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Lay Abstract

The core challenge of human action recognition in video is generating the descriptor

which preserves the spatial (the content in a single frame) and temporal (the corre-

lation between the frames) information of the video. Various actions need a different

number of frames to represent. For example, it is hard to distinguish action walking

and running given a single frame. Current approaches adopt Deep Neural Networks

(DNNs) to study the video descriptor. However, they fail to preserve the temporal

information of the entire video and require a large number of training videos, hence

cannot be directly used in the few-shot scenario. In this thesis, we propose three

video descriptor generation approaches that preserve the temporal information of the

entire video and only introduce a few training parameters. We show that our ap-

proaches achieve comparable or better performance compared to the state-of-the-art

approaches for both regular and few-shot human action recognition tasks.
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Abstract

Over the past decade, the research of deep learning has dramatically progressed and

achieved overwhelming performance for various tasks. This success is highly depen-

dent on a large number of manually labeled data. However, it is not always possible

to collect enough training data, meanwhile manually labelling a large amount of

data is labour-intensive. To learn from a limited number of examples with super-

vised information, a new machine learning paradigm called Few-Shot Learning (FSL)

is introduced. For the few-shot human action recognition task, the core challenge

is preserving both spatial and temporal information of the video with few labeled

videos. Many approaches based on Convolutional Neural Networks (CNNs) or Re-

current Neural Networks (RNNs) have been proposed to address the human action

recognition task. However, these works fail to preserve the temporal information of

the entire video and require a large number of training videos, hence directly ap-

plying them to solve the few-shot human action recognition would severely overfit.

Currently, there are only a few approaches to address the few-shot human action

recognition problem. They either focus on learning how to compare the similarity

between video descriptors with few training samples or solving the training samples

deficiency by data augmentation. In this thesis, we propose three approaches that pre-

serve the temporal information of the entire video given the frame/segment features:
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the Discriminative Video Descriptor (DVD), Temporal Attention Vector (TAV) and

Contents and Length based Temporal Attention (CLTA). These methods preserve the

temporal information of the entire video by convolving frame features with the basis

for small dimensional space recursively, aggregating the frame/segment features with

temporal weights which are manually defined, aggregating the frame features with

temporal weights which is provided by learned Gaussian distribution functions based

on both length and content of the video, respectively. We evaluated our approaches

on different datasets in various scenarios (regular or few-shot), our approaches achieve

comparable or better results compared to the state-of-the-art approaches on different

datasets.
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Chapter 1

Introduction

Action recognition in a video clip is an easy task for human vision systems, but au-

tomating this procedure is challenging and important in a wide range of applications,

including healthcare (Avci et al., 2010; Mulroy et al., 2003), human–computer inter-

action (Rautaray and Agrawal, 2015; Mitra and Acharya, 2007), surveillance (Vish-

wakarma and Agrawal, 2013; Leo et al., 2004) or sociology (Coppola et al., 2019,

2016). For example, if the suspicious actions can be detected automatically by a

surveillance system, it can launch a warning in advance and take measures against

any danger. Another instance is the use of action recognition for rehabilitation, rec-

ognizing the action that the patients are performing makes the system having the

ability to evaluate the recovery status of the patients.

In computer vision, the automated action recognition can be described as a sub-

task of video classification. In video classification, the goal is to classify a video

into one or more categories (labels), whereas in human action recognition the video

must contain at least one person, and the person performs at least one action (e.g.

shooting the basketball), several examples are shown in Figure 1.1. Unlike the images,

1
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Playing Violin

Basketball

Shaving Beard

Fencing

Long Jump

Figure 1.1: Examples of videos contained human actions and their labels.

the video has spatial aspects (the contents in individual frames) and temporal aspects

(the ordering of the frames). Usually, actions can be described as the combination of

multiple simpler movements of a specific body part (rising the right leg then move the

right leg forward). A few actions (e.g. standing) can be probably recognized by using

a single or only a few frames but more complex actions (e.g. walking vs running)

might require the combination of multiple frames for better accuracy. Local temporal

information plays an important role in differentiating between such actions. Moreover,

long duration temporal information might be needed. Therefore, finding a good

action representation, which contains both appearance and temporal information, is

the foundation of human action recognition in videos.

In recent years, due to the development of powerful computing devices (e.g., GPU

2
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and distributed platforms), advanced algorithms (Convolutional Neural Networks

(CNNs) (Krizhevsky et al., 2012) and Long Short-term Memory (LSTM) (Hochre-

iter and Schmidhuber, 1997)) and larger datasets (e.g., ImageNet data with 1000

classes (Deng et al., 2009)), deep learning-based approaches defeat humans in many

fields. For example, AlphaGo (Silver et al., 2016) defeats human champions in the

ancient game of Go and residual network (ResNet) (He et al., 2016) obtains better

classification performance than humans on ImageNet. In the human action recogni-

tion field, deep learning-based rather than handcraft -based approaches is becoming a

trend. Lots of powerful models are proposed (Simonyan and Zisserman, 2014; Karpa-

thy et al., 2014; Tran et al., 2015; Carreira and Zisserman, 2017; Feichtenhofer et al.,

2017; Tran et al., 2018; Varol et al., 2018) and achieve outstanding performance based

on the abundant labeled training videos. However, acquiring labeled training sam-

ples is error-prone and labour-intensive. It is even harder to obtain correct labeled

videos than images, especially for the tasks which need precise boundaries (e.g. multi-

activities detection) because it is hard to say the action starts and ends at a specific

frame.

Current deep learning-based approaches cannot be rapidly generalize from a few

examples. In contrast, humans learn new tasks rapidly by utilizing what they learned

in the past. For example, a child who learned how to add can rapidly transfer his

knowledge to learn multiplication given a few examples (e.g., 3 × 2 = 2 + 2 + 2 and

3 × 1 = 1 + 1 + 1). Another example is that given a few photos of a stranger, a

human can easily identify that person from a large number of photos. In order to

learn from a limited number of examples with supervised information, a new machine

learning paradigm called Few-Shot Learning (FSL) (Fink, 2005; Fei-Fei et al., 2006)
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Figure 1.2: Comparison of dataset splits between human action recognition in
regular and few-shot scenarios. For the regular human action recognition task,

videos in training, validating and testing sets have the same labels. For the few-shot
human action recognition task, videos in these three sets have no overlapped labels.
However, the query set contains one or more videos that have the same labels as the

videos in the support set.

is proposed. The typical scenario of few-shot human action recognition is classifying

the actions given a dataset that has several different actions (classes), but each of the

actions only has few (usually 1 to 10) labeled videos. In the few-shot scenario, the
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dataset is split into the training set, validating set, and testing set without overlapped

classes (in the regular scenario , training, validating and testing sets contain the same

classes but different samples from these classes. See the top figure in Figure 1.2). The

training, validating and testing sets are further split into multiple episodes (similar to

the concept batch in the regular scenario). Each episode contains a support set and a

query set. The support and query sets are constructed as follows: 1. Randomly select

N classes from the training, validating or testing set. 2. For each of the N classes,

randomly select k samples to form the support set and several (usually different

from k) samples to form the query set. Samples in the query set have no overlap

with samples in the support set (see the bottom figure in Figure 1.2). The model is

first trained on the training set and the episode which achieves the highest accuracy

on the validating set is chosen. Similar to the regular scenario that the network

updates its parameters every batch, in the few-shot scenario, the network updates

its parameters every episode. The objective is to train the network that minimizes

the N -way prediction loss of the samples in the query set. During the testing phase,

the model is further fine-tuned on the testing support set then evaluated with the

samples in the query set.

In the following of this chapter, we first review current deep learning-based ap-

proaches for regular and few-shot action recognition tasks as well as the widely used

datasets. Then we elaborate on the objective, scope and contributions of this thesis.
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1.1 Background

1.1.1 Deep Neural Network-based Action Recognition Mod-

els

Recently, Deep Neural Networks (DNNs) have been widely applied to many areas and

have shown outstanding performance, such as image classification and captioning,

speech recognition, natural language processing, etc. The input data for these tasks

are either 1D (e.g. sentences) or 2D (e.g. images). However, human action recognition

usually uses videos as input data, which contain three dimensions, width, height and

time. Therefore, such high complex data make video harder to be represented by a

high-level descriptor compared to the sentences or still images. The challenge of action

recognition is extracting one or more descriptors that could preserve both spatial and

temporal information. Over recent years, many approaches were proposed, and can

be roughly separated into two categories based on how the descriptor is generated: 1.

One-stage approaches. These approaches usually use one or more deep networks that

take the video and/or optical flow clips as input to generate the descriptor directly.

The descriptor contains both spatial and temporal information and can be directly

used for classification. 2. Two-stage approaches. This type of methods first generates

the frame or clip features, each of them contains partial information of the video, then

aggregates these features to form the video descriptor before classification.

One-stage Approaches

As classifying human action in the video requires both appearance and motion in-

formation, early proposed deep learning-based methods (Baccouche et al., 2011; Ji
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3D 

CNN
Prediction

Frame Clip

Figure 1.3: Solving the action recognition task with 3D CNN. Unlike the 2D CNNs
which are used to solve image-related problems, the filters in 3D CNN have 4

dimensions, height, width, time and channel. This figure only shows a single 3D
CNN, but in practice, more 3D CNNs may be adopted.

et al., 2013; Karpathy et al., 2014; Tran et al., 2015) apply 3D CNN to generate

the video descriptor. As the name indicates, the 3D CNNs are constructed by ex-

tending an additional time dimension to the 2D CNNs. Therefore, the 3D CNNs

can take short video clips as input (usually 16 frames) and capture both spatial and

temporal information, see Figure 1.3. In 2011, Baccouche et al. (Baccouche et al.,

2011) proposed the first 3D CNN which only has 3 layers and takes the grayscaled

frames as input to classify the human actions. In order to let the network can cap-

ture more information of the videos, Ji et al. (Ji et al., 2012) adopted the grayscale,

gradient-x, gradient-y, optical flow-x and optical flow-y of each frame as the input

for their 3D network. In 2014, Karpathy et al. (Karpathy et al., 2014) evaluated the

3D CNN on a large video action recognition dataset (Sports-1M). They tried to find

the best temporal connectivity pattern for action recognition by evaluating multiple

CNN architectures that each take a different approach to combine information across

the time domain. To explore the performance of the 3D CNNs with various sized

kernels on different video understanding tasks, Tran et al. (Tran et al., 2015) pro-

posed a network called C3D which contains eight 3D convolutional layers, five 3D

max-pooling layers and two fully connected layers. After the experiments, they find

that using the kernel with size 3× 3× 3 (width, height, time) and pooling with stride
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2 × 2 × 2 (except the first pooling layer) gives the best results. However, compared

to the handcrafted approaches (e.g. improved dense trajectories (IDT) (Wang and

Schmid, 2013) or Multi-skIp Feature Stacking (MIFS) (Lan et al., 2015)), these 3D

CNN-based methods have not demonstrated an overwhelming performance. Varol et

al. (Varol et al., 2018) claimed that the long-range temporal information is significant

for the action recognition task. They extended the 3D CNN to accept longer video

clips (maximum 100 frames) and have shown better results compared to the hand-

crafted methods (Wang and Schmid, 2013; Lan et al., 2015). Wang et al. (Wang et al.,

2018a) proposed a non-local block that aims to capture the long-range relationship

between frames. The block using dot products to measure the similarity of every

frame feature map pairs. Different from the model proposed by Varol et al. (Varol

et al., 2018), non-local block not only captures the long-range temporal correlation

between video frames but also the spatial information between different frame pairs.

A deeper 3D CNN, called I3D (Carreira and Zisserman, 2017), was proposed recently.

The authors provided an approach that could let 3D network pre-training on image

datasets by repeating a single image multiple times to form a boring video. They

showed that the action recognition accuracy is boosted even pre-train the 3D CNN

with image data. Since the 3D CNNs bring huge computational overhead, Sun et

al. (Sun et al., 2015) separated the 3D convolution into the Kronecker product of 2D

and 1D convolutions to reduce the number of training parameters of the network.

Thus, the kernel complexity is reduced by an order of magnitude from x × y × t to

x+ y+ t where x, y and t are the width, height and depth of the kernel, respectively.

To further investigate the differences (except time complexity) between the 3D and

(2+1)D convolutions, Tran et al. (Tran et al., 2018) replaced the residual blocks of
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the resNet (He et al., 2016) with the 3D residual blocks and (2+1)D residual blocks.

Note that the number of parameters in the (2+1)D blocks approximately is equal to

that implementing full 3D convolution. They find that the (2+1)D residual network

performs better than the 3D residual network for the action recognition task. Li et

al. (Li et al., 2019) captured the features of video along height-weight, height-time and

weight-time dimensions by applying three 2D convolution operations. The features

are then fused with various weights according to the video sample. By replace 3D

convolution with multiple 2D convolution operations, the network is able to choose

the most important view of features during classification. Unfortunately, these deep

3D CNNs have not shown better performance compared to handcrafted methods if

they are only trained on medium-sized datasets (e.g. UCF101 (Soomro et al., 2012)).

On the other hand, by pre-training them on large image classification datasets (e.g.

ImageNet) or large video action recognition datasets (e.g. Kinetics (Kay et al., 2017)),

all of them dramatically outperformed the handcrafted approaches.

By analyzing the above models, we can make the following conclusions: 1. The

long-range temporal information is important for human action recognition in videos.

By extending the 3D network to accept longer video clips as input, the network learns

the long-range temporal correlation between frames which benefits the performance.

2. The deeper or wider architectures may not necessarily increase the performance for

the action recognition task. Although the deeper model has more power to express

more complex functions, the outstanding performance heavily depends on abundant

labeled training samples.

Another branch of works apply multiple standard CNNs to solve the human action

recognition task, like Figure 1.4. Simonyan and Zisserman (Simonyan and Zisserman,
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Figure 1.4: Solving the action recognition task with two-stream networks. The
spatial stream takes a single frame as input meanwhile the temporal stream takes
the stack of optical flow around the selected frame as input. The sub-networks of

the spatial and temporal streams may have some connection between certain layers.
Usually, the class scores of two streams are averaged as final scores. However, some
approaches fuse (i.e. concatenate) the output before the class scores as the video

descriptor then predict the result based on that.

2014) proposed a two-stream network that adopts one standard CNN (spatial stream)

to capture the appearance information and try out using optical flow data in an ad-

ditional standard CNN stream (temporal stream) to capture the motion information.

The input for the spatial stream is a randomly selected RGB frame from the video.

The input for the temporal stream is an optical flow clip of 10 consecutive RGB

frames, where the frames are selected around the input of the spatial stream (the

optical flow clip only has 1 color channel, thus it can be processed by a 2D CNN).

The two-stream network has achieved similar performance compared to handcrafted

approaches (e.g. IDT). The spatial and temporal streams make the prediction sep-

arately then the class scores are averaged as the final class score. Instead of inde-

pendent processing the spatial and temporal stream, researchers further investigate
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the impact of fusing the feature map of the temporal stream to spatial stream ear-

lier (Feichtenhofer et al., 2016a), fusing the temporal stream to spatial stream at each

block of resNet (Feichtenhofer et al., 2016b) and fusing two streams at each residual

block (Feichtenhofer et al., 2017). By adding the interaction between two streams,

the performance of action recognition has been further increased. Some researchers

proposed to use both 2D and 3D CNNs to capture spatial and temporal information

of video separately. ARTNets (Wang et al., 2017a) are constructed by stacking mul-

tiple generic building blocks, called SMART block, whose goal is to simultaneously

model appearance and motion from RGB input. Specifically, SMART blocks decouple

the spatiotemporal learning module into an appearance branch for spatial modeling

and a relation branch for temporal modeling. Some researchers combine the hand-

crafted features with the learned features. Wang et al. (Wang et al., 2015) proposed

the trajectory-pooled deep-convolutional descriptor (TDD) which uses the IDT algo-

rithm (Wang and Schmid, 2013) to find the trajectories based on the original RGB

frames then sum the value in learned feature maps according to the coordinates of the

trajectories. To capture the long-range relationship between video frames, researchers

adopted sparse sampled (Wang et al., 2016) or key volume mined (Zhu et al., 2016)

frame stacks over the entire video as the input to the two-stream network. The evalu-

ation of these approaches has shown the long-range temporal information boosts the

performance for the action recognition task. Instead of making the prediction based

on the video descriptor, Girdhar et al. (Girdhar et al., 2017) proposed ActionVLAD

which uses the residual vector between the frame features and the anchor vectors to

make the prediction. The model subtracts the frame features with pre-selected an-

chors (represents a standard sub-action) to calculate the residual vector and make the
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prediction based on that residual vector. Also, some researchers consider adding more

streams during the video classification. Wang et al. (Wang et al., 2017b) proposed

a spatiotemporal pyramid network that learns video features at multiple abstraction

levels. More specifically, the video descriptor is generated by three parts, the spatial

feature, the temporal feature and the spatial-temporal feature.

By taking a closer look at these two-stream-based approaches, we observe that the

input of the motion stream is usually a short optical flow clip. It may cause the wrong

prediction if two actions resemble in a short snippet, though distinguishable in the

long-range (e.g. run vs long jump). Although using the sparse selected frames over

the entire videos as input improves the performance of two-stream-based approaches,

comparing the performance between (Wang et al., 2016; Zhu et al., 2016) which apply

a sparse selection of frames and (Feichtenhofer et al., 2016a,b, 2017) which connect

the appearance and motion streams, the latter approaches achieve higher recogni-

tion accuracy. Therefore, we may conclude that sparse selection cannot guarantee

that important frames are selected, these approaches may still fail to predict some

composite actions.

Two-stage Approaches

Different from the above one-stage approaches (e.g. using frames and/or optical

flow clips as the input of deep network to generate video descriptors directly. The

network studies both spatial and temporal information of videos simultaneously),

other approaches (Yue-Hei Ng et al., 2015; Lan et al., 2017; Fernando et al., 2015;

Fernando and Gould, 2016; Zolfaghari et al., 2018; Kar et al., 2017) apply a two-stage

strategy to solve the human action recognition problem. This type of approaches
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Figure 1.5: Solving the action recognition task with the feature aggregation
approach. The network (2D or 3D) extract the feature for each frame (or video clip)

then applies a certain algorithm to aggregate (e.g. max pool, weighted sum, etc.)
these features as video descriptor. The network shares parameters when extracting

features and makes the prediction based on the video descriptor.

extract the frame features first by deep networks then aggregates these features as

the descriptor of the video, see Figure 1.5. (Yue-Hei Ng et al., 2015; Lan et al.,

2017) attempted to preserve the spatial features by applying a 2D CNN over each

frame and generate the video descriptor by using static pooling methods (e.g. max-

pooling) in the time-domain over the frame features. However, the static-pooling

operation is insensitive to the order of the video frames, hence a few actions cannot

be distinguished. For example, opening the door versus closing the door are not

distinguishable using max-pooling operation. To deal with this problem, Fernando

and Gould (Fernando and Gould, 2016) applied a dynamic pooling approach, which is

called rank-pooling, to encode the frame features. The rank-pooling operation uses a

regularized support vector regression (SVR) to find a vector u such that u·va < u·vb for

all v that a < b, where va and vb are the features of frame a and b, respectively. Kar et

al. (Kar et al., 2017) claimed each frame should have different importance for a certain
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action. Therefore, they proposed an Adaptive Scan Pooling (AdaScan) approach

which encodes the frame features with the weighted mean operation. The weights

are calculated based on current frame features and all previous features by using a

three layers MLP. Zolfaghari et al. (Zolfaghari et al., 2018) proposed the Efficient

Convolutional Network for Online Video (ECO) to catch the long-range temporal

relations between video frames. The videos are split into the same length subsections

and one frame is selected from each subsection. The ECO uses a 2D CNN to extract

the frame feature maps for each of the selected frames, then a 3D CNN is applied

to study the spatiotemporal information between the frame feature maps. However,

these methods cannot adapt to videos with various lengths. The Recurrent Neural

Networks (RNNs) have also been used with CNNs for the video action recognition

task. (Donahue et al., 2015; Ballas et al., 2015) made an effort to use CNN + RNN

to study the spatiotemporal information of the video. However, these frameworks

introduce more computation overhead and do not show overwhelming performances

compared to other only CNN-based approaches.

