AN INTRODUCTION TO THE (META-) THEORI OF STRUCTURES

AN INTRODUCTION TO THE (META-) THEORI OF STRUCTURRS

By
JOHN WILLIFORD DUSKIN, JR., B.Sc.

A Thesis
Subwitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Mastor of Science

McMaster Oniversity
June 1963

MCMASTER UNIVERSITY Hamilton, Ontario.

TITLE: An Introduction to the (Mota-) Theory of Structures
AULHOR: John Williford Duskin, Jr., B.Sc. (Georgia Institute of Technology)

SUPERVISOR: Professor G. Bruns

NUMBER OF PAGES: Vi, 123

SCOPE AND CONTENTS: This thesis is intended as a self-contained, expository introduction to material found in Chapter IV of Bourbaki's Theorie des Ensembles. With a minimum of external reference, it presents all relevant logical and set-theoretic background material and then develops and extenda the notions of "species of structure". "intrinsic terms", "canonical mappings", "processes of deduction". "morphism", etc. found in this work.

PREFACE

The material of this thesis is largely concerned with the formal explication of the naive notions of "mathematical structure", "isomorphism", "morphism", etc. which are fundamental in all of modern mathematics.

A first step toward such an explication was made by Birkhofs in 1935 with his notion of an "abstract algebra". In his paper (Birkhoff 35), he showed that by suitably abstracting the common properties of the purely algebraic systems such as croups, rings, fields, medules, etc. one could give a single definition which in particular specializations would give all these algebraic objects back again, and by the use of which a large number of theorems previously proved separately for each of these algebraic objects could be replaced by a single theorem for abstract algebras, which would give each of the previously proved theorems back as corollaries.

In spite of the power of this abstraction, its extension to cover other mathematical systems such as topologies never got beyond the employment of analogous notational conventions, e.g., in analogy to the definition of abstract algebra, a topological space was defined as a pair (X, V). In addition to this difficulty, there were a number of inelegancies of the original definition of abstract algebra which made their use cumbersome, e.g., in order to consider a module as an abstract algebra, one had to allow for the possibility of an infinite number of binary relations in addition to the finite number of ternary relations which sufficed in all other cases.

A mets-theory of mathematical structures of sufficient generality to cover algebraic, topological, and order structures was not forthcoming until 1957 when Bourbaki published Chapter IV of his Theorie des Ensembles (Bourbaki 57). In this chapter, Bourbaki presented a meta-theory which not only eliminated the inelegancies of Birkhoff's approach (which for algebraic structures it supercedes) but was presumably adequate for all presently known mathematical structure.

Unfortunately, in spite of the power and beauty of Bourbaki's approach, the apparent cumbersomeness of the notation to the "uninitiated" and the large amount of unfamiliar antecedent material necessary for its comprehension, have made this chapter one of the most neglected of all the volumes in Bourbaki's treatise. This thesis arises out of an attempt to obviate some of these difficulties.

To do this we have abstracted relevant material from Chapters I, II, and III of the Theorie des insembles (Bourbaiki 54, 56) and have presented this material as parts I and II of this thesis. In general, proofs have been eliminated much in the manner of Bourbaiki (58) which is unfortunately inadequate for our purposes.

Part III then presents in an aplified and extended fashion the material found in section 1 and part of section 2 of Bourbaki's Chapter IV, the remaining sections having already been presented by the author in a Dopartmental Seminar in the Fall of 1962.

It will be apparent to the reader familiar with the theory of "categories and functors" that much of the material considered in Chapter IV presents very close analogies to the subject matter of that theory and this theais may also be viewed as a study preliminary to the rewriting of one of these "theories" in terms of the other.

ACKNOWLEDGMENTS

Abstract

The author would like to express his sincere thanks to his advisor, Professor G. Bruns, and also to his Departmental Chairman, Professor B. Banaschewski, without both of whose sage advice and ready counsel this thesis would never have even reached its present stage. ```Gratitude is also expressed to McMaster University for fin- ancial assistance during its writing and to Miss Barbara Harrison who undertook the unonviable task of typing an almost illegible manuscript.```

table of contents

PAGE
PART I: FORMAL MATHRMATICS 1
Section 1. Terms and Relations 1
Section 2. Logical Theories 14
Section 3. Quantified Theories 20
Section 4. Equality Theories 27
PART II: THE ETRMENTARI SET THDORI 31
PARI III: THE THEORY OF STRUCTURES $6 ?$
BIBLIOGRAPRI 123

PAKI I
 PORIAL MATHMATICS

1．TERMS AND RELATIONS

A mathematical theory consista of signs，relations，terms， axions，proofs and theorems．The meaning of each of these notions will become clear as we proceed．

The signs of mathematical theory C fall into three distinct types．

1．Logical Sirag：$v, 7, \tau$ ，\square

2．Letters：x, J, A, A^{\prime}, etc．

3．Specific Siens：e．g．in the theory of sets the specific signs aro $\langle\equiv, \in$ ，つ》．

Once the specific signs are specified for a particular theory τ ，one may form the assemblages of C ，1．e．strings of signs of C in which each occurrence of the sign＂ロ＂may be joined by a horizontal line（called a bond）to the sign＂$\tau\rangle$ which ordinarily will occur to 1ts left．For example | $\tau \in$ and $« \tau \in X I\rangle$ are assemblages |
| :---: | :---: | of the theory of sets．

In any assemblage of C ，we are permitted the operation of substitution，i．e．the replacement of one or more of the signs occurring In the assemblage by other signs or assemblages of C ．We shall use the following notation for such substitutions：If A and B designate assemblages of C ，and x designates a letter which may or may not
figure in A, then $(B \mid x) A$ will deaignate the simultaneous replacemont of the letter x, in each of its occurrences in A, by the assemblage B. For
 figure in A, then $(B \mid x) A$ is just A. As an alternative to this notation, we shall occasionally use the following sort of notation: Suppose thet wo are given some assemblage R in which the letters x and y may or may not occur and we wish to call attention to the fact of the possibility of such an occurrence; under such circunstances, we shall write $\&\{x, y\}$ to single out the possibility of the occurrence of x andor y in R. If this has beon done, then we shall use the notation $\mathbb{R}\{z, w\}$ to deaignate the assemblage obtained by the aiaultancous replacement of x by z and y by w in each of their respective possible occurrences in R. (This same notation will be used without liaiting the number of letters which we may wish to call attention to in any particular assemblage of e.)

It will become apparent that the exclusive use of assemblages would result in typographically - not to mention mentally insumontable difficulties; for this reason, wo shall, at convenient spots, introduce abreviating symbols, notably vords of ordinary language, to designate various assemblages. The introduction of these symbols is the object of the definitions of τ. For example the assemblage $\vee 7$ will be repreaented by \Rightarrow.

Let A be an assemblage of C; we designate by $\tau_{x}(A)$ the assemblage of C obtained in the following manner: One takes the assemblage A and in each occurrence of the letter x, one replaces it by the eign \square this done, one writes to the left of the resulting assemblage the sign τ and joins each the occurrences of \square by a bond to the τ.

For example, $\tau_{x}(\in x y)$ designates the assemblage $\overline{\tau \in \square} y$. In developing some particular theory e, we shall often concern ourselves with manipulations involving various substitutions in various assemblages. Because of the extreme length of such reasonings and the frequency of similar forms of such reasonings about substitutions, it is very convenient to group together the final result of a succession of certain manipulations over certain assemblages as metamathomatical substitution criteria. Their justification of course does not belong to the formal mathematics itself but rather to the metamathomatics of the theory. These criteria we shall designate by CS followed by a numeral. The first ones are the following:

CS1. Let A and B be asserblares, x and x^{\prime} letters. If x^{\prime} does not ingure in $A_{1}(B \mid x) A$ is identical to $\left(B \mid x^{\prime}\right)\left(x^{\prime} \mid x\right) A$.

CS2. Let A, B and C be assemblages, x and I distinct letterg. If y does not ingure in $B_{1}(B \mid x)(C \mid y) A$ is identioal to $(C \cdot \mid y)(E \mid x) A$. where C ' is the assemblare $(B \mid x) C$.

CS3. Let A be an assemblage, x and x^{\prime} letters. If x^{\prime} does not ifgure in $A_{1} \tau(A)$ is identical to $\tau_{2}\left(A^{\prime}\right)$, where A^{\prime} is the sssemblage ($\left.x^{\prime} \mid x\right) A$.

CS4. Let A and B be assemblages, x and y diatinct letters. If x does not figure in $B,(B \mid y) \tau(A)$ is identical to $\tau_{a}\left(A^{\prime}\right)$, where A^{\prime} is the assemblage (E | y)A.

CS5. Let A, B, and C be assomblages, x a letter. The assemblage (c|x)(7A) is identical to $7 A^{\prime}$:

$$
(C \mid x)(V A B)^{\prime \prime} \quad \| \quad{ }^{\prime} \quad A^{\prime} B^{\prime} ;
$$

$(C \mid x)(\Rightarrow A B)$ is ideatical to $\Rightarrow A^{\prime} B^{\prime}$ ：
$(C \mid x)(S A B) \quad\|\quad\| \quad{ }^{\prime} \quad S A^{\prime} B^{\prime}$ ．
whore A^{\prime} is $(C \mid x) A, B^{\prime}$ is $(C \mid x) B$ and S is a specific sifn．

A mathematical theory consista of certain rules which permit one to say which assemblages of the theory are relations or tarme of the theory and other rules which permit one to say that certain assemblages are the theorems of the theory．The descriution of these rules which we Will give here does not，of course，belong to the formal mathematics itself but rather to the metamathematics of the theory．

The specific signs of a mathematical theory fall into two distinct typer，relational signs and substantive signs．Additionally，each spocific aign is assigned one and only one whole number，called the reight of the specific sign．For example，in the theory of sete 《 $=\|$ ，and $« \in 》$ are relational signs of weight 2 ，while $《 \supset$ 》is a substantive sign of weight 2.

We classify our assemblages into two species：A is of the first secies if it comences by a τ ，a substantive sign，or reduces to a letter，A is said to be of the second suecies in all other cases．

A formative construction of a theory τ is a sequence of assemblages of C which possess the following property：

For each assemblage A of the sequence，one of the following conditionsis verified：
a） A is letter．
b）There occurs in the sequence preceding A a second epecies assemblage B ，such that A is 7 B．
c）There occurs in the sequence，preceding A ，two（not necessarily distinct）assemblages B and C such that A is $V B C$ ．
d) There occurs in the sequence preceding A, a second epecies assemblage B and a letter x, such that A is $\tau_{x}(B)$.
e) Ther is a specific sign S of weight n of P, and there occurs in the sequence preceding A, n first species acsemblages A_{1}, \cdots, A_{n}, such that A is $S_{1} A_{2} \cdots A_{n}$.

Wo call the teras of E the first specios assemblages of E. which figure in the formative constructions of C. we call the relations of Z the second species assemblages which so figure.

Suample: In the theory of sets, where ϵ is a relational sign of weight 2, the following sequence of assemblages is a formative construction:
(1) A
(2) A^{\prime}
(3) A^{13}
(4) E MA'
(5) $\in A A^{\prime \prime}$
(6) $7 \in A A^{\prime}$
(7) $\quad V 7 \in A^{\prime} \in A A^{n}$

Let us verify this fact. (1), (2), and (3) verify a) Bince they are all letters; (4) verifies e) since E is a relational sign of weight 2 and A and A^{\prime} are first species assemblage which occur in the sequence preceding (4), similarly for (5); (6) verifies b) since $\in A A^{\prime}$ is a second species assemblage occuring in the sequence preceding (6); (7) verifies c) since $7 \in A A^{\prime}$ and $\in A A^{\prime \prime}$ are both second species assemblages occurring in the sequences preceding (7); (6) verifies d) since (8) is
simply $\tau_{A}\left(V 7 \in A A^{\prime} \in A A^{\prime \prime}\right)$, the "argument" of which is (7) which is a second species ascemblage. The final assemblage (8), since it commences
with a τ, and is thus of the lirst species/is thus a term of the theory of sets, similarly (1), (2), and (3) are also terme, while (4), (5), (6) and (7) are all of the second species and hence are relations of the theory of sets.

We can now comment on the intuitive significance of our logical and specific signs in relation to the forwally defined terms and relations of a theory. The terns of theory intuitively reprosent the objects, the description of which is the purpose of the theory, while the relationa represent relations between the objecte or the properties of the objecte, or assertions about the objects of e. With this in mind, we attach the interpretation of negation to 7 so, that if A is an assertion, then 7 A (not A) is an assertion; V is to be interpreted as inclusive disiunction thus if A and B are assertions about objects, then $V A B,(A$ or $B)$ is an assertion of C. Similarly if S is a apecific sign and $A_{4} \ldots \ldots A_{n}$ are objects of C, then $S A_{1} \ldots, A_{n}$ represents an object of C (if. S is a substantive sign) or a relation between objects of C (if S is a relational sign). Finally if R is a relation understood as an assertion about the object x, then $\tau_{x}(R)$ designates that object, which, if it exists, is privileged with possessing the property asserted by R.

It is clear from the specification of what constitutes a formative construction of \mathcal{C}. that the initial sign of a relation of τ must be \checkmark, 7 , or a relational sign, while the initial sign of a term of C must be τ, a substantive $s i g n$, or else the temn reduced to being simply a letter. In fact, once the specific signs of a theory C are specified, the terns and relations of C are offectively determined in the sense
that given any assemblage of C one has at one's disposal an effective decision procedure which will anable one to determine whethor the given assomblage is a term or a relation of C (cf. Bourbaiki 1954, Appendix 1 to Chapter I).

In a more practical vain wo present collection of metamathematically justified Formative Criteria each of which sumarizes chains of reasonings about the formative conetructions of a theory. These criteria, when they appear here in the text are designated by CF and an appropriate numeral. The first eight of these are the following:

CF2. If A and B are relations of theory C, $V A B$ is a relation of e.

CP2. If A is a relation of C, $7 A$ is a relation of V.
CF3. If A is relation of C and x aletter $\tau(A)$ is a term of τ.

Cr4. If $A_{1}, A_{2}, \ldots, A_{n}$ are terns of e and S is a relational (rosi. substantiva) sim of woight n of $\tau, S A_{1} A_{2}, \ldots, A_{n}$ is a relation (resp. term) of C.

C55. If A and B are relations of $C, \Rightarrow A B$ is a relation of C.
CF6. Let $A_{1}, A_{2}, \ldots, A_{n}$ be a formative construction of C, x and yletters. If y does not figure in any of the A_{1} then $(y \mid x) A_{1}$. ($y \mid x) A_{2} \ldots(y \mid x) A_{n}$ is a formative construction of C.

CF7. Let A be a relation (rosp. term) of τ, x and y letters. Then $(\bar{r} \mid x)$ A is a relation (resp. term) of \mathcal{C}.

CF8．Let A be a relistion（resp．tera）of E, x a lettor，and T a term of C ，Then（ $T \mid X$ ）A ia a relation（resp，term）of C ．

We are now at the stage where we can describe the rules which enable us to determine which assomblages of C are the theorems of C ． Before we do this we shall make a few conventions which will greatly enhance the readability of the text．They are the following：we shall commonly write 《 not（A）》in place of 《 $7 A \geqslant$ ．《 $A \Rightarrow B \geqslant$ in place of $《 \Rightarrow A B \geqslant$ ，《 A or $B \geqslant$ in place of 《 $V A B \geqslant$ ．This，while enhancing the intuitive interpretation of the text，is not withuat its own difficulties． For example，our notation，heretofore was，in the manner of Lukasiewicz，《parenthesis free》 ，but now to avoid interpretational ambiguities， we must make use of such auxiliary devices as parenthesis to render the meaning of our expressions clear，e．g．we write（ A or B ）or C for $\vee \vee A B C$ to distinguish this from A or（ B or C ）which is the convention for $\vee A \vee B C$ ．

2．THEOREMS AND PROOFS

The specification of the specific signs of τ completely determines the terms and relations of C ．In order to construct the theorems of C ，we first write down a certain number of relations of which will be called the explicit axioms of τ ；the letters which figure in the explicit axioms are called the constants of τ ．Intuitively the constants represent the well determined objects，of the theory C and the explicit axioms represent the fundrmental，or evident assertions that we wish to make about these well determined objects．

We next may write down one or more 《rules 》 called the schemas of τ which each must have the following propertiess 1) The application of such a rule A must furnish a rodation of C; 2) if S is a relation furnished by such a rule, T a term of \mathcal{C}, and x a letter then the relation ($T \mid x$)S must again be constrictible by means of an application of the rule R. Intuitivity. If x is a lotter, then it represents a completely undetermined object so that if some assertion is made involving the letter x, which wo wish to be true as an axiom, then this axdom must be of the sort that it be true for an arbitrary object I of theory C. A relation furnished by the application of a sclrena of τ will bo called an implicit axiom of e. We are now in a position to make clear what we mean by a proof and a theorem of C. We do this in the following manner. *. say that a demonstrative text of a theory e comprises:

1. An auxiliary formative construction of terms and relations of c.
2. A demonstration (proof) of C . i.e. a sequence of relations of C figuring in the auxiliary formative construction, such that, for each relation R of the sequence, at least one of the following conditions is verified:
a_{1}) R is an explicit axiom of e;
a_{2}) R results from the epplication of a schoma of C to the terms or relations figuring in the auxiliary formative construction;
b) there are in the sequence two relations S, T preceding $R_{\text {, }}$ such that T is $S \Rightarrow R$.

We now say that a theorem of C is relation fimuring in a
proof of C. However, we should note that this notion is essentially relative to the state of development of the theory at a particular moment of writing: a relation of e becomes a theorem of e when one has successfully inserted it in a proof of e. Thus to say that a relation of C is not a theorew of $C_{\text {may be without precise sense since it can }}$ only refer to the present stage of development of the theory. In lieu of "theorem of C " we will also say "true relation in τ 》 or «proposition ". «leama "tc. If \mathbb{B} is a relation of \mathcal{C}, x a letter and I a torm of C, and if $(T \mid x)$ is a theorem of C, we shall say that T verifies the relation B in C (or is a solution of R) when R is considered as a relation involving x.

A relation is said to be false in C if its negation is a theorem of C. Ono can say that a theory $C 1 s$ contradictory if one has a relation at hand which is both true and false in τ. Here again, we should be on guard against saying that once we have a false relation R in C that "the relation \mathbb{E} is not true in C " for this latter statement may not actually make good sense, since it essentially refers to the present stage of development of the theory.

Wo now shall prosent a number of metamathomatically justified deductive criteria which permit us to abbreviate prools in a theory C. These will be designated by C followed by a numeral. The majority of these criteria will be presented without proof, but as the first five are imediate consequences of the notion of proof, we shall present them and their (meta-) proofs hore.

C1. (Modus jonens) Lot A and B be relatfons of a theory P. If A and $t \Rightarrow B$ ars chearoms of C, then B is a theoren of C.

In effect lot R_{2}, \ldots, R_{n} be a demonstration of C where A ifgures, and $\delta_{1} \ldots \ldots S_{p}$ be a demonstration of $C_{\text {where }} A \Rightarrow B$ figures. It is evident that $R_{1}, R_{2}, \ldots, \tilde{X}_{n}, S_{1}, \ldots S_{p}$ is a demonstration of C in which A and $A \Rightarrow B$ figure. Thus

$$
R_{1}, R_{2}, \ldots, R_{n}, \quad S_{1}, S_{2}, \ldots, S_{p}, B
$$

is a demonstration of C. so that B is a theorem of τ.
We present this meta-theorem and its meta-proof in full to dewonstrate the general method of proof for all such criteria. This one eriterion is particularly important as it is essentially the only rule of inference available in our construction of a mathematical theory. Thus our logic is strictly classical.

To illustrate how our forative criteria and substitution criteria are used in these meta-theorems, we present the following criterion and its meta-proo1.

Let C be a theory, $A_{1}, \ldots, A_{\text {is }}$ its explicit axioms, x a letter, I a torm of \mathcal{E}. Lot ($I \mid x$) \mathcal{C} be the theory whose signe and schemas are the same as those of e, but whose explicit axioms are ($T \mid x$) A_{1}. $(T \mid X) A_{2}, \ldots(T \mid X) A_{n}$.

C2. Let A be a theorem of a theory C, T a term of $C_{1} x$ a letter. Then $(T \mid x) A$ is a theorem of $(T \mid x) C$.

