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Abstract

Modern Advanced Driver Assistant Systems (ADAS) focus more on daytime driving

and primarily use daylight cameras as the main vision sources to detect, classify,

and track objects. However, evidence has proved that autonomous driving using

such a setup is compromised in the dark, and consequently, resulting in accidents.

The hypothesis is that adding an infrared camera to the existing ADAS will boost

the detection rate and accuracy, and further enhance the overall safety. This thesis

investigates how well a standalone infrared camera performs onboard vehicle percep-

tion tasks such as object detection and classification using both machine learning

and deep learning algorithms. Given a custom labeled infrared driving dataset that

contains 4 classes of objects, “People”, “Vehicle”, “Bicycle”, and “Animal”, multiple

attempts and improvements of training a supervised learning model, namely the linear

multi-class Support Vector Machine (SVM) have been made by using various image

preprocessing and feature extraction methods to detect the objects. During train-

ing, hard example mining is used to reduce the number of false classifications. This

SVM employs a One-Against-All (OAA) styled approach and uses the image pyramid

technique to enable multi-scale detection. On the deep learning side, a Convolutional

Neural Network (CNN) based state-of-the-art detector, the YOLOv4 family includ-

ing the full-sized and tiny YOLOv4 has been selected, trained, and tested at different
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input sizes using the same dataset. Labeling format conversion is performed to make

this work. The results show that using bilateral filtering with the Histogram of Ori-

ented Gradients (HOG) feature to train an SVM is preferable and is more accurate

than the YOLOv4 family. However, the YOLOv4 networks are significantly faster.

Overall, a standalone infrared camera cannot provide dominant detection results,

but it can definitely supply useful information to the ADAS and complement other

sensory devices for improved safety.
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”I could either watch it happen or be a part of it.”

– Elon Musk
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Chapter 1

Introduction

The autonomous vehicle, self-driving vehicle, and driverless vehicle usually refer to

vehicles equipped with Advanced Driver-Assistance Systems (ADAS) that would not

require a human driver to operate. These vehicles must be able to detect and clas-

sify objects in their vicinity, provide distance measurements, and operate using an

autopilot. Sensors are one of the key components of ADAS, and ADAS offers safety

features such as adaptive cruise control, autonomous emergency braking, lane-keeping

assist, lane departure warning, blind-spot monitoring, steering assist, parking assist,

and cross-traffic assist.

Modern ADAS heavily rely on regular day-light monocular or stereo cameras to

coordinate the onboard object detection and classification tasks. However, daylight

cameras have been proved unhelpful working in the dark or under foggy conditions

which drastically reduces the robustness of the ADAS and makes detecting and clas-

sifying objects under these conditions nearly impossible. Although thermal cameras

excel at nighttime operations, they are only available as options on some production

vehicles, but not an essential part of the ADAS.
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Moreover, almost all state-of-the-art detectors take the Deep Learning (DL) ap-

proach and use Deep Neural Networks (DNN) as the backbone. Traditional Machine

Learning (ML) algorithms seem to be absent in the competition of state-of-the-art

detectors. Therefore, in this thesis, at the McMaster Automotive Resource Centre

(MARC), it is aimed to use both ML and DL algorithms to build detectors and

study why traditional ML algorithms become less competent at performing percep-

tion tasks. Additionally, this thesis is also aimed to study the feasibility of infrared

cameras becoming an integral part of the ADAS by using a standalone infrared camera

to perform onboard object detection and classification.

1.1 Contributions

In this thesis, both machine learning and deep learning algorithms have been studied

in regard to object detection and classification using a vehicle-mounted infrared cam-

era. The resulting system was deployed on a vehicle and tested on the recordings.

The real-time performance will be tested in the future. The major contribution to

this research includes:

� Background research: During the background research, more than 100 pub-

lished literature and articles on autonomous vehicles/systems from renowned

online sources have been reviewed including the history, the technology used,

the instrumentation, the system’s architecture, the software algorithms, and

finally, the methodology.

� Camera preparation and calibration: Reading and exporting data from the

FLIR A65 thermal camera generally requires a proprietary application, and this
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makes synchronizing with other sensors impossible. In addition, the recordings

were in a format (.seq) that cannot be directly opened and viewed by most

computers. Therefore, researches and experiments have been conducted here

to build a driver that can convert recording frames into PNG or JPG format.

Calibrating the camera is another challenging task. Many attempts have been

made to calibrate the FLIR A65 camera using existing methods from published

literature. However, most of these attempts have failed due to cold temper-

atures. After some research and based on the findings, a new and creative

infrared camera calibration method has been proposed.

� Dataset preparation: Creating a custom dataset is another important step in

this project. From some previously recorded data, 8,192 frames with objects

have been extracted and labeled. The object classes are people, vehicle, bicycle,

and animal. The labeling process is the most boring, and time-consuming part of

this project. Because how objects are labeled can directly affect the performance

of a trained model and thus, carefully placing a bounding box around an object

with the most appropriate amount of spacing requires a lot of patience.

� Training a Support Vector Machine (SVM): When training the SVM model, the

architecture and processing pipeline have been thoroughly researched and an-

alyzed. The architecture involves the type and number of SVM required. The

processing pipeline involves the selection of image pre-processing and feature

extraction techniques. Selecting the optimal pre-processing and feature extrac-

tion combo requires a significant amount of coding as each option needed to be

implemented and later combined to evaluate the performance. When tuning the

SVM parameters, experiments are conducted on a trial-and-error basis which

3
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also requires numerous amounts of coding. 6 image preprocessing and 7 feature

extraction methods are implemented and evaluated in this process.

� Training a You Only Look Once (YOLO) network: Each version of the YOLO

(from v1 to v4) and the improvements over the previous versions has been

studied. Because YOLO does not use any image preprocessing method other

than resizing. Therefore, the impact of additional image preprocessing methods

on the processing time has been evaluated. Moreover, 3 full-sized YOLO net-

works (320×320, 416×416, and 608×608) and the corresponding Tiny-YOLO

networks have been trained.

� Performance evaluation: The per class precision from the SVM and YOLO has

been combined and compared. The discussion on what can be further improved

has been carried out.

1.2 The McMaster Center for Mechatronics and

Hybrid Technologies (CMHT)

The McMaster Center for Mechatronics and Hybrid Technologies (CMHT) is a world-

class research and development center focused on advanced automotive technology.

CMHT utilizes a state-of-the-art research facility exploring Autonomous driving, Con-

nected vehicles, Electrification, and Shared mobility (ACES) solutions in the automo-

tive world. CMHT has developed an in-house car detection and tracking technology

which has led to an experimental setup for on-road driving, data collection, and real-

time detection and tracking. All experiments in this thesis were conducted at the
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CMHT with the help of the autonomous team. All sensors including a stereo vision

daylight camera, a Velodyne LiDAR, and a FLIR A65 thermal imaging camera were

mounted on an electric Ford Focus in Figure 1.1.

Figure 1.1: The experiment vehicle at the CMHT.

1.3 Preliminary Remarks

Driving is an essential part of human life and most people enjoy driving, so why do

we need autonomous vehicles? World Health Organization (WHO) stated that every

year there are approximately 1.35 million people who die in road traffic crashes, and

20 to 50 million people suffer non-fatal injuries, [1]. Canada reported 1,922 fatalities

and 152,847 injuries caused by motor vehicle collisions in 2018, [2]. Although some

collisions can be avoided by improving road infrastructure or frequently checking the

vehicles’ status, it is estimated that around 90% of all motor vehicle collisions are

due to human error such as speeding, distracted driving, and the use of psychoactive
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substances, [3][4][5]. In addition to putting lives at risk, traffic accidents can also affect

the global economy. According to WHO, “Road traffic crashes cost most counties 3%

of their gross domestic product”. Imagine the societal impact if this problem could

be eliminated by autonomous vehicles. The potential benefits and savings are very

significant. In economic terms only, Morgan Stanley estimated that autonomous

vehicles can contribute to over $5.6 trillion global savings annually, [6].

1.4 The Levels of Autonomy

Society of Automotive Engineers International (SAE) has set six levels of driving

automation from level 0 to level 5, [7].

� Level 0: Momentary assistance and warning features such as automatic emer-

gency braking, blind-spot warning, and lane departure warning are supported.

The features supported in this category are only limited to providing warnings

and momentary assistance. A human driver is in complete control of the vehicle

and must constantly supervise the supported features.

� Level 1: In addition to all the features supported in level 0, steering, brake, or

acceleration assistance including lane-centering or adaptive cruise control are

supported. A human driver must constantly control the vehicle and supervise

the supported features.

� Level 2: In addition to level 1, level 2 provides both steering and brake/acceleration

assistance. Lane centering and adaptive cruise control must be supported at the

same time. A human driver must constantly control the vehicle and supervise

the supported features.
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� Level 3: In Level 3, the ADAS can drive the vehicle under limited conditions if

all required conditions are met. However a human driver must be available to

take control when prompted to do so.

� Level 4: Starting from level 4, pedals, steering wheel, and human driver are not

needed. The autonomous vehicles in level 4 can operate autonomously under

limited conditions if all required conditions are met. Local driverless taxi is one

example of level 4 autonomous.

� Level 5: Unlike the vehicles in level 4 that can only operate under limited

conditions, level 5 autonomous vehicles can operate in all conditions.

The United States National Highway Traffic Safety Administration (NHTSA) also

defined its levels of automated driving systems, but it was soon abandoned to comply

with the SAE standard.

1.5 The History of Autonomous Vehicles

Before the SAE standards, automated vehicles were guided by human vision and

remote control. Similar to today’s radio-controlled cars and roller coasters, they are

either actively controlled by humans or only move on a pre-defined path (similar to

the steering and brake/acceleration assist in SAE level 1). The first radio-controlled

“autonomous” vehicle, called the “American Wonder” (see Figure 1.2) was invented

in 1925, [8]. This early attempt of the autonomous vehicle has antennas installed and

uses radio signal to control its acceleration and braking. During the road test, the

operator remotely controlled the “American Wonder” from the vehicle behind.
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In 1939, Norman Bel Geddes took a step further. Instead of remotely controlling

the vehicle himself, he embedded the radio-controlled circuits in the roadway, [8].

Later in 1958, RCA Labs and the State of Nebraska successfully demonstrated their

autonomous vehicle using a specially designed infrastructure: coils in the pavement

and roadside installed lights. The driver was able to know if he got too close to

the vehicle ahead by listening to a bell ring and looking at a radio-controlled light

installed in the vehicle and on the side of the road, [8]. These prototypes are not truely

autonomous by today’s SAE standard. Instead, they are trying to develop driver-

assist features. These early attempts rely on roadway features, either by embedding

radio-controlled circuits or magnetic cables under the pavement.

Figure 1.2: The American Wonder in 1925.

The first autonomous vehicle by today’s standard was tested in 1986, a vision-

guided Mercedes van built by Ernst Dickmanns and his team at Bundeswehr Univer-

sity Munich, Germany, [8]. The van was able to detect road markings and travel at

63 kilometers per hour on a closed highway. Dickmanns’ team later put the equip-

ment on two Mercedes 500 SELs and named them the UniBwM VaMP and Daimler

VITA-2. These vehicles were demonstrated in France on a three-laned public highway

in 1994, [8]. They were able to travel autonomously at 130 kilometers per hour and
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switch lanes autonomously. In 1995, a re-engineered version of Dickmanns’ S-class

traveled autonomously more than 1,700 kilometers from Bavaria to Denmark on the

German Autobahn at an astonishing speed of 175 kilometers per hour, [9].

On March 13, 2004, the Defense Advanced Research Projects Agency (DARPA)

launched the Grand Challenge to facilitate robotic development, [10]. There were 15

autonomous vehicles involved in this competition to navigate a 228km route across

the Nevada desert. Unfortunately, none of the vehicles finished. The second Grand

Challenge was held on October 8th, 2005. A Volkswagen Touareg from Stanford

University managed to finish first. The third Grand Challenge known as “the urban

challenge” was held on November 3, 2007, and required the vehicles to operate au-

tonomously and finish an urban course in under 6 minutes. All vehicles were required

to drive in traffic and perform complex maneuvers such as merging, passing, parking,

and negotiating intersections. 6 teams managed to finish.

During the Expo 2010 Shanghai China, the VisLab Intercontinental Autonomous

Challenge (VIAC) was launched, [11]. Four autonomous vehicles were involved in

the 13,000-kilometer challenge from Parma Italy to Shanghai China. These vehicles

demonstrated the ability to follow a pre-defined route autonomously with almost no

human intervention, and they proved that it is possible to transport goods using such

vehicles between two continents. This was considered one of the main milestones in

Robotics.

In October 2015, Tesla Motors released its software update 10 that allows the

owner to “summon” the vehicle and allows the vehicle to park itself, [12]. This was

ahead of all other production vehicles at the time. During the same year, Delphi

Automotive’s autonomous vehicle traveled 3,500 miles from San Francisco to New
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York, and it became the first autonomous vehicle that demonstrated its capability of

traveling coast-to-coast, [13].

In 2017, SAE International and General Motors launched the AutoDrive Chal-

lenge, [14]. The goal of this competition was to develop and demonstrate a level 4

autonomous vehicle by SAE standards that navigates an urban driving course au-

tonomously. Each team was given an electric Chevrolet Bolt and tasked to convert it

into an autonomous vehicle. In the end, University of Toronto’s self-driving car team,

“aUToronto” won the competition, [15].

1.6 Some Recent Autonomous Accidents

On January 20, 2016, in Hebei China, a Tesla Model S with autopilot engaged was

traveling on the highway and crashed into a truck. The 23 years old driver was not

alerted by the system and died in the accident, [16]. This is not the first known fatal

autonomous car accident.

On March 18, 2018, Uber’s autonomous vehicle, a Volvo XC90 hit and killed a

49 years old female cyclist at night in Tempe, Arizona, [17]. Instead of using Volvo’s

factory automatic emergency braking system, Uber equipped the vehicle with a level

3 autonomous system and disabled the factory system to prevent potential software

conflict. While the victim was walking her bike across the street, the vehicle was

traveling at 40 miles per hour in its fully autonomous mode. According to the post-

crash investigation, the system classified the victim as an unknown object and crashed

into her, [17].

Later on March 28, 2018, a Tesla Model X crashed into a roadside barrier in

Mountain View, California. Six seconds before the impact, the driver was alerted
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by the hands-on warning. However, it was reported that the 38 years old driver was

distracted by his cellphone and died soon afterward. Two years later, the National

Transportation Safety Board (NTSB) published its investigation regarding the acci-

dent. The involved Tesla vehicle was not designed to detect the crash barrier and

accelerated into the barrier, [18].

These autonomous vehicles all have rather high-leveled autonomous features, level

2-3 for Tesla, and level 3 for the Volvo. However, they all failed to detect the objects

ahead. To prove whether autonomous vehicles are safe to operate on the road, they

must be tested for hundreds of millions more miles, [19]. As of February 2018, Google’s

autonomous vehicles have been road-tested for 5 million miles, [20].

1.7 The Sensors

Autonomous vehicles are usually equipped with five types of sensors including cam-

eras, Radio Detecting and Ranging (RADAR), ultrasonic sensors, Global Positioning

Systems (GPS), and Light Detection and Ranging devices (LiDAR). Good sensors

are the prerequisite of a reliable autonomous system.

Modern autonomous vehicles use mono or stereo cameras to produce a 360° view

of their surroundings because cameras can provide most of the details needed by a

human driver from outside the vehicle. The 360° camera system normally consists of 4

to 6 cameras located around the vehicle including both front and rear-facing cameras.

The ADAS normally runs algorithms on the front-facing cameras for the majority of

object detection, classification, and distance measurement tasks. Depending on the

application and cameras’ specification, a camera’s working distance and field of view

(FOV) may vary. For example, a typical front-facing camera can detect objects as far
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as 250 meters ahead, a medium-range front-facing camera uses 70° - 120° of horizontal

FOV, and a long-range front-facing camera may use 35° of horizontal FOV, [21].

Figure 1.3 shows the front-facing cameras on a Tesla vehicle which have a maximum

detection range of 250m, [22].

Figure 1.3: Tesla’s front-facing camera module

Thermal or infrared (IR) cameras use a sensor that is sensitive to infrared radiation

also known as heat. Any object above absolute zero emits infrared radiation, so IR

cameras can detect most objects that regular daylight cameras fail to detect at night.

The wavelength of infrared radiation is longer than visible light which makes it scatter

less when traveling through airborne substances, [23]. Consequently, IR cameras are

useful for night-time driving and detecting live objects behind fog, dust, and gas.

Figure 1.4 shows the FLIR A65 IR camera that was used in this research.
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Figure 1.4: The FLIR A65 thermal camera

Radar is commonly used for detecting and localizing objects using high-speed radio

waves, [24]. Radar calculates the distance by measuring the time it takes radio waves

to bounce off the object and travels back to the radar receiver. Because radar waves

can pass through substances like fog and dust, the radar sensor plays an important

role in detecting objects.

The current radar systems deployed on autonomous vehicles work either in the

24 GHz or 77 GHz frequency band, [21]. The 77GHz radars are more accurate but

the 24 GHz radars are small and compact. Blind-spot detection, lane change assist,

rear-end collision warning, automatic emergency braking, adaptive cruise control, and

park assist are application domains of using radar. All Tesla vehicles have a long-

range radar that can detect objects up to 160m ahead, [22]. The ADAS usually need

multiple radars facing different angles for improved accuracy. Figure 1.5 shows a

77GHz front radar sensor manufactured by BOSCH that has a maximum detection

range of 210m.
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Figure 1.5: BOSCH’s 77GHz front radar sensor

LiDAR is a remote sensing method primarily used for distance measurement,

[25]. LiDAR generates a 3D animated point cloud representation of an object by

illuminating the target with laser pulses and calculating the distance based on the

laser reflection. In general, autonomous vehicles use two types of LiDAR, Mechanical

LiDARs and solid-state LiDARs. The mechanical LiDAR uses a rotating mechanism

to generate a 360° FOV, whereas the solid-state LiDAR has no moving parts and a

narrower FOV.

Depending on the applications, automotive LiDARs can detect objects at a maxi-

mum distance of 70m on average, and some premium LiDARs can even detect objects

at a maximum distance of 250m. Because solid-state LiDARs are cheaper, automak-

ers usually use multiple solid-state LiDARs placed at different angles to generate a

360° view.

In 2018, Toyota Research Institute (TRI) introduced their latest automated driv-

ing research vehicle version 3.0, a Lexus LS600hL was equipped with four long-range

solid-state LiDARs by Luminar for a maximum of 200 meters detection range in every
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direction, [26]. Figure 1.6 shows the Luminar LiDAR on the TRI’s research vehicle.

Figure 1.6: The Luminar LiDAR on the TRI’s research vehicle.

The ultrasonic sensor emits high-pitched sound waves and calculates the distance

by measuring how long the reflection wave takes to get back to the sensor, [27].

Ultrasonic sensors can generally detect objects up to 9-11 meters away. Therefore,

this type of sensor is only suitable for close-range applications. To get accurate

detection with ultrasonic sensors, objects must be made of materials that can easily

reflect ultrasonic waves. Because sound waves can be absorbed by materials like

fabric, the ultrasonic sensors on modern vehicles are only used for low-level and

short-range safety features such as blind-spot warning and parking assist. Modern

vehicles commonly use 4 to 12 ultrasonic sensors for wide FOV coverage. Figure 1.7

shows the ultrasonic parking sensors that can be found on almost all modern vehicles.

Figure 1.7: The ultrasonic parking sensor on modern vehicles
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GPS is a satellite-based system that was originally developed by the U.S. gov-

ernment for military use and consisted of 24 satellites orbiting the Earth, [28]. But

nowadays, GPS is commonly used on modern vehicles for positioning, navigation, and

timing (PNT). Positioning is the act of accurately calculating the current position

including longitude, latitude, and altitude. Navigation is for setting up a course from

one place to another, and finally, timing is the ability to acquire the current local

time.

