
REAL-TIME UPDATING AND NEAR-OPTIMAL

ENERGY MANAGEMENT SYSTEM FOR

MULTI-MODE ELECTRIFIED POWERTRAIN

WITH REINFORCEMENT LEARNING

CONTROL



REAL-TIME UPDATING AND NEAR-OPTIMAL ENERGY

MANAGEMENT SYSTEM FOR MULTI-MODE ELECTRIFIED

POWERTRAIN WITH REINFORCEMENT LEARNING

CONTROL

BY

ATRIYA BISWAS, B.Eng., M.Tech.

a thesis

submitted to the department of Mechanical Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

© Copyright by Atriya Biswas, December 2020

All Rights Reserved



Doctor of Philosophy (2020) McMaster University

(Mechanical Engineering) Hamilton, Ontario, Canada

TITLE: Real-time Updating and Near-Optimal Energy Manage-

ment System for Multi-mode Electrified Powertrain with

Reinforcement Learning Control

AUTHOR: Atriya Biswas

M.Tech., (Mechanical Engineering)

Indian Institute of Technology, Kharagpur, India

SUPERVISOR: Ali Emadi

NUMBER OF PAGES: xxxviii, 331

ii



Abstract

Energy management systems (EMSs), implemented in the electronic control unit

(ECU) of an actual vehicle with electrified powertrain, is a much simpler version of the

theoretically developed EMS. Such simplification is done to accommodate the EMS

within the given memory constraint and computational capacity of the ECU. The

simplification should ensure reasonable performance compared to theoretical EMS

under real-life driving scenarios. The process of simplification must be effective to

create a versatile and utilitarian EMS.

The reinforcement learning-based controllers feature profitable characteristics in op-

timizing the performance of controllable physical systems as they do not mandatorily

require a mathematical model of system dynamics (i.e. they are model-free). Quite

naturally, it can aspired to testify such prowess of reinforcement learning-based con-

trollers in achieving near-global optimal performance for energy management system

(supervisory) of electrified powertrains. Before deployment of any supervisory con-

troller as a mainstream controller, they should be essentially scrutinized through var-

ious levels of virtual simulation platforms with an ascending order of physical system

emulating-capability. The controller evolves from a mathematical concept to an util-

itarian embedded system through a series of these levels where it undergoes gradual
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transformation to finally become apposite for a real physical system. Implementa-

tion of the control strategy in a Simulink®-based forward simulation model could

be the first stage of the aforementioned evolution process. This brief will delineate

all the steps required for implementing an reinforcement learning-based supervisory

controller in a forward simulation model of a hybrid electric vehicle. A novel frame-

work of loss-minimization based instantaneous optimal strategy is introduced for the

energy management system of a multi-mode hybrid electric powertrain in this brief.

The loss-minimization strategy is flexible enough to be implemented in any architec-

ture of electrified powertrains. It is mathematically proven that the overall system

loss minimization is equivalent to the minimization of fuel consumption.

An online simulation framework is developed in this article to evaluate the perfor-

mance of a multi-mode electrified powertrain equipped with more than one power

source. An electrically variable transmission with two planetary gear-set has been

chosen as the centerpiece of the powertrain considering the versatility and future

prospects of such transmissions. It is noteworthy to mention that a novel architec-

ture topology selected for this dissertation is engendered through a series of rigorous

screening process whose workflow is presented here with brevity. One of the legiti-

mate concern of multi-mode transmission is it’s proclivity to contribute discontinuity

of power-flow in the downstream of the powertrain. Mode-shift events can be pre-

dominantly held responsible for engendering such discontinuity. Advent of dynamic

coordinated control as a technique for ameliorating such discontinuity has been sub-

stantiated by many scholars in literature. Hence, a system-level coordinated control

is employed within the energy management system which governs the mode schedule

of the multi-mode powertrain in real-time simulation.
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1.1 Reinforcement Learning-based Control for En-

ergy Management System

Rapid urbanization and disruptive technological progress in vehicular mobility have

engendered a soaring growth in the automotive production in last two decades [1].

However, such growth may pose a detrimental threat to our planet by increasing

emission of greenhouse gases (GHG)s. Forecasting the dreadful repercussions of un-

controlled GHG emissions on the planet’s ecosystem, governments and automotive

manufacturer decided to act upon the issue promptly through research collabora-

tions. Electrification of automotive powertrain culminated as a promising wield for

combating against the aforementioned problem [2]. Based on the electrification fac-

tor, electrified vehicles can be broadly categorized into hybrid electric vehicle (HEV),

plug-in-hybrid electric vehicle (PHEV), and electric vehicle (EV) [3], [4]. Partially

electrified or HEVs are the most popular and also viable option because they are not

encumbered with range anxiety and lack of charging infrastructure.

However, more energy sources incur additional complexity to the powertrain control.

The complexity incurred due to electrification will be well-justified if all the energy

sources are optimally controlled. A dedicated control system, known as energy man-

agement system (EMS), has become an integral part of the overall vehicle control

module to carry out the aforementioned task. Fig.1.1 reiterates the dominance of

Toyota Prius and other Toyota HEVs in U.S. market since the penetration of elec-

trified powertrain into automotive market. Simple operation and effective control of

Toyota hybrid system (THS) with two planetary gear (PG)-sets have been so success-

ful that other original equipment manufacturer (OEM)s like Ford, Nissan licensed it

2
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Figure 1.1: HEV sales trend in U.S. from 1999 to 2017 [5].

and used in their HEVs with a few modifications. In the meantime, the automotive

industry has experienced an emergence of multiple electrified modes, introduced by

General Motors (GM) in 2007, with two planetary gears and multiple clutches [6].

Alike automatic transmission, clutch-based mode-shift operation has been employed

as the predominant wield for encompassing so many electrified modes into a single hy-

brid electrified powertrain (HEPT) architecture. The two-mode electrified powertrain

architecture coalesces the advantages of both parallel and power-split architectures in

a single unit, making it even more versatile than power-split [7]. However, the mode-

shift control becomes an added responsibility for the EMS whose control strategy

needs to be even more competent than that of a series or parallel or even power-split

3
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Figure 1.2: Sales trend of drivetrain architectures in U.S. from 2011 to 2017 [5].

architecture. Fig.1.2 and authors in [8] reveal that GM’s two-mode hybrid system

could not gain decent popularity even after complicated architecture topology with

two power-split modes (i.e., input-split and compound-split), one parallel mode, two

fixed gear modes, and prosperous attributes. On the other hand, the sales trend of

Prius given in fig.1.1 attests the ingenuity of the simple architectural topology of third

generation THS even without incorporation of any clutch operation. The stark con-

trast between the success of aforementioned two powertrains has ignited the research

on advanced electrified powertrain architectures with multiple PG-sets and clutches.

The aforementioned reason has assisted in propagating researches in three distinct

threads. First is, finding the optimal topology of powertrain architectures from a

gargantuan design space comprising of architectures with two PG-sets, four (4) prime-

movers (ICE, traction motor, generator, and vehicle output), and three (3) clutches

allocated. Two PG-sets have six nodes where four prime-movers can be connected in

4
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different permutation-combination. There are sixteen (16) feasible ways to connect

six nodes of two PG-sets. Hence, we can have 16C3 ways of connecting three clutches

in the two PG-set configuration. It is perceivable how huge would be the design space.

Therefore, a systematic, swift, and effective screening process is highly recommended

to find out optimal topology of powertrain architectures. Second, a systematic online

simulation framework is indispensable to validate the performance of the optimal

topology of architectures obtained from previous stage. The screening stage must

be confined to offline simulation, executed by MATLAB®, to expedite the screening

process. Since, online simulation framework for each powertrain architecture will need

human intervention and cannot be automatized fully, screening of approximately a

million design candidate will take forever if performance assessment of every design

candidate is done through online simulation framework. Now, the online real-time

simulation should incorporate dynamics of the powertrain components as well as the

clutch dynamics during mode-shift events. Third and the last thread can be seen

as the most important among all these because of it’s association with articulation

of EMS. According to authors in [4] and [9], an intelligent EMS should posses a

few indispensable qualities in order to qualify for online simulation framework for an

electrified powertrain with multiple modes and these are enumerated as follows:

1. The EMS should be real-time implementable with less computational burden.

2. It should be independent of human intervention once the vehicle is deployed on

road.

3. It should yield near-global optimal performance in terms of fuel consumption

in real-world driving missions.

5
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4. It should be continuously or periodically updated during real-world driving

situations.

5. Last but not the least, considering it’s association with a powertrain with mul-

tiple electrified modes, it should be equipped with coordinated control during

mode-shift events.

Now, a brief discussion will be presented here on the available control strategies

which can be explored for an EMS having aforementioned qualities. The global

optimal control strategy obtained through Dynamic Programming (DP) is excluded

from the following list considering the fact that DP cannot be implemented in the

real-time processors of vehicle control unit (VCU).

1) Rule-based or premeditated control strategy. The premeditated control strategy

is comprised of some calibrated look-up tables or driving situation-specific set of

rules which can yield global optimal only for apriori drive cycles. Being extracted

from global optimal control for a set of apriori drive cycles, the premeditated control

strategy is stupendous in generating global optimal control in real-time real-world

driving. However, the real-world driving has to be a member of the aforementioned

set of apriori drive cycles. Upon encountering an unknown drive cycle, premeditated

control strategy cannot even guarantee near-optimal performance. Once deployed on

road, the premeditated strategy that is embedded on the VCU, cannot be altered

through human intervention during vehicle’s running life.

2) Periodically-updating stochastic dynamic programming (SDP) based control strat-

egy. SDP is an useful way of tackling uncertainty in power demand during real-world

driving scenario [10]. While deterministic DP is applied on a single drive cycle, SDP

is applied to an ensemble of drive cycles [11]. SDP yields a multi-dimensional look-up

6
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table comprising of the control strategy which is applicable for the entire ensemble of

drive cycles. However, the SDP is computationally demanding and takes even more

time than deterministic DP and hence cannot be implemented in VCU for real-time

application. Still, the control strategy engendered by the SDP can be used during

real-world driving situations due to fact that the control strategy is not only tailored

just for one drive cycles, but also for a many more variation of driving situations.

Now, while deployed on road, the VCU can collect driving data and the control strat-

egy, yielded from SDP, can be periodically updated based on the recent trend of

driving data. It is noteworthy to mention that the periodic computation of SDP can

be either executed vehicle onboard if VCU is equipped with powerful processor or

executed in the cloud computing facilities.

3) Real-time implementable Model predictive control (MPC). The prevalent principle

of MPC is to predict disturbances to the system over a receding future time-window

and manipulate the control variables to optimize the system performance. For EMS of

HEVs, different methods have been witnessed in literature while implementing MPC

as a real-time control strategy. Power-demand of the vehicle is the predominantly used

disturbance variable since it can encompass effect of many disturbance variables such

as vehicle speed, vehicle acceleration, road grade, wind speed, etc. Different tools such

as “Markov Chain Model” [12] and exponential predictor [13,14] are of the available

for predicting power-demand. Optimal control methods such as DP [13, 14] and

Quadratic Programming (QP) [12] can be employed to optimize system performance

within the finite time-window of future. Despite their enticing application as a real-

time updating near-optimal control strategy for the EMS of an HEV, their success

relies highly on the accuracy of prediction.

7



Ph.D. Thesis – Atriya Biswas McMaster University – ME

4) Equivalent Consumption Minimization Strategy (ECMS) with a real-time adaptive

rule for the equivalence factor is strong contender as the desired control strategy

[15]. ECMS has been widely accredited as a cogent solution for the EMS of an

ePT despite ECMS’s strong reliance on equivalence factor. ECMS has been proven

as the reincarnation of the Pontryagin’s minimum principle (PMP) [16] in optimal

control of energy management problem. If driving mission is known in advance,

ECMS can yield optimal control having close proximity to DP [17]. Although ECMS

cannot achieve global optimality in the absence of prior knowledge of the drive cycle

during real-world driving conditions, it can achieve near-global optimality along with

charge sustenance if equivalence factor can be varied judiciously [18]. Authors in [19]

and [20] concurrently introduced the concept of adaptive ECMS (A-ECMS) where

the equivalence factor was updated periodically based on past trend of vehicle speed

and prediction of future driving mission. Later, adaptation of equivalence factor has

been executed through different methods such as tracking of state-of-charge (SOC)

reference value [21, 22], prediction of future power demand [23], and recognition of

current driving pattern [24].

Looking at the strength and drawbacks of the aforementioned available control

strategies, author of this report has decided to delve into the fundamentals of se-

quential decision making to search for an apposite control strategy for the EMS of a

multi-mode ePT. On the other hand, reinforcement learning (RL) has been emerging

as a lucrative control strategy for optimizing controllable physical systems in real-

time since the intrusion of artificial intelligence into the sector of optimal control.

RL mathematically models an intertwined psychological and neurological behavior,

exhibited by humans and a few animals, for continuously optimizing decision making

8
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Figure 1.3: Curse of dimensionality .

capability based on past experiences to substantiate gain in future [25], [26]. Authors

in [27] presented the first use of RL in articulating the control strategy for EMS with

a ADVISOR-based vehicle simulation model.

1.2 Motivation

Although RL’s emergence as a control strategy for the EMS seems to solve most

of the drawbacks mentioned above, traditional RLs based on discrete-time domain

faces a few legitimate hindrances at the implementation level. RL-based controllers

are prone to the “curse of dimensionality”. The “curse of dimensionality” might not

appear with fewer variables or a bigger grid size for discretization. Nevertheless,

the computational burden increases exponentially with either an increased number of

variables or decreased grid size. Fig.1.3 has shown the approximate number of cells

required in a Q-table with traditional discrete RL methods such as Q-learning and

SARSA.

Although traditional RL algorithms are model-free, they can learn autonomously,

and they achieve convergence, they take much time to converge to a near-optimal

performance. Fig.1.4 depicts that both Q-learning and SARSA steadily converge but
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Figure 1.4: Sluggishness of convergence for traditional RL algorithms with
discrete-time domain.

with much sluggishness. Moreover, in a MATLAB-based implementation, it took

approximately two days of training to reach this level of convergence.

However, in real-world driving, the EMS inevitably faces legitimate challenges. The

real-world driving scenario is comprised of several parameters. 1) Knowledge of the

destination, 2) Vehicle’s speed, 3) Vehicle’s acceleration, 4) Slope of the road, 5)

Ambient temperature, 6) Wind speed, 7) Traffic situation, 8) State of charge of the

battery, 8) Distance from the following charging points and so on. Amongst these,

many parameters are unknown in real-time during real-world driving. For example,

even though the destination is selected, there could be multiple routes to reach the

destination, as shown in Fig.1.5.a). Another example is the inaccurate estimation

of traffic ahead, as shown in Fig.1.5.b). Being such a versatile control strategy for
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Figure 1.5: Unpredictable parameters such as traffic situations and driving routes to
the destination during real-world driving scenario.

solving the energy management problem of an electrified powertrain for unknown drive

cycles, RL should not be discarded only because of the aforementioned challenges.

This becomes the motivation for eliminating those hindrances and establishing the

RL’s superiority as a prospectus on-board EMS control strategy.

1.3 Objectives and Contributions

The main objective of this thesis is to articulate a real-time updating and near-optimal

control strategy for the EMS of a multi-mode ePT. The articulated framework has

the potential of being deployed in a real multi-mode HEV for yielding near-global

optimal control in unfamiliar driving situations. While articulating such an ingenious

EMS it is perceived that mode-scheduling control for a multi-mode ePT necessitates

special attention compared to normal ePT. Hence, this thesis can be considered as a

constellation of three main contributions as follows:

1. A benchmark instantaneous optimization-based strategy, named ECMS, is im-

plemented for a multi-mode ePT. This EMS control strategy is articulated for

11
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comparing newly developed strategies in this thesis. In a pursuit for new real-

time near-optimal control, this thesis proposes a loss-minimization strategy for

powertrain’s loss minimization.

2. An asynchronous actor-critic agent is employed as a real-time implementable

near-optimal EMS strategy, which can be deployed for real-world driving sce-

nario with online updating feature.

3. A low-frequency coordinated control is articulated for correct mode-scheduling

of multi-mode ePT to corroborate its necessity for an inertia-based dynamic

prowertrain model.

1.4 Summary of Thesis

The chapter 2 starts with journey of this thesis by highlighting the key role of pow-

ertrain electrification in ameliorating the adverse effects of greenhouse gas emissions.

Without wasting much time, chapter 2 delves into the fundamentals and classification

of electrified powertrain, and creates a smooth avenue for the reader into the domain

of powertrain electrification. Working principle of different powertrain configurations

becomes elucidated in chapter 2 and it serves as the perfect foundation for acquiring

advanced knowledge in powertrain electrification. chapter 2 also incorporates a brief

description of some existing commercial trans-axles such as THS, “GM’s two mode

hybrid system, and Chrysler’s Si-EVT.

Powertrain electrification augments one or more than one degree-fo-freedom in the

12
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entire propulsion system to enable an efficient control. However, the extra degree-

of-freedom comes at the cost of added complexity into the control system. Power-

train electrification brings more cardinal components into a cohesive environment,

whose benefits predominantly depends on the optimal control of the entire power-

train system. An exclusive control system known as energy management system is

indispensable for extracting all the benefits of powertrain electrification. Articulation

of energy management system can be as simple and nimble as rule-based or as com-

plex and computationally expensive as dynamic programming. A detailed review of

the existing EMS control strategies with the future trend of strategies is presented

in chapter 3. chapter 3 also presents a tentative evolution and popularity trend of

the control strategies, and indicates towards possible research gap in the EMS strat-

egy. Since the main stem of this thesis is energy management system and the thesis

develops around it, chapter 3 carries a special importance in the entire thesis.

Since the lucrative aspect of the thesis is the implementation of a real-time optimal

energy management system, it is recommended to revisit an existing optimization-

based real-time control from literature. ECMS is a well-accredited local optimal

control, which has been proven to be performing near-global optimally if drive cycle

is known in advance. Hence, ECMS is considered to be the benchmark control in

this thesis and the thesis will progress towards finding a novel control strategy, which

can give near-optimal performance in real-time under zero knowledge of the drive

cycle ahead. Most importantly, chapter 4 elucidates all implementation phases of the

benchmark ECMS for EMS. This benchmark strategy will be compared to all newly

proposed strategies in this thesis.

chapter 5 proposes the first of the newly professed control strategies in the form of

13
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loss-minimization of the entire powertrain at every time-step. The control strategy

is similar to ECMS, and is proposed to minimize the overall powertrain loss unlike

ECMS which focuses on just maximizing ICE’s efficiency. The loss minimization

strategy (LMS) is articulated with an ambition of outperforming optimal ECMS,

given that LMS does know the drive cycle apriori.

chapter 6 serves as the prelude to intricate and advanced reinforcement learning-

based control strategies proposed in this thesis. Before delving into the advanced

application of RL algorithm in optimizing control policy in real-time, fundamentals

of RL algorithm is delineated in this chapter. Markov decision problem is a widely-

accredited mathematical model of sequential decision and it serves as the foundation

of RL algorithms. Hence, this chapter first delineates the components and charac-

teristics of Markov decision problem, and then introduces RL algorithm as an adroit

tool to solve Markov decision problem. The chapter culminates with the detailed

implementation of Q-learning as an energy management strategy for Toyota Prius.

After chapter 6 the stage is all set to profess the main contribution of this thesis,

i.e., application of asynchronous actor-critic agent as the EMS strategy for real-world

driving in chapter 7. The framework emulates the real-time interaction between

the agent and the electrified powertrain and shows how efficient the agent can yield

near-global optimal control for unfamiliar real-world driving scenarios. This chapter

elucidates the asynchronous actor-critic agent’s effectiveness as a prospective real-time

and real-world controller for a multi-mode electrified powertrain’s energy management

system. This chapter posits the key novel contribution of this article.

While discussing different EMS implementation for a multi-mode ePT in online sim-

ulation platform it has been understood that a steady-state powertrain model can be
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controlled with a steady-state EMS controller. However, a steady-state powertrain

model will not capture all the transient dynamics of an actual physical powertrain.

Hence, an inertia-based dynamic powertrain model is indeed necessary for better

emulation of an actual powertrain. Consequently, a dynamic coordinated control is

indispensable for correct mode-scheduling control. Thus, as a second contribution of

this thesis, a low-frequency dynamic coordinated control is proposed in chapter 8.

Chapter 9 concludes the thesis and discusses the future work for further improve-

ments in EMS and dyno validation of the newly proposed strategy’s performance. In

a nutshell, thesis shows a tip of an iceberg as far as the EMSs for electrified power-

trains are concerned. The thesis ends with avenues in multiple directions of research

gap, i.e., development of high-frequency EMSs for real-time application with high-

frequency coordinated control, effect of high-fidelity powertrain model on the EMS

development, online training of a reinforcement learning agent working as a EMS con-

troller, practical consideration while implementing an online trainable reinforcement

learning agent on a real-time embedded controller, etc.
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Electrified Powertrain:
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2.1 Introduction

In this chapter, the fundamentals of ePT will be presented along with the classifica-

tion of ePTs based on the degree of electrification. This chapter will delineate the

rudimentary architecture configuration along with state-of-the-art multi-mode archi-

tectures and their modeling techniques.

2.2 Requirement of Electrified Powertrains

The never-ending quest for a safer, more comfortable, smarter, and more economi-

cal mode of transportation has started since the official birth of modern car (Benz

Patent-Motorwagen) in the year of 1886. Sales and production figures of automo-

tive industry became one of the key factor in determining economy of a country and

soon the automotive industry became a major contributor to the global economy [28].

Number of registered new vehicles across the world can be perceived as an apposite

metric of global economy and Fig.2.1 corroborates the proportional behavior between

global economy and automotive sales numbers [1]. However, such growth may pose

a detrimental threat to our planet by increasing emission of GHG. As per U.S envi-

ronmental protection agency (EPA), transportation sector contributes to the highest

share (29.1%) of national GHG emissions [29]. Fig.2.2 depicts the growth in GHG

emissions only caused by transportation sector in U.S. According to [30], transporta-

tion is the second largest sector contributing to GHG emissions in Canada. Fig. 2.3

shows that soaring trend of GHG emissions in transportation sector is caused by

mainly due to passenger light trucks and freight trucks which mostly have conven-

tional fuel-powered powertrains. Forecasting the repercussions of uncontrolled GHG
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Figure 2.1: Automotive sales statistics in last one and a half decades [1].

emissions on the planet’s ecosystem, governments of most of the developed nations

enhanced the stringency of their environmental regulations in 1990s. United nations

framework convention on climate change (UNFCCC) had set emission reduction tar-

gets in 1997 for all the developed nations, which contribute to lion’s share of the

global GHG emissions, through an unanimous agreement known as the Kyoto Proto-

col. Scholars have proffered their argument that such stringency is actually beneficial

for the OEMs by prompting them to invest more in research which will lead the OEMs

to innovations [31]. Two case studies done in [32] corroborate the above-mentioned

argument by showing how Japan’s stringent environmental regulations had paved the

way for automotive OEMs like Toyota, Nissan, and Panasonic manufacturing innova-

tive and eco-friendly electrified vehicles like Toyota Prius, Nissan Leaf, and Panasonic

Eco Navi.

Bestowed with rapid technological advancements in the automotive electrification,

the future of automobile industry will experience an inevitable paradigm shift from

liquid fuel based powertrain to ePT. HEV is the first step towards that energy-efficient
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Figure 2.2: U.S. GHG emissions by economic sector, 2017 and GHG statistics for
transportation sector [29].

era [2]. Introduction of electrification brings an extra dimension in the powertrain

control with the provision of more than one energy source [33]. The primary objectives

of transition from ICE based powertrain to ePT is reduction of both fuel consumption

and tailpipe emission whereas, a few of the secondary objectives are improvement of

drivability, handling, and acceleration performance.

2.3 Classification Electrified Powertrain Architec-

tures

The articulation of EMS relies strongly on architectures of ePT. Hence, an overview of

the available ePT architectures is indispensable before proceeding to the next sections

detailing about different classes of EMSs. ePTs can be broadly clustered into micro

hybrid, mild hybrid, strong hybrid, plug-in hybrid, and fully-electric powertrains

[34, 35]. Based on the electrification factor and location of the cardinal components,

19



Ph.D. Thesis – Atriya Biswas McMaster University – ME

Oil and gas Transportation Buildings
Electricity Heavy industry
Agriculture Watse & others

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Years19
90

19
95

20
00

20
05

20
10

20
15

20
18

800
700
600
500
400
300
200
100
0

Years

M
eg

at
on

s 
of

 C
O

   2
180

160

140

120

100

80

60

40

20

0

Passenger cars Passenger light trucks
Passenger aviation, bus, rail, & motorcycle

Freight truckFreight aviation Others

Statistics of all sectors

Statistics of 

M
eg

at
on

s 
of

 C
O

   
eq

ui
va

le
nt

2

Transportation sector

Figure 2.3: Variation of Canada’s GHG emissions since 1990 to 2018 in different
economic sectors and GHG statistics for transportation sector [30].

Conventional
powertrain

Parallel hybrid Series-parallel Series hybrid
Plug-in-hybrid

Parallel-
through the-road

Post-transmission

Pre-transmission

Multimode
via clutch

Output split

Input split

Start-stop
control

Volkswagen
Passat

BlueMotion

Honda Acura ILX hybrid

BMW active hybrid7

Mercedes Benz S400
Hyundai Sonata 2012

Infiniti M35 hybrid

Volkswagen Golf GTEHyundai Sonata 2016

Volvo S90

Porsche Panamera S hybrid
BMW ActiveHybrid 5

Toyota Prius
Chevrolet Volt

Cadillac Escalade

London EV company TX

Nissan e-Power NISMO

Cadillac ELR 2016

BMW i3

Fisker Karma

Toyota Prius 2016

Chevrolet Volt PHEV
Lexus RX 400h

Chevrolet Bolt EV
Nissan Leaf

Tesal Model S

(~20-40%) 

Mild hybrid

Belted

generator
starter-

Integrated

generator
starter-

Micro hybrid

(0%) (~10-15%)(~0-5%) (~40-50%) (~50-70%) (100%)

Electrification factor

Figure 2.4: Hierarchical classification of architectures of electrified powertrains.

hybrid ePTs can be categorized into series, parallel, and series-parallel architectures

[36], [37]. In order to combine the advantages of series and parallel architectures and to

discard disadvantages of both, new class of architecture named as series-parallel, has

been conceptualized [38]. The concept of series-parallel can be embodied either with

the assistance of clutch operation or with a power-split device (PSD) [39]. A general

hierarchy of architectures of ePTs is shown in Fig. 2.4. This article focuses only

on the architectures of ePTs which include both ICE and electric motor/generator

(EMG)s.
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Figure 2.5: Architecture of a micro hybrid electric powertrain with less than 5%
electrification factor.

2.3.1 Micro hybrid Architecture

Micro hybrid architecture, as depicted in Fig.2.5 shares almost the same powertrain

configuration as traditional liquid-fuel based powertrain. Incorporation of a low-

powered EMG in the form of starter generator is common in conventional powertrain.

However, the VCU of a micro hybrid vehicle is equipped with a dedicated control

system which automatically cut offs the fuel supply to the ICE as soon as vehicle

comes to rest upon application of brake. The control system is known as ”auto start-

stop” strategy. The strategy again automatically cranks the ICE through the small

EMG as soon as driver takes her/his foot off the brake pedal. This ”auto start-

stop” strategy helps in curtailing fuel consumption a few percentage as compared to

conventional powertrain. Still, a 12V battery is used in micro hybrid architecture.
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2.3.2 Mild hybrid Architecture

Mild hybrid architecture retains the same architecture of micro hybrid but includes

higher battery capacity and higher EMG power unlike micro hybrid. There is no

fixed regulation for categorizing mild hybrid architecture. Either a 42V or a 48V

battery used instead of 12V battery in mild hybrid architecture. There two types

of mild hybrid architectures available based on the position of the 5-10kWatt EMG.

The first type is shown in Fig.2.6 where the EMG is placed before the ICE either

as an ”integrated starter-generator” or ”belt-driven starter-alternator”. The tasks of

the EMG in a mild hybrid powertrain are to crank the ICE and to assist the ICE

during high power-demand. Since the EMG is not connected to the wheel through the

transmission, recuperation of energy during braking cannot be availed in this category

of mild hybrid architecture. Vehicles like Honda Acura ILX hybrid, Mercedes Benz

S400, and Hyundai Sonata 2012 had this category of mild hybrid architecture.
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Figure 2.7: Different configurations of a P1 hybrid electric powertrain architecture
with (20%-40%) electrification factor.

2.3.3 Parallel hybrid Architecture

Parallel hybrid architecture brings decent amount of electrification in the powertrain.

The EMG is capable of delivering at least 20kWatt power and therefore, the battery

also has to be bigger in capacity. The battery voltage is no lesser than 120V. The

key characteristic of parallel architecture is to combine the powers of both ICE and

EMG/s and delivers to the wheel. Another key aspect of parallel architecture is the

mechanical coupling among ICE, EMG, and the wheel. Now, there are a few ways to

place the EMG and combine the powers of ICE and EMG and then propagate to the

wheels. Based on these ways, parallel architecture can be further sub-categorized into

five sub-classes, as shown in Fig.2.7 and in Fig.2.8. The P4 parallel configuration

is also known as ”parallel through road” having the EMGs directly attached to the

wheel. The ICE is not mechanically decoupled from the wheel in any of the parallel

configurations. Hence, the ICE speed is always governed by the vehicle’s speed. This
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Figure 2.8: Architecture of a P4 hybrid electric powertrain with (20%-40%)
electrification factor.

is one of the drawbacks of parallel architectures. However, the engine torque can

be controlled independently with respect to the vehicle’s power demand due to the

presence of the EMG/s. Typically, an ICE in a conventional powertrain doesn’t have

any degree-of-freedom (DOF). An ICE leverages one DOF in a parallel architecture.

The parallel architecture can only enable torque-split between ICE and the EMG/s.

The generic speed and torque relationships among transmission output, ICE and

EMG is resented in Eq.2.3.1.

τice + τEMG = τout =
( τwheel
final drive ratio

) 1

N th gear ratio
(2.3.1a)

ωice = ωwheel × final drive ratio×N th gear ratio (2.3.1b)

τice =
τout
ξ

; where ξ is the torque− split ratio (2.3.1c)

Powbatt =
PowEMG

ηEMG

[for PowEMG > 0] or PowEMG × ηEMG [for PowEMG < 0]

(2.3.1d)
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2.3.4 Series Hybrid Architecture

The powertrain configuration of series hybrid architecture is shown in Fig.2.9. The

main attribute of series hybrid architecture is the mechanical decoupling of ICE from

the wheel. An EMG, working as a electric generator, is directly connected to the ICE

and it recharges the battery. The generator converts the mechanical energy churned

out of the ICE. The vehicle is solely propelled with a high-powered EMG working as

a traction motor. The traction motor draws energy from battery during traction and

replenishes the battery during regenerative braking. Since the ICE is mechanically

decoupled from the wheel, its speed can controlled independent from the wheel speed.

The series hybrid architecture is also known as ”range-extended electric vehicle”. The

ICE coupled with the generator is also known as the auxiliary power unit (APU) of the

vehicle. The APU kicks-in when SOC of the battery depletes beyond its permissible

limit. The series configuration enables two-DOF in terms of powertrain control. Both

ICE speed and ICE torque can be controlled with respect to any vehicle’s power

demand. The generic power relationship among the key components of series hybrid
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architecture is given in Eq.2.3.2.

ηmot ∗ Powmot = τout =
( τwheel
final drive ratio

) 1

N th gear ratio
(2.3.2a)

Powmot = ηmot

(
Powgen + Powbatt

)
(2.3.2b)

Despite the provision of two-DOF control, series hybrid is poised with a conspicuous

drawback of too many number of power conversion and energy loss during these

conversions. The mechanical energy is converted into electrical energy in the APU.

Subsequently, electrical energy is stored into battery and again that stored electrical

energy is converted into mechanical energy through the traction motor.

2.3.5 Power-split Hybrid Architecture

To combine the advantages of both series and parallel configurations and to address

most of the drawbacks of these two configurations, a new configuration was con-

ceptualized and deployed as a power-split configuration. The power-split concept

transpired into a tangible architecture only with an assistance of a single PG-set. A

PG-set is a versatile and ingenious mechanical device used for coupling torque and
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speed of the prime-movers connected to the three nodes of a PG-set.

A typical power-split configuration is shown in Fig.2.10, where the ICE, generator,

and traction motor are connected to the planet carrier, sun gear, and ring gear of

the PG-set. The vehicle load coming from the wheel is also connected to the ring

gear the PG-set. One of the lucrative characteristics of PG-set is its capability of

enabling infinite number of gear-ratio between input (carrier) and output (ring gear).

Unlike parallel configuration, ICE speed can be independently controlled for any given

positive vehicle’s speed. Unlike series configuration, ICE can deliver directly power to

the wheel. Most importantly, there is no need of any transmission which would have

contributed loss of energy. The capability of providing infinite number of gear-ratio

between input-output with the assistance of EMGs gives the power-split configuration

another identity named electrically continuous variable transmission (e-CVT). The

kinematics and dynamics associated with the power-split configuration, shown in the

Fig.2.10, is given in Eq.2.3.3.

τsun = τgen − Jgenθ̈gen (2.3.3a)

τcarrier = τice − Jiceθ̈ice (2.3.3b)

τring =
Nring

Nsun

(
τsun

)
; τring = − Nring

Nring +Nsun

(
τcarrier

)
(2.3.3c)

τout = τring + Joutθ̈out + τmot − Jmotθ̈mot (2.3.3d)

τout =
( τwheel
final drive ratio

) 1

N th gear ratio
(2.3.3e)

ωgen = ωice
(Nring +Nsun

Nsun

)
−
(Nring

Nsun

)
ωout (2.3.3f)

ωmot = ωout (2.3.3g)
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Figure 2.11: Schematic diagram of first “Two-mode hybrid system” with single
PG-set.

Fig.2.10(b)-(d) depict the lever diagram used to represent the power-split powertrain

in most simple and effective way. While Fig.2.10(b) shows the torque distribution

among all the nodes, Fig.2.10(c) and Fig.2.10(d) show the kinematic relationship

among all the three nodes of the PG-set.

2.3.6 Some Existing Multi-mode Hybrid Architecture

GM’s Two-Mode Hybrid System

As mentioned before, General Motors (GM) introduced the “two-mode” ePT facilitat-

ing multiple operating modes with both single and two PG-sets and multiple clutches.

Fig.2.11 depicts the predecessor “two-mode hybrid system”, introduced in [40] with

single PG-set, and the modes facilitated by itself. Whereas, Fig.2.12 depicts the

successor “two-mode hybrid system” and its modes [41]. The summary of clutch

engagement and disengagement status required for different modes in “Single-PG-set
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Figure 2.12: Schematic diagram of advanced “Two-mode hybrid system” with two
PG-sets.

based GM’s two-mode hybrid system” is furnished in Tab.2.1. This multi-mode archi-

tecture topology facilitates four electrified modes. The summary of clutch engagement

and disengagement status required for different modes in “Double-PG-set based GM’s

two-mode hybrid system” is furnished in Tab.2.2. This topology facilitates five elec-

trified modes. A few of the application vehicle equipped with the aforementioned

multi-mode ePTs are Chevrolet Volt (first generation and second generation) and

2016 Chevrolet Malibu.

Chrysler’s Single-Input Electrically Variable Transmission

Recently Fiat-Chrysler has introduced a modified version of THS with three elec-

trified modes [42]. The detailed schematic diagram along with the lever diagram

representation of all the three modes is shown in Fig.2.13. Three distinct electrified
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modes, i.e., single-motor EV mode, dual-motor EV mode, and a hybrid-electric mode

are facilitated by the aforementioned configuration. As depicted in the Fig.2.13, ICE

is attached to the planet carrier of the PG set through an one-way clutch (OWC)

(sprag clutch) which allows the ICE to rotate only in the one direction. The gen-

erator is attached directly to the sun gear, and the traction motor is attached to

the ring gear through a speed reduction gear and a counter-driven gear. The single-

motor EV mode and the hybrid-electric mode share the same powertrain dynamics

as shown in Fig.2.13.(c) and Fig.2.13.(d) respectively and it is expressed through a
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set of kinematic relations as given by Eq.2.3.4.

Jouteq θ̈out − τout =
β1

(β1 + 1)
∗ {τice − Jiceeq θ̈ice}

+ β2 ∗ {Jmoteq θ̈mot − τmot}
(2.3.4a)

τice − Jiceeq θ̈ice = (β1 + 1) ∗ {Jgeneq θ̈gen − τgen} (2.3.4b)

(β1 + 1) ∗ θ̈ice = β1 ∗ θ̈out + θ̈gen (2.3.4c)

θ̈mot = −β2 ∗ θ̈out (2.3.4d)

The ICE is not cranked at all in the two-motor EV mode and both generator and

traction motor propel the vehicle. The sprag clutch, which acts as an OWC, prevents

the ICE from rotating in opposite direction when torque of generator is channelized

from sun gear to ring gear. Technically, OWC serves the purpose of holding the

carrier stationary so that torque from sun gear can be transmitted to ring gear.

The powertrain dynamics exhibited by the dual-motor EV mode is modeled with a

different set of kinematic relations as given by Eq.2.3.5. The schematic diagram of

EV#2 mode is shown in Fig.2.13.(e).

Jouteq θ̈out − τout = β1 ∗ {Jgeneq θ̈gen − τgen}

+ β2 ∗ {Jmoteq θ̈mot − τmot}
(2.3.5a)

θ̈gen = −β1 ∗ θ̈out (2.3.5b)

θ̈mot = −β2 ∗ θ̈out (2.3.5c)
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, where Jouteq , Jiceeq , Jgeneq , and Jmoteq are equivalent mass moment of inertia (MMI)s

of transmission output, ICE, generator, and traction motor respectively. The equiva-

lent MMI represents the combined MMI of the prime-mover and the associated gear

of PGset. β1 and β2 is the ratio of number of teeth of ring gear to sun gear (β = R
S

)

for 1st and 2nd PGset respectively. τ and θ̈ represent torque supplied by and angular

acceleration corresponding to each prime-mover. Jouteq can be further disintegrated

into rudimentary elements as given in Eq.(2.3.6)

Jouteq = Joutat trans. output + Jring

= { Jveh.
(FDR)2

+ Jdifferential}+ Jring

(2.3.6)

Considering straight road without any curves and absence of any lateral acceleration,

τout at transmission output is derived from vehicle loads and vehicle dynamics, as

shown in Eq.2.3.7.

τout =

(
mg ∗ sin(ϑ) +mg ∗ cos(ϑ)(ϕ1 ∗ V + ϕ2)

)
∗ rwheel

FDR

+

(
mg ∗ (∂V

∂t
) + 1

2
Cd ∗ ρAfrontV 2 + τbrake

)
∗ rwheel

FDR

+ τdiff. loss + τmesh loss + τspin. loss

(2.3.7)

2.3.7 Pursuit of An Advanced Hybrid Architecture

Although powertrain electrification is undisputedly a disruptive technology, customers

have not fully embraced the EV or HEVs as expected by the OEMs. Literature
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clearly manifests the mix perception of the potential buyers of EV&HEVs across Eu-

rope [43,44], U.S. [45], and China [46] towards this paradigm shift in sustainable mo-

bility. While factors like range anxiety, longer charging time, and insufficient infras-

tructure aggravate buyer’s perceived reliability towards full EV&HEV [45] and even-

tually have been deterring innumerable consumers away from buying EV&HEV [44],

monetary and non-monetary incentives from governments have been registered as a

positive factor that can ameliorate perfunctory behavior of the prospective customers

of EV&HEV. However, it will be a dishonor to those buyers who are really concerned

about climate change and have shown their interest to EV&HEV as their respon-

sibility towards environment [47]. Nevertheless, to attract prospective buyers, the

technology of powertrain electrification has to be more enticing, more robust, and

more smart than it’s predecessor through a series of research collaboration between

OEMs and governments.