In effect, let $R_{1}, R_{2}, \ldots, R_{n}$ bo a demonstration of C where A figures. Consider the sequence $(T \mid x) R_{1},(T \mid x) R_{2} \ldots \ldots(T \mid x) R_{n}$, which
is a sequence of relations by CF8. One must see that this is a demonstration of $(T \mid x) C$, which will establish the criterion. If R_{k} is an implicit axiom of $\tau,(T \mid x) R_{k}$ is again an implicit axiom of e from the definition of schoma of V, and thus of $(T \mid x) C$. If R_{k} is an explicit axion of C, then $(T \mid x) R_{k}$ is an explicit axion of ($T \mid x$) E. Finally, if Z_{k} is preceded by the relations R_{i} and R_{j}, R_{j} being $R_{1} \Rightarrow R_{k}$, $(T \mid x) R_{k}$ is preceded by $(T \mid x) R_{i}$ and by $(T \mid x) R_{j}$, and this last relation is identical to $(T \mid x) R_{1} \Rightarrow(T \mid x) R_{k}$ by CS5.

C3. Let A be a theorem of a theorr r Pa term of T, and

 x a lotter which in mot a constant of τ. Then ($T \mid x$)A is a theorem of e.This is an immediate result of C2, since x, by hypothesis is not a constant of τ and hence, by definition does not ligure in the explicit axioms of e.

In particular, if e has no explicit axioms, or if the explicit axioms of e contain no letters, C3 applies without restriction on the letter x.

A theory e^{\prime} is said to be gtronger than a theory C if all of the signs of e are signs of e^{\prime}, if all of the explicit axioms of e are theorems of e ', and if the schemas of e are schemas of e^{\prime}.

The above notion has several consequences. One of these is that all of the terme and relations of τ are again terms and relations of C ' since all of the signs of τ are signs of e^{\prime} and hence any formative construction of e is a forteori, a formative construction of e'. Another consequence is the following criterion.

C4. If a thoory C ' 18 stronger than a theory $~ C$, all of the theorems of C are theorems of C.

Let $H_{1}, R_{2} \ldots \ldots R_{n}$ be a proof in τ. We shall show one after another, that each R_{1} is a theorem of C_{1}, which will establish the criterion. suppose our assertion established for the relations preceding R_{k} and establish for R_{k}. If R_{k} is an axion of C, it is a theorem of C^{\prime}, by inypothesis. If q_{k} is preceded by the relations R_{1} and $\bar{x}_{1} \Rightarrow R_{k}$, one has thus that R_{1} and $R_{1} \Rightarrow R_{k}$ are theorems of e^{\prime}, thus \mathbb{R}_{k} is a theorem of e^{\prime} by $C 1$.

The preceding criterion was stablished by a strictly finitistic method which might best be called " experimental induction ". It is typical of the only additional method which we use in these meta-proofs.

If each of two theories τ and τ^{\prime} is stronger than the other, one says that C and C^{\prime} are equivalent. Then every theorem of V is a theorem of C^{\prime}, and vice versa. In particular every theory C is equivalent to itself.

C5. Let C be a theory, A_{1}, \ldots, A_{n} its explicit axioms, $a_{1} \ldots . . a_{n}$ its constants. $T_{1} \ldots T_{k}$ terms of E. Suppose that $\left(T_{2} \mid a_{1}\right)\left(T_{2} \mid a_{2}\right) \ldots$ $\left(T_{k} \mid a_{k}\right) A_{i}$ (for $\left.i=1,2_{1} \ldots, a\right)$ be theorems of a theory C^{\prime}, in which the sians of τ are siane of τ^{\prime}, and in which the achomas of τ are schemes of e^{\prime}. Then if A is a theorem of $e_{1}\left(T_{1} \mid a_{1}\right) \ldots\left(T_{k} \mid a_{k}\right) A$ is a theorem of C.

In effect, e is stronger than the theory $\left(T_{1} \mid a_{1}\right)\left(r_{2} \mid a_{2}\right) \ldots\left(r_{1} \mid a_{k}\right) r$ and the criterion follows by application of C2 and C4.

When one deduces, by the preceding criterion, a theorem of e^{\prime} from a theorem of C, one says that one has applied in e^{\prime}, the results of C. Intuitively, the axioms of C express properties of a_{1}, \ldots, a_{k}
and A express a property which is a consequence of these axiome. If the objects $T_{1} \ldots \ldots, T_{k}$ possess in C ' the yroperties expres ed by the axioms of τ, they also possess the property A.

Note that under the hypothesis of C5, if the theory C involves a contradiction it is the same for C '. For, in offect, if A and * not $A \gg$ are theorems of $C,\left(T_{1} \mid a_{1}\right) \ldots\left(T_{k} \mid a_{k}\right) A$, and not $\left(T_{2} \mid a_{2}\right)\left(x_{2} \mid a_{2}\right)$ $\ldots\left(T_{k} \mid a_{k}\right) A$ are theoreme of τ '.

We have introduced the preceding five criteria because they are applicable to any theory \mathcal{C} whatever. We have presonted their metaproofs also in full to illustrate the general methods whereby we establish all of such criteria. Horeafter, wo shall limit our attention to particular theories, which will be supposed to contain certain particular schema. It will be made clear which particular theory we are referring to at any given moment. In general when we present certain criteria which are consequences of certain axioms or schoma, we shall not give the appropriate meta-proofs, all of them being established by methods similar to those which justify Cl $=$ C5.

3. LOGICAL THBORIES

We call a logical theory any theory C in which the achomas Sl to 54 together furnish implicit axioms.

S1. If A is a relation of C, the ralation $(A$ or $A) \Rightarrow A$ is an axiom of τ.

S2. If A and B are rolations of C, the relation $A \Rightarrow(A$ or $B)$ is an axiom of τ.

S3．If A and B are relations of C ，the relation（ A or B ）\Rightarrow （B or A）is an arion of で．

S4．If A, B and C are relations of τ ，the relation $(A \Rightarrow B) \Rightarrow$ $((\operatorname{Cor} A) \Rightarrow(\operatorname{Cor} B))$ is an axiom of τ ．

These four rules，which are in effect the kussell－whitehead prin－ cipals of tautology，addition，permutation and summation，reapectively （cf．Ruesell－whitehead 13，p．96），meroly serve to give a formal explica－ tion of the sense which we wish to attach to the words＂or＂）and ＂implies＂in ordinary mathematical usage．The theory τ which has these four schema as its schema and no explicit axioms and only the two logical signs $\forall \vee 》$ and $《 \neg \cdots$ is often called the propositional calculus．

We should keep in wind the fact that if a logical theory r ahould prove contradictory，then every relation of τ is a theorem of τ ．

In all that follows，τ will designate a logical theory．

C6．Let A, B, C be relations of C ．If $A \Rightarrow B$ and $B \Rightarrow C$ are theorems of $e, A \rightarrow C$ is a theoram of v ．

C7．If A and B are relations of $\tau, B \Rightarrow(A$ or $B)$ ia a theorea
of r．
C8．If A is a relation $e_{1} A \Rightarrow A$ is a theorem of τ ．
C9．If A in a relation，and B a theorem of $C, A \Rightarrow B$ is a

theorem of E ．

C10．If A is a relation of τ 《 A or（not A ）》 is a theorem of τ ．

C11. If A is a relation of $e, ~ " A \Rightarrow($ not not $A) \geqslant 1 s$ a theoron of e.

Cl2. Let A and B be two relations of C. The relation

$$
(A \Rightarrow B) \Rightarrow((\operatorname{not} B) \Rightarrow(\operatorname{not} A))
$$

is a theorem of r.

C13. Let A, B, C be relations of C. If $A \Rightarrow B$ is a theorem of $e,(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$ is a theorem of r.

C14. (Criterion of deduction). Let A be a relation of E, and e^{\prime} be the theory obtained on adjoinins A to the axioms of r. If B is a theoren of e^{\prime}. then $A \Rightarrow B$ is a theorem of e.

Remark. In practice, one indicates that one is applying this criterion by a phrase of the followiag genere: "Suppose that A be true) . This phrase signifies that one is reasoniog in the theory e^{\prime}. One remains in e^{\prime} long enough to prove the relation B. This done, it is established that $A \Rightarrow B$ is a theorem of $C_{\text {and }}$ one then continues to reason in C without iadicating the abandonment of τ^{\prime}. The relation A that one has introduced as a now axiom is called tho auxiliary hypothesis and the method of reasoning resting on C14 is called the method of the auxiliary bypothesis.

C15. Let A be a relation of C, and C^{\prime} be the theory obtained on adiolaina the axiom $\left\langle\right.$ not $A "$ to the axioms of C. If C^{\prime} is contradictory. A is a theorem of 29.

Romark. In practice, one indicates that one is employing this criterion by a phrase of the following generes 《Suppose that A be
false＂．This phrase signifies that one is reasoniag for the moment in C^{\prime} ．Une remains in C^{\prime} long enough to establish two theorems of the form B and＂not B》．This done，it is established that A is a theoreus of C ，which one indicates in goneral by a phrase of the following genere：＂But this（meaning Band＂not B＂）is absurd；thus A is true 》．One then resumes reasoning in \mathcal{V} as before．This general method of proof is called reductio ad absurdum．

```
c16．If \(A\) ia a rolation of \(V(\operatorname{not} \operatorname{not} A) \Rightarrow A\) is a theoren of \(e\) ．
```

C17．If A and E are relations of τ ．

$$
((\text { not } B) \Rightarrow(\operatorname{not} A)) \Rightarrow(A \Rightarrow B)
$$

is a theorem of 2 ．
C18．Lot A, B, C be relations of C ．If $\| A$ or $\bar{B} \%, A \Rightarrow C$ ． and $B \Rightarrow C$ are theorem of τ ，then C is a theorem of τ ．

Remark．In ordor to prove C ．it thus suffices when one has at one＇a disposal a theorem 《 A or B 》．to prove C on adjoining B to the axioms of e ．The general method of prool which hangs on this criterion is called the method of case disjunction．

C19．Let x be a letter，A and B relations of E such that：
1．The letter x is not a cunstant of Cand does not figure in B．

2．One has a term T of $e_{\text {such that }(T \mid X) A}$ is a theorem of τ ．

Let e^{\prime} be the theory obtained on adjoining A to the axioms of e ． If B is a theorem of e^{\prime} ，then B is a theorem of C ．

Intuitively, the method consiste of the utilization, in order to prove B, of an arbitrary object x (called an auxiliary constant) which one supposes to be invested with certain properties which are expressed by A. It is evident that before one can make use of such and object, one must insure oneself of the existence of such objects. The theorem (I I x) A guarantees this existence and is called the theorem of legitimation. In practice, on indicates the employment of this criterion by a phrase of the following genera: " let x be an object such that A $>$. The conclusion of the reasoning of course does not depend on x, as in the method of auciliary hypothesis. The general method of proof which rests on C19 is called the method of the auxiliary constant.

Before we proceed further we make the following definitions of conjunction and ejuivalence. As with all such definitions, we have as an immediate result a formative criterion and a substitution criterion, which we shall present as usual without their immediate meta-proofs.

Definition 1. - Let A and B be assemblages. The assemblage $(\operatorname{not}((\operatorname{not} A)$ or $(\operatorname{not} B))$
will be designated by "A and B.

CS6. Let A, B, and I be assemblages, x a letter. The assomblage (I $\mid x)$ SA and B) is identical tok (T $|x| A$ and $(I \mid x) 3$ ".

CF9. If A and 5 are relations of C." A and $B \geqslant$ is a relation (called the conjunchlun of A and B).

C20. If A and B are theorems of C. " A and $B \geqslant$ is a theorem of τ.

C21. If A, B are relations of E (A and $B) \Rightarrow A$, (A ind B) $\Rightarrow B$ are theorem of 2 .

Dofinition 2. - Let A and E be assamblages. The assamblage

$$
(A \Rightarrow B) \text { and }(B \Rightarrow A)
$$

will be designated by $A \Leftrightarrow B$.

C57. Let A, B and T be assemblages, x a latter. The assomblage $(T \mid x)(A \Leftrightarrow B)$ is identical to $(T \mid X) A \Leftrightarrow(T \mid x) B$.

CFIO. If A and B are relations of $C, A \Leftrightarrow B$ is relation of e.

If A and B are theorem of C, one says that A and B are equivalent in τ and if considered as relations in $x_{\text {o }}$ every term which verifies A also verifies B and vice versa.

C22. Let An B. and C be relations of C. If $A \Leftrightarrow B$ is a thoore of $Z, B \Leftrightarrow A$ 10 a thnorem of E. If $A \Leftrightarrow B$ and $B \Leftrightarrow C$ are theorems of $C, A \Leftrightarrow C$ is a theorem of C.

C23. Lot A and B be equivalent relations in C, and C a relation of τ. Then, one has in e the following theorems:

$$
\begin{gathered}
(\operatorname{not} A) \Leftrightarrow(\operatorname{not} B) ;(A \Rightarrow C) \Leftrightarrow(B \Rightarrow C) ;(C \Rightarrow A) \Leftrightarrow(C \Rightarrow B) \\
(A \text { and } C) \Leftrightarrow(B \text { and } C) ; \quad(A \text { or } C) \Leftrightarrow(B \text { or } C)
\end{gathered}
$$

C24. Let A, B and C be relations of C; one has in C the

following theorems:

$$
\begin{aligned}
& (\operatorname{not} \operatorname{not} A) \Leftrightarrow A_{i} \quad(A \Rightarrow B) \Leftrightarrow((\operatorname{not} B) \Rightarrow(\operatorname{not} A)) ; \\
& (A \text { and } A) \Leftrightarrow A_{i} \quad(A \text { and } B) \Leftrightarrow(B \text { and } A) ;
\end{aligned}
$$

$$
\begin{aligned}
& (A \text { and }(B \text { and } C)) \Leftrightarrow((A \text { and } B) \text { and } C)) ; \\
& (A \text { or } A) \Leftrightarrow A_{i} \quad(A \text { or } B) \Leftrightarrow(B \text { or } A) ; \\
& (A \text { or }(B \text { or } C)) \Leftrightarrow((A \text { or } B) \text { or } C) ; \\
& (A \text { and }(B \text { or } C)) \Leftrightarrow((A \text { and } B) \text { or }(A \text { and } C)) ; \\
& (A \text { or }(B \text { and } C)) \Leftrightarrow((A \text { or } B) \text { and }(A \text { or } C)) ; \\
& (A \operatorname{and}(\operatorname{not} B)) \Leftrightarrow \operatorname{not}(A \Rightarrow B) ; \quad(\therefore \text { or } B) \Leftrightarrow\left(\left(\operatorname{not} A_{1}\right) \Rightarrow B .\right.
\end{aligned}
$$

C25．If A is a theoren of C and B a relation of C（ A and B ） $\Leftrightarrow \equiv$ is a theorem of C ．If k not $A 川$ is a thoorem of C（ A or B ）$\Leftrightarrow B$ is a theorem of e ．

4．RUANTIFTED THEORIAS

So far we have made no use of the logical signs other than 7 and v ．We shall now derelop the use of the only two remaining logical signe τ and \square ．

Definition 1．－If B is an assemblage，and x a letter，the ascomblage $\left(\tau_{x}(R) \mid x\right) R$ will be designated by＂there exists an x such that $R "$ or by $(\exists x)$ ．The assomblage not $((\exists x)($ not $R))$ will be designated by 《for all $x, R>$ or by 《 whatever be $x, \& \geqslant$ or $(\forall x) R$ ． The abbreviated symbols \exists and \forall wil be called the existentiul and universal quantifiers，respectively．

Since the letter x does not figure in the asserblage designated by $\tau_{x}(R)$ it thus does not ifgure in the assemblages designated by $(\exists x) R$ and $(\forall x) R$ ．It is thus that wo see the usefulness of the rules governing the employment of τ and \square ．Shis usage has the effect of binding free variables（letters）by offectively oliminating them from the corresponding assemblages．

CS8. Let R be an assemblage, x and x^{\prime} letters. If x^{\prime} does pot figure in R. $(\exists x)$. and $(\forall x) R$ are identical respectively to ($\left.3 x^{\prime}\right) 3^{\prime}$ and $\left(\forall x^{\prime}\right) R^{\prime}$ where R^{\prime} is $\left(x^{0} \mid x\right)$ R.

CS9. Let R and U be aremblager x and y distinceletterg. If x does not sixyre in $U_{i}(U \mid y)(\exists x) \&$ and $(U \mid y)(\forall x) R$ are idonticel respectively to $(\exists x)^{\prime}$ and $(\forall x) R^{\prime}$ where R^{\prime} is (U| V)R.

CF17. If R is a relation of a theory E and x a letter. $(\exists x) R$ and $(\forall x) R$ aro relations of c.

Intuitively, let us consider R as expressing a property of an object designated by x. By the intuitive signification of the term $\tau_{x}(R)$, to affire ($\left.\exists x\right) R$ amounts to seying that this is an object passing the proporty R. To affirw " not $(\exists x)($ not $\&) \geqslant$ is to say that there are no objects with the property" not B ", thus to say that every object poseers the property R .

If in a logical theory C, one has at one's disposal a theorem of the form $(\exists x) R_{\text {, }}$ where the letter x is not a constant of C, this theorem may serve as the theorem of legitimation in the method of the auxiliary constant aince it is identical to $\left(\tau_{x}(B) \mid x\right) R$ and thus $\tau_{x}(R)$ is the desired tera T.

C26. Let τ be a logical theorys is a rolation of r and x a lattor. The relations $(\forall x) R$ and $(\tau$ (not $R) \mid x) R$ are eulvalent $\ln \tau$.

C27. If R is a theorem of a loaical theory C in which the letter x is not a constant. $(\forall x) R$ is a theorem of C.
c28. Let T be a losical theory B a relation of V and x a letter. The relations " not $(\forall x) R$ nand $(\exists x)($ not $R)$ are quivalont in τ.

A thoory will be said to be quantified if the schemas S1 - S4 together with the schema $S 5$ are among the schomas of e. Uften the theory τ which has the logical signs $v, 7, \tau$, and \square together with liיnt the schemas Sl through S5 is called the first order functional calculus (without equality).

S5. If A in a rolation of τ, T a torm of τ, and $\times a$
letter, the rolation $(T \mid x) R \Rightarrow(\exists x) R$ is an axiom.
Intuitively the above schema expresses that, if one has an object T for which the relation R, considered as expressing a property of x, is true, then R is true for the object $\tau_{x}(R)$, which is, of course, in accord with the intuitive signification of $\tau_{x}(R)$. It is clear also that $\tau_{x}(R)$ is just a version of Hilbert's * ε-operator n and that the above axiom-schema is just Hilbert's spion for the ε-operator. Thus τ acts intultively as a kind of single k selection operator \% which may be used to represent a chosen object which satisfies the relation R (if such exists). It should be noted that its use gives no information about the perticular onject selected by the operator. For example, we know that $\tau_{x}(x=2$ or $x=2$ or $x=3)$ wust be 1,2 , or 3 , but we have no eesins of determining which one of 1,2 , or 3 , gets selected. It wight also be noted in passing that many objections have been raised to the use of such an operator, most of which are similar to those which have been leveled against the kaxiom of choice ". However, the use of the " τ-operator $\#$ as wo have presented it here
does not by itself make such an " axiom of choice" derivable in our system. The axiom of choice ie derivable in our theory of sets, as we shall see, but this derivation is possible only through the use of the schema $S 8$, which we present much later and not solely due to the presence of the 《 τ-operator 》in our "underlying logic». It's presence bere does make our undorlying logic of the "non-standard" variety however . (cf. Fraenkel 58, Section 77, p. 182 et seq. and Carmap 61 p. 156 et. seq.)

Frow now on e will designate a quantified theory.
C29. Let R be a relation of C, and x a letter. The relations *not $(7 x) B$) and $(\forall x)($ not $R)$ are equivalent in C.

C28 and C29 permit us to derive the properties of one of the quantifiers from those of the other.
630. Let R be a relation of e. I a term of e, x a letter. The rolation $(\forall x) \hat{\beta} \Rightarrow(T \mid x) R$ is a theorem of e.

Let R be a relation of \mathcal{C}, by C26, C27, and C3O, it amounts to the same (when x is not a constant of C) to enunciate in e the theorem R, or the theorem $(\forall x) R_{\text {, }}$ or linally to give the metamathematical rule: if T is an arbitrary torm of $T,(T \mid x) R$ is a theorem of T.

