frequency of different parameters and variable domain as classified 

according to the Donabedian model is presented in Tables 3, Figure 1, and Figure 2. Process 

outcomes, such as operative time and conversions, were the most common type of variable 

domain reported in the included articles, appearing in 21 (37.50%) studies. Of note, there were 

no studies that included a parameter from the “structure” domain of the Donabedian model. In 12 

(21.43%) studies, a primary outcome for the learning curve analysis was not specified. Of the 44 

(78.57%) studies reporting a learning curve parameter, only 18 (32.14%) explicitly defined the 

variable used for analyzing the learning curve.  

Table 3. Outcomes used to evaluate the Learning Curve 

N=56 studies, unless otherwise specified 
 

Outcome Reporting Total 
Outcome Frequency, n (%)  
  

1 outcome 19 (33.93) 
2 outcomes 13 (23.21) 

≥ 3 outcomes 12 (21.43) 
Not Specified 12 (21.43) 

  
Composite outcome, n (%) 6.0 (10.71) 
  

Outcome Type, n (%)  
  

Structure 0 (0.00) 
Process 21 (37.50) 

Clinical Outcome 3 (5.36) 
Process and Clinical Outcome 20 (35.71) 

Unspecified 12 (21.43) 
  



 22 

Figure 1. Outcomes used for Assessing Learning Curves in the Included Studies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2. Distribution of Variable Domains used to Measure the Learning Curve Categorized by the 

Donabedian Model 
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Standards of Reporting 

 Amongst the 56 studies included in this review, the learning curve was reported to be 

overcome by 46 (82.14%) of the included studies, despite only 35 studies (62.5%) setting a 

predefined threshold to signify when the surgeon reached competency, with approximately one-

third (12/35, 34.28%) of studies providing some form of justification for the chosen threshold 

value. A definition of what constituted the learning curve was provided for 33 (58.93%) studies. 

The majority of studies (38/56, 67.86%) provided some description of the surgeon’s prior 

training and experience. A description of the patient case-mix was also provided in most studies 

(50/56, 89.29%), however only 7 studies (12.50%) included a gradation of case complexity. 

 Across the included studies, 10 unique methods were used to graphically represent the 

learning curve. A CUSUM graph was the most commonly used graphical depiction in 19 

(33.93%) studies, followed by a scatter plot, used in 17 (30.36%) studies. Ten (17.86%) studies 

provided only a tabular or textual description of the learning curve without any visual depiction. 

Table 4 summarizes the various types of graphs used to visually depict the learning curve, and 

the frequency with which they are used in the included studies.  

 
 
 
 
 
 
 
 
 
 
 
 

*Some studies presented more than one graphical representation of the learning curve. 10 
studies provided only a tabular or textual description of the learning curve. CUSUM, 
cumulative sum; LOWESS, locally weighted scatter plot smoothing. 

Table 4. Graphical Representations of Learning Curves 

Graphical Representation Number of Studies* 

  
CUSUM 19  
Scatter Plot 17 
Regression 5 
Kaplan-Meir Curve 3 
Line Graph 2 
Bar chart 1 
Box-Plot 1 
Cubic Spline  1 
Receiver Operating Curve 1 
LOWESS (time-series analysis) 2 
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DISCUSSION 

This review identifies substantial heterogeneity in the metrics, methods, and standards of 

reporting across 56 studies that assessed the learning curve in minimally invasive thoracic 

surgery. In addition, our review indicates variation in the definitions and endpoints used to assess 

the learning curve. Heterogeneity outlined in this review highlights the ongoing challenge of 

limited interpretability of the increasing number of learning curve studies published in the 

minimally invasive thoracic surgical literature, a trend that has been paralleled in other surgical 

disciplines.28,93  

One of the most striking findings from this review is the variability in the way learning 

curves are constructed, defined, and evaluated. The majority of studies comprising this review 

used either chronological grouping (22/56; 39.29%), a variation of the cumulative sum method 

(5/56; 8.93%), or a combination of these two learning curve methods (16/56; 28.57%) to 

construct and evaluate the learning curve. CUSUM is a quality control charting method used to 

measure cumulative deviations of observations from a pre-specified value (often based on the 

mean value of the dataset or a historical standard) and is sensitive to sustained degradation of 

surgical processes.8 Initially used for maintaining quality control over industrial processes,94 

CUSUM methodology has been adopted by clinicians to study the surgical learning curve in 

many disciplines, namely cardiothoracic procedures.95,96 Researchers have taken many different 

approaches to summarizing and describing CUSUM methodologies.97-99 Despite these efforts, 

there remains much debate and contention regarding the optimal use of CUSUM.100 Appropriate 

use of control limits,101 inclusion of adjustments for case-mix and complexity,95 and prospective 

versus retrospective application of process monitoring,102 are all areas of active CUSUM 

methods research.  
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Competency thresholds, (often referred to as control or decision limits in quality control 

chart methodology) are important components of chart construction and represent pre-defined 

limits of performance used to monitor whether a process is “in” or “out” of control.103 When a 

threshold boundary is crossed in a learning curve analysis, sufficient progress has accumulated to 

signal that competency has been reached. In the present review, over half of studies (35/56; 

62.50%) included a competency threshold used to measure the learning curve, however, there 

was a lack of consistency in the way thresholds were determined amongst those that had reported 

one. There exists considerable debate in the literature for the best way to construct these limits, 

and methods are dependent on the type of control chart monitoring applied.97 Many studies 

(21/35; 60.00%) characterized the learning curve by when a surgeon reaches a plateau in 

performance43,48,52,55,56,60,61,67,70,73,74,79,80,83,86,90 or when a point of inflection is reached in the 

curve.40,44,59,69,75 While this approach indicates a point at which competence remains stable, it 

does not necessarily indicate that the learning curve has been overcome. In addition, the number 

of cases before plateau may differ from one surgeon to the next, and depending on the outcomes 

used to measure the learning curve, this may be a poor indicator of overall surgical quality. For 

example, multiple studies identified inflection points in the learning curve without corresponding 

improvements in clinical outcomes.40,56 Furthermore, the identification of a plateau can be 

subjective and is often identified using crude methods such as visual fit alone. Indeed, unless the 

sample size is sufficiently large, a plateau in the learning curve may never be reached. Other 

methods involve using reference values from the literature, the average value of the dataset, or 

the number of procedures to achieve a threshold set by experienced surgeons. Not only do these 

methods require familiarity with quality control monitoring techniques, which may not be 

immediately available to clinicians or administrators who would benefit from the information 
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from these types of studies, but implementing learning curve thresholds in any of these ways 

may also lead to oversimplification or overinterpretation of the learning curve, thus contributing 

to the difficulty of evaluating learning curve data. Woodall et al. have critiqued the use of 

CUSUMs that accumulate successive differences between the performance metric values and 

their average, since they are invariant to the addition of a constant to the time series values.102 

For example, a CUSUM curve measuring operative time with the following series data 175, 145, 

165, 135 when compared with another data series 195, 165, 185, 155 would be represented by 

identically shaped curves, despite differing levels of performance. Therefore, expert consultation 

is required in the interpretation of the learning curve data when interpreted in this way.  

Furthermore, many studies concluded that the learning curve was overcome, despite 

lacking a defined competency threshold,68,72,85,87 and in select instances, without defining what 

the learning curve represented.39,46,62,63,65,76,78,82,84 In contrast, many studies failed to explicitly 

state whether the learning curve had or had not been overcome,41,49,51,54,58,64,81 even when a 

competency threshold had been defined by study authors.50,60,92 Competency thresholds that are 

defined a-priori should be constructed with self-contained rationale provided by study 

investigators in order to allow for easier interpretation. For example, competency thresholds may 

reference an expert derived proficiency level, or based on decision limits that represent clinically 

significant deviations in performance cited in the pertinent literature. The strength of the 

provided justification should always be considered when interpreting the results of any learning 

curve evaluation. 

Outcome selection is another challenge in the learning curve literature. One of the main 

drives for outcome selection in learning curve methodology is to provide a proxy of health care 

quality. Traditional CUSUM methods rely on binary outcome data use, however, contemporary 
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CUSUM approaches that use continuous time-based metrics have populated the surgical learning 

curve literature, refreshing the discussion of optimal outcome selection in these analyses. In this 

review, operative time was the most commonly reported outcome when assessing the learning 

curve (39/56; 69.64%), as is seen in systematic reviews conducted in other surgical contexts.104 

Reliance on the use of process outcomes such as operative time or conversion rate, suggests an 

underuse of the structure and outcome domains as outlined by the Donabedian model when 

monitoring and evaluating the surgical learning curve. In the present review, 41 studies (73.21%) 

reported at least one variable from the process domain, while just 23 studies (41.07%) reported a 

variable from the outcome domain, and none reported a variable from the structure domain. The 

frequency with which time-based variables are used in the learning curve literature is an 

interesting observation that warrants further exploration. Operative data is routinely collected, 

and its availability makes it a convenient target for primary outcome selection in learning curve 

studies. However, expediency alone does not ensure clinically relevant measures of learning.105 

Factors such as patient volume, case-mix and complexity, non-technical skills and team expertise 

are additional elements that impact the patient experience and are not adequately captured in the 

unidimensional analysis of operative time.106 Though it may provide useful information 

regarding a single surgeon/operator, in isolation of other factors, it is not an appropriate surrogate 

of overall surgical quality. On the contrary, outcomes such as operative mortality may not be 

relevant for the evaluation of low-risk procedures. Therefore, in selecting an outcome variable 

for the learning curve analysis, a multi-variable approach incorporating patient-important 

outcomes tailored to the operation under study should be considered when planning learning 

curve investigations or surgical procedures. The Donabedian model (Appendix 3) provides a 
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useful conceptualization of outcomes under “process”, “structure”, and “outcome” domains, 

which can be used when planning learning curve analyses.  

