
EFFICIENT MOBILE COMPUTATION

OFFLOADING WITH HARD TASK DEADLINES

AND CONCURRENT LOCAL EXECUTION

EFFICIENT MOBILE COMPUTATION OFFLOADING WITH HARD

TASK DEADLINES AND CONCURRENT LOCAL EXECUTION

BY

PEYVAND TEYMOORI, M.Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF ECE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

c© Copyright by Peyvand Teymoori, May 2021

All Rights Reserved

Doctor of Philosophy (2021) McMaster University

(ECE) Hamilton, Ontario, Canada

TITLE: Efficient Mobile Computation Offloading with Hard Task

Deadlines and Concurrent Local Execution

AUTHOR: Peyvand Teymoori

M.Sc. (Electrical & Computer Engineering),

Iran University of Science and Technology, Tehran, Iran

SUPERVISOR: Prof. George Karakostas

Prof. Terence D. Todd

Prof. Dongmei Zhao

NUMBER OF PAGES: xvi, 163

ii

In memory of

my beloved father

iii

Lay Abstract

This work considers the problem of mobile computation offloading over stochastic wireless

communication channels. The objective is to minimize the energy consumption of the

mobile device while satisfying a hard task execution deadline. To guarantee that hard

task execution deadline constraints are met, a model of concurrent local execution (CLE)

is introduced, where local task execution may be initiated even if remote offloading is

in progress. This problem is addressed for continuous (1-Part), multi-part (K-Part), and

preemptive offloading scenarios. The theory of optimal stopping for Markov chains and

dynamic programming are used to develop provably optimal online offloading algorithms

for each offloading scenario. The computational complexity of these algorithms, especially

in the case of preemptive offloading, can be restrictive. Some approximation techniques

are proposed to reduce the computational complexity of the online algorithms.

iv

Abstract

Mobile computation offloading (MCO) can alleviate the hardware limitations of mobile

devices by migrating heavy computational tasks from mobile devices to more powerful

cloud servers. This can lead to better performance and energy savings for the mobile de-

vices. This thesis considers MCO over stochastic wireless channels when task completion

times are subject to hard deadline constraints. Hard deadlines, however, are difficult to

meet in conventional computation offloading due to the randomness caused by the wireless

channels. In the proposed offloading policies, concurrent local execution (CLE) is used to

guarantee task execution time constraints. By sometimes allowing simultaneous local and

remote execution, CLE ensures that job deadlines are always satisfied in the face of any

unexpected wireless channel conditions. The thesis introduces online optimal algorithms

that reduce the remote and local execution overlap so that energy wastage is minimized.

Markov processes are used to model the communication channels.

MCO is addressed for three different job offloading schemes: continuous, multi-part,

and preemptive. In the case of continuous offloading, referred to as 1-Part offloading, the

mobile device will upload the entire job in one piece without interruption, when the sched-

uler decides to do so. In multi-part computation offloading, the job is partitioned into a

known number (K) of parts, and each part is uploaded separately. In this offloading mech-

anism, which is referred to as K-Part Offloading, the upload initiation times of each part

v

must be determined dynamically during runtime, and there may be waiting time periods

between consecutive upload parts. Preemptive offloading is a generalization of K-Part Of-

floading where the number of task upload parts is unknown. In this scheme, a decision to

either continue offloading or to temporarily interrupt the offload is made at the start of each

time slot.

Compared to the conventional contiguous computation offloading, interrupted offload-

ing mechanisms (i.e., K-Part and preemptive offloading) allow the system to adapt when

channel conditions change and therefore may result in lower mobile device energy con-

sumption. This energy reduction will be obtained at the expense of having higher compu-

tational complexity.

In this thesis, for each offloading scheme, an online computation offloading algorithm

is introduced by constructing a time-dilated absorbing Markov chain (TDAMC) and ap-

plying dynamic programming (DP). These algorithms are shown to be energy-optimal

while ensuring that the hard task deadline constraints are always satisfied. The optimal-

ity of these algorithms is proved using Markovian decision process stopping theory. Since

the computational complexity of the proposed online algorithms, especially in the case of

preemptive offloading, can be significant, three simpler and computationally efficient ap-

proximation methods are introduced: Markovian Compression (MC), Time Compression

(TC), and Preemption Using Continuous Offloading (Preemption-CO). MC and TC reduce

the state space of the offloading Markovian process by using a novel notion of geometric

similarity or by running an optimal online offloading algorithm in periodic time steps. In

Preemption-CO, while a task is offloaded preemptively, the offloading decision at every

time-slot is based on non-preemptive calculations. These methods are used alone or in

combination to construct practical offloading algorithms. A variety of results are presented

vi

that show the tradeoffs between complexity and mobile energy-saving performance for the

different algorithms.

vii

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my supervisors,

Prof. Terence D. Todd, Prof. George Karakostas, and Prof. Dongmei Zhao, for their

dedicated support, encouragement, and valuable guidance throughout this research. It was

a great opportunity and honor to work under their supervision. Their willingness to offer me

so much of their precious time and intellect is the main reason for successfully completing

this thesis.

I extend my warm thanks to my supervisory committee member, Prof. Douglas Down,

for his insightful advice and comments. I would also like to thank the members of the

examining committee for reading my thesis and providing thoughtful suggestions.

I would like to thank my warmhearted father for his endless love and sacrifices. This

is so sad that he passed away last year, and could not see my graduation. He will be alive

in my heart forever. I am extremely grateful to my mother for her efforts, motivations, and

for teaching me valuable lessons throughout my life.

I thank my fellow colleagues in the Wireless Networking Laboratory for their support

and feedback. Special thanks to my friend and former lab mate, Arvin Hekmati for his

contribution and cooperation in this research. I would also like to thank my kind friend,

Hong Chen, whom I have had the pleasure of working with.

viii

Abbreviations

1G First Generation

3G Third Generation

4G Fourth Generation

5G Fifth Generation

BTS Base Transceiver Station

CC Cloud Computing

CLE Concurrent Local Execution

CO Continuous Offloading

CMDP Constrained Markov Decision Process

CPU Central Processing Unit

CSMC Channel State Markov Chain

DAG Directed Acyclic Graph

DP Dynamic Programming

DTMC Discrete-Time Markov Chain

D2D Device-to-Device

DVS Dynamic Voltage Scaling

EC2 Elastic Compute Cloud

ix

EMOP Energy-efficient Multisite Offloading Policy

ERTP Energy-Response Time Product

ERTWP Energy-Response Time Weighted Product

ERTWS Energy-Response Time Weighted Sum

FHMDP Finite Horizon Markov Decision Process

GE Gilbert-Elliot

IP Integer Programming

ILP Integer Linear Programming

IaaS Infrastructure as a Service

LAN Local Area Network

LARAC Lagrangian Relaxation Based Aggregated Cost

LODCO Lyapunov Optimization-based Dynamic Computation Offloading

LTE Long Term Evolution

MC Markovian Compression

MCC Mobile Cloud Computing

MCO Mobile Computation Offloading

MDP Markov Decision Process

MultiOpt Multi-Decision Online Optimum

OnOpt Online Optimum

OPO Optimal Preemptive Offloading

PaaS Platform as a Service

QoS Quality of Service

RL Reinforcement Learning

x

SaaS Software as a Service

SMD Smart Mobile Device

SMS Short Message Service

TC Time Compression

TDAMC Time-Dilated Absorbing Markov Chain

TDMA Time Division Multiple Access

VIA Value Iteration Algorithm

VM Virtual Machine

WAP Wireless Access Point

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

xi

Contents

Lay Abstract iv

Abstract v

Acknowledgements viii

Abbreviations ix

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 3

2 Background 7

2.1 Introduction . 7

2.2 Mobile Computing . 8

2.3 Cloud Computing . 10

2.4 Mobile Cloud Computing . 12

2.5 Mobile Computation Offloading . 15

2.6 Related Work . 17

xii

3 Continuous Offloading 33

3.1 Introduction . 33

3.2 System Model . 34

3.3 Offline Bound . 39

3.4 Markovian Channel and the Time-Dilated Absorbing Markov Model 41

3.5 Optimal Stopping and the OnOpt (Online Optimal) Algorithm 48

3.6 The Gilbert-Elliot Channel Case . 51

3.7 Simulation Results . 56

4 Multipart Offloading 67

4.1 Introduction . 67

4.2 System Model . 69

4.3 Offline Bound . 71

4.4 Markovian Channel and the Time-Dilated Absorbing Markov Model 72

4.5 Optimal Algorithm for K-Part Offloading 77

4.6 Simulation Results . 81

5 Preemptive Offloading 90

5.1 Introduction . 90

5.2 System Model . 93

5.3 Offline Bound . 96

5.4 Optimal Algorithm for Preemptive Offloading 97

5.5 Practical Heuristics . 104

5.6 Simulation Results . 111

xiii

6 Approximate Solutions 124

6.1 Introduction . 124

6.2 System Model . 126

6.3 Problem Formulation and Optimal Solution 126

6.4 Approximate Solutions . 129

6.5 Simulation Results . 134

7 Conclusions and Future Work 145

xiv

List of Figures

2.1 Cellular network architecture . 9

2.2 Cloud computing evolution . 11

2.3 Mobile cloud computing architecture . 14

3.1 Concurrent local and remote 1-Part computational job offloading time line . 37

3.2 Time dilated absorbing Markov chain example corresponding to a Gilbert-

Elliot channel model. 44

3.3 Average energy consumption vs job size and local execution time duration. 60

3.4 Average energy consumption vs PGG and TG. 62

3.5 Average energy consumption versus PGG and tD 64

4.1 Job offloading timing parameters . 70

4.2 TDAMC1 when offloading Sup1 starts at time ts. 74

4.3 Average energy consumption versus data size Sup and D 84

4.4 Average energy consumption versus PGG and TD. 86

5.1 Concurrent local and remote preemptive computational job offloading time

line . 94

5.2 Time dilated absorbing Markov process (TDMP) for a two-state (G,B)

channel. 95

5.3 Markov Chain for P = P1 and P2 . 113

xv

5.4 Markov Chain for P = P3 and P4 . 114

5.5 9-states uniform distribution: P = P1 . 115

5.6 9-states non-uniform distribution: P = P2 119

5.7 5-states uniform distribution: P = P3 . 120

5.8 5-states non-uniform distribution: P = P4 122

6.1 Markovian Compression of the original TDAMC (left) to a smaller

TDAMCapprox (right). 128

6.2 Approximation of 1-Part offloading using 1-Part-MC for different values

of α . 136

6.3 Approximation of 1-Part offloading using 1-Part-TC for different values of β 137

6.4 Approximation of 1-Part offloading using 1-Part-MC-TC for different com-

binations of α and β . 139

6.5 Approximation of Preemption offloading using Preemption-CO-MC for

different values of α . 141

6.6 Approximation of Preemption offloading using Preemption-CO-TC for dif-

ferent combinations of β . 142

6.7 Approximation of Preemption offloading using Preemption-CO-MC-TC

for different combinations of α and β . 144

xvi

Chapter 1

Introduction

1.1 Overview

Due to advances in wireless communications and computer architecture, mobile devices

are being transformed into ubiquitous computing platforms (De (2016)). According to the

Ericsson mobility report 2020 (Ericsson (2020)), smartphone use by 2025 will grow to

about 8.9 billion, from the current 8.1 billion subscription level. As this number increases,

there is an increasing demand from mobile users for running computational heavy and

energy-hungry applications which require a significant amount of central processing unit

(CPU) and battery power.

Compared to their wired counterparts, mobile terminals are generally more resource-

constrained; in particular, the limited computational power, wireless communication ca-

pacity, and battery life of these devices are their inherent limitations. Therefore, running

complex applications on such devices is challenging. Cloud computing, which is instantly

accessible for mobile terminals with built-in wireless interfaces, is a natural solution to

augment mobile platforms’ capabilities at low cost. The term mobile cloud computing

1

Ph.D. Thesis – P. Teymoori McMaster University – ECE

(MCC) was introduced not long after the emergence of cloud computing around 2007 (Dinh

et al. (2013)). It has been demonstrated that task offloading can significantly improve bat-

tery lifetime compared to the non-offloading case (Rudenko et al. (1998); Rudenko et al.

(1999)). With the widespread penetration of third-/fourth-generation (3G/4G) wireless net-

works, MCC offers a promising and viable solution that narrows the gap between the ever-

increasing demands of new applications and the limited mobile device resources. MCC

extends the capabilities of mobile devices by performing mobile computation offloading

(MCO), i.e., offloading computation tasks from mobile devices to a capable cloud server

via wireless networks. The potential benefits obtained from offloading include reducing

the job response time as well as decreasing the amount of energy needed to process a job.

The advent of LTE and 5G wireless communication networks has further facilitated

the use of mobile cloud computing. During the year 2020, the spread of COVID-19 has

led to social distancing, which has kept millions at home, placing significant demands on

infrastructure and telecommunications. Partly for this reason, 5G technology deployment

has been accelerated compared to previous years. LTE will remain the dominant mobile

access technology. It is projected to peak in 2022 at 5.1 billion subscriptions and decline

to around 4.4 billion by the end of 2025 as more subscribers migrate to 5G. It has been

estimated that tens of billions of cloud-based network edge devices will be deployed in the

future to satisfy mobile demands. This will provide significant resources for performing

computationally intensive and latency-critical mobile-centric tasks (Patel et al. (2014); Mao

et al. (2017)).

There is a large literature that has studied various issues dealing with mobile compu-

tation offloading (MCO) (Ba et al. (2013); Huerta-Canepa and Lee (2010); Chun et al.

(2011); Chun and Maniatis (2009); Satyanarayanan et al. (2009)). Since the offloading

2

Ph.D. Thesis – P. Teymoori McMaster University – ECE

itself will incur both wireless communication energy and latency costs, the decision to of-

fload a task is not always straightforward. Making optimal offloading decisions is even

more complicated when the mobile device interacts with the cloud over stochastic trans-

mission channels. This issue was studied in (Kumar and Lu (2010)), where an energy

model was proposed that considers both computation and energy components, using the

statistics of the wireless channel. The channel was assumed to remain constant throughout

the computation offload at the state encountered by the mobile device at the start of the

offload. In more general situations, however, the wireless channel condition may randomly

evolve during the computation offload. Varying channel conditions further complicate the

decision to offload or to execute a given task locally, especially when the task execution

time is subject to a hard deadline constraint, i.e., deadline constraints that should never be

violated. Hard task execution deadlines, as opposed to deadline constraints that are satis-

fied with a high probability, or incur a penalty when violated (Zhang et al. (2014); Zhang

et al. (2013a)), are often difficult to achieve in mobile networks due to the randomness of

the wireless channels used for the mobile/cloud data interactions. In harsh wireless condi-

tions, for example, a complete channel outage can even occur over extended time periods.

This is the environment that is considered in this thesis.

1.2 Contributions

This work considers mobile computation offloading under stochastic wireless channel con-

ditions when task completion times are subjected to hard deadline constraints. This objec-

tive will become increasingly important as mobile applications become more sophisticated

and interact more closely with cloud server job execution (Lagar-Cavilla et al. (2007)).

The wireless transmission channel is modeled with a discrete-time homogenous

3

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Markov chain. It is assumed that the Markov channel states and the state transition prob-

abilities are known by the mobile terminal. Estimating the quality of the wireless channel

to define the corresponding Markov model has been widely studied in the literature in the

field of mobile communication networks (Oyerinde and Mneney (2012) Bildea et al. (2015)

Lioumpas et al. (2007) Pu et al. (2010) Sadeghi et al. (2008)).

To guarantee a hard job completion deadline constraint, in the face of unforeseen chan-

nel conditions, Concurrent Local Execution (CLE) is used, where local task execution may

be initiated even if remote offloading is in progress. This mechanism can ensure that hard

task deadlines are satisfied regardless of any randomness induced by the wireless channel,

network, or cloud servers. This is in contrast to the conventional computation offloading

model where job execution is either local or remote (Chun et al. (2011); Cuervo et al.

(2010)). As is the case in conventional computation offloading, the objective is to reduce

the mobile device energy needed for job execution. This problem was solved for different

job uploading scenarios and online algorithms were developed that employ CLE to satisfy

hard task deadline constraints. The thesis shows that these online algorithms are energy op-

timal, in the sense that no other CLE online computation offloading algorithm can achieve

a lower mean mobile device energy consumption. First, the problem is formulated as con-

tiguous computation offloading, referred to as 1-Part offloading, which means the entire job

will be uploaded continuously in one piece without interruption. Then by constructing a

time-dilated absorbing Markov chain (TDAMC), which incorporates the time progress and

other offloading information into its structure, and using the theory of optimal stopping for

Markov chains, an online optimal algorithm (OnOpt) is developed. This algorithm employs

dynamic programming (DP) to find the optimal offload initiation time. Second, multi-part

computation offloading is considered, where the job upload is segmented into multiple

4

Ph.D. Thesis – P. Teymoori McMaster University – ECE

parts. During task offloading, mobile device energy may sometimes be reduced by seg-

menting the task upload into a known number (K) of parts rather than doing a conventional

contiguous task upload. We refer to this method as K-Part offloading. The advantage of this

offloading mechanism is that the mobile device can dynamically adapt to channel condi-

tions during the offload which may lead to lower overall energy consumption. The upload

initiation time of each part is determined during the running of the algorithm using DP. The

proposed online optimal algorithm to solve this problem is called MultiOpt which is shown

to be energy-optimal using Markovian decision process stopping theory. OnOpt is a spe-

cial case of MultiOpt where K = 1. Next, we study preemptive offloading, which means a

decision is made to either continue offloading or to temporarily interrupt the offload at the

start of each time slot. This offloading mechanism is an extension of K-Part offloading, and

gives the system more capability to adapt to varying channel conditions. An online com-

putation offloading algorithm, referred to as Optimal Preemptive Offloading (OPO), is for-

mulated for preemptive offloading, and is shown to be energy-optimal. The computational

complexity of OPO is prohibitive, even for simple Markovian channels, and, therefore,

three computationally efficient techniques: Water-Filling, Water-Filling with Scheduling,

and Generalized Water-Filling are introduced to estimate the solution of OPO. For each

technique, two variations were considered. The first (Equ) uses the equilibrium channel

state probabilities to determine its offloading decisions, and the second (Exp) uses Marko-

vian transition matrix exponentiation. The six resulting algorithms have a wide variety of

energy performance and computational complexity.

The proposed online optimal algorithms, especially OPO, often have a high compu-

tational complexity, which prevents their application in online mobile implementations.

Three algorithms, namely, Markovian Compression (MC), Time Compression (TC), and

5

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Preemption Using Continuous Offloading (Preemption-CO), are proposed to reduce this

complexity. MC and TC reduce the state space of the offloading Markovian process by

using a novel notion of geometric similarity, or by running an optimal online offloading al-

gorithm in periodic time steps. In Preemption-CO, while a task is offloaded preemptively,

the offloading decision at every time slot is based on non-preemptive calculations.

The rest of the thesis is organized as follows. Chapter 2 gives a detailed background and

reviews the literature that is most related to this work. In Chapter 3, the online continuous

energy-optimal computation offloading algorithm, OnOpt, is proposed. Then, Chapter 4

formulates the multi-part mobile computation offloading problem and introduces the online

MultiOpt algorithm to solve this problem. In Chapter 5, preemptive mobile computation

offloading is addressed, and an online optimal preemption offloading (OPO) algorithm is

developed. Some heuristics are proposed to tackle the high computational complexity of

OPO. Chapter 6 introduces some approximation methods that reduce the computational

complexity and running time of the algorithms.

6

Chapter 2

Background

2.1 Introduction

In the future, mobile devices will continue to expand in their role as portable computing

platforms. Unfortunately, for many applications, they are still restricted by their limited

processing capabilities, storage capacity, and battery life, compared to their desktop and

server counterparts. Cloud computing has emerged as a solution to this problem and is rev-

olutionizing the world of computation. The cloud can be viewed as a distributed collection

of interconnected, dynamically scalable, and virtualized computers, which are available

as computing resources offered on an on-demand and pay-per-use basis. Mobile Cloud

Computing (MCC) is a mixture of cloud computing and mobile computing in which mo-

bile devices use computation offloading to exploit the power of the cloud for accelerating

application execution and saving on energy consumption. This chapter provides a brief

background on MC, CC, and MCC fundamentals.

7

Ph.D. Thesis – P. Teymoori McMaster University – ECE

2.2 Mobile Computing

The development of portable wireless computing devices, along with the evolution of fast,

reliable networks, has made mobile computing a reality. Mobile Computing is the pro-

cess of executing computational tasks on a mobile device and transmission of data via a

wireless medium without having to be tethered to a physical communication link. Mobile

computing requires mobile communication, hardware, and software, and allows people to

access data and information from anywhere at any time. The types of these devices include

smartphones, tablets, Laptops, eReaders (e.g., Kindle) and wearable devices (e.g., Apple

Watch). Mobile computing can also be defined as the process of distributed computation on

diversified mobile devices and hybrid networks interconnected by mobile communication

links (De (2016)).

2.2.1 Mobile Network Architecture

A mobile network is a communication network where the link to the end mobile devices

is wireless. These types of networks are often cellular as shown in Figure 2.1, where each

geographic coverage area is split into wireless coverage cells, each served by at least one

fixed-location base transceiver station (BTS). These base stations provide the cell with net-

work coverage, which can be used to transmit voice, data, and other types of content. The

base stations are assigned communication resources owned by the system, and typically

a frequency plan ensures that interference between nearby cells is controlled (De (2016);

Miao et al. (2016); Kamal (2008)). Mobile communications has evolved considerably in

the past few decades. In cellular networks for example, five generations, i.e., 1G (first gen-

eration) to 5G (fifth generation) have been deployed. Each generation has brought with it

significant milestones in the performance of these systems.

8

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 2.1: Cellular network architecture

Mobile communication is gaining considerable importance with the increasing use of

portable computers and other mobile devices. Although mobile devices have attained enor-

mous commercial success, they still have some limitations (De (2016)).

Processing power: As smartphone applications increase in complexity, so do their de-

mand for computing resources. Despite all the advances that mobile devices have gone

through in terms of hardware and computational power, they are still too slow to satisfy the

computational requirements of these applications. Computation offloading is a mechanism

that can be used to migrate large computations and complex processing from resource-

constrained mobile devices to resource-rich cloud servers (Bangui et al. (2015)). This

avoids lengthy application execution on mobile devices that consume a large amount of

energy.

9

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Battery Life: In the absence of power outlet connections, mobile devices rely on their

batteries as the primary source of power (Forman and Zahorjan (1994)). Because mobile

devices are limited in size, this places a practical restriction on the amount of energy that

can be carried along with the device. Minimizing energy consumption can improve this

portability by reducing battery weight and lengthening the battery lifetime.

Data Storage: The limited memory and storage capabilities of mobile devices obviously

places restrictions on the size and scale of applications that can be processed locally. Solu-

tions proposed for handling this shortcoming includes offloading the storage to some other

device as facilitated by cloud computing (Mukherjee et al. (2013)).

Wireless Communication: Mobile computers require wireless network access for inter-

net connectivity. Wireless communication however, is fraught with problems due to the ran-

dom nature of wireless propagation. This ranges from distance dependent large scale fading

and shadowing to small scale fading caused by multipath radio propagation (Shakkottai and

Rappaport (2002)). This can lead to frequent link disconnection, low bandwidth accessi-

bility, and unforeseen changes in network quality (Al-Ali et al. (2005)). Wireless com-

munication is also more vulnerable than wired communication from a security viewpoint

(Forman and Zahorjan (1994)).

2.3 Cloud Computing

Computer users increasingly access Internet services through lightweight portable devices,

as desktop machines have become less popular (De (2016);). Cloud computing has emerged

as a solution to this problem and has revolutionized the world of computation. The cloud

10

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 2.2: Cloud computing evolution

is a distributed computing paradigm consisting of a collection of internet interconnected,

dynamically scalable, and virtualized computers, which are provisioned as computing re-

sources offered on an on-demand and pay-per-use basis. The advantages of cloud comput-

ing technology include cost savings, high availability, and easy scalability.

The origin of the concept of cloud computing dates back to 1950 when people used

terminals to connect to powerful mainframes simultaneously shared by many users (Voas

and Zhang (2009)). Figure 2.2 shows six distinct computing paradigms, from dumb termi-

nals/mainframes to grid and cloud computing (Buyya et al. (2013)). In phase 1, many users

shared powerful mainframes using dumb terminals. In phase 2, stand-alone PCs became

powerful enough to meet the majority of users’ needs. In phase 3, PCs, laptops, and servers

were connected through local area networks to share resources. In phase 4, local networks

were interconnected, forming a global network such as the Internet to utilize remote ap-

plications and resources. In phase 5, grid computing provided shared computing power

and storage through distributed computing systems. In phase 6, cloud computing further

provides shared resources on the Internet in a scalable and straightforward way.

11

Ph.D. Thesis – P. Teymoori McMaster University – ECE

One of the main goals of cloud computing is to allow IT departments to focus on their

businesses instead of expending resources on data centres and their maintenance (Barga

et al. (2010); Huth and Cebula (2011); Kumar and Lu (2010)). A cloud computing system

mainly consists of clients, data centers, and distributed servers. In cloud computing archi-

tecture, clients are the devices with which the end-users interact to manage information on

the cloud. The collection of servers where the applications to which the customers sub-

scribe is termed a data center. Typically these servers are not located at the local site but

in geographically different locations, which are transparent to the end-users. This architec-

ture also solves reliability issues such as site failure. Amazon, for example, has its servers

located worldwide and if any of these sites fail, the entire system will continue functioning

as usual.

The most significant characteristics of cloud computing include broad network access,

on-demand self-service, resource pooling, and rapid elasticity. Broad network access al-

lows the users to access cloud services that are available using the internet. On-demand

self-service is a very attractive and valuable feature of the cloud, which permits users to

access resources they need quickly and easily. Resource pooling means that the service

provider’s computing resources are pooled to serve multiple users, and different resources

are reassigned according to user demand. Elasticity is the ability to add or remove infras-

tructure resources dynamically as needed to adapt to workload changes.

2.4 Mobile Cloud Computing

Despite the evolution of mobile devices, they are still limited from a computational view-

point, as discussed in Section 2.2. Mobile cloud computing (MCC) has been introduced

as a way to overcome obstacles related to mobile device performance (e.g., battery life,

12

Ph.D. Thesis – P. Teymoori McMaster University – ECE

storage, and computational power), environment (e.g., heterogeneity, scalability, and avail-

ability), and security (e.g., reliability and privacy) (Akherfi et al. (2018)). Mobile cloud

computing is defined as a computing technology that controls integrated elastic resources

of different clouds and network technologies in order to serve a large number of mobile

devices anywhere and at any time (Sanaei et al. (2013)). MCC can be seen as a bridge that

fills the gap between the limited computing resources of smart mobile devices (SMDs) and

the processing requirements of intensive applications (Akherfi et al. (2018)). The Mobile

Cloud Computing Forum defines MCC as follows: “Mobile Cloud Computing at its sim-

plest form refers to an infrastructure where both the data storage and the data processing

happen outside of the mobile device. Mobile cloud applications move the computing power

and data storage away from mobile phones and into the resource-rich cloud servers, bring-

ing applications and mobile computing to not just smartphone users but a much broader

range of mobile subscribers” (Dinh et al. (2013)).

Figure 2.3 shows the general structure of MCC, which consists of three components:

Mobile network, Internet service, and Cloud service. Mobile devices are connected to the

network operator via base stations which establish and control the wireless connection. In-

ternet service plays the role of a bridge between the mobile network and the cloud where

subscriber requests are delivered via wired or wireless connections. After receiving re-

quests from the users, cloud controllers process them and cloud services will be delivered

via Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service

(IaaS), and Database as a Service (DaaS) functionality.

13

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 2.3: Mobile cloud computing architecture

2.4.1 Issues and Advantages of MCC

MCC is composed of MC and CC and therefore faces several challenges related to these

two technologies. Mobile devices have limited energy sources to transmit and receive

data to and from the cloud. In addition, since offloading typically occurs over wireless

transmission channels, connection issues and low bandwidth communication channels can

have an adverse effect on application response times and the energy usage of the mobile

devices. As in many wireless networks, security is another major issue in mobile cloud

computing.

Despite the challenges mentioned above, there are several promising advantages that

can be gained using MCC. In MCC, processing happens outside the mobile device, in

more powerful cloud servers. This reduces the mobile device energy consumption for task

processing. Since the SMD can be relieved from the processing of heavy computational

14

Ph.D. Thesis – P. Teymoori McMaster University – ECE

tasks, its battery energy can be preserved, and it can be utilized for more extended periods.

Also, by offloading the computational load to more powerful remote hosts, applications can

benefit, which can lead to processing delay reduction. Furthermore, by enabling remote

execution, more applications can now be supported, leading to an increase in the SMDs

usefulness. As pointed out earlier, storage is one other mobile device constraint, and this

can be overcome by MCC. Amazon’s simple storage service and Dropbox are examples of

cloud services that provide cloud storage. MCC also has improved reliability, by storing

data and applications in redundant locations. Apart from this, the cloud provides security

services such as virus scanning, authentication and malicious code detection. Another

benefit of MCC is on-demand services which are accessible by mobile users in a “pay as

you use” fashion and without having to install dedicated hardware or software.

2.5 Mobile Computation Offloading

MCC addresses the deficiencies of mobile device execution resources by performing mo-

bile computation offloading (MCO). In MCO, computational tasks are offloaded to more

powerful remote machines. Cloud service providers, such as Amazon Elastic Cloud Com-

pute (EC2), and Windows Azure, offer several classes of virtual machines (VMs) with

different processing/storage capabilities. A user can purchase a VM that best accommo-

dates its requirements, and heavy computational tasks can be offloaded for execution. In

what follows we discuss some important features of MCO.

A smart mobile device (SMD) can benefit from cellular or Wi-Fi connectivity to con-

duct offloading (Chen et al. (2017); Pan et al. (2017); Pu et al. (2016)). WLAN-based

offloading typically incurs relatively low energy and latency costs. Unfortunately, wire-

less access point (WAP) availability is often intermittent, leaving cellular as the alternative,

15

Ph.D. Thesis – P. Teymoori McMaster University – ECE

which often suffers from low bandwith and varying channel conditions.

In general, offloading schemes can be classified as either delayed or on-the-spot meth-

ods (Mehmeti and Spyropoulos (2013)). In the first case, when a Wi-Fi link is unavailable,

traffic can be delayed until the situation changes. If no WAP is detected up to some chosen

time threshold, the offloading can be conducted using the cellular network. Postponing the

offloading process in this way may be possible depending on the allowable task comple-

tion deadline. In the second case, when there is no Wi-Fi availability, offloading will be

performed immediately using cellular communications.

In mobile computation offloading, the task execution completion time is dependent on

the data transfer delay over the wireless link. Therefore, the data transmission rate and

wireless channel status may have a significant impact on offloading decisions (Panigrahi

et al. (2018); Hu et al. (2019)). In general, the task offloading duration includes the follow-

ing items:

• Upload time of the data, code, or computation/application.

• Execution time in the offloading cloud server destination.

• Download time to return the execution results to the SMD.

Regarding delay in these components, the offloading operation can be categorized as

either delay-sensitive or delay-tolerant (Liu et al. (2017); Wu et al. (2019)). Generally,

in delay-tolerant applications, response time is not critical and power consumption is more

important. In delay-sensitive applications however, low response time is an essential factor.