C31. Let B and S be rolations of C and x a letter which in not a constant of C. If $\Omega \Rightarrow S($ resp. $B \Leftrightarrow S$) is a theorem of τ. $(\forall x) \mathbb{B} \Rightarrow(\forall x)$ S and $(\exists x) B \Rightarrow(\exists x)$ S (resp. $(\forall x) R \Rightarrow(\forall x)$ S and $(\exists x) \bar{R} \Leftrightarrow(\exists x) S)$ are theorams of e.

C32. Let R and S be relations of C, and x a lettor. The relations

$$
\begin{aligned}
& (\forall x)(R \text { and } S) \Leftrightarrow((\forall x) R \text { and }(\forall x) S) \\
& (\exists x)(R \text { or } S) \Leftrightarrow((\exists x) R \text { or }(\exists x) S)
\end{aligned}
$$

C33. Lat R and S be relations of C, and x a letter which

 does not figure in B_{1} The rolations$$
\begin{aligned}
& (\forall x)(\Omega \text { or } S) \Leftrightarrow(R \text { or }(\forall x) S) \\
& (\exists x)(R \text { and } S) \Leftrightarrow(R \text { and }(\exists x) S)
\end{aligned}
$$

are theorems of e.

C34. Let R be a relation, x and y letters. The relations

$$
\begin{aligned}
& (\forall x)(\forall y) R \Leftrightarrow(\forall y)(\forall x) R \\
& (\exists x)(\exists y) R \Leftrightarrow(\exists y)(\exists x) R \\
& (\exists x)(\forall y) R \Rightarrow(\forall y)(\exists x) R
\end{aligned}
$$

By constrast, if $(\forall y)(\exists x) R$ is a theorem of C, one may not conclude that $(\exists x)(\forall y) R$ is a theorem of τ. Intuitively to say that the relation $(\forall y)(\exists x) R$ is true signifies that being given an arbitrary object y, there is an object x such that R is a true relation between the objects x and y. But the object x in general will depend on the choice of the object y. To the contrary, to aay that $(\exists x)(\forall y) R$ is true algnifies that there is a fixed object x such that \mathbb{Z} is a true relation between this fixed object and overy object y.

The definftions which follow are not strictly necessary but are highly useful because of the fact that most of the usual mathematical reasoning involving quantifiers is actually of the type which is embodied in the criteria which follow from these definftions.

Definition 2. - Let A and R be assemblages, and x a letter. We designate the assemblage $(\exists x)(A$ and $R)$ by $(\exists A x) R$, and the assemblage "not $\left(\exists A^{x}\right)($ not $R)$ " by $\left(\forall_{A}^{x}\right)$ R. Roed rospectively k there exists an x of the type A such that $R N$ and"for all x of the type $A, R 川$. The
abbrevíated symbols \exists_{A} and \forall_{A} are called typlcal quantifiers. The letter x of course does not appear in efther of these assomblages.

C510. Let A and \bar{x} be arsenblages, x and x^{\prime} letters. If x^{\prime} firures neithor in in nor in $A,(\exists A) R$ and $\left(Y_{A} A\right) \&$ are idontical respectively to $\left(\exists_{A} \prime^{\prime} x^{\prime}\right) R^{\prime}$ and $\left(\forall_{A^{\prime}} x^{\prime}\right) R^{\prime}$, whore R^{\prime} is $\left(x^{\prime} \mid x\right) R_{1}$ and where A^{\prime} is $\left(x^{\prime} \mid x\right) A$.

CS11. Let $A A_{\text {and }} U$ be assemblaras, x and distinct letters. If x does nut ifsure in U, the assomblages $(U \mid y)(\exists A$ and $(U \mid y)(\forall A) R$ are identical resiectively to $\left(\exists \exists_{i} x\right) R^{\prime}$ and $\left(\forall_{A}{ }^{x}\right) R^{\prime}$ where R^{\prime} is (U|y)B and where A^{\prime} is (U|y)A.

CR2. Let A nad R be ralations of C, and x a letter. Then $(\forall A x) R$ and $(\exists A x) R$ are relations of $\varepsilon_{\text {. }}$

C35. Let A and A be rolations of C. x a letter. The relations $\left(H_{A} x\right) R$ and $(\forall x)(A \Rightarrow B)$ are equivalent in τ.

C36. Let A and R be rolation of Eenana x a lettor. Let C^{\prime} bo the theory obtained on adjoining A to the axioms of E. If x is not a constant of \mathcal{E} and if R is a thooren of $\tau^{\prime}\left(y_{x} x\right)$ is e theorem of τ.

In practice, one indicabes the employment of this criterion by a phrese of the following genere: "Let x be an arbitrary object such that $A>$. In the theory C^{\prime} thus constituted, one seeksto prove R. One may not naturally affim that the relation \mathbb{R} is itself a theorem of C, of course.

C37. Let A and in be relations of τ, x a letter. Lot τ^{\prime} be the theory obtained on adjoining to the axioms of C the relations A and «not $R \|$. If x is not a constant of τ, and if τ^{\prime} is contradictory
($\forall A$) in is a theorem of C.
In practice one says: 《Suppose that there exists an object x verifying A, for which R be false. "One then seeks to establish a contradiction.

The usefulness of typical quantification comes from the fact that the properties of typical quantifiers are analogous to those of quantiliers.

C38. Lot A and i be relations of e, x a letter. The relations $\operatorname{not}(\forall A) R \Leftrightarrow(\exists A)(\operatorname{not} R), \operatorname{not}(\exists A x) R \Leftrightarrow(\forall A)(\operatorname{not} R)$ are theoreme of e.
639. Let A, R and 3 be relations of E, and x a letter which 1a not a constant of C. If the ielation $A \Rightarrow(B \Rightarrow 3)($ resp. $A \Rightarrow(R \Leftrightarrow 3))$ is a theorem of τ, the relations

$$
\begin{aligned}
& \text { (resp. }(\exists, x) R \Leftrightarrow(\exists A x) S, \quad(\forall A) R \Leftrightarrow(\forall x) S)
\end{aligned}
$$

are theorems of Z.
C40. Let A a in and S be rolations of τ, and x a letter. The
relations

$$
\begin{aligned}
& (\forall A x)(R \text { and } S) \Leftrightarrow\left(\left(\forall{ }_{A} A\right) R \text { and }(\forall A X) S\right) \\
& (\exists A x)(R \text { or } S) \Leftrightarrow((\exists A x) R \text { or }(\exists A x) S)
\end{aligned}
$$

are theorems of 2 .
C41. Let A_{1} Re and S be relations of C, and x a letter which does not figure in 8 . The relations

$$
\begin{aligned}
& (\forall x)(R \text { or } S) \Leftrightarrow(R \text { or }(\forall A x) S) \\
& (\exists A x)(R \text { and } S) \Leftrightarrow(R \text { and }(\exists A X) S)
\end{aligned}
$$

C42. Lat A, B, R bo relations of E, x and y letters. If
doos not fisure in B, and if y does not fisure in A, the relations

$$
\begin{aligned}
& (\forall A x)\left(\forall y_{B} y\right) R \Leftrightarrow\left(\forall_{3} y x y_{A} A \underline{x}\right) R \\
& (\exists-x)(\exists-y) \hat{\beta} \Leftrightarrow(\exists B y)(\exists A) R \\
& \left(\exists A^{x}\right)(\forall, y) R \Rightarrow\left(\forall B^{y}\right)\left(\exists \exists_{A} x\right) R
\end{aligned}
$$

are theorems of e.

5. EKUALITI THEORIES

wo call an equality theory a theory \mathcal{C} in which figures a relational sign of weight 2 donoted $=$ (which we read (equals"), and in which the schemas Sl through S5 together with the schemas S6 and S? furnish implicit axioms; if T and U are terms of E, the assemblage $=$ TUis a relation of e(called the relation of equality) by Cr4; we designate it in proctice by $T=U$ or $(T)=(U)$. The theory which has solely the relational aign $=$ (in addition to the $\operatorname{logical}$ signs) and has only the schemas $S 1$ - S7 and no explicit axioms is often called the first order functional raiculus with equality.

S6. Let x be a lettor, T and U terms oir C, and $B\} x\}$ a
 of c.

S7. If R and S are rolations of R and x is a letter, the rolation $((\forall x)(R \Leftrightarrow S)) \Rightarrow(\tau(R)=\tau(S))$ is an axiom.

Intuitively, the schema 56 signifies that if two objecte are equal, then they have the same properties. The schema S7 is an extension of our usual intuition. It signifies that, when two properties of an object x are equivalent, then the selected objects $\tau_{x}(B)$ and
$\tau_{x}(S)$ (selected from the objects which vorify R and those which verify S, if such exist) are thesane. The schema is often Ackermann's axion for the \mathcal{E}-operator, rephresed for our operator τ. The presence of the quantifier $(\forall x)$ is essential here, otherwise we can obtain the theorem $(\forall x)(x=y)$ which is certainly not to be dosired as for example in the theory of sets we will have the theorem $(\exists x)(\exists y)(x \neq y)$.

C43. Let x be a lottor, T and U torms of T and $R\{x\}$ a relation of E; the rolations ($T=U$ and $R z T\{$) and $(T=0$ and $R\} U\}$) are equivalent.

The following theorems huld in any theory e_{0} which has the same signs as an equality theory but only the scheass $S 1-$ S7.

Thooren 1. $-x=x$.

Thoorem 2. - $(x=y) \Leftrightarrow(y=x)$.

Theorem 3. - $((x=y)$ and $(y=z)) \Rightarrow(x=z)$.

C44. Iet x be a Ietter, T, U, $V\{x\}$ be terms of C_{0}. The relation $(T=U) \Rightarrow(V\{T\}=V$ IUT $)$ is a theorem of $\tau_{\text {。 }}$.

One says that a relation of the form $T=U$, where T and U are terms of E, is an ecuation: a solution ($1 n \in$) of the relation $T=0$ considered as an equation in a letter x, is thus a terw V of C such that $T \xi \vee \xi=\mathbb{T} \xi \vee \xi$ is a theorem of C as is consistent with the previous definition of solution of a relation.

Let I and U be two terms of E and let $x_{2}, x_{2}, \ldots, x_{A}$ be the letters figuring in T and not in U. If the rolation $\left(\exists x_{1}\right)\left(\exists x_{2}\right) \ldots$ $\left(\exists x_{n}\right)(T=U)$ is a theorem of C, one sajs that U may be put in the
form is（in e ）．Lat R be a rolation of τ ，y a letter．Let V be a solution（in C ）of R ，considered as a relation in y ．If every colution （ia e ）of R_{1} considered as a relation in y ，may be put in the form V ， one says that V is the complote（or general）solution of $R(i n ~ C)$ ．

Let R be an assemblage，x a letter，Let y and z be letters distinct from themselves，distinct from x and not ifguring in R．Let y^{\prime} and z^{\prime} be two other lettors with the same properties．By Cs8，CS9， CS2，CS5，and CS6，the assemblages

$$
(\forall y)(\forall z)(((y \mid x) R \text { and }(z \mid x) R) \Rightarrow(y=z))
$$

and

$$
\left(\forall y^{\prime}\right)\left(\forall z^{\prime}\right)\left(\left(\left(y^{\prime} \mid x\right) R \text { and }\left(z^{\prime} \mid x\right) R\right) \Rightarrow\left(y^{\prime}=z^{\prime}\right)\right)
$$

are identical．If R is a relation of \mathcal{V} ，the ascemblage thus defined is a relation of τ ，which will be designated by ＂there exiats at most one x such that $\overline{\mathrm{B}}>$ ．The letter x does not figure in this assemblage．When this relation is a theorem of τ ，one says that R is unique in x in e ．

C45．Let R be a rolation of C ，and x a lotter which is not a
constant of e ．If R is unique in x in $e, ~ R \Rightarrow(x=\tau(R))$ is a theore⿴囗十丌 of τ ．Conversely，if，for a term of T not containing x ． $R \Rightarrow(x=I)$ is a theorem of C ．R is unique in x in τ ．

Let $\&$ be a relation of e ．The relation
《 $(\exists x) R$ and there excists at most one x such that R 》
W111 be designated by＂there exists one and only one x such that R＂． If this relation is a theorem of C ，one says that R is a functional relation in x in τ ．

C46. Let in be a relation of C and x a lottor which is not a cositsat of τ. If R is functional in x in $C, R \Leftrightarrow\left(x=\tau_{x}(R)\right)$ is a theoren of C. Conversoly, if, for a term T of C not containing x. $1 \Leftrightarrow(x=T)$ is a theorem of τ, R is functional in x in e.
when a relation R is functional in x in C, R is thus equivalent to the rolation, often more manageable, $x=\tau_{x}(\mathbb{B})$. Thus one generally introduces an abbreviated symbol Σ to represent the term $\tau_{x}(R)$. Suck a symbol is called a fuactional symbol in e. Intuitively \sum will represent the unique object which possess the property defined by R. For example in a theory wherex y is a real number $\geqslant 0$ " is a theorem, the relation《 x is a real number $\geqslant 0$ and $y=x^{2} 》$ is functional in x, we take as correspondine functional symbol $\sqrt{ } \sqrt{\prime}^{\prime}$ or $\mathrm{J}^{\frac{1}{2}}$.

C47. Let x be a letter which is nut a constant of τ, and let
 in C, tho rolntion $S \xi \tau(R)\}$ is equivalont to $(\exists x)(R \xi x\}$ and $S\{x\})$.

PART 2

RTMANTARY SHT THEORI

2．THE TR3ORI OT SEPS
The thoory of cots is a theory in which figure the relation algns $=t$ ，and the substantive algn ∂（all of which are to be of voight 2）．It contains the schamas $S 1-S 8$ and the oxplicit axtone $A_{1}-A_{5}$ ．These exylicit axions，as will be ecen，contain no lettere， thus the theory of sets has no conatants．Thus the theory of sets is an equality theory and all of our previous results are applicable in it．

Frow now on，unless we expressly wention the contrary，all of our reasoning will be assumed to take place in a theory atrongor than the theory of sots and may thus be assumed to be the theory of sets itself．It w1ll be apparent，from the sequential developmont which follows，which particular theory weaker than the thoory of sets in which the reasouing neccesarily takes place．

If T and $\mathbb{0}$ are torm，the acsomblage \in TU is a relation （called the rolation of mambarship）which wo shall in practice donoto in one of the sollouing manners：$T \in \mathbb{X},(T) \in(U), ~ * T$ belonge to 0 》，《T is a mamber of U 》． atc．The negation will be denoted by $T \$$ U．

From the naive point of viev，wuch of mathematics may be considered as collections or＂sets \％of objects．Wh shall not
formalize this notion，and inthe formalist interpretation which follows the word＂sot》 may be considored as strictly synonywous with 《 terw of the theory of sots》；in partioular，such phrasesas＂let x be a set 》 are in principal，totally superflous；since every letter is a introduced term．Such phraseswill be／solely to facilitate the intuitive inter－ pretation of the text．

Definition 1．－The relation designated by $(\forall z)((z \in x) \Rightarrow(z \in y))$ ， in which only the lotters x and y sigure，will be denoted by $x \leq y$ ， $y \supseteq x$ ，$\| x$ is contained in $y \|, 《 x$ is a subset of $₹ 》$ ，etc．

CS12．Let T, U and V be assomblages，and x a letter．The
assomblare $(V \mid x)(T \subseteq U)$ is identical to $(V \mid x) T \subseteq(V \mid x) U$ ．
GF13．If T and U are tores $T S U$ is a relation（called the relation of inclusion）．

From now on we will not explicitly state the substitution，and formative criteria which result from the definitions．

Proposition 1－x＝x
Proposition $2-(x \subseteq y$ and $J \subseteq z) \Rightarrow(x \subseteq z)$ ．
The following axion is called the axiom of oxtensionality：
A1．$(\forall x)(\forall y)((x \subseteq y$ and $y \subseteq x) \Rightarrow(x=y))$ ．
Intuitively，this axiom expresses that two sets with the same －lements are equal．

C48．Let A be a relation，x a lettere y a letter distinci from x and not fixuring in R ．The rolation $(y x)((x \in y) \Leftrightarrow$ g）is unique in I．

Let R be a relation, x a letter. If y and y^{\prime} designate
lettors distinct from x and not figuring in R, the relations $(\exists y)(\forall x)((x \in J) \Leftrightarrow R)$ and $\left(\exists y^{\prime}\right)(\forall x)\left(\left(x \in y^{\prime}\right) \Leftrightarrow R\right)$ are identical by CS8. The relation thus defined will be designated by Coll (R. . Whon $\operatorname{Coll}_{x}(R)$ is a theorem of a theory C, one says that R is collective in x in e. If this is the case, one may introduce an auciliary constant a_{0} distinct irom $x_{\text {}}$ from the constants of \mathcal{C}. and not figuring in R, with the axiom of introduction $(\forall x)((x \in a) \Leftrightarrow \mathbb{R})$, or, which amounts to the same if x is not a constant of $\tau,(x \in a) \Leftrightarrow R_{\text {. }}$ Intuitively, to say that R is collective in x is to say that there exists a set a such that the objects x possessing the property A are precisely the olemente of a.

Example 1. - The relation $x \in y$ is evidently collective in x.
Example 2. - The relation $x \notin x$ is not collective in x_{i} i.e., (not $\operatorname{Coll}_{x}(x \neq x)$) is a theorem. Reasoning by reductio ad absurdum assume that $x \quad x$ is collective. Let a be an auxiliary constant, distinct from x and from the constants of the theory, with the axiom of Introduction $(\forall x)((x \notin x) \Leftrightarrow(x \in a))$. Thon the rolation $(a \notin a) \Leftrightarrow$ ($a \in$ a) is true by C30. The method of case disjunction proves at first that $a \notin$ a true, since the relation $\& \in a$ is true, which is absurd. It is by this simple technique that Russell's paradox is eliminated in this set theory.

C49. Let R be a relition and x a letter. If B is collective

in x, the relation $(\forall x)((x, y) \Longrightarrow R)$, where y is a letter diatinct from x and not figuring in R is functional in Y.

Very frequently, in what follow, we dispose of a theorem of the form $\operatorname{Coll} x^{(R)}$, We then introduce to represent the term $\left.y(\forall x)(x \in y) \Leftrightarrow \mathbb{R}\right)$, which does not depend on the choice of the letter J (distinct from x and not figuring in R) a functional symbol; in what follows, we utilise the symbol $\mathcal{E}_{x}(R)$ or $\{x \mid R\}$; the corresponding term does not contain the lotter x. It is this term that we moan whan we speak of the set of all x such that $R "$. Then by dnfinition the relation $(\forall x)\left(\left(x \in \xi_{x}(\mathbb{R})\right)\right.$ \Leftrightarrow R) is identical to $\operatorname{Coll}_{x}(R)$; consequently the relation R is thus Quivalent to $x \in \xi_{x}(R)$.

C50. Let R and S be two rolations and x a letter. If 8 and S are collective in $I_{\text {a }}$ the rolation $(Y I)(B \Rightarrow S)$ is equivalent to $\varepsilon_{x}(R) \subseteq \varepsilon_{x}(3)$; the rolation $(\forall x)(\bar{k} \Leftrightarrow S)$ is ecuivalent to $\varepsilon_{x}(R)=\varepsilon_{x}(\mathbb{S})$.

The following axiom is called the axiom of vairings
A2. $(\forall x)(\forall y) \operatorname{Coll} I_{z}(z=x$ or $z=y)$.
This axiom expressee that, if x and y are objects, there
exists a ret whose only elements are x and y.

Definition 2. - The eet $\xi_{z}(z=x$ or $z=y)$, whose only elements are x and y will be denoted by $\{x, y\}$.

The set $\{x, x\}$ will be designated simply by $\{x\}$, and will be enlled the set whose only element is x. The following schema is called the schema of selection and union:

S8. Let R be a relation, x and y distinct letters, x and y distinct letters distinct from x and y and not figuring in R_{0} The relation

$$
(\forall y)(\exists x)(\forall x)(R \Rightarrow(x \in X)) \Rightarrow(V y) \operatorname{coll}((\exists y)((y \in Y) \text { and } R))
$$

is an axdom.

Intuitively, the relation $(\forall y)(\exists x)(\forall x)(R \Rightarrow(x \in X))$ eignifies that, for every object y, there exists a set $X($ (which may depend on y), such that the objects x which are in the relation R with the given object y are the elements of X (without necessarily constituting all of the sot X). The schoma affirms that, if this is the case, and if Y is an arbitrary set, there exists a set whose elements are exactly all of the objects x which find themselves in the relation R with an object y out of the set Y.

C51. Let E^{\prime} be relation, A a set, and x a letter not finuring 10 A. The relation $\& P$ and $x \in A \geqslant$ is collective in x.

