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Abstract

A 3D meso-scale model is developed to predict the flow of liquid within a semi-

solid binary Fe-C alloy with various equiaxed microstructure, ranging from dendritic

to globular. The model domain consists of a set of 8000 grains given by a Voronoi

tessellation. Solidification of each grain is simulated independently via a volume aver-

age approach, providing the semi-solid microstructure for the fluid flow simulation. A

single domain Darcy-Brinkman model is then used to calculate the resulting pressure

field.

The model results are found to be in good agreement with the Carman-Kozeny

equation for two limiting cases of interfacial area concentration Sv, demonstrating the

model’s utility in quantifying permeability of semisolid structures where the fluid flow

occurs either in the intra-dendritic (within the envelope enclosed by the dendrite) or

extra-dendritic (between dendritic grains) regions. Deviation from Carman-Kozeny

behaviour is observed with a transition in microstructure, i.e. when the domain con-

tains a mixture of both dendritic and globular structures or when fluid flow occurs

simultaneously in the intra-dendritic and extra-dendritic regions. A permeability-

microstructure map is created as a function of grain size, secondary dendrite arm

spacing, and cooling rate to show the range where the limiting values of Sv are valid



and, importantly, where they are not. A comparison of the net volumetric inflow

caused by shrinkage and deformation is performed, demonstrating that the shrinkage

induced by the peritectic transformation is the dominant factor requiring liquid feed-

ing. The present dendritic fluid flow model is useful in the context of multi-physics

modelling of defects in peritectic steel grades and other commercially relevant alloys.

I. Introduction

Dendrite growth is the most common crystallization mechanism observed

during continuous casting of steel. The morphology characterized by the den-

drite arms is associated with the formation of secondary phases and casting

defects, most notably hot tearing, porosity and segregation [1, 2]. Advanced

continuously-cast high strength steel slabs with high levels of alloying elements

as well as complex shape castings are quite prone to these defect. The formation

of casting defects, especially hot tearing, is a multi-scale problem, and has been

shown to be related directly to the flow of liquid through the dendritic net-

work at the microscale [3], due to the concomitant phenomena of solidification

induced shrinkage and mushy zone deformation.

The resistance to liquid flow through a semisolid is known as permeabil-

ity. This important macroscopic parameter is associated with a pressure drop

inside the mushy zone of a casting. It bridges the microscale structure with

macroscale fluid flow, and is critical for accurate prediction of defect formation.

Permeability was initially proposed for transport phenomena in porous media,

and has been extensively investigated in various material systems. Measure-

ment of permeability is usually associated with determination of the structure

first followed by a prediction of the fluid flow behaviour [4]. The challenge when

measuring this quantity in metallic systems lies in controlling the semisolid mi-

crostructure during the experiment; reliable data for high temperature alloys

remains rare [5]. Despite the recent application of X-ray tomography in obtain-

ing the complicated topological images for use as templates to construct physical

models of the dendritic structure [4], the accessibility of accurate experimental

apparatuses is limited [6].
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Predictive numerical simulation is a well-studied alternative to experimen-

tal investigation of permeability and phenomenological models as detailed in

Refs. [5, 7, 8, 9, 10]. Numerical models solve the Stokes equations for a domain

representing the liquid phase within the mushy zone. The obvious advantage

of using a simulated microstructure is that the evolution of permeability with

solid fraction can be easily studied for different grain sizes and morphologies.

However, the main challenge with this method is the geometry itself, since per-

meability is a characteristic that is based on the channel width, surface area and

tortuosity of the flow channels [8]. Recently, 3D synchrotron X-ray tomogra-

phy has been used to acquire representative semisolid geometries for assessing

permeability during equiaxed dendritic [5] and columnar solidification [10], and

to investigate the effects of intermetallics [11]. Although these studies have

shown good agreement between calculated permeability and experimental refer-

ence data, the availability of high-quality 3D datasets has limited the use of this

approach to well defined systems. For industrial applications, there is a need

for improved understanding of permeability in a wide range of microstructures.

The recent development of a meso-scale granular model of solidification offers

new possibilities for predicting permeability in semi-solid metallic alloys [12, 13].

This model can simulate a set of 1000 or more randomly-placed grains within a

domain. The grains are individually represented and the flow of liquid between

the grains is simulated. A 2D discrete-element model of fluid flow proposed

by Vernède et al. [14] described the liquid feeding along the grain boundaries

of the mushy zone. This approach was then extended to 3D by Sistaninia et

al. [15], and further modified by Zareie-Rajani and Phillion [16] to investigate

phenomena relevant to hot tearing in aluminum alloys during welding. These

prior granular solidification models assumed a microstructure consisting of glob-

ular equiaxed grains, and modelled the flow between adjacent grain surfaces as

Poiseuille flow between two parallel plates. Because of these limitations, they

cannot be used to assess the permeability of a dendritic microstructure. In the

dendritic case, liquid flow occurs both in the extra-dendritic region between

grains as well as in the intra-dendritic small-scale structure within a grain. The
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friction encountered by the flow through intra-dendritic liquid channels could

lead to an additional pressure drop thus accelerating the formation of defects.