Authors in [43] have proffered that combined effect of multiple factors (range anxiety,

charging time, infrastructure, reliability, initial price, incentives, environmental con-

cern, social reputation) govern the intention of buying an EV&HEV in a complicated

way and that model needs to be understood by the OEMs and governments before

investing colossal amount of fund in state-of-the-art research.

If the focus is narrowed down onto the hybrid-ePTs, which are not encumbered with

range anxiety, initial higher price, and higher charging time, it can be seen that all

the benefits of hybrid-ePTs have not been still squeezed out through research.

Toyota Prius is the most successful HEV till now since it’s introduction in Japan in

1997 and in North America in 2000. The Toyota Prius set an exemplary record of

holding almost 50% and 70% market share of the HEVs in the U.S. in 2009 [48] and
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Figure 2.14: HEV sales trend in U.S. from 1999 to 2017.

in 2012 [5, 49] respectively.

Fig.1.1 reiterates the dominance of Toyota Prius and other Toyota HEVs in U.S. mar-

ket since the penetration of electrified powertrain into automotive market. Although

there are many factors govern the success or defeat of any HEV in terms of sales fig-

ure, sticker value of fuel-economy, drivability (ease of operation and driving comfort),

and torque & power rating of the HEV, play a major role in its success in the market.

Undisputedly, these factors primarily depend on the control strategy of the EMS and

drivetrain architecture of the HEV. As we have compiled a trend of cumulative appli-

cation of all commercial drivetrain architectures over the period of 2011 to 2017 in the

Fig.1.2, it corroborates the success rate of second and third generation of THS. Simple

operation and effective control of THS with two PG-sets have been so successful that

other OEMs like Ford, Nissan licensed it and used in their HEVs with a few mod-

ifications. In the meantime, the automotive industry has experienced a resurgence

of multiple ePT modes, introduced by GM in 2007, with two PG-sets and multiple

clutches [6]. However, Fig.1.2 and authors in [8] reveal that GM’s ”two-mode hybrid

system” could not gain decent popularity even after complicated topology with five

operating modes (i.e., two all-electric modes and three hybrid-electric modes) and its

prosperous attributes. On the other hand, the sales trend of Prius given in Fig.1.1
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highly supports the fact how Toyota resisted the plummeting trend of Prius sales

and recaptured the market by introducing third generation THS which was techno-

logically more capable and comprised of two PG-sets instead of one PG-set that its

predecessors carries. However, third and current generation of THS does not employ

any clutch to facilitate multi-mode operation. The stark contrast between the pop-

ularity of aforementioned two drivetrain configurations with multiple PG-sets and

clutches has ignited the research on advanced hybrid drivetrain configurations with

multiple PG-sets and clutches. This sector of advanced power-split drivetrains has

been acquiring attentions from a handful number of global research groups because

the control policy of an EMS, whose prime objectives are to optimally assigning pro-

pelling load between ICE and EMG within their feasible limits and sustaining battery

SOC, depends highly on the drivetrain topology [4].

2.4 Summary

Based on electrification factor, hybrid-ePTs are classified into micro, mild, parallel,

series, power-split, and multi-mode ePTs. The power-split is the most successful con-

figuration so far based on the sales figure. Both academia and OEMs are focusing on

exploring new feasible configurations facilitating multiple electrified modes after ob-

serving this category’s potential of catering various objectives. However, this category

will incur more complexity in terms of both transaxle design and EMS articulation.
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Table 2.1: Clutch and brake status in different modes in the predecessor “Two-mode
Hybrid system” with Single PG-set

Brake1 Clutch2 Clutch1
One-Motor All-electric Closed Open Open
Two-Motor All-electric Open Close Open
Series One-Motor Extended-Range Close Open Close
Combined Two-Motor Extended-Range Open Close Close

Table 2.2: Clutch and brake status in different modes in the successor “Two-mode
Hybrid system” with double PG-sets

B1 C1 One-Way Clutch
One-Motor EV Closed Open Unloaded
Two-Motor EV Closed Open Engaged
Low Extended Range Closed Open Freewheeling
High Extended Range Open Closed Freewheeling
Fixed Ratio Extended Range Closed Closed Freewheeling
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Chapter 3

Energy Management Systems:

Fundamentals, Classification, and

Utilitarian Aspect
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3.1 Introduction

The prime objectives of transition from ICE based powertrain to ePT is reduction

of both fuel consumption and tailpipe emission. Such objectives are undoubtedly

achievable if energy generation of all the energy sources is optimally managed. Hence,

the complexity incurred due to electrification will be well-justified if all the energy

sources are optimally controlled.

A dedicated control system, known as EMS, has become integral part of the overall

vehicle control module to carry out the above mentioned task. Theoretically, optimal

control of more than one energy sources at all time-steps, given that driver’s power re-

quest is satisfied, will engender a nonlinear constrained optimization problem. Global

and local optimal solutions to such optimization problem are easily achievable with

the help of many able control strategies and competent mathematical tools. Although

the optimization is computationally intensive, they can be easily tackled with con-

temporary laboratory based digital processors. But the on-board microprocessor,

dedicated for the EMS, is too delicate to handle computational burden of such opti-

mization. Hence, researchers have been articulating robust and computationally mild

algorithms for the utilitarian EMS of ePTs. The utilitarian EMS should conform to

the memory constraint of on-board microprocessor and should yield optimal control

decisions in real-time.

Most of the reported review articles in literature have dealt with theoretical aspect

of different strategies solving energy management problem in electrified vehicles. The

authors in [50] gave an overview about theoretical background of the basic control

strategies to solve energy management problem corresponding to different hybrid

architectures. A comparative study was conducted on four major theoretical energy
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management strategies with corresponding simulation results [20]. Authors in [51]

and [52] have presented a systematic classification followed by a detailed overview of

contemporary energy management strategies. The authors in [53] reviewed different

power management systems proffering modifications of rule-based control strategies to

achieve near-optimal power sharing among the energy sources in real-time. The article

highlights the importance of rule-based control strategies in real-time applications.

3.2 Energy Management System based on Power-

train Architecture

The articulation of EMS relies strongly on architectures of ePT.

3.2.1 EMS for Micro and Mild Hybrid Architecture

EMS in a micro hybrid vehicle is well-known as “auto stop-start” control strategy [54].

EMS for mild hybrid architecture retains auto stop-start control like micro hybrid

but includes higher battery capacity and higher EMG power unlike micro hybrid.

The mild hybrid architectures use 42V-48V battery system for either belt-driven

starter-generator (BSG) [55] or integrated starter-generator (ISG) [56] or flywheel

mounted electrical device (FMED). While most of the EMSs for micro and mild hybrid

configurations are articulated with simple rule-based control strategy, optimization

based control strategy can be also implemented to maximize the overall powertrain

efficiency [57].
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3.2.2 EMS for Strong Hybrid Architectures

The energy management problem for strong hybrid configurations is solved with var-

ious control strategies. The main philosophy of EMSs applied on series architecture

is to operate the ICE at its best efficient region always due to the advantageous fact

that ICE is totally decoupled from driveline for the series configuration [58, 59]. On

a contrary, the ICE is not mechanically decoupled from the wheel either for paral-

lel or series-parallel configurations. In parallel configuration, the ICE and EMG are

coupled through torque coupling device, where torques from both the prime movers

coalesce to serve driver’s torque request. Many control strategies such as DP [60],

extremum seeking (ES) [61], ECMS [62], adaptive-ECMS [63], [64], Adaptive-ECMS

with fuzzy controller [65], robust proportional ECMS control [66], optimum fuzzy

logic control [67], Bees algorithm [68], stochastic-optimal control [69], pareto con-

trol [70], Memetic algorithm [71], genetic algorithm (GA) [72], improved Particle

swarm optimization (PSO) [73], fuzzy control with chaotic multi-objective GA [74],

and calibration map-based optimal control [75] are employed to solve energy manage-

ment problem for parallel architectures.

The series-parallel configuration can be achieved by employment of a clutch between

series and parallel path of power flow. A single or dual planetary gear set is employed

as a power-coupler before the final drive to unify the power flows coming from series

and parallel path. Introduction of multi-mode operation with the help of planetary

gear-set/s and clutch/es makes the task of the EMSs for series-parallel configuration

even more challenging. To carry out such an challenging task, EMSs employ MPC [13,

76], nonlinear MPC through finite DP [77], SDP [78] artificial neural network (ANN)-

based intelligent control [79], rule-based optimal control [80], velocity prediction and
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nonlinear MPC [81], [82, 83] real-time near optimal control [84].

The significance of this section is to portray the variation in control strategy of EMS

with respect to variation in architecture of the ePT. The number of energy sources that

should operate optimally increases as the powertrain architecture become complex.

The number of states as well as nonlinearity of the overall system dynamics increase as

powertrain architectures evolves from simple to complex. Indeed, an evolution in the

development of EMS has been taking place in parallel to the evolution of powertrain

architecture. Such an evolution is depicted in the next section.

Powertrain architectures of PHEV are same as strong hybrid architectures with the

only exception of enhanced all electric range (AER). Generally the EMSs, employed

for PHEV, leverage the enhanced AER by operating the powertrain components either

partially in charge depleting (CD) mode and then charge sustaining (CS) mode [85]

or in blended mode [78], [86, 87] throughout the drive cycle.

3.3 Fundamentals, Evolution, and classification of

energy management systems

3.3.1 Objectives of Energy Management Systems

The predominant objectives of the EMSs are reducing dependence on fossil fuel and

minimizing tailpipe emission of pollutants [2]. The EMS should satisfy the power

demand from the vehicle and should constrain battery SOC within allowable limits.

While copious number of researches have been focused individually either on reducing

the fuel consumption [69, 88, 89] or minimizing tailpipe emission [75, 90], lion’s share

of EMSs has been articulated in order to satisfy both of the objectives together [91],
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[61], [67, 68], [71], [74].

A handful of research works can be found dealing with non-conventional objectives

such as minimization of degradation of battery health [92, 93] and drivability im-

provement [71]. Drivability issues, engendered from ICE start-up and gear-shifting,

are mitigated using real-time implementable EMS [94]. Authors in [95] proposed a

combined cost map considering weighted costs of fuel consumption, CO2 emission,

CO emission, hydro-carbon (HC) emission with respect to ICE operating points.

3.3.2 Working Principle of Energy Management Systems

Although different objectives are sufficed through a variety of control strategies and

algorithms, the working principle of EMSs remain the same. Working as a supervisory

controller, the EMS communicates with all the component-level controllers. The

component-level controllers follow the commands from EMS to operate the EMGs,

ICE and electric energy storage system (EESS) around their individual optimum

operating points.

Since ICE is responsible for both fuel consumption and pollutant emission, control

strategy of EMS should be competent enough to operate the ICE always within its

optimum efficiency zone. The characteristic of ICE is such that the operating zone

with maximum efficiency can only satisfy the objective of reducing fuel consumption

but does not suffice the objective of minimization of tailpipe emission. Also, the

constituents of pollutant family do not share the same optimum ICE operating zone

as shown in 3.1.

Not only ICE, but EMGs and EESS should also be operated around their maximum

efficiency zone to procrastinate capacity degradation of EESS. Optimal control is
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Figure 3.1: Representative optimum ICE operating zones with respect to different
criteria for a typical ICE map.

the best sabre for the EMS to tackle such a convoluted responsibility. The EMS

leverages the extra degree of freedom, in the form of electrification, by splitting the

vehicle requested power with a variable quotient at each time-step and assigning the

power-split between ICE and EMGs. As a benefit of electrification, EMSs of ePT

can always operate ICE around its optimum points without compromising on the

drivability objective. Assisted by the control strategy, the EMS emits a time-series

profile of the power-split quotient and devolves it to the component level controllers.

3.3.3 Evolution of Energy Management Systems

A survey has been conducted to understand the trend and evolution of the EMSs.

The survey includes literature satisfying the following criteria:

� Literature reported since 1993 up to 2018

43



Ph.D. Thesis – Atriya Biswas McMaster University – ME

� EMSs in the literature must deal with ePT with ICE

� Electrified powertrain should not include fuel cell

� Electrified powertrain should only include electric motors and should not include

hydraulic or pneumatic motors

More than 250 research articles have been found satisfying the aforementioned cri-

teria. The key discriminating characteristic of any EMS is it’s control strategy for

energy management. 15 major control strategies such as deterministic rule-based,

fuzzy rule-based, deterministic DP, QP, game theory (GT), GA and multi-objective

GA, convex optimization, PSO, ANN-based, analytical optimization, PMP, different

versions of ECMS, SDP, different versions of MPC, and RL-based control have been

employed in different EMSs. Each of these strategies has their individual advantages

and disadvantages and these are enumerated in 3.1.

Throughout the review of these research articles, it has been witnessed that scholars

from different institutions and organizations have focused on different control strate-

gies as per their preference around the same time-frame. Some group of scholars

exploited a particular area of control strategy whereas, some other group explored

different control strategies for energy management systems. Moreover, most of the

aforementioned control strategies have their own mathematical foundation and are

distinct from other strategies. Hence, it is very difficult to describe the evolution of

control strategies, i.e. how a particular strategy evolved from it’s predecessor. How-

ever, there is an explicit evolution in the objectives of the EMS throughout two and

a half decades as depicted in 3.2.

Initially, EMSs were concerned with splitting power request between ICE and EMG
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Figure 3.2: Tentative evolution of EMSs since 1993 till 2018.

so that emission from ICE or fuel consumption of ICE can be reduced [96]. Those con-

trol strategies were substantially rule-based and were constructed from dynamometer

test and road test data [97]. These rules were never articulated focusing on optimal

power-split between ICE and EMG until the assistance of DP was sought to extract

near optimal rules for EMSs [98] or GA was employed to tune parameters of rule-

based control [99]. With the advent of DP, optimal performance of ePT architectures

is benchmarked with offline global optimization [100]. However, power-split control

obtained from DP was impeded with prior knowledge of drive cycle and extensive
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computational load and hence could not be implemented as a real-time optimal con-

trol.

Researches had been going on during that contemporary time in three distinct direc-

tions to circumvent the drawbacks of DP and to implement optimal control in real-

time. Employment of machine learning through ANN [101], instantaneous optimal

control via PMP and ECMS [102], and SDP [10] proved to be promising in solving the

energy management problem in real-time with near-optimal solution. As time pro-

gressed EMSs approached towards optimal solution through advancement in these

three directions. EMSs became more concerned in yielding optimal control for real-

world driving situations with improved SDP [103], Adaptive-ECMS [95], improved

machine learning framework [79], and with the advent of MPC [13]. It is noteworthy

to mention that EMSs were also evolving in obtaining optimal control for satisfying

multiple objectives together rather than satisfying single objective [74], [104]. The

development of EMSs gained a giant leap towards attaining global optimal control

in real-time for any real-world driving scenarios with the introduction of RL as the

control strategy [105].

Although finding an explicit evolution of the control strategies is a daunting task,

an approximate trend of popularity for each of the major control strategies can be

portrayed. The trend of popularity of a control strategy is articulated with the year

of first application, annual number of application, and the year of last application.

Moreover, it is completely justified to present such a trend in the context of this

article and hence depicted in 3.3.
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Figure 3.3: Trend of popularity of major control strategies used in EMSs

3.3.4 Classification of Energy Management Systems

Depending upon how the utilitarian EMSs are articulated to accomplish the assigned

objectives, a novel classification is presented in this article. Utilitarian EMSs in real

vehicle must execute in real-time. As far as EMSs in simulation environment are

concerned, they are classified into offline and online categories. Although the online

EMSs can execute in CPU-time within the simulation, they may not be apposite for

real-time application. Hence, the full-fledged simulation-based online EMSs must go
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through a simplification process before being encoded on the hardware of ECU. Such

simplified version of EMSs are classified into:

� Premeditated energy management systems

� Casual energy management systems

� Blended energy management system

The classification is done based on the procedure followed by the utilitarian EMS

to generate control decisions at each time-step. Each of these classes will be dis-

cussed elaborately in the subsequent three sections. Details of each class will include

theoretical background, implementation in simulation environment, and steps of sim-

plification before hardware implementation.

3.4 Premeditated Energy Management Systems

3.4.1 Introduction

These EMSs are comprised of precalculated control policy. The control policy is fixed

and it is not altered until the EMS is reprogrammed via human intervention. Since

the control policy is premeditated, EMS makes the control decisions almost instantly

based on the values of inputs. This class of EMS performs only a few computations to

make each control decision. Hence, this class of EMSs is not encumbered with com-

putational complexity. The primary elements of this class of EMSs are input states,

output control decisions, and a stationary control policy, as depicted in Figure 3.4.

Before going into detailed steps of articulation, three questions should be answered

chronologically.
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Input State# 2
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Figure 3.4: Primary components of premeditated EMS

� What are the forms of premeditated control policy?

� Which are the possible input states for the premeditated control policy?

� Are the control decisions optimal or near-optimal during real-life driving?

Forms of Premeditated Control Policy

The premediated control policy can be formed as a group of a few deterministic rules

or as a group of a few fuzzy rules or as a look-up table. The policy with deterministic

rules is comprised of certain IF-THEN criteria like the follwoing:

� if state#1,#2,..,#N satisfy xth,yth,..,pth conditions respectively, trigger Ak con-

trol action, where Ak ∈ {A}

� if state#1,#2,..,#N satisfy rth,yth,..,zth conditions respectively, trigger Am con-

trol action, where Am ∈ {A}

A quintessence deterministic rule-based premeditated control strategy is shown in 3.5

as an example.
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Figure 3.6: Example of fuzzy rule-based control policy in premeditated EMS

The premeditated control policy with fuzzy rules also relies on IF-THEN criteria.

However, fuzzy rule-based control policy uses gradually varying partitions to define

the conditions unlike the crisp partitions in the deterministic case. An example of

fuzzy rule-based premeditaed control policy is shown in 3.6. The third and most

common form of premeditated control policy is a mapping of control decisions with

respect to input states in the form of look-up table. Size of the dimension of the

look-up table depends on the number of input states. Typical examples 1-D, 2-D,

and 3-D look-up tables are shown in 3.7.
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Figure 3.7: Typical look-up table based premeditaded EMS

Input states and Control Outputs of Premeditated Control Policy

Input states are the element, based on which control decision is made by the pre-

meditated EMS at every time-steps. Torque or power demand at the wheel, vehicle

speed, and gear-state of transmission are commonly used as input states to charac-

terise the driving scenario. Battery SOC has been used as input state in almost every

premediated EMS to ensure charge sustainability.

Based on the values of input states, the premeditated control policy decides variables

such as mode of operation, power-split ratio between ICE power and electric power,

gear-shift command, ICE throttle command, and engine operating point command.
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Optimality of Premeditated Control Policy under Real-World Driving

Premediated control policies are stationary and are articulated for a finite number

of pre-known drive cycles. Hence, these control policies may or may not perform

optimally in real-world driving scenarios. If the control policy is articulated focusing

on specific drive cycles, the policy will perform optimally only when it encounter

the same drive cycles during real-world driving. If the control policy is articulated

focusing on probabilistic features of a constellation of driving situations, the policy

will perform near-optimally even if it does not encounter same drive cycle during

real-world driving. One advantage of articulating the premediated policy based on

driving situations rather than entire drive cycles is the performance of the control

policy is still near-optimal for a real-world drive cycle which has not been optimized

by the policy.

Due to operational ease, most of the original equipment manufacturers (OEMs) still

rely on premeditated EMS for their electrified powertrains. However, the articulation

of the premeditated control policy is a convoluted and rigorous task. The subsequent

subsections will delineate various methods of articulating the premeditated policies.

3.4.2 Detail Articulation Steps of Premeditated Control Pol-

icy

The premeditated control policy can be articulated through two broad approaches.

The first approach is post-processing of optimal control results obtained by solving

the nonlinear constrained optimization problem. The second approach is gradual

refinement of a stationary control policy through a systematic trial-and-error method

known as a reinforcement learning.
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Figure 3.8: Basic articulation steps for premeditated EMS with post-processing

Post-processing Based Articulation Steps

The post-processing based control policy articulation is comprised of optimal control

trajectory generation and pattern generation, as depicted in the 3.8. Subsequent

subsections will brief about the optimal control problem formulation and about two

primary techniques to solve the nonlinear constrained optimization problem.

Optimal Control: Problem Formulation

The optimal energy management problem for minimizing total fuel consumption is

formulated as follows:

u∗(t) = arg min
u(t)

[
ψ(x(tf )) +

∫ tf

ti

ṁfuel(u, Pload, x, t) dt

]
(3.4.1)
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, where J =

[
ψ(x(tf )) +

∫ tf
ti
ṁfuel(u, Pload, x, t) dt

]
is the performance index, x(t) is

the state vector of the system which is governed by the dynamics as follows:

ẋ(t) = f(u(t), Pload(t), x(t)) (3.4.2)

, subjected to several state and control constraints such as:

SOCmin ≤ SOC ≤ SOCmax

ωminICE ≤ ωICE ≤ ωmaxICE;TminICE ≤ TICE ≤ TmaxICE

ωminEMs ≤ ωEMs ≤ ωmaxEMs;T
min
EMs ≤ TEMs ≤ TmaxEMs


(3.4.3)

u(t) is the control action vector, Pload(t) is vehicle load in term of power demand.

The first term of the performance index, i.e. ψ(x(tf )), represents a penalty due to

deviation from end-SOC constraint. The second term represents fuel consumption

cost over the full drive cycle which runs from initial time (ti) to final time (tf ).

Although the performance index varies for different combination of costs such as fuel

cost, emission costs, structure of the minimization problem remain the same as in

(3.4.1), (3.4.2), and (3.4.3).

Mathematical history refers two main solution strategies to solve such constrained op-

timization problem. DP [106] was proffered by Richard Ernest Bellman, an American

applied mathematician, in 1957 and Pontryagin’s maximum principle (PMP) [107]

was proffered by Lev Semyonovich Pontryagin, a Soviet mathematician, in 1962.
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Optimal Control Trajectory Generation with Dynamic Programming

DP is a mighty numerical tool used as a solution technique for various domains such

as optimal control problem, planning, and Markov decision process [106], [25]. DP is

favorably applied for finding optimal solutions of complex problems which strictly can

be disintegrated into sub-problems in discrete time step and each of the sub-problems

has an optimal solution. Each of the sub-problems is associated with an instantaneous

cost. υ(s) is the cumulative cost obtained at the end of the drive cycle if the process

initiates with state s. q(s, a) is the expected cumulative reward obtained at the end

of the process if the process initiates with state s and action a.

Primary task of DP is to find minimum value functions υ∗(s) and q∗(s, a) and the

optimal control policy π∗(s|a) can be found from those minimum value functions.

Articulation of Premeditated Control Policy from DP Results

Although DP is a powerful tool for solving non-convex optimal control problem, it

is computationally intensive and cannot be implemented in real-time. Hence, a pat-

tern is searched in the variation of optimal control trajectory with respect to certain

states to avail DP-based control in real-time. If any particular pattern is found, it is

converted into premeditated rules. But, if not found, a look-up table is articulated.

Post-processing methods like least-square curve-fitting [108], optimization-based re-

calibration [109] are used to extract rule from optimal time-series profiles of control

variables. Rules can also be deduced through finding a common pattern across the

optimal results obtained for different driving situations [110,111].
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Optimal Control Trajectory Generation with Pontryagin’s Minimum Prin-

ciple

With the advent of PMP, the constrained nonlinear optimization problem, shown

in (3.4.1)-(3.4.3), can be solved analytically [17]. PMP is used in optimal control to

determine the best plausible control action to take a dynamical system from one state

to the next state.

Application of PMP transforms the constrained minimization of the performance in-

dex (J) into minimization of the Hamiltonian H(x, u, t, λ(t)) [107,112]. The necessary

condition for obtaining a optimal trajectory of control action u∗(t) for all t ∈ [ti, tf ]

is as follows:

H(x, u, t, λ(t)) ≥ H(x, u∗, t, λ∗(t)) ∀u (3.4.4)

,where the Hamiltonian is defined as:

H(x, u, t, λ(t)) = ṁfuel(u, x, t) + λ(t) ∗ f(u, x, t) (3.4.5)

with λ(t) is the vector of co-states. The first term of the Hamiltonian represents

instantaneous fuel consumption and the second term represents equivalent electric

energy consumption. State and co-state should satisfy the following conditions re-

spectively:

λ̇(t) = −∂H(x, u, t, λ(t))

∂x
(3.4.6)

ẋ(t) =
∂H(x, u, t, λ(t))

∂λ
(3.4.7)

(3.4.4)-(3.4.7) have to be satisfied for the local optimality. The co-states always have
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a physical meaning in optimal control problem. The co-state in energy management

problem for electrified powertrain represents equivalence factor (EF) between electric

energy consumption and fuel consumption.

Articulation of Premeditated Control Policy from PMP Results

PMP generates instantaneous optimal solutions by minimization of the Hamiltonian

at every time-step. Control policy obtained from PMP can be global optimal with

certain reasonable assumptions [17]. However, the calculation burden of minimizing

the Hamiltonian at each control step still may pose hindrances against implementation

of PMP in real-time [89,113]. The EF plays a key role in the optimality of the control

policy obtained from PMP. Optimal value of EF is a function of time. However,

optimal value of EF can be considered as constant with reasonable assumption [89].

In both constant and time variable cases, the main problem is that the value of EF

depends on future drive cycle. Hence, it is mandatory to take an initial guess of the

EF value for real-time implementation in utilitarian EMS.

The value of EF approaches towards its optimal value during real-world driving

situations with the aid of linear [22] or nonlinear [114] feedback. Numerical PMP

can be used offline to find optimal control policy for different discretized values of

EF and the obtained policy can be stored in look-up table with respect to different

discretized values of Tdemand, ωwheel, and EF [75,89].
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Learning Based Articulation Steps

While post-processing based approach generates optimal control trajectory for dif-

ferent drive cycles one-by-one and articulates a common stationary policy for an en-

semble of drive cycles, learning-based approach can articulate the common stationary

policy for the whole ensemble through offline computation. This approach engenders

a premeditated optimal policy through a series of progressive refinement of an initial

näıve control policy, as shown in the 3.9. Each stage of refinement consists of policy

evaluation and policy improvement.

The learning algorithm forecasts the expected long-term return of being in a certain
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state (state value function, υ(s)) and expected long-term return of taking a certain

control action at a certain state (action value function, q(s, a)) in the policy evaluation

step [25]. State of the environment is represented by “s” and “a” represents control

action of the EMS controller. The forecast of υ(s) and q(s, a) under policy π is done

with following equation:

υπ(si)
.
= Eπ[Costimmediate + γ ∗ υπ(st+1|st = si)] (3.4.8)

qπ(si, ai)
.
= Eπ[Costimmediate + γ ∗ qπ(st+1|st = si, at = ai)] (3.4.9)

The action, which minimizes the action value function for every state, is chosen in the

policy improvement step. The policy improvement step is executed with the following

equation:

χ
′(si) .= arg min

a(t)

E[Costimmediate + γ ∗ υπ(st+1|st = si, at = ai)] (3.4.10)

Similar to DP, learning based approach finds minimum value functions υ∗(s) and

q∗(s, a) corresponding to all states and all state-action combinations respectively.

But, it finds υ∗(s) and q∗(s, a) for the probabilistic behavior of a constellation of

driving situations instead of a single drive cycle [69].

Premeditated control policy obtained through offline learning-based approach can be

directly used in production vehicles with diminutive manual tuning and re-calibration

[103]. The derived control policy does not take much memory space if the state-space

is two dimensional. As the number of state-space dimension increases, it becomes

difficult to store high dimensional look-up table within ECU memory. Hence, size
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reduction techniques such as, use of sparse matrix and use of coarse discretization,

are implemented [69]. However, increase in dimension is beneficial for capturing

real-world driving scenarios more accurately. Assistance of artificial neural network

(ANN) has been sought to handle 4-D look-up table [115].

3.5 Casual Energy Management Systems

3.5.1 Introduction

The EMSs, which are neither dependent of precalculated control policies nor of the

future knowledge of real-world drive cycle, are classified into casual EMS. Unlike pre-

meditated EMSs, casual EMSs have to execute major calculations at each time-step

to yield control decision. The casual EMS are expected to produce optimal or near-

optimal control actions in real-time during real-world driving scenarios. Hence, the

EMS should be able to perform a real-time optimization. The optimization algorithm

should be simple enough to emit optimal or near-optimal control within control time-

step. Also, the optimization algorithm of casual EMS must employ an efficient and

adroit search method to find out the optimal control action in real-time. Following

critical questions must be answered before developing a casual control policy for a

utilitarian EMS:

� What type of optimization would be performed to emit control action?

� What search method would be employed to find the optimal control in real-

time?

� What would be the inputs and outputs of the Casual EMS?
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Type of Optimality of Casual EMS

In general, local optimization is performed to obtain optimal control in real-time

considering the contemporary computational capability of vehicle ECUs. However,

with certain reasonable assumptions local optimal control can satisfy global optimality

[17]. The most frequently used local-optimal control strategy is the evolved version

of ECMS [22,65]. The casual EMS with local optimization has to perform two tasks

at each simulation time-step.

� Evaluate the performance index or cost for all admissible combinations of control

variables.

� Find the values of control variables corresponding to the minimum performance

index

Real-Time Search Method Employed in Casual EMS

The aforementioned two tasks are accomplished by a search method during real-time

implementation. There are three search methods available such as vector method,

look-up table based method, and analytical method [116]. Vector and look-up table

based methods can be implemented in real-time.

Inputs and Outputs of Casual EMS

A typical casual EMS would require estimated value of vehicle’s power demand Pdem,

estimated EF λ, and battery SOC as inputs and it outputs power-split ratio between

ICE and EMGs, mode of operation command for multi-mode transmission, gear com-

mand for automatic transmission, and engine start-stop command. Although the
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calculation steps in the casual EMS are bit more complex than that of premeditated

EMS, they will never let the EMS yield a control decision which is drastically far away

from optimal decision. This is one major advantage of casual EMS over premeditated

EMS.

3.5.2 Detail Articulation Steps of Casual EMS

Majority of casual EMSs are derived from ECMS. Although RL algorithm can theo-

retically output global optimal control policy in real-time, no utilitarian EMS, using

RL algorithm, has not been reported in literature.

ECMS based Casual EMS

At each control time-step, an instantaneous optimization is performed to find local

optimal control variables by minimizing the performance index. The performance

index is known as Hamiltonian, given in (4.2.2). The Hamiltonian is evaluated for Nt

number of iterations within a single time-step. Nt is the number of admissible values

of control variable ui. If there are more than one control variable, Nt will be the

number of admissible combinations of uis. As stated before, vector and look-up table

based methods are used to calculate Hamiltonian for all admissible combinations of

uis.

Apart from the aforementioned tasks, casual EMS should estimate the value of EF.

As stated in the last section, EF (λ(t)) plays a major role in optimality of the control

policy and it depends on future knowledge of drive cycle. In casual EMS, the value of

(λ(t)) should be updated in every time-step instead of keeping it constant throughout

the drive cycle [22]. Proportional feedback control [66], nonlinear feedback control
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[114], fuzzy rule-based control [65], adaptive control [63, 117] can be implemented

to update (λ(t)) in every time-step. The task of real-time update of EF can be

devolved to the ECU dedicated for battery management system (BMS) to reduce the

computational burden on the ECU dedicated for EMS [22].

Deterministic Dynamic Programming based Casual EMS

Although deterministic dynamic programming (DDP) is beyond the thought of im-

plementation in real-time EMS, DDP can be implemented with certain modifications,

assumptions, and assistance of MPC. Reduction of the search grid, reduction of fu-

ture window size, and approximation that DDP only chooses the most efficient ICE

operating points can make DDP implementable in real-time [118].

3.6 Blended Energy Management Systems

3.6.1 Introduction

EMSs of this class are named as blended becasue they combine the benefits of both

premeditated and casual EMSs. Blended EMSs alleviate the drawbacks of both pre-

meditated and casual EMSs in terms of their real-time implementation. Premeditated

EMSs are adroit in making control decisions since they need not to perform online

optimization and their control decisions are globally optimal. However, premedi-

tated EMS does not even guarantee near-optimality of the control decision when it

encounters an unfamiliar driving situation during real-world driving.

On the other hand, casual EMSs output instantaneous optimal control decisions which

63



Ph.D. Thesis – Atriya Biswas McMaster University – ME

may or may not be globally optimal. Also, they must perform real-time optimiza-

tion. Hence, the cost function used for the optimization should be either linear or

quadratic for fast computation. However, casual EMS has one big advantage that it

can guarantee instantaneous optimal control decision in any driving situation.

Real-time control policy obtained from utilitarian EMS can approach more towards

global optimality if advantages of premeditated and casual EMS are combined to be

complementary of each other. Some of the blended EMSs combine the advantages

of premeditated and casual EMSs. Some EMSs which would not have been feasible

to implement in real-time, have become feasible due to some precalculated rules and

assumptions and henceforth included in the class of blended EMS. With the aid of

some precalculated control rules, the blended EMS can make adroit control decisions

online [119].

3.6.2 Detail Articulation Steps of Blended EMS

Reinforcement Learning Based Blended EMS

RL algorithm-based control strategy, discussed briefly in 3.4.2, cannot be implemented

in real-time with computational power of contemporary automotive ECUs. Real-time

implementation of this strategy is made feasible with little online computation and

two pre-calculated separate look-up tables. One is for instantaneous cost (c(si, ai))

corresponding to all plausible state-action pair and another is for the value functions

of plausible state-action pair (qπ∗(si, ai)) [120]. “s”, “a”, & π are defined in preceding

section. Assisted by these two look-up tables, global optimal control is obtained in
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real-time with (3.6.1), as follows:

a∗(si)
.
= arg min

a(t)

E[c(si, ai) + γ ∗ qπ∗(si, ai)] (3.6.1)

Adaptive ECMS Based Blended EMS

As stated earlier, a feedback control is employed to regulate EF (λ(t)) at each time-

step along with finding local minimum value of Hamiltonian in ECMS based casual

EMS. The EMS has to find both proper value of EF and local optimal control decision

corresponding to minimum value of Hamiltonian. If one of the tasks is devolved to

a look-up table, computational complexity will be reduced. Global optimal control

policy corresponding to different EF values can be obtained from offline simulations

over different driving situations and the policies can be stored in a look-up table.

During real-time implementation, EF values can be calculated at each time-step via

feedback control and global optimal control corresponding to the calculated EF value

can be obtained from look-up table [75].

To expedite the computation of online local optimization process, use of pre-evaluated

optimal equivalence factor is a smart option. Authors in [121] stored the optimal

trajectories of equivalence factor with respect to different initial SOC values and

different segments of drive cycle in the form of 2-D look-up table.

Model Predictive Control Based Blended EMS

Model predictive control (MPC) can be implemented in a blended EMS with the

assistance of a set of look-up tables and an online search algorithm [119]. Multi-

parametric programming is used to articulate a stationary control policy in the form
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Figure 3.10: Example of control policy obtained from multi-parametric
programming

of a continuous piece-wise-linear function of different state variables as shown in 3.10,

where U∗(X) = fiX+gi;X ∈ Ti; i = 1, 2, ..., N . U and X are control vector and state

vector respectively and are shown in 3.10 where Ti is discretized domains of state.

In real-time, the EMS only has to search the correct domain in which the state

resides at current sampling point. Several searching algorithm such as interval trees

[122], ray-shooting approach [123] can be employed to accomplish the aforementioned

task.

3.7 Development of Utilitarian Energy Manage-

ment System

Since the paper mainly talks about utilitarian EMSs, significant steps throughout

their journey from theoretical articulation to hardware implementation should be

briefly narrated along with their detailed classification discussed in sections IV, V,

and VI. The journey of a utilitarian EMS from theoretical foundation to hardware
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implementation is an iterative and a convoluted process. Hence, a systematic plan,

as shown in 3.11, is followed to develop a utilitarian EMS.

The development process of a utilitarian EMS can be chronologically enumerated

as follows:

� Model-in-the-loop simulation (MIL)

� Software-in-the-loop simulation (SIL)

� Hardware-in-the-loop simulation (HIL)

� Dynamometer test
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� Vehicle-on-the-road test

3.7.1 MIL & SIL Simulation

MIL testing is done in a simulation environment where the plant model and the EMS

controller are typically designed in MATLAB & Simulink®platform. MATLAB &

Simulink®is ideal for designing system-level controllers like EMS.

Once the EMS performance is validated with model-in-the-loop (MIL) simulation, the

control policy should vary in the real-time executable controller. This stage is known

as software-in-the-loop (SIL) testing. The vehicle plant model can be retained as

Simulink®based as it was in MIL. However, AMESim®, DYMOLA®, MapleSim®,

and a few other platforms can be used for high-fidelity plant modeling. GM uses

another process of executing software-in-the-loop (SIL) test, known as Virtual SIL

(V-SIL), without controller hardware [124].

3.7.2 Hardware-In-The-Loop Simulation

Modern day automotive electronic control unit (ECU)s cannot be integrated in the

vehicle without validating their performance through hardware-in-the-loop (HIL) sim-

ulation. In comparison to real-vehicle test, HIL is a proven cost-effective test proce-

dure. Also, the repeatability of the same test scenarios gives an extra edge to HIL

simulation over prototype or on-road test facilities. Key aspects of HIL simulation

are discussed briefly as follows:
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Communication System for HIL Simulation

Controller area network (CAN) protocol is an efficient communication system which

is indispensable to facilitate flawless and swift data exchange among so many ECUs in

HIL simulation. CAN allows all the ECUs to communicate among themselves without

encumbering the microprocessors. Qualities like low cost of data transmission, fault-

tolerance, centralized error diagnosis, robustness, and provision of data prioritization

make CAN so popular and ideal choice for electronic data transmission in automotive

vehicles.

Development of Target Module Controller

Auto-code generation feature of Simulink®and other software like MotoHawk Green

Hills is used to convert control strategy into C-code [119]. The auto-generated C-

code is flashed into microcontroller through MotoTune software [119]. MicroAuto-

Box®from dSPACE®can be used for rapid control prototyping which is convenient

for frequent alteration of control policy.

Development of Real-Time Executable of Plant

The plant model of the powertrain, simulated in HIL test bench, should have enough

fidelity to capture crucial dynamics of the powertrain components and should run in

real-time. It is noteworthy to mention that HIL simulations are performed in discrete

time with constant time-step. Hence, executable of plant model should be compatible

with fixed-time solvers. Simulink®based plant models can be easily converted into

executable C-code. However, Simulink®models are mean-value and look-up table

based models which cannot capture intricate dynamics of powertrain components
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Figure 3.12: Schematic of hardware-in-the-loop simulation set-up

like differential equation based AMESim®models can do [125].

3.12 depicts a schematic of the HIL simulation test set-up. The high-fidelity plant

model is developed in the top block and then imported into the hardware simulator,

shown in the middle block. Simulator from different OEMs such as dSPACE®,

RT-LAB®, LabVIEW®, and Speedgoat®can be used. As shown in the bottom

block, the control strategy is articulated in MATLAB & Simulink ®and then it is

either exported to MicroAutoBox of dSPACE®or embedded onto a target module

controller.
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3.7.3 Dynamometer Test

Validation of the EMS controller on dynamometer (dyno) test-bench is the last level

of controller development before the vehicle-on-the-road test. chassis dyno is used

to validate the performance of the EMS controller with the full vehicle exposed to

replica of different road load conditions [126]. In order to evaluate the performance

of the controller convincingly, the same test-drive cycle should be repeated multiple

times on the chassis dyno test [103, 126]. Chassis dyno test is the ideal phase where

human participation should replace computerized PID controller-based driver.

