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Abstract

In the information age, intelligent indoor positioning and navigation services are

required in many application scenarios. However, most current visual positioning

systems cannot function alone and have to rely on additional information from other

modules. Nowadays, public places are usually equipped with monitoring cameras,

which can be exploited as anchors for positioning, thus enabling the vision module to

work independently.

In this thesis, a high-precision indoor positioning and navigation system is pro-

posed, which integrates monitoring cameras and smartphone cameras. Firstly, based

on feature matching and geometric relationships, the system obtains the transforma-

tion scale from relative lengths in the cameras’ perspective to actual distances in the

floor plan. Secondly, by scale transformation, projection, rotation and translation,

the user’s initial position in the real environment can be determined. Then, as the

user moves forward, the system continues to track and provide correct navigation

prompts.

The designed system is implemented and tested in different application scenarios.

It is proved that our system achieves a positioning accuracy of 0.46m and a successful

navigation rate of 90.6%, which outperforms the state-of-the-art schemes by 13% and

3% respectively. Moreover, the system latency is only 0.2s, which meets the real-time

iii



demands.

In summary, assisted by widely deployed monitoring cameras, our system can

provide users with accurate and reliable indoor positioning and navigation services.

iv



To my dear parents

v



Acknowledgements

Here I would like to express my sincere appreciation to all the people who have helped

me in finishing this thesis.

First of all, I would like to show the deepest gratitude to my supervisor, Dr. Jun

Chen. In the initial stage of the research, he provided guidance and suggestions self-

lessly. And when I was later working on the project, he also gave me continuous

support and wise advice. His rigorous attitude towards academic work and full en-

thusiasm for scientific research greatly influenced me, which was the most precious

wealth I gained during my study. I feel heartily honoured and proud to be his student.

In addition, I would like to genuinely thank Dr. Dongmei Zhao and Dr. R.

Tharmarasa for kindly being my committee members and taking the time to read my

thesis. Their useful comments and valuable suggestions are very helpful to me.

Moreover, I am very grateful to my friends, Yanning Li and Zijun Wu, for their

silent companionship and valuable inspiration during my research. Whenever I en-

counter obstacles, they will promptly lend me a helping hand. Moreover, they can

often introduce fresh ideas and novel perspectives to my thesis. Without their sup-

port, this work would not have been possible.

Last but not least, I would like to appreciate my parents for their unconditional

encouragement and care. Thus, I can have the confidence to overcome all challenges

vi



and difficulties. Their love for me has illuminated my life and motivated me to become

a better person.

vii



Contents

Abstract iii

Acknowledgements vi

Abbreviations xiii

1 Introduction and Problem Statement 1

1.1 Indoor Positioning and Navigation . . . . . . . . . . . . . . . . . . . 1

1.2 Visual SLAM Framework and Mathematical Descriptions . . . . . . . 4

1.3 Scale Ambiguity of Monocular SLAM . . . . . . . . . . . . . . . . . . 10

1.4 Monitoring Cameras in Indoor Scenarios . . . . . . . . . . . . . . . . 12

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Related Work 17

2.1 ORB-SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Indoor Positioning and Navigation Techniques . . . . . . . . . . . . . 19

3 System Framework 23

viii



4 Actual Initial Position Acquisition 27

4.1 Feature Extraction and Matching . . . . . . . . . . . . . . . . . . . . 27

4.2 Actual Scale Transformation . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Coordinate Conversion from 3D to 2D . . . . . . . . . . . . . . . . . 37

5 Continuous Tracking and Navigation 46

5.1 Real-Time VO Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Path Planning and Navigation Strategy . . . . . . . . . . . . . . . . . 49

6 System Implementation and Experimental Evaluation 51

6.1 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 79

ix



List of Figures

1.1 Classic Visual SLAM Framework . . . . . . . . . . . . . . . . . . . . 5

3.1 System Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Framework of the Actual Scale Transformation Algorithm . . . . . . 29

4.2 POI Recognition and Relative Pose Calculation . . . . . . . . . . . . 33

4.3 Coordinate Conversion from 3D to 2D in Application Scenarios . . . 38

4.4 Framework of the Coordinate Conversion Algorithm . . . . . . . . . . 40

6.1 Feature Matching Comparison in Building 1 . . . . . . . . . . . . . . 56

6.2 Feature Matching Comparison in Building 2 . . . . . . . . . . . . . . 57

6.3 Feature Matching Comparison in Building 3 . . . . . . . . . . . . . . 58

6.4 Influence of Different Angles on Positioning Accuracy . . . . . . . . . 61

6.5 Influence of Different Distances on Positioning Accuracy . . . . . . . 62

6.6 Influence of Different Video Quality on Positioning Accuracy . . . . . 63

6.7 Influence of Different Video Quality on Successful Navigation Rate . . 64

6.8 Validation of Relocation Function . . . . . . . . . . . . . . . . . . . . 66

6.9 Comparison of Positioning Accuracy in Different Scenarios . . . . . . 68

6.10 Comparison of Successful Navigation Rate in Different Scenarios . . . 69

6.11 Comparison of Positioning Accuracy in Different Time Periods . . . . 71

6.12 Overall System Latency Comparison . . . . . . . . . . . . . . . . . . 73

x



6.13 Overall Positioning Accuracy Comparison of Different Systems . . . . 74

6.14 Overall Successful Navigation Rate Comparison of Different Systems . 76

xi



List of Tables

6.1 Comparison of Correct Matching Rates of Four Feature Points . . . . 59

xii



Abbreviations

AR Augmented Reality

BA Bundle Adjustment

BoW Bag-of-Words

CDF Cumulative Distribution Function

CPU Central Processing Unit

EKF Extended Kalman Filter

EPnP Efficient-Perspective-n-Point

GP-LVM Gaussian Process Latent Variable Model

GPS Global Positioning System

GPU Graphics Processing Unit

g2o General Graphic Optimization

IMU Inertial Measurement Unit

IR Infrared Ray

xiii



LOS Line-of-Sight

MR Mixed Reality

NLOS Non-Line-of-Sight

OpenCV Open-Source Computer Vision Library

PnP Perspective-n-Point

POI Point of Interest

P2P Peer-to-Peer

RAM Random Access Memory

RANSAC Random Sample Consensus

RFID Radio Frequency Identification

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

VO Visual Odometry

VR Virtual Reality

xiv



Chapter 1

Introduction and Problem

Statement

1.1 Indoor Positioning and Navigation

Over the past decade, with the modernization of cities, the number of large buildings

increases rapidly. Moreover, with the continuous expansion of the building area, the

internal environments of hospitals, art museums, office buildings, subway stations,

shopping centres and other buildings which are closely related to people’s lives are

becoming increasingly complex. For people who are new to a large building, it be-

comes more and more difficult to quickly and accurately find the destination in the

building.

Most existing positioning and navigation techniques are usually designed for out-

door environments, which are mainly based on the GPS module in smartphones or

other electronic devices to obtain the current location information. But in indoor

environments, due to the block of walls and windows, the satellite signal strength of
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the GPS tends to be greatly weakened and thus becomes ineffective. Moreover, in-

door positioning always requires higher precision, since the deviation of a few meters

may cause severe location errors and consequently result in misleading navigation

information for users.

Therefore, the research of new high-accuracy indoor positioning and navigation

technology (Zafari et al., 2019) has broad prospects of application.

For example, for indoor scenarios with many floors and complex environments,

people can use the indoor positioning service to obtain their own location information

in real-time, search the places of interest around according to the positioning, and then

get personal navigation instructions to reach the destination quickly and accurately.

In large shopping malls, businesses can analyze the hot spots of flow through the real-

time tracking of customers, and then reasonably arrange the display cases and other

facilities to boost sales. Moreover, for users themselves, in some crowded large-scale

public places, the locations of the elderly and children can be quickly determined

through the positioning function of their mobile devices, so as to prevent them from

getting lost.

In addition, intelligent positioning and navigation are also the key technologies for

robots to realize automated moving. In recent years, artificial intelligence has become

one of the most popular fields of research. Google, Apple and other tech giants have

launched their own intelligent robots. Therefore, with the rapid development of smart

robots, automated indoor positioning and navigation techniques will also find wide

applications.

As discussed above, it is of great significance to develop a low-cost, low-power and

high-precision indoor positioning and navigation system.

2
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At present, there are many indoor positioning methods, mainly based on wireless

signals, inertial sensors or visual images. The first kind of localization technology

based on wireless signals usually utilizes Wi-Fi (Kotaru et al., 2015), RFID (radio

frequency identification) (Xiao et al., 2017), Bluetooth (Kriz et al., 2016) and IR

(infrared ray) (Chen et al., 2010). Although this method can achieve relatively good

accuracy, the layout costs of corresponding dedicated infrastructures are high and the

signals are easily affected by interference factors such as walls and glass. Therefore,

this method is not amenable for wide adoption. (For example, the current Wi-Fi-

based positioning systems usually use the location fingerprinting technique, which

needs to collect a large amount of Wi-Fi fingerprint data to build indoor fingerprint

maps, which is labour-intensive and time-consuming.) The second type of indoor

positioning technique is based on inertial measurement units (IMU) (Höflinger et al.,

2013). At present, most mobile devices are equipped with built-in sensors, which

makes the research based on inertial sensors more practical in indoor localization.

However, the cumulative error of inertial positioning will gradually increase with

distance. Up to now, the accuracy of mobile inertial sensors is relatively low, and the

obtained data is unstable, so the performance of positioning is also not ideal.

Among the different kinds of solutions that have been proposed, vision-based in-

door positioning (Taira et al., 2018) has become one of the most popular schemes

in practice because of its more comprehensible information forms (images or videos),

user-friendly interactive interfaces and the potential for further integration with AR

or MR technology. After the visual SLAM (Simultaneous Localization and Map-

ping) (Fuentes-Pacheco et al., 2015) was proposed, a lot of research based on this
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technique came into being. In brief, visual SLAM is to detect and perceive the en-

vironment with the help of cameras, estimate the current location and build a map

for the surroundings. In the next section, more information about visual SLAM

technology will be further detailed.

1.2 Visual SLAM Framework and Mathematical

Descriptions

1.2.1 Visual SLAM Framework

As mentioned in the previous section, SLAM (Bailey and Durrant-Whyte, 2006) is the

abbreviation of simultaneous localization and mapping. It means that in an unknown

environment, a moving robot equipped with specific sensors constantly estimates its

real-time position, while simultaneously establishing a model of the surroundings,

namely the map (Davison et al., 2007). If the sensor here is a camera, then SLAM

is vision-based and is called visual SLAM. In other words, visual SLAM is to infer

the camera motion and the surrounding environment according to a series of contin-

uous images, which form a video. Briefly speaking, visual SLAM is to solve the two

problems of positioning and mapping with the aid of the camera.

The classic visual SLAM framework is shown in Figure 1.1, which illustrates the

constituent modules of visual SLAM.

The whole visual SLAM process includes the following steps:

1. Sensor Data Reading. In visual SLAM, this step focuses on obtaining and
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Mapping

Nonlinear Optimization ( Back End )

Visual Odometry 

Tracking

( Front End )

Sensor Data Reading

Loop 

Closure 

Detection

Figure 1.1: Classic Visual SLAM Framework

preprocessing the images from cameras. For the robots, this part may also in-

clude retrieving data from inertial measurement units (IMUs) and other sensors.