In the present study, a 3D meso-scale model is proposed to simulate fluid

flow during the solidification of a binary Fe-C alloy mushy zone containing

both intra-dendritic and extra-dendritic flow and taking into account shrink-

age caused by the peritectic transformation and deformation. The meso-scale

simulation domain is created using a Voronoi tessellation; solidification of each

grain occurs independently via a volume average approach [17, 18]. First, the

methodology for creating a semi-solid domain consisting of equiaxed-dendritic

grains surrounded by liquid is reviewed. Second, the new liquid flow model is

described. Third, the model is applied to investigate permeability in a wide com-

bination of microstructures, alloy compositions and flow configurations during

solidification in order to create a map of the resulting permeability. Finally, the

results are compared with predictions of previous simple models and assessed

in the context of casting defects.

II. Description of the 3D Meso-scale Fluid Flow Model for

Dendritic Alloys

a. Generation of the Model Domain

In order to investigate the effects of fluid flow within the semisolid Fe-C alloy,

a model domain must be utilized that is large enough to capture long-range flow

effects while small enough to discretize individual grains - in order words - a

domain that contains hundreds (or more) grains. This study utilizes the 3D

equiaxed-dendritic meso-scale solidification model previously described in [19]

to create an appropriately-sized model domain. An example, containing 1000

grains, is shown in Fig. 1(a); the empty space within the domain represents the

remaining liquid. To create this geometry, a Voronoi tessellation is applied to

approximate the final grain morphology based on randomly-placed seeds acting

as nuclei for equiaxed-dendritic grains. Each grain, Fig. 1(b), is a polyhedral

structure, which is then divided into smaller polyhedrons, Fig. 1(c), and finally
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a tetrahedron, Fig. 1(d). Solidification is simulated within each tetrahedron

independently of all others, as described below.

b. Dendritic Solidification Model

Although the complete details of the 3D meso-scale dendritic solidification

model are given in [19], the salient points are recalled below for clarity. Given

that the microstructure of steels is dendritic, the evolution in solid fraction

within each tetrahedron is predicted using a volume average approach [17, 18].

The main advantage of this approach is its ability to model solidification using

at least three and possibly four phases, extra-dendritic liquid led, intra-dendritic

liquid lid, delta-ferrite δ and austenite γ, without explicitly tracking the inter-

faces between the phases. The δ and/or γ phases nucleate from one vertex of the

tetrahedron corresponding to the center of the grain in an undercooled liquid

and grow in a radial direction until the tetrahedron is fully solidified. The entire

tetrahedron is considered to be at uniform temperature. A dendritic grain is

defined by its envelope, which controls the solid (δ and γ) phases, the intra-

dendritic liquid phase (i.e. the liquid enclosed by the dendrite envelope), and

the extra-dendritic liquid phase (i.e. the liquid outside the dendrite envelope).

The phases are described by their volume fractions (gedl , gidl , gδ and gγ) and av-

erage chemical compositions. Upon cooling a solute mass balance is performed

to track the position of the dendrite envelope under the assumption of finite

diffusion in led, lid, and δ or γ. Note that the dendritic morphology indicated

in Fig. 1(d) cannot be visualized by the unstructured mesh given in Fig. 1(a);

this image shows only the equivalent solid phase fraction in a geometric sense

with the empty space including both the intra- and extra- dendritic liquid.

c. Mushy zone fluid flow model

The 3D semisolid structure created by the solidification model at a given solid

fraction for a specified cooling rate and grain size is used as the input geometry

for the fluid flow model at the same solid fraction. The two models, solidification

and fluid flow, are only one-way coupled. The mesh consists of a set of elements,
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each made up of two facing tetrahedrons as shown in Fig. 2, that are ultimately

reduced to a set of two 3-node 2D triangular elements. The regions enclosed

by the dendrite envelopes of each tetrahedron are treated as a uniform porous

medium [20] with an internal liquid fraction given by g′l = gidl /(g
id
l +gδ+gγ). The

extra-dendritic regions of each element, having a width equal to the distance

between the facing envelopes, are treated as an extra-dendritic fluid channel.

Note that the two facing tetrahedrons are identical due to symmetry [15]. Flow

can occur simultaneously through both the intra- and extra- dendritic regions as

shown schematically in Fig. 2 (solid blue line). In the limit of g′l = 0, the model

is reduced to the model of flow between two globular grains, equivalent to the

model of Sistaninia [15]. In another limit, where the dendrite tips touch and all

remaining liquid is intra-dendritic liquid (gedl = 0, gidl = g′l), the whole structure

behaves as a porous medium with a liquid fraction g′l and a characteristic length

scale given by the secondary dendrite arm spacing. In these two situations, also

shown in Fig. 2, the corresponding flow is either Poiseuille flow (red dashed line)

or Darcy-Brinkman flow (green dashed line).

The flow in the extra-dendritic region is described as a Poisseuille flow and

the flow in the intra-dendritic region is described by the Darcy-Brinkman equa-

tion, using a averaged form of the Navier-Stokes equation. The model assump-

tions include quasi-steady-state as well as irrotational flow that is parallel to

the triangular facet highlighted in blue in Fig. 2 where the two tetrahedrons

meet. Both gravity and pressure gradients along the length L of the element

are neglected. Altogether, this is expressed as,

−∇p+ µl
d2~ved

dz′2
= 0, (1)

−g′l∇p+ µl
d2~vid

dz′2
− µlg

′
l

K (g′l)
~vid = 0, (2)

where µl represents the dynamic viscosity, ~ved is the fluid velocity in the extra-

dendritic region, p is the gauge pressure, ~vid is the intra-dendritic fluid velocity

vector and K (g′l) is the local permeability within the dendrite envelope. The
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reader is referred to [21] for detailed information of the averaging concepts

along with the process of deriving the average form of the master equation. The

Carman-Kozeny equation [22, 23],

K(g′l) =
(g′l)

3

5S2
v

, (3)

where Sv represents the interfacial area concentration is simplified as Sv = 2
λ2

with λ2 representing the secondary dendrite arm spacing, is used to determine

K as the scale of an individual element.