3.7.4 On-road Vehicle Test and Calibration

After extensive validation through MIL, SIL, HIL, and dyno testing, finally the EMS

controller is deployed in a production vehicle or a mule vehicle to validate performance

of the controller on actual road conditions. After the road test, frequently it is found

that the EMS control strategy requires a few modification because all the ECUs are

communicating with each other in the real-world driving scenarios at this phase. It

is not viable to do a major change of the control strategy at this stage because it

is almost finalized for the production vehicle. Hence, the only inexpensive solution

is to calibrate the controller. In other words, the control strategy is adjusted with

respect to different driving condition to meet legislative norms and regulations from

government in terms of fuel economy and emission and to meet customer’s expectation

in terms of performance and drivability.
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3.8 Future Trends: Online Update of Energy Man-

agement Systems

So far in this article it has been described that with present computational capacity

of ECU, real-time global optimal control cannot be implemented explicitly. Control

policies in the previous three classes of EMSs approach towards global optimality in

real-time in the following manner:

� stationary premeditated rules yield near-global optimal control in real-time.

� non-stationary but local optimal control seldom achieves global optimality.

� approximate global optimality of control is achieved with a combination of sta-

tionary premeditated rules and non-stationary local optimization.

The ultimate goal is to obtain a control policy which is non-stationary and globally

optimal too. There are couple of plausible paths to reach the goal. Some of them are

not feasible with contemporary capability of ECU but eventually will be feasible in

future. Rest of the paths are feasible and researchers are working on it. This section

will discuss all the paths briefly with their individual feasibility.

3.8.1 On-Vehicle Implementation of RL Algorithm in Real-

Time

The RL algorithm optimizes the control policy for a constellation of driving situations

which is represented by a transition probability matrix (TPM) of driving states. As

stated in premeditated EMS, the control policy is optimized only once for a fixed
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Figure 3.13: Concept of online update of control strategy with onboard computation

TPM. The drawback of premeditated EMS is that it may encounter a driving situa-

tion, which is not included in the TPM, during real-world driving. Hence, an ideal

real-time global optimal control should update the TPM continuously in real-time

and should yield global optimal control for the most recent TPM.

An EMS can be articulated with the explicit RL algorithm, an initial TPM, and

an initial control policy. Then it can be deployed in the vehicle. The initial policy

does not necessarily be globally optimal at the very beginning because the RL algo-

rithm will eventually improve the policy to global optimality as it encounters more

driving situations. As the vehicle is being driven on the road, the RL algorithm inside

the EMS receives state signals from the sensors at each time-step. Then the EMS

should update the TPM at every time-step and the RL algorithm should evaluate

and improve the control policy also at each time-step. Therefore, these two tasks

are performed continuously throughout every drive cycle. Although this strategy of

implementing explicit RL algorithm seems to be enticing, it is not feasible with con-

temporary ECU’s capability. The contemporary ECU can update the TPM at each

time-step but it cannot evaluate and improve the control strategy at each time-step.
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3.8.2 Periodical Online Update of Control Policy with RL

Algorithm

Looking at the computational limitation of ECU, two approaches can be prescribed.

Since evaluation and improvement of the control policy are the computationally in-

tensive part of the whole EMS, they are tackled by separate computer instead of an

ECU. The computer can be on-board or off-board.
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Periodical Update with On-Board Computer

A separate advanced computer can be installed in the vehicle itself to replace the

ECU dedicated for the EMS. The computer can continuously receive driving states

from on-board sensors and can update the TPM periodically instead of at every time-

step. Fraction of the period is used by the computer to update the TPM and rest of

the period is utilized to evaluate and improve the control policy based on the most

updated TPM as shown in 3.13.

Periodical Update with Off-Board Computer

Another future trend is depicted in 3.14. The working principle is same as the previous

one. But there is a difference in the execution. Instead of using on-board advanced

computer, laboratory-based high performance computer is used here for periodical

update of TPM, evaluation, and improvement of the control policy. Internet can be

used as the mode of drive cycle data transmission from vehicle to research laboratory

and updated control policy transmission from laboratory to vehicle.

3.9 Summary

The total development process of a utilitarian EMS controller for electrified pow-

ertrain, starting from mathematical formulation of control policy to target module

controller, is narrated in this paper. Before going deep into the main content, the

typical characteristics of EMSs corresponding to major classes of powertrain archi-

tectures have been discussed. The paper also presents the tentative evolution curve

of EMSs since 1993 till 2018. The curve will give an initial guidance to the future
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researchers in this field and make them familiarize with the current scenario in EMS

development at a glance.

It is shown that an optimal or near-optimal control policy for a utilitarian EMS can

be articulated in the form of premeditated rules, instantaneous optimization, and

combination of both. It is also delineated that the hardware constraints consistently

play a major role in every phases of EMS development. The major focus here is to

categorize the utilitarian EMSs based on their dependency on online computation or

offline pre-computation or even both. In premeditated EMSs, it is shown that the

optimal results are converted into robust stationary rules or look-up tables by finding

a common pattern across the optimal control. The casual EMSs perform local op-

timization at each time-step with contemporary computational power of automotive

ECUs. The novel classification strategy will eventually motivate future researchers

to articulate EMS control strategies not only just for the sake of simulation-based

performance but also for their real-time and real-world implementation. It is note-

worthy to mention that both the trend of popularity and the comparison of control

strategies have been presented here to help future and present researchers in selecting

suitable control strategies for their utilitarian EMS. The five-stage validation process

of a typical ECU is delineated systematically. The article enthuses current and future

researchers to brainstorm innovative solutions for a paradigm shift in the development

of a utilitarian EMS.
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Table 3.1: Comparison of control strategies used in EMSs

Control
strategy

Advantages Disadvantages

Rule
Simple to implement, consumes
minimum ECU memory.

Depends heavily on intuition and
experience.

Fuzzy
Easy to implement for nonlinear
system with multiple objectives.

Difficult to tune parameters of
membership function for global
optimal control.

GA
Applicable to non-differentiable and
discontinuous objective functions.
Supports multiple objectives.

Prone to stuck in local optima.
Convergence highly depends
on initial population.

PSO
Less parameter tuning. Robust to
initial population size.

Need extra memory to update
velocity. Drive cycle dependence.

DP Perfect global optimal solution.
Online implementation is infeasible.
Heavy reliance on prior knowledge
of future drive cycle.

Convex
Optim.

Real-time optimization is feasible.
Computationally efficient.

System dynamics must go through
convexification. Global optimal
control cannot be achieved.

QP
Subset of convex optimization.
Real-time optimization. Commercial
solvers are available.

Non-linearity is approximated with
quadratic equation.

ANN
Less computational burden. Near
-global optimal control for
real-world driving.

Performance depends on lots of
training data and prediction accuracy.

PMP/
ECMS

Analytical solution of non-linear
constrained optimization in real-time.

Local optimal doesn’t guarantee
global optimality.

SDP
Global optimal solution for a
constellation of drive cycles.

Depends on the availability of
Markov decision problem.
Consumes a lot of time.

MPC
Inherent ability to tackle constraints
on input, output, and states. Real-
time optimization.

Depends on prediction accuracy.
Seldom achieves a global optimal
solution.

RL

Less memory usage. Continuous
learning of the decision-maker.
Robustness against unprecedented
power demand.

No clear guidance in choosing
immediate cost for multi-objective
global optimization.
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4.1 Introduction

The objective of this dissertation is the pursuit of a near-optimal, intelligent, casual,

and real-time control strategy for an EMS dealing with a multi-mode ePT. Before

searching for such an ingenuous EMS strategy, isn’t it important to go through one

of the most-accredited casual control strategy, i.e., equivalent consumption minimiza-

tion strategy (ECMS). This chapter will elaborate the concept of ECMS with its

implementation for two reasons. First, is to present the core concept of ECMS with

its detailed implementation stages for a multi-mode ePT. After elaborating the basic

and optimal ECMS, the author will propose a novel derivative of the basic ECMS

with an ambition of achieving better performance than optimal ECMS. Second, the

optimal ECMS has been institutionalized as a benchmark online optimization-based

control strategy in literature. Hence, it is justified to compare any new real-time con-

trol strategy’s performance with optimal ECMS’s performance for proving the new

one’s effectiveness.

This chapter is comprised of detailed implementation of ECMS in discrete time-step

making it apposite for embedded hardware, and a detailed implementation of a novel

loss-minimization strategy having the same cornerstone as ECMS. This chapter will

conclude with an avenue for a requirement of an advanced modeling of powertrain

dynamics in a multi-mode architecture.
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4.2 Equivalent Consumption Minimization Strat-

egy: A Casual Incarnation of Pontryagin’s Min-

imization Problem

The most well-known casual EMS is referred as ECMS [15] which has been proven as

the realization of application of PMP [16] in optimal control of energy management

problem for HEPT. Both ECMS and PMP transforms global optimal control problem

into instantaneous optimal control (IOC) problem by minimizing a Hamiltonian at

each time-step, given that the co-state dynamics and state satisfy necessary and

sufficient conditions respectively [16]. The general notation of the necessary and

sufficient conditions are given as follows:

H(x, u, t, λ(t)) ≥ H(x, u∗, t, λ∗(t)) (necessary) (4.2.1)

,where the Hamiltonian is defined as:

H(x, u, t, λ(t)) = ṁfuel(u, t) + λ(t) ∗ f(u, x, t) (4.2.2)

with x, λ(t), and u are the vectors of states, co-states, and control variables. u∗ is

the optimal control. λ∗(t) is the optimal time variation of the co-state. ṁfuel is mass

flow rate of fuel consumption.

ẋ(t) =
∂H(x, u, t, λ(t))

∂λ
(necessary condition)

= f(u, x, t)

(4.2.3)
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x(tinitial) = x(tfinal) (necessary condition) (4.2.4)

λ̇∗(t) = −∂H(x, u, t, λ(t))

∂x
(sufficient condition)

= −∂ṁfuel(u, t)

∂x
− λ∗∂f(x∗, u∗, t)

∂x

(4.2.5)

When the entire drive cycle information is not available apriori, both necessary con-

ditions can be fulfilled with the co-state vector’s adaptive variation. However, the

sufficient condition required for global optimality cannot be satisfied without apriori

knowledge of the drive cycle, and hence, the global optimality cannot be guaran-

teed. Although the co-state dynamics can be computed at every time-step with the

available information about powertrain dynamics, global optimality comes with only

a unique initial value of the co-state which must be found iteratively with the full

drive cycle known in advance [127]. In [128], the authors have shown that PMP can

give global optimal control without the fulfilling the sufficient condition regarding

the co-state variation if the battery resistance and open circuit voltage vary infinites-

imally small with SOC variation. This implies that when battery operates within the

range between 50% − 70% SOC, then only there is no need to satisfy the sufficient

condition regarding co-state variation for global optimality. This work posits that

the necessary conditions can also be sufficient for global optimality if and only if the

mass flow rate of fuel can be expressed as a convex function of battery power and

also the SOC variation is a concave function of SOC. However, in both cases, either

sufficient condition is required or not required to be fulfilled, the initial guess of the

co-state vector is mandatory.
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Even if the co-state variables are constant throughout the drive cycle with a few

assumptions, their initial value should be iteratively found with advance knowledge

of the entire drive cycle [128, 129]. If driving mission is known in advance, PMP or

ECMS can yield optimal control of close proximity with DP [17]. It is noteworthy to

mention that the co-state of PMP is nothing but a Lagrange multiplier and has been

incarnated as the EF between chemical energy and electrical energy in ECMS [130].

Since advance knowledge of the entire driving mission is mandatory for calculating

the unique initial value of the co-state variable(s), the only remaining approach is

to update the variable(s) adaptively with an initial guess during online or real-time

application when advance knowledge of the drive cycle is not available [18]. Conse-

quently, such adaptive variation does not satisfy the sufficient condition related to

co-state dynamics for global optimality.

It has become a common practice to update the EF or co-state variable(s) adaptively

and a handful of adaptive methods have been proposed and reiterated in literature

since 2005. The authors in [19] and [20] concurrently introduced the concept of

A-ECMS where the EF was updated periodically based on past trend of vehicle

speed and prediction of future driving mission. The authors in [130] employed an

proportional-integral-derivative (PID) controller for the very first time to update EF

at every time-step and many others followed similar approach either with PID [21,

131] or just proportional controller [22, 132]. Advanced adaptation rules have been

articulated based on prediction of future driving condition [23, 133] and based on

recognition of current driving pattern [24,134,135], [21, 131,136], [22, 132], [23, 133].

Another simple but profoundly used approach is to map the optimal values of EF as a
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function of battery SOC and vehicle’s power demand and to use the map during real-

time implementation. Infinite horizon SDP has been employed to derive a mapping

of EF on the state variables for a statistical data set coming from different uncertain

driving mission on a fixed route and this map can be used during real-time application

[137]. Data-driven approaches, assisted by ANN, have performed well in real-time

implementations when they had been trained beforehand with optimal EF trajectories

for different real-world driving situations [138], [137,139]. There are a few drawbacks

of each of the aforementioned methods for real-time implementation of IOC, some of

them are theoretical and some of them are from utilitarian perspective and they are

enlisted as follows:

� PID or proportional controller-based adaptive methods are not completely in-

dependent of tuning parameters. Controller gains must be tuned to achieve

charge sustainability.

� Prediction-based methods highly rely on the accuracy of the prediction of fu-

ture speed profile or the recognition of driving pattern. Also, complicated ANN

structures might be computationally too demanding for the utilitarian hard-

ware.

� Map-based methods heavily rely on the offline computation and can only yield

desired performance for selective drive cycle(s) and routes. Offline calculation

needs to be repeated for every time the vehicle controller comes across a new

route or driving mission. Moreover, memory constraint of contemporary hard-

ware might hinder big map from getting flashed into real controllers.

� Albeit EF has a physical interpretation, it is difficult to find the initial guess of
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EF which will satisfy charge sustainability criteria.

� Most of the literature presented the concept of instantaneous optimization but a

few of them elucidate the potential challenges and roadblocks encountered dur-

ing actual implementation and plausible ways to circumvent those roadblocks.

4.3 Implementation of Optimal ECMS

The previous section has presented a comprehensive review of state-of-the-art imple-

mentations of ECMS proposed in literature since 2001 until 2019 considering mostly

unknown future driving situations. The reason for which so many researchers have

been inclining towards ECMS since its introduction in 2001 is its operational ease

even with the slight computational complexity of the instantaneous optimization,

and its capability of yielding near-optimal control for any drive cycle. So, why are

scholars still researching on different state-of-the-art derivatives of the basic ECMS?

The answer is, the researchers are trying to circumvent the unavailability of future

driving information during real-world and real-time driving, and they are striving for

reducing the gap between the global optimal control and the ECMS-based near-global

optimal control in unprecedented driving situations. As this dissertation will proceed

towards culmination, the impact of a basic-ECMS on the targeted control strategy

will be elucidated, especially for an EMS dedicated for a multi-mode ePT.

This section will delve into the detail implementation of optimal ECMS for a multi-

mode ePT in discrete time-step. The entire simulation platform is developed in

MATLAB-Simulink ®environment, as shown in Fig.4.1. The Simulink ®model is

developed in many layers. Requirement and working principle of every layer will
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Figure 4.1: Overview of the simulation framework used for ECMS implementation

elaborated in the following sub-sections.

4.3.1 Overview layer

The overview layer depicts the interaction between three cardinal parts, i.e., the

driver block, the ECMS controller, and the plant model of the simulation framework.

1-dimensional (1-D) longitudinal vehicular dynamics is considered as an integral part

of the powertrain, and the plant model is comprised of the powertrain components

and 1-D vehicular dynamics. Both ECMS controller block and driver block receive

feedback signals from the plant model. The driver receives mainly the feedback

signal of vehicle’s speed whereas, the ECMS controller receives both feedback signals

of vehicle’s speed and battery SOC from plant model.

4.3.2 Driver block

The driver block emulates a human driver, and it compares the simulated speed and

acceleration of the vehicle from the previous time-step with the reference speed and

reference acceleration, respectively at the current time-step to adjust the accelerator
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Figure 4.2: Schematic diagram of the driver block used in a model-in-the-loop
simulation for vehicles

pedal position and brake pedal position. The most-accredited PID controller is em-

ployed as the cornerstone of the driver block. In this framework, the driver block

spews vehicle’s torque demand instead of two separate output signals, i.e., change in

accelerator pedal position and change in brake pedal position.

4.3.3 Plant model of Powertrain Components and Vehicular

Dynamics

The midsize 2500 kg representative passenger vehicle, named as BaBaVan (kept in the

memory of Iman), with a state-of-the-art multi-mode electrically variable transmission

(e-VT) forward wheel drive (FWD) transaxle [42] is selected for this study. The

schematic diagram of the multi-mode e-VT is shown in 2.13 in 2.3.6. Fig.4.3 helps to

revisit to the three modes and their operating principle. The transaxle is comprised

of an ICE, two EMGs, and a high voltage battery (HVB) pack. Since the objective

of this study is to emulate a real-time interaction between the ECMS controller and

the ePT, high-fidelity transmission models are used instead of steady-state models.

The HVB, ICE, and EMG models are kept at low-fidelity. Inclusion of a high-fidelity
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Figure 4.3: Schematic diagram of the three modes facilitated by the multi-mode

powertrain chosen for this study

ICE model has been scheduled for future work. Tab. 4.1 tabulates the specifications

of the powertrain components and vehicle components used in this study.

Multi-mode e-VT modeling

The multi-mode e-VT with input-split PG set configuration [42] can facilitate three

distinct electrified modes, i.e., single-motor EV mode, two-motor EV mode, and

hybrid-electric mode with only a single PG set and an OWC between the planet

carrier of PG set and crankshaft of the ICE. As depicted in Fig.4.3, the ICE is

attached to the planet carrier of the PG set through a torque converter, generator

is attached directly to the sun gear, and traction motor is attached to the ring gear
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through a speed reduction gear and a counter-driven gear. This transaxle has almost

same e-VT configuration as fourth generation THS and the presence of an OWC

facilitates an additional dual-motor EV mode.

The kinematic relations among all the components of the e-VT transaxel is key for

modeling the powertrain dynamics for each of the three distinct modes. The single-

motor EV mode and HEV mode share the same powertrain dynamics and it is ex-

pressed through a set of kinematic relations as given by Eq.4.3.1a. The powertrain

dynamics exhibited by the input-locked two-motor EV mode is modeled with a dif-

ferent set of kinematic relations as given by Eq.4.3.1b. The systematic method, as

prescribed in [39], will be employed here to deduce the kinematic relations among the

components of a multi-mode e-VT transaxle.

{τ}HEV/EV 1 = [A]HEV/EV 1 × {Ω̇}HEV/EV 1 (4.3.1a)

{τ}EV 2 = [A]EV 2 × {Ω̇}EV 2 (4.3.1b)

, where the generalized equation of obtaining state-dynamic ([A]) matrix, torque

({τ}), and angular acceleration ({Ω̇}) vectors corresponding to each mode is given

by eq.(4.3.2) as follows:

{τ}mode = [M ]mode{τ0}; {Ω̇}mode = [P ]mode{Ω̇0}

[A]mode = [M ]mode[A0][M ]Tmode

(4.3.2)

, where [A0] is the 4n × 4n matrix and n is the number of planetary gear-set, gen-

eralized torque vector ({τ0}), and generalized angular acceleration vector ({Ω̇0}) for
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the e-VT configuration, used in this brief, are given by eq.(4.3.3) as follows:

A0 =


Jout+Jr2 0 0 0 0 0 0 −R2

0 Jice+Jc1 0 0 0 0 R1+S1 0
0 0 Jgen+Js1 0 0 0 −S1 0
0 0 0 Jmot+Js2 0 0 0 −S2

0 0 0 0 Jr1 0 −R1 0
0 0 0 0 0 Jc2 0 0
0 R1+S1 −S1 0 −R1 0 0 0
−R2 0 0 −S2 0 0 0 0


{τ0} = [τout τice τgen τmot 0 0 0 0]T

{Ω̇0} = [Ω̇out Ω̇ice Ω̇gen Ω̇mot Ω̇r1 Ω̇c2 F1 F2]T

(4.3.3)

Here, it is required to elaborate the methodology used for deriving the powertrain

dynamics of every mode facilitated by a multi-mode ePT with two PG-sets.

The rule for numbering the nodes of a two PG-set system are enumerated as follows:

� Always mark 1st to the node connected to the vehicle output.

� If ICE is there as a component, mark 2nd to the node connected to ICE.

� After marking these two nodes, mark 3rd to the first PG-set’s node connected

to any other prime-mover (traction motor/ generator).

� If both electric machines are on the same PG-set, then ring gear will priority in

numbering.

� After all nodes with prime-movers are numbered, the remaining nodes are num-

bered as per priority. First PG-set gets priority over second, and ring gear,

carrier, and sun gear are prioritized in descending order.

The powertrain configuration of Pacifica is exemplified in Fig.4.4 to show the number-

ing technique before proceeding for deriving the system dynamics of every powertrain
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Generator
Motor

ICE

Figure 4.4: Numbering of nodes of a two-planetary gear set system with an example

mode. The powertrain dynamics without any connection between nodes can be ex-

pressed by Eq.4.3.4.

A0Ω̇0 =

 J D

DT 0


Ω̇

F

 =

τ
0

 = τ0 (4.3.4)

J is the diagonal matrix with a dimension of 3n×3n, as shown in Eq.4.3.5 representing

the inertia of the system. The diagonal elements of first six rows reflect the inertia

terms of six nodes of the two planetary gear-set system. Among these six elements,

first four represent the coupled inertia of the node and the prime-mover attached

to it. It is evident from Fig.4.4 and Eq.4.3.3 that the remaining two nodes are not
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Figure 4.5: Methodology for obtaining constraints matrix, with an example.

connected to any prime-movers directly.

J =



Jout + J1stnode 0 0 0 0 0

0 Jice + J2ndnode 0 0 0 0

0 0 Jgen + J3rdnode 0 0 0

0 0 0 Jmot + J4thnode 0 0

0 0 0 0 J5thnode 0

0 0 0 0 0 J6thnode


(4.3.5)

Next is how to determine the D and DT matrices which are the upper-right 3n × n

constraint matrix and bottom-left constraint matrix, respectively. The entries to the

D matrix is governed by the connections between prime-movers and nodes of the

PG-set. A clear guideline for constructing the D matrix is prescribed in [38]. Fig.4.5

elucidates the methodology of obtaining the D matrix. The first and second columns

of the D matrix correspond to the first and second PG-sets, respectively. If any

one of the four components is connected to the ring gear of a PG-set, Dm,n will be

−Nringm , where m and n corresponds to index of PG-set and index of the component,

respectively. Similarly, if any one of the four components is connected to the sun
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Figure 4.6: Constraints matrix for the powertrain architecture of Chrysler Pacifica
with explanation.

gear of a PG-set, Dm,n will be −Nsunm . Whereas, if any one of the four components

is connected to the carrier of a PG-set, Dm,n will be (Nsunm + Nringm). Nsun, Nring,

Ncarrier are the teeth number of sun gear, ring gear, and carrier, respectively. In

Eq.4.3.3, R1, R2, S1, and S2 refer to Nring1 , Nring2 , Nsun1 , and Nsun2 , respectively.

The D matrix for the powertrain architecture of Chrysler Pacifica is elaborated in

Fig.4.6. There is another piece of the puzzle, i.e., transition matrices (M and P

matrices), for deriving the system dynamics corresponding to every distinct mode

of the powertrain architecture. The derivation of M and P matrices are equally

important to obtain the final form of system dynamics for every mode. Every distinct

mode has a set of distinct M and P matrices. Transition matrices M and P are

derived as per the clutch engagement.

M is initialized as a 4n × 4n identity matrix, the same dimension as A0. When the

ith PG-set node is connected with the jth PG-set node, assuming i < j, the processes

shown in Eqs.4.3.6, 4.3.7, and 4.3.8 are applied to modify the M matrix. If the ith

node is clutched to ground, ith row will be eliminated. Fig.4.7 depicts the process to
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Generator
Motor

ICE

"M" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Updated "M" matrix
1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Final "M" matrix
1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Figure 4.7: Transition “M” matrix for the powertrain architecture of Chrysler
Pacifica for the HEV and single-motor all-electric modes.

obtain M matrix for both single-motor EV mode and hybrid-electric mode.

ithrow = ithrow + jthrow (4.3.6)

jthrow = [] (4.3.7)

ithrow = [] (if ith node is clutched to ground) (4.3.8)

P is also initialized as a 4n × 4n identity matrix, the same dimension as A0. When
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Generator
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ICE

"P" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Updated "P" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Final "P" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Figure 4.8: Transition “P” matrix for the powertrain architecture of Chrysler
Pacifica for the HEV and single-motor all-electric modes.

the ith PG-set node is connected with the jth PG-set node, assuming i < j, the

processes shown in Eqs.4.3.7 and 4.3.8 are applied to modify the P matrix. If the ith

node is clutched to ground, ith row will be eliminated. Fig.4.8 depicts the process to

obtain P matrix for both single-motor EV mode and hybrid-electric mode. Finally,
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Generator
Motor

"M" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Updated "M" matrix
1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Final "M" matrix
1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Figure 4.9: Transition “M” matrix for the powertrain architecture of Chrysler
Pacifica for the two-motor all-electric mode.

the MHEV/EV 1 and PHEV/EV 1 matrices can be expressed as follows:

MHEV/EV 1 =



1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


PHEV/EV 1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(4.3.9)

Similarly, the M and P matrices for two-motor all-electric mode is presented in Fig.4.9

and 4.10, respectively. The final expressions for them are provided in he following
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Generator
Motor

"P" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Updated "P" matrix
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Final "P" matrix
1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Figure 4.10: Transition “P” matrix for the powertrain architecture of Chrysler
Pacifica for the two-motor all-electric mode.

equation.

MEV#2 =



1 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


PEV#2 =



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(4.3.10)

Finally, the required expanded kinematic relations for both the distinct modes can be

obtained through substituting eq.(4.3.3), (4.3.9), and (4.3.10) in eq.(4.3.2) and they
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are given as follows:



Ω̇out

Ω̇ice

Ω̇gen

Ω̇mot

F1

F2


=



Jouteq 0 0 0 −R1 −R2

0 Jiceeq 0 0 R1 + S1 0

0 0 Jgeneq 0 −S1 0

0 0 0 Jmoteq 0 −S2

−R1 R1 + S1 −S1 0 0 0

−R2 0 0 −S2 0 0



−1 

τout

τice

τgen

τmot

0

0


(4.3.11)



Ω̇out

Ω̇gen

Ω̇mot

F1

F2


=



Jouteq 0 0 −R1 −R2

0 Jgeneq 0 −S1 0

0 0 Jmoteq 0 −S2

−R1 −S1 0 0 0

−R2 0 −S2 0 0



−1 

τout

τgen

τmot

0

0


(4.3.12)

While eq.(4.3.11) defines the kinematic relations for single-motor EV mode and HEV

mode, eq.(4.3.12) can be applied to the dual-motor EV mode. Ω̇gen, Ω̇ICE, Ω̇mot,

and Ω̇out are the angular accelerations of generator, ICE, traction motor, and ring

gear of the PG set respectively. Jouteq = (Jout + Jring1 + Jring2) is the cumulative

MMI of vehicle, ring gear#1 and counter-driven gear at the transmission output.

Jiceeq = (Jice + Jcarrier1), Jgeneq = (Jgen + Jsun1), and Jmoteq = (Jmot + Jsun2).

Jgen, Jice, Jmot, Jring2 , Jring1 , Jcarrier1 , Jsun1 , and Jsun2 are the MMI of generator,

ICE, traction motor, counter-driven gear, ring gear#1, carrier#1, sun gear#1, and

the pinion attached to motor shaft respectively. τgen, τICE, τmot, τout are the torques

applied by generator, ICE, traction motor, and transmission output respectively. β
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Figure 4.11: Mass flow rate of fuel consumption, WOT torque, and friction torque.

is the ratio of number of teeth of ring gear to sun gear (β = R
S

).

Modeling of Internal Combustion Engine

A low fidelity 3.3 Lt spark-ignition (SI) ICE is modeled through three most essential

engine characteristic look-up tables, i.e., WOT torque, mass flow rate (MFR), and

friction torque. The MFR of fuel from the fuel injectors of an SI engine is calculated
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in terms of fuel-air equivalent ratio (FAER) as follows:

ṁfuel = FAER ∗
ṁair(ωICEactual , τICErequest)

Stoichiometric air fuel ratio

= FAER ∗
ṁair(ωICEactual , τICErequest)

15.0461

= 1×
ṁair(ωICEactual , τICErequest)

15.0461

(4.3.13)

, where FAER is the fuel-air equivalent ratio which depends on the control algorithm

of engine control unit (ECU). The value of FAER can range from 0.02 to 10. The ref-

erence value of FAER is 1 (one) which corresponds to stoichiometric fuel-air mixture.

FAER value higher than 1 and lower than 1 refers to rich and lean fuel-air mixture

respectively. Generally MFR of air is a direct function actual engine speed and torque

request and ECU always tries to achieve the reference value of FAER which is 1.

The high-frequency engine ripple torque is replaced by low-frequency mean-value

engine resistance torque, as shown in Fig.4.11.c. Expression of high-frequency engine

ripple torque, a function of instantaneous engine speed and indicated torque, is given

in Eq.4.3.14 [140].

τfrice = [C0 + C1(θ̇ice) + C2(θ̇ice)
2]× (

Vd
4π

+
τind(θice)

40
) (4.3.14)

, where τfrice , C0,1,2, θice, Vd, τind(θice) are friction torque of engine, approximating

factors, engine crank angle, engine volume, and indicated torque.

EMG modeling

Low-fidelity models of both generator and traction motor are developed with a simple

look-up table approach. As shown in the Fig.4.12 and Fig.4.13, the maximum torque
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Figure 4.12: Efficiency contour plots of traction motor at different voltages.

(τMGmax.) curves and efficiency (ηMG) table can be represented as following relations:

τMGmax. = f(ωMG, V oltageMG)

ηMG = f(ωMG, τMG, V oltageMG)

(4.3.15)

These curves are obtained through the motor curve creator tool in Simcenter AMESim®.

High-Voltage Battery modeling

A low fidelity HVB model is adequate for developing an EMS control strategy for

HEPT. Highly accurate SOC estimation through complex nonlinear battery modeling

technique [141] might be useful during validation stage prior to HIL simulation. At
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Figure 4.13: Efficiency contour plots of generator at different voltages.

this initial control development stage, the HVB is simply modeled with a open circuit

voltage (OCV) in series with internal resistance (IR) of the HVB. SOC dynamics is

given by the following equation:

d

dt
SOC(t) = −OCV −

√
OCV 2 − 4Pbatt ∗ IR

2IR ∗Qbatt

(4.3.16)

, where Pbatt and Qbatt are power and overall capacity of the HVB respectively.

4.3.4 ECMS Controller

The ECMS controller is the most crucial block in this entire simulation platform since

it decides the operating mode of the powertrain, and if the mode has controllability,
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Figure 4.14: Overview of the ECMS controller block in a model-in-the-loop
simulation with a multi-mode electrified powertrain.

the ECMS controller will decide operating points of the controllable prime-movers

through instantaneous optimization. The overview of the ECMS controller is given

in Fig.4.14. Assisted by the Fig.4.14, it will be easier to comprehend the algorithm

of an ECMS prescribed for a multi-mode ePT. The algorithm is as follows:
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Algorithm 1: Equivalent Consumption Minimization Strategy for Multi-
mode Electrified Powertrain

Input : τrqstdrvr , SOCprev, ωvehprev , ωiceprev , ωmotprev , ωgenprev & ωrqstdrvr
Output : U(t), where U = {modeoptim.,Ψmodeoptim.}, wheremode = {1, 2, 3},
Ψ1 = {},Ψ2 = {τicecmnd , ωgencmnd}T , Ψ3 = {τmotcmnd},
where 1 ≡ EV#1, 2 ≡ HEV, 3 ≡ EV#2

Initialization :τout = τrqstdrvr ,
ωout = ωrqstdrvr , SOC = SOCprev;V olt = V oltprev

for mode = i, i ∈ {1, 2, 3} do
sweep through feasible combinations of control variables in mode#i (Ψi)
for each feasible combinations of Ψi do

compute: ωice, τice, ωgen, τgen, ωmot, and τmot corresponding to Ψi

(use kinematic relationship for the given mode , eq.(2.3.4) for EV#1
& HEV and eq.(2.3.5) for EV#2)

compute: ṁfuel corresponding to ωice, τice
compute: Powmot = (Powmotuseful + Lossmot)
compute: Powgen = (Powgenuseful + Lossgen)
compute: Powbatt = (Powmot + Powgen + Lossmot)
compute: JΨi = (ṁfuel × LHV ) + λ× Powbatt

Ψi,optim. = arg minΨi
‖(JΨi)‖

modeoptim. = min
(
Jmode#1, Jmode#2, Jmode#3

)
U(t) =

{
modeoptim.,Ψmodeoptim.

}

The discretizations used for τice, ωice, and τmot are as follows:

τice = [13.5 : 15 : 310.5] (N −m) (4.3.17a)

ωice = [52 : 20 : 575] (rad/sec) (4.3.17b)

τmot =
[
[0 :

(
f(ωmot, V oltagemot)

)
/15 : f(ωmot, V oltagemot)

]
(N −m) (4.3.17c)

The cost function is a key characteristic of an ECMS. In this dissertation, only fuel

consumption minimization is taken into consideration. To encompass the effect of

both fuel consumption and emission, the ECMS controller will no longer be able to
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minimize the fuel consumption because of the fact that the lowest fuel consumption

region of the ICE map does not necessarily yield lowest emissions. Another set of

look-up tables or empirical models for emissions are indispensable to optimize the

cost function comprised of instantaneous equivalent fuel consumption and tailpipe

emissions. However, another feature can be easily augmented to the existing ECMS

with equivalent consumption minimization. Drivability and mode-shift’s feasibility

might not seem the primary objective of the basic ECMS at this model-in-the-loop

simulation stage. However, in later stage of the controller development, inevitably

such a secondary objective becomes very practical requirement to be fulfilled by the

ECMS.

Drivability is a subjective matter, and is defined as the driver’s perception about driv-

ing experience. There are various metrics available for measuring the drivability score

of an ePT. However, a simple metric, i.e., number of ICE activation has been used in

this work to measure and improve the drivability. With the following cost function,

the ECMS controller tend to switch pretty frequently between ICE activation and

deactivation.

JΨi = (ṁfuel × LHV ) + λ× Powbatt (4.3.18)

Frequent activation of ICE implies to frequent deactivation, which brings not only

just drivability issue but more fuel consumption during ICE cranking. Once cranked,

the ICE is expected to run at least for ten seconds at a stretch to reach steady-state

operation for better efficiency. Although the transients of ICE has not been modeled

accurately in this work (scheduled for future work), it is ensured that ICE is not

deactivated until at least ten seconds of operation to emulate the practical feasibility

constraint. To prevent ICE deactivation immediately after its activation, an extra
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penalty cost has been added to the all-electric modes consistently for the next ten

seconds, as shown below in Eq.4.3.19 and 4.3.20

JΨi |EV#1 =


λ× Powbatt, for Modeprev == EV#1||EV#2

λ× Powbatt + Penaltyice, for Modeprev == HEV&& counter ≤ 10sec


(4.3.19)

JΨi |EV#2 =


λ× Powbatt, for Modeprev == EV#1||EV#2

λ× Powbatt + Penaltyice, for Modeprev == HEV&& counter ≤ 10sec


(4.3.20)

, where Penaltyice is the ICE-deactivation penalty within the period of ten seconds

after ICE-activation. The variable counter tracks the difference between the cur-

rent time-step and time-step when ICE was last activated. Similarly, ICE-activation

should be prohibited immediately after deactivation of ICE. Hence, a similar penalty

should be added to the cost of hybrid-electric mode when the vehicle is running in

any one of the all-electric modes. The modified cost function of hybrid-electric mode

will prohibit the ECMS from activating the hybrid-electric mode during five seconds

of its post-deactivation phase.

JΨi |HEV =



(ṁfuel × LHV )

+λ× Powbatt
, for Modeprev == HEV

(ṁfuel × LHV )

+λ× Powbatt + PenaltyEV

, for Modeprev == EV s && counter ≤ 5sec


(4.3.21)
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Feasibility of mode-shift events is a crucial factor for any EMS strategy dealing with

a multi-mode ePT. While the mode-shift events and their feasibility are all together

a separate domain and will be dealt judiciously in the next chapter, a glimpse of the

implementation of feasibility criteria is shown here. Inspired by the work presented

in [142], the original equivalent cost structure, given in Eq.4.3.18, has been modified

as below to yield feasible mode-shift commands from ECMS controller.

(J)modif.equi = ṁfuel ∗ (LHV ) + λ ∗ Powbatt. + ν ∗ Pshift (4.3.22)

, where

Pshiftmode = µ1 ∗
1

2
Jice[(ω

t+1
ice )2 − (ωtice)

2]

+ µ2 ∗
1

2
Jgen[(ωt+1

gen )2 − (ωtgen)2]

+ µ2 ∗
1

2
Jmot[(ω

t+1
mot)

2 − (ωtmot)
2]

ν is a tuning factor, and a value of 0.03 is selected for this work. Different values have

been assigned to tuning factors µ1, and µ2 corresponding to different types of mode-

shift and the assigned values are tabulated in Tab.4.2. The feasibility constraint of

mode-shift event does not let the ECMS controller choose operating points, in two

consecutive time-steps for the ePT, having drastically different numerical value. For

example, if the ICE is operating at 250 rad/sec at current time-step, the feasibility

constraint will not let the ECMS controller choose 350 rad/sec in the next time-step.

It is noteworthy to mention that the time-step used for the simulation in this work

is 0.1 seconds.
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4.4 Summary

This chapter elucidated the implementation of ECMS as the control strategy for

an EMS of multi-mode ePT. Implementation of ECMS requires the derivation of

the powertrain dynamics in every operating mode as a first priority. Therefore, the

derivation has been illustrated in detail. It is noteworthy to mention that brute force

search method has been adopted for implementing the instantaneous optimization in

this dissertation. Brute force optimization is feasible in real-time as long as the dis-

cretization is coarse or boundaries of control variables are small. Brute force search

is the safest solution if the cost function is non-convex in nature. But, the compu-

tational time for brute force exceeds real-time threshold as discretization becomes

fine with large boundaries of the control variables. Hence, non-convex optimization

techniques, for 2-D search-space, such as stochastic gradient descent or gradient pro-

jection will be deployed in future to increase the accuracy of optimization and to meet

the real-time computation constraint.
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Table 4.1: Specification of the vehicle and cardinal components

Component Parameter Value

Vehicle Mass (m) 2510 kg

Rolling resistance

co-efficient
f1 = 0.006, f2 = 0.0001

Vehicle inertia (Jout) 298.08 kg-m2

Wheel radius (rwheel) 0.3548 m

Vehicle height 1.75 m

Vehicle width 1.48 m

Engine Inertia (Jice) 0.128 kg-m2, 10.6

Compression ratio

Max. speed (ωicemax
) 5500 RPM

Max. torque (τicemax) 310 Nm at 4100 rpm

Volume displacement 4 Cyl., 2.0152 liters

Max. power 175 kWatt at 5000 rpm

Traction motor Inertia (Jmot) 0.0028 kg-m2,

Max. speed, Max. Volt. 12500 RPM, 414 V

Max. torque (τmotmax) 410 Nm at [0:2240]

Max. power 96 kWatt at 2240 rpm

Generator Inertia (Jgen) 0.0024 kg-m2

Max. speed, Max. Volt. 12500 RPM, 350 V

Max. torque (τgenmax
) 162.5 at [0:4167] rpm

Max. power 70 kWatt at 4167 rpm

Battery Max. capacity 43 Ah

Max. discharge power 60 kWatt

Max. recharge power 40 kWatt

No. of cells in series 100

Max. voltage 414 V

Table 4.2: Tuning factor for mode-shift penalty term

Current mode

Previous
mode

Fully electric Hybrid electric
Fully
electric

µ1 = 0, µ2 = 1 µ1 = 0.1, µ2 = 0.5

Hybrid
electric

µ1 = 0.1, µ2 = 0.5 µ1 = 1, µ2 = 1
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Chapter 5

In Pursuit of a Novel Strategy:

Overall System Loss Minimization

Strategy instead of Engine’s

Efficiency Maximization
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5.1 Introduction

As concluded in the previous chapter, researches are going on for finding new deriva-

tives of optimal ECMS to dissolve the sufficient condition related to a unique value

of EF yielding global optimal performance. In this chapter, a new instantaneous

optimization-based strategy, which is similar to ECMS, is proposed to minimize the

overall powertrain loss unlike ECMS which focuses on just maximizing ICE’s effi-

ciency. The LMS is articulated with an ambition of outperforming optimal ECMS,

given that LMS does know the drive cycle apriori. However, LMS also tend to switch

among different powertrain modes quite frequently alike ECMS. The chapter will

substantiate the effectiveness of LMS in achieving almost same performance as ob-

tained by optimal ECMS, but not enough dexterity to outperform optimal ECMS in

model-in-the-loop (MIL) simulation.

