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ABSTRACT Genome-wide variation in SARS-CoV-2 reveals evolution and transmission
dynamics which are critical considerations for disease control and prevention decisions.
Here, we review estimates of the genome-wide viral mutation rates, summarize current
COVID-19 case load in the province of Ontario, Canada (5 January 2021), and analyze
published SARS-CoV-2 genomes from Ontario (collected prior to 24 November 2020) to
test for more infectious genetic variants or lineages. The reported mutation rate
(;1026 nucleotide [nt]21 cycle21) for SARS-CoV-2 is typical for coronaviruses. Analysis of
published SARS-CoV-2 genomes revealed that the G614 spike protein mutation has
dominated infections in Ontario and that SARS-CoV-2 lineages present in Ontario have
not differed significantly in their rate of spread. These results suggest that the SARS-
CoV-2 population circulating in Ontario has not changed significantly to date. However,
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ongoing genome monitoring is essential for identification of new variants and lineages
that may contribute to increased viral transmission.

KEYWORDS COVID-19, epidemiology, G614D, genetics, infectious disease, PANGOLIN
lineage, public health, SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent
of coronavirus disease 2019 (COVID-19), has had devasting consequences on

human health and wellbeing (1, 2), health care systems (3), and the global economy
(4). Numerous studies have demonstrated the immense value of time-resolved SARS-
CoV-2 genome sequencing for tracing viral origin (5, 6), mutational dynamics (7, 8),
and transmission properties (9, 10) to inform public health decision-making (11).

The first COVID-19 case in Ontario, Canada, was reported in January 2020, followed
thereafter by a rapid increase in reported cases beginning in early March (Fig. 1). The
number of new infections spiked in April followed by a significant decrease in new
infections by mid-August, which coincided with heavy restrictions on everyday
human activity, including physical distancing, limited social events, face mask
requirements in public spaces, reduction of nonessential travel, and closing of
schools and workplaces. However, only a month later the province saw a sharp rise
in COVID-19 cases, signifying a second wave that has since surpassed the first wave
in daily case counts (Fig. 1).

Potential contributors to the surge of infections in Ontario include changing behaviors
of the host permitting the virus to be transmitted more easily or evolution of the patho-
gen enabling it to overcome barriers that had previously slowed its spread. To address
concerns regarding the mutation of SARS-CoV-2 since its introduction into Ontario and
the impact that these mutations may have on transmission efficiency of the virus, we
have addressed the following questions. What is the published mutation rate of SARS-
CoV-2 and how does it compare with other RNA viruses? Are there SARS-CoV-2 mutations
(spike D614G) or lineages circulating in Ontario that may contribute to increased trans-
mission of the virus which correlates with increases in infection rates?

SARS-CoV-2 MUTATION RATE

Viral evolution through genetic mutations enables viruses to increase virulence and
transmissibility, escape host defenses, and infect new host species. There are several
general trends that determine virus mutation rates (12–17) (Fig. 2). First, RNA viruses have
mutation rates that are between 10 and 100 times higher than DNA viruses; a mutation

FIG 1 Daily COVID-19 case counts in Ontario, Canada, from 1 January 2020 until 5 January 2021
show surges of infections beginning in March and September 2020.
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rate of 1026 to 1024 substitutions per nucleotide (nt) per cell infection (s/n/c) is commonly
observed in RNA viruses, compared to DNA viruses that mutate at a rate of ;1028 to
1026 s/n/c (12). Second, single-stranded viruses (both DNA and RNA) have higher muta-
tion rates than double-stranded viruses (13). Third, viral mutation rate inversely correlates
with genome size (i.e., the larger the genome, the lower the overall mutation rate) (15, 18,
19). Single-stranded RNA viruses are typically characterized by the highest mutation rates,
resulting in part from replication by a self-encoded RNA-dependent RNA polymerase that
lacks proofreading activity. However, some single-stranded viruses, including coronavi-
ruses, have exonuclease proofreading capability provided by the nonstructural protein
(ExoN), which reduces mutations during replication (20) and may contribute to the main-
tenance of larger genomes observed in the group (21).

SARS-CoV-2 is a positive-sense, single-stranded RNA [ss(1)RNA] virus with a large
genome that is typical of coronaviruses (;29.9 kb) (22). It shares 80% nucleotide iden-
tity with SARS-CoV, the virus responsible for the SARS epidemic in 2003, and 55% nu-
cleotide identity with Middle East respiratory syndrome coronavirus (MERS-CoV),
described in 2012 (16). The mutation rate of SARS-CoV-2 (;1026 nt21 cycle21) (16) is
low for an ss(1)RNA virus and has been reported to be similar to (7, 23, 24) or even
lower than (25, 26) the mutation rate of other coronaviruses including SARS-CoV. The
low mutation rate and high transmission rate of SARS-CoV-2 have resulted in distinct
genetic lineages that are shared across large geographic regions. This global admixture
of genomes that differ by ,1% (27) has two important consequences for health care
management. First, the low mutation rate reduces the probability of evolving resist-
ance to therapeutic vaccines, such as those targeting the spike protein (7). Second,
linking identical lineages in patient samples from around the world enables reconstruc-
tion of transmission pathways (5, 6, 11, 28).