We assume that ∂
∂z′~v

ed|z′=0 = 0 and ~v is finite when z′ →∞. At the envelope

we use the boundary conditions between the porous medium and a fully liquid

zone, proposed by Le Bars and Grae Worster [21]: ~ved|z′=h = ~vid|z′=h and

∂
∂z′~v

id|z′=h = ∂
∂z′~v

ed|z′=h. Eq. 1 and Eq. 2 can be solved analytically,

~ved =

(
z′2

2µl
+ C1

)
∇p, (4)

~vid =
(
C2e

z′
ξ − C3

)
∇p. (5)

In Eqs. 4 and 5, C1 and C2 represent two unknown constants, C3 = gl′ξ
2

µl

and ξ =

√
K(g′l)
g′l

. The unknown constants can be further solved with addi-

tional constraints at the envelope shown above: all of the fields within the

representative volume are continuous, the velocity ~v and the viscous stress at

the interface between the intra-dendritic and extra-dendritic regions must be

continuous. Then,

C1 = −ξh
µl
− g′lξ

2

µl
− h2

2µl
, and, (6)

C2 =
− ξhµl
e−

h
ξ

, (7)

where h is the half width of the extra-dendritic region.

The controlling equation for the fluid flow problem can be derived through

integration based on a mass balance over the two facing tetrahedrons shown in
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Fig. 2 assuming liquid incompressibility, i.e. ∇ · ~vl = 0. This region includes

both flow as a porous medium within the dendrite envelope and free liquid flow

in the extra-dendritic region. This mass balance also needs to consider both

the solidification shrinkage and deformation as factors that would induce liquid

flow. The shrinkage induced by solidification due to the density variations in

the solid and liquid phase will induce a normal velocity of liquid flow at the

solid/liquid interface [24],

~vl·n = −βv∗, (8)

where v∗ is the solid/liquid interface velocity predicted by the 3D meso-scale

solidification model at the specific solid fraction being used in the fluid flow sim-

ulation, and β = (ρs/ρl − 1) is the shrinkage factor with ρs and ρl representing

the temperature-dependent solid and liquid densities. For non-peritectic alloys,

ρs = ρδ. For low carbon steel alloys having a peritectic transformation, ρs is

given by

ρs =
ρδgδ + ργgγ
gδ + gγ

, (9)

ρδ = 3.07× 10−1 (Tδ,start − T ) + 7270, (10)

ργ = 4.8× 10−1 (Tγ,start − T ) + 7410, (11)

ρl = −7.5× 10−1 (T − TL,start) + 7020, (12)

where ρδ, and ργ represent the densities (kg · m−3) of the δ and γ phases

given by the expressions in Eqs. 10, 11, 12 with different coefficients (kg ·m−3 ·

K−1) [25], T represents the temperature (K) with Ti,start being the transforma-

tion temperatures of the i phase (i = l, δ or γ), and gδ and gγ are given by the

3D meso-scale solidification model at the specified solid fraction being used in
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the fluid flow simulation. Note that the shrinkage factor will vary during solidi-

fication since the individual densities ρδ, ργ , and ρl are temperature-dependent.

Deformation of the semi-solid skeleton will also induce liquid flow. Assuming

rigid body motion of the grains and deformation localized to the liquid phase,

the increase in volumetric flow rate ∆vliq that is required to compensate for

deformation at the scale of an individual element can be approximated as

∆vliq =
ε̇sv

(1− gs)
∗ Vliq, (13)

where ε̇sv is the volumetric part of the strain rate applied on the domain,

and calculated via ε̇sv = ε̇xx + ε̇yy + ε̇zz, and Vliq represents the volume of

liquid present in an element. Note that while Eq. 13 simulated the effects of

mechanical deformation on fluid flow in a semi-solid, mechanical deformation

itself is not directly simulated.

Applying the divergence theorem, the mass balance becomes∫
V el

∇ · ~vldV = 2 ·
∫
Sesl

~vl · ~ndS + 2 ·
∫
Sel

~vl · ~ndS + 2 ·∆vliq = 0, (14)

where V el represents the total volume of the two facing tetrahendrons, Sesl =

Sv · V e is the dendritic solid/liquid interfacial area, V e represents the total

volume of dendrite envelope, and Sel represents the total lateral area of the two

tetrahedral elements. Then, by substituting Eq. (4) and Eq. (5) into the second

right term of Eq. (14), and assuming that the first right term of Eq. (14) can

be replaced by Sesl ·~vl·n = −Sesl ·βv∗, one obtains the master fluid flow equation

for dendritic flow,

2

∫
Sel

(
z′

2

2µl
+ C1

)
∇p · ~ndS + 2

∫
Sel

(
C2e

z′
δ − C3

)
∇p · ~ndS

− 2v∗βSesl + 2 ·∆vliq = 0. (15)

d. Numerical implementation of fluid flow model

At the scale of a single element, integration of Eq. (15) over the intra-

dendritic and extra-dendritic parts is computed numerically by dividing both
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the grain envelope length and extra-dendritic liquid channel width into n = 1000

segments along the height of tetrahedral element. By doing the integration and

applying Green’s theorem over each segment, one obtains the coefficient of the

Laplacian of the pressure field, ∇2p. Then, as it has been assumed that the

flow direction is parallel to the exterior triangular facet of each tetrahedron, the