Delay-tolerant applications with relatively large execution time deadlines are suitable for

offloading using the delayed offloading method. On the other hand, delay-sensitive applica-

tions with tight application response time deadlines are the best candidates for on-the-spot

16

Ph.D. Thesis – P. Teymoori McMaster University – ECE

offloading. Offloading decisions can also be made either statically or dynamically. In the

first case, decisions are made during program development, while in the second case, they

can be made during program runtime.

In this thesis, we consider the offloading of delay-sensitive jobs where the task execu-

tion completion times are subject to hard time deadline constraints. It is assumed that a

deadline is assigned to each computational job at the release time of the job, and the task

execution results must be available at the mobile device before the deadline expires. It is

assumed that the mobile device performs computation offloading through a wireless net-

work with time varying link quality. The stochastic communication channels are modelled

as discrete-time homogenous Markov chains, which transition amongst states of different

channel conditions. It is also assumed that the uplink channel uses bit rate adaptation to

accommodate random variations in channel conditions. Therefore, task uploading time is

a random variable that depends on the evolution of the uplink channel state. However, we

assume that transmit power control is used on the downlink, and therefore, downloading

time as well as the remote execution time are deterministic. Offloading decisions are made

dynamically during the runtime of the program.

2.6 Related Work

In general, the previous research conducted in the area of mobile cloud computing can be

divided into two main categories. The first category is the offloading mechanism which fo-

cuses on implementing the function of application offloading. The second is the offloading

policy to decide whether to offload applications from the mobile devices to the cloud and

when to do so. The offloading mechanism has been studied extensively (Chun and Maniatis

(2009); Chun et al. (2011); Satyanarayanan et al. (2009); Huerta-Canepa and Lee (2010)),

17

Ph.D. Thesis – P. Teymoori McMaster University – ECE

but research efforts on offloading policy are still limited. In this thesis, we will focus on

developing optimal offloading policies to minimize the energy consumption of the mobile

device.

Many mobile cloud computing issues and challenges regarding mobile computation of-

floading have been addressed in the past few years (Abolfazli et al. (2013); Othman et al.

(2013); Liu et al. (2013); Guan et al. (2011)). To overcome MCO challenges, different

influencing factors such as network bandwidth, mobility (Yu et al. (2018)), heterogeneity,

security (Meng et al. (2018)), and QoS, cost and deadline constraints, should be consid-

ered. For this purpose, various techniques such as multi-criteria decision making (Nădăban

et al. (2016); Zhang et al. (2017b)), optimization algorithms (Shuja et al. (2017)), game-

theoretic models (Tao et al. (2017); Meskar et al. (2015)), and stochastic modelling have

been applied to make optimal offloading decisions. The latter is the focus of this thesis.

Mobile computation offloading is often a challenging problem (Masdari and Khezri

(2020)). In computation offloading, mobile execution energy can be decreased, but is off-

set by an increase in the communication energy needed to interact with the cloud server.

Offloading will also incur additional latency that would not exist otherwise due to the time

needed to exchange application data with the server. This latency may be partially compen-

sated for by a faster task execution time at the cloud server. The basic tradeoffs involving

these attributes and how they relate to the decision to offload task execution have been

studied extensively (Wu and Wolter (2017); Mehmeti and Spyropoulos (2016); Zhang and

Cao (2018); Zhang et al. (2015); Kim et al. (2016)).

Many early mobile computation offloading papers tended to take a static view of the

communication channels. In (Kumar and Lu (2010)), the authors model the communication

energy using statistical inputs, but the wireless channel is assumed to be static throughout

18

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the offload. Reference Geng et al. (2018) addressed the problem of computation offloading

on multicore-based mobile devices running multiple applications. They proposed a novel

heuristic algorithm for solving an NP-hard problem that tries to find the offloading decision

and task scheduling by prioritizing the tasks in order to meet the completion time constraint

and task dependencies. This paper considers a static wireless channel with a fixed bitrate.

This assumption, of course, may not always be the case, and in more realistic scenarios,

mobile devices have to interact with the cloud servers over stochastic wireless commu-

nication channels. A significant part of the literature has considered mobile computation

offloading issues under stochastic transmission channel and cloud server conditions (Zhang

et al. (2013a); Zhang et al. (2014); Zhang et al. (2017b); Goudarzi et al. (2017); Oo et al.

(2016b); Oo et al. (2016a)).

When computation offloading occurs over a stochastic wireless channel, the issue of ap-

plication response time becomes important and should be taken into account. Under these

circumstances, making optimal offloading decisions is particularly difficult when task exe-

cution times must satisfy hard time deadline constraints. The importance of task execution

time constraints as an essential criterion for many interactive applications was highlighted

in (Lagar-Cavilla et al. (2007)). This paper also discussed the difficulty of achieving this

under random wireless channel conditions.

Various stochastic offloading schemes are provided in the literature. In what follows

we study those that are most relevant to this thesis. All of these offloading schemes benefit

from one or more stochastic models to help them in making better offloading decisions.

Markov chains have been routinely used to model stochastic wireless channels, and,

as is often assumed, the Markovian transition probabilities are taken to be known, or have

been learned dynamically (Gilbert (1960); Elliott (1963); Zhang et al. (2014); Zhang et al.

19

Ph.D. Thesis – P. Teymoori McMaster University – ECE

(2013a); Zafer and Modiano (2007); Johnston and Krishnamurthy (2006)). Several Markov

chain-based stochastic offloading schemes are addressed in this subsection.

In (Zhang et al. (2013a)), the problem of mobile computation offloading under a

stochastic wireless channel is considered. According to their proposed system model, the

entire application can be executed either on the mobile device (i.e., local execution) or on

the cloud servers (i.e., remote execution). The design objective is to develop an optimal

application-execution policy which minimizes the energy consumed by the mobile device.

This work used mobile CPU frequency scheduling and transmit power control to com-

pensate for random wireless channel effects, so that remote task offload latencies can be

controlled. When the application is executed in the mobile device, the computation energy

can be minimized by optimally scheduling the CPU clock frequency of the mobile device

via Dynamic Voltage Scaling (DVS). When the application is executed in the cloud servers,

the transmission energy can be minimized by optimally scheduling the data transmission

rate. They formulated these scheduling problems as convex optimization problems, with a

constraint that the application should meet a time deadline with a certain probability. When

the application execution fails to meet its time deadline, the mobile device will continue to

execute at the maximum clock frequency for task completion. This approach cannot always

ensure that task execution deadlines are met, but a parameter was introduced that controls

the probability that task deadlines can be violated.

Energy optimal cloud computing was addressed in (Zhang et al. (2014)) which in-

cluded a treatment of task execution time deadlines assuming random wireless channels.

The offloading scheme provided in this work presents a scheduling policy for collabora-

tive execution in mobile cloud computing. Each mobile application is partitioned into a

sequence of tasks. Every task is then processed either locally on the mobile device or

20

Ph.D. Thesis – P. Teymoori McMaster University – ECE

remotely on the cloud servers. The design objective is to minimize the energy usage of

a mobile device while meeting a time deadline. CPU frequency scheduling was used to

control mobile task execution time delays when remote offloading occurs under random

wireless channel conditions. This was combined with mobile transmit power control, to

target task deadlines. However, since there are limits on radio transmit power and CPU

frequency, satisfying execution time constraints is not always possible. For this reason, a

violation parameter was used to characterize execution time deadline misbehaviour. This

reference assumed the well-known Gilbert-Elliot Markovian channel model. They modeled

the minimum-energy task scheduling problem as a constrained stochastic shortest path on

a directed acyclic graph (DAG) and applied the canonical Lagrangian relaxation based ag-

gregated cost (LARAC) algorithm to find the approximate solution to the problem. The

authors concluded that a one-climb offloading policy is energy-efficient for the Markovian

stochastic channel, in which at most one migration from the mobile device to the cloud

takes place for the collaborative task execution. They showed that compared to standalone

mobile execution and cloud execution, the optimal collaborative execution strategy can

significantly reduce the energy consumed on the mobile device. Although task completion

time deadlines were addressed in this work, their observance was considered statistically

rather than as a hard constraint which has to be satisfied.

In (Wu and Wolter (2017)), the authors modeled the wireless network availability using

a Markov chain. Applications, based on their response time, can be divided into two cat-

egories, namely: Delay-Tolerant Applications and Delay-Sensitive Applications. Delay-

Tolerant Applications such as iCloud, social networking, and mobile healthcare are less

sensitive to network delays. However, Delay-Sensitive Applications such as face recog-

nition, video conferencing, vehicular communications, and authentication require a fast

21

Ph.D. Thesis – P. Teymoori McMaster University – ECE

response time comparable to typical human cognitive capabilities. The presented stochas-

tic offloading method in this reference supports two different delayed offloading policies.

The first scenario is called a partial offloading model, where jobs can leave the slow phase

of the offloading process to be executed locally. The second scenario is called a full of-

floading model, where jobs can leave the Wi-Fi queue to be offloaded directly through the

cellular network. In both scenarios the objective is to reduce the energy-response time-

weighted product (ERTP) metric. For delay-sensitive applications, the partial offloading

model is preferred, while for delay-tolerant ones with a more extended deadline, the full

offloading is a more efficient choice. The authors developed queuing models for delayed

offloading to leverage the Wi-Fi and cellular networks by choosing wireless interfaces for

offloading. In their simulations, they considered the intermittently available links and found

that when the Wi-Fi availability is low, the portion of jobs that abandon the queue is very

high. For delay-sensitive applications, the partial offloading model is preferred for medium

deadlines, while the full offloading model is better for delay-tolerant applications and can

decrease energy consumption. The authors indicated that an optimal deadline to abort of-

floading in the partial offloading model and for the Wi-Fi in the full offloading model could

be found. In both partial and full offloading policies the transmission rate of the Wi-Fi and

the cellular networks are assumed to be fixed numbers which is not the case in real world

scenarios and therefore satisfying a hard job deadline can not be guaranteed.

In (Wu et al. (2015)), the authors proposed two strategies for mobile cloud offloading

and analyze them through analytic queuing models. The first one, called the interrupted

method, chooses the best interface (e.g., cellular or Wi-Fi transmission) to send packets and

interrupt the Wi-Fi connections for short periods, causing delays for packets. The second

method, which is called the uninterrupted strategy, uses Wi-Fi (which is assumed to have

22

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the best transmission characteristics) whenever possible but switches to a cellular interface

if no Wi-Fi connection exists. The authors used 2D Markov chains to model the Wi-Fi net-

work availability in both the uninterrupted and interrupted offloading methods and a regular

1D Markov chain to model the offloading through the cellular network. These two models

are compared using various previously studied energy-response time tradeoff metrics such

as Energy-Response Time Weighted Sum (ERTWS) and the Energy-Response Time Prod-

uct (ERTP). Then they introduced the Energy-Response Time Weighted Product (ERTWP)

metric, which combines the advantages of both previously studied metrics. According to

their simulations, the interrupted strategy can save energy, especially if the tradeoff met-

ric’s focus lies in the energy aspect. Generally speaking, one can say that the uninterrupted

strategy is faster, while the interrupted strategy is more energy efficient. A fast connection

improves the response time much more than the fast repair of a failed connection. In con-

clusion, a short downtime of the transmission channel can mostly be tolerated, especially

in delay-tolerant applications with more extended deadlines.

The stochastic framework presented in (Mehmeti and Spyropoulos (2016)) focuses on

on-the-spot offloading as opposed to delayed offloading, which is discussed in previous

references. On-the-spot offloading means when there is Wi-Fi availability, all data is sent

over Wi-Fi; otherwise, traffic is transmitted over the cellular network. The authors have

used a 2D Markov chain to proposed a queueing analytic model for the performance of

on-the-spot mobile data offloading for a number of access technologies, and they validated

it against realistic Wi-Fi network availability statistics. In this reference, Wi-Fi connectiv-

ity’s availability ratio plays a crucial role in offloading performance in conjunction with the

arrival rate. When Wi-Fi is not available at the release time of the job, the entire compu-

tational task will be transmitted through the cellular network, and it never switches back

23

Ph.D. Thesis – P. Teymoori McMaster University – ECE

to Wi-Fi, if Wi-Fi becomes available partway through the uploading. This makes their

proposed method less energy-efficient. Furthermore, there is no local execution, and there-

fore in the case of low-quality network connections or complete channel outage, hard time

deadlines can not be met.

The scheme introduced in (Zhang and Cao (2018)) proposed a hierarchical data of-

floading solution, which employed different offloading options with various priorities.

To model the network availability, they used a 4-state Markov chain with a state-space

X = {W,B,D,C} which refers to offloading through Wi-Fi, base station, D2D, and cel-

lular network, respectively. In their algorithm, they give the highest priority to offloading

through Wi-Fi. The maximum delay mobile users can tolerate is specified as the delay-

tolerance threshold. When the delivery deadline approaches the threshold, the currently

paired offloading connection will be given up by the user, and all traffic will be switched

back to the cellular network. However, with their proposed hierarchical offloading scheme,

before totally falling back to cellular mode, alternative offloading options will be offloading

through BS and D2D, respectively. They have shown that by prioritizing Wi-Fi over base

station offloading, backhaul traffic load can be reduced.

Although studies have shown that computation offloading improves energy efficiency

significantly, they mostly neglect the adverse effects of network disconnections. In (Berg

et al. (2014)), the authors proposed a preemptive method for code offloading to improve

energy efficiency under link failures. It transmits safe-points between server and mobile

device during remote execution, enabling the re-use of partial remote results after link fail-

ures. The authors improve the time to create and transmit safe points to decrease the mes-

saging overhead and maximize energy efficiency. They applied a predictive method that

estimates the wireless link quality to send safe-points before any network’s disconnection.

24

Ph.D. Thesis – P. Teymoori McMaster University – ECE

They consider task execution deadline constraints and show that this preemptive offload-

ing method maximizes the probability of satisfying this deadline despite link failure. The

evaluation results show that energy efficiency can be improved significantly using the pre-

dictive offloading approach. In this work, task completion time deadlines were considered

statistically rather than as a hard constraint which has to be satisfied.

In (Wu et al. (2015)), the authors considered a delayed offloading model for leveraging

the complementary advantage of cellular networks and Wi-Fi when selecting heteroge-

neous wireless interfaces for offloading. In this model, by postponing transmission until a

fast and energy-efficient network (e.g., Wi-Fi) becomes available, it is possible to reduce

the transmission time even if the extra waiting time is introduced, which leads to energy

savings. A soft deadline Td is assigned to each job in the slow phase. That is, each job, upon

arrival, activates an individual “impatience timer,” which is exponentially distributed. If the

Offload Queue job is completely transmitted before the associated deadline has expired, we

say that the job is successfully offloaded. If the system does not change its environment

from the slow phase to the fast phase before the deadline expires, the job will be removed

from the Offload Queue and join the Local Queue for immediate local processing. There-

fore each task will be executed either solely locally or solely remotely. Optimality analysis

of the power-delay balance is carried out using a queuing model with service interrup-

tions and delay-sensitive workflows, which considers energy and performance metrics and

intermittently available links.

The offloading framework presented in (Ko et al. (2017)) introduces an online prefetch-

ing method rather than conventional mobile computation offloading, which relies on offline

prefetching. For computations depending on real-time inputs, the offline operation can lead

25

Ph.D. Thesis – P. Teymoori McMaster University – ECE

to fetching large volumes of redundant data over wireless channels, which results in un-

necessary consumption of mobile-transmission energy. To address this issue, the authors

proposed a technique of online prefetching for a large-scale program with numerous tasks,

which seamlessly integrates task level computation prediction and real-time prefetching

within the program runtime. It decreases the SMD’s power consumption by preventing un-

necessary prefetching and reduces the applications’ execution time through parallel fetch-

ing and computing. By modelling the sequential task transition in an offloaded program

as a Markov chain, stochastic optimization is used to design the online-fetching policies

to minimize mobile energy consumption for transmitting fetched data over fading channels

under a deadline constraint.

In (Gao et al. (2014)), the authors proposed to adaptively offload the computational load

with respect to the run-time application dynamics. As opposed to conventional schemes

that may inappropriately increase the energy consumption by transmitting a large number

of program states over expensive wireless channels, the proposed approach can avoid wast-

ing the energy by considering the dynamic patterns of applications’ run-time execution for

workload offloading. Their approach is to formulate the dynamic executions of SMD ap-

plications by utilizing a semi-Markov model. The semi-Markov process is a generalization

of the Markov chain where the sojourn times (residence time) in the states are random

variables, whose distribution function may depend on the two states between which the

move is made (Barbu and Limnios (2009)). They make offloading decisions according to

probabilistic estimations of the offloading power conservation. They introduced analytical

modeling of the processing time and offloading cost. Task execution deadline constraints

were not addressed in this reference.

The stochastic offloading scheme in (Tong and Gao (2016)) investigated the balance

26

Ph.D. Thesis – P. Teymoori McMaster University – ECE

between the power usage and performance of the SMDs through application-driven trans-

mission scheduling. Wireless data transmissions incurred by remote execution consume a

large amount of energy during transmission intervals when the network interface stays in

the high-power state. On the other hand, deferring these transmissions increases the re-

sponse delay of mobile applications. Traditional approaches support workload offloading

through appropriate application partitioning and remote method execution but generally

ignores the impact of stochastic wireless network characteristics on such offloading. In

this reference, the authors dynamically adjust the tradeoff between energy efficiency and

responsiveness of mobile applications by developing application-aware wireless transmis-

sion scheduling algorithms. They take both causality and run-time dynamics of application

executions into account when deferring wireless transmissions to minimize the wireless

energy cost and satisfy a soft constraint with respect to the practical system contexts.

A Markov decision process (MDP) is a well-known discrete-time mathematical frame-

work applied for modeling decision making with uncertainty. An MDP model contains

items such as decision epochs, states, actions, transition probabilities, and costs. In addi-

tion, an MDP is able to determine agents’ actions and their intersections with the environ-

ment. Several algorithms such as the value iteration algorithm, policy iteration algorithm,

and linear programming are used to solve the MDP models. However, the computational

complexity of an MDP model increases with the number of states and the action spaces.

In (Zhang et al. (2015)), the authors presented an optimal offloading solution for the

SMD to address the offloading failure caused by wireless connection deterioration and users

mobility. They propose a MDP based offloading algorithm for mobile users in a cloudlet

system. They obtain success probabilities of offloading actions with limited knowledge

of network parameters. These probabilities are used in the MDP to obtain an optimal

27

Ph.D. Thesis – P. Teymoori McMaster University – ECE

offloading policy. The mobile user has an application to be executed. As the application is

divided into code sections (referred to as phases), the mobile user can dynamically decide

to execute application phases locally on the mobile device or offload to nearby cloudlets

during the execution run-time. They formulate and solve the MDP model to obtain an

optimal offloading policy to minimize computation and communication costs as well as job

completion delays. Their proposed optimal offloading policy of the MDP has a threshold

structure. They then introduced an algorithm with bounded errors for the mobile user to

make offloading/local execution actions based on the threshold policy.

In (Zhang et al. (2017a)), the authors studied the mobile user’s (MU’s) policy to min-

imize their monetary cost and energy consumption under time-dependent pricing when

choosing whether to offload their traffic from the cellular network to a complimentary

wireless LAN. They formulated MU’s wireless LAN offloading problem as a finite-horizon

discrete-time Markov decision process and developed an optimal policy using a dynamic

programming-based algorithm. Although simulation results showed that the proposed dy-

namic programming based offloading algorithm is effective under time-dependent pricing

conditions, they are mainly focused on applications with data of relatively large size and

delay-tolerance to download, for example, software updates.

In (Labidi et al. (2015)), the objective is to minimize the average energy consump-

tion at the user terminal when running its mobile applications, either locally or remotely,

while satisfying the mean delay constraints tolerated by these applications. They formu-

lated this problem as a Constrained Markov Decision Problem (CMDP) and used dynamic

programming to obtain offline solutions. The offline dynamic strategies can benefit from

the prior knowledge on the application rates and the channel statistics to perform offload-

ing decisions in good channel states and local processing or staying idle under bad channel

28

Ph.D. Thesis – P. Teymoori McMaster University – ECE

conditions. Since their proposed approach is offline, it is not able to cope with sudden

changes in the propagation environment. Furthermore, since their optimization constraint

is satisfied fron a statistical viewpoint their proposed approach can not guarantee a hard

task execution deadline.

The approach provided in (Terefe et al. (2016)) presents a model to describe the en-

ergy consumption of multisite application execution. They used a two-state discrete-time

Markov chain (DTMC), which transitions between a good and a bad state to model fading

wireless mobile channels. The proposed DTMC is applied to compute the average trans-

mission bit-rate of the communication channel. The authors adopt an MDP framework to

formulate the multisite partitioning problem as a delay-constrained, least-cost shortest path

problem on a state transition graph. They proposed the Energy-efficient Multisite Offload-

ing Policy (EMOP) algorithm, built on a value iteration algorithm (VIA), which finds the

optimal solution to the multisite partitioning problem. Note that their optimization prob-

lem is solved under some expectation of the channel state. As a result, their proposed

approach can not tackle unstable channel conditions and offloading decisions become sub-

optimal and less energy-efficient when channel states rapidly transition between good and

bad states.

The framework provided in (Liu et al. (2017)) studies the mobile data offloading prob-

lem under the architecture of mobile cloud computing and stochastic wireless channels,

where mobile data can be delivered by cellular, Wi-Fi, and Device-to-Device (D2D) com-

munication networks. Their objective is to optimize task offloading cost by reducing cellu-

lar network usage while satisfying deadline constraints. In the proposed model, a portion of

the cellular data traffic is offloaded through D2D and Wi-Fi links. The authors formulated

29

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the data offloading problem as a finite horizon Markov decision process (FHMDP). Al-

though they solve the problem using a hybrid offloading algorithm for both delay-sensitive

and delay-tolerant applications, there may be some data transmission tasks that cannot be

completed before the deadline. For failed data transmissions, they set a penalty cost func-

tion, which by optimizing that, they maximize the ratio of the offloaded tasks.

In (Hyytiä et al. (2015)), the authors considered an MDP-based model to investigate

dynamic offloading in the MCC. According to this reference, computational tasks can be

classified into three types: (i) those that should be executed only locally in an SMD, (ii)

those which are processed in the cloud, and (iii) those which can be processed either locally

or remotely. For type (iii) tasks, the main concern is when they should be processed locally

and in the cloud. Furthermore, for both type (ii) and (iii) tasks, there are typically two

ways to access the cloud: through an expensive cellular connection or via intermittently

available Wi-Fi local area network (WLAN) hotspots. The optimal strategy involves multi-

dimensional considerations such as the availability of WLAN hotspots, energy consump-

tion, communication costs, and expected delays. This challenging problem is addressed in

the framework of Markov decision processes and queueing theory to derive a sub-optimal

offloading policy concerned with the various performance metrics. Application response

time constraints are analyzed from a statistical viewpoint rather than a hard constraint.

The offloading strategy provided in (Truong-Huu et al. (2014)) introduced a dynamic

opportunistic offloading solution that enables the user to decide about offloading or defer-

ring. In their work, they assume that the task offloading is performed only when cloudlets

are in the short-range network area of the user’s device. When cloudlets move out of range,

the offloading is considered as failed, and the mobile user has to re-offload to another

cloudlet or process the failed task on his own device and incur a penalty cost for failed

30

Ph.D. Thesis – P. Teymoori McMaster University – ECE

offloading. The authors presented an MDP model that enables mobile users to achieve an

optimal offloading policy while decreasing the execution and offloading costs. However,

their proposed offloading policy can only meet a long required offloading deadline, and it

is not suitable for applications with short task processing deadlines.

In (Zhang et al. (2016)), the authors studied the complimentary Wi-Fi offloading prob-

lem from mobile users’ point of view by considering delay-tolerance of traffic, monetary

cost, energy consumption, as well as the availability of user’s mobility pattern. They first

formulate the Wi-Fi offloading problem as a finite-horizon discrete-time Markov decision

process (FDTMDP) with a known mobility pattern and propose a dynamic programming-

based offloading algorithm. Since the user’s mobility pattern may not be known before-

hand, they proposed a reinforcement learning (RL) based offloading approach, which can

work well with unknown mobility patterns. Since their proposed approach cannot guaran-

tee a firm task execution deadline constraint, in their problem formulation they have defined

a penalty for the mobile user if the data transmission is not finished within a deadline.

The work in (Kim et al. (2016)) defines the problem of multi-flow offloading in which

an SMD has some traffic flow with various deadlines and loads. They considered the multi-

flow rate control as a FDTMDP. They develop a DP-based optimal rate control algorithm to

maximize user satisfaction defined as offloading efficiency minus disutility due to deadline

violations. As an advantage, their solution supports delayed offloading. However, their

proposed framework cannot guarantee a hard task execution deadline.

The stochastic scheme introduced in (Mao et al. (2016b)) presented a Lyapunov

optimization-based dynamic computation offloading (LODCO) approach to make optimal

offloading decisions in order to minimize the energy consumption of the mobile devices us-

ing dynamic voltage and frequency scaling (DVFS). In their proposed approach, to satisfy

31

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the deadline constraints, they use the CPU-cycle frequency adaption for mobile execution

and transmit power adaption for computation offloading. Therefore, the algorithm’s imple-

mentation requires solving a deterministic problem in each time slot, for which the optimal

solution can be obtained. To keep their problem feasible, they have assigned a minimum

required energy (Emin) for each application with a specific deadline constraint. If the avail-

able energy on the mobile device becomes less thanEmin, the job execution deadline cannot

be satisfied. Therefore, their approach does not guarantee a strict deadline constraint.

As discussed in this chapter, meeting strict task execution deadline constraints becomes

a very challenging problem when offloading occurs over stochastic wireless channels. In

the next chapter, the issue of satisfying hard task deadline constraints for continuous MCO

is addressed.

32

Chapter 3

Continuous Offloading

3.1 Introduction

This chapter studies continuous computation offloading when the job uploading occurs un-

interruptedly in one piece over a stochastic wireless channel, and job completion times

are subjected to hard deadline constraints. This offloading mechanism is referred to as

1-Part Offloading. Stochastic wireless channels are modelled as generalized Markovian

processes. To address this problem an online optimum (OnOpt) computation offloading

algorithm is proposed, which uses CLE to satisfy hard job deadline constraints. It is shown

that OnOpt is optimum from a mean energy viewpoint, which means no other online 1-

Part offloading algorithm can achieve lower mean energy while satisfying a hard deadline

constraint. This is proven by augmenting the underlying channel model so that it forms a

TDAMC. Dynamic programming is then used to establish a test that determines whether

a given job should be offloaded at the current time or to wait for some future offload op-

portunity. The performance results presented use the Gilbert-Elliott channel model. In

this case, closed-form results are derived that are used to test for optimal offload initiation

33

Ph.D. Thesis – P. Teymoori McMaster University – ECE

times. The job completion time probabilities can be computed recursively, and this results

in a significant reduction in the computational complexity of the proposed algorithm. The

performance of the proposed algorithm is compared to three simpler heuristics, namely,

offload immediately (Immediate Offloading), wait until the channel condition improves to

above a threshold (Channel Threshold), and execute the job only locally (Local Execution).

An integer linear program (ILP) is formulated that computes an offline lower bound on mo-

bile device energy consumption. This bound is used for comparisons in the performance

results. Performance results show that the proposed algorithm can significantly improve

mobile device energy consumption compared to the other approaches.

The rest of this chapter is organized as follows. Section 3.2, describes the system and

presents a model for local and remote job execution that satisfies hard job execution dead-

line constraints. Then, in Section 3.3, an offline lower bound on the energy consumption

is derived, which is plotted in the results section and compared to various offloading algo-

rithms. Section 3.4 discusses the generalized Markovian channel model and how it is used

to form a TDAMC. This construction allows to apply DP and come up with the energy op-

timum online algorithm OnOpt, proposed in Section 3.5. Then, in Section 3.6 we focus on

the Gilbert-Elliot channel model, where it is shown that calculations can be performed ef-

ficiently, decreasing the complexity of OnOpt. Finally, in Section 3.7, performance results

are presented that compare OnOpt with various other computation offloading algorithms

that ensure that hard job deadlines are preserved.

3.2 System Model

A mobile device generates computational tasks (or jobs) that can either be executed lo-

cally, or can be offloaded over a stochastic communications channel to a cloud server for

34

Ph.D. Thesis – P. Teymoori McMaster University – ECE

remote execution. Following a common convention, the stochastic communication chan-

nel is modelled as a Markov Chain, which transitions amongst states of different bit-rates

in every time-slot. It is assumed that the Markov channel model is known to the mobile

device. We consider mobile computation offloading when CLE is allowed to enforce task

execution time constraints. Our discussion will focus on single job offloads, but each job

could be a sub-task associated with multiple local/remote job execution components (You

et al. (2016); Chiang and Zhang (2016)). Figure 3.1 illustrates 1-Part offloading, where the

entire job is uploaded continuously in one piece starting at to which is the optimal remote

offload initiation time. In this model time is taken to be discrete, i.e., quantized into equal

length time slots whose duration is normalized to 1. Time values are therefore referred to

by their time slot indices. The time slot duration is defined to accommodate the channel

propagation model discussed in Section 3.4 and may contain multiple packet transmission

times on the channel. Each job to be executed is characterized by the following:

tR: Release time of the job, i.e., the time when the job is ready to start execution, either lo-

cally or via offloading. This is marked on the left side of Figure 3.1. For convenience,

we will assume that tR = 1 (Since offloading is only affected by differences between

time values in Figure 3.1, and not by the time values themselves, this assumption can

be made without loss of generality).

tD: Hard deadline of the job, i.e., the job execution results must be available at the mobile

device by time tD. This is shown on the right side of Figure 3.1, where TD =

tD − tR + 1 is the maximum number of time slots available for completing the job.

D: Number of local CPU cycles needed in order to execute the job.

Sup: Number of bits transmitted through the uplink channel when uploading the job to the

35

Ph.D. Thesis – P. Teymoori McMaster University – ECE

cloud.

Sdown: Number of bits transmitted through the downlink channel when downloading job

results from the cloud.

We now discuss the timing and energy use associated with local and remote offloaded

job execution.

3.2.1 Local Execution

Using the model described in (Kumar and Lu (2010)), i.e., the local execution energy con-

sumption of a task to be processed is determined by its CPU workload, we assume that

the local execution energy consumption EL, and the amount of time to complete local ex-

ecution TL, are known at the time of task generation. So, while the task release times are

random, they are known tasks and therefore EL and TL are deterministic. While this may

not always be the case, this assumption is often true and has been made in many computa-

tional offloading studies (Kumar and Lu (2010); Meskar et al. (2017); Meskar et al. (2015);

Josilo and Dan (2017)). If the computation offloading algorithm elects to execute the job

locally without any remote offloading, then the energy use of the mobile device is equal to

EL. We must ensure that the job deadline is always satisfied. Therefore, local execution

must start no later than

tL = tD − TL + 1, (3.2.1)

unless remote offload/execution results are available at the mobile device before tL, i.e.,

local execution must start TL time slots prior to the job deadline, if the mobile device is still

awaiting a remote response (Recall that time is quantized into time slots whose duration is

normalized to 1, and since the local execution duration, TL, must start from the beginning

36

Ph.D. Thesis – P. Teymoori McMaster University – ECE

of time slot tL, 1 is added to the right hand side of (3.2.1)). In Figure 3.1, tL is shown to

occur before the remote execution cycle has completed and therefore local execution has

started, i.e., CLE, as shown in orange. Note that starting the local job execution at time

slot tL ensures the hard delay constraint of the task, if a remote offloading response is not

received in time. Although this may result in both local and remote executions of the task,

it will always satisfy the hard deadline, even if there is channel contention or extended

channel outages. However, with the objective of minimizing the mean energy consumption

of the mobile device, the proposed algorithm will reduce the possibility of both local and

remote executions.