2. Visual Odometry Tracking (Front End). The task of Visual Odometry

(VO) (Aqel et al., 2016) is to estimate the camera motion and the structure of

the local map between adjacent images. VO is also called the front end.

3. Loop Closure Detection. It is used to determine whether the robot with

a camera is back to a previous position. If a loop closure is detected, the

information will be provided to the back end for processing.

4. Nonlinear Optimization (Back End). The back end receives the poses of

the camera measured by VO at different times and the information of loop

closure detection, optimizes them, and then constructs a globally consistent

trajectory. Because it is connected after VO, it is also called the back end.
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5. Mapping. Based on the estimated trajectory, a map corresponding to the

demand will be established.

In the following, the specific functions of each module are described in detail

separately.

• Visual Odometry Tracking (Front End)

Visual Odometry (VO) focuses on the camera motion between adjacent images.

But for the computer, this is not an intuitive problem. In visual SLAM, the

computer can only get the pixels in images, which are the projections of some

spatial points on the imaging plane of the camera. Therefore, to quantitatively

estimate the camera motion, the geometric relationship between the camera

and the spatial points is needed, which will be introduced later. In brief, visual

odometry can track the camera motion and restore the spatial structure of the

scene through the adjacent image frames.

However, if only VO is used to track the camera, the cumulative drift will

inevitably occur. This is due to the fact that VO only estimates the motion

between two adjacent images. Since each estimation has a certain error, and the

previous error will be transferred to the next one, then after a period of time,

the trajectory constructed by visual odometry will no longer be accurate. This

is called the drift, which leads to the failure of building a consistent map. To

solve the drift problem, two steps are needed: nonlinear optimization and loop

closure detection. Loop closure detection is responsible for detecting the fact

that the current position of the camera has already been reached before, while

nonlinear optimization corrects the shape of the whole trajectory according to

this information.
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• Nonlinear Optimization (Back End)

Generally speaking, nonlinear optimization mainly refers to dealing with the

noise in the SLAM process. It estimates the state of the whole system from the

sensor data with noise and calculates the uncertainty of this state estimation,

which is called maximum a posteriori estimation. The state here includes not

only the trajectory of the camera but also the map.

In contrast, the VO module is usually referred to as the front end. In the SLAM

framework, the front end transmits the sensor data with its initial value to the

back end, while the back end is responsible for the overall optimization process.

In visual SLAM, the front end is more related to the field of computer vision,

such as image feature extraction and matching, while the back end focuses on

filtering and nonlinear optimization, estimating the mean and variance of the

state.

• Loop Closure Detection

Loop Closure Detection mainly solves the problem of position estimation drift-

ing with time. To achieve this, the robot with a camera needs to have the

ability to recognize the scene that has been reached before. For example, loop

closure detection can be accomplished by judging the similarity between the

images captured by a camera. Then, based on the detected loop closure in-

formation, like “A and B are the same point”, the back end can adjust and

optimize accordingly. Therefore, the accumulated errors can be eliminated, and

the globally consistent trajectory and map can be established.

• Mapping
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A map is a description of the environment, but its form is not fixed. It needs to

be determined according to the specific application scenarios of SLAM to meet

the different needs of users. In general, it can be divided into two types, sparse

maps and dense maps. Sparse maps, which have been abstracted to a certain

extent, are composed of some representative landmarks. In contrast, dense

maps focus on modelling everything in sight. For positioning, sparse maps are

sufficient, while for navigation, dense maps are needed.

1.2.2 Mathematical Descriptions of SLAM

As above, the composition of SLAM and the main functions of each module have been

shown intuitively. Next, the whole process of SLAM will be described mathematically.

Suppose a robot with sensors is moving in an unknown environment. First of all,

because the camera usually collects visual data at certain moments, these discrete

moments are noted as t = 1, . . . , K. In the meantime, the corresponding positions

of the robot at these moments are x1, . . . ,xK respectively, which form the motion

trajectory of the robot. The map is assumed to be composed of N landmarks, which

are y1, . . . ,yN . At each moment, the sensor will observe a part of the landmarks and

get their measurements.

In this setting, the problem that a robot with sensors moves in an unknown

environment is described from the following two aspects:

1. Motion: From time k − 1 to k, the robot position changes from xk−1 to xk.

2. Observation: At time k, the robot detects a landmark yj at position xk.

Firstly, for motion, the robot usually carries a sensor to measure its own motion,
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such as an inertial sensor. (The sensor data may not be the position directly, but

some indirect information instead, such as the acceleration and angular velocity.) A

general and abstract mathematical model can be used to represent the motion as

follows:

xk = f (xk−1,uk,wk) (1.2.1)

where uk is the reading of the motion sensor, and wk is the noise added to this process.

Note that a general function f is used to describe this process without specifying how

f acts. This allows the whole function to refer to any motion sensor and remain as a

general equation. It is called the motion equation.

Secondly, corresponding to the motion equation, there is also an observation equa-

tion. The observation equation describes when the robot sees a landmark yj at the

position xk, the observation data zk,j is generated. Similarly, an abstract function h

is used to describe this relationship:

zk,j = h
(
yj,xk,vk,j

)
(1.2.2)

where vk,j is the noise in this observation. Since there are many different kinds of

sensors that can be used, the observation data z and the observation equation h also

have many different forms.

In the context of visual SLAM, the sensor is a camera, and the observation equa-

tion represents the process of obtaining pixels in the images after shooting the land-

marks. This process is based on the imaging principle of pinhole cameras.

For different sensors, these two equations have different parametric forms. In

9
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general, the SLAM process can be summarized into the following two basic equations:

 xk = f (xk−1,uk,wk)

zk,j = h
(
yj,xk,vk,j

) . (1.2.3)

These two equations describe the most basic SLAM problem, that is, how to solve

the positioning problem (estimating x) and the mapping problem (estimating y) when

we know the reading u of the motion sensor and the reading z of the observation

sensor. In this way, the SLAM problem is modelled as a state estimation problem,

that is, how to estimate the internal and hidden state variables from the measured

data with noise.

In the following sections, x will be specified as the pose, which is composed of the

orientation and position. In other words, x is determined by rotation and translation.

1.3 Scale Ambiguity of Monocular SLAM

As mentioned before, visual SLAM is mainly based on the camera, which can record

the surrounding environment at a certain rate to form a continuous video stream.

According to different working methods, cameras can be divided into three main

categories: monocular cameras, stereo cameras and RGB-D cameras. Intuitively, the

monocular camera has only one lens, while the stereo camera has two and the RGB-D

camera usually carries multiple lenses.

The principle of stereo cameras is similar to that of human eyes, that is, the

distance of an object is determined by comparing the difference between the two

images taken by the left and right cameras. However, because of calculating this

disparity, stereo cameras require a large number of computations to estimate the

10
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depth of each pixel in the images. Moreover, the accuracy of the depth calculated by

stereo cameras is limited by the resolution.

RGB-D cameras use the infrared structured light or time-of-flight (TOF) prin-

ciple. RGB-D cameras can resolve the distance between an object and the camera

by actively emitting light to the object and then obtaining information from the re-

flected light. However, most RGB-D cameras still have many drawbacks, such as

narrow measurement range, high noise, small field of view and so on.

The monocular camera uses only one lens. Due to its simple structure and low

cost, this type of camera has been widely used in practice. Accordingly, the method

of SLAM using the monocular camera is called monocular SLAM. In this thesis, we

will focus on monocular SLAM.

The data of a monocular camera is the image, which is essentially a projection of a

scene on the imaging plane of the camera. The image represents the three-dimensional

world in a two-dimensional form. Obviously, this process loses one dimension of the

scene, which is called the depth (or the distance). So only through a single image,

we cannot calculate the physical distance between the camera and an object in the

real environment. Then, the actual size of this object cannot be determined either.

It may be a very large but distant object or a smaller but closer object. Due to the

principle of perspective, they may look the same in the image.

Since the image captured by a monocular camera is only a two-dimensional projec-

tion of the three-dimensional space, in order to restore the three-dimensional structure

of the scene through the image, we must change the viewpoint of the camera. There-

fore, we have to move the camera to estimate its motion and the distance and size of

the objects in the scene, which is called the structure. For the motion of the camera,

11
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if it moves to the right, the corresponding object in the captured image will move

to the left, which provides information to infer the motion. For the structure of the

scene, since the nearby objects move faster and the distant objects move more slowly,

the motion of these objects in the image forms a disparity when the camera moves.

From this disparity, the distance relationship of objects can be quantified.

However, the obtained distance is only a relative value, and the actual size of

these objects in the real environment still cannot be determined. For example, if the

motion of the camera and the size of the scene are magnified by the same factor in the

mean time, the monocular camera will get the same image. This indicates that the

trajectory and map estimated by monocular SLAM differ from the ground truth by

one factor, which is called the Scale. Accordingly, the problem that monocular SLAM

cannot determine the actual scale from a single image is called the Scale Ambiguity.

The above two problems, namely, the distance can only be calculated by moving

the camera and the actual scale in the real environment cannot be determined, cause

trouble for the application of monocular SLAM. The core reason is that the depth of

the scene is lost in the imaging process of the camera. Thus, in the following chapters,

how to solve the scale ambiguity of monocular SLAM will be the focus of discussion.

1.4 Monitoring Cameras in Indoor Scenarios

In order to apply monocular SLAM to indoor positioning and navigation systems,

the location, distance and direction information in the real environment is necessary.

But at present, most hand-held cameras, such as the rear cameras of smartphones,

are typically monocular cameras. Although some new smartphones are equipped

with two or more cameras, the parameters and properties of these cameras are not

12
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consistent. As described in the previous section, the SLAM based on the monocular

camera can only obtain the relative pixel scale rather than the actual scale in the

real environment. Therefore, if monocular SLAM is used for indoor positioning and

navigation, the transformation relationship from the pixel scale to the actual scale is

crucial.

Moreover, even if the physical distances are obtained, in monocular SLAM, the

positions of objects are described in the perspective of the smartphone camera, rather

than in the floor plan of the real scenario. However, for users, both the current location

and the destination correspond to the semantic information on the map. Therefore,

it is of great importance for the positioning and navigation system to connect the

smartphone camera coordinate system in monocular SLAM with the plane coordinate

system on the floor plan.

Currently, public places, such as art museums, educational buildings, subway sta-

tions, supermarkets, etc. are usually equipped with monitoring cameras (Zafari et al.,

2019) that cover most of the areas. On this basis, an idea is put forward to effec-

tively solve the above problems by leveraging monitoring cameras to assist monocular

SLAM for accurate indoor positioning and navigation. There are two distinct advan-

tages of this idea. First of all, the information provided by monitoring cameras is in

real-time, which helps to continuously update the position of the smartphone cam-

era during the movement. Secondly, the locations of monitoring cameras are usually

fixed for a long time, which can be provided to the system as prior information. Then

monitoring cameras can be exploited as anchors to associate the smartphone camera’s

perspective with the real world, so as to determine the user’s physical location in the

floor plan.