This review reveals a broad range of variables used to measure the learning curve; a total 

of 15 unique outcomes were used. Variation exists not only in the variables selected to define the 

learning curve, but in the definition of those variables as well. Many studies failed to explicitly 

define the outcome under study. For example, many studies that used time-based metrics did not 

provide a definition for the parameters that constituted the duration of surgery, or did not 

distinguish between console, docking, or total operative time.42,43,45,46,54,56,59,61,62,64,67,69,72,78,80,83,87 

Use of explicit definitions becomes relevant when comparing learning curves between studies or 

when trying to contextualize the results to inform health related decision making. For example, 

Song et al. demonstrated differences in the learning curve for robot-assisted lobectomy 

depending on which of the aforementioned time-based parameters were implemented.79 The use 

of composite outcomes in this review also highlights the difficulty of incorporating complex 

binary patient outcome variables when studying the learning curve. Surgical failure was included 

as a binary outcome to measure the learning curve in multiple studies in this review, though its 

definition was also variable.44,89,90 In one study, surgical failure involved major perioperative 

morbidity and mortality, excessive blood loss, and extended duration of surgery greater than two 

standard deviations above departmental average,89 however, in another study, only conversions, 

complications, and hospital readmissions constituted surgical failure.90 Despite studying the 

same surgical technique and approach, these discrepancies again highlight challenges in the 

ability to compare learning curves. 

This study also highlights deficiencies in learning curve standards of reporting. A large 

proportion of studies included in this review failed to report on important study characteristics 
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for appropriate learning curve characterization, such as previous surgeon experience, 

identification and definition of primary outcome used for learning curve analysis, or justification 

for the use of a certain competency threshold. Taken together, greater detail and more transparent 

reporting of study characteristics in the thoracic surgical learning curve literature will allow for 

study results to be generalizable and reproducible.  

 In recent years, there has been an increase in the uptake of minimally invasive techniques 

in the field of thoracic surgery.5 The increasing popularity of minimally invasive techniques can 

be attributed to their improved safety, less pain, and shorter hospital stays compared to the 

conventional open approaches, particularly in the context of complex cases.3 As minimally 

invasive technologies continue to evolve, it is to be expected that in the coming years, more 

studies evaluating the learning curve of these procedures will be published. Indeed, this trend has 

already been observed in the present review (Appendix 6). With likely increases in time, effort, 

and resources that will be poured into conducting this type of research, it becomes imperative for 

the research community to standardize and optimize learning curve methodology in order to 

ensure these future learning curve studies are methodologically sound, and can be meaningfully 

used to guide decision-making by clinicians, administrators, and medical educators. The present 

review demonstrates a need for reporting guidelines to help ensure learning curves are well 

described and characterized, which will in turn improve the interpretability and application of 

results to other clinical contexts.  

Kassite et al. echo similar suggestions in their review of learning curve studies in robot-

assisted surgery, where they document significant range and heterogeneity across multiple 

surgical specialties.107 They put forth recommendations for standardizing learning curve 

methodology by including the following components:  
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1. A direct indicator of success relevant to the procedure 

(oncological outcome for cancer surgery, functional outcomes 

for reconstructive surgery…); 

2. AND a direct indicator of complications; 

3. AND operative time (console time or specific procedural time). 

 

The authors emphasize the use of CUSUM analysis, explicit definitions, and inclusion of 

controlling for as many confounders as possible. The author of the present review recommends 

the use of CUSUM quality control chart monitoring, with control limit implements based on 

acceptable and unacceptable performance values based on the available literature, wherever 

feasible. The construction of CUSUM curves with appropriate control limits have been outlined 

in a practical description by Rogers et al.97 The present author also recommends operative time 

as a routinely collected measure of procedure efficiency, in conjunction with additional learning 

curve metrics of interest for the procedure under study. For example, operative time, in addition 

to resection margin status, may be outcomes of interest when studying sublobar resections in 

minimally invasive thoracic surgery. Subsequently, generated learning curves can be overlayed 

to analyze observable trends or deviations in performance. These recommendations are put 

forward in attempt to streamline the process of evaluation and interpretation of learning curves.  

With the observed increase in surgical technologies and studies of their learning curves in 

recent years, it also becomes important to consider the unique ethical and legal ramifications of 

innovations in surgical practice. Operative outcomes and surgical quality of care provided cannot 

come at the expense of innovation. In the case of minimally invasive surgeries, procedure 

novelty can lead to several issues including increased potential for adverse outcomes, which may 
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erode patient trust in their surgeon, create difficulty in fully disclosing procedure risks, and lead 

to inaccurate evaluation of patient outcomes due to lack of familiarity with the procedure.108,109 

Furthermore, unlike in resident training, where the procedures are well-understood and the 

attending physician and surgical team are able to assist, when dealing with novel procedures the 

surgeon and the surgical team have limited experience with the technique as well as the possible 

consequences, which strains the learning process.110 

 In order to ethically manage the issues arising from the surgical learning curve, it 

becomes imperative that the surgeon and surgical team uphold their moral obligation to prepare 

both technically and professionally. Technical preparation involves ensuring that one has the 

technical competency required to perform the novel procedure. This can be achieved through 

simulation exercises on cadavers or computers, which have also been the subject of learning 

curve studies,111,112 shadowing experts and seeking their guidance, and sharing one’s experiences 

and lessons learned with colleagues in the field.110 The field of minimally invasive surgery has 

introduced new methods of training that minimizes the risks to patients. One of the most notable 

advantages is the ability to review surgical performances through intracorporal video feed and 

through dedicated simulation systems that are designed to mimic the operative experience. 

Compared to training in the operating room, video-based assessments do not require direct 

observation of performance, thus decreasing operating room pressures while allowing for 

blinded, unbiased assessment.113 Additionally, video-based assessments can be paired with 

objective and validated rating scales, such as the thoracic competency assessment tool – 

anatomic resection for lung cancer (TCAR-ARC),114 the global assessment tool for evaluation of 

intraoperative laparoscopic skills (GOALS)115 or the global evaluative assessment of robotic 

skills (GEARS) to provide formative evaluations during attainment of surgical proficiency of a 
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new procedure.116 With the decrease in opportunities for real-time feedback in the operating 

room, and a renewed interest in patient safety initiatives, video-based assessment provides a safe 

and effective avenue to provide summative feedback for trainees or surgeons along the learning 

curve of a new procedure. The advent of minimally invasive technologies has also paved the way 

for telementorship initiatives that enables remote teaching without the burden of excessive travel 

or taking time off work to mentor.117 In addition to becoming technically proficient during the 

adoption of a new procedure, surgeons should also prepare professionally by acting with 

integrity towards their patients and themselves.110 This involves practices such as being 

transparent with patients about one’s relative lack of experience, and evaluating and reflecting on 

one’s experiences and outcomes with the procedure in question.110  

 To the author’s knowledge, the present study is the first to characterize the methodologies 

and reporting standards of learning curve studies in minimally invasive thoracic surgery, being 

the first to characterize the methods used in the learning curves of both video- and robot- assisted 

procedures in the thoracic surgical specialty. As such, this review provides a comprehensive 

summary of the key strengths and shortcomings relevant to the study of learning curves in 

minimally invasive thoracic surgery, and serves as a starting point for future discussions on how 

best to optimize future research in this field to make it both methodologically sound, and relevant 

and useful to its end-users.  

 The present review has a few limitations. First, the full complement of learning curve 

studies in thoracic surgery is not captured in this review as conference abstracts were ineligible 

for inclusion. However, the decision to exclude conference abstracts from the present review was 

prompted by the severely limited information contained within an abstract, which would not 

allow for a fair appraisal of the methodology and reporting quality of the study. The results of 
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this review may also be subject to publication bias resulting from unpublished work. To mitigate 

this problem, additional hand searches of the published literature were performed to identify 

other relevant studies. Field experts were not contacted to help identify other potential learning 

curve studies/research or unpublished data. Furthermore, a quality assessment of the studies was 

not performed since the purpose of this review was to characterize learning curve methodology, 

rather than to assess the reliability of the study results. However, such an assessment may have 

provided additional insight into the methodological quality of the included studies. Finally, a 

meta-analysis of individual study results was not performed as the included studies assessed a 

diverse range of surgical procedures that cannot simply be pooled and reduced into a single 

group without further standardization in the learning curve methodologies presented. 
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CONCLUSION 

This systematic review explored the problem of heterogeneity in learning curve study 

methodology, which may preclude the pooling of results from individual studies into meta-

analyses used to inform clinical practice. Variation in study methods makes comparisons of the 

learning curves between and within different surgical procedures difficult, and fails to optimize 

the full potential of learning curve analyses. Furthermore, poor descriptions of learning curve 

analyses may limit the interpretability and applicability of results. For example, if the pre-

defined competency level is not defined in a study, or is set arbitrarily higher or lower than 

average, study results may not be useful to the average surgeon, who may find the results 

difficult to interpret and apply in his own clinical context. The increasing rate of minimally 

invasive surgeries suggests that the prevalence of learning curve studies will only see an increase 

in the future. Therefore, further development and investigation in the uptake of set reporting 

standards in learning curve methodology will allow for information generated from these studies 

to be used to inform medical curricula, physician education, and quality control monitoring 

processes.  
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Appendix 2. Medline Search Strategy 

1. ((lung OR pulmonary) adj2 (lobectomy* OR segmentectom* OR thymectom* OR 
resect* OR reduction OR excis*)).ti,ab,kw,kf. 

2. (pneumoresection* or pneumectom* or pneumonectom*).ti,ab,kw,kf. 
3. Thoracotomy/  

4. Thoracotom*.mp. 
5. (lung adj2 (reduction or resect* or excis*)).ti,ab,kw,kf. 

6. Lung Disease*.mp. 
7. Lung Neoplasms/ 

8. ((lung or pulmonary) adj2 (adenocarcinoma* or cancer* or neoplas* or tumo?r* or 
malignan* or carcinoma* or metas* or carcinogenesis or sarcoma*)).mp. 

9. or/1-8 
10. minimally invasive surgical procedures/ or thoracoscopy/ 

11. (minimally invasive surgical procedure* or thoracoscop* or video-assist* or 
uniport*).mp. 

12. robotics/ or robotic surgical procedures/ 
13. robot*.mp. 

14. or/10-13 
15. 9 and 14 

16. thoracic surgery, video-assisted/ 
17. (VATS or video assisted thora* or or video-assisted thora*).mp. 

18. (video adj3 thora*).mp. 
19. or/15-18 

20. learning curve/ 
21. Learning curve*.mp. 