The GPS on a vehicle usually works in conjunction with a compass and forms a

system called satellite navigation (satnav). The satnav marks the vehicle’s current

position on a 2D or 3D digital map and indicates the current traveling direction

and speed, estimated time of arrival (ETA), and highlights the optimal route to the

destination. Some advanced satnav systems can even provide traffic information such

as the locations of the traffic signals, signs, and speed cameras. Figure 1.8 shows a

typical GPS satnav system on modern vehicles.

Figure 1.8: A typical GPS satnav system on modern vehicles.
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1.8 The Latest Trend of Autonomous Vehicle

The latest autonomous vehicles are usually equipped with a variety of sensors and

utilize sensor fusion technologies to combine sensors’ output. Sensor fusion has been

exercised by many automakers on their autonomous vehicles. Uber used a total

of 7 LiDAR, 7 Radar, and 20 cameras on its Ford Fusion. It later reduced the

sensors to 1 LiDAR, 10 Radar, and 7 cameras on its Volvo XC90, [29]. Tesla used 8

cameras, 12 ultrasonic sensors, and 1 radar on all of its vehicles, [22]. Baidu’s latest

autonomous vehicle equipped with its Apollo 6.0 platform, used two front-facing

cameras, 4 LiDARs, and 2 radar, [30].

In recent years, autonomous vehicles have demonstrated their capabilities in both

industrial and recreational areas. Autonomous vehicles are being used for public

transport, freight transport, mining, retail, manufacturing, and agriculture. Dur-

ing the COVID-19 coronavirus pandemic, new opportunities and challenges for au-

tonomous vehicles are emerging. Baidu leveraged autonomous vehicles to help to fight

the pandemic. 104 autonomous vehicles from Baidu were deployed in 17 cities across

China, [31]. These autonomous vehicles were used to help frontline anti-epidemic

work such as cleaning, disinfecting, and transportation. Figure 1.9 shows the au-

tonomous vehicle from Baidu that is being used to deliver food and supplies to the

Beijing Haidian Hospital. On September 26, 2019, Baidu launched its autonomous

taxi service in Changsha, China. an initial fleet of 45 vehicles was deployed at a trial

area covering major residential and business districts, [32].
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Figure 1.9: Baidu’s autonomous vehicle is delivering food and supplies to a hospital

1.9 Thesis Outline

This thesis is structured as follows:

� Chapter 1 is the current chapter and provides a brief introduction and objectives

of this thesis along with a background review of autonomous vehicles.

� Chapter 2 presents a literature review on thermal imaging, the differences be-

tween ML and DL, object detection and classification from both ML and DL

perspectives, the metrics, and some popular ML and CNN architectures.

� Chapter 3 discusses the methods and results of calibrating the FLIR A65 in-

frared camera and proposes a new method for infrared camera calibration.

� Chapter 4 elucidates a YOLO approach for detecting and classifying objects

including how to label a dataset, how to train the YOLO, and how altering the

network size will affect the overall performance.

18



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

� Chapter 5 explains detecting objects using an SVM approach including eval-

uating different combinations of image pre-processing and feature extraction

methods, how to prepare training samples, and how to effectively train the clas-

sifier. A discussion on how the SVM compares to the YOLOv4, and what can

be improved will also be given at the end of this chapter.

� Chapter 6 provides a summary of all the work that has been done in this thesis

and proposes potential areas of future research.
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Chapter 2

Literature Review

In this thesis, an thermal imaging infrared camera was used to capture data that

facilitates the training of a Machine Learning (ML) and a Deep Learning (DL) model

on detecting and classifying objects. The literature regarding the technology and

algorithms used will be reviewed in this chapter.

2.1 Thermal Imaging

Unlike regular daylight cameras and human eyes perceive visible light, thermal imag-

ing relies on heat. Heat, also known as infrared or thermal energy is a part of the

Electromagnetic (EM) spectrum. Ranking the wavelength in the EM spectrum from

the shortest to the longest, the EM spectrum consists of radio, microwave, infrared,

visible light, ultraviolet, X-ray, and gamma-ray, [33]. Due to the difference in radia-

tion wavelength, a regular daylight camera and human eyes cannot detect heat and

therefore making heat-radiating objects such as living things and mechanical equip-

ment invisible in the dark. However, the optical systems on thermal imaging cameras

20



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

are built to detect IR energy, so they can easily detect the heat being absorbed, re-

flected, and transmitted, and therefore work perfectly for detecting such objects in

the dark. The thermal imaging technology was originally developed and vastly used

in military applications, but because it is so useful, nowadays it has been extensively

used by many other applications such as firefighting and temperature monitoring,

[34].

2.2 The Algorithms

Determining if an object is in the image is called detection, and determining what

is in the image is called classification. Classification with localization outlines the

boundary of the object. In this section, the algorithms for object detection and

classification will be explained from the classic ML and modern DL perspectives.

Training a model using either the ML or DL approach requires an annotated dataset

to be split into a training, a validation, and a testing set. The training set is where

the model learns from, the testing set is where the model evaluates its performance,

and the validation set is used to tune the model’s hyperparameters. In general, there

are many options on how much data goes into each set, some commonly used ratios

are 60% - 80% for training, 15% - 20% for testing, and 15% - 20% for validation, [35].

2.2.1 Metrics

When evaluating a model, some terminologies, namely precision, average precision

(AP), mean average precision (mAP), recall, intersection over union (IoU), and F -

β score are commonly used, [36]. It is necessary to understand the meaning of these
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terms in order to tell how well a model is performing.

Among a given dataset, the objects in which the model is designed to classify

are called the positive class. Conversely, the undesired objects are categorized as

the negative class. The classification results can be categorized into True Positive

(TP), True Negative (TN), False Positive (FP), and False Negative (FN). TP and

TN are two expected outcomes when the model correctly classifies the positive and the

negative class. FP and FN are two unexpected outcomes when the model incorrectly

classifies the positive and the negative class. Given TP, TN, FP, and FN, precision

and recall can be calculated respectively as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Precision tells how accurate the model is in classification, and recall measures the

level of correct true classification. It is worth mentioning that both precision and

recall are per-class measurements which means the same model will yield a different

precision and recall when predicting another class. Precision and recall both ranging

between 0 and 1 and they are often inversely related. There is usually a trade-off

between precision and recall. If the precision is high, the recall is likely to be low.

Intersection over Union (IoU) measures the overlap between the ground truth and

the prediction. The ground truth usually means the manually labeled bounding box

in the dataset, and the prediction means the bounding box generated by the model.

The IoU is calculated as:
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IoU =
Area of Overlap

Area of Union

The higher the IoU score, the better a model is in localizing the ground truth. A

good prediction usually has an IoU score greater than 0.5. The PASCAL VOC metric

uses 0.5 as the IoU threshold. Figure 2.1 is a graphical depiction of the IoU where

the green box represents the prediction and the red box is the ground truth.

Figure 2.1: Intersection(top) over Union(bottom)

Average precision is the area under the precision curve and it is the value calcu-

lated from multiple IoU thresholds for a class. For example, when calculating the

precision at both 0.5 and 0.75 IoU, AP is the average of those two. Mean average

precision is used to average the AP from multiple classes. The Microsoft Common

Objects in Context (MS COCO) dataset uses notations like AP@[.5 : .95], AP50, and

AP75 to evaluate precision. The number following AP is the IoU score used to

calculate AP. For example, AP50 means calculating the precision at 0.5 IoU, and

AP@[.5 : .95] means taking the precision from 0.5 to 0.95 IoU with a step size of 0.05.
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The F-β score is a harmonic mean of precision and recall and it is calculated as:

F − β score = (1 + β2) · precision · recall
β2 · precision+ recall

The β represents the balance between precision and recall. When β = 1, precision

and recall are equally weighted. It becomes precision-oriented when β < 1 and recall-

oriented when β > 1.

2.2.2 Machine Learning and Its Types

Machine Learning is the study of computer algorithms that improve automatically

through experience, [37]. In image processing, ML offers effective methods for appli-

cations like target acquisition, feature extraction, and image segmentation. Based on

the learning style, ML algorithms can be categorized into supervised, unsupervised,

semi-supervised, and reinforcement learning.

Supervised learning can be further divided into classification and regression prob-

lems. The major difference between classification and regression problems is that

classification problems predict a class label and regression problems predict a real

number. Using supervised learning to build an image classifier is an example of the

classification problem. The model learns from a labeled image dataset, and every

image has a label that specifies the class that it belongs to. When feeding a new

image to the model, it predicts the corresponding class label. Weather forecasting

is an example of using supervised learning to solve regression problems. Given a set

of labeled data, the model predicts the probability of certain weather conditions, i.e.

the probability of precipitation on next Monday.

Unsupervised learning, on the other hand, does not require labeled data and is
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commonly used for clustering. The k-means clustering algorithm [38] is an example

of using unsupervised learning that partitions the initial data points into k clusters

by adjusting the centroid (arithmetic mean of each cluster).

Semi-supervised learning is a hybrid of supervised and unsupervised learning and

uses a mixture of labeled and unlabeled data during learning. Generally, the dataset

in semi-supervised learning largely contains unlabeled samples with only a few labeled

samples. For example, a semi-supervised model may use unsupervised learning first

to cluster the data, then use supervised learning to label the unlabeled data.

Finally, a reinforcement learning model develops new tactics based on the ex-

periences accumulated in the past. Instead of using a fixed dataset, reinforcement

learning models move towards a goal by “reward” or “penalize” themselves.

2.2.3 Classic Machine Learning Methods

The classic machine learning methods in computer vision usually start by acquir-

ing images, then preprocessing the images and extract features, and finally makes a

decision through a classifier. This sequence is also known as the vision pipeline.

Image Acquisition

Image acquisition is the act of collecting images using a sensing device and trans-

forming them into an array of numerical data that can be later processed by the

computer. Nowadays, a common approach for training a machine learning model

is to use challenging datasets that are publicly available on the internet. The sizes

of these datasets are usually enormous. For example, the MS COCO dataset con-

tains over 1.5 million images from 91 common object categories, [39]. The ImageNet
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dataset contains more than 1.28 million training images, 50,000 validation images,

and 100,000 test images that span 1,000 object classes, [40]. Learning from existing

datasets like the MS COCO or ImageNet is more than enough to build a classifier that

can successfully classify common objects, but some applications require researchers

to prepare a custom dataset.

Image Preprocessing

Images might be taken using various optics with different sizes and aspect ratios or

resolutions, hence it is often challenging to analyze raw images. Feeding a model

with raw images may yield a longer training time and poor performance. Image pre-

processing is the fundamental step in all image processing applications that converts

raw images into a clean dataset. This step is always needed regardless of whether a

machine learning or a deep learning model is being trained.

Some algorithms are designed to take images in a unified size, so raw images

need to be resized. For example, the Histogram of Oriented Gradient (HOG) feature

descriptor is commonly used as a gradient-based feature extractor that extracts fea-

tures from images, [41]. As proposed by the original author, the HOG takes images

in 64× 128 resolution or 1:2 aspect ratio. Therefore, if one wants to use HOG as the

feature extractor, raw images need to be resized to the aforementioned resolution or

aspect ratio. Otherwise, it may cause unexpected behaviors.

Additionally, images may be noisy. In photography terms, image noise is the

randomness of color or luminance fluctuation due to photons or the electronic sen-

sors, [42]. Using such noisy images to train a classifier generates undesirable results.

A common approach for noise suppression is to use a technique called filtering also
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known as denoising or smoothing. Examples are average filtering [43], Gaussian filter-

ing [44], bilateral filtering [45], median filtering [46], and non-local means denoising,

[47]. These filtering techniques will be explained in greater detail in Chapter 5.2.

Moreover, manipulating pixel values such as normalizing (making the values fall

under a certain range, usually 0-1), zero-centering (making the distribution of pixel

values centered at 0), and standardizing the pixel values (transforming the distribu-

tion of pixel values to be a standard Gaussian) are generally beneficial for the training,

[48].

Converting color images into grayscale is another commonly used preprocessing

technique, [49]. In some applications, color information may not be of interest, and

therefore reducing the red, green, and blue (RGB) channels to a single gray-scale

channel can significantly reduce the computational complexity as using a single color

channel eliminates unnecessary pixel-value-wise operations.

Finally, when there is not enough data available in the dataset, a preprocessing

technique called data augmentation can be used, [50]. This can be simply done by

adding a filter to the image, slightly rotating or distorting the image, or covering up

a small portion of the image. Data augmentation increases the diversity of the data

without collecting new data.

Feature Extraction

Images are matrices of numeric values. Given a color (RGB) image, each pixel is

represented by three numeric values that correspond to its red, green, and blue com-

ponents. When training a classifier model, the model usually does not need to learn

on the whole image. For example, when building a dog detector, the background is
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irrelevant in regards to teaching the model what the dogs are. Therefore, processing

three numeric values at each pixel location in the background is unnecessary and a

huge waste of computing resources.

A common approach to remove irrelevant information is feature extraction. Fea-

tures are descriptive or informative patches in an image that distinguish one object

from another, [51]. Common vision features are color, texture, and shape. To extract

color features, the color space needs to be first defined, e.g., RGB. Then the color

features can be extracted using methods such as color histogram [52], color moments

[53], and Color Coherence Vector (CCV), [54]. Color histogram and color moments

measure the color distribution in an image, and the color coherence vector localizes

regions of similar colors in an image.

Textural features are another useful characteristic of an object and they can only

be measured by a group of pixels. The methods for extracting textural features can

be broadly categorized into spatial extraction and spectral extraction, [51]. Spatial

extraction extracts textural features by computing the statistics of the pixel values in

a local region, and the spectral method computes textural features in the frequency

domain. Gabor filter is commonly used for extracting this type of feature, [55].

The shape features can be extracted globally or regionally using either a contour-

based or a region-based method, [51]. The contour-based method works simply by

detecting the boundary or edge of the shape. Extracting edge features is traditionally

done by calculating the difference in adjacent pixel values. If the change in pixel

intensity is drastic enough and greater than some thresholds, then it can be concluded

that the pixel belongs to the edge. Applying a specially designed kernel over the

image in both horizontal and vertical directions and performing convolution on the
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pixel values can also achieve this. Some commonly used kernel detectors are Canny

[56], Sobel [57], and Prewitt, [58].

Unlike contour-based methods that work on adjacent pixels, region-based methods

extract features from a region of pixels. The contour-based edge extractor will be

explained in greater detail with examples later in this thesis.

The Classifier

In image classification, the main objective is to accurately identify the features present

in an image. Up to this point, the images are pre-processed, and all features are

extracted. It is time for the classifier to make a final decision.

To train a classifier, the model requires sample-and-label pairs. The samples are

the training images and are usually denoted as xi. The labels are annotations for

the training images and are usually denoted as yi. For example, when training a

dog detector, the xis are the dog images, and the yis are the text string “dog” or

the numeric value “1” depending on the actual implementation. Given training data

pairs (xi, yi), where xi is the ith image, and yi is the corresponding label. In this case,

y1 means it is a positive sample that contains the desired object (i.e. a dog image),

and y−1 means it is a negative sample that does not contain the desired object (i.e.

a cat image). A binary classifier f(x) is trained such that

f(xi)


≥ 0, yi = +1

< 0, yi = −1

(2.2.1)

When the classifier correctly classifies the positive and negative class, yif(xi) > 0.

Otherwise, when objects are misclassified, yif(xi)<0. For example, when the classifier
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yields f(xi) < 0 for y = +1, it implies the objects is misclassified. A linear classifier

has the form:

f(x) = wTx+ b (2.2.2)

where w is the weight vector and b is the bias scalar, but only the vector w is needed

for classifying new data.

Given a set of labeled data (xi, yi), numerous methods can be used to train the

classifier. The Support Vector Machine (SVM) is a supervised learning model com-

monly used for classification problems in many areas of study, [59]. A variant of the

SVM, namely the Support Vector Regression (SVR) is commonly used for regres-

sion analyses, [60]. The SVM can be broadly categorized into linear and non-linear

SVMs based on the shape of the decision boundary, and linear SVMs can be further

divided into hard-margin and soft-margin SVMs based on margin constraints. The

main objective of linear SVMs is to find the optimal decision boundary or hyperplane

in a linearly separable dataset by minimizing the cost (loss) function, in other words,

penalizing misclassifications until it produces the largest margin. The cost function

is essentially a measurement of error and tells how well the model is performing.

Linear binary SVMs are designed to separate two classes only, a positive and

a negative class having labels +1 and -1 (or 0) respectively. Figure 2.2 shows the

components of a linear binary SVM in a graphical way including the data points,

support vectors, hyperplane, and margin.
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Figure 2.2: The components of a linear binary SVM.

A hyperplane (the red, blue, and green line in Figure 2.2) is the decision boundary

that separates the classes, and the red line is called the optimal hyperplane. All data

points on the same side of the hyperplane belong to the same class. Depending on

the number of classes in the application, a binary or a multi-class SVM can be used.

The data points located closest to the hyperplane in red circles are called the support

vectors and they are the hardest to classify. Finally, the distance between the blue

and green line is called the margin, and it is what needs to be maximized. For a

hard-margin SVM, the data points that lie between the margin belong to neither of

the classes and therefore there are no misclassifications. The decision function used

in the hard-margin binary SVM is:

yi = wTxi + b (2.2.3)
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where w is the weight, and b is the bias. When yi(w
Txi + b) ≥ 1, the classification is

correct. Otherwise, it is incorrect. Technically, no misclassifications mean there are

no loss functions in hard-margin SVMs. Because the margin is calculated as 2
‖w‖ , one

just need to minimize ‖w‖ in order to maximize the margin.

For soft-margin SVMs, a non-negative slack variable ξ is introduced to loosen the

margin constraints. The problem becomes minimizing:

1

2
‖w‖2 + C

N∑
i=1

ξi (2.2.4)

such that

yi(w
Txi + b) ≥ 1− ξi (2.2.5)

where C is a regularization parameter that determines the tradeoff between the max-

imization of the margin and minimization of the classification error. When ξi ≤ 1, it

is correctly classified. Otherwise, misclassified. Soft-margin SVMs use the hinge loss

in Figure 2.3 as the cost function, [61].
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Figure 2.3: The hinge loss.

Note that in Figure 2.3, the horizontal axis represents the distance to boundary and

the vertical axis represents the loss. The hinge loss crosses the horizontal axis at

1 which means any data points at a distance greater than or equal to 1 incurs no

loss. The hinge loss crosses the vertical axis at 1 which means any data points that

sits right on the boundary incurs a loss of 1. Furthermore, the data points that are

correctly classified have a smaller loss, and incorrectly classified data points have a

bigger loss. Mathematically, the hinge loss can be written as:

l = max(0, 1− yi(wTxi)) (2.2.6)

To obtain the optimized hyperplane in a soft-margin SVM, minimize the following

cost equation with gradient descent, [62].

1

2
‖w‖2 + C

N∑
i=1

max(0, 1− yi(wTxi)) (2.2.7)
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This particular type of SVM that uses “C” ranging from zero to infinity as the regu-

larization parameter is usually called the “C-SVM”. Another type of SVM that uses

“nu” ranging between [0, 1] is called the “nu-SVM”.