13
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1.5 Contributions

In this thesis, an indoor positioning and navigation system assisted by monitoring

cameras is proposed to tackle the scale ambiguity of monocular SLAM. Firstly, during

the movement of the user, the system can leverage the monitoring camera as an anchor

to locate the actual position of the smartphone camera by associating the mobile

coordinate system with the plane coordinate system. As to the follow-up navigation

service, the system will detect whether there are other monitoring cameras in the

path that can be used as new anchor points for relocating, so as to continuously track

the motion of the smartphone camera. Then, the system can guide the user to the

subsequent landmarks on the planned navigation route according to the real-time

position information feedback, until the final destination is reached.

In summary, the main innovations and contributions of this work are as follows:

• By exploiting monitoring cameras as anchor points, the proposed system does

not require extensive preliminary site surveys, which is labour-saving and time-

efficient. With this system, most indoor public places equipped with monitoring

cameras can be improved to provide positioning and navigation services for

users.

• Innovative algorithms are designed to handle the challenges during the system

implementation, which include the actual scale transformation algorithm for

solving the scale ambiguity problem in Monocular SLAM, as well as the coordi-

nate conversion algorithm for connecting the smartphone camera’s perspective

with the floor plan. Based on the designed algorithms, this proposed system

is fully implemented, which provides a new approach to vision-based indoor

14
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positioning and navigation services.

• Extensive experiments are carried out in different indoor scenarios, and the

proposed system is compared with other existing frontier systems. The ex-

perimental results verify that the system can achieve a positioning accuracy

of 0.46m and a successful navigation rate of 90.6%, both of which are higher

than those of the existing systems. Besides, the overall latency of the system is

only about 0.2s, which meets the real-time demands. These results prove the

superior performance and wide applicability of the system for various indoor

environments in practice.

1.6 Thesis Structure

The rest of this thesis is divided into the following chapters:

First of all, Chapter 2 introduces the ORB-SLAM scheme and some current tech-

niques related to indoor positioning and navigation.

Chapter 3 makes a brief introduction of the complete framework of the indoor

positioning and navigation system designed in this thesis.

Chapter 4 explains in detail, with the help of smartphone cameras and monitor-

ing cameras, how the system calculates the actual scale in the floor plan and then

transforms the coordinates from three dimensions to two dimensions based on the im-

proved feature extraction and matching algorithms, so as to locate the user’s initial

position in the real environment.

Then, Chapter 5 describes concretely, as the user moves, how our system can not

only carry out high-precision tracking but also provide correct navigation prompts.
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In Chapter 6, the proposed system is fully implemented and tested in various real

indoor scenarios. The experimental results demonstrate that, compared with other

state-of-the-art schemes, our system can achieve higher accuracy as well as stronger

robustness.

Finally, Chapter 7 gives a brief summary of the designed system.
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Chapter 2

Related Work

2.1 ORB-SLAM

ORB-SLAM (Mur-Artal and Tardós, 2017) is one of the most efficient and robust

modern SLAM systems. For the indoor positioning and navigation system proposed

in this thesis, the adopted monocular SLAM scheme is also ORB-SLAM.

ORB-SLAM represents the peak of mainstream feature-point SLAM. Compared

with the previous works, ORB-SLAM has the following distinct strengths:

1. ORB-SLAM supports monocular, stereo and RGB-D modes. Therefore, ORB-

SLAM has good versatility and can be applied to any kind of cameras.

2. The whole system works around ORB feature points, which is a good compro-

mise between the accuracy and efficiency of current computing platforms. ORB

is not as time-consuming as SIFT or SURF, and can be operated in real-time on

the CPU. Compared with Harris or other simple corner features, ORB has good

rotation and scale invariance. Moreover, ORB provides descriptors that enable
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object relocation and loop closure detection, especially for the large-range mo-

tion.

3. Loop closure detection is one of the highlights of ORB-SLAM. The excellent loop

detection algorithm ensures that ORB-SLAM can quickly correct the trajectory

with drifts and effectively avoid the cumulative errors.

4. ORB-SLAM innovatively uses three threads to complete the whole SLAM scheme:

the Tracking Thread for locating feature points in real-time, the Co-Visibility

Graph Thread for optimizing the local Bundle Adjustment (BA) problem, and

the Essential Graph Thread for loop closure detection and optimization of the

global pose graph. Firstly, the Tracking Thread is responsible for extracting

ORB feature points from each new image and comparing them with those from

the nearby key frames, so as to calculate the positions of the feature points and

roughly estimate the pose of the camera. Secondly, the Co-Visibility Graph

Thread is used for solving a bundle adjustment problem, which includes the

locations of feature points and the camera poses, with higher precision in the

local space. The third thread, the Essential Graph Thread, detects the loop

closure from the global map and all key frames to eliminate the cumulative

error. Since there are too many map points in the global map, the optimiza-

tion of this thread does not include map points but only the camera poses.

This three-threaded structure enables ORB-SLAM to achieve very good track-

ing and mapping performance, as well as ensuring the global consistency of the

trajectory and map.

5. ORB-SLAM makes many improvements around feature points, e.g., ensuring
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a uniform distribution of feature points based on the feature extraction algo-

rithms in OpenCV, repeating the optimization four times to obtain more correct

matches in pose estimation, and a relatively more relaxed selection strategy for

key frames. These subtle improvements make ORB-SLAM far more robust than

other schemes. Even in unfavorable scenarios, ORB-SLAM can still work well.

These above advantages make ORB-SLAM a peak of feature-point SLAM. Many

works take ORB-SLAM as a standard and develop on its basis. The code of ORB-

SLAM is known for its legibility and comprehensible annotations. Therefore, the

indoor positioning and navigation system in this thesis is also modified and imple-

mented on the basis of ORB-SLAM.

2.2 Indoor Positioning and Navigation Techniques

In this section, the techniques related to indoor positioning and navigation will be

summarized in the following aspects and compared with the system proposed in this

thesis.

2.2.1 Vision-Based Positioning and Navigation

At present, the indoor positioning and navigation services are mainly based on the

wireless signal, inertial measurement unit (IMU), Radio Frequency Identification

(RFID) and visual information. Compared with the first three methods, the main

advantage of vision-based solutions is using high-definition images and rich features to

obtain better performance. Some vision-based systems also need other forms of infor-

mation to assist them in realizing the desired functions. For example, Overlay (Jain
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et al., 2015) establishes a geometric representation of the surrounding environment

by fusing data collected from smartphone cameras and sensors. RAVEL (Papaioan-

nou et al., 2014) utilizes the fusion of visual information and signal data to achieve

high-precision positioning.

After SLAM (Bailey and Durrant-Whyte, 2006) was proposed, a large number of

studies based on this technique came into being. In brief, with the help of various sen-

sors (such as cameras, radars and other types of equipment), SLAM is about detecting

and perceiving the surrounding environment, estimating the motion and building a

map of the current surroundings. ORB-SLAM (Mur-Artal and Tardós, 2017), which

combines DBoW2 (Zhang et al., 2010) for scene identification and g2o (Kümmerle

et al., 2011) library for nonlinear optimization, is one of the most outstanding visual

SLAM frameworks so far.

Furthermore, some studies also introduce other types of information into SLAM,

creating a lot of applications related to positioning and navigation. For example,

SmartSLAM (Shin et al., 2011) applies SLAM to smartphones and utilizes Wi-Fi sig-

nals to help locate the user’s current position. However, this technique is only effective

for indoor environments with corridor layouts. WiFi-SLAM (Ferris et al., 2007) lever-

ages the Gaussian process model integrating latent variables (GP-LVM) (Lawrence

and Hyvärinen, 2005) to construct a wireless signal strength map with correct con-

nectivity. In addition, there are also some applications that exploit other forms of

information, such as FootSLAM (Robertson et al., 2009) which utilizes data from the

built-in inertial sensor and SemanticSLAM (Abdelnasser et al., 2015) which intro-

duces semantic information to the SLAM scheme.

It can be seen that, in order to deal with the scale ambiguity, most positioning and
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navigation schemes based on monocular SLAM need the assistance of information

from additional modules, such as wireless signals or sensor data. In contrast, the

system proposed in this thesis only resorts to the visual information provided by

monitoring cameras. Therefore, the actual scale can be calculated and then the user’s

physical position in the real environment can be obtained without relying on data in

other forms. Moreover, compared to other SLAM-integrated techniques, with the

help of monitoring cameras, our system can achieve stronger robustness in dynamic

application scenarios.

2.2.2 Environmental-Information-Assisted Positioning and Nav-

igation

In real indoor scenarios, in addition to the images, there are many other kinds of

data that can provide help for positioning and navigation. Thus, some systems uti-

lize information from the surrounding environment to enhance their performance.

EV-Loc (Teng et al., 2013) is a tracking system using visual information to assist

wireless positioning, which connects the object’s appearance with the electronic sig-

nals. Besides, JVWL (Liu et al., 2016) fuses the data from smartphone cameras and

Wi-Fi signals, as well as exploiting the deep neural network to optimize results and

improve positioning accuracy. In addition, MVG (Liu et al., 2017) proposes a model

based on multi-perspective to achieve robust positioning, which leverages visual data

and geomagnetic signals from smartphones at the same time.

The works mentioned above all introduce information other than images to im-

prove the performance. However, introducing other kinds of data also means that the
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system has to deal with the potential problems brought by these forms of informa-

tion, such as the trajectory drifts caused by the cumulative errors of IMU sensors in

smartphones, the trouble of establishing a fingerprint database of wireless signals in

advance, etc. By contrast, the input to the system proposed in this thesis is only the

synchronized video frames provided by multiple cameras. By exploiting the monitor-

ing camera as an auxiliary information source to improve the robustness, the error

source of the system is confined within the form of images, which is beneficial for the

subsequent adjustment and optimization.
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Chapter 3

System Framework

As is shown in Figure 3.1, this chapter will give a brief introduction to the complete

framework of the indoor positioning and navigation system designed in this thesis.

First of all, when starting up, the system enters the initialization stage. In this

stage, the system will load the floor plan of the building as well as the abundant

semantic information contained in it, including the locations of the POIs (Points of

Interest), landmarks and monitoring cameras in the environment, and the division of

various functional areas, etc. The above semantic information is of great importance

to the positioning and navigation performance of the system.

Secondly, in the positioning and navigation stage, the smartphone camera held

by the user and the monitoring cameras deployed in the area start to record the

surrounding environment, and continuously transmit the video content to the system

for processing and calculation.

After receiving the video frames uploaded from the smartphone camera and mon-

itoring cameras, the system will extract and match the image features in the frames.

The well-matched feature point pairs are the basis of the follow-up process and are
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Figure 3.1: System Framework
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crucial for other modules of the system. Although the perspectives of these two types

of cameras are quite different and the cameras’ parameters are not consistent, with

the carefully selected feature points and the improved algorithms, our system can

significantly increase the correct matching rate.

Then, the actual scale transformation module will start to detect and recognize

the POI (Point of Interest) in the image frames, and further calculate the relative

pose relationship of the smartphone camera and monitoring camera. Moreover, the

preloaded semantic information, which here refers to the physical distance between

the POI and monitoring camera in the real environment, will be leveraged to obtain

the actual scale.

