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PREFACE

Chapier 0 of this thesis is a preliminary chafer in Which 

aLl the basic concepts and theorems Which are needed for the undw- 

standing of succeeding chafers are collected. In particular the 

notions of a Boolean lattice, Boolean space, Boolean ring, Boolean 

seird-group, categories, functors and various types of proper homo- 

moirphisms are intrcdtaced and their fundanental properties are 

studied.

In Chapier I we note the topological properties of the ultra

filter space o^ a Boolean lattice and establish the min result, 

namely, the category of Boolean lattices and proper Boolean lattice 

hommojtfiisms is equivalent to the category of Boolean spaces and 

proper continuous mps.

In Copper II we establish the relation between Boolean 

lattices and Boolean rings and prove that the category of Boolean 

lattices and proper Boolean lattice homomophisms is equivalent to 

the category of Boolean rirgs and proper ring hommpphsms.

Chapter III is devoted to using the notion of a Boolean semi

group to arrive at an alternative chtMTacterization of a Boolean 

lattice.
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CHAPTER 0.

PRELIMINARY.

Introduction* In this chafer we collect together an the baeio

theorems and definitions Wiioh are to be as aimed later. In particular 

we introduce the notions of a Bcojlean lattice, Boolean ring and Bcwlean 

space and discuss some of their fundametal projxeties.

1. Boolean Lattices.

Let B be a lattice.

Deeinition 1: B is said to be relatively complemented if given a<x<b, 

y edLsts W.th xAy “ a, xvy = b.

Deinition 2t B is called distributive if one of the iollcwing eqiivalent 

laws hold*

(1) xA(y x/s) « (x/\y) v(xds) for any x, y, s in B.

(2) xy (yAx) “ (xvy)A (xyz) for any x, y, s in B.

We combine the above definitions to introduce the notion of a

Boolean lattice.

D^m-tion 3: A relatively complemented distributive lattice W.th a 

zero element is called a Brolean lattice.

The fol 1 nwi ng propoition shows that the dLstributivity con

dition in a Bolean lattice implies that relative complements are 

unique.

Propoition 1* In a Bojlean lattice B relative oxmplnnents are unique. 

1.



2.

Pof Let 0<x<y. Suppose there eadsts u, v Wth uax “ vax - 0, 

uyx - vvx » y. Then u « uA (x vu) « ua (xVv) • (uax)v(vau) - 

(vax)v (vAu) - vA(xVu) - v\(xVv) - v. Hence u « v and this 

complittee the proof* Thue in a BcxOLean lattice we have for 0<x<y, 

an unique z eWsts With xaz • 0, xvz • y* 

Notttion: We Wil denote this z by y~x and read it as the relative 

complement of x in y*

Remark: In case a Boolean lattice B has an unit e then the unique 

element e~x for any x in B is called the complement of x in B and is 

denOted by • H«nce in every Boolean .attiice With unit each Wrasnt 

possesses an unique coppPieppnt* In general a lattice L Wth o, e is 

caLL^ed comtfLem«ted if for any x in L an element y aWsts With XAy “ 0, 

xvy - e* Thus every Boolean lattice Wth urUt is in particular comple

mented. On the other hand any distributive complemented lattice is 

dearly seen to be a relatively comppLemtfited distributive lattice Wth 

o, e, that is, a Boolean lattice Wth unt;.

Daefiiition 4: Let B be a Boolean lattice. A non empty subset F of B 

is called a filter if (1) a, b£F imoPies aAbGF (2) a£F and b^a 

for any b in B implies b&F.

A filter F in B is called proper if F is distinct from B. It 

is clear that a filter F is proper if and only the zero element of B 

does not belong to F. We now proceed to intrcduce the important notion 

of an ultrafLlter.

Defirn.tion 5: Let B be any Boolean lattice and F any filter in B. F is 

called an ultrafilter or a madLmd proper filter if F is proper and if

G is any filter strictly containing F then G " B
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The next proposition shows that every non-trivial 

Boolean lattice has many ultrafilters. Its proof depends 
on the axiom of choice.
Propoition 2; (existence Theorem for Ullrrffltfrs).
or any filter F in a Boolean lattice B there exists an 

ultrafilter U containing F jn fact any filter F in b is 
equal to the intereection of all ultrafilters containing 
F.
Proof : (1) W€t apply 2orn's Leiena. Consid • r t'.e set Jpo. ' 
al], proper niters L j in B with contained in G. I’hen^^
non-empty for F belongs to JP. The seeftis paatially o - 
dered by inclusion and is clearly seen to be inductive. 
hence by Zorn's Lemma there exists maximal elements in
Let U in maxims!. hhen U Ls a proper filt«r contain
ing F. Suppose further that tbe^e exists another proper 
filter V containing J; then V belon l s to/wlicL contra
dicts the aaxirnaaity of U. Thus U is an ultrafilt< r con
taining F. This establishes the first part of the propos
ition.
(ii) Let a F, U an ultrafilt er J where Fis any

filter in ’ . It is then clear that G is a filter an* that
F is any filter in B. Suppose F is strictly contained in 
G. Then there exists an x in G with x not in F. Take 
any y6 F and put .■ .= £ 1/s G > a £ y ~(y a x) j .
for any u in L , uAyf-(yAx) )/=o for if u/(yj ax))=o
then ua y< x. Since F is a filter ua y G F and henc< 6 
wh.cn contradicts the fact that • • Hence uAzJo for 
any u in Ft z in H. Then the filter J •generated by the 
so t is proper. Let V be an ultrafilter containing J.
Then in particular V contains F and yj(yAx)G .
implies that xftV. This connradiots the fact t L.at x& l. 
Thus our supppostion is false and the oroposStlsn is es
tablished.
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Coxresponding to the notion of a filter in a Bwlean lattice 

we now introduce the dual notion of an ideal

Definition 6» Let B be a B<x>lean lattice. A non enjpty set I in B is 

called an ideal if (1) a, b£I im<o.ies aVbei and (2) a6l and b<a 

for any b in B implies b£I.

An ideal I in B is called proper if I is distinct fr<m B. tote 

that the zero element of B belongs to every ideal in B and hence every 

idea I With the operations of B restricted to I forms a Boolean lattice. 

DDefrn.tion 7» An ideaL I in a BxoLean lattice B is called prime if

xaz6I and x^I implies yel. I is called mudLmJL proper if J is any 

ideal strictly containing I then J « B.

Conc«eming prime ideals we note the following pro]p)titLoi. 

Prt]p>tSLtioi 3: An idea P in a Boolean lattice B is prime if and only 

if for any x, y in B, x£ P or y~(x/\y)E P.

Proof* Ci) Suppose P is a prime ideal in B and take any x, y in B. 

C^i^^urly xA(y^XAy) • 06 P. Thus since P ie prime x£P or y^XAyf-P. 

(i:i) Take an ideal P in B WLth the property stated. Let XAy&P and 

suppose x^P. This impies by hyp>t>hesis that y/^XAy £?• Also xAy£P. 

Then since P is an ideal (y^XAy)V (xAy) «y6P. This complLe,es the 

proof.

Using Prtt»tStioi 3 we now establish that the notions of a 

prime ideal and a modmCl ideal in a Bjolean lattice are the same. 

ft’otP)tStioi 4* An ideal P in a Btolean lattice B is prime if and only 

if it is maximal.
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Proof: (1) Let P be a prime ideal in B. Let M be any ideal strictly 

containing P. Then there exists an x£M With x£p. By Propoition 3 

we then have that y~(^XAy)CP for any y£B. But x£M and since M is 

an ideal xa/GM and thus (xAy)V (y~(xAy)) “yGM for any y in B. 

That is M “ B and P is madjml.

(2) Suppose M is a mudirndL ideal in B. Let dAyGM and suppose x^ M . 

Then since M is maximal the ideal generated by B* Then

y<®Yx for »ono since dearty <s/s< myx, mGMj» is the ideal 

generated by This implies y »yA(»Vx) “ (yA m) y (yAx).

Now by hypohesis VA*6M and y/\ mJM since M is an ideal. Thus y£M 

and thia mans M is prime. This complies the proof.

In a similar manner as in Propoition 2 one can establish that 

any proper ideal I is contained in a maxlmd proper ided. Concerning 

ideals in a Boolean lattice one can establish the folloWng propositions 
^opoition 5* Let B be a Boolean lattice and let J denote ^he set of 

dl ideds in B. Tien^ unde set inclusion is a comPpiete distrib^ive 

lattice and in th^s lattice IyJ "cpaV b/ae bGj> and IA J "^a^

/a£I, b£J? ^ere 1, J are any ideals in B.

Proofs Let K “^ayb/aGl, bGJ). Take x, y in K. Then x - ay b, y “ 

cy d dth a, c in I, b, d in J. Thon xv y - (ay c)y (b yd) and thus x)/#y 

is in K. Take any x in K and suppose z<x “ aVb for some z in B. Then 

z "A Ax “ za (ay b) “ (za a)v (zAb) using the fact that B is distribu

tive. But za^CJ since a£l, b£J and they are ideals. Hence

z£K. Thus K is an ideal and K dearly corrttains I, J. Bit on the other 

hand if H is any ideal containing I, J then H mist dearly contain K.
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H«ice K - IvJ. Clearly the intersection of any arbitrary collection 
of ideals in B is again an Weal in B and hence J is a compete Uttiw 

With ne<Ot being intersection. It is clear that the set ^Ab/aCI, b6-J> 

is an ideaL in B contained in I, J and hence in I/)J. On the Other hand 

if then x£I and x£J and hence xax-x belongs tocfaAbbaa-I,

b£ Thus IA J ■■ I J 33 jrAb/aC-I, b CJjp. It remains to stow that

IZA(JvK) • (IW<J)V (IHK) for ary I, J, K. Now (JVK)£(I<]J)V (IA K) 

in any Lattice. But every element aA(bVc) (aCI, be J, c€K) of IA(JvK) 

is an element (a Ab) v(aAc) of (IHJ) V (IHK) Hmce the reverse in- 

equaanty holds and the proof is co^liee.

Ramark: In the above proposition we only required the fact that B be 

distributive and hence it is true in gencerjaL for arbitrary distributive 

lattices•

We now proceed to define the Ration of a Boolean lattice homomo- 

phism. In the fol! cwing B, C W.JLL always denote Boolean lattices. 

jLefinjtion.-8: A napping f s B—C Cis odled a Boolean lattice homonorphisw

if (1) f(xVy) - f(x)Vf(y) for any x, y n B.

(2) f(xAy) • f(x)Af(y) for any x, y nn B.

(3) f(y^-x) - f(y)~f(x) for any x, y with 0<xfy.

f is eaT 1. aH a Boolean Lattice isoraorph-ap Lf in adcULtion f is one to one 

and onto.

We note that in case B, C have units eg, ®C respectively then a 

Boolean lattice horooaopiism f * B—C need not carry eg into «g> that .s, 

f(eg) need not be eg. The following is an exampLe iLLUistratng tills fatt. 

Example: Let g be any non-eapy set and A any non-empty proper subset of E.
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Then ^(E, the pow class of s, set /tclusi^ fores a tooirn

lattice Wth utt 3. Centibar the mapping f: (E—^E) defined by 

f(X) “X/QA for any X<=E Then

(i) f(XHT) -XHAmnA «f(X)/]f(T).

(li) f(Xk/T) • (XUTVIA - (XflA)U(TnA) -f(X)Uf(Y).

(Hi) f(T-X) -TnCfX/nA Wthj^XX^Y.

On the other hand f(T) - f(X) » (TfA)/Q C(XQa) - T/] • f(T-X).
f E

Bonce f is * Boolean lattice homomorttiflm but f^(E)r= E.

We distinguish the class of those Boolean lattice homxx>xpphitutls

Wh.ch carry the units into the utts in the following defititorn. 

^Hin^on 9« Let B, C be Boolean lattices With units eg, Bq respectively. 

A Boolean lattice homomorphism f: B—C is called unitary if /(e^) “ Sq. 

Remark) A uttary Boolean lattice homomopphli■ f carries eomJpLnme^t<s 

int° eom>lLemnt8> that is, /(x1) (f(x))^ for any x !n b wiere X dentes 

the eo^u^.ntlrt^t of x in B. This is so for fCx^) • f(eg~x) • f(^)~f((x) 

• C''-f(x) “ (f(x))1 since f is unitary. On the other hand f f is a join 

and meet preserving nap Wiich carries eo^plenents into eomp.eme^t.s then 

f is an wt/tary Boolean lattice homomoip^ism.

We now introduce a speial class of Boolean lattice homoorhisnis 

Which have the oleasant property that Wist they are restricted to the 

class of Boolean lattices With unit they corrosiond precisely to the 

unitary Boolean lattice horaomophimai.

DeH-intion 10: A Boolean lattice homomorphism f : B —>C is called proper 

if for any <£ C there eXLOts b in B With f (b) £ C

Clearly if B, C have mitts then any urt-tary Boolean lattice 

hoexnoophisB f between B and C is proper for then f(sg) • «c£C for any <*£C.
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That the converge is true, that io, that the notion of a proper BpoXean 

lattice homomorphism coincides Wth that of an unitary homomorphism for 

Bolean lattices W.th nit is established in the following propoitiont 

Proxostion b: Let B, C, D be any three Bernier lattices. Let ft B—?C,

gt C—>D be proper Boolean lattice homomorphisms. Then (1) g.ft B~*D is 

a proper Boolean lattice homomorphism, that is, the com^o^ion of proper 

mips is proper, (2) If B, C have units eg, respectively then the proper

B>olean lattice homomorphism f is unitary.

Proof: (1) Take any x6 D. Since g is proper there eri-sts y in C with 

sGO^x. Since f is proper there ed-sts s in B with f(z)^y. Since g 

is order preserving we have that (g.f)(a)gg(y) and gCyZ^x. Hence 

g(f(z));gx. This Mans that g.f is proper.

(2) Since f is proper there erists a x in B wLth f(x))g eg. But ej^ x 

and thus f^^fCx) since f is order preserving. Thus f^^Q’ Bit 

©q is the unit of C. Hence f(ey) “ eg and f is unitary. This competes 

the proof.

2. Boolean Spaces.

Lee E be a topological space.

Definition-Hi E is called a zero-dimnloixnal space if the topology on 

E is generated by the open closed subsets of E. E is called locally 

com^ct if each point of E possesses a com^dt neighbourhood.

Deefnition 12: E is called totally disconnected if for any two (distinct 

points x, y in E there exists disjoint (open) closed sets A, B of E w.th 

x£A, y y B and A OB — E.

Proxxition 7: A oompacO/ipaoe E is totally disconnected if and only if 
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it is zero dimem«ion«CL.

Proof (1) Let E be totally disconnected. Let 0 be any open set of E 

containing a point x in E. By the total disconnectedness of E we have 

that for each point y£ £o there exists open closed sets V(y) containing 

y but not x. BrtCO is compact since E is. Hance there exLsts a finite 
n

nuriw of open closed sets V(yj V(yn) With 17 V(y) containing C 0.

That i.Sj xG/^C7(y.• ) 0. He^ice there eXLsts an open closed set con
i - i

tainted in 0 having x as a weWbr. This establishes that E is zero- 

dimeeissorwaL.

(2) On the other hand if E is zero-dimensiond then E is clearly 

totally disconnected.

Daefin.tion 13» E is called a Boolean space if E is a zero diw»^8^s.oinai 

locally compact HHiiuddoff space.

Conceirning Boolean spaces we prove the following propostion.

Popostion 8 t The open and closed subspaces of a Boolean space E are 

Boolean spaces.