Figure 3.1: Concurrent local and remote 1-Part computational job offloading time line

3.2.2 Remote Execution

In the case of offloading a job, we will assume that, upon its release, the job is assigned

an execution time Texec by the cloud server, which is a fixed amount and communicated to

the mobile device (or is prescribed by, say, the contractual agreement between the user of

the device and the cloud server operator). In addition, we assume that the user has been

allocated capacity (such as recurring time slots) until the offload has completed. These

assumptions are common in previous work on offloading, e.g., (Kumar and Lu (2010);

Chen (2015); Cao and Cai (2018)). If Tup and Tdown are the time periods needed to, upload

the job to the cloud server, and, download its results to the device, respectively, the total

37

Ph.D. Thesis – P. Teymoori McMaster University – ECE

offloading time Toff is given by

Toff = Tup + Texec + Tdown. (3.2.2)

These components are shown in Figure 3.1, where we have defined to to be the remote of-

fload initiation time. It is assumed that the channel uses bit rate adaptation to accommodate

random variations in channel conditions during task upload. As a result, Tup is a random

variable, dependent on the evolution of the uplink channel state as a given upload occurs.

In what follows, it is assumed that the channel state can be modelled as a homogeneous

discrete-time Markov process; the same holds for Tdown.

In order to simplify our exposition, we will initially focus on the randomness induced

by the Markovian uplink channel. In the following development, we therefore temporarily

assume that all offloading deadlines, job sizes (in bits), and energy costs are related only

to job uploading, i.e., Toff ≡ Tup and S ≡ Sup, so that Texec = Tdown = 0. Given the

ensuing results, adding the effects of Texec and Tdown is straightforward and is deferred to

Section 3.6. At that point we discuss, for example, how we include the effects of a ran-

dom Markovian downlink channel. Generally speaking, in mobile computation offloading

applications, since the mobile device usually uploads more data than it downloads, and

moreover, the remote machine does not have limits on transmission power, Tdown is much

smaller that Tup (Masdari and Khezri (2020)).

Since the job’s hard deadline constraint must always be satisfied, we propose its simul-

taneous cloud server offloading (if possible and beneficial) and its local execution.

Given the stochastic nature of the transmission channel, deciding whether and when to

offload (i.e., to in Figure 3.1), depends on the estimation of offloading energy consumption

and offloading time, in order to both minimize the expected energy costs for the mobile

38

Ph.D. Thesis – P. Teymoori McMaster University – ECE

device, and satisfy the job deadline constraint.1 Depending on these estimates, there are

three possibilities for offloading at time slot to: (i) it certainly finishes before starting the

local execution of the job, and, hence, local execution never starts, or, (ii) it finishes after

starting the local execution of the job, and, possibly, before deadline tD; then, the fraction

of local execution energy cost incurred is equal to the fraction of TL overlapping with the

offloading (i.e., local execution is terminated if a remote offload response is received), or

(iii) it certainly finishes after deadline tD, so it does not even start, and the total energy

cost is equal to the local execution energy cost. Note that in the case of a deterministic

channel, one can calculate exactly in which of these three cases the job falls. In this work,

we analyze the problem of offloading with hard deadlines over a Markovian stochastic

channel, described in detail in Section 3.4.

As in most of the related work references, we assume that the current state of the chan-

nel can be determined prior to making the decision to start an offload. This information can

be learned in a variety of ways, such as via a short handshake with the basestation at the

start of the time slot.

3.3 Offline Bound

In this section, an offline lower bound on mobile device energy consumption for continu-

ous offloading is derived. This lower energy bound is used in Section 3.7 for performance

comparisons with various online computation offloading algorithms proposed in this chap-

ter. Since the bound is offline, we assume that the wireless channel states are known for all

future time slots. When a job is released, the bound then chooses the job initiation offload

1Note that when offloading occurs, then tR ≤ to ≤ tD, and when to > tD, then there has been no
offloading, i.e., there is only local job execution.

39

Ph.D. Thesis – P. Teymoori McMaster University – ECE

time so that its deadline is met and the energy needed is minimized. Let to be the time

to start offloading, given that we know the bit rate Bt (in bits per time slot) at all times

1 ≤ t ≤ tD (recall that tR is taken to be 1). Let tf (to) be defined as the offload finishing

time when offloading starts at to. Then to can be found by solving the following ILP,

min
to

max(to, tL)− tL
TL

EL +

tf (to)∑
t=to

et (3.3.1)

s.t.
max(to, tL)− tL

TL
EL +

tf (to)∑
t=to

et ≤ EL (3.3.2)

1 ≤ to ≤ tD. (3.3.3)

Objective (3.3.1) consists of two terms. The first is the local execution energy cost incurred

before offloading starts. If to < tL, this term is zero, which means that there has been no

local execution to that point; otherwise, to−tL
TL

EL is the energy that has been expended by

local execution energy before to. The second term in (3.3.1) is the total energy consump-

tion after offloading starts where et is the energy expended in time slot t. When to < t < tL,

each et includes only the offloading energy; and when t ≥ tL, both offloading and local

execution are performed at time slot t. Therefore, et is given as

et =


Etr, t < tL

Etr + EL
TL
, t ≥ tL

(3.3.4)

where Etr is the energy cost per time slot for transmitting on the wireless channel. Con-

straint (3.3.2) ensures that the energy used in offloading does not exceed that of executing

the job locally. Note that if the ILP is infeasible, then there is no feasible offloading start

time to, i.e., it is best to execute locally without offloading.

40

Ph.D. Thesis – P. Teymoori McMaster University – ECE

3.4 Markovian Channel and the Time-Dilated Absorbing

Markov Model

In many studies, homogeneous Markov chains have been used to model random wireless

channel conditions (Gilbert (1960); Elliott (1963); Zhang et al. (2014); Zhang et al. (2013b)

Zafer and Modiano (2007); Johnston and Krishnamurthy (2006)). Accordingly, we assume

that the computation offloading occurs over a finite state Markovian channel. In this case,

the OnOpt (Online Optimal) algorithm proposed in Section 3.5 is an online computation

offloading algorithm that attains the minimum expected execution energy. In this section

we use the conventional channel state Markov chain (CSMC) to form a TDAMC, which

models the offloading over the channel. The resulting Markov process is used by OnOpt in

order to compute its energy and offloading time estimates, and by our analysis, in order to

show its optimality. In the CSMC, and starting from the current time slot ts, the channel

conditions will evolve from one time slot to the next according to a homogeneous finite

state Markov chain. We denote the set of possible channel states byM, where M = |M|

is the number of states in the CSMC. As discussed previously, the radio transmit power is

fixed and bit rate adaptation is used to adjust to varying channel conditions. Therefore, each

state in the CSMC has an associated bit rate that gives the number of bits per time slot that

can be uploaded when offloading occurs in that state. In a general Markov chain model,

the CSMC transition matrix is defined as P = [Pi,j], where Pi,j is the probability of tran-

sitioning to channel state j in the next time slot, given that the channel is currently in state

i. Unfortunately, CSMC is memoryless as far as the state of offloading and channel condi-

tions are concerned; in order to incorporate them into our model, we form a new Markov

41

Ph.D. Thesis – P. Teymoori McMaster University – ECE

chain, referred to as a time-dilated absorbing Markov chain (TDAMC). We are again inter-

ested in the evolution of the system starting at the current time slot ts, and running until

the computation has completed, either locally or via offloading. The state of the channel in

each TDAMC state at time t ≥ ts is represented by Xt where Xt ∈ M. However, unlike

the CSMC, the TDAMC incorporates t and other offloading information into its structure.

The TDAMC models the job offloading progress if the offloading is initiated at the

current time slot ts. It is a rooted tree, constructed as follows: The root state is the channel

state Xts at current time slot ts; since this is the current time slot, Xts is known. At each

subsequent time slot, the Markov chain tree branches forward, according to the transitions

possible from the current state (Xts , initially) to other CSMC states. At each step along a

given tree branch, the number of job bits transmitted is determined by the bit rate associated

with the channel state in question. This construction continues along each branching tree

path until the number of bits offloaded reaches the job upload size, Sup. At that point, the

state reached in the TDAMC is defined as a Markov chain absorbing state, i.e., it has a

self-transition with probability 1. From this construction it can be seen that the TDAMC

includes all possible paths that lead to a successful job offload, and that all of the states are

either transient or absorbing. Eventually, all paths terminate in an absorbing state, and the

energy cost of that path is proportional to its length, i.e., the number of time slots needed.

An example of a TDAMC is shown in Figure 3.2, for ts = 1. It is constructed from a

two-state Gilbert-Elliot channel, which is modelled by a CSMC withM = {G,B} (i.e.,

with “Good” and “Bad” states, respectively), and transition probabilities matrix

PGG PGB

PBG PBB

 ,

42

Ph.D. Thesis – P. Teymoori McMaster University – ECE

i.e., P1,1 = PGG, P1,2 = PGB, P2,1 = PBG and P2,2 = PBB. In each time slot, the TDAMC

transitions to a new state in accordance with these transition probabilities. For clarity, each

channel state in the figure is subscripted with its level time and the index of the subtree it

belongs to. For example, G3,2 indicates that the channel state at level t = 3 and subtree 2 is

Good. The TDAMC shows that at t = 3, the channel can remain in the G state, i.e., G4,2 or

transition to the B state, i.e., B4,2 with the given CSMC transition probabilities. Each state

of the TDAMC defines the number of bits that can be offloaded during a time slot while in

that state. In the example of Figure 3.2, when the channel state is G, the number of payload

bits is defined by the number of bits that can be carried on the channel during a good (i.e.,

high bit-rate) channel state. In the general case, when the channel is in state Xt at time t,

the number of child states at t + 1 is given by the number of non-zero values in the same

row of the original CSMC transition matrix. In Figure 3.2, each state continues to branch

downwards until the number of offloaded bits for a given branch reaches the total number

needed for the offload. At that point, the branch ends in a Markov chain absorbing state

discussed previously. In Figure 3.2, states G3,1, G4,1 and G4,2 are absorbing states.

The non-absorbing states in the TDAMC are clearly all transient states. We defineA to

be the set of absorbing states and T to be the set of transient states in the TDAMC. For an

absorbing Markov chain, by labeling the transient states first, the resulting transition matrix

can be written in the following form Grinstead and Snell (2006):

PTDAMC =

Q R

0 IA

 . (3.4.1)

In PTDAMC, the |T | × |T | sub-matrix Q contains the probabilities of transitioning between

transient states before the job upload is completed. The |T | × |A| sub-matrix R contains

43

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 3.2: Time dilated absorbing Markov chain example corresponding to a
Gilbert-Elliot channel model.

the probabilities of transitioning from a transient state to an absorbing state, indicating that

the job upload is finished. 0 is an |A|×|T | zero matrix and IA is an |A|×|A| identity (i.e.,

absorbing) matrix. Q contains the entries of the original CSMC transition matrix that gives

the transition probabilities of each state k when it transits to a state in {sk, sk + 1, · · · , fk},

and, for our TDAMC, it has the following form:

Q =



0 P1,s1 · · · P1,f1 0 · · · 0 · · · 0

0 0 · · · 0 P2,s2 · · · P2,f2 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 · · · 0


.

It can be seen that Q is upper triangular, as expected, since all states are transient and can

be visited at most once. The (possibly) non-zero transition probabilities shown in row one,

for example, give the probability of transitioning to all possible t = 2 channel states and so

44

Ph.D. Thesis – P. Teymoori McMaster University – ECE

on.

With the above construction and using results from the theory of absorbing Markov

chains, various statistics can be computed by first forming the fundamental matrix

N = (I −Q)−1. (3.4.2)

For example, entry (i, j) of N gives the expected number of times that the TDAMC is in

transient state j if the system is started in transient state i.

Due to the structure of our TDAMC, the computation needed in Equation (3.4.2) can

be greatly simplified. Note that N−1 is still an upper triangular matrix with all the diagonal

entries equal to one, and can be decomposed as follows:

N−1 = NTNT −1NT −2 · · ·N1,

where

Nk =



1 0 · · · 0 n1,k · · · 0

0 1 · · · 0 n2,k · · · 0

...
...

...

0 0 · · · 1 nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
...

...

0 0 · · · 0 0 · · · 1



.

45

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Nk is an atomic triangular matrix whose inverse is given by

N−1k =



1 0 · · · 0 −n1,k · · · 0

0 1 · · · 0 −n2,k · · · 0

...
...

...

0 0 · · · 1 −nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
...

...

0 0 · · · 0 0 · · · 1


Then

N = (NTNT −1NT −2 · · ·N1)
−1 = N−11 N−12 N−13 · · ·N−1T

Note that each column of the Q matrix has only one nonzero element. Therefore, N−1

will have only two nonzero elements in each column. Similarly, in Nk only one of the

n1,k, n2,k, . . . , nk−1,k is non-zero. Therefore, the multiplication can be done efficiently.

The absorption probabilities for all absorbing states can be obtained by

W = NR, (3.4.3)

where W is a |T | × |A| matrix and W [i, j] gives the probability that a particular absorbing

state j will be reached if the system starts in transient state i. Using this procedure, we

can thus compute the various probabilities of absorption for each absorbing state, given

knowledge of the starting state. Therefore, we can obtain the probability of finishing the

46

Ph.D. Thesis – P. Teymoori McMaster University – ECE

offload for every possible offloading time Toff by summing all of the absorbing state prob-

abilities that have the same TDAMC path length. We define Pt(T, x) to be the probability

of offloading in exactly T time slots, when offloading starts at time t with the channel in

state Xt = x. Then

Pt(Toff , x) =
∑
j∈S

W [x, j] (3.4.4)

where S are all of the entries of the matrix where the offloading time is equal to Toff . Note

that Pt(T, x) = 0 when it is impossible to offload in a period of exactly T time slots when

offloading at t with the channel in state Xt = x, i.e, T is shorter (longer) than the shortest

(longest) time needed to offload, under the best (worst) channel conditions.

The ability to compute the Pt(T, x) values allows for the computation of the energy

costs for both offloading and local execution. Noting that Pt(Toff , x) = 0 when Toff <

S
Bmax

or Toff > S
Bmin

,2 the expected offloading energy cost when offloading starts at time

slot t with the channel in state x, is given by (3.4.5).

Recall that local execution is postponed until the very last moment, i.e., time slot tL =

tD−TL+1, where TL is the number of time slots needed by the task to be executed locally.

A central idea of this thesis is that, although local execution is always initiated (if offloading

has not completed earlier) at time tL, in order to guarantee completion within the deadline,

offloading will be decided in such a way so that it will (hopefully) terminate before tD,

thus saving us the energy cost of the remaining local execution. The overlap time (when

such exists) between offloading at time t and local execution is min{tD + 1, t+Toff}− tL.

By recalling that EL is the energy cost of complete local execution of the task, the local

2We will assume that S
Bmax

and S
Bmin

are integers, to avoid burdening our formulas with ceilings
⌈

S
Bmax

⌉
and

⌈
S

Bmin

⌉
.

47

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Eoff (t, x) =



Etr

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)Toff , 1 ≤ t < tD − S
Bmin

+ 1

Etr

 tD−t∑
Toff=

S
Bmax

Pt(Toff , x)Toff +

S
Bmin∑

Toff=tD−t+1

Pt(Toff , x)(tD − t+ 1)

 ,

tD − S
Bmin

+ 1 ≤ t ≤ tD

0 t > tD

(3.4.5)

EL(t, x) =



S
Bmin∑

Toff=tL−t+1

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, 1 ≤ t < tL

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, tL ≤ t ≤ tD

EL t > tD

(3.4.6)

execution energy cost will be 0 if there is no overlap, or a fraction min{tD+1,t+Toff}−tL
TL

of

EL if there is. Hence, we obtain that the expected local execution cost when offloading

starts at time t with the channel in state x, is given by (3.4.6). In the first case, there will

be overlap only for Toff ≥ tL − t + 1, while in the second there is always overlap, since

t− tL + Toff > 0.

3.5 Optimal Stopping and the OnOpt (Online Optimal)

Algorithm

In this section we use the time-dilated absorbing Markov model construction of Section

3.4 and the theory of optimal stopping for Markov decision processes (Peskir and Shiryaev

(2006)) to develop the OnOpt algorithm, and show that it achieves the optimal mean energy

48

Ph.D. Thesis – P. Teymoori McMaster University – ECE

for the mobile device. A high-level description of the algorithm is as follows: At each

time slot t (starting from the job release time slot), the algorithm considers the TDAMC

model for starting offloading at current time ts = t. It computes (based on the TDAMC)

the optimal offloading starting time τ ∗tD ≥ t, by formulating the problem as a Markovian

optimal stopping problem (A general description of stopping time is provided in Definition

3.1). If τ ∗tD = t, then offloading is started immediately at time t. Otherwise, the algorithm

waits till time slot t + 1, to repeat the above process. Suppose that the current time slot is

ts, and consider the corresponding TDAMC rooted at state Xts . In order to compute the

optimal time slot for starting offloading (if offloading turns out to be more beneficial, in

expectation, than executing the task solely locally), we need to compute the stopping time

τ ∗tD that satisfies optimization problem (3.5.1) (where the choice t = tD + 1 corresponds to

no uploading).

Definition 3.1. Let X = {Xn : n ≥ 0} be a stochastic process. A stopping time with

respect to X is a random time such that for each n ≥ 0, the event {τ = n} is completely

determined by (at most) the total information known up to time n, {X0, ..., Xn}.

vtD(y) = min
t:ts≤t≤tD+1

E[gt(Xt)|Xts = y] (3.5.1)

= min
t:ts≤t≤tD+1

∑
z∈M

Pr[Xt = z|Xts = y]gt(z), (3.5.2)

where Xts is the current channel state, and gt(x) is the expected total energy cost if

offloading starts at time slot t with channel state Xt = x. More specifically,

gt(x) = Eoff (t, x) + EL(t, x), (3.5.3)

49

Ph.D. Thesis – P. Teymoori McMaster University – ECE

where Eoff (t, x), EL(t, x) are the expected offloading and local execution costs, respec-

tively, as defined in (3.4.5) and (3.4.6), when offloading starts at time t with the channel in

state Xt = x.

The optimization problem (3.5.1) is inherently an off-line problem, while the algorithm

we would like to use is inherently an on-line one, in the sense that at every time slot it has

to decide whether to offload or not, given the history of channel states it has encountered

so far. Such an algorithm is defined by the following recursion, which can be solved using

DP, i.e.,

Vt(x) =


EL, t ≥ tD

min{gt(x), E[Vt+1|Xt = x]}, t = ts, · · · , tD − 1

(3.5.4)

Note that Vt(x) is the minimum between the expected total cost of offloading at the

current time slot t, and the expected cost of postponing that decision to time slot t+1, given

that the channel state at time t is x, and E[Vt+1|Xt = x] is the expectation of Vt+1(Xt+1)

over all possible Xt+1, under the condition that Xt = x, i.e.,

E[Vt+1|Xt = x] =
∑
y∈M

Pr[Xt+1 = y|Xt = x]Vt+1(y).

It is well known (e.g., Theorem 1.7 in Peskir and Shiryaev (2006)) that (3.5.4) solves the

original problem (3.5.1), i.e.,

vtD(y) = Vts(y), (3.5.5)

and, moreover, the following lemma holds:

Lemma 1. (Peskir and Shiryaev (2006)) The optimal stopping time for (3.5.1) is τ ∗tD =

arg mints≤t≤tD+1{Vt(x) = gt(x)}.

50

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Lemma 1 implies that the on-line algorithm OnOpt, given in Algorithm 1, is optimal. Note

that this result is true for any Markovian channel. The algorithm is given the local ex-

ecution starting time tL, local execution energy EL, job deadline tD, and job size S. It

then arranges for the job to be executed either locally or by remote offloading (or both, if

needed). Initially, the remote offload is disabled by setting to to a value greater than tD in

Line 1. At each time slot ts with the channel at state Xts = x, we test if ts < to, i.e., no

offload has been initiated for the job. Then both gts(x) and E[Vts+1|Xts = x] are computed

(using (3.5.3) and using DP to solve (3.5.4), respectively). If gts(x) ≤ E[Vts+1|Xts = x],

then the offload begins at time ts, i.e., to = ts, since in this case τ ∗tD = ts from Lemma 1.

If offloading finishes before a local execution finishes, then local execution is terminated

(Line 10). At Line 12 we check to see if local execution should start so that the job’s dead-

line can be guaranteed. Similarly, Line 15 tests if the local job has completed. In that case,

any remote offload in progress will be terminated.

3.6 The Gilbert-Elliot Channel Case

In this section, we consider the well-known Gilbert-Elliot channel model (Gilbert (1960);

Elliott (1963)), which has been used in many studies to model stochastic communication

channels (Zhang et al. (2014); Zhang et al. (2013b); Zafer and Modiano (2007); Johnston

and Krishnamurthy (2006); Zed et al. (1995)) and will be used in the results section of this

chapter. With the two state channel model, we have Bmax = Bg and Bmin = Bb, where

Bg and Bb are the bit rates of the good and bad channel states, respectively (in bits per

time slot). In order to run Algorithm 1 with the specific energy costs of (3.4.5) and (3.4.6),

we need to calculate the probabilities Pt(Toff , Xt), which is the probability of an offload

finishing in Toff time slots, if it starts at time slot t with channel state Xt.

51

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Algorithm 1 OnOpt (Online Optimal) Algorithm
Input: local execution starting time tL, local execution energy EL, job deadline tD, and

job size S.
1: to :=∞ . Offloading initially disabled (to is offload start time)
2: for all ts ∈ {1, . . . , tD} do
3: if ts < to then
4: cts := gts(x) . Expected energy cost of offloading at ts.
5: cts+1 := E[Vts+1|Xts = x] . Expected energy cost of waiting until ts + 1.
6: if cts ≤ cts+1 then
7: to := ts . Start offloading.
8: end if
9: else if offloading terminates at ts then

10: Abort local execution (if active). . Remote offload response has been received.
return

11: end if
12: if ts = tD − TL + 1 then
13: Start local execution. . Ensure that the job deadline is satisfied.
14: end if
15: if ts = tD then
16: Abort remote offload (if active). . local execution has completed.

return
17: end if
18: end for

Let b be the number of bad state time slots during the Toff offloading time slots. Given

the data size S to be offloaded, b and Toff must satisfy S ≤ bBb + (Toff − b)Bg < S+Bg.

The upper bound is due to the fact that we transmit at most S+Bg bits (we assume that even

when the transmission of the useful S bits has been completed, paying the transmission cost

continues until the end of the last time slot). This implies that

(Toff − 1)Bg − S
Bg −Bb

< b ≤ ToffBg − S
Bg −Bb

(3.6.1)

Define B as a set of integers b satisfying (3.6.1). For any b ∈ B, the actual transmitted

52

Ph.D. Thesis – P. Teymoori McMaster University – ECE

number of bits, Ŝ, is given by

Ŝ = bBb + (Toff − b)Bg. (3.6.2)

Define P̂t(Toff , b,Xt) as the probability of an offloading, that starts at time slot t with

state Xt and takes Toff time slots (among which b time slots are in the bad states). We have

that

Pt(Toff , Xt) =
∑
b∈B

P̂t(Toff , b,Xt). (3.6.3)

Thus, Pt(Toff , Xt) can be obtained by summing over all of possible b’s in P̂t(Toff , b,Xt).

As a special case, we set P̂t(Toff , b,Xt) = 0 for all Toff and Xt when b < 0. In order to

derive P̂t(Toff , b,Xt), we need the following lemma.

Lemma 2. If Ŝ − S ≥ Bb, then the final transmission state must be G.

Proof. Assume, for contradiction, that the final state is B. Then, the number of bits trans-

mitted in Toff − 1 time slots is ŜToff−1 ≥ ŜToff − Bb. Given the condition of the lemma,

this implies that ŜToff−1 − S ≥ 0, i.e., offloading finished within Toff − 1 time slots, a

contradiction.

Based on Lemma 2 and Xt, four different cases are considered when calculating

P̂t(Toff , b,Xt), and are obtained from elementary counting:

• Xt = G and Ŝ − S ≥ Bb: See (3.6.4).

• Xt = G and Ŝ − S < Bb: See (3.6.5).

• Xt = B and Ŝ − S ≥ Bb: See (3.6.7).

• Xt = B and Ŝ − S < Bb: See (3.6.8).

53

Ph.D. Thesis – P. Teymoori McMaster University – ECE

P̂t(Toff , b,Xt) =


min(b−1,Toff−b−2)∑

k=0

(
b−1
k

)(
Toff−b−1

k+1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG

b > 0

P
Toff−1
GG b = 0

(3.6.4)

P̂t(Toff , b,Xt) =



min(b−1,Toff−b−2)∑
k=0

(
b−1
k

)(
Toff−b−1

k+1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG +

+
min(b−1,Toff−b−1)∑

k=0

(
b−1
k

)(
Toff−b−1

k

)
P k+1
GB P k

BGP
b−k−1
BB P

Toff−b−k−1
GG

b > 0

P
Toff−1
GG b = 0

(3.6.5)

(3.6.6)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−2)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P b−k−1

BB P
Toff−b−k−1
GG (3.6.7)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−1)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P b−k−1

BB P
Toff−b−k−1
GG +

+

min(b−1,Toff−b)∑
k=1

(
b− 1

k

)(
Toff − b− 1

k − 1

)
P k
GBP

k
BGP

b−k−1
BB P

Toff−b−k
GG

(3.6.8)

Although equations (3.6.4)-(3.6.8) can be used to calculate Pt(Toff , Xt) directly, we

now show how they can be computed recursively, which leads to a significant reduction

in computation time (albeit with the use of more memory). We show this for the case

Ŝ − S ≥ Bb and Xt is Good (the other cases are handled similarly). In that case, (3.6.4)

applies. We assume b > 0 (case b = 0 is trivial). Then, (3.6.4) for b > 0 implies

P̂t(Toff , b, Good) =

min{b−1,Toff−b−2}∑
k=0

Z(k, Toff) (3.6.9)

54

Ph.D. Thesis – P. Teymoori McMaster University – ECE

where

Z(k, Toff) =

(
b− 1

k

)(
Toff − b− 1

k + 1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG (3.6.10)

and

Z(0, Toff) = (Toff − b− 1)PGB PBG P
b−1
BB P

Toff−b−2
GG (3.6.11)

Then, it is easy to see that

Z(k + 1, Toff) =
(b− k − 1)(Toff − b− k − 2)

(k + 1)(k + 2)

PGBPBG
PBBPGG

Z(k, Toff) (3.6.12)

for all 0 ≤ k ≤ S
Bb

. By treatingBb andBg as constant, precomputing Z(k, Toff) for all 0 ≤

k ≤ S
Bb

and S
Bg
≤ Toff ≤ S

Bb
takes O(S2) operations when (3.6.11) and (3.6.12) are used.

Then, for any value of Toff , each P̂t(Toff , b, G) can be computed with O(S) operations

from (3.6.9); eventually, O(1) P̂t values are combined to compute each Pt(Toff , G) from

(3.6.3) (note that |B| = O(1), and that P̂t, Pt do not depend on t, except for defining Xt

in their arguments). Hence, we can precompute (and store) all possible Pt(Toff , Xt) using

O(S2) operations (and memory) overall. After that, (3.4.5) and (3.4.6) imply that we can

calculate Eoff (t, x) and EL(t, x) for each 1 ≤ t ≤ tD with O(S) arithmetic operations.

This implies that we can use (3.5.3) to precompute (and store) all gt(x)’s using O(STD)

operations (and memory) overall, and, therefore, all Vt(x)’s using O(STD) operations (and

memory), using the recursive definition (3.5.4). After this O(S2 + STD) preprocessing,

Algorithm 1 can run in O(1) time per time slot. Although TD = Ω(S) in order for the

deadline to make sense, if TD >> S
Bb

then offloading immediately would be the practical

option. Therefore, we can assume that TD = Θ(S), and the time and memory complexity

55

Ph.D. Thesis – P. Teymoori McMaster University – ECE

of the algorithm is O(S2) in practice.

3.6.1 Cloud Execution and Downloading

As stated in Section 3.2, the above development was presented by taking into account only

the random job uploading process. These results are easily extended to include both the

(deterministic) cloud execution, i.e., Texec and a Markovian random downlink channel, i.e.,

Toff = Tup + Texec + Tdown and S = Sup + Sdown. This is done as follows. The TDAMC

of Figure 3.2, which models the uploading of Sup bits, is extended by branching out from

each (previously) absorbing state for Texec transition steps. This is followed by branch-

ing out according to a process similar to the TDAMC of Figure 3.2, which then models

the downloading of Sdown bits. The resulting Markov process therefore tracks the chan-

nel throughout all three offloading periods, i.e., upload, remote execution, and download,

shown in Figure 3.1. The definitions of Eoff , EL, as well as the calculations carried out in

Sections 3.4, 3.5, and 3.6 are then extended accordingly. In what follows throughout this

thesis, we define Trest = Texec + Tdown.

3.7 Simulation Results

In this section, computer simulation is used to study the performance of the proposed

OnOpt Algorithm. As discussed in Section 3.6, a Gilbert-Elliot channel is assumed when

offloading. We also assume that transmit power control is used on the downlink, and there-

fore, Tdown (and Texec) are deterministic. Their effects can therefore be accounted for by

modifying the remote offload end-times used in the analysis. For comparison, we also plot

the offline bound given in Section 3.3, Local Execution and two other algorithms, referred

56

Ph.D. Thesis – P. Teymoori McMaster University – ECE

to as Immediate Offloading and Channel Threshold. The Local Execution algorithm ex-

ecutes the entire job locally without doing any offloading. For the Immediate Offloading

algorithm, offloading starts at the job release time unless S/Bg > tD, i.e., if offloading can-

not be completed before the job deadline even with contiguous best wireless channel states,

then the job is only executed locally. For the Channel Threshold algorithm, offloading starts

at the first time slot when the channel condition is above a given threshold unless the re-

maining time before the job completion deadline is less than S/Bg. For the Gilbert-Elliot

channel used in our results, any threshold between the good and bad states can be used,

i.e., offloading starts at the first good channel time slot provided that the remaining time

before the job completion deadline is no less than S/Bg. In both the Immediate Offloading

and Channel Threshold algorithms, local execution starts at time slot tL if offloading is not

completed at time slot tL − 1, i.e., they ensure that the job deadline is satisfied.

In the results, there are three sets of simulations, which span a wide range of parameter

values. This was done to assess the relative performance of the offloading algorithms in

widely varying situations. The default parameters used in the simulations are given as

follows. Each time slot is taken to be 1 msec. The data transmission rates are Bb = 1Mbps

and Bg = 10Mbps, or Bb = 1kb per time slot and Bg = 10kb per time slot. The transmit

power is 1 W, which means that the transmission energy for each time slot is Etr = 1mJ.