Furthermore, by synthesizing the previously acquired information, including the

correctly matched image features in video frames and the obtained actual scale, the

coordinate conversion module will calculate the transformation relationship from the

three-dimensional mobile coordinates in the smartphone camera’s perspective to the

two-dimensional plane coordinates in the floor plan. Thus, based on the outputs of

the actual scale transformation module and coordinate conversion module, our system

can determine the actual initial position of the user in the floor plan.

In addition, when the smartphone camera moves into the environment where the

line of sight (LOS) is blocked by the barriers (that is, the POI cannot be shot by the

monitoring camera and the smartphone camera at the same time), the system will

utilize the visual odometry (VO) with semantic information for continuous tracking

and navigation. VO can calculate the pose changes of the smartphone camera be-

tween the adjacent video frames, and then estimate the current position of the user

according to the acquired 3D-2D coordinate conversion relationship. This process
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will continue until the next time the system detects that the video frames uploaded

by the smartphone camera and a new monitoring camera can capture the same POI.

At that time, the relocation function of the system will be activated to correct the

constructed motion trajectory of the user. This design can significantly reduce the

accumulated error and drift in the previous process.

In order to navigate the user, our system will first build a map showing the

connectivity between the landmarks based on the semantic information contained in

the floor plan. With the user’s input of the target location, the optimal navigation

path will be planned. Then, according to the real-time tracking results, the system

can navigate the user to each landmark on the planned route in order until the final

destination is reached.

In summary, on the one hand, for positioning, the system achieves the high-

precision positioning of the user in the floor plan by fusing the visual information from

the smartphone camera and monitoring cameras. On the other hand, for navigation,

the system can always track the user’s current position and provide reliable navigation

prompts in real-time until the user reaches the destination.

Based on these designed algorithms and modules, our proposed system can provide

users with accurate and efficient indoor positioning and navigation services.
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Chapter 4

Actual Initial Position Acquisition

4.1 Feature Extraction and Matching

In order to obtain the actual initial position of the user, extracting and matching fea-

ture points from the image frames of the smartphone camera and monitoring cameras

plays a vital role, which is the basis of the follow-up process. Feature extraction is to

select some representative points from the image, which is usually divided into two

steps: key-points detection and descriptors calculation. Feature matching is to get

feature point pairs with high similarity by comparing the calculated descriptors.

As mentioned before, it is not easy to directly match the image features extracted

from the video frames of these two types of cameras because of the large difference

in their perspectives. In addition, the parameters of the cameras are not consistent.

In order to solve the above problems, our system mainly innovates from the following

two aspects:

First of all, four kinds of image features are tested, namely SIFT (Lowe, 2004),

SURF (Bay et al., 2006), ORB (Rublee et al., 2011) and A-KAZE (Alcantarilla and
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Solutions, 2011), in diverse experimental environments with various angles formed by

the two cameras and POI. This will be analyzed concretely later in the experimental

part. By comparing the performance of the above four image feature points, A-KAZE

finally stands out and is adopted by our system. A-KAZE, or Accelerated-KAZE, is

an improvement on the basis of the KAZE method. Compared with SIFT and SURF,

the speed of feature extraction and matching of the A-KAZE algorithm is faster. In

the meanwhile, compared to ORB, the repeatability and robustness of the A-KAZE

algorithm are significantly enhanced.

Secondly, the algorithm of feature extraction and matching in the pose calculation

module provided by OpenCV is modified and improved, so that it can be applied to

two images from cameras with different parameters.

4.2 Actual Scale Transformation

At present, image matching and relative pose calculation methods based on feature

points have been utilized in various visual positioning and navigation systems (Niu

et al., 2019; Liu et al., 2017). However, since the actual scale of the real environment

cannot be obtained directly through the vision module, some other image-based in-

door positioning systems cannot operate alone. Only with the assistance of informa-

tion from other sources, such as sensor data from the IMU module or wireless signals

from the Wi-Fi module, can these systems provide location-based services.

In contrast, because of the designed actual scale calculation algorithm, our indoor

positioning and navigation system can acquire the user’s actual position without

additional information, only through the smartphone camera and the monitoring

camera. In this section, the method of actual scale calculation will be introduced in
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detail.
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Figure 4.1: Framework of the Actual Scale Transformation Algorithm

Figure 4.1 describes the flow of the actual scale transformation method. This

algorithm can be further divided into three steps, which are POI recognition, relative

pose calculation and scale obtainment.

As described in Section 4.1, our system first extracts and matches A-KAZE fea-

tures from the image frames of the smartphone camera and monitoring cameras. The

feature point pairs with the high correct matching rate provide a solid foundation for

the actual scale transformation algorithm.
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1. POI Recognition. First of all, for POI recognition, the system utilizes the

Bag-of-Words (BoW) model (Zhang et al., 2010) to calculate the corresponding

word vector for each image frame. By comparing the word vectors of different

frames, the system will select the most suitable monitoring camera, which gen-

erally has a viewing angle with the highest similarity to the smartphone camera.

Then, our system can recognize and match POI in the image frames from these

two cameras.

2. Relative Pose Calculation. Secondly, the system solves the relative pose re-

lationship of the selected monitoring camera and the user’s smartphone camera

according to the geometric constraints. Then, with the obtained pose relation-

ship, the system calculates the relative distance of the POI and monitoring

camera through the principle of triangulation.

3. Scale Obtainment. Finally, according to the semantic information contained

in the preloaded floor plan, the ratio of the scale transformation can be obtained,

so that the relative length in the smartphone camera coordinate system can be

connected to the actual length in the plane coordinate system.

Next, the algorithm of actual scale transformation in our system will be divided

into three subsections and described in detail respectively.

4.2.1 POI Recognition

In most public places, there are usually some objects whose positions remain un-

changed over time, such as sculptures in buildings, exit signs along corridors, logo

boards of stores in shopping malls, wayfinding signages in lobbies and so on. By
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using these fixed and eye-catching objects, important reference information can be

introduced into our system. These objects, selected by the system in the real scenar-

ios, are called POIs (Points of Interest).

The process of POI Recognition can be separated into the following two steps:

First of all, the system selects the most suitable video source from multiple moni-

toring camera candidates to calculate the pose relationship. Because matching image

features of video frames from all monitoring cameras and the smartphone camera

can take a large amount of time, which will cause obvious system latency and affect

the user’s experience. Therefore, our system adopts the algorithm of DBoW (Zhang

et al., 2010), which is based on the Bag-of-Words model to compare the differences

between image frames from different monitoring cameras and the smartphone cam-

era. Firstly, the A-KAZE feature points in all video frames are extracted, then the

word vector of each frame is calculated. So, the system can compare and select the

monitoring camera whose word vectors of image frames have the highest similarity

to those of the smartphone camera, and then utilize this chosen monitoring camera

as the anchor point for locating users. Therefore, the system saves a lot of resources

and time for exhaustive image feature matching of all monitoring cameras’ and the

smartphone camera’s video frames.

In the second step, the system identifies and locates the position of POI in the

images through feature matching. Because the orientation and position of the mon-

itoring camera in public places are always constant, it can be considered that POI

is usually acquired in a fixed area in the video frame of the monitoring camera, that

is, the POI recognition area of the system, as shown in Figure 4.2. Our system will

extract the image feature of this specific area in the frame of the monitoring camera
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and match it to the frame of the smartphone camera to obtain the feature point with

the highest similarity. In this way, the system can locate the position where POI is

projected in both of the video frames from two cameras.

4.2.2 Relative Pose Calculation

This section mainly introduces the calculation method of the relative pose. Utilizing

this algorithm, the system can obtain the relative position of the POI and monitoring

camera (such as points X and Om in Figure 4.2) in the smartphone camera coordinate

system, which hereinafter is referred to as the mobile coordinate system.

As shown in Figure 4.2, after feature extraction of video frames collected by the

monitoring camera and smartphone camera, the system leverages the method of im-

age matching to calculate the pose relationship between these two cameras. The

Epipolar Constraints (Zhang, 1998) are often utilized to obtain the pose difference

of cameras between two image frames. Through feature matching of images from

the monitoring camera and smartphone camera, the system can acquire multiple

well-matched two-dimensional feature point pairs. Suppose that x1 represents a two-

dimensional feature point in the video frame of the smartphone camera, x2 represents

the matched one in the frame of the monitoring camera, and X represents the corre-

sponding three-dimensional point of them in the mobile coordinate system. Besides,

the above two-dimensional coordinates of feature points are converted into homo-

geneous forms. From the imaging principle of pinhole cameras, we can obtain the
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relationships of these points as the following equations:

s1x1 = K1X

s2x2 = K2 (RsmX + tsm)
(4.2.1)

where K1 and K2 represent the parameter matrices of the smartphone camera and

monitoring camera correspondingly, s1 and s2 represent the pixel depths of the two-

dimensional image features in the video frames acquired by the smartphone camera

and the monitoring camera respectively, tsm and Rsm represent the corresponding

translation vector and rotation matrix between the mobile coordinate system and the

monitoring camera coordinate system. After eliminating X, Equation 4.2.1 can be

expressed as follows:

X = s1
(
K−1

1 x1

)
(4.2.2)

s2
(
K−1

2 x2

)
= s1Rsm

(
K−1

1 x1

)
+ tsm. (4.2.3)

Let t∧sm denote the skew-symmetric matrix corresponding to the translation vector

tsm. Firstly, multiply this skew-symmetric matrix t∧sm on the left and right sides of

Equation 4.2.3, which is equivalent to making the outer product of both sides with

the translation vector tsm. This method is also applicable to other equations later in

this thesis. Then, multiply both sides of the equation by the term
(
K−1

2 x2

)T
at the

same time. After elimination, we can have the following equations as the epipolar
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constraints:

(
xT
2K

−T
2

)
E
(
K−1

1 x1

)
= 0

E = t∧smRsm

(4.2.4)

where E represents the Essential Matrix.

As described before, the image feature matching algorithm can normally acquire

hundreds to one thousand two-dimensional feature point pairs, which can be pro-

vided to calculate Equation 4.2.4. In the implementation, our system firstly leverages

the RANSAC method (Random Sample Consensus) (Derpanis, 2010) to solve the

essential matrix E, and further utilizes the SVD algorithm (Singular Value Decom-

position) (Abdi, 2007) to decompose E and obtain the translation vector tsm and

rotation matrix Rsm.

However, in the process of calculating tsm and Rsm, the pixel depths s1 and s2

of POI in the video frames from the cameras are eliminated. Therefore, our system

needs to utilize the principle of triangulation (Taketomi et al., 2017), so that we could

recover the corresponding three-dimensional coordinates of POI in the mobile coor-

dinate system on the basis of its two-dimensional projection on the camera imaging

plane.

