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A B S T R A C T

The role of asymptomatic carriers in transmission poses challenges for control of the COVID-19 pandemic. Study
of asymptomatic transmission and implications for surveillance and disease burden are ongoing, but there has
been little study of the implications of asymptomatic transmission on dynamics of disease. We use a mathe-
matical framework to evaluate expected effects of asymptomatic transmission on the basic reproduction number

0 (i.e., the expected number of secondary cases generated by an average primary case in a fully susceptible
population) and the fraction of new secondary cases attributable to asymptomatic individuals. If the generation-
interval distribution of asymptomatic transmission differs from that of symptomatic transmission, then estimates
of the basic reproduction number which do not explicitly account for asymptomatic cases may be systematically
biased. Specifically, if asymptomatic cases have a shorter generation interval than symptomatic cases, 0 will be
over-estimated, and if they have a longer generation interval, 0 will be under-estimated. Estimates of the
realized proportion of asymptomatic transmission during the exponential phase also depend on asymptomatic
generation intervals. Our analysis shows that understanding the temporal course of asymptomatic transmission
can be important for assessing the importance of this route of transmission, and for disease dynamics. This
provides an additional motivation for investigating both the importance and relative duration of asymptomatic
transmission.

1. Introduction

In an epidemic, symptomatic cases are the predominant focus of
treatment and usually represent the bulk of reported cases. However,
infected individuals who are asymptomatic yet infectious can be a
critical factor in the spread of some pathogens (Fraser et al., 2004).
Asymptomatic individuals are hard to trace, unlikely to self-isolate, and
are likely to retain normal social and travel patterns (Quilty et al.,
2020).

There is significant ongoing interest in asymptomatic infections in
COVID-19 (Chan et al., 2020; Pan et al., 2020; Tang et al., 2020) and
their transmission potential (Bai et al., 2020) for two major reasons.
First, the proportion of infections that are asymptomatic (see Mizumoto
et al., 2020) is critical to attempts to estimate the likely burden of

severe outcomes (including mortality (Fauci et al., 2020)) when the
virus spreads through a population. Second, understanding the possible
role of transmission by asymptomatic individuals is crucial to planning
surveillance and control efforts (Fraser et al., 2004). Given that 86% of
the cases were undocumented (i.e., mildly symptomatic or asympto-
matic) in Wuhan, China, prior to travel restrictions and may account for
79% of infection in severe, symptomatic cases (Li et al., 2020),
asymptomatic cases are also likely to play an important role in the
transmission of COVID-19.

Here, we focus on a third effect. If asymptomatic cases are im-
portant for transmission, they also have the potential to affect estimates
of key parameters of disease spread such as the basic reproduction
number 0 (i.e., the expected number of secondary cases generated by
an average primary case in a fully susceptible population (Anderson
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and May, 1992)). Thus, we investigate the relationship between in-
dividual-level features of asymptomatic cases (e.g., the probability that
an infection is asymptomatic, asymptomatic case duration, transmission
by asymptomatic individuals) to dynamics at the population scale.

2. Methods

We model viral spread using a renewal-equation framework
(Heesterbeek and Dietz, 1996), which allows us to model the current
incidence of infected individuals (i.e., the rate at which new infections
occur in the population) as a function of previous incidence and how
infectiousness of an infected individual varies over the course of their
infection. We divide incidence i into two categories – ia and is – corre-
sponding to incidence of asymptomatic and symptomatic cases, re-
spectively. Newly infected individuals that are either asymptomatically
or symptomatically infected can transmit the disease to others, but they
may differ in their intrinsic reproduction numbers, a and s, respec-
tively, as well as intrinsic generation-interval distributions
(Champredon and Dushoff, 2015), ga(τ) and gs(τ). Generation intervals,
which are defined as the time between when an individual is infected
and when that individual infects another person (Svensson, 2007),
shape the relationship between the epidemic growth rate r and the
reproduction number (Wallinga and Lipsitch, 2007). The differences in
the generation-interval distributions between asymptomatic and
symptomatic cases can be caused by the differences in the natural
history of infection irrespective of their transmissibility: Individuals
with asymptomatic infections may recover faster and have short gen-
eration intervals, or have persistent infection and long generation in-
tervals (cf. Roberts and Heesterbeek, 2007).