The set $\xi_{x}(P$ and $x \in A)$ is called the set of $x \in A$ such that P.

C52. Let A be a rolation A a set x a letter not figuring in A. If the relation $R \Rightarrow(x \in A)$ is a theorow then R ia collective in x.

C53. Let T be a tere A ast, x and y distinct letters. Suppose that x does nut firure in A and that 3 figures noither in I nor in A. The relation $(\exists x)(y=T$ and $x \in A)$ is collective in y.

The relation $(\exists x)(y=T$ and $x \in A)$ will be read as κy imay be put in the form T for an x belonging to $A "$. The set $\mathcal{E}_{y}((\exists x)(y=T$ and $x \in A)$) is generally called the set of objects of the form I for $x \in A$.

By C51，the relation $(x \notin A$ and $x \in X)$ is collective in x ．

Dofinition 3．－Let A be a subset of a set X ．The set
$\varepsilon_{x}(x \notin A$ and $x \in X)$ is called the complement of A with respect to X and is designated by $C_{X} A$ or $X-A$ or $C A$ ．

Theorom 1．－The ralation $(\forall x)(x \notin X)$ is functional in X ． The term $\tau_{\chi}((\forall x)(x \notin X)$ corresponding to this functional relation will be represented by the functional symbol \varnothing ，and will be called the void or empty sot．（The terw designated by \varnothing is thus Th7ET7TG－D ，The relation $(\forall x)(x \& x)$ ，is then equivalent to $X=8$ ，which is read 《 the set X is empty 》．We have as theorms $x \notin \varnothing, \varnothing \subseteq X, C_{X} X=\varnothing, C_{X} \varnothing=X$ ．Also if $R \xi x \xi$ is a relation，the relation $(\forall x)((x \in \varnothing) \Rightarrow \mathbb{R} \xi x\})$ is true．Furthermore $\varnothing \notin\{x\}$ is a theoren and hence $(\exists x)(\exists y)(x \neq y)$ is also．

There does not exist a set all of whose objects are elements； 1．e．．《 $\operatorname{not}(\exists X)(\forall x)(x \in X)$ ）is a theorem．For，in effect，if there existed such a set，every relation would be collective by C52．But， as we have seen the relation $x \neq x$ is not collective．

It is interesting to note that $(x=y) \Leftrightarrow(\forall X)((x \in X) \Leftrightarrow(y \in X))$ is a theorem．

As we have noted，the sign ∂ is in this theory a substantive sign of veight 2．If T．U are terme，O TU 18 thus a term，which we will in practice designate by（T，U）．

The axiow of ordered pairs（or of couples）is the following axiows

A3．$(\forall x)\left(\forall x^{\prime}\right)(\forall y)\left(\forall y^{\prime}\right)\left(\left((x, y)=\left(x^{\prime}, y^{\prime}\right)\right) \Rightarrow\left(x=x^{\prime}\right.\right.$ and $\left.y=y^{\prime}\right)$ 。

By C44，the relation $(x, y)=\left(x^{0}, y^{0}\right)$ is equivalent to $<x=x^{\prime}$ and $y=y^{\prime}>$ ．

The relation $(\exists x)(\exists y)(z=(x, y))$ will be designated by 《 z is an ordered pair＂or＂zis a couxle＂．If z is an ordertpair，the relations $(\exists y)(z=(x, y))$ and $(\exists x)(z=(x, y))$ are functional in x and y respectively by A3．The terms $\tau_{x}((\exists y)(z=(x, y)))$ and $\tau_{y}((\exists x)(z=(x, y)))$ will be designated by $\mathrm{pr}_{1} \mathrm{z}$ and $\mathrm{pr}_{2} \mathrm{z}$ respectively，which will be called the first coordinate（or first projection）and second coordinate（or second projection） of z ．

Lot $R\{x, y \xi$ be a relation，the letters x and y being distinct and figuring in R ．Let z be a letter distinct from x and y and not figuring in R．Designate by $S\{z \xi$ the relation $(\exists x)(\exists y)(z=(x, y)$ and $\mathbb{R}\{x, y \xi)$ ； it is thus a relation which contains a letter not figuring in R ，and which is equivalent to $《 z$ is an ordered pair and $\mathbb{R} \xi \mathrm{Pr}_{1} z_{0} \mathrm{Pr}_{2} z \xi 》$ ．$R \xi x, y \xi$ is equivalent to $S\{(x, y)\}$ ，and to $(\exists z)(z=(x, y)$ and $S\{z\})$ ．This means that a relation between the objects x and y may be interpreted as a property of the ordered pair forwed by these objecta．

Theoren 2．－The relation

$(\forall X)(\forall I)(\exists z)(\forall x)((z \in Z) \Leftrightarrow(\exists x)(\exists y)(z=(x, y)$ and $x \in X$ and $y \in Y))$
is true，i．e．，whatever be X and X ，the relation $K z$ is an ordered pair and $p r Z^{z} \in X$ and $\left.p z_{z^{z} \in Y}\right)$ is collective in z ．

Definition 3．－Being given two sets X and I ，the set $\varepsilon_{z}((\exists x)(\exists y)(z=(x, y)$ and $x \in X$ and $y \in Y))$ is called the product of X and Y and is deaignated by $X \times Y$ ．

The relation $z \in \mathbb{K} X$ is thus equivalent to \mathbb{K} i io in ordered pair

Proposition 3. - If A^{\prime} and B^{\prime} are two non-empty sets, the relation $A^{\prime} \times B^{\prime} \subseteq A \times B$ is equivalent to $« A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B \geqslant$.

Proposition 4. - Let A and B be two sets. The relation $A \times B=\varnothing$ is equivalent to $" A=\varnothing$ or $B=\varnothing \|$.

If A, B, and C are sets, one lets $(A \times B) \times C=A \times B \times C$. $A n$ element $((x, y), z)$ of $A \times B \times C$ (which is written also as $(a, b, c))$ is called a triplet. Siailarly, one may define a multiplet ($x_{1}, x_{2}, \ldots, x_{n}$). The relation $\{\{x\},\{x, y\}\}=\left\{\left\{x^{\prime}\right\},\left\{x^{\prime}, y^{\prime}\right\}\right\}$ is eq̧uivalent to $\left\langle x=x^{\prime}\right.$ and $\left.y=y^{\prime}\right\rangle$. This is known as the Kuratowaki definition of the ordered pair (x, y), i.e., $(x, y)=\{\{x\},\{x, y\}\}$. If τ_{0} is the theory of sete and \mathcal{V}_{1} the theory with the same schemas and explicit axioms as τ_{0}, with the exception of the axiom $A 3$, it can be shown, utilizing the Kuratowaki definition of the ordered pair, that if \mathcal{C}_{1} is not contradictory, then neither is τ_{0}. This gives a relative consistency proof for 13.

Definition 4. - G is said to be a graph $1 f 1$ every element of G is an ordered pair, 1.0., if the relation $(\forall z)(z \in G \Rightarrow z$ is an ordered pair) is true.

If G is a graph, the relation $(x, y) \in G$ is expressed often by《y is corresponded to x by G ".

Let G be a letter distinct from x and y, x and y being distinct letters, and let $R\{x, y \xi$ be a relation in which G does not figure. If the relation $(\exists G)(G$ is a graph and $(\forall x)(\forall y)(((x, y) \in G) \Leftrightarrow k)))$ is true One says that R admits a gragh (with respect to the letters x and y). The graph G is unique b the axiow of axtensionality, and is called the graph of R with respect to x and y.

Proposition 5. - Let G be a graph. There exists a unique set A and a unique set B which possess the following properties:

1) the relation $(\exists y)((x, y) \in G)$ is equivalent to $x \in A$;
2) the relation $(\exists x)((x, y) \in Q)$ is equivalent to $y \in B$.

The sets $A=\varepsilon_{x}((\exists y)((x, y) \in(G)))$ and $\left.B=\varepsilon_{y}((\exists x)((x, y) \in 0))\right)$ are called the respective pirst and second projections of the graph G, or the set of definition and the set of values of G, and are designated by $\mathrm{pr}_{1}\langle G\rangle$ and $\mathrm{pr}_{2}\langle\mathrm{a}\rangle$, respectively.

Remark. The relation $x=y$ does not admit agraph aince if it did exiat, its first projection would be the set of all objects, which we have noted does not exist.

Dofinition 5. - A triplet $\Gamma=(G, A, B)$, where A and B are sets and G is a graph such that $\mathrm{pr}_{1}\langle G\rangle \subseteq A$ and $p r_{2}\langle G\rangle \subseteq B$ is said to be a correspondeace between A and B. 0 is called the graph of Γ, A the set of departure and B the set of arrival) of Γ.

If $(x, y) \in G$, one says again that $\& J$ is corresponded to x by the correspondence $\Gamma \eta$. If $x \in \mathrm{pr}_{2}\left(G_{i}\right)$ one says that the correspondence Γ is defined for the object x_{0}, and $\mu r_{1}\langle G\rangle$ is called the domain (or set) of definition of Γ; for $y \in \mathrm{pr}_{2}\langle a\rangle$, one cays that y is a value taken by Γ and $\mathrm{pr}\langle Q\rangle$ is called the range (or set) of values of Γ.

If $R\{x, y\}$ is a relation adnitting a graph G (wrt. x and y). and if A and B are two sets such that $p r_{1}\langle G\rangle \subseteq A$ and $p r_{2}\langle a\rangle \subseteq B_{\text {, }}$ one says that R is a relation between an element of A and an element of B (relative to x and y). One says that the correspondence $\Gamma=(a, A, B)$ is the correspondence between A and B defined by the relation R (wrt. x and 3$)$.
subset I of B, the image $\vec{\Gamma}(Y)$ of Y by $\vec{\Gamma}$ is again called the inverse image of 1 by Γ.

Let G and G^{\prime} be two graphs. Designate by A the set $p r_{1} G$ and by C the set $\mathrm{pr}_{2} \mathrm{al}^{\prime}$. The relation $(\exists y)((x, y) \in G$ and $(y, z) \in G \prime)$ entails that $(x, z) \in A x C$; it thus admits a graph w.r.t. x and z.

Definition 2. - Let G and G^{\prime} be graphs. We call the graph wor.t. x and z of the relation $(\exists y)\left((x, y) \in G\right.$ and $\left.(y, z) \in G^{\prime}\right)$ the composition of G^{\prime} and G. It will be designated by GroG.

Proposition 6. - Let G and G^{\prime} be two graphs. The inverse graph of GOG is $G^{-1} \mathrm{G}^{-1}$.

Proposition 7. - Let G_{1}, G_{2}, G_{3} be graphs. One then has $\left(G_{3} O G_{2}\right) O G_{1}=G_{3} O\left(G_{2} O G_{1}\right)$.

Proposition 8. - Let G and G ' be graphs and A a set. Then one has $\left(G^{\prime}, O G\right)\langle A\rangle=G \cdot\langle G\langle A\rangle\rangle$.

Dofiation 10. - Lot $\Gamma=\left(G_{0}, A, B\right)$ and $\Gamma^{\prime}=\left(G^{\prime}, B, C\right)$ be two correspondences such that the set of arrival of Γ is identical to the set of departure of Γ^{\prime}. se call the composition of Γ^{\prime} and Γ^{\prime} the correspondence ($G^{\prime} \circ G, A, C$). It is denoted by $\Gamma^{\prime} \circ \Gamma$.

Definition 11. - If A is a set, the set Δ_{A} of objects of the form (x, x), for $x \in A$, is called the diagonal of AxA. The correspondence $I_{A}=\left(\triangle_{A}, A, A\right)$ is called the identity correspondence of A.

Definition 12. - One says that a graph F is a functional graph if, for every x, there exists at most one object corresponded to x by \mathbb{F}. One says that a correspondence $f=(P, A, B)$ is a function if its graph F Is a functional graph, and if its set of departure A is equal to its
domain of dofinition $\mathrm{Hr}_{\mathrm{I}} F_{\text {．In }}$ other words，a currespondence $f=(A, A, B)$ is a function if，for overy $x \in A$ ，the relation $(x, y) \in \mathbb{P}$ is functional in y ；the unique object corresponded to x by f is called the vaiue of f for the element x in A ，and 18 designated by $f(x)$ or $f_{x}\left(\operatorname{or} F(x)\right.$ ，or $\left.E_{x}\right)$ ．

If 1 is function，F its graph and x an element of the domain of definition of f ，the rolation $y \equiv S(x)$ is thus equivalent to $(x, y) \in F$ ．

Lot A and B be sets；one calls a maping（or avplication）of A into B a function f whose set of departure（which is thus equal to its set of definition since f is a function）is equal to A and whose set of arrival is equal to Bi_{i} one also says that such a function is dofined in A and takes its values in B ．This is abbreviated by $f: A \rightarrow B$ ．

In certain cases，a functional graph is also called a family： the domain is then called the set of indices，and the set of values is called（by abuse of language）the set of elements of the family．When the set of indices is the product of two sets，one speaks of a double family．Siallarly，a function whose set of arrival is f is often called a．fanily of elements of E ．When every element of E is a subset of a set F．one speaks of a family of subsets of F．

We will often use the word 《function 》 in place of 《functional graph» in that which follows．
bxample－$(\varnothing, \varnothing, \varnothing)$ is called the vold function and the identity correspondence，being a function，is called the identity mapping．

One says that two functions if and g coincide in a set E if E is contained in the sets of definition of f and of g ，and if $f(x)=g(x)$
for overy $x \in E_{0}$ ．To say that $f=g$ amounts to saying that f and g bave the same domain of definition A ，the aame set of arrival B ，and coincide in A ．

Let $f=(P, A, B)$ and $g=(G, C, D)$ be two functions．To say that $F \subseteq G$ amounts to saying that the domain of $1, A$, is contained in the domain C of g ．If in addition $B \subseteq D$ ，one says that g is an extension of f to C ．

C54．Lifit and A be tur fingr，x and y distinct lettorg． Suppose that x does not ilgwnin and that y ifures neither in T nor in A ，Let R be the relation $" x \in A$ and $y=T 》$ ．The relation R
 functionali ite firet projection is As its second projection is the set of objecte of the form T for $x \in A$ ．For ever：$x \in A$ ，ono has $F(x)=T$.

If C is a sot containing the set B of objects of the form T
for $x \in A(y$ not figuring in C ），the function（ F, A, C ）is also designated by the notation $x \rightarrow T(x \in A, T \in C)$ ．The assemblage corresponding to this in the formal mathematics contains neither x nor y and does not depend on the choice of the letter y verifying the preceding conditions． When the context is suifiolently explicit，one may be content with the notations $x \rightarrow T(x \in A),(T)_{\Sigma \in A}$ ，or $x \longrightarrow T$ and even slaply T or (T) ． －For example，on may speak of＂the function $x^{3} 》$ or $\left.《 x \rightarrow 2 x\right\rangle$ in some specific contexts involving the real numbers ．

```
Proposition 9. - If I is a mapping of A into B, and g a mapping
``` of \(B\) into \(C\) ，gof is a mapping of \(A\) into \(C\) ．

The function gof is written also \(x \rightarrow g(f(x))\), or simply of if no confusion is likely.

Definition 13. - Let \(f\) be a mapping of \(A\) into \(B\). One bays that If an iniection (or l-1 mapping), or is an infective mapuing, if two distinct elements of \(A\) have distinct images under \(f(x \notin y \Rightarrow f(x) \notin f(y) j\). Ono says that is a surfection, or that is a surjective mapuing (or is an onto mapping), if \(f(A)=B\). One says that \(f\) is a bifection or bijective mapping (or 1-1, onto mapping) is is at once injective and surjective.

In lieu of injection, one may say that is a biunique. In Lieu of surjection, one may say that 1 is a mapping of \(A\) onto \(B\), or a parametric representation of B by means of A (hore, A is called the set of parameters of the representation). If if bifective one may also say that places A in a 1-1 correspondence with B. A bijection of A onto A is also called a permutation.

Brample - If \(A \subseteq B\), the mapping of \(A\) into \(B\) whose graph is the diagonal of \(A\) is injective and is called the canonical injection of \(A\) into \(B\).

Prososition 20. - Let \(f\) be a mapping of A into B. In ordor that -1 be a function, it is necessary and sufficient that \(f\) be bijective.

Where \(f\) is bijective, \(f^{-1}\) is called the inverse makping of \(f_{i} f^{-1}\) is bifective, \({ }^{-1}\) of 18 the identity mapping of \(A\) and \(f\) of \(1 s\) the identity mapping of \(B\).

Let i: \(A \rightarrow B\); for every subset \(X\) of \(A\) one has that \(X \in f^{-1}\langle f\langle X\rangle\rangle\) and for every subset I of \(B\), one has \(f\left\langle^{-1}\langle\bar{f}\langle Y\rangle \subseteq\right.\). If I is a surjection \(\delta\left\langle\mathcal{f}^{-1}\langle I\rangle\right\rangle=Y\) for every \(Y \leq B\). If \(\mathcal{I}\) is an injection, for overy \(X \subseteq A\), \({ }^{-1} f\langle\mathcal{I}\langle x\rangle\rangle=X\) 。

Proposition 11. - Let \(f\) be a maping of \(A\) into \(B\). If there exdsts a maping \(r\) (resp. s) of B into \(A\) such that \(r \circ f\) (resp. fos) is the identity mapping of A (resp. B), I is injective (resp. surjective). Conversely, if \(f\) is surjective, there exists a mapping \(B\) of \(B\) into \(A\), such that \(f \circ s\) is the identity maping of \(B\). If \(\&\) is injective and if \(A \neq \varnothing\). there exists a mepping \(r\) of \(B\) into \(A\) auch that \(r \circ \&\) is the identity mepping of A .

Corollary. Let \(A\) and \(B\) be sets, \(f\) a mapping of \(A\) into \(B, g\) a mapping of \(B\) into \(A\). If \(g \circ f\) is the identity mapping \(A\) and \(f \circ g\) the identity mapping of \(B, \&\) and \(g\) are both bijective and \(g=\mathrm{f}^{-1}\).

Dofinition 14. - Let \(f\) be an injective mapping (resp. surjective mapping) of A into B. Every mapping \(r\) (resp. s) of \(B\) into \(A\) such that \(r \circ f(r e s p . f \circ s)\) is the identity mapping of \(A(r e s p . B)\) is called a retraction or left inverse (resp. Bection or right inverse) associated with f .

A function of two arguments is a function whose domain of definition is a set of ordered pairs.

Dofinition 15. - Let \(u\) be a mapping of \(A\) into \(C\) and \(v\) a mapping of \(B\) into \(D\). The mapinis \(z \rightarrow\left(u\left(p r_{2} z\right), v\left(p r_{2}^{z}\right)\right)\) of \(A x B\) into \(C x D\) is called the caponical oxtension of \(u\) and \(v\) to the product set \(A x B\), or simply the roduct of \(u\) ani \(t\) when no confusion \(1 s 11\) sely and is designated by \(u x v\) or \((u, v)\).

Its set of values is \(u(A) \times \nabla(B)\). If \(u\) and \(v\) are injective (resp. surjective), then \(u \times v\) is infective (resp. surfective) and if \(u\) and \(v\) are bijective, ther \(u x y\) is bijective and its inverse mapping
is \(u x v\). If \(u^{\prime}\) is a mapping of \(C\) into \(E\) and \(v^{\prime}\) a mapping of \(D\) into F, one has that
\[
\left(u^{\prime} \times v^{\prime}\right) \circ(u \times v)=\left(u^{\prime} \circ u\right) \times\left(v^{\prime} \circ v\right) .
\]

Lot \(X\) be a family, I its set of indices. In order to facilitate the intuitive interprelation of what follows, we shall say that \(X\) is a family of sets.

If (\(X, I, G\)) is a fanily of subsets of a set \(E\) (1.e., a family of elements whose sets of arrival (\(\mathbb{E}\) Is such that the relation \(I \in \Subset\) entaile ISE), we shall use the notation \(\left(X_{i}\right)_{i \in I}\left(X_{i} \in \mathbb{G}\right)\), or simply \(\left(X_{i}\right)_{1 \in I}\) by abuse of notation, we shall use the notation \(\left(X_{i}\right)_{i \in I}\) for an arbitrary family of sets, with I for the set of indices.