1.1.2 Few-shot Learning for Image and Video Classification

Although the DNNs have shown outstanding performance on visual recognition tasks,

the performance heavily relies on the abundant labeled training instances. In a specific

circumstance, examples with supervised information are hard or impossible to acquire

due to privacy, safety or ethical issues. In order to learn from a limited number of

examples with supervised information, a new machine learning paradigm called Few-

Shot Learning (FSL) is proposed. Current FSL approaches use prior knowledge to

help model recognition. Based on how prior knowledge is used, FSL approaches
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can be categorized into three perspectives. 1. Use the prior knowledge to augment

training data. Since the number of training data is increased, a standard supervised

approach can be applied and more accurate results can be obtained. 2. Use prior

knowledge to reduce the size of the hypothesis space. Since the hypothesis space

becomes smaller, a small number of training data is sufficient to obtain accurate

results. 3. Use prior knowledge to alter the search for the best hypothesis in the

given hypothesis space. Prior knowledge alters the search strategy by providing a

good initialization or guiding the search steps.

Since current few-shot approaches mainly focus on image classification and few-

shot image classification has strong connections with few-shot action recognition, we

first introduce the recent progress of few-shot image classification in this section.

After that, we will introduce current progress for few-shot action recognition.

Data Augmentation Approaches

Applying data augmentation to enrich training samples is widely used as pre-processing

in the few-shot image and video classification tasks. For example, on images, one can

use the translation, flipping, shearing, scaling, reflection, cropping and rotation. By

introducing the augmentations, networks are able to capture different kinds of in-

variance of training samples. However, designing these handcraft-based rules needs

the knowledge of the dataset domain and consumes expensive labor costs. Further-

more, the augmentation rules may be specific to a certain dataset which makes it

hard to apply to other datasets. In order to solve this problem, some advanced

data augmentation methods were proposed to solve the FSL problem. An early FSL

paper (Miller et al., 2000) learns a set of geometric transformations from a similar
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class by iteratively aligning each sample with the other samples. Some researchers

applied a single transformation function between sample pairs by assuming all cate-

gories share some transformable variability (Hariharan and Girshick, 2017). Another

strategy augments the dataset by selecting samples with the target label from a large

data set which is weakly labeled or unlabeled. For example, apply an SVM classifier

on the current dataset, then use it to predict the samples in a weakly labeled dataset

and add these samples with target labels to the current dataset (Pfister et al., 2014).

Instead of training a classifier, label propagation is directly used to label the unla-

beled data (Douze et al., 2018) or select the informative unlabeled data by progressive

strategy (Wu et al., 2018).

Reduce the Hypothesis Space

In the presence of multiple related tasks, multitask learning-based approaches learn

multiple related tasks simultaneously by exploiting both task-generic and task-specific

information. For a certain FSL task, only task-specific information (reduced hypothe-

sis) needs to be learned since the task-generic can be learned from other related tasks

which have sufficient data. Hence, they can be naturally used for FSL. In (Zhang

et al., 2018), the authors applied two networks, each of them for different tasks, share

the first few layers for the generic information, and learn different final layers to deal

with different outputs. In (Motiian et al., 2017), a variational auto-encoder is first

pre-trained from the source tasks and then cloned to the target task. Some layers

in the two variational auto-encoders are shared in order to capture the generic infor-

mation while allowing both tasks to have some task-specific layers. Instead of share

the network parameters, some works penalize or regularize the difference between the
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parameters of networks (Yan et al., 2015; Luo et al., 2017). In (Salakhutdinov et al.,

2012), a set of data sets are grouped into a hierarchy via unsupervised learning. Data

sets in each group together learn the class prior probabilities. For a new few-shot class,

one first finds the group this new class belongs to and then models it by the class

prior drawn from the group-wise shared prior probability. In (Salakhutdinov et al.,

2011), the feature learning step in (Salakhutdinov et al., 2012) is further improved

with the use of deep Boltzmann machines (Salakhutdinov and Hinton, 2009).

Another branch of study applies embedding learning to reduce the dimension

of features. By reducing the feature dimension, one can then construct a smaller

hypothesis space which subsequently requires fewer training samples. Matching Net-

work (Vinyals et al., 2016) studies different embedding functions for training and test-

ing samples. An active learning variant of Matching Network (Bachman et al., 2017)

labels the most important unlabeled samples and added them to the training set. The

Matching Network was also extended to set-to-set matching (Choi et al., 2018), which

is useful in labeling multiple parts of a sample. Instead of comparing the embedding

of the testing sample with the embeddings of every training sample, Prototypical

Networks (ProtoNet) (Snell et al., 2017) only compares it to the class prototypes.

Empirically, this leads to more stable results and reduces the computation cost. This

idea of using prototypes is also introduced to the Matching Network (Wang et al.,

2018b). In (Ren et al., 2018), the authors applied the data augmentation via a semi-

supervised way during training the protoNet. The Attentive Recurrent Comparators

(ARC) (Shyam et al., 2017) applies an LSTM with attention (Bahdanau et al., 2014)

to compare different regions of the testing sample with the class prototype, and then

uses a bidirectional LSTM to embed all comparisons as the embedding. The Relation
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Network (Sung et al., 2018) uses a CNN to embed both testing and training samples,

then concatenates them as the embedding, which is fed to an MLP to output the

similarity score. The Graph Neural Networks (GNNs) are also used in (Liu et al.,

2018; Garcia and Bruna, 2017) to leverage information from local neighbourhoods.

There is another way to deal with the FSL problem which is introducing external

memory. The features of training samples are first extracted and stored in the mem-

ory, then each new sample in the testing set is represented by a weighted average of

contents extracted from the memory. This limits testing samples to be represented

by contents in the memory, and thus essentially reduces the size of hypothesis space.

Memory-Augmented Neural Networks (MANN) (Santoro et al., 2016) learns the em-

bedding function which maps samples of the same class to the same value. Samples

of the same class refine their class representations in the memory together. This class

representation can be viewed as a refined class prototype in ProtoNet. The abstract

memory (Xu et al., 2017) applied two memories. One extracts relevant key-value

pairs from a fixed memory containing a large-scale machine annotated dataset, an-

other refines the extracted values and abstracts out the most useful information for

the few-shot image classification.

Improve the Searching Algorithm

According to the supervised learning theory, when the supervised information is rich,

the network has enough information to update the training parameters and find an

appropriate step size to update these parameters. However, in FSL related tasks,

the provided dataset is not large enough, and the obtained network is unreliable.

Although the network could be pre-trained on a large dataset with a similar task,
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simply fine-tune the training parameters may still lead to over-fitting given a few-shot

dataset. To address this problem, some works apply regularization to prevent over-

fitting. In (Yoo et al., 2017), the filters of a pre-trained CNN are clustered together

according to some auxiliary information, and then fine-tuned by group-wised back-

propagation using a few-shot training dataset. A model regression network (Wang and

Hebert, 2016b) captures the task-agnostic transformation which maps the parameter

values obtained by training on a few examples to the parameter values that will be

obtained by training on a lot of samples. Similarly, in (Kozerawski and Turk, 2018),

the transformation function that maps the embedding to a classification decision

boundary is learned. Some other works utilize the network which is well trained

for other tasks. For example, (Wang and Hebert, 2016a) pre-trains the networks

from the unlabeled data to cluster the data samples, then adapts them to the new

task with the few-shot dataset. Although no supervised information is fed to the

network, similar samples still can be grouped together. (Bart and Ullman, 2005)

leverages the samples and classifiers from other similar classes. It first replaces the

sample features from similar classes with the features of samples from the new class,

then reuses the learned classifier and only adjusts the classification threshold. The

improvement (Gidaris and Komodakis, 2018) was proposed to learn how to combine

the existing parameters which are learned from a similar dataset. The pre-trained

network may not be enough to encode the samples from a few-shot dataset, some

works introduce additional parameters to tackle this problem (Hoffman et al., 2013).

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) utilizes a set of mata-

learners, each of them is for a specific task. These learners update the network with

the sum of losses over the training samples in a few-shot dataset.
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Few-shot Human Action Recognition in Video

Since labeling the videos are labor-intensive and error-prone, a large number of cor-

rectly labeled videos are usually not available. Since the training samples are few,

current few-shot classification approaches use prior knowledge from similar or dissim-

ilar tasks to help the prediction. Compared to the few-shot image classification (Chen

et al., 2019; Finn et al., 2017; Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016),

fewer efforts have been made to address the few-shot human action recognition task.

The few-shot video classification needs to capture both spatial information and the

temporal correlation among frames to achieve satisfactory classification accuracy. One

type of approach trains a deep network on multiple datasets for different but related

tasks, the network studied both task-generic and task-specific prior knowledge from

different datasets. When applying the network for the few-shot classification task, it

will generate more accurate features even with only few training examples since the

task-generic information is already learned from other tasks and only need training

a classifier. Srivastava et al. (Srivastava et al., 2015) trained the two layers LSTM to

predict the next 13 frames given the first 16 frames of video. The LSTM is pre-trained

on 300 hours YouTube data then combined with a linear classifier to address the few-

shot human action recognition task. Another branch of work address the problem by

training the network to compare video samples. The intuition is that if a model can

determine the similarity of two videos, it can easily classify the unseen videos with

the labeled videos. Zhu et al. proposed a Compound Memory Network (CMN) (Zhu

and Yang, 2018) which embeds the video as multiple descriptors. The descriptors of

a video are generated by calculating the weighted sum of residual between the frame

features and trainable hidden variables (salience variables). The weights are the dot
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product between the frame features and the salience variables. CMN introduces ad-

ditional abstract memory to store the video descriptors which need to be frequently

updated. The final prediction is done by comparing the Euclidean distance between

the testing sample descriptors and stored descriptors. To preserve the temporal in-

formation of the video, another possible way is to align the segment (Bishay et al.,

2019) or frame (Cao et al., 2019) features between videos, then compare the sum of

similarity scores between aligned segments/frames to make the final prediction. The

similarity scores can be calculated by a trainable relation module or cosine similarity.

Although the temporal information is captured, these methods bring huge additional

computational overhead for alignment operation. Other approaches directly increase

the number of training videos by Generative Adversarial Networks (GANs) or data

augmentation. Since the training samples are sufficient, the few-shot action recog-

nition problem can be solved by standard machine learning methods. Dwivedi et

al. (Kumar Dwivedi et al., 2019) proposed a Prototype GAN to generate additional

examples for novel actions. The generated examples are semantically similar to real

examples (closed to real examples in a certain space) belonging to that class and are

used to train a more generalized classifier. However, they use C3D (Karpathy et al.,

2014) to extract video features hence the long-range temporal information is discarded

(because C3D only accepts 16 frames video clip as input). Zhang et al. (Zhang et al.,

2020) applied spatial/temporal jigsaw and rotation to increase the number of training

samples and train a shallow 3D CNN by a self-learning manner, a relation module

was used to calculate the similarity between video samples. However, the shallow

3D CNN may fail to extract distinctive video descriptors even with the number of

training samples is increased.
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Dataset # Video # Class Background Camara Motion Year Resource

KTH 2391 6 Static Slight 2004 Actor Staged
HOLLYWOOD2 2517 12 Dynamic Yes 2009 Movies
UCF Sports 182 10 Dynamic Yes 2009 TV, Movies
HMDB51 6681 51 Dynamic Yes 2010 Youtube
UCF101 13320 101 Dynamic Yes 2012 Youtube
Sports-1M 1133158 487 Dynamic Yes 2014 Youtube
Charades 9848 157 Dynamic Yes 2016 Actor Staged
Kinetics 500000 600 Dynamic Yes 2017 Youtube
Something Something 220847 174 Almost static Slight 2017 Actor Staged

Table 1.1: Summary of Major Action Recognition Datasets.

1.1.3 Dataset

The number of action recognition datasets has grown steadily in recent years. These

datasets can vary widely in a number of characteristics. Not only because they differ

in the number of action categories and videos, but also in the average length of video

clips and resolution, whether videos are trimmed (i.e. they are short clips containing

only the action of interest) or untrimmed (i.e. actions can happen anywhere in a long

video not necessarily focused in the action), whether they are multi-class (i.e. a video

can belong only to a single class) or multi-label (i.e. a clip can belong to multiple

classes at the same time), and in the different data modalities and ground-truth

annotations they provide. Each dataset is normally also associated with a particular

evaluation protocol that needs to be followed when reporting results in the literature

to ensure performance numbers are always comparable across different works. We

summarize the widely used datasets in Table 1.1, and introduce the details of each

dataset.
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KTH

The KTH dataset (Schuldt et al., 2004) contains 6 classes of human actions performed

several times by 25 subjects in four different scenarios: outdoors, outdoors with scale

variation, outdoors with different clothes and indoors. The dataset contains 2,391

videos. All videos are taken over homogeneous backgrounds with a static camera

with 25fps frame rate. The videos are down sampled to the spatial resolution of

160× 120 pixels and have a length of four seconds on average.

HOLLYWOOD2

HOLLYWOOD2 dataset (Marszalek et al., 2009) provides a dataset with 12 classes

of human actions distributed over 3,669 video clips and approximately 20.1 hours of

video in total. The dataset intends to provide a comprehensive benchmark for human

action recognition in realistic and challenging settings. The dataset is composed of

video clips from 69 movies.

UCF Sports

UCF Sports dataset (Rodriguez et al., 2008) consists of various sports actions collected

from broadcast television channels including ESPN and BBC. The dataset represents

a natural pool of actions featured in a wide range of scenes and viewpoints. The

dataset includes 10 actions and total of 150 videos. All videos have the resolution of

720× 480.
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HMDB51

HMDB51 dataset (Kuehne et al., 2011) collects videos from various sources, mostly

from movies, and a small proportion from public databases such as the Prelinger

archive, YouTube and Google videos. The dataset contains 6,849 clips divided into

51 action categories, each containing a minimum of 101 clips. The actions categories

can be grouped into five types: 1. General facial actions. 2. Facial actions with

object manipulation. 3. General body movements. 4. Body movements with object

interaction. 5. Body movements for human interaction.

UCF101

The UCF101 dataset (Soomro et al., 2012) has 13,320 videos from 101 action cat-

egories, and gives the largest diversity in terms of actions and with the presence of

large variations in camera motion, object appearance and pose, object scale, view-

point, cluttered background, illumination conditions, etc. The videos in 101 action

categories are grouped into 25 groups, where each group can consist of 4-7 videos of

an action. The videos from the same group may share some common features, such

as similar background, similar viewpoint, etc.

Sports-1M

The Sports-1M dataset (Karpathy et al., 2014) consists of 1,133,158 YouTube videos

annotated with 487 classes. The classes are arranged in a manually-curated taxonomy

that contains internal nodes such as Aquatic Sports, Team Sports, Winter Sports, Ball

Sports, Combat Sports, Sports with Animals, and generally becomes fine-grained by

the leaf level. For example, the dataset contains 6 different types of bowling, 7

24



Ph.D. Thesis – Y. Bo McMaster University – Computer Science

different types of American football and 23 types of billiards. There are 1000 to

3000 videos per class and approximately 5% of the videos are annotated with more

than one class. The annotations are produced automatically by analyzing the text

metadata surrounding the videos.

Charades Dataset

Charades dataset (Sigurdsson et al., 2016) collects hundreds of people recording videos

in their own homes, acting out casual everyday activities. The dataset is composed

of 9,848 annotated videos with an average length of 30 seconds, showing activities

of 267 people from three continents, and over 15% of the videos have more than

one person. Each video is annotated by multiple free-text descriptions, action labels,

action intervals and classes of interacted objects. In total, Charades provides 27,847

video descriptions, 66,500 temporally localized intervals for 157 action classes and

41,104 labels for 46 object classes.

Kinetics Dataset

Kay et al. (Kay et al., 2017) proposed a deepMind Kinetics human action video

dataset. The dataset consists of approximately 500,000 video clips, and covers 600

human action classes with at least 600 video clips for each action class. Each clip

lasts around 10 seconds and is labeled with a single class. The actions cover a broad

range of classes including human-object interactions such as playing instruments, as

well as human-human interactions such as shaking hands and hugging.
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Something Something V2 Dataset

The Something-something dataset (Goyal et al., 2017) collects a large number of

densely-labeled video clips that show humans performing pre-defined basic actions

with everyday objects. It contains 220,847 videos and for each video in the training

and validation sets the object annotations and video labels are provided. For example,

for a label like ”Putting [something] onto [something]” there is also an annotated

version like ”Putting a cup onto a table”. In total, there are 318,572 annotations

involving 30,408 unique objects.

1.1.4 The Datasets for Few-shot Human Action Recognition

Since addressing the few-shot human action recognition does not require large-scale

datasets, researchers modify the existing action recognition datasets to make them

more reliable under the few-shot setting. The dataset is split into the training set,

validating set, and testing set without overlapped classes. Usually, the model is

trained on the training set and the validating set is used to decide the best number of

training episode of the model. The support set is constructed by uniformly selecting

n classes from the training/validating/testing set, each of them contains k randomly

selected samples. The query set contains several samples from one of the n classes.

Samples in the query set have no overlap with samples in the support set.

UCF101 for few-shot learning

Zhang et al. (Zhang et al., 2020) uniformly selected 70 classes as the training set, 10

classes as the validating set and 21 classes as the testing set. The detailed classes for

each set are shown in the appendix of this chapter.
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HMDB51 for Few-shot Learning

Zhang et al. (Zhang et al., 2020) split the HMDB51 dataset into the training (31

classes), validating (10 classes) and testing sets (10 classes). The details of splits are

shown in the appendix of this chapter.

Kinetics for Few-shot Learning

Zhu et al. (Zhu and Yang, 2018) provided the modified kinetics for the few-shot video

classification which randomly chooses 64 classes for training, 12 classes for validation

and 24 classes for testing, each of the classes contains 100 uniformly chosen videos.

The details of splits are shown in the appendix of this chapter.

Something Something V2 for Few-shot Learning

Cai et al. (Cao et al., 2019) reported that they randomly selected 100 classes from

the whole dataset. The 100 classes are then split into 64, 12 and 24 classes as the

training, validation and testing set, respectively. However, the details of classes are

not provided in (Cao et al., 2019).

1.1.5 Performance of Recent Approaches on Different Datasets

In this section, we report the action recognition accuracy of current deep networks-

based approaches on different datasets, see Table 1.2. The first and second part

of Table 1.2 contains the performances of the one-stage approaches and the two-

stage approaches, respectively. The UCF101 and HMDB51 are the most widely used

datasets for the human action recognition task. The Kinetics dataset is became widely

used by the most recent approaches.
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Approaches KTH HOLLOYWOOD2 UCF-Sports HMDB51 UCF101 Sports-1M Charades Something Something Kinetics

3D CNNs (Ji et al., 2013) 91.7
3D CNNs (Baccouche et al., 2011) 94.4
None-local (Wang et al., 2018a) 39.5 77.7
Fusion CNNs (Karpathy et al., 2014) 65.4 60.9
C3D (Tran et al., 2015) 85.2 61.1
FSTCN (Sun et al., 2015) 59.1 88.1
Two-stream (Simonyan and Zisserman, 2014) 59.4 88
Key Volume Mining (Zhu et al., 2016) 63.3 93.1
LTC (Varol et al., 2018) 64.8 91.7
TDD (Wang et al., 2015) 65.9 91.5
ActionVLAD (Girdhar et al., 2017) 66.9 92.7
ST Pyramid Network (Wang et al., 2017b) 68.9 94.6
Two-stream Fusion (Feichtenhofer et al., 2016a) 69.2 93.5
TSN (Wang et al., 2016) 69.4 94.2
ST-ResNet (Feichtenhofer et al., 2016b) 70.3 94.6
ARTNet (Wang et al., 2017a) 70.9 94.3 78.7
SMN (Feichtenhofer et al., 2017) 72.2 94.9
R3D (Tran et al., 2018) 78.7 97.3 73.3 75.4
I3D (Carreira and Zisserman, 2017) 80.9 97.8 74.2
Rank Pooling (Fernando and Gould, 2016) 40.6 87
AdaScan (Kar et al., 2017) 54.9 89.4
TLE (Diba et al., 2017) 71.1 95.6
DOVF (Lan et al., 2017) 71.7 94.9
ECO (Zolfaghari et al., 2018) 72.4 94.8 43.9 70
LRCN (Donahue et al., 2015) 82.6
GRU-RCN (Ballas et al., 2015) 85.7
Conv Pooling (Yue-Hei Ng et al., 2015) 88.6 71.8

Table 1.2: The recognition accuracy of current deep learning-based approaches on
different action recognition datasets.