22. Learning/ 
23. skill acquisition.mp. 

24. Clinical Competence/ 
25. (clinical adj2 (skill* or competenc*)).mp. 

26. "Outcome and Process Assessment, Health Care"/sn [Statistics & Numerical Data] 
27. or/20-26 

28. 19 and 27 
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Appendix 3. Donabedian Model: A Conceptual Framework of Healthcare Quality 
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Appendix 4. PRISMA Flow Diagram 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Records identified through database search 
n = 1614 

Medline = 386 
Embase = 825 

CINAHL = 102 
Web of Science = 301 

Records after duplicates removed 
n = 1077 

Records excluded 
n = 875 

Records screened (title/abstract) 
n=1077 

Full-text articles assessed for eligibility 
n = 202 

Studies included in systematic review 
n = 56 

Full-text articles excluded 
n = 146  

Conference abstract = 59 
Not in English = 7 

Duplicate = 3 
Non-thoracic lung resection = 48 

Did not study learning curve/wrong study design = 26 
Pediatric population = 3 
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 Appendix 5. Summary of Included Studies 

Author, Year Patients Sample 
Size Surgical Approach Type of Operation Learning Curve 

Outcome 
Number of Cases before 

Overcoming the Learning 
Curve 

Muyun P et al., 
20201 

Patients with benign and malignant 
lung lesions 

153 Robot-assisted 
thoracoscopic surgery 

Segmentectomy & 
Lobectomy 

Operative time 20 

Huang J et al., 
20152 

Patients diagnosed with non-small 
cell lung cancer via bronchoscopy 

13 Video-assisted 
thoracoscopic surgery 

Double sleeve 
lobectomy with 
mediastinal 
lymphadenectomy 

1. Operative time  
2. Blood loss 

 Not specified  

Feczko A et al., 
20193 

Patients diagnosed with non-small 
cell lung cancer 

4,483 Robot-assisted 
thoracoscopic surgery 

Lobectomy 1. 30-day mortality 
2. Perioperative 
transfusion 
3. Major Morbidity  
4. Operative time 

de novo surgeons: 93 cases for 
30-day mortality, 40 cases for 
major morbidity, 93 cases for 
perioperative transfusion, 40 
cases for OR duration 
open-to-robotic surgeons: 95 
cases for 30-day mortality, 67 
cases for major morbidity, 90 
cases for perioperative 
transfusion, 14 cases for OR 
duration 
video-assisted-to-robotic 
surgeons:  86 cases for 30-day 
mortality, 69 cases for major 
morbidity, 90 cases for 
perioperative transfusion, 21 
cases for OR duration 

Bedetti B et al., 
20174 

Patients with primary lung 
carcinoma, metastatic disease, or 
infectious lung disease 

73 Video-assisted 
thoracoscopic surgery 

Uniportal 
lobectomy 

1. Postoperative 
complications (air 
leak, pneumonia, 
aspiration and 
hypoxia) 
2. Conversion to 
thoracotomy (non 
uniportal VATS) 
3. Operative time 

30 

Amore D et al., 
20185 

Patients with suspected lung cancer 573 Video-assisted 
thoracoscopic surgery 

Lobectomy Conversion 50 
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Taniguchi Y et 
al., 20176 

Patients with primary non-small cell 
lung cancer 

44 Robot-assisted 
thoracoscopic surgery 

Lobectomy & 
segmentectomy 

Not specified  Not Specified 

Yao F et al., 
20177 

Patients with non-small cell lung 
cancer 

67 Robot-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time 
2. Chest tube duration 
3. Postoperative 
Hospital stay 

26 

Mazzella A et al., 
20168 

Patients with lung cancer or non-
infectious benign pathologies 

119 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Number of lymph 
nodes dissected 
2. Operative time 
3. Chest tube duration  
4. Air leaks duration 
5. Length of Hospital 
stay 

30 for reproducibility, 90 
before operative time 
decreased  

Zhao H et al., 
20109 

Patients with stage I or II lung cancer 90 Video-assisted 
thoracoscopic surgery 

Lobectomy Not specified 30-60 

Gonzalez D et al., 
201110 

Patients with lung cancer, or other 
non-cancerous lung diseases 

200 Video-assisted 
thoracoscopic surgery 

Lobectomy Not specified  Not specified  

Hernandez-
Arenas L et al., 
201811 

Patients with lung cancer with T1 or 
T2 tumor, N0 or N1 tumor, chest wall 
involvement of the parietal pleura or 
ribs, previous thoracic surgery, forced 
expiratory volume in 1 second of 
>40% and predicted postoperative 
diffusing capacity of the lungs for 
carbon monoxide >40% 

60 Video-assisted 
thoracoscopic surgery 

Uniportal 
lobectomy or 
segmentectomy 

Duration of surgery 26-30 

Yu WS et al., 
201512 

Patients with lung cancer 251 Video-assisted 
thoracoscopic surgery 

Lobectomy Cumulative Failure 15-40 

Decaluwe H et al., 
201513 

Patients with lung cancer, pulmonary 
metastasis, or non-neoplastic disease 

384 Video-assisted 
thoracoscopic surgery 

Segmentectomy, 
lobectomy, 
bilobectomy 

Not specified 50 

Nakanishi R et al., 
201414 

Patients with advanced stage non-
small cell lung cancer of preoperative 
stage II or greater 

76 Thoracoscopic Lobectomy or 
bilobectomy or 
pneumonectomy 

Not specified 25 

Vieira A et al., 
202015 

Patients with stage I or II non-small 
cell lung cancer 

274 Video-assisted 
thoracoscopic surgery 

Lobectomy Procedure time 141 

Cheng YJ, 201516 Patients with lung cancer 56 Two-instrument 
complete 
thoracoscopic surgery 

Lobectomy 1. Surgery time 
2. Lymph node 

28 
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Meyer M et al., 
201217 

Patients with clinical stage I or II 
lung cancer 

185 Robot-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time 
2. Number of 
conversions  
3. Operative 
morbidity  
4. Operative 
mortality  
5. Hospital stay  
6. Surgeon comfort 

15 for operative time, 20 cases 
for operative mortality, 19 
cases for surgeon comfort.  

Martin-Ucar AE 
et al., 201718 

Patients with primary lung cancer, 
secondary deposits or non-malignant 
disease 

300 Uniportal video-
assisted 
thoracoscopic surgery 

Lobectomy Not specified 50 

Lee EC et al., 
202019 

Patients with resectable primary non-
small cell lung cancer  

188 (robot-
assisted) 

49 (video-
assisted) 

Robot-assisted 
thoracoscopic surgery 
& Video-assisted 
thoracoscopic surgery 

Lobectomy with 
mediastinal and 
hilar lymph node 
dissection 

1. Operative time 
2. Lymph nodes 
sampled 

20 cases for initial learning 
curve, 78 cases before 
reaching competency on par 
with VATS 

Chang CC et al., 
202020 

Patients with early state lung cancer 364 
(segmentec

tomy) 
91 

(subsegme
ntectomy) 

Single-port video-
assisted 
thoracoscopic surgery 

Subsegmentectomy 
& segmentectomy 

Operative time 28 

Toker A et al., 
201621 

Patients T1a-b, or cT2N1 lesions, or 
benign lesions in the lung. 

100 Video-assisted 
thoracoscopic surgery 

Lobectomy, 
segmentectomy, & 
pneumonectomy 

Operative time, 
docking time, console 
time 

14 cases for docking, 13 for 
console, 14 for operating time 

Xiong R et al., 
202022 

Patients with histopathologically 
proven non-small cell lung cancer, 
with no neoadjuvant therapy, clinical 
T1-2N0-1M0 disease before the 
operation, and no known disease 
metastases 

160 Video-assisted 
thoracoscopic surgery 

Lobectomy Operative time and 
blood loss 

40 

Fahim C et al., 
201723 

Patients with non-small cell lung 
cancer 

167 Robot-assisted 
thoracoscopic surgery 

Lobectomy, 
segmentectomy, 
nonanotomic 
(wedge) resection, 
& bilobectomy 

Console time 20 

Hernandez JM et 
al., 201224 

Physiologically low-risk patients with 
early stage lung cancers or metastatic 
disease in favourable locations 

20 Robot-assisted 
thoracoscopic surgery 

Lobectomy Operative time  Not specified 
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Zhang Y et al., 
201925 

Patients with preoperatively biopsied 
peripheral lung tumor nodules, or 
nonbiopsied highly suspicious 
nodules, that are ≤2 cm with at least 
one of the following: pure 
adenocarcinoma in situ histology, 
nodule greater than or equal to 50% 
ground-glass appearance on CT, and 
radiologic surveillance confirmation 
of a long doubling time 

104 Robot-assisted 
thoracoscopic surgery 

Segmentectomy 1. Operative time 
2. Surgical failure 

40 RA-CUSUM, 46 CUSUM 

Duan L, Jiang G, 
& Yang Y, 201826 

Patients with benign lung diseases 
with ground glass opacities, T1N0M0 
peripheral lung cancer with tumor 
diameter ≤2 cm, peripheral lung 
cancer that would not tolerate 
lobectomy, ground glass opacities 
lesions that could not guarantee that 
the margin would be more than 2 cm 
by wedge resection, or multiple 
nodules and bilateral surgery 

156 Video-assisted 
thoracoscopic surgery 

Segmentectomy Not specified  Not specified 

Divisi D et al., 
201827 

Patients with malignant or benign 
lung tumors, or metastatic disease 

3700 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time 
2. Post-operative 
complications 

 Not specified 

Le Gac C et al., 
202028 

Patients with lung tumors ≤2 cm, 
with low-growth features, absence of 
metastases, and high operative risk 

102 Robot-assisted 
thoracoscopic surgery 

Segmentectomy Operative time 27 cases for CUSUM, 31 for 
exponential model 

Kamiyoshihara M 
et al., 201329 

Patients undergoing mediastinal 
lymph node dissection 

84 Video-assisted 
thoracoscopic surgery 

Lobectomy Operative time 15 

Lee PC et al., 
201630 

Patients with non-small cell lung 
cancer 

500 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Number of lymph 
nodes excised 
2. Number of lymph 
node stations excised 