Proof: Since E 1s zero dimensiond the topology on K is gmowated by 

open closed sets. Let J? be a collection o^ open-closed subsets of E 

Which generate the topology on E.

(1) Let T be a closed subset of E With the relative topology. Then T 

is a HMsstool^jr space since E is a Hrnssdoff space. Take any x in T. 

Then there exists a compact set K in E Wth x£K. KflT is then a compact 

subs! of T containing x. Hance T is locally comppat. Noreovwr, it is 

ctaar that$HT ” is a collection of relative open douW
subsets of T Which generate the relative topology of I sicceegecnerates 

the topology on E. Hance T is a Boolean space.
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(2) Let 0 be any open subset of E. Since any subspace of a Hausdorff 

space is a gain Hausdorff, 0 is a Hausdorff space. Take any x in 0. 

Since E is locally compact there exists a compact neighbourhood K of x. 

Than OflK is a compact subset of 0 containing x. Hence 0 is locally 

compact : Put 0/fcS Then^lQo is a collection of

relative open closed subsets of 0. Let A be open in 0, Then since 0 

is open, A is open in E and hence there exists R in K with RQ 0. Then 

A/lR^ 00a - A. Thua^O generates the relative topology of 0. Hance 

0 is a Boolean space. This completes the proof.

We now proceed to define a special class of continuous maps 

between Boolean spaces.

Definition 141 Let E, F be any two Boolean spaces. A continuous 

mapping f : E~>F is called proper if the inverse image of any compact 

set in F under f is compact in E.

Remark! The notion of a proper continuous map can be defined for arbi

trary topological spaces but we have restricted ourselves to Boolean 

spaces since we are interested in only such spaces.

Proposition 9t Let E be a Boolean space. Then the collection of all the 

compact open subsets of E is a basis for open sets.

Prooft Let^(E) denote the collection of all compact open subsets of E. 

Take any x£E and let G be an open subset with x£G^E. We want to show 

that there exists an X6^(E) with xEX^G. Since E is locally compact 

and Hausdorff there existi an open set Y with x6Y^G and with the closure 

of Y compact• If Y “f^Y we can take X “ Y• Otherwise take v Q [ 1 fl y-

an arbitrary point. Then xiy and since E is aero—dimensional there exists
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an open cloned neighbourhood Z(y) of y With x not in Z(y). Now E - 

Z(y)kjCz(y) and we have (“* Y - Yu U^c[rYQZ(y) /^rYCClj’. Thien 

since pY io comjuct there exists yj 

iXC'Q'irDZCyJ ). Put X -x.((J €()1) -CinnCzfr.)
••i *“• t = i

X is a subset of I and Y is a subset of G. Hance X is a subset of G. 

AwxGXC’G. Motxovmr since X - X(OTt, X is closed in P X. Thus X is 

a eompact subset of pY. BtpY is conduct in E. Thus X is c^jMict open 

in E and xEX<-G. Hance l (E) is a basis for open sets and this competes 

the proof.

We use Projpoition 9 in establishing,

Proipoition 10: Any contact set K in a Boolean space E is the intersection 

of all the cojpuct open sets of E containing K.
Proof: Let l denote the collection of ail contact open sets of E. Then 

because of Popostion 9 the set <£(?£/ is a basis for closed sets.

Since X is a conjurt subse in a Handorff space K is closed. Hotce K “ 
I^CR-AG CC Clewrly G - Tj- Take x6 T

an0 suppose x is not in K. Then there eXets in • Xth x • £ fo ' Take

any y£K thrn y£ C Since $ is a b^(^:^s for open sets there eXsts
R(y) € ^Xth y£ R(y) G C • Since K is comiM^ there y( , ,

yn in K Xth K“(?(y( ) U—t(R(yA) Now each Rf l ss compact open

and hence so U Rfy )U- • U R(yx). Now x£T inpli^ xCR(y( )^’ 1 uR(yn ) 

an0 hence x£ C R^ . This contraXd^ the fact that x^ cK°‘ T^o comp.^etei 

the proof.

The following propooitiot is an immediate consequence of Propoitiot

10.
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Proowostion 11: Let E, F be Boolean spaces. A mp f : E—>F is proper 

cortinuous if and only if the inverse image of every compact open set in 

F under f is comuct open in E.

Prof (1) Let f : E—>F be any map With the property stated. Since 

the collection of comjuct open subsets of F is a basis for open sets

of F we have that f is a continuous map. Let K be any compact subset of 

F. By Proposition 10, K hhrn fty) -(Q <frX(fl)A£

But each f"X(R.) With KCR is compact open in E. H«ice f"^(K) is a closed 

subset of a com^ct set and hence f"X(K) is compact. This means that f 

is proper continuous.

(2) On the other hand if f is propier continuous then by the very def

inition of a proper map we have f"X(K) is co^aot open for any compact open 

set K of F. TOLs completes the proof.

We conclude this section bry shoWing that the comooites of proper 

continuous maps are again proper continuous.

Propoition 12: Let E, F, G be Boolean spaces. Let f t E—^F, g : F—?G 

be proper continuous maps. Then the composite map (g.f) : E- > G riven 

by g(f(x) ) « (gf) (x) is proper continuous.

Proof Since f, g are continuous maps so is the map (g.f). We check that 

it is proper. Let K be any compart subset o^ G. Since g is proper there 

exists a compact set T of F With g“X(-) “T. Since f is proper there 

etdrts a compct subset 3 of E Wth f“X(T) * 3» Then (g«f) (K) — 

rV1 (K)) - f“X(T) “ S. Hmce (g.f) is propur. This comlrtes the 

proof.

3. toolean Rings.

We introduce the notion of a Boolean ring by distirguishing those
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rings tfdch have the property mtmtionnd in the following definition. 

D^efid-ti^on. 15? A Boolean ring is a ring R each of rt!osn elements is 

ideHpoXtnt, that is, for each x in R x2 »x. R is said to be a Boolean 

ring w.th unit if R ic a Boolean ring and there ndxts an cl^ement n in R 

wth xn “ ex - x for each x in R. n is called the unit of R. 

Remark; It is clear that if a Boolean ring R has a writ n then it is 

unique for suppose n, e1 are two nits in R. Then n^ « nn1 « n^-n » n.

In the following xrx]p>xitixn we list some of the im»otant 

algebraic relations satisfied by elements of a Boolean ring. 

Pro^p>xitLLon 13? Let R be a Boolean ring. Then

(i) x + x " 0 for each x in R, that is, every Boolean ring is of 

ohaaac0eni8tio two.

(ii) If x + y « 0 then x “ y for any x, y in R.

(ill) Every Boolean ring is commbatlvo, that is, xy - yx for any x, y 

in R.

Proof? (1) (x + x)2 »x + x> ’nrisimpli ex xx + xx + xx + xc»x + x. 

Hance x + x ” 0 using the ffcc thaa “ x.

(ii) x + y — 0 imp-Lins x x y + y - y. Hxecc x “ y using (i).

(Hi) (x ♦ y)2 — x + y. Hcec® xx+x. + yx + yr—x + y. Jinnee x + xy 

+ yx + yax + y. Thus xy + yx “ 0. Then xy “ yx using (ii).

Let R be an arbitrary ring. Introduce a rnLLcticn — in R as 

follows: x—£y if and only if there eX-sts x in R Xth x “ sy. Tuis 

relation i akrwownaath ediiisii>ilytyr>atiXic>n. I n Rth edivix-

ibility relctjon is clearly transitive. If R has a unit n then the 

divisibility relation is also rnflnxivn for x - n.x for any x in R. 

This also mans that x£n for any x. Moeover, 0<x for any x in R.
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In g^wraL the divisibility relation is not anti-ymmetic. For example, 

Ln the ring of integers 1 is divisible by - i and conversely, yet l=t=-l 

In a Boolean ring, howwevr, the divisibility relation becomes a partial 

ordw. ThLs becomes apparent tfien we prove!

Proopostion 14: Let R be a Boolean ring. Then x<y if and only if

x - xy.

Proof Suppose x - xy. Then take s - y in the definition of the

dirtsibility relation. Hance x<y. Convversely suppose x<y. Then 

there exists a s in R wth x - sy. Using the fact that R is a Boolean 

ring we get xy - (zy)y - syy - sy - x; that is, x - xy. This tom^es 

the proof.

Propost-on 15: In a Boolean ring the div-sib-lity relation is a partial 

order.

Proof: (i) x<x for x2 - x. (ii) x<y9 y< s implies x - xy, y • ys. 

Hance x - xy - 3CT* - xs, that is, x< z. (ill) x<y, y< x implies 

x *» xy « xys - xy - y. Hance < is a partial order.

We now introduce the notion of an ideal in a Bx^oLean ring. The 

notion of an ideal in an arbitrary ring is defined similarly but we are 

interested here only with Boolean rings.

Definition 16: Let R be a Boolean ring. A non-empty subset I of R is 

called an ideaL if

(1) I is a subgroup of R under addition, that is, for any x, y in R, 

x - y£R.

(2) For any y in R, x in I we have yx^I.

Remark: Since a Boolean ring is tomiat naive as we have seen we do not

need to distinguish between left, right or two-sided ideals as one does 
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for arbitrary rings.

We distinguish certain Glasses of ideals in a Boolean ring as 

follows.

Definition 171 Let R be a Boolean ring and I any ideal in R. I is 

called prime if xy£I and x0 implies ye I. I is called a maximal 

Proper ideal if I#=R and if J is an ideal strictly containing I 

then J - R.

Analagous to Propositions 3 and 4 is the following proposition 

which we now establish.

Proposition 16; Let R be a Boolean ring and P any ideal in R.

(1) P is prime if and only if for any x, y£R, x £P or y - yxEP,

(2) P is prime if and oily if P is maximal.

Proof :(D Suppose P is a prime ideal. Take x, y in R. Then x(y-yx) « 0

since R is a Boolean ring. Since 0£P we have x(y-yx)C P. But P is a

prime ideal. Hence x£P or y-yx(?P. On the other hand let P be an 

ideal with the property stated. Suppose xy£ P but x^P. Thon y-yxE P 

and xy£ P and P is an ideal we have yEP.

(2) Suppose P is a prime ideal. Let M be an ideal strictly containing 

P. Then there exists x£M with x^P. x^P implies by (1) y-yxGP for 

any y£R. Thus y-yxCM for any yER. However, M is an ideal and thus 

yxGM. Hence y “ y-yx+yx is in M for any yER. Hence X “ R. This means 

P is a maximal Ideal. Conversely suppose M is a maximal ideal of ..

Take xy£M and suppose x^M. Then since M is maximal the ideal generated 

by M^xj is R. Then, in particular, y - m + Tx where rfr R. Then 

xy “ mx + rx and since xy, mxGM and M is an ideal we have nt Eli. Thus 

y - m + rxEM. This means M is prime. This completes the proof.
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Precisely as in Proportion 2 one can establish that any proper 

ideal is contained In a mari-mal proper ideal. We now proceed to define 

the genraO. notion of an algebra over a field.

Definition 18i Let K be any field. A set R is called a K - algebra

if (1) R is a ring, (2) there is a binary law of comooition KxR—->R 

satisfying:

(i) a(r + s) “ ar + m foo anny a€K, r» s£R.

(ii) (a ♦ b)r * ar + br fco* any a, b £K, rCR.

(iii) (ab)r * a(br) ff>o any b, b<=K, r£R.

(iv) er “ r for e the mit of X and any r£R.

(v) a(rs) ■“ (ar)s - r(as) for any aGK, r, s6R.

Connider the set Rq * (0, 1) and in this set introduce operations 

of addition and mlliplication as follows: Put O + 0 ”1 + l™ O, 0+1 = 

1 + 0*1, 0.1 * 1.0 * 0, 1.1 * 1, 0.0 * 0. It is clear that Rq under

these operations is a Boolean ring. We will refer to it as the two element 

Bralean ring. In fact we see that Rq is the field of chturaccteiirtic two. 

Let R be any Boolean ring. Define a mapping f i Rq x R—3R by 

f(X x) «Cx if °< - 1C- Rq

to if* ( 0 C- Rq

It is seen then immediately that R w.th multiplication as defined is an

Rq • algebra. Hence in the above way any Boolean ring R is an Rq - algebra.

Wo now introduce the notion of homMmorpiism for Boolean rings. 

Deeinitioi 19i Let R, 3 be Boolean rings. A mapping f i R->3 is called 

a ring homomorphism if (1) f(x + y) “ f(x) + f(y) for any x, y in R and

(2) f(xy) - f(x) f(y) for any x, y in R. In case R, S both have units 

Or, respectively a ring homarorjpiiim f from R to S is called unitary
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If ” *s-

Remark; 1f R, S have units eg, st- respectively then clearly any ring

hoaonorphLst f from R onto S ia ascesscarily unitary. Howbst, if f is 

into then f need tot be unitary. For example let Ro be the t*o element 

Bnlsat ring and consider the Bjolsat ring Rq x Rq With addition and 

muttpplLcatiot defined in the usuU Way. LSt ft Rq x Rq —tT.q x Rq 

bs defined by f((a,b)) « (a,0). Then f is clearly a ring homomorphism 

but f is not unitary for f((l, 1)) =» (1,0) ^(1,1).

We noW int]rriuoe a special class of ring hrnrmo^Pri^ms Which 

have the nice propte*ty that When defined on the class of Boolean rings 

Wth uit.t they coincide Wth the unitary ritg hrmrmrrli!sr!3.

DffLrition 201 LSt R, S bs any txo Boolean rings. A ring homomorphism 

f from R into 3 is called proper if for any x£S there wrists y it R, 

Wth x£f(y) Wiesrs < stands for ths diviWblLlity relation in S.

LSt R, 3 be Boolean rings Wth units e^, sg respectively. Then 

any unitary ring homaiworpiisLa f frem into 3 is clearly proper for then 

f(ap) “ Skj^x for way x Ln 3. Ws noW establish that the converse of 

this statement is also true.

ftn>lP>rStira 171 LSt R, 3 bs Boolean r-tgs Wth writs Sf, Sf respectively. 

LSt f from R into 3 bs a proper rttg homomorphism. Thea f is unitary. 

Proof: Since f is proper there sWsts y Ln R Wth f(y)f^<s^. Now Sf y 

Ln R. Thst since f is a ring hrmo»orlri^m wb have tfegfy). Since 

the divisibility relation is transitive We have S(sr)> eg. But 65 is the 

unit of S. Hencs fCfc) - es* t^hat is, f is unitary.

Wo conclude this section by establishing that the functional
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composition of proper ring horxHmrT^isms is again proper.

Proipsition 18: Let R, S, T be Boolean rings. Let f: R—>S, g: S > t 

be proper ring hrnrOTO•]Pligms. Then the crppprite function g.f : R—>T 

defined by (g.f)(x) ■“ g(f(x)) is a proper ring hrmsm>orPllsm.

?roof: Take any xfeT. Since g is proper there edsts y in S With 

g(y),£x. Since f is proper there odists a in R Wth f(a)>y. Thus in 

all (g.f)(s) - g(f(s)),£ g(y)j>x. Hence g.f is proper. That (g.f) carries 

sums into sums and products into products is clear since f and g do. Th.s 

competes the proof

A• Boolean Seai-groups,

In this section we introduce the notion of a Boolean semi-group

and establish some of its fundamental propelies.

Definition 21: A seP-group is a set G together With a binary associative 

law of co impost ion Woich we denote nultippicatively. A seP-group G is

called a semi-group with aero eleruenlt if there exists an element 0 in G 

with Ox = xO =• 0 for all x£G.