5.2 Fundamentals of Loss Minimization Strategy

The LMS is based on the principle of minimizing the loss of the entire powertrain

rather than just considering the effects of only the ICE while minimizing fuel con-

sumption. Minimizing the cumulative energy loss of all the subsystems is equivalent

to minimizing the fuel consumption of the vehicle [143]. Therefore, utilizing the

concept from [144], the optimal control problem statement can be defined as:

[uoptice (t), u
opt
mot/gen(t)] = arg min

uice(t),umot/gen(t)

[Ct], t = 1, ..., Tf (5.2.1)

111



Ph.D. Thesis – Atriya Biswas McMaster University – ME

, where

Ct =
∑
m∈M

Ein,m − Eout,m + λEhvb

=
∑
m∈M

(
um(t)− ym(t)

)
∆t+ λuhvb(t)∆t

(5.2.2)

subject to

Ereq(t) = Eice(t) + Egen(t) + Emot

SOCmin < SOC(t) < SOCmax

0 ≤ Eice(t) ≤ Eice,max(t)

Egen,min(t) ≤ Egen(t) ≤ Egen,max(t)

Emot,min(t) ≤ Emot(t) ≤ Emot,max(t)

(5.2.3)

, where Ein represents the amount of energy entering into a component, Eout rep-

resent energy flowing out and Ehvb represents the energy provided by the HVB at a

given time-step. λ is the EF between chemical energy of fuel and electrical energy of

HVB. ∆t is the sampling time of online simulation. M is the set containing all the

mechanical and electrical components in the electrified powertrain. The system, as

presented in Fig.5.1, describes the power flow in the current given configuration. u

and y refers to input and output power flow for all the energy exchanging components.

V1 is the output power demand of the electrified powertrain, V2 represents external

energy exchange for the battery, Xice represents fuel consumption of the ICE, and

Xhvb represents SOC of the EESS which is a HVB for this application. The energy

exchanging nodes are referred by nk for k ∈ [1, 2, 3, 4]. Fig. 5.1 also exemplifies a clear

guideline for deciphering the power-flow diagram for any given powertrain configura-

tion. Node 1 (n1) represents the energy exchange between ICE, generator (EMG1),

and transmission output. According to this particular configuration, output power
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Figure 5.1: Power flow in multi-mode power-split electrified powertrain

of ICE (yice) is divided into two paths, i.e., towards the final drive and towards the

generator. Node 2 (n2) represents the junction where powers from ICE and trac-

tion motor (EMG2) coalesce, vehicles power demand flows outward, and equivalent

brake power flows inward. Node 3 (n3) represents where powers of generator, motor,

HVB, and external electrical power interact. EESS of an HEV does not get recharged

through external electrical power source and hence V2 will be zero for this powertrain

application. Furthermore, since there is only conceptual power aggregation at each

node, the power should be balanced across every node in fig. 5.1 as per Eq.5.2.4.

The power balance for nodes n1, n2, n3, and n4 is given by Eq.5.2.4a, Eq. 5.2.4b,

Eq.5.2.4c, and Eq.5.2.4d respectively.
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0 = uring + ugen − yice (5.2.4a)

0 = V1 − ymul. − uring − ybrk (5.2.4b)

0 = V2 + umot − ygen − yhvb (5.2.4c)

0 = umul. − ymot (5.2.4d)

, where uring represents the fraction of ICE power flowing towards transmission output

through both ring gear#1 and counter-driven gear. uice, ugen, umot, uhvb, ubrk, and

umul. represent input power flow to ICE, generator, motor, HVB, mechanical brake,

and torque multiplier respectively. Similarly, yice, ygen, ymot, yhvb, ybrk, and ymul.

represent output power flow from the aforementioned components in the same order.

As per Eq.5.2, the instantaneous cost Ct of the electrified powertrain which needs to

be minimized at every time-step (∆t) can be articulated as:

Ct = (uice − yice + ugen − ygen + umot − ymot + umul.

−ymul. + uhvb − yhvb + ubrk − ybrk + λuhvb)∆T

(5.2.5)

By substituting Eq.5.2.4a, Eq.5.2.4b, Eq.5.2.4c, and Eq.5.2.4d in Eq.5.2.5 and setting

ubr = 0, since all the energy supplied for braking can be considered as loss, the

instantaneous cost can be re-written as Eq.5.2.6.

Ct = (uice + (1 + λ)uhvb − V1)∆t (5.2.6)
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It can be noticed, that the Eq.5.2.6 represents the loss structure of the ECMS since

V1 is the known output power demand at every time-step. As mentioned earlier,

the biggest drawback of ECMS is that it requires tuning of λ for each unique drive-

cycle and vehicle topology to yield near optimal results. Furthermore, in the case of

an HEV, the ECMS guarantees charge sustaining results for online application only

with a single optimal constant value of λ which should be pre-calculated with prior

information about the entire drive cycle. Slight deviation from the optimal value will

yield sub-optimal results and can result in violation of charge sustainability criteria.

Since Eq.5.2 has the same cost structure as of the ECMS, it is implicit that LMS will

also suffer from similar disadvantages.

5.3 Revised Cost Structure

One of the biggest issues with solving optimal problem pertaining to the EMS of an

HEV is that it has inequality constraints over the state variable which needs to be

satisfied. For an HEV, the HVB must operate in charge sustaining mode. It implies

the final SOC of HVB must be within a pre-specified range at the end of the drive

cycle. Generally, it is set to be within 1% around the initial SOC value. Since Eq.5.2

is highly sensitive to the value of λ it should be evaluated judiciously at each time-

step. Literature is crowded with many methods specifying clear guideline for tuning

the EF (λ). This paper focuses on developing a new cost structure for the IOC of

EMS pertaining to HEV while taking charge sustainability strictly into consideration.

It is noteworthy to mention that the term Ein,m−Eout,m in Eq.5.2 basically represents

the amount of energy being lost across each component. Henceforth, the lost energy

will be represented by LM where M is a set containing all the active components.
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Now, the importance and meaning of the term λEeess or λEhvb needs to be understood

at first in order to define the revised cost structure. The uhvb is the battery input

power and λ represents the EF between chemical energy of fuel and electrical energy.

Therefore, λ × uhvb represents the equivalent fuel cost of using electrical energy per

unit time-step. The value of λ varies over time based on the way the HVB charge was

replenished in past and will deplete in future. Hence, it is evident that the term λ×

uhvb signifies the equivalent cost of using the electrical power in respect to mechanical

power obtained through the fuel consumption of the ICE.

In a multi-mode HEV as presented here, it is imperative to understand that the

powertrain can be operated in any of the three modes as described in the chapter 4

at any given time-step, i.e., the vehicle’s power demand can be satisfied by either

hybrid-electric mode or single-motor EV or even two-motor EV mode. The mode

selection is governed by the EMS controller which compares the cost of powertrain

operation for three different modes. Hence, there should be a fair comparison among

the cost of operation in three different modes in order to select the appropriate mode.

Pout refers to power demand at the wheel at any given time-step. The fundamental

equation of power balance at the powertrain output is given as follows:

Pout = Pice + Pelectrical (5.3.1)

, where Pice and Pelectrical are the powers supplied by ICE and electrical machines

respectively. Depending on the value of Pice, Pelectrical can be positive, negative or

zero.

If Pelectrical is zero, the entire power demand of the vehicle will be sufficed by ICE

and since ICE has significantly low efficiency, the loss term for the ICE will be quite
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big. In contrast, if Pice would have been zero, EMGs would have sufficed the entire

power demand of the vehicle and since their efficiencies are quite higher than ICE,

naturally the loss term would have been significantly small in that case. Therefore,

this would lead to an unfair comparison, resulting in activation of either single-motor

EV or two-motor EV mode for the entire driving mission. This will obviously violate

the charge sustainability criteria of the HVB.

A method to circumvent this biased comparison is presented in [144] where λ is kept

as a constant real number. But keeping a constant value of λ does not necessarily

ensure the charge sustainability criteria and does not have any physical interpretation

except for being a penalty term. One can also think about making the λ adaptable

with many available adaptation rules for the EF in the ECMS algorithm. However,

this also does not solve issue at hand, rather just give a little robustness to the system

to possibly make the system charge sustaining.

A better approach to think about this problem is to understand the underlying mean-

ing of the cost structure and redefine it in a better way. It is very important to

understand the underlying meaning of the term λ in order to posit another plausible

approach to circumvent the aforementioned problem of unfair cost comparison. Now,

it is undeniably true that ultimately all the energy in an HEV must come from the

ICE, since there is no other outside source of energy input to the powertrain system.

Therefore, whatever the amount of electrical energy is being consumed by the vehicle

at a given time-step, ought to be provided by the ICE. Practically, the energy pro-

vided by the HVB had been charged by the ICE in the past or will be charged in

future. Hence, fundamentally thinking, it can be realized that there is actually ICE

loss associated with utilizing the electrical energy from the HVB and that should be
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accounted in the cost structure. Accounting for that loss in the cost structure will

eradicate the need of including the term representing equivalent fuel cost (λ×uhvb) in

the instantaneous cost structure. So, the new cost structure can be defined as follows:

Ct =
∑
m∈M

Lm + ζ(Lhvb + yhvb)
(1− ηavg)
ηavg

ζ =


1 if yhvb ≥ 0

0 if yhvb < 0

(5.3.2)

The first and second components of the new instantaneous cost structure in Eq.5.3.2

can be referred as objective loss and subjective loss respectively. Lhvb is the amount

of loss that occurs across the HVB while delivering yhvb amount of energy at a given

time-step. Hence, the amount of energy that would have been recharged by the ICE

can be obtained by adding Lhvb+ybatt. ηavg is the average efficiency of the path through

which the Lhvb+yhvb amount of energy would have been recharged or will be recharged

in future. Therefore, the whole second term in Eq.5.3.2, i.e., (Lhvb + yhvb)
(1−ηavg)

ηavg
,

represents the amount of energy lost in the system while recharging the HVB and

making the battery capable of emanating positive energy of ybatt amount. ζ is a

constant integer which can be zero or one depending upon the sign of yhvb. ζ is equal

to zero when HVB power is negative (yhvb < 0). It is understandable that there is no

need of accounting battery is being recharge and not discharged, therefore, there is

no loss associated to it. The amount of loss happening in battery and engine while

recharging is being accounted in their respective loss terms.
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Algorithm 2: Loss Minimization Strategy for Multi-mode Electrified Pow-
ertrain

Input : τrqstdrvr , SOCprev, ωvehprev , ωiceprev , ωmotprev , ωgenprev & ωrqstdrvr
Output : U(t), where U = {modeoptim.,Ψmodeoptim.}, wheremode = {1, 2, 3},
Ψ1 = {},Ψ2 = {τicecmnd , ωgencmnd}T , Ψ3 = {τmotcmnd},
where 1 ≡ EV#1, 2 ≡ HEV, 3 ≡ EV#2

Initialization :τout = τrqstdrvr ,
ωout = ωrqstdrvr , SOC = SOCprev;V olt = V oltprev

for mode = i, i ∈ {1, 2, 3} do
sweep through all feasible combinations of
control variables in mode#i (Ψi)
for each feasible combinations of Ψi do

compute: ωice, τice, ωgen, τgen, ωmot,
and τmot corresponding to Ψi

(use kinematic relationship for the given mode
, Eq.2.3.4 for mode#1 & mode#2 and Eq.2.3.5
for mode#3)
compute: Lice, Lgen, Lmot
compute: yhvb =

∑
p∈{gen,mot}(yp + Lp)

compute: Lhvb = f(yhvb)

compute: Lequiv = ζ(Lhvb + yhvb)
(1−ηavg)

ηavg

compute: Ltotal =
∑

m(Lm) + Lequiv + Lauxi

Ψi,optim. = arg minΨi
‖(Ltotal)i‖

modeoptim. = min
(
Lmode#1, Lmode#2, Lmode#3

)
U(t) =

{
modeoptim.,Ψmodeoptim.

}

The primary stages of mode and associated control variable selection process are de-

lineated in an algorithmic way in Algo.2. Since the loss minimization is executed

numerically, brute force method is employed in HEV and dual-motor EV modes to

search the control variable(s) corresponding to minimum loss. The brute force method

numerically evaluates the system loss for every combinations of control variable(s) and

finds out the control combination corresponding to minimum system loss by brute

force. However, a fine discretization of the control variable(s), which automatically
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increases the computational burden, is preferable for achieving exact global optimal

control accurately. At the present online implementation, a coarser discretization, i.e.,

τmotn , n ∈ {1, . . . , 15} and τicep , p ∈ {1, . . . , 15} with 15×15 = 225 evaluations of sys-

tem loss, has been used in the hybrid-electric mode to keep the computational burden

within reasonable limit. Similarly, coarser discretization of τmotn , n ∈ {1, . . . , 15} is

used in two-motor EV mode. Naturally, a fine discretization with 30× 30 grid would

lead to more accurate identification of the optimal control.

5.4 Simulation and Results

In this section, simulation results obtained from the LMS supervisory control strat-

egy will be presented. As mentioned earlier, the LMS is derived from similar concept

used by ECMS which is a well recognized and validated online supervisory control

strategy for EMS. Therefore, the results obtained with LMS will be compared with

results obtained from the ECMS. It is noteworthy to mention that no mode-switching

constraints has been applied on the powertrain operating mode behavior while sim-

ulating with both LMS and ECMS. This results in frequent and possibly infeasible

mode shifts. Optimally managing the frequency of mode shift by including a penalty

term in the cost structure has been discussed in the chapter 4.

Furthermore, a constant optimal value of EF has been chosen while simulating the

EMS with ECMS. This ensures that the sub-optimal control provided by the ECMS

yields performance with close proximity to global optimal results in the range of 1%-

5% [17]. The only unknown parameter in the Eq.5.3.2 is the ηavg. Estimating its

value is of critical importance since LMS is highly sensitive to the value of ηavg and it

governs whether LMS can satisfy the charge sustainability criteria at the end of a drive
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cycle or not. According to its definition, ηavg can be clearly implied as the maximum

efficiency with which the battery can be recharged when all the power generated by

the ICE will be converted directly into electrical power during hybrid-electric mode.

Hence, ηavg can be written as follows:

f(ηeng, ηgen, ηmot, ηbatt) < ηavg ≤ ηmaxeng
(5.4.1)

The lower limit of the ηavg is a function of the operating efficiencies of ICE, generator,

motor and HVB. It depends upon the path of energy transfer happening from ICE

to battery through the power electronics device/s. Similar to the EF in ECMS, it is

also observed in LMS that a optimal constant value of the ηavg yields the best result

and ensures the charge sustainability criteria of the HVB at the end of a drive cycle.

Therefore, the only logical and fair way of comparison is possible when both of the

control strategies are compared on the basis of their best achieved results. Hence, an

optimal constant value of the ηavg is found by trial-and-error method for a given drive

cycle such that it satisfies the charge sustaining conditions. Three standard drive

cycles, i.e., urban dynamometer driving schedule (UDDS), worldwide harmonized

light vehicles test cycle (WLTC), and highway fuel economy test cycle (HWFET)

are selected in this article for the performance-based comparative study conducted

between ECMS and LMS.

Before going into the comparative study between LMS and ECMS, a couple of cru-

cial results are shown in Fig.5.2 and Fig.5.3. It is noteworthy to reiterate that the

transmission plant is an inertia-based model which exhibits dynamics better than a

steady-state model. Fig.5.2 and Fig.5.3 show the difference between SOC trajectories

and fuel consumption profiles obtained from a steady-state model and inertia-based
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Figure 5.2: Comparison between battery SOC trajectories when inertia-based plant
model is used instead of steady-state plant

dynamic model. The comparison is performed keeping the EMS controller same for

both of the models.

Fig.5.5(a), Fig.5.9(a), and Fig.5.13(a) present the simulated vehicle speed for UDDS,

WLTC, and HWFET respectively. Fig.5.5(b) depicts the SOC traces obtained through

ECMS and LMS-based EMS strategies when the vehicle is simulated for UDDS. From

Fig.5.5(b), it can be observed that both ECMS and LMS can achieve charge suste-

nance (final SOC is within 1% deviation of the initial SOC value), given that the op-

timal value of EF and ηavg for ECMS and LMS, respectively are pre-calculated with

advance knowledge of the drive cycle. The optimal constant value of ηavg and EF

found for UDDS are 0.295 (29.5% efficiency) and 2.74 respectively. Fig.5.6, Fig.5.7,

and Fig.5.8 depict time-traces of powertrain mode profiles, ICE torques, and ICE

speeds, respectively for the two controllers.

In order to have a fair comparison of fuel consumption value between ECMS and

LMS, the final SOC value, achieved with both the strategies, should be as close as

possible. Fig.5.5(a) depicts the conformity of this requirement and hence, the fuel
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Figure 5.3: Increase of cumulative fuel consumption when an inertia-based plant
model is used instead of a steady-state plant for a same drive cycle

consumption values can be compared. As mentioned earlier, the powertrain suffers

from high-frequency and infeasible mode-shift events under both the control strategies

due to not imposing any feasibility constraints on the cost-structure for both the

strategies. Fig.5.6 corroborates the occurrence of such high-frequency mode-shift

events. In order to eradicate the drivability concerns, engendered due to such an

impaired behavior of the mode profile, the instantaneous cost-structure should be

augmented with a mode-shift penalty in terms of a function of previous time-step’s

mode. Since the cardinal objective of this article is to validate the prowess of LMS

with only focus on minimizing energy loss of the powertrain, drivability improvement

is out of the scope of this work. But it will be definitely included in future work.

As depicted in Fig.5.7 and Fig.5.8, the time-traces of ICE operating points in ECMS

and LMS nearly follow a similar pattern which results in similar trend in SOC time-

traces, as shown in fig. 5.5(b). Tab.5.1 summarizes the comparison of both cumulative

fuel consumption and energy loss, which are used as the performance metrics, for

all four drive cycles. Similar to UDDS, fair amount of resemblance can be noticed
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Figure 5.4: Comparison of IC Engine speed response between steady-state and
inertia-based plant model

between time-traces of ICE operation with ECMS and LMS for WLTC and HWFET

as shown in Fig.5.11, Fig.5.12, Fig.5.15, and Fig.5.16. Effect of such resemblance

is clearly visible in the charging and discharging pattern of HVB SOC profiles for

both WLTC and HWFET as shown in Fig.5.9(b), and Fig.5.13(b), respectively. The

optimal constant value of ηavg and EF found for WLTC are 0.3275 (32.75% efficiency)

and 2.7195 respectively.

The optimal constant value of ηavg and EF found for federal test procedure (FTP)-75
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Figure 5.5: Vehicle speed, fuel consumption, and SOC trajectories for UDDS

are 0.304 (30.4% efficiency) and 2.7375 respectively. The optimal constant value of

ηavg and EF found for HWFET are 0.2775 (27.75% efficiency) and 2.7825 respectively.

As mentioned earlier, one of the contributions in this article is the inclusion of dy-

namics of ICE during it’s cranking and stopping along with the dynamics of other

prime-movers attached to PG-set in powertrain modeling. Inclusion of these dynamics

results in significant difference in performance of any EMS control strategy compared

to the case when powertrain is modeled with steady-state approach and dynamics

of both cranking and stopping of ICE are ignored. In steady-state approach, the

prime movers, especially ICE operates exactly at the same feasible operating points

commanded by the EMS controller. However, this is impossible in reality due to
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Figure 5.6: Comparison of powertrain operating modes under LMS and ECMS for
UDDS

inertia and other physical properties of the components, controller delay, sensor delay

etc. Fig.5.20 depicts the speed and torque responses of a low-fidelity ICE model with

inertia-based transmission model with respect to controller’s command during hybrid-

electric mode. The zoomed views of both speed and torque responses in Fig.5.20(b)

and Fig.5.20(c) respectively show that speed of ICE cannot follow the steady speed-

request from the controller if ICE receives an oscillating torque-request from the

controller. The left-hand-side zoomed window of Fig.5.20(c) shows that torque of

ICE model settles down with initial overshoot in response to steady torque requests

from the EMS controller. The left-hand-side zoomed window of fig. 5.20(b), which

corresponds to left-hand-side zoomed window of 5.20(c), also corroborates the atten-

uating behavior of the plant ICE-speed in response to a speed and torque requests
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Figure 5.7: Comparison of ICE speed under LMS and ECMS for UDDS

which are steady over a decent amount of time.

Fig. 5.21 depicts the speed dynamics and torque dynamics of ICE during cranking

and stopping and also shows the major contribution of generator (EMG#1) during

both cranking and stopping. The powertrain always starts with EV#1 mode every

time the vehicle launches from zero speed. The generator produces zero torque and

rotates in counter-clockwise during EV#1 mode. As soon as the powertrain model

receives a command for activation of hybrid-electric mode from the EMS controller,

the generator applies positive torque for cranking the ICE, as shown in left-hand-

side zoomed window of Fig.5.21(c). As a consequence, the speed of ICE increases in

clock-wise and speed of generator rapidly changes from counter-clockwise direction to

clock-wise direction due to kinematics of the PG-set, as shown in the left-hand-side
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Figure 5.8: Comparison of ICE torque under LMS and ECMS for UDDS

zoomed window of Fig.5.21(b).

Similarly, the generator plays a key role in bringing down the ICE-speed to complete

zero when the powertrain receives a mode-shift command from hybrid-electric mode to

EV#1 mode. As shown in the right-hand-side zoomed window of Fig.5.21(c), mode-

shift from hybrid-electric to EV#1 happens at 265.1 seconds when the ICE torque

reduces to zero value due to fuel cut. However, the speed of ICE does not plummet

to zero as quickly as the torque does before the mode shifts to EV#1. Hence, rest of

the ICE-speed reduction is administered by the generator during EV#1 mode. The

right-hand-side zoomed window in Fig.5.21(c) depicts that generator torque gradually

increases from a negative value to zero to curtail the ICE speed which is shown in

right-hand-side zoomed window of Fig.5.21(b). Proportional controller is employed
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Figure 5.9: Vehicle speed, fuel consumption, and SOC trajectories for WLTC

to regulate the torque of generator during this curtailment of ICE speed. Finally, the

comparison of performance metrics between ECMS and LMS, as furnished in Tab.5.1,

corroborates that ECMS performs slightly better than LMS in UDDS, WLTC, and

FTP-75, i.e., cumulative energy loss is lesser with ECMS than LMS and consequently

cumulative fuel consumption is automatically lesser with ECMS. Both the controllers

yield almost same fuel consumption in HWFET.

5.4.1 Implication of Drivability Constraint

Finally, a comparative study is performed between LMS with and without drivability

constraint. As discussed in chapter 4, instantaneous optimization strategy assisted
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Figure 5.10: Comparison of powertrain modes under LMS and ECMS for WLTC

Figure 5.11: Comparison of ICE speed under LMS and ECMS for WLTC

with mode-shift penalty yields feasible mode-shift schedule and gives sufficient time to

ICE operation once it is cranked, and prohibits the ICE from cranking immediately

after its shutting down. Fig.5.17, Fig.5.18, and Fig.5.19 corroborate the enhanced

performance of the LMS when applied on WLTC with drivability constraints. Not

only the frequency of mode-shift events has reduced, but fuel consumption has also

reduced due to drivability constraint, as shown in Fig.5.19. Hence, it is recommended

to include mode-shift feasibility and drivability constraints in the cost function of any

instantaneous optimization.
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Figure 5.12: Comparison of ICE torque under LMS and ECMS for WLTC

5.5 Summary

Based on the minimization of the powertrain’s total system loss, an instantaneous

optimal control is proposed for an EMS of a specific electrified powertrain configura-

tion. Theoretical equivalence between ECMS and LMS is elucidated by delineating

the underlying concept of the posited LMS built and developed upon a few state-of-

the-art online implementations of ECMS. The LMS is applied to a multi-mode EVT

having one hybrid-electric mode and two pure-electric modes. The simulation results

of LMS are juxtaposed to the optimal ECMS’s results to authenticate the effective-

ness of LMS. A few significant findings that have been corroborated in this chapter

are enumerated as follows:

� The cumulative system loss over the drive cycle is proportional to the cumula-

tive fuel consumption over the entire drive cycle. Correlation between overall

system losses and fuel consumption for four drive cycles firmly corroborate this

statement.

� As shown in Tab.5.1, the fuel consumption values obtained through LMS are

marginally greater than that of ECMS for all the drive cycles.
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Figure 5.13: Vehicle speed, fuel consumption, and SOC trajectories for HWFET

� The high-fidelity powertrain modeling approach has significant importance in

articulation of EMS control strategy. Since dynamics of phenomena like ICE-

cranking and ICE-stopping are indirectly related with charging or depleting of

the HVB, instantaneous cost-structure should be articulated not only to min-

imize the system loss and to achieve charge sustenance but also to improve

the drivability performance. It should be reiterated that more cranking and

stopping phenomena raise the drivability concern and concede more fuel con-

sumption.

The structure of LMS has only one tuning parameter, i.e., average ICE efficiency

(ηavg). The simulation results show that the LMS can yield charge sustaining results

if the value of ηavg is appropriately chosen for a specific drive cycle. It is imperative to

understand that the effectiveness of the LMS lies in the meaning of the ηavg. The ηavg’s
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upper limit is fixed depending upon the engine and is neither a function of the drive

cycle nor topology or external environment. Furthermore, the ηavg has a significant

physical interpretation that helps in forming a governing equation for developing an

adaptive rule to evaluate the value of ηavg. Such adaptive rule can eradicate even

the smallest requirement of manual tuning of ηavg. Inclusion of adaptation rule for

ηavg in the instantaneous cost-structure is allotted for the future work. However, the

proposed LMS could not outperform the optimal ECMS given that the drive cycle’s

information is available to both the energy management strategies. This inspires

the author of this report continuing the pursuit for an energy management strategy,

which can outperform optimal ECMS in real-time simulation.
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Figure 5.17: Time-series of mode-shift events throughout WLTC under loss
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Figure 5.18: Time-series of mode-shift events throughout WLTC under loss
minimization strategy with drivability constraint
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Table 5.1: Comparison of simulation results

Drive

cycles

Avg.

eff
EF

Fuel consump.

(g)

Total system loss

(KJ)

LMS ECMS LMS ECMS

UDDS 0.295 2.74 415.15 391.98 122510 111180

WLTC 0.3275 2.7195 1203.6 1200.9 354880 335690

FTP-75 0.304 2.7375 806.77 774.01 239130 224940

HWFET 0.2775 2.7825 733.96 716.27 215010 207110
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Chapter 6

Introduction of Reinforcement

Learning in Solving the Energy

Management Problem of Hybrid

Electric Vehicle
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6.1 Introduction

The previous chapter concluded with the indication of continuing the pursuit for a

control strategy yielding near-global optimal performance in real-world driving situa-

tions. On the other hand, reinforcement learning (RL) algorithm has been emerging

as a lucrative control strategy for optimizing controllable physical systems’ perfor-

mance in real-time since artificial intelligence’s intrusion into the sector of optimal

control. The RL algorithm mathematically models an intertwined psychological and

neurological behavior, exhibited by humans and a few animals, for continuously opti-

mizing decision making capability based on past experiences to substantiate gain in

future [25], [26].

RL has declared its strong presence throughout the last decade in the domain of

optimal control since researchers started using deep neural network (DNN) for the

application of RL. Deep reinforcement learning (DRL) has been successfully applied

in several sectors such as robotic control [145, 146], traffic management [147], space

exploration rovers [148], and autonomous vehicles [149]. Needless to say that the

application of RL in the EMS of the electrified powertrain (ePT) is inevitable, and it

is just a matter of time to deploy RL in commercial vehicles.

RL-based agents are especially tailored for solving sequential decision making prob-

lems, where long-term return is more prioritized over short-term rewards. This chap-

ter will delineate every rudimentary level of RL algorithm along with one of the

well-known RL algorithms, i.e., Q-learning’s implementation in solving energy man-

agement problem for ePT. This chapter will develop a stable foundation for discussing

an advanced and state-of-the-art RL algorithm and its application.
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6.2 Fundamental of RL based Control Strategy

Before going into the application of RL algorithm in optimizing control policy in

real-time, background of learning-based control should be delineated.

6.2.1 Fundamentals of Markov Decision Making

We take so many decisions in our daily schedule. Some of them are isolated and have

just immediate consequences. But, some of them have both immediate and long-term

consequences. Some decision making is sequential where present decision is impacted

by the past decisions and the future decisions will be impacted by the present decision

as shown Fig.6.1. Markov decision process (MDP) is an effective mathematical tool

to model the sequential decision making. The primary events of the Markov decision

model are discussed as follows:

Fundamentally, an agent interacts with a target environment (E ). At a given time-

step in either a finite or an infinite horizon episode, the agent observes only those

states of the environment (St) which are indispensable for deciding actions (At). The

agent will observe two events at the next time-step (t + 1) due to the actions At

imparted on the environment at the current time-step (t).

� The agent will receive a reward rt from the environment.

� The agent will see the environment (E ) making the transition to a new state

St+1.

For a finite horizon episode problem, as shown in Fig.6.1, the process mentioned above

continues until the agent reaches the terminal state ST and receives a cumulative

return (Rt) at the end of an episode. The return (Rt =
∑T

k=1 γ
krt+k) is denoted as
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Environment

RL Agent

Environment

RL Agent

Environment

RL Agent

Figure 6.1: Conceptual diagram of sequential decision making, and relationship
among state, action, and reward in discrete time-step.

the return caused by the action At. The Return Rt can be re-written as following

equation:

Rt = rt + Rt+1 = rt + γrt+1 + Rt+2

= rt + γrt+1 + γ2rt+2 + Rt+3

= rt + γrt+1 + γ2rt+2 + · · ·+ γT−2rT−2 + RT−1

(6.2.1)

, where γ is the discount factor (γ ∈ (0, 1]) regulating future rewards’ contribution to

the computation of return from the current time-step.

States of the Model

A set of environmental information constitute the system state (S ) of the decision-

making model. The system states provide all the required information to the decision-

making agent for choosing a possible action for that state. Markov decision-making

model has a n-dimensional state-space S : s1, s2, · · · , sn 7→ Rn. The environment

may possess many other states might not be useful for the decision-making agent.

141



Ph.D. Thesis – Atriya Biswas McMaster University – ME

Actions of the Model

The set of actions A is defined as the finite set A : A1, A2, · · · , Ak 7→ Rk where the

size of the action space is k. Actions are decided by the decision maker to control the

system states. The set of actions that can be applied at a state s ∈ S is denoted by

A(s), where A(s) ⊆ A . All the actions might not be applicable to all the states but

the set of actions corresponding to each state of the system fall within the set A .

Transition Probability Function (TPF)

Upon application of an action At ∈ A in a state St ∈ S , the systems makes a

transition from St to a new state St+1 ∈ S , based on a probability distribution

over the set of possible transitions. The transition probability function is defined as

TPF : S×A×S → [0, 1], i.e. the probability of ending up in state St+1 after making

control action At in state St is denoted by TPF (St, At, St+1). For all actions a, and all

states s and s′, TPF should satisfy this relation 0 ≤ TPF (s, a, s′) ≤ 1. Furthermore,

for all states s and all actions A(s) at state s,
∑

s′∈S TPF (s, a, s′) = 1. But for

all those actions which are not applicable at state s, TPF (s, a, s′) = 0, if system

is transitioning from s to s′. TPF can be expressed as a conditional probability of

landing in state St+1 at time t + 1 if action At was selected at state St at time t as

TPF (St, At, St+1) = Prob(St+1|St, At). A transition probability matrix (TPM) stores

all TPFs for a specific Markov decision making problem.

Reward Function or Cost Function

As an immediate consequence of the control action made by the decision-making

agent, the agent receives an immediate consequence from the environment. Immediate

142



Ph.D. Thesis – Atriya Biswas McMaster University – ME

consequence can be positive in the case of reward and can be negative in the case

of cost. If it is a reward, the primary objective of the Markov decision problem

would be to maximize the return R. On a contrary, if it is a cost, the primary

objective would be the minimization of the return R. Cost or Reward (r) can be

mathematically defined either as the immediate consequence of making an action At

in the state St and landing in a state St+1, i.e., r : S × A × S or as immediate

consequence of making an action At in state St, r : S×A. In this research the second

definition will be used as the immediate consequence function. The TPM and the

reward function characterize the model of the Markov decision making problem, and

their availability will determine what kind of agent or algorithm will be required to

solve the Markov decision making problem. An MDP is mathematically represented

as a tuple 〈S ,A , TPM,R〉.

Policies

Given an MDP 〈〈S ,A , TPM,R〉〉, the rule which governs the agent’s choice of

action (A) for the observed state (S) is known as the policy (π). Policy is a mapping

from n-dimensional state space S : S1, S2, · · · , Sn 7→ Rn to k-dimensional action

space A : A1, A2, · · · , Ak 7→ Rk. A policy can be deterministic defined as π : S → A

or it can be stochastic defined as π : S×A→ [0, 1]. Policy is the part of the algorithm

or agent used for decision making, and its goal is to maximize or minimize the return

of the Markov decision problem.
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6.2.2 Criteria for Optimal Policy in Markov Decision Process

The primary objective of the agent is to find an optimal policy for the MDP through

some learning algorithm. If the policy maker is concerned with immediate reward

or cost, a simple optimality criterion E[rt] needs to be optimized. If the policy is

concerned with immediate as well as long-term consequence, optimality criterion

needs to include future consequence with either of these two models, E
[∑h

t=0 rt

]
and E

[∑∞
t=1 γ

trt

]
.

The first model simply takes a finite horizon of length h and the agent should optimize

the expected rewards or costs over this horizon. The second one is the infinite-horizon

model takes all future rewards or costs into account, but the rewards or costs that

are received in future are discounted according to how far away in time they will be

received. The learning algorithm depends on what optimality criterion is selected.

6.2.3 Value Functions

Value functions are essential aspects of MDP because the agent’s algorithm computes

the optimal policy for the MDP by learning value functions. A state value function

helps the algorithm estimate how good it is for the agent to be in a specific state, and

an action-value function tells how good to perform a specific action at a particular

state. A state st’s value function under policy π, denoted as V π(s), is the expected

return at the end of the task when starting from state s and following the policy π

after that.

V π(s) = Eπ

{
∞∑
k=0

γkrt+k|st = s

}
(6.2.2)

Similarly, action-value function, denoted as Qπ(s, a) : S × A → Q, is the expected
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return at the end of the task when starting in state st, taking action a and thereafter

following policy π.

Qπ(s, a) = Eπ

{
∞∑
k=0

γkrt+k|st = s, at = a

}
(6.2.3)

The value functions satisfy certain recursive property:

V π(s) = Eπ
{
rt + γrt+1 + γ2rt+2 + ...|st = s

}
= Eπ

{ ∞∑
k=0

γkrt+k|st = s
}

=
∑
s′

TPF (s, π(s), s′)
{
R(s, a, s′) + γV π(s′)

} (6.2.4)

It implies that a state value function is defined in terms of immediate reward and

value function of the possible next states weighted by their transition probabilities

and discounted by a factor. The value functions play a key role in finding optimal

policy because the policy that maximizes value functions for all states (maximize for

reward and minimize for cost) is the optimal policy. An optimal policy is denoted

by π∗, such that V π∗(s) ≥ V π(s) for all s ∈ S . Now the question is how to find the

optimal policy? There are two major classes of algorithms to search for the optimal

policy of an MDP.

6.2.4 Model-based Algorithm and Model-free Algorithm

Based on MDP’s characteristic model’s availability, i.e., TPM and immediate conse-

quence function, two types of algorithms can be employed to search for the optimal

policy. Model-based algorithms are employed when the agent is familiar with both
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TPM and immediate consequence function beforehand. Model-based algorithms exist

under the general name of dynamic programming (DP). On the other hand, model-free

algorithms, under RL’s name, do not rely on the availability of TPM of the MDP. Both

model-based and model-free algorithms necessitate immediate consequence function.

Model-free algorithms rely on the interactions, i.e., real-time interactions or simu-

lated, of the agent with the environment. The agent must explore the MDP since it

does not have the exact model of the MDP.

6.2.5 Generalized Policy Iteration

For both model-based and model-free algorithms, an iterative process must be em-

ployed to evaluate and improve the current policy. Starting with a naive policy, either

of DP or RL algorithm will evaluate and improve the policy periodically to reach the

optimal policy, as shown in Fig. 6.2.

Policy Evaluation

The policy evaluation step estimates the present policy’s usefulness by calculating

state-value functions for all states s ∈ S . In model-based algorithms, TPM and

immediate consequence function are used to compute the value functions. In model-

free algorithms, actions can be taken according to the environment’s policy, and

response is recorded in every sampling time. Value functions are estimated from

these recorded responses from the environment.
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Figure 6.2: Schematic representation of sequential decision problem.

Policy Improvement

The action-value functions are evaluated for every state to find any better possible

actions that can better action-value function than the current action-value function.

This step computes an improved policy π′ from the current policy π using the in-

formation in V π. Since the model-free algorithm is best suited for most real-life

decision-making processes, the next focus will be on the RL algorithm.

6.2.6 Reinforcement Learning: Model-Free Algorithm to Ob-

tain Optimal Policy

As stated earlier, the RL algorithm is used to find the optimal policy when the TPM

of MDP is unavailable to the agent. The unavailability of the exact MDP model

compels the RL to sample MDP to accumulate estimated stochastic information of the

MDP. After gathering enough data by sampling, the value functions are calculated,

and then the optimal policy is found as it is found in model-based techniques. This
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approach takes longer because it first learns the transition probabilities and immediate

consequence function from interaction with the environment, then estimates the value

functions, and finally finds the optimal policy by policy iteration. This approach is

called indirect RL. Another approach directly starts estimating the value functions,

even before estimating the proper model of MDP. This approach is called indirect

RL. A combination of these two approaches can accelerate the learning process.

Temporal Difference Learning

Another thing must be decided: estimate the value function without even estimating

the MDP’s model. Should we wait till the end of an episode to assess the state

value function and an action-value function? It is not fair to assign a value function

to a state or action after waiting so long. Hence, the estimated value function is

modified based on the immediate reward and the estimated value function of the

next state. This mechanism is known as temporal difference (TD) . Undeniably, TD

learning would be the most appropriate algorithm to update the estimated value

functions when TPM of the MDP is known apriori. TD learning, which is also

known as model-free learning or prediction-based learning, is the cornerstone for the

future of artificial intelligence (AI). In simple words, TD learning is the mechanism

of updating an estimate with the help of another estimate. The agent selects an

action at the current state and obtains an immediate reward and next state from

the environment. Based on the estimated value function of this next state and the

immediate reward, estimated value function of the current state Ṽ and state-action

Q̃ under policy π is updated. For TD(0) learning method, only the next state’s

value function is used to update current state’s value function in the way: Vk+1(s) =
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Vk(s) + α

{
r + γVk(s

′) − Vk(s)

}
, where α ∈ [0, 1] is the learning rate deciding the

rate of update of value functions. The learning rate should be high at the beginning

and decrease as time progresses.