50 

Huang CL et al., 
201431 

Patients with non-small cell lung 
cancer 

87 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time  
2. Blood loss 

30 

Nachira D et al., 
201832 

Patients with cN0 or cN1 lung 
cancers 

43 Video-assisted 
thoracoscopic surgery 

Lobectomy Operative time 25 

Wu W et al., 
201833 

Patients with small peripheral 
nodules (diameter ≤2 cm) that were 
(i) adenocarcinoma in situ and (ii) 
nodules with 50% ground glass 

128 Video-assisted 
thoracoscopic surgery 

Lobectomy Operative time 72 cases for operative time 
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opacity on CT; or, patients with poor 
pulmonary reserve or another major 
comorbidity that contraindicated 
lobectomy; or patients with deep 
indeterminate pulmonary nodules and 
solitary metastases that were unable 
to be removed by wedge resection 

Gallagher SP et 
al., 201834 

Patients with early stage non-small 
cell lung cancer 

157 Robot-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time 
2. Conversion to open 
3. Estimated blood 
loss  
4. Hospitalization 
duration 
5. Overall morbidity 
6. Pathologic Nodal 
Upstaging 

40 cases for conversion to 
open, 60 cases for operative 
time 

Liu X et al., 
201835 

Patients with both malignant and 
benign lesions on the lung 

120 Uniportal video-
assisted 
thoracoscopic surgery 

Lobectomy Operative time 44 

Chen L et al., 
202036 

Patients with one of the following: 
(1) tumour size no more than 2 cm 
with at least one of those that were 
pure adenocarcinoma in situ 
histology, more than 50% ground-
glass appearance on CT and 
radiologic surveillance confirmation 
of a long doubling time (≥400 days); 
(2) comprised cardiopulmonary 
reserve or other complications not 
suitable for lobectomy; (3) a benign 
lesion or a metastatic that was 
inappropriate for wedge resection due 
to the location in the deep 
parenchyma of the lung.  

123 Uniportal video-
assisted 
thoracoscopic surgery 

Segmentectomy 1. Operative time 
2. Surgical failure 

24 standard CUSUM, 27 RA-
CUSUM 

Song G et al., 
201937 

Patients with non-small cell lung 
cancer 

208 Robot-assisted 
thoracoscopic surgery 

Lobectomy (R0 
resection)  

1. Total operative 
time 
2. Docking time  
3. Console time 

1. 32 cases 
2. 20 cases 
3. 34 cases 

Hamada A et al., 
201838 

Patients with primary lung cancer, 
lung metastases or benign disease 

252 Video-assisted 
thoracoscopic surgery 

Segmentectomy Operative time 32 cases for leading surgeon, 
38 cases for non-leading 
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surgeons (excluding level 3 
segments) 

Hernandez-
Arenas LA, Guido 
W, & Jiang L, 
201639 

Patients with benign lung diseases 
and patients with lung cancer with T 
status of tumor <5 cm (T1, T2), N 
status for tumour N0, FEV1 and 
DLCO >40% postoperative predicted 

200 Uniportal video-
assisted 
thoracoscopic surgery 

Segmentectomy 
and Lobectomy 

1. Operative time 
2. Conversion rate 

85 cases for operative time 

Cheng K et al., 
201640 

Patients with lung tumors 70 Uniportal video-
assisted 
thoracoscopic surgery 

Segmentectomy Operative time 33 

Cheufou DH et 
al., 201941 

Patients with malignant lung tumors 
or bronchiectasis 

64 Robot-assisted 
thoracoscopic surgery 

Lobectomy Not specified 20 

Demmy TL et al., 
199342 

Patients undergoing therapeutic or 
diagnostic thoracoscopic surgery 

69 Video-assisted 
thoracoscopic surgery 

 1. mean chest tube 
duration 
2. mean length of 
stay 

 Not specified 

Gonfiotti A et al., 
201643 

Patients with non-small cell lung 
cancer 

146 Video-assisted 
thoracoscopic surgery 

Lobectomy Not specified 50 

Ferguson & 
Walker, 200644 

Patients with malignant stage I or II 
disease in the lung 

276 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Mean operation 
time 
2. Mean blood loss 
3. Mean 
postoperative stay 

Not specified 

Arnold BN et al., 
201945 

Patients with lung tumors 101 Robot-assisted 
thoracoscopic surgery 

Lobectomy Operating time 22 cases for learning phase, 41 
cases for continuing 
development, and 38 cases for 
mastery 

Puri V et al., 
201946 

Patients with stage I lung cancer 24,196 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative 
mortality 
2. Major morbidity, 
3. Blood transfusion. 

50 

Gezer S, Avci A, 
& Turktan M, 
201647 

Patients with malignant or benign 
lung tumors 

58 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time  
2. Hospital stay 

27 cases for operative time 
was not reached for length of 
stay 

Stamenovic D, 
Messerschmidt A, 
& Schneider T, 
201948 

Indication for surgery not described 104 Uniportal video-
assisted 
thoracoscopic surgery 

Lobectomy 1. Mean operative 
time 
2. Number of 
resected lymph nodes 

27 cases for operative time 
(efficiency), 39 cases for 
mastery  
26 cases for lymph node 
efficiency, 42 for mastery 
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Baldonado J et al., 
201949 

Patients with primary lung cancers, or 
metastatic lung disease 

272 Robot-assisted 
thoracoscopic surgery 

Lobectomy with 
hilar and 
mediastinal 
lymphadenectomy 

Not specified  Not specified 

Smith DE et al., 
201550 

Patients with lung tumors with a 
diameter minor of 5 cm, with 
preoperative knowledge about 
absence of involvement of great 
vessels, chest wall or diaphragm 

154 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative time 
(min) 
2. Bleeding (mL),  
3. VATS conversion 

75 

Li X, Wang J, & 
Ferguson MK, 
201451 

Patients with benign or malignant 
lung disease 

400 Video-assisted 
thoracoscopic surgery 

Lobectomy 1. Operative times 
2. Estimated blood 
loss 
3. length of stay 

Surgeon A: 157 cases for 
operative time, 126 cases for 
estimated blood loss 
Surgeon B: 108 cases for 
operative time, 139 cases for 
estimated blood loss 

Terra RM et al., 
201952 

Indication for surgery not described 203 Robot-assisted 
thoracoscopic surgery 

Lobectomy & 
segmentectomy 

Not specified 30 

Karnik N, et al., 
202053 

Patients with pulmonary nodules, 
pneumothorax, mediastinal mass, 
interstitial lung disease, chylothorax, 
or pericardial effusion 

79 Robot-assisted 
thoracoscopic surgery 

Lobectomy Percentage of cases 
that were lobectomies 
(complex thoracic 
procedures) 

 Not specified 

Aragon J & 
Mendez IP, 
201454 

Most patients had non-small cell lung 
cancer 

82 Video-assisted 
thoracoscopic surgery 

Uniportal major 
pulmonary 
resection 

Not specified Mean surgical time was 
reduced after the 40 first cases 

Abdellateef A et 
al., 202055 

Patients with primary stage Ia or Ib 
lung cancer with ground glass opacity 
of ≤2.5 cm or consolidation ≤1.5 cm, 
N0 status for the tumor, small benign 
lung tumors, or localized infectious 
lung disease 

300 Video-assisted 
thoracoscopic surgery 

Subxiphoid 
uniportal 
segmentectomy 

Operative time 148 

Veronesi G et al., 
201156 

Patients with suspected or proven 
clinical stage I-III lung cancer 

91 Robot-assisted 
thoracoscopic surgery 

Lobectomy Operative time 18-20 

 

 
Abbreviations: cm, centimeter; CT; computed tomography, DLCO, diffusing capacity of lung for carbon monoxide; FEV1, forced expiratory volume in one 
second; CUSUM, cumulative sum; OR, operative time; VATS, video-assisted thoracoscopic surgery; RA-CUSUM, risk-adjusted cumulative sum. 
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Appendix 6. Number of Learning Curve Studies from 1990-Present 
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Appendix 7. Learning Curve Outcomes Reported Per Study 
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CHAPTER II 

 LEARNING CURVE ANALYSIS OF NEAR-INFRARED FLUORESCENCE GUIDED 

ROBOT-ASSISTED SEGMENTECTOMY WITH INDOCYANINE GREEN DYE USING 

CUMULATIVE SUM METHODOLOGY 
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ABSTRACT 

Introduction: Robotic pulmonary segmentectomy is a technically demanding procedure requiring 

intraoperative identification of intersegmental plane anatomy. Near-infrared fluorescence (NIF) 

mapping using Indocyanine Green dye has been shown to assist with intersegmental plane 

identification, however, the learning curve of this procedure has yet to be characterized. The 

objective of this trial was to evaluate the learning curve of this novel procedure. 

Methods: Adults diagnosed with early-stage non-small cell lung cancer, and a tumour  ≤3 

centimetres in diameter confined to a single bronchopulmonary segment received NIF-guided  

robot-assisted segmentectomy using the completely portal 4 arm approach (CPRS-4). 

Cumulative sum analysis was used to evaluate the learning curve, with operative time as the 

outcome. The inflection point which signals attainment of competency was identified through 

visual inspection.  

Results: The trial recruited 177 participants between October 2016 and January 2021, of which 

106 received NIF-guided CPRS-4 and included a roughly equal distribution of simple (51/106, 

48.11%) and complex (55/106, 52.81%) cases.  The inflection point of the learning curve for 

NIF-guided CPRS-4 occurred following the 62nd case, after which point clinically important 

reductions in blood loss (Phase 1=127.73 mL vs. Phase 2=102.32 mL; p<0.001) and operative 

time (MD=16.9 minutes; 95%CI 5.95, 27.85; p=0.003), as well as an increase in lymph node 

yield was observed, despite similar distribution of complex and simple segments among the 

learning phases. This study reports the first learning curve characterization of NIF-guided CPRS-

4, which appears to be around 62 cases before the surgeon reaches a plateau in performance. 

Conflicts of Interest: None.  