The local execution energy per CPU cycle is vl = 2 × 10−6mJ and the local computation

power fl = 1M CPU cycles per time slot (Nir et al. (2014); Huang et al. (2012)). We

consider a job with S = 60Kb, D = 10M CPU cycles, and tD = 60 time slots. Therefore,

the local execution time is TL = D/fl = 10 time slots, and the local energy consumption

EL = vlD = 20mJ. Based on Bg and Bb, a minimum of 6 time slots and a maximum of 60

time slots are needed in order to complete job offloading. In all of the graphs, each value

57

Ph.D. Thesis – P. Teymoori McMaster University – ECE

of average energy consumption is obtained after repeating the simulation for 10,000 runs.

3.7.1 Simulation Set 1

Here we set PBB = 1 − PGG for the channel state transition probabilities. In this case,

PGB = PBB, PBG = PGG, and the equilibrium channel state probabilities are given by

Pg = PGG and Pb = PBB. PGG can therefore be used as a measure of the average channel

quality. In this set we present graphs by varying parameters such as TD, S, and good/bad

state residency times.

Figure 3.3a shows the average energy consumption versus TG, the long term channel

residence time in the good state, where TG = 1
PGB

. The energy used by local execution

is obviously constant for all residence times. When the good state residence time is low,

the OnOpt algorithm does not offload because there is not enough time to complete the

offload, or, the expected energy is higher than EL. As the residence time increases, the

energy consumption for OnOpt decreases. The energy consumption for Channel Threshold

and Immediate Offloading decreases as the residence time in the good state increases. The

energy for these algorithms is above EL when the residence time is low.

Note that since the energy required for running the online algorithm on the mobile

device is negligible compared to that for the offloading transmission, the average mobile

energy consumption shown in the graphs does not include this component of energy. This

is normally considered to be the case when the amount of transmitted task data is relatively

large.

Figure 3.3b shows the average energy consumption versus TB, the long term mean

channel residence time in the bad state, where TB = 1
PBG

. Figure 3.3b shows that as the

58

Ph.D. Thesis – P. Teymoori McMaster University – ECE

bad state residence time increases, the energy consumption for all of the algorithms ini-

tially increases. When TB is above about 10 time slots, both the offline bound and the

OnOpt algorithm do not offload due to the long time needed, eventually resulting in the

same energy consumption as Local Execution. For the Channel Threshold algorithm, as

TB increases, offloading may still be possible either because the channel is in the good

state at the release time or the first good channel state appears not long afterwards. How-

ever, the probability that the offload can be completed before tD decreases as TB increases.

Therefore, the energy consumption increases with TB. As TB further increases, offloading

is possible only if the channel is in the good state at the release time (the probability de-

creases as TB increases), and therefore, the energy consumption decreases. In Immediate

Offloading, the energy consumption increases with TB until TB is so large that the channel

is practically always in the bad state. The energy consumption, in this case, converges to

EL + EtrS/Bb = 80mJ.

Figure 3.3c shows the average energy consumption of the mobile device as the data size

S increases. When S is small, offloading can most likely meet the delay constraint without

local execution. The average energy consumption of the Channel Threshold and OnOpt

algorithms is the same, since the two algorithms offload at the same time slot, while the

Immediate Offloading algorithm consumes higher energy for the same reason as explained

previously. As S increases, a longer time is needed for wireless transmission, and both

the offline and OnOpt algorithms may decide not to offload, resulting in the same energy

consumption as Local Execution, while the Immediate Offloading and Channel Threshold

algorithms waste energy consumption by offloading unnecessarily.

It is worth mentioning that the energy needed to execute the task locally only depends

on the number of CPU cycles to process the job, and not the job size of the task, where the

59

Ph.D. Thesis – P. Teymoori McMaster University – ECE

1.2 1.4 1.6 1.8 2 2.2 2.4

Mean Residence Time in Good State (Time Slots)

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Channel Threshold

Immediate Offloading

Offline Bound

OnOpt

(a)

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✺

▼✂✄☎ ✆✂✝✞✟✂☎✠✂ ✡✞☛✂ ✞☎ ☞✄✟ ✌✍✄✍✂ ✎✡✞☛✂ ✌✏✑✍✝✒

�

✶�

✓�

✔�

✕�

✖�

✻�

✼�

✽�

❆
✗
✘
✙✚
✛
✘
✜
✢
✘
✙✛
✣
✤
✥
✢
✦
✧
★
✩
✪✫
✥
✢
✬★
✭
✮

▲✯✰✱✲ ✳✴✾✰✿❀❁✯❂

❈❃✱❂❂✾✲ ❄❃❅✾❇❃✯✲❉

■❊❊✾❉❁✱❀✾ ❋●●✲✯✱❉❁❂❍

❋●●✲❁❂✾ ❖✯✿❂❉

❋❂❋❏❀

(b)

20 40 60 80 100 120 140

Job Size (Kb)

0

10

20

30

40

50

60

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Channel Threshold

Immediate Offloading

Offline Bound

OnOpt

(c) PGG = 0.2

2 4 6 8 10 12 14 16

Local Execution Time Duration (Time Slots)

0

5

10

15

20

25

30

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Channel Threshold

Immediate Offloading

Offline Bound

OnOpt

(d) PGG = 0.5

Figure 3.3: Average energy consumption vs job size and local execution time duration.

latter is the number of bits to be processed. Therefore, in this figure, the energy consumed

by local execution does not change as job size increases.

Figure 3.3d shows the average energy consumption versus the local execution duration

time. Here, we change D from 2 to 15 CPU Mega-cycles. Deadline TD is set to 20 time

slots in order to make the deadline tighter and observe the effects of increasing TL. When

EL is small, the OnOpt algorithm does not offload because the expected cost is higher

60

Ph.D. Thesis – P. Teymoori McMaster University – ECE

than EL. When EL becomes large enough, the OnOpt algorithm starts offloading, thus

reducing its energy use. Increasing TL increases the chance that overlap occurs between

local execution and offloading. Therefore, the energy consumption for OnOpt starts to

increase. A similar situation happens for the other algorithms.

3.7.2 Simulation Set 2

In the second set, we set PBB = PGG, so that the equilibrium channel state probabilities

are equal, but by varying these parameters, we can observe the effects of mean channel

state residency time. In this case, the equilibrium channel state probabilities are equal,

and therefore, a larger PGG does not indicate better channel quality on average. Instead, it

represents how dynamically the channel state changes. When PGG (and PBB) is large for

example, once the channel enters a particular state, it is more likely to persist in that state,

i.e., more consecutive time slots in the same state are likely. The opposite is true when PGG

(and PBB) are made smaller. By varying PGG, the average energy consumption of all four

algorithms are given in Figure 3.4a for tD = 40 time slots and Figure 3.4b for tD = 20

time slots.

The offline solution can foresee future channel states, and a larger PGG makes it more

likely to choose consecutive time slots with good channel states. Therefore, the average en-

ergy consumption of the offline bound decreases as PGG increases. When PGG is very close

to zero, the channel state is likely to toggle in the next time slot. In this case, the Imme-

diate Offloading algorithm consumes about 0.5mJ extra energy, compared to the Channel

Threshold algorithm, i.e., 0.5mJ is 50% (which is the probability that the channel state at

the job release time is bad) times 1mJ (which is the transmission energy in the first time

slot). As PGG increases, it is increasingly likely to have consecutive time slots with the

61

Ph.D. Thesis – P. Teymoori McMaster University – ECE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
GG

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Channel Threshold

Immediate Offloading

Offline Bound

OnOpt

(a) tD = 40 time slots

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
GG

12

14

16

18

20

22

24

26

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Channel Threshold

Immediate Offloading

Offline Bound

OnOpt

(b) tD = 20 time slots

✶�
✵

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✺

▼✂✄☎ ✆✂✝✞✟✂☎✠✂ ✡✞☛✂ ✞☎ ☞✌✌✟ ✍✎✄✎✂ ✏✡✞☛✂ ✍✑✌✎✝✒

✓

✶�

✶✓

✔�

✔✓

✕�

✕✓

✖�

✖✓

❆
✗
✘
✙✚
✛
✘
✜
✢
✘
✙✛
✣
✤
✥
✢
✦
✧
★
✩
✪✫
✥
✢
✬★
✭
✮

▲✯✰✱✲ ✳✴✻✰✼✽✾✯✿

❈❀✱✿✿✻✲ ❁❀❂✻❃❀✯✲❄

■❅❅✻❄✾✱✽✻ ❇❉❉✲✯✱❄✾✿❊

❇❉❉✲✾✿✻ ❖✯✼✿❄

❇✿❇❋✽

(c) tD = 40 time slots

Figure 3.4: Average energy consumption vs PGG and TG.

same channel conditions. If the channel is in the good state when a job is released, the

Immediate Offloading and Channel Threshold algorithms are the same. However, if the

channel is in the bad state when a job is released, it is likely that the bad channel state

persists for a relatively long time, during which Immediate Offloading may waste energy.

Therefore, with higher PGG, the difference between Immediate Offloading and the Channel

Threshold algorithm increases. The OnOpt and the Channel Threshold algorithms are very

62

Ph.D. Thesis – P. Teymoori McMaster University – ECE

close when tD = 80 time slots since the time constraint is loose enough for the OnOpt

algorithm to offload at the first time slot with good channel conditions. When tD = 35 time

slots, the difference between the two algorithms starts increasing as PGG becomes large.

This is because OnOpt has the flexibility to offload at a bad time slot while the Channel

Threshold algorithm does not. As a result, the OnOpt may finish offloading much sooner

than the Channel Threshold algorithm.

Figure 3.4c shows the average energy consumption versus TG, which is the long term

average channel residence time in the good state, where TG = 1/PGB = 1/(1−PGG). Note

that in this set of results, TB = TG since PGG = PBB. When TG is below about 10 time

slots (i.e., PGG is between 0.1 and 0.9), the observations are the same as seen in Figure 3.4a.

Therefore, the discussion below is only for TG > 10 time slots. The Immediate Offloading

algorithm can consume much higher energy than the others, since it may have to transmit

for a long time if the channel is in the bad state at the job release time. The OnOpt and

Channel Threshold algorithms are essentially the same, since both decide to offload at the

first time slot with the good channel state.

3.7.3 Simulation Set 3

In this set of results, we use the application parameters for x264 (H.264) encoding from

Miettinen and Nurminen (2010), and consider a job with S = 80Kb,D = 18M CPU cycles,

and tD = 80 time slots. The local execution energy per CPU cycle is vl = 1.5 × 10−6mJ

and the local computation power is fl = 600 M CPU cycles per second or fl = 0.6 M CPU

cycles per time slot. Therefore, the local execution time is TL = D/fl = 30 time slots, and

the local energy consumption EL = vlD = 27mJ. Based on Bg and Bb, a minimum of 8

time slots and a maximum of 80 time slots are needed in order to complete job offloading.

63

Ph.D. Thesis – P. Teymoori McMaster University – ECE

In addition to the results presented below, we have also simulated the algorithms based on

parameters given in Sumi et al. (2014). This reference does simulations of computation

offloading for face recognition on mobile devices. Since the qualitative observations and

conclusions are the same as those presented below, these results have not been included.

✵�✁ ✵�✂ ✵�✄ ✵�☎ ✵�✆ ✵�✝ ✵�✞ ✵�✟ ✵�✠

P
●●

✆

✁✵

✁✆

✂✵

✂✆

✄✵

✄✆

☎✵

☎✆

❆
✡
☛
☞✌
✍
☛
✎
✏
☛
☞✍
✑
✒
✓
✏
✔
✕
✖
✗
✘✙
✓
✏
✚✖
✛
✜

▲✢✣✤✥ ✦✧★✣✩✪✫✢✬

❈✭✤✬✬★✥ ✮✭✯★✰✭✢✥✱

■✲✲★✱✫✤✪★ ✳✴✴✥✢✤✱✫✬✶

✳✴✴✥✫✬★ ❖✢✩✬✱

✳✬✳✷✪

(a)

✸� ✹� ✺� ✻� ✼� ✽� ✾� ✶��

❉✁✂✄☎✆✝✁ ✞✆✟✁ ✠✞✆✟✁ ✡☎☛☞✌✍

✶✺

✷�

✷✺

✸�

✸✺

✹�

✹✺

❆
✎
✏
✑✒
✓
✏
✔
✕
✏
✑✓
✖
✗
✘
✕
✙
✚
✛
✜
✢✣
✘
✕
✤✛
✥
✦

▲✧★✩✪ ✫✬✭★✮✯✰✧✱

❈✲✩✱✱✭✪ ✳✲✴✭✵✲✧✪✿

■❀❀✭✿✰✩✯✭ ❁❂❂✪✧✩✿✰✱❃

❁❂❂✪✰✱✭ ❖✧✮✱✿

❁✱❁❄✯

(b) PGG = 0.3

Figure 3.5: Average energy consumption versus PGG and tD
In this case we set PBB = 1−PGG for the channel state transition probabilities. As dis-

cussed previously, PGG is a measure of the average channel quality. Figure 3.5a shows the

average energy consumption of different algorithms as PGG is varied. The offline bound is

the same as the energy consumption of Local Execution only when PGG is close to 0 and it

decreases as PGG increases. When PGG is very low, the offline optimal solution chooses to

process the job locally without offloading because of the long data transmission time (and

possibly a long overlap time between offloading and local execution). As a result, there is

a high probability that offloading cannot meet the delay constraint and/or consumes higher

energy than EL. As PGG becomes larger, the good channel state frequency increases, and

a shorter time is needed to complete the offloading. In this case, it is more likely that of-

floading can meet the delay constraint and consume less energy. The Immediate Offloading

64

Ph.D. Thesis – P. Teymoori McMaster University – ECE

algorithm results in much higher energy consumption when PGG is small. Since the channel

is in the bad state in most time slots, it is less likely that offloading can meet the deadline,

and the deadline of the job is most likely met by performing local execution. Therefore,

energy is unnecessarily wasted by performing offloading. As PGG increases, the possibility

that offloading can meet the deadline increases, so that less local execution is performed,

and the total energy consumption decreases. The Channel Threshold algorithm consumes

slightly lower energy than Immediate Offloading. By delaying the offloading until the

channel is in the good state, unnecessary transmissions are avoided. The difference is more

obvious when PGG is smaller, since the probability is higher that the channel is found in

the bad state. As opposed to Immediate Offloading and Channel Threshold algorithms, the

proposed OnOpt algorithm avoids wasting energy by deciding not to offload when PGG is

low, which results in the same energy consumption as local execution. When PGG is larger,

conditions become better and a shorter time is needed to offload. Given that the offloading

decision is made using only the current channel state and statistical channel information,

if the decision is to offload at a time slot, it is most likely the first time slot with a good

channel state. Therefore, the OnOpt and Channel Threshold algorithms consume almost

the same energy when PGG is relatively large. The gap between the OnOpt algorithm and

the offline bound is due to the fact that the online algorithm can only use statistical channel

information, while the offline bound has knowledge of future channel conditions.

Figure 3.5b shows the average energy consumption of the algorithms as the job deadline

tD changes. For the offline bound, a loose latency constraint helps it find a better offloading

time so that fewer time slots are needed to complete the required transmissions. Ideally, the

minimum energy consumption is achieved if eight consecutive time slots with good chan-

nel states appear before tL. The probability of this decreases as the deadline is tightened.

65

Ph.D. Thesis – P. Teymoori McMaster University – ECE

However, a larger tD increases the possibility of finding a shorter time interval to complete

the offloading, thus reducing the energy consumption. When tD is sufficiently large, it is

almost always possible to find consecutive time slots with good channel states, and there-

fore, increasing tD further cannot significantly decrease the average energy consumption.

The Channel Threshold and OnOpt algorithms result in similar average energy consump-

tion, which is slightly lower than using Immediate Offloading and much lower than using

Local Execution, provided that tD is not too small. As tD increases, more time is available

to offload before triggering local execution, resulting in lower energy consumption. When

tD is sufficiently large, Channel Threshold and OnOpt all start offloading at the first time

slot with a good channel state, while Immediate Offloading may have to transmit over an

initial bad channel, resulting in slightly higher energy consumption than the other two al-

gorithms. When tD is sufficiently large so that offloading can always be completed before

tL regardless of the initial channel state, further increasing tD does not help in reducing the

energy consumption. This is true for all three online algorithms.

In continuous offloading, once the job uploading commences, unless the deadline ex-

pires, it will continue without being interrupted, until the entire job gets uploaded. In this

scenario, falling into bad channel conditions or channel outages for a long time may in-

crease the mobile energy consumption dramatically. This issue is addressed in the next

chapter, where the tasks are considered to be segmented into multiple job upload parts.

This offloading scheme gives the system a higher chance for adaption to the varying wire-

less channel conditions at the end of each upload part.

66

Chapter 4

Multipart Offloading

4.1 Introduction

The previous chapter addressed the problem of MCO with hard task completion deadline

constraints by proposing CLE. In CLE, a hard deadline is guaranteed by permitting si-

multaneous remote and local task execution when it is needed to ensure task completion

times. In this chapter, the OnOPT algorithm is extended by allowing the uploaded data to

be split into an arbitrary number of parts when CLE is used. More specifically, the task to

be remotely executed is segmented into K parts, with K associated upload initiation time

decisions. It is assumed that both K, as well as the bit-sizes of the K parts, are predeter-

mined. We refer to this computation offloading mechanism as K-Part offloading. Splitting

the uploading data into multiple parts helps further reduce the energy consumption of the

mobile device when wireless channel conditions change during the computation offload,

and this energy benefit increases with K. Since the task is uploaded in separate parts,

separate offload initiation time decisions are needed for each so that mobile device energy

consumption is minimized. These decisions have to be made using CLE so that the system

67

Ph.D. Thesis – P. Teymoori McMaster University – ECE

always satisfies the given hard task execution time constraint.

The chapter considers the Markovian wireless channel case. Under this assumption,

a new computation offloading algorithm, (MultiOpt), is introduced for K-Part offloading.

MultiOpt is shown to be energy optimal, in the sense that no other CLE online computation

offloading algorithm can achieve a lower mean mobile device energy consumption. This

is shown by creating a new Markov process, which incorporates time and other offloading

information in the given Markovian channel model, and then by using optimal Markovian

stopping theory. The continuous OnOpt Algorithm can be considered as a special version

of MultiOpt when K = 1.

Since the computational complexity of MultiOpt can be significant, simpler, and more

computationally efficient CLE heuristics, which also respect the hard task execution dead-

line, may be used. This chapter introduces two such heuristics, the Immediate Offloading,

and Multi Threshold algorithms. The energy performance of MultiOpt is compared to these

heuristics, as well as to Local Execution without offloading and an Offline Bound which

gives a lower bound on mobile device energy. Simulation results show that MultiOpt per-

forms significantly better when compared to the proposed heuristics, as well as when K

increases.

The main contributions of this chapter are summarized as follows:

• An online offloading decision algorithm, i.e., MultiOpt (Multi-decision online Opti-

mal), is introduced. It is proven that the algorithm satisfies hard deadline application

constraints, but also achieves the minimum mean mobile device energy possible for

homogeneous Markovian wireless channels.

• An integer program (IP) is formulated that computes a lower bound on mobile device

energy. This bound is used for comparisons later in Section 4.6.

68

Ph.D. Thesis – P. Teymoori McMaster University – ECE

• An optimal online algorithm (MultiOpt) is proposed, based on Dynamic Program-

ming. Its optimal expected energy consumption is proven using Markovian stopping

theory.

• Although the proposed MultiOpt algorithm satisfies hard deadlines and is proven to

be energy optimal, performance results are also presented that compare it with Local

Execution, as well as heuristics OnOpt (from the previous chapter), Immediate Of-

floading, and Multi Threshold, which also employ CLE, to ensure that job execution

time constraints are satisfied.

The rest of this chapter is organized as follows. In Section 4.2, system modelling as-

sumptions are presented that include both local and remote job execution where hard job

execution deadlines are satisfied using CLE. Following this, in Section 4.3, an offline lower

bound on energy consumption is derived, which is plotted and compared to various of-

floading algorithms in the results section. In Section 4.4, the Markovian channel model is

discussed and how it is used to define an absorbing Markov chain that permits us to show

the energy optimality of the proposed MultiOpt algorithm, which is introduced in Section

4.5. Finally, in Section 4.6, results are presented that compare MultiOpt with various other

computation offloading algorithms that ensure that hard job deadlines are preserved.

4.2 System Model

The system model presented in this chapter matches that of Chapter 3. However, there

are some differences related to the K-Part offloading scenario which are discussed in what

follows. We assume that each job can be split into K parts for offloading, each with a

(known) number of bits to be transmitted through the uplink channel. Supi is the Bit-size of

69

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the ith piece, where Sup = Sup1 + Sup2 + . . . + SupK . Splitting the upload in this way can

be advantageous when channel conditions change during the offload. For example, it may

be better, energy-wise, to delay further uploading when channel conditions worsen, hoping

that it will improve in time to complete the computation offload.

Figure 4.1: Job offloading timing parameters

The K-Part offloading timing sequence is shown in Figure 4.1. The first job piece

begins uploading at to1 , and ends at tf1 , then there are TW1 time slots before the second piece

begins uploading at to2 , and so on, until the Kth piece is uploaded. Note that, by definition,

if to1 > tD, then there is only local execution. It is assumed that the uplink channel uses

bit rate adaptation to accommodate random variations in channel conditions. As a result,

time intervals Tupi = tfi − toi + 1, i = 1, . . . , K, are random variables, dependent on

the evolution of the uplink channel state as a given upload occurs. After its uploading is

complete, the job is executed on the server in Texec time slots, and its execution results are

downloaded to the mobile device in Tdown time slots. We assume that the execution time

Texec is assigned when the job is released, by the cloud server, which is communicated to

the mobile device (or is prescribed by, say, the contractual agreement between the user of

the device and the cloud server operator). We assume that Tdown is also communicated to

the mobile device at this time; more generally, we can treat the dowloaded results as the

K + 1’th job piece transmitted over the channel, but we will avoid doing this, in order to

simplify our presentation. In this chapter, we assume that power control is used on the

downlink, so that Tdown is known before the upload. Therefore, the total offloading time

70

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Toff is given by

Toff =
K∑
i=1

Tupi +
K−1∑
i=1

TWi
+ Texec + Tdown, (4.2.1)

where TWi
is the number of time slots that elapse after uploading the ith piece and before

uploading the (i+ 1)th piece. If the dowloaded results are received before the deadline tD,

any local execution of the job is automatically terminated. Notice that after uploading each

part, uploading the next part will be delayed if the algorithm finds itself in a bad channel

condition. This mechanism may lead to higher values of Toff , which results in triggering

local execution with higher probability. However, saving energy from not offloading in bad

states compensates for extra energy consumed due to larger concurrent local execution, and

results in lower overall energy consumptions compared to continuous offloading.

In what follows, we define

Trest = Texec + Tdown. (4.2.2)

4.3 Offline Bound

In this section, an offline lower bound on mobile device energy use for the K-Part offload-

ing is obtained. We use this lower bound in Section 4.6 for performance comparisons with

different online computation offloading algorithms proposed throughout this chapter. Simi-

lar to Chapter 3, since the bound is offline, we have complete knowledge of future wireless

channel states in advance, i.e., we know the bit rate (in bits per time slot) at all times

1 ≤ t ≤ tD (note that tR is considered to be 1). When a job is released, the bound chooses

the job offload times so that its deadline is satisfied and the energy needed to offload the

job is minimized. Let tfi(toi), 1 ≤ i ≤ K, be the upload finishing time as a function of

71

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the uploading starting time toi for the ith part, and define tf0(to0) = 0. Etr and Erc are the

energy costs per time slot for channel transmitting and receiving, respectively. The optimal

values for toi are found by solving the integer programming (IP) program (4.3.1)-(4.3.3).

min
to1 ,...,toK

max(tfK (toK) + Trest, tL)− tL
TL

EL + Etr

K∑
i=1

(tfi(toi)− toi + 1) + ErcTdown

(4.3.1)

s.t.
max(tfK (toK) + Trest, tL)− tL

TL
EL + Etr

K∑
i=1

(tfi(toi)− toi + 1) + ErcTdown ≤ EL

(4.3.2)

tfi−1
(toi−1

) + 1 ≤ toi ≤ tD, i = 1, . . . , K. (4.3.3)

The first term in (4.3.1) is the local execution energy cost incurred, the second term

accounts for the energy cost of uploading the K job parts, and the last term is the cost for

downloading the results from the cloud. Constraint (4.3.2) ensures that the energy used in

offloading does not exceed that of executing the job locally. Note that if the IP is infeasible,

then there are no feasible uploading start times toi , i.e., it is best to execute the job solely

locally without offloading.

4.4 Markovian Channel and the Time-Dilated Absorbing

Markov Model

Similar to what was explained in Section 3.4, we assume a known channel state Markov

chain (CSMC), i.e., the channel conditions evolve from one time slot to the next according

to a homogeneous finite-state Markov chain. Each state in the CSMC has an associated bit

rate that gives the number of bits per time slot that can be uploaded in that state. The CSMC

72

Ph.D. Thesis – P. Teymoori McMaster University – ECE

transition matrix is defined as P = [Pi,j], where Pi,j is the probability of transitioning to

channel state j in the next time slot, given that the channel is currently in state i. As

defined, CSMC is memoryless, but to estimate the expected energy and time-period needed

to perform the K-Part offloading, we will need to incorporate time and other offloading

information into the Markov chain structure. Therefore, we will consider a TDAMC (which

was proposed in Chapter 3) produced by following the evolution of the channel, starting

from an initial state at time t = 1, and branching out from each state according to the

transition probabilities of the CSMC. We will denote by Xt a state in this Markov chain,

reached after running the channel for t time slots. We will consider subtrees of this TDAMC

(such as TDAMC1 below), endowed with energy costs and absorbing states.

The part of the TDAMC that models the offloading progress if the uploading of Sup1

is initiated at a time slot ts, will be denoted as TDAMC1. An example of TDAMC1 is

shown in Figure 4.2. To simplify the exposition, the diagram shows the two-state Gilbert-

Elliot channel case, but the procedure is valid for any Markovian channel. In the Gilbert-

Elliot case, the channel is modelled by a CSMC with two states {G,B} (i.e., a “Good” one

with the higher bit rate, and a “Bad” one, respectively), and with transition probabilities

PGG, PGB, PBG, PBB. In each time slot, TDAMC1 transitions to a new state in accordance

with these transition probabilities. For clarity, each state sat in the figure is subscripted by

its time slot t, and superscripted by a unique identifier a that distinguishes it from the other

channel states reachable after t time slots. Hence, the TDAMC1 of Figure 4.2 models the

offloading process initiated at time slot ts, when the channel state that has been reached at

that time is s19ts . The bit rate at each state is also indicated.

In general, TDAMC1 is a rooted subtree of the TDAMC, constructed as follows: The

root state is the (known) channel state Xts at current time slot ts. At each subsequent time

73

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 4.2: TDAMC1 when offloading Sup1 starts at time ts.

slot, the Markov chain tree branches forward, according to the transitions possible from

the current state (Xts , initially) to other TDAMC states. At each state, the number of job

bits transmitted is determined by the bit rate associated with that state. The branching

continues to create all possible paths of states needed to upload Sup1 bits, up to some

state Xtf1
corresponding to upload finishing time tf1 for each path from the root (such

as s37ts+1, s
75
ts+2, represented by squares in Figure 4.2). At time tf1 + 1, the second part

Sup2 is released. Continuing the branching of the TDAMC, and after a possible waiting

period, the uploading of Sup2 commences, followed by the rest of the K pieces, and the

job execution in the cloud in time Texec, and the downloading of the results in time Tdown,

ending in an absorbing state (this part of the offloading for K = 2 is depicted in Figure 4.2

as subtrees hanging from states s73ts+2, s
74
ts+2, s

149
ts+3, s

150
ts+3). The optimal waiting time for each

path, i.e., the waiting times which optimize the total (over all paths) expected energy cost

for uploading Sup2 , . . . , SupK , is solved in Section 4.5. Then the energy cost of each subtree

is the optimal expected cost (over all paths) of completing offloading, when uploading Sup1

finishes in time slot tf1 and state Xtf1
. In fact, TDAMC1 does not need to extend all the

74

Ph.D. Thesis – P. Teymoori McMaster University – ECE

way into these subtrees, but can treat states Xtf1+1 as absorbing states, each with cost equal

to the energy cost of its own subtree. This process can obviously be repeated, in order to

build the corresponding TDAMCi for any piece i.

The probability of uploading Supi bits in Tupi time slots, starting at time slot toi , and

a state Xtoi
, for i = 1, . . . , K, can be calculated by building a separate TDAMCi, with

a set of absorbing states Ai, and a set of transient states Ti, for i = 1, . . . , K. It encodes

the evolution of the channel starting at time slot toi and state Xtoi
, and until Supi bits are

uploaded, at which point an absorbing state in Ai is reached. Its transition matrix can be

written Grinstead and Snell (2006) as

Pi =

Qi Ri

0 IAi

 , (4.4.1)

where the |Ti|× |Ti| sub-matrix Qi contains the probabilities of transitioning between tran-

sient states, the |Ti| × |Ai| sub-matrix Ri contains the probabilities of transitioning from a

transient state to an absorbing state, and IAi is an |Ai| × |Ai| identity matrix.

The theory of absorbing Markov chains implies that various statistics can be computed

by forming the fundamental matrix Ni = (I − Qi)
−1, where Ni[l,m] gives the expected

number of times that TDAMCi is in transient state m if the system is started in transient

state l. Given the structure of TDAMCi, Ni can be easily decomposed and calculated as

in Chapter 3, since the particular structure of matrices Qi, Ni, N
−1
i is the same simple one

as in Chapter 3. The absorption probabilities matrix Wi for all absorbing states is given by

Wi = NiRi, (4.4.2)

75

Ph.D. Thesis – P. Teymoori McMaster University – ECE

where Wi is a |Ti| × |Ai| matrix, and Wi[l,m] gives the probability that absorbing state m

will be reached when starting in transient state l. Therefore, the probability of uploading

the ith part with size Supi in Tupi time slots, starting at time slot toi and state Xtoi
, is

Ptoi (Supi , Tupi , Xtoi
) =

∑
j∈SiWi[Xtoi

, j], (4.4.3)

where Si is the set of absorbing states in TDAMCi reached by a path of length Tupi + 1

from the root Xtoi
.