When the dataset is not linearly separable, kernel functions must be used. Com-

mon kernel functions are polynomial, sigmoid, and Gaussian Radial Based Function

(RBF). Kernel functions transform the data to a higher-dimensional kernel space

where data becomes linearly separable, [63]. Instead of using the regular xis, kernel

SVMs apply a function f on xis for the rest of the calculation. Therefore, the kernel

SVM formulates the problem as:

1

2
‖w‖2 + C

N∑
i=1

ξi (2.2.8)

such that

yi(w
Tf(xi) + b) ≥ 1− ξi (2.2.9)

The cost function becomes:

1

2
‖w‖2 + C

N∑
i=1

max(0, 1− yi(wTf(xi))) (2.2.10)

Entending binary SVM to multi-class classification, two commonly used heuristic

approaches are the One-Against-One (OAO) and One-Against-All (OAA) methods,

[64]. In general, the OAO reformulates the multi-class classification problem into

K(K − 1) binary classification problems, where K is the number of classes. For

example, when there exist three classes denoted as “A”, “B”, and “C”, a total of

three binary classification problems are created including “A vs B”, “A vs C”, and
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“B vs C”. The OAA, on the other hand, also assigns a binary classifier to each class,

but only generates K amount of binary classification problems. The corresponding

binary classification problems in OAA are “A vs Not A”, “B vs Not B”, and “C vs

Not C”.

2.2.4 Modern Deep Learning Methods

Deep learning is a subset of machine learning and it is based largely on Artificial

Neural Networks (ANN). Like the human brain, there are many neurons in the ANN

that each perform some operation and forward the result layer by layer and finally

make a decision.

The development of the ANNs can date back to the 1940s. Warren McCulloch and

Walter Pitts started the topic by creating a computational model for neural networks,

[65]. The first ANN called the perceptron was invented in 1958 by Frank Rosenblatt,

[66]. The perceptron was designed for image recognition, and it used a single-layer

architecture meaning that there was only one layer between the input and the output

layer. However, scientists named Marvin Minsky and Seymour Papert published a

book and proved that the ANN in general, is not possible because the single-layer

perceptron cannot learn the XOR function, [67]. ANNs were then abandoned in the

late 1960s and remained controversial until the mid-1980s.

Modern ANN architectures can be divided into feedforward neural network and

Recurrent Neural Network (RNN), and every modern ANN has a hierarchical struc-

ture that consists of an input layer, an output layer, and some hidden layers that

reside in the middle. In a feedforward neural network, each neuron in one layer will

only connect to the neurons in the next layer. The information only travels in the
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forward direction and follows the input-hidden-output flow. Such neural networks

only consider the current input and do not memorize the past input. Therefore, feed-

forward neural networks are not good at predicting. Whereas in RNNs, the input of

a neuron can be fed back to itself and makes the neuron predicts the output based

on both its current input and the output from the previous layer. Therefore, by

using this feedback mechanism, RNN can make predictions based on its short-term

memory, [68].

ANNs have two learnable parameters, the weight and bias denoted as w and b.

The weights decide how much influence the input will have on the output, and the

biases are constants being added to the next layer as an additional input. The process

of getting the output from the input and calculating the error is called the foward pass

or forward propagation. Going backwards and use the error to update the weights

and biases is called the back propagation. Given a set of input xi where i = 1 . . . N .

In the forward propagation, weights are randomly initialized to small numbers such

as 0.1 or it can be initialized by using the Xavier [69] or Kaiming method [70], and the

biases can be simply initialized to zero. The Xavier initialization randomly chooses

the weight from a uniform distribution between

±
√

6√
ni + ni+1

(2.2.11)

where ni is the number of incoming connections, and ni+1 is the number of outgoing

connections. The Kaiming method is a modification of the Xavier specifically op-

timized for the ReLu activation function that chooses the weight from a zero-mean

Gaussian distribution whose standard deviation is
√

2/nl. The nl in the Kaiming

method can be calculated as k2c, where k is the layer’s filter size and c is the number
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of input channels.

Each layer in the ANN does the following operation:

y = f(
∑

(wT
i xi) + b) (2.2.12)

where y is the output being fed to the next layer,
∑

(wT
i xi) is the summation of every

weight and input pair in the ith layer, and f is the activation function. Figure 2.4 is

the graphical representation of 2.2.12 with 3 inputs.

Figure 2.4: The operation on each neuron.

The error also known as the cost is measured by comparing the network-predicted

output with the desired output using the cost function:

C =
1

n

n∑
i=1

(yi − ŷi)2 (2.2.13)

where C is the cost, n is the number of neurons in that layer, yi is the ith desired

output, and ŷi is the ith network-predicted output calculated using 2.2.12. This

37



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

particular cost function is called the Mean Squared Error (MSE), and it is one of

the most used cost functions for regression problems, [71]. Many variants of this

cost function can also be used depend on the application. For example, the Sum

Squared Error (SSE), Mean Error (ME), Mean Absolute Error (MAE), and Root

Mean Squared Error (RMSE), [72].

The goal of the back propagation is to optimize the weights and biases. During

the back propagation, the data is usually divided into 16 or 32 mini-batches, and the

partial derivatives (gradients) of the cost with respect to the weights and biases in

each mini-batch are calculated. The partial derivative with respect to the weights

and biases are calculated using the chain rule:

∂C

∂wL
=
∂C

∂aL
∂aL

∂zL
∂zL

∂wL
(2.2.14)

∂C

∂bL
=
∂C

∂aL
∂aL

∂zL
∂zL

∂bL
(2.2.15)

where L is the last layer in the neural network, zL = wL ∗ x+ b, and aL = f(zL) with

f being the activation function. The weight and bias can then be updated using:

wl = wl − α ∗ ∂C
∂wl

(2.2.16)

bl = bl − α ∗ ∂C
∂bl

(2.2.17)

where l is the current layer, and α is the learning rate that controls how much the

weight and bias are updated each time.

Back propagation tries to optimize the weights and biases and ultimately minimize

the cost. To minimize the cost, stochastic gradient descent (SGD) is used, [73]. SGD
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takes a mini-batch of the data and update the weight and bias based on the average

gradient from the mini-batch. Moving in the opposite direction of the gradient will

reach the local minima. The goal of SGD is to find the global minima, but it is

not guaranteed. Sometimes, it will get stuck at a local minima. When a global or

local minima is reached, the cost function is minimized, and the neural network is

converged. When SGD fails to locate the minima, the neural network is diverged.

2.2.5 Activation Functions

Activation functions decide whether a neuron should be “fired” or not, and it can

be categorized into linear and non-linear functions. When the neurons are activated

by only linear functions, the neural network will only perform linear transformation

using the input, weight, and bias. Therefore, the neural network will not be able to

learn the complex patterns from the data. To address this issue, non-linearity needs

to be introduced. Some commonly used activation functions are binary step function,

linear function, sigmoid function, Tanh function, Rectified Linear Unit (ReLU), Leaky

ReLU, Parameterised ReLU (PReLu), and Exponential Linear Unit (ELu), [74].

The binary step function is a threshold-based activation function. The neuron

will only be activated when the input is greater than the threshold. This activation

function is useful when training a binary classifier. However, it fails when there are

multiple classes need to be classified. Another problem with the binary step function

is that its gradient is zero. Therefore, the weights and biases will not be updated

during back propagation. Figure 2.5 shows the binary step function and its gradient.
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Figure 2.5: The binary step (green) function and its gradient (red).

To address the gradient problem, a linear activation function can be used instead.

The activation in a linear function is proportional to the input, and the gradient

is a constant. Although a constant gradient will update the weights and biases, it

is completely irrelavant to the input. This implies that the weights and biases will

always be updated by the same amount in each iteration, and therefore, the neural

network will not perfrom well. Figure 2.6 shows the linear function and its gradient.
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Figure 2.6: The linear function (green) and its gradient (red).

The sigmoid function is one of the most used non-linear activation function, and it

is continuously differentiable. However, the gradient becomes close to zero when the

input of the sigmoid function gets larger or smaller. When the gradient is close to zero,

the neural network struggles to learn as the weights and biases barely update. This

problem is known as the vanishing gradient. Figure 2.7(right) shows the vanishing

gradient problem at both left and right ends of the graph. Additionaly, the sigmoid

function is not symmetric around the origin which causes the output all have the

same sign.
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Figure 2.7: The sigmoid function (green) and its gradient (red).

The Tanh function looks similar to the sigmoid, but it is scaled, shifted, and

symmetric around the origin. The Tanh function is usually preferred over the sigmoid

function because the Tanh is zero-centered. The output in the Tanh function ranging

from -1 to 1. Therefore, the Tanh function solves the problem where sigmoid’s output

are all of the same sign. However, the gradient of the Tanh function still approaches

zero at both ends, so it will also encounter the vanishing gradient problem. Figure 2.8

shows the Tanh function and its gradient.
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Figure 2.8: The Tanh function (green) and its gradient (red).

The ReLu function also introduce non-linearity into the nerual network, and it is

one of the most popular activation functions used in the deep learning realm. The

output of the ReLu function is linear for all non-negative inputs and zero for all

negative inputs. Because the gradient can be either zero or a constant, such neural

network is sparsely activated. A sparsely activated neural network largely mimics

the biological neural netwotk in which neurons are not activated all at once. Each

neuron has its “role” and is activated by different signal. The sparsity also makes

the neural network faster. However, some neurons may never be activated due to the

zero gradient, and therefore, they are considered “dead”. This is known as the “dying

ReLu” problem. This problem is likely to happen when the learning rate is too high

or there is a large negative bias.

The Leaky ReLu and PReLu can be used to solve the “dying” problem. The Leaky

ReLu and PReLu use a linear function with a coefficient of 0.01 and a respectively
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for all the negative inputs. Therefore, the gradient is no longer zero. ELu is another

ReLu’s variant that uses an exponential function for all the negative inputs. Figure 2.9

shows the ReLu, Leaky ReLu, PReLu, and ELu function.

Figure 2.9: The ReLu (green), Leaky ReLu (purple), PReLu (red), and ELu (blue)
function.

2.2.6 Convolutional Neural Networks

The major difference between a traditional ANN and a Convolutional Neural Network

(CNN) is that the CNN largely mimics the biological neural network. ANN and CNN

are structured differently. A traditional ANN usually uses entirely fully connected

layers, but usually, only the last layer in a CNN is fully connected. In a CNN,

instead of connecting each neuron in one layer to every neuron in the next layer,

convolutional layers and pooling layers are used to learn features from the input

image. The convolutional layers are the heart of the CNN and use multiple kernels

or filters that perform convolution operations at a spatial location on the image.
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A kernel or filter is a small n×m× d matrix that moves through the full depth of

the input volume. n×m defines the receptive field, more specifically, the width and

height of the kernel in pixels, and d is the depth of the input image. Depending on the

application, the kernels may be different for each depth level. Squared kernels such

as 3× 3 and 5× 5 are commonly used. For example, when a 32× 32 RGB CIFAR-10

image is used, the input volume is therefore 32× 32× 3 (32 width, 32 height, and 3

channels).

During the forward pass, the kernel is convolved across the width and height of

the input volume. The dot product between each element of the kernel and the

corresponding value under the kernel is computed and added. After all entries at the

current kernel position have been convolved, the kernel will move to the next location

by its stride value. Figure 2.10 is a graphical representation of a 3 × 3 × 3 (3 × 3

RGB) kernel’s movement. Sliding a kernel across the input image will produce a

2-dimensional feature map that summarizes the response of the kernel at each spatial

location. A convolutional layer can have multiple kernels that look for different visual

features. Stacking these feature maps along the depth dimension gives a 3-dimensional

feature volume, and this feature volume will be passed deeper into the network, layer

by layer.
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Figure 2.10: The movement of a 3× 3× 3 (3× 3 RGB) kernel.

In general, the size of the output feature volume can be calculated as:

(W − F + 2P )/S + 1 (2.2.18)

where W is the input size (e.g., W = 5 when a 5× 5 image is used), F is the kernel

size, P is the number of zero-padding, and S is the stride. When applying the kernels,

the information on the edges may be lost. Zero-padding is used to solve this problem

and control the dimension of the output volume, expecially when the input dimension

needs to be preserved.

Another potential problem with the feature map produced by the convolutional

layers is that it is position-reliant. A small movement of the feature will produce a

new set of feature maps. To solve this problem, a technique called downsampling

is commonly used. Downsampling creates a lower resolution of the feature map

while maintaining the overall features. In CNN, pooling layers are introduced to
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do downsampling, and are usually placed between convolutional layers. The pooling

operation applies a window on the feature map, and depending on the pooling method,

a value within the pooling window will be extracted and placed in the new feature

map. The most used pooling windows are of size 2 × 2 with a stride value of 2. By

using this setup, the size of the feature map will be cut in half along the width and

height. Two commonly used pooling methods are max pooling and average pooling.

Max pooling and average pooling calculate the maximum value and the average value

within the pooling window, respectively. Another benefit of using pooling layers

is to reduce computational complexity. Pooling layers do not introduce additional

parameters, instead, by reducing the spatial size of the feature map, the number of

parameters is reduced. For example, when using max pooling with a 2 × 2 window

and a stride of 2, 75% of the activation is discarded since max pooling takes only 1

value from the 4-valued window.

The feature volume produced by the last convolutional and pooling layer is then

flattened into a long vector, and fed into the fully connected layer at the end of the

CNN. Usually, the last layer of the fully connected layer is a softmax layer which

is commonly used for multiclass classification problems. It transform the input into

values between 0 and 1 that represent the probability of the input belonging to each

individual class. The mathematical expression of the softmax function is:

P (y = j|x) =
ew

T
j x+bj∑K

k=1 e
wT

k x+bk
for j = 1 . . . K (2.2.19)
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Some Famous CNN Architectures

There are a number of famous CNN architectures including the LeNet, AlexNet,

Zeiler & Fergus Net (ZF Net), GoogLeNet, VGGNet, and Residual Network (ResNet).

LeNet was developed by Yann LeCun in the 1990s, and it was originally used for doc-

ument (digit) recognition, [75]. LeNet has 3 convolutional layers that use the Tanh

activation function and 1 fully connected layer. Between the convolutional layers,

sub-sampling or pooling layers are used. LeNet’s pooling mechanism first adds all

the values in the pooling window, then multiplies a trainable coefficient, and finally

adds a trainable bias. The output is then calculated using a sigmoid function. The

pooling process uses a 2-strided 2× 2 window, and it reduces the size of the feature

map by half. Figure 2.11 shows the architecture of LeNet. LeNet was considered the

first successful applciation of CNN in reading characters.

Figure 2.11: The architecture of the LeNet-5, [75].

AlexNet was developed by Alex Krizhevsky et al., and it was the winner of the

2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC), [76]. AlexNet

has a similar structure to LeNet, but deeper. 5 consecutive convolutional layers that

use ReLu activation function stack on top of each other following three fully connected
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layers. 3 Max pooling layers are used between the convolutional layers. Figure 2.12

shows the architecture of AlexNet. It is worth mentioning that AlexNet was the first

architecture that popularized the use of CNN in computer vision.

Figure 2.12: The architecture of the AlexNet with two GPUs, [76].

ZF Net was the 2013 ILSVRC winner, and it was an improvement over AlexNet

by tuning the hyperparameters, [77]. The kernel size in the first layer was reduced to

7× 7 (was 11× 11 in AlexNet), and the stride size of the second layer is reduced to 2

(was 4 in AlexNet). These changes enable ZF Net to retain more information in the

first two layers compare to AlexNet.

GoogLeNet was the 2014 ILSVRC winner and it was developed by Szegedy et

al. from Google, [78]. GoogLeNet uses inception modules to reduce computational

complexity. The inception module works by performing convolution operation using

the ReLu activation function on the input with three different sized kernels (1 × 1,

3 × 3, 5 × 5). Additionally, 3 × 3 max pooling is performed within the inception
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module. The inception module then concatenates the result from all components and

feeds it to the next layer. GoogLeNet has a total of 22 layers excluding pooling layers.

Figure 2.13 shows the inception module used in GoogLeNet. Szegedy also introduced

a concept called batch normalization where the data are equally divided into many

subsets called mini-batches. The mean and standard deviation of each mini-batch is

used to normalize a layer’s input and therefore speed up the training.

Figure 2.13: GoogLeNet’s inception module, [78].

VGGNet was developed by Karen Simonyan and Andrew Zisserman and placed

second in the 2014 ILSVRC, [79]. VGGNet has 13 convolutional layers that use

the ReLu activation function following 3 fully connected layers. VGGNet showed

that good performance can be achieved by increasing the depth of the architecture.

The second version of VGGNet (VGG-16) has 16 convoluitonal layers and 3 fully

connected layers. Figure 2.14 shows the architecture of VGG-16.
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Figure 2.14: The architecture of VGG-16, [79].

ResNet was developed by He et al., and it was the 2015 ILSVRC winner, [80].

ResNet heavily uses batch normalization and features skip connections where a layer’s

output is fed 2-3 layers ahead. Figure 5.3 shows the architecture of ResNet and its

skip connection mechanism.

Figure 2.15: The architecture of the ResNet, [80].

You Only Look Once

You Only Look Once (YOLO) was developed by Joseph Redmon et al. and it was

inspired by GoogLeNet, [81]. YOLO replaces GoogLeNet’s inception modules by
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1× 1 reduction layers following 3× 3 convolutional layers. The backbone of the first

YOLO or YOLOv1 was made of 24 convolutional layers that use the leaky ReLu

activation function following 2 fully connected layers as shown in Figure 2.16. The

final layer predicts both class probabilities and bounding box coordinates using a

linear activation function.

Before YOLO, Region Proposal Network (RPN) such as Region-Based Convolu-

tional Neural Network (R-CNN) [82] and its variants, fast R-CNN [83] and faster

R-CNN [84] are commonly used for image classification problems. RPNs use a two

stage process where region proposals or the potential identifiable regions are extracted

from the image, and then a CNN is used to classify these region proposals. Whereas

in YOLOv1, an image is divided in to a S × S grid and a CNN is used to clas-

sify and localize objects from each of the S2 grid cells simultaneously. Each grid

cell is responsible to predict B bounding boxes. Each bounding box can be defined

as (x, y, w, h, c), where x and y are the coordinates that represent the center of the

bounding box relative to the boundary of the grid cell, w and h are the width and

height of the bounding box relative to the entire image, and c is the confidence score

defined as c = Pr(Object) ∗ IoU . When a bounding box contains no object, c is zero,

otherwise, it is equal to the IoU between the bounding box and the ground truth.

The x, y, w, h are all normalized to values between 0 and 1. Additionally, if an object

presents in a grid cell, that grid cell also predicts C conditional class probabilities

denoted as Pr(Classi|Object). The class-specific confidence score for each bounding

box denoted as Pr(Classi) ∗ IoU can then be calculated using:

Pr(Classi) ∗ IoU = Pr(Classi|Object) ∗ Pr(Object) ∗ IoU (2.2.20)
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There are multiple bounding boxes within each grid cell, but only the one with

the highest IoU is used to calculate the loss. YOLOv1 uses the sum squared error to

calculated the loss, and the loss function has three components, the localization loss,

the classification loss, and the confidence loss, [81]. The localization loss measures

the error in the bounding boxes’ orientation (x, y, w, h), and it is calculated as:

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
+ λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

Because YOLOv1 does not weigh localization error equally with classification

error, so λcoord = 5 is introduced to increase the significance of localization error. The

1
obj
ij equals 1 when the jth bounding box in grid cell i is responsible for the prediction,

otherwise, it equals 0. The confidence loss is calculated as:

S2∑
i=0

B∑
j=0

1
obj
ij

(
Ci − Ĉi

)2
+ λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2
(2.2.21)

when a grid cell contains no object, the confidence is 0. YOLOv1 wants to decrease

the significance of these grid cells on the loss and therefore the λnoobj = 0.5 is used.

The 1noobjij equals 1 when there is no object within a grid cell, otherwise it equals to

0. The classification loss can be calculated as:

S2∑
i=0

1
obj
i

∑
c∈classes

(pi(c)− p̂i(c))2 (2.2.22)

The 1obji equals 1 when there exists an object in the ith grid cell, otherwise 0.
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Although YOLOv1’s one-stage process makes it one of the fastest architectures

for real-time object detection and classification, there are limitations. Each grid cell

only produces 1 classification regardless the number of bounding boxes generated.

Therefore, YOLOv1 struggles to detect and classify objects that appear in groups.