3D mesh is simplified to a set of 3-node 2D triangular elements. The resulting

pressure field is given by

pl =

3∑
i=1

Nip
∗
i , (16)

where p∗i represents the nodal pressures, and Ni represents the shape functions

of the triangular element that approximate the pressure field within element e

in the local (x′, y′, z′) coordinate system. Applying the Galerkin finite element

method to Eq. (15), the elemental matrix equation is obtained:

[K]
e


p∗1

p∗2

p∗3

 = be + {φ}e, (17)

where [K]
e

represents the element stiffness matrix, be is the load vector which

results from solidification shrinkage and/or deformations exerted on the domain,

and {φ}e is related to the external boundary conditions.

Once the individual element matrices have been developed, they are assem-

bled together into the global stiffness matrix. This global matrix is then solved

with a conjugate gradient linear iterative method using a free open access pro-

gram C++ library known as IML++ [26]. The solution provides the pressure

throughout the domain. Complete details of the numerical implementation can

be found in [15].

III. Results and Discussions

To study liquid feeding within a semisolid, the microstructure and the solid

fraction of individual grain needs to be determined first; the local solid fraction
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predicted by the solidification model [19] provides both the local permeability

at the grain scale through Eq. 3 and the extra-dendritic liquid channel width.

Fig. 3 shows the evolution in internal solid fraction (g′s = 1 − g′l) given by

the solidification model under three cooling rates (1, 5, and 55 K/s) for an Fe-

0.07 wt.%C grain with a final diameter of 300 µm, along with schematics of the

corresponding flow patterns.

At the highest cooling rate of 55 K/s, the solidification model predicts a

semisolid structure where the dendrite tips touch each other at a solid fraction

of 0.45 (i.e where this curve intersects the g′s = gs curve). Beyond this solid

fraction all the liquid is intra-dendritic, and thus the flow would also be intra-

dendritic as illustrated in the ”upper right” diagram of Fig. 3. As gs increases,

the permeability of the porous medium would correspondingly be reduced. For

the low cooling rate of 1 K/s, the grain morphology transitions from dendritic

to globular at gs=0.22 as g′s → 1. It is at this point that the existing dendrite

structure becomes fully solid; the remaining extra-dendritic liquid within the

element then solidifies in globular fashion. In a globular grain morphology, the

permeability within the dendrite envelope is zero, and fluid flow will only take

place in the extra-dendritic region as shown in the ”middle right” diagram. At

moderate cooling rates, both intra-dendritic and extra-dendritic flow can take

place as shown in the ”lower right” diagram since the grain is dendritic yet the

dendrites from adjoining grains have not yet touched. In the case of 5 K/s, this

flow pattern is possible until gs ∼ 0.75 at which point the flow would become

extra-dendritic since g′s → 1.

The flow patterns qualitatively described in Fig. 3 can be quantitatively

described using the 3D fluid flow model. For these simulations, a domain 6 ×

6 × 6 =216 mm3 with 8000 cubic grains each 300 µm in equivalent diameter

(d = 3
√
Vg with Vg being the grain volume), assuming a dynamic viscosity of µl =

7.0 × 10−3Pa · s [27], and neglecting solidification shrinkage and deformation

(β=0, ε̇sv=0) was utilized. The secondary arm spacing was kept λ2=20 µm.

The boundary conditions were set as follows: a constant pressure on the top

surface where the fluid is drawn in, i.e. p0 = 0 Pa, a constant non-zero average
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flux on the bottom surface of -20 µm3/µm2 · s−1 and closed lateral boundaries,

i.e. ql = 0 µm3/µm2 · s−1. Due to non-zero fluid flux on the bottom surface and

closed lateral surfaces, downward flow inside the domain occurs, drawing fluid

in from the top surface.

Fig. 4 shows pressure maps for three semisolids, each at gs = 0.60, containing

cubic equiaxed grains created under different cooling rates (1, 5, and 55 K/s).

The results provide a general view of the pressure distribution and the different

pressure drops resulting from different microstructures. The pressure is seen to

decrease almost linearly from the top to the bottom, indicating that the further

away from the top of the domain the lower pressure is. A significant pressure

drop is observed with the high cooling rate of 55 K/s (Fig. 4(c)), achieving a

local value of -986 Pa. This is an indication that a higher resistance of liquid

is found when liquid going through an intra-dendritic network as compared to

globular structure (Fig. 4(a)), where free fluid flow occurs only in the extra-

dendritic zone. Between the two extreme cases, the presence of the liquid in

both extra-dendritic and intra-dendritic region leads to an intermediate pressure

drop (Fig. 4(b)). Although it is unrealistic to assume a constant grain size

(the same equivalent grain diameter) for different cooling rates, we have done

this for the purpose of decoupling cooling rate and grain size effects as they

relate to flow behaviour. As the fully solidified structure is generated using

a Voronoi tessellation, the average grain size could be varied as a function of

cooling rate based on an empirical equation; however grain size measurement of

primary delta grains are very challenging because of the δ to γ solid state phase

transformation.