The zero element of any seuai-group (if it eriLists) is unique for 

if 0 and Oji are two such then 0 =* 00^ = OjO “ Op A seT.-group G is 

called commtaaive if its law of co!moritirn is also coirautative, that 

is, xy » yx for any x, y in G.

Conveetion: From now on Whenever we speak of a seri-group we will always 

mean a comnutaive bsvU-group with zero el^e^^^rn^*

Deefnttirt 22: A sen-group G is called a Boolean semi-group if there 

is a unary operation defined on G wich attaches to each x in G an 

elraent x1 Uv g that (1) xx1 - 0 and (2) - 0 yx « y.
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The following trivial a tat ere nt is sometimes useful in proving 

eqlaCiiisa*

Pr^jp^^^i^^io^n. .19: Let G be a Boolean seni-group. Then xy^ « 0 if and 

only if xy “ x.

flroof: Since G is a Boolean seni-group xy^- “ 0 impies xy “ x. . C.so 

x « xy implies xy1 =» xyy1 - xtyy1) » xxO « 0. Hence the proposition.

Let G be any semi-group. In G introduce the folHotfing relation: 

x<y if and only if there ^sts a a in G wth x • yz. This is the 

diviLai■bb■l■ty relation in seW-groupe. As in the case of rings the divis

ibility relation in seW-groups is not a partial order. However, if G 

is a Boolean soP.-group then the divisibility relation is a partial 

order as the following propooition indicates.

Propodtion 20: The divisibility relation in a Boolean sed-group is a 

partial order.

"roof: (1) x<x since xx^ - 0 impplies x “ xx. H«ice . is reflexive.

(2) Suppose x£ y, y<z. Than since in (1) we see that each element in 

a Boolean seW-group is idempotent we can say by Proportion 14 that 

x<y if and only if x = xy* Thus x - xy, y « 7** Hence xs “ (xy)* “ 

x(yz) « xy * x. Thus the transitivity of the relation is established.

(3) Suppose x<y, y<x. Then x • xy and y «■ yx. Hence x = y and the 

relation is anti-■Jmnett•ic* This c^^pllrt.es the proof.

Propostion . : Let G be a Boolean seW-group. Then the transformation

x—>x^ wiich cttaohes to each x in G the w-th xx^ - 0, xy^ ■* 0

imppies xy "• x is one to one. onto and order inverting wiero G is partially 

ordered by divisibility.

pllrt.es
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(1) To show x-^x1 is one to one and onto it la enough to show 

that x11 « (x1)1 - x. We show that xc^1 and x13^ x. Sitoce G ie a

Bo)lean seni-group we have that x3H - 0. Hence by Projositlon 19, 

x^x “ x11 and thus x13^ x for aLl x in G. Nc^e that fr13-)1 - (x1)11 

for (x*) - ((x1)1) - (x1) . Wow from the First part of the pr°^°f

w have that (x1)U< x1. H«xce (x11)1^ x1. Than xCx11)1^ ra1 = 0.

Therefore x(x11)1 - 0, that is, x£x^. Finely jji^ce the diVsibility 

relation is a partial order we have x “ x33.

(2) Now x y if and only if xy1 “ 0. That is by (1) jqt3 - 0 if and 

only if x^y1 “ 0 • y^x33. Hence x<y if and only if yV • j4, that is, 

if and only if y3<x3. This comP^es the proof.

Let G, H be B<X)lean sen^-groupe.

Definition 23: A opping f frtm G into H is called a Boolean sem-group 

hornnonphlan if the following conditions are satisfied:

(1) f(xy) “ f(x) f(y) for any x, y in G.

(2) fCx3) “ (f(x))1 for any x fbr d.

We conclude this section by showing that the conopoite of Boolean 

saO-group hom)InrrPliiOi is again a Boolean seoi-group hmmrrPliin. 

ProTpastion 22: Let G, H, J be Brolean seOi-groups and f: G-?H, g: H—»J 

be Boolean se^-group ho«Minorip)ism« Then (gf): G — defined by (gf)(x) 

“ g(f(x)) is a Boolean seO-group hmrwr^P^iim.

Proof: (1) (gf)(xy) - g(f(xy)) - g(f(x)f(y)) - (gf)(x)(gf)(y), for any 

x, y in G.

(2) UDCx1) “ g(f(x3)) “ g(f(W)1) * ((g»f)(x))1«

Hance gf is a Bcnlean semi-group hrnomorphisOT and this (50^10^ the proof.
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5* Categories and Fmctors.

In this section we introduce the geine’al notion of a category. 

The definition to be given is motivated from considerations of comon 

propeeties of collections such as

(i) topologic^ spaces and continuous mappings,

(ii) groups and thdlr group homomorphism.

(iii) modules and their radula homoorphissm, etc.

PefuiHi^ 24: A aate^ry 1.8 a class jects * i 2n which the following

25: Let and be categories and let T be a fifictoon which

maps the o.^cte of tp i^to the objects n fdditio^ afisi^s to

each map f in G a map T(f) in oG • The map T is called a covariant 

frra £ to A if it ^tisfies the ^llowi^ conditiots:

(1) If f€ hHAAB) thrni T(f)€ H(T(A),T(B)) fo ann A, B In fa .
(2) If eAG then T(eA) « %,) for any object A in £ •

(3) If fGH^B), g€ H(B»C) for any A,BfC in £ then T(g.f) -T(g)T(f).

is satisfied: With any pOLr X, Y in (p there is associated a set H(X,Y) 

called the set of maps f: X^— such that for any three objects X, I, Z 

in^ t-here ls given a mapping H(X,Y) XH(Y,Z)—>H(X,Z) denoted by (f,g) 

—>( g.f) Wich satisfies:

(1) If f: X—>1, g: Y—>Z, h: Z—>T than h» (gf) “ (h.g.).f.

(2) For each X in A there «X.a1ts a map e^ in H(X,X) such that e^« f “ f 

for all fGH(Y,X) and f • ex = f for all fGH(X,Y).

An element in H(A,A) for any A in (p is called an identity map.

The objects of £ are one to one, onto correspondence A >H(A,A) with

the set of idenities. We now introduce the notion of a functor as maps

between categories.
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The map T is called a cqitravariant functor from — to if the

above conditions are replaced by

(L1) If fG H(A,B) then T(f)G H(T(B),T(A)) 

(21) If eAeH(A,A) toen T(eA) - er(A) 

(31) gfH(B,c) then T(g.f) - T(f) T(g) A,B,C °re

any objects in $ •

If T is a fun<ctor from — to and 3 is a functor fr°m t° £
then they nay be composed in the obvious manner to form a functor ST from 

(p to (£ , If T, 3 have same (opp>sste) variance then ST is rowurLaKt 

(contraveaimn). In vie— of preoperty (2) above we see that a functor 

T is compl-eely determined by the function T defined for mips only. 

Thus a covaa-iant functor is essei^n^lLaLly a ItpnnoiorrpdLtm of the maps in £ 

to toe maps subject to the co motion that Wertities be mapped to

-dent ties. One functor that always eXLsts is the identity functor 1^> 

iefitei from f----— h which keeps each object and map of (p ftjce^

In the ensuing chajpters —e —ill see examples o^ contraveariant and co

variant functors.

We no— proceed to define trl!ltlsfottatiots between functors. 
DefiLt■tiot 24: Drt T rnd S be t-© covlu,iatt functors the category C

to toe category $ • A function /"^ —iich usigps to each object C C- 

a map He) c- o such that

(1) f7C) l T(C) —73(C)
(2) If f - — — ̂ C2 then / T(f) •SW/""^Op

is caLled a transformation of the functor T into the functor S.

In case T and 3 are contravariant functors the conditiot (2) is replaced by
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(21) if f GH(CX> C2) then p (Ci) T(f) - S(r)[(C2).

lf the map f(C) h&s an Averse pZ(C) such that f(C) /_7(C) and

p (C)p(C) m the UrnitHy maps for each C E & then f7 willed a

natural equivalence of the functors T and S.

Condition (2) implies that cormututiilty hold in the following

diagram:

It is clear that the notion of natural equivalence introduced 

above is an equivalence relation. We use this notion to define equiv

alence between categories as foUmi

Definiti^n__25s Drt 'Q and e be cate^orie^ e and <b are said to be

equivalent if there erdsts a covariant (or contravwiant) functor S 

and a covariant (or connravariant) functor T : & such that the

commits functor ST s^'—?^ii® naturally <q^ui^A^8l^<n^t oo hhe dhmttty 

functor 1^ on $ and the cnm>onith fun<ctor TS : £ —> Q is naturaUy 

equivalent to the identity functor I^> on J .

In the above we have introduced the notion of proper maps

between Boolean lattices, Boolean spaces, Boolean rings and Boolean 

semi-groups • In each case we have established that the composte of 

proper maps is again proper. This fact enables us to give several 

examples of categories.

EXAMPLES OF CATEGORIES.

(1) The first example of a category is com^sed of Boolean lattices and

Boolean lattice hnwn!»n^pliims. The objects are Boolean lattices and the 
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naps are Boolean lattice homi»r;£iisDi!.
(2) The class f of Boolean lattices and prope Boolean lattice homo- 

m^rplhiamB forna a category.

(3) The class f consisting of Boolean spaces and proper continuous 

naps conasitutes a category*
(4) The class f of Boolean rings and ring homoimoipiisms con8titutes 

a category.

(5) The class £ connisting of Boolean rings and proper ring hmo-

morphisms forms a category.
(6) As a last examHe of a category we note that the class f con8s.sting

of Boolean tem^-grrupt and Boolean sem-group hrixo!rcophit^is conssitute

a category.

Remark: In the ensuing chafers we will establish that the categories £ 
and f °L exa^les (2) and (3) are equivalent,, and that £ is equivalent 

->/to the category > • It should be noted that the notion of proper

hmmorhiams is such that when one, for example restricts the objects 

in C to Boolean lattices Wth unit and the in f to Boolean

rings With udi;, the proper Boolean lattice hommoplhLsms become 

unitary Boolean lattice ho^r>rnrphiltnt and the proper ring hrm^mrIldLtmt 

become mitary. H«nce tfien we establi.Bh that the categories f and f 

are equivalent we autmttafally establish that the categories of Boolean 

lattices with nit and unitary hraoooO}lhitns is equivalent to the 

category of Boolean rings with nit and unitary hrm)rnrppiitnt.

establi.Bh
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BOOLeAN LATTICES and BOOLEAN SPACES.

1. The Ulrrailter Space of a Boolean Uatice.

In this paragraph we study the consequences of introducing a 

topology on the set of all ultrafiltera of a Bo>lean lattice B. The 

corresponding topolog.cal space that results Wil bo referred to as 

the uLtrafilter space of B. The main result we Will obtain here is 

tliat the ultrafilter space of a Bi^eon lattice is a Boolean space. 

Wo Wil also ctaa’iaOtaaize the open, closed, and compart open sets of 

the ultrafilter spaice B in terras of the ideals and filters in B.

Let B be a Boolean lattice and let -O-*».QL(b) denote the set 

of all the Utrafilters of B. For each a in 8 define (l)-Q(a) • 
-^uaaUILCLj. Lt^-^UyGBj . Then?? has the properties 

Which monies it to be used as a basis for a topology or-Ld : namely

(1) _Q (*)<m(b) -LO(.Ab), that is, $is c^sed under WeneoUa

<o(i) “-TO-. Property (ii) is obvious. We check (i). N>to that 

a/\b€U if and only if a^U and b eU since U is a filter This eatob- 

Utoes (i). Let 0(#) denote the topology generated W« will

speak of the topologic^ space (-^,0((d-)) as toe ultrafflter spa.ce ofjl 

For any ideal I in B define:

(2) ./fci) -{q/tocn.,
°) <$(D -[t/tieH, un -

25.
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For each filter F In B define:

W?(F) , U2f}

The mdin projwties of the ULtrafiiter space of B are estabiirted 

In the following theorem.

Theorem 1 i Let B be a Btwlean lattice and -QL its ULtrafiiter space.

Then

(i)TL is a Bxilean space.

(XjTL is comMKCt if and only if B has a wilt.

(Hi) The ctaaTKtwr ofLQ(i.e. the leant cardinal number belonging to 

a basis in-Q-) is equal to the carUnjQity of B if B is infinite.

(iv) Let X be any subset of -QL . Th«i the closure of X in _QL , 

de^<oted by f X, is ] U/V 6-0. , U<=- Uv j
u V6X J

(v) The com»u:t open sets of_T_are precisely the sets -O (a),

(vi) The compact sets of-TL are precisely the sets C (F).

CvLil) The open sets of/L are precisely the smtsV^ClK

(v.ii) The ciosed sets of-Q- are precisely the setsc^C^.

Proof: (i) We establish first that the sets-Q. (a) are combat. iM

-T.(a)C U-H.(X) for some subset L of B but supposeLQ_ ia) strictly 
xe-L

canUdnsll ix^) u . ..uACx-J for any ftnite nu^nw n wth £ x^, •.. ,3^j Q L 

Let I be the ideal gaiwated by L in B. Then 1 *{y/ye B y£ VI wth 

Y<L and Y fiS^tej’ . faesce by the definition of I and our sipixoition 

a >y for each y Is I. Let H ’-^«/s - a<-y, y€ IJ • Sinw 1 U an Wed, 

H is a proper filter basis With a in H. Let U be an ultrafilter contain

ing H. By wnMraMicm a£U and y^U for any y in I. Hence V^JJ^Cx^ 

Th^s> hownrer. is a contradWtic1 for U £-fL(a) and/L (a)^ LV• Hence xeL
°ur supfttrttiOT is false and the sets ~Q— (a) ar® compat. Take asy U G-°~
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and pick an arbitrary point aGU. Than XL (a) is a com»ct basic open 

neighbourhood of U. Hanco each point of XL has a compact neighbourhood, 

that is, it is locally oomPct. Let U, V be any two distinct points 

of XL. Then there «dsts aGU With a^V. a^V imOles since V is 

raodJwQ proper that there exists abEV With b a a “ 0. Then XL (a), 

XL(b) are basic open neighbourhoods of U, V respectively and these 

neighbourhoods are clearly disjoint. Hence XL is a Hauuddrff space. 

In a teuisdooff space any ecepact set is closed. The setj^»«cpL(a) /a£B^ 

W^ich g<eierates the topolofy ofXL is thus composed of open closed sets. 

HenceXL is a zero dimennional space. CoHocting all the results 

together we have established that XL is a Boolean space.

(11) Suppose B has a unit e. Then XL -XL(e) and by (i)XL(e) is 

compac. Hance XL is compac. Conwsely suppose XL is compac. Then 

there eWsts some finite subset A of B withXL — U£X-(a) / a(eeij . Let 

VA » b. Thon XL ”XL(b). Hence b£U for each U in XL. This means b 

must be the unit of B since the unLt is the only element Which belongs 

to every ultrafilter of B. Hconea B has a unit.

(ill) Let B be infinite. Let $ / aGB j a^ wnzWer the Bap ft

B—>$given try f(a) -XL(a). This map is clearly onto. We show that 

it is also one to one. Take af b in B and Without loss of generality 

suppose of a^b. Let F be the filter generated by a and let U be an 

utraTilter crrntainlng F. Then UG-C-Ca) bit ^XLft). Ttort, isX-CaJfjLCb). 

ltace f is one to wie. Since is a ba^iis for the trprlrgy on XL Wo nw
hav« th»t th» dwu-actin- otX. i» 1«« equal the wiHiMdtty of B - / $ 1 

On the other hand, suppose 3* a bft°is forXL • Then eachXL(a)
i Xc.l
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being open is the union of approjviate G * . The compctneas of/f_(a)
*■

yields in^ic^ee<s*»».j)^ri W.thd_(a) - ° GG' Since every.0 (a) iB the 

union of a finite num>er of a the cardinal numw of J? , does not 

exceed that of the basis in question using the fact that B is infinite. 