Êoffi(Supi , Tupi , toi) = Etr[min{tD, toi + Tupi − 1} −min{tD, toi − 1}] (4.4.4)

ÊoffK (SupK , TupK , toK) = Etr[min{tD, toK + TupK − 1} −min{tD, toK − 1}] (4.4.5)
+Erc[min{tD, toK + Trest − 1} −min{tD, toK + Texec − 1}]

Eoffi(Supi , Xtoi
) =

Supi
Bmin∑

Tupi=
Supi
Bmax

Ptoi (Supi , Tupi , Xtoi
)Êoffi(Supi , Tupi , toi) (4.4.6)

ÊLi(Tupi , tfi−1
, toi) =


0, toi ≤ tL − Tupi or tfi−1

≥ tD
min{tD,toi+Tupi−1}−max{tL,tfi−1

+1}+1

TL
EL,

otherwise

(4.4.7)

ÊLK (TupK , tfK−1
, toK) =


0, toi ≤ tL − (Tupi + Trest) or tfi−1

≥ tD
min{tD,toK+TupK+Trest−1}−max{tL,tfK−1

+1}+1

TL
EL,

otherwise

(4.4.8)

ELi(Supi , tfi−1
, Xtoi

) =

Supi
Bmin∑

Tupi=
Supi
Bmax

Ptoi (Supi , Tupi , Xtoi
)ÊLi(Tupi , tfi−1

, toi) (4.4.9)

For i = 1, 2, . . . , K − 1, if the uploading of Supi starts at time slot toi , the expected

offloading energy cost when offloading starts at time slot toi in state Xtoi
and finishes

exactly in Tupi time slots or at tD (whichever comes first), is given by equation (4.4.4),

76

Ph.D. Thesis – P. Teymoori McMaster University – ECE

where Etr is the transmission energy of the mobile device during one time slot, while the

expected energy cost of uploading SupK is given by equation (4.4.5), where Erc is the

energy consumption of the mobile device during one time slot when receiving from the

server. Then, the expected offloading energy cost Eoffi for i = 1, 2, . . . , K is computed by

equation (4.4.6), where Bmax and Bmin, respectively, are the bit rates at the best and worst

channel states.

Similarly, the local execution energy cost corresponding to the uploading of the ith job

piece, for i = 1, 2, . . . , K − 1 is given by (4.4.7)1, while the local execution energy cost

due to the Kth job piece and the rest of offloading time Trest is given by (4.4.8). Then,

the expected local execution energy cost ELi for i = 1, 2, . . . , K is computed by equation

(4.4.9).

4.5 Optimal Algorithm for K-Part Offloading

In this section we use the TDAMC’s constructed in Section 4.4, and the theory of optimal

stopping for Markov decision processes (Peskir and Shiryaev (2006)), in order to define

optimal offloading algorithms, and prove their optimality. Recall that, for simplicity, we

have set tR = 1. A high-level description of algorithm MultiOpt (cf. Algorithm 2) is as

follows: Starting from time slot t = 1 (the release time of the job), at each time slot t

the algorithm considers TDAMC1 in order to determine the expected cost of the whole

offloading process if uploading Sup1 commences at the current time t. If that cost is less

than the expected offloading cost when the algorithm waits one more time slot, then t∗o1 = t

(offloading Sup1 commences), otherwise the algorithm postpones its decision for time slot

t+ 1. Once the uploading of Sup1 finishes, for the rest of the parts the algorithm repeats the

1We set tf0 = tR − 1.

77

Ph.D. Thesis – P. Teymoori McMaster University – ECE

same decision process at every time slot (using TDAMCi to compute expected costs), to

determine the time t∗oi to start uploading Supi for i = 2, 3, . . . , K.

At any time slot t (and state Xt), and given that pieces 1, 2, . . . , i− 1 have already been

uploaded, MultiOpt decides the uploading starting time t∗oi ≥ t for Supi . Its decisions t∗oi

for i = 1, 2, . . . , K are optimal iff they are the solutions of the minimization problems

(one for each i) (4.5.1) (4.5.2), where Si is the set of states reachable after running the

vi(tfi−1
, Xt) =



0, t > tfi−1
≥ tD

min
t≤toi≤tD+1

∑
Xtoi∈Si

Pr[Xtoi
|Xt]

(
Eoffi(Supi , Xtoi

)+

ELi(Supi , tfi−1
, Xtoi

) +
∑

Xtfi
+1∈Ŝi

Wi[Xtoi
, Xtfi+1]vi+1(tfi , Xtfi+1)

)
,

tfi−1
< t ≤ tD

(4.5.1)

vK(tfK−1
, Xt) =


0, t > tfK−1

≥ tD

min
t≤toK≤tD+1

∑
XtoK

∈SK
Pr[XtoK

|Xt]
(
EoffK (SupK , XtoK

)

+ELK (SupK , tfK−1
, XtoK

)
)
, tfK−1

< t ≤ tD

(4.5.2)

gi(Supi , tfi−1
, Xtoi

) = Eoffi(Supi , Xtoi
) + ELi(Supi , tfi−1

, Xtoi
)

+
∑

Xtfi
+1∈Si

Wi[Xtoi
, Xtfi+1]Vi+1(tfi , Xtfi+1), i = 1, . . . , K (4.5.3)

gK(SupK , tfK−1
, XtoK

) = EoffK (SupK , XtoK
) + ELK (SupK , tfK−1

, XtoK
) (4.5.4)

channel until time slot toi , Ŝi is the set of absorbing states of TDAMCi rooted at Xtoi
,

78

Ph.D. Thesis – P. Teymoori McMaster University – ECE

and vi+1(tfi , Xtfi+1) is the optimal expected energy cost for the rest of the offloading when

Supi finishes uploading at time tfi , i.e., the cost of the absorbing state Xtfi+1 of TDAMCi.

In (4.5.1)-(4.5.2), gi(Supi , tfi−1
, Xtoi

) is the expected energy cost of uploading Supi , if up-

loading of Supi−1
finishes at tfi−1

and uploading Supi starts at time slot toi and state Xtoi
,

and is given by (4.5.3)-(4.5.4). Note that we allow the algorithm to decide not to offload

or stop offloading if this is to its benefit, by allowing uploading decisions to take the value

tD + 1.2 For every time slot toi and state Xtoi
, we define the expected cost Vi(tfi−1

, Xtoi
)

recursively in (4.5.5), for i = 1, . . . , K. Vi(tfi−1
, Xtoi

), which can be computed using

Vi(tfi−1
, Xtoi

) =


0, toi > tfi−1

≥ tD
tD−max{tfi−1

+1,tL}+1

TL
EL, toi ≥ tD > tfi−1

min{gi(Supi , tfi−1
, Xtoi

), E[Vi(tfi−1
, Xtoi+1)|Xtoi

]}, tD > toi .
(4.5.5)

Dynamic Programming (DP), and it is the minimum between the expected total cost of

starting uploading Supi at time slot toi and state Xtoi
, and the expected cost of postponing

that decision to time slot toi + 1,

E[Vi(tfi−1
, Xtoi+1)|Xtoi

] =
∑

Xtoi+1∈Ti

Pr[Xtoi+1|Xtoi
]Vi(tfi−1

, Xtoi+1),

where Ti is the set of states reachable after running the channel for toi + 1 time slots.

Note that (4.5.5) implies a policy, that dictates whether at any time toi and state Xtoi
the

algorithm should start uploading Supi (if the min is attained by gi), or should otherwise

wait.

We prove optimality by (reverse) induction. It is well known (e.g., Theorem 1.7 in

2Equations (4.4.4), (4.4.5), (4.4.7), (4.4.8) have been set up to reflect this.

79

Ph.D. Thesis – P. Teymoori McMaster University – ECE

(Peskir and Shiryaev (2006))) that policy VK is optimal, i.e., solves the original problem

(4.5.2), since

vK(tfK−1
, XtK) = VK(tfK−1

, XtK), ∀tK > tfK−1
, XtK . (4.5.6)

Hence the following holds:

Lemma 3. (Peskir and Shiryaev (2006)) The optimal time for starting uploading SupK is

t∗oK = arg min
tfK−1

<toK≤tD
{VK(tfK−1

, XtoK
) = gK(SupK , tfK−1

, XtoK
)} (4.5.7)

Assuming that decisions t∗oK , t∗oK−1
, . . . , t∗oi+1

are optimal, i.e.,

vk(tfk−1
, Xtk) = Vk(tfk−1

, Xtk), ∀tk > tfk−1
, Xtk (4.5.8)

holds for k = K,K − 1, . . . , i + 1, we prove that the ith decision t∗oi of MultiOpt is also

optimal. Note that (4.5.1) becomes (4.5.9).

vi(tfi−1
, Xt) =



0, t > tfi−1
≥ tD

min
t≤toi≤tD+1

∑
Xtoi∈Si

Pr[Xtoi
|Xti]

(
Eoffi(Supi , Xtoi

) + ELi(Supi , tfi−1
, Xtoi

)

+
∑

Xtfi
+1∈Ŝi

Wi[Xtoi
, Xtfi+1]Vi+1(tfi , Xtfi+1)

)
, tfi−1

< t ≤ tD

(4.5.9)

But then, Theorem 1.7 in (Peskir and Shiryaev (2006)) can be applied again, to show

80

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Lemma 4. (Peskir and Shiryaev (2006)) The optimal time for starting uploading Supi is

t∗oi = arg min
1≤toi≤tD

{Vi(tfi−1
, Xtoi

) = gi(Supi , tfi−1
, Xtoi

)} (4.5.10)

Lemmata 3 and 4 imply that the on-line algorithm MultiOpt (Algorithm 2) is optimal

for general Markovian channels.

Algorithm 2 MultiOpt (Multi-decision online Optimal)
Input: Local execution starting time tL, local execution energy EL, job deadline tD, and

job sizes Sup1 , Sup2 , . . ., SupK .
1: i = 1
2: for all t = 1, . . . , tD do
3: if job finished uploading then
4: Break
5: end if
6: if currently uploading then
7: Continue
8: end if
9: if min in (4.5.5) is gi then . part i− 1 has been uploaded but i has not started

uploading
10: start uploading part i
11: i = i+ 1
12: end if
13: end for

4.6 Simulation Results

In this section, computer simulation is used to study the performance of the proposed K-

Part offloading algorithm for K = 2 , 3 and 4. For comparison, we also plot the Offline

Bound given in Section 4.3, and performance of Local Execution and three other algo-

rithms, referred to as OnOpt Algorithm, Immediate Offloading, and Multi Threshold. These

algorithms all employ CLE to ensure that job execution time constraints are satisfied. The

81

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Local Execution algorithm executes the entire job locally without doing any offloading.

The OnOpt Algorithm is the online algorithm proposed in the previous chapter which finds

the optimum offloading decision to minimize the expected energy consumption of the mo-

bile device. It is the special version of MultiOpt when K = 1. For the Immediate Offload-

ing algorithm, a job is offloaded immediately at the release time if S/Bmax + Trest ≤ TD;

otherwise, the job is executed locally without offloading since offloading cannot be com-

pleted before the job deadline even with contiguous best wireless channel states. For the

Multi Threshold algorithm, uploading for the first piece starts at the first time slot when

the channel condition is above a given threshold, if the remaining time before the job com-

pletion deadline is at least Sup/Bmax + Trest; otherwise no offloading is performed for the

entire job. For the Gilbert-Elliot channel, any threshold between the good and bad states

can be used, i.e., uploading starts at the first time slot with the good channel state. After the

(i − 1)th piece is uploaded, uploading for the ith piece starts as soon as the channel state

becomes above the threshold, if the remaining time before the job completion deadline is

no less than
∑K

k=i Supk/Bmax +Trest; otherwise, uploading is stopped. In both the Immedi-

ate Offloading and the Multi Threshold algorithms, local execution starts at time slot tL if

offloading (includes uploading to, remote execution at, and downloading from the server)

is not completed at time slot tL − 1, i.e., they ensure that the job deadline is satisfied.

In this simulation, the job size Sup, i.e., total amount of data to be uploaded, is split

into K equal parts i.e., Sup1 = Sup2 = · · · = SupK = Sup/K. The default parameters used

in the simulations are given as follows. Each time slot is 1 ms. The transmit and receive

power is 1 W and 0.5 W, respectively, which means that the transmission and receive energy

during each time slot is Etr = 1mJ and Erc = 0.5mJ, respectively. In our offloading results

we have used the well-known Gilbert-Elliot channel model, that is often used to model

82

Ph.D. Thesis – P. Teymoori McMaster University – ECE

random wireless channels (Zhang et al. (2014); Zhang et al. (2013b); Gilbert (1960); Elliott

(1963); Johnston and Krishnamurthy (2006); Zafer and Modiano (2007)). This model

is often used to characterize burst noise effects in wireless links, where the channel can

abruptly transition between good and bad conditions. This is a good test for computation

offloading algorithms with hard execution time constraints, since the channel may be less

predictable than those where channel conditions are more correlated and predictable. We

assume that PBB = 1 − PGG for the channel state transition probabilities. In this case,

PGB = PBB, PBG = PGG, the equilibrium channel state probabilities are given by Pg =

PGG and Pb = PBB, and PGG can be used as a measure of the average channel quality. The

data transmission rates are Bb = 1Mbps and Bg = 10Mbps, or Bb = 1kb per time slot and

Bg = 10kb per time slot. Note that in the two-state channel model,Bmax = Bg andBmin =

Bb. In order to produce the results below, each value of average energy consumption is

obtained by the averaging of 1500 random i.i.d. runs of the wireless channel, which follows

the Gilbert-Elliot model described above.

4.6.1 Simulation Set 1

In this section we consider a job with D = 10M CPU cycles and TD = 60 time slots. The

local execution energy per CPU cycle is vl = 2× 10−6mJ and the local computation power

is fl = 1M CPU cycles per time slot (Nir et al. (2014); Huang et al. (2012)). Therefore,

the local execution time is TL = D/fl = 10 time slots, and the local energy consumption

EL = vlD = 20mJ. We consider that the remote execution time is Texec = 1 time slot, i.e.,

the remote processing speed is 10 times as fast as local processing. The download time

Tdown is assumed to be 1 time slot.

Figure 4.3a shows the average energy consumption of the mobile device as the data

83

Ph.D. Thesis – P. Teymoori McMaster University – ECE

20 30 40 50 60 70 80 90 100

Job Size (Kb)

0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Immediate Offloading

Multi Threshold (K=2)

Multi Threshold (K=3)

Multi Threshold (K=4)

OnOpt (MultiOpt (K=1))

MultiOpt (K=2)

MultiOpt (K=3)

MultiOpt (K=4)

Offline Bound (K=2)

Offline Bound (K=3)

Offline Bound (K=4)

(a) PGG = 0.2

1 2 3 4 5 6 7 8 9 10

Computation Load D (M CPU cycles)

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Immediate Offloading

Multi Threshold (K=2)

Multi Threshold (K=3)

Multi Threshold (K=4)

OnOpt (MultiOpt (K=1))

MultiOpt (K=2)

MultiOpt (K=3)

MultiOpt (K=4)

Offline Bound (K=2)

Offline Bound (K=3)

Offline Bound (K=4)

(b) PGG = 0.5

Figure 4.3: Average energy consumption versus data size Sup and D

size Sup increases. The energy used by Local Execution is constant for all Sup. When

Sup is smaller, the delay constraint is less stringent, and it is more likely for offloading

(without local execution) to meet the delay constraint due to a shorter channel uploading

time. In this case, the Multi Threshold and MultiOpt algorithms have approximately the

same average energy consumption, since it is more likely for the MultiOpt algorithm to

decide to start uploading as soon as the channel state is good, making it start the upload at

the same time slot with the Multi Threshold algorithm. Compared to OnOpt, the energy

consumption of MultiOpt with K > 1 is lower, indicating that splitting the job uploading

into multiple pieces brings more flexibility that helps the mobile device to avoid uploading

during bad channel states; on the other hand, since OnOpt uploads the job continuously,

its uploading is more likely to encounter the bad channel states, and therefore, takes a

longer time and consumes more energy. The Immediate Offloading algorithm consumes

higher energy as compared to the other algorithms, because there is a certain probability

to encounter the bad channel state at the job release time and the following time slots, and

the probability becomes higher when PGG is lower. As Sup increases, a longer time is

needed for wireless transmissions, and the offline bound and the MultiOpt algorithms may

84

Ph.D. Thesis – P. Teymoori McMaster University – ECE

decide not to offload, resulting in the same energy consumption as Local Execution, while

the Immediate Offloading and Multi Threshold algorithms waste energy consumption by

offloading unnecessarily and result in much higher energy consumption.

Comparing the MultiOpt algorithm with K = 1 (i.e., the OnOpt algorithm), 2, 3, and 4,

we can see that splitting the job into multiple pieces helps reduce the energy consumption

of the mobile device, since doing this can avoid uploading during some bad channel states,

provided the job completion deadline can be satisfied.

Figure 4.3b shows the average energy consumption of the mobile device versus the

amount of computation load D. Deadline TD is set to 40 time slots. When D is small, the

MultiOpt algorithm (including OnOpt) does not offload because the local execution energy

is low and less than the energy needed to upload the data. As D increases, the energy

required for local execution increases, and it becomes more likely that offloading consumes

less mobile device energy than local execution. The energy consumption for MultiOpt

becomes constant when D is sufficiently large. This is because the delay constraint is

relatively loose in the simulated system, which allows offloading to be completed before

tL. Therefore, whenD is relatively large, the energy consumption is the same as the energy

consumption for wireless transmissions, which does not depend on D. The figure also

shows that MultiOpt can save mobile device energy by splitting the job into multiple pieces

and uploading separately.

4.6.2 Simulation Set 2

In this set of results, we use the application parameters for x264 (H.264) encoding from

Miettinen and Nurminen (2010), and consider a job with Sup = 60Kb, D = 18M CPU

cycles, and TD = 60 time slots. The local execution energy per CPU cycle is vl = 1.5 ×

85

Ph.D. Thesis – P. Teymoori McMaster University – ECE

10−6mJ and the local computation power is fl = 600 M CPU cycles per second or fl = 0.6

M CPU cycles per time slot. Therefore, the local execution time is TL = D/fl = 30 time

slots, and the local energy consumption EL = vlD = 27mJ. The remote execution time

Texec is 3 time slots, and the download time Tdown is 1 time slot.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
GG

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Immediate Offloading

Multi Threshold (K=2)

Multi Threshold (K=3)

Multi Threshold (K=4)

OnOpt (MultiOpt (K=1))

MultiOpt (K=2)

MultiOpt (K=3)

MultiOpt (K=4)

Offline Bound (K=2)

Offline Bound (K=3)

Offline Bound (K=4)

(a) PGG = 0.3

30 35 40 45 50 55 60 65

Deadline Time (Time Slots)

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Immediate Offloading

Multi Threshold (K=2)

Multi Threshold (K=3)

Multi Threshold (K=4)

OnOpt (MultiOpt (K=1))

MultiOpt (K=2)

MultiOpt (K=3)

MultiOpt (K=4)

Offline Bound (K=2)

Offline Bound (K=3)

Offline Bound (K=4)

(b) PGG = 0.3

Figure 4.4: Average energy consumption versus PGG and TD.

Figure 4.4a shows the average energy consumption of different algorithms as PGG

varies. The offline bound is close to the energy consumption of Local Execution only

when PGG is close to 0, in which case the channel is almost always in the bad state and

local execution is almost always the optimum choice. The Immediate Offloading and Multi

Threshold algorithms result in much higher energy consumption when PGG is small. Since

the channel is in the bad state in most time slots, uploading data requires a long time.

Therefore, there is a high probability that offloading cannot meet the delay constraint and/or

consumes high energy; furthermore, due to the long uploading time, there may be a long

overlap time between offloading and local execution. As a result, energy is unnecessarily

wasted in the Immediate Offloading and Multi Threshold algorithms by performing of-

floading. As PGG increases, the possibility that offloading can meet the deadline increases,

so that less local execution is performed, and the total energy consumption decreases for

86

Ph.D. Thesis – P. Teymoori McMaster University – ECE

all the offloading algorithms. The Multi Threshold algorithm consumes slightly lower en-

ergy than Immediate Offloading. By delaying the uploading (of each piece of the job) until

the channel state becomes good, it reduces the transmission time and saves energy con-

sumption. The difference is more obvious when PGG is smaller, since the probability of

encountering bad channel states is higher.

When PGG is low, the MultiOpt (including OnOpt) algorithm chooses to not offload,

and therefore, results in the same energy consumption as Local Execution; and when PGG

is larger, the algorithm more likely chooses to offload, since channel conditions become

better and a shorter time and less energy is needed to offload. Figure 4.4a also shows

that, the energy consumption of MultiOpt is lower when K is larger, if the mobile device

decides to offload, since splitting the job into more pieces brings more flexibility that helps

the mobile device avoid transmissions in bad channel conditions.

By comparing the MultiOpt and Multi Threshold algorithms, we can see that for given

K, when PGG is relatively large, the two algorithms consume almost the same energy. This

is because the channel condition in general is good, so that the time required for uploading

the data is relatively short, and the time required to complete offloading is much less than

TD. For the MultiOpt algorithm, if the decision is to offload the next piece of the job, it

is most likely the first time slot with a good channel state, which is the same as the Multi

Threshold algorithm. The gap between the MultiOpt algorithm and the offline bound is due

to the fact that the MultiOpt algorithm can only use statistical channel information, while

the offline bound has knowledge of the channel states of all future time slots.

For all the offloading solutions, the mobile device energy consumption decreases as

PGG increases, since the probability of having the good channel state increases, which

reduces the time needed to upload the data and makes it more likely for offloading to meet

87

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the delay constraint and consume less energy. When PGG is relatively small, the energy

decreases fast as PGG increases; and when PGG is sufficiently large, further increasing PGG

does not help reduce the energy consumption significantly, since each piece of the job has

to be uploaded in consecutive time slots.

Figure 4.4b shows the average energy consumption of the algorithms as the job dead-

line TD changes. When TD is small, the MultiOpt (including OnOpt) algorithm decides

to not offload most of the time, resulting in the same energy consumption as Local Exe-

cution; the offline bound result in lower energy consumption than Local Execution, since

it foresees the future channel states and can decide to offload at a future state; while Im-

mediate Offloading and Multi Threshold most likely result in concurrent offloading and

local execution, since offloading cannot meet the delay constraint, and therefore, result in

higher energy consumption than Local Execution. The Multi Threshold algorithm achieves

a lower energy consumption than the Immediate Offloading algorithm by delaying the of-

floading until the first time slot with the good channel state.

As TD increases, more time is available to offload before triggering local execution,

resulting in even lower energy consumption for all the offloading algorithms. When TD

is sufficiently large, all the offloading algorithms can achieve lower average energy con-

sumption than using Local Execution. For given K, the MultiOpt and the Multi Threshold

algorithms result in the same average energy consumption.

For the offline bound, a loose latency constraint helps it find a better offloading time

so that fewer time slots are needed to complete the required transmissions. Ideally, the

minimum energy consumption is achieved if there are six consecutive time slots with good

channel states before tL. In general, a larger TD increases the possibility of having a shorter

time interval to complete the uploading, thus reducing the energy consumption. When TD

88

Ph.D. Thesis – P. Teymoori McMaster University – ECE

is small, increasing TD helps reduce the energy consumption significantly; and when TD is

relatively large, further increasing TD does not help reduce the energy consumption, since

it is almost always possible to complete uploading with six time slots before tL.

The main problem left open to be discussed in the next chapter is the case of preemptive

offloading, i.e., when the protocol allows for offloading a piece of the task at any time-slot,

and not necessarily in K contiguous parts. A new Dynamic Programming algorithm will

have to be developed along the lines of Section 4.5, one that will have to take into account

the task bits already offloaded. Even if such an optimal algorithm is developed, it may be

of only theoretical interest. One of the main conclusions of our work is that as the number

of job pieces K increases, it becomes harder to computationally perform the calculations

needed by MultiOpt. Preemption will increase K to be proportional to the bit-size of the

task, and, therefore, a DP approach becomes impractical. In this case, the development of

fast heuristics with good (i.e., close to the optimal) performance is also another objective.

89

Chapter 5

Preemptive Offloading

5.1 Introduction

This chapter uses CLE and considers Preemptive Mobile Computation Offloading, referred

to as Preemptive Offloading for short. In the preemptive case, the algorithm makes sepa-

rate upload initiation time decisions at the start of every time slot. Based on its inputs, it

decides whether to use the current time slot to continue the upload or defer uploading to

future time slots. Preemptive offloading can be used to reduce mobile energy use when

wireless channel conditions change during the computation offload. These decisions are

made such that the system always satisfies the given hard task execution time constraint

using concurrent local execution offloading. The objective is to minimize mobile device

energy consumption, subject to this constraint. It is very easy to illustrate the value of pre-

emption in computation offloading. For example, consider a mobile device that has a large

job offload over a 2-state Markovian channel (i.e., a Gilbert-Elliot channel), and toggles

between good and bad channel states with the same mean time in each state, and at a rate

much smaller than the upload time. Then the offload energy needed for the non-preemptive

90

Ph.D. Thesis – P. Teymoori McMaster University – ECE

case would be roughly twice that of using preemption. The statistics of the channel can

easily be such that the advantage to the preemptive case is far greater.

We consider the homogeneous Markovian channel case, which is commonly used to

model random wireless channel conditions. Under this assumption, computation offload-

ing algorithms are introduced for preemptive offloading. In this chapter we show that the

proposed algorithm is energy optimal and is referred to as Optimal Preemptive Offloading

(OPO). This algorithm is optimal in the sense that no other online computation offloading

algorithm can achieve a lower mean mobile device energy consumption. The energy op-

timality of this algorithm is shown by creating a time-dilated absorbing Markov processes

and using optimal Markovian stopping theory. More specifically, it is shown that a dynamic

programming approach can be used to compute the expected energy cost in case offloading

occurs or not in the current time slot, and the algorithm bases its (optimal) decision on these

costs.

Since the computational complexity of OPO can be significant, we introduce three com-

putationally efficient techniques, motivated by OPO, namely, Water-Filling, Water-Filling

with Scheduling, and Generalized Water-Filling. These methods operate by first identify-

ing a target set of future time slot types to use for the offload. This set is defined based

on predicted bit rates using the Markovian channel statistics. Time slots are then as-

signed using “water-filling”, which prioritizes those with higher expected bit rates. The

algorithms vary based on how the computations are performed. For each method, two

variations are considered. The first (Equ) uses the equilibrium channel state probabilities

in its offloading decision calculations. The second variant (Exp), while more accurate,

uses Markovian transition matrix exponentiation, which is more computationally expen-

sive. This results in six algorithms, namely, Water-Filling with Equilibrium (WF-Equ),

91

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Water-Filling with Exponentiation (WF-Exp), Water-Filling with Equilibrium and Schedul-

ing (WF-Equ-Sch), Water-Filling with Exponentiation and Scheduling (WF-Exp-Sch), Gen-

eralized Water-Filling with Equilibrium (Gen-WF-Equ) and Generalized Water-Filling with

Exponentiation (Gen-WF-Exp). The performance of the proposed algorithms is compared

on Markovian channels with different characteristics, in order to show the tradeoffs be-

tween complexity and mobile energy saving performance.

The main contributions of this chapter are summarized as follows:

• Preemption is introduced to concurrent local execution, used in mobile computation

offloading in order to ensure that hard job execution deadlines are satisfied. Com-

pared to previous chapters where offloading occurs using known job offload parts,

allowing preemption results in a much more complex problem formulation. This

happens because the number and size of the job pieces offloaded are not known in

advance and must be determined by the online offloading algorithm. Due to this com-

plexity, it is not feasible to run the optimal online decision algorithm in real time, and

this motivates the use of the proposed computationally efficient techniques.

• An online offloading decision algorithm, i.e., Optimal Preemptive Offloading (OPO),

is introduced. It is shown that OPO satisfies hard deadline application constraints,

and also achieves the minimum mean mobile device energy possible for homoge-

neous Markovian wireless channels.

• An integer program (IP) is formulated that provides a lower bound on mobile device

energy. This calculation is used for comparisons with online algorithms in the results

section.

92

Ph.D. Thesis – P. Teymoori McMaster University – ECE

• We introduce three computationally efficient techniques based on OPO: Water-

Filling, Water-Filling with Scheduling, and Generalized Water-Filling. The algo-

rithms vary based on how the reduced offloading decision computations are per-

formed. For each method, two variations (Equ and Exp) are introduced. The algo-

rithms all employ concurrent local execution so that task execution time constraints

are always satisfied.

• Performance results are presented that show the various complexity and energy per-

formance tradeoffs for the proposed algorithms.

The rest of this chapter is organized as follows. In Section 5.2, system modelling as-

sumptions are presented that include both remote and local execution where hard task exe-

cution deadlines are ensured using CLE. In Section 5.3, an offline lower bound on energy

consumption is derived, which is compared to the proposed computation offloading algo-

rithms in the results section. Following this, in Section 5.4 the Markovian channel model is

discussed and how it is used to define an absorbing Markov chain that permits us to show

the energy optimality of the proposed algorithm, OPO, which is introduced in Section 5.4.

Section 5.5 then introduces the online algorithms motivated by OPO, but with varying de-

grees of running time reduction. Finally, in Section 5.6, results are presented that compare

the various algorithms and show the tradeoffs between computational complexity and mo-

bile energy savings.

5.2 System Model

In this chapter, we follow the system model presented in Chapter 3 with a few differences

regarding the preemptive job uploading scenario, which will be highlighted below.

93

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Preemptive offloading is illustrated in Figure 5.1. In this case, the offloading decision

is made at each particular time slot and a piece of the job will be uploaded only at that time

slot if the algorithm decides to do so i.e., preemption is allowed. This process continues for

all subsequent time slots until the job is completely uploaded to the server. In Figure 5.1,

toi is the time slot for offloading the ith job piece, followed by TWi
time slots of waiting

before the next uploading. Remote execution will be completed ton− tr+1+Texec+Tdown

time slots after tr, where ton is the optimal offloading time of the last piece of job.

Figure 5.1: Concurrent local and remote preemptive computational job offloading time
line

As shown in the figure, at the time of remote execution completion, local execution is

terminated, provided that the remote offload response arrives before tD. As can be seen,

the total offloading time is Toff = ton − to1 + 1 + Texec + Tdown. It is assumed that the

channel uses bit rate adaptation to accommodate random variations in channel conditions.

As a result, Toff is a random variable, dependent on the evolution of the uplink channel

state as a given upload occurs.

Note that the satisfaction of hard job execution deadline constraints would be problem-

atic if there were uncontrolled preemption in the mobile device itself. For this reason, we

have assumed that the features normally associated with a real-time operating system are

in place so that the job execution is assigned a known fraction of the local processor. In

this way, TL can be calculated when the task is released. Hence, according to the CLE

model we are proposing, there may be overlapping of the local and remote executions of

94

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the task, but the hard job deadline is always respected, even if there is channel contention

or extended channel outages.

In the figure, local execution has started before the remote offload process has com-

pleted, and therefore local execution has started, shown in orange. The problem addressed

in this chapter is deciding the best offloading time slots to1 , to2 , . . ., i.e., offloading time

slots which minimize the expected total energy cost.

In the mobile energy consumption formulations described in this chapter, we have cho-

sen not to include the local energy requirements needed to execute the online scheduling

algorithms. This is consistent with the common assumption that the energy needed for

offloading the job data is large, by comparison. However, in Section 5.6, graphs of the

relative running times of the algorithms have been included so that this component can be

accounted for, if required.

Figure 5.2: Time dilated absorbing Markov process (TDMP) for a two-state (G,B)
channel.

95

Ph.D. Thesis – P. Teymoori McMaster University – ECE

5.3 Offline Bound

In this section, an offline energy lower bound for the preemptive offloading scenario, pre-

sented in this chapter, is achieved. This lower energy bound is used in Section 5.6 for

performance comparisons with various online computation offloading algorithms proposed

in this chapter. Similar to Chapter 3, since the bound is offline, we assume that the wireless

channel states are known beforehand, i.e., we know the bit rate (in bits per time slot) at

all time slots 1 ≤ t ≤ tD (recall that we have set tR = 1). When a job is released, the

bound chooses the job offload times so that its deadline is satisfied and at the same time

total energy consumption to offload the job, is minimized.