a. Permeability assessment

Limiting cases and transition tested

The dendritic fluid flow model can be verified by comparing its predictions

of permeability against corresponding predictions from the analytical Carman-

Kozeny equation for two scenarios: a dendritic structure with Sv = 2
λ2

[20]

(termed Dendritic Sv) and a globular structure with Sv calculated as the sum of
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the grain surface areas assuming globular structure divided by the volume of the

whole domain [15] (termed Globular Sv). For these tests, a series of simulations

were performed between 0.5 < gs < 1 under the conditions described previously

using uniform cubic grains. The permeabilities predicted by the simulations

can then be calculated from the average pressure difference between the top

and bottom surfaces,

K = µl
q1(

p1−p0
Ldis

) , (18)

where Ldis is the distance between the two surfaces, p1 is the averaged pressure

on the bottom side of the domain, and q1 is the flux on the bottom surface. Note

that as there is a single grain size and a uniform temperature applied to the

entire domain, there can be no variation in the permeability between individual

cubic grains.

Fig. 5 compares the permeability predicted by the 3D fluid flow model and

the values calculated with the Carman-Kozeny equation utilizing the Dendritic

Sv and the Globular Sv. As can be seen, an excellent match is achieved between

the simulations with a cooling rate of 55 K/s (green diamonds) and the dendritic-

flow analytical solution. In this scenario, ~ved is zero and the domain is a porous

medium with a uniform ~vid flowing through the intra-dendritic regions. Further,

an excellent match is achieved between the simulations with a cooling rate of

1 K/s (red circles) and the globular-flow analytical solution. In this scenario,

flow occurs only in the extra-dendritic regions.

The interesting result occurs for the permeabilities calculated from the sim-

ulation using a cooling rate of 5 K/s (blue triangles). As can be seen, there is a

significant deviation between the model’s predictions and the Carman-Kozeny

equation using the two limiting values for Sv up to a solid fraction of ≈ 0.75. Ini-

tially, the dendrite envelope grows into the liquid and g′s is relatively low (Fig. 3).

Fluid thus flows through both the intra-dendritic and extra-dendritic regions,

causing the permeability to fall between the dendritic and globular cases. As

g′s → 1, flow becomes predominantly extra-dendritic and eventually the per-

meability follows the Carman-Kozeny equation derived based on the Globular
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Sv.

By testing the numerical results against an analytical equation, the present

model is shown to be an alternative technique for obtaining the semisolid perme-

ability. The calculated values could also be compared to experimental measure-

ment using the given interfacial surface area concentration to provide additional

insight.

Influence of grain size on the permeability

The assumption made in Fig. 5 was of uniform grain size. However, this

is not a realistic description of microstructure. Fig. 6(a) shows the relative

frequency of grain size in a 3D domain created using the Voronoi tessellation for

an average grain size of 300 µm. Fig. 6(b) shows the corresponding evolution

in g′s for five different grain sizes each solidified using a cooling rate of 5 K/s.

As can be seen, for smaller grains (60 µm), g′s quickly approaches 1 and thus

forms a globular structure due to the constraints of solute enrichment in front

of the solid/liquid interface, whereas for coarse grains (722 µm) the dendrite tip

is free to move until impingement with neighbouring grains. Thus, at a specific

time, which corresponds to a specific bulk solid fraction, fluid flow takes place in

the extra-dendritic region for smaller realistic grains, passes through the intra-

dendritic region for these grains which are impinging with their neighbours, and

has mixed characteristics for grains at intermediate size levels.

Given the intrinsic variability in grain size, the permeability within a semisolid

will be influenced by this quantity. Fig. 7 shows the permeability within a do-

main with 8000 grains, having an average grain size of 300 µm, predicted by the

fluid flow model containing a mixture of both globular and dendritic grains of

realistic geometry. It can be seen that at lower solid fraction, the permeability

of the mushy zone neither follows the intra-dendritic flow behaviour (Carman-

Kozeny with Dendritic Sv) nor the extra-dendritic flow behaviour (Carman-

Kozeny with Globular Sv) but is a mixture of both. Eventually, the permeabil-

ity approaches the Carman-Kozeny permeability for structure with Globular Sv.

In this realistic case the Carman-Kozeny equation with Dendritic Sv does not
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provide a good analytical description of permeability until gs = 0.96.

Permeability-Microstructure Map

Referring to Fig. 7, it can be seen that the semisolid permeability can only

be predicted by the Carman-Kozeny equation with Dendritic Sv or Globular

Sv over a small range of solid fraction; outside of this range there is a great

deviation from either the dendritic or the globular cases. This deviation has not

been identified before. In order to show the range of validity of the Carman-

Kozeny equation using these two limiting cases in predicting the mushy zone

permeabilities in metallic alloys, a series of quasi-steady flow simulations were

performed, by varying the solid fraction (30 values), cooling rate (10 values

assuming an average grain size of 300 µm and a secondary arm spacing of 20 µm),

and grain size (10 different values assuming a cooling rate of 10 K/s), using a

domain containing 8000 realistic grains with an average grain size of 300 µm, to

provide over 600 unique permeability values. These simulations again neglected

solidification shrinkage and deformation (β=0, ε̇sv=0).