«>■* i« f - N- lJ b H«nce the ohaaracter of/L is equal

to the cardinna.ity of B.

Remark: in case B is a finite Biolean lattice then /D/ “ 2n for some 

natural number A G G • Hence B has n m.nimil non-zero elements say 

a^t...,an. Each Utrafilter in B is principal and is generated by one 

of the elements (j...,^. Thee-Q. h g jn elements; every subset of-H- 

is open and a basis for the topology on H say the set (a^),... (*))[

is composed of n elemerts. Thus in the case B is finite the dhsaraoter 

of H is strictly less than the cardinality of B.

(iv) Let X be any subset of JT • By the definition closure wa have

f1 X ■ pj/OG-Q. f G (a)Q X # / for each aCuJ'.

Let i UA GZZ . G G u V Z . We miat shew that pX «i. Suppose U 6 fX.
I v^x J

WMeXL(aaQX'i= </> for each a(U. Hence for each a in U there edats a V 

in X With a (V. This implies that for each a(U, a(yUV, tfiich means 

that U GT. On the other hand suppose U(Y. Then for each at U there 

eXists a V£X With a (V. This means that U G AX. Therefore Px -T.

(v) In (1) we showed that the sots ii (a) were comppat. These acts are

open by deflLtLtLe>t. We now establish the converse. Let 0 be any comet 
open set of 11 • Then 0 open impl•oz 0 * Opl (a)/a( A } for soine 

suitable subset A of B. Since 0 is compact there eXists in A

Wth 0 “U-&(a.) ^(aiY...^* Let b “ aiv,.,,vaf Then 0 “-11(b)
tri

as required.
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(vi) • now show that iota of th. fora (F) are compact. Wa note 
trivially that £ (F) -Qfl.(a). Since eaohll(a) 1. a olosed set we have 

that £ (F) la cloeed. Aleo (f (F)^CL(a) for each a in F, Hsnce^ (F) is

a closed subset of a compact set and hence jf (F) in compact. Conversely, 

let T be any compact subset of_Q_ * T compact implies, since-Q. is a 

Boolean space by (i), that T » (a)/rc/L(a) \ applying (v) and

Proposition 10 of the previous chapter. I»ct F «’^a/*C9, T<-Q.(a)j . 

It is clear that F is a filter in B and J (F) «• f U/U G-0-, U3F? -Q _Q_(a).
1 J ac-F

Hence T » J (F).

(vii) We first show that any set of the form//(I) is open. By defin

ition// (I) - f U/UG-Q.J We ehow that//(I) -U-fl(a).

Take any UG//(I). Then there exists aGl with a€U, that is, UC-M(a). 

Hence U is in the right hand side. On the other hand take any ultrafilter 

U in the right hand side. This implies there exists aGl with aGU, that 

is, UH I 4= • Hence our claim is established and/Z(X) i« open. Con

versely let 0 be any open set for_Q_ • Let I “ £ a/atB,^(a)^ oj . 

Then I is non-empty set, for example oGI, end I is clearly an ideal.

Also since 0 is open and the setn-^2. (a) is a basis we have 0

We now show that 0 ~//(l). Take any U6 0. Then UG-O-(a) for some ael. 

Hence U<II 4= vnA thus UG//(l). On the other hand if UG// (I) then 

there exists aGI with U6-^(a)S0. This establishes that the sets//(I) 

are precisely the open sets of_Q_ •

(viii) The sets/^ (I) are now seen to be precisely the closed subsets 
ofZL.lnc. for each ideal I in 9,^(1) ■ C^Y(’). Thi. compile, th.

proof of the theorem.
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Theorem 1 bitts given us tn insight into ths topoLog-ceL features 

ths ultrefLlter specs -H_ of B in terms of the lattice thsrr1Stio 

notions of filters and iOseLs. A fact of aOdtLonal interest is given 

in the next pro^pot.tira*

Pr,oop>ottirn 1 i LSt B bs tty Boolean lattice end XT its uLtrafilter 

space. LSt F G,&, petialty ordered by inolutira, b< th< latticM 

open, closed atO compact open sets respectively. LSt J Os^^s ths 

lattice of all ideaLs in B. Then

(i) Eech of the lt^tL^ces, F, G are lett'ice .^lom^rip^Lc to 5 , ths 

itrmorphitm f from J to F bsisg given by f(I) “//(IK
(Li) Ths lattice R. is itrm^rplio to B by ths mapping f: B^ — given 

by f(a) “XL (a).

ftroof: (i) Consider f: J—F given by f(l) “/^UK For any I, J 

it $ we have by pr^jp^o^satLLon $ is the prsvi^s chajptBr that IV J “ 

■^t^/tGI, b€ jJ- f XA J ■ftAb/aGI, be jJ . W< nw sstabliJh

(1) // (i) u4(j) J (tv j).

(2) y^(dn/^U) -Mxaj).

Regfurding (1) : Teks any U£ 8 (Du^A/^(^)» Then uUi^ <>or U<|

Hwice U<H(IU J) X J atO th^ U-^dVJ)^/' • Thereto9 Ue/ZttV J). 

On the other hand take U Q<M. (IVJ). Then U<f(lV J)^ ft* fhen there 

sx-sts asu W-th a “ sVt for some s in I, t is* J. Since U is as ultra— 

filUr aithcr a °r t ia Is U. Thua either uDI + & w W J&p' Thon- 

tore This shows (1).

Hacmting (2 ; Tak9 UfZ (D/l/M- Th‘am U/1 810 U<)o ars both 

non-em>py. Pick seDAI, b6UlJ. Thss aAbflAJ end eAbfrU. Usnca
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uO(I A J ) 4=^ • Thw V 6/7(ia J). C^nvesely take aj^ U 6?7(1 A J), 

Than there mdsts aGU with a « s a t wuere sGl, tej Then s t-UO 

and . Thus ue/to/l/ftj). ThLs pro^ (2). (i) (2)

together imply that the mapping f is a 10X1^ honm»mptifim. footer 

f Is OTto. Nttrt take I, J in j w,th !fJ. ^hen ^.ttout taM

of geineraity there anL^i,i b£I with b^J. N>o///I) -(JpL (a)/i] 

a^^nd/!(J) «U^(a (a)/a G . S1nch b^J,L.(b) .s not ^1^/1^ lnA(J)

but is contained in?((l). Heenc/ZCl) 4?//(J). Thus f is one to one.

ThLs est/bUshes that f is a lattice l.aomnrphiim,

(1i) Coii^er nap gt B-*$_ given by g(a) -J°(a). By part (i) we

have thatO. (aAb) •_fl(a)/3-IL(b), y^CaVb) « _C(a)U-^-(b) since 

-O-(a) -^((a)) ^leere (a) .s tte princip^ 1ihaL gener/tei by a. Hence

g is a 1^^!^ hooanonrtdtia. In Thewrem 1 we eii/bliLftlhi that ith

capping g wa* one to one and onto. Hence g is a lattice i^nmDrpt1^m. 

ic follows ^rect^ from ProTpMHlcn 1 th^^ toe iat^ce H of 

all tLe e c - - 4>a^ open subsets of-fL Is a Boolean lattice.

2- The Boolean lattice of a Boolean Space,

In the last section we saw that the ultr/filihr space of any 

Boolean lattice is a Boolean space. We now proceed to hii/bliih the 

cotun<hrpari of Theorem 1.

Theorem 2 : Let E be a Boolean space. Then

(1) The set & (E) of cornet open subsets of E p/r;i/llt ordered by 

set inclusion is a Boolean l/iiich in tfiich meet is set inter section, 

Join is set union and Boolean comp^ern^t is rhl/t1vh comp-ernet.

(Li) The of E 1s rjuO- to the cari1t/lLit of c2r (E) f S 1s

infinite.
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(Ul) Th® ultrAflltatr Is hoa«a»rphlc to E. th®

taosomrphisn ft K-J>£L b®ing given by f(x) - F(x) A«r® F(x) - 
fxXX e<;z>(B)}.

(iv) Th® filters in the Boolean lattice Z~ (s) ar® precisely the sets 

f(k) “ £ VA- V C- Z (E)j wh<we K ranges over all th® ^mpust subsrts 

Of S.

(v) The ideals in Z (E) ar® given precisely by the sets 1(0) - 

[v/o 5X/6Z(E) J w^<e>e 0 ranges over all t^he open subi^<®ts of S. 

Prof: (i) Take any X, Y in Z (E). Then since B is a Hsftisdooff space 

X, Y are closed. Thus XdT is a closed subset of a conpact set X and 

hence Xr)Y is com>pct. Also Xf)Y is open since X, Y are open. Thus 

X/QY t Z(S). Also since X, Y are compact open so is XJ Y. HeXt take 

any X, Y in Z (E) Wth<h J X<GY. Then Y - X » TH £x is an ^en

closed subset of the compact n®t Y. Hance Y - X is compact open and 

henc® belongs toJC(E). Since set intersection and set union distribute 

ovver each other we hav® that Z (E) is a relatively cmillBaee-ited, °ls- 

tributive lattice. Also X foo aaqr X^Z(E) wnd Z Zu ccon^ct oopbi. 

Hence cJr (E) is & boolean lattice.

(ii) E be infinite. Let^G* )/•«■ Xjbe any basis for open sets of E. 

Since by RroTxroition 9 of the previous chapter JZ (S) is a basis for open 

sets of E the character of E is less equal the cardinality of Z (S). 

L®t X be any member of Z(E). X open inOUes X is the union of a suitable 

number of G*s. The crmQatnesB of X then yields indices* a , . . • *n W.th
h

X • l_J Z ‘ . Hence every of Z(E) is to® union of a fiMt®
L-l L

nutter of el-eme^s from the basis under tontBlO^e•atlon. Since E is 
infinite this means /&(*)[< /{ / 4 (r lj|. Hrn. th. chM-ater
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of E is «uoL to the car&LniOLity of eX-(E).

Hawk: In case E is a finite Bxtlean space then the Boolean Lattice 

^(E) U finite, say Z&te)/ • 2" for eons n> o. Then T (E) has n 

rinirauL non-aero membra say X1,...fXn and every rambwr of2C(E) is 

a union of suitable X^,..«,X^. By Popoition 9 in the previous chajpter 

Jr(E) is a basis for open sets. Hence Xp....^ is also a basis for E 

and the character of E in this case is then strictly Less the cardinal

ity of & (■).

(Hi) Consider the napping ft E^ — given by f(x) « F(x) rtuere F(x)

is as stated. F(x) is clearly a filter in £- (e). Let F be any filter 

in (EE Wth i(x)eF. Take ary X in F. ILt j -|YAX/! &F(x) j . 

Then £ is a system of closed sets and is a proper filter basis. Also 

each memce* of^ i® contained in the com»<ct set X. Heemef^ H^YA X i1/ 

’fcoP|I “ f x^- for take any a in E With aix. Then since E is a 

Ikaiudooff space tfiich has <r (E) for a basis there exists compact open 

neighbourhoods W of a and Y of x Wth WAY «/. This imPLLts a^Y 

and hence a^/^Y. Thtuf^Y “fx^ . This meais, ~ <M/A ’•£/»
M^-y x&y " a'’J

that is, x£X. Hence X6 F(x) and F^F(x), that is, F • F(x). There

fore F(x) is an ultrafilter and hence belongs toZL the ultrafiltar

space of T (E). Take x, y two d.stinct points of E. Then since E is 

a Hatutfooff space andc$'(E) is a basis for open sets, there exists X, Y 

in JZ(E) Wth x&X and y£X. Hwcc F(x)£F(y) and f is one to one. N«x 

let F be any ultrafilter in & (E). Then by & siMlar argument as above

/Q X 4 &. Take wy point x e . A .. £ .
xe f 1 & >'

is maWm-V! proper and hence F • F(x). This shows that the nap ~ is onto.
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Tak. any Th«n f(X) - |(/x)/xcXp f F(x)A&F(x)} -Ji(X),

a basic open set in -G_ - Hence f in one to one, onto and carries basic

open seta of E into basic open seta of -ZL . Honce f is a hrmerrrorr)Pidr1. 

(iv) Let K be any compact subset of E. Then F(K) as stat'd is cer

tainly a filter in J (B). On the other hand let T be My filter in 

^-(E). Hit M f(x)]>fJ . The set M l« the Averse image

ui^der the rapping f of part (Hl) of the set K = £ F(x)/F(x)6-fL ,

• By Theorem i, K is compict and since f is a homeomorphism

We have that M is commaac. Moo^VMr F(r») « F. To establish this, take 

any VtF and then since x£M implies F(x)Z? F We have V6F(x). This 

means x£V for any xGM. Hence M^V. Therefore VGF(x). On the other 

hand, take any VGF(N). Then x£V for each x£—M. That is VGFFx) for 

each x£M and thus VC/Q Rtf But by ftrr]p>odtirn 2 of the previous
Xt/'A

chapter We have /O Rfc)“ F. Hence V£F. This establishes (iv).
*C-hn

(v) For any open set 0, i(0) is certainly an ideal in ^(()). On the 

other hand, l't 1 be any I0®’ in cZ?-(E). put 0 “L/x. Th«i 0 is
X6-1

open subs' of E and we show i(0) — i. Take any VGI. Then VGO 

trivially and hence V£I(O). Convvrsely take any VGI(O). Then V^O^UX .
X*1

The tom)actnesd of V implies there exists X ,,. , , ,Xn in i with VSXpt ...u 

Since i is an ideal ..^X 6 i and. thus VGI. Hence the sets l(0)

^scrfhe praci’ely the Weals in ^•’E). This crmPleted the proof.

Theorem 2 has given us a crmplLe.e description of the ideals and 

filters in the Boolean lattice of compcwt open subsets of a Boolean space 

E in terms of the trlolrgLtaal properties of h. Theorems i and 2 to

gether have shown that the ultrafilter space of any Br^leav lattice is a 

Brol'an space and tonv<e•8ely that any Boolean space E gives rise to a
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Boolean lattice whose utrafilter apace is horx«Htnorpd.c to E. Finally 

we have the folltowLng propoiti.ot analagous to Pro||P)eitiot 1. We state 

it hero without proof since its proof is given in the sane manner as 

ftr)JPoition 1.

fl!>o;p8iti.ot 2 : Let E be any Bjolean space and let £r (E) be its 

lattice of compact open sets. Then (1) the ideal lattice J of(--(E) 

is lattice iioto>r]phic to the lattice of an open subsets of E, the 

iacmorphism being given by attaching to any open set 0 of E the ideal 
1(0) in 5 • (H) the sub^ittae .i 5 consisting of ^l the pritcila^ 

ii«aTi of J(E) .s a Eojlean la^ice isom>rphic to J(E^).

3. Equivalence of Categories*
Let $ den^e the category whose objects are ^olean lattices 

and wiose maps are propwr Boolean lattice horowarphiaEie. Lct, denote 

tho category whose objects are Boolean spaces and w^oee tali are proper 

continuous mppjnrs. In this section we establish that the categories 

(P and are enuinvQeit.