Let xi be the decision of offloading at time slot ti, i.e., xi = 0 when we decide to offload

at time slot i, and xi = 1 otherwise. Let tf be the upload finishing time. Bi is the bit rate

at time slot i, and Etr is the energy cost per time slot for channel transmitting. The optimal

xi’s are found by first solving the following set of IPs (one for each possible finishing time

tf), and then output the minimum amongst them and EL (if EL is the minimum, then the

optimal solution is to not offload at all).

• tf < tL − Trest

min
x1,··· ,xtf

Etr

tf∑
i=1

xi + TdownErc (5.3.1)

s.t.
tf∑
i=1

Bixi ≥ Sup (5.3.2)

xti ∈ {0, 1} for i = 1, 2, · · · , tf − 1 (5.3.3)

xtf = 1 (5.3.4)

96

Ph.D. Thesis – P. Teymoori McMaster University – ECE

• tL − Trest ≤ tf ≤ tD

min
x1,··· ,xtf

Etr

tf∑
i=1

xi +
tf + Trest − tL + 1

TL
EL + TdownErc (5.3.5)

s.t.
tf∑
i=1

Bixi ≥ Sup (5.3.6)

xti ∈ {0, 1} for i = 1, 2, · · · , tf − 1 (5.3.7)

xtf = 1 (5.3.8)

The first case corresponds to finishing offloading before local execution begins, and the

second to finishing offloading after local execution begins. The first term in (5.3.1) and

(5.3.5) is the uploading energy cost. The second term in (5.3.5) is the portion of the local

energy cost we incur if offloading finishes at tf . Constraints (5.3.2) and (5.3.6) ensure all

job bits are offloaded. Constraints (5.3.4) and (5.3.8) ensure that uploading finishes at tf .

5.4 Optimal Algorithm for Preemptive Offloading

In this section, we develop the online algorithm OPO (Optimal Preemptive Offloading),

and prove its optimality. In order to simplify our exposition of the algorithm, we will

assume that all offloading deadlines, job sizes (in bits), and energy costs are related only

to job uploading, i.e., we assume that Texec, Tdown are known and already incorporated in

the energy costs and the job deadline. Given the ensuing results, adding the effects of Texec

and Tdown is straightforward.

As mentioned above, we assume that there is a known channel state Markov chain

(CSMC), i.e., the channel conditions evolve from one time slot to the next according to a

97

Ph.D. Thesis – P. Teymoori McMaster University – ECE

homogeneous finite state Markov chain. Each state in the CSMC has an associated bit rate

that gives the number of bits per time slot that can be uploaded in that state. The CSMC

transition matrix is defined as P = [Pi,j], where Pi,j is the probability of transitioning to

channel state j in the next time slot, given that the channel is currently in state i. As defined,

the CSMC is memoryless, but in what follows we will need to incorporate time in it, the

already offloaded bits, and the decision of uploading or not at every time slot. Therefore,

we construct a new Markov decision process, the time-dilated Markov process (TDMP) as

follows: For every time 1 ≤ t ≤ tD + 1, we define a set of states (Xt, St), where Xt is

a channel state and 0 ≤ St ≤ Sup. We can think of the states as arranged in layers for

t = 1, 2, . . . , tD + 1. The set of actions contains two actions, a0, a1, corresponding to not

offloading, or offloading, respectively. Figure 5.2 shows the initial layers for a TDMP for a

Gilbert-Elliot channel with two states, G and B, with bitrates Bg, Bb, respectively. A state

(Xt, St) branches to a0 and a1, and then a0 branches to states (Xt+1, St) with probabilities

PXt,Xt+1 , and a1 to states (Xt+1, St + min{BXt , Sup − St}) with the same probabilities,

where BXt is the bit rate of channel state Xt. States of the form (Xt, Sup) lead only to

action a0 (no offloading). At layer t = 1 there is only one state (X1, 0), where X1 is the

initial channel state, while all states at layer tD + 1 are absorbing.

The energy cost when offloading in time slot t is given by:

Eoff (t) =


Etr, tR ≤ t ≤ tD

0, t < tR or t > tD

(5.4.1)

The energy cost for the local execution between the previous offloading time slot tprev

98

Ph.D. Thesis – P. Teymoori McMaster University – ECE

and the current time slot t (note that t > tprev) is given by:

EL(tprev, t) =


0, t < tL or tprev ≥ tD

min{t,tD}−max{tprev+1,tL}+1

TL
EL, o/w

(5.4.2)

The expected energy cost of offloading, when offloading occurs at time t in TDMP state

Xt, the last offloading time slot is tprev, and St bits have already uploaded, is

g(Xt, St) = Eoff (t) + EL(tprev, t) +
∑

Xt+1∈M

Pr[Xt+1|Xt]V (t,Xt+1, St +BXt) (5.4.3)

Note that the definition of g includes energy costs due to local execution that were accu-

mulated in the time slots between the last offloading at tprev and the current one at t.

For every time slot t and state Xt, and with the last uploading time slot being tprev, we

define the expected cost V (tprev, Xt, St) recursively in (5.4.4). In (5.4.4), we have

V (tprev, Xt, St) =


0, t > tprev ≥ tD or St ≥ Sup
tD−max{tprev+1,tL}+1

TL
EL, t > tD > tprev and St < Sup

min{g(Xt, St), E[V (tprev, Xt+1, St)|Xt]},
tD ≥ t > tprev and St < Sup

(5.4.4)

E[V (tprev, Xt+1, St)|Xt] =
∑

Xt+1∈T

Pr[Xt+1|Xt]V (tprev, Xt+1, St),

and T is the set of states reachable after running the channel for t + 1 time slots. The

first case has an expected cost of 0, since there is no more offloading. The second case

incurs only local energy consumption, because the time t is beyond the deadline tD, and,

99

Ph.D. Thesis – P. Teymoori McMaster University – ECE

therefore, offloading does not happen. The third case assigns as the expected cost the

minimum between the expected cost of offloading at t, and the expected cost of postponing

that decision to time slot t+ 1.

The formal definition of algorithm OPO is Algorithm 3. Recall that, for simplicity, we

have set tR = 1. A high-level description of the algorithm is as follows: At time slot t = 1

Algorithm 3 OPO (Optimal Preemptive Offloading)
Input: Local execution starting time tL, local execution energy EL, job deadline tD.

1: for all t = 1, . . . , tD do
2: if uploading the whole job is finished then
3: Break
4: end if
5: if min in (5.4.4) is g then
6: upload at time slot t
7: end if
8: end for

the job is released. At each time slot t, and with St bits already offloaded in past offloading

time slots, the algorithm considers the TDMP, in order to determine the expected cost of the

whole remaining offloading process, if uploading happens at time slot t. If that cost is less

than the expected offloading cost when the algorithm waits one more time slot, then t∗ = t

(t becomes an offloading time slot, with bit rate BXt , and St+1 = St + BXt); otherwise,

the algorithm postpones its decision to time slot t + 1, and St+1 = St. The algorithm

repeats the same decision process at every time slot (using the TDMP corresponding to

the bits offloaded so far, to compute expected costs), in order to determine the sequence of

optimal offloading time slots {t∗1, t∗2, t∗3, . . .}. V (tprev, Xt, St) in Line 5 can be computed

using Dynamic Programming (DP).

We use the theory of optimal stopping for Markov decision processes Peskir and

Shiryaev (2006), in order to show that it achieves the optimal expected energy for the

100

Ph.D. Thesis – P. Teymoori McMaster University – ECE

mobile device, i.e., no other online computation offloading algorithm can achieve a lower

mean mobile device energy consumption. This is done by proving that at any time slot t,

the algorithm makes exactly the same decision as an algorithm that has the ability, starting

from t, to decide all future offloading decisions that minimize the expected energy cost.

The high level idea of the proof of optimality is as follows: Algorithm OPO is an on-line

algorithm that runs at each time slot t. At this time slot t, an expected energy consumption

minimization problem can be defined, which computes all optimal offloading time slots in

the time period from t to deadline tD, given the last offloading time slot tprev and the num-

ber of job bits St that have already been offloaded. This minimization problem is defined

recursively, by calculating the expected energy cost of future optimal offloading decisions

for each possible next offloading time t, t + 1, t + 2, . . . , tD + 1; let t∗ ≥ t be the next

offloading time which achieves the minimum expected energy. We will prove that if t∗ > t,

algorithm OPO also decides to not offload at t, and if t∗ = t algorithm OPO also decides to

offload at t. Note that t∗ is the first of a series of optimal offloading time slot decisions that

minimize the expected energy cost given our current knowledge of the channel. At every

time slot, the latter changes (the new channel state is revealed), algorithm OPO has to make

a new decision, and a new minimization problem is defined.

The minimization problem is formulated recursively as in (5.4.5), where S is the set of

states reachable after running the channel for t∗ time slots,M is the set of states the channel

can transit to from Xt∗ , BXt∗ is the bit rate of the state Xt∗ , and v(t∗, Xt∗+1, St + BXt∗) is

the optimal expected energy cost for the rest of the offloading, when the algorithm decides

to upload BXt∗ bits at time t∗. We set S0 = 0. Note that problem (5.4.5) is defined only for

t > tprev, i.e., after the last offloading time slot. In order to prove the optimality of on-line

algorithm OPO, we prove that, for all i = 1, 2, . . ., when algorithm OPO offloads for the

101

Ph.D. Thesis – P. Teymoori McMaster University – ECE

v(tprev, Xt, St) =



0, t > tprev ≥ tD or St ≥ Sup

min
t≤t∗≤tD+1

{ ∑
Xt∗∈S

Pr[Xt∗|Xt]
(
Eoff (t

∗) + EL(tprev, t
∗)+

∑
Xt∗+1∈M

Pr[Xt∗+1|Xt∗]v(t∗, Xt∗+1, St +BXt∗))
)}

,

tprev < t ≤ tD and St < Sup
(5.4.5)

i-th time, i.e., V (ti−1, Xt, St) = g(Xt, St) in Line 5, the maximization problem optimal

solution also offloads, i.e., t∗i = t.

Theorem 5. The sequence of optimal times {t∗0 = 0, t∗1, t
∗
2, . . .} for uploading satisfies

t∗i = arg min
t∗i−1<t≤tD

{V (t∗i−1, Xt, St) = g(Xt, St)}, i = 1, 2, . . . , last

Proof. We prove the theorem by induction on i. The base case of i = 0 is trivially true. We

assume that it is true up to i = k − 1, i.e., the k − 1 previous offloading decision times of

OPO coincide with the first offloads t∗0, t
∗
1, . . . , t

∗
k−1 of the maximization problems defined

at time slots t∗0, t
∗
1, . . . , t

∗
k−1. We prove the case of t∗k. In what follows, whenever definitions

(5.4.3), (5.4.4) are used, tprev := t∗k−1 (since the immediately previous offloading time for

OPO is t∗k−1, by the inductive hypothesis).

First, using (reverse) induction on t, St, and given t∗k−1, Sup, we show the following:

∀t > t∗k−1, St ≤ Sup : v(t∗k−1, Xt, St) = V (t∗k−1, Xt, St).

The base case of t > tD and St ≤ Sup is obviously true. Assuming that the equation holds

for all time values t + 1, t + 2, . . . and all size values 0 ≤ St+1, St+2, . . . ≤ Sup, we can

102

Ph.D. Thesis – P. Teymoori McMaster University – ECE

v(tprev, Xt, St) =



0, t > tprev ≥ tD or St ≥ Sup

min
t≤t∗≤tD+1

{ ∑
Xt∗∈S

Pr[Xt∗|Xt]
(
Eoff (t

∗) + EL(tprev, t
∗)+

∑
Xt∗+1∈M

Pr[Xt∗+1|Xt∗]V (t∗, Xt∗+1, St +BXt∗)
)}

,

tprev < t ≤ tD and St < Sup
(5.4.6)

show that it is also true for time t and all 0 ≤ St ≤ Sup, by applying Theorem 1.7 in Peskir

and Shiryaev (2006).

Then v(t∗k, Xt∗k+1, St+BXt∗
k
) in the RHS of (5.4.5) can be replaced by V (t∗k, Xt∗k+1, St+

BXt∗
k
), to get the RHS of (5.4.6). By this substitution, the original maximization problem

(5.4.5) is no longer recursive (i.e., dependent on the future v values), but is transformed to

an equivalent minimization problem (5.4.6), that is a function of (computable, using DP)

V . Then, the definition (5.4.3) of g(Xt, St) implies that the optimal solution of (5.4.6)

(which is also the optimal solution for problem (5.4.5)) can be obtained at any time slot t

by performing the test of Line 5 in OPO, which is the property in the theorem statement.

Compared to the previous chapters, which studied the same problem when offloading

is done in a predetermined number of job pieces, each with known bit size, preemption

changes the nature of the problem significantly, since the number and sizes of the offloaded

job pieces are initially unknown (note that the upper bound last for i in the statement

of Theorem 5 is unknown). This means that, in preemption, the number of offloads is

implicitly a decision variable, together with the exact offloading times. The crucial idea of

the analysis above is that by allowing the DP to store some extra information (the number of

bits that have already been offloaded), the recursive definition of the minimization problem

103

Ph.D. Thesis – P. Teymoori McMaster University – ECE

(5.4.5) and expected cost (5.4.4) do not need to know the number of offloads. Therefore,

although the optimal algorithm and its analysis look similar to those in Chapters 3 and 4,

preemption requires a more complicated (and computationally costly) treatment, both in

its computations and its analysis (e.g., note the double induction needed in the proof of

Theorem 5).

5.5 Practical Heuristics

Although algorithm OPO is provably optimal, its computational complexity is of order

Θ(S
f(Sup)
up), for some polynomial function f . Therefore, the running time of the algorithm is

prohibitive, even when we consider the simple two-state Gilbert-Elliot Markovian channel,

TD is not much larger than Sup
Bmin

(otherwise the optimal algorithms always offload when

at high bit-rate states), and even when Sup is relatively small. Hence, good heuristics that

may be suboptimal, but run fast enough to be used on-line, have to be developed.

We present three such heuristics, motivated by the optimal OPO algorithm. We observe

that the prohibitively slow step in Algorithm 3 is line 5, where the DP calculation of g is

performed at every time slot, in order to compute the exact expected energy consumption

for offloading the remaining task bits. Our heuristics will maintain the flexibility allowed

by preemption, by also running at every time slot. But they replace the costly calcula-

tion of line 5 in OPO with an approximation of the expected energy cost, using either the

equilibrium or invariant probabilities π, i.e., the solution to equation πP = π, where P is

the transition matrix of the MC (e.g., see lines 27-30 in Algorithm 4), or transition matrix

exponentiation (e.g., see lines 32-33 in Algorithm 5). Hence, for each heuristic, there are

two variations: the first (Equ) uses equilibrium probabilities, and the second (Exp), which

104

Ph.D. Thesis – P. Teymoori McMaster University – ECE

is more accurate but also more computationally-intensive, uses transition matrix exponen-

tiation.

5.5.1 Water-Filling

In wireless communications, water-filling is a fundamental power allocation mechanism

for capacity maximization under a given total transmit power (Ling et al. (2012); He et al.

(2013)). Here, we have used the general idea behind the conventional water-filling algo-

rithm to develop our heuristics. The basic scheme of the proposed algorithm is the compu-

tation of a “most efficient” set F of channel states in a greedy “water-filling” fashion, and

offloading only when the current channel state is in this set, provided that offloading is ben-

eficial at all. In accordance with the variations discussed above, there are two water-filling

variants, as follows.

• Water-Filling with Equilibrium (WF-Equ) (Algorithm 4): In this variation, the

algorithm is given the equilibrium probabilities π (e.g., computed in preprocessing).

As described above, these probabilities are used in order to compute a “most effi-

cient” set F of channel states. This set is used in a greedy “water-filling” fashion,

i.e., offloading only when the algorithm finds itself in this set (if it decides to of-

fload at all). More specifically, the channel states are ordered from the highest to

the lowest bit rate. Let m be the state with the highest bit rate from the state space

M . If there is nothing remaining to offload, the algorithm terminates (lines 2-4). Ini-

tially F = {m} (line 5). Lines 7-20 calculate the expected finishing time to offload

the remaining job, if only states in the current F are used, with an average bit rate

Bavg =
∑

i∈F π[i]Br[i] (Br[i] is the state i bitrate). As long as the states in F are

not sufficient to meet the deadline, the next highest bit-rate state is added to F , until

105

Ph.D. Thesis – P. Teymoori McMaster University – ECE

either there are no more states to add, and the offloading is aborted (lines 21-23), or

the algorithm proceeds with the offloading decision. Namely, if the current state does

not belong to F , no offloading happens at the current t (lines 24-26); otherwise, the

offloading of Br(Xt) occurs, if the expected offloading energy is still less than that

using local execution (lines 27-39).

• Water-Filling with Exponentiation (WF-Exp) (Algorithm 5): This variation uses

exponentiation of the MC transition matrix in order to calculate the expected fin-

ishing time and the number of offloading time slots to offload the remaining job.

Obviously, this is a more accurate approximation than the one performed by Algo-

rithm 4, since it takes into account the current state and the exact number of steps

needed in order to reach another state. More specifically, Algorithm 5 replaces lines

8-10, 16-18, 27-29 of Algorithm 4 with lines 14-16, 21-23, 32, respectively.

5.5.2 Water-Filling with Scheduling

This algorithm is a more sophisticated version of the previous Water-Filling algorithm.

Again, there are two variations, one that uses equilibrium probabilities for its computation,

and one that uses transition matrix exponentiation.

• Water-Filling with Equilibrium and Scheduling (WF-Equ-Sch) (Algorithm 6):

The algorithm works similarly to WF-Equ, with the important difference that it tries

to figure out the best offloading finishing time tf . In order to do that, the algorithm

goes over all possible values for tf from t to tD. For each tf , it applies the calculations

of Algorithm 4, but on time range tf − t (instead of tD − t), in order to calculate the

expected offloading energy cost. Note that sets F may differ for different tf . Then,

the algorithm picks the minimum offloading energy consumption calculated over all

106

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Algorithm 4 Water-Filling with Equilibrium (WF-Equ)
Input: Local execution starting time tL, local execution energy EL, job deadline tD, equi-

librium probabilities π, state space of the Markov chainM = {1, 2. . . . ,m}, current
state Xt, remaining size Sr = S.

1: for all t = 1, . . . , tD do
2: if Sr = 0 then
3: break
4: end if
5: F = {m} . m is the highest bit-rate state
6: Bavg =

∑
i∈F π[i]Br[i]

7: if Xt 6∈ F then
8: tf = t+ Sr

Bavg
+ Trest

9: else
10: tf = t+ Sr−Br(Xt)

Bavg
+ Trest

11: end if
12: while (tf > tD) and (M 6= F) do
13: add the state with the highest bit rate from the setM−F to F
14: Bavg =

∑
i∈F π[i]Br[i]

15: if Xt 6∈ F then
16: tf = t+ Sr

Bavg
+ Trest

17: else
18: tf = t+ Sr−Br(Xt)

Bavg
+ Trest

19: end if
20: end while
21: if tf > tD then
22: break
23: end if
24: if Xt 6∈ F then
25: continue . Move to time t+ 1
26: end if
27: BF =

∑
i∈F π[i]Br[i]∑
i∈F π[i]

28: Eup = (1 + max{0,Sr−Br(Xt)}
BF

)Etr

29: tf = t+ max{0,Sr−Br(Xt)}
Bavg

+ Trest
30: El = (max(tf + 1, tL)−max(t, tL))EL/TL
31: if tf ≤ tD then
32: Eoff = Eup + El + TdownErc

107

Ph.D. Thesis – P. Teymoori McMaster University – ECE

33: else
34: Eoff = tD−max{t,tL}+1

TL
EL

35: end if
36: if Eoff < tD−max{t,tL}+1

TL
EL then

37: Offload at t
38: Sr = max{0, Sr −Br(Xt)}
39: end if
40: end for

finishing times and compares this minimum value to the energy required to process

the rest of the job locally and offloads at t if the former is smaller than the latter.

Algorithm 6 is the equilibrium variation of Water-Filling with Scheduling.

• Water-Filling with Exponentiation and Scheduling (WF-Exp-Sch): This vari-

ation of WF-Equ-Sch uses transition matrix exponentiation instead of equilibrium

probabilities in its calculations, exactly as WF-Exp does.

5.5.3 Generalized Water-Filling

This algorithm is a generalization of the first Water-Filling algorithm, and its two variations

are as follows:

• Generalized Water-Filling with Equilibrium (Gen-WF-Equ): This algorithm is a

generalization of WF-Equ. Instead of defining a single set F (when it exists) as the

minimal prefix of the state ordering according to bitrates that allow offloading before

the deadline, it considers all possible such prefixes, and keeps the best. More specifi-

cally, if the states S1, S2, . . . , SM are ordered in decreasing bitrates, andF1 as defined

by Algorithm 4 is F1 = {S1, S2, . . . , Sl}, then the algorithm repeats the same com-

putations for sets F1 = {S1, S2, . . . , Sl},F2 = {S1, S2, . . . , Sl+1}, . . . ,FM+1−l =

{S1, S2, . . . , SM}, and keeps the set of minimum expected offloading energy costs;

108

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Algorithm 5 Water-Filling with Exponentiation (WF-Exp)
Input: Local execution starting time tL, local execution energyEL, job deadline tD, transi-

tion probability matrix P , state space of the Markov chainM= {1, 2. . . . ,m}, current
state Xt, remaining size Sr = S.

1: for all t = 1, . . . , tD do
2: if Sr = 0 then
3: break
4: end if
5: for all i = 1, . . . ,m do
6: if i == Xt then
7: α[i] = 1
8: else
9: α[i] = 0

10: end if
11: end for
12: F = {m} . m is the highest bit-rate state
13: if Xt 6∈ F then
14: Find minimum tf s.t. Sr −

∑tf
k=t+1

∑
i∈F
(
αP k−t) [i] ·Br[i] ≤ 0

15: else
16: Find minimum tf s.t. Sr −Br(Xt)−

∑tf
k=t+1

∑
i∈F
(
αP k−t) [i] ·Br[i] ≤ 0

17: end if
18: while (tf > tD) and (M 6= F) do
19: add the state with the highest bit rate from the setM−F to F
20: if Xt 6∈ F then
21: Find minimum tf s.t. Sr −

∑tf
k=t+1

∑
i∈F
(
αP k−t) [i] ·Br[i] ≤ 0

22: else
23: Find minimum tf s.t. Sr−Br(Xt)−

∑tf
k=t+1

∑
i∈F
(
αP k−t) [i] ·Br[i] ≤ 0

24: end if
25: end while
26: if tf > tD then
27: break
28: end if
29: if Xt 6∈ F then
30: continue . Move to time t+ 1
31: end if
32: Eup =

∑tf
k=t+1

∑
i∈F
(
αP k−t) [i] · Etr

33: El = (max(tf + 1, tL)−max(t, tL))EL/TL

109

Ph.D. Thesis – P. Teymoori McMaster University – ECE

34: if tf ≤ tD then
35: Eoff = Eup + El + TdownErc
36: else
37: Eoff = tD−max{t,tL}+1

TL
EL

38: end if
39: if Eoff < tD−max{t,tL}+1

TL
EL then

40: Offload at t
41: Sr = max{0, Sr −Br(Xt)}
42: end if
43: end for

Algorithm 6 Water-Filling with Equilibrium and Scheduling (WF-Equ-Sch)
Input: Local execution starting time tL, local execution energy EL, job deadline tD, equi-

librium probabilities π , total number of states M , current state Xt, remaining size
Sr.

1: for all t = 1, . . . , tD do
2: for all tf = t, . . . , tD do
3: Calculate the expected offloading cost E(tf)

off for period [t, . . . , tf] using Algo-
rithm 4

4: end for
5: Eoff = mint≤tf≤TD E

(tf)

off

6: if Eoff < tD−max{t,tL}+1
TL

EL then
7: Offload at t
8: end if
9: end for

then it proceeds exactly as in WF-Equ.

• Generalized Water-Filling with Exponentiation (Gen-WF-Exp): This algorithm

is the same as Gen-WF-Equ, except that it uses transition matrix exponentiation in-

stead of equilibrium probabilities in its calculations.

As will become apparent by the simulation results in Section 5.6, the use of exponenti-

ation by our heuristics dramatically increases their running times, and, therefore, their use

is mostly as benchmarks for their versions that use equilibrium calculations.

110

Ph.D. Thesis – P. Teymoori McMaster University – ECE

5.6 Simulation Results

In this section, computer simulation is used to study the performance of the proposed pre-

emptive offloading algorithms. In accordance with concurrent local execution, in all algo-

rithms, local execution starts at time slot tL if offloading (includes uploading to, remote

execution at, and downloading from the server) is not completed at time slot tL − 1. This

ensures that the job deadline is satisfied either locally or remotely. In order to investigate

the performance of the preemptive offloading algorithms in different wireless transmission

conditions, we use four different Markov chains to model the communication channel. Two

channels are modelled by a 9-state Markov chain shown in Figure 5.3 and two are mod-

elled by a 5-state Markov chain shown in Figure 5.4. In both cases, state 1 represents the

channel outage that may occur because of shadowing or other similar phenomena; and for

the other states, higher states have higher bit rates. In the 9-state channels, the assigned bit

rates to states 1 to 9 are 0, 6, 9, 12, 18, 24, 36, 48, 54 K bits per time slot, respectively, which

are the data rates of the IEEE 802.11g standard. In the 5-state channels, the assigned bit

rates to states 1 to 5 are 0, 12.5, 25, 37.5 and 50 K bits per time slot, respectively. For each

of the Markovian channel models, we consider two state transition probability matrices, as

given in (5.6.1)-(5.6.4), where P1 and P2 are for the 9-state model, and P3 and P4 are for

the 5-state model. The channels with P1 and P3 have equal steady state probability at all

the states and are referred to as “uniform channels”, and that with P2 and P4 have higher

steady state probabilities at the lowest (outage) and the highest states and are referred to

as “non-uniform channels”. The intent behind the channel model selections is to create

channels with varying degrees of channel state predictability, so that differences between

the algorithms can be properly assessed. All these channels have approximately the same

average channel bit rate.

111

Ph.D. Thesis – P. Teymoori McMaster University – ECE

P1 =



0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

0.10 0.55 0.35 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.30 0.30 0.30 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.30 0.30 0.30 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.30 0.30 0.30 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.30 0.30 0.30 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.30 0.30 0.30

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.60



(5.6.1)

P2 =



0.84 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.10 0.05 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.25 0.05 0.60 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.25 0.05 0.60 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.25 0.05 0.60 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.25 0.05 0.60 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.25 0.05 0.60 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.25 0.05 0.60

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.85



(5.6.2)

112

Ph.D. Thesis – P. Teymoori McMaster University – ECE

P3 =



0.40 0.15 0.15 0.15 0.15

0.15 0.55 0.30 0.00 0.00

0.15 0.30 0.25 0.30 0.00

0.15 0.00 0.30 0.25 0.30

0.15 0.00 0.00 0.30 0.55


(5.6.3)

P4 =



0.88 0.03 0.03 0.03 0.03

0.10 0.05 0.85 0.00 0.00

0.10 0.30 0.05 0.55 0.00

0.10 0.00 0.30 0.05 0.55

0.10 0.00 0.00 0.05 0.85


(5.6.4)

Figure 5.3: Markov Chain for P = P1 and P2

The default parameters used in the simulations are given as follows. Each time slot is

taken to be 1 msec, which is also used to normalize all system time values. The transmit and

receive power is 1 W and 0.5 W, respectively, which corresponds to the transmission and

113

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 5.4: Markov Chain for P = P3 and P4

receive energy during each time slot as Etr = 1 mJ and Erc = 0.5 mJ, respectively. A job

with computational loadD = 10M CPU cycles is considered. The job completion deadline

TD is set to 60 time slots. The local execution energy per CPU cycle is vl = 2 × 10−6 mJ

and the local computation speed is fl = 1M CPU cycles per time slot, see (Nir et al. (2014);

Huang et al. (2012)). Therefore, the local execution time is TL = D/fl = 10 time slots, and

the local energy consumption EL = vlD = 20 mJ. We consider that the remote execution

time is Texec = 1 time slot, i.e., the remote processing speed is 10 times that of local

processing. The download time Tdown is assumed to be 1 time slot. In all the simulations,

we collect both average energy consumption of the mobile device and the running time

of the algorithms, where the running time is the average amount of time needed to make

the offloading decision at one time slot. Each value of average energy consumption and

running time is obtained after repeating the simulation for 1,000 runs. In addition, for the

exponentiation-based algorithms, namely, WF-Exp, Gen-WF-Exp, and WF-Exp-Sch, the

calculation of the channel matrix exponentiation is not counted in the running time because

this work can be done in the background before the mobile device initiates an offload.

For comparison, we also plot the offline bound (Pre Off) given in Section 5.3 and Local

114

Ph.D. Thesis – P. Teymoori McMaster University – ECE

20 40 60 80 100 120 140 160

Deadline Time (Time Slots)

10

12

14

16

18

20

22

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(a) Sup=500 kb

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

5

10

15

20

25

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(b) TD=60 ms

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
u
n
n
ig

 t
im

e
 p

e
r

ti
m

e
 s

lo
t
(m

s
)

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

(c) TD=60 ms

Figure 5.5: 9-states uniform distribution: P = P1

Execution that executes the entire job locally without doing any offloading. When collect-

ing the simulation results, the energy consumption for running the online algorithm at the

mobile device was assumed to be negligible compared to that for transmitting to the cloud

server. This is a common assumption when the amount of data for uploading the task is

large. Despite this, we have included graphs of the relative running times of the algorithms

so that this component could be included if required.

115

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 5.5 shows simulation results of the offloading algorithms over the 9-state wire-

less channel with state transition probability matrix P1. Figure 5.5a shows the average

energy consumption of the mobile device as the job deadline TD changes. When TD is

small, offloading cannot meet the tight delay budget even when the channel is always at the

best state. In this case, all the offloading algorithms decide to not offload, resulting in the

same energy consumption as Local Execution. As TD increases, the heuristic algorithms

may decide to offload at some time slots but offloading most likely cannot be completed

before tL due to the small time budget. This triggers local execution, and results in over-

all energy consumption that is higher than Local Execution. For a certain range of TD,

the energy consumption may increase with TD and then decrease. This is because as TD

increases, the offloading algorithms all attempt to upload at more time slots, while TD is

still insufficient to allow offloading to be completed in time. As TD further increases, of-

floading may be completed before TD, which reduces the concurrent local execution energy

consumption; and as TD further increases, offloading is more likely completed before tL, in

which case, concurrent local execution is not needed, and the average energy consumption

of the mobile device using the offloading algorithms further decreases with TD.

By comparing the different offloading algorithms, we find that in general, using “Ex-

ponentiation” (i.e., the Exp algorithms) helps reduce the average energy consumption,

compared with using “Equilibrium” computations (i.e., the Equ algoritms) only. Using

the “Generalization” approach helps reduce the average energy consumption; and using

“Scheduling” can further reduce the average energy consumption, compared with using

“Generalization”. Overall, the WF-Equ-Sch and WF-Exp-Sch algorithms achieve the low-

est average energy consumption among all the offloading algorithms.