Funding Source: Boris Family Centre for Robotic Surgery. 
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INTRODUCTION 

Surgery for Non-small Cell Lung Cancer 

Segmentectomy is a parenchyma-sparing technique that has been proposed for the 

treatment of early-stage non-small cell lung cancer (NSCLC). Anatomically, lungs are comprised 

of five lobes, which can be further divided into smaller anatomical components called broncho-

pulmonary segments. Each segment contains its own blood supply, therefore each segment is 

functionally and physiologically independent. For patients who have a tumour confined to one 

broncho-pulmonary segment, the removal of a particular segment—called a segmentectomy—is 

possible. Advances in computed tomography have led to an increase in the screening and early 

detection of NSCLC and has driven the demand for segmentectomy,1 which retains more healthy 

lung tissue when compared to the removal of an entire lobe of lung (lobectomy). Therefore, 

patients with small tumours (≤3cm in diameter), compromised lung function, or bilateral 

pulmonary nodules requiring multiple resections over time stand to benefit the most from 

segmental resections.2  

Despite these notable advantages, segmentectomy remains a controversial procedure to 

perform for a number of reasons. Firstly, segmentectomy is technically demanding. Variation in 

segmental anatomy3 and indiscriminate anatomical structures within the lung tissue4 can 

introduce variability when performing the procedure. Secondly, segmentectomy may require the 

identification of multiple intersegmental planes and the obtainment of safe resection margins in 

several lung surfaces. This factor can contribute to concerns of insufficient margin length and 

potential tumour recurrence at the resection margin, and presents a particular challenge in the 

context of malignant disease. Finally, higher rates of mortality and morbidity, including 

prolonged air leak, longer length of hospital stay, and prolonged chest tube duration (>5 days) 
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have been highlighted as additional patient safety concerns for performing this procedure over 

other types of anatomical lung resections.5 Many of these concerns have drawn their basis from a 

historical trial performed in 1995 by Ginsberg et al., who reported a three-fold increase in 

regional recurrence and inferior survival associated with segmentectomy when compared to 

lobectomy.6 While this seminal study set the standard of care for early stage NSCLC, it was 

conducted using crude segmentectomy techniques, it pooled segmentectomy and 

subsegmentectomy (wedge) resections together, and minimally invasive surgical techniques had 

not yet been popularized. As a result, many patients who would otherwise be candidates for 

segmentectomy, undergo a full lobectomy, even when it may not be clinically necessary.7   

 

Advances in Segmentectomy Techniques 

Contemporary evidence suggests that segmentectomy has equivalent survival to 

lobectomy,8 and may even lead to better patient outcomes including: less blood loss, shorter 

operation time, less chest tube drainage, and shorter length of stay.9 While there are at least two 

prospective clinical trials currently assessing the clinical efficacy of segmentectomy,10,11 

approaches to lesion localization and resection via segmentectomy have progressed considerably 

since the landmark trial by Ginsberg and colleagues.  

Anatomical segmentectomy has shown to be feasible using both multi-port and uniport12 

video-assisted thoracoscopic surgery,13 in addition to more recent advancements on the robotic 

surgical platform.14 Innovative methods of preoperative lesion marking and intraoperative 

margin assessment techniques have aided in the adoption of this challenging procedure.15 

Hanna and colleagues16 recently described one of these advancements using near-infrared 

fluorescence (NIF) and indocyanine green (ICG) dye. In NIF-guided robot-assisted 
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segmentectomy, an intravenous injection of the dye travels through the lungs and illuminates 

with a fluorescent green hue when exposed to near-infrared light. In this way, the surgeon is able 

to isolate the entire lung except the segment planned for removal by ligating and dividing the 

inflow and outflow vessels of the target segment prior to injection. This novel technique, 

originally described by Pardolesi et al., has been used to localize segments through visual 

delineation of the segmental anatomy.17 In a trial of 80 patients, Hanna et al. found significantly 

lengthened resection margins in addition to feasible identification of segmental plane anatomy 

with NIF-guided segmentectomy.16 While this finding indicates added value of NIF-guided 

resection, the learning curve has not yet been evaluated for this novel procedure. 

 

Learning Curves for Major Thoracic Robotic Procedures 

While the previously discussed issues of heterogeneity between individual learning curve 

evaluations described in Chapter 1 preclude between-study comparisons and/or pooling of data 

to estimate an average learning curve of a given surgical procedure, a number of investigations 

have described the experience required to safely perform major thoracic procedures. The 

learning curve for robotic thymectomy appears to be 10-20 cases18-20, while the learning curve 

for anatomic robotic lung resections are much more variable. The results from several studies 

indicate significantly shorter operative times after reaching 20 cases,21-25 while other studies 

suggest slightly longer learning curves of at least 40-60 cases before proficiency is reached26,27. 

Interestingly, Fahim et al. noted a higher rate of conversion to thoracotomy with increasing case 

numbers in Canada’s first case series of robot-assisted thoracoscopic surgery21. This has been 

hypothesized to be due to the fact that surgeons are willing to perform difficult resections on 

more central tumours as they become increasingly comfortable with the surgical technique. 
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Therefore, the current literature suggests that the learning curve for anatomical lung resection 

ranges between 20 and 40 cases. With regards to the learning curve of robot-assisted 

segmentectomy, Zhang et al. have demonstrated that the learning curve is overcome after 41 

cases27.  

However, the learning curve associated with NIF-guided robot-assisted segmentectomy is 

not currently known. Thus, there is a need to characterise the learning curve of this procedure in 

order to evaluate its feasibility for physician uptake. We sought to perform a CUSUM analysis of 

the learning curve for robot-assisted segmentectomy with and without NIF-guidance, which will 

be the first quantitative assessment of this novel procedure. To the author’s knowledge, this 

study will be the first North American description of the learning curve for anatomical lung 

resection using the robotic approach. The results will report the number of cases required to 

perform robot-assisted segmentectomy using NIF mapping as a surgical adjunct, identify 

potential barriers to physician uptake, and help promote safe adoption of minimally invasive 

robotic procedures.  

 

Study Aims 

The purpose of this project was to perform a CUSUM analysis in order to determine the 

number of cases needed to overcome the learning curve of robot-assisted segmentectomy, with 

and without NIF-guidance with ICG dye, by a single surgeon experienced in minimally invasive 

techniques.  

The learning curve will be described in different phases indicated by distinct and 

sustained changes in surgeon performance. Typically, these phases are characterized by (1) a 

starting point, where individual level factors such as initial experience and personal expertise 
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provide a baseline level of competency, (2) a slope period, which is determined by the speed by 

which one learns a new task, and (3) a plateau, where the incremental change in the outcome 

being measured becomes marginal. Technical proficiency will be considered the inflection point 

in the learning curve where surgeon performance reaches a plateau (i.e. minor changes are 

observed in the process variable). The secondary aims of this study are to compare clinical 

outcomes of (1) patients belonging to different phases of the learning curve, as identified through 

CUSUM analysis and (2) to assess differences in patients with simple versus complex segmental 

resections.  

 We hypothesized that significant differences in operative time and conversions to 

lobectomy and/or thoracotomy, will be observed across the initial and final learning curve 

phases. In addition, we hypothesized that using the NIF ICG surgical adjunct will require fewer 

cases before overcoming the learning curve.  
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METHODS 

Ethics 

This study was granted a no objection letter from Health Canada authorizing the off-label 

use of ICG (#184323) and was approved by the Hamilton Integrated Research Ethics Board. The 

study was carried out in compliance with the Canadian Tri-Council Policy Statement on Ethical 

Conduct for Research Involving Human Subjects.28 Participants provided full informed consent 

for the surgery and associated study procedures. The trial was registered on 

www.clinicaltrials.gov (#NCT02570815).  

 

Study Design 

This was a single-centre trial that assessed a prospective cohort of patients undergoing 

robotic segmentectomy with and without the use of a NIF-guided surgical adjunct between 

October 2016 and January 2021. Methods and results from the first 80 patients from this cohort 

have already been reported.16 Participants providing their consent had their demographic, 

clinical, and follow-up data analyzed. Patients were assessed chronologically for the learning 

curve analysis. Perioperative outcomes of each patient among the learning curve phases are 

summarized and compared between phases using descriptive and inferential statistical analyses.   

 

Patient Population 

As has been previously described,16 we enrolled individuals who are older than 18 years of 

age, with clinical stage I NSCLC and a tumour ≤3 cm in diameter that is confined to one 

broncho-pulmonary segment confirmed by CT imaging, rendering the candidate suitable for 

robotic segmentectomy. Individuals receiving lobar or non-robotic segmental resections were not 
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eligible for this study. It is unknown if ICG dye has teratogenic effects or is excreted in human 

breast milk,29 therefore, pregnant and/or breastfeeding women, or women of childbearing 

potential and who are not taking adequate birth control were excluded. Individuals with 

sensitivity or intolerance to contrast dye were also excluded.  

All participants were operated on by a single surgeon (WCH) using the da Vinci System 

(Intuitive Surgical, Sunnyvale, CA) at a tertiary medical centre in Hamilton, Ontario, Canada. 

Prior to adopting the robotic segmentectomy approach described in this study, the surgeon had 

performed over 500 video-assisted thoracoscopic lobectomies and more than 250 robotic cases, 

but no prior robotic segmentectomies. Patients consenting to the study were prospectively 

enrolled prior to operation and were followed for 30 days postoperatively. Imaging data were 

reviewed jointly by a radiologist and the operating surgeon to determine where the primary lung 

nodule and corresponding pulmonary vein, and artery were located.  

 

Peri-Operative Outcome Measures 

 Operative time, defined as the time between the start of surgery and skin closure, was the 

metric used to assess the proficiency of NIF-guided robotic segmentectomy. This parameter was 

selected a priori as it is the most commonly reported measure used to assess learning curves in 

the thoracic surgical literature (Chapter 1).  