Exploration-Exploitation Ratio

The strategy of choosing an action by the RL agent needs to be decided. Since the

RL agent does not have exact knowledge of V (s) and Q(s, a) for each state s ∈ S and

action a ∈ A , it should not rely on greedy policy when selecting an action in a state.

The agent should exploit the available information about value functions as well as

explore the entire action space. A separate exploration mechanism ensures that the

best action (according to current estimates of action value functions) is not chosen

always. At the naive stage, the learner should explore more than exploit. As time

proceeds, exploration-exploitation ratio can be reduced. A ε− greedy policy instead

of the greedy policy ensures desired exploration and exploitation. The learner takes

the current best action with a probability of (1−ε) and chooses action randomly with

a probability of ε.

Q-Learning Algorithm

One of the popular algorithm for action-value function learning in TD mechanism is

Q-learning. Like TD(0) method, action-value function Q(s, a) is updated with the

following equation:

Qk+1(st, at) = Qk(st, at) + α

{
rt + γmax

a
Qk(st+1, a)−Qk(st, at)

}
(6.2.5)
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Figure 6.3: Agent-environment interaction for Q-learning.

The Q-learning works in a simple way. At any state (St) of an episode, the agent first

interacts with the environment by taking a feasible action (At). As a consequence,

the environment gives a reward (rt) and takes the agent to next state (St+1), as shown

in Fig. 6.3.

The learner chooses an action from the set of actions in the next state based on

whichever action gives maximum estimated action-value function arg maxa(t+1)

[
Qk(st+1, a)

]
.

Now, the action value function corresponding to current state and action (Qk+1(st, at))

is updated based on previous value (Qk(st, at)). The schematic of Q-learning is shown

in detail in Fig. 6.4. One advantage of Q-learning is that the policy evaluation and

policy iteration take place simultaneously.

6.3 Application of RL Agent in Real-Time Control

for EMSs

There are copious drive cycles in the real-world driving scenario. Optimizing an

energy management controller for a specific drive cycle or a group of drive cycles is

possible, but all feasible drive cycles are neither possible nor a smart idea. Instead,

incorporating a learning technique in the controller is a smart idea. The controller
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Figure 6.4: Schematic of Q-value function update with continuous policy
improvement.

can adapt its control policy according to the most recent driving scenarios with the

learning technique’s help. RL agents can be deployed as such adaptive controllers

that keep updating control policy without knowing future driving situations. EMS’s

control policy must be articulated so that the policy yields global-optimal control in

all real-world driving scenarios. Control of energy management problem for any drive

cycle is a perfect example of MDP, where the controller sequentially decides for each

sample point of the drive cycle.

6.3.1 Justification of Application of RL Agent in Real-Time

EMS

In real-world driving situations, where the next driving state is entirely unknown to

the controller, the perfect model of MDP is unavailable. If the drive cycle is known as

apriori, the perfect MDP model (transition probabilities and immediate consequence

function) could be articulated, and then the optimal policy for the MDP can be

151



Ph.D. Thesis – Atriya Biswas McMaster University – ME

obtained through DP.

Now the question is, why is a perfect model of MDP unavailable or cannot be articu-

lated for real-world drive cycles with uncertain future driving states? The answer to

this question justifies an RL agent’s requirement for energy management in real-time

and carrying out this research. MDP is comprised of two main elements, namely,

TPM and immediate consequence function. For electrified vehicular applications, in-

stantaneous fuel consumption, instantaneous tailpipe emissions, and instantaneous

battery SOC change are a few examples of immediate consequences. The question

can be even narrowed down as that why TPM cannot be articulated for real-world

driving? As explained earlier, TPM can be expressed as a conditional probability

of landing in a state s′ at time t + 1 if action a was selected at state s at time t.

For real-world driving, the controller lands on an unfamiliar state s′ when it takes

a specific action a(s) at state s. Such unfamiliarity happens because the state vec-

tor comprises power demand and other powertrain variables like battery SOC, the

vehicle’s speed, and acceleration of the vehicle. If the state vector would have only

contained powertrain variables, then TPM would have been modeled easily. The ve-

hicle’s power demand for the next time-step is always uncertain, and power demand

cannot be eliminated from state variables. Energy management strategies with pre-

dictive power demand are found in the literature. However, this research focuses on

articulating a control strategy based on uncertain power demand to robust against

any unprecedented power demand. Moreover, RL-based control policy’s performance

can reach the closest to that of DP-based control among all the existing online control

policies. Hence, model-free algorithms or RL-based algorithms are employed to learn

and obtain a near-global optimal control policy.
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6.3.2 Ultimate Objective of Control Policy in terms of Global

Optimality and Real-Time Application

Looking at the drawbacks of the existing real-time control strategies, as discussed in

the chapter chapter 4 and chapter chapter 5, an ultimate objective can be prescribed,

and then it will be discussed that how closer to the ultimate objective can be achieved

via RL-based agent.

Ultimate Objective

The ultimate objective is to yield global-optimal control for all real-world driving

situations. The controller should produce instant global optimal control for every

real-world driving situation. The controller should execute optimization within the

control time-step like PMP or ECMS control strategy, but the optimization should

be global optimization instead of local optimization.

Limitations Against Achieving Ultimate Objective

The controller cannot produce global-optimal control for an unfamiliar driving sit-

uation at the very first interaction. A specific time-period should be given to the

controller to produce global-optimal control for any new driving situation. A few

learning algorithms using ε − greedy policy can take significant time to yield opti-

mal control action for a state that is less encountered by the learner. However, with

efficient exploration, the convergence time of the learning algorithm can be reduced.

The bottom line is that the controller should take a certain amount of time before

making global-optimal action for a new driving situation.

A specific real-world driving situation can be described most simply with a single
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state, namely, vehicle speed. The same driving situation can be described by multiple

states, namely, speed, acceleration, road grade, battery SOC, tentative distance from

destination, wind speed, ambient temperature, and many more. The number of states

should be limited to four or five to keep the computational burden within the feasible

limit.

6.3.3 Approach to Update Control Policy

The control policy should update continuously in real-time to satisfy the objective

mentioned above that the policy should yield near-global optimal control for every

real-world driving situations. A few plausible mechanisms for updating the policy are

as follows:

Continuous Updating Policy through Onboard RL

The vehicle can be deployed on the road with an onboard RL agent and an initial

policy. The initial policy needs not to be global-optimal or even near-global optimal

because the onboard RL algorithm will eventually elevate the policy to near-global

optimality as it encounters more drive cycles. The RL agent receives required state

signals from sensors and other controllers at each time-step as the vehicle runs on

the road. The RL agent learns the action value functions Q(s, a) continuously in

real-time with the Q-learning algorithm and improves the control policy.

As shown in Fig.6.4, the Q-learning only requires the current state information to

update the Q-value function of a state-action combination. Whenever the agent

interacts with new driving states during this process, it estimates Qesti(snew, a) for

those new states and learns the near-global optimal action-value function Q(snew, a)
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for those states by real-world interaction as well as simulated interaction. Q-learning

not only converges to near-global optimal value of Q(snew, at), but it improves the

policy at each time-step by choosing an action with estimated optimal Q-value at

each time-step. However, it will be better to follow ε− greedy policy.

Additional parallel computation is required to expedite the learning

process. If the vehicle sensor’s drive-cycle data is received per second, the controller

will have much idle time, and the learning process will be slow. The controller also

needs many iterations of the current drive cycle to converge to expected Q-values

for all state-action combinations. Hence, the controller needs more drive-cycle data

both to utilize the idle time and execute many iterations. Nevertheless, how can be

drive-cycle data obtained before the real-world drive cycle terminates? Here comes

the Markov chain model (MCM) for continuously generating random drive

cycles using current driving data. An updating MCM can be articulated using

the current driving data of the vehicle. The MCM stores the transition probabilities

of power demand for the recent past and ongoing driving scenarios. Using the MCM,

numerous drive cycles can be generated within one second, and these drive cycles can

expedite the agent’s learning process. The RL agent with Q-learning and MCM’s

updating functionalities can be embedded in an electronic control unit (ECU) or an

onboard computer to execute the RL agent-based EMS for an electrified powertrain.

This approach of expediting the learning process with an updating MCM

will make this research different from existing literature.
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Figure 6.5: Concept of periodical update of control policy with on-board ECU or
computer.

Periodic Updating Policy through On-Board RL

The periodic updating mechanism works like the continuous update, with the only

exception is that the update of policy is periodical instead of continuous. The periodic

update reduces the intensity of real-time computation to make it feasible for onboard

ECU or computer. The RL can learn value functions based on the periodically up-

dated MDP model, and it can be used to update the control policy periodically, as

shown in Fig.6.5.

Periodic Updating Policy through Off-Board RL

This updating mechanism’s working principle is the same as the previous one, but

there is a difference in the execution. Instead of using an onboard computer, a

laboratory-based high-performance computer is used for periodically updating the

RL agent’s optimal policy. The onboard sensors and ECU can continuously collect

required state signals, and an ECU will be responsible for updating the MDP model

periodically. The periodically updated model of MDP is then sent to the laboratory

via the internet. The updated MDP model is used in the laboratory to update the

RL agent’s policy, which is sent to the vehicle again through the internet. The whole

process is shown in Fig.6.6.
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6.3.4 RL Agent with Q-Learning as Energy management Strat-

egy

The fundamental algorithm of Q-learning with it’s basic components are delineated

in 6.2.6. This subsection will delineate the steps required to implement Q-learning

for obtaining an global optimal policy for EMS of a electrified powertrain.
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Selection of State and Action

As depicted in the Fig.6.3, the agent reads state information from environment, takes

control decision, and receives immediate consequence of the control decision in the

form of cost or reward. In an EMS of an electrified powertrain, energy management

controller is the agent and as a whole powertrain dynamics, vehicle dynamics, and

driving condition represent the environment. The most preliminary and important

phase of Q-learning implementation is selection of state of the environment which

will be read by the agent before making every control decision. For simplicity and

preliminary work, only a two dimensional vector, comprised of SOC of battery and

vehicle’s power demand, is selected as a state of the environment.

Selection of the decision or action variables of the agent depends on the degree-of-

freedom (DOF) of the powertrain. Since the powertrain of Toyota Prius (2010 model
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Figure 6.8: Tentative map of brake specific fuel consumption of the Atkinson
cycle-based ICE used in Toyota Prius III generation.

Table 6.1: Vehicle specification of Toyota Prius in brief

Name of parameter Value (unit) Name of parameter Value (unit)
Vehicle mass 1392 (kg) Vehicle inertia 145.78 (kg −m2)
Wheel radius 0.31725 (m) Final drive ratio 3.268
RL Coeff A 35.53 RL Coeff B 0.327
RL Coeff C 0.0227 Air density 1.2754 (kg/m3)
Height of vehicle 1.75 (m) Width of vehicle 1.48 (m)
Aero drag co-eff 0.325 Front area of vehicle 0.86×height×width

3rd generation P410 transaxle) has two DOF due to two planetary gear-sets as shown

in 6.7, ICE torque and ICE speed are the two variables of the decision vector. The

discretized vector of ICE speed and ICE torque is given in 6.2. The specifications

of the powertrain’s cardinal components are furnished in Tab.6.1. The brake specific

fuel consumption (BSFC) map of an SI-engine with peak torque of 142 N-m and peak

power of 73 kWatt is depicted in Fig.

The same discretized vehicle power demand vector, used to generate states for MCM,
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battery SOC, used in Toyota Prius.

is used here too. Instead of using discretized vector of vehicle’s speed, discretized

vector of battery SOC is used here as the second dimension of state of environment.

Articulation of Immediate Cost table

The next important component of Q-learning implementation is the articulation of

immediate consequence function corresponding to different combinations of state and

action values. Since energy management is a minimization problem, any conse-

quence will be considered as a cost. The immediate cost matrix has a dimension

of 4346× 2472, producing 2472 actions for each of the 4346 states. There is no fixed

rule for articulating an immediate cost matrix, but this articulation plays a vital role

in obtaining the global optimal control policy in real-time EMS. A separate MATLAB

function (Immediate Cost(State, Action)) has been created to calculate the immedi-

ate cost associated with every feasible combination of state and action. The algorithm

used in Immediate Cost(State, Action) is shown in Fig.6.12. If all the column values
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Figure 6.10: Tentative efficiency map of the traction motor used in Toyota Prius’s
electrified powertrain.

corresponding to any row are carrying infinite immediate cost, it implies no feasible

action available for that state.

Simultaneous Q-value Iteration and Policy Iteration

A random Q-matrix is created with the same dimensions as the immediate matrix.

The elements of the Q-matrix represent the Q-value of feasible state-action combi-

nations. The Q-values are updated during sampling through collected drive cycles

and generated drive cycles with the Q-learning algorithm. This subsection briefly

corroborates how the matrix with random Q-values transforms into a matrix with

near-global optimal Q-values. The Q-learning algorithm approaches the near-global

optimal Q-value of a specific state-action combination as the RL agent interacts more

and more with that state-action combination during the drive cycle. Hence, the RL

agent is sampled through the collected and generated drive cycles multiple times so

that each state-action combination can have multiple interactions with the RL algo-

rithm. Ideally, 10000-50000 interactions are required for perfect convergence to global
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optimal Q-value for any state-action combination.

Since the goal is to have a near-global optimal control policy, Q-learning should be

competent to culminate at the near-global optimal policy through the policy itera-

tion technique. Q-learning technique leverages its intrinsic property of simultaneous

Q-value iteration and policy iteration to achieve near-global optimal policy. The al-

gorithm used for simultaneous iteration is shown in Fig.6.13,6.14. There are two key

aspects of this implementation of Q-learning. First, the RL agent chooses a feasible

action at any state by performing the following equation

a∗(t) = arg min
a(t)

[
Qk(st, at)

]
(6.3.1)

with a probability of 95% and chooses a feasible action arbitrarily with a probability of

5%. This balances between exploitation-exploration inside of the policy iteration pro-

cess. Second, the responsibility of completing every drive cycle with charge sustaining

criteria is solely on the RL agent. If the battery depletes below 10% or recharged
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else  %(Batt. power >Max. Batt. disch. power)
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% be satisfied fullyimmediate cost = SOC cost + BSFC + penalty
end

Else  %Pow_dem > (Max. ICE power + Max. Battery power)

if   ∆SOC = real number 

if   SOC+∆SOC < 0.35 
immediate cost = β*(next SOC−0.35)^2*10000 + BSFC + Penalty

else if   SOC+∆SOC > 0.75 
immediate cost = β*(next SOC−0.75)^2*10000 + BSFC + Penalty 

else 
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end
else 

immediate cost =  ∞

% power demand  
%will never be satisfied fully for such state

end
End

Figure 6.12: Algorithm used to calculate immediate cost for every combination of
state and action.

beyond 90%, the RL will be considered unsuccessful in completing the drive cycle.

6.4 Performance of Energy Management System

with Q-Learning based RL Agent

The Q-learning-based RL agent’s first objective is to complete every drive cycle based

solely on the RL algorithm, and the second objective will be to complete every drive
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Table 6.2: Discretized values of Vehicle’s Power Demand, Battery SOC, ICE
Torque, and ICE Speed

Pow1 Pow2 Pow3 ... Pow33 Pow34 ... Pow69 Pow70 ... Pow106

−52020 −30470 −25040 ... −1.667 300 ... 18400 19211 ... 123460

SOC1 SOC2 SOC3 ... SOC15 SOC16 ... SOC28 SOC29 ... SOC41

0.10 0.12 0.14 ... 0.38 0.40 ... 0.64 0.66 ... 0.90

State1 State2 State3 ... St1327 St1328 ... St2816 St2817 ... state4346

-52020,
0.10

-52020,
0.12

-52020,
0.14

... -1.667,
0.38

-1.667,
0.40

... 18400,
0.64

18400,
0.66

... 123460,
0.90

ICEτ
1 ICEτ

2 ICEτ
3 ... ICEτ

15 ICEτ
16 ... ICEτ

25 ICEτ
26 ... ICEτ

30

0 5 10 ... 70 75 ... 120 125 ... 142

ICEω
1 ICEω

2 ICEω
3 ... ICEω

30 ICEω
31 ... ICEω

65 ICEω
66 ... ICEω

92

0 1000 1050 ... 2400 2450 ... 4150 4200 ... 5500

Action1 Action2 Action3 ... Ac1318 Ac1319 ... Ac2273 Ac2274 ... Ac2472

0, 0 5, 1000 5, 1050 ... 70,
2400

70,
2450

... 120,
4150

120,
4200

... 142, 5500

cycle with charge sustenance. Both of these primary objectives show a heavy reliance

on the choice of “Immediate cost” corresponding to every feasible combination of

state and action. As shown in Fig.6.15, cycle#1 and cycle#2 show improvement

proportional to increase in training cycle. In both cycles, the RL-based agent can

complete the full cycle after approximately 500 training iterations. However, the RL

cannot always complete the full drive cycle even after 500 training iterations. This

nature can be justified with the ε− greedy control selection policy.

Moreover, for the perfect convergence of Q-values, more and more training iteration

is required. The trend of final SOC proves that the Q-learning-based RL agent can

maintain charge sustenance, and it reiterates the heavy reliance on the choice of

“Immediate cost”. 35% SOC is intended as the final SOC in the “Immediate cost”

formulation. The Q-learning-based RL agent can converge within the range of 40% to

35% after 800 training iteration. Fig.6.16 depicts the SOC profiles obtained from 11
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for i=1:max_Iteration

for jj=1:1:number of drive cycles

SOC_cs = SOC_initial;   *cs = current state, *ns = next state
Pow_dem_cs = obtained from 1st time-step of drive cycle data; 

*Power_dem= f(vel,accel,grade)

for t=1:1:length of each of the drive cycles

index_power = knnsearch(state_power_index',pow_dem_cs);
index_SOC = knnsearch(state_SOC_index',SOC_cs);

*knnsearch() is the function used for nearest-neighbor

cs = (indx_SOC-1)*length(state_power_index)+indx_power;

Using Battery properties, calculate battery resistance, OCV,
, max. dischar power, and max. regen power@ current SOC

Finding most probable current state

Finding an action for the current state: 
policy iteration is inherent to this finding process 

temp = rand(1);

if temp < 0.1 % implementing -greedy policy
n_actions = find(q(cs,:)<50000);

action_cs = n_actions(randi([1 length(n_actions)],1,1));
else

action_cs = n_actions(randi([1 length(n_actions)],1,1));
n_actions = find(q(cs,:)== min(q(cs,:)));

end
eng_pow = action{action_cs}(3);

continued.....

Figure 6.13: Part.1: RL algorithm for simultaneous policy iteration and Q-value
iteration.

arbitrary simulations for one of the real-world drive cycles with the trained Q-learning-

based RL agent. The ICE speed and ICE torque profile for the first simulation is

furnished in Fig.6.17 and Fig.6.18. One of the best performing RL agent’s simulation

after 800th training iteration is juxtaposed with DP-based simulation for performance

evaluation of the trained agent. The result of the comparative study is depicted in

Fig.6.19.
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ElecPow = state_power_index(indx_power)-eng_pow;

Using ElecPow, battery resistance, OCV, and other battery
properties, SOC is calculated

SOC_ns = SOC_cs - SOC;

Pow_dem_ns = obtained from (t+1) time of drive cycle data; 

indx_power = knnsearch(state_power_index',pow_dem_ns);

indx_SOC = knnsearch(state_SOC_index',SOC_ns);

ns = (indx_SOC-1)*length(state_power_index)+indx_power;
Finding most probable next state

Finding an action for the next state: Q-value iteration and
policy iteration is inherent to this finding process 

temp = rand(1);

if temp < 0.1 % implementing -greedy policy

min_q = q(ns,n_actions(randi([1 length(n_actions)],1,1)));
else

min_q = 5000;

end

q(cs,action_cs)=q(cs,action_cs)+

for j=1:length(n_actions)

n_actions = find(q(ns,:)<50000);

min_q = min(min_q,q(ns,n_actions(j)));
end

% Update q-values as per Bellman's equation

+alpha*(immed_cost(cs,action_cs)+

+gamma*min_q-q(cs,action_cs));

pow_dem_cs = pow_dem_ns;   SOC_cs = SOC_ns; 

end
end

Figure 6.14: Part.2: RL algorithm for simultaneous policy iteration and Q-value
iteration.

6.5 summary

It is shown in this chapter that RL can be employed to achieve a near-global opti-

mal decision making policy for an EMS in real-world driving scenarios. Q-learning

implementation steps are streamlined, starting from state variables, action variables,

articulation of immediate consequence function up to systematic update Q-values.

The powertrain architecture does not affect the choice of state variables. Only two
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Figure 6.15: Result of Q-learning: Ability of full cycle completion with charge
sustenance.
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Figure 6.16: Trend of SOC profiles obtained from different simulations of a
Q-learning-based RL agent trained with 800 iterations.

state variables are chosen for this chapter, and this number can be increased for

a more accurate description of driving situations. However, the increased number

of state variables increases computational complexity and retards the convergence

rate of Q-learning. Such increase of computational complexity indicates the probable

scope of a trade-off analysis between desired accuracy and computational complex-

ity in the future. Since the powertrain architecture affects only the choice of action
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Figure 6.17: Time-series of engine speed obtained from a Q-learning-based RL agent
trained with 800 iterations.
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Figure 6.18: Time-series of engine torque obtained from a Q-learning-based RL
agent trained with 800 iterations.

states, Q-learning can be pretty easily implemented to another powertrain architec-

ture with minor modifications. The Q-learning has achieved 88% of the performance

that would have been achieved by DP-based control policy.

Moreover, such performance is achieved through limited interaction and without pre-

knowledge of the drive cycle. However, it is recommended to compare Q-learning and

local optimal control policies to corroborate the superiority of the former over the

latter. In conclusion, it can be said that Q-learning has a prospectus of becoming a

near-global control policy for EMSs of the electrified powertrain in real-world driving

scenarios.
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Chapter 7

Application of Asynchronous

Actor-Critic Agent in Real-time

Energy Management of a

Multi-mode Electrified Powertrain
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7.1 Introduction

The previous chapter established a sound conceptual foundation of RL making a

smooth avenue for advanced reinforcement learning algorithm and their implementa-

tions in solving the energy management problem. A framework is presented in this

chapter for implementing a state-of-the-art reinforcement learning agent, i.e., asyn-

chronous advantage actor-critic (A3C) agent, as an energy management controller of a

multi-mode electrified powertrain. The framework emulates the real-time interaction

between the agent and the electrified powertrain and shows how efficient the agent

can yield near-global optimal control for unfamiliar real-world driving scenarios. This

chapter elucidates the asynchronous actor-critic agent’s effectiveness as a prospective

real-time and real-world controller for a multi-mode electrified powertrain’s energy

management system. This chapter posits the key novel contribution of this article.

The real-time and real-world interaction between an energy management controller

and continuously changing unfamiliar driving situations has been posing a critical

challenge to the scholars who are working incessantly on finding an apposite control

strategy yielding near-global optimal performance for unfamiliar drive cycles at the

first interaction itself. The online simulation presented in this chapter corroborates

that near-global optimal control is achievable in real-world driving scenarios if an

asynchronous actor-critic agent is employed as the energy management controller in

onboard vehicular control unit with a multi-core CPU.

A hybrid electric vehicle deployed with an intelligent energy management system can

collect and store current driving data on-the-fly and generate “N” numbers of random

drive cycles with the Markov chain model using the collected data. The agent can

be trained with a simple multi-core CPU leveraging the agent’s asynchronous and
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Figure 7.1: Main contribution of this dissertation: Application of asynchronous
actor-critic in yielding near-global optimal control in real-world driving scenario.

parallel training capability. After training with 50 randomly generated drive cycles

for 20 iterations, the agent is tested on another randomly generated drive cycle and

a standard federal drive cycle to validate the agent’s competency in unknown driving

situations. The asynchronous and parallel training expedites the training process with

quicker convergence. Although the data is not collected on-the-fly in the presented

work, every other thing, including random generation of drive cycles from previously

collected driving data, parallel training of the agent, and trained agent’s testing, are
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done online. The results obtained from the simulations corroborate the superiority

of the agent over optimal equivalent consumption minimization strategy in terms of

fuel-economy when applied on a random real-world drive cycle.

7.1.1 Highlights

� Solving energy management problem of a multi-mode hybrid electric vehicle.

� An asynchronous actor-critic agent is employed to solve energy management

problem.

� Online training of the reinforcement learning agent with real-world drive cycles.

� The Reinforcement learning agent is tested on random drive cycles after train-

ing.

� Both training and testing are executed in model-in-the-loop simulation.

� Performance of the trained agent is compared with online optimal ECMS con-

trols.

7.2 Inspiration for Online Simulation of Asynchronous

Advantage Actor-Critic Agent

RL was first employed in solving the energy management problem of a parallel hy-

brid electric vehicle in [150]. An earlier article by the authors of this brief [151] and a

handful of literature presented MATLAB®-based implementation of RL-based EMS
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for an ePT [27,152–160]. In [27], the authors presented the first use of RL in articu-

lating the control strategy for the EMS with an ADVISOR-based vehicle simulation

model. In [153], the authors have included an extra cost term in the immediate cost

structure to procrastinate battery health degradation.

In [152], the authors have employed an ANN to replace the Q-table, and they have

proposed the ANN as a wield to eliminate the “curse of dimensionality” that would

have engendered from fine quantization in the Q-table approach. ANN helps eliminate

the error from the approximation of continuous state and action with quantized states

and actions [156]. The RL’s convergence rate improves, and the computational load

reduces when an ANN is replaced with the DNN [157]. In [155], the authors have

introduced the use of an ANN-based function approximator for articulating an actor-

critic-based RL agent functioning as the EMS of an ePT. In both [158] and [159], the

authors have architected the blueprint of real-time RL implementation using an online

update of the TPM. In [159], the authors have proposed a framework for accelerated

Q-learning in real-time with pre-calculated optimal control stored in look-up table

(LUT)s. In [161], the authors have presented a sensitivity analysis on Q-learning

parameters such as state and action discretization, state selection, and exploration-

exploitation ratio. In [162], the authors have shown that using more state variables

with coarse quantization is a more pragmatic way of describing the driving situations.

Despite various irrefutable research contributions, all of these aforementioned liter-

ature lacks in one aspect, i.e., the online simulation or real-time emulation of the

agent-environment interaction. Although the mathematical foundation remains the

same for offline (MATLAB®-based) and online (Simulink ®-based MIL) simulation,

the implementation steps are not the same. The RL controller’s framework should
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Driver

Figure 7.2: Schematic diagram of forward-approach and backward-approach
simulation model.

be compatible with the MIL simulation platform’s real-time capable vehicle plant

model. Needless to say that MATLAB ®-based offline simulation cannot emulate

the real-world interaction between a controller and the vehicle. In [163], the au-

thors have presented a MIL simulation platform showing the interaction between the

forward-approach simulation model (FSM) of a HEV and a Q-learning-based EMS

for a pre-known drive cycle. Since Q-learning suffers from approximation error re-

sulting from state and action variable’s discretization, it can handle either coarse

discretization with more state variables or a fine discretization with fewer state vari-

ables. Undeniably, there is a requirement for a MIL simulation platform to emulate

real-time interaction between an ANN-based RL controller and an FSM of an HEV.
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7.3 Contribution

Looking at the necessity for an ANN-based application of RL agent as an online

EMS for an ePT, the authors of this brief will present a DRL framework with an

asynchronous actor-critic agent as an EMS controller for an ePT. Both the DRL

agent and vehicle plant model are modeled in the Simulink ® environment so that

the real-time interaction between a DRL-based EMS and a physical HEV can be

emulated.

Moreover, the A3C agent is applied for the first time in literature, to the best of the

author’s knowledge, for the energy management system of a multi-mode electrified

powertrain. The DRL framework needs to be meticulously developed to consider

additional feasibility constraints confronted by the multi-mode ePT.

The blueprint of yielding near-global optimal result in an unfamiliar driving situa-

tion through online training is testified if a simple multi-core CPU accompanies the

onboard data collection system.

The DRL agent’s performance will be juxtaposed to the performance obtained through

a well accredited online control strategy, i.e., optimal ECMS. The DRL-based EMS

will be accompanied by a low-frequency motor-torque-compensation control during

all-electric to hybrid-electric mode-shift events and vice-versa.
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7.4 Requirement and Fundamentals of Functional

Approximation

Since the RL agent does not have prior knowledge of future states, it updates the

policy from π to π
′

with an updated Q-value estimate corresponding to all state-

action pairs. The prerequisite to such a policy-update process is quantifying the

n-dimensional state-space and m-dimensional action-space into a N and M finite

elements, respectively, and storage of all quantized state-action pairs’ Q-value (Q :

N ×M 7→ R) in a repository, known as Q-table. However, the Q-table size grows

exponentially, engendering “curse of dimensionality” as the discretization becomes

more refined than before. The obvious and convenient way to circumvent such a

problem is using a functional approximator, also known as compact parametric rep-

resentation [164] (Q̃(s, a;ψ) ≈ Q∗(s, a)), where Q∗(.) is the optimal value function,

and ψ is a parameter vector ψ ∈ Rk [165]. Quintessentially, RL algorithm such as

temporal-difference learning is used to continuously update the ψ vector’s values to

minimize the error between Q̃(.;ψ) and Q∗(.).

7.4.1 Linear and Non-Linear Functional Approximation

One crucial factor in choosing the type of functional approximation is its differ-

entiability, which is necessary for tracking its convergence and applicability of TD

learning [25]. Linear combination of the feature vector and ANN are considered as

well-known apposite functional approximator due to their conformity with the re-

quirements mentioned above. Linear approximation of action-value and state-value

functions can be expressed as a linear combination of a fixed set of feature functions
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as follows [164]:

Q̃(s, a;ψ) =
Λ∑
λ=1

ψ(λ)Φλ(s, a)

= {ψ1, · · · , ψΛ}T
[
φ1(s, a), · · · , φΛ(s, a)

] (7.4.1)

Ṽ (s;ψ) =
Λ∑
λ=1

ψ(λ)Φλ(s)

= {ψ1, ψ2, · · · , ψΛ}T
[
φ1(s), · · · , φΛ(s)

] (7.4.2)

ψ ∈ RΛ and Φ ∈ RΛ are parameter and feature-function vectors, respectively. Both

of them have much less dimension than the gargantuan dimension of finely quan-

tized state-space (S ∈ Rn) or even the infinite dimension of continuous state-space

(Scont. ∈ R∞). Hence, the linear approximation can be implied as a mapping from

low-dimensional parameter space to high-dimensional state-space RΛ 7→ Rn. Feature

vectors Φ(s, a) and Φ(s) contain most of the plausible functions representing salient

features associated with an action-state combination and a state, respectively.

The feature functions of either Φ(s, a) or Φ(s) must be judiciously handpicked with

expert knowledge, and that is the biggest challenge of using linear approximators for

value functions in a complex decision-making process. Nonlinear approximator such

as multi-layer perceptron (ANN) is a dexterous wield to circumvent the challenge

mentioned above [164,166]. The architecture of a generalized nonlinear approximator

is as follows:

Q̃(s, a;ψ) = g(ψ(λ)Φλ(s, a)) (7.4.3)
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, where g(.) is a nonlinear function representing the architecture of the approximator.

Craftiness must be attributed to the tailoring of multi-layer perceptron to stifle some

of the malicious effects engendered due to the complexity of ANN and amplify the ap-

proximation accuracy [166]. Essentially, an ANN-based approximator’s performance

is governed by a tactical compromise between network complexity and aspiration of

approximation accuracy [167].

7.4.2 Learning of Approximator Parameters

The core concept of this entire function approximation based RL framework lies in the

learning algorithm employed for updating the parameter vector ψ ∈ RΛ. Undeniably,

TD learning would be the most appropriate algorithm to update the parameter vector.

Unsupervised learning, which is also known as model-free learning or prediction-

based learning, is the cornerstone for the future of AI. TD learning has proclaimed

its ubiquitous presence in almost all unsupervised learning algorithms because of its

most generalized structure. Supervised learning is applied when the targets of the

function approximation are fixed. In contrast, unsupervised learning is indispensable

when there is no explicit value of the approximator’s targets available or vacillating

targets.

The predicted value function Ṽ (s;ψ) of any non-terminal state St is compared with

the predicted value function of the subsequent state St+1 instead of comparing it

with the optimal value function V ∗(St) of St due to lack of explicit knowledge about

V ∗(St).

δt = rt + γṼ (St+1;ψ)− Ṽ (St;ψ) (7.4.4)

δt quantifies the TD error between two consecutive predictions. In simpler words,
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TD learning is the process of updating a guess based on another guess. Leveraging

this fact, TD learning does not need to wait until the outcome of the episodic se-

quential decision-making process to update any non-terminal state’s value function.

The TD learning is nothing but an articulation of a rule for updating the parameter

vector so that the approximator can predict every state’s value function with utmost

accuracy. Quintessentially, the parameter vector of the approximator is updated with

a stochastic gradient− descent(SGD) method [25]:

ψt+1 = ψt −
1

2
ϕ∇
[
rt + γṼ (St+1;ψt)− Ṽ (St;ψt)

]2

= ψt + ϕ
[
rt + γṼ (St+1;ψt)− Ṽ (St;ψt)

]
∇Ṽ (St;ψt)

= ψt + ϕδt∇Ṽ (St;ψt)

(7.4.5)

, where ϕ quantifies a learning rate and ∇f(ψ) refers to a vector of partial derivatives

with respect to the weight vector as follows:

∇f(ψ)
.
=

(
∂f(ψ)

∂ψ1

,
∂f(ψ)

∂ψ2

, · · · , ∂f(ψ)

∂ψΛ

)T

(7.4.6)

RL can be broadly categorized into three groups, i.e., actor-based, critic-based, and

actor-critic-based algorithms [168]. Actor-based algorithms focus only on policy iter-

ation to optimize the performance of the agent (controller). In contrast, critic-based

algorithms focus explicitly on the iteration of value function to optimize the agent

and implicitly focus on selecting action through either “Greedy-search” or “ε-Greedy-

search” method. Actor-critic-based algorithms are developed by amalgamating the

advantages of both actor and critic. Actor-critic explicitly employs two separate
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Figure 7.3: Schematic diagram of actor-critic based agent with nonlinear function
approximation.

networks to optimize the policy function and value function separately. The Actor-

network of the actor-critic agent updates the policy function, and the critic-network

evaluates the goodness of the advocated policy [168].
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7.5 Training of Deep Reinforcement Learning Agents

The success of function approximation highly relies on the states’ sampling process

and on the process of updating the parameters [25]. In [165], the authors have re-

iterated that the states should be sampled strictly with steady-state probabilities of

Markovian dynamics during the functional approximator’s training epochs. In the

absence of steady-state probabilities, the only remaining option is to train the ap-

proximator with online sampling [25].

In [165], the authors not only have expressed their skepticism on the stability of

the well-accredited RL algorithm, i.e., TD(0), when used for updating the parame-

ters of an ANN-based nonlinear functional approximator but even insinuated toward

conceiving divergence in both value-function approximations and parameters of the

approximator. The prime reasons for such instability and divergence can be enumer-

ated as follows:

� The sampled states in a Markov decision process are highly correlated to each

other, i.e., a transition between a present state and its immediate predecessor

state cannot be modeled separately. The transition dynamics between two

consecutive states are highly correlated with all the previous transitions [26,169].

� Quintessentially, an update of the parameter vector focused on reducing the

difference between optimal and approximated value function corresponding to

a specific region of state-space can have an adverse effect on gap reduction

corresponding to other state-space regions [170].
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7.5.1 Experience Replay

A promising solution to the instability mentioned above and divergence had already

been prescribed long before in 1992 by the authors of [171]. They advocated uti-

lizing the past experiences judiciously to update the parameter vector of functional

approximation. The underlying concept of experience reply, as introduced in [171],

is buttressed with two phenomena, i.e., the storage of past experiences followed by

presenting those stored experiences to the agent at every occasion whenever it would

like to perform the value iteration through a learning algorithm. An experience is

defined as a quadruple (〈St, At, rt, At+1〉), i.e., state, action, immediate consequence,

and the next state. In [170], the authors have proposed a method called Neural Fit-

ted Q Iteration, leveraging the concept of experience reply for updating the parameter

vector of a multi-layer perceptron. There is a clear guideline, elucidated in [172], for

deciding which part of the agent’s past experiences should be catered to during the

current update. It is elucidated that the RL agent should be catered with only the

off-policy past experiences.

Another crucial aspect, known as mini-batches, which might not be indispensable for

reducing the malicious effect of highly correlated states on stability, but still plays a

cardinal role in expediting the convergence of an ANN-based functional approxima-

tor. In [26, 169], the authors have introduced the method of sampling mini-batches

randomly from the stored experience reply instead of using the entire experience reply

while updating the parameter vector.
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7.5.2 Asynchronous Training of Advantage Actor-Critic Agent

Although experience reply has significantly solved the divergence problem and also

circumvented the issue of correlated states, its implementation instigates another con-

straint, i.e., only off-policy training algorithms are suitable while using experience re-

ply. On-policy sampling cannot be used to update the parameter vector. Furthermore,

standard multi-core processing units might not suffice the memory requirement to fa-

cilitate experience reply, and hence advanced hardware like graphical processing unit

(GPU) should be employed to perform the training of RL agent. In [173], the authors

have brought a paradigm shift in reinforcement learning by introducing a disruptive

concept called asynchronous training. Two cardinal virtues of asynchronous training,

as elucidated in [173], are as follows:

� Asynchronous and simultaneous training of agents with multiple replicates of

the environment, in which different parts of the state-space can mitigate the

adverse effect of highly-correlated states.

� Actors can be equipped with distinct exploration policies, which can establish

complete stabilization in the sampled states.

With these two properties mentioned above, the asynchronous method can enable an

agent’s on-policy learning, eliminating the required storage space for experience reply.

Hence, specialized hardware is no longer required. Instead, a multi-core CPU can

facilitate asynchronous training. Given these optimized properties, the A3C agent

was applied as a control strategy for the EMS of an ePT for real-time emulation.

Before delving further into the working principle of the A3C agent, it might be useful

to consolidate all stages of this evolution from an ANN-based RL-agent to an A3C
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Figure 7.4: Evolution of ANN-based function approximator as RL agent.

agent. The process is depicted in Fig.7.4. As depicted in Fig.7.3, the asynchronous

actor-critic algorithm starts with a random parameter vector for both actor (ψπ) and

critic (ψν). Since there are multiple replicates of the environment, it is usual that

the algorithm shown in Fig.7.3 is applicable for all replicates of the environment.

According to article [173], asynchronous actor-critic samples “N” number of state−

action−next state− reward interactions before each update of ψπ and ψν . Suppose,

the sampling starts at tths time-step and continues up to (ts + N)th time-step. At
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each time-step within this sampling period, the actor-critic agent receives the state

information (st) from the driving mission. The critic evaluates the current state’s

value function, and the actor decides an apposite action (at) for the current state

based on a ε−greedy policy. In this aspect, it is worth mentioning that each replicate

of the environment is equipped with a distinct ε − greedy policy. As an immediate

consequence of the action on the environment, i.e., the electrified powertrain, the

agent receives a reward (rt), and the environment makes a transition to a different

state (st+1) at the next time-step. Both rt and st+1 are perceived by the agent in the

next time-step. The tuple comprised of “state − action − next state − reward” is

stored temporarily for the period mentioned above.

The estimated return after (ts + N)th time-step is zero if the (ts + N)th time-step is

the end of the episode. The estimated return after (ts + N)th time-step is expressed

as Q(sts+N , ats+N) if that is a non-terminal time-step. Now, it is time to update the

parameter vectors ψπ and ψν . Before the “N” steps, estimated return from state sts

(E(Rts)) was V (sts ;ψν). But, after “N” steps of sampling, E(Rts) can be re-written

in the following way:

E(Rts) = rts + γrts+1 + ..+ γN−1rts+N−1 + V (sts+N ;ψν)

=
N∑
k=1

γk−1rts+k−1 + V (sts+N ;ψν)
(7.5.1)

Similarly, E(Rts+1) for state sts+1 can be expressed before and after “N” samplings
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with Eq.7.5.2a and Eq.7.5.2b, respectively.