Suppose x1 and x2 are the two-dimensional feature points of POI in the image

frames of two cameras respectively, and X is the corresponding three-dimensional

position of POI in the mobile coordinate system. Firstly, we can calculate s1 by

multiplying the skew-symmetric matrix
(
K−1

2 x2

)∧
, which is corresponding to the

term K−1
2 x2, on the left and right sides of Equation 4.2.3:

s1
(
K−1

2 x2

)∧
Rsm

(
K−1

1 x1

)
+
(
K−1

2 x2

)∧
tsm = 0. (4.2.5)
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With the calculated translation vector and rotation matrix, tsm and Rsm respec-

tively, Equation 4.2.5 is a linear equation with the only variable s1, so that it can be

easily solved.

Secondly, the method of calculating s2 is similar. We can calculate s2 by mul-

tiplying the skew-symmetric matrix
(
K−1

1 x1

)∧
, which is corresponding to the term

K−1
1 x1, on the left and right sides of Equation 4.2.3:

s2
(
K−1

1 x1

)∧ (
K−1

2 x2

)
=
(
K−1

1 x1

)∧
tsm. (4.2.6)

With tsm and Rsm, Equation 4.2.6 is also a linear equation with the only variable

s2, so it can be solved similarly.

By combining the pixel depths, s1 and s2, of POI in the video frames, with the

translation vector tsm between these two camera coordinate systems, the relative

position relationships of the smartphone camera, monitoring camera and POI in the

mobile coordinate system, that is, the geometry of 4OsOmX in Figure 4.2, can be

obtained.

4.2.3 Scale Obtainment

In Subsection 4.2.2, we have obtained the relative positions of the two cameras and

POI in the mobile coordinate system, namely the geometry of 4OsOmX. However,

as explained in Section 1.3, due to the scale ambiguity in monocular SLAM (Strasdat

et al., 2010), we still cannot determine the actual position of the smartphone camera.

In other words, the three sides of 4OsOmX, s1, s2, and ‖tsm‖2 respectively, which

we have solved in the previous section, are only the normalized lengths of
∥∥∥−−→OsX

∥∥∥
2
,∥∥∥−−−→OmX

∥∥∥
2
, and

∥∥∥−−−→OsOm

∥∥∥
2

in the mobile coordinate system, rather than the actual
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lengths in the real scenarios. Thus, the physical distances between the two cameras

and POI in the environment still remain unknown to us. Here, ‖tsm‖2 represents the

L2 norm of the vector tsm, namely the Euclidean length of the vector tsm, which is

also applicable to other vectors mentioned in this thesis.

But, according to the semantic information contained in the preloaded floor plan

of the building, our system can attach the actual lengths in the real environment to

4OsOmX, that is, using meters as the physical units.

Suppose that in the real scenario, the physical distance between the POI and mon-

itoring camera is l meters, namely the actual length of
∥∥∥−−−→OmX

∥∥∥
2

in the environment.

Then we only need to make the ratio of the lengths of the same vector
−−−→
OmX in two

different measurement methods, l and s2, to obtain the scale transformation ratio r,

which is:

r =
l

s2
. (4.2.7)

This scale transformation ratio r states that the normalized length of a unit in

the mobile coordinate system represents the actual length of r meters in the real

environment.

4.3 Coordinate Conversion from 3D to 2D

All the locations and distances involved in Section 4.2 are discussed in the mobile co-

ordinate system. To determine the actual position of the user holding the smartphone

in the floor plan, it is necessary to obtain the conversion relationship from the mobile

coordinate system (corresponding to the perspective of the smartphone camera) to
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the plane coordinate system (corresponding to the floor plan of the building).

First of all, as is shown in Figure 4.3, the two coordinate systems that need to be

converted have the following differences:

1. Scales: The mobile coordinate system utilizes the normalized scale, and this

scale will change dramatically with diverse application scenarios. However, the

plane coordinate system uses the actual scale in the real environment, such as

meters.

2. Dimensions: The mobile coordinate system is a three-dimensional coordinate

system. But the plane coordinate system is two-dimensional.

3. Directions: As depicted in Figure 4.3, the directions of the axes of the mobile

coordinate system depend on the posture of the user holding the smartphone

when the system is first started, while the directions of the axes of the plane

coordinate system have been defined in advance according to the floor plan.

4. Origins: Similar to the directions, the origin of the mobile coordinate system

is determined by the user’s initial position when the system is just turned on,

such as point Os shown in Figure 4.3. In comparison, the origin of the plane

coordinate system is normally predefined as a corner of the edge in the floor

plan, such as point O shown in Figure 4.3.

The difference in scales between the plane coordinate system and the mobile co-

ordinate system has been settled in Section 4.2. Our system still needs to resolve the

differences in the other three aspects.

As shown in Figure 4.3, for the sake of introduction, point A represents the user’s

initial position in the floor plan when the system is first started. According to the
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semantic information preloaded by the system, B and C represent the corresponding

two-dimensional positions of the monitoring camera and POI in the floor plan.

Coordinate Conversion

2D Plane 

Coordinates

Conversion from 

Ground to 2D

TranslationRotation

Projection from

3D to Ground 

3D Mobile 

Coordinates

Actual Scale 

Transformation 

Figure 4.4: Framework of the Coordinate Conversion Algorithm

Figure 4.4 depicts the overall flow of the coordinate conversion algorithm. In order

to realize the transformation from the mobile coordinate system in the smartphone

camera’s perspective to the plane coordinate system in the floor plan, in addition to

the scale transformation introduced in Section 4.2, the system also needs the following

two more steps:
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Firstly, the system projects the three-dimensional mobile coordinates onto the

horizontal ground. Secondly, after appropriate rotation and translation, the corre-

sponding two-dimensional plane coordinates can be calculated.

The specific transformation methods will be explained in detail in this section.

4.3.1 Projection from 3D to Ground

In order to locate the user’s initial position in the floor plan and continuously track

the user’s motion, the system needs to project the three-dimensional mobile coordi-

nates onto the two-dimensional horizontal ground. As shown in Figure 4.3, to obtain

such a projection relationship, when the system is started for the first time, the user

is recommended to hold the smartphone in such a way that the y-axis of the mobile

coordinate system is perpendicular to the horizontal ground. Therefore, the projec-

tion matrix from the mobile coordinate system to the horizontal ground and from

three-dimensional to two-dimensional can be expressed as follows:

M p =

 1 0 0

0 0 1

 . (4.3.1)

The projection matrix M p eliminates the coordinate components of Os, Om and X

which are perpendicular to the horizontal ground, the y-components, so as to project

three dimensions into two dimensions.

In detail, based on the projection matrix, in order to project 4OsOmX in the

mobile coordinate system to the corresponding triangle 4O′sO′mX ′ on the horizontal
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ground, our system obtains the side
−−−→
O′mX

′ by the following formula:

−−−→
O′mX

′ = M p

(−−−→
OmX

)
. (4.3.2)

In addition, one of the strengths of our system is that only during the coordi-

nate conversion in the initialization stage, the user needs to take the smartphone in

a posture where the y-axis of the mobile coordinate system is perpendicular to the

horizontal ground. After connecting the three-dimensional and two-dimensional co-

ordinate systems, that is, after the system locates the user’s initial position, the user

can take his smartphone casually, as long as the contents of the video frames acquired

by the smartphone camera do not change dramatically.

Furthermore, even when the system performs the coordinate conversion, the user

is allowed to take the smartphone in a slightly inclined posture. If in the initial posi-

tioning phase, the user turns the smartphone by 5◦, then in the subsequent tracking

phase, from cos (5◦) ≈ 0.9962, it can be obtained that every time the user advances

100m, the system will only make a positioning error of 0.38m, which is obviously

tolerable.

Moreover, the relocation method of our system can also significantly reduce the

projection error and correct the user’s trajectory. Therefore, when POI can be cap-

tured by both the user’s smartphone camera and the monitoring camera in the sur-

rounding environment at the same time, the accumulated deviation caused by the

imprecise projection can be directly corrected by the system.
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4.3.2 Conversion from Ground to 2D

However, after scale transformation and projection, rM p

(−−−→
OmX

)
and
−−→
BC are still

different. They are just two vectors with the same length, but they are in the different

two-dimensional coordinate systems. Thus, the system needs to further calculate the

2×2 rotation matrix Rf and the 2×1 translation vector tOA from the two-dimensional

projection of the mobile coordinate system to the plane coordinate system. This

process can be divided into the following two steps.

First of all, in order to calculate the rotation matrix Rf , make the inner product

of the vectors rM p

(−−−→
OmX

)
and
−−→
BC, and denote the angle between these two vectors

as θ, then we can get:

rM p
−−−→
OmX ·

−−→
BC =

∥∥∥rM p
−−−→
OmX

∥∥∥
2
‖
−−→
BC‖2 cos θ = ‖

−−→
BC‖22 cos θ (4.3.3)

So:

cos θ =
r

‖
−−→
BC‖22

(
M p
−−−→
OmX ·

−−→
BC
)

(4.3.4)

From cos2 θ + sin2 θ = 1, we can also get:

sin θ =
√

1− cos2 θ =

√
1− r2

‖
−−→
BC‖42

(
M p

−−−→
OmX ·

−−→
BC
)2

(4.3.5)

According to the expression of the rotation matrix on the two-dimensional plane

as follows:

R(θ) =

 cos θ − sin θ

sin θ cos θ

 (4.3.6)

43



M.A.Sc. Thesis – H. Zheng McMaster – Electrical & Computer Engineering

the system can obtain the rotation matrix Rf of the conversion between the above

different two-dimensional coordinate systems:

Rf =


r

‖
−−→
BC‖22

(
M p

−−−→
OmX ·

−−→
BC
)

−
√

1− r2

‖
−−→
BC‖42

(
M p

−−−→
OmX ·

−−→
BC
)2√

1− r2

‖
−−→
BC‖42

(
M p

−−−→
OmX ·

−−→
BC
)2

r

‖
−−→
BC‖22

(
M p

−−−→
OmX ·

−−→
BC
)


(4.3.7)

Secondly, after the scale transformation, projection and rotation of the translation

vector tsm, the system can get
−→
AB = tAB in the plane coordinate system as the

following equation:

−→
AB = tAB = rRfM ptsm. (4.3.8)

Since the monitoring camera’s location in the floor plan,
−−→
OB = tOB, is known,

and with
−→
OA =

−−→
OB −

−→
AB, we can obtain that when the system is started, the

corresponding position of the origin of the three-dimensional mobile coordinate system

in the two-dimensional floor plan, namely
−→
OA = tOA, can be expressed as follows:

−→
OA = tOA = tOB − rRfM ptsm (4.3.9)

where
−→
OA = tOA is just the starting point of the user in the floor plan when the

system is turned on, such as position A in Figure 4.3. Therefore, our system has been

able to successfully locate the user’s initial position in the real environment.

In summary, according to the scale transformation ratio r, rotation matrix Rf ,

projection matrix M p and translation vector tOA, our system could convert any
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three-dimensional point in the mobile coordinate system to the corresponding two-

dimensional point in the floor plan. In other words, the system is able to connect the

three-dimensional mobile coordinate system with the two-dimensional plane coordi-

nate system.

So far, the initialization stage of the system is completed.