D614GMUTATION FREQUENCY

One of the most prevalent variants observed in SARS-CoV-2 sequenced genomes is
the adenine-to-guanine nucleotide substitution at position 23403, a nonsynonymous
mutation resulting in an amino acid substitution from aspartic acid to glycine at posi-
tion 614 in the spike protein. The first D614G mutation was described in a viral genome

FIG 2 Viral mutation rates (substitutions per nucleotide site per cell infection [s/n/c]) depend on
nucleotide type, number of strands, and genome size. Viral classes include positive single-stranded
RNA [ss(1)RNA], negative single-stranded RNA [ss(2)RNA], double-stranded RNA (dsRNA), retrovirus
(RT), single-stranded DNA (ssDNA), and double-stranded DNA (dsDNA), and comparison virus includes
cytomegalovirus (CMV).
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sequence from China on 24 January 2020 followed by Germany on 28 January 2020
(29). This variant was found in 10% of globally published genomes by 1 March 2020,
and became the most dominant form within a month (8). In the months that followed,
hundreds of new lineages containing the D614G variant have been described.
Countries that avoided a first wave of SARS-CoV-2 in January and February 2020,
including most African and South American countries, report SARS-CoV-2 genotypes
that are almost exclusively the G614 variant (29). The D614G amino acid change occurs
in the spike protein but is outside the observed spike/ACE2 binding domain (amino
acids 387 to 516) (30). The substitution from D to G reportedly enhances SARS-CoV-2
infectivity, competitive fitness, and transmission in primary human cells and animal
models (31), which may contribute to the increasing variant frequency at multiple geo-
graphic locations, even those with an established D614 SARS-CoV-2 population (8, 32).
In addition, viral loads are higher (demonstrated by lower reverse transcription-quanti-
tative PCR (RT-qPCR) threshold cycle [CT] values) in COVID-19 patients infected with the
G614 variant compared with the D614 variant (8, 32). Recently, at least one study has
suggested that the second wave of COVID-19 cases may be a result of increased trans-
missibility of SARS-CoV-2 with the G614 variant (33). In contrast, another study found
that D614G does not associate with significantly increased viral transmission and sug-
gests that increases in D614 frequency are a demographic artifact due to a founder
effect (34). To our knowledge, no study has shown that spike protein variants differ in
virulence within human populations, and the potential impacts, if any, of D614G on
the COVID-19 pandemic remain unclear (35).

Research, public health, and clinical laboratories in Ontario have been sequencing
SARS-CoV-2 genomes since January 2020 and by 5 January 2021 shared a cumulative
1,743 genomes on the GISAID database (www.gisaid.org) (36). As this study investigated
the temporal distribution of SARS-CoV-2 variants and lineages, the 78 samples in the
GISAID database reporting a collection date with year only were removed from the analy-
sis. In addition, samples collected on or after 24 November 2020, the first point prevalence
analysis (to be published elsewhere), were also excluded, resulting in 1,466 viral genomes
being included in this analysis. The SARS-CoV-2 genomes that were classified by GISAID as
part of the G, GR, GH, or GV clade had the G614 variant, while all other clade classifications
had the D614 variant (www.gisaid.org/references/statements-clarifications/clade-and
-lineage-nomenclature-aids-in-genomic-epidemiology-of-active-hcov-19-viruses/). The
earliest sequences (January and February) reported in Ontario have the wild-type
sequence (D614), but most of the sequences reported during the first wave (March to
June) are the mutant type (G614) (Fig. 3). In fact, the G614 variant accounts for 95.2%
of all SARS-CoV-2 genomes reported in Ontario. Given that the G614 variant was al-
ready prevalent in Ontario at the beginning of the pandemic and that the D614 variant
has not been detected since May, it is likely that the second wave has likewise been
dominated by the G614 variant of SARS-CoV-2, suggesting that increased case num-
bers corresponding to the second wave of COVID-19 are likely unrelated to the spike
protein variant. Our understanding of the circulating viral variants in Ontario, especially
in rural areas, is limited by the available SARS-CoV-2 genome data on the GISAID server
as the data demonstrate temporal bias (Fig. 3) and are geographically weighted to the
greater Toronto area and eastern Ontario due to the laboratories sequencing SARS-
CoV-2 being in these regions. As more viral genomes are sequenced and shared, this
sampling bias may be reduced.