Intra- and postoperative metrics were also measured and collected. Intraoperative 

information, such as rates of conversion to lobectomy and thoracotomy, blood loss, and 

additional post-operative surgical complications as per the Ottawa Thoracic Morbidity and 

Mortality System for Classifying Thoracic Surgical Complications (TM&M) were collected.30 

TM&M is a well-established and standardized classification system for reporting adverse events 
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after surgery. It provides definitions, categories, and severity of complications. In addition, blood 

loss, chest tube drainage, and operation time was also collected prospectively from anesthesia 

records. Length of hospital stay was be obtained from hospital records. Participants were 

followed up over a 30-day period, where study visits will coincide with routine 2- and 4-week 

clinic follow-ups in accordance with institutional protocols. Pathology details, including 

pathological stage, number of lymph nodes sampled, tumour size, and tumour location were also 

collected from the pathology note of each participant. The TNM staging system was used for 

cancer staging.31  

 

Segment Complexity 

To control for differences arising from more challenging resections based on tumour 

location, each operation was classified into two categories according to the degree of segmental 

complexity. The definition used to categorize simple and complex segments is consistent with 

previous literature and based on the number of intersegmental dissection surfaces encountered 

during resection.32 Each segmental resection was classified as either simple (a single or minimal 

intersegmental dissection surfaces), or complex (multiple dissection surfaces in contact at obtuse 

angles) (Appendix 1).  

 

Operative Technique 

As has been previously described,16  all operations were conducted by a single surgeon 

using the da Vinci robotic platform (Intuitive Surgical, Sunnyvale, California) using the 

Completely Portal 4-Arm (CPRS-4)33 approach and Firefly Fluorescence Imaging camera 

(Intuitive Surgical) as a light source for NIF. Conversion to lobectomy was necessitated when 
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N1 disease was suspected or confirmed on intraoperative frozen section, when negative margins 

could not be obtained, or when the tumour was missing from the resected specimen. Conversions 

to thoracotomy were indicated when the procedure failed to progress robotically or when 

required due to intraoperative complications.  

At the time of surgery, the surgeon ligated the pulmonary vein and artery of the broncho-

pulmonary segment containing the lung cancer nodule, isolating the in- and out-flow blood 

vasculature. The lung parenchyma of the isolated segment then displayed a purple discoloration 

consistent with ischemia. ICG was prepared as a sterile solution (2.5 mg/10mL) for injection, as 

per the protocol used in previous case reports.17 After vascular ligation, a 6 to 8mL bolus of ICG 

solution was injected into the peripheral vein catheter, followed by a 10-mL saline solution 

bolus, as described by Pardolesi et al.17 The Firefly camera, capable of detecting infrared 

fluorescence, was then be used for lung imaging using the NIF adjunct. The entire lung, except 

the broncho-pulmonary segment which was previously isolated from blood supply, then 

fluoresces within 30-40 seconds, exhibiting a green hue.17 The border between the ‘dark’ 

segment and the adjacent fluorescent lung parenchyma served as the visual cue to the true 

anatomical inter-segmental plane (Figure 1). The surgeon then proceeded with the pulmonary 

resection along this inter-segmental plane. The resected ‘dark’ lung segment was immediately 

evaluated by a pathologist on-site. If the lung nodule of interest was located within the segment, 

and the resection margins were free of tumour, then the operation was concluded. If the lung 

nodule was not located within the segment, or if the margins of resection were positive for 

malignant tumour, then the patient would receive a pulmonary lobectomy to ensure successful 

resection of the nodule. 
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Figure 1. Demonstrating extension of margins by ICG mapping: Identification of bronchopulmonary segment 

(dark) and the surrounding healthy tissue (green). 

 

 

 

 

 

 

 

 

Statistical Analysis 

Cumulative Observed-Expected Failure Chart 

The CUSUM method is a recursive quality monitoring tool used to measure the sum of 

deviations between the individual data points and the mean of all data points34. The CUSUM 

approach is advantageous to other audit methods since it allows for the sensitive detection of 

slow sustained degradation of a process otherwise thought to be under control35.Operative time, 

as defined earlier, will be used as the parameter for CUSUM (CUSUMOT), specified here as 

!"#"$!" =	∑ ()# − +),$
#%&   where .' indicates an individual operative time and / indicates the 

mean operative time. Patients were assessed chronologically based on their operation date, 

beginning with the earliest case and ending with the latest case. A total of four CUSUM graphs 

were generated in this analysis. Two CUSUM curves were generated for patients who undergo 

either NIF-guided or standard robot-assisted segmentectomy. For those who receive the ICG 

injection, an additional two CUSUM charts were graphed based on segment complexity (simple 

and complex). If performance was favourable, the CUSUM line trended downward. Distinct 
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deviations in performance, as measured in excursions from the process variable mean, signalled 

a departure from a previous phase and entry into a new phase of the learning curve. The 

inflection point on the graph was used to identify when the learning curve had been overcome.  

 

Segment Complexity and Interphase Comparisons 

Phases that are generated from the learning curve analysis were used to inform group 

comparisons of primary and secondary outcomes. Normally distributed continuous variables, as 

determined through visual inspection of a histogram, were described using means and standard 

deviations, and group values will were compared using independent sample t-tests. Categorical 

variables were described using counts and frequencies and compared using the Fischer’s exact 

test. Ordinal variables and non-normally distributed variables were described as median and 

interquartile ranges and compared using Mann-Whitney U-test. Statistical significance will be set 

to p<0.05. All statistical analysis were performed on SPSS version 22.0 (SPSS Inc. Chicago, IL, 

USA) software. 
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RESULTS 

Patient Characteristics 

One-hundred and seventy-seven patients were enrolled in the trial between October 2016 

and January 2021 (Figure 2). Most patients received the planned operation with ICG injection 

(106/177, 59.9%). The remaining patients who did not receive ICG injection (71/177, 92.21%) 

underwent segmentectomy (27/71; 38.03), lobectomy (21/7, 21.58%), wedge (13/71, 18.31%), or 

thoracotomy (9/71; 12.70%), or no procedure (1/71; 1.41%). The surgery for one patient was 

aborted until further pathology details were made available due to significant existing morbidity.  

 

Figure 2. Consolidated Standards of Reporting Trials diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Enrolled Patients, n=177 

No ICG Injected, n=71 (40%) 

Lobectomy, n=21 
Segmentectomy w/o ICG, n=27 

Wedge resection, n=13 
Thoracotomy, n=9 
No Procedure, n=1 

 

ICG Injected, n=106 (60%) 

Segmentectomy, n=99 
Converted to lobectomy, n=7 
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Reasons for not receiving the dye included visible tumour and/or segmental plane 

anatomy (15/71, 21.13%); anatomic considerations including dense adhesions (23/71, 32.39%); 

benign disease (2/71, 2.82%); failure to ligate segmental vasculature (12/71, 16.90%); bronchial 

or vascular injury (4/71; 5.6%); uncertain tumour etiology (1/71, 1.41%); inability to tolerate 

single-lung ventilation (1/71, 1.41%); inability to secure adequate oncologic margin (8/71, 

11.27%); metastatic disease (3/71, 4.22%); significant existing morbidity (1/71; 1.41%) and 

segmentectomy not required (1/71, 1.41%).  

Participant characteristics are summarized in Appendix 2. Participants in the ICG and 

non-ICG groups did not exhibit any statistical differences in age, sex, BMI, smoking status, 

comorbidities, cancer history, forced expiratory volume in one second (FEV1), predicted 

diffusing capacity of lung for carbon monoxide (%DLCO), and disease characteristics. There 

was a single mortality in the ICG group after experiencing a vascular event.  

 When compared to patients receiving ICG segmentectomy, the operative time of those 

receiving standard segmentectomy was significantly shorter (mean difference (MD) = -13.07 

minutes; 95% confidence interval (95% CI) -22.69, -3.45); p=0.008). Patients receiving standard 

segmentectomy were also more likely to have a completion lobectomy (ICG=6.60% vs. non-

ICG=32.40%; p<0.001), be converted to thoracotomy (ICG=1.89% vs. non-ICG=22.54%; 

p<0.001), have additional lung procedures performed (ICG=24.53% vs. non-ICG=40.85%; 

p=0.031), and have less lymph nodes sampled (ICG= 7 IQR, 5-9 vs. non-ICG=6 IQR 4-8; 

p=0.008). Segment complexity distribution between ICG and non-ICG patients were equal 

(p=1.00). Full surgical details are presented in Appendix 3.  
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Learning Curve Analysis 

Visual inspection of the CUSUM plot of operative time revealed that the learning curve 

of segmentectomy with ICG dye was overcome after 62 procedures (Figure 3a). In comparison, 

the learning curve of segmentectomy without ICG dye was overcome after 26 procedures (Figure 

3b). The inflection point of the CUSUM curve demarcates a change in the overall slope of the 

curve from a general positive slope (Phase 1) to a negative slope (Phase 2). While a positive 

slope indicates that the surgeon takes longer than average to complete the operation, a negative 

slope indicates that the surgeon’s operative times are decreasing below the average value. As 

such, the inflection point represents a shift from increasing to decreasing operative time, and 

signifies that the surgeon has attained proficiency in the operative technique as he is now able to 

perform it more efficiently. 

 

Figure 3a. CUSUMOT Plot for ICG Segmentectomy 
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Figure 3b. CUSUMOT Plot for Non-ICG Segmentectomy 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

As shown in the Cumulative Sum (CUSUM) curves, cut-off points were observed on (a) the 62nd case 
in ICG patients, and following (b) the 29th case for non-ICG patients due to an increase and a decrease 
in the operative time. Phase 1 (red) indicates when the curve was ascending (positive cumulative 
operative time), suggesting that the operative time was still longer than the average operative time. 
Phase 2 (green) indicates when the curve had a tendency to decline (negative cumulative operative 
time), indicating that the operative time was shorter than the average operative time.  

 

In comparing the learning curve of segmentectomy with ICG dye between simple and 

complex cases, a similar number of cases were needed to overcome the learning curve. Thirty-

three cases were needed for complex segmentectomies with ICG (Figure 4a), while a slightly 

lower threshold of 29 cases was required for simple segmentectomies with ICG (Figure 4b). 