Then, as the user moves forward, our system will also track and update the user’s

latest position, which will be further explained in the next chapter.
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Chapter 5

Continuous Tracking and

Navigation

According to the calculated results in Chapter 4, our system can locate the user’s

initial position in the two-dimensional floor plan. Based on this, the system will

provide an appropriate navigation route for the user. Next, while the user is moving,

our system will continue to track the user’s real-time position, as well as give accurate

and reliable navigation prompts.

This chapter will introduce in detail how our system tracks and navigates the user.

5.1 Real-Time VO Tracking

The positioning function can be divided into two steps: initial positioning and follow-

up VO tracking.

For initial positioning, the system will obtain the user’s initial position in the

plane coordinate system based on Equation 4.3.9, such as position A in Figure 4.3.
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For follow-up tracking in real-time, the relative pose calculation and triangulation

method introduced in Subsection 4.2.2 can only be used in LOS (line-of-sight) scenes,

where POI can appear in the view of the monitoring camera and smartphone camera

at the same time. However, in NLOS (non-line-of-sight) scenes, our system cannot

locate the user’s current position only with the method mentioned above. There-

fore, our system exploits the technique of VO (visual odometry) (Aqel et al., 2016)

to calculate the motion of the smartphone camera between adjacent video frames.

The VO module of our system leverages the idea of PnP (perspective-n-point) prob-

lem (Hesch and Roumeliotis, 2011), which estimates the user’s motion by matching

the image features in different frames. Hence, our system can always track the user’s

current position in the mobile coordinate system.

Specifically, as introduced in Subsection 4.2.2, the system can obtain many point

pairs by image matching and further triangulation. Each pair contains a two-dimensional

pixel point xi in the kth video frame of the smartphone camera and its corresponding

three-dimensional spatial point X i in the mobile coordinate system.

Suppose that the conversion factors corresponding to the kth video frame acquired

by the smartphone camera are the rotation matrix Rk and the translation vector tk.

Similar to Equation 4.2.1, by the imaging principle of pinhole cameras, we can get

the following relationship:

sixi = K1 (RkX i + tk) (5.1.1)

where K1 still represents the parameter matrix of the smartphone camera and si

represents the pixel depth of the two-dimensional image feature xi in the kth video

frame acquired by the smartphone camera.
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Then, the system calculates the rotation matrix Rk and the translation vector tk

by settling the following optimization problem:

Rk, tk = arg min
Rk,tk

e = arg min
Rk,tk

1

2

n∑
i=1

∥∥∥∥xi −
1

si
K1 (RkX i + tk)

∥∥∥∥2
2

. (5.1.2)

Here, our system utilizes the EPnP (Efficient-PnP) (Lepetit et al., 2009) method,

which is an algorithm with a complexity of O(n), to solve this PnP problem. By

minimizing the sum e of the error terms, the system can obtain the optimal solution

of the rotation matrix Rk and the translation vector tk corresponding to the kth video

frame, that is, the optimal estimation of the pose of the smartphone camera when

shooting this video frame. Therefore, our system can obtain the three-dimensional

position of the user corresponding to this frame in the mobile coordinate system, and

then continuously record the user’s motion trajectory.

After our system determines the user’s initial position, the visual odometry func-

tion will be enabled, and with the user’s movement, the corresponding translation

vectors {t0, t1, t2, . . .} of the user in the three-dimensional mobile coordinate system

can be gained in real-time.

Suppose that Ak is the corresponding two-dimensional position of the user in the

floor plan when shooting the kth image frame. To acquire the user’s current position,

with
−−→
OAk =

−→
OA +

−−→
AAk, the system converts the corresponding translation vector

tk in the three-dimensional mobile coordinate system to the two-dimensional plane

coordinate system:

tOAk
= tOA + tAAk

= tOA + rRfM ptk. (5.1.3)
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In this way, our system can track the user’s position in the plane coordinate system

in real-time.

In summary, through the relative pose calculation method in the initialization

stage and the visual odometry function in the follow-up tracking stage, our system

can always perform high-precision positioning of the user in the two-dimensional floor

plan.

5.2 Path Planning and Navigation Strategy

The accurate and continuous tracking of the user has been explained in Section 5.1.

In this section, we will mainly introduce how the system plans the optimal navigation

path, and further provides the user with correct navigation prompts in real-time based

on the current position information.

In the initialization stage, our system will first load the floor plan of the building

and obtain the rich semantic information contained in it, such as a series of landmarks

in the environment with their respective names and whether they are accessible to

each other. Thus, the system can draw a map G =< V,E > which shows the

connectivity of the landmarks. Furthermore, the position of the ith landmark is noted

as the node vi ∈ V , and the actual distance between the two landmarks, vi and vj,

is noted as the length of the edge eij ∈ E. Then, the system will utilize the Dijkstra

method (Broumi et al., 2016) to calculate and select the shortest path for each node

in the graph, and also record the obtained results.

First of all, when the user activates the navigation function, by determining the

initial position, the system will note the landmark with the shortest distance as the

user’s starting point. Secondly, according to the starting position and target position,
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the system will plan the optimal route and provide the initial navigation prompts for

the user. Then, while the user is continuously moving forward, our system will always

track the user’s current position, and on this basis guide the user to the subsequent

landmark on the navigation path. Therefore, the user can finally arrive at the right

destination efficiently.

One of the highlights of our system is the use of the relocation technique. Es-

pecially, when the navigation path is longer, this technique is more conducive to

obtaining successful navigation services. When the user moves forward, as described

in Subsection 4.2.1, our system will always detect and recognize the POI in the en-

vironment. When the POI in the scene can be captured by the user’s smartphone

camera, the system will determine the user’s real-time position with the assistance

of the surrounding monitoring camera again to eliminate the accumulated deviation

and correct the previous trajectory drift. Therefore, the success rate of navigation

can be significantly improved through the relocation technique.

In summary, with the techniques introduced in Chapter 5, as the user continues

moving on, our system can always not only accurately locate and track the real-time

position of the user but also provide correct and reliable navigation services for the

user.
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Chapter 6

System Implementation and

Experimental Evaluation

6.1 Experimental Validation

In this thesis, the indoor positioning and navigation application is implemented on

the Ubuntu operating system. As the input of the system, the videos are recorded

in different scenarios with different types of cameras. This section will first introduce

the experimental setup and methods.

6.1.1 Experimental Settings

In order to test the effect of the video quality on indoor positioning and navigation,

the frame rates of the recorded videos include 30FPS and 60FPS, and the resolutions

include 1920 × 1080 pixels (1080p) and 1280 × 720 pixels (720p). The computer

used for calculation and processing has an i7-9750H CPU with 16G RAM, and the
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operating system is Ubuntu 16.04. The designed positioning and navigation system

is modified and implemented on the basis of ORB-SLAM (Mur-Artal and Tardós,

2017), which is exploited as the visual odometry module.

6.1.2 Experimental Environments

Extensive experiments have been conducted in three representative public places,

including an educational building, an apartment building and a supermarket. These

areas have different interior layouts, and the changes in people flow in these scenarios

are not the same. For example, the number of residents in the apartment building at

night is much more than that in the daytime. In contrast, the educational building

is occupied by more people during the daytime than at night. Generally speaking,

among these three scenarios, the supermarket has the highest foot traffic, while there

are much fewer people in the educational building. In view of these characteristics,

the arrangements of data collection in each scenario are planned accordingly, such as

the time, duration, coverage and so on.

In addition, in the process of gathering experimental data, various types of smart-

phones were used, including the iPhone 6, iPhone 7 Plus and iPhone XR. The camera

parameters (such as the focal lengths, distortion coefficients, optical center positions,

etc.) of these smartphones are different.

6.1.3 Evaluation Metrics

During the experiments, to collect data, the recorders used different postures to take

the smartphones and shot at different heights. The performance of the indoor po-

sitioning and navigation system will be evaluated from the following two aspects:
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positioning accuracy and successful navigation rate.

• Positioning Accuracy: The positioning performance of the system is mainly

evaluated in the initialization stage. The user can utilize the smartphone camera

to take pictures containing any POIs within sight of the monitoring cameras.

Then, the system will combine the image data from the monitoring camera and

smartphone camera to locate the user’s current position.

In order to obtain the ground truth of locations for the comparison of positioning

results, all the queried locations are later manually measured and recorded in all

experimental scenarios. Thus, the value of positioning accuracy is the distance

error between the positioning result estimated by the system and the user’s real

location.

• Successful Navigation Rate: The semantic information needed for naviga-

tion has been defined and included in the preloaded floor plan. For each nav-

igation simulation, the starting position and destination are randomly chosen

on the floor plan. Then the system will plan the navigation path intelligently

for the user. On each planned path, some specific landmarks are selected as

measurement points, such as turns, elevators, etc.

Successful navigation means that the system can guide the user to each mea-

surement point in order correctly until the destination is reached. Otherwise,

this navigation is failed. In addition, the result of each navigation simulation,

which is success or failure, will be recorded accordingly. Therefore, the success-

ful navigation rate is the percentage of successful navigations in all simulated

navigation experiments.
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6.1.4 Comparative Systems

In order to further evaluate the performance of the designed system, it is compared

with four state-of-the-art indoor positioning and navigation systems in the experimen-

tal part. These systems are also mainly realized on the basis of smartphone cameras.

In terms of positioning, this thesis selects HAIL, MVG and JVWL for comparison.

With regard to navigation, this thesis compares the system with Travi-Navi.

1. HAIL (Niu et al., 2019): HAIL is an automated indoor positioning algorithm

mainly based on images. By memorizing only representative appearance fea-

tures of landmarks, the system reduces the resource consumption of calculation

and storage. Furthermore, the k-d tree method is leveraged to filter out the

images that are matched incorrectly, enabling users to get rid of the trouble of

extra operations.

2. MVG (Liu et al., 2017): MVG proposes a model based on multi-perspective

to obtain robust indoor positioning performance, utilizing visual data and ge-

omagnetic signals from smartphones at the same time. Besides, local features

and global information are combined to distinguish different locations.

3. JVWL (Liu et al., 2016): Combining visual positioning and wireless position-

ing, JVWL is an advanced indoor tracking scheme. This system integrates

the data from mobile cameras and Wi-Fi signals to perform positioning and

exploits deep neural networks to further optimize the results, achieving much

better performance.

4. Travi-Navi (Zheng et al., 2017): Travi-Navi is a P2P indoor navigation sys-

tem that can provide visual guidance. The image information and sensor data
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generated during the guide’s movement will be collected. Therefore, the system

can offer image prompts and necessary alerts to followers on the navigation path

without deploying indoor positioning in advance.

6.2 Experimental Results and Analysis

6.2.1 Feature Points Comparison

As introduced in Section 4.1, extracting and matching feature points of the image

frames from the smartphone camera and monitoring camera plays a vital role in

determining the user’s actual initial position, which has a significant impact on the

follow-up process of the system.

In order to compare the effect of four types of image feature points, SIFT, SURF,

ORB and A-KAZE, extensive experiments have been carried out. As shown in Fig-

ure 6.1, Figure 6.2 and Figure 6.3, here we take these three groups of images as

examples of the experimental results of feature extraction and matching. The three

pairs of raw video frames were captured in three buildings on campus, from the

perspectives of the smartphone camera and monitoring camera respectively. Among

them, the left image frame of each group is obtained by the smartphone camera, while

the right one is taken from the perspective of the monitoring camera. Then, SIFT,

SURF, ORB and A-KAZE feature points are extracted and matched in each group

of images.