As YOLOv1 generates bounding boxes based on the training data, when applying

YOLOv1 on new data with different aspect ratios or configurations, the result is not

idea. Because the input image is downsampled multiple times using the downsampling

or pooling layers, relative coarse features are extracted for training. Finally, a small

error has the same significance in both big and small bounding boxes. The loss

function should consider a small error in a small box more important than a small

error in a big box.

Figure 2.16: The architrcture of YOLOv1, [81].

To remedy YOLOv1’s limitations and further improve the speed and accuracy,

YOLOv2 is introduced, [85]. The backbone of YOLOv2 is called the darknet-19 that
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consists of 19 convolutional layers. The improvement over YOLOv1 can be sum-

marized into batch normalization, high resolution classifier, anchor boxes, dimension

clusters, direct location prediction, fine-grained features, and multi-scale training.

In YOLOv2, by adding batch normalization to every convolutional layer, the mAP

is improved by more than 2%. Batch normalization also eliminates the need of other

forms of regularization. Training the classification network on high resolution input

(448×448) increased the mAP by 4%. YOLOv2 adopt an anchor box-styled approach

to capture specific object classes. An anchor box is a bounding box but has a pre-

defined size based on the training data. Because objects in the same class have similar

aspect ratios and scales, instead of arbitrarily predicting the size of each bounding

box, YOLOv2 uses anchor boxes as the guideline. Given all the ground truth, a

modified k-means clustering method is used to find the optimal number and size of

the anchor box using the distance metric d(box, centroid) = 1 − IoU(box, centroid).

This k-means method groups similar-sized ground truth into a cluster and finds the

number of anchors that lead to the highest IoU. The anchor box-styled approach in

YOLOv2 enables the network to predict the coordinate of 5 bounding boxes at each

cell defined as (tx, ty, tw, th, to) which are the same as in YOLOv1. The location of

the bounding box is then adjusted by the offset to the anchor using:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
t
w

bh = phe
t
h

(2.2.23)

where σ(tx) and σ(ty) are the distance relative to the grid cell, (cx, cy) is the offset to
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the top left corner of the image, and pw and ph are the width and height of the anchor

box. This can be seen in Figure 2.17 where the dotted box represents the anchor box.

Using k-means clustering together with direct location prediction, the mAP increases

by 5%.

Figure 2.17: The prediction of a bounding box in YOLOv2, [85].

Because YOLOv2 removes the fully connected layers at the end, so it is not

limited to produce only 1 classification per grid cell. A passthrough layer is used to

concatenates earlier high resolution features with the downsampled lower resolution

feature. This allows the network to learn fine-grained features and increases the mAP

by 1%. Finally, To enable multi-scale training, YOLOv2 randomly resizes the input

for every 10 batches. This forces the network to learn on various input scales.

In YOLOv3, the darknet-19 is replaced by the 53-layered convolutional neural

network namely, the darknet-53, [86]. The darknet-53 consists of mainly 3 × 3 and

1×1 filters and features skip connection like ResNet. Redmon showed that darknet-53

has an overall better mAP than ResNet, and it is 1.5− 2 times faster than ResNet.

YOLOv3 changes the way how the loss function is calculated; If an anchor box has

the highest IoU with the ground truth, the objectness score is 1. Meanwhile, ignoring

56



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

the anchors that have greater than 0.5 IoU but do not best overlap the ground truth.

Additionally, multi-label classification is allowed in YOLOv3, where an object can

have overlapping labels, for example, woman and person. This is achieved by using

independent logistic classifiers instead of softmax. Finally, YOLOv3 uses the concept

of Feature Pyramid Network (FPN) as shown in Figure 2.18 where 3 different-scaled

bounding boxes at each location is predicted, [87]. These feature maps are then

merged together and thus the network can learn more meaningful information.

Figure 2.18: In FPN, the top-down feature maps (indicated by a downward-pointing
arrow) are scaled up by a factor of 2 and merged with the bottom-up feature maps

(indicated by a upward-pointing arrow) by addition, [87].

The CSPDarknet-53 (see Figure 2.19) is the backbone of YOLOv4 and it is the

Darknet-53 combined with the CSPNet, [90].
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Figure 2.19: The CSPDarknet-53, [88].

CSP stands for cross stage partial connections where the input is divided into two

parts, one part is skip connected to the transition layer and the other part is fed into

the convolutional layers, [88]. This new design significantly reduces computational

complexity. In addition, the Spatial Pyramid Pooling (SPP) blocks are added to the

CSPDarknet-53. SPP spatially divides the feature map into different scales and then

applies max pooling, [89]. The SPP block significantly increases the receptive field

and causes almost no speed reduction. It is believed that a bigger receptive field and
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more parameters are beneficial for the training, [90].

In addition to the YOLOv3’s FPN approach, YOLOv4 also uses a Path Aggrega-

tion Network (PAN) to concatenate feature maps in a bottom-up fashion at different

detector levels. This can be seen in Figure 2.20. In FPN, feature maps are concate-

nated in a top-down fashion (see Figure 2.20(a)). Propagating spatial information

through the entire network is lengthy, and it is possible to generate duplicate pre-

dictions. Whereas in PAN (see Figure 2.20(b)), feature maps are concatenated in a

bottom-up path by using clean lateral connections to record spatial information and

therefore shortening this path. An element-wise max operation is applied at the end

to prevent duplicate predictions, [91]. The overall architecture of YOLOv4 is in Fig-

ure 2.21. Note that in Figure 2.21, the convolutional layers, dense connection layers,

SPP layers, and fully-connection layers are depicted in red, blue, green, and yellow,

respectively.

Figure 2.20: (a) In FPN, the top-down feature maps are labeled as P5-P2, [87]. (b)
In PAN, the bottom-up path is labeled as N2-N5, [91].
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Figure 2.21: The YOLOv4’s architecture, [90].
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Chapter 3

Camera Calibration

Camera calibration, also known as camera resectioning is the act of estimating the

parameters of a camera lens and the image sensor. Calibrating regular cameras is well-

studied. However, using these traditional methods to calibrate an infrared camera is

usually challenging, especially during winter season. A camera perfroms a mapping

from the three-dimensional world to a two-dimensional image. When taking a picture,

four coordinate systems (reference frames) are involved, the world coordinates, the

camera coordinates, the image coordinates, and the pixel coordinates. The location

of an object is defined as (Xw, Yw, Zw) in the three-dimensional world coordinates,

the camera has three-dimensional coordinates defined as (Xc, Yc, Zc), an image has

two-dimensional coordinates defined as (x, y), and finally, the two-dimensional pixel

coordinates is defined as (u, v). To reconstruct the three-dimensional world from

the pixels, the camera’s parameters need to be determined. These parameters are

obtained through camera calibration.
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3.1 The Camera Parameters

The camera’s parameters consist of intrinsic, extrinsic, and distortion coefficients,

[92]. The intrinsic parameters describe the geometric properties of the camera, and

it is used to transform between camera coordinates and image coordinates. This

projection is modeled by the ideal pinhole camera as illustrated in Figure 3.1. The

extrinsic parameters describe how to transform a point from world coordinates to

camera coordinates.

Figure 3.1: The ideal pinhole camera, [93].

The intrinsic parameters are defined through a matrix K:

K =


fx s cx

0 fy cy

0 0 1


where fx and fy are the focal length measured in pixels, cx and cy are the principal

point offsets, and s is the skew coefficient. When the image axes are not perfectly
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perpendicular, the skew coefficient s can be calculated using:

s = fx tanα (3.1.1)

where

fx =
F

px
(3.1.2)

F represents the focal length in world units usually in millimeters, and px is the size

of the pixel in world units. The measurement of α, px can be seen in Figure 3.2.

Figure 3.2: The pixel skew.

The extrinsic parameters consist of a 3 × 3 rotation matrix R and a three-

dimensional translation vector t defined as:

R =


r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 t =


tx

ty

tz


The translation vector tells the relative positive between the origins of the two coor-

dinates, and the rotation matrix represents the directions of the world axes in camera
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coordinates. Using the entrinsic parameters, the relationship between the coordinates

of a point P in the world (Pw) and camera (Pc) is characterized as:

Pc = R(Pw − t) (3.1.3)

Combining t and R, the result is called the extrinsic matrix defined as [R | t]. The

homogeneous transformation can be writen as:


x

y

1

 = K[R | t]



Xw

Yw

Zw

1


(3.1.4)

The distortion coefficients account for both radial and tangential distortion. Ra-

dial distortion happens near the edges of a lens, and a distorted point is denoted

as (xdistorted, ydistorted). To correct radial distortion, a set of radial distortion coeffi-

cients of the lens is needed, denoted as k. Transferring from (xdistorted, ydistorted) to

the undistorted (x, y), the following equations can be used:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (3.1.5)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (3.1.6)

where k1, k2, and k3 are three of the radial distortion coefficients, and r2 = x2 + y2.

Tangential distortion happens when the lens is not perfectly aligned with the image

plane. Transferring from (xdistorted, ydistorted) to the undistorted (x, y), use:
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xdistorted = x+ (2p1xy + p2(r
2 + 2x2)) (3.1.7)

ydistorted = y +
[
p1(r

2 + 2y2) + 2p2xy)
]

(3.1.8)

where p1 and p2 are the tangential distortion coefficients of the lens, and r2 = x2 +y2.

3.2 The Implementation

The traditional camera calibration methods can be categorized into photogrammetric

calibration and self-calibration, [94]. The photogrammetric calibration method is per-

formed by observing a calibration object whose dimension is known in the world coor-

dinates. The calibration object or pattern can be three-dimensional, two-dimensional,

or even one-dimensional. The checkerboard pattern is widely used because the sharp

gradient between the black and white cells is easy to localize. By taking a series

of images of the checkerboard from different viewpoints, a set of three-dimensional

points in world coordinates can be obtained. Then these points can be projected to

the two-dimensional pixel coordinates by using the method proposed in [92] which

multiplies the three-dimensional world points by the extrinsic matrix. This projection

can be automated by using software applications such as OpenCV and MATLAB. The

self-calibration methods observe the geometric rigidity of the static world, so it can

be performed by just moving the camera around. Although these methods do not

require any calibration object, they cannot always yield accurate results.

In this experiment, a calibration method that requires the least amount of appara-

tus and has the simplest setup was wanted. Therefore, based on the instrumentation

available on hand, it was decided to use the checkerboard pattern approach along
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with the camera calibrator toolbox provided by MATLAB.

3.3 A Creative Calibration Method for Infrared

Cameras

When a checkerboard is left in room temperature, the temperature of the black cells

is higher than the white cells due to emissivity and absorption. However, this tem-

perature gradient is usually less than 1 °C and is not sufficient for the infrared camera

to detect the corners. In most cases, heating the checkerboard with direct sunlight

is good enough to create a perceivable temperature gradient for the infrared camera

because black absorbs the most heat. However, during winter, cold temperatures

will actually cool down the checkerboard. Prakash et al. proposed a method that

uses a heat lamp to heat the checkerboard, but this method requires careful timing,

[95]. If heated for too long, all cells will have similar temperatures. Conversely, the

temperature gradient is not perceivable as illustrated in Figure 3.3

Figure 3.3: (Left) Untreated. (Middle) Heated for too short. (Right) Heated for too
long

There are methods where a checkerboard made of two materials is used, but

since it requires a lot of manufacturing expertise and presumably still does not work
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in cold temperatures, they are not adopted in this experiment. After evaluating the

feasibility of all these methods, a new checkerboard has been designed that is aimed to

calibrate infrared cameras in cold temperatures. Rather than heating a single-layered

checkerboard, the new 10× 7 checkerboard is designed with detachable black cells of

34.5mm in side length. To make this possible, a sheet of plain white cardboard is used

as the background, and overlapped by a sheet of black cells as shown in Figure 3.4.

Cardboard is used as it is less susceptible to crinkles and bends and therefore creates

less unwanted distortion. Ideally, the checkerboard should be printed on a completely

rigid body.

Figure 3.4: The checkerboard used in this experiment.

The sheet of black cells is detached and heated alone using a heat lamp, and the

white cardboard is placed outside for cooling. The white layer can be left untreated

(∼10 °C), but for a better result, it is preferred to cool the white layer. During this

experiment, the temperature outside is around 0 °C. The black cells are heated to

around 36 °C. The two layers are then quickly overlapped and placed in front of the

camera. By using this method, the 36 °C in temperature gradient is significant enough

as shown in Figure 3.5.
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Figure 3.5: (Left) When the white layer is left outside for cooling. (Right) When
the white layer is left in room temperature (∼10 °C).

Becasue the FLIR A65 camera used in this experiment is mounted on top of a

vehicle and cannot be moved, the checkerboard must be posed at different angles in

front of the camera. As the intrinsic parameters are estimated using this camera-

centric orientation, it is assumed that the camera is placed at the origin in the world

coordinates. A total of 185 images are captured during the calibration session and

the orientation of the images can be seen in Figure 3.6. The image axes at each

location are along the edges of the checkerboard. The origin of the image coordinates

is located at the bottom-right corner of the top-left black cell as indicated by the

yellow square in Figure 3.7. A total of 54 corners are detected in each image and

compared with the reprojected points from the world coordinates.
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Figure 3.6: The orientation of the images during calibration.

Figure 3.7: The detected corners on the checkerboard.
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3.4 The Calibration Result

The result of this calibration session lead to 156 images being accepted, 29 rejected

(failed to detect corners), and an initial mean reprojection error of 0.28 pixels. After

removing some outliers, an overall mean reprojection error of 0.16 pixels is obtained.

The estimated intrinsic parameters are:

K =


778.1765 0 324.6721

0 776.1906 245.6962

0 0 1


The extrinsic parameters can be measured either manually or automatically by

using MATLAB. When manually measuring the extrinsic parameters, the position

and orientation of the camera in the world coordinates need to be known. This

measurement has 6 degree-of-freedom, the camera’s x, y, and z position and its row,

yaw, and pitch. Because physically measuring these parameters can be inaccurate

due to human factors and the uncertainties in the measuring device, so it is decided

to use MATLAB to automate the measurement. The origin of the world coordinates

is defined to be at the front-most point of the vehicle and the directions of the axes

are shown in Figure 3.8.
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Figure 3.8: The world coordinates.

Using the intrinsic matrix and a checkerboard placed at the origin of world co-

ordinates, the extrinsic parameters can be determined by using MATLAB’s camera

calibrator or the built-in extrinsics function. Combining the translational vector and

the rotation matrix, the extrinsic matrix is:

[R | t] =


0 −1 0 0.169

−0.1659 0 −1.0741 1.2931

1.0741 0 −0.1659 2.2212

 (3.4.1)

Because during the calibration, no pixel skew or tangential distortion is found,

and the FLIR A65 camera only exhibits minimal radial distortion. Therefore, it is

decided that no correction is needed for skew and distortion.
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Chapter 4

A You Only Look Once (YOLO)

Based Approach

When developing a real-time object detection and image classification application, a

widely adopted approach is to employ the CNN architectures. These CNNs usually

have a fixed structure and offer the “plug-and-play” ability that allows users to easily

train the model. When training a CNN model such as the YOLO, the traditional

vision pipeline can be automated by the network. Because these real-time detectors

pursue faster speed, they generally do not use complex methods to preprocess the

frames while streaming. However, because images are noisy, adding additional pre-

processing can eliminate the disturbance in pixels and potentially improve the detec-

tion results. Therefore, instead of modifying the YOLO’s architecture, this chapter

focuses on studying how additional preprocessing influences the YOLO’s real-time

performance and investigating the impact on the overall accuracy when altering the

network size. The full training process of a YOLOv4 network based on a custom in-

frared driving dataset will be explained. Moreover, some advanced data manipulation
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and training techniques will also be explained.

4.1 Image Preprocessing

In YOLO, the network or input size determines the size of the input image at the

first layer of the network. Generally, YOLO takes images of any size and its internal

resizing mechanism alters the images to match the network size. Some commonly

used network sizes are 320× 320, 416× 416, and 608× 608. When the network size

gets bigger, the accuracy will be improved correspondingly. Conversely, when the

network size gets smaller, the network will process at a faster speed. Although the

original YOLO paper did not mention any specific image preprocessing other than

resizing that has been used in the training process, it is assumed that the filtering

methods can also be applied to the YOLO to further improve accuracy.

Because YOLO is designed to be a “real-time” detector, so the processing time

of each filtering technique in Chapter 2.2.3 is tested on a sample image to validate if

additional filtering will affect the YOLO’s real-time performance. Note that the term

“real-time” can be defined in many ways, but in this thesis, real-time refers to 30

FPS. A timer is implemented in python by using the “time” library and started when

the grayscaling takes place and stopped when the filtering is done. All unnecessary

processes in the background are killed during the experiment to prevent interference.

Each filtering technique has been executed 10 times, and the average processing time

is recorded in Table 4.1.
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Network size

(image size)

Average

filtering

Gaussian

filtering

Bilateral

filtering

Median

filtering

Non-Local

Means

320× 320 0.000496s 0.000496s 0.001488s 0.000992s 0.156239s

416× 416 0.000495s 0.000516s 0.002976s 0.001487s 0.259407s

608× 608 0.000495s 0.000496s 0.002480s 0.001983s 0.182528s

Table 4.1: The average processing time of each filtering method at different network
sizes.

From Table 4.1, because most filtering techniques can be done in less than 1ms, it

is concluded that these filtering methods can also be applied to YOLO and will not

affect its real-time performance at 30FPS. However, some complex filtering techniques

such as the Non-Local Mean denoising take longer to process, and can potentially

affect the YOLO’s real-time performance at 30FPS.

4.2 Data Augmentation

Data augmentation is a strategy that increases data diversity. Some commonly used

data augmentation practices can be put into two categories: traditional transfor-

mation, [96] and Generative Adversarial Networks (GAN), [98]. Methods under the

traditional transformation category mainly involve affine image transformation and

color modification including rotation, reflection, scaling (zooming in or out), shearing,

histogram equalization, enhancing contrast or brightness, white-balancing, sharper-

ing, and blurring, [96]. These methods have been proved to be fast and reliable and

effective in increasing the number of training samples and balancing the size of the
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dataset. The way how data augmentation is done in GANs is that two adversarial

networks are used where one generates “fake” images to trick the other network to

misclassify. Although GANs can produce satisfactory results, adversarial networks

are usually difficult to train. In YOLOv4, three data augmentation methods, Cutmix

[99], Mosaic, and Self-Adversarial Training (SAT) have been used, [90]. Each of the

method will be explained in greater detail below.

4.2.1 CutMix Data Augmentation

Given two images, xA and xB and their labels, yA and yB, CutMix is a augmentation

strategy that removes (“cut”) a patch from xA and filled (“mix”) it with a patch from

xB as shown in Figure 4.1. The ground truth labels or the bounding boxes, yA and

yB are also mixed together proportionally to the number of pixels in the combined

image.

Figure 4.1: The CutMix, [99].

When using CutMix in a CNN, the network’s localization ability can be further

improved because the network is forced to identify an object from its partial view.

The CutMix operation can be mathematically defined as:

75



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

x̃ = M � xA + (1−M)� xB (4.2.1)

ỹ = λyA + (1− λ)yB (4.2.2)

where (x̃, ỹ) is the resulting sample from the CutMix operation, M ∈ {0, 1}W×H

is a binary mask that indicates the location of the patch, � is the Hadamard or

Schur product [100] that represents the element-wise multiplication, and λ is the

combination ratio. In the original CutMix paper by Yun et al., the λ was sampled

from a uniform distribution, [99]. The location of the patch can be represented by the

bounding box coordinates B = (rx, ry, rw, rh), and the box coordinates are uniformly

sampled:

rx ∼ Unif(0,W ), rw = W
√

1− λ (4.2.3)

ry ∼ Unif(0, H), rh = H
√

1− λ (4.2.4)

where rwrh
WH

= 1− λ. The values within the binary mask M are all 0, and the values

outside M are all 1. Therefore, the operation M � xA removes the patch from xA

as the results are all zero, then (1−M)� xB preserves and extracts the patch from

xB. Finally, x̃ is formed by adding them together. During training, a new (x̃, ỹ) is

generated by combining every two randomly selected images within the mini-batch.