E(Rts+1)before = V (sts+1;ψν) (7.5.2a)

E(Rts+1)after =
N∑
k=2

γk−2rts+k−1 + V (sts+N ;ψν) (7.5.2b)

Similarly, E(Rts+2) for state sts+2 can be expressed before and after “N” samplings

with Eq.7.5.3a and Eq.7.5.3b, respectively.

E(Rts+2)before = V (sts+2;ψν) (7.5.3a)

E(Rts+2)after =
N∑
k=3

γk−3rts+k−1 + V (sts+N ;ψν) (7.5.3b)

And similarly, E(Rts+N−1) for state sts+N−1 can be expressed before and after “N”

samplings with Eq.7.5.4a and Eq.7.5.4b, respectively.

E(Rts+N−1)before = V (sts+N−1;ψν) (7.5.4a)

E(Rts+N−1)after = rts+N−1 + V (sts+N ;ψν) (7.5.4b)

The intent of expressing Eq.7.5.1 to Eq.7.5.4b is to show that the value functions

corresponding to sts , sts+1, sts+2,.., sts+N−2, and sts+N−1 get an N -step, (N − 1)-step,

(N−2)-step,.., two-step, and one-step update, respectively after a “N”-step sampling

period.

The gradient of ψπ is calculated by utilizing the estimated advantage of applying

action at at the state st [174]. The advantage is computed by subtracting the value

function of state st (V (st;ψν)) from the expected return (E(Rt)) obtained through

187



Ph.D. Thesis – Atriya Biswas McMaster University – ME

applying an action at at the state st, as shown in Eq.7.5.5.

A(at, st;ψπ) = Q(at, st)− V (st;ψν)

≈ E(Rt)− V (st;ψν)

(7.5.5)

Now, the gradient of advantage function, as given by Eq.7.5.6

∇(advantage) = (∇ψπ ln π(at|st;ψπ)A(at, st;ψπ)) (7.5.6)

, is employed to update the parameter vector of actor-network (ψπ). The gradient

of (E(Rt) − V (st;ψν)
2 is used to update the parameter vector of critic-network ψν .

The gradients obtained from all time-steps within an N-step sampling period are

garnered and summed to perform one single update on both ψπ and ψν , as shown in

Eq. (7.5.7a) and (7.5.7b).

∂ψ̂π =
N∑
k=1

(∇ψπ ln π(ak|sk;ψπ)A(ak, sk;ψπ)) (7.5.7a)

∂ψ̂ν =
N∑
k=1

∂(E(Rk)− V (sk;ψν)
2

∂ψν
(7.5.7b)

7.6 Multi-mode Powertrain Modeling for RL Ap-

plication

A3C’s application in solving the energy management problem for an ePT has been

witnessed sparsely across the literature. While a handful of authors have presented

RL’s application in an electrified powertrain with parallel architecture [150,152,153,
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Figure 7.5: Schematic diagram of three distinct modes facilitated by the eVT
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156], a few authors have proffered its application in series architecture [159, 163]

and power-split hybrid architecture [157, 175]. However, to the best of the authors’

knowledge, there is no published work where RL is applied to a multi-mode ePT. The

subsequent sections will present the justification behind taking a different approach

for implementing RL for a multi-mode ePT.

The midsize 2575 kg representative passenger vehicle with a multi-mode e-VT [42]

is selected for this study. The powertrain’s cardinal components with multi-mode

e-VT are an ICE, two EMGs, two PG-sets, and an HVB pack, as shown in Fig.7.6.

The only difference between the ePT shown in Fig.7.6 and the powertrain shown in

chapter 6 is the presence of an extra all-electric mode with both traction motor and

generator propelling the vehicle. This multi-mode electrified powertrain is also used

in chapter 4 and chapter 5 for articulating local optimization-based EMS control.
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7.6.1 Motor Torque Compensation control during Mode-shifts

The generator starts applying positive torque to crank the ICE as soon as the EMS

controller commands for all-electric to hybrid-electric mode-shift. All-electric to

hybrid-electric mode-shift is highly susceptible to engine ripple torque due to low-

speed operation of ICE. In [176], the authors have prescribed a simplified versions

of dynamic coordinated control strategy (DCCS) to cope up with the adverse ef-

fect of engine ripple torque on transmission output, predominantly during all-electric

to hybrid-electric mode-shift in power-split architecture. In this article, the high-

frequency engine ripple torque is replaced by low-frequency mean-value engine resis-

tance torque, as shown in Fig.4.11.c.

During cranking, the generator takes the responsibility of providing enough positive

torque to crank the ICE, and traction motor takes the rest of the responsibility
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in terms of sufficing torque demand at the transmission output. The expressions

of coordinated torque for generator and traction motor during all-electric modes to

hybrid-electric mode are given in Eq.7.6.1 and Eq.7.6.2, respectively.

τgen|coordinated =

{
Jiceeq

(
θ̇icerqst − θ̇iceplant

)
− τfricice

}
(β1 + 1)

+ Jgeneq θ̈gen (7.6.1)

τmot|coordinated =
β1

{
τfricice − Jiceeq

(
θ̇icerqst − θ̇iceplant

)}
β2(β1 + 1)

+ Jmoteq θ̈mot +
τout
β2

(7.6.2)

The engine stopping phase during hybrid-electric to all-electric mode-shift is equally

victimized to the effect of engine resistance torque due to the ICE’s operation below

idle speed [177]. The expressions for compensation torque of generator and traction

motor remain the same as Eq.7.6.1 and Eq.7.6.2. Next chapter will delineate the

detailed application of coordinated control required during mode-shift events in a

multi-mode ePT.

7.7 Online Implementation of Asynchronous Ad-

vantage Actor-Critic Agent as EMS Controller

There are multiple steps associated with the online implementation of an asyn-

chronous actor-critic agent as a near-optimal EMS controller. All the steps are delin-

eated as follows:
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7.7.1 Forward Simulation Model of Vehicle Plant

RL is a model-free algorithm, and it is noteworthy to mention that the model does

not refer to the vehicle plant model. Instead, it refers to the model of Markov decision

problem (MDP). The model of an MDP is constituted with two elements, i.e., the

probability of transitioning from one particular state to another state (state transition

probability matrix) and an immediate consequence function (either reward or cost).

Immediate consequence function is indispensable to both model-based and model-free

RL algorithms. Model-free RL algorithms are the only wield for solving MDPs if the

state transition probability matrix is not available. Needless to say that the state tran-

sition probability matrix cannot be computed unless the RL agent knows the entire

drive cycle apriori. Therefore, model-free RL algorithms such as Q-learning, SARSA,

and Actor-Critic become apposite when future driving situations are unknown before

real-time driving. In a nutshell, a model-free RL algorithm in an HEV only needs to

know the immediate consequences such as instantaneous fuel consumption, instanta-

neous tailpipe emission, and battery SOC from the real HEV to optimize its EMS

strategy. Nevertheless, neither the immediate consequences mentioned above can be

obtained from a real HEV in a MIL simulation, nor an RL-based algorithm will be

used as an EMS strategy of a real HEV in the development phase of the RL agent.

Therefore, a MIL simulation must have an FSM-based vehicle plant, as shown in

Fig.7.2, for emulating real-time immediate consequence functions mentioned above.

7.7.2 Immediate Consequence Function

The articulation of the immediate consequence function plays a significant role in

the convergence of the A3C agent. Since HEV is the application vehicle in this
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brief, only fuel consumption and strict charge sustenance are focused at the end of

the drive cycle. Only fuel consumption minimization is chosen as the EMS’s prime

objective to retain the simplicity of the A3C agent-based EMS at this nascent stage

of development. Hence, the immediate consequence function for the A3C agent is as

follows:

(Immediate cost)|∆t = C1 ∗ (MFR)fuel ∗∆t+

C2 ∗ (SOCref − SOCcurr.)2

(7.7.1)

There is no thumb rule available for deducing these two constants (C1 and C2) since

their value depends on the overall simulation model. Their values are quite important

in achieving convergence of the A3C agent. For this analysis, their values are obtained

by the trial-and-error method. C1 is considered to be zero, and C2 is considered to

be one in this analysis. Both the objectives, i.e., fuel consumption minimization and

charge sustainability, can be satisfied with just the second term in the cost function.

Although the global optimality of the solution is not guaranteed even if it achieves

charge sustainability, the solution will be very near to the global optimal as per

Pontryagin’s minimization problem if it can achieve charge sustenance. There is a

scope of applying any optimization technique such as GA to find out optimum values

for these two constants.

7.7.3 Implementation of A3C Agent in Simulink®

This article’s center of attraction is the emulation of online interaction between A3C

agent and the vehicle plant model in Simulink®. Similar to the vehicle plant model,

the A3C agent is developed solely in the Simulink environment®.
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Selection of State and Action Variables

The first step of the agent’s design procedure is the selection of state and action

variables. An A3C agent can receive only a continuous state variable from the envi-

ronment but can emit an action variable in either continuous or discrete space. In this

article, five state variables, i.e., SOC of the HVB, vehicle’s speed, vehicle’s accelera-

tion, drive’s requested power, and road grade information, have been used. Tab.7.1

will enumerate every state variable’s lower and upper boundaries. The three state

variables except the road grade and battery SOC can be extracted from the vehicle’s

speed trajectory. In the current endeavor, only these five states are employed to rep-

resent the vehicle’s driving state. However, the driving state can be more distinctly

identified if more state variables are used. More state variables such as ambient

temperature, battery temperature, wind speed, traffic information, approximate re-

maining distance from the destination can be included in the state vector as per the

required fidelity and objectives of the EMS. Vehicle’s speed and battery SOC provide

reasonable accurate information about the driving to an EMS with the objective just

fuel consumption minimization and charge sustainability of the battery. State vari-

ables such as ambient temperature and battery temperature have been proven to be

useful information for an EMS with the additional objective of battery life prolonga-

tion. The increased number of state variables does not complicate the optimization

of the DNN, since DNN’s convergence is not deteriorated by the additional state vari-

ables. However, this statement is only valid if the architecture of the DNN is retained

same as previous.

As far as the selection of action variables are concerned, here it will be elucidated

why articulation of an RL agent-based EMS is unique for the multi-mode ePT. As
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mentioned earlier, the multi-mode e-VT selected for this article facilitates three dis-

tinct modes. Any given EMS control strategy for multi-mode ePT should decide the

electrified mode followed by the control action(s) based on the DOF of the decided

mode. As mentioned earlier, single-motor EV and hybrid-electric modes share the

same kinematic relationships among all the prime-movers, and two-motor EV mode

offers an entirely different kinematic relationship. Single-motor EV does not offer any

DOF, and hence, the drive’s torque demand must be satisfied by traction motor only.

The ICE is not activated, and hence, both speed and torque of ICE are zero in the

single-motor EV mode. Hybrid-electric mode offers two DOFs in the form of ICE

speed and ICE torque. Two-motor EV mode offers one DOF in the form of traction

motor’s torque. Tab.7.2 enumerates the feasible combinations of control variables in

different modes and their constraints.

The RL agent randomly selects the action variables, and the random combination of

the action variables must be kinematically feasible for the randomly selected mode.

There are four control variables considering all the three modes, but all four actions

cannot be simultaneously applied to either of them. Traditionally, two layers of control

are employed in an EMS to tackle this kind of situation with a multi-mode ePT, i.e.,

the outer layer of the control strategy selects the mode with some premeditated rule,

and the inner layer optimizes either power-split or torque-split based on the DOF of

the selected mode. Two separate RL agents can be employed to achieve two layers

of control. However, it will be difficult to achieve convergence with two RL agents,

given the fact that even a single RL agent can pose an ample amount of difficulty in

tuning its hyper-parameters, which will be discussed shortly.
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All the hindrances mentioned above arise for continuous action-space. These hin-

drances can be circumvented using discrete action-space instead of continuous, but

with an extra amount of manual work, i.e., all feasible combinations of four control

variables must be pre-computed and fed to the A3C agent. The feasibility criteria,

elaborated in Tab.7.2, elucidate the rules for screening out feasible combinations of

four action variables.

Tab.7.3 enumerates a handful of random samples of feasible and infeasible combina-

tions of action variables for specific powertrain parameters such as β1 = 2.87 and

β2 = 2.5, and particular output torque τout = 150N − m. Although this approach

seems enticing, it is laden with procrastinated convergence due to the gargantuan

size of the feasible action-space. For example, the number of feasible combinations of

discrete actions can reach approximately up to 2700, even with a coarse discretization

of τice, τmot, ωice,, and Mode. It becomes a strenuous job for the RL agent to obtain

even decent performance with such a gargantuan action-space.

Implementation of RL featured by ECMS

Now, it is the perfect time to prescribe an impressive idea to conflate the concept

of ECMS [15] for multi-mode ePT into the online implementation of an A3C agent.

Observing the A3C agent’s ineptness alone in tackling 4-D action-space in both con-

tinuous and discrete format, especially for multi-mode ePT, it is proposed to buttress

the A3C agent with an ECMS controller, which is competent enough to deal with

a multi-mode ePT. Algo.1 furnishes the pseudo-code for instantaneous optimization-

based ECMS for a multi-mode ePT. ECMS suits quite well for multi-mode EMS
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with a primary focus on fuel consumption minimization and conservation of charge-

sustainability. ECMS strives to achieve these two objectives by activating different

modes throughout the given drive cycle. Its equivalent operating cost governs the

activation of a particular mode (amongst the three feasible modes for this powertrain

configuration) compared to the same of the other two modes at every time-step.

The following equation gives the equivalent cost structure used by ECMS, where ṁfuel

is the mass flow rate of fuel in (gm/sec), LHV is the lower heating value of fuel in

(kJ/gm)

((J)equi.)|U,mode = ṁfuel × (LHV )fuel + λ× Powbatt. (7.7.2)

, λ is the equivalence factor between stored electrical energy in HVB and stored

chemical energy in the fuel, and U represents the set of control actions corresponding

to the particular mode. The set of control actions are delineated in the previous
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Algorithm 3: Multi-mode ECMS

Input : τrqstdrvr(t) & ωrqstdrvr(t) & λ(t)
Output : U(t), where U = {modeoptim.,Ψmodeoptim.}, where
ΨHEV = {τicecmnd , τmotcmnd}T ,
ΨEV 0 = {}, ΨEV 1 = {τmotcmnd}
Initialization :τout = τrqstdrvr , ωout = ωrqstdrvr
for mode = i, i ∈ {HEV,EV 0, EV 1} do

sweep through all feasible combinations of Ψi

for each feasible combinations of Ψi do
compute: ωice, τice, ωgen, τgen, ωmot,
and τmot corresponding to Ψi

compute: ṁfuel (if i == HEV ), Powbatt.
Jequi.i = ṁfuel × (LHV )fuel + λ× Powbatt.

Ψi,optim. = arg minΨi
‖(Jequi.)i‖

modeoptim. = min
(
Jequi.HEV , Jequi.EV 0

, Jequi.EV 1

)
U(t) =

{
modeoptim.,Ψmodeoptim.

}

sub-section.

It has been reiterated on copious occasions in the literature that EF plays a crucial

role in conserving charge-sustainability and optimality of the yielded control from

ECMS. The value of EF (λ) strictly governs the mode selection at any given time-step.

EF’s constant optimal value for the entire drive cycle can be obtained through the

trial-and-error method or iteratively, given that the drive cycle is known in advance.

However, prior knowledge of future driving conditions is not accurately available in

most real-world driving scenarios. Hence, either rule-based control or PID controllers

are employed to meet at least charge-sustenance criteria. However, the proportional,

integral, derivative, and any other gains of the PID controller need manual tuning for

different drive cycles. In this article, the authors propose an A3C agent for regulating

the equivalence factor in real-world driving conditions with a cardinal objective of

yielding near-optimal control in an unprecedented drive cycle, given that the agent is
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Figure 7.8: Deep neural network architecture for actor and critic network.

well acquainted with similar driving situations but not with the same drive cycle. The

A3C agent, in the conflated version of the ECMS controller, decides the value of EF

at each time-step. The equivalence factor emitted from the A3C agent is fed to the

ECMS controller as an input, as shown in Fig.7.7.b. The EF action-space is comprised

of 181 control actions and is quantized into EF ∈ {1.3 : 0.1 : 2.3, , 2.31 : 0.01 : 4}

Articulation of DNN-based A3C Agent in Simulink®

The architectures of both actor and critic networks are depicted in Fig.7.8. Deep

network designer tool from Mathworks®is employed to design both the networks.

As depicted in Fig.7.8.a, the actor is articulated with an input layer (5 input ports),

first hidden layer with “Relu” activation and 128 neurons, second hidden layer with

“Relu” activation and 64 neurons, second hidden layer with “Relu” activation and 32

neurons, and finally, an output layer with softmax layer and Naction outputs. Naction

is the number of discrete actions. As depicted in Fig.7.8.b, the critic network has

the same architecture as actor network except the output layer. The critic network

has only one output, i.e., the approximated state-value function corresponding to a

certain state.

In the current endeavor, the number of hidden layers and neurons in the hidden
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layers are selected through a trial-and-error method. Nevertheless, there are a few

rule-of-thumb for choosing the number of neurons in a hidden layer, as enumerated

here:

� The number of neurons in a hidden layer should fall between the size of output

and input layer. For example, if the sizes of the output layer and input layer are

one hundred and ten, respectively, the number of neurons in the hidden layer

can be in between ten and one hundred.

� Nneuron = 2
3
∗Ninput+Noutput, where Nneuron, Ninput, and Noutput are the number

of neurons in a hidden layer, size of the input layer, and size of output layer,

respectively.

� Nneuron =
√
Ninput ×Noutput

For a decent complex problem having a large feature’s pool can be started with two

to three hidden layers. Learn rate (α) refers to the rate of change of weights of

the network. Discount factor (γ) regulates the contribution of future rewards in the

computation of return from the current step. Number of step to look-ahead refers to

“N” as shown in Fig.7.3.

Convergence time is inversely proportional to the learning rate (α). Using a minimal

value (α ≤ 10−5) of α will procrastinate the convergence of the A3C agent. However,

a reasonably small value, i.e., (≈ 0.001), is a wise choice for α since it will not let

the agent converge to a sub-optimal solution. A higher α value will destabilize the

training process and eventually diverge the agent from the optimal solution.

In [178], the authors introduced the concept of “entropy maximization” to discourage

the agent from selecting only one particular control action among a finite set of actions
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all of which give similar reward. According to [178] and [173], entropy function (H)

of policy is expressed in the following:

H = −E
M∑
k=1

πk(St;ψπ)lnπk(St;ψπ) (7.7.3)

, where E is entropy loss-weight, πk(St;ψπ) is the probability of choosing an action

Ak in state St, and M is the number of maximum possible actions.

It is likely to happen during the update of both actor and critic weights that their

gradient can increase exponentially in magnitude. This phenomenon is widely known

as the “gradient explosion”. Gradient explosion can engender instability in both

networks’ training, and it can diverge soon after the commencement of training.

Gradient clipping is a well-known wield to circumvent such a problem. If the gra-

dient at any time-step exceeds the designer’s threshold value, a designated gradient

clipping method will be enabled to restrict the gradient value. Entropy loss weight

(E ) refers to the co-efficient regulating the strength of entropy regularization. “L2-

Regularization” is employed in both the networks to prevent them from overfitting.

Gradient threshold refers to a precautionary threshold limit for gradient update. Gra-

dient threshold method refers to a method used to clip gradient values that exceed the

gradient threshold. A few of the available methods are “L2norm”, “Global-L2norm”,

“Absolute value”. Optimizer refers to the optimization algorithm used to update

weights of the networks iteratively based on training data. A few of the available

optimization algorithms are stochastic gradient descent (SGD), SGD with momentum

(SGDM), RMSProp, Adam. Tab.7.4 furnishes the list of hyper-parameters used for

A3C agent in this chapter. In the current research, the hyperparameters are tuned

manually, which is time consuming and sometime can be exasperating. Self-tuning
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Figure 7.9: Sequence of drive cycles for training schedule.

DRL such as self-tuning actor-critic (STAC) employs a meta-gradient approach to

tune the hyperparameters online with 30% additional computational burden and find

an optimal trade-off among the performance metrics of the actor-critic [179].

7.8 Results and Discussion

The first and foremost required thing is data of real-world drive cycles to train the A3C

agent for real-world driving scenarios and test its performance in similar situations.

A handful of drive cycles have been acquired with an in-house data acquisition system

at McMaster Automotive Resource Center (MARC). However, an A3C agent must be

facilitated with many more drive cycles than just a handful of drive cycles. An Markov

chain model (MCM) can be employed to generate a copious number of random drive

cycles with the acquired driving data characteristics. Fig.7.12 shows a few of the

acquired drive cycles and a few of the randomly generated drive cycle (RGDC)s. The

MCM-based random drive cycle generator tool features keeping the cycles’ length the

same for every generated one.
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7.8.1 Random Drive-cycle Generation with Markov Chain

Model

A Markov chain model (MCM) of the power demand has been successfully developed

to generate numerous random drive cycles. Data of 58 previously collected drive

cycles have been used to articulate the MCM. Random drive cycles can be generated

using the MCM, but the drive cycles will carry the same transition probabilities of

power demand extracted from the collected drive cycles’ ensemble. The utilization of

random drive cycle generation with MCM has been proposed in section 6.3.3. The

MCM models the stochastic behavior of specific parameters’ variation in any time-

series distribution. In this research study, power demand is chosen to develop the

MCM using the collected drive cycle data. The MCM of the vehicle’s power demand

represents the trend of driving behavior throughout the ensemble in the form of a

probability matrix. Every newly generated drive cycle will be different, but their

stochastic driving behavior will be the same because they are generated from the

same MCM. The MCM generates power demand of next time-step via forecasting

with the aid of the following transition probability equation:

Pr(Powdemk+1
= Powjdem|Powdemk = Powidem, vk = vl) = Pril,j (7.8.1)

The above-mentioned probability represents the probability of transitioning to Powjdem

in the next time-step if the power demand and speed of vehicle are Powidem and vl at

the current time-step.

The probabilities are stored in a matrix referred to as the transition probability matrix

(TPM). First of all, the ranges of power demand values and velocity values across
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Figure 7.10: Range of vehicle’s power demand over 58 real-world drive cycles.

the ensemble of drive cycles have to be discretized into a pre-defined resolution like

{Pow1
dem, Pow

2
dem, .., Pow

Np
dem} and {vel1, vel2, .., velNm}.

Such a discretization have been done non-linearly based on observation of the power

demand distribution throughout all collected data point. Since the collected data

does not contain the vehicle’s power demand, it has been calculated with the following

equation and vehicle specification.

Powerdemand = τtransmission out × ωtransmission out

= τfinal drive in × ωfinal drive in

= (Final drive ratio)× τwheel ×
ωwheel

(Final drive ratio)

(7.8.2)

, where τwheel = (torque required to counter inertial load + torque required to counter

rolling resistance from road + torque required to counter aerodynamic force + torque

required to counter grade load from road slope). Although grade force and an aerody-

namic force acts on the vehicle body, these two forces can be converted into equivalent

wheel torque with a one-dimensional (1-D) approximation of the whole vehicle body.

Using Eq.7.8.2, vehicle’s power demand has been calculated for 58 real-world drive
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cycles and shown in Fig.7.10. The power demand range and speed range are dis-

cretized into 106 values and 51 values respectively. State of the MCM is comprised

of all combinations of power demand values and speed values. Hence, total feasible

number of state is 5406. Now, it is to be checked that how many unique states are

sampled throughout the collected drive cycles. Using Nearest-neighbor quantization

the sequence of collected data (Powdem, vel) is mapped into a sequence of discretized

states (Powidem, vel
j). 3915 numbers of unique states have been found and hence, a

TPM matrix is initialized with a size of 3915× 3915.

Transition probability is estimated using maximum likelihood estimator which counts

collected data as:

(TP )ij =
Total number transitions from statei to statej

Total number transitions from statei to all states
(7.8.3)

The Markov chain model (MCM) can be generated for the above mentioned TPM us-

ing ”dtmc” function in MATLAB®with just a simple command ”TPM = dtmc(TPM)”.

The whole process of generating new drive cycles of any specific duration is depicted

in Fig. 7.11. Both speed profile and power demand profile can be generated from

the MCM. While generating drive cycles with ”simulate” function in MATLAB®,

the initial state can be specified by the user. This feature is very beneficial from the

perspective of onboard RL implementation for EMS as described in 6.3.3.

Initially, only fifty RGDCs are utilized for training the A3C agent, and another RGDC

is used to testify the performance of the trained A3C agent as an EMS controller for

the electrified powertrain.

The set of fifty drive cycles is repeated twenty times during the training phase so

that the agent gets trained for 1000 episodes. For keeping the training phase simple,
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Figure 7.11: Random drive cycle generation with Markov chain model.

the order of RGDCs is kept unaltered in every set as depicted in Fig.7.9. As shown

in Fig.7.13, the three cardinal components of training history are episodic return,

average return, and episodic Q0 value. Episodic return is the cumulative cost in each

episode. The ”episodic returns” are averaged out after every ten episodes, and the

average return value represents that. The Q0 value corresponding to each episode

refers to the agent’s estimation of optimal cumulative return at the very first time-

step of each episode. The agent’s performance is testified after 1000 training episodes
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Figure 7.12: Acquired and randomly generated drive cycles used for training.

by employing it as an EMS controller for a drive cycle randomly generated with

the MCM. The rudimentary expectation from the trained agent is its capability of

satisfying the charge sustenance. If the trained A3C agent can suffice the charge

sustenance at the end of the randomly generated drive cycle, it would indicate that

the agent will most probably engender charge sustainability for any RGDC generated

by the MCM. Fig.7.14.a corroborates the A3C agent’s charge sustaining competency,

which starts with 40% battery SOC and finishes the drive cycle with 40.5% battery

SOC value. Fig.7.14.b presents the time-series profiles of powertrain mode and fuel

consumption throughout the drive cycle. Although the powertrain can exhibit three

modes, A3C agent-based EMS has never activated the two-motor all-electric mode

throughout the RGDC.

Fig.7.15 depicts the time-series of ICE speed and generator speed with an enlarged

view at the top right corner. A medium-fidelity ICE model with cranking and engine-

braking dynamics is used instead of a steady-state ICE model in the FSM-based
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Figure 7.13: Training history of A3C agent-based EMS controller through 1000
episodes.

powertrain model. The stark difference between requested ICE-speed and actual

ICE-speed, as shown at the left bottom corner of Fig.7.15, reveals the fact that

a medium-fidelity ICE cannot achieve the requested speed as instantaneously as it

receives the command from the EMS controller due to inertia and other physical lags.

Fig.7.16 presents ICE torque and generator torque time-series, including the associ-

ated torque dynamics during ICE-cranking and ICE-braking. The generator exerts

positive torque to crank the ICE until ICE starts firing and producing useful torque.

The drive cycle’s overall fuel consumption with the trained A3C agent as the EMS

controller is 959 grams. It is time to compare the above analyzed A3C agent-based

EMS controller’s proficiency with a benchmark real-time EMS controller. The au-

thors in this article have chosen optimal ECMS as the benchmark controller. The

optimal equivalence factor of ECMS for the same RGDC used to testify the A3C

agent is obtained through the trial-and-error method.

Fig.7.17, Fig.7.18, and Fig.7.19 present the comparison study between performance
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agent, plotted with right axis. Battery SOC variation throughout the drive cycle is
plotted with left axis. b) Time-series of powertrain mode and fuel consumption are

plotted with left axis and right axis respectively.

metrics of ECMS and A3C agent. While charge sustenance criteria and fuel con-

sumption are chosen as the cardinal metrics for conducting the comparison study,

mode-shift frequency is an indirect measurement of drivability. Fig.7.17 elucidates

that the A3C agent yields a lesser frequency of mode-shifts compared to ECMS. One

of the heavily crowded regions of the mode profile is enlarged for ECMS and A3C

agents to compare their drivability performance. The stark difference in the enlarged

section of ECMS and A3C agent corroborates that the A3C agent is better in drivabil-

ity than ECMS. However, there is still scope for improvement in drivability, and it can

be implemented by adding a penalty for too frequent mode-shifts in the immediate

consequence function.
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Figure 7.15: Time-series of ωice, ωgen, and ωmot throughout the real-world drive
cycle.

Both optimal ECMS and A3C agent can suffice the charge sustenance criteria. How-

ever, the optimal ECMS knew the drive cycle information in advance, whereas the

A3C agent did not know the drive cycle in advance. Leveraging on the apriori knowl-

edge of drive cycle, the optimal ECMS can achieve perfect charge-sustainability, but

the equivalence factor is modified so that the end SOC value reaches as close as that

obtained by the A3C agent. The ECMS is designed in this way only to present a fair

comparison of fuel consumption value between the two EMS controllers, as shown in

Fig.7.19. Both the controllers approximately finish the drive cycle at 40.5% of battery

SOC.

The study on the effectiveness of the A3C agent over optimal ECMS as an EMS
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Figure 7.16: Time-series of τice, τgen, and τmot throughout the real-world drive cycle.

controller for ePT culminates in comparing overall fuel consumption between two

controllers for a given random drive cycle. As furnished in Fig.7.19, the comparison

corroborates the superiority of the A3C agent over optimal ECMS in fuel economy.

While optimal ECMS concedes 978 grams of fuel, A3C agent concedes 959 grams of

fuel, which is 1.9% lesser consumption than optimal ECMS.

No matter how well the A3C agent performs for a real-world drive cycle, its prowess

is not recognized until proven for a few of the federal drive cycles. Hence, the A3C

agent, trained with 1000 real-world drive cycles, is tested on two federal drive cycles,

i.e., UDDS and WLTC, to validate its lucrative features.

Left axis of Fig.7.20 and Fig.7.21 depict the mode profile and prime-movers’ torque,

respectively controlled by A3C agent. Fig.7.22 and left axis of Fig.7.23 depict the
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Figure 7.18: Comparison of battery SOC profiles between ECMS and A3C agent
when applied on real-world drive cycle.

prime-movers’ angular speed profile and variation of battery SOC, respectively as a

result of the A3C-based EMS control. Right axis of Fig.7.20 shows the time-series

of fuel consumption across the UDDS. The A3C agent has reaffirmed its capability

of finishing the UDDS well-within the permissible limit of SOC deviation, as shown

in the Fig.7.23. The SOC-deviation is just 0.4% which is very close to absolute

charge-sustainability.

As mentioned before, the online framework comprised of training and testing of the
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Figure 7.19: Comparison of fuel consumption between ECMS and A3C agent when
applied on real-world drive cycle.
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Figure 7.20: Time-series of powertrain mode obtained for UDDS with A3C agent as
an EMS control strategy.

A3C agent mimics real-time interaction between the A3C agent and an ePT in un-

familiar real-world driving scenarios. Suppose, an HEV is equipped with a data ac-

quisition system, the A3C-based EMS mentioned above, and the Markov chain-based

random drive cycle generator. The current driving data is acquired periodically and

fifty random drive cycles can be generated through the Markov chain model based on

the recently acquired driving data. Now, the A3C agent can be trained with these

fifty RGDCs. The training of the A3C agent continues in the background, and there

is no compulsion that training has to complete within a single discrete time-step.
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Figure 7.21: Time-series of τice, τgen, and τmot obtained for UDDS with A3C agent
as an EMS control strategy.

However, a brief sensitivity analysis, as depicted in Fig.7.24 and Fig.7.25, is required

to inspect the effect of training iterations on the performance of the A3C agent.

In this article, ICE-activation’s total number throughout the drive cycle is chosen

as the drivability metric. The radar plots for three different testing drive cycles in

Fig.7.25 depicts the different level of dexterity of the A3C agent after different training

level. Conspicuously, the A3C agent has significantly alleviated the drivability score

at every trained level.
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Figure 7.22: Time-series of ωice, ωgen, and ωmot obtained for UDDS with A3C agent
as an EMS control strategy.
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Figure 7.23: Time-series of battery SOC variation throughout UDDS with A3C
agent as an EMS control strategy.

Table 7.1: Upper and lower bounds of state variables

State variable Unit
Upper
bound

Lower
bound

Vehicle’s speed m/s 50 0
Vehicle’s acceleration m/s2 +10 -10
SOC of HVB [%] 100 0
Driver’s torque
demand

kWatt 150 -100

Road grade [%] 30 -30
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Table 7.2: Feasible combinations Control variables of different modes

Feasibility Control Variables Fulfilling criteria
Generator

torque

Mode

ctrl.

ωice
ctrl.

τice
ctrl.

τmot
ctrl.

Does τmot abide

by kinematics?

Computed

from τice

Feasible EV#1 ==0 ==0 6=0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Infeasible EV#1 6= 0 == 0 6= 0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Infeasible EV#1 == 0 6= 0 6= 0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Infeasible EV#1 == 0 == 0 6= 0
τmot 6= 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Feasible HEV 6= 0 6= 0 6= 0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Feasible HEV 6= 0 == 0 6= 0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Infeasible HEV == 0 6= 0 6= 0
τmot = 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Infeasible HEV 6= 0 6= 0 6= 0
τmot 6= 1

β2
τout-

β1
β2∗(1+β1)

τice

τgen =

− 1
1+β1

τice

Feasible or

infeasible
HEV 6= 0 6= 0 6= 0

Feasible if

τice = (1+β1)
β1

τout

τgen =

− 1
1+β1

τice

Infeasible EV#2 6= 0 == 0 6= 0 τgen =
(
β2∗τmot−τout

β1

)
Infeasible EV#2 == 0 6= 0 6= 0 τgen =

(
β2∗τmot−τout

β1

)
Feasible EV#2 == 0 == 0 6= 0 τgen =

(
β2∗τmot−τout

β1

)
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Table 7.3: Samples of feasible and infeasible combinations of 4-D action variables

Given

condition

4-D control: discrete

action-space for the A3C agent

τout
(N-m)

Mode
τice
(N-m)

ωice
(rad/s)

τmot.
(N-m)

Feasi./

Infeasi.

150

EV#1 0 0 60 Feasible

EV#1 125 0 60 Infeasible

EV#1 0 250 60 Infeasible

EV#1 70 225 0 Infeasible

150

HEV 120 150 24.4 Feasible

HEV 120 150 20 Infeasible

HEV 190 160 40 Infeasible

HEV 100 130 30.336 Feasible

HEV 130 225 21.44 Feasible

150

EV#2 0 0 50 Feasible

EV#2 0 0 60 Feasible

EV#2 0 0 30 Feasible

EV#2 60 120
any

value
Infeasible

Table 7.4: Hyper-parameters for implementing asynchronous actor-critic agent in
Simulink®

Name of Hyper-parameters Range of value Used value:

Learn rate(α) 1 ≥ α ≥ 10−5 0.001

Discount factor(γ) 1 ≥ γ ≥ 0 0.995

Num. of step to look-ahead Tmax ≥ N ≥ 1 Tmax

Entropy Loss Weight(E ) 1 ≥ E ≥ 0 E = 0.2

Gradient threshold (G ) ∞ ≥ G ≥ 0 3.5

Gradient threshold method ”L2norm”

Optimizer ”Adam”
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Table 7.5: Definition of Transition Probability Matrix

— Pow1, vel1 Pow1, vel2 ... Pow1, veln ... Powm, vel1 ... Powm, veln
— S1 S2 ... Sn ... S(m−1)∗n ... Sm∗n
S1 TP1,1 TP1,2 ... TP1,n ... TP1,(m−1)n ... TP1,m∗n
S2 TP2,1 TP2,2 ... TP2,n ... TP2,(m−1)n ... TP2,m∗n
... ... ... ... ... ... ... ... ...
Sn TPn,1 TPn,2 ... TPn,n ... TPn,(m−1)n ... TPn,m∗n
... ... ... ... ... ... ... ... ...
Sm∗n TPm∗n,1 TPm∗n,2 ... TPm∗n,n ... TPm∗n,(m−1)n ... TPm∗n,m∗n
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Figure 7.24: Effect of training iteration numbers on the agent’s convergence to
near-global optimality.
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Figure 7.25: Effect of training iteration numbers on the agent’s performance
(drivability, charge-sustenance, and fuel-consumption) compared to optimal ECMS.
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Table 7.6: Effect of training iteration numbers on the agent’s performance (drivability, charge-sustenance, and
fuel-consumption) compared to optimal ECMS

Drive

cycle
UDDS Real-world WLTP

Itern
SOCRLend
∆SOCend

RL agent

∆mfuel

mfuelRL

mfuelecms

∆activanice
activanRL
activanecms

SOCRLend
∆SOCend

RL agent

∆mfuel

mfuelRL

mfuelecms

∆activanice
activanRL
activanecms

SOCRLend
∆SOCend

RL agent

∆mfuel

mfuelRL

mfuelecms

∆activanice
activanRL
activanecms

100
39.765% RL 439 RL 55 41% RL 591.5 RL 145 40.145% RL 1063 RL 55

0.235% ecms 480 ecms 97 1% ecms 589 ecms 156 0.145% ecms 1126 ecms 107

200
40.815% RL 479.2 RL 58 40.94% RL 588.9 RL 145 43% RL 1168 RL 63

0.815% ecms 536 ecms 107 0.94% ecms 581 ecms 155 3% ecms 1233 ecms 124

300
39.765% RL 439 RL 55 39.98% RL 551.7 RL 144 41.6% RL 1115.6 RL 62

0.235% ecms 480.5 ecms 97 0.02% ecms 550.2 ecms 150 1.6% ecms 1175 ecms 114

400
40.815% RL 479.2 RL 58 41% RL 591.5 RL 145 41.6% RL 1115.6 RL 62

0.815% ecms 536 ecms 107 1% ecms 589.1 ecms 156 1.6% ecms 1175 ecms 114

500
39.765% RL 439 RL 55 39.99% RL 557.3 RL 142 37.27% RL 965.1 RL 53

0.235% ecms 480.5 ecms 97 0.01% ecms 551 ecms 150 2.73% ecms 1025 ecms 93

600
40.815% RL 479.159 RL 58 40.716% RL 582.2 RL 144 38.7% RL 1015 RL 55

0.815% ecms 536 ecms 97 0.716% ecms 577.2 ecms 156 1.3% ecms 1071 ecms 93

700
38.58% RL 395.34 RL 52 41.52% RL 609 RL 143 40.146% RL 1063.8 RL 55

1.42% ecms 432 ecms 93 1.52% ecms 604.8 ecms 158 0.146% ecms 1121 ecms 107

220



Ph.D. Thesis – Atriya Biswas McMaster University – ME

7.9 summary

The original contributions of this article are reiterated here with brevity. A de-

tailed review of the functional approximation based implementation of RL-agents

is presented here. The review has not only just compared the existing functional

approximation-based implementations, but their evolution, the intertwined aspects

among themselves, and the essential stages of every implementation are also delin-

eated with substantial importance. Asynchronous actor-critic is one of the most

dexterous DNN-based RL agents among all the contemporary ones in the literature,

and hence, it is selected as the real-time EMS controller for this study. One of this

article’s prime focuses is to emulate the real-world interaction between an RL agent-

based EMS controller and an actual HEV. For such an emulation in a MIL platform,

both the vehicle and the RL agent should be online implementable and compatible

with each other. Hence, both vehicle and the agent models are developed in the

Simulink® environment. The study presented here corroborates that the A3C agent

can yield near-global optimal performance for unfamiliar drive cycles (standard fed-

eral or real-world drive cycles) in the future if it is trained with RGDCs generated

based on current driving data.