Neglecting births and loss of immunity on the time scale of an
outbreak, the dynamics of susceptibles and incidence are (see Table S1
for parameter definitions):

=S i t( ), (1)

= +i t S t i t g S t i t g( ) ( ) ( ) ( )d ( ) ( ) ( )d ,a a a s s s0 0

(2)

where i(t)= ia(t)+ is(t). The basic reproduction number of this system
is:

= +p p(1 ) ,a s0 (3)

where p is the proportion of incident cases that are asymptomatic: ia
(t)= p i(t). The corresponding intrinsic generation-interval distribution
of an average infected individual is given by:

= +g zg z g( ) ( ) (1 ) ( ),a s (4)

where we define the “intrinsic” proportion of asymptomatic transmis-
sion z as the relative contribution of asymptomatic cases to the basic
reproduction number:

=z p / .a 0 (5)

Note that the intrinsic proportion of symptomatic transmission satisfies

=z p1 (1 ) / .s 0 (6)

Yet, this information is not sufficient to disentangle the role of
asymptomatic cases, i.e., what fraction of secondary cases can be as-
cribed to realized transmission from asymptomatic cases vs. sympto-
matic cases?

The intrinsic proportion of asymptomatic transmission z is a useful
benchmark, but does not necessarily reflect the realized proportion of
asymptomatic transmission, unless both types of infection have the
same generation-interval distribution. The realized proportion of
asymptomatic transmission, q at time t is given by:

=q
q
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s s s

0
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During the period of exponential growth, we assume S remains nearly
constant, and i(t) is proportional to exp(r t); here, the observed ex-
ponential growth rate r is an average of the exponential growth rates we
would observe if there were only asymptomatic (p=1) or symptomatic
(p=0) cases. We then simplify by recalling that ia(t)= p i(t), is
(t)= (1− p)i(t) such that:

=q
q

z
z1 1

.a

s (8)

Here, δc for each of the two classes is the average “discount” of a new
infection – the average relative contribution of a secondary infection to
the epidemic, taking exponential growth into account:

= r gexp( ) ( )d .c c0 (9)

δc<1 and grows smaller as the generation interval grows longer. Thus,
the realized proportion of asymptomatic infections will be increased
(resp., decreased) if transmission is relatively faster (slower) along the
asymptomatic route. The discount δ also depends on the relative var-
iation in the generation-interval distribution, the “dispersion”: More
variation in generation intervals leads to more opportunities for fast
spread and thus to higher values of δ (similar to shorter average gen-
eration intervals).

To estimate the effects of assumptions about asymptomatic trans-
mission on the inferred importance of asymptomatic transmission and
estimates of the basic reproduction number 0, we parameterize the
generation interval distributions of asymptomatic and symptomatic
cases based on their means, Ga and Gs, and dispersions, κa and κs. We
assume that generation intervals are gamma distributed, and we set the
dispersion to be equal to the squared coefficient of variation (the re-
ciprocal of the gamma shape parameter, see Supplementary Materials).
We assume that epidemic growth rate r and the generation-interval
distribution of symptomatic case are known, using parameter values
that are consistent with earlier COVID-19 models (Park et al., 2020): 1/
r=7 days, =G 8s days, and κs=0.5. We infer values of q using Eq. (8)
and 0 using the Euler-Lotka equation (Lotka, 1907):

= +r zg z g1 exp( )( ( ) (1 ) ( ))d .a s
0 (10)

We compare this with the naive estimate of the basic reproduction
number that assumes that the generation-interval distributions of the
asymptomatic and symptomatic cases are identical:

= r g1 exp( ) ( )d .s
naive (11)

In Supplementary Materials, we also use an ordinary differential
equation model (SEIR model) including both asymptomatic and
symptomatic cases to give a concrete example of how differences in
generation intervals affect both q and estimates of 0.

3. Results

We explore the effects of different assumptions about speed and
effectiveness of asymptomatic transmission on the importance of
asymptomatic transmission and estimates of the basic reproduction
number 0, using a gamma assumption (see Methods). Across the range
of parameters we explore, the intrinsic proportion of asymptomatic
transmission z is similar to the realized proportion q (Fig. 1A). As the
relative mean generation interval of asymptomatic transmission, G G/a s,
increases, q decreases because symptomatic cases are more likely to
have short generation intervals, which drive the spread during the
growth phase (Fig. 1A). In Figure S1, we present the same figure but
showing differences between the realized and the intrinsic proportion
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of asymptomatic transmission, q− z.
Fig. 1B shows the effect of different assumptions about the gen-