Fig. 8 provides two permeability maps that show the range of solid fraction

where the Carman-Kozeny equation with Dendritic Sv or Globular Sv is valid in

predicting permeability; (a) as a function of cooling rate and (b) as a function

of dimensionless grain size d/(2 ·λ2). Each map is divided into two shaded areas

corresponding to Globular Sv and Dendritic Sv, and an unshaded area where

neither expression matches the simulation result within the tolerance of 50%.

Beginning with Fig. 8(a) it can be seen that under conditions of lower cooling

rates the Carman-Kozeny equation with Globular Sv is most appropriate; the

valid solid fraction range will decrease with increasing cooling rate and is no

longer valid once the cooling rate exceeds 15 K/s. At high cooling rates es-

pecially greater than 10 K/s, the Carman-Kozeny equation with Dendritic Sv

is most appropriate over a wide range of solid fraction. However, at low solid

fraction there are no circumstances where the simulated permeability matches

the analytical expressions. Further, there is an important combination of cool-

ing rate and solid fraction where neither analytical expression is valid, covering

15



all solid fractions. Any macroscale model, having the same solidification condi-

tions, and utilizing the Carman-Kozeny equation with one of these two limiting

cases could show discrepancies as compared to experimental findings. Turning

now to Fig. 8(b), it can be seen that the Carman-Kozeny equation with Den-

dritic Sv or Globular Sv is no longer valid when d/(2 · λ2) is greater than 30

for the specific cooling rate of 10 K/s. At lower values of this dimensionless

grain size the Carman-Kozeny expression for globular structures is found to be

valid at very high solid fractions as the liquid is mostly dominated by the extra-

dendritic flow whereas the Carman-Kozeny expression for dendritic structures

is only valid over a very small range of parameters.

It is clear that from Figs. 6 to 8 that the permeability of a semisolid do-

main containing a mixture of two morphologies cannot be predicted with the

Carman-Kozeny equation via a single scaling law for Sv throughout the whole

solid fraction range. Although this is commonly done in macrosegregation sim-

ulations, it makes the permeability assessment less accurate. Utilizing our 3D

equiaxed-dendritic meso-scale solidification model [19], it is possible to calculate

Sv for a domain containing multiple morphologies as

Sv =

Nelem∑
i=1

Sesl

Vdomain
, (19)

with Sesl =

 2
λ2
· Venv, g′s < g′critical

Sglobule, g
′
s ≥ g′critical

whereNelem represents the total num-

ber of elements within the domain. Sesl represents the solid/liquid interfacial

area of an individual element, Vdomain is the total volume of the domain, Venv is

the volume of the dendrite envelope and Sglobule is the surface area of globular

element.

The key point in determining the Sv through our solidification model is

identification of the internal solid fraction g′s at which flow within an individual

element is dominated by intra-dendritic or extra-dendritic character; if the g′s is

greater than critical point g′critical the element is treated as globular and intra-

dendritic liquid flow is ignored. Fig. 9 plots the permeability calculated from the
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Carman-Kozeny equation utilizing the solidification model -calculated Sv for five

different critical values of g′s as well as the dendritic Sv and globular Sv cases,

along with the prediction from the 3D fluid flow model for a cooling rate of 5 K/s

and the phenomenological macroscale permeability model of Wang et al. [20]

(applied using a grain size of 300 µm and a dendrite envelope sphericity φe = 1).

As can be seen, the approach to calculate Sv via the 3D equiaxed-dendritic

meso-scale solidification model results in a clear transition zone in permeability

from dendritic to globular character and matches much more closely to the

3D fluid flow model predicted values than the dendritic Sv and globular Sv

cases, and Wang’s model. However, deviations still exist and the importance

of selecting the ”right” value of g′s is evident since a higher critical value of g′s

provides a smaller deviation at higher solid fractions but then under-estimates

the permeability at lower solid fraction. The determination of the critical point

of g′s requires further investigation both experimentally and numerically. The

observed differences could also be due to limitations within the 3D fluid flow

model, which is built on the assumptions of a uniform porous medium within

the dendrite envelope with locally Sv = 2
λ2

and Poiseuille flow when g′s ∼ 0.

Another option for overcoming the limitations of using Sv calculated by λ2

would be to use a general form that considers grain growth, coalescence and

impingement [2].

It should be noted that Wang’s model also shows a transition regime, but

the overall permeability predicted by this phenomenological approach matches

with the Carman-Kozeny results for globular Sv at a much lower solid fraction

∼0.68 than our model-predicted values. This is due to the simplified assumption

of average grain size used in Wang’s model which fails to consider the influence

of grain size distribution and thus the flow path within different grains.

Localization of Liquid Feeding

In a domain that contains different grain sizes, different semisolid morpholo-

gies are possible as shown in Fig. 6(b). Due to these different morphologies, flow

is likely to concentrate in areas with a higher local permeability. To reproduce
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this feeding localization, a set of simulations were carried out by imposing a

pressure difference between the top and bottom surfaces of the domain consist-

ing of 8000 realistic grains, p0=0 Pa and p1=-2 MPa, while the lateral surfaces

were closed, and solidification shrinkage and deformation were neglected (β=0,

ε̇sv=0). These conditions provide uni-directional flow with the same flow rate

of liquid entering and leaving the domain.