According to the original paper, CutMix has a negligible computational overhead, so

it can be efficiently used in training any network architecture, [99].
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4.2.2 Mosaic Data Augmentation

YOLOv4 introduces a new data augmentation technique called the Mosaic, [90]. In

Mosaic, a 2 × 2 grid is created, and 4 randomly selected training images and their

labels are resized and then put into each location of the grid. Finally, a window

is placed at a random location around the grid center to crop out the image. The

content within the window is the resulting augmented image. This process can be

seen in Figure 4.2.

Figure 4.2: The Mosaic data augmentation.

For example in Figure 4.2, when training a 416× 416 sized network, 4 randomly

selected images from the training set are resized to 416×416 and combined to form a

2× 2 grid. The combined image has the size of 832× 832. Then, a 416× 416 window

(the red box in 4.2) is placed at a random location around the center of the 2 × 2

77



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

grid. Finally, the combined image within the red box is the Mosaic-augmented result

and will be extracted and used as a new training sample. A new augmented image

will be generated by combining every 4 images within the mini-batch. Similar to the

CutMix, the Mosaic augmentation also force the network to identify partial objects

and thus enhance the network’s localization capability.

4.2.3 Self-Adversarial Training

Self-Adversarial training is another data augmentation technique that has been used

in YOLOv4, and the idea of this technique is to use an adversarial CNN to alter

the image. Briefly speaking, adversarial networks generate adversarial images by

adding a small perturbation to the input pixels, and this perturbation is generally

derived from the gradient of the cost function, [97][98]. Although the perturbation

can sometimes be imperceptible by human eyes, the detector model might produce

a completely different result. Adversarial examples are usually used to improve the

stability, reliability, and accuracy of a detector model.

The SAT in YOLOv4 involves two forward-backward stages, [90]. In the first

forward pass, the network is trained on the image as usual. However, the backprop-

agation alters the image instead of updating the weights. In this way, the network

performs an adversarial attack on itself and creating false information that says no

object of interest is in the image. In the second forward pass, the network is trained to

detect objects from the altered images, and the backpropagation updates the weights

in the normal way.

78



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

4.3 Feature Extraction

In the realm of machine learning, feature extraction is generally done by convolving

the image with a manually designed kernel. For example, when extracting edges, the

Sobel, Roberts, Prewitt, and Laplacian kernel can be used. Similarly, the feature

extraction in YOLO is also done by convolution, but just a series of convolutions

using convolutional layers. Each convolutional layer has many filters of a predefined

size, and each filter produces a feature map that stacks on top of each other. The

feature maps are propagated in the forward direction to the next convolutional layer

that repeats the same process. Eventually, after backpropagation, the trained weights

are an abstract representation of the features.

In general, pre-trained CNNs are commonly used as the basic building block for a

deep learning based detector. Some common features are saved in these networks and

can be directly used to make a prediction. Alternatively, base upon the pre-trained

model, the features from a custom dataset can be learned by using transfer learning,

[101]. In YOLOv4, the feature extractor is a CNN called the CSPDarknet53, and it is

commonly pre-trained on the ImageNet. The CSPDarknet-53 perfroms consectutive

3× 3 and 1× 1 convolutions on the images to generate feature maps.

4.4 Transfer Learning

When training a deep neural network to do tasks like image classification and object

detection, transfer learning is commonly used, [102]. Transfer learning usually refers

to the technique that reuses a previously trained model as the starting point of train-

ing a new model. In image classification, transfer learning works by first training
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a base network on some large and challenging datasets such as the ImageNet, MS

COCO, or PASCAL VOC. Then the first n layers of this base network are copied to

the new network, [103]. The base network is called the pre-trained model and usually

remains unchanged during the rest of the training. However, if the new network re-

quires fine-tuning, then the errors can be backpropagated through the entire network

including the base network.

Because the features at the beginning of the deep neural network are usually

“general”, and the features close to the end of the network are “specific” to the

dataset and the corresponding task, the dataset used in the new task can refine these

“general” features from the base network and makes the output features specific

to the new task. Using the “general” features provided by the base network, the

training time can be significantly reduced compared to training the entire network

from scratch. Moreover, because the new network refines the “general” features rather

than learning “general” features, the overall performance can also be improved.

4.5 Dataset Preparation and Labelling

The object classes in this thesis are designed to cover people, vehicles, bicycles, and

animals, and therefore the experiment vehicle has been driven in two scenarios, urban

and highway. The urban area is located next to a university campus, and this scenario

is mainly focusing on capturing people, bicycles, and animals (dogs for now). Because

a vehicle can look very different in an infrared camera from different angles as shown

in Figure 4.3, the highway scenario is catered to capture only vehicles to ensure all

angles of the vehicle and all types of vehicle are covered in the dataset.
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Figure 4.3: (Left) The side view of a vehicle. (Middle) The rear view of a vehicle.
(Right) The front view of a vehicle.

There are around 9,000 images captured and after removing some images with no

object in them, the resulting dataset has 8,192 infrared frames. In addition to this

custom dataset, FLIR provides a dataset - “FREE FLIR Thermal Dataset for Algo-

rithm Trainin” that offers 10,228 more labeled infrared images, [104]. This dataset

contains 28,151 labeled persons, 46,692 labeled vehicles, 4,457 labeled bicycles, and

240 labeled dogs. These images cover all the object classes of interest in this project.

Based on the available feedbacks, using this dataset alone can achieve relatively good

performance. However, there are only 240 dogs present in this dataset. After carefully

examining the dogs, most of them are small and blended in the background. Because

these dog objects need to be further split into a training, testing, and a validation set,

it is believed that only 240 objects are not enough. YOLO recommends having more

than 2,000 objects for each class. Moreover, small objects usually cannot provide

representative features. Therefore, it is decided to combine the self-labeled dataset

with the FLIR dataset to maximize data variety.

A labeler (the author of this thesis) labeled every object in the custom dataset

using a bounding box that encloses the object as tight as possible (with a minimal

amount of background included). When labeling people and dogs, the labeler was
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instructed to enclose the object as long as its main body (chest) is visible. If only one

limb (i.e. an arm, a leg, or the tail) is visible then it is not labeled. When pedestrians

appear in crowds, each individual is labeled if it can be separated from the crowd.

Otherwise, the individuals are labeled as a whole. Cyclists are labeled as two objects,

the bicycle and the person who’s riding it. Because when someone is riding the

bicycle, the handle is usually covered up and thus it is decided to enclose only the

wheels. However, when bicycles appear alone, the entire bicycle is labeled. Personal

accessories such as a backpack are not included in the bounding box. Overall, if the

object is partially visible and is not distinguishable for the labeler, it is not labeled.

There are a total of 7,579 persons, 5,546 vehicles, 1,031 bicycles, and 1,692 dogs

labeled in this session. Figure 4.4 shows an example of a labeled image.

Figure 4.4: (Top) The original image frame. (Bottom) The labeled image frame.

When labeling a dataset to train the YOLO network, a unique labeling format

is required by YOLO. In most applications, although the methods used to draw the
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bounding boxes may vary, but the locations of the bounding boxes are usually rep-

resented by the pixel coordinates of the corners. For example, in a typical OpenCV

application, the bounding boxes are produced by OpenCV’s “rectangle” function.

To draw a bounding box using the “rectangle” function, the acutal coordinates of

the top-left and the bottom-right corner are required, [105]. Whereas in YOLO, each

bounding box is defined by its normalized central coordinates, width, and height. Be-

cause the values are normalized, so they are floating point numbers that fall between

0 and 1, [106]. A typical bounding box in YOLO has the following format

B = < class > < x > < y > < width > < height >

where “class” is a non-negative integer number that defines the object class, and

x = absolute x / image width

y = absoulte y / image height

width = absolute width / image width

height = absolute height / image height

where absolute x, absolute y, absolute width, and absolute height are a bounding

box’s actual central coordinates, width, and height, respectively.
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4.6 Training a YOLOv4 Network

Given the prepared dataset, a 608×608 network is first trained using the open-source

framework “darknet” following the same strategy as described in the original paper,

so none of the filtering techniques other than resizing is used. A pre-trained model on

ImageNet is used as the starting point. Transfer learning is used later in the process

to further train the network on the custom dataset. 70% of the data in the custom

dataset are used for training, 15% are used for validation, and the rest 15% are used

for testing. The training involves 15,000 iterations, and 64 images are loaded for each

iteration. These 64 images are then split into 16 mini-batches, so there are 4 images

in each mini-batch. The training is done on a Nvidia GTX 1080Ti GPU, and it

requires 127.294 billion floating point operations per second (BFLOPS). In addition

to the 608× 608 network, a 320× 320 and a 416× 416 network are also trained using

the same 70%-15%-15% data split. The training results at 0.5 IoU are in Table 4.4

to Table 4.2. Note that 0.5 is a popular IoU threshold that has been vastly adopted

by other mainstream datasets, so IoU = 0.5 will also be used throughout the rest of

this thesis.
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320× 320 full YOLOv4

Class TP FP FN Precision Recall

People 4271 1774 1508 70.7% 73.9%

Bicycle 1646 783 739 67.8% 69.0%

Vehicle 4660 1866 772 71.4% 85.8%

Animal 581 291 245 66.7% 70.3%

35.262 BFLOPS

Table 4.2: The training results of a 320× 320 full YOLOv4 network.

416× 416 full YOLOv4

Class TP FP FN Precision Recall

People 4517 1964 1262 69.7% 78.2%

Bicycle 1742 841 698 67.4% 71.3%

Vehicle 4801 2155 631 69.0% 88.4%

Animal 599 323 217 65.0% 73.4%

59.592 BFLOPS

Table 4.3: The training results of a 416× 416 full YOLOv4 network.

608× 608 full YOLOv4

Class TP FP FN Precision Recall

People 4788 1913 991 71.5% 82.9%

Bicycle 939 421 228 69.0% 80.5%

Vehicle 4896 1892 536 72.1% 90.1%

Animal 635 314 170 66.9% 78.9%

127.294 BFLOPS

Table 4.4: The training results of a 608× 608 full YOLOv4 network.

85



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

Comparing the results in Table 4.4 to Table 4.2, the 608 × 608 network has the

highest accuracy and recall, but it also requires the most computing power. Whereas

the 320×320 network requires the least computing power, but the accuracy and recall

are not the lowest. An interesting observation is that although the 416×416 network is

bigger than the 320×320 network, it actually produces worse results. According to the

results, when the system does not have a bottleneck in computing power, increasing

the network size can, but not always lead to an increase in precision. The root cause

of the performance reduction in the 416× 416 network will not be investigated at the

current stage. Although using the full 608×608 YOLO while achieving around 70% of

mean average precision is not perfect, but it is rather acceptable. However, whether

keep increasing the network size will still increase the precision remains skeptical, and

will not be investigated in this thesis. If more data for the bicycle and animal class

becomes available, it is believed that these networks can achieve even higher mean

average precision.

4.7 Training a Tiny-YOLOv4 Network

Sometimes, due to hardware limitations, using the full YOLOv4 network for real-time

detection might not possible. To solve this, a compressed variation of the YOLOv4,

namely the tiny YOLOv4 is also trained. Instead of using the CSPDarknet-53, the

backbone of the tiny YOLOv4 only has the first 29 convolutional layers. Using the

same setup, 16 mini-batches, 4 images per mini-batch, 15,000 iterations, 70%-15%-

15% data split, a pre-trained model (on ImageNet), and transfer learning, the training

results on a Nvidia GTX 1080Ti GPU at 0.5 IoU is in Table 4.5 to Table 4.7.
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320× 320 tiny YOLOv4

Class TP FP FN Precision Recall

People 2630 1816 3149 59.2% 45.5%

Bicycle 1013 802 1543 55.8% 39.6%

Vehicle 3906 1873 1526 67.6% 71.9%

Animal 494 409 527 54.7% 48.4%

4.020 BFLOPS

Table 4.5: The training results of a 320× 320 tiny-YOLOv4 network.

416× 416 tiny YOLOv4

Class TP FP FN Precision Recall

People 3288 1731 2496 65.5% 56.8%

Bicycle 1267 764 1223 62.4% 50.9%

Vehicle 4262 1713 1170 71.3% 78.5%

Animal 539 374 404 59.0% 57.2%

6.793 BFLOPS

Table 4.6: The training results of a 416× 416 tiny-YOLOv4 network.

608× 608 tiny YOLOv4

Class TP FP FN Precision Recall

People 3804 2152 1975 63.9% 65.8%

Bicycle 1466 931 968 61.2% 60.2%

Vehicle 4433 1847 999 70.6% 81.6%

Animal 623 441 345 58.5% 64.4%

14.512 BFLOPS

Table 4.7: The training results of a 608× 608 tiny-YOLOv4 network.
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Because the tiny YOLOv4 only uses the first 29 convolution layers, there is a

significant drop in accuracy and recall. Although the tiny YOLO only requires a

fraction of the computing power compare to the full YOLO, only getting around 65%

of mean average precision with the largest 608 × 608 tiny network is not ideal. The

performance drop is more drastic for the classes with fewer training samples such as

the bicycle and animal class, especially in a smaller-sized network. Comparing the

tiny YOLOv4 at 608×608 with the corresponding full YOLOv4, the best performing

vehicle class exhibits a 2% drop in precision, but other classes have around an 8%

reduction in precision. This can be explained by the number of training samples used

by each class. Because the vehicle class has the most training samples, it is the most

stable class. Another interesting observation is that although the 608× 608 network

is bigger than the 416 × 416 network, the precision is actually lower. Again, the

cause of this phenomenon will not be investigated in this thesis. Overall, The poor

performance in the bicycle and animal class can be explained by the lack of training

samples. If more training samples can be added, getting a 70-80% of overall precision

should not be difficult.

4.8 Running YOLOv4 and Tiny-YOLOv4

Deciding which network to be used in the final model cannot be determined solely

based on precision and recall. The confidence score is another important criterion.

Running the YOLOv4 and Tiny-YOLOv4 networks on some test images, Figure 4.5 is

used to visualize the detection results because it has the most objects in it. Although

the confidence scores are not given in Figure 4.5, they will be listed and explained

below.
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Figure 4.5: (a) Running the full YOLOv4 at 320× 320. (b) Running the full
YOLOv4 at 416× 416. (c) Running the full YOLOv4 at 608× 608. (d) Running the

Tiny-YOLOv4 at 320× 320. (e) Running the Tiny-YOLOv4 at 416× 416. (f)
Running the Tiny-YOLOv4 at 608× 608.

Comparing the results across the full YOLOv4 networks in Figure 4.5, although

the full 608 × 608 YOLOv4 network has the highest mean average precision, the

full 416 × 416 YOLOv4 network detects the most objects. However, the confidence

score (not shown in Figure 4.5) of each detected pedestrian fluctuates between 85%-

100% in the full 416× 416 YOLOv4 network, but maintains at 97%-100% in the full

608×608 YOLOv4 network. Similarly, the full 608×608 YOLOv4 network is around

94% confident of each detected vehicle, but the full 416 × 416 YOLOv4 network is

only around 84% confident. Note that the confidence score in this section refers to

how confident the network is about each detected object in Figure 4.5. Because no
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animal is presenting in Figure 4.5, the confidence score for the dog class will not

be discussed. Based on precision and confidence score, the 608 × 608 full YOLOv4

network is selected and will be used in future comparisons because it has the best

overall performance.

Comparing the results across the tiny-YOLOv4 networks, although the tiny 320×

320 YOLOv4 network has the lowest mean average precision, it detects the most

objects and is 28%-96% confident of the detected pedestrians, 30% confident of the

bicycles, and 36% confident of the vehicles. Whereas the tiny 608 × 608 YOLOv4

network is 41%-95% confident of the pedestrians, 45% confident of the bicycles, and

25% confident of the vehicles. Despite that the tiny 608 × 608 YOLOv4 network

misses some of the objects in the test image, it still gets a relatively higher confidence

score for the detected objects. Although the 608 × 608 tiny YOLOv4 network has

a slightly lower mean average precision than the 416 × 416 tiny network, it has the

highest confidence score. Therefore, the 608×608 tiny YOLOv4 network will be used

in the final comparison.

In addition, the average processing time of each network is recorded in Table 4.8.

Note that the resulting processing time and FPS in Table 4.8 are generated from a

Nvidia GTX 1080Ti GPU. When running the network on a CPU, it will be relatively

slower and at a lower FPS. Overall, the full 608× 608 YOLOv4 network will be used

as the final model as it produces the highest mean average precision along with the

highest confidence score. However, if computing power really becomes a hindrance

, the tiny 608 × 608 YOLOv4 network might be preferable as it has the highest

confidence.
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320× 320 Full 16.237ms 61.59FPS

416× 416 Full 20.992ms 47.64FPS

608× 608 Full 28.781ms 34.75FPS

320× 320 Tiny 2.473ms 404.37FPS

416× 416 Tiny 4.007ms 249.56FPS

608× 608 Tiny 5.294ms 188.89FPS

Table 4.8: The average processing time (also converted to FPS) of each YOLOv4
network.
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Chapter 5

A Support Vector Machine (SVM)

Based Approach

Because the most commonly used CNN models have gone through many iterations of

development, these developed models are usually easier to train on a custom dataset

while achieving satisfying results. However, a “fixed” structure usually lacks the

flexibility in method selection and parameter tuning. Therefore, in this chapter, a

traditional SVM is built to compare with the YOLO and see if more flexibility leads

to improved performance.

When building a classic machine learning classifier, a common approach is to follow

the traditional vision pipeline. In the vision pipeline, images are first preprocessed to

remove any unwanted noise. Then feature extraction methods are applied to capture

the common characteristics within training samples. Finally, a classifier is trained

for decision-making. In this chapter, following the same flow, some commonly used

image preprocessing methods are first studied. Then, some popular edge extraction

methods are reviewed. Next, an SVM classifier is built for decision-making, and

92



M.A.Sc. Thesis – J. Dong McMaster University – software engineering

finally, the entire pipeline is applied to a selected dataset and evaluates the impact

of different preprocessing and feature extraction methods on the classification result.

5.1 Color Space Conversion

Red, green, and blue (RGB) is a three-channeled color scheme that has been widely

used in digital images. Given a RGB image, each pixel is represented by a combina-

tion of the three color values. For some image processing tasks, color information is

important, so it is necessary to preserve the color information by using RGB format.

However, in autonomous driving related computer vision applications, especially in

object detection, the presence of an object can usually be determined without men-

tioning the color. Therefore, images are usually converted to grayscale in these appli-

cations for simplicity. There are exceptions where some edges are difficult to detect in

a grayscale image, but because thermal images look mainly black-and-white, reduc-

ing to a single color channel is enough to represent all possible colors and distinguish

most edges in an infrared image. Hence, images in this experiment were converted to

grayscale.

Another benefit of using grayscaled images is that it requires fewer computational

resources. Because two color channels are omitted, the processing time can be reduced

by at least a factor of 3. This is extremely helpful when dealing with a large dataset.

Figure 5.1 shows the result of converting both a regular and an infrared image to

grayscale.
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Figure 5.1: (a) A regular image. (b) A grayscaled regular image. (c) An infrared
image. (d) A grayscaled infrared image.

5.2 Noise Reduction

As stated in Chapter 2, the selection of noise reduction methods for regular images

is well-studied. However, there is not much literature referring to infrared images.

Infrared images look completely different from regular images, so directly applying

conventional noise reduction methods may not yield an ideal result. Therefore, in this

section, some conventional noise reduction methods are evaluated on infrared images,

and these methods are outlined as below.