It can be seen that, compared with SIFT, SURF and ORB, in all these three

scenarios, the A-KAZE feature points from the image frames acquire the best match-

ing performance. In particular, for the first group of frames, the angles of view of
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(a) SIFT

(b) SURF

(c) ORB

(d) A-KAZE

Figure 6.1: Feature Matching Comparison in Building 1
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(a) SIFT

(b) SURF

(c) ORB

(d) A-KAZE

Figure 6.2: Feature Matching Comparison in Building 2
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(a) SIFT

(b) SURF

(c) ORB

(d) A-KAZE

Figure 6.3: Feature Matching Comparison in Building 3
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the two cameras are quite different, and the third group has many similar feature

points which are hard to distinguish, but the A-KAZE algorithm still gains satisfac-

tory matching results. It can be concluded that, in comparison with the other three

methods, A-KAZE can achieve more stable and effective performance when process-

ing images with different viewing angles and similar features, which is very suitable

for our system.

Moreover, the experiments can also verify that, through the modification of the

feature extraction and matching algorithm in OpenCV, our system can successfully

handle the frames captured by cameras with different parameters.

Features
Scenarios

Building 1 Building 2 Building 3

SIFT 86.9% 82.1% 86.5%

SURF 79.8% 83.3% 79.4%

ORB 76.5% 71.6% 74.3%

A-KAZE 94.1% 93.7% 95.2%

Table 6.1: Comparison of Correct Matching Rates of Four Feature Points

Furthermore, as shown in Table 6.1, the average correct matching rates of SIFT,

SURF, ORB and A-KAZE in these three buildings are tested. Here, the correct

matching rate refers to the percentage of correct matches among all matched feature

point pairs between two video frames.

It can be concluded that, in the above three buildings, the average correct match-

ing rates of image features are 94.3% of A-KAZE, 85.2% of SIFT, 80.8% of SURF and

only 74.1% of ORB correspondingly. Compared with A-KAZE, the feature matching

59



M.A.Sc. Thesis – H. Zheng McMaster – Electrical & Computer Engineering

accuracy of SIFT, SURF and ORB are reduced by 9.2%, 13.5% and 20.2% respec-

tively. The experimental data prove that A-KAZE obtains the best performance

among all four feature points, with high accuracy and strong robustness. Therefore,

our system also leverages the image feature extraction and matching algorithm of

A-KAZE.

6.2.2 Influence of the Relative Pose of POIs and Two Cam-

eras

As is introduced in Subsection 4.2.2, the accuracy of relative pose calculation and

triangulation is essential for the whole positioning and navigation system. Therefore,

in this subsection, we mainly focus on the influence of the relative pose of the POI,

smartphone camera and monitoring camera on the positioning performance. In the

experiment, it is assumed that the orientation and position of the POI and monitoring

camera are fixed. By moving the smartphone camera, the relative distance between

the POI and smartphone camera and the angle formed by all these three objects

are changed. So that we can analyze the influence of different relative poses on the

subsequent positioning results.

First of all, as is shown in Figure 6.4, when the distance between the POI and

smartphone camera is fixed at 5m, the influence of different angles on the positioning

results is tested. When the angles formed by the smartphone camera, POI and

monitoring camera are set at different values, the means of positioning accuracies of

our system are 0.68m at 30◦, 1.05m at 45◦ and 1.86m at 60◦ respectively. The result

shows that the positioning error becomes larger with the increase of the angle formed

by the three. The reason is that when the angle is larger, the difference between
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Figure 6.4: Influence of Different Angles on Positioning Accuracy

the video frames captured by the smartphone camera and monitoring camera will

also increase significantly. This can bring more difficulties for the subsequent image

registration, leading to the decline of the feature matching accuracy, and then affect

the positioning performance.

In addition, with the above three angles, the corresponding variances of positioning

errors are 0.26 at 30◦, 0.59 at 45◦ and 0.61 at 60◦. It can be seen that the increase of

the angle will also lead to a significant increase in the variance of the positioning error.

That is to say, a too large angle will add to the uncertainty of the positioning results

and make the positioning function more unstable. Therefore, when using the system,

it is suggested that the angle between the smartphone camera, POI and monitoring

camera should not exceed 45◦.
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Figure 6.5: Influence of Different Distances on Positioning Accuracy

Secondly, as is shown in Figure 6.5, with the angle of the smartphone camera,

POI and monitoring camera fixed to 30◦, the influence of different distances on the

positioning results is tested. When the distances between the POI and smartphone

camera are 5m, 7.5m, 10m and 12.5m, the means of positioning errors of our sys-

tem are 0.46m, 0.64m, 0.89m and 1.11m respectively. Moreover, the 90th percentile

positioning errors of the above four distances are 0.95m, 1.30m, 1.53m and 2.32m

correspondingly. The experimental results are in accordance with the expectation.

This is because, with the increase of the distance between the POI and smartphone

camera, the depth estimation of POI will become more difficult, which will affect

the calculation of the relative distance in triangulation, and ultimately reduce the

positioning accuracy.
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6.2.3 Influence of Video Quality

Because our indoor positioning and navigation system is mainly based on vision, the

quality of videos as data inputs is of vital importance to the whole system. The

experiments in this subsection are designed to explore the impacts of two essential

factors, namely the frame rate and resolution, which determine the video quality.

Four different settings of the frame rate and resolution are adopted to observe the

experimental results, which are 1080p 60FPS, 1080p 30FPS, 720p 60FPS and 720p

30FPS.

0.0 0.5 1.0 1.5 2.0 2.5Position Error (m)
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1080p 60FPS
1080p 30FPS
720p 60FPS
720p 30FPS

Figure 6.6: Influence of Different Video Quality on Positioning Accuracy

The results of the positioning experiment are shown in Figure 6.6. With the four

types of video quality, 1080p 60FPS, 1080p 30FPS, 720p 60FPS and 720p 30FPS,
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the corresponding means of positioning errors of our system are 0.46m, 0.56m, 0.71m

and 0.78m respectively. When the smartphone camera adopts the same video frame

rate, the mean of positioning errors of 720p resolution is 0.74m, while the mean of

1080p resolution is reduced by 29.1% to 0.53m. Moreover, with the same resolution,

the system error of 60FPS frame rate is 11.2% less than that of 30FPS, which are

0.60m and 0.67m respectively.
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Figure 6.7: Influence of Different Video Quality on Successful Navigation Rate

Then, in the navigation experiment, the above four kinds of video quality of the

smartphone camera are tested on different-length paths of 20m, 40m, 60m and 80m

respectively. The navigation results are shown in Figure 6.7.

As introduced in Subsection 6.1.3, successful navigation refers to that, according

to the starting point and target location, the system can guide the user to each
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landmark, which is selected and detected as the experimental settings, on the planned

route sequentially until the destination is reached. Otherwise, this is recorded as a

failed navigation. The successful navigation rate, which is used to measure the system

performance, is the percentage of successful navigations in all simulated navigation

experiments.

Overall, using different video quality of 1080p 60FPS, 1080p 30FPS, 720p 60FPS

and 720p 30FPS on all above paths, the means of successful navigation rates are

93.3%, 90.8%, 87.5% and 84.4% respectively. An obvious contrast is that, on the

20m, 40m, 60m and 80m paths, the means of successful navigation rates of 1080p

resolution outperform 720p resolution by 5.9%, 9.0%, 7.6%, and 6.5% respectively.

The experimental results indicate that the frame rate and resolution of videos

recorded by the smartphone camera have a significant impact on the performance

of our indoor positioning and navigation system. The frame rate of the smartphone

camera will affect the blur degree of the video, so the high frame rate video can reduce

the error of positioning and tracking. From the aspect of resolution, more feature

points can be extracted from the higher resolution image, which helps to improve

the accuracy of image matching between the smartphone camera and monitoring

camera. In addition, during the user’s movement, with higher resolution, the system

can estimate the pose changes of the smartphone camera between adjacent image

frames more accurately in real-time. Moreover, from the test results, we can obtain

that the resolution of videos from the smartphone camera has a more remarkable

impact on the system performance than the frame rate, and the high-definition video

is conducive to providing more stable indoor positioning and navigation services.
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6.2.4 Influence of Relocation

As mentioned in Chapter 3, in the process of positioning and navigation, the system

can leverage the relocation function to reduce the possibility of drifts, so as to reduce

or even eliminate the cumulative error. In order to verify the function of the relocation

module, experiments are designed to compare the navigation performance of the

system when the relocation function is turned on and off.
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Figure 6.8: Validation of Relocation Function

In the experiment, four different-length paths in the educational building are cho-

sen to evaluate the effect of relocation. The navigation results are shown in Figure 6.8.

Turning off the relocation function means that, only in the initialization stage, the
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system uses the monitoring camera and smartphone camera in the mean time to cap-

ture the POI. While in the subsequent navigation process, other POIs and monitoring

cameras are not used, only the smartphone camera is leveraged to continuously locate

and track the user.

It can be seen from the histogram that the navigation performance of the system

when using the relocation function is obviously superior to that when the relocation

function is turned off. On the whole, on all paths, the use of relocation remarkably

improves the average successful navigation rate by 7.9% to 93.4%. Specifically, the

successful navigation rate of the system is increased by 2.4%, 5.1%, 9.6% and 16.9%

respectively on the four navigation paths of 20m, 40m, 60m and 80m. This reveals

that as the path becomes longer, the effect of relocation on the improvement of nav-

igation service is more outstanding. The experimental results are in accordance with

the theoretical principle introduced before. Longer navigation paths usually result

in greater drifts. But the relocation function can eliminate the previous accumu-

lated error effectively and relocate the smartphone camera to the correct position

and trajectory, so as to optimize the navigation performance.

Moreover, the experimental results demonstrate that, even without using the relo-

cation module, our system can still achieve relatively high successful navigation rates

of 96.1% and 92.4% on the 20m and 40m navigation paths correspondingly, which

both have exceeded 90%. This verifies the robustness of our indoor positioning and

navigation system. Even if merely in the initial stage, the monitoring camera and

smartphone camera can capture the POI at the same time, but in the subsequent

navigation process, only the smartphone camera is used for tracking the user due to

the occlusion of obstacles or the blurred video frames, our system can still provide
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the relatively stable and satisfying navigation service.