Fig. 10 shows the 3D permeability map and corresponding local fluid velocity

resulting from these simulations at solid fractions of (a) 0.70 and (b) 0.84 to

highlight the capability of the fluid flow model in predicting the localization of

liquid feeding. First, by examining a-1, it can be seen that the permeability

between different grains varies considerably, due to differences in g′s and the

extra-dendritic liquid channel width. The maximum local permeability at bulk

gs = 0.7 is 10730 µm2; the value of 0 µm2 represents grains that have fully

solidified. As the permeability for globular structures is higher than dendritic

structures at the same solid fraction (Fig. 7), this variation in local permeability

would lead to further localization in liquid feeding. Second, by examining a-2,

it can be seen that the fluid selectively flows through areas having larger local

permeability, at higher local speeds. At higher solid fraction, gs = 0.84 and

shown in a-2, the maximum local permeability decreases to 4096 µm2 due to

the increase in g′s and narrowing of the extra-dendritic liquid channels. The

maximum liquid channel velocity, shown in b-2, consequently also decreases.

b. Fluid flow induced by phase changes and tensile deformation

The 3D dendritic fluid flow model can also be used to calculate the amount

of liquid required to compensate phase changes and imposed tensile deforma-

tions under dendritic solidification conditions. This requires activation of the

shrinkage and deformation terms of Eq. 15(i.e. β 6= 0, ε̇sv 6= 0 follow Eqs. 9 and

13) Four different compositions were assessed; Fe-0.07wt.%C (non-peritectic),

Fe-0.12wt.%C (hypo-peritectic), Fe-0.16wt.%C (peritectic) and Fe-0.18wt.%C

(hyper-peritectic). The solidification simulations contained 8000 cubic grains,

500 µm in size, cooled at a rate of 55 K/s. The uniform selection of grain size
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(cubic grain) and the high cooling rate ensured the creation of a fully dendritic

semisolid structure. For boundary conditions, the flow simulation assumed that

all the domain surfaces except the one on the top were closed and a gauge pres-

sure of 0 Pa, was imposed on the top surface. Hence, the liquid suction from

top surface due to shrinkage and deformation can be predicted.

Fig. 11(a) shows the variation in net liquid flow per unit volume (Q/V )

predicted by the 3D dendritic fluid flow model to compensate for solidification

shrinkage in all four of the carbon compositions of interest assuming β 6= 0 and

ε̇sv=0. First, as expected, it can be seen that although the predicted inflow of

liquid decreases with increasing solid fraction, the net liquid flow is significantly

different dependent on alloy composition. Interestingly, a sharp rise in net fluid

flow is predicted to be needed to compensate for shrinkage in the peritectic

alloy once the peritectic transformation starts to account for the additional

density difference of the austenitic phase. The sharp rise occurs at a relatively

low solid fraction for the hyper-peritectic alloy, followed by the peritectic and

hypo-peritectic alloy at increasing gs. The net fluid flow required then remains

relatively constant until the final stages of solidification.

For a non-peritectic alloy, the amount of liquid required to compensate for

solidification shrinkage can also be calculated analytically as(
Q

V

)
= β

dgs
dt
, (20)

where Q and V represent the volumetric flow rate and total domain volume.

For further validation purposes, the shrinkage calculated by this equation for a

Fe-0.07wt.%C alloy is also shown in Fig. 11(a). As can be seen, a good match

is obtained between the simulation and analytical curves.

The amount of liquid required during solidification and peritectic transfor-

mation can be linked to the formation of casting defects. Liquid flow that is

inadequate to compensate for the solidification shrinkage could result in the

formation of large voids to maintain continuity. At low solid fraction, a high

permeability likely allows for adequate liquid feeding to heal any formed defects.

At high solid fraction, Fig. 11(a) shows that for the hyper-peritectic alloy, the
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jump in fluid required due to the peritectic transformation occurs at a ”low-

enough” solid fraction where the permeability remains relatively high. Using

the same argument, defects would be most prone to occur in the hypo-peritectic

alloy (Fe-0.12wt.%C) since the peritectic transformation occurs at a very high

solid fraction where the permeability is quite low (Fig. 11(a)). Pressure contours

of hypo-peritectic alloy are also plotted for different solid fractions to emphasis

the influence of peritectic transformation shown in Fig. 11(b). It can be seen

that before peritectic transformation, an increase in solid fraction would result

in a minor increase in the pressure drop by comparing Fig. 11(b1) and (b2),

while a significant pressure drop occurs after the peritectic transformation as

shown in Fig. 11(b3) which is two orders of magnitude greater than Fig. 11(b1)

and (b2). The high pressure drop near the end of solidification would accelerate

the formation of defects in a hypo-peritectic alloy; a similar finding has also

been reported in prior work [28].

Liquid feeding can be also induced by the deformation of the mushy zone.

If, concurrently, semisolid tensile deformation is too large and liquid feeding is

too low, a hot tear will form. Generally, the amount of net inflow of liquid

required during solidification is a given by the combination of shrinkage and

deformation. In order to investigate the dominant factors that cause hot tearing

in hypo-peritectic grades (Fe-0.12wt.%C), known to be most-sensitive to hot

tearing [28], a series of simulations were performed that consider both shrinkage

and deformation (β 6= 0 and ε̇sv 6= 0); the same boundary conditions as for

Fig. 11 were utilized.