 

 

Consecutive Cases 
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Figure 4a. CUSUMOT Plots for Complex Cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b. CUSUMOT Plots for Simple Cases 
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Perioperative Outcomes Compared Among the Learning Phases  

Comparison of operative time between learning phases of ICG segmentectomy cases 

revealed significantly longer operative time in Phase 1 (MD=16.9 minutes; 95%CI 5.95, 27.85; 

p=0.003) when compared to Phase 2, despite similar distribution of case complexity between the 

phases (Appendix 4). Furthermore, participants in Phase 2 experienced significantly less blood 

loss (Phase 1=127.73 mL vs. Phase 2=102.32 mL; p<0.001) and more extensive lymph node 

dissection (Phase 1= 6 IQR,  4-6 vs. Phase 2=8 IQR, 6-8; p=0.023). The participants in Phase 1 

and 2 differed significantly in the distribution of resected lung lobes; a significantly higher 

proportion of segments belonging to the right upper lobe were resected following the 62nd case, 

once the learning curve was overcome (Phase 1= 4.84%, vs Phase 2=31.82%). Phases were 

otherwise similar in other surgical outcomes such as rate of intraoperative complications and 

adverse events, conversion rate, and rates of additional lung surgery. 

 

Segment Complexity  

Comparisons of surgical complexities are summarized in Appendix 5. All ICG 

segmentectomy cases were divided into two categories based on segment complexity, defined a-

priori. This included a roughly equal distribution of simple (51/106, 48.11%) and complex 

(55/106, 52.81%) cases. Simple cases required significantly shorter operative time when 

compared to complex cases (MD=-20.91 minutes; 95%CI -31.42, -10.40, p<0.001). Complex 

cases were more likely to receive more extensive lymph node dissection as measured by number 

of lymph nodes sampled (simple=6.0 IQR, 4-8 vs. complex=8.0 IQR 6,10.5). Intraoperative 

complications, blood loss, adverse events, conversions, and length of stay were similar in either 

complexity group.  
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DISCUSSION 

We report the first learning curve evaluation for NIF-guided robot-assisted 

segmentectomy to be around 62 cases. While many investigations have sought to describe the 

learning curve for performing video-assisted segmentectomy, the use of robotic surgery in 

performing sublobar resections is a more recent innovation36 that requires careful study and 

evaluation. Through our CUSUM analysis, we demonstrate that cases who were operated on 

after the 62nd case experienced less blood loss, more extensive lymph node dissection, and 

shorter operative time than those earlier in the learning curve. Segment complexity was not 

shown to impact the rate of conversion to open thoracotomy or lobectomy, however, complex 

cases were associated with longer operative time. In non-ICG cases, the learning curve was 

overcome after 26 cases, and was associated with more conversions and less extensive lymph 

node dissection compared to cases operated on using the NIF surgical adjunct.  

In this study, the number of cases required to overcome the learning curve for NIF-

guided segmentectomy was 62 cases, which is higher than previous reports despite similar rates 

of conversion.27 Zhang et al.’s learning curve analysis of robotic segmentectomy features similar 

CUSUM methodology and reports that proficiency is reached following the 41st case. We believe 

one of the reasons for the observed differences in the learning curve is due to the higher 

proportion of complex cases in the present study (51.89% vs. 30.77%), which was significantly 

associated with longer operative times (p<0.001). Furthermore, Zhang et al.’s study does not 

involve the use of the NIF surgical adjunct which requires additional technical skill to master. 

More recently, Le Gac et al. reported a learning curve of 30 cases, though their investigation did 

not account for segment complexity.14 It is well recognized that learning curves are highly 
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operator dependent,37 however, our results are in line with other investigations that report a 

similar learning curve of around 63 cases for robotic anatomic lung resection.27,38,39  

One of the challenges in using the robotic platform is a lack of tactile feedback when 

compared to using open approaches, which removes the ability of the surgeon to physically 

manipulate pulmonary anatomy.40 This limitation, combined with variations in plane anatomy in 

the lung, makes the correct identification of segmental plane anatomy a particular challenge in 

minimally invasive lung surgery. Intraoperative lesion and segmental plane localization through 

the use of surgical adjuncts have been developed to assist the surgeon in overcoming this 

technical limitation. Three-dimensional reconstruction on the robotic platform, inflation-

deflation using a jet ventilator, and angiography and bronchography are intraoperative methods 

that have been previously described to detect the intersegmental plane.1,14,41 To the authors 

knowledge, this learning curve study is the first to report on the use of ICG dye as a surgical 

adjunct for delineating plane anatomy in robot-assisted segmentectomy.  

The mean operative time and blood loss for NIF-guided robot-assisted segmentectomy 

was 132.34 minutes and 111.19 milliliters (mL), respectively, which is in line with other reports 

in the literature. As the surgeon progressed past the 62nd case of the learning curve, blood loss 

(127.72 mL vs. 102.32 mL, p=0.007) and operative time (139.35 minutes vs. 122.45 minutes, 

p=0.003) decreased significantly, and the number of lymph nodes dissected increased 

significantly (6.00 vs. 8.00, p=0.023). While there exists a number of systematic reviews and 

meta-analyses documenting the safety of sublobar resections compared to standard lobectomy 

using robot-assisted thoracoscopic surgery, the reporting is concerned primarily with oncologic 

efficacy and survival data.42-45  However, our experience is in line with a review published by 

Cao et al.46, who report blood loss and operative time ranges well within our values. In addition, 
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extensive lymph node dissection has been shown to be an important prognostic factor in sublobar 

resections.47 Therefore, we believe that the learning curve obtained in our study suggests 

important changes in performance that are associated with marked improvements in clinical 

outcomes.  

Due to the variable anatomic structures involved in pulmonary segmentectomy, we 

decided to control for segment complexity in our CUSUM analysis of ICG cases. Many factors, 

such as case-mix and complexity, may influence the ease of which a surgery is performed, and 

thus the resultant learning curves generated from empirical analysis. Therefore, it is important to 

control for pre-surgical risk when evaluating the learning curve, wherever possible. Risk-

adjusted CUSUM methodology has been developed for this very purpose,48 however, these 

analyses depend on the validity of the data-sets of which pre-surgical risks are ascertained as 

well as the odds ratio and control limits that the learning curve analysis is designed to detect.49 

We chose to evaluate the impact of segment complexity, as more complex segments have been 

shown to increase operative times when performing minimally invasive segmentectomy.5 

Notably, complex cases required significantly longer operative times than simple cases (142.4 

minutes vs. 121.49 minutes, p<0.001). Increased number of lymph nodes sampled in complex 

cases may be a contributory reason for this finding. Interestingly, there were no differences in 

rates of conversion to thoracotomy or lobectomy in complex segments, as has been reported in 

other evaluations in both video-50 and robot-assisted approaches.7  

Furthermore, the number of right upper lobe (RUL) resections performed in Phase 2 of 

the learning curve is important to note. Segments comprising the right upper lobe are technically 

challenging, and the increase of these procedures in Phase 2 suggests the surgeon becoming 

more comfortable with advancing to more complex cases. Indeed, this is a finding that was 
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absent in a previous report of the first 80 patients in the present trial.16 In addition, the number of 

RUL performed with ICG were greater than with non-ICG segmentectomy, indicating that NIF 

mapping may play an important role in added surgeon confidence in the context of increasing 

case complexity. This hypothesis is supported by significant increases in conversions to 

lobectomy and thoracotomy when performing segmentectomies without NIF mapping (p<0.001).  

This study has multiple shortcomings. First, we acknowledge the lack of inclusion of 

control limits in our CUSUM analysis of the learning curve. In anticipation of this analysis, the 

study author conducted a systematic review of surgical learning curves in minimally invasive 

thoracic surgery, including studies that have evaluated robotic segmentectomy. Unfortunately, 

due to procedure novelty in addition to perceived heterogeneity of methods used to characterize 

surgical learning curves in this discipline, we were unable to derive expected values from the 

literature in which we could base a suitable competency threshold. However, this study provides 

the requisite data for future novice surgeons who would like to adopt this procedure. Second, we 

cannot exclude the possibility of selection bias. Although the distribution of lobes were similar 

between both trial arms, patients were not randomized as is accomplished by conventional 

interventional trials. Therefore, more complex cases were likely selected later in the learning 

curve as the surgeon gained sufficient experience with less complex cases. Last, the CUSUM 

method adopted relies on subjective assessment of the graphs generated, and there is a possibility 

that they may have been overinterpreted, thus the results may not be generalizable to other 

surgeons.  However, we believe that this study has employed a number of methods to mitigate 

the potential for this bias. Our learning curve evaluation was structured using explicit definitions 

and included previous surgeon experience to allow for the contextualization of results to 

surgeons from different backgrounds of expertise. Our CUSUM analysis also controls for 
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segment complexity, which is an important consideration due to the variations observed in 

segmental anatomy.  
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CONCLUSION 

 Our study sought to describe the learning curve for a novel procedure involving NIF 

mapping during robot-assisted segmentectomy. CUSUM analysis indicates that the learning 

curve for NIF-guided robot-assisted segmentectomy can be overcome after 62 cases, after which 

point clinically important reductions in blood loss and operative time, as well as an increase in 

lymph node yield, is observed. As lung cancer screening becomes more widely adopted, and 

early-stage NSCLC comprises the majority of surgeon caseloads, the propensity to perform lung-

preserving operations, such as segmentectomy will predominate. Surgical adjuncts such as NIF 

are enabled by the robotic surgical platform and may facilitate complex procedures such as 

segmentectomy. Thus, learning curve studies evaluating competency in the context of innovative 

surgical technologies will be an important part of monitoring patient safety and physician 

proficiency in the future.   
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Appendix 1. Definition of Simple and Complex Segments 
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Appendix 2. Characteristics of Included Participant 

 
 
Abbreviations: ICG, indocyanine green; SD, standard deviation; BMI, body mass index; FEV, forced expiratory 
volume; DLCO, diffusing capacity of lung for carbon monoxide; COPD, chronic obstructive pulmonary disease 

 

Characteristics of Included Participants 
  

   

N = 177, unless otherwise stated Total ICG Non-ICG p-value 

Demographics 
N = 177 N = 106 N = 71  

Age in years, mean (SD) 67.02 (8.58) 67.81 (8.58) 65.83 (8.50) 0.133 
Male, n (%) 76 (42.94) 43 (40.57) 33 (46.48) 0.444 
BMI in Kg/m2, mean (SD) 28.71 (6.71) 28.36 (6.29) 29.23 (7.31) 0.396 
Smoking Status, n (%)     