UCF101 HMDB51 Kinetics SomethingV2
Methods 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Prototype GAN (Kumar Dwivedi et al., 2019) 57.8 80.2 34.7 54.0
3D Prototypical Net (Zhang et al., 2020) 57.1 78.3 38.1 53.2
3D RelationNet (Zhang et al., 2020) 58.2 78.4 38.2 53.2
3D SoSN (Zhang et al., 2020) 62.6 81.5 40.8 55.2
ARN (Zhang et al., 2020) 66.3 83.1 45.5 60.6
Matching Net (Zhu and Yang, 2018) 53.3 74.6
MAML (Zhu and Yang, 2018) 54.2 75.3
CMN (Zhu and Yang, 2018) 60.5 78.9
TARN (Bishay et al., 2019) 66.6 80.7
TSN++ (Cao et al., 2019) 64.5 77.9 33.6 43.0
CMN++ (Cao et al., 2019) 65.4 78.8 34.4 43.8
TRN++ (Cao et al., 2019) 68.4 82.0 38.6 48.9
TAM (Cao et al., 2019) 73.0 85.8 42.8 52.3

Table 1.3: Recent approaches reported mean accuracy of 5-way video classification
on UCF101, HMDB51, Kinetics and SomethingV2.

We also report the recent few-shot human action recognition approaches in Ta-

ble 1.3. These approaches use the datasets for FSL as mentioned in Section 1.1.4.

Most approaches use the few-shot Kinetics as a standard evaluation dataset.
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1.2 Objective and Scope

Upon the study of current approaches for human action recognition in videos, we

made several observations that heavily affect the recognition accuracy. First of all, al-

though the deep models (e.g. I3D (Carreira and Zisserman, 2017), ST-Multiplier (Fe-

ichtenhofer et al., 2017)) show better performance compared to the shallow models

(C3D (Tran et al., 2015)), the performance heavily relies on abundant labeled data.

Without enough training data, deep models do not necessarily outperform other ap-

proaches. Second, by utilizing additional input resources (e.g. optical flow), the deep

learning-based models can capture more distinctive features of the video which benefit

the action recognition task. Third, the long-range temporal information is important

for identifying human actions in videos. Extending the temporal dimension of 3D

CNNs to accommodate longer video clips (Varol et al., 2018) or using sparse selec-

tion approaches (Wang et al., 2016; Lan et al., 2017; Zolfaghari et al., 2018) are both

effective ways to enable networks to study the long-range temporal information. How-

ever, both ways fail to preserve the temporal information of the entire video since the

input size (length of video clips) is limited. Fourth, current few-shot human action

recognition approaches (Zhu and Yang, 2018; Bishay et al., 2019; Cao et al., 2019)

mainly focus on using the unsupervised classifiers to identify the class of the action

in videos (e.g. compare the similarity/distance between the descriptor of labeled and

unlabeled videos). A major reason is that the unsupervised classifiers do not need to

be trained with labeled data, thus the number of labeled data does not affect their

performance.

Given the above observations and issues, the objective of this research is to explore

and develop new approaches that learn the video descriptor from a limited number
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of training samples for human action recognition in videos. The aim is to reduce

the dependency on large manually annotated collections of videos, helping the re-

search in action recognition become more feasible for those with limited computing

resources, or for those with limited personnel to collect and annotate data for new

action recognition tasks. To develop new approaches, the following questions should

be answered.

1. Since long-range temporal information is important for action recognition,

would it be possible to preserve the temporal information of the entire video? Simple

1D/3D convolution fails to fully preserve the temporal information since they only

accept the fixed-size input. CNN+RNN model could accept the inputs with various

sizes, but it would severely overfit in few-shot scenarios. Would it be possible to use

the weighted sum to aggregate the frame features and fully preserve the temporal

information? How to generate the weights for each video frame?

2. A major problem for few-shot learning is how to prevent over-fitting. One of

the possible solutions is reducing the training parameters of the network. Would it be

possible to use two-stage approaches to solve the few-shot human action recognition in

videos? Given the fact that it is hard to train a deep network given only few training

videos, is it possible to use an image pretained backbone to extract frame features

without fine-tuning then adopting certain methods to preserve temporal information?

3. Current approaches for few-shot human action recognition in videos mostly

measure the distance between the descriptor of videos to identify the class of actions.

However, the power of the linear classifier may be underestimated. Would it possible

to use a linear classifier for few-shot action recognition in videos? How many labeled

videos are sufficient to train a linear classifier?
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Leave the above questions aside, at the same time we will be limiting the scope of

this thesis to keep the research feasible. In particular, we only consider recognizing

the actions performed by the real person, which means the action recognition of the

skeleton is not addressed. Also, in this work, we focus on visual feature generation,

and audio features will not be addressed in the main course of the dissertation.

1.3 Contributions

The main contribution of this thesis shall be the investigation of the different ways

to generate effective video descriptors for the few-shot human action recognition in

videos. We focus on temporal information preservation (frame/segment correlation)

in this thesis. The frame/segment features are handcrafted (e.g. SIFT or SURF) or

extracted by image pre-trained 2D CNNs. More specifically, in this work we made

the following contributions:

1. We built a general video descriptor on top of various frame/segment features,

called Discriminative Video Descriptor (DVD). DVD preserves the temporal informa-

tion of the entire video by recursively convolving the frame/segment feature sequence

with the basis for a lower-dimensional space over the temporal dimension (similar with

the convolutional operation on temporal dimension in 3D CNN, except the filter val-

ues are pre-defined and fixed). We demonstrated that DVD can preserve the temporal

information of entire videos with various lengths. We provided the time complexity

of the DVD generation and demonstrate DVD boosts the action recognition accuracy

even with a simple SVM on multiple datasets.

2. We proposed a frame/segment features aggregation approach which adapts var-

ious lengths of videos, called Temporal Attention Vectors (TAVs). TAVs preserve the
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temporal information of video by aggregating the temporal weighted frame/segment

features where the temporal weights are manually defined (not trainable). We showed

that TAVs extremely reduce the number of training parameters compared to the two-

stream and CNN+LSTM-based approaches and can be fast calculated. We introduced

various ways to generate the value of TAVs and report their performance. We exper-

imentally demonstrated that the optimal design of TAVs outperforms the previous

state-of-the-art human action recognition benchmarks in few-shot scenarios with not

fine-tuned backbones (ImageNet pre-trained resNet152 and Kinetics pre-trained I3D).

We also demonstrated that TAVs achieve the same level of performance compared to

the state-of-the-art approaches in regular action recognition scenario.

3. We proposed a temporal attention generation approach which adapts video

with various lengths to address the few-shot human action recognition task, called

Contents and Length -based Temporal Attention (CLTA). CLTA uses Gaussian dis-

tribution function as the template to generate temporal attention weights for each

frame and the mean and standard deviation are studied from frame contents and

video length. We provided visual analysis between CLTA and other temporal at-

tention approaches, which demonstrates that CLTA generates customized temporal

attention for different videos. Compared to other temporal attention approaches that

share the same temporal weights over different videos, CLTA achieves better few-shot

action recognition accuracy. Combining CLTA with a linear classifier (e.g. soft-max

classifier), we showed that CLTA achieves comparable (1-shot scenario) or better (5-

shot scenario) few-shot action recognition accuracy compared to the state-of-the-art

method on various datasets.
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1.4 Outline

This thesis is organized as follows. We introduce the generation details of DVD

approaches, as well as the experiment results in chapter 2. In chapter 3, we introduce

the TAVs and show the experiments with various fusion methods. We also show

the comparison with the state-of-the-art in the regular and few-shot scenario. In

chapter 4, we introduce the CLTA approaches and explain the difference from other

temporal attention approaches. We evaluate CLTA on three datasets in the few-shot

scenario and compare it to other temporal attention and state-of-the-art approaches.

We conclude the thesis in chapter 5.

1.5 Appendix

1.5.1 The splits details for few-shot UCF101 dataset

Actions of Train Split

ApplyEyeMakeUp, Archery, BabyCrawling, BalanceBeam, BandMarching, Baseball-

Pitch, Basketball, BasketballDunk, BenchPress, Biking, Billiards, BlowDryHair, Body-

WeightSquats, Bowling, BoxingPunchingBag, BoxingSpeedBag, BreastStroke, Brush-

ingTeeth, CricketBowling, Drumming, Fencing, FieldHockeyPenalty, FrisbeeCatch,

FrontCrawl, Haircut, Hammering, HeadMassage, HulaHoop, JavelinThrow, Juggling-

Balls, JumpingJack, Kayaking, Knitting, LongJump, Lunges, MilitaryParade, Mix-

ing, MoppingFloow, Nunchucks, ParallelBars, PizzaTossing, PlayingCello, PlayingDhol,

PlayingFlute, PlayingPiano, PlayingSitar, PlayingTabla, PlayingViolin, PoleVault,

33



Ph.D. Thesis – Y. Bo McMaster University – Computer Science

Pullups, PushUps, Rafting, RopeClimbing, Rowing, ShavingBeard, Skijet, SoccerJug-

gling, SoccerPenalty, SumoWrestling, Swing, TableTennisShot, Taichi, ThrowDiscus,

TrampolineJumpling, Typing, UnevenBars, WalkingWithDog, WallPushups, Writin-

gOnBoard, YoYo.

Actions of Validation Split

ApplyLipstick, CricketShot, HammerThrow, HandstandPushups, HighJump, HorseRid-

ing, PlayingDaf, PlayingGuitar, Shotput, SkateBoarding.

Actions of Test Split

BlowingCandles, CleanAndJerk, CliffDiving, CuttingInKitchen, Diving, FloorGym-

nastics, GolfSwing, HandstandWalking, HorseRace, IceDancing, JumpRope, Pom-

melHorse, Punch, RockClimbingIndoor, SalsaSpin, Skiing, SkyDiving, StillRings,

Surfing, TennisSwing, VolleyballSpiking.

1.5.2 The splits details for few-shot HMDB51 dataset

Actions of Train Split

brush hairs, catch, chew, clap, climb, climb stairs,dive, draw sword, dribble, drink,

fall floor, flic flac, handstand, hug, jump, kiss, pullup, punch, push, ride bike, ride

horse, shake hands, shoot bow, situp, stand, sword, sword exercies, throw, turn, walk,

wave.
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Actions of Validation Split

cartwheel, eat, golf, hit, laugh, shoot ball, shoot gun, smile, somersault, swing

baseketball.

Actions of Test Split

fencing, kick, kick ball, pick, pour, pushup, run, sit, smoke, talk.

1.5.3 The splits details for few-shot Kinetics dataset

Actions of Train Split

air drumming, arm wrestling, beatboxing, biking through snow, blowing glass, blow-

ing out candles, bowling, breakdancing, bungee jumping, catching or throwing base-

ball, cheerleading, cleaning floor, contact juggling, cooking chicken, country line danc-

ing, curling hair, deadlifting, doing nails, dribbling basketball, driving tractor, drop

kicking, dying hair, eating burger, feeding birds, giving or receiving award, hop-

scotch, jetskiing, jumping into pool, laughing, making snowman, massaging back,

mowing lawn, opening bottle, playing accordion, playing badminton, playing bas-

ketball, playing didgeridoo, playing ice hockey, playing keyboard, playing ukulele,

playing xylophone, presenting weather forecast, punching bag, pushing cart, read-

ing book, riding unicycle, shaking head, sharpening pencil, shaving head, shot put,

shuffling cards, slacklining, sled dog racing, snowboarding, somersaulting, squat, surf-

ing crowd, trapezing, using computer, washing dishes, washing hands, water skiing,

waxing legs, weaving basket.
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Actions of Validation Split

baking cookies, crossing river, dunking basketball, feeding fish, flying kite, high kick,

javelin throw, playing trombone, scuba diving, skateboarding, ski jumping, trimming

or shaving beard.

Actions of Test Split

blasting sand, busking, cutting watermelon, dancing ballet, dancing charleston, danc-

ing macarena, diving cliff, filling eyebrows, folding paper, hula hooping, hurling

(sport), ice skating, paragliding, playing drums, playing monopoly, playing trumpet,

pushing car, riding elephant, shearing sheep, side kick, stretching arm, tap dancing,

throwing axe, unboxing.
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Chapter 2

DVD: Constructing a

Discriminative Video Descriptor by

Convolving Frame Features

2.1 Citation and Main Contributor

Bo, Yang, Chen, Yixin, He, Wenbo and Xiang, Jie. ”DVD: Constructing a Discrim-

inative Video Descriptor by Convolving Frame Features,” 2018 IEEE Fourth Inter-

national Conference on Multimedia Big Data (BigMM), Xi’an, 2018, pp. 1-5, doi:

10.1109/BigMM.2018.8499251.

The main contributor to this paper is the first author - Yang Bo (contributes more

than 80%).
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2.2 Copyright

Published with permission from IEEE Xplore.

2.3 Abstract

The core to organize, classify, search, compare and retrieve videos is comparing the

video descriptors. In this paper, we propose a Discriminative Video Descriptor (DVD)

which is a general way to build the video descriptors on top of various frame features.

We built the DVD on top of the HSV-color distribution and evaluated its performance

for the Near-Duplicate Video Detection task by using the CC WEB VIDEOS dataset.

The average detection accuracy achieved 94.4%. We also evaluated the DVD for

Human Action Recognition task by building the DVD on top of the 3D-SIFT with

Weizmann human action dataset. The average recognition accuracy achieved 97.84%.

In practice, the DVD only introduces slightly computational overhead. The average

time to build the DVD on top of the HSVcolor distribution and 3D-SIFT for a single

video was 0.128s (average 11 frames) and 0.04s (200 interest points), respectively.

2.4 Introduction

In spite of recent breakthroughs in image big data analysis (e.g. ImageNet compe-

tition), it is still an enormous headache when we confront the welter of web videos.

Video data, considered as the biggest big data, belongs to the unstructured data

which refers to the information that either does not have a pre-defined data model or

is not organized in a predefined manner. Hence, it is challenging to organize, classify,
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search, compare and retrieve video contents, especially when video data are uploaded

at a tremendous speed and dominant in the volume of Internet traffic. In practice,

we seek to design an effective descriptor to present the video contents and efficiently

extract the video descriptors. Hence, the content-based comparison, classification,

and information retrieval will be accomplished by comparing video descriptors (or

features).

A video is composed of a frame sequence, hence a video descriptor is usually

generated based on individual video frame. There are three categories of the existing

approaches to generate the video descriptor. (1) Aggregate the frame features to

form a video descriptor as histogram (Chen et al., 2016; Wang et al., 2011) makes the

extraction and comparison of video descriptors efficient, but the temporal information

of video frames cannot be preserved. As an example, the same set of frames but

with different orders will yield the same video descriptor. (2) Find certain number

of interest points over the video and extract the features of them from 3D space,

then cluster with the bag of words (Scovanner et al., 2007; Laptev, 2005) or Fisher

Vector representations (Perronnin et al., 2010). However, this approach only preserve

the spatiotemporal information locally (the neighbours of the interest points). (3)

Use the deep networks to extract the video descriptor. This can be done by using

the 3D Convolutional Neural Networks (CNNs) (Ji et al., 2012; Tran et al., 2015;

Varol et al., 2018) or applying two 2D CNNs to independently learn the spatial and

temporal information (Feichtenhofer et al., 2017, 2016a; Simonyan and Zisserman,

2014). However, due to the fixed input size limitation of the CNNs, it is impossible

to learn the temporal correlation between all frames for various length videos.

In this paper, we propose a Discriminative Video Descriptor (DVD) which can
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preserve the temporal information among all video frames by representing the high

dimensional feature sequences with multiple lower dimensional mappings. We show

that the DVD can be built on the wide range of frame features (e.g. global or local

features) and improves the video classification accuracy. In addition, only slight com-

putational overhead is introduced to generate the DVD. To verify the effectiveness,

robustness and efficiency of the DVD, we evaluate the DVD for both Near Duplicate

Video Detection and Human Action Recognition tasks. We observe the significant

performance improvement in both scenarios. Our contributions are as follows.

1. We designed a discriminative video descriptor, which is a general way to

build the video descriptor on top of various frame features. By convolving the frame

feature sequences with the basis for a lower dimensional space, we obtain multiple

lower dimensional feature sequence mappings. If we use the concatenation of the

mappings as the video descriptor, we will get the same descriptor of two videos if two

sequences of frame features are identical.

2. To compare the DVD with other video descriptors, we implement two Near Du-

plicate Video Detection systems which are adopted hand-craft features (SIFT (Lowe,

2004) or SURF (Bay et al., 2006)) and Convolutional Neural Networks (CNNs) based

features (generated by ImageNet dataset (Deng et al., 2009) pre-trained 16-layer and

19-layer VGGNets (Simonyan and Zisserman, 2014)). Both of the systems average

the frame features as the video descriptor and use K-nearest neighbours (KNN) ap-

proach and softmax score to make the final prediction, respectively. For the Human

Action Recognition, the baseline uses Dollar’s (Dollár et al., 2005) approach to select

the Space Time Interest Points(STIPs), then uses the bag of words (BoW) represen-

tation of the 3D-SIFT features (Scovanner et al., 2007) as the video descriptor. A
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linear support vector machine (SVM) is used to make the final prediction.

3. We evaluate the performance of the DVD in different experiment scenarios and

over different frame features. The results show that adopting the DVD lead to a 94.4%

average detection accuracy which gives more than 14% improvement compared to the

baselines and the Video Cuboid Based Detection System (Zhou and Chen, 2010) for

the Near Duplicate Video Detection. By building the DVD on top of the 3D-SIFT,

97.84% average recognition accuracy is achieved for the Human Action Recognition

task. Comparing to using the 3D-SIFT in the same scenario, the recognition accuracy

improvements are 5.37%.

In the rest of the paper, we summarize the related work in Section 2.5 (Section

2). In Section 2.6 (Section 3), we propose the DVD generation approach and show

the time complexity. In Section 2.8 (Section 4), we describe the evaluation scenarios

and experiment results. Finally, we conclude the paper in Section 2.9 (Section 5).

2.5 Related Work

Constructing a content-based video descriptor is the key component in video classi-

fication tasks, such as action recognition (Laptev, 2005), near-duplicate video detec-

tion (Chen et al., 2016), event and action detection (Over et al., 2013). The classical

image interest points and feature extraction approaches are extended to 3D (e.g.

3D-STIPs (Laptev, 2005), 3D-SIFT (Scovanner et al., 2007), 3D-HoG (Klaser et al.,

2008)). In 2010, Xiangmin Zhou and Lei Chen (Zhou and Chen, 2010) proposed a

video cuboid signature to monitoring near duplicates video streams. Qianru Sun and

Hong Liu proposed the Normalized Google-Like Distance Correlogram (NGLDC) ap-

proach (Sun and Liu, 2012) which adopts the Normalized Google Distance (NGD)
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to measure the co-occurrence distance of pairwise visual words. Heng Wang and

Cordelia Schmid (Wang and Schmid, 2013) proposed an Improved Dense Trajectories

(IDT). In 2016, Yixin Chen, Wenbo He, Yu Hua and Wen Wang (Chen et al., 2016)

sought using multiple image feature aggregation to reduce the computational over-

head of the video descriptor generation in a Near Duplicate Video Detection system.

Recently, the convolutional neural networks (CNNs) are applied to the problem of

human pose estimation in videos (Jain et al., 2014) and video feature learning in an

unsupervised setting (Le et al., 2011). The CNNs are extended into 3 dimensions to

study the video descriptors (Ji et al., 2012; Karpathy et al., 2014; Tran et al., 2015).

Gul Varol, Ivan Laptev and Cordelia Schmid (Varol et al., 2018) improved the 3D-

CNNs by extending the temporal size of video clips. In (Simonyan and Zisserman,

2014), the two stream approach is introduced which uses pretrained one 2D CNNs to

learn spatial information from static RGB frames and uses another to learn temporal

information from flow inputs. Based on that, Feichtenhofer et al. apply multiplicative

gate to combine the two streams in (Feichtenhofer et al., 2016a).