116

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Comparing with the offline bound, the average energy consumption of using the heuris-

tic offloading algorithms is the same as the bound when TD is very small as all the al-

gorithms decide to not offload. As TD increases, the gap between the offline bound and

the heuristic offloading algorithms increases first, then decreases. When TD is sufficiently

large, the heuristic offloading algorithms may decide to upload only when the channel is in

the best state, and the average energy consumption of the offloading algorithms asymptoti-

cally approaches the offline bound.

Figure 5.5b shows the average energy consumption of the mobile device as the job size

Sup changes. When Sup is small, the offloading algorithms may decide to upload only when

the channel condition is sufficiently good, and offloading most likely can be completed

before tL. In this case, the average energy consumption of the offloading algorithms is

close to the offline bound. As Sup increases, it becomes less likely that the task can be

completed before tL or even before TD by offloading to the server. In this case, more

concurrent local execution is needed that increases the energy consumption of the mobile

device. When Sup is sufficiently large, all the offloading algorithms decide to not offload,

resulting in the same energy consumption as in Local Execution.

Figure 5.5c shows the running time versus job size for the offloading algorithms. As can

be seen from this figure, the WF-Exp, WF-Exp-Sch and Gen-WF-Exp algorithms are much

more time consuming than WF-Equ, WF-Equ-Sch and Gen-WF-Equ. This is mainly due

to a more complicated process to find the “most efficient” set F that considers the number

of steps needed from the current channel state to other states in order to finish uploading

the task. As a result, the running time of the exponentiation-based algorithms increases

quickly with the task size, because more channel transition steps should be checked. In

contrast, the equilibrium-based algorithms are much less sensitive to task size increase

117

Ph.D. Thesis – P. Teymoori McMaster University – ECE

in terms of running time. Although the longer running time of the exponentiation-based

algorithms makes them less practical in online situations, they do make more accurate of-

floading decisions than the equilibrium-based algorithms. Meanwhile we also notice that,

the equilibrium-based algorithms (e.g., WF-Equ-Sch) achieve average energy consumption

very close to the corresponding exponentiation-based algorithms (e.g., WF-Exp-Sch). Fur-

thermore, doing generalization and scheduling increases the running time, and the running

time of WF-Equ-Sch is slightly larger than that of Gen-WF-Equ, which is slightly larger

than that of WF-Equ, although the running times of all three equilibrium-based algorithms

are very close to each other.

Figure 5.6 shows simulation results of the offloading algorithms over the 9-state wire-

less channel with state transition probability matrix P2, which represents a non-uniform

channel. Comparing Figures 5.6a and 5.5a we find that the non-uniform channel results in

lower average energy consumption than the uniform channel when TD is small; and as TD

increases, the curves in Figure 5.6a drop and approach the offline bound much faster than

in Figure 5.5a. The non-uniform property of the channel helps the online algorithms make

better offloading decisions and save energy consumption, compared to the uniform chan-

nel. For this reason, the performance difference between different offloading algorithms is

much smaller than in the uniform-channel case. Similar observations can be obtained by

comparing Figures 5.6b and 5.5b, from which we can see that the curves in Figure 5.6b

rise slower with Sup than in Figure 5.5b. All the offloading algorithms have almost the

same energy consumption performance except for a small range of Sup where the average

energy consumption is above the Local Execution energy. Figure 5.6c further shows that

the running time of WF-Exp, WF-Exp-Sch and Gen-WF-Exp is much more than WF-Equ,

WF-Equ-Sch and Gen-WF-Equ, which is consistent with Figure 5.5c, and the non-uniform

118

Ph.D. Thesis – P. Teymoori McMaster University – ECE

20 40 60 80 100 120 140 160

Deadline Time (Time Slots)

10

12

14

16

18

20

22

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(a) Sup=500 kb

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

5

10

15

20

25

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(b) TD=60 ms

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
u
n
n
ig

 t
im

e
 p

e
r

ti
m

e
 s

lo
t
(m

s
)

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

(c) TD=60 ms

Figure 5.6: 9-states non-uniform distribution: P = P2

property of the channel does not affect the running time of the algorithms in an obvious

way.

Figure 5.7 shows simulation results of the offloading algorithms over the 5-state wire-

less channel with state transition probability matrix P3, which represents a uniform channel.

Comparing Figures 5.7a and 5.5a we find that the 5-state channel results in approximately

the same average energy consumption as the 9-state uniform channel when TD is small;

119

Ph.D. Thesis – P. Teymoori McMaster University – ECE

20 40 60 80 100 120 140 160

Deadline Time (Time Slots)

10

12

14

16

18

20

22

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(a) Sup=500 kb

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

5

10

15

20

25

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(b) TD=60 ms

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
u
n
n
ig

 t
im

e
 p

e
r

ti
m

e
 s

lo
t
(m

s
)

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

(c) TD=60 ms

Figure 5.7: 5-states uniform distribution: P = P3

and as TD increases, the curves in Figure 5.7a drop and approach the offline bound much

faster than in Figure 5.5a. The smaller number of channel states makes it easier for the

online algorithms to make better offloading decisions that helps improve the energy con-

sumption performance. Similar observations can be obtained by comparing Figures 5.7b

and 5.5b, which shows that the average energy in Figure 5.7b increases slightly faster with

120

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Sup than in Figure 5.5b. Figure 5.7c further shows that the running time of the equilibrium-

based algorithms (i.e., WF-Equ, WF-Equ-Sch and Gen-WF-Equ) is much less than that of

the exponentiation-based ones (i.e., WF-Exp, WF-Exp-Sch and Gen-WF-Exp) and is not

significanatly affected by the task size increase. In addition, by comparing Figures 5.5c

and 5.7c, we find that the running time of the algorithms in the 9-state uniform channel is

higher than that in the 5-state channel case for all the algorithms, since more calculations

are needed for the channel with more states.

Figure 5.8 shows simulation results of the offloading algorithms over the 5-state wire-

less channel with state transition probability matrix P4, which represents a non-uniform

channel. Comparing with Figure 5.7, in terms of energy consumption, there is only a

slight difference between the different offloading algorithms, and the performance of these

heuristic offloading algorithms is very close to the offline optimum. The running time of the

algorithms in this case is not obviously different from that in the 5-state uniform channel

case.

In summary, among all the heuristic algorithms, WF-Exp-Sch achieves the lowest mo-

bile device energy consumption and WF-Equ consumes the shortest running time, while

WF-Equ-Sch is the best choice because its energy consumption is very close to WF-Exp-

Sch and its running time is almost the same as WF-Equ. The difference between the heuris-

tic algorithms is relatively small for very large size tasks with tight deadline or very small

size tasks with loose deadline, because the decision is most likely to always execute the task

locally (for the former) or always offload (for the latter). In terms of running time (com-

plexity), the exponentiation-based algorithms are sensitive to the number of channel states

and the task size, while the equilibrium-based algorithms are not affected as much by these

parameters. In terms of energy consumption of the mobile device, the difference among

121

Ph.D. Thesis – P. Teymoori McMaster University – ECE

20 40 60 80 100 120 140 160

Deadline Time (Time Slots)

10

12

14

16

18

20

22

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(a) Sup=500 kb

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

5

10

15

20

25

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

Pre Off

(b) TD=60 ms

200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
u
n
n
ig

 t
im

e
 p

e
r

ti
m

e
 s

lo
t
(m

s
)

WF-Equ

WF-Exp

Gen-WF-Equ

Gen-WF-Exp

WF-Equ-Sch

WF-Exp-Sch

(c) TD=60 ms

Figure 5.8: 5-states non-uniform distribution: P = P4

the heuristic algorithms is more obvious in the uniform channel than in the non-uniform

channel case.

All the above results are generated based on the parameter setting that has the cloud

server CPU processing speed 10 times of the local CPU speed. Given the local processing

speed, if the processing speed at the cloud server is higher, the probability that offloading

can meet the delay constraint of the task is higher, and more energy consumption of the

122

Ph.D. Thesis – P. Teymoori McMaster University – ECE

mobile device may be saved by offloading. However, this benefit is eventually limited

by the quality of the wireless channel, i.e., the amount of time and energy needed for

uploading/downloading the task.

As discussed earlier, the computational complexity of online energy-optimal algorithms

introduced throughout this thesis, especially OPO, is restrictive, and therefore, they may

not be practical in real-world applications. In the next chapter, some novel approximation

methods are introduced to address the issue of algorithmic efficiency.

123

Chapter 6

Approximate Solutions

6.1 Introduction

In this chapter, we consider the problem of algorithmic efficiency in mobile computation

offloading while CLE is used to enforce hard task deadlines. Although online algorithms

that are proposed for different job offloading scenarios (i.e., 1-Part, K-Part and preemptive

offloading) in the previous chapters are proved to be energy-optimal, their high computa-

tional complexity prohibits their application in practice. We introduce ways of mitigating

this complexity using three different mechanisms: Markovian Compression (MC), Time

Compression (TC), and Preemption Using Continuous Offloading (Preemption-CO). The

new methods are based on a time-dilated absorbing Markov chain (TDAMC) that was used

to define the optimal offloading decisions in previous chapters. The TDAMC size dictates

the time complexity of online offloading algorithms. In MC, the TDAMC is reduced by ag-

gregating its states using a novel method based on the notion of geometric similarity. In TC,

the TDAMC is traversed in aggregated time steps so that algorithm computation is reduced.

In Preemption-CO, while a task is offloaded preemptively, the offloading decision at every

124

Ph.D. Thesis – P. Teymoori McMaster University – ECE

time slot is based on calculations performed on the (much smaller) 1-Part TDAMC. These

methods are used (alone or in combination) to construct practical offloading algorithms,

whose running times are greatly reduced, without suffering high performance degradation.

In order to demonstrate this point, several comparisons between energy performances and

running times of all possible combinations of the three methods are made through simula-

tion.

The main contributions of this chapter are summarized as follows:

• While CLE guarantees the satisfaction of hard deadline constraints for mobile com-

putational offloading, the running times of its online implementation in both the pre-

emptive and non-preemptive settings may be prohibitive. We introduce three com-

putationally efficient approximation methods (Markovian Compression (MC), Time

Compression (TC), and Preemption Using Continuous Offloading (Preemption-

CO)), which can be used as building blocks for the development of efficient CLE

algorithms. The development presented applies to the general wireless Markovian

channel case.

• We develop efficient CLE algorithms for both the non-preemptive (1-Part) and the

preemptive setting, by combining these approximation methods. More specifically,

algorithms 1-Part-MC, 1-Part-TC, 1-Part-MC-TC are presented for 1-Part offloading,

and algorithms Preemption-CO-MC, Preemption-CO-TC, Preemption-CO-MC-TC

for Preemptive offloading.

• Performance evaluation results are provided that show the running time and energy

performance tradeoffs for the proposed algorithms. According to these results, by

applying the approximation methods above, the running times of the algorithms are

significantly reduced without suffering significant performance loss.

125

Ph.D. Thesis – P. Teymoori McMaster University – ECE

The rest of this chapter is organized as follows: Section 6.2, provides a brief review

of the system modelling assumptions for 1-Part and preemptive offloading (from Chapters

3 and 5), which guarantee the satisfaction of hard job execution deadline constraints by

using concurrent local execution (CLE). Following that, Section 6.3 describes the problem

formulation and gives a summary of its optimal solution. Section 6.4 introduces new tech-

niques used to approximate the calculations performed by the optimal online algorithms.

In Section 6.5, simulation results are provided that compare the tradeoff between energy-

saving and computing performance for different combinations of approximation methods.

6.2 System Model

In this chapter, we have introduced three approximation techniques that can be applied

(alone or in combination) on online optimal algorithms proposed for 1-Part and preemptive

offloading to reduce their computational complexity. Therefore the system model that is

considered in this chapter is the same as that of Chapters 3 and 5 for 1-Part and preemptive

offloading, respectively.

6.3 Problem Formulation and Optimal Solution

We are interested in developing online algorithms which solve the CLE offloading problem,

i.e., given the CLE setting, decide whether to upload part of the task or not at every time

slot, so that the expected task energy consumption is minimized. Note that the decision to

upload is made once (if at all) for 1-Part offloading, while it is made repeatedly (if at all)

for Preemptive offloading.

As discussed earlier, in order to develop optimal algorithms for the CLE offloading

126

Ph.D. Thesis – P. Teymoori McMaster University – ECE

problem, we incorporated both offloading and time in a new Markov Chain, called a time-

dilated absorbing Markov chain (TDAMC), to model the task uploading evolution, when

it starts at the current time slot t and is done contiguously (for 1-Part offloading), or pre-

emptively (for Preemptive offloading). Recall that we assume prior knowledge of the chan-

nel Markovian states, and the transition probabilities Pij for all states i, j. An example of

a TDAMC for a 2-state (i.e., Gilbert-Elliot) channel and 1-Part offloading can be seen

at the top of Figure 6.1: The channel goes through two states G,B (i.e., Good or Bad

channel conditions), with bit-rates Bmax, Bmin, respectively, with transition probabilities

PGG, PGB, PBG, PBB. For a general Markovian channel, the TDAMC(t) is constructed

by (i) unrolling the evolution of the stochastic channel Markov Chain from the current time

slot t, up to absorbing states indicating the time of task execution completion, and (ii) up-

loading at every state according to its bit-rate (in case of 1-Part offloading), or branching

according to whether the decision for uploading at the current time slot is made or not.

In Figure 6.1, the TDAMC(1) root state G1,1 indicates that the current t = 1 channel

state is G, and the task is being uploaded with bit-rate Bmax. Then (t = 2) the channel

either transitions to B with probability PGB, or remains in G with probability PGG, and

the TDAMC(1) transitions to B2,1 or G2,1, respectively. The number of branches out of

an initial state for an arbitrary Markovian channel is equal to the number of transitions out

of that state in the Markov chain. In the two-state example shown, the evolution of the

TDAMC(1) continues in the same fashion, with its states layered as Gt,l, Bt,m for time

slot t, and l,m = 1, 2, . . . In general, TDAMC(t) is a layered tree-like Markov Chain,

starting with the current state as the root at time slot t, and going through layers corre-

sponding to time slots t + 1, t + 2, . . . up to time slot tD + 1, or earlier absorbing states if

offloading was finished earlier than tD.

127

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Figure 6.1: Markovian Compression of the original TDAMC (left) to a smaller
TDAMCapprox (right).

For the Preemption offloading case, the initial (t = 1) TDAMC(1) is enhanced to be

a Markov decision process as follows: For every time 1 ≤ t ≤ tD + 1, we define a set

of states (Xt, St), where Xt is a channel state and 0 ≤ St ≤ S is the number of task bits

that are uploaded up to t. Let BXt be the bit rate of channel state Xt. The TDAMC(1)

states are again arranged in layers for t = 1, 2, . . . , tD + 1. The set of actions contains two

actions, a0, a1, corresponding to not uploading, or uploading, respectively. A state (Xt, St)

branches to a0 and a1; then a0 branches to states (Xt+1, St) with probabilities PXt,Xt+1 , and

a1 branches to states (Xt+1, St + min{BXt , S − St}) with the same probabilities. States

of the form (Xt, S) branch only to action a0 (no uploading). At layer t = 1 there is only

one state (X1, 0), where X1 is the initial channel state, while the states at layer tD + 1 are

absorbing. TDAMC(t) is similarly constructed for any current time slot t.

Using classical Markovian stopping theory (cf. Peskir and Shiryaev (2006)), as we

128

Ph.D. Thesis – P. Teymoori McMaster University – ECE

proved in Chapter 3, the following simple online algorithm solves the CLE offloading

problem optimally for 1-Part offloading (and the same can be shown for Preemptive of-

floading1): At every time slot t, compare the expected energy cost of starting uploading at

t, to the expected energy cost if we wait to check again at t + 1, by using Dynamic Pro-

gramming (DP) on TDAMC(t) and TDAMC(t + 1) respectively; if the former is less

than the latter, then upload at t.

6.4 Approximate Solutions

The DP running time of the optimal algorithm of Section 6.3 depends on the size of

TDAMC(t), since the DP recursion subproblems correspond to TDAMC(t) states. As a

result, the optimal algorithm becomes impractical even for simple channel models, such as

the 2-state Gilbert-Elliot model; this phenomenon is even more pronounced in the Preemp-

tive offloading case, since the TDAMC(t) states are much more numerous, because they

have to also record the remaining task bits to be uploaded.

More specifically, we identify three sources of inefficiency when implementing the

optimal offloading algorithm:

A. The size of the TDAMC as a Markov Chain (i.e., number of states and transitions).

B. Running the optimal algorithm at every time slot, imposing a large computational

load on the mobile device.

C. In Preemptive offloading, several different uploading time slots must be picked (in-

stead of a single uploading time slot for 1-Part offloading). Hence, every state of

1The Dynamic Programming for Preemptive offloading is more complicated due to the fact that TDAMC
states also record the remaining bits to be uploaded, but exactly the same arguments go through.

129

Ph.D. Thesis – P. Teymoori McMaster University – ECE

the TDAMC has to record not only the channel state at a particular time, but the

remaining task bits to be uploaded, in order to accurately capture the multiple up-

loading time slot combinations.

We address the forbiddingly high running time of the optimal algorithm by designing algo-

rithms addressing each one of these factors. We will evaluate their performance, separately

or combined, in Section 6.5.

6.4.1 Markovian Compression (MC)

The large size of the TDAMC in the optimal algorithm, is the main reason for the high

DP calculation of expected energy consumption. In effect, the DP traverses recursively

all possible root-to-leaf tree-paths, and collects the energy spent on each path, weighted

by the path probability, in order to compute the total mean energy consumption (the exact

recursive process for 1-Part offloading is described in detail in Section 3.5, and it is sim-

ilar for Preemptive offloading). If one is to replace the original TDAMC with a smaller

TDAMCapprox, then the latter must approximate well this energy computation, i.e., its

(much fewer) paths must be of about the same expected mixture of bit-rates, as in the orig-

inal TDAMC paths. The key observation on how to do this, is motivated by a geometric

analogy (see Figure 6.1).

We create a new channel Markov Chain model (which will generate TDAMCapprox)

with the same number of states as the original Markov Chain that generated TDAMC. In

order to determine the new state bit-rates and transition probabilities in TDAMCapprox,

we sort the original TDAMC paths from the shortest to the longest (see Figure 6.1, left).

Recall that each path corresponds to the uploading of S bits along its states, so the left-

most (i.e., shortest) path consists of only highest bit-rate states, and the right-most (i.e.,

130

Ph.D. Thesis – P. Teymoori McMaster University – ECE

longest) path consists of only lowest bit-rate states. Intuitively we would like TDAMC

and TDAMCapprox, seen as ‘triangles’, to be similar in the following sense: The energy

consumption on shortest paths AB,EF should equal the ratio of energy consumption on

longest paths AC,EG, while the corresponding number of states ratios should also be

equal. Hence, in order for triangles (ABC) and (EFG) to be similar with a scaling factor

of lMC , we scale up all the original state bit rates by a factor of lMC ; these are the new

bit-rates for the channel Markov Chain generating TDAMCapprox. Next, focusing again

on paths AB,EF or AC,EG, we observe that the transitions in the new Markov Chain

are in fact transitions in the original Markov Chain, transitioning from the last state of a

group of lMC states with bit-rates Bmin or Bmax, respectively, to the first state of the next

group. Hence, we set the transition probabilities of the new Markov Chain to be equal

to the original transition probabilities, so that a path AD’s probability ends up away from

AB’s probability by about the same amount that its similar path EH’s probability ends up

away from EF ’s probability. To summarize, if P,B are the original transition matrix and

state bit-rate vector, then Papprox = P,Bapprox = lMC · B for the new approximate channel

Markov Chain.

After TDAMCapprox has been defined, our algorithm runs the optimal online algorithm

on TDAMCapprox of Section 6.3. For example, in the case of 1-Part offloading, the ex-

pected cost of offloading at time slot t with the channel state x = Xt can be approximated

by gapproxt (Xt), defined as follows:

gapproxt (x) = Eapprox
off (t, x) + Eapprox

L (t, x). (6.4.1)

In Equation (6.4.1), Eapprox
off (t, x) and Eapprox

L (t, x) are approximations of the offloading

and local expected energy cost when the offloading starts at time slot t, and they can be

131

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Eapprox
off (t, x) =



lm · Etr
S

lm·B(1)∑
Toff=

S
lm·B(m)

Pt(Toff , x)Toff , 1 ≤ t < tD − S
B(1) + 1

lm · Etr

 tD−t
lm∑

Toff=
S

lm·B(m)

Pt(Toff , x)Toff

+

S
lm·B(1)∑

Toff=
tD−t+1

lm

Pt(Toff , x)(tD−t+1
lm

)

)
, tD − S

B(1) + 1 ≤ t ≤ tD

(6.4.2)

Eapprox
L (t, x) =



lm ·

 S
l·B(1)∑

Toff=
tL−t+1

lm

Pt(Toff , x)

(
min{ tD+1

lm
, t
lm

+Toff}−
tL
lm

TL
EL

) ,

1 ≤ t < tL

t−tL
TL

EL + lm ·
S

lm·B(1)∑
Toff=

S
lm·B(m)

Pt(Toff , x)

(
min{ tD−t+1

lm
,Toff}

TL
EL

)
,

tL ≤ t ≤ tD

(6.4.3)

obtained by Equations (6.4.2) and (6.4.3), respectively. The compressed TDAMCapprox

is used in order to calculate the probability Pt(Toff , x) of the offloading taking exactly Toff

time slots, when it starts at time t and TDAMCapprox is in state x. In Chapter 3 we showed

that the simple online strategy of Section 6.3 (i.e., deciding whether to offload or wait for

one more time slot), coincides with the optimal solution of the offline optimization problem

toff = arg min
1≤t≤tD+1

E[gapproxt (Xt)|X1], (6.4.4)

which calculates the optimal offloading time toff , when the job deadline is tD and the initial

state of TDAMCapprox is X1 (if toff = tD + 1, then it is best not to offload at all).

By solving the problem optimally for TDAMCapprox, an approximate solution for the

132

Ph.D. Thesis – P. Teymoori McMaster University – ECE

original problem is obtained.

6.4.2 Time Compression (TC)

In order to avoid running the optimal algorithm at every time slot, our algorithm simply runs

it every lTC time slots, and compares the expected energy consumption of TDAMC(t) and

TDAMC(t+ lTC) (instead of TDAMC(t) and TDAMC(t+ 1)). Note that in this case,

if the decision is made to upload, the uploading starts at time t + lTC with the channel in

state Xt+lTC , while the DP computations were done assuming that the current channel state

is Xt. This is an additional source of approximation error for the algorithm.

6.4.3 Preemption Continuous Estimate (Preemption-CO)

In Preemptive offloading, the optimal algorithm DP is run over a TDAMC whose states

record also the remaining task bits to be uploaded, in order to account for all possible

combinations of uploading time slots, when it is estimating the expected energy consump-

tion. In our algorithm, we propose that the estimate of expected energy consumption by

the DP be done not on the preemptive TDAMC, but on the 1-Part one, instead. Note

that this algorithm should not be confused with the 1-Part optimal offloading algorithm; if

the algorithm decides to upload at t, it uploads BXt bits (where BXt is the bit-rate at the

channel state Xt), but continues to check whether to upload some of the remaining bits in

the next time slot, etc., as opposed to 1-Part offloading where once uploading is initiated, it

continues automatically until it finishes.

133

Ph.D. Thesis – P. Teymoori McMaster University – ECE

6.5 Simulation Results

In this section, computer simulation is used to evaluate the performance of the proposed

approximation methods. A Gilbert-Elliot channel model is used for the simulations. This

model is widely used to characterize the effects of burst noise in wireless channels, i.e.,

where the channel can abruptly transition between good to bad conditions (Zhang et al.

(2014); Zhang et al. (2013a); Blazek and Mecklenbräuker (2018); Botta and Pescapé

(2015); Elliott (1963); Zafer and Modiano (2007); Johnston and Krishnamurthy (2006)).

This type of channel is a difficult one for computation offloading algorithms to deal with,

compared to those where there is much more correlation in the channel quality as the of-

floading progresses. It is this harsh channel environment that we subject the algorithms to,

for our comparisons. The channel is modelled as a two-state Markov chain with a “Good”

(G) state having bit rate Bg and a “Bad” (B) state having bit rate Bb, and Bg > Bb. We

also assume that the transmit power control is used on the downlink, and therefore, Tdown as

well as Texec are deterministic. Their effects can therefore be accounted for by modifying

the remote offload end-times used in the analysis. Simulations are conducted by applying

the proposed approximation methods to the 1-Part Offloading and Preemption Offloading

algorithms. For comparison, we also simulate Local Execution, in which the entire task is

executed locally on the mobile device without doing any offloading.

In all offloading algorithms, if S
Bg

+Trest > tD, then the offloading cannot be completed

before the job deadline even under the best channel conditions, in which case the job is

executed locally without offloading. Furthermore, according to concurrent local execution,

to ensure that the job completion deadline is always satisfied, local execution starts at time

slot tL if offloading (includes uploading to, remote execution at, and downloading from the

server) is not completed at time slot tL− 1. The default parameters used in the simulations

134

Ph.D. Thesis – P. Teymoori McMaster University – ECE

are given as follows. All tasks are released at time slot zero. Each time slot is 1 ms. The

transmit and receive power is 1 W and 0.5 W, respectively, which means that the transmit

and receive energy during each time slot is Etr = 1mJ and Erc = 0.5mJ, respectively.

The local execution energy per CPU cycle is vl = 2 × 10−6mJ and the local computation

power fl = 1M CPU cycles per time slot, see (Nir et al. (2014); Huang et al. (2012)).

The computation load of each task is D = 10M CPU cycles, and the local execution time

is TL = D/fl = 10 time slots. The local energy consumption EL = vlD = 20mJ. We

consider that the remote execution time is Texec = 1 time slot, i.e., the remote processing

speed is 10 times local processing. The download time Tdown is assumed to be 1 time

slot. The data transmission rates are Bg = 50 Mbps and Bb = 12.5 Mbps. The channel

state transition probabilities are PGG = 0.3 (from G to G) and PBB = 0.7 (from B to

B). The selection of these channel quality parameters is based on the results obtained

in Chapter 3, which shows that the offloading decision is either almost always to offload

(when the channel condition is sufficiently good) or almost always to not offload (when

the channel condition is sufficiently bad). The channel-related parameters are chosen so

that they represent a channel condition under which rigorous calculations are required to

make the correct offloading decisions, in which case using more efficient algorithms for

making the offloading decisions is important. In addition, since the proposed algorithms

are not designed for specific applications, the job size and job completion deadline in the

simulations are changed in order to cover a wide range of real-world scenarios. In the

results below, each value of average energy consumption or running time is obtained by

averaging 1000 random i.i.d. runs of the wireless channel.

1-Part-MC: By applying the proposed MC method on the 1-Part Offloading algorithm,

an approximate solution for the continuous offloading optimization problem can be found.

135

Ph.D. Thesis – P. Teymoori McMaster University – ECE

50 100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u

n
n

in
g

 T
im

e
 (

s
)

10
-3

1-Part (=2)

=1.5

=1

=0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(c) S = 200kb

Figure 6.2: Approximation of 1-Part offloading using 1-Part-MC for different values of α

We call this algorithm 1-Part-MC. The compression factor is set as lMC = (S
Bb

)
2−α
2 , where

α ∈ [0, 2] with α = 0 corresponding to the maximum compression and α = 2 correspond-

ing to no compression. Figure 6.2a compares the running time of 1-Part-MC versus task

size S with different α values. The reported values for running time in this figure are the

average amount of time needed by the mobile device to make the decisions to either wait

or start offloading for all available time slots. Therefore, the average amount of time per

136

Ph.D. Thesis – P. Teymoori McMaster University – ECE

50 100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u

n
n

in
g

 T
im

e
 (

s
)

10
-3

1-Part (=2)

=1.5

=1

=0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(c) S = 200kb

Figure 6.3: Approximation of 1-Part offloading using 1-Part-TC for different values of β

137

Ph.D. Thesis – P. Teymoori McMaster University – ECE

decision making at each time slot can be found by dividing these numbers by the number of

the total available time slots (tD). When α = 0, the whole TDAMC is compressed into one

node, and the algorithm can be run in a constant amount of time for any values of S. When

α > 0, the running time increases with both α and S, since the size of the approximated

TDAMC increases with both.

Figures 6.2b and 6.2c, respectively, show the average energy consumption of the 1-

Part-MC algorithm versus S and tD with different α values. As α decreases (i.e., lMC

increases), more compression is done, resulting in less accurate offloading decisions that

increase the average energy consumption of the mobile device. When α is small, the 1-

Part-MC approaches the Local Execution faster as S increases (Figure 6.2b), and it requires

larger tD in order to achieve lower average energy consumption than the Local Execution

(Figure 6.2c). In general, for each given value of α, when S is small or tD is large, the delay

constraint is less stringent, and it is more likely for offloading (without local execution) to

meet the delay constraint due to a shorter channel uploading time. In this case, the energy

consumption is less than that of Local Execution. On the other hand, when S is large or tD

is tight, jobs are most likely processed locally, and the average energy consumption of the

offloading methods is close to or the same as Local Execution.

1-Part-TC: This is done by applying the TC method to 1-Part Offloading. The com-

pression factor is lTC = tD
2−β
2 , where β ∈ [0, 2] with β = 0 corresponding to the maximum

compression and β = 2 corresponding to no compression. Figure 6.3a shows the running

time of the 1-Part-TC algorithm as S increases for different β values. By increasing lTC

(using smaller β) the running time of the algorithm can be reduced significantly. The com-

pression factor is the largest when β = 0, in which case only one offloading decision is

138

Ph.D. Thesis – P. Teymoori McMaster University – ECE

100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u

n
n

in
g

 T
im

e
 (

s
)

10
-3

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(c) S = 200kb

Figure 6.4: Approximation of 1-Part offloading using 1-Part-MC-TC for different
combinations of α and β

139

Ph.D. Thesis – P. Teymoori McMaster University – ECE

made for the whole task at the release time, which means either the uploading starts imme-

diately after the release time of the task or the task will be executed locally on the mobile

device. In this case, the running time stays almost constant as S increases.

Figures 6.3b and 6.3c show the average energy consumption versus the task size S and

deadline tD, respectively. As the compression factor increases, the less accurate decisions

result in higher energy consumption of the mobile device. When the compression factor is

the largest (β = 0), the energy consumption of the mobile device is close to that of Local

Execution. However, when β = 1 and 1.5, the compression causes a moderate increase in

energy consumption but leads to a significant reduction in the running time.

1-Part-MC-TC: In this set of simulations, the MC and TC methods are applied simul-

taneously to approximate 1-Part Offloading. Figure 6.4a shows that the running time can

be more significantly reduced by using both the compression methods, compared to 1-Part-

MC and 1-Part-TC. However, by applying both methods at the same time, 1-Part-MC-TC

suffers higher approximation errors and results in higher energy consumption as shown in

Figures 6.4b and 6.4c.