� Average filtering
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� Gaussian filtering

� Bilateral filtering

� Median filtering

� Non-local means filtering

5.2.1 Average Filtering

Average or mean filtering is a linear smoothing technique that reduces the intensity

variation between neighbouring pixels. Average filtering works by replacing a pixel

value with the averaged value in the neighborhood, and it is equivalent to convolving

the image space with a kernel. For example, when using a 3× 3 kernel that is defined

as:

K =
1

9


1 1 1

1 1 1

1 1 1


the central value under the kernel is replaced by the average in its surrounding 3× 3

neighborhood. This process is continued until the last pixel in the image is reached.

Average filtering is simple. However, when there exist outliers with extreme values,

the consistency and the overall smoothing effect will be significantly affected. Addi-

tionally, because the pixel values are averaged, certain information such as the edge

is lost and therefore producing blurry edges. Overall, average filtering is not an ideal

choice when sharp edges in the output image are required.
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5.2.2 Gaussian Filtering

Gaussian filtering is another linear smoothing technique, and it modifies the adjacent

pixel intensities around a central pixel by a weighted average based on a Gaussian

function, [44]. The Gaussian function is mathematically defined as:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (5.2.1)

where σ is the standard deviation of the Gaussian distribution (with 0 mean), and x

and y are the pixel coordinates. The σ value controls the extent of the blurring effect,

a big σ corresponds to a more blurry effect, and conversely, a small σ correspond to

a less blurry effect. Due to the shape of the Gaussian function, the central pixel is

always weighted more than those on the periphery. Therefore, the kernel coefficient

becomes smaller when it gets further away from the kernel’s center. This can be seen

in Figure 5.2, when σ becomes larger, the peak is wider and thus generates a greater

overall blurring effect.

Figure 5.2: The Gaussian distribution.

Below is an example of a 5× 5 Gaussian filter when σ equals 1.
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KGaussian =
1

273



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


It is worth mentioning that Gaussian filter is separable. This means that the

aforementioned 2D Gaussian function can be expressed as the product of two 1D

Gaussian function as:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 =

(
1√
2πσ

e−
x2

2σ2

)(
1√
2πσ

e−
y2

2σ2

)
(5.2.2)

By separating the Gaussian function, a 2D convolution can be reduced to two 1D

convolutions. When using a m×m Gaussian kernel to perfrom 2D convolution on a

n×n image, the complexity is O(n2m2). Whereas, the complexity of 1D convolution is

O(n2m) which is significantly faster. Gaussian filtering is highly effective in removing

Gaussian noise, but it does not well preserve the edge.

5.2.3 Bilateral Filtering

Similar to Gaussian filtering, bilateral filtering can also be modeled by a weighted

average, but it is a non-linear method. The bilateral filter is defined as:

BF [I]p =
1

Wp

∑
q∈S

Gσs(‖p− q‖)Gσr(Ip − Iq)Iq (5.2.3)

where Ip and Iq represent the intensity of pixel p and q, and Wp is a normalizer that
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can be calculated using:

Wp =
∑
q∈S

Gσs(‖p− q‖)Gσr(Ip − Iq) (5.2.4)

The space Gaussian, Gσs , is identical to the normal Gaussian filtering, and σs controls

the extent of blurring within the neighborhood. The range Gaussian, Gσr , makes sure

that only similar pixels will be accounted for during smoothing, and σr controls the

intensity similarity between pixels. The term “spatial” refers to pixel location, and the

term “pixel intensity” describes the quantities related to pixel values, [45]. Modeling

pixel intensity by a Gaussian function is an improvement over the normal Gaussian

filtering, and it preserves the edges.

5.2.4 Median Filtering

Median filtering is another nonlinear noise reduction method that is particularly ef-

fective against impulsive or “salt and pepper” noise [107] while preserving the edges,

[46]. This method simply works by first placing a m×m window centered at a pixel.

Then, the intensity of all pixels under the window is sorted in ascending order. Next,

the median intensity is calculated. Finally, the centering pixel’s intensity is replaced

by the median. This process is repeated until all pixel intensities have been replaced.

The rationale of its edge preserving property is that the intensity on both sides of

the edge are drastically different. When the median is calculated, the intensity of the

edge is unchanged.
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5.2.5 Non-Local Means Filtering

In addition to the aforementioned filtering methods, the non-local means filtering

method proposed by Buades et al. can also be applied, [47]. In [47], the color of a

pixel is replaced by the average color of all simialr pixels. Previously, noise reduction

methods only consider pixels in a close neighborhood. However, given a pixel, the

most similar pixels can also be outside of the close neighborhood. The non-local

means filter used in this method is defined as:

NLu(p) =
1

C(p)

∫
f(d(B(p), B(q))u(q)dq (5.2.5)

where d(B(p), B(q)) is the Euclidean distance between the image patches centered

at p and q, f is a decreasing function, and C(p) is the normalizer. It is obvious

that this method is not truly “non-local” as pixels are still compared locally, but

just in a larger neighbourhood. When computing the Euclidean distance, all pixels

in the image patch B are equally important, so not only limited to the pixel p, all

surrounding pixels in B(p) can also be filtered. This method has been originally

applied to color images denoted as u = (u1, u2, u3), and the result can be written as:

ûi(p) =
1

C(p)

∑
q∈B(p,r)

ui(q)w(p, q) (5.2.6)

C(p) =
∑

q∈B(p,r)

w(p, q) (5.2.7)

where i = 1, 2, 3 and B(p, r) is the squared neighbourhood centered at pixel p with

size (2r + 1) × (2r + 1). The weight w(p, q) depends on the Euclidean distance
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d2 = d2(B(p, f), B(q, f)) of the two color patches centered at p and q. w(p, q) is

defined as:

w(p, q) = e−
max(d2−2σ2,0)

h2 (5.2.8)

where σ is the standard deviation of the noise, and h is a filtering parameter set

depending on the value of σ. When applying this method to grayscaled images, two

color channels can be omitted, and the result is then writen as:

û(p) =
1

C(p)

∑
q∈B(p,r)

u(q)w(p, q) (5.2.9)

5.3 Filtering Application Results

Applying the aforementioned filtering methods on an image, the results are in Fig-

ure 5.3. In Figure 5.3, the filtered images are on the first row of each method, and the

images on the second row show the contour generated by OpenCV. In theory, if the

images are well-filtered, the contour should be smooth as it is less affected by noise.

By inspecting the original image on the first row, it is clearly noisy because the

corresponding contour is spiky. Moving on to the average filtered image, fewer speckle

noises are observed, but the edges become blurry. Although the contour in average

filtering is smoother than the original, the remaining noise still makes it spiky. Vi-

sually looking at the Gaussian filtered image on the first row, it can be concluded

that the image is less blurry than the result from average filtering, and the edges

look sharper. However, the contour is barely changed meaning that there is little

to no improvement in the filtering result. Comparing the image in bilateral filtering
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with the one in Gaussian filtering, the edges produced by bilateral filtering are even

more blurry, but bilateral filtering significantly smoothes the contour. The resulting

image from median filtering looks less blurry, and sharper edges can be observed, but

the contour does not look as smooth as the result from bilateral filtering. Finally,

the non-local means filtering seems to generate the sharpest edges and the smoothest

contour among all the filtering methods. Overall, bilateral, Median, and non-local

means filtering seem to be the most effective options and will be considered in the

final implementation.
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Figure 5.3: The effect of each denoising method.
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5.4 Feature Extraction

In infrared images, live objects appear in white, and the background is in black or gray

depending on the temperature. Due to the color contrast between the object and its

background, edges can be easily localized. Because edge features are representative

in infrared images, so they can be used to describe the common characteristics of

a class of objects. Therefore, in this thesis, it is decided to use contour-based edge

extraction methods to calculate features. Based on the order of differentiation, the

following commonly used edge extractors are reviewed and evaluated:

� Sobel edge detector

� Canny edge detector

� Roberts edge detector

� Prewitt edge detector

� Laplacian edge detector

� Laplacian of Gaussian (LOG) edge detector

� Histogram of Oriented Gradients (HOG)

5.4.1 Sobel Edge Detector

Sobel edge detector is one of the most commonly used edge detectors, and it works

by calculating the magnitude of the gradient and its direction at each pixel location,

[57]. Given a 3× 3 image patch centering at [i, j]:
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a0 a1 a2

a7 [i, j] a3

a6 a5 a4

the gradient in the horizontal (Gx) and vertical (Gy) direction at [i, j] can be math-

ematically computed as:

Gx = (a2 + ca3 + a4)− (a0 + ca7 + a6) (5.4.1)

Gy = (a0 + ca1 + a2)− (a6 + ca5 + a4) (5.4.2)

In Sobel detector, c = 2. The direction is then defined as:

θ = tan−1(
Gy

Gx

) (5.4.3)

Combining the gradient in each direction, the magnitude can be calculated using:

M =
√
G2
x +G2

y (5.4.4)

Gx and Gy can also be implemented using 3× 3 convolution kernels:

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

 Gy =


−1 −2 −1

0 0 0

+1 +2 +1


These kernels are applied in each direction until they fully traversed the entire image.

It is worth mentioning that the Sobel detector emphasizes the pixels that are closer to

the center of the kernel. The result of applying the Sobel edge detector on an image
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is shown in Figure 5.4.

Figure 5.4: Applying the Sobel edge detector.

5.4.2 Canny Edge Detector

The Canny edge detector is a popular edge detection process, [56]. The reason it is

called a process is that a pipeline usually needs to be followed in order to extract

edges. Unlike the Sobel operator that simply performs convolution on the image to

extract edges, the Canny edge detector performs the following operations:

� Grayscale conversion

� Gaussian blur

� Gradient calculation
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� Non-Maximum suppression

� Hysteresis thresholding

Because the grayscale conversion and Gaussian blur are identical as it is described

in section 5.1 and 5.2.2, so these two steps are omitted here. The gradient in the Canny

edge detector is determined by using the Sobel operator as explained in section 5.4,

so it will not be explained again here.

Non-Maxima Suppression

Edges can be usually found when there is a rapid change in pixel intensity. This

is equivalent to finding the local maxima in the magnitude of gradient. When the

magnitude is large, the edges cannot be located as the result is a broad region. To

identify the edge, the broad region must be thinned so that only the magnitudes at the

local maxima remain. This edge-thinning process is called non-maxima suppression

(NMS), [108]. Note that when the word “magnitude” is used in this section, it means

“magnitude of gradient”. The non-maxima suppression finds the maximum value on

the edge while suppressing other values in the same gradient direction. In this method,

the gradient directions θ[i, j] are divided into four symmetric partitions labeled from

0 to 3 as shown in Figure 5.5.
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Figure 5.5: The partitions of the reduced gradient direction, [108].

When a 3× 3 neighbourhood is centered at a pixel [i, j]. The magnitude, M [i, j],

is then compared with its neighbours that are in the same graident direction, θ[i, j].

If M [i, j] is not the greatest, it is then set to zero. By repeating the process, the edge

will become only one pixel wide. This process can be writen as:

N [i, j] = nms(M [i, j], ζ[i, j]) (5.4.5)

where N [i, j] is the suppressed magnitude, and ζ[i, j] is the partition label between 0

and 3 in Figure 5.5.

Hysteresis Thresholding

After the non-maxima suppression, the hysteresis thresholding is performed on N(i, j)

to further reduce the number of false edges. In this process, a lower threshold and

an upper threshold denoted as τ1 and τ2 are used, with τ2 ≈ 2τ1. This technique is

also known as “double thresholding”, [109]. The thresholded images are denoted as
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T1 and T2. Because T2 is produced by using the higher threshold, fewer false edges

will be observed. However, sometimes there will be gaps in the contour. In T2, when

it reaches the end of a contour, the algorithm will compare T2 with T1. If the contour

ends in both T1 and T2, the whole process is completed. Otherwise, T1 will be used to

fill in the discontinuity in T2. This process is continued until all the gaps in T2 have

been bridged. It is worth mentioning that the Canny edge detector performs edge

linking as a by-product of thresholding, [56]. Figure 5.6 shows the result of using

the Canny edge detector without hysteresis thresholding, and discontinuities in the

edge can be clearly visualized. Figure 5.7 demonstrates the effect of edge linking.

Notice that there are still some small gays after hysteresis thresholding, but this can

be improved by fine-tuning the threshold values.

Figure 5.6: Using the Canny edge detector without hysteresis thresholding.
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Figure 5.7: Properly applying the Canny edge detector with hysteresis thresholding.

5.4.3 Roberts Edge Detector

Given an image I, the Roberts edge detector [110] is a first-order gradient based

method that approximates the gradient magnitude M at pixel (i, j) using:

M(i, j) = |I(i, j)− I(i+ 1, j + 1)|+ |I(i+ 1, j)− I(i, j + 1)| (5.4.6)

Let Gx and Gy be the gradient in the horizontal and vertical direction, the following

kernels implement Gx and Gy:

Gx =

 1 0

0 −1

 Gy =

 0 −1

1 0


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Equation 5.4.6 is the mathematical formulation when using the L1 norm. The

Roberts operator can also be implemented using the L2 or the L-infinity norm. The

L1 norm gives stronger edges in the horizontal and vertical direction, the L-infinity

norm produces stronger diagonal edges, and the L2 norm accounts for both. However,

the L2 norm is computationally expensive, so the L1 norm is commonly used. The

Roberts operator generally gives no information about gradient direction, and the

result of using the Roberts operator on an image is shown in Figure 5.8.

Figure 5.8: The result of applying the Roberts operator.

5.4.4 Prewitt Edge Detector

Given the equations used by the Sobel edge detector, when c = 1, it becomes the

Prewitt edge detector, [58]. Therefore, the convolution kernels are:
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Gx =


−1 0 1

−1 0 1

−1 0 1

 Gy =


−1 −1 −1

0 0 0

1 1 1


Unlike the Sobel edge detector, the Prewitt operator does not discriminates the pix-

els away from the center. The result of applying the Prewitt operator is shown in

Figure 5.9.

Figure 5.9: The result of applying the Prewitt operator.

5.4.5 Laplacian Edge Detector

Unlike all aforementioned edge detectors that approximate the first-order derivative,

the Laplacian edge detector approximates the second-order derivative, [111]. When
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using the first-order derivative, edges appear at local maxima, but when approxi-

mating the second-order derivative, they appear at the location where the function

crosses zero as shown in Figure 5.10.

Figure 5.10: The second-order derivative crosses zero at the edge.

The Laplacian function f(x, y) is defined as:

∇2
f =

∂2f

∂x2
+
∂2f

∂y2
(5.4.7)

Given a pixel at (i, j), the second-order derivative in the x and y directions are

approximated using:

∂2f

∂x2
= f(i, j + 1)− 2f(i, j) + f(i, j − 1) (5.4.8)

∂2f

∂y2
= f(i+ 1, j)− 2f(i, j) + f(i− 1, j) (5.4.9)

and this is equivalent to using the following convolution kernel:
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∇2 =


0 1 0

1 −4 1

0 1 0

 (5.4.10)

When the central pixel needs to be emphasized, the Laplacian kernel can be changed

to:

∇2 =


1 4 1

4 −20 4

1 4 1

 (5.4.11)

Variations that are rotation-invariant or emphasize on other parts of the image such

as the boarder also exist. This section will not provide an exhuastive list of all these

variations. On the left side of Figure 5.11 is the result of using the kernel in 5.4.10,

and on the right side of Figure 5.11 is the result of using the kernel in 5.4.11.

Figure 5.11: The results of using the Laplacian operator.
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5.4.6 Laplacian of Gaussian Edge Detector

When approximating the second-order derivative, the result is extremely sensitive to

noise. Therefore, applying the Laplacian operator on a noisy image yields undesirable

output. To solve this problem, the LOG detector is proposed that combines Gaussian

smoothing with the Laplacian edge detector, [112]. The main idea is to first filter

the image using Gaussian filtering as described in section 5.2.2, and then use the

Laplacian operator described in section 5.4.5 to detect edges. Mathematically, the

LOG operator h(x, y) is defined using convolution as:

h(x, y) = ∇2[(g(x, y) ∗ f(x, y)] = [∇2g(x, y)] ∗ f(x, y) (5.4.12)

where

∇2g(x, y) = (
x2 + y2 − 2σ2

σ4
)e−

x2+y2

2σ2 (5.4.13)

The LOG detector can also be implemented using the following 5× 5 LOG kernel:

h(x, y) =



0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0


The result of using the LOG detector is shown in Figure 5.12.
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Figure 5.12: The result of using the LOG operator.

5.4.7 Histogram of Oriented Gradients Feature Descriptor

The HOG feature descriptor is another gradient-based feature extraction method,

[41]. Unlike all aforementioned detectors that identify edges using either the first or

the second-order derivative, the HOG uses the distribution of the gradient directions

as feature. The distribution is called the “Histogram”, and the gradient direction

is called the “Oriented Gradients”. As proposed in [41], the HOG consists of the

following five steps:

� Preprocessing

� Calculate the gradient
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� Calculate the histogram of gradients

� Block normalization

� Calculate the HOG feature vector

Preprocessing

In the original paper, [41], the HOG uses 64×128 image patches for human detection.

But in fact, a human may appear in any size or scale in an image. For example, when

a person is close to the camera, it may appear in 128 × 256. Similarly, when it is

distant from the camera, it may be in 32× 64. Therefore, instead of using the HOG

solely on 64× 128 images, using images that have the aspect ratio of 1 : 2 for human

detection is more appropriate as the images can be later resized. Additionally, the

HOG can also be used to detect other types of objects such as vehicles or animals.

Figure 5.13 illustrates the resizing process that is described in the original paper,

where a region is first cropped from the entire image and then resized to the aspect

ratio of 1 : 2.

Figure 5.13: Resizing the image patch to 1:2 aspect ratio.
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The original paper also mentioned using the gamma or color normalization during pre-

processing, but only a modest effect on performance is observed. Therefore, gamma

or color normalization is not used in this thesis.

Gradient Calculation

The gradient in the x and y directions can be calculated using the following kernel

Gx =

[
−1 0 1

]
Gy =


−1

0

1


Alternatively, the gradient can also be calculated using the Sobel operator as described

in section 5.4.

Calculating the Histogram of Gradients

In this step, image patches are divided into blocks of 8 × 8 cells. For example, in a

64 × 128 image, there are 8 blocks of 8 × 8 cells on each row and 16 blocks of 8 × 8

cells on each column as shown in Figure 5.14.
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Figure 5.14: The resized image is divided into 8× 8 cells. Given a 64× 128 image,
there are 8 blocks of 8× 8 grids on each row and 16 blocks of 8× 8 grids on each

column.

By using this formulation, each block is represented by 8×8×2 values. The value

2 indicates that both magnitude and direction of the gradient are calculated for each

individual cell. Then, a 9-bin histogram that evenly separates a 180° span is created

to store the magnitudes as shown in Figure 5.15.

Figure 5.15: The 9-bin histogram.

By dividing the directions into 9 bins, the first and last bin represent the gradient

direction of 0° and 160°, respectively. When a gradient direction falls perfectly in one

of the bins, the magnitude is directly added to that bin. Otherwise, when gradient

directions fall between two bins, the amount of magnitudes is proportionally added to

each bin based on the gradient directions. For example, given a gradient direction of

10°, because it is in between the first and the second bin, so the magnitude is equally

divided and added to each of the two bins. Similarly, when a gradient direction of
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20° is found, the magnitude is added directly to the second bin.

Block normalization

Gradient magnitudes are the representations of the change in pixel intensities. When

the ambient lighting is altered, the calculated gradient will be different. Therefore,

gradients are sensitive to the overall lighting, but ideally, gradients should be lighting-

invariant to ensure consistency. To achieve this, the histogram is normalized. As

suggested in the original paper, 16 × 16 block normalization using L2-norm is used,

[40]. The block normalization slides a 16× 16 window across the image, and the L2

norm is calculated at each location. This process continues until the histograms at

all locations are normalized.