FREQUENCY OF CIRCULATING LINEAGES

A dynamic nomenclature system based on a phylogenetic framework was proposed
by Rambaut et al. (37) in July 2020 to help track the global spread of SARS-CoV-2 line-
ages. This nomenclature was quickly adopted by the international community, and a
tool known as PANGOLIN (Phylogenetic Assignment of Named Global Outbreak
LINeages) (https://github.com/hCoV-2019/pangolin) was developed to assign lineages
of newly sequenced genomes. At the root of the SARS-CoV-2 pandemic is lineage A,
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which originated from China and disseminated globally. Arising from lineage A within
China is lineage B, defined by two single nucleotide polymorphisms (SNPs), T8782C
and C28144T (37). A number of other early lineages have been associated with specific
geographies, including A.1 in the Washington State, USA, outbreak, B.1 in the Italian
outbreak, and B.1.1, the major European lineage which was spread throughout the
world (37). The variant causing the D614G mutation is characteristic of all SARS-CoV-2
genomes in B.1 and its descendant lineages (38). Many of these early lineages dissemi-
nated globally and are now present in most countries, with most local epidemics
seeded by many independent introductions of the virus (39). Several lineages, includ-
ing B.1.147 and B.1.114, have been characterized as Canadian SARS-CoV-2 lineages
(https://cov-lineages.org/descriptions.html).

There are a total of 65 lineages identified in the 1,466 SARS-CoV-2 genomes published
from COVID-19 cases in Ontario; however, only 22 lineages were observed$10 times and
account for 91.9% of the published samples (Fig. 4A). No lineage dominates the more
recent published genomes (Fig. 4A), and we detect no significant change in the monthly
proportion of sequenced genomic lineages (Fig. 4B; F20,52 = 0.3098; P = .0.9; R2 = 0.106).
Instead, lineage prevalence varies widely from month to month, consistent with stochas-
tic effects of human activity such as a superspreader event that increases prevalence of a
particular strain in 1 month only to be stamped out with contact tracing the next.
However, this analysis is limited by the temporal and geographic biases discussed above.
The novel lineage B.1.177 reported across Europe during the summer of 2020 was
described in a single case in Ontario in September 2020, but no further cases with this lin-
eage were found to date (40). Furthermore, lineage B.1.1.7 was recently described in the
United Kingdom and preliminary characterization suggests that the new strain is signifi-
cantly more transmissible (41). The presence of this lineage was confirmed in Ontario on
26 December 2020. Therefore, there is a clear need to sequence more SARS-CoV-2
genomes, more broadly sampled, especially from the second wave of infections, to
increase statistical power for detecting more subtle variation among lineages in their con-
tribution to the second and future waves of infections in Ontario.

CONCLUSION

The COVID-19 pandemic has had a profound effect on the social and economic wel-
fare of people and governments worldwide as they struggle to reduce the spread of
the virus through implementation of comprehensive and aggressive public health
measures. Our results contribute to our understanding of SARS-CoV-2, its reported

FIG 3 Total COVID-19 cases (line, right axis) and D614G variant distribution in published SARS-CoV-2 genomes (bars,
left axis) from COVID-19 cases in Ontario from January 2020 to January 2021. Column labels represent the percentage
of total sequences containing the G614 variant in each month.
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mutation rate, and the variants and lineages that have been circulating in Ontario,
Canada. SARS-CoV-2 has a genome size and mutation rate that are typical for coronavi-
ruses and is reported to have a similar or lower mutation rate than SARS-CoV.
Furthermore, Ontario’s circulating SARS-CoV-2 represents a relatively mixed genetic
population resulting from multiple introductions and within-province spread. As dis-
cussed, preliminary evidence reportedly implicates the SARS-CoV-2 G614 variant as a
more transmissible variant that may contribute to a second wave of the pandemic.
However, this variant has been present in Ontario since the beginning of the pan-
demic, has been the dominant form of the virus in Ontario and in many other global
regions, and is present in most sublineages that are currently circulating globally. We
also detect no increased prevalence of a particular lineage that can account for the
increase in cases in Ontario. It is possible that changes in human behavior are more
likely explanations for the current wave of infections, perhaps due to relaxed control
measures or declining compliance with existing measures. To slow transmission of
COVID-19 and preserve health system capacity, the Province of Ontario implemented a
second provincewide shutdown effective 26 December 2020. Sparse data limit our abil-
ity to detect differences in infection rate and highlight the need for Public Health

FIG 4 Distribution of major SARS-CoV-2 lineages sequenced from COVID-19 cases in Ontario. (A)
Temporal distribution of major SARS-CoV-2 lineages of published genomes from January to
December 2020. Column labels represent cumulative number of viral genomes for that month. (B)
Box plot representing the monthly change in lineage prevalence (i.e., proportion of genomes) of each
of 22 major SARS-CoV-2 lineages circulating in Ontario.
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Ontario Laboratory and academic research groups across Ontario to sequence and
archive SARS-CoV-2 genomes from COVID-19 cases, particularly over the course of the
second wave. Ongoing SARS-CoV-2 genomic surveillance, like the Canadian COVID
Genomics Network (CanCOGeN) initiative, is essential to identify mutations that allow
reconstruction of transmission pathways and detection of variants that affect transmis-
sibility, virulence, or host mortality.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, PDF file, 0.01 MB.
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