As the relation \((\forall x)\left(\left(i \in I\right.\right.\) and \(\left.\left.x \in X_{i}\right) \Rightarrow\left(x \in X_{i}\right)\right)\) is true, S5 allows us to conclude that the relation
\[
(\forall i)(\exists Z)(\forall x)\left(\left(i \in I \text { and } x \in X_{i}\right) \Rightarrow(x \in Z)\right.
\]
is true. In virute of 38 , the relation (\(\exists i)\left(i \in I\right.\) and \(\left.x \in X_{1}\right)\) is thus collective in \(x\).

Definition 16. - Let \(\left(X_{1}\right)_{i} \in I\) be a family of sets (resp. a family of subsets of a set L\()\). The union of this family designated by \(\bigcup_{i \in I} X_{i}\), is the set
\[
\left\{x \mid\left(\exists i X_{1} \in I \text { and } x \in X_{1}\right)\right\} \text {. }
\]
1.e., the set of those \(x\) which belong to at least one set out of the family \(\left(X_{i}\right)_{i \in I}\)

It is immediate if \(I=\varnothing\), one has \(\bigcup_{i \in I} X_{1}=\varnothing\) as the relation (\(\exists 1)\left(i \in I\right.\) and \(\left.x \in X_{i}\right)\) is then false.

Sup;080 that \(I \notin \phi\). If \(\alpha \in I\), the relation \(\left.(\forall i)(i \in I) \Rightarrow\left(x \in X_{1}\right)\right)\) entails \(x \in X_{G}\), thus, in virtue of C52, this relation is collective in \(x\).

Definition 12. - Let \(\left(X_{1}\right)_{i \in I}\) be a family of sets whose set of indices I is not void. The intersection of this family, designated by \(\prod_{i \in I} X_{i}\), is the set \(\left\{x \mid\left(\forall_{i}\right)\left((i \in I) \Rightarrow\left(x \in X_{i}\right)\right)\right\}\), 1.e.. the set of those \(x\) which belong to all of the sots in the family \(\left(X_{1}\right)_{i \in I}\).
N.B. If \(I=\varnothing\), the relation \(\left(V_{i}\right)\left((i \in I) \Rightarrow\left(x \in X_{i}\right)\right)\) is not collective in \(x\), for if it were the resulting set would be the fret of all objects \(\#\) which does not exist.

If \(\left(X_{i}\right)_{i \in I}\) is a family of subsets of a set \(E\), and if \(I \neq \varnothing\), the relations \(x \in E\) and \((\forall i)\left((1 \in I) \Rightarrow\left(x \in X_{i}\right)\right)\) 》 is equivalent to \(\left(\forall\right.\) i) \(\left((1 \in I) \Rightarrow\left(x \in X_{i}\right)\right)_{i}\) consequently, it is collective in \(x\) and the set of \(x\) verifying this relation is equal to \(\prod_{i \in I} X_{i}\). when \(I=\phi\), the relation \(<x \in E\) and \(\left.(\forall i)(i \in I) \Rightarrow\left(x \in X_{i}\right)\right) »\) is equivalent to \(x \in E\), it is thus again collective in \(x\), and the set of all \(x\) verifying this relation is E .

Definition 18. - Let \(\left(X_{1}\right)_{1 \in I}\) be a family of subsets of a set \(\bar{L}\). The intersection of this family, designated by \(\prod_{i \in I} X_{i}\) is the set \(\left\{x \mid x \in E\right.\) and \(\left.(\forall i)\left((i \in I) \Rightarrow\left(x \in X_{1}\right)\right)\right\}\), 1.e.. the set of all \(x\) which belong to E and all of the sets of the family \(\left(X_{1}\right)_{i \in I}\) :

Definition 19. - Let \(F\) be a family of sets, and let \(\Phi\) be the family of sets defined by the identity mapping of \(F\). The union of the
sets of \(\Phi\), and (\(1 f\) F is non void) the intersection of the sets of \(\Phi\) are called respectively the union and intersection of the sets of \(\mathcal{F}\). and are designated by \(\bigcup_{x \in F} x\) and \(\bigcap_{x \in F} x\).

If \(A\) and \(B\) are sets, one lets
\[
A \cup B=\bigcup_{X \in\{A, B\}} X \quad \text { and } \quad A \cap B=\bigcap_{X \in\{A, B\}} X
\]

The intersection \(X \cap A\) is called the trace of \(X\) over A. If \(f\) is a family of sets, one also calls the trace of \(F\) over \(A\), the set of traces over \(A\) of the sets belongling to \(F\).

Definition 20. - We say that a family of sets \(\left(X_{1}\right)_{1 \in I}\) is a cover of a set E if \(\mathrm{Z} \subseteq \bigcup_{1 \in I^{1}} X_{1}\). Definition 21. - We say that two sets \(A\) and \(B\) are dis,joint (or without common element) if \(A \cap B=\varnothing\). If this is not so, we say that \(A\) and B meet each other. Let \(\left(X_{1}\right)_{1} \in I\) be a family of sets; we say that the sets of thic family are mutually diojoint (or two b; two disjoint) if the conditions \(i \in I, x \in I, 1 \neq x\) entail \(X_{i} \cap X_{x}=\varnothing\).
\[
\text { Definition 22. - We call a partition of a set } E \text { a family of }
\] non void and mutually disjoint subsets of \(E\), which is a cover of \(E\).
\[
\text { Dofinition 23. - Let }\left(x_{1}\right)_{1} \in I \text { be a fomily of sets. Wo call the }
\] sum of this family of sets, the union of the family of sots \(X_{i} x\{i\}\) (\(i \in I\)).
\[
\text { Proposition 12. - Let }\left(X_{1}\right)_{i} \in I \text { be a family of mutually disjoint }
\]
sets. Let \(A\) be its union and \(S\) its sum. Then there exists a biunique mapping of \(A\) onto \(S\).

A11 of the usual proporties of unions and intersections follow from the above dofinitions and will not be presented hore. To outline our development of eet theory furthor, we give another axiom called the axiom of the comor sot.

A4. \((\forall X) \operatorname{Coll}_{Y}(X \subseteq X)\).
This axion eignilies that, for every set \(X\), there exists a set Whose elements are all of the subsets of \(X, V I z\). the set \(\{I \mid I \subseteq x\}\). We will desigaate this set by \(\beta(x)\), and will call it the power sot of \(X\) or the set of subsets of \(X\). Clearly, if \(x^{\subseteq} \subseteq x^{\prime}\), then \(\ngtr(x) \subseteq \mathcal{P}\left(x^{\prime}\right)\).

Definition 24. - Let ì and ì be tive sets, \(\Gamma\) a correspondence botween \(A\) and \(B\). The function \(x \rightarrow \Gamma\langle x) \quad(x \in \not \subset(x), \Gamma(x\rangle \in P(B)\) 1s called the canonical extencion of \(\Gamma\) to the power set (or sot of subsets) of \(A\), and will be denoted by \(\hat{\Gamma}\). It is a mapping of \(P(A)\) into (B).

If \(\Gamma^{\prime}\) is a correspondence between \(B\) and a set \(C\), the formula \(\left(\Gamma^{\prime} \circ \Gamma\right)\langle x\rangle=\Gamma^{\prime}\langle\Gamma\langle x\rangle\rangle\) shows that the canonical extension of \(\Gamma\) ' \(\Gamma\) to the set of subsets is the mapping \(\hat{\Gamma}\) ' \(\Gamma\).

Proposition 13. - 1. If 1 is a surjection of a set E over a set \(F\), the canonical extension \(\hat{f}\) is a surjection of \(\beta(\bar{E})\) onto \(B(F)\).
2. If \(I\) is an injaction of \(E\) into \(F\), the canonical extenaion \(\hat{f}\) is an injection of \(\#(E)\) into \(\#(F)\).
3. If \(\mathcal{f}\) is a bifection of \(\mathbb{L}\) into \(F\), the canonical extension \(\hat{f}\) is a bijection of \(\#(\mathbb{F})\) onto \(\beta(F)\).

Let \(E\) and \(F\) be sets. The graph of a maping of \(E\) into \(F\) is a subset of ExF. The set of elements of \(\ddagger(\) ErF) which possess the
property of being graphs of mappings of \(E\) into \(F\) is thus a subset of \(\rangle(E x F)\) which we designate by \(F^{E}\). The set of triplets \(P=(G, E, F)\), for \(G \in F^{\bar{E}}\) is thus the set of mappings of \(E\) into \(F\), which wo designate by \(\mathcal{F}(E, F)\). It is clear that \(G \rightarrow(G, E, F)\) is a bijection called the canonical bijection of \(F^{E}\) onto \(\mathcal{F}(E, F)\). The existence of this bijection pormits the immediate translation of every proposition relative to the set \(F^{\mathrm{E}}\) into a proposition relative to \(\mathcal{F}(E, F)\) and vice-versa.

Let \(\left(X_{i}\right)_{1 \in I}\) be family of sets, \(F\) a functional graph with I for domain of dofinition, and such that, for every \(i \in I\), one has \(F(i) \in X_{i}\), then for every \(i \in I\), one has \(F(i) \in A=\bigcup_{i \in I} X_{i}\), and consequently \(F\) is an element of \({ }^{\prime}(I \times A)\). The functional graphs with the preceding property thus forms a subset of 扔 (IxA).

Definition 25. - Let \(\left(X_{i}\right)_{1 \in I}\) be a family of sets. The set of functional graphs \(F\), with I for a set of definition, and such that \(F(i) \in X_{i}\) for overy \(i \in I\), is called the \(u r o d u c t\) of the family of sets \(\left(X_{i}\right)_{1 \in I}\) and is designated by \(\prod_{i \in I} X_{i}\). The mapping \(F \rightarrow F(1)\left(F \in \prod_{i \in I^{\prime}} X_{i}\right.\) \(F(1) \in X_{i}\)) is called the coordinate function (or projection) of index 1 . and is denoted \(\mathrm{pr}_{\mathrm{i}}\).
we often use the notation \(\left(x_{1}\right)_{1 \in I}\) to designate the elements of \(\pi\) \(1 \in I^{1}\)

Let \(A\) and \(B\) be sets and let \(\alpha\) and \(\beta\) be two distinct objects (e.g., \(\varnothing\) and \(\{\varnothing\}\)). Consider the graph (obviously functional) \(\{(\alpha, A),(\beta, B)\}\) which is nothing other than the family \(\left.\left(X_{i}\right)_{i \in\{ }, \beta, B\right\}\) such that \(x_{a}=A\) and \(x_{0}=B\). For every pair \((x, y) \in A x B\), let \(f_{x, y}\) be the functional graph \(\{(a, x),(\beta, y)\}\). It is immediate that the function
\((x, y) \rightarrow \mathcal{I}_{\bar{x}, \bar{y}}\) is a bijection of Axe onto \(\prod_{i \in\left\{\alpha_{, ~ \beta\}},\right.} x\), whose inverse mapping is \(g \rightarrow(g(\alpha), g(\beta))\); these two mappings are called canonical. This correspondence is used to prove properties of the product of two sets by means of the properties of the product of a family of sets.

Proposition 24. - Let \(\left(X_{i}\right)_{i \in I}\) be a family of sets such that \(X_{1} \notin \varnothing\) for every \(1 \in I\). Being given a mapping \(g\) of \(J \subseteq I\) into \(A=\bigcup_{i \in I^{\prime}} X_{1}\) such that \(g(i) \in X_{i}\) for every \(i \in J\), there exists an extension \(f\) of \(g\) to \(I\) such that \(f(i) \in X_{i}\) for every \(i \in I\).

Proof. In effect, for every \(i \in I-J\), designate by \(T_{1}\) the term \(\tau_{y}\left(y \in X_{1}\right)\). As \(X_{1} \not \not \varnothing\) by hypothesis, on has that \(X_{1} \in X_{1}\) for every \(1 \in I-J\). If \(G\) is the graph of \(g\), the \(\operatorname{graph} G \cup\left(\bigcup_{i \in I-J}\left\{\left(1, T_{i}\right)\right\}\right)\) is the graph of the desired function \(f\).

Corollary 1. - Let \(\left(X_{1}\right)_{1} \in I\) be a family of sets such that for every \(i \in I_{\text {, one has }} X_{i} \notin \varnothing\). Then, for every \(\alpha \in I\), the projection \(p F_{a}\) is a mapping of \(\prod_{1 \in I} x_{i}\) onto \(x_{c}\).

Corollary 2. - Let \(\left(X_{1}\right)_{i \in I}\) be a family of sets. For \(\prod_{i \in I} x_{i}=\varnothing\) it is necessary and sufficient that there exist an \(i \in I\) such that \(x_{1}=\varnothing\).

We have seen that, if one has a family (\(\left.X_{i}\right)_{i c} I\) of non void sets, one may introduce (by means of an auxiliary constant) a function 1 with I for its domain of definition, which is such that \(f(i) \in X_{i}\) for every \(i \in I\). One says in practice: Take in each set \(X_{i}\) an element \(x_{1}\). Intuitively, one has thus 《chosen》 an element \(x_{1}\) in each of the \(X_{i}\); the introduction of the logical sign \(\tau\) and the criteria which govern its employment have allowed us to dispense with an appeal to the
«axiom of choico》 to lesitimatu this operation. In fact, Proposition 14 with 3 the void function is often calied the "axiom of choice" [cf. Bourbaki 58, Section 4, No. 10] and Corollary 2, which is equivalent to it is usually called the 《 multiplicative axion " [cf Russell 19, p. 117 et seq.] It is with this simple four line proof that the axiom of choice becomes derivable in our aystem.

Let \(\{\{x, y \xi\) be a relation, \(x\) and \(y\) being distinct letters. One says that the relation \(R\) is symmetric (with respect to the letters \(x\) and y) if cne bas that \(R\{x, y\} \Longrightarrow R\{y, x\}\). From this definition, it is immediate that \(R\{x, y\}\) is equivalent to \(R \xi y, x\}\).

Let \(z\) be a letter which does not figure in \(R\). One says that \(R\{x, y\}\) is transitive (with respect to the lotters \(x\) and \(y\)) if one has that \((R\{x, y \xi\) and \(R\{y, z\}) \Rightarrow R\{x, z\}\).

If \(R\{x, y\}\) is at once symuetric and transitive, one says that \(R\{x, y\}\) is an equivalence relation (with respect to the letters \(x\) and \(y\)), and use the notation \(x=y\) (mod. \(R\)) in lieu of \(R \xi x, y \xi\). If \(R\) is an equivalence relation one has that \(\mathbb{R}\{x, y\} \Rightarrow\left(R\{x, x\}\right.\) and \(\left.R\{y, y)^{z}\right)\) in virtue of the definition.

Let \(R\{x, y\}\) be a relation. One says that the relation \(R\) is reflexive in \(E\) (wrt. \(x\) and \(y\)) if the relation \(\mathbb{R}\{x, x\}\) is oquivalent to \(x \in B\).

One calls an equivalence relation in \(E\) an equivalence relation which is reflexive in E. If this is so then \(R\) admits graph. One calls an equivalence in a set E a correspondence which has E as its set of departure and arrival, whose graph \(F\) is such that the relation \((x, y) \in F\) is an equivalence relation in E.

Let \(f\) be a function, \(\mathcal{S}\) its sct of definition, \(\bar{f}\) its graph. The relation \(\| x \in E\) and \(y \in E\) and \(f(x)=f(y) \geqslant\) is an equivience relation in \(\mathrm{C}_{\text {, }}\) called the equivalence relation associated with f . The criterion which follows will show at every equivalence relation a on \(E\) is of this type. Let \(G\) be the graph of \(R\). For every \(x \in E\), the (non void) set \(a(x) \subseteq E\) is called the equivalence class of \(x\) with respect to R. An element of such a class is called a representative of this class. The set of equivalence classes with respect to \(R\) (i.e., the set of objects of the form \(G(x)\) for \(x \in \mathbb{E}\)) is called the quotient set of \(E\) by \(R\) and is designated by \(E / R\); the mapping \(x \rightarrow G(x)(x \in E)\) whose donaln is \(E\) and whose set of arrival is \(E / B\) is called the canonical maping (surfoction) of e onto E/R.

C55. Let is be an equivelonce relation in a set \(\bar{y}\) and \(\nu\) the canonical mapping of iz onto \(W / \pi\). Une has that
\[
R\left\{x_{0} y\right\} \Leftrightarrow(\nu(x)=\nu(y)) .
\]

Let \(R\) bo an equivalence relation in a set \(E\). The quotient set \(A / R\) is a subset of \(\ddagger(E)\), and the identity mapping of \(i / R\) is a partition of \(\Sigma_{0}\) Conversely every partition of \(\Sigma_{,}\left(X_{i}\right)_{i} \in I\) defines an equivalence relation on \(E\), \(\mathrm{F}_{\mathrm{z}} .(\exists i)\left(i \in I\right.\) and \(x \in X_{1}\) and \(\left.y \in X_{i}\right)\). every subset \(S\) of \(E\) such that for euch \(i \in I\), the set \(S \cap X_{1}\) is reduced to a single element is called a systen of representatives of the equivalence classes WIth respect to \(R\).

Let \(R\left\{x_{0} x^{\prime}\right\}\) be an equivalence relation, and \(P \xi x \xi\) a relation.
 (with respect to \(x\)), if, given that \(y\) designates a letter which figures
neither in \(P\) nor in \(K\) one has
\[
(P\} x\} \text { and } R\{x, y\}) \Rightarrow P\{y\} \text {. }
\]
 a relation wherein the letter \(x^{\prime}\) doen not fizure compatible (with reapect to \(x\)) witi the equivalence relation \(\bar{X} \mid x, x\) in then if \(t\) does not figure 1n \(F\{x\}\), the rolation \(\| t \in \mathbb{F} / a\) and \((\exists x)(x \in t\) and \(P\{x \mid)\)) 1B equivalent to the relation \(\| t \in Z / R\) and \((\forall x)((x \in t) \Rightarrow(P\} x))\).

The relation « \(t \in \mathbb{Z} / R\) and \((\exists x)(x \in t\) and \(P\{x \|) \geqslant\) is called the relation deduced frou \(P\) if by passage to zuotiente.

Let \(\mathbb{R}\) be an equivalence relation in a set \(k\), and \(f\) a function whose domain is E . One says that f is compatible with the relation R if the relation \(y=f(x)\) is compatible (with respect to \(x\)) with the relation \(\mathbb{R}\} \times, x^{\prime \prime}\) 。

C57. Let \(R\) be an equivalence relation in a set in. und let \& be the canonical mapping of \(\bar{Z}\) onto \(\bar{E} / \mathcal{R}_{\text {. }}\). In order that a mapping \(f\) of \(E\) into Pbe compatible with \(R\), it is necearary and sufficient that \(f\) may be rut in the form \(h \circ \mathrm{~g}\), in being a mapping of \(\mathrm{E} / \mathrm{R}\) into F. The maping \(h\) is uniquely determined by fi if a is a section associated with ge one has that \(h=10 \mathrm{~s}\).

The mapring \(h\) is said to be the mapping deduced froir \(f\) by这sage to quotionts with respect to R.

Let \(f\) be a mapping of a set \(\tilde{E}\) into a set \(F\), and let \(R\) be the equivaleuce relation associated with \(\mathcal{P}\). Then \(\mathcal{P}\) is compatible with \(R\) and the mapping \(h\) deduced froci \(f\) by passage to quotients is an injection
of \(E / R\) into \(F\). Let \(k\) be the mapping of \(E / R\) onto \(f\langle i\rangle\) which has the same graph as \(h ; k\) is thus a bijection. If \(j\) is the canonical injection of \(f(E\rangle\) into \(F\) and \(\nu\) the canonical mapping of \(E\) onto \(E / R\), one may write \(f=j \circ k \circ v_{i}\) this relation is called the canonical decompoaition of 1 .

Let \(f\) be apping of a sot in into a set \(F, R\) an equivalence relation in \(E, S\) an equivalence relation in \(F\). Let \(u\) be the canonical mapping of \(E\) onto \(E / R\) and \(v\) the canonical mapping of \(F\) onto \(F / S\). One says that \(f\) is compatible with the ciuivalence relations \(R\) and \(S\) if \(V O\) is compatible with \(R\). The maping \(h\) of \(E / R\) into \(F / S\) deduced from \(v o f\) by passage to quotients with respect to \(R\) is then called the maping deduced from \& by passare tu quotients with reapoct to \(\bar{K}\) and \(\overline{3}\); it is characterical by the relation \(V \circ f=h o u\).