Preemption-CO-MC: This is obtained by applying MC to the Preemption-CO 1-Part

estimate (cf. Section 6.4.3). The MC method is used to approximate the optimal expected

offloading cost at each time slot. Figure 6.5a shows the running time of Preemption-

CO-MC as the task size changes for different compression factors, where α is defined

the same as in 1-Part-MC. By increasing the compression factor the running time can be

reduced considerably. Figures 6.5b and 6.5c show the average energy consumption of the

mobile device versus the task size and deadline, respectively. By decreasing α (increasing

compression factor), the approximation error becomes larger, and the energy consumption

increases. As a reference, we also plot Preemption Offline, which finds the optimal

140

Ph.D. Thesis – P. Teymoori McMaster University – ECE

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

1

2

3

4

5

6

7

R
u
n
n
in

g
 T

im
e
 (

s
)

Preemption-CO (=2)

=1.5

=1

=0

(a) tD=60ms

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(b) tD=60ms

20 40 60 80 100 120 140 160

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(c) S = 350 kb

Figure 6.5: Approximation of Preemption offloading using Preemption-CO-MC for
different values of α

uploading times to offload the task preemptively by assuming complete knowledge of all

future channel states. The gap between Preemption-CO-MC with α = 2 (no compression)

and Preemption Offline is due to the fact that the former is ignorant of future channel states.

141

Ph.D. Thesis – P. Teymoori McMaster University – ECE

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

1

2

3

4

5

6

7

R
u
n
n
in

g
 T

im
e
 (

s
)

Preemption-CO (=2)

=1.5

=1

=0

(a) tD=60ms

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(b) tD=60ms

20 40 60 80 100 120 140 160

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(c) S = 350 kb

Figure 6.6: Approximation of Preemption offloading using Preemption-CO-TC for
different combinations of β

142

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Preemption-CO-TC: By applying TC approximation on Preemption-CO Offload-

ing, we have Preemption-CO-TC. The compression factor β is defined as in 1-Part-TC.

Figure 6.6a represents the running time of the Preemption-CO-TC algorithm as S increases

for different values of β. As can be seen from this figure, increasing lTC (using smaller

β) decreases the running time of the algorithm considerably. Figures 6.6b and 6.6c show

the average energy consumption versus the task size S and deadline tD, respectively.

Increasing the compression factor results in less accurate offloading decisions, which

causes higher energy consumption on the mobile device. When the compression factor

is the largest (β = 0), the mobile device’s energy consumption is close to that of Local

Execution. However, when β = 1 and 1.5, the compression causes a moderate increase in

energy consumption but leads to a significant reduction in the running time.

Preemption-CO-MC-TC: All three approximation algorithms in Section 6.4 are ap-

plied simultaneously to implement Preemption Offloading. Figure 6.7a shows that more

significant reductions are achieved in running time, compared to Preemption-CO-MC. Fig-

ure 6.7b shows that the average energy consumption approaches Local Execution energy

faster as S increases, and Figure 6.7c shows that Preemption-CO-MC-TC requires a larger

tD to achieve lower average energy consumption than Local Execution.

143

Ph.D. Thesis – P. Teymoori McMaster University – ECE

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (kb)

0

1

2

3

4

5

6

7

R
u
n
n
in

g
 T

im
e
 (

s
)

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(a) tD=60ms

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(b) tD=60ms

20 40 60 80 100 120 140 160

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1.5 & =1

=1.5 & =0

=1 & =1.5

=1 & =1

=1 & =0

=0 & =1.5

=0 & =1

=0 & =0

(c) S = 350 kb

Figure 6.7: Approximation of Preemption offloading using Preemption-CO-MC-TC for
different combinations of α and β

144

Chapter 7

Conclusions and Future Work

In this work, we considered the problem of MCO over stochastic wireless transmission

channels, where task execution times are subjected to hard deadline constraints. To ensure

that hard job completion deadlines are met in the face of any random channel conditions, a

CLE model was proposed, which allows for the overlapping of offloading and local execu-

tion, as opposed to the conventional computation offloading model where job execution is

either local or remote. This mechanism ensures that deadlines are met even in worst-case

situations, such as where the wireless channel suffers a complete outage during the offload.

The wireless communication channel was modeled as a Markov Chain, which transi-

tions amongst states of different bit-rates in every time slot according to a transition prob-

ability matrix which is known to the mobile terminal. In this thesis, MCO was studied for

various job offloading schemes.

In the first scenario, which was proposed in Chapter 3, we considered a continuous

MCO, referred to as 1-Part Offloading, which means once the offload starts, it occurs con-

tiguously in one piece without interruption. An online provably energy-optimal algorithm,

OnOpt, which uses CLE as a method of enforcing hard task execution time constraints, was

145

Ph.D. Thesis – P. Teymoori McMaster University – ECE

developed to find the optimal upload initiation time. This is done by first constructing a

TDAMC from the underlying Markov channel description. The theory of optimal stopping

time for Markov chains and DP results were then used with the TDAMC to show the opti-

mality of OnOpt in terms of the expected energy consumption of the mobile device. This

resulted in a simple test that can be performed to determine if the current time is best for

initiating a computation offload. Then a Gilbert-Elliott channel model was considered and

closed-form results were derived that were used to find optimal offload initiation times. The

job completion time probabilities were computed recursively, which led to a large reduction

in the computational complexity.

The performance of the proposed algorithm was compared to three others that also en-

sure that job deadlines are satisfied, i.e., Immediate Offloading, Channel Threshold, and

Local Execution. An offline lower bound on energy consumption was computed and used

in these comparisons. Performance results show that the proposed algorithm can signifi-

cantly improve mobile device energy consumption compared to the other approaches while

guaranteeing hard task execution deadlines.

Mobile device energy can sometimes be further improved by splitting the task upload

into multiple parts. For this purpose, in the second scenario, which was introduced in Chap-

ter 4, multi-part mobile computation offloading was assumed. In this offloading scheme,

the computational job was partitioned into multiple (K) parts of known bit-sizes, and each

part was uploaded separately. We called this method K-Part offloading. By segmenting a

task upload into multiple parts, rather than doing a conventional contiguous task upload, the

mobile device has a higher chance for adaption to the varying wireless channel conditions

at the end of each upload part. This may decrease the energy consumption of the mobile

146

Ph.D. Thesis – P. Teymoori McMaster University – ECE

device in exchange for higher computational complexity and running time. An online mo-

bile computation offloading algorithm, MultiOpt, that was shown to be energy-optimal, and

satisfies hard deadline constraints, was proposed for this problem.

Since the computational complexity of MultiOpt can be significant, simpler and more

computationally efficient heuristics, that always satisfy hard task execution deadlines, may

be used. In Chapter 4, we used two such heuristics, the Immediate Offloading, and Multi

Threshold algorithms. The mobile energy use of MultiOpt was compared to these heuris-

tics, as well as to local execution without offloading. Simulation results showed that Mul-

tiOpt performs significantly better when compared to the proposed heuristics, as well as

when K increases.

The third scenario, which was introduced in Chapter 5, considered preemptive mobile

computation offloading, referred to as preemptive offloading, where a piece of job can be

uploaded at each time slot. In this case, at the start of each time slot, a decision is made

to either continue offloading or to temporarily interrupt the offload. Preemptive offload-

ing can be seen as a generalization of K-Part offloading where the number and the size of

upload parts are not known in advance. An energy optimal preemption offloading (OPO)

algorithm, which also respects hard deadline constraints, is introduced for this problem.

The computational complexity of OPO is prohibitive, even for simple Markovian channels,

and, therefore, we introduced three computationally efficient techniques: Water-Filling,

Water-Filling with Scheduling, and Generalized Water-Filling. For each, two variations

were considered. The first (Equ) uses the equilibrium channel state probabilities to de-

termine its offloading decisions, and the second (Exp) uses Markovian transition matrix

exponentiation. The six resulting algorithms have a wide variety of energy performance

147

Ph.D. Thesis – P. Teymoori McMaster University – ECE

and computational complexity. The performance of the proposed algorithms was com-

pared on Markovian channels with different characteristics, in order to show the tradeoffs

between complexity and mobile energy saving performance.

The proposed online algorithms, which were proved to be energy optimal, were devel-

oped using the theory of optimal stopping for Markov decision processes. In general, they

make the offloading decision at each time slot by constructing a TDAMC from the given

Markov channel model and applying DP. The large size of TDAMC and running DP at

each time slot increases the computational complexity of these algorithms, especially in

the case of preemptive offloading where we need to consider all future optimal offloading

time slots in our DP calculations. To increase the efficiency of these algorithms and make

them practical in online mobile implementations, three approximation methods were in-

troduced in Chapter 6 to reduce this complexity, namely, Markovian Compression (MC),

Time Compression (TC) and Preemption Using Continuous Offloading (Preemption-CO).

MC reduces the state space of the offloading Markovian process, by aggregating TDAMC’s

states using a novel notion of geometric similarity. TC reduces the algorithm computation

by traversing the TDAMC in aggregated time steps. In Preemption-CO, while a task is of-

floaded preemptively, the offloading decision at every time slot is based on non-preemptive

calculations. These methods were used (alone or in combination) to construct efficient

offloading algorithms, whose running times are significantly reduced, without suffering

considerable performance degradation.

Future directions: There are several possible directions for future extensions of our

work. The high computational complexity incurred by the exact DP solutions leads us to

the development of approximate heuristics; rollout techniques (cf. Bertsekas (2005), and

the references therein) can be studied as an efficient mechanism to tradeoff complexity and

148

Ph.D. Thesis – P. Teymoori McMaster University – ECE

optimality. Reinforcement learning, which has already been used for designing offloading

policies (e.g., (Mao et al. (2016a); Li et al. (2018)), can be used to effectively learn the

parameters of the system (e.g., channel transition probabilities).

149

Bibliography

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., and Buyya, R. (2013). Cloud-based aug-

mentation for mobile devices: motivation, taxonomies, and open challenges. IEEE Com-

munications Surveys & Tutorials, 16(1), 337–368.

Akherfi, K., Gerndt, M., and Harroud, H. (2018). Mobile cloud computing for computation

offloading: Issues and challenges. Applied Computing and Informatics, 14(1), 1–16.

Al-Ali, A., Aji, Y., Othman, H., and Fakhreddin, F. (2005). Wireless smart sensors net-

works overview. In Proceedings of IEEE 2nd IFIP International Conference on Wireless

and Optical Communications Networks, 2005. WOCN 2005., pages 536–540. IEEE.

Ba, H., Heinzelman, W., Janssen, C.-A., and Shi, J. (2013). Mobile computing-a green

computing resource. In Proceedings of 2013 IEEE Wireless Communications and Net-

working Conference (WCNC), pages 4451–4456.

Bangui, H., Rakrak, S., and Raghay, S. (2015). External sources for mobile computing:

The state-of-the-art, challenges, and future research. In 2015 International Conference

on Cloud Technologies and Applications (CloudTech), pages 1–8. IEEE.

Barbu, V. S. and Limnios, N. (2009). Semi-Markov chains and hidden semi-Markov models

150

Ph.D. Thesis – P. Teymoori McMaster University – ECE

toward applications: their use in reliability and DNA analysis, volume 191. Springer

Science & Business Media.

Barga, R., Gannon, D., and Reed, D. (2010). The client and the cloud: Democratizing

research computing. IEEE Internet Computing, 15(1), 72–75.

Berg, F., Dürr, F., and Rothermel, K. (2014). Optimal predictive code offloading. In

Proceedings of the 11th International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, pages 1–10.

Bertsekas, D. P. (2005). Dynamic programming and suboptimal control: A survey from

ADP to MPC. Eur. J. Control, 11(4-5), 310–334.

Bildea, A., Alphand, O., Rousseau, F., and Duda, A. (2015). Link quality estimation with

the Gilbert-Elliot model for wireless sensor networks. In Proceeding of 2015 IEEE 26th

Annual International Symposium on Personal, Indoor, and Mobile Radio Communica-

tions (PIMRC), pages 2049–2054.

Blazek, T. and Mecklenbräuker, C. F. (2018). Measurement-based burst-error performance

modeling for cooperative intelligent transport systems. IEEE Transactions on Intelligent

Transportation Systems, 20(1), 162–171.

Botta, A. and Pescapé, A. (2015). IP packet interleaving for UDP bursty losses. Journal of

Systems and Software, 109, 177–191.

Buyya, R., Vecchiola, C., and Selvi, S. T. (2013). Mastering cloud computing: foundations

and applications programming. Newnes.

151

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Cao, H. and Cai, J. (2018). Distributed multiuser computation offloading for cloudlet-

based mobile cloud computing: A game-theoretic machine learning approach. IEEE

Transactions on Vehicular Technology, 68(1), 752–764.

Chen, X. (2015). Decentralized computation offloading game for mobile cloud computing.

IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983.

Chen, X., Pu, L., Gao, L., Wu, W., and Wu, D. (2017). Exploiting massive d2d collabora-

tion for energy-efficient mobile edge computing. IEEE Wireless Communications, 24(4),

64–71.

Chiang, M. and Zhang, T. (2016). Fog and IoT: An overview of research opportunities.

IEEE Internet of Things Journal, 3(6), 854–864.

Chun, B.-G. and Maniatis, P. (2009). Augmented smartphone applications through clone

cloud execution. In Proceedings of the 12th Conference Hot Topics Operating Systems,

page 8.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011). Clonecloud: elastic

execution between mobile device and cloud. In Proceedings of the 6th Conference on

Computer Systems, pages 301–314.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., and

Bahl, P. (2010). MAUI: making smartphones last longer with code offload. In Proceed-

ings of the 8th International Conference on Mobile Systems, Applications, and Services,

pages 49–62.

De, D. (2016). Mobile cloud computing: architectures, algorithms and applications. CRC

Press.

152

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Dinh, H. T., Lee, C., Niyato, D., and Wang, P. (2013). A survey of mobile cloud comput-

ing: architecture, applications, and approaches. Wireless Communications and Mobile

Computing, 13(18), 1587–1611.

Elliott, E. O. (1963). Estimates of error rates for codes on burst-noise channels. The Bell

System Technical Journal, 42(5), 1977–1997.

Ericsson (2020). Ericsson mobility report 2020. https://www.ericsson.com/en/

mobility-report.

Forman, G. H. and Zahorjan, J. (1994). The challenges of mobile computing. Computer,

27(4), 38–47.

Gao, W., Li, Y., Lu, H., Wang, T., and Liu, C. (2014). On exploiting dynamic execution

patterns for workload offloading in mobile cloud applications. In Proceedings of 2014

IEEE 22nd International Conference on Network Protocols, pages 1–12.

Geng, Y., Yang, Y., and Cao, G. (2018). Energy-efficient computation offloading for

multicore-based mobile devices. In Proceedings of 2018 IEEE INFOCOM Conference

on Computer Communications, pages 46–54.

Gilbert, E. N. (1960). Capacity of a burst-noise channel. Bell System Technical Journal,

39(5), 1253–1265.

Goudarzi, M., Zamani, M., and Haghighat, A. T. (2017). A fast hybrid multi-site com-

putation offloading for mobile cloud computing. Journal of Network and Computer

Applications, 80, 219–231.

Grinstead, C. M. and Snell, J. L. (2006). Markov chains - chapter 11. In Grinstead and

Snell’s Introduction to Probability, pages 405–470.

153

https://www.ericsson.com/en/mobility-report
https://www.ericsson.com/en/mobility-report

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Guan, L., Ke, X., Song, M., and Song, J. (2011). A survey of research on mobile cloud

computing. In Proceedings of 2011 IEEE/ACIS 10th International Conference on Com-

puter and Information Science, pages 387–392.

He, P., Zhao, L., Zhou, S., and Niu, Z. (2013). Recursive waterfilling for wireless links

with energy harvesting transmitters. IEEE Transactions on Vehicular Technology, 63(3),

1232–1241.

Hu, M., Wu, D., Wu, W., Cheng, J., and Chen, M. (2019). Quantifying the influence

of intermittent connectivity on mobile edge computing. IEEE Transactions on Cloud

Computing, 4(1), 1–1.

Huang, D., Wang, P., and Niyato, D. (2012). A dynamic offloading algorithm for mobile

computing. IEEE Transactions on Wireless Communications, 11(6), 1991–1995.

Huerta-Canepa, G. and Lee, D. (2010). A virtual cloud computing provider for mobile de-

vices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services:

Social Networks and Beyond, pages 1–5.

Huth, A. and Cebula, J. (2011). The basics of cloud computing. United States Computer.

Hyytiä, E., Spyropoulos, T., and Ott, J. (2015). Offload (only) the right jobs: Robust

offloading using the Markov decision processes. In Proceedings of 2015 IEEE 16th In-

ternational Symposium on a World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), pages 1–9.

Johnston, L. A. and Krishnamurthy, V. (2006). Opportunistic file transfer over a fading

channel: A POMDP search theory formulation with optimal threshold policies. IEEE

Transactions on Wireless Communications, 5(2), 394–405.

154

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Josilo, S. and Dan, G. (2017). A Game Theoretic Analysis of Selfish Mobile Compu-

tation Offloading. In Proceedings of 2017 IEEE INFOCOM Conference on Computer

Communications, pages 1–9.

Kamal, R. (2008). Mobile computing. Oxford University Press, Inc.

Kim, Y., Lee, J., Jeong, J., and Chong, S. (2016). Multi-flow rate control in delayed wi-fi

offloading systems. In Proceedings of 2016 International Conference on Information

Networking (ICOIN), pages 274–279.

Ko, S.-W., Huang, K., Kim, S.-L., and Chae, H. (2017). Energy efficient mobile com-

putation offloading via online prefetching. In Proceedings of 2017 IEEE International

Conference on Communications (ICC), pages 1–6.

Kumar, K. and Lu, Y.-H. (2010). Cloud computing for mobile users: can offloading com-

putation save energy? IEEE Computer, 43(4), 51–56.

Labidi, W., Sarkiss, M., and Kamoun, M. (2015). Energy-optimal resource scheduling

and computation offloading in small cell networks. In Proceedings of 2015 IEEE 22nd

International Conference on Telecommunications (ICT), pages 313–318.

Lagar-Cavilla, H. A., Tolia, N., De Lara, E., Satyanarayanan, M., and O’Hallaron, D.

(2007). Interactive resource-intensive applications made easy. In Proceedings of

ACM/IFIP/USENIX International Conference on Distributed Systems Platforms and

Open Distributed Processing, Springer, pages 143–163.

Li, J., Gao, H., Lv, T., and Lu, Y. (2018). Deep reinforcement learning based computation

offloading and resource allocation for MEC. In 2018 IEEE Wireless Communications

and Networking Conference (WCNC), pages 1–6.

155

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Ling, X., Wu, B., Ho, P.-H., Luo, F., and Pan, L. (2012). Fast water-filling for agile

power allocation in multi-channel wireless communications. IEEE communications let-

ters, 16(8), 1212–1215.

Lioumpas, A. S., Karagiannidis, G. K., and Iossifides, A. C. (2007). Channel quality es-

timation index (CQEI): A long-term performance metric for fading channels and an ap-

plication in egc receivers. IEEE transactions on Wireless Communications, 6(9), 3315–

3323.

Liu, D., Khoukhi, L., and Hafid, A. (2017). Data offloading in mobile cloud computing: A

Markov decision process approach. In Proceedings of 2017 IEEE International Confer-

ence on Communications (ICC), pages 1–6.

Liu, F., Shu, P., Jin, H., Ding, L., Yu, J., Niu, D., and Li, B. (2013). Gearing resource-poor

mobile devices with powerful clouds: architectures, challenges, and applications. IEEE

Wireless Communications, 20(3), 14–22.

Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016a). Resource management with

deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics

in Networks, HotNets 2016, pages 50–56.

Mao, Y., Zhang, J., and Letaief, K. B. (2016b). Dynamic computation offloading for

mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas

in Communications, 34(12), 3590–3605.

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A survey on mobile

edge computing: The communication perspective. IEEE Communications Surveys &

Tutorials, 19(4), 2322–2358.

156

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Masdari, M. and Khezri, H. (2020). Efficient offloading schemes using Markovian models:

a literature review. Computing, Springer, 102, 1–44.

Mehmeti, F. and Spyropoulos, T. (2013). Performance analysis of “on-the-spot” mobile

data offloading. In Proceedings of 2013 IEEE Global Communications Conference

(GLOBECOM), pages 1577–1583. IEEE.

Mehmeti, F. and Spyropoulos, T. (2016). Performance analysis of mobile data offloading

in heterogeneous networks. IEEE Transactions on Mobile Computing, 16(2), 482–497.

Meng, T., Wolter, K., Wu, H., and Wang, Q. (2018). A secure and cost-efficient offload-

ing policy for mobile cloud computing against timing attacks. Pervasive and Mobile

Computing, 45, 4–18.

Meskar, E., Todd, T. D., Zhao, D., and Karakostas, G. (2015). Energy efficient offloading

for competing users on a shared communication channel. In Proceedings of 2015 IEEE

International Conference on Communications (ICC), pages 3192–3197.

Meskar, E., Todd, T. D., Zhao, D., and Karakostas, G. (2017). Energy aware offloading

for competing users on a shared communication channel. IEEE Transactions on Mobile

Computing, 16(1), 87–96.

Miao, G., Zander, J., Sung, K. W., and Slimane, S. B. (2016). Fundamentals of mobile data

networks. Cambridge University Press.

Miettinen, A. P. and Nurminen, J. K. (2010). Energy efficiency of mobile clients in cloud

computing. HotCloud, 10(4), 19.

Mukherjee, A., Bhattacherjee, S., Pal, S., and De, D. (2013). Femtocell based green power

157

Ph.D. Thesis – P. Teymoori McMaster University – ECE

consumption methods for mobile network. Computer Networks, Elsevier, 57(1), 162–

178.

Nădăban, S., Dzitac, S., and Dzitac, I. (2016). Fuzzy topsis: A general view. Procedia

Computer Science, Elsevier, 91, 823–831.

Nir, M., Matrawy, A., and St-Hilaire, M. (2014). An energy optimizing scheduler for

mobile cloud computing environments. In Proceedings of 2014 IEEE Conference on

Computer Communications Workshops (INFOCOM WKSHPS), pages 404–409.

Oo, T. Z., Tran, N. H., Saad, W., Niyato, D., Han, Z., and Hong, C. S. (2016a). Offload-

ing in hetnet: A coordination of interference mitigation, user association, and resource

allocation. IEEE Transactions on Mobile Computing, 16(8), 2276–2291.

Oo, T. Z., Tran, N. H., Saad, W., Son, J., and Hong, C. S. (2016b). Traffic offloading

via Markov approximation in heterogeneous cellular networks. In Proceedings of 2016

IEEE/IFIP Network Operations and Management Symposium, pages 52–60.

Othman, M., Madani, S. A., Khan, S. U., et al. (2013). A survey of mobile cloud computing

application models. IEEE Communications Surveys & Tutorials, 16(1), 393–413.

Oyerinde, O. O. and Mneney, S. H. (2012). Review of channel estimation for wireless

communication systems. IETE Technical review, 29(4), 282–298.

Pan, Y., Pan, C., Zhu, H., Ahmed, Q. Z., Chen, M., and Wang, J. (2017). On consideration

of content preference and sharing willingness in D2D assisted offloading. IEEE Journal

on Selected Areas in Communications, 35(4), 978–993.

158

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Panigrahi, C. R., Sarkar, J. L., and Pati, B. (2018). Transmission in mobile cloudlet sys-

tems with intermittent connectivity in emergency areas. Digital Communications and

Networks, 4(1), 69–75.

Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al. (2014). Mobile-

edge computing introductory technical white paper. In proceedings of Mobile Edge Com-

puting (MEC) Industry Initiative, pages 1089–7801.

Peskir, G. and Shiryaev, A. (2006). Optimal stopping and free-boundary problems. Lec-

tures in Mathematics ETH Zurich. Springer, Dordrecht.

Pu, L., Liu, J., Fang, Y., Li, W., and Wang, Z. (2010). Channel estimation in mobile

wireless communication. In Proceedings of 2010 IEEE International Conference on

Communications and Mobile Computing, pages 77–80.

Pu, L., Chen, X., Xu, J., and Fu, X. (2016). D2D fogging: An energy-efficient and

incentive-aware task offloading framework via network-assisted D2D collaboration.

IEEE Journal on Selected Areas in Communications, 34(12), 3887–3901.

Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. (1998). Saving portable com-

puter battery power through remote process execution. ACM SIGMOBILE Mobile Com-

puting and Communications Review, 2(1), 19–26.

Rudenko, A., Reiher, P., Popek, G. J., and Kuenning, G. H. (1999). The remote process-

ing framework for portable computer power saving. In Proceedings of the 1999 ACM

Symposium on Applied Computing, pages 365–372.

Sadeghi, P., Kennedy, R. A., Rapajic, P. B., and Shams, R. (2008). Finite-state Markov

159

Ph.D. Thesis – P. Teymoori McMaster University – ECE

modeling of fading channels-a survey of principles and applications. IEEE Signal Pro-

cessing Magazine, 25(5), 57–80.

Sanaei, Z., Abolfazli, S., Gani, A., and Buyya, R. (2013). Heterogeneity in mobile cloud

computing: taxonomy and open challenges. IEEE Communications Surveys & Tutorials,

16(1), 369–392.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case for VM-based

cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

Shakkottai, S. and Rappaport, T. S. (2002). Research challenges in wireless networks: a

technical overview. In Proceedings of IEEE 5th International Symposium on Wireless

Personal Multimedia Communications, volume 1, pages 12–18.

Shuja, J., Gani, A., Naveed, A., Ahmed, E., and Hsu, C.-H. (2017). Case of arm emulation

optimization for offloading mechanisms in mobile cloud computing. Future Generation

Computer Systems, 76, 407–417.

Sumi, N., Baba, A., and Moshnyaga, V. G. (2014). Effect of computation offload on per-

formance and energy consumption of mobile face recognition. In Proceedings of IEEE

Workshop on Signal Processing Systems (SiPS), pages 1–7.

Tao, X., Ota, K., Dong, M., Qi, H., and Li, K. (2017). Performance guaranteed computation

offloading for mobile-edge cloud computing. IEEE Wireless Communications Letters,

6(6), 774–777.

Terefe, M. B., Lee, H., Heo, N., Fox, G. C., and Oh, S. (2016). Energy-efficient multisite

offloading policy using Markov decision process for mobile cloud computing. Pervasive

and Mobile Computing, 27, 75–89.

160

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Tong, L. and Gao, W. (2016). Application-aware traffic scheduling for workload offloading

in mobile clouds. In Proceedings of the 35th Annual IEEE International Conference on

Computer Communications, pages 1–9.

Truong-Huu, T., Tham, C.-K., and Niyato, D. (2014). To offload or to wait: An oppor-

tunistic offloading algorithm for parallel tasks in a mobile cloud. In Proceedings of the

6th IEEE International Conference on Cloud Computing Technology and Science, pages

182–189.

Voas, J. and Zhang, J. (2009). Cloud computing: New wine or just a new bottle? IT

Professional, 11(2), 15–17.

Wu, H. and Wolter, K. (2017). Stochastic analysis of delayed mobile offloading in hetero-

geneous networks. IEEE Transactions on Mobile Computing, 17(2), 461–474.

Wu, H., Knottenbelt, W., and Wolter, K. (2015). Analysis of the energy-response time

tradeoff for mobile cloud offloading using combined metrics. In Proceedings of the 27th

IEEE International Teletraffic Congress, pages 134–142.

Wu, Q., Liu, H., Wang, R., Fan, P., Fan, Q., and Li, Z. (2019). Delay-sensitive task offload-

ing in the 802.11 P-based vehicular fog computing systems. IEEE Internet of Things

Journal, 7(1), 773–785.

You, C., Huang, K., and Chae, H. (2016). Energy efficient mobile cloud computing pow-

ered by wireless energy transfer. IEEE Journal on Selected Areas in Communications,

34(5), 1757–1771.

Yu, F., Chen, H., and Xu, J. (2018). Dmpo: Dynamic mobility-aware partial offloading in

mobile edge computing. Future Generation Computer Systems, 89, 722–735.

161

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Zafer, M. and Modiano, E. (2007). Minimum energy transmission over a wireless fading

channel with packet deadlines. In Proceedings of the 46th IEEE Conference on Decision

and Control, pages 1148–1155.

Zed, M., Rao, R. R., and Milstein, L. B. (1995). On the accuracy of a first-order Markov

model for data transmission on fading channels. In Proceedings of the 4th IEEE Inter-

national Conference on Universal Personal Communications, pages 211–215.

Zhang, C., Gu, B., Liu, Z., Yamori, K., and Tanaka, Y. (2016). A reinforcement learning

approach for cost-and energy-aware mobile data offloading. In Proceedings of the 18th

IEEE Asia-Pacific Network Operations and Management Symposium (APNOMS), pages

1–6.

Zhang, C., Gu, B., Liu, Z., Yamori, K., and Tanaka, Y. (2017a). Cost-and energy-aware

multi-flow mobile data offloading under time dependent pricing. In Proceedings of the

13th International Conference on Network and Service Management (CNSM), pages 1–

6.

Zhang, J., Hu, X., Ning, Z., Ngai, E. C.-H., Zhou, L., Wei, J., Cheng, J., and Hu, B.

(2017b). Energy-latency tradeoff for energy-aware offloading in mobile edge computing

networks. IEEE Internet of Things Journal, 5(4), 2633–2645.

Zhang, W., Wen, Y., and Wu, D. O. (2013a). Energy-efficient scheduling policy for col-

laborative execution in mobile cloud computing. In Proceedings of IEEE INFOCOM,

pages 190–194.

162

Ph.D. Thesis – P. Teymoori McMaster University – ECE

Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., and Wu, D. O. (2013b). Energy-

optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions

on Wireless Communications, 12(9), 4569–4581.

Zhang, W., Wen, Y., and Wu, D. O. (2014). Collaborative task execution in mobile cloud

computing under a stochastic wireless channel. IEEE Transactions on Wireless Commu-

nications, 14(1), 81–93.

Zhang, X. and Cao, Y. (2018). Mobile data offloading efficiency: a stochastic analytical

view. In Proceedings of the IEEE International Conference on Communications Work-

shops (ICC Workshops), pages 1–6.

Zhang, Y., Niyato, D., and Wang, P. (2015). Offloading in mobile cloudlet systems with

intermittent connectivity. IEEE Transactions on Mobile Computing, 14(12), 2516–2529.

163

	Lay Abstract
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Overview
	Contributions

	Background
	Introduction
	Mobile Computing
	Cloud Computing
	Mobile Cloud Computing
	Mobile Computation Offloading
	Related Work

	Continuous Offloading
	Introduction
	System Model
	Offline Bound
	Markovian Channel and the Time-Dilated Absorbing Markov Model
	Optimal Stopping and the OnOpt (Online Optimal) Algorithm
	The Gilbert-Elliot Channel Case
	Simulation Results

	Multipart Offloading
	Introduction
	System Model
	Offline Bound
	Markovian Channel and the Time-Dilated Absorbing Markov Model
	Optimal Algorithm for K-Part Offloading
	Simulation Results

	Preemptive Offloading
	Introduction
	System Model
	Offline Bound
	Optimal Algorithm for Preemptive Offloading
	Practical Heuristics
	Simulation Results

	Approximate Solutions
	Introduction
	System Model
	Problem Formulation and Optimal Solution
	Approximate Solutions
	Simulation Results

	Conclusions and Future Work