Ex-smoker 95 (53.67) 60 (56.60) 35 (49.30) 
0.476 Current Smoker  51 (28.81) 27 (25.47) 24 (33.80) 

Never Smoked 31 (17.51) 19 (17.9) 12 (16.90) 
     

% Predicted FEV, mean (SD); N=171 87.06 (20.24) 87.89 (20.66) 85.78 (19.65) 0.506 
% Predicted DLCO, mean (SD); N=165 76.96 (19.12) 76.99 (20.03) 76.92 (17.75) 0.982 
Comorbidity, n (%) 167 (94.35) 100 (94.34) 67 (94.36) 1.00 
Emphysema, n (%) 3 (1.69) 3 (2.83) 0 (0.00) 0.275 
COPD, n (%) 53 (29.94) 32 (30.19) 21 (29.58) 1.00 
Diabetes, n (%) 40 (22.60) 22 (20.75) 18 (25.35) 0.583 

Disease Information   
   

Previous Cancer, n (%) 81 (45.76) 47 (44.34) 34 (47.89) 0.648 
Disease Type, n (%); N=174 N = 174 N = 104 N = 70 0.389 

 Malignant 134 (77.01) 82 (78.85) 52 (74.29)  
Squamous 18 (10.34) 8 (7.69) 10 (14.29) 

0.129 

Carcinoid 9 (5.17) 4 (3.85) 5 (7.14) 
Adenocarcinoma 98 (56.32) 65 (62.50) 33 (47.14) 

Small cell 1 (0.57) 0 (0.00) 1 (1.43) 
Large cell 1 (0.57) 0 (0.00) 1 (1.43) 

Other  7 (4.02) 5 (4.81) 2 (2.86) 
 Benign 16 (9.20)  7 (6.73) 9 (12.86)  

Necrotizing Granuloma  4 (2.30) 1 (0.96) 3 (4.29) 
0.295 

Other 12 (6.90) 6 (5.77) 6 (8.57) 
 Metastasis 24 (13.79) 15 (14.42) 9 (12.86)  

Colon 12 (6.90) 10 (9.62) 2 (2.86) 
0.069 Renal 2 (1.15) 1 (0.96) 1 (1.43) 

Other 10 (5.75) 4 (3.85) 6 (8.57) 
Pathological Stage, n (%); N=130 N = 130 N = 79 N = 51  

Stage I 75 (57.69) 51 (64.56) 24 (47.06) 
0.064 Stage II 48 (36.92) 24 (30.38) 24 (47.06) 

Stage III-IV 7 (5.38) 4 (5.06) 3 (5.88) 
Tumour Size, mean (SD); N=148 1.70 (1.05) 1.98 (0.77) 2.01 (0.93) 0.799 
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Appendix 3. Surgical details of included Participants 

 

Abbreviations: ICG, indocyanine green; SD, standard deviation; IQR, interquartile range; RUL, right upper lobe; 
RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; VATS, video-assisted 
thoracoscopic surgery 
*Blood loss values were only collected for participants with ≥25 mL of blood loss during surgery. The mean blood 
loss volume is calculated based only on those individuals. 

 
 
 
 
 
 
 
 
 
 
 
 

Operative factors compared between ICG and non-ICG Patients 
 

 

N = 177, unless otherwise stated Total ICG Non-ICG p-value 

Surgical Details 
N = 177 N = 106 N = 71  

Operative Time, mean (SD) 127.10 (32.34) 132.34 (29.10) 119.27 (35.44) 0.008 
Number of lymph nodes sampled, median (IQR) 7.00 (4.00-7.00) 7.00 (5.00-9.00) 6.00 (4.00-8.00) 0.008 
Complexity, n (%)     

Simple 85 (48.02) 51 (48.11) 34 (47.89) 
1.00 

Complex 92 (51.98) 55 (51.89) 37 (52.11) 
Primary Lobe undergoing resection, n (%)     

RUL 28 (15.82) 17 (23.94) 11 (10.38) 

0.193 
RML 3 (1.69) 1 (1.41) 2 (1.89) 
RLL 49 (27.68) 35 (49.30) 14 (13.21) 
LUL 61 (34.46) 31 (43.66) 30 (28.30) 
LLL 35 (19.77) 22 (30.99) 13 (12.26) 

Complications, n (%) 19 (10.73) 11 (15.49) 8 (7.55) 0.158 
Conversion, n (%) 19 (10.73) 3 (2.83) 16 (22.54)  

Conversion to Open 18 (10.17) 2 (1.89) 16 (22.54) <0.001 
Conversion to VATS 1 (0.56) 1(1.41) 0 (0.00) 

Completion Lobectomy 30 (16.95) 7 (6.60) 23 (32.40) <0.001 
Additional lung surgery performed  55 (31.07) 26 (24.53) 29 (40.85) 0.031 

Peri-Operative Information   
   

Adverse Events, n (%) 93 (52.54) 54 (50.94) 39 (54.93) 0.596 
Length of Stay, median (IQR) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 0.494 
Blood Loss >25mL, n (%); N=174 107 (61.49) 61 (59.22) 44 (61.97) 0.751 
Total Blood Loss*, mean (SD); N = 107 127.67 (113.56) 111.19 (92.69) 151.27 (135.79) 0.093 
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Appendix 4. Interphase Analysis between Learning Phases 

 
 
Abbreviations: SD, standard deviation; IQR, interquartile range; RUL, right upper lobe; RML, right middle lobe; 
RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; VATS, video-assisted thoracoscopic surgery 
*Blood loss values were only collected for participants with ≥25 mL of blood loss during surgery. The mean blood 
loss volume is calculated based only on those individuals. 
 
 
 
 
 
 
 
 

Operative factors of Patients receiving ICG Segmentectomy between Phases 
 

 

N = 106, unless otherwise stated Total Phase 1 Phase 2 p-value 

Surgical Details 
N = 106 N = 62 N = 44  

Operative Time, mean (SD) 132.34 (29.10) 139.35 (26.95) 122.45 (29.43) 0.003 
Number of lymph nodes sampled, median (IQR); 
N=104 

7.00 (5.00-9.00) 6.00 (4.00-6.00) 8.00 (6.00-8.00) 0.023 

Complexity, n (%)      
Simple 51 (48.11) 33 (53.23) 18 (40.91) 

0.240 
Complex 55 (51.89) 29 (46.77) 26 (59.09) 

Primary Lobe undergoing resection, n (%)     
RUL 17 (16.04) 3 (4.84) 14 (31.82) 

0.002 
RML 1 (0.94) 0 (0.00) 1 (2.27) 
RLL 35 (33.02) 23 (37.10) 12 (27.27) 
LUL 31 (29.25) 21 (33.87)  10 (22.73) 
LLL 22 (20.75) 15 (24.19) 7 (15.91) 

Complications, n (%) 8 (7.55) 3 (4.84) 5 (11.36) 0.272 
Conversion, n (%) 3 (2.83) 3 (4.84) 0 (0.00)  

Conversion to Open 2 (1.89) 2 (0.32) 0 (0.00) 
0.265 

Conversion to VATS 1 (0.94) 1 (0.16) 0 (0.00) 
Completion Lobectomy 7 (6.60) 5 (8.06) 2 (4.55) 0.697 
Additional lung surgery performed  26 (24.53) 12 (19.35) 14 (31.82) 0.172 

Peri-Operative Information  
    

Adverse Events, n (%) 54 (50.94) 29 (46.77) 25 (56.82) 0.718 
Length of Stay, median (IQR) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 0.982 
Blood Loss >25mL, n (%); N=103 61 (59.22) 20 (33.90) 41 (93.18) <0.001 
Total Blood Loss*, mean (SD); N = 61 111.19 (92.69) 127.73 (87.94) 102.32 (95.01) 0.007 
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Appendix 5. Impact of Segment Complexity on Surgical and Peri-operative factors 

 
 
Abbreviations: SD, standard deviation; IQR, interquartile range; RUL, right upper lobe; RML, right middle lobe; 
RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; VATS, video-assisted thoracoscopic surgery 
*Blood loss values were only collected for participants with ≥25 mL of blood loss during surgery. The mean blood 
loss volume is calculated based only on those individuals. 

 
 
 
 
 
 
 
  
 

Operative Factors of Patients Receiving ICG Segmentectomy based on Complexity  
 

 

N = 106, unless otherwise stated Total Simple Complex p-value 

Surgical Details 
N = 106 N = 51 N = 55  

Operative time, mean (SD) 132.34 (29.10) 121.49 (28.13) 142.4 (26.44) <0.001 
Number of lymph nodes sampled, median (IQR); 
N= 104 

7.00 (3.30) 6.00 (4.00-8.00) 8.00 (6.00-10.50) 0.004 

Complications, n (%) 8 (7.55) 5 (9.80) 3 (5.45) 0.477 
Primary Lobe undergoing resection, n (%)     

RUL 17 (16.04) 0 (0.00) 17 (30.91) 

<0.001 
RML 1 (0.94) 1 (1.96) 0 (0.00) 
RLL 35 (33.02) 20 (39.22) 15 (27.27) 
LUL 31 (29.25) 21 (41.18) 10 (18.18) 
LLL 22 (20.75) 9 (17.65) 13 (23.64) 

Conversion, n (%) 3 (2.83) 3 (5.88) 0 (0.00)  
Conversion to Open 2 (1.89) 2 (3.92) 0 (0.00) 

0.108 
Conversion to VATS 1 (0.94) 1 (1.96) 0 (0.00) 

Completion Lobectomy 7 (6.60) 4 (7.84) 3 (5.45) 0.709 
Additional lung surgery performed  26 (24.53) 11 (21.57) 15 (27.27) 0.509 
     
Peri-Operative Information      
Adverse Events, n (%) 54 (50.94) 25 (49.02) 29 (2.73) 1.00 
Length of Stay, median (IQR) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 3.00 (2.00-5.00) 0.886 
Blood Loss >25mL, (n) %; N = 103 61 (59.22) 27 (56.25) 34 (61.82) 0.688 
Total Blood Loss*, mean (SD); N = 61 68.01 (90.48) 52.71 (68.42) 81.36 (104.88) 0.109 
     