Let \(R x, y\) be an equivalence relation not necessarily possessing a graph. It is immediate that if \(x, x^{\prime}\), and \(y\) are three distinct letters
 relation \((\forall y)\left(R \xi x, y \xi \Leftrightarrow R \xi x^{1}, y^{\xi}\right)\). By means of \(S 7\) we see that if one lets \(\left.\theta \xi x \xi=\tau_{y}(B \xi x, y\}\right)\), the relation \(R \xi X, X \|\) implies that \(\theta\left\{x\left\{=\theta\left\{x^{\prime}\right\}\right.\right.\). For the other part note that, by definition, \(R \xi x, \theta\{x\}\) is nothing other then the relation \((\exists y) R \xi x, y \xi\), which is equivalent to \(R \xi x, x \xi\). We conclude that the relation \(\left(R \xi x, x \xi\right.\) and \(R \xi x^{\prime}, x^{\prime} \xi\) und \(\theta\left\{x\left\{=\theta\left\{x^{\prime} \xi\right.\right.\right.\); is equivalent to \(\left.R \xi x, x^{\prime}\right\}\). The term \(\theta\{x \xi\) is called the class of objects equivalent to \(x\) (for the relation \(\mathbb{K}\)).

Suppose that \(T\) be a term such that the relation
(1) \((\forall y)(R \xi y, y\} \Rightarrow(\exists x)(x \in T\) and \(R \xi x, y\}))\)
is true. Then the relation \((\exists x)(R\} x, x\}\) and \(z=\theta\{x\})\) is collective
in z．Let（12）be the set of objects of the form \(\theta \xi x \xi\) for \(x \in\) ．Ve call（5）the act of classes of eyuivalent objucts with respect to 8 ． Let \(R\{x, y\}\) be a relation，\(x\) and \(y\) being distinct letters． One says that \(\mathbb{R}\) is an order relation（or partial order rel tion）with resject to the letters \(x\) and \(y\)（or between \(x\) and \(y\) ）if the relutions
\[
\begin{aligned}
& (R\{x, y \xi \text { and } R\{y, z\}) \Rightarrow R\{x, z \xi \\
& (R\} x, y \xi \text { and } R\{y, x\}) \Rightarrow(x=y) \\
& R\{x, y \xi \Rightarrow(R\{x, x\} \text { and } R\{y, y \xi)
\end{aligned}
\]
are true．
One calls an order relation in a sot ．．．an order relation \(R \xi x, y \xi\) with respect to two distinct letters \(x\) and \(y\) such that the relation \(R\{x, x\}\) is equivalent to \(x \in \mathbb{E}\) 。

One calls an order over a act E a correspondence \(\Gamma=(G, E, E)\) With \(\mathbb{H}\) as its set of departure and arrival such that the relation \((x, y) \in G\) is an order relation in E．

If \(R\{x, y\}\) is an order relation，we shall often use the notation \(x \leqslant y\) in lieu of \(R\{x, y\}\) and speaic of \(\leqslant\) in place of \(R\) ．
ife write \(x<y\) for the relation \(x \leqslant y\) and \(x \neq y \geqslant\) 。
C58．Let \(\leqslant\) be an order relation，\(x\) and \(y\) being two distinct letters．The relation \(x \leqslant y\) is equivalent to \＆\(x\langle y\) and \(x=y\) 》． Each of the relations \(\langle x \leqslant y\) and \(y\langle z 》\) 》 《 \(x\langle y\) and \(y \leqslant z\) 》entail \(x<2\) ．
\[
\text { We often write } x \leqslant y \leqslant z \text { for } \| x \leqslant y \text { and } y \leqslant z \|_{0} \text { etc. }
\]

Derinition 26. - Let \(E\) be an ordered set. One says that an - lement a \(E\) is the least element (resp. greatest element) of \(E\) if for overy \(x \in \mathbb{E}\) one has \(a \leqslant x\) (resp. \(x \leqslant a\)).

Definition 2?. - One says that two elements \(x, y\) of an ordered set E are comparable if the relation \(\mathbb{x} \leqslant y\) or \(y \leqslant x \geqslant\) is true. A set E is said to be totally ordered if it is ordered and if any two elements of E are comparable. One then says that the order over \& is a total order and the corresponding order relation is total order relation.

Let \(E\) be an ordered set, \(a\) and \(b\) two elements of \(E\) such that a b then we make the following definition
1) \(\{a, b\}=\{x \mid x \in \mathbb{E}\) and \(a \leqslant x \leqslant b\}\)
2) \(\{a, b\{=\{x \mid x \in \mathbb{E}\) and \(a \leqslant x<b\}\)
3) \(\{a, b]=\{x \mid x \in E\) and \(a<x \leqslant b\}\)
4) \(] \leftarrow, x]=\{x \mid x \in \mathbb{E}\) and \(x \leqslant a\}\)
5) \(] \underset{\sim}{\mathrm{L}} \rightarrow\{=\{x \mid x \in E\}\).

These are called respectively the closed interval \(a, b\), the right half open interval \(a, b\), the left balf open interval \(a, b\), etc. following in the usual terminology.

One says that a relation \(R \xi x, y \xi\) is a well ordering relation between \(x\) and \(y\) if \(R\) is an order relation between \(x\) and \(y\) and if for every non empty subset of \(\mathbb{E}\) over which \(R\} x, f \xi\) induces an order relation (i.e.. \(x \in \mathbb{E} \Rightarrow \mathbb{R}\{x, x\}\)), E ordered by this relation admits a least element.

Definition 28. - One says that E is well ordered if it is ordered and if every non empty subset of E admits a least element.
pofinition 29. - In an ordered set \(E\), one calls a segment of \(F\) \(E\) a subset \(S\) of such that the relations \(x \in S, y \in \mathbb{E}\) and \(y \leqslant x\) entail \(y \in S\).

Proposition 15. - In a well ordered set E, every segment of \(E\) distinct from \(E\) is an interval \() \notin a(\), whore \(a \in E\).

For every element of a well ordered set \(E\), we use the notation \(s_{x}\) for the segment \()+, x\) (which we call segment with extremity \(x\).

Let us now consider ourselves in a theory \(C\) where \(E\) is a set well ordered by a relation denoted \(x \leqslant y\). We now can enunciate the following criterion called the principle of transfinite induction (or securrance):

C59. Let \(R\{x\}\) be a relation of \(V\) (\(x\) not being a constant of (e) such that the relation
\[
(x \in E \text { and }(\forall y)((r \in E \text { and } r<x) \Rightarrow R\{y\})) \Rightarrow B\{x\}
\]
is a theorem of \(e\). Under these conditions, the relation \((x \in U) \Rightarrow R\{x\}\) is a theorem of \(e\).

In the application of C59, the relation \(x \in \mathbb{E}\) and \((\forall y)((y \in E\) and \(y(x) \Rightarrow R\{y\}\)) is usually called the inductive hypothesis.

For every mapping \(g\) of a segment \(S\) of \(E\) into a set \(F\), and for - very \(x \in S\), we shall designate by \(g(x)\) the mapping of the segment \(\left.S_{x}=\quad\right) \nleftarrow, x\left(\right.\) of \(E\) onto \(g\left(S_{x}\right)\), which coincides with \(g\) in \(S_{x}\) with this notation, we have the following criterion called the definition of a mapping by transfinite induction:

C60. Let \(u\) be a latter, I \(\{u\}\) a torm of the theury \(C\). There existe a set \(U\) and a mapping \(f\) of 5 onto \(U\) such that, for every \(x \in E\). one has \(f(x)=T\} f^{(x)}\), In addition, the set \(u\) and the maping if are determined in a unigue manner by these conditions.

Most often, one apylies the preceding criterion in a case where there exists a set \(F\) auch that, for every mapping \(h\) of a segment of \(I\) onto a subset of \(F\), one has that \(T \xi h\} \in F\). Then the set \(\mathbb{U}\) obtrined by application of \(C 60\) is a subset of \(F\).

Dofinition 30. - One says that a set \(X\) is equipotent to a set If there exists a bijection of \(X\) onto \(Y\). We denote \(E q(X, Y)\) the relation《 \(X\) is equipotent to I》.

The relation \(E q(X, Y)\) is clearly an equivalence relation, which is reflexive in every set. It does not, however, possess a graph.

Definition 31. - The set \(\tau_{2}(E q(x, 2))\) is called the cardinal of \(X\) (or the nower of \(X\)) and is denoted by Card (X).

We note that Card \((X)\) is nothing other than the class of objects equivalent to \(x\) for the relation of equipotence. (cf. p55).

As Eq \((X, X)\) is true, Card \((X)\) is equipotent to \(X\) by \(S 5\) and we have the following proposition:

Proposition 16. - In ordor that two sets \(X\) and \(I\) be equipotent, 1t is necessary and sufficient that their cardinals be equal.
N.B. To say that \(u\) is a cardinal means that there exists a set \(x\) such that \(V=\) Card \((x)\).

Example．We use the notation 0 for the \(\operatorname{Card}(\varnothing)\) ．The only set equipotent to \(\varnothing\) being \(\varnothing\) ，one has that \(0=\operatorname{Card}(\varnothing)=\varnothing\) ．

Example．All one element sets are equipotent since \(\{(a, b)\}\) is the graph of bijection of \(\{a\}\) onto \(\{b\}\) ，in particular，they are equipotent to \(\{\varnothing\}\) ．We denote by 1 the cardinal
\[
\operatorname{Card}(\{\varnothing\})=\tau_{Z}(E q(\{\varnothing\}, Z))
\]

Here it is important not to confuse the mathematical term deaignated by the symbol 《l》 and the word 4 one》 of ordinary language．The term designated by \(\langle I V\) is equal，by definition，to the term designated by the symbol
\[
\begin{aligned}
& \tau_{Z}((\exists u)(\exists U)(u=(U,\{\varnothing\}, Z) \text { and } U \subseteq\{\varnothing\} x Z \text { and } \\
& (\forall x)((x \in\{\varnothing\}) \Rightarrow(\exists y)((x, y) \in U)) \text { and } \\
& (\forall x)(\forall y)\left(\forall y^{\prime}\right)\left(\left((x, y) \in U \text { and }\left(x, y^{\prime}\right) \in U\right) \Rightarrow\left(y=y^{\prime}\right)\right) \text { and } \\
& (\forall y)((y \in Z) \Rightarrow(\exists x)((x, y) \in U)))) .
\end{aligned}
\]

The actual assemblage designated by this symbol consists of course of hundreds of signs，each one of which is one of the signs
\[
\tau, \square, \vee, 7,=, \epsilon \text {, and } \supset \text {. }
\]

Example．We denote by 2 ，the cardinal Card \((\{\varnothing,\{\varnothing\}\})\) ，etc． Proposition 17．－The relation R\} or , 6\}:
« and \(b\) are cardinals and \(v\) is equipotent to a subset of \(b\)＂

We shall denote the relation \(R\{u, f\}\) by \(n \leqslant b\).

Definition 32. - Let \(\left(U_{1}\right)_{1 \in I}\) be a family of cardinals. The cardinal of the product set (resp. sum) of the sets \(M_{i}\) is called the cardinal product (resp. cardinal sum) of the \(M_{i}\) and is denoted by \(\left.\mathbb{T P}_{1 \in I} i^{(r e s p}, \sum_{i \in I} \pi{ }_{i}\right)\).

Proposition 18. - Let \(a, b, c\) be cardinals, then
\[
n+b=b+n, \quad n b=b n,
\]
\[
n+(b+c)=(\pi+b)+c, n(f a)=(\pi b) c \text {, and }
\]
\[
\pi(b+c)=\pi b+\pi c .
\]

Definition 33. - Let \(\pi\) and be cardinals; the cardinal of the set of mappings of into \(n \quad(\operatorname{Card}(\mathcal{F}(6, \pi)))\) is denoted by \(n^{b}\), by abuse of notation.

Proposition 22. - Let \(X\) be a set and \(K\) its cardinal; the cardinal of the set \(\not p(x)\) is \(2^{n}\).

Proposition 20. - For every cardinal \(\pi\). one has that \(2^{\pi}>\pi\)
This is the celebrated theorem of Cantor.

Corollary. - There does not exist a set of which every cardinal is an element.

Definition 34. - One says that a cardinal His indite is
\(\pi \neq n+1\); a finite cardinal is also called a natural number. One says that a set \(E\) is finite if Card (E) is a finite cardinal; one also says that Card (E) is the number of elements of \(E\).

The following criterion is called the principle of induction： C61．Let \(\mathrm{i}\{n\{\) be a relation in a theory \(\mathbb{C}\)（ \(n\) not boing a constant of \(C\) ）．Surpose that the relation
R\{0\} and \((\forall n)((n\) is a natural number and \(R\} n\}) \Rightarrow R\} n+1\}\)

IE 日 theorem of \(C\) ．Under these conditions，the relation

\section*{\((\forall n)((n\) is a matural number）\(\Rightarrow B\} n\})\)}
is a theorell of \(r\)

In applications of the above criterion，the relation

《n is a natural number and K\(\} n\}\) 》 or simily 2\(\} n\}\)
is called the inductive hy othesis．
The following criteria，which are consequences of the above are also known as induction rincipals：

1）Let \(S\{n\}\) be the relation
\((\forall p)((n\) is a natural number and \(p\) is a natural number and
\[
p(n) \Rightarrow R\} p \xi) \text {, }
\]
and suppose that \(\left\{\{n\} \Rightarrow\left\{\begin{array}{l}\{ \\ \{ \end{array}\right)\right.\) Then the relation
\[
(\forall n)((n \text { is a natural number }) \Rightarrow R\} n\})
\]
is true．
2）\(\vee\) induction ufter \(k n\) ：Let \(k\) be a natural number，\(R\{n\}\) be a relation such that the relation
\(R\{k\}\) and \((\forall n)((n\) is a natural number \(\geqslant k\) and \(R\} n\}) \Rightarrow R \xi n+I\})\)
is true．Then the relation
\[
(\forall n)((n \text { is a natural number } \geqslant k) \Rightarrow \pi\} n\}
\]
is true．

3）《 induction limited to an interval 》s Let \(a\) and \(b\) be two natural numbers such that \(a \leqslant b\) ，and let \(k\{n\}\) be a relation such that one háa

R \(\{a\}\) and \((\forall n)((a\) is a natural number and \(a \leqslant n<b\) and \(R\{n\}) \Rightarrow\) \(8\{n+1 \xi)\) 。

Then the relation
\[
(\forall n)((n \text { is a natural number and } a \leq n \leqslant b) \Rightarrow a\} n\})
\]
is true．
4）（descending induction＂：Let a and b be two natural numbers such that \(a \leqslant b\) ，and let \(R\{a\) be a relation such that one has
\[
\begin{aligned}
& \mathbb{R}\{b \xi \text { and }(\forall n)((n \text { is a natural number and } a \leqslant n \leqslant b \text { and } \mathbb{R}\} n+1\}) \Rightarrow \\
& \qquad \mathbb{R}\{n\}) .
\end{aligned}
\]

Then the relation
\[
(\forall n)((n \text { is a natural number and } a \leqslant n \leqslant b) \Rightarrow \mathbb{R}\} n)
\]
is true．

Defiaition 35．－On says that a set is infinite if it is not finite．

> In particular, a cardinal is infinite if it is not a natural number．

We introduce the following axiom called the axiom of infinity:

A5. There exists an infinite set.

It is not known whether or not the above axiom is independent of the foregoing uxiome. This roblem is still an open question. By placing it here, wo presume it to be independent.

Proposition 21. - The relation \(x\) is a natural numberyis collective in \(x\).

We designate by \(N\) the set of natural numbers. The cardinal of \(\mathbb{N}_{1 s}\) denoted by \(K_{0}\).

Definition 36. - One says that a set is denumberable (or countable) if it is equipotent to a subset of natural numbers \(N\).

For overy infinsto cardinal \(n\) one has that Card \((\mathbb{N}) \leqslant v\).
The set \(\mathbb{N}\) is indeed well ordered and one may apply 660 , which we rewrite here using the same notation as before as

C62. Let u be a lettor, \(T\} u\}\) a torn. There odsts a sot if and a mariving if of \(N\) onto \(U\) auch that for overy natural number none bas that \(f(n)=T\left\{f^{(n)}\right\}\), where \(f^{(n)}\) 10 the maping of \([0, n\) \{ onto f(Ton() which coincides with in (\(0, n\) (. The set \(U\) and the mapping i are then uniquely deternined by this condition.

From C61 follows the following criterion called the definition of a mapoins by induction:

C63. Let \(S\}=\{\) and a be two terms. There exists a set \(V\) and a marulaz of \(N\) onto \(V\) guch that \(f(0)=a\) and for overy natural nuber n \(\geqslant 1, f(n)=S\{f(n-1)\}\). In adaition the sot \(V\) and the mapring \(i\) are uniquely determined by these conditions.

This complete our sumbery of the theory of sets.
Finally we summarize here the signs and axiome and schemas of the theory of sets.

\section*{Axfone and Sohomas of the Theory of Sots}

\section*{Principal of Tautology}

Sl. If \(A\) is a relation of \(\mathcal{C}\), the relation \((A\) or \(A) \Rightarrow A\) is an axiom of \(C\).

\section*{Princiral of Addition}

S2. If \(A\) and \(B\) are relations of \(\tau\), the relation \(A \Rightarrow(A\) or \(B)\) is an axion of \(e\).

\section*{Princiele of Permutation}

S3. If \(A\) and \(B\) are relations of \(\mathcal{C}\), the relation \((A\) or \(B) \Rightarrow(B\) or \(A)\) is an axiom of \(\tau\).

\section*{Princiule of Sumation}

> S4. If \(A, B\), and \(C\) are relations of \(C\), the rolation \((A \Rightarrow B) \Rightarrow((C\) or \(A) \Rightarrow(C\) or \(B))\) is an axiom of \(C\).

\section*{区illbert's \(\varepsilon\)-formula}

S5. If \(R\) is a relation of \(\tau\), T a torm of \(T\), and \(x\) a letter, the relation \((T \mid x) R \Rightarrow(\exists x) R\) is an axiom of \(C\).

S6. Let \(x\) be a letter, \(T\) and \(U\) terme of \(C\), and \(R\{x\}\) a relation of \(\tau\) i the relation \((T=U) \Rightarrow(R \xi T\} \Leftrightarrow R\} U\})\) is an axiom of \(て\).

Ackermann's Axiom (as a schema)
S7. If \(R\) and \(S\) are reletions of \(C\) and \(x\) a letter, the relation \(((\forall x)(R \Leftrightarrow S)) \Rightarrow\left(\tau_{x}(R)=\tau_{x}(S)\right)\) is an axiom of \(\tau\).

\section*{Schema de selection et reunion}

S8. Let \(R\) be a rolation, \(x\) and \(y\) distinct letters, \(X\) and \(Y\) distinct letters distinct from \(x\) and \(y\) and not figuring in R. The relation
\[
(\forall y)(\exists x)(\forall x)(R \Rightarrow(x \in X)) \Rightarrow(V I) \operatorname{Coll}_{x}((\exists y)((y \in Y) \text { and } R))
\]
is an axiom.

\section*{Extensionality Axiom}
\[
\text { 11. }(\forall x)(\forall y)((x \leq y \text { and } y \subseteq x) \Rightarrow(x=y)) \text {. }
\]

\section*{Pairing Axiom}
\[
\text { A2. }(\forall x)(\forall y) \operatorname{Coll}_{z}(z=x \text { or } z=y) \text {. }
\]

\section*{Ordered Pairs Axiom}
\[
\text { A3. }(\forall x)\left(\forall x^{\prime}\right)(\forall y)\left(\forall y^{\prime}\left(\left((x, y)=\left(x^{\prime}, y^{\prime}\right)\right) \Rightarrow\left(x=x^{\prime} \text { and } y=y^{\prime}\right)\right)\right. \text {. }
\]

\section*{Power Set Axiom}
\[
\text { A4. }(\forall x) \operatorname{Coll} I(I \subseteq X) \text {. }
\]

\section*{The Axiom of Infinity}

A5. There exists an infinite set.

\section*{PART III}

\section*{THS THEORI OF STKUCINK S}

It has been our purpose in the preceding two sectione to describe and then present a formal language aufficient for the purposes of modern mathematics. Since most of modern mathematics investigates What might be called "structured sets" . it is one of the primal purposes of the theory of structures to explicate the more or less vague notion of mathematical structure within the framework of our Pormal languago.