6.2.5 Influence of Different Scenarios

As described in Subsection 6.1.2, the positioning and navigation experiments are

conducted in an apartment building, an educational building and a supermarket, and

the performances of the system in different indoor scenarios are compared.
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Figure 6.9: Comparison of Positioning Accuracy in Different Scenarios

The result of positioning is shown in Figure 6.9. It can be obtained that the means

of positioning errors are 0.37m in the apartment building, 0.54m in the educational

building and 0.84m in the supermarket. Moreover, correspondingly, the 90th per-

centile positioning errors in these three environments are 0.64m, 0.93m and 1.55m.
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This reveals that our system can achieve the positioning accuracy of less than one

meter or around one meter in all three experimental areas, regardless of the differ-

ences in the indoor environments. In addition, in the above three different buildings,

the variances of positioning errors are 0.04, 0.09 and 0.26 respectively, which are all

less than 0.3. This clarifies that our system can provide users with a relatively stable

positioning experience in all three indoor scenarios.
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Figure 6.10: Comparison of Successful Navigation Rate in Different Scenarios

The comparison results of navigation simulation experiments of our system in the

three different indoor scenarios are shown in Figure 6.10. The successful navigation

rate of the system can reach 91.5% and 88.2% respectively in the apartment building

and educational building. However, the successful navigation rate in the supermarket

is only 82.1%, reduced by about 10%.
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In the supermarket scenario, the main reason for the obvious decline of positioning

accuracy and successful navigation rate is that there are many interferences caused

by the complex indoor environment and the crowded customer flow. For example,

the moving pedestrians or shopping carts may block the POI, which leads to great

changes in the content of video frames, and thus the system could not make good

image matching.

But generally speaking, our positioning and navigation system in these three types

of common indoor scenarios shows superior performance, regardless of the specific

differences and dynamic variations in the environments.

6.2.6 Influence of Lighting Conditions

In the three scenarios (the apartment building, educational building and supermarket)

described before, video data is collected in multiple time periods of the day. Thus,

we can compare the performance of our positioning and navigation system under

different lighting conditions. In the experiment, videos are recorded at about 9 : 00,

14 : 00 and 19 : 00.

The results of influence on positioning accuracy are shown in Figure 6.11. Con-

sidering all the experimental scenarios, the means of positioning errors of our system

in the three time periods are 0.51m, 0.52m and 0.56m respectively. This reveals

that the positioning accuracies in the morning and in the afternoon are slightly dif-

ferent. While in the nighttime, the positioning accuracy decreases rapidly, and the

positioning error increases by 7.6% compared with that in the daytime.

In addition, among all the three experimental scenarios, the apartment building

experiences the largest variation of the lighting condition during one day, and the
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Figure 6.11: Comparison of Positioning Accuracy in Different Time Periods

positioning error of the system also increases sharply by 16.8% from 0.36m in the

daytime to 0.42m in the nighttime. This change of positioning error can reflect the

influence of different lighting conditions on the system performance. The main reason

is that in the scenarios (such as apartment buildings) where the lighting conditions at

night may be significantly worse, the number of feature points that can be extracted

from the captured video frames will be dramatically reduced. This will increase the

image matching error between the smartphone camera and monitoring camera, thus

affecting the positioning accuracy. For similar reasons, the successful navigation rate

of our system in the apartment building is only 86.7% in the nighttime, which is

around 3.1% lower than that in the daytime.
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6.2.7 System Latency Comparison

The latency of the positioning and navigation service is mainly caused by the system

taking a certain amount of time to process and calculate, which is strongly associated

with the designed localization and tracking algorithms. The overall latency of the

system is composed of four major parts: feature detection, POI recognition, VO

tracking and pose estimation. Because the image resolution of the captured video

frame can significantly affect the running time of all these modules, the resolution

is included in the experimental factors influencing the system latency. In addition,

the indoor positioning system, JVWL, is compared with our system to prove the

efficiency of the proposed algorithms.

The latencies of four modules in our system are tested separately. First of all,

after the system starts up, for the module of extracting and matching the A-KAZE

feature points in image frames, the average latencies of our system are 21ms and

31ms respectively with the image inputs of 720p and 1080p resolution. Secondly,

POIs are detected and recognized. In the meantime, the visual odometry will run

synchronously to estimate the motion of the smartphone camera between adjacent

image frames. The above two parallel modules spend 66ms at 720p resolution and

113ms at 1080p resolution. Finally, with regard to the module for pose estimation

and location tracking of the smartphone camera, the average time spent by the system

is 19ms.

The overall comparison of experimental results is shown in Figure 6.12. The top

edge of each bar represents the average latency of the system. The distance between

the top or bottom cap and the edge shows the value of the standard deviation. With

regard to the comparative experimental systems, MVG does not provide the relevant
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Figure 6.12: Overall System Latency Comparison

data of system running time. In addition, due to spending a large amount of time on

landmark detection and image matching, the total time required for localization of

HAIL is 3.7s, closely to 4s, which is far more than that of our system. Therefore, in

this experiment, the latency of our system is only compared with JVWL.

It can be seen that the means of total latencies of our system correspond to

0.11s and 0.16s with the video inputs of 720p and 1080p. Compared with JVWL,

the latencies of the designed system are remarkably reduced by 38.9% and 11.2%

adopting the above two resolutions. Moreover, the standard deviations of system

latencies are 0.03 for 720p and 0.06 for 1080p, which are 55.2% and 16.1% less than

that of JVWL respectively. It proves that the positioning time of our system is not

only shorter but also relatively more stable. Thus, the designed system can provide
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users with a smoother and more reliable positioning experience.

It can be summarized that our proposed system can achieve the positioning and

tracking accuracy within one meter, and in the meanwhile, the overall system latency

can be less than 0.2s. This excellent performance can satisfy the real-time demand

of the indoor positioning and navigation system.

6.2.8 Overall System Performance Comparison

As explained in Subsection 6.1.4, the overall positioning performance of the proposed

system is compared with three cutting-edge vision-based indoor positioning systems,

which are MVG, JVWL and HAIL respectively.
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Figure 6.13: Overall Positioning Accuracy Comparison of Different Systems
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For the box plot, the line in each box indicates the median of positioning errors.

The lower and upper edges represent the 25th and 75th percentile positioning errors

respectively. The lower and upper whiskers extend to the corresponding minimum

and maximum values.

From Figure 6.13, it can be obtained that the mean of positioning errors of our

system is 0.46m, which is 13.2% less than that of MVG, 25.8% less than that of JVWL

and 69.3% less than that of HAIL correspondingly. Therefore, it can be concluded

that our system can provide the best positioning accuracy among these four systems.

In addition, with regard to the 90th percentile positioning error, the 0.93m of our

system is 17.9% lower than MVG, 24.5% lower than JVWL and 67.2% lower than

HAIL. Meanwhile, the variance of positioning errors of the proposed system is 0.13,

which is reduced by 23.4%, 27.1% and 87.1% compared with MVG, JVWL and HAIL

respectively. The above results prove that, as compared to the other three systems,

our indoor positioning system not only can achieve the sub-meter level accuracy but

also ensure the stability and reliability of the performance, so as to provide satisfying

positioning services.

With regard to the navigation performance, experiments are conducted to compare

the navigation simulation results of our system with Travi-Navi. As described in

Subsection 6.1.4, Travi-Navi is one of the most advanced indoor navigation systems.

Figure 6.14 depicts that the average success rate of indoor navigation achieved by our

system is 90.6%, which is 3.4% higher than that of Travi-Navi. It can be obtained

that our system can provide the navigation service with an overall success rate of

about 90%, which can meet the needs of users in practical navigation applications.

The above experimental data clarifies that the navigation performance of our
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Figure 6.14: Overall Successful Navigation Rate Comparison of Different Systems

system can outperform some most effective existing indoor navigation systems. Fur-

thermore, unlike other P2P navigation systems, such as Travi-Navi, our system has

the potential of combining positioning with navigation. It is more labour-saving to

leverage the image information which can be directly loaded than the trajectory map

which needs to be manually constructed for assisting navigation.

Based on the results of all comparison experiments, it can be summarized that,

compared with other advanced systems, our system has achieved better performance

in indoor positioning accuracy and successful navigation rate. The main reasons are

as follows.

76



M.A.Sc. Thesis – H. Zheng McMaster – Electrical & Computer Engineering

1. The inherent advantages of image-based positioning. As mentioned be-

fore, our system is mainly based on vision, combining the image information

captured by the monitoring camera and smartphone camera. The positioning

accuracies of other indoor positioning systems based on inertial sensors or Wi-Fi

signals are generally about 5m. This is due to the inherent defects of these sys-

tems. For example, the acceleration and angular velocity measured by inertial

sensors can have obvious drifts, which makes the calculated camera pose very

unreliable. In addition, in a complex indoor environment, due to the occlusion

of walls or other obstacles, Wi-Fi signals can fluctuate significantly, resulting in

sharp attenuation or even disappearance of signal strength.

In contrast, our vision-assisted positioning system has higher accuracy and

stronger robustness. On the one hand, the image frames captured by cam-

eras contain more abundant and fine information, such as the feature points,

which are beneficial to image registration with high accuracy. On the other

hand, the application of the visual odometry module enables the system to con-

tinuously locate and track the position of the user in motion. Even if only using

the smartphone camera, without using the other monitoring cameras and POIs,

the performance of our system is still relatively superior and stable.

2. The optimization of data integration. Though other leading-edge indoor

positioning and navigation systems also exploit multiple sources of informa-

tion as inputs, their data integration algorithms are loosely coupled. In these

systems, each submodule generates its own positioning result independently.

Therefore, the positioning errors from different submodules will be accumulated,

which will further affect the final positioning accuracy of the whole system. By
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contrast, the integration of information from different sources in our system is

tightly coupled. In the proposed system, the positionings of the smartphone

camera and monitoring camera are not two independent parallel submodules.

Image feature matching and epipolar constraints both need to use and fuse the

information from the video frames captured by the two cameras at the same

time. This will significantly reduce the cumulative error caused by integrating

the positioning results of each independent submodule.

78



Chapter 7

Conclusion

In this thesis, an indoor positioning and navigation system integrating the monitoring

camera and smartphone camera has been proposed, which can be further divided into

the following three parts.

First of all, the system extracts and matches A-KAZE feature points from the

video frames of two cameras and identifies the POI in the shot scenes. From epipolar

constraints and triangulation, the relative pose relationship between cameras and

POI can be calculated. Thus, combined with the preloaded semantic information, the

system can acquire the transformation scale from relative lengths in the perspective

of the smartphone camera to real distances in the floor plan.

Secondly, according to the obtained scale relationship, by projecting, rotating

and translating, any three-dimensional point in the mobile coordinate system can

be converted to the corresponding two-dimensional point in the plane coordinate

system. Therefore, when starting the system, the user’s initial position in the actual

environment can be determined successfully.

Then, when the user continues moving forward, our system will always track the
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user’s real-time position, as well as provide appropriately planned paths and correct

navigation tips.

Based on the designed algorithms, the proposed indoor positioning and navigation

system has been implemented completely and its performance has been tested in vari-

ous application scenarios, such as an educational building, an apartment building and

a supermarket. Experimental results prove that our system can achieve a positioning

accuracy of 0.46m and a successful navigation rate of 90.6%, which outperform the

state-of-the-art schemes by more than 13% and 3% respectively. Furthermore, it is

worth mentioning that the overall system latency is only about 0.2s, which can meet

the real-time demands. It can be concluded that our system can provide users with

sub-meter level high-precision positioning and smooth navigation experiences.

In summary, assisted by already widely deployed monitoring cameras, the pro-

posed indoor positioning and navigation system not only is easy to be implemented

in real environments but also can provide accurate, efficient and reliable services for

users. It is believed that in the future, the public places equipped with our system

will be able to bring more convenience to people’s lives.
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