2.6 Discriminative Video Descriptor

Since videos are made up of static frames, which play at roughly 30 frames per second

sequentially giving us an illusion of motion, extracting features from a frame indepen-

dently of the past or future frames in the video is less stable than extracting features

that contain temporal correlation of frames in the whole video. In this section, we

propose a Discriminative Video Descriptor (DVD) which can be built on various frame

features while containing the temporal correlation of the frame sequence. Meanwhile,
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Repeat

t-l(m-1)-1

times

Figure 2.6: Overview of the DVD generation approach: (a) Extract the frame of a
video; (b) Extract the frame features; (c) Arrange the frame features over time to

form the feature matrix and randomly choose a non-diagonal basis B for Rm.
Convolve each basis vector with every column of the feature matrix l times without

0 padding; (d) Randomly choose a non-diagonal basis C for R2, repeat same
operations as the step (c) until all feature matrices contain only one row; (e)

Concatenate all feature matrices to form the video descriptor.
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only slightly time overhead is needed to compute the DVD. To design a stable and ef-

ficient video descriptor, we adopt the convolution which represents the overlap of one

function as it is shifted over another. It is like “projecting” one function or sequence

onto another. Hence, this allows us to transform the sequence of frame features in

a “projected representation”. If we find the linearly independent vectors for such

representation space, we will be able to use the projected representation to preserve

the temporal information of the feature sequence.

2.6.1 DVD Generation

The core of the DVD is letting the frame features to preserve the spatial information of

video frames independently then representing each high dimensional feature sequence

with multiple lower dimensional feature vectors by convolving the sequence with lower

dimensional basis vectors to preserve the temporal information of the video. The DVD

generation approach is shown in Figure 2.6. Assume a video v contains t frames as

shown in Figure 2.6 (a). First, we extract the feature for frame i and represent them

as the fixed length k histograms hi, as shown in Figure 2.6 (b). Each bin in the

histograms can be seen as a 1 × 1 feature map for the static frames. Therefore, one

frame is described by k features. Next, we arrange the feature histograms in time

order to describe the video v by an t× k-dimensional feature matrix H. Each row in

H is a frame feature histogram (row 1 is the feature histogram for frame 1 denotes

as h1 and so on). Each column in H is a feature sequence which describes the change

of certain feature over time (column 1 is the feature sequence for the video called

f1 and so on). Thus, we can preserve the temporal correlation between frames by
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preserving the temporal correlation of the feature sequences. We also choose a non-

diagonal basis B = (b1, b2, . . . , bm) from Rm. The value of elements in B are chosen

from random normal distribution. We then convolve each basis vector with every

feature sequence in H without 0 padding l times as shown in Fig 2.6 (c). We call

the resulted feature matrices H1, H2, . . . , Hml . All features matrices will have same

dimensionality which is t − l(m − 1) × k after l times convolution operations with

B. This step preserves the temporal correlation between frame features and reduces

the dimensionality of the feature sequences but increases the number of the feature

matrices (one t× k feature matrix becomes mlt− l(m− 1)× k feature matrices). To

further reduce the dimensionality of the feature sequences, we use same approach to

choose a non-diagonal basis C for R2 then repeatedly convolve c1, c2 with each column

of the feature matrices until the dimensionality of all feature sequence is reduced to

one as shown in Figure 2.6 (d). By choosing a non-diagonal basis, more temporal

correlation could be preserved than using a diagonal basis. For example, given two

vectors p = (1, 2, 3, 4, 5) and q = (1, 2, 4, 4, 5), let B and C both be the identity basis

for R2. Follow the DVD generation approach, the result are both (1, 4, 2, 5). However,

if we let B = C((1, 0)T , (1, 2)T ), the results are (1, 81, 5, 297) and (1, 93, 5, 321). By

convolving with the basis vectors for R2, the dimensionality of feature sequences can

be guaranteed to reduced to one since each convolution operation will reduce the

dimensionality by one. This step letting the DVD can be applied for various length

videos. Finally, we concatenate these 1× k-dimensional feature matrices to form the

video descriptor, as shown in Figure 2.6 (e). The kt dimensional feature sequence is

now represented by 2mlk one dimensional features.
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Method Average Accuracy

SIFT-BOW 79.27
SURF-BOW 78.66
VGG-16 76.93
VGG-19 78.8
VC 80
HSV-DVD (Linear SVM) 84.17
HSV-DVD (RBF SVM) 91.77
HSV-DVD (KNN) 94.4

Table 2.4: Near duplicate video detection results on cc web videos dataset. we
compare HSV-DVD with baselines and the video cuboid near duplicate video

detection system.

2.7 The DVD Generation Approach is Efficient

Assume given a video v which contains t frames, the extracted frame feature his-

tograms have the same length k. Given a randomly chosen basis B = (b1, b2, ..., bm)

for Rm. The time complexity of the DVD generation step (c) is O(mk(t−m+1)(1−ml)
1−m ).

In step (d) we choose a basis from R2, the time complexity is O(mlk(t − lm +

l)2). Therefore, the time complexity of generating DVD on top of frame features

is O(mk(t+m)(1−ml)
1−m +mlk(t− lm+ l)2).

2.8 Experiment Results

In this section, we evaluate the DVD under the scenarios of Near Duplicate Video

Detection and Human Action Recognition. All of our experiments are implemented

on a machine with Intel Core i7 quad-core processor with 16 GB memory.
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2.8.1 Near-duplicate Video Detection

1) Dataset: We evaluate the DVD on CC WEB VIDEO dataset (Wu et al., 2007)

which is widely used for the Near Duplicate Video Detection task. The dataset

is comprised of 24 independent groups and totally contains 12790 videos. In each

group, one video is designated as the seed and others are compared with it and

labeled accordingly. There are 7 labels for each group: Exactly Duplicate, Similar,

Different Version, Major Change, Long Version, Dissimilar, and Do not Exist. In the

experiments, we are not considering the Do not Exist label since it can be simply

classified by checking the existence of the video.

2) Experiments details: We implemented a parallel Near Duplicate Video Detec-

tion system which adopts the architecture in (Chen et al., 2016). We extract the

HSV-color distribution as the frame features and represent them as 256-dimensional

histograms. We consider each axis of the HSV-color independently. The non-diagonal

basis B = (b1, b2) is chosen for R2 and set l = 1 since the experiment gives the highest

detection rate. Therefore, the DVD of each video are three 512-dimensional vectors

and each of them preserves the video temporal information of one axis of the HSV-

color distribution. We call the DVD that is built on top of the HSV-color distribution

the HSV-DVD. We use three learners, one for each video descriptor, to classify the

video. For each learner, linear SVM, SVM (RBF kernel) and KNN classifiers are used

to classify the videos with 10 fold cross-validation. We take the predicted results from

each learner with maximum vote strategy to generate the final predictions.

3) Baselines: We implement two Near Duplicate Video Detection systems. The

first one uses BoW approach to aggregate the SIFT (Lowe, 2004) or SURF (Bay

et al., 2006) features of frames. Another one fine-tunes the ImageNet (Bay et al.,
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2006) pre-trained 16-layer and 19-layer VGGNets (Simonyan and Zisserman, 2014)

for the Near Duplicate Video Detection task. We average the frame features as the

video descriptor then make the final prediction.

4) Results: In the experiments, we compare the average detection accuracy of

HSV-DVD to the baselines and the Near Duplicate Video Detection system proposed

in (Zhou and Chen, 2010). The average detection accuracy for the entire dataset

is calculated by averaging the sum of the detection accuracies for each group. The

results are shown in Table 2.4. The HSV-DVD with KNN achieves 94.4% average de-

tection accuracy which is 15.13% and 15.74% better than SIFT-BoW and SURFBoW,

respectively. Compare to the CNN based features, HSV-DVD with KNN classifier

outperforms the VGGNet-16 and VGGNet-19 by 17.74% and 15.6%, respectively even

the feature representations generated by these networks are more effective in vision

tasks than the simpler descriptions such as the color histogram. When compared

with the Video Cuboid Based Detection System (VC), a streaming Near Duplicate

Video Detection system based on the video cuboid feature, the HSV-DVD with KNN

classifier performances 14.4% better. Note that the VC uses Locality Sensitive Hash-

ing (LSH) to retrieve the results thus some accuracies may be sacrificed for the time

efficiency. However, the HSV-DVD is generated by convolving columns of feature

matrices with the basis vector from R2 (only two 2-dimensional vectors). In addition,

even with the simplest linear classifier, the HSV-DVD still outperforms the VC by

4.17%.
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Method Average Accuracy

3D-SIFT 82.6
STIPs+3D-SIFT 92.47
NGLDC 100
STIPs+3DSIFT-DVD 97.84

Table 2.5: Action recognition results on Weizmann dataset. we compare
3DSIFT-DVD with baselines and NGLDC.

2.8.2 Human Action Recognition

1) Dataset: We use the Weizmann Human Action Recognition dataset (Blank et al.,

2005) to evaluate the performance of the DVD. The Weizmann actions dataset con-

sists of ten different types of actions classes. Each action class is performed at least

once by 9 subjects resulting in 93 video sequences in total. The background is homo-

geneous and static. We didn’t choose larger datasets (e.g. UCF101 (Soomro et al.,

2012), HMDB51 (Kuehne et al., 2011)) since our machine does not have enough

computational power to generate enough interest point feature for large amounts of

videos, which will be discussed in the next subsection.

bend jack jump pjump run side skip walk wave1 wave2
bend 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
jack .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0
jump .0 .0 .67 .0 .11 .11 .11 .0 .0 .0
pjump .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0
run .0 .0 .1 .0 .8 .0 .1 .0 .0 .0
side .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0
skip .0 .0 .2 .0 .3 .0 .5 .0 .0 .0
walk .0 .0 .0 .0 .11 .0 .0 .89 .0 .0
wave1 .0 .0 .0 .0 .0 .0 .0 .0 .78 .22
wave2 .0 .0 .0 .0 .0 .0 .0 .0 .22 .78

Table 2.6: The confusion matrix of the 3D-SIFT approach.

2) Experiments details: Given a video v, we first detect the STIPs which are
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bend jack jump pjump run side skip walk wave1 wave2
bend 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
jack .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0
jump .0 .0 1.0 .0 .0 .0 .0 .0 .0 .0
pjump .0 .0 .11 .89 .0 .0 .0 .0 .0 .0
run .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0
side .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0
skip .0 .0 .0 .0 .1 .0 .9 .0 .0 .0
walk .0 .0 .1 .0 .0 .0 .0 .9 .0 .0
wave1 .0 .0 .0 .0 .0 .0 .0 .0 .89 .11
wave2 .0 .0 .0 .0 .0 .0 .0 .0 .33 .67

Table 2.7: The confusion matrix of the STIPs + 3D-SIFT approach.

bend jack jump pjump run side skip walk wave1 wave2
bend 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0
jack .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0
jump .0 .0 1.0 .0 .0 .0 .0 .0 .0 .0
pjump .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0
run .0 .0 .0 .0 .8 .0 .2 .0 .0 .0
side .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0
skip .0 .0 .0 .0 .0 .0 1.0 .0 .0 .0
walk .0 .0 .0 .0 .0 .0 .0 1.0 .0 .0
wave1 .0 .0 .0 .0 .0 .0 .0 .0 1.0 .0
wave2 .0 .0 .0 .0 .0 .0 .0 .0 .0 1.0

Table 2.8: The confusion matrix of the STIPs + 3DSIFT-DVD approach.

obtained from Dollar’s detector (Dollár et al., 2005). We extracted enough STIPs

by executing the detector multiple times with different blur parameters and differ-

ent Gabor filter lengths. Then, we calculate the 3D-SIFT descriptors (Scovanner

et al., 2007) for all detected interest points. The dimensionality for each 3DSIFT

descriptor is 640. We sort the interest point feature histograms by the time (the

spatial information between the interest point feature histograms are ignored). Sim-

ilar to the experiments for Near Duplicate Video Detection, we choose B for R2
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and set l = 1. We omit the step (d) since the video descriptor for the Human Ac-

tion Recognition should concentrate on the action pattern preserving, which means

the temporal information between the adjacent local regions (or the interest points)

should be preserved. Assume c interest points are obtained for a video, we will get

two (c − 1) × 640-dimensional video descriptors. We call these descriptors 3DSIFT-

DVD. We then apply the BoW approach to aggregate the video descriptors, construct

two co-occurrence matrices for the vocabularies and populate them using frequency

histograms with threshold = 0.8 (Scovanner et al., 2007). Finally, we concatenate the

feature grouping histograms together as the input for the classification. The dimen-

sionality is x2− x. A linear SVM is trained for the recognition and use leave-one-out

cross-validation.

3) Baselines: We implement a action recognition system based on the STIPs and

3D-SIFT. The STIPs are shared with the baseline and the DVD.

4) Results: The average recognition accuracy are shown in Table 2.5. The re-

sults are reported over 10 runs. The first line of Table 2.5 is the average recognition

accuracy by using original 3D-SIFT method (Scovanner et al., 2007). The recogni-

tion rate is 82.6%. The confusion matrix Table 2.6 shows some 3D-SIFT features

are ambiguous to each other (jump is ambiguous with run, side and skip, wave by

one hand is ambiguous with wave by two hands). When STIPs are used instead of

randomly chosen interest points, the recognition rate achieves 92.47% (the second

line of Table 2.5). However, some ambiguities still exist as shown in Table 2.7. By

adopting the 3DSIFT-DVD on the same STIPs which are used by the 3D-SIFT, the

recognition rate raises to 97.84% (last line of Table 2.5). All actions are perfectly

recognized expect the run action (Table 2.8). Reference (Sun and Liu, 2012) reported
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HSV-DVD 3DSIFT-DVD

Frame Feature Generation 0.897 s 566.4 s
Convolution 0.128 s 0.04 s
Total Time Cost 1.025 s 566.44 s
Portion 12.48% 0.007%

Table 2.9: The average generation time of the DVD for one video.

the perfectly recognition rate by adopting the NGLDC (the third line of Table 2.5).

However, to calculate NGLDC, the numbers of each visual word in every frame are

needed. This increases the computation time.

2.8.3 Running Time Analysis

To evaluate the efficiency of the DVD. We randomly select 10% videos (average 11

frames for a video) in the CC WEB VIDEOS to evaluate the HSV-DVD generation

time and use whole Weizmann Human Action Recognition dataset (200 interest points

for each video) to evaluate the 3DSIFT-DVD generation time. As shown in Table 2.9,

we only need a small period of time to generate DVD on top of the frame features (or

interest point descriptors). For the HSV-DVD, the average generation time for one

video is 1.025 seconds, it takes 0.897 seconds to extract the HSV-color distribution

and only 0.128 seconds to generate the HSV-DVD for one video. The convolution

part occupies 12.48% of the total HSV-DVD generation time. For the 3DSIFT-DVD,

it takes 566.4 seconds to extract the 3D-SIFT features for 200 points (use the code

provided by the authors) and only 0.04 seconds are needed to generate 3DSIFT-DVD.

The convolving part only occupies 0.007% of the total time.
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2.9 Conclusion

In this paper, we have designed a video descriptor called DVD which is generally

built on top of different frame features. We have theoretically and experimentally

demonstrated DVD generation is efficient. We have shown that the high detection

(recognition) rate is gained by applying DVD with even a linear classifier for the Near

Duplicate Video Detection and Human Action Recognition tasks.

2.10 Appendix

Algorithm 1: MatrixConvolve

Inputs: Frame feature matrix H, vector b;
for column vector f in H do

f ← f ∗ bj;
end
H ← (f1, f2, . . . , fk);
return H;
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Algorithm 2: Discriminative Video Descriptor

Inputs: Frame feature matrix H ∈ Rt×k, basis B ∈ Rm, C ∈ R2;
Add H in set S;
i← 1;
while i ≤ l do

for j form 1 to m do
for every H = (f1, f2, . . . , fk) in S do

Htmp ←MatrixConvolve(H, bj);
S append Htmp;

end

end
for q from 1 to mi do

remove S[q] from S
end
i← i+ 1;

end
i← 1;
while i ≤ t− l(m− 1)− 1 do

for j form 1 to 2 do
for every H = (f1, f2, . . . , fk) in S do

H ←MatrixConvolve(H, cj);
end

end
i← i+ 1;

end
return concat(S)
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3.3 Abstract

The success of video action recognition based on Deep Neural Networks (DNNs) is

highly dependent on a large number of manually labeled videos. In this paper, we

introduce a supervised learning approach to recognize video actions with very few

training videos. Specifically, we propose Temporal Attention Vectors (TAVs) which

adapt various length videos to preserve the temporal information of the entire video.

We evaluate the TAVs on UCF101 and HMDB51. Without training any deep 3D

or 2D frame feature extractors on video datasets (only pre-trained on ImageNet),

the TAVs only introduce 2.1M parameters but outperforms the state-of-the-art video

action recognition benchmarks with very few labeled training videos (e.g . 92% on

UCF101 and 59% on HMDB51, with 10 and 8 training videos per class, respectively).

Furthermore, our approach can still achieve competitive results on full datasets (97.1%

on UCF101 and 77% on HMDB51).

3.4 Introduction

The use of Deep Neural Networks (DNNs) in the field of computer vision has ex-

panded significantly in recent years. For video action recognition, several frameworks
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(Feichtenhofer et al., 2016b, 2017; Tran et al., 2018) have shown outstanding perfor-

mance. The success of these approaches is largely sustained by the manual annota-

tion of the large-scale datasets. However, it is still challenging to recognize human

actions with very few manually labeled training videos. There are several attempts

to deal with this problem. Srivastava et al . (Srivastava et al., 2015) trained a Long

Short-term Memory (LSTM) with the fixed number of unlabeled video frames to

predict future frames of that video then fine-tune it for the supervised video action

recognition. However, it still needs a large number of videos to train which brings

huge computational overhead. Zhu et al . (Zhu et al., 2018), Mettes et al . (Mettes

and Snoek, 2017) and Jain et al . (Jain et al., 2015) attempted to recognize actions

without any observed data or with only few labeled data (Zero/Few-Shot Learning).

These approaches classify the actions by measuring the similarity (e.g . Euclidean

distance) between the visual representations and the semantic representations in the

embedding space. However, these approaches require additional linguistic contexts or

visual representations of objects and the accuracy is heavily dependent on the precise

representation of the additional information.

In this paper, we aim to adopt supervised learning to recognize human actions

with very few manually annotated training videos. Recent works such as (Fernando

et al., 2015; Varol et al., 2018; Wang et al., 2016) pointed out that long term dynamics

and temporal patterns are very important cues for the recognition of actions. The

key challenge is to generate a video descriptor that precisely captures the important

video-wide temporal correlation among frame features with a small number of training

parameters. Some current Convolutional Neural Networks (CNNs) based researches

are either using sub-sampling (Wang et al., 2016) or longer video clips (Varol et al.,
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2018) to capture the video-wide temporal dynamics. However, these works only

preserve partial temporal information of the video. Some other approaches adapt

ranking functions (Fernando et al., 2015) or Recurrent Neural Networks (RNNs)

(Ballas et al., 2015; Donahue et al., 2015) to preserve the temporal information.

However, they introduce too many training parameters that cannot be trained well

in the circumstance of only having very few training videos. Another work (Girdhar

et al., 2017) generates the video descriptor by clustering the pixels in all frame features

maps both spatially and temporally with k-means clustering algorithm. However, this

approach cannot preserve the temporal information of videos.

In this paper, we propose Temporal Attention Vectors (TAVs) which adapt to

various lengths of videos to encode the correlation among frame features. The frame

features are either manually defined or generated by an ImageNet pre-trained CNN.

The initial value of TAVs are manually defined and each TAV highlights a certain pe-

riod of the video by giving them higher temporal weights than others. After that, the

TAVs are aggregated by their importance scores which are learned by a shallow CNN.

There are three keys advantages to use TAVs. First, the TAVs capture the video-

wide dynamics of the video. Unlike the current end-to-end trainable frameworks,

the TAVs encode the temporal correlation between all frames, which is important

especially with only very few training videos. Second, the TAVs can model complex

temporal patterns. The static temporal weights cannot correctly express the tempo-

ral patterns of actions. For example, actions “run” and “long jump” have different

patterns, we only need to focus on “run” action for the prior one but need focus on

both “run” and “jump” for the latter one. By studying the importance scores, the

TAVs can simulate different temporal patterns. Third, the TAVs only introduce few
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training parameters. With insufficient training samples, a deep neural network (many

training parameters) is hard to learn the true temporal patterns of actions. Only few

training parameters (importance scores) makes TAVs could capture more accurate

temporal pattern than the deep network with very few training videos.