Let us think for amoment of what we usually mean when we speak of mathmatical structure. Por example, when we spoak of partially ordered set \(E\), we are usumily thinking that wo are given a sot b , cortain elements of which are relzted two by two in some particular fashion. That is for some \(x\) and \(y\) in \(E\) we have that \(x \leqslant y, 1 . e .\), the ordered pair of elements \((x, y)\) satisiy the order relation \(R\{x, y \xi\). Now as we have noted before such a binary relation between elements of a set is equivalent to defining a particular subset of the product set ExE and thus a particular element of the power set \(P(\) ins \()\). Conversely if we are given a particular element \(S\) of the power set \(\$\left(\mathbb{H} x \mathrm{c}_{\mathrm{i}}\right)\). about which wo assort certain relations, 1.e., \(S \circ S=S\) and \(S \cap S^{-1}=\Delta_{S}\) wo say that such an element which satisfies the particular relations
1.e., the axioms (or by conjunction the axiom) of a partial order, defines over (or supplies \#with) the structure of a partiully ordered set.

As another example, what do we mean when we speak of the topological space 8 ? We usually are then thinking that we have a set E together with a certain distinguiched collection of subsets of \(E_{\text {, }}\) 1.e.. a subset of \(\beta(E)\) or equivaleatiy, a single element \(S\) of \(\beta(\nexists(E))\), called the system of open sots of \(E\), which satiafies certain relations, callad the axioms of a topological opace. We may then say that the giving of such an element \(S\) of \(\beta(\nexists(E))\) which satisfies the particular axiums of a topological space defines over E (or supplies E with) the structure of a tonological space.

As a final example, let us consider what we mean when we speak of a group with oporators. Ordinarily, we would say that wo have a set \(E\) and a set \(A\), which may be presumed to already have a structure of its own (as in the case of, say, A-wodules) together with two lawn of corposition, one of which is said to be internil and che other involving \(A\) and \(E\) which is called external. How the internel law of composition (e.g., addition) is nothing other than a function from Exy into \(E\), 1.0.. a subset \(S_{1}\) of (Br E) xi or equivalently an element of \(\beta((E \times E) x E)\), the external law of composition is nothing other than a correspondence from \(A x E\) into \(E\), 1.e., a subset \(S_{2}\) of (AxE)xtio or equivalently an element of \(\#((A x E) x E)\) which satisfies cortain relations with respect to the internal law (viz., it is distributive). Thus to say that \(E\) is a group with a set of operators \(A\), is equivalent to asserting the existence of a pair \(S=\left(S_{2}, S_{2}\right) \in P((\operatorname{EaE}) \times \mathbb{E}) \times P((\mathrm{~A} E \mathrm{E}) \times E)\)
which satialies the axioms of a group with operators. The pair (\(S_{1}, S_{2}\)) thus may be said to supply if with the structure of a group with operators. In this case the set \(E\) usually is considered to play the princlpal role while the term A is add to play an auxiliary role.

Several observations might be made from the consideration of examples such as the foregoing ones.

We generally spoak of one (or more) sets as having a structure when we have defined certain relaticns between members or subsets or between subsets and members or between sets of subsets and members and so forth. In all such cases, these relations define a single wewber of a set obtained from the basic set (or sets) by the formation of power sets and cartesian products. Conversely, to define such relations on the besic sets (or their subsets, etc.) is eurivalent to the specif1cation of a certain menber of a particular set (obtained from the basic sets by means of the formation of cartesion products and power sets) which satiafies certain properties.

If we were to consider all such possible formationsobtained from the basic sets by means of cartesian products and power sets taken in any possible order as definiag a sort of " ladier of sets with the basic sets as its base», then the consideration of a particular《rung 》 of this ladder will be equivalent to the consideration of a particular "type" of relation defined over the basic sots of the ladder. Any particular such rung will itsell be characterized by its scheme of formation, i.e., some method which tells one the order in which one is to take the cartesion products and power sets of sets obtained from performing such operations on the basic sets, e.g., bow the rung \(\mathfrak{\beta}^{(E x}\) (E) is obtained from the base set E.

By means of such observations as these，we can arrive at some tentative views as to the notion of what a 《species of structure》， may consist of and some general requirements that such a notion must satibfy．First we have noted that the consideration of any particular variety or＂type＂of relation（＂type of structure＂）that may be defined over a given collection of sets is equivalent to the consideration of one single element of one particular set which is itself a «rung＂of the 《ledder of seta》 which has the given collection of sets as its ＂baso＂．Furthermore，it is apparont that some of these 《base sets＂ w1l play a＂principal＂role while others will only play an＂auxiliary＂ role，and these roles will have to be noted as such．

Being given such a collection of sets and noting which ones are to play a principal role and which are to play an auxiliary role we then may specify the type of relation or＂type of structure＂that we wish to consider over these 《base sets》 by means of some particular 《rung＂） of the＂ladder of sets＂with the given sets as base．We may then take a particular nember of such a rung and say that it is a sstructure» over the base sets providing it satisfies certain relations relative to 1t and the base sets．
\％e would all agree that for any given collection of sets，such a device will define what we would all call a ＂structure＂over the given sets．It is apparent that if such a procese fis is be adequate in all cases that we would like to have all structures of the exact same «variaty＂to be given the same name．Thus we must arrive at some notion of a＂suecies of structure》 which is independent of the sarticular choice of base sets over which we define our structures
in the sense that any other＂structure》 satisfying the（＂same＂） relations would be given the same name．．

Moreover，any relations which are to be taken as axioms for such a structure must be independent of the particular sets which appear in their formulation in the sense that if \(S\) is a structure over the base set，which is thus presumed to satisfy some rolation \(R \xi x, S \xi\) and If we have a bijection of this base set \(x\) onto another set \(y\) ，the corresponding relation \(R \xi y, S^{\prime} \xi\) must be equivalent to \(\mathbb{f}\{x, s \xi\) ．

I．e．，the relations which are to be taken as axioms for a certain species of structure must be in some sense＂transportable＂ relative to the particular 《typification＂of the structure \(S\) for bijections of base sets．

All of the preceding analysis is necessarily vague and is intended to only be of heuriatic nature，to aid the intuitive undor－ standing of that which follows．It is hoped that by keoping the first few examples in mind together with the preceding（＂analysis＂） What follows will be more intelligible and at least plausible．
wo noted that＂types＂of relations over given sets could be specilied by means of a particular 《rung》 of the 《ladder of sets＊ With given sets as base» and that such rungs could be characterized by giving their particular 《scheme of construction》．To first make this notion clear，we will employ the natural numbers in their meta－mathematical usage，i．e．，to epecify 《ranges of a certain order＂． Their use here has nothing to do with the mathematical theory of the natural numbers which we outlined in Part II．Their usage here may be considered here as analogous to thetr usage as abbreviated expressions for《first one writes down this and second one writes down that），etc．

Definition 1. - By a construction schema \(S\) for a rung we mean a finite sequence of pairs of natural numbers \(c_{1}, c_{2}, \ldots, c_{n}\left(c_{1}=\left(a_{1}, b_{1}\right)\right)\) satisfying the following conditions:
(a) If \(b_{i}=0\), then \(1 \leqslant a_{i} \leqslant i-1\).
(b) If \(a_{i} \neq 0\) and \(b_{i} \neq 0\), then \(1 \leqslant a_{i} \leqslant 1-1\) and
\[
1 \leqslant b_{i} \leqslant i-1
\]

These two conditions imply that \(c_{1}=\left(0, b_{1}\right)\) with \(b_{1}>0\) for if not then either \(a_{1} \neq 0\) and \(b_{1} \neq 0\) or \(a_{1} \neq 0\) and \(b_{1}=0\), and we have that by (b) in the first case \(1 \leqslant a_{1} \leqslant 0\) which is impossible and in the second case by (\(a\)), that i \(\leqslant a_{2} \leqslant 0\) which is also impossible.

Thus if \(n=\max \left\{b_{1} \mid\left(0, b_{1}\right) \in S\right\}\) then we say that \(S=\left(c_{1}, c_{2}, \ldots, c_{m}\right)\) is a construction schema over \(n\) terms.

Definition 2. - Lot \(S=\left(c_{2}, \ldots, c_{m}\right)\) be a construction schema over \(n\) terms, and let \(E_{1}, \ldots, B_{n}\) be \(n\) terms of a theory \(C\) which is stronger than the theory of sets. Then by the construction, of schema \(S\) (or \(S\)-construction), over \(E_{1}, \ldots, B_{n}\), we mean a sequence \(A_{1}, A_{2}, \ldots, A_{n}\) of m terms of \(C\) defined recursively by the following conditions:
\[
\begin{aligned}
& \text { (a) If } c_{i}=\left(0, b_{1}\right) \text {, then } A_{i} \text { is the term } A_{b_{1}} \cdot \\
& \text { (b) If } c_{i}=\left(a_{1}, 0\right) \text {, then } A_{i} \text { is the term } p\left(A_{a_{1}}\right) \\
& \text { (c) If } c_{i}=\left(a_{i}, b_{1}\right) \text { with } a_{i} \neq 0 \text { and } b_{i} \neq 0 \text {, then } A_{i} \text { is the term } \\
& A_{1} x A_{b_{1}} \text {. }
\end{aligned}
\]

Definition 3. - The final term \(A_{m}\) of the S-construction over
 sets \(E_{1} \ldots E_{B}\) and \(i s\) denoted by \(S\left(E_{1}, \ldots, E_{n}\right)\).

Example 1. \(-s_{1}=((0,2),(0,1),(1,0),(2,0),(4,0),(5,3))\) is a rung construction schema over \(a=2\) terms as may be seen immediately from Definition 1. The \(S_{1}\)-construction over the base sete \(E_{1}, \vec{E}_{2}\) is the
 the term \(A_{6}\) is \(\beta\left(\beta\left(E_{1}\right)\right) x \beta\left(E_{2}\right)\) and is thus the \(S_{1}\)-rung over \(E_{1}, E_{2}\), 1.e.. \(S_{1}\left(E_{1}, E_{2}\right)=F\left(B\left(E_{1}\right) \times B\left(E_{2}\right)\right.\) 。

More than one schema can give rise to the same rung as the following example will show. (We shall give it in its full detail):
\[
\text { Example 2. - Let } S_{2}=((0,1),(0,2),(1,0),(3,0),(2,0),(4,5)) \text {. }
\] then the \(S_{2}\)-construction over \(E_{1}, E_{2}\) is
\[
\begin{align*}
& c_{1}=(0,1) \text { impiles } A_{1}=B_{1} \quad \text { by condition (a) } \\
& c_{2}=(0,2) \quad n \quad A_{2}=E_{2} \quad n \quad \text { (a) } \tag{a}\\
& c_{3}=(1,0) \quad n \quad A_{3}=\$\left(E_{1}\right) \tag{b}\\
& c_{4}=(3,0) \quad \text { r } \quad A_{4}=B\left(B\left(\Sigma_{1}\right)\right) \tag{b}\\
& c_{5}=(2,0) \quad \text { п } \quad A_{5}=W\left(E_{2}\right) \tag{b}\\
& \left.c_{6}=(4,5) \quad{ }_{6}=\beta\left(\nmid E_{1}\right)\right) \times \notin\left(E_{2}\right)^{n} \tag{c}
\end{align*}
\]

Thus \(S_{1}\left(E_{1}, E_{2}\right)=S_{2}\left(E_{1}, E_{2}\right)\) while \(S_{1} \not \neq S_{2}\). This fact, however, causes no particular difficulties as we shell see.

We now turn our attention to some other possible schems which may be constructed out of given ones.

Let \(S=\left(c_{1}, \ldots, c_{r}\right)\) and \(S^{\prime}=\left(c_{1}, \ldots, c_{8}{ }^{\prime}\right)\) be two rung construction achemas over \(n\) terms. We can define a rung construction schema over \(n\) terms denoted by \(S x S^{\prime}\) such that \(S_{x S} \cdot\left(E_{1}, \ldots, E_{n}\right)=S\left(E_{1} \ldots E_{n}\right) x S^{\prime}\left(E_{1}, \ldots, E_{n}\right)\).

This is accomplished by ifrst definiwo \(c_{r+1}\) for \(1 \leqslant 1 \leqslant s\) by
\[
c_{r+1}=\left\{\begin{array}{l}
c_{i}^{\prime} \text { if } c_{i}^{\prime}=\left(0, b_{i}^{\prime}\right) \\
\left(a_{i}^{\prime}+r, 0\right) \text { if } c_{i}^{\prime}=\left(a_{i}^{\prime}, 0\right) \\
\left(a_{i}^{\prime}+r, b_{i}^{\prime}+s\right) \text { if } c_{i}^{\prime}=\left(a_{i}^{\prime}, b_{i}^{\prime}\right) \text { and } \\
a_{i}^{\prime} \neq 0 \text { and } b_{i}^{\prime} \neq 0 .
\end{array}\right.
\]

Then the sequence \(\left(c_{2}, \ldots, c_{r}, c_{r+1} \ldots, c_{r+s}\right)\) is a rung construction schems \(S^{n}\) over in terms, and one has
\[
s^{\prime \prime}\left(E_{1}, \ldots E_{2}\right)=s^{\prime}\left(E_{1}, \ldots, E_{n}\right)
\]
so that if finally we let \(c_{r+B+1}=(r, r+B)\), the sequence \(\left(c_{1}, \ldots, c_{r+B+1}\right)\) is the desired schema \(S x S^{\prime}\).

We can define in a similar fashion (only more simply) a schema denoted by \(\not(S)\), comprising \(r+1\) pairs of integers which has the property that \(f(s)\left(S_{1}, \ldots, E_{n}\right)=\nexists\left(S\left(E_{1} \ldots \ldots, E_{n}\right)\right)\).

Wo now shall show that to every schema we can associate a mapping which has soveral interesting properties. Our previous analysis has given us no motivation for this notion, but its importance will readily become apparent when we formulate our notion of 《tranmportable relations» and isomorphisms of etructures.

Let \(S=\left(c_{1}, \ldots, c_{n}\right)\) be runs construction schema over a terms. Let \(E_{1}, \ldots, E_{n}, E_{1}^{\prime}, \ldots, E_{n}^{\prime}\) be sets (terms of \(r\)) and let \(f_{1}, \ldots, f_{n}\) be terms of \(\mathcal{C}\) such that ticelations \(" \mathcal{I}_{i} E_{i} \longrightarrow E_{i}\) ' \()\) are theorems of \(e\) for \(1 \leqslant 1 \leqslant n\). Let \(A_{1}, \ldots, A_{\text {mix }}\left(\right.\) resp. \(\left.A_{1}, \ldots, A_{m}\right)\) be the \(S-c o n-\) struction over \(E_{1} \ldots E_{n}\) (resp. \(E_{2}{ }^{\prime}, \ldots, E_{n}{ }^{\prime}\)). We now define recusively a sequence of m terms \(g_{1}, \ldots, g_{m}\) such that for each \(1(1 \leqslant 1 \leqslant m)\) \(g_{1}: A_{1} \longrightarrow A_{1}\) ' subject to the following conditions:
(a) If \(c_{1}=\left(0, b_{i}\right)\) so that \(A_{i}=E_{b_{i}}\) and \(A_{i}^{\prime}=E_{b_{i}}^{\prime}\), then \(g_{i}\) is the marring \(f_{b_{i}}\).
(b) If \(c_{i}=\left(a_{1}, 0\right)\) so that \(A_{i}=\beta\left(a_{a_{i}}\right)\) and \(A_{i}=B\left(a_{a_{1}}\right)\) then \(\mathrm{g}_{1}\) the canonical extension \(\hat{\mathrm{g}}_{\mathrm{a}_{1}}\) of \(\mathrm{g}_{\mathrm{a}_{1}}\) to the power set (Part II, Def. 24).
(c) If \(c_{1}=\left(a_{i}, b_{i}\right)\) with \(a_{i}, b_{i} \neq 0\) so that \(A_{i}=a_{a_{i}} x A_{b_{i}}\) and \(A_{1}^{\prime}=A_{a_{1}}^{\prime} x A_{b_{1}^{\prime}}^{\prime}\), then \(g_{i}\) is the canonical extension \(g_{a_{1}} x_{g_{b_{i}}}\) of \(g_{a_{1}}\) and \(g_{b_{2}}\) to the product set \(A_{a_{1}} x A_{b_{1}}\). (Part II, Def. 15)

Definition 4. - The final so defined term \(g_{\text {w }}\) of this sequence is called the canonical extension, of schema \(S\) (or canonical S-extension) of the mappings \(f_{1}, \ldots, f_{n}\) and is designated by \(\left\langle f_{1} \ldots \ldots f_{n}\right\rangle^{3}\)

As consequence of this definition, we have that
\[
\left\langle f_{1}, \ldots, \mathcal{E}_{n}\right\rangle^{S^{S}} \quad S\left(E_{1}, \ldots, \Sigma_{n}\right) \longrightarrow S\left(E_{1}, \ldots, E_{n}^{\prime}\right) .
\]
incanple. - As in the preceding example 2 , let \(S=((0,1),(0,2)\), \((1,0),(3,0),(2,0),(4,5))\) which is schema over two terms Let E E \({ }_{1}, \underline{E}_{2}\), \(\mathrm{E}_{1}^{\prime}, \mathrm{E}_{2}^{\prime}\) be terms and \(\mathrm{f}_{1}: \mathrm{E}_{1} \rightarrow \mathrm{E}_{1}^{\prime}\), and \(\mathrm{I}_{2}: \mathrm{B}_{2} \longrightarrow \vec{E}_{2}^{\prime}\) ', then wo have one after another
\[
\begin{aligned}
& A_{1}=E_{1} \Longrightarrow g_{1}=A_{1}: B_{1} \longrightarrow \mathbb{E}_{1}^{\prime} \text { by }(a) \\
& A_{2}=E_{2} \Rightarrow g_{2}=s_{2}: \quad E_{2} \longrightarrow I_{2}^{\prime} \text { by (a) } \\
& A_{3}=f\left(B_{1}\right) \Rightarrow g_{3}=\hat{f}_{1}: \not B_{(}\left(E_{1}\right) \longrightarrow \text { 䅡 }\left(B_{2}^{\prime}\right) \text { by }(b) \\
& \left.A_{4}=\mathbb{F}\left(\mathbb{F}\left(B_{1}\right)\right) \Rightarrow E_{4}=\hat{\hat{B}}_{1}: \mathbb{F}\left(\mathbb{F}\left(B_{1}\right)\right) \rightarrow \mathbb{F}\left(\neq E_{1}^{\prime}\right)\right) \text { by }() \\
& A_{5}=P\left(E_{2}\right) \Rightarrow g_{5}=\hat{i}_{2}: \vec{H}\left(E_{2}\right) \longrightarrow \neq H\left(E_{2}^{\prime}\right) \text { by (b) }
\end{aligned}
\]
thus \(\left\langle\hat{f}_{1}, \hat{f}_{2}\right\rangle^{S}=\hat{f}_{1} \times \hat{f}_{2}\)

Frow the slowantary proyertion of the two canondcal extenstone used in tho above deifition which ve outilnod in Part if we obtuin the following criterle:
 ovory rung construction schoma 3 for a rung over a terms,
\(\left\langle f_{1}{ }^{\prime} \circ f_{1}, f_{2}^{\prime} \circ f_{2}, \ldots, f_{n}^{\prime} \circ f_{n}\right\rangle^{s}=\left\langle f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right\rangle^{S} \circ\left\langle f_{2}, f_{2}, \ldots, f_{n}\right\rangle^{s}\).
CST2. If \(f\) in inioctive (resi, Boriective) for \(1 \leqslant i \leqslant\) a thon \(\left\langle r_{1}, \ldots, r_{n}\right\rangle^{\text {है }}\) injoctive (roavo aurinctive).
 for \(1 \leqslant 1 \leqslant n\), then \(\left\langle\varepsilon_{1}, \ldots, 1_{n}\right\rangle^{s}\) is a bijection and \(\left\langle\dot{1}_{1} \ldots \ldots, 1_{n}^{-1}\right\rangle^{5}\) ith Inverce bijection, 1.0., \(\left(\left\langle\left\{_{1} \ldots \ldots f_{n}\right\rangle^{3}\right)^{-1}=\left\langle\varepsilon_{2}^{-1} \ldots \ldots \tilde{r}_{n}^{-1}\right\rangle^{s}\right.\).

With the notion of canonicel extensions of mappings at hand we can make preoien our vague notion of "transportability" which we noted that \(a l l\) relations which may be taken as axioms for a "species of atructure" munt astiafy. wo ohall go into this notion in some detail and sball develop a collection of criteria which will onable ua to decide just how restrictive this notion is.