Let B, C be any two B°olean lattices and -^(C)

denote their reile<ctive utrafilter spaces. Let ft B ?C be a J2222E 

Boolean lattice hopHnorpiisrt. Then f gives rise to a nap f_n_ : -fl-(C)

—jJtntB) defined as follows:
^(Ue ) - f*1, ) « {x/x£B> Ucj

for any Uc in XL(C). Since f is a proper hotraHrplilm and U c is a 

filter, r^W’c H=<* Moreover r^c ) is an ultrafilter in B since 

f is a Boolean lattice hotxitorphi3^J and U is an ultrafilter in C. Thus 

f_x_(uc ) *• • nseb^r of-H (B). Take any Nis.c op^ s^-/L(a) in-J-B).



36.

Then i. -./L(f(a)), a ba,io
open s«t in_QL(C) Were f1(Uc) » 1% an ultrafntor in B Wth aC-^j. 

Hence the inverse Image under Jq of any basic open set inXL(B) is 

basic open in XL (C) • H«ice )_ is a continuous nap. Since the set 

of allYL (a) as a ranges through B characterise the compact open sets 

of J1-(B) we have by Propsition 11 of the previous chapter that f 

is proper continuous.

On the other hand let E, F be any two Boolean spaces and let 

ZrF), frF) denote their respective Boolean lattices of compact, open 

sets. Let f i E—>F bo a proper continuous map. Then f gives rise 

to a nap fL’ F)—>$(8) defied by ^X) “ “^(X) for any X n *-((F).

Since X is compact open and f is proper continuous wo have that f“f(X) 

is comswct open and hence belongs to )■ (E). We proceed to show that f 

is a proper Boolean lattice horaomrrpiism. For any X, Y inX-F) we haves

(1) ryxnr) - r-Xfxnr) - r'OH r*(T) - tW $r).
(2) £(x^r) - rX(xuT) - rX(x)u f-Xfi) -

If X, Y)Z-(F) Hthh^CXGl then

(3) f^tt-X) - fX(Y-X) - fX(Y) - f_1(X) - ffCY) -
Hance ff is a Boolean lat^ce hxmxmxrpniam• Let 
arbitrary. Then f(X) °T la a compact set in F since f is continuous. 

Take a com^ct open sot Z in F With Z containing Y. Sudi a Z odists 

since Y is compact and 2L(F) is a basis for open sets of F. Then Z is 

lnZ^F) and fy (Z) “ f“f(Z) contains “X. House ff is a prqgg

Boolean lattice hxrx»aorphh«i.
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Dliagrttritic&Lly we have the following situation!

The main resuLt of this section ia the folhWLng theorem.

Theorem 3 t The correspondences and

are contravmriant functors T i £—— and S s £) —> fo Whch establish 

the equivalence of the categories £ and $ .

Proof: (i) Let A, B, C be Boolean lattices. The map T is certainly

wall defined. ALso we have,

(1) if f 6H(A,B) than T(f) • f^G « H(T(B),T(A)).

(2) if eAC H(A,A) then T(*a) • (eA)_fL H(-fLU)>~a (A))) “ *r(A)’

(3) FinOly suppose f GH(A,B) g£H(B,C). We must shew that T(gf) -

T(f) T(g). Now T(gf) • and 7(f) T(g) “ f^_ g(. Hence we need

to show that (gf)(uc) - (f^_. g^) (Uc) -e_a.Ua.(Gi)) for w Uc 

inJL(C). Now (gf^^) • (gfF1(Uc) =(x/x£A, g(f(x)) 6 Ucj and 

(f-A- gg((Uc) - rU(g-1(())). Take any y in (g.f^Uc). »• g(f<y)) “ u 

for sone uG^. Hde naans f(y)G 6"U(u)) 0 o is» y€ f U((TX(w))) Hanoe 

yUrggUUUc)) - f <* the other hand take any xe((o. -CrJ

(Uc). Then r.C-f-g*1)^) f°r smb uG^. Hris taplies xt f-X(u) 

vg-rtu). Hence f(x) -veg-1^). Thus g(f(x)) - UeUg. Therefore 

XG w have estoWLiihsd that (gfJj_(Hc) — (fu *

for any U^tf-CC). Hones T(gf) -T(f) T(g), that is, T is a contra- 

vwiant functor from ° to (9 •
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(11) Let E, F, G b« Boolean sp^ona*

(1) if f 6H(S,F) than 8(f) - h;Z(?),£ (g)),

(2) If tgG H(S,E) than* S(({) 6 H(G(E),2£(e)) -

(3) Finally suppose f eHl^,F) and gGH(F,G). We mist show that

S(gf) “ S(f) S(g). Thus we need to establish that (gf){(X) - (g^(X))

for any X Now (gf)^X) - (gT)<-X(X) -{z/xGE. g(f(x))ex]

f^(g^(X)) • f"1(g"1(X)) 09 fr^CflT^x^yxexy . Take any y 6 (gf^X). 

Then g(f(y)) “ x f°r son® x£X and thus y£ ^(f'^Cx)) f°r some x£ X. 

TFhrsfore y£ (gf)£.(X). On the other hand if y- )(X), then

y “ f“1(E“1(x)) for some xG X. ftmce g(f(y))GX which imjpd^ yGCf^.CX). 

ThLs shows that 3(gf) « S(f)S(g), that is, S is a contrawwiant functor 
tovnffi to f .

(Hl) Since S, T are contra-variant functors, the comoostes ST and T3 

are co-variant funectors on £ respectively. Let , i# denote the

identity functors on £ , £) respectively. In order to establish that the 

categories f and £ are equivalent we mat show that there ls a natural

equivalence f of the functors ST and l£ and a natural equivalence 

of the functors TS and Ig , In Proipoition 1 we st w that any Boolean 

lattice B is iiomorphic to f (~.(B)) the isomorphism 1(B) being given 

by i(B)(a) *r(L(a). Delfin.^ a map 1^ Wiich assigns to wch B 6 f the 

map iB: ]{B) —->3T(B). Det B, C be in £ and let f : B —> C be a proper 

horaw»rppis&. We show that 1{ f * (f-o(){Lg. Take any aGB. Then 

MU) « i°(f(a)) »--Z (f(a)), the compact open set in-7L (C) 

determined by f(a). On the ottier hand we have (fxi ()^Lg(a) “ 
- rfr-Oh)) -JL(f(a)). Hence l{f - (f^ i0. Thua I? is a natural

trttiafoiienion of the functor 1{ into the funCtor :h • Also for each
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B - - , the map 1(B) being one to one and onto has an inverse. Hence 

ia a nattu-naL equivalence of the Anctors ST and 1- . We now show that 

there la a natural equivalence of the functors TS end For each

let 1(g) deiota the hom«oror]phl.sE betwe«n E ard-H^x^E)) given 

aa in Thom 2. Cosider the rotp /- rtiich assigns to eath E in & the 

map 1(E) i I& (S) ——>TS(E). Then take any E, F in JQ and let f t E--F 

be a proper continuous map. We now show that iyf - ((fig. Take 

any x in 2. Then iF(f(x)) — F(f(x)) » [^/f(x)6YG£(F)J . On the 

other hand (f-.—^(x) “ (f- (F(x)).

Hence ipf — (f, -— ig’ Since for eath E in — , 1(E) has an inverse 1(E) 

wth 1(E)j' . “-(E) and i*-(E)i(E) the identity maps, Q is a natural 

equivalence between the functors TS and i# . Hence the categories U and S

are equivOlMin. This complies the proof.

As a direct consequence of Theorem 3 we observe that a Bcwlean 

Lattice is determined up to isomorphism by its ultrafiltor space, that 

is, two B>olean lattices are isomorphic if and only if their ultra

filter spaces are homKoroopFic. Moorover the group of automorphisms of 

any Boolean lattice is isomorphic to the group of homeomorphisms its 

ultrafilter space.

4» The Spa^ces^)ad -—l(B/t)»

Given a Boolean lattice B and its ultrafilter space -Q-(B) one 

night woodier tfiat relation the ultrafilter space of an ideal i in B con

sidered as a Boolean lattice bears to the space—A— (B) ? We shjd^i see



40.

In the following that the open subspaces of-TL (B) correspond precisely 

to the Ultrafilter spaces of ideal I in B.

Let B be a Bo lean lattice and let I be any ideal in B. Conider 
the open set/^(!) - j U/U/AI =<=> j corresponding to this ideal I. 

Ntation : For any ULtrafliter U in I, let£uj denote the filter gen

erated by U in B.

One has the following lema;

Lengaa 1 : Let B be a Bolean lattice and I any ideal in B. LetTL(T) 

denote the Ultrafilter space of I considered as a Boolean lattice. The 

nap f given by f(U) “[UJ la one-to-one and onto ^lere

U is in-Q(l).

ftrreft Take any U in-Q_((). Then note that [_uj is in/Y(I)« Since

UC-I we have We only need to show that [uj is an Ultrafilter

in B. Take a filter V in B With [_u]CVC Then there eXLsts an xfVwith 

x^[uj . Take any y in B, If y£ U then y € V. If y - U then there 

exists z in U With yA a » 0. Also x not in [Q implies x not in U. 

Itance there exists in U With s(AX ” 0. Now y yv(a^Ax) • 

(y v »lM (y v x). Now both (y Y x) and yy Zj totong to V . H«nce y 6 V- 

Thus in either case V - B. Hence [uj is an ultrafilter in B and 

thus - U - is a m«m>er of//(I). Moreover since U is an Ultrafilter in I 

we have f UjH I ** U Take U V in Wi^h V • Th«i £uj — £VJ

f°r o^se [u] - [Vj . Then [ujdl “ U I - Vand - - V

Wiich coin3rad±cts U4V • Hones f is one-to-one. Talce any Ufc/fCO. 

Then Ull^ — is a filter in I and fuMlJ BB U It is sufftoi^t to 

Uc [ur)lj • Take x£U and suppose x - [u/lj • This WHw x^s for
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any zGU(HI. If xa« - o then thia wouLd contradict the fact that U 

is projxn-. H«ice xa a} o and aLeo xa 8(- UQ I. ALso x} xa z and this 

coitriHlirta the fact that x£ z for any z€ Wil. Hence U - [ufL i] , 

and this msans UQI is an ultrafiLter in I. Honce f is onto. Thia 

comlLtes the proof.

Using Lemma 1 we arrive at the answer to the question posed at

the beginning of this section. We have the follcwing theorem:

Theorem 4 : Let B be a Boolean Lattice and I any ideal in B. Then the 

ultrOfLLter spaceJf. (I) of I is homeomorphic toy^(I), the map f : 

-fL-(I)—7yV£(l) given by f(U) « £uj . Conversely Let E be any Boolean 

space and 0 any open subspace of E. Then the Boolean Lattice c£ (0) is 

an ideal in the Boolean Lattice <r(E).

Proof: (i) By L«mma 2 the wap f t-fL(()—(I) given by f(u) *[uj 

is on<e-to-one and onto. First note that every set J L(a)g/f(I) is 

compact open in,y£(l) sincey^ (I) is open. MooTOver since the_fZ.(a) 

are precisely the coq^^ open subsets of-fL.(B), theJL (a)L:7'V(I) are 

preciseLy the compact open subsets of/^(l) and these form a basis 

fo^/fCI). Also rote thaa/^CUn -J1 (a) tfhs™ (a) denotes the pxdn- 

cipaL idea! gon (rated by a. Henoe we g<et_L(a) —a^(I) if and only if 

aGl. Take a basic open set ^l_(a)^7^(l). Then, 

r1^^()) “ f1 [ U/aCmi < - f WAAevM tfiich is a basu

open set in-fL.(I). On the other hand take a basic open set-(L(a)gIL(I).

Them a€ i and f(-^-L(t))
Wiicli is open iLny^Clh

Hence f is a hrwe>r»rrlnism.
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(ii) We showed in the previous chafer that any open subset 0 of E is 

a Boolean space. Ko^-CcO « x compact j . How by

Theorem 2 we have that Xr (0) is an idea ln^-E) for X c^p^cd, 0

impies X compact in E.

Theorem k allows us to deduct that the uLtrafilter spaces of 

ideals in a given Boolean lattice / art, up to hopetHmorphstni, precisely 

the open subspaces of the ultrafilter spact-O-(B).

Let B bt a Boolean lattice and I any ideal in /. We conclude 

this section by showing that ths ultraf-lter space-T-E/j) of ths 

qiu^isnt ^ttict B/j correspond. p*tcisely to the cfosed stts<$ (I) of 
_T_E). Ltt V s B—}B/j bt ths natural homomorphism and let ths ultra

filters in B/t bt denoted by U , V , etc.

We then have the following theorem:

Theorem 5 : Ltt B bt any Boolean lattice and I any ideal in B. Then 

ths mtrafilttr epact—lE/l) of ths quotient lattice //; is homso- 
moTpdc to ths closed srt^S tht ft^cxoronohi^ T^E/x) ^^(1)

being given by f(U) • V ((U)).

Proof Take any ultrafilttr U in B/j. Then >> ((/)) “ U say is an ultra- 

filttr in /. Wt must show U is in < (I). Since T is a /°oltan ^toiM 

hoaomoirphira T ((U)) is an uLtrafilter in B. Ws mu»t otow u0l •“ 0 

Takeo any a£U. Them 9 (a) GU, that is V EH 0 • Henct a£l and ttos 

U/"\I ■«<j6, £ Ia clearly one—to—one» Takt U E)o then U T -l t Y-

Then V (U) - U is an ultrafilttr in //i and since T is onto wt have 

f(U) - 9Z(^U))« U. Hemce f fo onto. Takt aiy optn stt in $ (I)*

This is of tte for sam® idtal - in B*
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Than

• | U/U H^J) D Witch is an opan sat of-fL(B/i).

Hance f is continuous. On the other hand take an open subset A (I) of

-I7_(B/t). Then we have,

H«ice f(^(I)) Hcence f la a honex/orphiem. Tthls complies

the proof.

5. Illustrative Exappe.

An exapple of a compart. Boolean space is the Cmtor ternary set 

or CiaMtor discontinuujn D endowed With the relative topology of the reals. 

It is well known that each elment of D Whch lies in the closed inter-

v< [o> can be wi-tten in the fora w^iere = 0 or 2. W

Will now establish that D With the topology neitioned is a copnot 

totally disconnected space. The following proportion mceinions a

property of D Wh.ch Will be useful in achieving our gpoa 

Ponoition 3 : Let D be the Cantor ternary set. Let

be two distinct points of D W.th |x - y| < 3”r for sotoe

integer r. Then h « bn for at least the first r terns.

Poof: Since the points x, y are distinct there eXLsts a snUest

integer n for vhiah stbn* ’that- is , ®n “ bn for n 1, 2,...n-l. In

partticulAr if x<y we have

Now suppose s r and • b^ for exuStly the first s texns. Then by the
— j) -

property Juist stated | x - y | £ 3 and since s< r we have 3'°?

Thus /x » y|>3“r Wiich is a contradiction to the hypothesis that|x - y|<3~r«



Hence our supposition is false and the proposition is established.

We now establish that D is a Boolean space.

Propoition 4 : The Cm£oi' ternary set D endowed with the relative 

topology of the reals is a corapact Boolean apace.

.Proof: By Proposition 7 of the previous chapter it is enoutft to show

D is coiqp&ct and totally disconnected. Since D is a subset of the reals, 

to show D coqpMt it is enough to snow D is closed and bounded. D is 

a bounded set since each el«»nt of 0 Kes between the real numbers 0, 1. 

In order to chow that D is closed it is sufficient to show that the 

folowing condition is satisfied: If inf. lx - z|« 0 for some real 

numbeer s then z is an eleKeit of D. Take such a real number a. Then 

since the greatest lower bound of £ x - a ( x € dJ is zero there exists 

a subsequence ( ( - z)neA/ tending to zero. Thus £.0 each integer r 

there corresponds axp in D With [x - a | < J*-!. If r<s than we 

have, | • xg < | Xr - a | * | z - X]< 3”r~^ + 3*-s-L< 3~r.