Calculating the HOG Feature Vector

After the 16×16 block normalization, the result at each location is a 36×1 vector, as

each 8×8 cell produces a 9×1 histogram, and concatenating four of these histograms

gives a 36×1 vector. The 16×16 window is moved 7 times horizontally and 15 times

vertically. Therefore, the final HOG feature vector has a dimension of 7 × 15 × 36.

The result of applying the HOG on the same testing image is shown in Figure 5.16.
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Figure 5.16: The result of applying the HOG descriptor.

5.5 Method Selection

Given the filtering and feature extraction methods that are described in the previous

sections, the performance of these methods on infrared images must be studied and

evaluated. However, evaluating every combination is unnecessary as some methods

are based upon the others. For example, the canny edge detector uses Gaussian

filtering with Sobel operator, the LOG operator combines Laplacian operator will

Gaussian filtering, and the Prewitt operator is just setting a different constant value

in the Sobel operator. Therefore, only a few combinations will be evaluated in the

SVM training, and these combinations are:
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� Canny Edge detector (Gaussian filtering and Sobel operator)

� LOG (Gaussian filtering and Laplacian operator)

� Gaussian filtering and HOG

� Median filtering and HOG

� Non-Local Mean filtering and HOG

5.6 Dataset Preparation and Labelling

The dataset that is used to train the SVM is the same as the dataset in Chapter

4.5 except that the labeling format is different. YOLO represents the location of a

bounding box by its normalized central coordinates, but OpenCV localizes a bounding

box by using the coordinates of the top-left and bottom-right corner. Previously, the

dimensions of the input image, the normalized central coordinates, and the dimensions

of each bounding box have been defined in YOLO, the coordinates of the top-left and

bottom-right corners in OpenCV can be easily calculated by using Equation 5.6.1 to

5.6.4.

w = normalized w × 640 (5.6.1)

h = normalized h× 512 (5.6.2)

x = normalized x× 640± 0.5× w (5.6.3)

y = normalized y × 512± 0.5× h (5.6.4)
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The normalized terms refer to the YOLO coordinates, and 640 and 512 are the

width and height of the input image, respectively. The Python script in Appendix.

A.1 is written to automate the format conversion. Given the OpenCV coordinates,

the dataset can be prepared either by directly extracting the bounding boxes from

the full images before training or directly using the full images and later extract the

boxes during run-time. Both approaches have been tested but collecting the bounding

boxes in the first place makes the dataset visually appealing. One can easily visualize

all labeled objects in the dataset (see Figure 5.17).
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Figure 5.17: Visualizing the dataset after all bounding boxes have been collected
(ignore the file name).

5.7 Decision Making Using Windowing

Because an image contains too much irrelevant information such as the background

or the objects that are not of interest, instead of extracting features from the entire
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image, a smaller image patch is commonly used to calculate features. For example,

given the image in Figure 5.18, to extract features from one of the pedestrians, the

patch around that pedestrian is cropped to make sure the background has minimal

impact on the pedestrian’s feature. Similarly, the SVM generally produces higher

accuracy when working with smaller image patches. This process of finding the

smaller image patches is commonly called “windowing”. Sliding a window across the

entire image is similar to the kernel-sliding operations in convolution.

Figure 5.18: Cropping a patch from the original image.

At each window location, features are calculated and a decision is made. In this

thesis, when applying the SVM to full images, a 64×128 HOG window is used to slide

across the image like it is suggested in the original HOG paper, [41]. The window

will then move by the stride amount to the next location. This process is repeated

until the window fully traversed the entire image and all decisions are made. It is

worth mentioning that there is always a speed-to-accuracy tradeoff, a bigger stride

corresponds to a faster processing time but usually produces a relatively low accuracy.
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Conversely, it takes longer to process but often yields a higher accuracy. Figure 5.19

is a simple demostration of the windowing process. Note that the window grid is

partially outside the image on the edge, this is because the dimensions of the window

are not perfectly selected. Adjusting the dimensions of the window or padding the

image with zeros will solve this.

Figure 5.19: The windowing process.

5.7.1 Image Pyramid

After windowing is applied to 640×512 images, images are divided into many 64×128

regions. However, the objects that appear in the window can still be small such as

32× 64 or even smaller as shown in Figure 5.20. Note that on the left of Figure 5.20,

the object almost occupies the entire 64 × 128 window, and on the right, the object

occupies less than half of the window.
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Figure 5.20: When objects appear at different scales in the window..

Without scaling, although the images look similar, the features are in fact com-

pletely different from each other, mathematically. Therefore, because the object

largely occupies the 64 × 128 patch, so the SVM will probably correctly classify the

left one as “dog” and completely misses the right one. To solve this issue, a process

called “Image pyramid” is used. The image is resized to different scales and placed

in each layer of the image pyramid as shown in Figure 5.21.
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Figure 5.21: The image pyramid.

When applying the image pyramid, the window size remains unchanged, but a

window scans the image at four different scales in Figure 5.21. With the help of the

image pyramid, a fixed-sized window should have no problem in detecting objects

that are bigger or smaller than the window.

5.8 Training a Support Vector Machine

After selecting the filtering and feature extraction methods, three attempts are made

during the SVM training. Each attempt involves the following steps:

� Creating a positive and a negative training set
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� Preparing negative images for testing

� Training the SVM with hard example mining

In the original HOG paper, features are calculated from 64×128 images. Because

other feature extraction methods do not have specified size requirements, the SVMs

in this thesis are all trained on the features that are calculated from 64× 128 images,

all in one scale, to ensure the consistency in the shape and size of the feature, and

also for simplicity.

5.8.1 The First Attempt - Training a Unified Linear Binary

SVM to Classify Them All

The first attempt is aimed to convert the multi-class classification problem into a sin-

gle binary classification problem. By using this formulation, when the model detects

an object that belongs to one of the four classes, the output is “yes”. Otherwise,

the output is “no”. Having this in mind, the people’s feature, vehicle’s feature, bicy-

cle’s feature, and animal’s feature are combined together denoted as xi with the label

“object” denoted as yi. Then, the SVM is trained on (xi, yi) pairs to make binary

classification.

Creating a Positive and a Negative Training Set

The positive set contains only the objects that belong to the four classes. For example,

images in this set are resized to 64 × 128 for consistency and contain only people,

vehicles, bicycles, and animals. The features from this set are denoted as xp with the

label “+1”. An example of the images in the positive set can be seen in Figure 5.22.
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Figure 5.22: An image in the positive set.

On the contrary of the positive set, the negative set does not contain any objects

that belong to the four classes. Images in the negative set are also 64 × 128 and

contain the background such as a tree, a house, or other objects such as a plane or a

boat. The features from this set are denoted as xn with the label “−1”. An example

of the images in the negative set can be seen in Figure 5.23.

Figure 5.23: An image in the negative set.
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Preparing Negative Images for Testing

The “negative images” and “the images in the negative training set” are two different

concepts. Images in the negative training set are “small”. For example, they are

64 × 128. Whereas the negative images used for testing are full-sized 640 × 512. In

this case, 640 × 512 is the resolution of the FLIR A65 camera. Because both terms

share the common keyword “negative”, so they do not contain any objects that belong

to the four classes. The trained SVM is tested on the negative images, and producing

hard examples by “hard example mining”. Adding hard examples is equivalent to

expanding the size of the negative training set, and can further improve the training

result. How to extract hard examples will be explained in the following section. An

example of the negative images can be seen in Figure 5.24.

Figure 5.24: An example of the negative images.

Training the SVM with Hard Example Mining

Given the feature and label pairs denoted as (xp,+1) and (xn,−1), one linear binary

SVM is trained. By using the linear kernel, an assumption made is that all data
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points are linearly separable. To validate this assumption, a common approach is to

use clustering methods. If data points are linearly separable, the clustering methods

will group data points into individual clusters separated by a linear boundary. The

K-means clustering method is used in this thesis due to its popularity. Figure 5.25 is

a graphical representation of the clustering results, showed in two ways.

Figure 5.25: The K-means clustering results.

From Figure 5.25, it can be concluded that the training data is in fact linearly

separable, and the assumption is valid. On the left, the purple cluster represents

the positive class, the yellow class represents the negative class, and the gray dots

are the centroid or the data mean. Similarly, on the right-hand side, the boundary

between the positive and negative classes can be visualized by the line between the

brown and the blue region. Note that because the feature extraction methods pro-

duce high-dimensional data, visualize the data in a 2-d plot is impossible. Therefore,

Principal Component Analysis (PCA) is used to compress the dimension. PCA re-

duces the dimensionality by projecting the higher-dimensional data onto the principal

components that best approximates the data in the least-square sense, [113].

Starting by grayscaling the input images and using the selected filtering methods

for noise suppression, the Sobel, Laplacian, and HOG features are then extracted and
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normalized to values between 0 and 1. The hinge loss is used and penalized by L2

regularization. The regularization constant is set to 1 for now.

The extracted features and the corresponding labels are encoded in dense vectors

and served as the input to the SVM. Next, the trained model is tested on the negative

images to find “hard examples”. Because the negative images do not contain any

objects that belong to the four classes, if the SVM classifies anything as an “object”,

it is then a false classification. These false classifications (the images within the

bounding box) are called “hard examples” denoted as (xfn,−1) and added to the

negative training set. Because the binary SVM can only classify two classes, the hard

examples have the same label as the objects in the negative class. In this case, “-1”,

meaning that it is not an object of interest.

The normalized features are then calculated for the hard examples and appended

to the feature vector. Meanwhile, the labels for the hard examples are appended to

the label vector. Then, these two vectors are fed back to the SVM to train the model

again using (xp,+1), (xn,−1), and the newly added (xfn,−1). Hard example mining

generates more negative training samples, and one can repeat this process multiple

times until the final model achieves a relatively satisfying result. The overall training

procedure can be seen in Figure 5.26 via the flowchart, and the Python code for the

hard example mining is in Appendix. A.2.

Additionally, when preparing training samples, the dataset can be either balanced

or unbalanced. A balanced dataset has an equal amount of positive and training

samples. Whereas, the number of positive and negative training samples is not equal

in an unbalanced dataset. Both approaches are evaluated on one of the SVMs. Here,

for example, the Gaussian and HOG SVM is used, and the results are in Table 5.1.
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Because the precision, recall, and the F-1 score between the two approaches only have

little to no difference, it is concluded that either approach can be used. Therefore, for

simplicity and also for future use, a balanced dataset is used. In total, the positive

and negative set each has around 87,269 samples.

Dataset type Precision Recall F1-score

Balanced 93.5% 93.8% 93.6%

Unbalanced 95.2% 95.3% 93.3%

Table 5.1: Training on a balanced and an unbalanced dataset.
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Figure 5.26: The overall SVM training procedure.
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Testing the SVM

As previously explained, images in the dataset are all resized to 64× 128. 70% of the

images are used for training and the rest 30% are used for testing. Note that this

7 : 3 data split is commonly used in other literature and experiments, so it is also

used in the rest of this thesis. When testing the SVM, the same processing procedure

in training carries over, where images in the testing set are grayscaled and filtered,

and features are then extracted by using the selected methods. The features are also

encoded in vectors and fed to the SVM for prediction. The prediction is simply done

by using the “predict” function in the “SVM” package provided by OpenCV. The

testing results are in Table 5.2.

Method Precision Recall

Canny edge detector 66.2% 58.3%

LOG 61.2% 75.8%

Gaussian filtering and HOG 95.2% 95.3%

Median filtering and HOG 96.5% 95.9%

Bilateral filtering and HOG 94.9% 94.6%

Non-Local Means filtering and HOG 87.9% 86.7%

Table 5.2: The testing results of the unified linear binary SVM.

Based on the results, it is concluded that using only one binary SVM to detect

whether an object is presenting in the image seems to be a viable approach. Because

the positive training samples cover all classes of objects, the classification problem is

simplified. Although this approach shows promising results, usually no image classifier
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is trained in this way. Reformulating the multi-class classification problem into a

single binary classification problem definitely works, but the classification results are

too general which makes it rather meaningless. The detectors in autonomous driving

applications usually require more detailed information instead of a simple binary

“yes” or “no”. Because this attempt produces results that are too general to be used

in an actual autonomous driving application, it will only serve as a starting point and

will not be considered in the final implementation.

5.8.2 The Second Attempt - Training a Linear Binary SVM

for Each Class

The second attempt is an improvement over the previous unified SVM on refining

feature selection and reformulates a multi-class classification problem into many sub-

binary classification problems by using an OAA-styled approach. Previously when

training the unified SVM, because all features are combined, the classification problem

becomes over-simplified. Any object of interest triggers a detection, which makes the

precision incredibly high. However, the results are binary and provide no information

on the class name. Therefore, instead of training only one binary SVM to classify it

all, four binary SVMs that correspond to the four classes are trained in this attempt.

This attempt is slightly different from the common OAA approach in the way

that, in OAA, the SVM can predict multiple class labels. But, the SVMs used in

this attempt are still binary. For example, the SVM used for classifying animals will

return the output “yes” when an animal is detected. Otherwise, the result is “no”. By

using this approach, each SVM is only responsible for classifying one class of objects.

Training each SVM still follows the same procedure except the dataset is split
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into four sub-datasets that contain only people, vehicles, bicycles, and animals, re-

spectively. By splitting the dataset, the positive training samples for each SVM

become only the objects of interest of that class. The negative training samples com-

bine the previously used common negative samples and all positive samples from the

other three classes. For example, the positive training samples of the “people” SVM

are just images of people, but the negative training samples include vehicles, bicy-

cles, animals, and the previously used common negative samples. By doing this, each

dataset is no longer balanced since the number of negative samples well-exceeded the

number of positive samples, but the data points are still linearly separable.

As usual, the selected filtering methods are first applied, and the features are

extracted from the positive and negative samples and fed into each SVM. Four SVMs

are trained simultaneously. All the hyperparameters remain unchanged. Note that

because each SVM still performs binary classification, the hard examples produced

by each SVM still have “-1” as the label, which means they do not belong to that

class.

Testing the SVM

Table 5.3 and 5.4 show the results of this attempt. Because there is a huge difference

in the number of training samples between classes, each SVM exhibits drastically

different results. For example, the vehicle class has the most training samples, so the

“vehicle” SVM is the overall most accurate one. Because only hundreds of samples

are available for the animal class, the “animal” SVM is the overall worst performing

one.

Looking at the last four rows in both Table 5.3 and 5.4, the filtering methods can be
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compared at the same level. Based on precision, it can be concluded that Gaussian,

median, and bilateral filtering have comparable results, and the non-local means

filtering is around 2% below the previous methods. Similarly, looking at the first three

rows, the feature extraction methods can be compared at the same level because they

all use Gaussian filtering. Overall, the HOG significantly outperforms other feature

extraction methods by 10-15% in terms of precision. This conclusion can also be

validated from the recall perspective. Because better-performing methods produce

fewer misclassifications or false positives, the recall is higher. Poorly performing

methods generate more false negatives and therefore the recall is lower.

This attempt reformulates a multi-class classification problem into four binary

classification problems and has proved that assigning one SVM to each class is a

better approach. Moreover, because bilateral filtering with HOG features achieves the

highest overall performance, this combination will be considered in the final model.

Method (precision) people vehicle bicycle animal

Canny edge detector 64.9% 57.9% 54.7% 52.2%

LOG 67.1% 69.3% 63.4% 57.5%

Gaussian filtering and HOG 82.3% 80.6% 77.9% 74.3%

Median filtering and HOG 81.5% 81.7% 79.4% 72.9%

Bilateral filtering and HOG 82.7% 80.5% 78.4% 74.5%

Non-Local Means filtering and HOG 81.3% 78.1% 75.2% 73.8%

Table 5.3: The precision of each linear binary SVM in the second attempt.
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Method (recall) people vehicle bicycle animal

Canny edge detector 60.9% 63.1% 62.7% 60.3%

LOG 77.9% 61.9% 59.5% 57.8%

Gaussian filtering and HOG 84.6% 79.2% 77.9% 74.3%

Median filtering and HOG 82.6% 81.4% 79.4% 78.5%

Bilateral filtering and HOG 83.6% 80.6% 82.4% 79.7%

Non-Local Means filtering and HOG 81.4% 78.6% 77.2% 76.4%

Table 5.4: The recall of each linear binary SVM in the second attempt.

5.8.3 The Third Attempt - Adjusting the Window Size Dur-

ing Training

In the previous two attempts, all training images are resized to 64 × 128. This is

desirable for the people class as the aspect ratios in this class are usually 1 : 2. In

other words, the height of the bounding boxes around people is usually twice as big as

the width. However, by inspecting the dataset used in this experiment, most bounding

boxes around vehicles, bicycles, and animals have an aspect ratio of 2 : 1. Therefore,

similar to the second attempt, four datasets are prepared, but the images in the

vehicle, bicycle, and animal set are resized to 128×64 rather than 64×128 to represent

the 2 : 1 ratio. The positive and negative training samples are identical to those in

the second attempt except the aspect ratio has been adjusted correspondingly. The

rest of this attempt including the training and testing procedures remains unchanged

from the second attempt.
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Testing the SVM

According to the results in Table 5.5 and Table 5.6, because a 128 × 64 window fits

vehicles, bicycles, and animals better, it is more likely to detect these objects during

windowing, and therefore exhibits a 1-2% improvement in precision. The recall is also

slightly improved. Additionally, when using a 64 × 128 window, as the amount of

space surrounding these objects is usually bigger compared to when using a 128× 64

window, the background has more impact on the detection results which yields slightly

lower performance. Therefore, it is concluded that adjusting the aspect ratio of the

training samples based on their natural shape during training is helpful, but it only

offers little improvement. Because the improvement is so little, this attempt will not

be considered in the final implementation.

Method (precision) people vehicle bicycle animal

Canny edge detector 64.7% 59.6% 56.2% 51.9%

LOG 67.3% 72.7% 64.6% 57.6%

Gaussian filtering and HOG 82.5% 81.5% 79.3% 75.1%

Median filtering and HOG 81.9% 83.2% 79.9% 72.7%

Bilateral filtering and HOG 83.1% 82.2% 80.1% 74.9%

Non-Local Means filtering and HOG 80.9% 79.9% 77.0% 73.9%

Table 5.5: The precision of each linear binary SVM in the third attempt.
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Method (recall) people vehicle bicycle animal

Canny edge detector 60.6% 64.4% 64.1% 59.8%

LOG 78.2% 63.7% 61.3% 58.0%

Gaussian filtering and HOG 82.5% 80.6% 79.8% 75.4%

Median filtering and HOG 84.1% 83.4% 82.1% 78.2%

Bilateral filtering and HOG 83.7% 81.7% 83.2% 79.8%

Non-Local Means filtering and HOG 80.5% 79.6% 78.7% 76.4%

Table 5.6: The recall of each linear binary SVM in the third attempt.

5.9 Running the SVM on Full Images and Com-

paring with the YOLOv4

Based on the results gathered from the three different attempts, it is finally decided to

use bilateral filtering paired with HOG features to train the SVM because this method

combination has the highest overall performance from previous experiments. The

“bilateral and HOG” SVM has been chosen to compare with the YOLOv4 networks.

Because the training and testing images in the dataset are originally resized to

64 × 128, testing the SVM and evaluating its performance on these “small” images

can be directly done without using windowing and image pyramid. However, due to

the YOLOv4 networks can directly perform detection on 64 × 128 images, in order

to compare the SVM with the YOLOv4 at the same level, in order words, to run the

SVM on full-sized 64×128 images, windowing and image pyramid is required to scan

the full image. In this thesis, the window size is decided to be 64×128, and the stride
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is set to 64. Therefore, the image in the first layer of the pyramid is divided into a

10× 4 grid, and HOG features can be extracted at each location without any major

modification to the code.