3.5 Related Works

Capturing the spatiotemporal information of videos for action recognition has been

a well-studied research domain. Historically, researchers have mostly focused on the

handcrafted spatiotemporal features of Space-Time Interest Points (STIP) (Laptev,

2005). Most successful examples are 3D Histogram of Gradient (HOG3D) (Klaser

et al., 2008), Histogram of Optical Flow (HOF) (Laptev et al., 2008), and Motion

Boundary Histogram (MBH) (Dalal et al., 2006). Also, the trajectory-based ap-

proaches (Jiang et al., 2012; Matikainen et al., 2009; Sun et al., 2009; Wang et al.,

2011; Wang and Schmid, 2013) have shown a significant improvement in action recog-

nition.

More recently, the CNN-based end-to-end fashions have been widely applied to

the video action recognition area and shown the outstanding performance. These

approaches can be roughly separated into two categories. The first category, which

extends the CNNs to a third, temporal dimension by replacing the 2D filters with

3D ones (Carreira and Zisserman, 2017; Ji et al., 2013; Tran et al., 2015, 2018;

Varol et al., 2018) to capture the spatiotemporal information from fixed length video

clips. The second category initially processes color and optical flow information in

parallel for subsequent late fusion of their separate classification scores (Simonyan

and Zisserman, 2014). Several improvements were proposed based on this work. For
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example, Wang et al . (Wang et al., 2015) extracted deep features and conducted

trajectory constrained pooling to aggregate convolutional features as video represen-

tations. Feichtenhofer et al . (Feichtenhofer et al., 2017) tried different two-stream

fusion approaches to fuse the two streams. Carreira and Zisserman (Carreira and

Zisserman, 2017) recently introduced a model (I3D) that combines two-stream pro-

cessing with 3D convolutions.

An alternative solution models the temporal structure of video by various pooling

approaches (Girdhar and Ramanan, 2017; Kar et al., 2017; Yue-Hei Ng et al., 2015),

rank functions (Fernando et al., 2015), k-means clustering (Girdhar et al., 2017) and

different distributions (Piergiovanni et al., 2017; Piergiovanni and Ryoo, 2018a,b).

Recurrent Neural Networks have also been used to encode temporal information for

learning video representations (Donahue et al., 2015; Srivastava et al., 2015; Sun

et al., 2015a,b; Wu et al., 2015). Donahue et al . (Donahue et al., 2015) used the

LSTM together with CNN to either output an action label or a video description.

Srivastava et al . (Srivastava et al., 2015) proposed to learn video descriptions with

the encoder-decoder LSTM in an unsupervised manner.

Our work is similar to the temporal structure filters in (Piergiovanni and Ryoo,

2018a). They train Cauchy distributions to detect multi-actions in videos. The cen-

ters and width of Cauchy distributions are initialized by some trainable and uniformly

selected “seed” between −1 to 1 then scaled according to the length of videos and ex-

ponential function, respectively. On the contrary, our approach initializes both center

and width according to the length of video and studies the importance scores instead

of learning the distribution parameters themselves. We compare temporal structure

filters with TAVs in Section 3.8.
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Figure 3.2: The working procedure of TAVs. The CNN which is used as the frame
feature extractor pre-trained on ImageNet and the weights are frozen during the

task, e.g . not trained on the video dataset. “⊗” denotes matrix multiplication, “�”
denotes the element-wise multiplication and “Σ” denotes the addition. vk denotes

the initialized TAVs, sk denotes the importance score for the kth TAV and W
denotes the linear embedding weights matrix. α denotes k × 1 convolution and Θ

denotes the linear embedding operation. Here, we show the base importance learner,
the inflate-shrink learner can be done by adding one convolution layer with 32 1× 1

filters. We use a fully connected layer with softmax function as the classifier.

3.6 Temporal Attention Vectors

To recognize actions with very few training samples, the video representation should

preserve video-wide temporal information meanwhile the generation procedure of the

representation should involve only a small number of training parameters.

We now describe the TAVs which are shown in Figure 3.2. We denote a video

as X = (x1, x2, . . . , xT ), where xt ∈ RW×H×C and t = [1 : T ]. We use W and

H to represent the width and height of the frame respectively. Each frame either

represents an RGB image (C = 3) or a horizontal / vertical optical flow image (C = 1).

The length T usually varies for different videos. We use φ(xt) ∈ RD to represent

the feature of frame xt, where φ represents the operations of a CNN (the frame

feature extractor). The video representation is generated with two steps: i). The
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frame features (φ(x1), φ(x2), . . . , φ(xT )) are aggregated with the elements of K TAVs

{v1, v2, . . . vK}, where vk ∈ RT and initial values are manually defined. ii). All

aggregated features are added with the importance scores s for each TAV then linear

embedded with weight W to form the video representation. s and W are learned by a

convolution layer and a fully connected layer, respectively. More formally, we rewrite

the above operations as follows:

D = W ⊗
K∑

k=1

T∑

t=1

skφ(xt)vt,k, (3.6.1)

where vt,k is the tth element in the kth TAV vk, sk is the importance score for the

kth TAV and ⊗ denotes the matrix multiplication.

The TAVs are able to study the temporal pattern with very few training videos

because of the follows. i). It encodes video-wide temporal information by using

multiple TAVs which adapt to the various lengths of frame sequences and does not

introduce any training parameters. ii). It is able to select the important temporal

information by studying the importance scores. In the following of this section, we

provide the details of how to initialize the TAVs and the architecture of the shallow

CNN that is used to study the importance scores of the TAVs.

3.6.1 Initialization of the TAVs

The static pooling approaches (e.g . average pooling) fail to preserve the sequential

information of the frame features. We propose to encode the video-wide temporal

information by calculating the weighted sum of all frame features. The weights are

the elements of the TAVs which adapt to various length of videos. We introduce

several initialization approaches of the TAVs below and leave the experiments in
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appendix.

Random. One simplest way to initialize the TAVs is uniformly choosing them

from the interval (0, 1) (Figure 3.3a). More formally, let L denotes a number larger

or equal to the frames number of the longest video in a dataset, we can choose the

temporal attention weights as follows:

ak = [a1,k, a2,k, . . . , aL,k], k = [1 : K],

al,k ∼ U(0, 1), l = [1 : L],

vk = [v1,k, v2,k, . . . , vT,k],

vt,k =
eat,k∑T
t=1 e

at,k
.

(3.6.2)

We normalize the weights in vk such that let they sum up to 1 to eliminate the

impact brought by the various length of videos. For example, as the video length

increases, the weights for each frame feature become smaller. Therefore, the same

action represented with the various number of frames will not be misclassified.

Single Switching Distinguishable (SSD). An alternative way is using the

combination of a constant sequence and the strictly monotone sequences as the initial

values of the TAVs, which are shown in Figure 3.3b, to distinguish a single pair of

frames switching (e.g . X1 = (x1, x2, x3) and X2 = (x1, x3, x2). The elements in

the constant sequence are all c and the elements in strictly monotone sequences are

randomly chosen from U(0, 1) then sort with ascending or descending orders. Same

as the random initialization, we normalize the weights in vk. The approach can be
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Figure 3.3: The illustration of TAVs which are initialized by different approaches.

formally represented as follows:

v1 = [c, c, . . . , c],

ak = [a1,k, a2,k, . . . , aL,k], k = [2 : K],

al,k ∼ U(0, 1), l = [1 : L],

sort(ak),

vk = [v1,k, v2,k, . . . , vT,k],

vt,k =
eat,k∑T
t=1 e

at,k
.

(3.6.3)

By using these TAVs, it is obvious that the switching order of single pair of

frames could be detected by the TAVs based on a reasonable assumption that the

frame features of two different frames are different.
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Dynamic Gaussian (DG). This TAVs initialization approach is based on the

following observations: i). The “key” frames (the most important frames for classi-

fication task) that are used to represent an action are consecutive. ii). These key

frames form only a clip rather than the entire video. iii). The number of key frames

that are needed to represent different actions varies. Based on the above observations,

we propose a way to initialize the TAVs from the Probability Density Function (PDF)

of Gaussian Distributions. The results are shown in Figure 3.3c. We evenly divide a

video into several clips and use the TAVs highlight each of them. The TAVs give the

higher temporal weights for the frame features in the clip and lower weights for the

frame features out of that clip. The mean and standard deviation are dynamically

selected based on the length of the video clips. Specifically, we evenly partition the

frame number sequence (1, 2, . . . , T ) of the video X into K chunks {C1, C2, . . . , CK}.

For each chunk, we choose the element in the middle position as the mean µk and

use the length of the chunk len(Ck) divide by a factor θ as the standard deviation αk.

More formally, these operations can be formulated as:

vk = [v1,k, v2,k, . . . , vT,k], k = [1 : K],

vt,k = PDF (t|µk, α2
k), t = [1 : T ],

µk = Ck(
len(Ck)

2
), αk =

len(Ck)
θ

.

(3.6.4)

The DG initialized TAVs highlight different clips cross the entire video, but each of

them encodes the video-wide temporal information.

Short-Long Dynamic Gaussian (SLDG). This initialization approach is in-

spired by the DG approach. The original DG can only highlight certain range of

temporal information of a video. However, we are able to highlight shorter or longer
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(b) The inflate-shrink learner.

Figure 3.4: The architecture of the importance score learner.

ranges of temporal information by decreasing or increasing the standard deviation

value in the DG generation approach, respectively (Fig 3.3d). More formally, we de-

fine a set of chunk numbers m = {m1,m2, . . . ,mN}. Then we repeat the DG vector

generation approach N times and use mn as the chunk number in the nth iteration.

Thus, the total number of temporal vectors is m1 + m2,+ . . .mN and the value of

standard deviation is dynamically defined by mn.

3.6.2 Importance Score Learner

The importance score learner is used to generate video descriptor which contains

important temporal information based on the aggregated frame features. We propose

two types of learner. i). Base learner: The importance scores of TAVs are directly

learned by a single convolution layer (Figure 3.4a). ii). Inflate-shrink learner: The

dimensionality of aggregated frame features is first expanded using 1× 1 convolution

then compressed into a single one as shown in Figure 3.4b. The base learner
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has a single convolutional layer with one K × 1 filter and the inflate-shrink learner

has 2 convolutional layers with 32 and 1 filter response maps with 1 × 1 and K × 1

filters for the first and second convolutional layers, respectively. All convolutional

layers are followed by a batch normalization layer and a rectified linear unit (ReLU).

Filter stride for all dimensions is 1 for convolution operations. Then we apply 1

fully connected layers of sizes 1024 for both learners. We use ReLU after the fully

connected layers.

3.7 Implementation Details

The architecture of entire framework is shown in Figure 3.2. We adopt all convolution

blocks and the global pooling layer of the ImageNet (Krizhevsky et al., 2012) pre-

trained ResNet-152 (He et al., 2016) and I3D (Carreira and Zisserman, 2017) as

the backbone networks (frame feature extractors). The weights for the extractors are

shared and frozen for all experiments. The final video descriptor is predicted using a

fully connected layer with softmax function.

3.7.1 Input Configuration

We use the same input configurations for both training and testing in our experiments.

The frame extractor generates the features for both RGB frames and the optical flow

images. The optical flow images (Zach et al., 2007) are pre-computed and stored as

JPEG images (with displacement vectors > 20 pixels clipped). We follow the data

argumentation from (Wang et al., 2016). We randomly crop from the four corners

and the center of input images and sample the width and height of each crop randomly
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as W,H ∈ {256, 224, 192, 168}, followed by re-sizing to 224×224. The argumentation

is applied for both original and horizontal flipped images.

3.7.2 Two Streams Fusion

Since our framework adopts the two-stream architecture which takes RGB and optical

flow fields as inputs. We consider three ways to fuse the spatial and temporal streams.

The detailed comparison is shown in appendix.

Early concatenation. As shown in Figure 3.5a, the importance scores of both

spatial and temporal TAVs are studied by a single learner. In this case, the input of

the learner F ∈ RK×3D.

Late fusion. In contrast with the early concatenation approach, we study the

importance scores of spatial and temporal TAVs separately by two learners. The

input for the temporal learner is F ∈ RK×D×2. The class scores of the spatial and

temporal streams are combined by late fusion as the final class scores as illustrated

in Figure 3.5b.

Short-Long term fusion. This fusion approach is designed for the SLDG ini-

tialized TAVs. As shown in Figure 3.5c, this approach learn the importance score of

TAVs for different temporal periods separately by adopting multiple learners. The

spatial and temporal TAVs share same importance score (same as the early concate-

nation). The class scores of the different terms are then late fused as the final class

score.
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(c) Short-Long term Fusion.

Figure 3.5: Three spatial and temporal fusion approaches.
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3.7.3 Training and Testing

The training procedures depend on different fusion approaches. For the early con-

catenation and short-long term fusion, we use the batch size of 64 which are randomly

selected (uniform across all video samples). The initial learning rate is set to 10−5

and reduce by a factor of 10 after the validation error saturates. The training stopped

when the learning rate reaches 10−8. For the late fusion, we first separately train both

streams then train them together as in (Simonyan and Zisserman, 2014). The learn-

ing rate starts at 10−4 and is reduced by a factor of 10 two times after the validation

error saturates. When train two streams together, we set the learning rate as 10−5

and reduce by a factor of 10 after the validation error increases. We stop the training

when learning rate reaches 10−8. The batch size is 128 for single stream training and

64 for two streams together. The kernel and bias weights are all initialized by Xavier

initialization (Glorot and Bengio, 2010). The learner weights are learned using the

Adam algorithm (Kingma and Ba, 2014). During the testing, the class scores for the

whole video are obtained by averaging the scores across the inputs.

3.8 Experiments and Results

In this section, we first introduce the evaluation datasets then we provide detailed

analysis of the effectiveness of different TAVs initialization, fusion approaches and

the inflate-shrink structure. Finally, we compare the performance of our method to

the state-of-the-art on the datasets with change in the size of training videos and the

full datasets.
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3.8.1 Datasets

We evaluate our approach on two popular action recognition datasets. First, UCF101

(Soomro et al., 2012), which consists of 13320 action videos in 101 categories. The

second dataset is HMDB51 (Kuehne et al., 2011), which contains 6766 videos that

have been annotated for 51 actions. For both datasets, we use two different sets

of training/testing splits: i). the official splits, ii). the smaller splits. The official

splits is provided by the datasets. For the smaller splits, we uniformly choose various

numbers of videos from the official training splits for each action and the testing splits

are the same as the official one.

There are two main reasons that we choose UCF101 and HMDB51: a. our objec-

tive is action recognition under very few training data scenario. If there are enough

data (e.g. Kinetics (Carreira and Zisserman, 2017)), the 3D-CNNs (e.g. I3D, I2+1D

networks) are the better choices, b. we only find (Srivastava et al., 2015) have done

the similar task. For a fair comparison, we choose the same datasets as them.

3.8.2 Evaluation of the Effectiveness of TAVs and Impor-

tance Score Learners

In this section, we investigate the effectiveness of TAVs and importance score learners

(Section 3.6), the average accuracies are reported in Table 3.7. We choose the DG

initialized TAVs (K = 4) to encode the frame features and evaluate the performances.

The value of θ is set to 2 since we find it results the best performance. In the following

experiments, we use θ = 2 as default for DG vectors. We follow the training and

testing procedures as described in Section 3.7. In Table 3.7, we can see applying DG

initialized TAVs gives 3.7% and 3% accuracy improvements for ResNet-152 and I3D
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``````````````̀Aggregator
Backbone

ResNet-152 (He et al., 2016) I3D (Carreira and Zisserman, 2017)

Average pooling 64.4 86.1
DG 68.1 89.1

DG + Base learner 70 89.5
DG + Inflate-Shrink learner 70.1 90.6

Table 3.7: Average accuracy (%) on the UCF101 split 1 (RGB) with different
importance score learners and backbones. The experiments are repeated 10 times

and each time 10 training videos are uniformly chosen for each class.

backbones compared to the average pooling, respectively. The accuracy is further

increased by applying the score learner. For example, the performance improves from

68.1% to 70% when use the base learner for DG+ResNet152, and further increases

0.1% when apply the inflate-shrink learner. When use I3D as the backbone, the

inflate-shrink learner yields 1.5% improvements compared to only apply the pure DG

initialized TAVs. In the following experiments, we use the inflate-shrink learner as

the default choice.

Methods # Parameter

St Multiplier (two-stream) (Feichtenhofer et al., 2017) 85.8M
LSTM (Srivastava et al., 2015) 83.8M

TAVs (ours) 2.1M

Table 3.8: Parameter number of Spatiotemporal Multiplier Networks, unsupervised
LSTM and TAVs

We also evaluate the effectiveness of hyper-parameters (TAVs number, initializa-

tion approaches, fusion approaches etc.) with few training parameters. Please see

appendix for detail.
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(d) HMDB51-RGB

Figure 3.6: Comparisons with the Spatiotemporal Multiplier Network ((a) and (b))
and fine-tuned unsupervised LSTM ((c) and (d)) for action recognition with change
in the size of the labeled training set on UCF101 and HMDB51 split 1. The training

videos are uniformly chosen for each action class. For the comparison with St
Multiplier Network, the experiments are repeated 5 times and the average accuracy
(%) are reported for both TAVs and St Multiplier Network. For comparison with
the fine-tuned unsupervised LSTM, only RGB frames are used and the average

accuracy of 10 times experiments are reported.

3.8.3 Comparison with state-of-the-art with Very Few Train-

ing Videos

In this section, we compare our model to other frameworks on UCF101 and HMDB51

with change in the size of the labeled training set. We use the same training sets for
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# Training Videos
I3D (Carreira and Zisserman, 2017) I3D+TSF (Piergiovanni and Ryoo, 2018a) I3D+SLDG(2,1)

Round Acc Average Acc Round Acc Average Acc Round Acc Average Acc
UCF101

1 20.3 / 24.4 / 25.6 23.4 45.8 / 52.6 / 46.7 48.4 65.8 / 68.2 / 71 68.3
2 39.4 / 39.8 / 39.6 39.6 61.7 / 63.2 / 61.5 62.1 82.4 / 83.4 / 83.3 83
4 63.3 / 63.1 / 62.9 63.1 74.1 / 69.2 / 65.2 70 88.4 / 88.4 / 88.1 88.3
10 74.4 / 74.9 / 74.4 74.6 84.7 / 85.8 / 83 84.5 91.8 / 92.5 / 91.7 92
20 83.3 / 83 / 83.4 83.2 88.6 / 85.5 / 86.4 86.3 93.3 / 93.2 / 93.4 93.3
50 90.5 / 90.2 / 90.4 90.4 90.7 / 90.4 / 87.8 89.6 94.1 / 93.8 / 94 94

HMDB51
1 13.1 / 13.8 / 14.2 13.7 28.3 / 25.4 / 27.1 27 34.7 / 35.8 / 37.4 36
2 18.6 / 18.2 / 18.3 18.4 36.5 / 34.1 / 34.8 35.1 44.4 / 42.5 / 43.3 43.4
4 30 / 31.2 / 29.7 30.3 46.1 / 44.5 / 42.6 44.4 53.3 / 56.3 / 49.8 53.1
8 42.9 / 44 / 43.3 43.4 49.5 / 52 / 49.5 50.3 56.5 / 61.1 / 59.6 59
16 53.2 / 54.1 / 53.9 53.7 52.9 / 50.2 / 52.9 52 62.1 / 63.9 / 63.5 63.2
32 61.1 / 61.8 / 61 61.3 56 / 55.2 / 56.2 55.8 65.2 / 66.3 / 65 65.5
64 68.6 / 68.8 / 68.2 68.5 56.9 / 58.2 / 59 58 67.4 / 67.6 / 67.1 67.4

Table 3.9: Comparisons with I3D (left column) and Temporal Structure Filter
(TSF) (middle column) for action recognition with different number of training

samples on UCF101 and HMDB51 split 1 (RGB). The experiments are repeated 3
times and each time the training videos are uniformly chosen for each class. We

report both round accuracies (left part of each column) and average accuracy (right
part of each column).

all models. During the comparison of the TAVs initialization approaches, we find the

SLDG initialization with K = 3 (# of TAVs) and m = (2, 1) (# of chunks for each

iteration) gives best results. We believe this is because the SLDG catch both short

and long temporal information of video. In all following experiments, we use SLDG

with this setting as default choice.