Fig. 12 shows the net flow caused by the combination of solidification shrink-

age and deformation, and their contributions under two different strain rates

of 0.1 s−1 and 0.001 s−1. Under the strain rate of 0.1 s−1, the induced liq-

uid feeding mainly comes from deformation at lower solid fractions(<0.92), and

amount of liquid required would increase when the peritectic transformation

occurs mentioned in the prior section. The dominant factor near the end of so-

lidification would due to the large amount of shrinkage caused by the peritectic

transformation.
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Under small strain rate of 0.001 s−1 also shown in Fig 12(lower), clearly,

lower strain rates result in a less liquid flow to counteract deformation. The

net flow caused by shrinkage and deformation is dominated by the solidification

shrinkage. In the industrial process, the strain rates during casting of steel are

thought to be relatively small, on the order of 10−3∼10−4 s−1. The results

shown in Fig. 12 then seem to indicate that shrinkage associated with the large

interfacial area of the dendritic structure is the key factor to cause defects.

IV. Conclusions

A 3D dendritic fluid flow model has been developed to quantitatively predict

the fluid flow behaviour induced by the solidification shrinkage at the meso-

scale, through thousands of equiaxed grains. The model is based on the Darcy-

Brinkman form of the Navier-Stokes equation at a prescribed solid fraction. Us-

ing the framework of the Voronoi tessellation, the tortuosity of flows around the

complex interdendritic channels was considered. This new technique captures

both semi-solid morphology and the fluid flow behavior during solidification,

and provides an alternative to the convectional experiment for the prediction

of permeability by using the given surface area concentration. Comparison of

the numerical and experimental permeabilities shows a good agreement (within

± 5%) for either extra-dendrite or intra-dendritic flow, and deviation from the

conventional Carman-Kozeny equations using simplified Dendritic Sv or Glob-

ular Sv are explained in detail. The results quantitatively demonstrate the

effect of grain size and microstructure morphology during solidification on the

permeability prediction.

The localization of liquid feeding under the pressure gradient is also repro-

duced in the present investigation. The results highlight the ability in predict-

ing liquid feeding within a semisolid domain where local permeability varies.

Additionally, the advection of fluid due to shrinkage and deformation for non-

peritectic and peritectic steel grades with dendritic morphology during solid-

ification was captured for the first time, and the results were validated with
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empirical equations. Due to the large solid/liquid surface area of the dendritic

structure, the advection of fluid is dominated by the shrinkage during the peri-

tectic phase transformation within the mushy zone under the small deformation

rate, and easily cause the formation of casting defect.
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VI. Figure Headings

Figure 1: (a) Meso-scale simulation domain containing 1000 grains; (b) Single

Voronoi grain; (c) Polyhedral structure; (d) Tetrahedron with an illustrative

schematic of the equiaxed-dendritic microstructure.
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Figure 2: Schematic diagram of two facing tetrahedrons, the velocity profile of

fluid passing through the inter- and extra- dendritic regions, and the correspond-

ing 3-node 2D triangular element. The velocity profiles for the cases with only

intra-dendritic and only extra-dendritic flow are also shown.

Figure 3: Internal solid fraction evolution within a single grain with a final di-

ameter of 300 µm under three cooling rates along with the schematic diagrams

of intra-dendritic, extra-dendritic and both fluid flow types. The dashed line

represents the curve g′s = gs.
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Figure 4: Pressure distribution within a domain containing 8000 grains at

gs=0.60 solidified under three cooling rates: (a) CR=1K/s, (b) CR=5K/s and

(c) CR=55K/s. Note that Fig. 4(a) and (b) share the same color bar.

Figure 5: Validation of permeability predicted by present model with the Carman-

Kozeny equation for a uniform network of grains with microstructure solidified

under the cooling rate of 1K/s, 5K/s and 55K/s.
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Figure 6: (a) Equivalent grain size d distribution within the semisolid domain

and (b) the variation in g′s for five grains containing different sizes.
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Figure 7: Variations of permeability as a function of solid fraction for a semisolid

domain containing both intra-dendritic and extra-dendritic flow.

Figure 8: Permeability map as a function of solid fractions and (a) cooling rate

as well as (b) dimensionless grain size, d/(2 · λ2).
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Figure 9: The effect of Sv on the permeability evolution with solid fraction for

different cases of g′s along with dendritic and globular Sv, as well the 3D fluid flow

model and Wang’s model [20].
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Figure 10: Variations in permeability (-1) and local velocity (-2) within a semisolid

domain at (a)gs=0.70 and (b) gs=0.84. The grain size was 500 µm, and the cooling

rate was 5 K/s
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Figure 11: A comparison of Q/V predicted by the 3D dendritic fluid flow model

and Eq. 20 as a function of solid fraction for various Fe-C alloys along with the

pressure contours at three solid fractions for Fe-0.12wt.% alloy. The required

flux to compensate for the peritectic transformation in peritectic grades is also

included in the flow predictions of the 3D dendritic fluid flow model. Note that

Fig. 10(b1) and (b2) share the same color bar.
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Figure 12: A comparison of the Q/V predicted by the 3D dendritic fluid flow

model taking into account both solidification shrinkage and deformation. Strain

rates of 0.1 s−1 (upper) and 0.001 s−1 (lower) are examined.
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