eration interval of asymptomatic cases, Ga, on the estimated basic re-
production number 0. When Ga is long compared to Gs, then we are
effectively assuming a longer mean for the overall generation interval.
This assumption leads to a larger estimate of 0 for a fixed value of r
(see Park et al., 2019). Conversely, when <G Ga s, generation intervals
are shorter, leading to lower estimates of the epidemic strength 0.
Both of these effects are stronger when the intrinsic proportion of
asymptomatic transmission z increases (and disappear as z→0).
Therefore, when 0 is estimated without explicitly accounting for
asymptomatic spread (white, dashed line in Fig. 1B), it can be over- or
under- estimated depending on the relative duration of infection be-
tween symptomatic and asymptomatic individuals. The qualitative ef-
fects of z and G G/a s on q and 0 remain robust when we assume nar-
rower (κs= κa=0.3; Figure S2) or wider (κs= κa=0.8; Figure S3)
generation intervals.

Relative generation-interval dispersion of asymptomatic cases κa/κs
have similar, but smaller, effects on q and 0 (Figure S4). Since a wider
generation-interval distribution has a higher proportion of early
transmission than a narrow one, increasing the generation-interval
dispersion has qualitatively similar effects on q and 0 as decreasing the
mean generation interval.

4. Discussion

Much is still unknown about the time scale and effectiveness of
asymptomatic transmission in COVID-19. Here we highlight the need to
characterize the generation-interval distribution for asymptomatic
transmission, and its consequences not only for contact tracing but for
estimation of the basic reproduction number of the ongoing COVID-19
outbreak (Park et al., 2020) and of the effective proportion of asymp-
tomatic transmission during the exponential-growth phase. Our
reproduction number findings fit into a broader framework linking epi-
demic speed, strength, and generation intervals – for a given observed
speed increases in the mean generation interval imply larger reproduc-
tion number (Wearing et al., 2005; Roberts and Heesterbeek, 2007;
Wallinga and Lipsitch, 2007; Powers et al., 2014; Park et al., 2019).

If asymptomatic infections are more persistent than symptomatic
ones, the mean generation interval for COVID-19 could be longer than

estimated from symptomatic cases alone – possibly causing 0 to be
underestimated (Fig. 1B). However, if asymptomatic cases tend to re-
solve quickly, then current estimates of 0 may be over-estimates of the
underlying strength (Fig. 1B), and asymptomatic cases may be driving a
larger fraction of secondary cases than we would expect without ac-
counting for their differences (Fig. 1A). The importance of these effects
depends on the relative infectiousness of asymptomatic transmission as
well as the proportion of incident cases that are asymptomatic (and
therefore the intrinsic proportion of asymptomatic transmission z). The
biases in the estimates of 0 will necessarily bias estimates of the
amount of intervention required to control the epidemic. Note that
cases do not have to be completely asymptomatic for our qualitative
results to apply. People with mild symptoms unlikely to be diagnosed in
a particular time and place (sometimes referred to as subclinical cases)
are expected to affect transmission patterns in the same way.

We focus here on the exponential phase, so it is worth noting that
the realized proportion of asymptomatic transmission q is time-depen-
dent, varying with dynamic changes in incidence and proportion sus-
ceptible. Future work might also consider the ways in which asymp-
tomatic individuals can modulate the catalysis of epidemics in a
networked metapopulation (Watts et al., 2005; Chinazzi et al., 2020; Du
et al., 2020). Characterizing the role of asymptomatic individuals in
driving the persistence of the epidemic will be critical for assessing the
post-pandemic outcome (Kissler et al., 2020).

Data availability

All code is available at https://github.com/mac-theobio/
coronavirus_asymptomatic.
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Fig. 1. Effects of intrinsic proportion of asymptomatic transmission on the realized proportion of asymptomatic transmission and basic reproduction number, given
variation in the mean generation interval of asymptomatic cases. (A) Increasing the speed of asymptomatic transmission (shorter generation intervals) increases the
realized proportion of asymptomatic transmission, q. (B) Increasing the speed of asymptomatic transmission (shorter generation intervals) decreases the basic
reproduction number 0. When Ga is smaller (larger) than Gs, estimates based on the observed generation distribution for symptomatic cases ( = 2.50 ; dashed line)
are expected to over- (under-) estimate the true 0. For both panels, the circle denotes z=0.5 and =G G/ 0.55a s whereas the triangle denotes z=0.5 and =G G/ 1.8a s .
Solid lines show contours for q and 0 values. The dashed line represents the naive estimate that assumes =G Ga s. Here, we assume 1/r=7 days, =G 8s days, and
κs= κa=0.5.
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