The first model is the Spatiotemporal Multiplier network (Feichtenhofer et al.,

2017). The comparisons are shown in Figure 3.6a and Figure 3.6b. Our model

outperforms the Spatiotemporal Multiplier network when only giving few labeled

training videos. For example, with only 10 labeled training video per class, our

model achieves 78.5% on UCF101 and 45.8% on HMDB51 which are 7.5% and 10.3%

higher than the accuracy of Spatiotemporal Multiplier network, respectively. Overall,

our model outperforms the Spatiotemporal Multiplier network when the number of

training videos per class is less than 60 and 40 on UCF101 and HMDB51, respectively.
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We also try to use ResNet-152 for both spatial and temporal stream but the accuracy

is much lower than original model with very few training samples. We believe the

reason is the 152 layers ResNet contains much more parameters than 50 layers one

which is not suitable for the few shot task. The second framework is the unsupervised

LSTM (Srivastava et al., 2015) which is pre-trained on a 300 hours YouTube data

then transformed to the supervised learning. For fair comparisons, our framework

also only uses the RGB frames as inputs. The results are shown in Figure 3.6c

and Figure 3.6d. We notice that our model slightly underperforms the LSTM when

the size of the training set is extremely small (1 or 2 videos per class). We believe

that is due to the LSTM is pre-trained on a large number of videos and this is

confirmed when we using Kinetics pre-trained I3D as frame feature extractor. As

the size of the labeled dataset grows, the gap becomes smaller. When the number of

training video per class is 4, our model has accuracy 58.2% on UCF101 and 29.5%

on HMDB51 which are higher than the unsupervised LSTM on both datasets. We

calculate the training parameters that are introduced by the importance score learner,

since the only training procedure is applied on the learner. As shown in Table 3.8,

the TAVs only introduce 2.1M parameters, which is 97.5% and 97.4% smaller than

the Spatiotemporal Multiplier Network and unsupervised LSTM, respectively.

Instead of using 2D network as the backbone, we also evaluate the TAVs with 3D

frame feature extractor. We use I3D (Carreira and Zisserman, 2017) as the backbone

and compare the performance of TAVs with base I3D and Temporal Structure Filter

(TSF) (Piergiovanni and Ryoo, 2018a) with few training videos. The results are

shown in Table 3.9. We use the authors provided codes for base I3D and implement

the TSF according to the paper. For the experiments, all layers before the 3D average
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pooling layer are frozen. We repeat the experiments 3 times and report both round

accuracies and average accuracy. In Table 3.9, we can see that as the number of

training videos increases, the accuracies for all three frameworks also increase. The

TSF outperforms the base I3D when the number of training videos < 50 and < 8 on

UCF101 and HMDB51, respectively. Our approach outperforms the base I3D and

TSF with all small training sets except when the number of training videos = 64

on HMDB51. We try to fully fine-tune the I3D on both datasets. However, the

results are much lower than only train the fully connected layer with few training

videos. Furthermore, we also implement the TSF according to the code provided

by the authors (initialize the width of Cauchy distribution according to the length

of videos which is different to the paper) and evaluate on HMDB51 with 8 training

videos per class. It achieves 53.8 over three rounds bu still 5.2% less than ours. We

also compare our approach with I3D on Diving48 dataset (Li et al., 2018), see details

in the appendix.

3.9 Comparison with the state-of-the-art on Full

Datasets

Finally, we compare our model to the state-of-the-art action recognition results on

full UCF101 and HMDB51 datasets. The performance is summarized in Table 3.10.

The table is divided into three sets. The first set compares models that use only RGB

data. The second set compares models that use optical flow features only. Models in

the third set use both.

On RGB data, our ResNet-152 based model performs 10.2% and 18.4% better than
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Methods Backbone Pretrain Fully Fine-tuning UCF101 HMDB51

Two-stream (spatial) (Simonyan and Zisserman, 2014) Two-stream ImageNet Yes 73 40.5
Two-stream (spatial) (Feichtenhofer et al., 2017) ResNet-152 ImageNet Yes 83.4 46.7
Unsupervised LSTM (spatial) (Srivastava et al., 2015) LSTM 300 hrs vids of Sports-1M No 75.8 44.0
I3D (Carreira and Zisserman, 2017) I3D ImageNet+Kinetics Yes 95.6 74.8
TSF (Piergiovanni and Ryoo, 2018a) I3D ImageNet+Kinetics No 91.1 60
Ours ResNet-152 ImageNet No 83.2 58.9
Ours I3D ImageNet+Kinetics No 95 69.8
Two-stream (temporal) (Simonyan and Zisserman, 2014) Two-stream - Yes 83 54.6
Two-stream (temporal) (Feichtenhofer et al., 2017) ResNet-152 - Yes 87.2 60
Unsupervised LSTM (temporal) (Srivastava et al., 2015) LSTM 300 hrs vids of Sports-1M No 77.7 -
I3D (Carreira and Zisserman, 2017) I3D ImageNet+Kinetics Yes 96.7 77.1
TSF (Piergiovanni and Ryoo, 2018a) I3D ImageNet+Kinetics No 92.3 62.8
Ours ResNet-152 ImageNet No 78.5 51.3
Ours I3D ImageNet+Kinetics No 96 73.4
Two-stream (Simonyan and Zisserman, 2014) Two-stream ImageNet (spatial) Yes 88 59.4
Two-stream (Feichtenhofer et al., 2017) ResNet-152 ImageNet (spatial) Yes 91.8 63.8
St Multiplier (Feichtenhofer et al., 2017) ResNet-50,152 ImageNet Yes 94.2 68.9
Unsupervised LSTM (Srivastava et al., 2015) LSTM ImageNet No 84.3 -
ActionVLAD (Girdhar et al., 2017) VGG16 ImageNet Yes 92.7 66.9
I3D (Carreira and Zisserman, 2017) I3D ImageNet+Kinetics Yes 98 80.7
TSF (Piergiovanni and Ryoo, 2018a) I3D ImageNet+Kinetics No 93.3 63.8
Ours ResNet-152 ImageNet No 89.8 64.2
Ours I3D ImageNet+Kinetics No 97.1 77

Table 3.10: Comparison with state-of-the-art action recognition models on full
UCF101 and HMDB51. The fully fine-tuning: Yes indicates the backbone is

end-to-end fine-tuned on UCF101 and HMDB51, No indicates the backbone is
frozen during the experiments.

the original two-stream model on UCF101 and HMDB51, respectively. The ResNet-

152 based two-stream framework performs slightly better than our model on UCF101,

but ours do 12.2% better than theirs on HMDB51 even our frame feature extractor

is not trained on the UCF101 and HMDB51 datasets. When switch the backbone to

I3D, our model achieve 95% and 69.8% on UCF101 and HMDB51 without training

the frame feature extractor, which are 4.9% and 9.8% higher and only 0.6% and 5%

lower than TSF and base I3D, respectively.

When use ResNet-152 as the frame feature extractor, the performance of our

model on optical flow data is just passable. We believe this is due to the feature

extractor is only trained on ImageNet. As the distribution of optical flow is different

from the RGB images, the extracted features can not correctly represent the optical

flow images. This is proved when we use I3D as backbone (pre-training with optical
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flow features of Kinetics). Without training the I3D on UCF101 and HMDB51, our

model achieve 96% on UCF101 and 73.4% on HMDB51.

When we combine predictions from the RGB and flow models, we obtain 89.8%

and 64.2% on UCF101 and HMDB51 with ResNet-152, respectively. Our results are

2% lower and 0.4% better than the ResNet-152 based two-stream network on UCF101

and HMDB51, respectively. The performance of our model is 4.5% and 4.7% lower

compared to the St Multiplier network. However, it is interesting to note that our

model outperforms TSF on HMDB51 even we use ResNet-152 instead of I3D as the

backbone. When use I3D as frame feature extractor, the performance of our model

is really closed to the base I3D which are only 0.9 and 2.7 lower than base I3D on

UCF101 and HMDB51, respectively.

Our approach also outperform Temporal Segment Networks (TSN) (Wang et al.,

2016) and partially fine-tuned I3D with only use RGB images on Diving48 dataset,

please see details in the appendix.

3.10 Conclusion

In this paper, we propose TAVs to recognize human actions with very few labeled

training videos. We analyze the performances of different initialized TAVs with op-

timized parameters with very few training videos. The best performance is achieved

by using the SLDG TAVs (details are in appendix). We show that the framework

which adopts TAVs can learn discriminative video representation with very few la-

beled training samples. The performance is boost when apply stronger backbones

(e.g . I3D). We believe our approach can be applied to other models to capture the

temporal information of video in other tasks.
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3.11 Appendix

3.11.1 Introduction

We provide the hyper-parameters evaluation of Temporal Attention Vectors (TAVs)

on UCF101. We also evaluate the TAVs on the Diving48 dataset with two backbones

(frame/clip features extractor), ImageNet pre-trained resNet-152 (He et al., 2016)

and Kinetics 400 pre-trained I3D (Carreira and Zisserman, 2017) networks. Both

backbones are not trained with Diving48 during the entire evaluation.

3.11.2 Diving48 Dataset

The newly released Diving48 dataset (Li et al., 2018) which contains 15, 943 training

and 2096 testing videos of professional divers performing 48 types of dives. We choose

this dataset because unlike datasets such as Kinetics or UCF101, Diving48 is designed

to minimize the bias towards particular scenes or objects.

3.11.3 Implementation details

During the following evaluations, we use the Short-long dynamic Gaussian (SLDG) to

initialize the TAVs and use the Short-long term Fusion to fuse the TAVs for different

temporal terms. The training and testing procedures are the same as we explained

Sec. 4.3 in the paper. All evaluations of hyper-parameters are performed with both

RGB and optical flow as input and the evaluation on Diving48 are performed with

only RGB frames as input.

resNet-152 backbone. The input configuration is the same as we explained in Sec.

4.1.
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I3D backbone. The videos are resized preserving aspect ratio so that the smallest

dimension is 256 pixels, with bilinear interpolation. We use 10× data argumentation

with randomly select an 224×224 image crop. Pixel values are then rescaled between

−1 and 1. We use video clip with 8 continuous frames as input. If the video length is

not divisible by 8, we just simple discard the rest frames. We modify the kernel size

of 3D average pooling layer to 1× 7 and use the output as clip features (1024D).

Base I3D. The input configuration is the same as the I3D backbone except we use

64 frames video clip as the input. We follow the frame selection approach in (Wang

et al., 2016). First split the whole video into 64 chunks. If the video which has

insufficient frames we just simply repeat the video multiple times. Then from each

chunk, we uniformly choose a frame to construct the video clip. We only retrain the

last layer on Diving48 dataset.

Importance Score Learner We use the inflate-shrink during the evaluations. The

first convolution layer has 16 1 filters and others remain the same as indicate in the

paper.

3.11.4 Analysis of the SLDG Vector

We introduce the SLDG initialized TAVs in Section 3.6 which is generated by re-

peating the DG initialization N times and each time the number of chunks is set to

mn. As the number of iteration increases, we highlight more information on different

temporal range. In this section, we focus on finding a good combination between the

iteration number N and the set of chunk numbers m.

The results are shown in Table 3.11. We first focus on the top and middle parts

of the table. We notice that i). When the iteration number N does not change, as
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# vectors K # iteration N # chunks mn Accuracy

7 2 6, 1 78.4
8 2 6, 2 78.3
9 2 6, 3 77.7
9 3 6, 2, 1 75.4
9 2 8, 1 77.4
10 2 8, 2 77.1
12 2 8, 4 76.7
14 3 8, 4, 2 76.5
15 4 8, 4, 2, 1 75.7
17 4 8, 6, 2, 1 75.1
17 2 16, 1 76.9
18 2 16, 2 76.5
20 2 16, 4 76.1
21 2 16, 5 76
21 3 16, 4, 1 76.6
24 2 16, 8 74.8
28 3 16, 8, 4 75.9

Table 3.11: Average accuracy (%) on the UCF101 split 1 (the experiments are
repeated 10 times and each time 10 training videos are uniformly chosen for each
class) of SLDG with different parameters. The short-long term fusion is applied.
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the value of K increases, the accuracy actually decreases. For example, the first three

rows in the top and middle parts of Table 3.11 indicate the accuracy drops along

with an increase of K. This is because the long-term information is not highlighted

(when mn = 1 or 2). ii). There is a negative correlation between the iteration number

N and the accuracy when the number of SLDG K remains the same. For example,

row 3 and row 4 show the accuracy decreases by 2.3% as N goes up to 3 from 2

when K = 9. Then we move to the bottom part of Table 3.11. However, the second

observation is not valid when m1 = 16. The fourth and fifth rows in the bottom part

of the table show an increase in accuracy as the iteration number N goes up when

K = 21. This is because the SLDG vectors with chunk numbers (16, 5) only highlight

the short-term temporal information but ignore the long-term one.

3.11.5 Analysis of Different Initialized TAVs with Different

Fusion Approaches

In Section 3.6 and Section 3.7.2, we discuss four initialization approaches of TAVs to

encode the frame features and three two-stream fusion approaches. The goal here is,

given few labeled training data (e.g . 10 training video per class), finding the best-

performed combination of the TAVs number and the fusion approach for the TAVs

initialization approaches. Table 3.12 lists the fusion approaches (early concatenation,

late fusion or short-long term fusion), the TAVs initialization approaches (Random,

SSD, DG or SLDG) and the number of the TAVs that is used. The value of θ is set

to 2 for DG TAVs and we sort the SSD TAVs with ascending order since we find the

order does not impact their performance. Note that, the short-long fusion is only

applicable to the SLDG TAVs.
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Figure 3.7: Accuracies (%) on UCF101 split 1 with change in the size of the labeled
training set. The experiments are repeated 10 times and each time the training

videos are uniformly chosen for each class.

hhhhhhhhhhhhhhhhhhFusion
Temp. Vectors Base SSD DG SLDG

K=4 K=8 K=12 K=4 K=8 K=12 K=4 K=8 K=12 K = 3, m=(2,1) K = 6, m=(4,2) K = 12, m=(10,2)

Early Concat. 77.5 77.8 78.1 77.2 76.9 76.2 74.2 73.1 77.8 77.6 77.3 77.2
Late Fusion 75.4 71.4 72.4 74.3 68.2 74.2 72 71 72.4 72.8 72.9 72.7

Short-Long term Fusion - - - 78.5 78.4 76.8

Table 3.12: Average accuracy (%) on the UCF101 split 1 (the experiments are
repeated 10 times and each time 10 training videos are uniformly chosen for each

class) of different combinations of TAVs with different numbers and fusion
approaches.

We first focus on the performance of the TAVs with different fusion approaches.

Not surprisingly, the simple early concatenation outperforms the late fusion over all

TAVs initialization approaches since the feature extractor is only trained with RGB

images (e.g . ImageNet), the imprecise optical flow features result misprediction. For

the SLDG initialization, the short-long term fusion provides marginal improvements

(about 1%) than the early concatenation when m = (2, 1) and m = (4, 2). Then we

investigate the effectiveness of using different number of the TAVs. Increasing the
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Figure 3.8: Comparisons of TAVs using different backbones with I3D for action
recognition with change in the size of the labeled training set on Diving48. The

experiments are repeated 10 times and each time the training videos are uniformly
chosen for each action class. The average accuracy (%) are reported.

number of them leads to a small improvement (0.6%) for the random initialized TAVs

and a significant boost for the DG TAVs (3.6%). However, as the number of TAVs

increases, the accuracy slightly drop for the SSD and SLDG TAVs. We also perform

the same experiments on UCF101 split 1 with 20 training video per class and we get

the same results.

We choose the best-performed combination of the TAVs number K and fusion

approaches for each type of the TAVs and evaluate their performance with various

size of the training set. The results are shown in Figure 3.7. Using SLDG TAVs

with m = (2, 1) and short-long term fusion outperforms other combinations over all

training sets.
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3.11.6 Evaluation of TAVs with Very Few Training Data of

Diving48

In this section, we compare TAVs using resNet-152 and I3D as backbones with base

I3D on Diving48 with change in the size of the labeled training set. All experiments

are done with the same training sets. The top 1 and top 5 average accuracy are shown

in Figure 3.8a and Figure 3.8b, respectively. Clearly, the accuracy has a significant

gap between the base I3D and the I3D+TAVs. For example, with only 10 labeled

training video per class, the top 1 accuracy of I3D+TAVs achieves 5.5% on Diving48

which are 3.3% higher than the accuracy of base I3D network. If we compare the top

5 accuracy, the gap even becomes larger (17.13% with 10 labeled training videos).

Overall, I3D+TAVs outperforms the base I3D network with very few training videos.

The interesting thing is, even we use a less powerful backbone (resNet-152), the

TAVs still outperform the base I3D network with very few training data. Also, the

performances of resNet-152+TAVs and I3D+TAVs are really close which shows the

TAVs could effectively encode the temporal information of videos with both 2D or

3D backbones.

3.11.7 Comparison with the state-of-the-art on Full Diving48

Finally, we compare TAVs to the state-of-the-art action recognition results on Div-

ing48 datasets. The performance is summarized in Table 3.13. The accuracy shows

significant improvement when using TAVs with 2D framework. For example, the

Temporal Segment Network(TSN)+TAVs outperform 5.7% than the end-to-end fine-

tuning TSN network when using only RGB as input, even the backbone network never

see the video in Diving48. The end-to-end fine-tuning seems much important for 3D
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Methods Framework Input Pre-train Full-FT Accuracy

TSN (Wang et al., 2016) 2D RGB ImageNet (objects) Yes 16.8
TSN (Wang et al., 2016) 2D RGB+FLOW ImageNet (objects) Yes 20.3

TSN+TAVs (Ours) 2D RGB ImageNet (objects) No 22.1
I3D (Carreira and Zisserman, 2017) 3D RGB Kinetics (actions) No 12.2

R(2+1)D (Tran et al., 2018) 3D RGB Kinetics (actions) Yes 28.9
I3D+TAVs (Ours) 3D RGB Kinetics (actions) No 20.5

Table 3.13: Comparison with the state-of-the-art methods on the Diving48 dataset.
The full-FT: “yes” indicates end-to-end fine-tuning on Diving 48, “no” means only

train the last layer for I3D or the importance score learner of TAVs.

framework than 2D framework. For example, the end-to-end fine-tuning R(2+1)D

(Tran et al., 2018) network gives 28.9% classification accuracy which is higher than

I3D+TAVs. We believe the reason is that the I3D backbone are not trained on Div-

ing48 since the I3D and R(2+1)D networks show similar performance on other video

action recognition datasets (e.g . Kinetics). However, when using TAVs on top of I3D,

8.3% accuracy improvement is still achieved comparing with the base I3D network.

3.11.8 Conclusions

In this supplementary material, we provide the detailed evaluation of TAVs on Div-

ing48 dataset. We build the TAVs on both 2D (resNet-152) and 3D (I3D) backbones.

The significant improvement is achieved on both backbones. The TAVs show the

best performance with very few training videos. Also, compared to other state-of-

the-art frameworks on full diving48 dataset, the TAVs still show competitive results,

especially with 2D backbone.
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Chapter 4

CLTA: Contents and Length based

Temporal Attention for Few-shot

Video Classification

4.1 Citation and Main Contributor
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and Length based Temporal Attention for Few-shot Video Classification.” Submitted

to CVPR2021.

The main contributor to this paper is the first author - Yang Bo (contributes more

than 80%).
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4.2 Abstract

Few-shot video classification has been attracting increasing attention due to the dif-

ficulty in acquiring the properly labeled training samples. In the few-shot video

classification, the temporal correlation among frames of a video is effective and im-

portant to capture the video descriptor. In this paper, we propose a Contents and

Length based Temporal Attention (CLTA) model, which learns customized temporal

attention for the individual video to tackle the few-shot video classification prob-

lem. CLTA utilizes the Gaussian likelihood function as the template to generate

temporal attention and trains the learning matrices to study the mean and standard

deviation based on both frame contents and length. We show that with precisely

captured temporal attention, even a simple linear classifier can achieve competitive

results for few-shot video classification. Furthermore, by adopting the metric learning

procedure, CLTA achieves comparable performance compared to the state-of-the-art

few-shot video classification approaches.