Say Then by Pro;»sition 3 a^ • a^ for at least

n » 1,. r. Defne Then we have that the first r

terns in the expansion of w and Xj coincide. Tht is, [ w - x< 3 r • 

Tmus for each r we have, J w • s I£ J w * 24. J + Jxj. - z 1 ( 3~r + 3“r*is 3“xt-l« 

Ifance |w - a | —0 as r-^4 , Thus w « z. But by its very definition 

w is an element in D. Hence z&D. Thue D is closed and we have already 

noted that D is bounded. Therefore D is comport.. (e now show that D 

is totally disconnected. Take x, y In D with, say x< y. Then by the

at Pro axiste a srallesv integer r for wiioh

where We now define
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Where

Then clearly x<a<y. Put. A “ j p/ptD, p<sj and B « j p/p<-Dj 

p>» '[ . Than dearly xGA> y--B, A/^B •'/’> A^B *• D. Also A is 

dearly closed subs! of D. Hence D is totally disconnected. In all 

D is a com^Puct Boolean space. This complies the proof.



CHAPTER II.

BOOLEAN LATTICES AMD BOOLEAN RI??US.

Introduction : In this chajrter we exhibit the connection between

Bulean lattices and Bolean rings. The main result we W.11 establish 

here is that the category of Boolean lattices and proper Boolean lattice 

honorphiims is equivalent to the category of Boolean rings and proper 

ring homour phi eras.

1. The Bx>lean Ring of a Boolean Lttice.

Let B be any Boolean lattice and I any ideal in B. Let B/j 

denote the quHent lattice. Introduce two binary operations in the 

set B as follows (i) x + y “ (x~xa^)v (y~XAy) for any x, y in B 

(ii) x*y “xay for rnny x, y in B. We (dll dcede the triple (B, *>•) 

for short by $^B). We establish the following genonal theorem about 

R(b).

Theorem 1 s (1) la a Boolean ring in which the zero of B is the

zero of $(b).

(ii) B has an urdt if and only if (£(B) has a unit, and the wilt of B 

is the unit of $(B) and conversely.
(Hi) The ideals in are given precise^ by the sets $,(I) Wiere

I is an ideal in B.
(iv) The prime ideals in #(B) are gWoi precise^ the sets &(I)

whnre I is a prime ideal in B.

46.
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(v) The radml ideate in $?(B) are given precisely by the sets &(I) 

Were I is a madLmSl ideal in 0.

(vi) The quotient, rings of $(B) are precisely of the foj® &(B/I) ^ers

I ie an ideal in B.

flroofr (i) Let --TUB) d«note the set of all ulti’afilUrs in B and
for each aGB let^X7(a) « £U/a euej^J. For each a in B defi™ ha »

> ^0 “ Jo, 1J by ha(U) “ J 0 n^_f)_(a) where Ro .s the two element
[1 Uell(a)

B>olean ring. Then ha is the OhuraOteitStio function ofX1(a). Let t (B) 

denote the set o^ all these ohcuraO.ter.stio dictions, that is, let £(B) 
“f h»/aG b! • We first show that Jt^(B) forma a Boolean ring under 

functional addition and mlliplioation. To this end we oheok that the 

set 1 (o) .s olosed under the operations just stated That t,he rerndning 

proopcties hoM W^I.oH m&es • (B) into a ring is then quite clear. Take 

any U Ln H. Then (ha+ hb)(U) - ha(U) + h>(U)* Thue (ha + hfa)(U) - 1 

if and only if UG_C(a) +_llb) Where ’n• denotes symmtrio difference.

We now show thatX1(a) + X1(b) *a_Q|(a + b) for any a, b in B. U£-T(.(a»b) 

if and only if a~ a Ab or b~a Ab GU. “Tiis is the oase if and only if 

aGU and b0 or a(£u and bGU. Thus UG<1(&-b) if and only if UfcJl(a) 

+Xt(b). Hence (ha + j is 1 onXZ(a*b) and 0 otherw.se, that is, ha+ hf 

“ ha+b f°r any a, b in B. Thus ^(B) is olosed under tocttonal addition.

Now (ha hb)(U) « ha(U) hbfa) "

It is now olear that hab “ha« h^,

otherw.se
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th’t iB, £(B) is closed under jCUncM-mtl add^tl^rv. Clearly h0 ♦ ha

* ho+a ~ ha > ho is thr a'ro of £((B) where o i’ the ze(o of B.

Also (h’) “ ha2 “• ha> that is, £(B) is a Boolean ring. Connider the 

vap f 1 £(»)---->&(B) giv«n by f(ht) - t. Since th- elxmeVt’ o

are the same f is clearly onto. Also a “ b implee _/l(t) »JQ(b) from 

Which it follows that h’ «• hb. Hence f is one to one. we have

fCha+hb) “ f(ha+b) - » + b “ f(ha) + /(hfc) and f(hahb) - f(hab) » ab =» 

f(ha)f(hb)f that i’, Ls ring isomorphic to the Boolean rUg £(B).

Hsnce $,(B) is a Boolean ring.

(ii) Suppose B has uV^t e. Then e^x for each x in B, that is, sax “x 

for each x iv B. Remse ex • x for each x iv $((B), that is e is the nit 

of On the other b^n°, supp^ae $(b) has an unit e. Then ex « x

for each x in f?(3). This aeons, sax “ x for each x in B. Hence e>x 

for each x in B, and e is then also the unit of B.

(HL) ket i b" any ideal Lv B. Take avy x, y iv $?(i). The1 x, y cre
in i and hence xvy£l and x/yGl. Hence dlnce i is av ideal in B, 

(xvy)~ (xAy) G i. But x - y “ (xv y) (x/vy). Heioe x - y is iv 

^(Zj. Taka any x lv $£(3) avd y lv ($(i). Than MA^I, av0 thud 
x Ay£ i Whxh raans xy£ $.(1). Thersrefo^^ l’ av ioe°l i1 ^(B) 

Wnore i is av ideal iv B. On the other hand let J be avy ideal in the 

Biolean ring $(B). Then J is a subs" B avd we show J is av ideal 

iv B. Take avy x, y iv J. Thru x + y - (xvy)~ («Ay) is in (J) 

and xy G (J). Thue ((xv y) ^(x Ay)) v (x ty) & J , that is, x y y GJ. 

Taka avy xG (ft (B), yG J. Them xy£ J J id hence xa) G J considered as 

a subset of B. Hence J is am ideal in the lattice theoretic dense avd 

toktag J i1 thi’ devde it l’ c]"’!' that $t(J) i“ J« Hf'ice the id®als 
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in are precisely of the form 6^(1) rtiere I le an ideal in B.

(iv) Let I be a jri'mee ldioU n Bl. We knw hat $ (I) i8 an ideal n

^(B). We raiet show that Ls prims. Since I is a priae Heal

B we have that xAy in I impies x in I or y in X. TSLs means that xy 

in $L(I) ^Hes x in 51 (I) or y in $(1). !to f (I) is a prin® 

in ^(B). On the other hand let J be any prime iJdeiQ of $£()). In view

of (ill) it is enough to show that J is prime when considered as a sub

set of B. Since J is prime in $ (B) we have that xy in J implies x in J 

or y in J. Hence x a y in J implies x in J or y in J considered as an 

ileal in Ba Tnis establishes (iv),

(v) Lt X b a mdml H«a in B. Than )*y-(v fey Proppestion 4 the
set of all macim*! ideals in B is equal to the set of all prime ideals 

in B and by Projpostion 16 of the previous chaper the set of all 
imodum! toeals ln &B) is equal to the set of all prime ^eals in J?()). 

Hence by part (iv) the maxim ideals of £L(B) are precisely the sets 

5.(1) Were I ranges over the set of maxm ideals of B,

(vl) To establsBh (vi . tee show . ■* (RB)/ (-(()) • Dwote hee
elements of B/j by x Wiere x is in B, For any two elements x, y in B 

put x=y if and only if (x~XAy) and (y-~x xy) belongs to I, = is an 

equivalence relation and x denotes the equivalence class determined 

by x und^ thia relation. The qiotient ring J^BVcRX^O conns»ts of 

elements [x. where f xj is the equivalence class determined by x under 

the equivvalence relation : x.y if .. ©nly if x - y in tf.Cl) « 

Mow x\y if and only if x ) y Ls in (I) Lo a B^<^-lttan

ring, jfow x + y * (x~xa v (y~XA y). Hence x — y and only if

xxy. Thrn since B and (£ (B) have the sane element, (I)
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have the same elements, that is, x “ [x] . Moreover x + y - x + y » 

[x + y]“W ♦ M atxy-3y» [ay] fxj'fy] . Hano.^BA) 

- $(b)/i£(i) and the theorem is established.

Theorem 1 hag shown that a BcxOLesn lattice B can be regarded as 

a Boolean ring by defining operations of addition and milliplicaticn on 

the inttflying set B in terms of the lattice operations of B» Moreover 

these operations are defined in midi a manner that the ring theoretic 

ideaLs of (J2(b) correspond precisely to the lattice thwretic ideals 

of B. In the next section we show that in a similar way a Boolean ring 

can be regarded as a Boolean lattice.

2. The Boolean Lattice of a Boolean Ring.

We now proceed to establish the colllterptrt of Theorem 1. 

Theorem 2 : Let R be any Boolean ring. Then (i) R under the divis

ibility relation is a Boolean lattice which we denote by (Q (R)» In 

$ (R), the zero of the ring is the zero of $ ) ) ) XAy ° xy, xvy “ 

x + y f xy and if 0 < x< y then y~x “ y - x.

(H) R huss rn unit if md oity if (6 R)) iass an unit.

(ill) The ideals in $ (R) are given precisely by the sets $ (I) tfwere 

Ids an ideal in R.

(iv) The prime ideals in (Q (R) are given precise^ by the sets $ (I) 

wwere I is a prime ideal in R.

(v) The madman ideals in f (R) are given pwciwly by the sets (8 (I) 

tfuere I is a maximal ideal in R.
(vL) The quoti^t lattices of g (R) are precisely of the fora & (R/^ 

wwere I is an ideal in R.
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Poof: (1) The divisibility reliticrn does partially order R. We show 

that xy « inf'£x,yj , xfy+xy “ Bup. [ x,yf under the divsibiiny 

relation. How xy< x,y for x(xy) - xy and y(xy) - xy. Thus xy is a 

^er borna for the set { x.y] . Let * b* less rpd x.y. <1^ 

sx - xy - x and thus say « sy2 » ay « s. Hsnce s<xy. Thue xy • inf 

[x»yj • Clearly xryxyyx,y for x(n+y+xy) “ x^y-t-xy « x and y(xry*xy) 

« y using the fact that R is a Boolean ring. If Zfx.y then xry - 

zxrzy and xry-rxy “ s(xtyi-xr), that is, s^x-y^-xy. Hence x-ryrxy is the 

least upper bound of £x,yj under hhe d.W.sibillty relation. Hence R 

under divisibility is a lattice with neet and join as stated.

We now show that hhe x]peratixiz merit and join distribute over 

each other. Now, xA (y V «) “ x(y+-z-rns) “ xy-xz-xyz “ (x Ay) V (xa z). 

Take the zero R* Then ox “ o for each x in R, that is, o<x for 

each x in R. Hence R under diWsibility is a distributive lattice with 

zero. Take o-zx<y and pat z • y-x. Then z Ax “ (y-x)x “ 0 and x V« “ y 

for x<y. Hence y • x—y»xy • xHs+zx for z o» y-x. Hence y "• x vz. Hence 

R under d.vsibillhy is a relatively oxmpl^ooi1^^ted distributive lattice 

with zero, that is, a Boolean lattice.

(ii) Suppose R has an unit e. Then xe «* x for each x in R. Hence 

XAe = x for each x in $ R). Thus e .s alsx hhe wit of £ (Rj. On 

the other hwd let £ (R) wit e. Then ef-x for e^ x ln £ R), 

that is ex “ x for each x in R* Hence e is the wit of R.

(Hl) Let I b* any ideal in R. ^en fl(l) i® 1 ^bset of (8 (R). Take 
any x,y in £ (I). Then x,y ) a stow i wd $ (I) hive the s1nae 

Since I is an ideal in R we have x+y - (xy y)~(xAy) and xy ire in I. 

Thus x+yrxy « xvy is in I and hew* ln $ (l). Next let x£ (8(1) and 
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suppose y< x. Thon yx « y and eince x 61 and I is an ideal in R we 

haveyxC I. Hence ye £ (I). Thus $ (i) is an ideal in g (R). Qu the 

other hand let J be any ideal of (g (R). We show that J io also an ideal 

of R. Take x,y in g (R)J then x v y « xry+xy and x a y beo^s to J, 

Hmce ^yM^y) * xty belongs to J. Take any x in R and y in J. 

Then XAyG J and hence xyG J c^sidared as a subset of R. Htenoe J is 

an ideal in R and clearly (g( j) J.

(iv) Let t et t pries ideal in R . Then by (iii t C3(X t s t an ddeal in

® (R)• Since I is priao in R w^ have that if xy E X thwi x GI or y€ I. 

.‘twice xy£ im^^s x 0. (8(1) or y e(B (!)» Thus & (i) is a

ideal in(g (!<)• On the othar hand let J be any prime ideal of (g (((• 

Then xAy In J implies x in J or y in J. Thus xy in J implies x in J 

or y in J, Honce J is prim Wien considered as on ideal in R and thus

(iv) is established.

(v) By Poipostion 16 the sot of prime ideals in R is equal to the set 

o^ maximal ideals in R and by rP’oipoition 4 the set of prime ideals in 

63(H) is equal to the set of maxliial ideals in (g (E). Hence by part 

(iv) we get that (g (I) ranges through the mad-MO. itaeal-s of <8 (r) as
I ranges through tha nas^i^fs^:^ id eala of R.

(vi) To establish (yjQ we show that 30 $ (R)/(g (I)**5 or° X is 
an ideal in R. For any two alama<tB x>y in R> put x = y if and only 

if x-y£I. This relation is an equivalence relation on R and the 

equivalence classes detom^r^od by this relation aoreSituta the el.tmeits
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The qwtient Uttice <(R)/(g (I) conaisrte o aleamts [f] 
tfiera [f] .b the equivalence class determined by f in ( (R) under the 

following equivalence relation x x\y if and only if (x~XAy) and 

C^/£XAy) are in $(X)« OperationB, of Qaf&j Join and relative com— 

ple^<e^n.a in (8 (R)/g (I) .b as ^llowa: [xj A [y] - fxAy] , fx]v[y] 

«£fvy] , and lf o<x<y then fy] ( [x] » [y-x] • It is now d^r 

that xxy in B if and only if x-ye I and since the elements of R andfl (R) 

are the same we have x « [f J . Mor^var, XAy - x^y - (/Ay] - fxjl 

fv y 3{xVy - [fv y] « [f] v [y] , x~y »f£y « [x-y] -[x] ~ fyj, 

if o-y<x« Hwnce 6(R/i) ” d3 and tile themm is established.

3. I&ulvvligioe of Categories*

Let denote the category Whose objects are Boolean lattices

tnd Wiose maps tre proper Boolean lattice homomorph!ant. LO C9 denote 

the category Whose objects are Boolean rings and Whose naps are proper 

ring howMcrrhisrai. In this section we establish that the categories ( 

and are euilvaUwit.