Extra attention has been paid while modeling the powertrain dynamics to take

the dynamics associated with mode-shifts, ICE cranking, and ICE braking into ac-

count. Not only the mathematical foundation of A3C agent but its implementation

in Simulink®is also well illustrated. Such an illustration will insinuate the future

researchers that a single RL agent’s employment as a direct EMS controller can be a

little convoluted, especially for multi-mode ePT where different modes have different

control variables. Finally, a version of the A3C agent, conflated with conventional
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ECMS, is articulated for the multi-mode ePT. The effectiveness of such a conflated

version of the A3C agent is proved to be performing slightly better than optimal

ECMS for a drive cycle that is randomly generated with MCM. In a nutshell, this ar-

ticle facilitates a comprehensive picture of DNN-based implementation of A3C agent,

which has the potential of being a real-time and near-global optimal controller for

real-world driving situations.
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Figure 7.26: Effect of training iteration numbers on the agent’s fuel consumption
performance compared to optimal ECMS for real-world drive cycle.
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Figure 7.27: Effect of training iteration numbers on the agent’s fuel consumption
performance compared to optimal ECMS for UDDS.
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Figure 7.28: Effect of training iteration numbers on the agent’s fuel consumption
performance compared to optimal ECMS for WLTP.
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Figure 7.29: Effect of training iteration numbers on the agent’s charge sustenance
capability. A real-world drive cycle is chosen here.
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Figure 7.30: Effect of training iteration numbers on the agent’s charge sustenance
capability. UDDS is chosen here.
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Figure 7.31: Effect of training iteration numbers on the agent’s charge sustenance
capability. WLTP is chosen here.
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Chapter 8

Advanced Modeling of Multi-mode

Electrified Powertrain:

Requirement of a Dynamic

Coordinated Control to Manage

the Mode-shift Events Efficiently
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8.1 Introduction

An online simulation framework is developed in this chapter to evaluate the perfor-

mance of a multi-mode electrified powertrain equipped with more than one power

source. An electrically variable transmission with two planetary gear-set has been

chosen as the centerpiece of the powertrain considering the versatility and prospects

of such transmissions. A novel architecture topology of the aforementioned class of

transmission is selected through rigorous screening process whose workflow is pre-

sented here with brevity. The article systematically delineates the steps for deriving

dynamics associated with all the feasible operating modes facilitated by the selected

topology. The dynamics associated with all the feasible mode-shift events are also

heeded judiciously. One of the legitimate concern of multi-mode transmission is its

proclivity to contribute discontinuity of power-flow downstream of the powertrain.

Mode-shift events can be predominantly held responsible for engendering such dis-

continuity. Many scholars in literature have substantiated the advent of dynamic

coordinated control as a technique for ameliorating such discontinuity. Hence, a

system-level coordinated control is employed within the energy management system

(equivalent consumption minimization strategy), which governs the mode schedule

of the multi-mode powertrain in real-time simulation. Simulation results corroborate

the effect of coordinated control on the equivalent consumption minimization strategy

in generating optimal mode schedule.
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Figure 8.1: Example of a specific powertrain topology derived from a specific
powertrain configuration.

8.2 Motivation

The second and third generations of THS with power-split configuration have been

the most successful and ingenuous ePTs throughout the last decade, as shown in

Fig.1.2. Although many factors govern the success or defeat of any HEV in terms of

sales figure, sticker value of fuel-economy, torque, and power rating of the HEV play

a significant role in its success in the market. GM introduced the Two-mode hybrid

system facilitating multiple electrified modes with two PG-sets and multiple clutches

[6] in 2007. The Two-mode ePT architecture combines the advantages of both parallel

and series architectures in a single unit, making it even more versatile than power-

split [7]. However, the mode scheduling control becomes an added responsibility for

the EMS whose control strategy needs to be even more complicated than that of

a series or parallel or even power-split architecture. Moreover, the stark contrast

between the success of the aforementioned two drivetrains, as shown in Fig.1.2, has

ignited the search for advanced hybrid drivetrain configurations.

The search method’s purpose is two-folded, i.e., finding all the mathematically

possible topology candidates and then screening out the best performing candidates.

Fig.8.1.a and 8.1.c depict the conceptual difference between powertrain configuration
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and powertrain topology, whereas Fig.8.1.b elucidates all the feasible clutch connec-

tions in a two PG-set configuration. Authors in [180] have shown how enormous

the design space can transpire if only two PG-sets, each of which carrying two com-

ponents, are allocated with three clutches among sixteen possible node connections.

Liu and Peng (2010) [38] and authors in [39] presented a systematic and chrono-

logical screening methodology for selecting the best performing topology candidates

from a large pool of mathematically possible topology candidates. Since the design

space is remarkably large, an agile and an offline near-optimal control strategy called

slope-weighted energy-based rapid control analysis (SERCA) has been appointed to

evaluate the performance of the topology candidates [181] before screening out the

best ones.

During the topology screening stage, it is not viable to assess the performance of

even every feasible topology candidates through an online simulation considering the

massiveness of the design space. But, the best-selected topology candidates can be

modeled in an online simulation platform (OSP) to corroborate their claimed perfor-

mance. From a practical point of view, any candidate chosen by any of the offline

algorithms, must be validated with online mode scheduling control before subsequent

validation stages such as SIL, HIL, and dyno test [4]. The works presented in [39,181]

ends with an avenue for the development of a near-optimal control-based OSP to vali-

date the fuel consumption value and drivability of the best candidates yielded through

the automated topology screening process. Each of the best performing topology

candidates with two PG-sets, three prime-movers, and three clutches will inevitably

have multiple electrified modes, i.e., a few all-electric modes and a few hybrid-electric

modes. A real-time near-global optimal mode scheduling control is indispensable for
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validating the topology candidate’s performance in the OSP.

The necessity of a real-time mode scheduling control has been skyrocketing since

the ascent in research on ePTs in the past two decades. Copious researchers have

been concentrating on achieving swift and smooth ICE activation during mode tran-

sition [182–184], ameliorating the adverse effect of ICE’s ripple torque during ICE

deactivation [177], attenuating transient drive-shaft vibration with motor torque com-

pensation control during mode shifts [185], and improving drivability [186]. Apart

from these studies, Lei et al. [187] proposed a coordinated control to expedite the si-

multaneous mode transition and clutch shifting process in a full HEV, whereas Tang

et al. applied [188] a motor torque compensation control to alleviate the unpleasant

vibration engendered due to frequent ICE start-stop. Despite their irrefutable contri-

butions, the studies mentioned above are limited within parallel, series-parallel, and

power-split configurations, but not for multi-mode topology. These studies focus on

a detailed analysis of an individual mode shift event rather than the optimal mode

schedule for the entire drive cycle.

Among a few works on mode scheduling control, Ahn and Cha (2008) [189] intro-

duced the Pareto-frontier optimization for deciding optimal mode schedule, whereas

Karbowski, Kwan, Kim, and Rousseau (2010) [190] employed simple rule-based con-

trol to optimize the mode schedule. Kim, Kim, Min, Hwang, and Kim (2011) [7]

have only indicated the significance of clutch dynamics but have not included it

while articulating an offline mode scheduling control for GM’s Two-mode hybrid sys-

tem. Zhuang, Zhang, Yin, Peng, and Wang (2020) [191] have proposed an integrated

real-time mode scheduling strategy by amalgamating a novel normalized efficiency

maximum strategy with an optimal mode-shift map generation. However, the strict
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constraint on feasible clutch engagement makes the EMS controller unsuitable for

unfamiliar drive cycles. The ingenuity lies in the employment of Dijkstra’s algorithm

for designing the shortest energy-path for indirect mode-shifts while considering ride

comfort. However, the proposed method imposes a strict constraint, i.e., equality of

both discs’ speed, for a feasible clutch engagement, making the EMS controller con-

servative and eventually making the EMS controller unsuitable for unfamiliar drive

cycles. Moreover, the optimal mode-shift schedule is obtained by DP, making the

overall method computationally expensive and time-consuming. Zhuang, Zhang, Li,

Wang, and Yin (2017) [142] proffered a real-time mode scheduling control by con-

flating offline and online computation. However, the optimal mode-shift map must

be computed for every drive cycle separately, making the entire method unrealistic

for real-world drive cycles. Geng, Lou, Wang, and Zhang (2020) [192] proposed a

composite implementation of DP and ECMS for mode scheduling control. However,

it is not real-time implementable. Anselma, Hou, Roeleveld, Belingardi, and Emadi

(2019) [193] employed an ANN, trained with near-optimal mode schedule from offline

results, as an online implementable EMS controller. Buccoliero, Anselma, Bonab,

Belingardi, and Emadi (2020) [194] proposed an improved version of SERCA, yield-

ing near-global optimal mode scheduling control for multi-mode ePTs. However,

no transient powertrain dynamics has been considered while articulating the mode

scheduling control.The assessment of fuel economy and operational feasibility of a

multi-mode ePT is incomplete without validating its transient performance during

mode-shift events.

Looking at the scarcity of research on real-time mode scheduling control for multi-

mode ePTs, the current endeavor proffering a near-global optimal and real-time mode
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scheduling control for a novel ePT topology will seek to quench the research gap.

The topology is yielded from the work presented in [39]. Compared to other feasi-

ble mode scheduling control in the literature, the current proposed real-time mode

scheduling control encompasses the effect of transient powertrain dynamics, drivabil-

ity improvement, feasibility of mode shifts, and near-global optimality. The original

contributions of this article are enumerated as follows: 1) Dynamics of every mode

of a novel ePT topology is modeled in detail with inertia-based approach instead of

a steady-state approach. 2) Dynamics associated with every feasible mode-shift is

separately modeled to illustrate the clutch-to-clutch shift dynamics. The mode-shift

dynamics has a significant influence in generating the optimal mode-shift schedule.

3) Low-frequency coordinated control is proposed for the first time, to the best of

the authors’ knowledge, not only for the all-electric to hybrid-electric mode-shifts but

also the hybrid-electric to hybrid-electric shifts and all-electric to all-electric shifts.

The coordinated control plays a pivotal role in emulating a real physical ePT with

an inertia-based dynamic ePT model. 4) Finally, an instantaneous optimization, in-

fluenced by the coordinated control, is proposed for the novel topology to derive a

near-global optimal and feasible mode-shift schedule for any given drive cycle.

8.3 Automated Topology Selection Tool

The automated topology selection tool (ATST) is comprised of two major phases.

First, the design space exploration phase where all the feasible topology candidates

with a certain number of PG-sets, components (ICE and EMGs), and clutches are
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Figure 8.2: Automatic and exhaustive topology candidate screening process.

generated through permutation and combinations of both component and clutch allo-

cations. Second, an exhaustive screening phase, which facilitates a two-stage screen-

ing, i.e., eliminating the topology candidates with infeasible, redundant, and duplicate

modes and then elimination of the candidates with inferior performance. An offline

control strategy named SERCA is employed to assess the performance of every feasible

candidate.
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8.3.1 Exhaustive Search of Topology Candidates

The design space exploration is a continuation of a previous work presented in [39]

which was inspired by [195]. Since this article focuses directly on the performance

of the topology candidates yielded from the ATST, both exploration and assessment

phases are not discussed in detail. A comprehensive understanding of the whole

exploration phase is depicted in Fig.8.2. Interested readers are referred to the article

[39]. Tab. 8.1 tabulates the specifications of the powertrain components and vehicle

components used in the automated topology screening process.

8.3.2 Screening of Topology Candidates

SERCA algorithm, which was initially proposed by Anselma et al. [181], is employed

as the offline control strategy for assessing the performance of every feasible candi-

date. SERCA can yield very close to the global optimal performance given by DP in

much lesser computational time. Due to its computational agility, SERCA has been

preferred over DP for rapid assessment of fuel economy capability of the topology can-

didates with multiple PG-sets as well as conventional electrified architectures [196].

Fig.8.3 shows the outcome of a rapid performance assessment of more than 100,000

topology candidates. The performance metric is chosen as the average fuel consump-

tion over three standard federal drive cycles, i.e., UDDS, highway cycle, and WLTC.

Any red circle in Fig.8.3 represents the average fuel consumption of any given topol-

ogy candidates. The only blue square represents a state-of-the-art ePT called single

input electrically variable transmission (Si-EVT).
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Figure 8.3: Outcome of a rapid assessment of fuel economy capability of more than
100,000 topology candidates.

8.4 Powertrain Modeling

8.4.1 Modeling of Dynamics for Different Modes

The multi-mode powertrain topology, as shown in Fig.8.4, has been selected from

a pool of well-performing topology candidates among approximately 100,000 design

candidates. Equipped with two PG-sets, one ICE, two EMGs, i.e., a traction motor

and a generator, and three clutches, the topology can facilitate four distinct power-

train operating modes, i.e., two all-electric modes and two hybrid-electric modes. The

clutch connections required for all the four modes are given in Tab.8.2 , where ucontrol

refers to the control variables corresponding to the modes. The ICE is connected to
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Figure 8.4: Mode-shifts among the four feasible modes.

the C1 through a OWC (CL#3), which prevents the ICE from rotating anti-clockwise

when the generator applies propelling torque in all-electric modes. The generator and

the traction motor are connected to S1 and R2, respectively. The final drive is con-

nected to C2.

Dynamics of Powertrain in Mode#1

In mode#1, the traction motor is connected to only R2, and the generator is con-

nected to only S1. Hence, the dynamics associated with S1 and R2 can be written

as Eq.8.4.1a. But, a similar equation will not be appropriate for C1, which is con-

nected to both ICE and S2. Hence, τc1 6= τice − Jc1θ̈ice. Instead, the dynamics

associated with C1 is expressed with Eq.8.4.1e. Similarly, it will be incorrect to
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write τc2 = τout − Jc2θ̈out since C2 is connected to both transmission output and R1.

The dynamics associated with output is expressed through Eq.8.4.1d. The dynam-

ics associated with R1, C2, and S2 can be expressed through abiding by the torque

relationship within PG-set#1 and PG-set#2 respectively, as given by Eq.8.4.1b and

Eq.8.4.1c respectively. Finally, dynamics of the output can be obtained by substitut-

ing Eq.8.4.1b and the first part of Eq.8.4.1c in Eq.8.4.1d. Similarly, the ICE dynamics

can be obtained by substituting the second part of Eq.8.4.1c in Eq.8.4.1e.

The inertia-based dynamic relationship among different components of the powertrain

(components of PG-set, ICE, generator, motor, and transmission output) in mode#1

can be expressed in matrix notation as given in Eq.8.4.2.

τs1 = τgen − Js1θ̈gen ; τr2 = τmot − Jr2θ̈mot (8.4.1a)

τr1 = β1τs1 = β1(τgen − Js1θ̈gen) (8.4.1b)

τc2 = −(
1 + β2

β2

)(τr2) ; τs2 =
τr2
β2

(8.4.1c)

τout = τr1 + τc2 + Joutθ̈out (8.4.1d)

τc1 = τice − Jc1θ̈ice − τs2 ; θ̈ice = θ̈S2 (8.4.1e)



τA

τB

0

0

0


=



Jc2 0 −β1Js1 (1+β2
β2

)Jr2 0

0 Jc1 (1 + β1)Js1 − 1
β2
Jr2 0

(1 + β2) −1 0 −β2 0

β1 −(1 + β1) 1 0 0

0 1 0 0 −1





θ̈out

θ̈ice

θ̈gen

θ̈mot

θ̈S2


(8.4.2)

, where τB = τice + (1 + β1)τgen − 1
β2
τmot, τA = τout − β1τgen + (1+β2

β2
)τmot, Jc2 =
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 EMs, output) and not connected any other nodes. Dynamics of such nodes can be
Find the 1st type of PG-set nodes which are connected only to a component (ICE,
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 τ    = (       )τ carriersun β+1
−1
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−β
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connected to another node. Dynamics of such nodes can be obtained as follows:  

For each mode: which implies that for each feasible combination of clutch states 
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Topology #1 Topology #m Topology #n Gen. Mot.

New topology

Final driveICE

Figure 8.5: Systematic method of obtaining dynamic relationship among
components and nodes of an ePT with multiple PG-sets.

JC2 + Jout + JR1, Js1 = JS1 + Jgen, Jr2 = JR2 + Jmot, Jc1 = JC1 + Jice. JC , JS, and

JR are the MMIs of the carrier, sun gear, and the ring gear of PG-set, respectively.

Jout is the effective combined-MMI of vehicle, wheels, and final drive measured at the

transmission output. Jice, Jgen, and Jmot are the MMIs of ICE, generator, and traction

motor, respectively. β1 = NR1

NS1
and β2 = NR2

NS2
, where NR and NS are the number of

teeth of the ring gear and sun gear, respectively. Eq.8.4.1 has been expressed in more

compact notation with Eq.8.4.2.
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Dynamics of Powertrain in Mode#2

The powertrain dynamics in mode#2 is obtained through the same concept used for

mode#1. The systematic method of obtaining the powertrain dynamics of an oper-

ating mode of multi-mode e-CVT transaxle is streamlined and elucidated in Fig.8.5.

It is noteworthy that both the method illustrated in Fig.8.5 and the methods pre-

scribed in [195], and [197] yield precisely the same powertrain dynamics in every

mode. While the theoretical method proposed in [38] and [195] has been widely ac-

claimed by many scholars, authors in [197] validated the theoretical method through

experiment. Hence, the method illustrated in Fig.8.5 does not need any experimen-

tal validation separately. Since the CL#3 is engaged, C1 is assumed to be rigidly

connected to the ground. As per the systematic approach elucidated in Fig.8.5, R2

and S1 satisfy the conditions of the first type of PG-set nodes. Hence, the dynamics

corresponding to R2 and S1 can be given by Eq.8.4.3a. R1 and C2 fall under the

category of the second type and the third type of PG-set nodes, respectively, and

dynamics of R1 can be given by Eq.8.4.3b. Since the output is connected to both C2

and R1, dynamics associated with output can be given by first part of Eq.8.4.3d.

τs1 = τgen − Js1θ̈gen ; τr2 = τmot − Jr2θ̈mot (8.4.3a)

τr1 = β1τs1 = β1(τgen − Js1θ̈gen) (8.4.3b)

τc2 = −(
1 + β2

β2

)(τmot − Jr2θ̈mot) (8.4.3c)

τout = τr1 + τc2 + Joutθ̈out ; θ̈S2 = 0 (8.4.3d)
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Inertia-based dynamic relationship in the mode#2 (1st all-electric mode) can be ex-

pressed in more compact form:



τA

0

0

0


=



Jc2 −β1Js1 (1+β2
β2

)Jr2 0

(1 + β2) 0 −β2 0

β1 1 0 0

0 0 0 1





θ̈out

θ̈gen

θ̈mot

θ̈S2


(8.4.4)

Dynamics of Powertrain in Mode#3

The powertrain dynamics of the mode#3 is obtained as Eq.8.4.5 by following the

generic method depicted in Fig.8.5.

τc1 = τice − Jc1θ̈ice ; τr2 = τmot − Jr2θ̈mot (8.4.5a)

τr1 = −(
β1

1 + β1

)(τice − Jc1θ̈ice) (8.4.5b)

τc2 = −(
1 + β2

β2

)(τmot − Jr2θ̈mot) (8.4.5c)

τout = τr1 + τc2 + Joutθ̈out (8.4.5d)

τs1 = −(
β1

1 + β1

)(τice − Jc1θ̈ice) (8.4.5e)

τs2 =
1

β2

τr2 =
1

β2

(τmot − Jr2θ̈mot) (8.4.5f)

τgen = τs1 + τs2 + Js1θ̈gen ; θ̈gen = θ̈S2 (8.4.5g)
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Inertia-based system dynamics for mode#3 can be expressed in more compact nota-

tion as follows:



τC

τD

0

0

0


=



Jc2 ( β1
1+β1

)Jc1 0 (1+β2
β2

)Jr2 0

0 ( 1
1+β1

)Jc1 (Js1 + JS2) − 1
β2
Jr2 0

(1 + β2) 0 −1 −β2 0

β1 −(1 + β1) 1 0 0

0 0 1 0 −1





θ̈out

θ̈ice

θ̈gen

θ̈mot

θ̈S2


(8.4.6)

, where τC = τout + ( β1
1+β1

)τice + (1+β2
β2

)τmot and τD = ( 1
1+β1

)τice + τgen − 1
β2
τmot.

Dynamics of Powertrain in Mode#4

The powertrain dynamics of mode#4 is obtained as Eq.8.4.7 by following the generic

method depicted in Fig.8.5.

τr2 = τmot − Jr2θ̈mot (8.4.7a)

τs1 = τgen − Js1θ̈gen − τs2 ; τr1 = β1τs1 (8.4.7b)

τs2 =
1

β2

τr2 =
1

β2

(τmot − Jr2θ̈mot) (8.4.7c)

τc2 = −(
1 + β2

β2

)(τmot − Jr2θ̈mot) (8.4.7d)

τout = τr1 + τc2 + Joutθ̈out ; θ̈S2 = θ̈s1 (8.4.7e)
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Inertia-based system dynamics for mode#4 can be expressed in matrix notation as

follows:



τE

0

0

0


=



Jc2 −β1(Js1 + JS2) (1+β1+β2
β2

)Jr2 0

(1 + β2) 0 −β2 −1

β1 1 0 0

0 1 0 −1





θ̈out

θ̈gen

θ̈mot

θ̈S2


(8.4.8)

, where τE = τout − β1τgen + (1+β1+β2
β2

)τmot. It is noteworthy to mention that special

attention has been paid for modeling the dynamics of the node S2 in all the four

modes. Apparently, the node S2 might seem to possess normal importance as the

other nodes do, but the reason for paying heed to dynamics of S2 will soon be unveiled.

8.5 Clutch-based Coordinated Control during Mode-

shifts

Multi-mode ePT can be contrived with not only multiple hybrid-electric modes but

multiple all-electric modes also. Alike automatic transmission, clutch-based mode-

shift operation has been soaring as the predominant wield for encompassing many

electrified modes into a single ePT topology. The clutch operation associated with

a mode-shift event interrupts the desired flow of torque to the transmission output

due to the discontinuous and highly nonlinear aspects of its torque dynamics. Tra-

ditionally, the obligation of DCCS is two-folded. The first one is to compensate the

deficiency of torque, which is caused due to the slow response of ICE during ICE
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start-up, in the output with fast responding EMG [185]. The second one is to eradi-

cate the effect of ICE ripple or resistance torque in the transmission output through

the agility of EMG’s torque [198].

Throughout this decade, literature has been inundated with a copious number of re-

search works presenting the ingenuity of DCCS in eradicating the inconsistent power

flow at the output during mode-shifts. DCCS has been predominantly applied dur-

ing the transition from all-electric mode to hybrid-electric mode [184], [187], [182].

Zhao and Tang (2019) [177] applied DCCS during hybrid-electric to all-electric mode-

shift, i.e., during ICE-stopping phase. However, there is a scarcity of research work

pertaining to the application of DCCS during all-electric to all-electric mode-shifts,

hybrid-electric to hybrid-electric mode-shifts. Friction clutch based mode-shifts have

been considered as a complicated controlled operation due to associated nonlinear dy-

namics in the slipping phase [183,199]. Although the effect of ICE ripple torque would

be absent during either all-electric to all-electric or hybrid-electric to hybrid-electric

mode-shifts, the ubiquitous effect of clutch slipping stage would tend to deteriorate

the desired torque dynamics at the transmission output. Looking at the conspicuous

qualities of DCCS, it is highly recommended to employ a DCCS in all kind of feasible

mode-shifts, i.e., all-electric to all-electric shifts, all-electric to hybrid-electric shifts,

hybrid-electric to all-electric shifts, and hybrid-electric to hybrid-electric shifts.

One of the cardinal contributions of this article is to demonstrate the effect of DCCS

on the performance of EMS in terms of mode scheduling control. In this article, the

EMS imbibes a rudimentary version of DCCS while controlling the mode schedule.

Fig.8.4 differentiates between two categories of mode-shifts. The feasibility of a mode-

shift is dictated by the number of simultaneous clutch engagement and disengagement.
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Tab.8.3 dictates that a feasible mode-shift event can have only up to two simultaneous

clutch operations. That is why 4-to-1 and 2-to-3 mode-shifts are not feasible since

they require three clutch operations simultaneously. Zhuang et al. [191] have labeled

infeasible mode-shifts as indirect ones, and their work is focused on finding the optimal

energy efficient path for executing the indirect mode-shifts.

It is noteworthy to mention that this work is not free from assumptions. Since clutch-

to-clutch shift dynamics is a complex nonlinear phenomena and since it is relatively

new in ePT application, a few assumptions have been taken into consideration while

incorporating the effect of clutch-to-clutch shift into ECMS-based real-time optimal

EMS.

8.5.1 Clutch-based Coordinated control for 1-to-3 Mode-shift

While operating in mode#1, if the EMS controller decides to shift to mode#3, a

clutch-to-clutch shift takes place. CL#1 and CL#2 will be the off-going clutch and

incoming clutch, respectively, during the 1-to-3 mode-shift. It is assumed in this arti-

cle that clutch-to-clutch shifts happen gradually rather than instantaneously. Fig.8.6

shows a typical situation that can take place during the 1-to-3 mode-shift.

When transmission output speed, as shown in Fig.8.6, at the C2 (ωout or ωC2) is

lesser than the speed of ICE (ωice), generator speed (ωgen) is greater than ωice due to

kinematics of PG-set. Since the clutch between the C1 and S2 is fully engaged, ωS2

is equal to ωice in mode#1. Hence, ωS1 > ωS2 in this mode for the aforementioned

situation. CL#1 starts off-going, and CL#2 starts oncoming a single time-step after

the ECMS-based EMS commands for the 1-to-3 mode shift. It is assumed that the

torque transfer through the off-going clutch plummets to zero immediately after the
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Figure 8.6: Different stages of clutch-to-clutch shift from mode#1 to mode#3 in a
case when ωice is greater than ωout.

disengagement happens. However, the torque transfer for the oncoming clutch contin-

ues until both the discs of the oncoming clutch achieve a unanimous rotational speed.

Hence, the effect of τCL1 diminishes immediately after τCL2 activates. Moreover, the

effect of τCL2 persists until ωS2 equalizes to ωS1. It is very important to deduce the

equations that describe the powertrain dynamics during the 1-to-3 mode shift.

At the very beginning of the 1-to-3 mode-shift, it is assumed that CL#1 goes through

the “off-going” phase and still the torque transfer between S2 and C1 takes place.

It is also assumed that CL#2 enters the very early phase of “oncoming” during this

beginning. During this time, the powertrain dynamics can be given by the equations

shown in the left-bottom of Fig.8.7.

As mentioned earlier, the clutch-to-clutch shift has two distinct phases, i.e., load

transfer or torque transfer phase and inertia transfer or speed synchronization phase

[200]. To keep the complexity within a reasonable limit, it is also assumed that

torque transfer happens instantaneously from off-going clutch to oncoming clutch.

The inertia transfer phase is modeled to be gradually happening. As shown in Fig.8.7,

CL#1 mainly transmits τCL1 = ( τr2
β2

) amount of torque before its disengagement. A

single time-step after the command of mode-shift, the responsibility of transmitting

246



Ph.D. Thesis – Atriya Biswas McMaster University – ME

Mode-shift
commanded

Δts 2Δts 3Δts 4Δts nΔts

0

Simulation time

τCL2

τCL1
Torque required for speed synchroniation

Time when ω   = ωS2 S1

+Ve

-1Δts

τ   = τ     −J  θ r2 mot r2 mot

..

τ   = (   )τ s2 β
1

r2
2

τ   = (       )τ r2c2
β +12

−β
2

 τ   =     τ r1 β s11

τ   + τ   = τ    −J  θ c2 out c2 out
..

r1

 τ   = τ     −J  θ s1 gen s1 gen

..
 τ   =  τ CL1 s2  τ   = 0CL2;

 τ   = τ     −J  θ r2 mot r2 mot

..

 τ   = (   )τ s2 β
1

r2
2

 τ   = (       )τ r2c2
β +12

−β
2

 τ   + τ   = τ    −J  θ c2 out c2 out
..

r1

; ;

 τ   = τ     −J  θ      − τ  − J  θ s1 gen s1 gen

.. ..

s2 s2s2

τ   = τ     −J  θ r2 mot r2 mot

..

 τ   = (   )τ s2 β
1

r2
2

 τ   = (       )τ r2c2
β +12

−β
2

τ   + τ   = τ    −J  θ c2 out c2 out
..

r1

τ   = τ     −J  θ      − τ  s1 gen s1 gen

..
s2

τice
motτ

genτ

outτCL1
τ

R1τ

s1τ

C1τ

s2τ

C2τ

R2τ

τice
motτ

genτ CL2τ
outτ

CL2τ

R1τ

s1τ

C1τ

s2τ

C2τ

R2τ

Clutch #1: Engaged
Clutch #2: Disengaged

Clutch #1: Disengaged
Clutch #2: Oncoming

τice
motτ

genτ

outτ

R1τ

s1τ

C1τ

s2τ

C2τ

R2τ

Clutch #1: Disengaged
Clutch #2: Engaged

a) Three cardinal stages of 1- 3 mode shift

CL2τ

β
(    )τr2

2

 τ   +τ     = τ   −J     θ c1 ice c1+s2 ice
..

CL1

 τ   =  τ   + J  θ
CL2 s2  τ   = 0CL1;s2 s2

..

 τ   = τ   −J   θ c1 ice c1 ice

..

 τ  = τ   
CL2 s2  τ   = 0CL1;

 τ   = τ   −J   θ c1 ice c1 ice

..

 τ   = (       )τ c1r1 β +11

−1

 τ   = (       )τ c1r1 β +11

−1

;

b) Approximate clutch torque dynamics during 1- 3 mode shift

C
lu

tc
h 

to
rq

ue
 (

N
-m

)

-Ve

Figure 8.7: Three cardinal stages of torque transfer during mode-shift from mode#1
to mode#3.

( τr2
β2

) amount of torque is delegated to CL#2 since CL#2 enters the oncoming phase.

This delegation happens instantaneously, as shown in Fig.8.7. Now, CL#2 not only

has to transmit the torque delegated to itself from CL#1, but CL#2 also has to

transmit an extra amount of torque that is required for speed synchronization between

ωS1 and ωS2.
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The powertrain dynamics during the oncoming phase of CL#2 is given by Eq.8.5.1.

τr2 = τmot − Jr2θ̈mot ; τs2 =
τr2
β2

(8.5.1a)

τc2 = −(
1 + β2

β2

)τr2 ; τr1 = −(
1

β1

)τc1 (8.5.1b)

τCL2 = τS2 − JS2θ̈S2 ; τCL1 = 0 (8.5.1c)

τs1 = τgen − Js1θ̈gen − τS2 − JS2θ̈S2 (8.5.1d)

τout = τr1 + τc2 + Joutθ̈out (8.5.1e)

τc1 = τice − Jc1θ̈ice (8.5.1f)

Finally, the powertrain dynamics after the completion of speed synchronization is

depicted in the bottom-right of Fig.8.7.

8.5.2 Clutch-based Coordinated control for 3-to-1 Mode-shift

As depicted in Fig.8.8.b, 3-to-1 mode-shift is also facilitated by a clutch-to-clutch

shift between CL#2 and CL#1 as done in 1-to-3 mode-shift with the disengagement

and engagement of clutches being done in reverse order.

As promised earlier, the importance of augmenting dynamics of S2 node can be high-

lighted while powertrain dynamics was derived for every mode in the previous section.

As depicted in Fig.8.8.a, Fig.8.7.a, and Fig.8.6, node S2 is the common node between

CL#1 and CL#2 connection. This is why the dynamics of the S2 node plays a crucial

role during the mode-shift events in this topology candidate.
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Figure 8.8: Three cardinal stages of torque transfer during mode-shift from mode#3
to mode#1.

8.5.3 Clutch-based Coordinated control for 2-to-4 Mode-shift

2-to-4 mode-shift represents an all-electric to all-electric mode-shift event. While

normally operating in mode#2, CL#1 is fully engaged, i.e., S2 is not rotating at all

like the C1 node. From the free body diagram (FBD) of S2 during mode#2, as shown

in Fig.8.9.e, dynamics of the S2 node can be expressed with Eq.8.5.2.

τS2 − JS2θ̈S2 + τCL1 = 0 (8.5.2)
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Figure 8.9: Kinematic and dynamic relationship among nodes of PG-sets during
2-to-4 mode-shift.

Zero acceleration of the S2 node during mode#2 implies that τCL1 is equal to −τs2

or − 1
β2
τr2. τCL1 provides the reaction torque to the S2 node so that the traction

motor can propel the vehicle. Fig.8.9.b and Fig.8.9.f refer to the phase when “off-

going” of CL#1 and “oncoming” of CL#2 commence simultaneously. As mentioned

earlier, the off-going state of the disengaging clutch is assumed to be immediately

perishing after the oncoming state of the engaging clutch starts. This is shown in

Fig.8.9.c and Fig.8.9.g, where the oncoming state persists longer to enable the speed-

synchronization gradually.

As shown in Fig.8.9.e and left side of Fig.8.10, the CL#1 primarily transmits τCL1 =

−( τr2
β2

) amount of torque before it’s disengagement. A single time-step after the com-

mand of mode-shift, the responsibility of transmitting −( τr2
β2

) amount of torque is

delegated to CL#2 since CL#2 enters the oncoming phase. This delegation happens
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Figure 8.10: Approximate clutch torque variation of CL#1 and CL#2 during 2-to-4
mode-shift.

instantaneously, as shown in Fig.8.10. Now, CL#2 has to transmit the torque dele-

gated to itself from CL#1, but CL#2 also has to transmit the extra amount of torque

required for speed synchronization between ωS1 and ωS2. Hence, the torque transmit-

ted by CL#2 during the speed-synchronization phase is τCL2 = − 1
β2
τr2 + JS2θ̈s2.

It can be observed in Eq.8.5.3 that there is an extra term β1JS2θ̈S2 in the output

equation during the speed synchronization phase. This extra torque should be coor-

dinated by the traction motor. Coordinated control is highly necessary during the

speed synchronization phase so that the torque demand at the transmission output

is properly satisfied at every time-steps during this phase.

(τout)during = Joutθ̈out + β1(τgen − Js1θ̈gen)

+ β1JS2θ̈S2 − (
1 + β2 + β1

β2

)(τr2)
(8.5.3)
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Figure 8.11: Kinematic and dynamic relationship among nodes of PG-sets during
4-to-2 mode-shift.

8.5.4 Clutch-based Coordinated control for 4-to-2 Mode-shift

During the 4-to-2 mode-shift, ωS2 reduces from ωS1 to zero value. CL#2 and CL#1

are the disengaging and engaging clutch, respectively. While Fig.8.11 depicts the

kinematic and dynamic relationship among the nodes corresponding to different stages

of mode-shift, Fig.8.12 elucidates the approximate variation in clutch (CL#1 and

CL#2) torques during 4-to-2 mode-shift.

(τout)during = Joutθ̈out − (
1 + β2

β2

)(τmot − Jr2θ̈mot)

+ β1(τgen − Js1θ̈gen)− (β2 + 1)JS2θ̈S2

(8.5.4)

The coordinated control, as expressed in Eq.8.5.4, is advocated by traction motor,

which is the primary torque controlling prime-mover in both the fully electric modes.
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Figure 8.12: Approximate clutch torque variation of CL#1 and CL#2 during 4-to-2
mode-shift.

8.5.5 Coordinated control for All-electric to Hybrid-electric

Mode-shift

The OWC allows the ICE to rotate only in the clockwise (conventional direction).

Technically, while at the stand-still condition, the ICE can be cranked only clockwise

up to ICE firing speed if generator applies positive torque. But, the ICE cannot be

rotated anti-clockwise even if generator applies negative torque and, hence, the ICE

will act as a ground support. Such an application of OWC is found in a state-of-the-

art commercial e-CVT transaxle [42]. The generator starts applying positive torque

to crank the ICE as soon as the EMS controller commands for all-electric to hybrid-

electric mode-shift. All-electric to hybrid-electric mode-shift is highly susceptible to

ICE ripple torque due to low-speed operation of ICE. In literature, numerous articles

have prescribed different versions of DCCS to cope up with the adverse effect of ICE
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ripple torque on transmission output, predominantly during all-electric to hybrid-

electric mode-shift in parallel [184], series-parallel [199], power-split [176], compound

power-split [177], and state-of-the-art parallel [188] architectures. Expression of high-

frequency ICE ripple torque, a function of instantaneous ICE speed and indicated

torque, is given in Eq.4.3.14 [140]. In this article, the high-frequency ICE ripple

torque is replaced by low-frequency mean-value ICE resistance torque, as shown in

Fig.8.13. It is also depicted in Fig.8.13.a and Fig.8.13.b that the low-fidelity ICE is

modeled with the mean-value WOT torque curve and the fuel-consumption map. ,

where τfrice , C0,1,2, θice, Vd, τind(θice) are friction torque of ICE, approximating factors,

ICE crank angle, ICE volume, and indicated torque. During cranking, the generator

takes the responsibility of providing enough positive torque to the ICE crankshaft

so that the ICE speed can surpass firing speed while tussling against ICE friction

torque. During cranking, traction motor compensates the rest of the responsibility

in terms of sufficing torque demand at the transmission output. The expressions

of coordinated torque for generator and traction motor during mode#2 to mode#1

transition is given in Eq.8.5.5.

8.5.6 Coordinated control for Hybrid-electric to All-electric

Mode-shift

The ICE stopping/dragging phase during hybrid-electric to all-electric mode-shift is

equally victimized to the effect of ICE resistance torque due to the ICE’s operation

below idle speed [177]. Hence, not only the cranking phase but the ICE dragging phase

should also be controlled judiciously with coordinated control. Only the friction-

torque component remains in the torque supplied by the ICE when the

254



Ph.D. Thesis – Atriya Biswas McMaster University – ME

τgen|coordinated |2−to−1 shift =
−τfrice + Jc1θ̈ice + (β1 + 1)Js1θ̈gen + 1

β2
(τmot|coordinated − Jr2θ̈mot)

(β1 + 1)

(8.5.5a)

τmot|coordinated |2−to−1 shift =
β2{(τgen|coordinated − Js1θ̈gen) + (β2+1)

β2
Jr2θ̈mot − (τout − Jc2θ̈out)}

(β2 + 1)

(8.5.5b)

τgen|coordinated |4−to−3 shift = Js1θ̈gen −
1

1 + β1

(τfrice − Jc1θ̈ice) +
1

β2

(τmot|coordinated − Jr2θ̈mot)

(8.5.6a)

τmot|coordinated |4−to−3 shift = β2

{ β2+1
β2

Jr2θ̈mot − β1
1+β1

(τfrice − Jc1θ̈ice)− (τout − Jc2θ̈out)
β2 + 1

}
(8.5.6b)

EMS controller commands for fuel cut-off of the ICE. Although the EMS commands

the powertrain to be operated in a all-electric mode, the powertrain cannot be oper-

ated in all-electric mode until ωice reduces to zero. The expressions for coordinated

torque of generator and traction motor remain the same as Eq.8.5.5 and Eq.8.5.6.

Reduction of ωice is expedited by applying negative torque through the generator and

the powertrain can be technically shifted to all-electric mode as soon as ωice reduces

to zero.
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Figure 8.13: ICE characteristics curves required for modeling the ICE. (a)
Mean-value wide open throttle torque as a function of ICE speed. (b) Mass-flow

rate of fuel consumption as a function of ICE speed and torque. (c) Mean-value ICE
resistance torque as a function of ICE speed.

8.6 Instantaneous Optimization-based Mode Schedul-

ing Control for Multi-mode ePT

ECMS is a lucrative option as a control strategy for an EMS dealing with a multi-

mode electrified powertrain [15]. The ability of real-time implementation accentuates

ECMS as a strong contender for optimal utilitarian control strategy securing charge

sustainability along with minimizing fuel consumption.