4.3 Introduction

The performance of deep learning models on visual recognition tasks heavily relies on

abundant labeled training instances. However, it is error-prone and labor-intensive

to obtain the labeled training samples. Consequently, the problem of classifying

unseen classes with few examples, known as few-shot classification, has attracted

considerable attention. The majority of recent few-shot learning efforts focus on

image classification. Examples include model initialization based methods (Ravi and

Larochelle, 2016; Finn et al., 2017), metric learning based methods (Vinyals et al.,
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2016; Snell et al., 2017; Sung et al., 2018), gradient based methods (Rusu et al., 2018;

Simon et al., 2020; Zintgraf et al., 2019) and hallucination based methods (Hariharan

and Girshick, 2017; Zhang et al., 2019). For video data, the few-short classification

is more required but more challenging. It is even harder to obtain correct labeled

videos than images, especially for the tasks which need precise boundaries (e.g. multi-

activities detection). It is hard to say the action starts and ends at a specific frame.

The video classification needs to consider both spatial information in the frame

and the temporal correlation among frames. Directly apply the deep 3D Convolution

Neural Networks (CNNs) (Carreira and Zisserman, 2017; Tran et al., 2015, 2018) or

CNNs + Recurrent Neural Networks (RNNs) (Ballas et al., 2015; Donahue et al.,

2015) with few data lead to severe overfitting by training a complex model with

deficient data. Some researchers proposed to use Generative Adversarial Networks

(GANs) (Kumar Dwivedi et al., 2019) or data augmentation with a self-learning

manner (Zhang et al., 2020) to increase training data. Another branch of works

focuses on capturing temporal correlation among frames (Zhu and Yang, 2018; Bishay

et al., 2019; Cao et al., 2019; Bo et al., 2020), while the spatial information in a frame

is extracted by a pre-trained CNN. Hence, the model is much simpler than deep 3D

CNNs or CNN+RNNs. Therefore, they are more efficient and less likely to incur

overfitting. In this paper, we focus on learning the temporal attention of videos to

address the few-shot video classification problem.

One of the existing few-shot video classification approaches preserves temporal cor-

relation among frames via a self-attention manner (Zhu and Yang, 2018). However,

this work is based on memory networks that require extra computational and space

resources, and the temporal weights generated by self-attention is a “rough” curve.
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We consider that in a regular video, if a frame is important (e.g. contains the action),

the frames near that frame are very likely also important since the action is contin-

uous. Therefore, the temporal weights for these frames should be similar. (Bishay

et al., 2019; Cao et al., 2019) propose alignment based approaches, which cause huge

computational overhead, to preserve temporal information of videos. (Bo et al., 2020)

apply the same temporal weights to different videos to generate video descriptor.

Thus these temporal weights work as filters over temporal dimension (same as the

kernels in the convolutional layer). The important scenes of various videos usually oc-

cur at different frames. Considering two videos with “run” and “long jump” actions,

respectively. The latter contains “run” and then “jump” actions, hence applying the

temporal filters of “run” to the novel action “long jump” may cause the wrong pre-

diction. Even two videos have the same labels and lengths, the important scenes may

still occur in different temporal positions. For example, given two videos are both

labeled blasting sand and have the same length, if both videos zoom in on the sub-

ject which is important for classification, the zoom-in operations are not necessarily

happening at the same time slot.

With these insights, we propose a Contents and Length based Temporal Attention

(CLTA) to address the few-shot video classification task. CLTA leaves the spatial in-

formation preserving task to an ImageNet pre-trained CNN and only learns to tailor

the temporal attention based on both video length and frame representations. There-

fore, CLTA is simple and is easy to be trained with few videos. To be specific, CLTA

utilizes Gaussian likelihood functions to provide the temporal weights for individual

frames. Different from previous work (Bo et al., 2020), CLTA trains two learning

matrices to study a “contribution” scores of mean and standard deviation from each
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frame representation, respectively. It then uses the sum of these scores to define

the Gaussian. During the training, both video contents and length are considered.

In another word, CLTA study the ability of learning mean and standard deviation

based on the video contents and length. Since the frame representations and length

of various videos are usually different, CLTA is able to provide customized temporal

attention to different videos.

We evaluate our approach on three datasets, UCF101: many samples with the

same class are taken from the same video, HMDB51: samples with the same class

are taken from different videos, Kinetics: samples with the same class are taken from

different videos and lots of the samples have the same length (videos are all 10 seconds

long but some of them are recorded with 30 fps, some are recorded with 25 or 15 fps).

Even using a linear classifier, CLTA achieves competitive performance for the few-shot

video classification task. By adopting the cosine distance classifier which is widely

used in few-shot learning, CLTA gives comparable or better performance compared

to the state-of-the-art methods.

4.4 Related Work

Action Classification The CNN-based approaches have been widely applied to the

video classification area. Some works extend the CNNs to three-dimensional (Carreira

and Zisserman, 2017; Ji et al., 2013; Tran et al., 2015, 2018; Varol et al., 2018) to

capture the spatio-temporal information of video. Other works still use 2D CNNs but

process color and optical flow information in parallel for the subsequent late fusion

of their separate classification scores (Simonyan and Zisserman, 2014; Wang et al.,

2015; Feichtenhofer et al., 2017). An alternative solution focuses on temporal rather
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than spatial information. The examples include modeling the temporal structure of

video by various temporal pooling approaches (Yue-Hei Ng et al., 2015; Girdhar and

Ramanan, 2017), rank functions (Fernando et al., 2015), k-means clustering (Girdhar

et al., 2017) and distribution functions (Piergiovanni and Ryoo, 2018a). Recurrent

Neural Networks have also been used to encode the temporal information for learning

video representations (Ballas et al., 2015; Donahue et al., 2015; Srivastava et al., 2015;

Sun et al., 2015a,b; Wu et al., 2015).

Few-shot Learning of Image Classification Many efforts have been devoted

to overcome the few-shot image classification problem. Some of the recent works

address this by focusing on good model initialization (Finn et al., 2017, 2018; Nichol

et al., 2018; Rusu et al., 2018). Therefore, when applying the classifier to predict

novel classes, it can be learned with a limited number of labeled examples and a

small number of gradient update steps. Another line of work focuses on learning

an optimizer (Ravi and Larochelle, 2016; Munkhdalai and Yu, 2017). Examples

include using the LSTM-based meta-learner to replace the stochastic gradient de-

scent optimizer (Ravi and Larochelle, 2016) and applying a weight-update mecha-

nism with external memory (Munkhdalai and Yu, 2017). These initialization based

methods can achieve rapid adaption with a limited number of training examples for

novel classes. Another category focuses on similarity comparison. Researchers adopt

component-wise distance (Koch et al., 2015), cosine similarity (Vinyals et al., 2016;

Gidaris and Komodakis, 2018; Qi et al., 2018), Euclidean distance to class-mean rep-

resentation (Snell et al., 2017) and Graph Neural Network (Garcia and Bruna, 2017)

to measure the similarity between images.
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Few-shot Learning of Video Classification There are only few works to ad-

dress few-shot video classification problem. Zhu and Yang (Zhu and Yang, 2018)

propose the Compound Memory Network (CMN) which embeds frame features by

multi-saliency function and predicts the class by comparing the dot product simi-

larity of inputs. Bishay et al. (Bishay et al., 2019) calculate the relation between

the query and support videos by measuring the similarity between aligned segments.

Zhang et al (Zhang et al., 2020) train a 3D CNN with the self-supervised spatio-

temporal mechanism to improve the robustness of the model and prevent over-fitting.

Cao et al. (Cao et al., 2019) train the frame feature extractor by minimizing the

frame-wise cosine distance between the support and query videos.

Our work is similar to (Piergiovanni and Ryoo, 2018a; Bo et al., 2020), both

works learn the temporal weights to aggregate frame representations. (Piergiovanni

and Ryoo, 2018a) utilizes Cauchy distributions as the template to generate temporal

weights for frames. The centers and width parameters are defined by trainable pa-

rameters. (Bo et al., 2020) applied Gaussian distributions to generate the temporal

weights for action recognition. The mean and standard deviation are manually de-

fined based on the length of videos. For each Gaussian, they introduced a trainable

scale parameter. Both approaches share the temporal weights to various videos thus

may cause misprediction especially only few training samples are available. In con-

trast, CLTA train two learning matrices to study the center and width parameters

based on frame contents and video length instead of directly learning them. There-

fore, our approach avoids sharing the same temporal weights to various videos. We

discuss the detailed difference between CLTA with (Piergiovanni and Ryoo, 2018a;

Bo et al., 2020) in Section 4.6 and compare their performance in Section 4.7
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Figure 4.8: Overview of CLTA. fθ is a 2D CNN which is used to extract frame
representations. “⊗” denotes matrix multiplication and the proper matrix transpose

is applied. “Σ” denotes the addition operation according to the time dimension.
C(·|W ) is the classifier. Here, we show our approach with averaging video-level

representations.

4.5 Our Approach

Given abundant labeled videos Xb of base classes and few labeled videos Xn of novel

classes. Our goal is training a model on Xb, which also could generate distinctive rep-

resentations for novel classes in Xn (unseen during training). Therefore, a classifier

is able to classify them with only few labeled videos. We achieve this by propos-

ing a Contents and Length based Temporal Attention (CLTA), the outline is shown

in Figure 4.8. CLTA utilizes the Gaussian likelihood function to generate temporal

attention for video frames. Since videos may have multiple crucial periods for classi-

fication, we apply multiple Gaussians to capture them. Instead of studying the mean

and standard deviation directly, CLTA trains two learning matrices to study them

based on the frame representations and video length. Therefore, CLTA is able to

generate distinctive video representation for novel classes.
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4.5.1 Establish Frame-level Correlations via CLTA

Given the frame feature extractor fθ (e.g. resNet), the frame-level representation

sequence of a video is written as F = {fθ(x1), fθ(x2), . . . , fθ(xT )}, where fθ(xt) ∈ Rd

is the representation of the tth frame. The kth temporal weights for the tth frame ak,t

is defined by a Gaussian likelihood function as follows,

ak,t = exp(−1

2
(
t/Z − µk

σk
)2), (4.5.1)

µk =
1

Z

T∑

t=1

Sigmoid(fθ(xt) · wmk ), (4.5.2)

σk =
1

Z

T∑

t=1

Sigmoid(fθ(xt) · wsk). (4.5.3)

Here, the mean µk and standard deviation σk are learned by adding the dot products

of hidden variables wmk and wsk, where wmk and wsk are the row vectors of Wm and

W s, respectively. Wm,W s ∈ RK×d are the mean and standard deviation learning

matrices, with each frame-level representation fθ(xt). We apply the Sigmoid function

to the dot products to make sure the contribution from each frame is between 0 to

1. Both µk and σk are then normalized by the maximum length of videos in the

dataset Z to preserve the video length difference. Since CLTA encode both video

content (via dot product) and length (via summation) during studying the mean and

standard deviation of Gaussian, it is able to generate customized temporal attention

for different videos (frame representations or length are different). The temporal

attention ak,t is then normalized by a softmax function and used to aggregate the
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frame representations as the video-level representations. This could be formalized as

ek,t = exp(ak,t)/
T∑

t=1

exp(ak,t), (4.5.4)

vk =
T∑

t=1

ek,tfθ(xt), (4.5.5)

where vk stands for the kth video-level representation and vk ∈ Rd.

4.5.2 Design Choices

Video-level Representations Embedding

After we get K video-level representations, each of them focuses on one important

scene of the video. Before we make the prediction, the video-level representations need

to be aggregated to form a single video descriptor which describe the entire video.

The next question is how to aggregate them? To be specific, we could treat every

video-level representation equally important during the prediction by averaging them

to get the video descriptor. Another way is learning a weight for each of video-level

representations then calculate the weighted sum of them, V =
∑K

k=1 skvk,, where sk

represents the soft weight for the kth video-level representation. We compared the

performance of embedding the video-level representation by averaging and soft weight

in experiment and find that CLTA achieves the similar performance for few-shot video

classification.
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Classifier

Linear Classifier. Current Deep Neural Networks widely apply a linear layer fol-

lowed by a softmax function as the classifier. The linear classifier C(·|W ) makes

prediction by calculating W TV ∈ Rc, where V stands for video descriptor and c is

the number of classes need to predict.

Cosine Distance Classifier The importance of reducing intra-class variations

of features has been highlighted in (Hu et al., 2015; Gidaris and Komodakis, 2018).

Training the model with a cosine distance classifier explicitly could reduce the intra-

class variations of data (Qi et al., 2018; Chen et al., 2019). The cosine distance clas-

sifier C(·|W ′) makes predictions based on the cosine similarity scores [s1, s2, . . . , sc],

where c stands for the number of classes, si = V ·w′i/‖V ‖‖w′i‖ andW ′ = [w′1, w
′
2, . . . , w

′
c].

The prediction probability for each class is obtained by normalizing these similarity

scores with a softmax function. Intuitively, the learned weight vectors [w′1, . . . , w
′
c] can

be interpreted as prototypes (similar to (Snell et al., 2017; Vinyals et al., 2016)) for

each class and the classification is based on the cosine distance of the video descriptor

to these learned prototypes.

CLTA is applicable for both linear and cosine distance classifiers, We notice that

adopting cosine distance classifier, CLTA gain about 3% performance improvements,

the detailed comparisons are shown in Section 4.7.

4.6 Discussion

Why use Gaussian? Self-attention, sometimes called intra-attention is an attention

mechanism relating different positions of a single sequence in order to compute a
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representation of the sequence. Self-attention has been used successfully in a variety

of natural language tasks (Parikh et al., 2016; Paulus et al., 2017; Vaswani et al.,

2017). A natural question is why using the Gaussian likelihood function to generate

the temporal weights instead of directly learning them by the learning matrices. We

consider that in a regular video, if a frame is important (e.g. contains the action), the

frames near that frame are very likely also important since the action is continuous.

Therefore, the temporal weights for these frames should be similar. Self-attention does

guarantee that the temporal weights for adjacent frames are similar. Consequently,

some temporal information might be neglected. In contrast, using the Gaussian

likelihood function could generate smooth temporal attention weights. We found

that a smooth attention curve (generate by Gaussian) could better represent the

action than a “rough” curve (generate by learning matrices directly). We implement

the self-attention as a baseline and the detailed comparisons are shown in Section 4.7

and Section 4.8.

Comparison to Similar Temporal Attention Approaches. Some recent

works also use probability likelihood functions to generate the temporal attention for

video understanding tasks (Piergiovanni and Ryoo, 2018a; Bo et al., 2020). Pier-

giovanni et al. (Piergiovanni and Ryoo, 2018a) propose a Temporal Structure Filter

(TSF) which trains multiple Cauchy likelihood functions as the templates to generate

the temporal weights used to aggregate frame representations then use soft-attention

to embed the aggregated frame representations. The centers and width of Cauchy are

initialized by trainable and uniformly selected “seeds” between −1 to 1 then scaled

according to the length of videos and exponential function, respectively. TSF adjusts

the Cauchy distributions by training the “seeds”. Therefore, the Cauchy distributions
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are shared with various videos which may cause it fails to capture some important

scenes when applied to novel classes.

Bo et al. (Bo et al., 2020) propose a Short-long Range Dynamic Gaussian (SLDG)

for the few-shot action recognition task. They apply the Gaussian likelihood function

to generate the temporal weights for each frame. The mean and standard deviation are

manually defined based on the length of videos. Then they introduce an importance

score learner to study the soft weights to embed the aggregated frame representations.

SLDG still shares the same temporal weights to the video with same length since the

mean and standard deviation are defined based on the video length. The soft weights

only re-scale the Gaussian but since the weights are still shared with different videos,

the videos with the same length still have the final temporal weights.

In few-shot learning, the aim is to classify novel classes with few training samples.

Applying learned temporal weights for seen classes to novel class may cause temporal

information loss and making the wrong prediction. In contrast to (Piergiovanni and

Ryoo, 2018a; Bo et al., 2020), CLTA train two learning matrices Wm and W s to

study the mean and standard deviation, respectively. During the study, both video

contents and length are considered. In another word, CLTA study the ability of

learning mean and standard deviation based on video contents and length during

training. Therefore, it can be easily generalized to novel class. We implement both

TSF and SLDG, the detailed comparisons are shown in Section 4.7 and Section 4.8
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Video-level Rep Embd
num of Gaussian Average Weighted Sum

3 55.9 56.1
6 57.9 57.5
9 56.5 56.2

Table 4.8: We report 5-way 1-shot mean accuracy of CLTA with different number of
Gaussian and video-level representations embedding methods on HMBD51. We

adopt linear classifier for this experiment. The video-level Rep Embd indicates how
the video-level representations are embedded as the video descriptor.

4.7 Experiments

4.7.1 Datasets

We evaluate our approach on three popular datasets. First, UCF101 (Soomro et al.,

2012) which consists of 13320 action videos in 101 categories. The second dataset is

HMDB51 (Kuehne et al., 2011) which contains 6766 videos that have been annotated

for 51 actions. For UCF101 and HMDB51 datasets, we follow the split as in (Zhang

et al., 2020). We select 70 classes as the training set, 10 classes as the validating

set and last 21 classes as the testing set for UCF101 and 31 actions as the training

set, 10 actions as the validating set and 10 actions as the testing set for HMDB51.

We also use the Kinetics dataset (Carreira and Zisserman, 2017) and follow the same

split as in (Zhu and Yang, 2018) which samples 64 classes for training, 12 classes for

validation, and 24 classes for testing. Since some of the video are not available, we

select other videos in the same class to guarantee each class will have 100 videos.

There are no overlap classes between the training, validating and testing sets for all

these three datasets.
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Video-level Rep Embd Classifier 1-shot 5-shot

Averaging Linear 57.9 80.1
Averaging Cosine 60.1 82.4
Weighted Sum Linear 57.5 79.8
Weighted Sum Cosine 59.8 82.5

Table 4.9: We report 5-way mean accuracy of CLTA with different video-level
representations embedding methods and classifiers on HMDB51. The number of

Gaussian is set to 6. The video-level Rep Embd indicates how the video-level
representations are embedded as the video descriptor.

4.7.2 Implementation Details

Following the data augmentation as in (Wang et al., 2016), we randomly crop from

four corners and the center of input frames and sample the width and height of each

crop randomly from {256, 224, 192, 168}, followed by re-sizing to 224 × 224. The

argumentation is applied for both original and horizontal flipped frames. We use

ImageNet pre-trained 152 layers ResNet (He et al., 2016) as the backbone for the

experiments on UCF101 and HMDB51 and 50 layers ResNet for the experiments on

Kinetics. For all experiments, we use RGB frames as the input for the backbone.

We follow the procedure in (Chen et al., 2019). CLTA is first trained on the

training set Xb and we choose the epoch which achieves the highest accuracy on the

validating set. During testing, we construct support set by random selecting n classes

from the testing set Xn, each of them contains k randomly selected samples, called

n-way k-shot learning. The query set contains one sample from each of the n classes.

Therefore, each episode has a total of n(k + 1) examples. Beside of support and

query set, we also uniformly select 50 samples from each of the n classes as the query

validation set. Samples in the query set, query validation set and support set have

no overlap with each other. We use the support set to re-train a classifier (linear or
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Linear Cosine distance
Way Averaging Weighted Sum Averaging Weighted Sum
5-way 57.9 57.5 60.1 59.8
6-way 53.5 54.2 56.5 56.9
7-way 51.2 52.9 52.0 53.2
8-way 48.4 49.5 50.7 51.7

Table 4.10: We report high way 1-shot mean accuracy of CLTA with different
video-level representations embedding methods and classifiers on HMDB51. The

number of Gaussian is set to 6.

cosine distance) and stop training when the accuracy on query validation set is about

to decrease. Then the classifier is used to classify the samples in the query set. The

mean accuracies are reported by random sampling 10000 episodes for all experiments.