Let B, C be any two Boolean lattices and let f : B SC be 

any proper Boolean lattice homomorphism* Then f gives rise to a nap 

f I &(B)—>/$(C) dfMd by fR(x) - f(x) for any x in $(B). The 

map fR has the following properties:



(Hl) Take any » In $C). Then a is in C and since f ie proper there 

eriete an x in B With f(x)^a, that is, fR(x) is divisible by a in <J(C). 

Thus fR is a proper ring hom^j^orjPhLam.

On the other hand let R, 3 be any two Boolean rings and let f : 

R —> S be a proper ring hoocworrhiso. Then f gives rise to a map fg : 

6 (R) —> 6(3) defined by fg(x) « f(x) for any x in $ (R). The map fg 
has the foUwing properties:

(iv) Take any z in jJ(S). Then z is in S and since f is a proper rin 

hc«»»rjpiiim there edsts an x in R with f(x) s. Hence fB(x)^z.

In all this means that fB is a proper Bjolean lattice horanojr- 

phira between the Boolean lattices associated with the Boolean rings 

R and S. We now establish the min result of this section.

Theorem 3 t The two correspondences

are covardant Victors T : C-tV and • which establidi

the equivalence of the categoric and £ •

Prof (i) Let A, B, C be B>olean lattices.

(a) if feH(A,B) th® T(f) - fR€ - H(T(A))T(B)).

(b) if eAE H(A,A) then T(eA) - («A>R£ H($ (a) £(a))’

(c) Finally suppose f6H(A,B) g£ll(B,C).
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tit must chow that T(gf) - T(g)T(f). Now T(gf) « (gf )r and T<g)T(f) » 

gfR. But (gf.x) - (gf)(x) - g(f(x)) and (®UfS(x) - g(f(x)) for any 

x in $ (A). T(gf) ~ T(g)r(f)( that l^ T is o ^v^i^t factor

from ' to T •

(ii) Lt P, Q, R bt Boolean rings.

(a) if fEH'PQ) then S(f) « f/ € Hfi-P), $Q)) « H(S(P),3(Q)).

(b) if eGH(),P) then 5(e) « t/ G H()()) 6(0).

(c) FinOLly Let fGH(),Q), g6H(Q,B).

Wt miet show that S(gf) - S(g))(f). Now (gf)/(x) - (gf)(x) » g(f(x)) 

wihtrsas S(g)J^((f) * ggf/ and (y/f/)(x) •» g(f(x)) for any x in $(P).

Hence S(gf ) » S(g)3(f), Thus 3 is a cowa-iont functor from C& to to • 

(lii) Since T, 3 ars covariant functors, ths comppoitti ST and TS are 

cowiant functors on , dE) respectively. Let I . , 1$ denote ths 

identity functors on £ , T respectively. Wt show that ST » Ig ,

® 1. . This w-LL sstabLish that ths categories £ and Z are oqiiv- 

ulant. To this end we prove,

(1) )-g(d(/)) for any Boolean ^tt-ice and

(2) R » H ($fa)) for any Bolton ring R.

To show (1) s Put R “ (.(0), H ~ & (R). Ltt the operations in / be 

denoted by a , v , T and zero of B by o. Wt wait to show / » /. / and B 

hove the sons elements nometly the tL-emerits o^ R. Thus o “ o. Also, 

x.y ®xy » xAy for any x, yj xvy * x+y+-Q. Wt now have that xty •• 

(xvy)-(xAy) - (xvy) - xy. Thus xvy « x+y+xy « (xv y) - xy + xy - 

xvy. LSt o<x<y. Then y.x “ y - x y~x. Hones / - /. This proves 

(D. V. now ^OW (2). LSt / - &(H) and R “(R.<B). LSt thh' oP<Srations 
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in R be denied by -4- , T and aero of R by o . We wait to shew 

R « R. R and H have the same elerawits namjly the el(mHl;8 of B. How 

xTy « (x~xav) V (y~x/\y) ® (x-xy) v (y-sy) - (x-xy) ♦ (y-xy) ♦ 

(x-xy)(y-xy) - x + y. Honce xty »x + y for OL1 x in 0 j x" y « xa y - 

xy. Hence R - R. Thus (3T)(B) - (g (&(B)) • B for any Boolean lattice B 

and take any f GH(A,B) say, then (ST)(f) - (fR)R has for its domain the 

domOn of f namely A and (fH)(x) - f(x) for any x in B. Hance (ST) is 

the ideitity functor on $ , that is, ST « 1) . On the other hand 

(TO)(R) • ^((B (R) » R for any Dolean ritfjg R. Also if fGH(P,R) say 

then (T))f) » (f&)R has for its domain P and (f))Cx) “ f(x) for any 

x in P. Hence (T3) is the identity funCor on <0 , that is, T3 -Jfi- 

Thus we have established that the categories £ and & are equivalent.

4. AdftinctOon of Unit;.

In this paragraph we describe a method of imbedding a given 

BotOLean lattice B into a Boolean lattice 8* with unit and a given 

Boolean ring R into a Boolean ring R* with unit. These it-.beddngs 

wil be essOTinialLy unique in a sense to be made precise below. We 

will show, moreover, that f we Lmbed B in B and R in R then $ (B ) 

is ring itomMrpiic to R and ft (R) is BoOean lattice isomorphic to B .

Let R> « )o, l) be the two element Bolean ring and Let R be 

any Boolean ring. Connidcr R as an algebra over Ro and let R

R° x€ r) • In the eet R* ^txoriuce Ue folto^g tw> 

binary operations:

(1) fa x) + ( j y) - (o< J x*y) for arbitrary elements in R .

(2) (* x) » (£, y) « (x£, c< y+//*xjr) for any two elements in R .

One now has the folOwing proipoition.
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ioEO^^LJ: : R* the oporkttove (1) (2) 1s a SxXLftv

with unit and contains R as a 8—bring. R* 18 fS3fr'1itl1a unique in 

the following sense: If S is a Boolean ring with unit containing R 

as a subring them 3 contains a Boolean ring T 1^s^c^k^ix^:^c to R* avd 

cx)ttin1no R as a subring.
IkProof : It is clear that R under the operations atf■ltixnfd does 

form a ring. It ts a Boolean ring for (<x x) (w? x) «■ (o* o* x^-<x + x2) 

« x) for avy element of R. R has am urLt, vamf1a. (1,0), fo* 

(1,0) (°<i x) “ ( *t 0 ** 4 0-k + j — x ) »• (<<; x) avd sLM.ltr1y (tf, x) (i,o) - 

( °<) x). The ftt ^(o,x) / x£Rj -s cottoned .m f? avd .s clear^ seev 

to be ring isomorphic to R, the isomorphism being given by x to (o, x).

We now show that R is unique tn the sense 1niicttfi. Det 3 be avy

Boolean ring with uVlt 6 containing R ao a aita-tig. Contider the map f : 

R*—> 3 ^vev by .(fyx)) " + X where ) « 0 f — « 0 avd fC^ ) =»

e 1f °< “ 1. We show that f from R onto T « £x + f(i) / xeRJ 1s a 

ring isomorphism. We first show that f is ors-to-ove. Take (w, x), 

(fty) lv R* w.th (% x) t= (ft, y).

Case 1 : oe 4? fl , x «• y. Without loss of g«irefiaLity sayO “ 0, fl =* 1. 

Them t((oc) x)) - x avd f( — — y) « e -- y avd x^e + y for e ts vot lv R.

Case 2 : oo - f , x^y. Supposed 30 £ a 0, Them f((d; x)) “ x, f(> y) “ y 

aVi^y. Suppose — “ /3 - 1. Them f((i, x)) *• 6 + x, f(( ft y)) “ e + y 

avd 6 + x^e + y for x^y.
Css6 3 : , xfyo Without Lost of gene-aity ^ppoa6 * - 0,^“ 1.

Them .(a, x) « x, f(( ft y)) * « * V ** *!9 * y for « iB not in R.

Renee f is one to ove. It is clear that f is otto I for take x — f(<)

1. T. Th61 . — > x) 13 1. R*avd i(^o x) “ f(*) + x. F^-eovw, we hw6
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f((*l x)+Q) y)) -fC^/J, Xry)) -((o<f )wy - f(h «

£((*) x)) + f(( fa y)) and.

x) (h y)) - r((°%*y rfx + w)) " *(<)*( £) +«y + /3x + xy 

«• f((^( *)) f(( f, y))« Hence f is a ring homMMjrjP^hLan. Thus R* is

iacmirjtfdc to T and T contains aa a subring and

this cornices the proof.

We now describe a method of imbedding a Boolean lattice B into 

a Boolean lattice with unit. By Stone’s representation theorem B is 

isomorjlhLc to a Boolean lattice of subadts of some set X. Take

a Boolean lattice of subsets isomorphic to

B, the isomorphic correspondence being given by x —>Sy. Let

and put Ld V© now establish,
,_ »

propoltion 2 s ± t partially ordered by set inclusion, is a Boolean 

lattice with unit Y containing B. j is esse.tiiaLly unique in the 

following sense : If C is a Boolean lattice with unit containing B 

as a sub-Boolean lattice then C contains a Boolean lattice A Wth
— *wut isomorphic to J- and containing B.

Proof? Take any Sy lv j and £ Sy lv G. Then 3X 0 CySy * Vx-y.

“ ®x - (SxQSy)« Thus T is closed under intersection. Moreover, it 

is clear that the set T*ia closed with respect to taking complements 

in I, Also, by the definition of Y each element of 1 is contained
— » —

in Y. Hrnice 7 ” is a Boolean lattice With urdt Y. Now ± contains J-
z—X

Wiich is Boolean lattice isomorphic to B, Thus by identification 3 

contains B as a Boolean lattice. We now show that 3 is unique in the 

sense indicated. Lot C be a Bcoolean lattice with unit e containing B.

Connider the map f s J-  ----- (— C seven by
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Then f is one to one, for take N ) N in J- .

Caa-eeJ s M « Sx» N * Sy eay WLth x^y. Then t(y) - x, f(3v) » y
Jr

and x^y.

Case 2 i Then f(M) • e^x and f(H) = y and e^x f

for e is not in B.

C&S-l 1 M “£y£x» N and hen x^y for M^N. Thus e^x#e~y,

that is, f(D )^f( N). Hence n all ctues f(H)==f(N) nd f is one o one. 

f is clearly onto the set A " p^/xe lj U £ e~x/x€ 3J .

Also (i) f(SxnSy) • f(3X/<y) “ XAy « fCs*)/^ f(Sy)

(ii) f(£y 3ynsx) • f(Sx^XAy) • x-XAy « (e-vy)A x • f(£y Sy/)f(Sx).

(m) f( CySj-Qj^Sy) «• f( CyC^x^Sy)) • e^(xvy) • (e^x)/'(«vy)

-f( C^QfCfySy).

Thus f(MflN) - f(M)f|f(() for any M, N in 7 )• Similarly f(KUH) - 

f(M)Uf(K) for any M, M in 7 • Finally we have, f(T) = f(£.So) • 

e~o « e. Hones f is a unitary Boolean lattice honxorarjdhii® Witch is

also one to one and onto, that is, f is an isemorphism. Morreover, A 

contains B as a Boolean sublattice, conplieing the proof.
K

Rotation : For any Boolean lattice B let B denote the Boolean lattice

With urit into Wiich B can be imbedded as described in Proiiooitioon 2. 
a

-ir^^Larly far any Boolean ring R let R denote the Boolean ring with 

unit into Which R can be imbedded as described in Prop option 1.

We now state and prove in the following theorem the result 

announced efa’lier.

Theorem 4 x Let B be a Brolean lattice and (£(B) ito Boolero ring.

Then (R(Bm) is ring isomorphic to $(B) . Coonvrsely let R be any 

Boolean ring and 03 GO its Boolean lattice. Then $ (R ) is lattice 
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i^tom^orp^hic to f (R ).

prof (i) Let B, B be given. Since B* contains an Isomnrpdc 

copy of B we have by Theorem 1 that & (B*) contains an isomorphic 

copy of the Boolean ring &(D) Hweevr, by Propoltioin 1 0(B)* is 

the sraHost 3oolaan ring containing & (B). He^cce again by Proposition 

1 &(B) is orntained ^crnoophically as a subring in (R ()*). By 

Theorem 3 Z($.(B)J- r. Hence fiC&.Bj*) stains on isomorphic copy 

of the Bjolean lattice B. Then applying Pr^jp^o^j^-bj^o^n 2 we have that 

® ) rontWns an ^ootpiIc copy of )*♦ Hotm ft(B*) is con

tained isnmn^hiLO^aLly as a subring within $-(b)*. He^ice we get $.(B*) 

is ring isomorphic to &(B)\

(ii) Let R, R be given. Since R * contains an iKm^rphic copy of R 

we have that $ (R*) contains an isomorphic copy of the lattice (13 (R). 

Then by froipoition 2 we have $ (R*) contains an isomorphic copy 

fy (R)X whch is the sjmHoat Br^lran lattice containing 6 (R). Now, on 

the other hand, 6 (R)* contains an isomorphic copy of 0B). Hence 

(K (6(H)) is contained ilrmo•Jpic^ally as a Boolean ring in (R(<£ (R)*). 

Ry Theorem 3 (R( & (R)) “ R. Hance by ftropjoition 1 zR ( $> (R)*) ^nt^ns 

an isomorphic copy of R*. Thus $ ZR (d(R)* ) contains an isomorphic copy 

of $ (R*)« Jut @> ($(6(R)*)) -® (R)* by T^orem 3. Hen^ in

6 (R*) is lattice isomorphic to $ (R)* and the theom is established.

5. Free Boolean Lattices and Boolean Rings,.

In this paragraph we introduce the notions of absolute and 

relative framess for Boolean lattices and Boolean rings. We show that 

relatively free B^lem lattices correspond precisely to relatively free 
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Boolean rings and that fret Boolean Lattices correajond precisely to fret 

Boolean rings.

LSt R bt any ring. By an epttsiaion ring of R we mean any ring S 

wh-ch contains R as a subring. LSt / bt any Boolean Lattice, (y an 

eoAensipn Lattice of / we mton ony Boolean Lattice C wiIcI contains / os 

a gub-/o>lean lattice. Wt now mOks tht following definitions:

Detfnition 1 : As extension Boolean ring R of a Boolean ring R is said 

to k® relatively free over R with X a free sSt of generators over R if and 

only if any mapping fo : X—>3 wnrnrs 3 is any extension Boolean ring of R 

_sxtesdi to ar. unique rir3gihomoBo^!plisUT f t R*-—-> 3 with f re^rlcttd to 

R being the idslity m^j^pp^ng.

CooTssposlingLy wt moke ths following definition:

Definition 2 : LSt / bs a Boolean Lattice.

As extension Boolean lattice / o^ S is said to bt fete over / w.th X

a free stt of generators over / if and only if any mopping f0 : X -> C 

wusrs C is any extension Boolean Lattice o^ B extends uniquely to a 

Bxoleon LuttiLt tomomorptlim f : B*—> C wLth f r^triO^cd to B btisg

the identity mappng.

Ths foTowing is on example o^ a relatively fret Boolean ring.

Example : Let R bs a Boolean ring and X ony sSt. LSt R fxj desote t^
polynom.al ring over R in the sOt of indoterminatss X.