The scaling factor used by the image pyramid is set to 1.5 on a trial-and-error

basis. By testing the image pyramid using different scaling factors, 1.5 produces the

best overall results. The dimensions of the 640× 512 images are divided by 1.5 each

time until the 64 × 128 window no longer fits inside the image. Because the images

captured by the FLIR A65 camera in this experiment are all 640× 512, by using this

setting, the 64 × 128 window scans each image 5 times. In other words, the image

pyramid has 5 layers.

When sliding the window in each layer of the pyramid, the part of the image

within the window is grayscaled first and filtered by bilateral filtering. HOG features

are then extracted and fed to the SVMs for prediction simply by calling the “predict”

function. This process is the same as previously explained. Because there are four

SVMs used in the final model, each SVM makes the corresponding binary classification

simultaneously.

If an object is detected at the current window location, a bounding box is produced

at that location by using OpenCV’s “rectangle” function. When an object is not

perfectly placed in a bounding box, in other words, if multiple bounding boxes enclose

the same object, the non-maxima suppression is applied. This is done by setting the

overlapping threshold to 0.3, meaning that when two bounding boxes overlapped each

other by greater than or equal to 30%, the current bounding box is deleted. A list

is used to keep track of the indices of all bounding boxes. This threshold is also

set based on trial-and-error. The detection results before and after the non-maxima
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suppression are in Figure 5.27 and Figure 5.28, and the flowchart that depicts the

entire pipeline when running the SVM on full-sized 640Ö512 images is in Figure 5.29.

Figure 5.27: Before the Non-Max suppression.
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Figure 5.28: After the Non-Max suppression.
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Figure 5.29: Running the SVM on full-sized 640× 512 images.
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Comparing the SVM model with the YOLOv4 and tiny YOLOv4 networks, the

results are in Table 5.7. Note that this comparison is made on 15% of the 640× 512

testing images that are originally used in the YOLO training.

Method AP @ 0.5 IoU people vehicle bicycle animal mAP Time(ms)

SVM 79.7% 76.1% 73.9% 70.2% 75.0% 345.358

Full YOLOv4 @ 608 68.9% 69.3% 66.0% 62.8% 66.8% 28.781

Tiny YOLOv4 @ 608 60.8% 68.4% 57.7% 55.3% 61.0% 5.294

Table 5.7: Comparing the SVM with the YOLOv4 and tiny YOLOv4 network.

From Table 5.7, the “bilateral and HOG” SVM achieves the highest 75.0% overall

mean average precision, the full 608 × 608 YOLOv4 network placed second with

66.8% mAP, and the 608 × 608 tiny YOLOv4 network placed last with only 61.0%

mAP. On average, each image takes the YOLOv4, tiny YOLOv4, and the SVM

28.781ms, 5.294ms, and 336.288ms to process, respectively. Converting to FPS, the

tiny YOLOv4 is the fastest and can process up to 189 FPS whereas the SVM is the

slowest and can only process at around 3 FPS. The longer processing time in the

SVM can be explained by the use of filtering, windowing, and image pyramid.

In the current setup, the SVM applies bilateral filtering and scans the image 5

times by using the image pyramid, whereas the full YOLOv4 and tiny YOLOv4 do

not employ any filtering and only scan the image once. Because the tiny YOLOv4

network utilizes only a part of the convolutional layers, its processing time is further

reduced. However, as features are relatively coarse in the earlier convolutional layers,

the tiny YOLOv4 network performs poorly on detecting small objects such as dogs.
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This can be seen from the reduction in the mean average precision between the full

YOLOv4 and tiny YOLOv4 networks. Conversely, as the features become finer further

down the convolutional layers, the full YOLOv4 network has no issues detecting small

objects.

Transfer learning is another key factor that can potentially improve performance,

but this is not the case in this thesis. The pre-trained model used by the YOLOv4

is trained on the ImageNet, but because the images in the ImageNet are all regular

images rather than infrared images, the transferred features do not help much. This

can also be explained from a different perspective, as the pre-trained model is used to

detect objects in regular images, it generally does not perform well in infrared appli-

cations. However, it is still believed that the pre-trained regular features can in fact

help to train an infrared network, but how much it can affect the overall performance

will not be investigated in this thesis. If a network that has been previously trained

for infrared applications can be used, it is believed that the overall performance of

the YOLOv4 networks can be further improved.

Moreover, the YOLOv4 networks use data augmentation which provides them

with more training samples. If data augmentation is used in the SVM, the overall

performance of the SVM might be even higher as more training samples are always

beneficial. Using data augmentation can potentially close the precision gap between

classes.

Finally, the SVM is implemented in Python and does not utilize parallel com-

puting. If the windowing and image pyramid process are parallelized, it is believed

that the processing time of the SVM can be further reduced. Using fewer layers in

the image pyramid and a bigger stride value can also speed up the SVM’s detection
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time. However, because there is always a speed-to-accuracy tradeoff, a faster speed

will eventually lead to a reduction in precision. Therefore, improving detection speed

will not be considered at the current stage. Overall, the training process of the SVM

needs to be improved, and the final model requires more fine-tuning. Besides, a more

carefully labeled dataset is also preferable.
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Chapter 6

Conclusion and Future Work

This thesis has proved that using machine learning and deep learning-based algo-

rithms on an infrared camera to do onboard vehicle-based computer vision tasks

shows promising results. However, in order to validate whether the additional infor-

mation supplied by infrared cameras can further improve the overall performance of

the ADAS, and if infrared cameras should become an essential part of the ADAS for

improved safety, more work is required. A conclusion that summarizes everything that

has been learned throughout the writing of this thesis following a brief explanation

of some potential areas for future research will be discussed in this chapter.

6.1 Conclusion

Autonomous driving is no doubt one of the most rapidly growing and eye-catching

fields in today’s technology sector. With the increasing popularity of electric vehicles

and autopilot systems, sensory technologies have been thoroughly studied in recent
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years. The existing perception systems or the advanced driver-assist systems devel-

oped by many automakers are capable of providing enough information around the

vehicle that can facilitate driving autonomously in various conditions, but even with

a wide variety of sensor combinations, not every system works perfectly, 100% of the

time.

Typical perception systems consist of regular daylight cameras, radars, LIDARs,

GPS, and ultrasonic sensors. Regular cameras are efficient at working under daylight

but usually fail to detect objects at night. Radar waves are good at penetrating

substances such as fog and dust, but radars usually struggle to detect small objects.

LiDAR sensors are powerful tools to provide reliable distance measurements under

most circumstances, but due to light refraction, LiDAR sensors can generate faulty

data on rainy days. GPSs have been widely used for positioning, navigation, and tim-

ing, but most of their functionality relies on satellites. Finally, ultrasonic sensors are

only good at working in close proximity. There are not many perception systems that

utilize thermal imagings to facilitate autonomous driving, but using the additional

information provided by infrared cameras has been proved helpful.

This thesis has explored the background of autonomous driving, the current trend

of autonomous driving, sensors and their capabilities, image processing techniques,

camera calibration methods, and machine learning and deep learning-based detec-

tion and classification algorithms. The goal of this thesis is to develop a thermal

imaging vehicle perception framework using both machine learning and deep learning

approaches and compare the performances, and ultimately, validate using infrared

cameras to aid the existing ADAS is a viable approach for improved safety.

The camera used in this thesis is a FLIR A65 thermal imaging camera with a
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640 × 512 resolution. When calibrating the FLIR A65 camera, some popular cam-

era calibration methods have been examined. After studying the limitations of each

of these methods, based on these methods, an improved method has been proposed

that is aimed to solve the difficulty of calibrating infrared cameras in cold temper-

atures. After calibrating the infrared camera using the improved method, a dataset

that contains people, vehicles, bicycles, and animals is prepared and labeled. The

calibration results, namely the extrinsic and intrinsic matrix can be used for distance

measurements in the future.

The discussion of object detection and classification leads to an investigation of

traditional machine learning and modern deep learning algorithms. For the deep

learning approach, it is decided to use one of the fastest state-of-the-art convolutional

neural network detectors namely, the You Only Look Once (YOLOv4). Considering

the full YOLOv4 network may not be able to perform real-time detection on some

platforms, a faster version of the YOLOv4, the tiny YOLOv4 has also been trained.

Because altering the size and depth of a convolutional neural network can significantly

affect its performance, so the performance of the YOLOv4 network has been evaluated

at 320×320, 416×416, and 608×608 using 53 and 29 convolutional layers, respectively.

Running on an Nvidia GTX 1080Ti GPU, ranking the network from the smallest

to the biggest, the full YOLOv4 achieves around 69.1%, 67.8%, and 70.0% mean av-

erage precision while running at 61.59 FPS, 47.64 FPS, and 34.75 FPS, respectively.

The tiny YOLOv4 gets 59.3%, 64.6%, and 63.6% mean average precision at 404.37

FPS, 249.56 FPS, and 188.89 FPS, respectively. Usually, more than 30 FPS can

be considered real-time, so all YOLOv4 networks are qualified to perform real-time
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detection. Moreover, the 608 × 608 networks have the highest confidence score. Al-

though the 608×608 tiny YOLOv4 network does not have the highest precision, it has

the highest confidence score. As detection speed is not a concern, the network with

the highest mean average precision and confidence score from both the full and tiny

categories, namely the 608×608 full YOLOv4 and 608×608 tiny YOLOv4 have been

selected and compared. Both the full and tiny YOLOv4 networks are trained using

transfer learning on a pre-trained network, but how much transfer learning affects the

overall accuracy is not studied in this thesis.

When using the machine learning approach, it is decided to train a support vector

machine. Because machine learning classifiers offer more flexibility in method selec-

tion and parameters tunning, the goal here is to see how a flexible model compares

to the fix-structured convolutional neural network. In order to effectively train a

machine learning model, one usually needs to follow the vision pipeline where images

are first preprocessed, then extract features, next train the classifier, and finally, use

the classifier to make decisions.

Following the vision pipeline, three attempts have been made. In the first attempt,

a single binary SVM is built to classify everything. However, the SVM model in this

attempt over-simplifies the problem which makes the results too general and rather

meaningless. The results are simply binary “yes” or “no”, and no class label is given.

To produce class label predictions, four binary SVMs are built in the second attempt

that corresponds to the four classes. The second attempt employs a One-Against-All

styled approach and reformulates a multi-class classification problem into many sub-

binary problems which demonstrate promising results. The third attempt alters the

aspect ratio of some training samples, but only minimal improvements are observed.
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Therefore, based on these results, it is decided to use the second attempt with four

individual linear binary SVMs in the final model.

In each of the attempts, training samples are cropped from the original dataset

and resized to a unified size to ensure consistency in the shape and size of the fea-

tures. Upon investigating the image preprocessing methods and feature extraction

techniques, six popular method combinations are used to prepare the features includ-

ing the Canny edge detector, Laplacian of Gaussian, Gaussian filtering and HOG,

Median filtering and HOG, bilateral filtering and HOG, and non-local means filtering

and HOG. By using these combinations, the Sobel, Laplacian, and HOG features

can be compared at the same level. Similarly, the Gaussian, median, bilateral, and

non-local means filtering can be compared at the same level.

During the SVM training, positive and negative features are calculated using the

aforementioned method combinations. A process called hard example mining is used

to find false classifications. These false classifications are called the hard examples

and added back to the negative training set to train the SVM a second time. In the

end, the “bilateral filtering and HOG” SVM achieves the highest 79.0% mean average

precision, and therefore it is selected as the final model and used to compare with

the YOLOv4 networks. Running the “bilateral filtering and HOG” SVM on full-sized

640 × 512 images with windowing and image pyramid achieves around 75.0% mean

average precision, but it is only able to run at 3 FPS.

Overall, the SVM is more accurate, but the YOLOv4 networks are faster. Because

the YOLOv4 pursues a faster speed, it only looks at the image once and does not

employ any filtering methods. However, experiments have shown that additional

filtering methods only have minimal impact on the processing time. Therefore, adding
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filtering methods to the YOLOv4 network might improve the overall accuracy. The

SVM on the other hand uses an image pyramid and scans the same image multiple

times at different scales which makes it operating at a significantly slower speed, but

with higher accuracy. If the windowing and image pyramid process in the SVM can

be parallelized, its processing time can be further reduced.

There is definitely a lot of space to improve in both approaches, but because there

will always be a speed-to-accuracy tradeoff, a faster speed will ultimately lead to a

reduction in accuracy. Because the SVM models in this thesis are accuracy-oriented,

improving speed is not considered at the current stage. However, If accuracy can no

longer be improved, then improving speed is the next thing to be considered.

6.2 Future Work

This section suggests several ways that can potentially improve the performance of

the SVM and YOLOv4 networks based on the observations made while completing

this thesis. Anything that was considered previously but got discarded in the final

implementation will also be discussed.

6.2.1 Expanding the Current Dataset and Refining Labeling

Quality

The SVM and YOLOv4 algorithms require carefully labeled images for training. Al-

though combining the self-prepared dataset and the FLIR’s official driving dataset

prominently maximizes data variety, the bicycle and animal class only cover a limited

amount of training samples. The training images should theoretically cover the object
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posing at different angles, and thus a new dataset should be introduced to resolve the

severe lack of training samples. Investigating and leveraging other publicly available

infrared datasets can also fulfill this need. The new dataset should provide thou-

sands of more images under the bicycle and animal class including multiple angles

of the bicycle and the front and side views of the animal while it’s standing, sitting,

crouching, and lying down.

Moreover, because infrared cameras excel at detecting heat, justifying whether in-

frared cameras are capable of detecting objects at night or under inclement conditions,

using images that are captured only in sunny conditions is not enough. Therefore,

night-time capturing and foggy, dusty, and rainy conditions should also be considered

and added to the dataset.

Labeling quality is critically important when building classifiers. An inappropri-

ately labeled dataset directly leads to poor performance. A common approach that

ensures the labeling quality is to have multiple (at least three) labelers label the same

image. The results can be later compared and checked by picking the box with the

highest IoU with respect to the ground truth. When there are more than ten objects

or the objects are tightly overlapped with each other in the frames, even with multiple

labelers in place, the quantity of coarsely drawn boxes can increase substantially, and

therefore the overall labeling quality still can not be guaranteed. To solve this, the

labeling can be outsourced to labeling service providers such as Amazon’s Mechanical

Turk and Scale.ai. The labeling service offered by Amazon still uses human labelers

which inevitably generates errors, whereas Scale.ai provides a labeling service that

utilizes a machine learning-based method to check its labeling quality.

Having a professionally labeled dataset in place, the labeling quality will not
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become a major concern when the trained model exhibits unexpected behaviors.

6.2.2 Improving the YOLOv4 and Tiny YOLOv4

The major issues found in the YOLOv4 and tiny YOLOv4 training are the number

of training samples and labeling quality. Combining the FLIR driving dataset and

a custom dataset, and using a pre-trained model paired with transfer learning, the

YOLOv4 and tiny YOLOv4 networks work just fine when detecting and classifying

people and vehicles. However, the final dataset is still rather small for detecting the

rest of the classes.

The original authors suggested a minimum of 2,000 training samples per class,

so at least 3,000 samples (2,000 (70%) for training and 1,000 (30%) for validation

and testing) should be prepared for each class. But apparently, there are not enough

samples for the dog and bicycle class. Although 2,000 samples are the minimum

requirement, based on the findings collected throughout the experiment, it is believed

that a good-performing network requires far more than 2,000 training samples.

Besides the number of training samples, labeling quality is another major concern.

The official FLIR driving dataset occupies two-third of the dataset, and the rest one-

third is the custom dataset. Assuming all the images in the FLIR’s dataset are

professionally labeled, the discrepancy in labeling quality between the two datasets

can significantly affect the performance. One potential solution to this is to first train

the network on the FLIR driving dataset and then use transfer learning again to train

on the custom model. Otherwise, relabeling the entire dataset from scratch will also

work but is time-consuming.

Another area that can potentially improve YOLOv4’s accuracy is preprocessing.
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Previously, experiments on how filtering methods affected the overall processing time

are conducted. Applying fast filtering methods such as Gaussian filtering may also im-

prove the overall accuracy while maintaining YOLO’s real-time property. Therefore,

filtering methods will be tested in the future.

Last but not least, how transfer learning affects the overall accuracy is not eval-

uated in this thesis. Because the pre-trained network is trained on the ImageNet

that mainly uses regular images, how regular features help to train a network that

is designed to work on infrared images cannot be determined at the current stage.

Therefore, in the future, the YOLOv4 networks will also be trained from scratch and

compared to the ones that use transfer learning.

6.2.3 Improving the SVM

Several improvements can be made in the SVM training starting with normalization.

Pixel values are originally normalized to floating-point values between 0 and 1. This

is done by dividing each value by the largest pixel value (255), in other words, pixel

values are “hard” normalized. However, a “soft” normalization might be more ap-

propriate where the mean value is subtracted from each value and then divided by

the standard deviation. Similarly, feature vectors can also be soft-normalized before

feeding to the SVM.

Features are currently extracted in a sequential manner, so the program waits for

the current windowing process to finish until it moves to the next position and will

not move to the next layer of the pyramid until it finishes processing the current layer.

Ideally, The feature extraction pipeline in the windowing and image pyramid should

be parallelized. By using multiple threads to calculate the features from a 5-layered
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pyramid simultaneously, the processing time can be reduced to at least one-fifth of

the original value. Furthermore, if the windowing locations are also computed in

parallel, the processing time can be further reduced.

The final SVM model in this thesis employes an OAA-styled approach, so four

SVMs are used to match the number of classes. However, a true OAA multi-class

SVM only uses one SVM to classify multiple class labels simultaneously. Therefore,

in the future, four binary SVMs will be reduced to a single multi-class OAA SVM.

In terms of parameter tuning, because the data are linearly separable in this thesis,

so a linear kernel is used for simplicity. However, a non-linear kernel such as the

polynomial and Gaussian RBF kernel should also be considered when data becomes

linearly inseparable. Additionally, setting different regularization parameters may

also improve the training results. Because the regularization parameter alters the

size of the margin, so it controls the amount of misclassification the model produces.

The regularization parameter is set to 1 in this thesis, but in the future, an optimal

value will be used to improve the result.

Another major drawback of the trained SVM is that it did not use data augmen-

tation. Because there are only a limited amount of training samples available for the

bicycle and animal class, data augmentation can be extremely useful and substantially

improve the accuracy, specifically for the bicycle and animal class.

To improve the robustness of the SVM, multiple SVM classifiers can be trained

and apply ensemble methods such as bagging and boosting to combine the results.

Bagging averages the predictions, and boosting combines several weaker models to

produce a stronger model.

In terms of labeling quality, because training samples are cropped and resized
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from the original images, the problem with the poor labeling quality in the YOLOv4

carries over to the SVM training. Improving the labeling quality by hiring multiple

labelers or outsourcing can alleviate this problem.

Finally, the SVM can potentially run at a faster speed by using a larger window,

bigger stride, and fewer layers in the pyramid. When the precision can no longer be

improved, the balance between speed and accuracy needs to be considered.

6.3 Closing Remark

In this thesis, using thermal imaging cameras to do onboard vehicle perception tasks

such as object detection and classification shows promising results. Regardless of the

cost, infrared cameras can provide invaluable information to improve the robustness

of the ADAS on autonomous vehicles, especially when fusing infrared detections with

detections made by regular daylight camera, radar, LIDAR, ultrasonic sensor, and

GPS sub-systems. Concluding from this thesis, infrared cameras are useful in au-

tonomous driving, but can never be used as a standalone sensor. However, its ability

to complement other sensors and improve the overall performance of the existing

sensory systems is undeniable. Therefore, infrared cameras should definitely be used

more often in sensor fusion applications and considered becoming an essential part of

the modern ADAS for improved safety.
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Figure A.1: The code snippet for the YOLO-OpenCV labelling format conversion.
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Figure A.2: The code snippet for the hard example mining process.
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Figure A.3: The code snippet for image preprocessing.
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Figure A.4: The code snippet for feature extraction.
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Figure A.5: The code snippet for training the SVM.
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