The selection of powertrain operating mode (among the four feasible modes) through

a two-stage optimization process, as given in Eq.8.6.1, is the conspicuous identity of

the multi-mode ECMS. Such a selection process is supervised by the comparison of
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equivalent operating cost among all the four modes at every time-step. The equiva-

lent cost structure used by multi-mode ECMS is comprised of two components, i.e.,

the actual chemical energy emanated from combustible fuel and equivalent chemical

energy representing the electrical energy from HVB.

[uoptmode(t)]#i = arg min
u(k)mode#i

[(J)equi.], t = 1, ..., Tf (8.6.1a)

[uoptmode(t)] = arg min
umode#i(t)

[(J)equi.], t = 1, ..., Tf (8.6.1b)

(J)equi. = ṁfuel × (LHV )fuel + λ× Powbatt. (8.6.2)

The equivalent cost structure is given in Eq.8.6.2, where ṁfuel is the mass flow rate

of combustible in (gm/sec), LHV is the lower heating value of the fuel in (kJ/gm), λ

is the EF between stored electrical energy in HVB and stored chemical energy in the

fuel, and ucontrol represents the set of control actions corresponding to a particular

mode.

The control actions corresponding to each of the four modes are delineated in Tab.8.2.

A utilitarian aspect in the form of drivability improvement can be augmented in the

list of objectives to make the multi-mode ECMS apposite for practical implementa-

tion. Multi-mode ECMS has a propensity to change the powertrain mode too often,

and it can quickly deteriorate the drivability, i.e., driver’s perception about driving

comfort. Hence, it is highly advised to add a mode-shift penalty in the cost structure

to prevent multi-mode ECMS from yielding excessive mode-shifts. Inspired by the

work presented in [142], the original equivalent cost structure, given in Eq.8.6.2, has
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been modified as follows:

(J)modif.equi = ṁfuel ∗ (LHV ) + λ ∗ Powbatt. + ν ∗ Pshift (8.6.3)

, where

Pshiftmode = µ1 ∗
1

2
Jice[(ω

t+1
ice )2 − (ωtice)

2]

+ µ2 ∗
1

2
Jgen[(ωt+1

gen )2 − (ωtgen)2]

+ µ2 ∗
1

2
Jmot[(ω

t+1
mot)

2 − (ωtmot)
2]

ν is a tuning factor, and a value of 0.03 is selected for this article. Different values have

been assigned to tuning factors µ1, and µ2 corresponding to different types of mode-

shift and the assigned values are tabulated in Tab.8.4. Traditional ECMS generates

the mode-shift schedule based only on the steady-state mode operations’ powertrain

dynamics and not on the powertrain dynamics during transient mode-shift events. In

this article, the authors have proffered an ECMS, assisted by the coordinated control,

for a real-time EMS that yields optimal mode schedule while considering transients

and feasibility of the mode-shift events. It has been reiterated on copious occasions in

literature that EF plays an essential role in the conservation of charge sustainability

and optimality of the yielded control from ECMS. The value of EF (λ) strictly governs

the selection of mode at any given time-step. A constant optimal value of EF for the

entire drive cycle can be obtained through trial-and-error method or iteratively, given

that the drive cycle is known in advance. Since this article elucidates the effect of

coordinated control on optimal mode selection of multi-mode ECMS, and since it does

not focus on proffering a disruptive derivative of ECMS yielding optimal performance
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Figure 8.14: Implementation of coordinated control in a multi-mode ePT where
mode scheduling is governed by ECMS

for unknown drive cycles, the authors are privileged to access the prior knowledge of

the drive cycle.

8.7 Simulation Results and Discussion

In order to verify the effectiveness of the proposed mode scheduling control, assisted

by coordinated control, a vehicle simulation model is developed in Simulink (Math-

works®) platform, as depicted in Fig.8.14. The specifications of the vehicle compo-

nents and powertrain components used in the OSP are furnished in Tab.4.1.

Validation of the vehicle plant model is an integral part of the optimal mode-scheduling

control development. Since the powertrain topology is generated from ATST and no

hardware prototype is available for physical testing, experimental validation is out

of scope, at least for the current article. Now, the comprehensive objective of this

simulation framework should be reiterated here. The online simulation framework’s

objective is to certify whether the new optimal topology candidates should be del-

egated to the next level of attestation (i.e. HIL) before final approval for hardware

prototyping. Now, since the framework presented here itself chronologically appears
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Figure 8.15: Trajectories of major components’ energy and major losses in 1st
All-electric mode (Mode#3) under WLTC drive cycle. The total energy of HVB

and the total losses incurred by the HVB, generator, motor, transmission, and road
load at the end of the drive cycle are furnished here to support the energy balance

presented in Tab.8.5.

long before hardware prototyping, experimental validation will not be a justified de-

mand. Hence, there is a lucid necessity of a theoretical validation of the vehicle

plant model conflated with the EMS controller. Energy balance, which is defined as

the summation of all lost energies and supplied energies, has been a well-accredited

method for validating vehicle simulation models. Tab.8.5 furnishes energy balance

for two all-electric modes and one hybrid-electric mode under a standard WLTC. In

ideal modeling condition the last row of Tab.8.5 should be zero for all three modes.

However, errors yielded in all the modes are well under permissible limit which is 0.1%

of total energy spent throughout the drive cycle. Fig.8.15 depicts how the cumulative

energy supplied by the HVB (high-voltage battery) increases throughout the drive

cycle in the 1st all-electric mode. Fig.8.15 also depicts how the cumulative energy
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Figure 8.16: Trajectories of major components’ energy and major losses in 1st
Hybrid-electric mode (Mode#1) under WLTC drive cycle. The total energy

supplied by the ICE and HVB and the total losses incurred by the HVB, generator,
motor, transmission, and road load at the end of the drive cycle are furnished here

to support the energy balance presented in Tab.8.5.

lost in different loss-incurring components increases throughout the drive cycle in the

1st all-electric mode. Road load loss, transmission loss, motor loss, generator loss,

and HVB loss are the significant consumers of energy solely provided by the HVB

output in the 1st all-electric mode, as shown in Eq.8.7.1.

(
ENRGYbattery

)
all−electric mode

= LOSSroadload

+ LOSStransmission + LOSSgenerator

+ LOSSmotor + LOSSbattery(HV B)

(8.7.1)

Fig.8.15 indicates that the total useful energy provided by the HVB at the end of the

drive cycle is 16161 KJ , and the total energies lost through road load loss, transmis-

sion loss, motor loss, generator loss, and HVB loss are 10924 KJ , 1732 KJ , 695 KJ ,
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Figure 8.17: Comparison of fuel consumption and battery SOC trajectories between
inertia-based and steady-state ePT models simulated with same EMS strategy.

1444 KJ , and 559 KJ , respectively.

Similarly, Fig.8.16 supports the energy balance of a hybrid-electric mode, as given

in the 5th column of Tab.8.5 by indicating total useful energies supplied by ICE and

HVB throughout the drive cycle, and by indicating total energies lost through road

load loss, transmission loss, motor loss, generator loss, and HVB loss. The energy

balance in a hybrid-electric mode can be formulated as Eq.8.7.2.

(
ENRGYbattery + ENRGYice

)
hybrid−electric mode

=

LOSSroadload + LOSStransmission

+ LOSSgenerator + LOSSmotor + LOSSbattery(HV B)

(8.7.2)

After the vehicle simulation platform gets validated, it is time to show the result of

the optimal mode schedule obtained through multi-mode ECMS, which is assisted

by coordinated control. A real-world driving mission, as shown in Fig.8.17, has been
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Figure 8.18: Timeseries of vehicle speed, ωice, ωmot, ωgen as a result of ECMS
without any coordinated control.

chosen for demonstrating the effectiveness of the proposed control strategy for multi-

mode ePT.

Before advancing with the demonstration, it is crucial to reiterate the significance

of an inertia-based dynamic model of a multi-mode ePT over a steady-state model.

Unlike the inertia-based ePT model, the steady-state model does not account for

the transient dynamics of the powertrain components, and therefore steady-state

model incurs lesser loss than the inertia-based model [201]. Consequently, the steady-

state model will consume lesser fuel than the inertia-based model when both ePT

models are simulated for the same drive cycle under the same EMS controller, as

shown in Fig.8.17. The fuel consumption is measured under the charge sustainable
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Figure 8.19: Timeseries of vehicle speed, ωice, ωmot, ωgen as a result of ECMS
assisted with partial coordinated control, i.e., during EV-to-HEV and HEV-to-EV

mode shifts.

condition in both models for a fair comparison. The inertia-based dynamic model will

emulate a real HEV’s performances, such as fuel-economy, charge sustainability, and

drivability, more pragmatically than a steady-state model. As far as the screening

and performance evaluation of optimal ePT configurations, which will be prototyped

in the future, is concerned, why wouldn’t someone choose a pragmatic inertia-based

ePT model over the steady-state model?

Although the choice of a pragmatic inertia-based model seems obvious, its implemen-

tation requires a significant improvement of the vehicle plant model and the assistance

of a separate coordinated control for the EMS controller. An EMS control that is

sufficient for a steady-state ePT model will not be sufficient alone for an inertia-based
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ePT model. The coordinated control crucially modifies the EMS control during mode-

shift events so that the inertia-based dynamic ePT model can emulate a real physical

ePT. The articulation of a coordinated control for an ePT highly depends on the

ePT’s configuration. The articulation stages are more straightforward if the ePT

has only one all-electric mode and another hybrid-electric mode of operation. The

articulation stages of the overall coordinated control become convoluted as the ePT

configuration offers multiple all-electric and hybrid-electric modes. The next para-

graphs will delineate the results obtained throughout different stages of coordinated

control implementation for a multi-mode ePT, and will corroborate coordinate con-

trol’s effectiveness in assisting the ECMS controller to choose the correct mode of
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Figure 8.21: Comparison of SOC and fuel consumption trajectories among three
aforementioned cases, i.e., ECMS without coordinated control, ECMS with partial

coordinated control, and ECMS with full coordinated control.

operation.

For a better demonstration, the first 300 seconds of the real-world drive cycle instead

of the entire drive cycle, as shown in Fig.8.17, is simulated separately with three

coordinate control implementation stages.The simulation platform is comprised of

two main parts, i.e., the supervisory controller (EMS), equipped with different stages

of coordinated controlled ECMS, and the vehicle plant model. The inertia-based

powertrain dynamics, as expressed in Eq.8.4.2, Eq.8.4.4, Eq.8.4.6, and Eq.8.4.8 is the

heart of the vehicle plant model, and inputs to the powertrain dynamics model are

the controlled torque signals (τice, τmot, τgen) and mode signal from the supervisory

controller, and outputs of the powertrain dynamics model are the angular acceleration

of ICE, traction motor, generator, and wheel. It is noteworthy to mention that
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Figure 8.22: Time-series of optimal powertrain operating mode yielded by ECMS
assisted by full coordinated control for an entire real-world drive cycle.

the EMS does not cater to the powertrain dynamics model explicitly with angular

speed commands of the aforementioned prime movers but internally computes the

angular speed values. The success of coordinated control depends on whether the

coordinated torque signals can yield the same angular speed of the prime movers that

was internally computed and requested by the EMS. Hence, a comparison between

requested angular speed and simulated angular speed will corroborate the coordinated

control’s efficacy throughout the drive cycle.

At the first stage, the vehicle plant model has been actuated with control inputs

spewed directly from ECMS, i.e., without assistance from coordinated control, to

observe the plant model’s responses in terms of νvehicle, ωice, ωmot, and ωgen. The

control inputs and plant responses are depicted in Fig.8.18. The 2nd row of Fig.8.18

shows that ECMS commands for a mode-shift from 1st all-electric (1st EV) to 1st

hybrid-electric (1st HEV) at 22.4th second, and ECMS commands for an 2nd HEV to

1st EV mode-shift at 24th second. Again there is a command of an 1st EV to 1st HEV

mode-shift at 29.4th second and 1st HEV to 2nd EV mode-shift at 38.4th second. The

3rd row of Fig.8.18 shows the exact resemblance between τiceECMS−without−coordinated and
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Figure 8.23: Comparison between time-series of τiceoptim. yielded by “full coordinated
control assisted ECMS” and ECMS only for an entire real-world drive cycle.

τiceECMS−only . The 5th and 7th rows of Fig.8.18 show same trend in terms of exact re-

semblance of τmotECMS−without−coordinated with τmotECMS−only and τgenECMS−without−coordinated

with τgenECMS−only , respectively. The inertia-based ePT model’s responses to the

torques mentioned above are given in the 1st, 4th, 6th, and 8th rows of Fig.8.18. It

is lucid that the νvehicle perfectly correlates with the reference drive cycle despite the

absence of coordinated control. However, ωiceplant barely reaches 5 rad/sec and could

not follow the ωicerqst due to the absence of any coordinated control during 1stEV to 1st

HEV mode-shift. Similarly, ωmotplant and ωgenplant could not follow ωmotrqst and ωgenrqst ,

respectively during the all-electric to hybrid-electric mode-shifts and vice-versa. The

mismatch between requested speed and plant speed for both traction motor and gen-

erator persisted even after the termination of 1st HEV mode at 38.4th second and

throughout the 2nd EV mode’s operation until the vehicle’s speed is reduced to zero

around 150th second. The reason of such mismatch is the absence of coordinated

control during HEV-to-EV mode-shift. There is no mismatch between ωgenplant and
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ωgenrqst after 150th second. However, there are mismatches between ωmotplant and

ωmotrqst despite all-electric operation. At 260th second, there is a command for 2nd

EV to 1st EV mode-shift while the vehicle speed is 4 m/sec. Since there is no coor-

dinated control during EV-to-EV mode-shifts, ωmotplant could not correlate with the

ωmotrqst if vehicle speed is greater than zero during EV-to-EV shifts.

At the second stage, ECMS is assisted by the coordinated control during EV-to-HEV

and HEV-to-EV mode-shifts. The controlled torques from coordinated-ECMS and

the responses from the vehicle plant model are shown in Fig.8.19. 3rd, 5th, 7th rows

of the Fig.8.19 depict a lucid change in the trajectories of τice, τmot, and τgen. The

coordinated control enables the generator to churn some extra torque, which helps

the ICE surpass its idle speed. Hence, the coordinated control should adjust the

motor torque during the ICE cranking phase to ensure appropriate torque supply

at the transmission output. The 4th row of Fig.8.19 corroborates the rudimentary

coordinated control’s effectiveness through a decent correlation between ωiceplant and

ωicerqst . Compared to Fig.8.18, Fig.8.19 shows partial, but not complete, improvement

in correlation between ωgenplant and ωgenrqst due to rudimentary coordinated control.

Slight mismatch yielded during 1st HEV to 2nd EV mode-shift persists throughout

the 2nd EV mode. Absence of coordinated control during HEV-to-HEV mode-shift

can be held accountable for the abovementioned mismatch and the mismatch between

ωmotplant and ωmotrqst .

Finally, the performance of an ECMS with full-fledged coordinated control is pre-

sented in Fig.8.20. The final version of coordinated control is well equipped to tackle

all types, i.e., EV-to-HEV, HEV-to-EV, HEV-to-HEV, and EV-to-EV, mode-shift dy-

namics, and to yield praiseworthy correlation between the requested speed and plant
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speed for all the prime-movers. It is noteworthy to mention that the mode profile has

changed significantly after employing the final version of coordinated control, assist-

ing the optimal ECMS to decide optimal mode-shift events. ECMS’s mode-selection

algorithm has a critical reliance on the feedback signals of the prime-movers. Hence,

the accuracy of the feedback signals plays a crucial role in the mode-selection algo-

rithm. The final version of coordinated control’s effectiveness can be further unveiled

by comparing fuel consumption and HVB’s SOC trajectory among all three versions

of coordinated control, as shown in Fig.8.21. Fig.8.21 corroborates the impact of co-

ordinated control’s articulation on the accuracy of a multi-mode ePT’s performance

evaluation. It is also noteworthy to mention that vehicle’s speed is very well correlated

regardless of the version of coordinated control. Hence, a coordinated control’s compe-

tency should be judged based on its ability to correlate all prime mover’s speed instead

of just vehicle’s speed. An incompetent coordinated control will eventually evaluate

the performance of a multi-mode ePT inaccurately, which will lead to misidentifica-

tion of optimal configurations with multi-mode ePT. The result section culminates

with demonstrating the performance of the ECMS assisted by coordinated control for

an entire drive cycle. A constant value of 2.695 is used for the EF for satisfying charge

sustenance.The optimal mode profile, as shown in Fig.8.22, has been found through

an iterative process that is dedicated to finding a constant EF sustaining the battery

SOC. The value of EF predominantly governs the mode selection inside the ECMS-

based supervisory controller, whereas coordinated control modifies the control torque

signals during mode-shift events. Fig.8.23, Fig.8.24, and Fig.8.26 depict the effect of

coordinated control on conventional ECMS during mode-shift events. Catered with

these coordinated torque signals, the powertrain dynamics model emits the simulated
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Figure 8.25: Battery SOC trajectory yielded with ECMS assisted by full
coordinated control for an entire real-world drive cycle.

ωice, ωgen, ωmot, and ωwheel. Fig.8.27, Fig.8.28, and Fig.8.29 depict that the coordi-

nated control assists the ICE, generator, and traction motor respectively in achieving

the requested speeds throughout the drive cycle, especially during the mode shifts.

Although the effectiveness of coordinated control has already been corroborated with

the comparative study among Fig.8.18, Fig.8.19, and Fig.8.20, Figs.8.27,8.28, and

8.29 are furnished to showcased performance of coordinated ECMS throughout a

complete drive cycle.
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8.8 Summary

This chapter proffers four essential contributions in the domain of multi-mode electri-

fied powertrain. It streamlines the derivation of inertia-based dynamic equations for

all the feasible modes facilitated by the powertrain topology. The dynamics associ-

ated with each of the feasible mode-shift events are modeled here. It corroborates the

incumbency of a coordinated control for obtaining an optimal mode schedule. Finally,
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Figure 8.28: Correlation between generator speeds yielded from vehicle plant catered
with “full coordinated control assisted ECMS” and the speed requested by EMS.
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Figure 8.29: Correlation between traction motor speeds yielded from vehicle plant
catered with “full coordinated control assisted ECMS” and the speed requested by

EMS.

the article proposes the effectiveness of coordinated control in the powertrain config-

uration’s correct performance evaluation. At the end, an equivalent consumption

minimization strategy-based mode-scheduling strategy, assisted by the coordinated

control is applied in the energy management system for obtaining optimal mode pro-

file for a real-world drive cycle for corroborating the efficacy of the coordinated control

during all feasible mode-shift events.

Considering the fact that the article focuses on system level performance evaluation,

the coordinated control is not articulated for eradicating high-frequency ICE ripple

torque, instead, it is designed to tackle mean-valued ICE resistance torque during
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ICE cranking and fuel cut-off. The powertrain dynamics has been numerically vali-

dated through an Energy balance method instead of an experimental validation due to

any prototype or commercial vehicle’s unavailability with the concerned multi-mode

electrified powertrain. However, experimental validation is planned for future work.

This article will distinctively stand out from the literature on coordinated control of

multi-mode electrified powertrain based on its contribution to system level assessment

rather than component level.

The entire online simulation framework presented in this article can be institutional-

ized as the first step of the performance validation for a new topology of multi-mode

electrified powertrain. The article paves the way for a new research direction where

coordinated control can be applied simultaneously to the system level to affect the

mode scheduling strategy and the component level to neutralize the high-frequency

perturbation generated from the ICE ripple torque.
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Table 8.1: Specification of the vehicle and cardinal components

Component Parameter Value

Vehicle Mass (m) 2510 kg

Rolling resistance

co-efficient
f1 = 0.006, f2 = 0.0001

Vehicle inertia (Jout) 298.08 kg-m2

Wheel radius (rwh) 0.3548 m

Vehicle height 1.75 m

Vehicle width 1.48 m

Engine Inertia (Jice) 0.128 kg-m2, 10.6

Compression ratio

Max. speed (ωicemax
) 5500 RPM

Max. torque (τicemax) 310 Nm at 4100 rpm

Volume displacement 4 Cyl., 2.0152 liters

Max. power 175 kWatt at 5000 rpm

Traction motor Inertia (Jmot) 0.0028 kg-m2,

Max. speed, Max. Volt. 12500 RPM, 414 V

Max. torque (τmotmax
) 410 Nm at [0:2240]

Max. power 96 kWatt at 2240 rpm

Generator Inertia (Jgen) 0.0024 kg-m2

Max. speed, Max. Volt. 12500 RPM, 350 V

Max. torque (τgenmax
) 162.5 at [0:4167] rpm

Max. power 70 kWatt at 4167 rpm

Battery Max. capacity 43 Ah

Max. discharge power 60 kWatt

Max. recharge power 40 kWatt

No. of cells in series 100

Max. voltage 414 V

Table 8.2: Description of modes facilitated by the new electrified powertrain
topology

Mode Clutch#1 Clutch#2 Clutch#3 DoF (ucontrol)

Mode1 Engaged Disengaged Disengaged 2 (τice, ωgen)

Mode2 Engaged Disengaged Engaged 1 (τmot)

Mode3 Disengaged Engaged Disengaged 2 (τice, ωgen)

Mode4 Disengaged Engaged Engaged 1 (τmot)
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Table 8.3: Required clutch engagement and disengagement for different mode-shifts
(infeasible mode-shifts are shown in red color)

Past

mode

Current

mode 1st HEV 1st EV 2nd HEV 2nd EV

1st HEV No shift
Immed. fuel-cut,

CL3 engage after ωice = 0

(CL1 diseng.,

+ CL2 engag.)

Immed. fuel-cut; (CL2 engag. +

CL1 diseng.); CL3 enga.

after ωice = 0

1st EV CL3 disengag. No shift

(CL3 diseng.

+ CL2 enga.

+ CL1 diseng.)

(CL1 diseng. + CL2 enga.)

2nd HEV
(CL2 diseng.

+ CL1 enga.)

Immed. fuel-cut; (CL2 diseng.

+ CL1 enga.); CL3 enga.

after ωice = 0

No shift
Immed. fuel-cut;

CL3 enga. after ωice = 0

2nd EV

(CL3 diseng.

+ CL1 enga.

+ CL2 diseng.)

(CL2 diseng. + CL1 enga.)
Only CL3

diseng.)
No shift

Table 8.4: Tuning factor for mode-shift penalty term

Past

mode

Current

mode Fully electric Hybrid electric

Fully electric µ1 = 0, µ2 = 1 µ1 = 0.1, µ2 = 0.5

Hybrid electric µ1 = 0.1, µ2 = 0.5 µ1 = 1, µ2 = 1
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Table 8.5: Energy balance as measure of validating plant model

Energy

balance
Powertrain Mode

1st All

-electric

2nd All

-electric

Hybrid

-electric

Cumulative

mechanical

and electrical

losses

Generator loss (KJ) 1444 1256 873

Motor loss (KJ) 695 891 760

Auxiliary loss (KJ) 864 864 864

Fric. brake loss (KJ) 0 0 0

Road load loss (KJ) 10924 10880 10921

Transmission

loss (KJ)
1732 1744 1994

Battery loss (KJ) 559 586 148

ICE

statistics

Total fuel consu-

-mption (grams)
0 0 1019

Total mechanical

energy supplied

by ICE (KJ)

0 0 15878

Battery

statistics

SOC at the start% 60 60 60

SOC at the end% 34.87 35.56 60.52

Extra energy stored

in battery (KJ)
-16161 -16155 342

Sum of energy loss (KJ) 16218 16221 15560

Abs|ICE mechanical energy-sum

of energy loss - extra energy

stored in battery| (KJ)

57 66 25
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9.1 Conclusions

This dissertation has fueled the research on powertrain electrification in two distinct

directions, i.e., the pursuit for a state-of-the-art real-time implementable near-optimal

control strategy for the energy management system of a multi-mode electrified pow-

ertrain and buttressing the pursuit for a novel multi-mode powertrain configurations

with the development of an online simulation platform for rapidly evaluating their

performance. The dissertation starts with delineating the fundamentals of power-

train electrification and the energy management system, followed by highlighting the

existing literature on energy management strategies and elaborating the implemen-

tation of a well-accredited energy management strategy. The dissertation culminates

in finding that applying an Asynchronous actor-critic agent would be the future of

real-time optimal control of energy management systems.

It has been corroborated in online simulation platform that if properly articulated, an

Asynchronous advantage actor-critic-based agent can overwhelm the well-accredited

equivalent consumption minimization strategy in real-world driving conditions with

no prior knowledge of the drive cycle ahead. Although pre-collected driving data were

employed to train the actor-critic agent in the online simulation platform, the pro-

posed framework demonstrates that the agent’s “on-the-fly” training is possible with

just an onboard multi-core CPU and a Markov chain model. The training time is

inversely proportional to the number of CPU core used for training. The demonstra-

tion leaves a perfect avenue for further study on multiple aspects of the actor-critic

agent, i.e., a parametric study and sensitivity analysis on various hyper-parameters,

a few of which have been considered in this dissertation, fine-tuning the implementa-

tion before its software-in-the-loop and subsequently hardware-in-the-loop validation.
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The dissertation meticulously documented the differences of reinforcement learning

implementations between simple power-split and multi-mode electrified powertrains

and prescribed an ingenious method of conflation between reinforcement learning

and equivalent consumption minimization strategy for circumventing the hindrances

posed by a multi-mode electrified powertrain.

However, there are a few aspects, such as reducing emission while minimizing fuel

consumption, which has not been considered in the current research. Hence, the

current EMS cannot be deployed in a real HEV immediately. To deploy the DRL

as an EMS policy for a real HEV, its immediate cost function must include a term

penalizing the tailpipe emission. Moreover, a näıve DRL cannot be deployed in a real

HEV, although it is inevitable that the DRL’s performance will improve over time,

and such constraint is conducive for HEV’s safe operation. It is customary to train

the DRL encompassing rudimentary objectives on standard federal drive cycles before

deploying on the road. Once the DRL is on the road, it will keep on learning from

the most contemporary drive cycles and make itself near-optimal for any unknown

drive cycles belonging to the same contemporary driving trend.

While articulating a near-optimal energy management strategy for a multi-mode elec-

trified powertrain, an urge to model the powertrain dynamics during mode shift events

has been sensed. Such an urge fueled the research towards the second contribution

of this dissertation, i.e., articulating a low-frequency coordinated control for grap-

pling torque fluctuation at the transmission output during mode shift events. It is

noteworthy to mention that the investigation has also been ignited from a previous

research on “Search for novel configurations of multi-mode powertrains”. The selec-

tion of a few novel powertrain configurations through a screening process of copious
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candidates accommodates a performance evaluation step, exactly where the necessity

of high-fidelity powertrain model knocks the door. It has been corroborated here

that a coordinated control is strictly necessary for a high-fidelity powertrain model

to emulate a real physical powertrain. Following the same path as its predecessor,

this contribution also opens new avenue for various directions such as impact of high-

frequency coordinated control on mode scheduling strategy, detailed clutch dynamics

during all types of mode shift events, and impact of high-fidelity control oriented

component models on the coordinated control.

9.2 Future Work

The dissertation reveals only the tip of an ice-berg. A multitude of commendable

research topics on powertrain electrification are awaiting to be ignited as a derivative

of this dissertation. Those research topics are enumerated as follows:

1. The mobility of the future is going to be more and more smart and sustainable.

EMS has already been coupled with the connected vehicle technology. EMS’s

responsibility is to optimize the production and distribution of on-board gener-

ated power for a given drive cycle. EMS does not have any role in optimizing

the vehicle’s speed ahead. Connected vehicle technology helps to optimize the

vehicle’s speed for the short-term future in real-time. Hence, the EMS aug-

mented with connected vehicle technology will provide more prudent solution

to the overall energy management problem in real-time.

2. As described in the 3rd chapter, the development phases of a utilitarian energy

management system starts with the mathematical conceptualization and ends
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with on-road validation. The dissertation starts with the mathematical concep-

tualization but ends with only model-in-the-loop simulation. Validation of the

energy management strategies articulated in various chapters need to be vali-

dated in hardware-in-the-loop simulation followed by dynamometer test. The

DRL strategy is expected to work perfectly if the DRL does not need to be

trained online in the HIL. A trained DRL from the model-in-the-loop simula-

tion can be imported into the HIL simulation and tested for its adaptability.

The strategy needs to be implemented through some modification if it needs to

be trained online in a HIL bench.

3. To materialize the strategies on an embedded system from a model-in-the-loop

platform several apposite changes must be implemented in the real-time opti-

mization and in the plant model. High-frequency controller must be designed

for high-fidelity control-oriented plant model.

4. The internal combustion engine is not going to be superseded by electric motors

any sooner than 20 years down the line. Hence, hybrid electric vehicles requires

more attention from scholars. Advanced hybrid-specific engine technologies and

controls must be incorporated in the future research plan. The first step towards

that would be development of high-fidelity control oriented models of internal

combustion engines and validation of those models with engine-dynamometer

data.

5. The literature is inundated with copious number of model-in-the-loop con-

trollers’ implementation, whose validity is often questioned by other scholars.

Chassis dynamometer test of a certain application vehicle with a certain energy
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management strategy and powertrain configuration will facilitate the scholars

with the opportunity of validating their online simulation-based controllers.

Such test results will also assist the scholars to improve their vehicle plant

model.

6. Since, there is no exclusive rule-of-thumb for selecting the number of hidden

layers and neurons per hidden layer for DRL, a sensitivity analysis would be

ideal to analyze the effect of DNN’s architecture on the convergence performance

of the DRL.

7. Since most OEMs are moving towards plug-in HEV rather than just HEV, future

work should be focused on articulating EMS to minimize fuel consumption for

the plug-in HEVs. Plug-in HEVs leverage the bigger battery capacity and

external charging option, and hence the EMS of a plug-in HEV can let the

battery deplete up to the lower limit without satisfying the charge sustainability

criteria. However, the EMS of a plug-in HEV should not let the battery deplete

below the lower limit until the next charging station. Hence, the distance from

the next charging station is a piece of important state information required for

articulating the DRL-based EMS.

8. In the current research, A3C is prioritized over A2C, i.e., synchronous advantage

actor-critic, only due to its convergence rapidity. However, literature corrob-

orates the necessity of more computational power for the implementation of

A3C compared to A2C. Scholars are well acquainted with the fact that onboard

microprocessors always face the dearth of computational power, and the au-

tomotive industry always tries to optimize the balance between computational
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power and performance. Looking from the actual vehicular implementation’s

perspective, a comparative analysis on the required computational power among

different DRL policies would be noteworthy in the future.

9. As far as the energy management system of a real HEV in the real-world driving

scenario is concerned, it would be unfair to denote it as an ideal Markov decision

process (MDP) since there could be many hidden states of the MDP which

might or might not conform with the Markovian property, i.e., the immediate

next state might or might not be related only to the current state. In non-MDP

or partially observable MDP, the agent can get a different next state or reward

if the same action is applied in the same state but in a different time-step.

Another challenge in real-world driving can engender from the inter-relation

between states from different time-steps. The dependency of the current state

on a previous state makes the job difficult for the DRL. A recurrent neural

network such as long-short term memory becomes a wise option for the network

in such a case.

10. All the collected, generated, and testing drive cycles are real-world drive cycles.

However, they are not explicitly labeled as aggressive drive cycles. Future work

would be focused on testing the DRL’s performance in a standard aggressive

drive cycle such as US06.

11. The training of a DRL-based policy employed in the EMS of a specific HEV can

be time-consuming. If the designer intends to articulate a DRL-based EMS for

another HEV with different specifications and powertrain architecture, would

the designer have to start training the new DRL from scratch? The answer
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is no. With the advent of Transfer learning, the learned parameters from the

former HEV’s DRL can be imported to the newer HEV’s DRL swiftly, and the

latest learning process can be expedited significantly. The efficacy of Transfer

learning will be expounded in future work.
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Efficiency and fuel contour maps of

a few ICE models, SOC-OCV and

efficiency contour map of the

battery used in this dissertation
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Figure A.1: Fuel map of a 2 Liter spark-ignition ICE used in the multi-mode
electrified powertrain’s simulation in this dissertation. The ICE’s data is obtained

from U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty
Powertrain and Hybrid Analysis (ALPHA) tool [202]. This ICE data have been

used for the articulation of reinforcement learning agent’s simulation.
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Figure A.2: Efficiency map of a 2 Liter spark-ignition ICE used in the multi-mode
electrified powertrain’s simulation in this dissertation. The ICE’s data is obtained

from U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty
Powertrain and Hybrid Analysis (ALPHA) tool [202]. This ICE data have been

used for the articulation of reinforcement learning agent’s simulation.
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Figure A.3: Some extra Fuel map of another 2 Liter spark-ignition ICE. The ICE’s
data is obtained from U.S. Environmental Protection Agency’s (EPA’s) Advanced

Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool [202].
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Figure A.4: Some extra efficiency map of another 2 Liter spark-ignition ICE. The
ICE’s data is obtained from U.S. Environmental Protection Agency’s (EPA’s)
Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool [202].
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Figure A.5: Some extra Fuel map of another 2.7 Liter spark-ignition ICE. The
ICE’s data is obtained from U.S. Environmental Protection Agency’s (EPA’s)
Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool [202].
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Figure A.6: Some extra efficiency map of another 2.7 Liter spark-ignition ICE. The
ICE’s data is obtained from U.S. Environmental Protection Agency’s (EPA’s)
Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool [202].
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Figure A.7: SOC-OCV relationship of a Panasonic battery cell used in the
multi-mode electrified vehicle used for online simulation.
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Figure A.8: Efficiency of a Panasonic battery cell used in the multi-mode electrified
vehicle used for online simulation.
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offline simulation in this

dissertation
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Algorithm 4: Detailed Pseudo-code for Q-learning based training of a re-
inforcement learning agent

Begin
1) Vehicle Parameters Initialization : Road load co−
efficients, vehiclemass, vehicleinertia, wheelradius, Gear ratiofinal drive
Air density (ρair), vehicleheight, vehiclewidth, Aero drag coefficient

2) Load Drive Cycles
3) Power-demand calculation for each of the above drive cycles:
PowerDemand =
powerDmndCals (vel, acc, grade, vehiclemass, vehicleinertia, wheelradius
, Road load co− efficients, FDR, height, width, aeroDragCoeff)
4) Discretizing power demand (1st state variable) in nonlinear
way to discretize based on its histogram distribution:
Statepowerindex = nonlinspace(PowerDemand)
Statepowerindex ∈ {Statepower1 , Statepower1 ..., StatepowerN}
4) Discretizing SOC (2nd state variable) in a linear way:
StateSOCindex ∈ {0.1 : (0.8/40) : 0.9}

5) Initializing state vector. It is a cell vector having a size of(
SizeSOCindex × Sizepowerindex , 1

)
:

Sizestate = length(SizeSOCindex)× length(Sizepowerindex)
State = cell(Sizestate, 1)
6) Completion of State vector: for ii = 1 : 1 : StateSOCindex do

for jj = 1 : 1 : Statepowerindex do
position = (ii− 1) ∗ length(Statepowerindex) + jj;
State{position, 1} = [StateSOCindex(ii), Statepowerindex(jj)];
State{position, 2} = single([ii, jj]);

end

end
7) Discretization of Action variables and Initialization of Action
vector: Choose the appropriate action variables and discretize them
uniformly. Initialize Action vector by following step 5).

While articulating Action vector, feasibility of two or more action
variable’s combination should be considered judiciously.

8) Construction of Immediate Cost matrix (very important
matrix):
SizeImmediate Cost Matrix = length(position)× length(Action vector)
Immediate Cost Matrix = inf × ones(position, length(Action vector));
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for mm = 1 : 1 : position do
for nn = 1 : 1 : length(Action vector) do

Immediate Cost Matrix(mm,nn) =
Immediatecost(statemm, actionnn, other inputs);

, where Immediatecost is a function defining the immediate cost
corresponding to certain combination of action index and state
index.

9) Q-learning: An off-policy TD control algorithm (Refer to
Reinforcement Learning: An Introduction):

9.a) Initialize the Q-matrix :
q = randi(500, size(Immediate Cost Matrix));
for mm = 1 : 1 : position do

for nn = 1 : 1 : length(Action vector) do
if Immediate Cost Matrix(mm,nn) ==∞ then

q(mm,nn) =∞;

9.b) Set Discount Factor : γ = 0.9
9.c) Set Learning Rate: α = 0.2
9.d) Set maximum number of iterations : Max.Iteration = 2000
9.e) Set Initial value of Battery SOC : SOCinitial = 50%
Main section of Q-learning: CS = currentstateNS = nextstate
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for i=1:Max.Iteration do
SOCCS = SOCinitial; Calculate PowerDemandCS
for t = 1 : 1 : length(drive cycle) do

1) With maximum likelyhood find the index of present SOC and
power demand. Find the Stateindex of CS from the state vector.

2) CS = (indxSOCCS − 1) ∗ length(Statepowerindex) + indxpowerCS ; 3)
Calculate OCV, internal resistance of the battery at the SOC of
CS.

4) Selection of action for the current state (CS)
temp = random number between 0 to 1 (temp ∈ [0, 1])

Implementing ε-greedy policy

if temp < 0.1 then
Action will be selected randomly from the V ectorAction
else

Action will be selected by greedy policy
ActionCS = arg minActionkk ‖(q(CS, :))‖

5) Control variables for the current state are selected based on
ActionCS

6) Once, the control variables are selected, next state value can be
calculated using the state dynamics equation.

7) Calculate the next SOC value based on the battery power
demand:
SOCNS = SOCCS −
ddtSOC(BattPow, OCV, Intrnl Resi.batt,Max. Capa.batt);

Calculate PowerDemandNS From pre-calculated values of Powerdemand
8) With maximum likelyhood find the index of present SOC and
power demand. Find the Stateindex of NS from the state vector.

9) NS = (indxSOCNS − 1) ∗ length(Statepowerindex) + indxpowerNS ;
10) Selection of action for the next state (NS): Same approach will
be followed as step (4).

11) Update q-values as per Bellman’s equation:(Important step)
q(CS,ActionCS) =

q(CS,ActionCS)+α∗
(
Immediate Cost Matrix(CS,ActionCS)+

γ × qmin − q(CS,ActionCS)
)

;

Check whether the episode has completed
Set current state as next state:
PowerDemandCS = PowerDemandNS ; SOCCS = SOCNS;
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[47] F. Schmalfuß, K. Mühl, and J. F. Krems, “Direct experience with battery elec-

tric vehicles (bevs) matters when evaluating vehicle attributes, attitude and

purchase intention,” Transportation Research Part F: Traffic Psychology and

Behaviour, vol. 46, pp. 47 – 69, 2017.

[48] R. Halbright and M. Dunn, “Case study: The toyota prius,”

Managerial Marketing, 2010, [Accessed: 2020-01-02]. [Online].

Available: https://scalar.usc.edu/works/sustainability-bart-portfolio/media/

Prius Marketing Case Study.pdf

[49] Plug-in hybrid electric vehicle sales in u.s. by model, 1999 to 2017. [Accessed:

2020-01-05]. [Online]. Available: https://afdc.energy.gov/data/10576

[50] M. M. Sabri, K. Danapalasingam, and M. Rahmat, “A review on hybrid electric

vehicles architecture and energy management strategies,” Renew. Sust. Energ.

Rev., vol. 53, pp. 1433 – 1442, 2016.

[51] Y. Gurkaynak, A. Khaligh, and A. Emadi, “State of the art power management

algorithms for hybrid electric vehicles,” in 2009 IEEE Veh. Pow. Propuls. Conf.,

Sep. 2009, pp. 388–394.

308

https://scalar.usc.edu/works/sustainability-bart-portfolio/media/Prius_Marketing_Case_Study.pdf
https://scalar.usc.edu/works/sustainability-bart-portfolio/media/Prius_Marketing_Case_Study.pdf
https://afdc.energy.gov/data/10576


Ph.D. Thesis – Atriya Biswas McMaster University – ME

[52] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies

for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1,

pp. 111–122, Jan. 2011.
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[100] L. V. Pérez, G. R. Bossio, D. Moitre, and G. O. Garćıa, “Optimization of
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