The fully connected layer has dimension 1024, followed by a ReLU function and

a batch normalization layer. Adopting these additional layers speed up the training

also gives 1% improvements of CLTA. During the training phase, we fix the parame-

ters of the backbone and only train CLTA by minimizing the standard cross-entropy

classification loss using Adam optimizer with initial learning rate 0.001. The learning

rate decays every 20 epochs by 0.1. We train our model at most 60 epochs with batch

size 64. In the testing phase, we fix the parameters of both backbone and CLTA then

use the videos in support set to retrain a new classifier 100 epochs with batch size

64 and learning rate 0.001 in each episode. The softmax scores of augmentations are

averaged as the final score.
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Linear Cosine distance
Way Averaging Weighted Sum Averaging Weighted Sum
5-way 80.1 79.8 82.4 82.5
6-way 76.3 76.8 78.1 78.7
7-way 72.6 73.4 74.1 75.0
8-way 68.6 70.0 70.9 72.7

Table 4.11: We report high way 5-shot mean accuracy of CLTA with different
video-level representations embedding methods and classifiers on HMDB51. The

number of Gaussian is set to 6.

UCF101 HMDB51
Methods Backbone Fine-tune Frame-level Rep Embd 1-shot 5-shot 1-shot 5-shot

3D Prototypical Net (Zhang et al., 2020) 3D Conv-4 Y 3D Conv 57.1 78.3 38.1 53.2
3D RelationNet (Zhang et al., 2020) 3D Conv-4 Y 3D Conv 58.2 78.4 38.2 53.2
3D SoSN (Zhang et al., 2020) 3D Conv-4 Y 3D Conv 62.6 81.5 40.8 55.2
ARN (Zhang et al., 2020) 3D Conv-4 Y 3D Conv 66.3 83.1 45.5 60.6
Self-attention ResNet-152 N trainable matrices 73.8 80.7 52.6 70.8
TSF (Piergiovanni and Ryoo, 2018a) ResNet-152 N Gaussian 74.7 84.3 52.9 72.1
SLDG (Bo et al., 2020) ResNet-152 N Gaussian 76.0 84.5 53.1 73.6
CLTA+linear (ours) ResNet-152 N Gaussian 78.0 88.4 57.5 79.8
CLTA+cosine (ours) ResNet-152 N Gaussian 80.3 90.7 59.8 82.5

Table 4.12: Mean accuracy of 5-way video classification on UCF101 and HMDB51.
The Frame-level Rep Embd indicates how the frame-level representations are

embedded as video-level representation.

4.7.3 Comparison to Different Design Choices

The Number of Gaussian

We evaluate CLTA with different numbers of Gaussian and video-level representation

embedding approaches on HMDB51. We adopt linear classifier for this experiment

and report the 5 way 1-shot classification results in Table 4.8. Increasing the number

of Gaussian used in CLTA does not necessary improve the performance. When the

number is set to 6, CLTA gives the best performances. Also, averaging the video-level

representation achieves the same level of performance as applying weighted sum for 1-

shot classification. We set the number of Gaussian to 6 for the following experiments.
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Classifiers

Next, we show the performance of CLTA with different classifiers on HMDB51 in

Table 4.9. In contrast with cosine distance classifier which a great increase (around 5%

on mini-ImageNet dataset) of the performance for few-shot image classification (Chen

et al., 2019), directly adopting the cosine distance classifier gives a relative small

increase (around 2%) in the performance of CLTA comparing to just using linear

classifier. One reason is that the backbone is not fine-tuned which limits the ability

of cosine distance classifier to reduce the intra-class variation. On the other hand,

applying soft-attention to embed the video-level representation does not necessary

improves the performance of CLTA. We believe that is because CLTA has already

learned a good enough temporal attention which no need to re-weight.

High Way Classification

We further evaluate CLTA in high way 1-shot and 5-shot classification on HMDB51,

the results are shown in Table 4.10 and Table 4.11. Overall, as the increasing of

the number of way, the classification become harder and the performance of CLTA

decreased for both 1-shot and 5-shot classification. Although the performances of

CLTA are not shown much difference by adopting soft attention to embed video-

level representation compared to averaging them for 5-way 1-shot classification. As

the problem became harder (high way classification), adopting soft attention outper-

forms averaging the video-level representation for CLTA. Compared the performance

of CLTA with linear and cosine distance classifiers in high way scenarios, we can con-

clude that applying linear classifier achieves the same level of performance as using

cosine distance classifier if embed the video-level representations by averaging or soft
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Methods Backbone Fine-tune Frame-level Rep Embd 1-shot 5-shot

Matching Net (Zhu and Yang, 2018) ResNet-50 N Averaging 53.3 74.6
MAML (Zhu and Yang, 2018) ResNet-50 N Averaging 54.2 75.3
CMN (Zhu and Yang, 2018) ResNet-50 N Multi-saliency 60.5 78.9
TARN (Bishay et al., 2019) C3D N Alignment 66.6 80.7
TSN++ (Cao et al., 2019) ResNet-50 Y Averaging 64.5 77.9
CMN++ (Cao et al., 2019) ResNet-50 Y Multi-saliency 65.4 78.8
TRN++ (Cao et al., 2019) ResNet-50 Y Multilayer Perceptron 68.4 82.0
TAM (Cao et al., 2019) ResNet-50 Y Alignment 73.0 85.8
Self-attention ResNet-50 N Trainable Matrices 65.7 79.5
TSF (Piergiovanni and Ryoo, 2018a) ResNet-50 N Gaussian 63.9 77.2
SLDG (Bo et al., 2020) ResNet-50 N Gaussian 64.2 78.1
CLTA+linear (ours) ResNet-50 N Gaussian 69.6 82.7
CLTA+cosine (ours) ResNet-50 N Gaussian 71.9 84.1

Table 4.13: Mean accuracy of 5-way video classification on Kinetics. The
Frame-level Rep Embd indicates how the frame-level representations are embedded
as video-level representation. The “++” sign indicates that the model using cosine

distance classifier and episode-base training procedure

attention approaches.

In the following experiments, we use the soft weights as the default video-level

representation embedding approach for CLTA with both linear and cosine distance

classifiers and the number of Gaussian is set to 6.

4.7.4 Evaluation on UCF101 and HMDB51

We compared CLTA to other approaches that use 3D CNNs as the backbone and

the approaches we mentioned in Section 4.6, the results are shown in Table 4.12.

Zhang et. al (Zhang et al., 2020) report the performance of Prototypical Network

(3D Prototypical Net (Snell et al., 2017)), Relation Network (3D RelationNet (Sung

et al., 2018)), Second-order Similarity Network (SoSN) (Zhang and Koniusz, 2019)

and Action Relation Network (ARN) (Zhang et al., 2020) by using a 4 layers trained

from scratch 3D CNN as the backbone. We implement the soft-attention baseline,
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TSF (Piergiovanni and Ryoo, 2018a) and SLDG (Bo et al., 2020). For the self-

attention baseline, the only difference compared to CLTA is that we use two learning

matrices to generate the temporal weights for each frame directly rather than using

Gaussian likelihood function. The dimension of learning matrices are also 6× d. The

temporal attention are then also normalized by softmax function. We calculate the

weighted sum of frame representations to generate video-level representations. The

video-level representations are then averaged as the video descriptor. For TSF, we

adopt the Gaussian likelihood function instead of Cauchy to achieve fair comparison

and follow all other setting mentioned in (Piergiovanni and Ryoo, 2018a). For SLDG,

we use the default setting as described in the paper (Bo et al., 2020).

The models focusing on temporal information preserving (second part of Ta-

ble 4.12) show great improvements on UCF101 and HMDB51 for both 1-shot and

5-shot classification compared to the approaches using 3D CNNs backbones. It shows

a large image dataset pre-trained deep 2D CNNs also have the potential as the back-

bone for the few-shot video classification even without fine-tuning. Also, the tempo-

ral information may play a more important role than spatial information in few-shot

video classification. Compared to the self-attention baseline with SLDG and TSF,

even they almost achieve the same level performance for 1-shot classification but the

gap is become bigger for 5-shot classification. We may conclude that using the distri-

bution likelihood function generates better temporal weights for actions. The CLTA

outperform all these methods on UCF101 and HMDB51. By comparing the result

of our approach with SLDG and TSF which also use distribution likelihood function

to generate temporal weights for video frames, we can conclude that customizing

the temporal attention for individual video (CLTA) gives better generalization to
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novel classes than sharing the same temporal weights over different videos (TSF and

SLDG).

4.7.5 Evaluation on Kinetics

We compared our approach to other state-of-the-art approaches on Kinetics as shown

in Table 4.13. The “++” sign indicates that the model using cosine distance clas-

sifier as described in (Chen et al., 2019) and episode-base training procedure. Com-

pared the models which average the frame-level representations (e.g. Matching Net,

MAML, TSN++) to the temporal patterns preserved models (e.g. CMN, TARN,

TRN++), the methods which consider the temporal correlation between frames out-

perform those models which averaging the frame features. We can conclude that

the averaging operation does not preserves the video temporal information well in

few-shot classification. This is consistent with video classification on large datasets.

Also, training model with proper distance function (e.g. cosine distance) have the

potential to improve the model generalization on novel classes when comparing CMN

with CMN++. Even for the model is not designed for few-shot video classification

(TSN, TRN), training them to reduce intra-class variations could let them achieve

comparable or better performance for few-shot classification. The TSF and SLDG

show the similar performance comparing to the TRN++ for 5 shot learning but the

accuracy is about 5% lower for 1 shot learning. However, in contrast with the experi-

ment on UCF101 and HMDB51, Alignment model outperforms both TSF and SLDG.

We believe that is because the Kinetics dataset contains lots of different labeled video

with the same length. Therefore, the approaches which share temporal weights (e.g.

TSF, SLDG) cannot preserve well for the temporal information.
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For CLTA, applying the cosine distance classifier gives 2.3% improvements for

5-way 1-shot classification (69.6% versus 71.9%) and 1.4% improvement for 5-way

5-shot classification (82.7% versus 84.1%). We believe the reason is that the not fine-

tuned backbone limit the potential of cosine distance classifier to reduce the intra-class

variations between videos. By adopting cosine distance classifier, CLTA achieves the

same level performance compared to TAM which is the current best approach for few-

shot video classification. However, TAM introduce huge computational overhead since

it utilizes alignment based approach, which compared the cosine distance frame-by-

frame between the support and query videos, to preserve temporal correlation among

frames. CLTA is much simpler, and not use a fine-tuned backbone.

4.8 Qualitative Results and Visualizations

We visualize the learned temporal weights of different videos (Figure 4.9) by Align-

ment model (first row in each part), TSF (second row in each part), SLDG (third

row in each part) and CLTA (last row in each part). The top two are the learned

temporal attention of video with various lengths but the same label. The top left and

bottom left are the learned temporal attention of videos with the same length and

the same labels. The bottom two are the learned temporal attention of videos with

the same length but the different labels. We map the video length to the range (0, 1]

(x-axis). For example, if the length of the video is 300 (maximum video length in the

dataset), the x-axis has the range (0, 1]. The y-axis indicates the value of temporal

attention weights.
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Label = Blasting Sand, Length = 300
Label = Blasting Sand, Length = 150

Label = Dancing Macarena, Length = 300
Label = Blasting Sand, Length = 300

Figure 4.9: The visualization of learned temporal attentions by Alignment Model
(first row in each part), TSF (second row in each part), SLDG (third row in each
part) and CLTA (last row in each part). The length of video is mapped in range
(0,1]. We choose four sample videos from the Kinetics dataset, video has label

blasting sand and length 150 frames (top left), video has label blasting sand and
length 300 frames (top right), another video has label blasting sand and length 300
frames (bottom left), and video has label dancing macarena and length 300 frames
(bottom right). We extract the frames from the three videos with rate 1 fps and

place them on top of each column.

We observe that all approaches could change the temporal attention weights ac-

cording to the length of videos. However, if we compare the learned temporal at-

tentions (second and third rows in top right and bottom left parts in Figure 4.9)

of the videos with the same length and same label by TSF and SLDG, we observe

that both approaches fail to adjust the temporal attention based on the content of

videos as we mentioned before. Although TSF studies different temporal attention

weights for the videos which have different labels (second row in the bottom left and

bottom right parts in Figure 4.9), the center of the Cauchy distributions still remain
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the same. The self-attention baseline adjusts the temporal attention based on both

length and content of video, but it gives a sharp temporal weights which may not

correctly represent the temporal information of video. In contrast with them, CLTA

is able to provide customized temporal attention weights for various videos based

on their length and contents. Aslo, CLTA gives smooth temporal attention curves

compared to alignment model.

4.9 Conclusion

We propose a Contents and Length based Temporal Attention (CLTA) for the few-

shot video classification task based on the idea different videos have various temporal

patterns. CLTA trains two learning matrices to study the mean and standard devia-

tion based on both video contents and length. Therefore, CLTA is easily generalized

to novel classes. We evaluate CLTA with different video-level embedding approaches

and classifiers. Overall, using cosine distance classifier achieves the better perfor-

mance compared to linear classifier. Also, we report the performance of CLTA for

high way video classification. We evaluate CLTA on three datasets, CLTA outper-

forms other temporal attention methods (alignment, TSF and SLDG) for few-shot

video classification. We show that CLTA can achieves competitive results for few-shot

video classification even with a simple linear classifier. Furthermore, by adopting the

metric learning procedure, CLTA achieves comparable performance compared to the

state-of-the-art few-shot video classification approaches.

116



Ph.D. Thesis – Y. Bo McMaster University – Computer Science

Bibliography

Bo, Y., Lu, Y., and He, W. (2020). Few-shot learning of video action recognition

only based on video contents. In The IEEE Winter Conference on Applications of

Computer Vision, pages 595–604.

Finn, C., Xu, K., and Levine, S. (2018). Probabilistic model-agnostic meta-learning.

In Advances in Neural Information Processing Systems, pages 9516–9527.

Hu, J., Lu, J., and Tan, Y.-P. (2015). Deep transfer metric learning. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 325–333.

Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for

one-shot image recognition. In ICML deep learning workshop, volume 2. Lille.

Munkhdalai, T. and Yu, H. (2017). Meta networks. In Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, pages 2554–2563. JMLR.

org.

Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning algo-

rithms. arXiv preprint arXiv:1803.02999.

Parikh, A. P., Täckström, O., Das, D., and Uszkoreit, J. (2016). A decomposable

attention model for natural language inference. arXiv preprint arXiv:1606.01933.

Paulus, R., Xiong, C., and Socher, R. (2017). A deep reinforced model for abstractive

summarization. arXiv preprint arXiv:1705.04304.

Qi, H., Brown, M., and Lowe, D. G. (2018). Low-shot learning with imprinted weights.

117



Ph.D. Thesis – Y. Bo McMaster University – Computer Science

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5822–5830.

Ravi, S. and Larochelle, H. (2016). Optimization as a model for few-shot learning.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., and

Hadsell, R. (2018). Meta-learning with latent embedding optimization. arXiv

preprint arXiv:1807.05960.

Simon, C., Koniusz, P., Nock, R., and Harandi, M. (2020). On modulating the

gradient for meta-learning. In European Conference on Computer Vision, pages

556–572. Springer.

Sun, C., Shetty, S., Sukthankar, R., and Nevatia, R. (2015a). Temporal localization of

fine-grained actions in videos by domain transfer from web images. In Proceedings

of the 23rd ACM international conference on Multimedia, pages 371–380. ACM.

Sun, L., Jia, K., Yeung, D.-Y., and Shi, B. E. (2015b). Human action recognition using

factorized spatio-temporal convolutional networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4597–4605.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

 L., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008.

Zhang, H. and Koniusz, P. (2019). Power normalizing second-order similarity net-

work for few-shot learning. In 2019 IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 1185–1193. IEEE.

118



Ph.D. Thesis – Y. Bo McMaster University – Computer Science

Zhang, H., Zhang, J., and Koniusz, P. (2019). Few-shot learning via saliency-guided

hallucination of samples. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2770–2779.

Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K., and Whiteson, S. (2019). Fast

context adaptation via meta-learning. In International Conference on Machine

Learning, pages 7693–7702. PMLR.

119



Chapter 5

Conclusion and Future Work

5.1 Conclusions

The core problem for solving the few-shot human action recognition problem is learn-

ing the discriminative video descriptor with only few training videos. The descriptor

should preserve both spatial and temporal information thus can be easily classified.

To generate the discriminative video descriptor given few training videos, the follow-

ing questions should be answered. 1. How to preserve the entire temporal information

of videos with various lengths. 2. How to prevent overfitting during training. 3. How

to classify the video descriptors. In this thesis, we try to answer these questions and

propose three temporal aggregation methods that can preserve the temporal informa-

tion of the entire video. Meanwhile, our approaches does not or only introduce few

training parameters and thus can easily prevent the overfitting problem. Finally, our

approaches can adopt both linear classifiers and the clustering approaches.

We first proposed the DVD which recursively convolves the frame features with

the normally chosen basis for a lower-dimensional space over the temporal direction.
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By properly choosing the dimensions of the basis (e.g. 2), the temporal dimension

of the frame feature sequence could be eventually reduced to 1. This approach could

take various length frame sequences as input so that the temporal information over

the whole video can be preserved. We evaluate the DVD with both hand-craft based

frame features (SIFT, SURF, and 3D-SIFT) as well as deep learning-based features

(VGGNet16 and VGGNet19) for the near-duplicate video detection and human action

recognition tasks. The DVD shows a 14% improvement for near-duplicate video

detection and 5.37% improvement for human action recognition tasks compared to

the baselines, respectively.

Although the DVD can take various length frame sequences as input and involve

the temporal information of the entire video, it brings additional computation over-

head. Also, temporal attention is not considered. We then proposed the TAVs which

also adapt the various length videos. The TAVs adopt multiple Gaussian distribu-

tion functions to generate the temporal attention for each frame/segment. The mean

and standard deviation of each Gaussian is manually defined based on the length of

the video to highlight a certain period of the video. Also, each TAV has a trainable

important score that enables the most distinguishable period of the videos to have

higher temporal attention. We evaluate the TAVs with various backbones (resNet152

and I3D) on two human action recognition datasets with the regular and few-shot

scenario. The TAVs outperform the state-of-the-art video action recognition bench-

marks with very few labelled training videos (92% on UCF101 and 59% on HMDB51,

with 10 and 8 training videos per class, respectively). Furthermore, our approach can

still achieve competitive results on full datasets without fully fine-tuning (97.1% on

UCF101 and 77% on HMDB51).
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Since the TAVs define the Gaussian based on the video length and share the im-

portant scores of TAVs to all videos. The videos with the same length will share the

same TAVs even they belong to different action classes. To solve this problem, we

further proposed the CLTA. Different than TAVs, CLTA studies the mean and stan-

dard deviation of Gaussian from the contents of each video frame called contribution

scores. These scores are added together to form the mean and standard deviation of

the Gaussian. Since the frames of different videos are various, CLTA can customize

temporal attention for individual video. We evaluate CLTA on three human action

recognition datasets, UCF101, HMDB51 and Kinetics in the few-shot scenario. With-

out fine-tuning the backbone (resNet50 and resNet152), CLTA achieves comparable

or better results compared to the state-of-the-art few-shot approaches on all three

datasets.

5.2 Future Work

The first future work is evaluating the CLTA for few-shot high-way classification

scenario (similar to the TAVs). Current few-shot approaches usually evaluate the

algorithm under 8-way classification. However, in real-life practice, there are much

more actions for the recognition task. Thus, it is worth evaluating the performance

of few-shot action recognition approaches on the full dataset. Another advantage of

evaluating with the full dataset is saving the evaluation time. Current approaches

uniformly select the fine-tuning and testing class from a larger set during each episode,

therefore it needs to repeat multiple times to get a reliable performance of the methods

on the dataset. Evaluating the performance on the full dataset could avoid that since

the testing set is fixed. Another interesting future work is related to evaluate CLTA
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on reversed actions in the few-shot scenario. For example, if we play the action

opening the door backward, the action becomes closing the door. Although CLTA

could study the Gaussian from each frame, it may fail to distinguish this kind of

action. Current approaches (e.g. bi-directional RNNs) used in natural language

processing may not be suitable for the few-shot scenario. Moreover, all of our three

approaches achieve similar or better results compared to the previous state-of-the-art

methods, but they are not compared to each other. More specifically, comparing

the performance between using hierarchical architecture (e.g. DVD) or temporal

attention mechanism (e.g. TAVs and CLTA) to preserve the temporal information of

videos. In summary, we will evaluate our algorithms by incorporating more complex

real-life actions and improve them. We believe our approaches could benefit more

video-related tasks.
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