LSt J bs ths idea. in R LJ genisratsd by ttie sSt G - <.xi - xr*“ *n;

/x<X, n)lj. LSt foi X—>S bs ony mopping whrnrt 3 is any extension 

Boolean ring of R. Then fo extends to an unique ring homomorphism 

f l R [T >3 with f restricted to R the idslity. Ltt K bs the kernel 

of f. We note that K<IR “ B for f(R) « R and thus f(r) • B where r 6KD R 
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imlies r - 0. We now show that the ideal J is contained in K. For this 

purpose it is sufficient to show G is contained in K. Now f(x1&rx^-.x1~.xn) 

“ f(x^.. f(Xn)2 - f(xi)-f(Xn) • 0 since f(x ) J^oe in the Boolean ring S. 

Hffice as claim^s 0 is a subset K. Thus f given rise to on unique ring 

honoinorphifiaji from the quotient ring R [xj /j into 3 wLth f tfiere

is the natural hoaoE»rphi.-ro from R £x] to R [x] /j. Let r 6 R be 

arbitrary. Then X (r) - 0 impies r G RO J, Bit RD J «0. House r •» 0 

and X ie one-to-one on R. Thu* R[_xJ /j is an extension ring of R with 

the property that any napping f : X—>3 gives rise to an unique ring 

hoaxororphiiim g j R fxj /j —> 3 wLth g restricted to R the identity 

mapping. We now show that ft |xj /j is a Boolean ring. Dakota the 

eJ-emants of R £Xj /j by p Wiere p ls a polynoda in RCxJ • Then 

p «p + J and to show (p)2= p we need to show jX - p € J. Since pE Rf xj

we have

using the fact that R is a Boolean ring. Thus to show p^-p is in J it 
. ih ilk CL it ... mu
is enough to show that Xj- -...... Xl — Xj • ' x< 18 *• rn*

Latter> howeevr, belong to G and hence to J. Thus R£xJ /j is a

relatively free Boolean ring over R wth X a free set of generators.

Cowoming relatively free Boolean rings and B>olean lattices 

one has the following genera theorem.

Theorem 5 : Let B be a Boolean lattice and let B be a relatively free 

extension of 3 wLth X a free set of g«erat<x*s. Then £(&*) is a rel

atively free extension of &(B) with X a free set of generitors. Con

versely let R* be a Bttlean ring ditch ie a relatively free extension of 

a Bm!^ ring R with X a free set of gw^ators. Th< $ (R “) is a
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relat^dy free exten^on of & (R) with X a free s<et >f generators.

Proo* * (1) Let R — extension Boolean ring of $£(B). Let f> t X-)R 

be any mpirng. Then f> is also a napping of X into ft (R). Sinoe B* is

a relatively free extension over B with X a free set of geierators f0 

extends uniquely to a Boolean lattioe howsoorphiora f i B —9$(R) with f 

restrioted to B the identity nap. f gives rise to a nap (r : (f? (B*)—> R 

defined by f)x) - f(x) for any x, noting that &(ftR)) - R. We saw Ln 

seotion 3 that (r is a ring hasooriorphisro and dearly fp restrioted to tR. (3) 

is the identity on $_(B) sinoe f is the identity on B. Moreover, fp_ is 

unique slioe f is unique. Hence is a relatively free extension

over (R(B) w.th X a free set of generators.

(2) Let C be any extension lattioe of ft (R). Let f0 : X—?C be any

napping. Then is also a mapping of X—)Z(((). f gives rise to an

unique ring homoorphiMi f s R* —— (() dth f restricst^ to R the 

identity sinoe I* — is a relatively free extension over R. f gives rise 

to a map fB i ft (R*)—4 (8 ( &(C)) « C defined fay fB(x) « x for any x. 

Now, we have seen in seotion 3 that fy is a Brolean lattioe hooaoaaorPiisxs. 

Moceovver fy Is uniquo dnoe f .s and fy Matridt^ to ft (R) is the iden«ity 

map sinoe f restrioted to R is the identity mp. This oomP^es the proof.

We have thus shown that relatively free extensions over a BoOlean 

lattioe B oorrespond precisely to relatively free extensions over $^,(B). 

We now prooeed to introduoe the notion of absolute freeness for Boolean

lattices and Boolean rings.

DeefrSitlon 3 : A Boolean ring R is said to be .free with Xs free .?gt -if

generators if any m^ppAng f> 1 X w^<ere S ta any d-Mr Boolean ring 
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6x161(3 uniquely to a rlVo hoviwBoorpiisra f : R—>3. A Boolean Lattice 

B is sali to be frM w.th < a free set of generators tf avy Mippivg fo*

< ——> C Were C la avy other Boolean Lattice extends uniquely to a Boolean 

lattice homomorphism f a B—*> C.

Theorem 6 : Dot R be a free Boolean ring w^th < a free eet of orv- 

erators. Them (8 (R) la a free Boolean Lattice wth < a free set of 

O«itfator*. Ccxnersela let B br a free Boolean Lattice with < a free 

aft of orne-a^tors. Them &(B) is a free Boolean ring with < a free 

set of owirrators.

Roof a (1) Lft C br any Boolean Lattice. Lft io : <—>C br any 

napping. Them fo is also a mappplng of < into R.(C) since C avd ftL(C) 

are the eavr aft. Slice R is a free Bcoolrai ring with < a free aft of 

generators fo extends to av unique ring homomorphism f : R—>^&(C). 

f gives rise to a map fy 3 (J (H) —>C isflved by ^b(x) " f(x) for avy x. 

Wr saw lv Theorem J that fg is a Boolean lattice horoovoorphiexa and fg is 

unique since f is unique. Hence (8 (-■) io * f-ee Boolean lattice with

< a free set of oevr'ators.

(2) Dst R be avy Boolean rlvo. Lft fo : <—> R be any apoing. Then 

f— is also a moping from X to G (1R). Since B is s free ZBooeran lattice 

with X a free sft of gsn<e-a>ors fo extends to am unique Boolean lattice 

hxmxmopIeism f * B^P^CR). Now f Otvee r1s® to a map fR 1 f (B)—R 

defined by f£x) - f(x) for avy x. Them we have eern ra^liex that £r 

is a ring homomo-piism avd fR is unique eirco x is unique* Tile ooi^iL^L^i^^ee

ths proof.



CHAPTER III.

BOOLEAN SEMI-GROUPS,

Introduction : In thia chapter we describe how the notion of a Boolean

semi-group can be used to give an alternate characterization of a Boolean 

lattice with unit. We w.11 conclude this chafer by proving that the 

category of Boolean lattices with unit and u^tary Boolean lattice homo

morphisms and the category of Boolean sem-groups and Boolean semi-group 

homomoophisms are equivalent

1. Boooeian Semigroups and BoooeiMn Lattices.

The main result we establish in this section is the following: 

Theorem 1 : Any Boolean semigroup G is a Boolean lattice with mit 

under the divisibility relation. In this Bcoolean lattice the zero of 

the sem.-group G is the zero of the Boolean lattice, the priming oper

ation o^ G is the cooolemoaVaaiov in the Boolean lattice, XAy ■ xy, 

x\/y = (xf y1)1. Co^vesely any Boolean lattice B mth umt .s a 

Boolean semi-group under meet and ioooPenwaVtaiov.

Proof : We establish the theorem in several steps.

(L) We first show that a Boolean sem-group G partially ordered by 

^visibility Ls a lattice in which XAy s xV y = (xW and that

Ln this lattice 0 of tohe G Ls the zero of the Uttice rnd 01 .s the unit 

of the lattice.

To show xy ax/\y we mist show (L) xyfx,y and

(Li) if z<x,y z<xy. Now (xy)x1 - (xx1)y = oy » o

65.
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Hones by Proppooition 14 (xy)x • xy. Hence xy<x. Now xy • yx<y.

Thus as required. Next take z such that z£x,y. Then zx - z,

zy = z. Thus z(xy) • (zx)y = zy - z. Hence z <xy. Therefore xy • 
inf. {x,y} .

Next we show that xyy = Cd1y1)1 for any x, y in G. We first show ttet 

x, y (dV)1. By Propoition 16 we have * x, y11 • y. Now

,yy. Thus applying proJpoition 16 once rare we have x^^faldd. 

Thus U^)1 is an upper bound for x,y. Take any z in G such that x,y< z. 

Then we have zy< d, y1. Hence 0y xy^y. Apjtfyi^ ^ojpoition 16 once 

rare we have (Oddy z. Hence xyy = (xyyy)y. Hence G is a lattice 

under the dbvsibility relation with meet and join as stated. Since

ox = o for each x in G o is a lower bound for each x in G. Hence o is 

the zero element of the lattice. To show that oy (where o is the zero 

eltment of the lattice) is the unit of the lattice G we only need to show 

that x< oy for ail x£G. That is we mist show xyo} “ oy. But we know 

that oy — o and xVoy «■ (x^o-y^ *■ (x^d =* oy. Hence oy is the unit of 

the lattice G.

(2) Now we show that the lattice G with o,o1 as zero and unit is com- 

plemnned. Since G is a Boolean serni-group xax • xd = o for any 

x^G. Also o1 = (xax1)1 • (xuax1)1 • dydy. Hence each x in G has 

for its complement the elfment xy wiere y is the priming operation of G. 

Hence the lattice G is complemented,

(3) We now show that the complemented lattice G is distributive. In 

any lattice we always have, (xAy)v (dAz))ydA(yy8) and hence in 

partlmilar for G. It remain to sh°w that dd(yyz)d (xAy)V (xAz).
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To this end it is sufficient to show that

x A(yvz)A(xAy)1A (xaz)1 - o

We first establish that xaz =» xr((Xy z).

(a) xa5<xa(x yz) for xAa^x, x1yz. Thus it remains to sh°w

(b) xA(x\/z)<xAz. We see that XA (x1yz)<x. Next xA^y/z^z 

for xA(x VzMz1 • (xAz1)A (XXy z) = (x a z1) a (xa zA) = O. Thus 

xAZ = x A(x1yz). FinaLLy uging what we have just established we get,

xA(yyz) A(xa/)1a (xAz)1

= x A(yv z) a (xlvyl) a (x1 v z1)

- (y v z) Ax Ayl a (x 1 v z1)

= (yv z) A (x az1) a yl

“ (yy z) a (yXA z1)a x

= ^a z1)1 a (yiAz^A x ® oax = 0.

Hence XA(y Vz) • (xAy)v (xaz). That is, the Boolean serp-group G 

under the diV.sibility relation is a complemented distributive Lattice. 

Therefore G is a Boolean Lattice with urit with pp«et and join as stated.

Conneerely, let B be any Boolean lattice Wth unit e. Then

trivially the triple (BA, 1) formas a Boolean seP-group and clear the 

cero of the Boolean lattice is the zero of the sep-group, (B, /\ 1). 

This compPetes the proof.

2. &iulvalence of Categories :

Let 1 denote the category whose objects are Boolean lattices with 

unit and whose paps are woitary Boolean lattice horopprrpisps. Let 

denote the category tfrose objects are Boolean sePL-groups and tfiose raps 

are Boolean sera.—group hopompopppsps. In this section we establish that
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the categories and are equivEOLent. the correspondence

developed in Theory 1 denote by $ (G) the Booled lattLce assocLated 

With the Boolean semi-group G. Similarly for any Boolean lattice B

With unit denote the associated Boolean semi-group by^,(B). We now 

observe the foil owing : Let f : G —> H be a Boolean semi-group homo

morphism. Then f gives to a map fg : $ (q)—> d3 (H) defined by

The mapping fg has the following properties :

Hence fg is an unitary Boolean lattice homomoojpiiEm between the Boolean 

lattices $(G), d3(H). On the other hand let B, C be Boolean ^rtices

Wth unit and let f : B —> C be an unitary Boolean lattice homo morphism.

T^en f gives rise to a map fg : (B)—>»^(C) defined by fg(x) = f(x)

for any xinq, (3). frr has the following properties :

Heence fg is a Boolean semigroup homojmrphism.

The main result of this section is the foiocwing theorem:

Theorem 2 : The two correspondences

are coivriant functors S t & —and T : > \C> wich establish the

Equivalence of the categories £ and n .

Proof : (i) Let A, B, C be any three Boolean lattices w.th unit. The 

map s is clearly weei-defined. Also,
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(a) if f£H(A,0) then 3(f) - fQ£ h(t£ (a),^ (B)) - H(S(A),3(B))

(b) if eAC H(A,A) then S(eA) - (ex)Q& H(^(A),|(A)) - ^(A)

(c) Finally suppose fGH(A,B), g£-H(B,C).

We must show 3(g f) « 3(g)T(f). Now 3(gf) - (gf)G and 3(g)S(f) - gf . 

Hence we mast show that (gf)G(x) - (gofQ)(x) for any x£^ (A). But 

(gf)o(x) “ (gf)(x) = g(f(x)) for any x and ( - fG)(x) - gQ(fG(x)) - gfc(f(x); 

g(f(x)) for any x. Hence 3(gf) - 3(g)S(f), that is, 3 is a covariant
functor from (p to ( .

(ii) Lst G, H, F be any three Boolean semi-groups.

(a) if f 6H(G,H) then T(f) - fBfH(£(G), #?(H) - H(T(G),T(H))

(b) if eQ H(G,G) than T(«.)e H(((?(C))(B(G>) “ «t(g)

(c) Finally suppose ft H(G,H), gGH(H,F).

We mist show that T(gf) — T(g) T(f). Now T(gf) - (gf)g and T(g)T(f) - 

(gB ffl). Bit (gf)B(x) » (gf)(x) - g(f(x)) for any x and (gB fB)(x) » 

gB(f(x) - g(f(x)). Hence T(gf) “TCg/Tf); that is, T is a covariant 
functor from ( to ( .

(iii) Since 3 and T are cowiant functors the compooites 3T and T3 are 

covariant functors on , (p respectively. Let 1g , I— denote the 

identity functors on & , ( respectively. We show that T3 » and
3T “ 1.^ . This wiiLL then establish that the categories ( and (( are 

equivalent. To this end we prove,
(1) B - ( (^(B)) and (2) G » •^(®(G)) tfiere B is any Biolean ^ttice

with nit and G is any Boolean seM-group. To show (1) : Put G

B - <B (G). Let the operations in B be denoted by A , V » T and let 

the zero of B be denoted by o. We w<ait to show B - B. B and B have the
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same elements nameeiysame elements namely the elements of G. Thus o — o. Also xAy — xy 

= XAy for any x,y. x7y = (x1?1)! • (x1Ay1)1 = xyy clearly

X* “ x^. Hence B » B.

To shew (2) : Let B (8(G) and G = (D). Let the operations In G

be denoted by ♦ , / and the zero of G byo. We wjant to show G = G. 

G and G have the same elerments namely the elements of B. Now x ~ y = 

x Ay » xy for any x,y. Also x'1 =• x1 for any x. Hence G = G. 

Thus (TS)(B) “ $ ( (b)) = B • lg (b) for any Boolean lattice B with 

mint. Also take any uninMarEBoleea laatice hc^o»o^i^]rhhisa f : B —> C. 

Then (TS))f) = T()q) “ ( (()) ®d l “ f hBt ICq)) has as its

domain ($ (B)) = B which is the domain of f and (Qq)b(x) = f(x) for 

any x in B. Hence TS = . On tfih oUthr lhad, ( ST))(G = •(. (ZB (G))

= G = I(.G) for any Booloaeissem-gBoui h. (Le lGH(G,F) be arbitrary. 

Then Iq))) “ f and (T^)<^j)) = ()b)g* Agaain (fn. has as its domain

((8 (G)) “ G Which is the domain o^ f and (Qb)q(x) - fg(x) “ f(x) for 

an^ xtG. Hence ST = 1^ . Therefore the categories ( a^d'") are 

equivalent. This completes the proof.
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