Dofinition 5. - Let \(E\) be a theory atronger than the theory of sots, \(x_{1}, \ldots, x_{n}, F_{1} \ldots, n_{p}\) distinct letters (distinct from themselvos and from the constants of \(C\)), \(A_{1} \ldots \ldots A_{\text {m }}\) terms of \(C\) in which none of the letters \(x_{1}(1 \leqslant 1 \leqslant n)\) and \(B_{j}(1 \leqslant j \leqslant p)\) flgure, and finally let \(s_{1} \ldots \ldots j_{p}\) be rung construction schemes over \(n+m\) terme. Under these corditions wo will say that the rolation \(2 \xi x_{1} \ldots \ldots, x_{n}, s_{1}, \ldots, B_{p} A_{1} \ldots \ldots, A_{n} \xi\) :
\[
\begin{aligned}
& \left\langle s_{1} \in S_{1}\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right) \text { and } s_{2} \in S_{2}\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right)\right. \text { and } \\
& \left.\ldots \text { and } \quad s_{p} \in S_{p}\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right)\right\rangle
\end{aligned}
\]
is a typification of the letters \(s_{1}, \ldots \theta_{p}\).
Definition 6. - Let \(R\} x_{1}, \ldots, x_{n}, \sigma_{1}, \ldots, s_{p}\) be a relation of \(e\). possibly containing certain of the letters \(x_{i}, s_{j}\) (and possibly other letters). Then to say that \(R\) is transportable (in \(C\)) for the ty ification with the \(x_{1}(1 \leqslant 1 \leqslant n)\) considered as principal base sets, and the \(A_{k}(1 \leqslant k \leqslant m)\) considered as auxiliary base sets is to say that the following condition is satisfied:

Let \(y_{1} \ldots \ldots, y_{n}, f_{1}, \ldots, i_{n}\) be letters distinct from themselves and from the \(x_{1}(1 \leqslant 1 \leqslant n)\), the \(s_{j}(1 \leqslant j \leqslant p)\), and the constants of \(r\), and also from the letters which figure in \(R\) or in the \(A_{k}(1 \leq k \leq m)\). Let \(I_{k}(1 \leq k \leq m)\) be the identity mapping of \(A_{k}\) onto itself. Then the relation
(1) \(« T \xi_{1} x_{1}, \ldots, x_{n}, s_{1}, \ldots, B_{p} \xi\) and \(\left(s_{1}: x_{1} \rightarrow y_{1}\right.\), is a bijectiondand \(\ldots\) and \(\left(y_{n}: x_{n} \longrightarrow y_{n}\right.\) is a bijection)"
implies, in \(\tau\), the relation
(2) \(R\left\{x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{p} \xi \Leftrightarrow R\left\{y_{1}, \ldots, y_{n}, B_{1}, \ldots, s_{p}\right\}\right.\)
where
\[
\text { (3) } s_{j}^{\prime}=\left\langle\varepsilon_{1}, \ldots I_{n}, I_{1}, \ldots, I_{m}\right\rangle_{j}\left(s_{j}\right) \text { for } I \leqslant j \leqslant p
\]
(Ne may formulate a simpler definition in case the auxiliary base sets do not appear.)

> The relation (1) above is called the transport relation for the typification

The rolation (2) moans (in words) that the relation 8 , possibly involving the letters \(x_{1} \ldots x_{n},{ }_{1}, \ldots, s_{n}\), is equivalent to the relation \(A\) with each occurrence of an \(x_{1}\) replaced by a \(y_{1}\) and each occurrence of an 3 replaced by its "1mage" under the canonical extension of the \(I_{i}, I_{k}\) by the schema \(S_{j}\).

To give a trivial example, suppose that \(a=p=2\) and that \(T\) is " \(E_{1} \in x_{2}\) and \(s_{2} \in x_{1}\). . then the relation \(N s_{1}=s_{2}\) " is transportable (since the relation of traneport for this \(T\) implies that
\[
\left.s_{1}=s_{2} \Leftrightarrow f_{1}\left(s_{1}\right)=f_{1}\left(s_{2}\right)\right)
\]
while the relation \(x_{1}=x_{2}\) is not (since \(x_{1}=x_{2} \nRightarrow y_{1}=y_{2}\)).
- shall develop a number of criteria which will greatly
facilitate the determination of whether or not a given relation is transportable.

For brevity, the terms \(x_{i}, \delta_{j}\), and \(A_{x}\) will be referred to as the initial letters and terms of the oriterion. ne shall use the notation \(S(x, A)\) for the rung \(S\left(x_{1}, \ldots, x_{n}, A_{1} \ldots . . A_{m}\right)\), where \(S\) is a rung construction sohene over \(n+1\) lettors. We shall also use the notation \(T \xi x, 3, A \xi\) (or \(T \xi x, 8 \xi\), or simply \(T\)) to deaignate a particular typification \(« s_{1} \in S_{1}(x, A) / \cdots s_{p} \in S_{p}(x, A)\)) where \(s_{1} \ldots \ldots s_{p}\) are \(p\) rung construction schomas over \(n+m\) letters, the \(x_{i}, a_{j}, q_{k}\) being the initial lettere and terms of the criterion. In each of the criteria considered, there being the further question of relations of \(\tau\). denoted in general by \(0, U^{\prime}, U^{\prime \prime}, \ldots\), these relations and terms will be considered as possibly involving the initial letters of the criterion. Wo shali also designate by \(\mathcal{C}_{c}(x, B, A, y, f)\) (or simply \(\mathcal{C}_{0}\)) the theory obtained upon adjoining the relation of transport (1), to the axioms
of \(e\). Thus if \(S\) is a rung construction schema over \(n+n\) terms, and If wo designate by \(f^{s}\) the term of \(e_{c}\) denoted by \(\left\langle f_{1}, \ldots, f_{n}, I_{1}, \ldots, I_{n}\right\rangle^{s}\), the relation
\[
\text { « } S: S(x, A) \longrightarrow S(y, A) \text { is a bijection })
\]
is (by CST3) a theorem of \(\mathcal{C}_{c}\). Also with \(j_{j}\) defined as in (3), for every assomblage \(W \xi x, s \xi\), we dosignate by \(W\left\{y, s^{\prime}\right\}\) the assomblage obtained on roplaciag each of the \(x_{i}\) by \(y_{i}\) and each of the \(s_{j}\) by \(s_{j}{ }^{\prime}\) in W.

With these notations, to say that the relation \(R\) is trangportable (in \(e\)) for the typification \(T\) is the same as saying that the rolation \(《 \mathbb{R} \xi x, s \xi \Leftrightarrow R\{y, s \xi\rangle\) is a thoorem of \(\tau_{c}\).

Dofinition 2. - with these sase notations, wo say that a term 0 is of type \((B, x, A)\) for the typification \(T\) (or by abuse of language, of type (\(\mathrm{S}(\mathrm{x}, \mathrm{A}\)) or of type S) if the relation
\[
T \Rightarrow(U \in S(x, A))
\]
is a theorem of \(\mathbb{C}\).

Definition 8. - We say that 0 is a transportable term of type (\((x, x, A\)) (or of type \(S(x, A)\) or of type \(S\)) for the typification \(T\) if the the following conditions are satisfied:
1) 0 is of type \(S(x, A)\) (for \(T\));
2) the relation \(U \xi y, \theta^{\prime} \xi=f^{S}\left(U\{x, B \xi)\right.\) is a theorem of \(\tau_{c}\).

Remember that if \(e^{\prime}\) is a theory atronger than \(e\), every relation (resp. torm) of \(\tau\) which is transportable for a typification \(T\) is again transportable for the same typification when considered as a relation
（resp．term）of C ＇．Note also that the preceding definitions（in a simpler form）extend to the case where there are ao letters a occurring and aimilarly for all of the criteria（it will suffice to replace \(T\) by any true rolation of \(e\) ）．

As an immediate example we may note that the term Card \((x)\) is not transportable aince there is nc rung of which Card \((x)\) is a member， but the relation
\[
\| \operatorname{Card}(x) \leqslant \operatorname{Card}(y)\rangle
\]
is transportable since it is equivalent to＂\(x\) is equipotent to a subset of y＂which is transportable as we shall soon see．

For brevity we shall say＂transportable＂in lieu of＂transport－ able for the typification Th \(^{\prime \prime}\) where no confusion will arise．In the same criterion＂tranoportable＂will always mean for the same typifi－ cation unless expressly noted otherwise．

C11．If none of the letters \(x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{p}\) pigure in a relation \(R_{\text {e }}\) then \(R\) is transportable．The term \(\varnothing\) is transportable of type \(3(S)\)（whatover be the schown S）．

CT2．For the tyrification \(T\{x, 5, A\}, x_{i}\) is a transportable term of type \(\mathcal{F}\left(x_{1}\right)\) ，\(s_{j}\) is a transportable term of type \(S_{j}(x, A)\) and A is a transportable term of PMA，

These criteria are an immediate result of the definitions． CT3．If 8 nad \(R^{\prime}\) are transportable relations then so are the FRlations《not \(R\rangle\) 《R or \(\left.R^{\prime}\right\rangle, 《 R\) and \(\left.R^{\prime}\right\rangle, K B \Rightarrow R^{\prime} D, 《 R \Leftrightarrow R^{\prime} D\) ．

CT4. If the tarias \(U\) and U' are tranapoctable of tyons \(S\) and S' respectively, than (\(U\) Wi') is tranaportable of type SxS'. If \(U\) and Y' are transportuble of tyie \(\Phi(S)\) and \(\mp\left(S^{0}\right)\) respectively, then UxU' is tranaportable of type \(\not \mathcal{F}^{\left(S S^{\prime}\right)}\) and \(\neq(0)\) is transportable of type \(\mathrm{B}^{7}(\mathrm{y}(\mathrm{s})\)).

CT5. If 0 and Un \(^{\circ}\) are transportable terma of the same fiven S . the relation \(U=0\) is transortable. If च̈ 1B transjortable of type

 the relation \(\vec{U} \subseteq \Psi^{\prime}\) is tranaiortable.

These criteria are the result of the definition and the properties of canonical extensions.

CT6. For every rung construction achene \(S\) over \(n+\) terms. \(S(x, A)\) is a transportable term of type \(\nexists(S(x, A))\) for the typlfication T \(\{x, B, A\}\).

This is a result of CT2 and CT4 applied one after another over the S-construction.

CT7. If R ie a relation such that \(I \Rightarrow R\) is valid in \(\tau\), then R is transwortable for \(T\). If \(U\) and \(U\) ' are two torne such that \(T \Rightarrow\left(U=U^{\prime}\right)\) is valid in \(C\), and if 0 is trancportable of trpe \(S\) for \(T\), then 80 is U!

The second part of the criterion is a result of the dofinition of a transportable tora and of schona \(S 6\) applied in the theory \(\tau_{c}\). For the other part, the relation \(T\{x, s, A \xi\) is transportable (for the typification \(T\{x, B, A\}\) in virtue of CT3, CT5 and CT6; the relation
\(T\left\{x, s, A \xi \Leftrightarrow T \xi y, s^{\circ}, A \xi\right.\) is thus a theorem of \(\mathcal{C}_{C}\), and bence similarly so is \(T\} J, s^{\prime}, A \xi\). The hypothesis on \(R\) entails that \(\mathbb{R}\left\{x, s^{\prime}\right\}\) is a theorem of \(\tau_{c}\); thus \(R\left\{x, s^{\prime}\right\}\) is a theorem of \(\tau_{c}\) and one has in concusion that the relation \(R\{x, s\} \Leftrightarrow \mathbb{R} \xi y, s^{\prime} \xi\) is also a theorem of \(e_{c}\), hence the first part of the criterion.

C18. Let 2 bealstter distinct from both the constants of and the letters figuring in the typification \(T\{x, B, A\}\). Lat \(\bar{S}\) be a rung construction schoma over n+m letters, and let T' be the trpification
\[
\text { 《 } T\{X, B, A\} \text { and } z \in S(X, A) \text {, " }
\]

Finally let \(R\) be a relation containing no \(z\). Under these conditions, if If is transportable (in \(C\); for the typification \(T^{\prime} R\) is transportable for the typification \(T\) in the theory \(e^{\prime}\) obtained by adjoining to the axioms of \(\tau\) the relation \(S(x, A) \not \equiv\).

This result is obtained easily by the method of the auxiliary constant.

The preceding criterion is applied notably in the following two cases:
a) the rung \(S(x, A)\) is of the form \(\nexists(x)\);
b) the schema 3 is identical to one of the schemas \(\mathcal{S}_{j}(1 \leqslant j \leqslant p)\) involved in the typification \(T\).

In these two cases one concludes from CT8 that \(R\) is transportable in the theory \(\tau\) for the typification \(T\) in case \(S(x, A) \neq \varnothing\) is a theorem of \(\tau\)

CT9. Int K be a transportable relation for the fyplifation \(T\) and lot \(8^{\prime}\) be relation such that \(T \Rightarrow\left(R \Leftrightarrow R^{\circ}\right)\) is a theorem of \(C\). Then the relation \(\overline{X^{\prime}}\) is transport ble for T.
as
In offect, the same reasoning that in the criterion CT8 shows that the relations \(R \xi x, s\} \Leftrightarrow R^{\prime} \xi x, s \xi\) and \(R \xi y, B^{\prime} \xi \Leftrightarrow R^{\prime} \xi y, s^{\prime} \xi\) are theorems of \(\tau_{C}\), since by hypothesis, the relation \(\mathbb{R}\{x, s\} \Leftrightarrow \mathbb{R}\left\{y, s^{\prime} \xi\right.\) is valid in \(\tau_{c}\), it is the same for \(R^{\prime} \xi x, s \xi \Leftrightarrow R^{\prime}\left\{y, s^{\prime} \xi\right.\).
 type \(I\left(S_{j}\right)\) in which the letter 8 does not ficure. For 6 to be transportable for Th it is necessary and sufficient that the relation \(g_{j} \in U\) be transportable for T.

The condition is necossary in virtue of CT5. Conversely, if it is satisiled, the relation
\[
\begin{gathered}
\left(s_{j} \in ण \xi x_{1}, \ldots x_{n}, s_{1}, \ldots, s_{j-1}, s_{j+1}, \cdots s_{p} \xi\right) \Leftrightarrow\left(r^{s} j\left(s_{j}\right) \in U \xi_{y_{1}}, \ldots, y_{n}{ }^{\prime}\right. \\
\left.s_{1}, \ldots, s_{j-1}^{\prime} \cdots \cdots s_{p}^{\prime \xi}\right)
\end{gathered}
\]
is true in \(\mathcal{C}_{e}\). \(A s\), in the theory \(\mathcal{Z}_{c}, f^{s} j 1 s\) bijective, it is a result that the relation \(U \xi y, s^{\prime} \xi=f^{S} j(U \xi x, s \xi)\) is a theorem of \(C_{c}\) which establishes the criterion.

CT11. For the tynification \(T \xi x, B, A \xi\), let \(U\) be a term of type \(\underline{S}_{j}\) in whicil the letter \(s j\) does not ifgure. For \(U\) to be transportable for Ti it is necossary and sufficient that the relation \(j=U\) be transportable for T.

Proof is similar to that of CTIO.

Cr12. Let be a lettor distinct fro:n the cunstants of \(C\) and from the lotters figuring in the typification \(T\left\{x_{, ~ B} A\right\}\) and let 0 be a term of type \(S\) (reap. \(P(S)\)) for I in which the letter \(z\) does not flgure. Then the followins three conditions are equivalent:
a) 18 transuortable of type \(S\) (resp. \(f(S)\)) for \(T ;\)
b) U is transportable of trpe \(S\) (roep. \(B(S)\)) for the typification 《I \(\{x, B, A\}\) and \(z \in S(x, A)\));
c) the relation \(z=U(r e s p . z \in \ddot{u})\) is transportable for the typification \(\{T\} x, 5, A\}\) and \(z \in S(x, 1) \geqslant\).

The equivalence of b) and c) results from CTIO and CTII and a) evidently entails b). For the remainder, the method of the auxiliary constant shows that b) entails that \(U\) is transportable ffor \(T\) in the theory obtained on adjoining to \(C\) the axiom \(S(x, A) \neq \varnothing\). But if 0 is of type \(S\), the hypothesis (in \(C\)) entails the relation \(U \in S(x, A)\), and consequently the relation \(S(x, A) \neq \varnothing\); this last is thus a theorem of \(C\), which proves that in this case, \(O\) is transportable for \(T\) in the theory e. If \(U\) is of type \(\not \subset(S)\), the relation \(\| T\{x, B, A \xi\) and \(S(x, A) \neq \mathcal{Z}\) entails \(U=\varnothing\) in \(C\), and then \(U\) is transportable for \(I\) in the theory obtained on adjoining to \(E\) the axiom \(S(x, A)=\varnothing\), in virtue of CTI; the conclusion then resulte by the method of the case disjunction.

CT13. Let \(R\) be a relation transportable for the typification \(T\{x, s, A\}\). Then for every index \(i(1 \leqslant j \leqslant p)\), the term
\[
\text { 《 the set of the } g_{j} \in S_{j}(x, A) \text { such that R " }
\]

In effect, if one designates this term by 0 , it is clear that 0 is of type \(\forall\left(S_{j}\right)\) and that \(o_{j}\) does not figure in it. Now in \(c\). Tentails the relation \(\left(B_{j} \in O\right) \Leftrightarrow\left(s_{j} \in S_{j}(x, A)\right.\) and \(\left.R\right)\), and the relation《 \(s_{j} \in S_{j}(x, A)\) and \(\mathbb{R} \|\) is transportable for \(T\) (Criteria CT5, CT6, and CT3). One thus has the conclusion desired with the aid of CT9 and CTIO.
0124. For the typification \(T\left\{X_{1}, A, A\right\}\), let 3 be a transportable relacioin inc let \(U\) be a term transportable of type \(B\) (\(s j\) de Then the relations
\[
\begin{aligned}
& \left(\exists s_{j}\right)\left(s_{j} \in U \text { and } R\right) \\
& \left.\left(\forall s_{j}\right)\left(s_{j} \in U\right) \Rightarrow R\right)
\end{aligned}
\]

\section*{are transportable for 9 .}

In effect, let \(U\) ' be the term \(《\) the set of \(s_{j} \in \bar{S}_{j}(x, A)\) such that \(R>\). In \(\tau\), the relation \(T\) entails the relation \(\left(U \subseteq U^{\prime}\right) \Leftrightarrow\) \(\left(\left(\forall s_{j}\right)\left(\left(s_{j} \in U\right) \Rightarrow R\right)\right.\). As U' is transportable of type \(\left.\neq\right\}\left(S_{j}\right)\) for \(T\) by means of CT13, the second assertion of the criterion results from CT5 and CT3; the first is then deduced with the aid of CT3 and CT9.

CT15. For the truification T\{ \(x, 8, A\}\). let \(\}\) be a \&raisportable term of type \(S_{1} U^{\prime}\) a tranarartable teril of type fo \(\left(S_{j}\right)\), such that \(s_{j}\) does not figure in 0 . Then the term
\[
\text { "the set of objects of the form } U \text { for } B j \in U^{\prime} "
\]

Le transportable of type \(\mathbb{K}^{(S)}\) for \(T\).
In effect, let \(z\) be a letter distinct from the letters introduced in the preceding. The term considered is the set \(V\) of the \(z \in S(x, A)\)
such that one has \(\left(\exists s_{j}\right)\left(s_{j} \epsilon U^{\prime}\right.\) and \(\left.z=U\right)\) ．Applying successively CT5．CT3，and CT13，one observes that \(V\) is transport ble of type \(\mathbb{P}(S)\) for the typification \(\| T \xi x, B, A \xi\) and \(z \in S(x, A)\) ．The conclusion is then obtained with the aid of CTI2．

CT16．Let \(R\) be a transportabla relation for the typification \(T\) ． If，in \(C\) ，the relation \(" T\) and \(R 川\) is functional in \(g\) ，the term \(\tau_{S_{j}}(T\) and \(R)\) is transportable of type \(S_{j}\) ．

Let \(V\) be this term，which is evidently of type \(s_{j}\) ．In \(V\) ，the relation \(I\) entails \(\left(B_{j}=V\right) \Leftrightarrow(T\) and \(R)\) and \(s_{j}\) does not figure in \(V\) ． one concludes the criterion with the aid of CT9 and CTIL．

By contrast，if one does not suppose that 《 T and \(B 》\) be functional in \(s_{j}\) ，the conclusion of criterion CT16 is inexact．Suppose for example that \(C\) be the theory of sets，that \(n=p=1\) ，\(w=0\) ，and that \(T\) and \(R\) be both identical to the relation \(s_{1} x_{1}\) ．If \(\tau_{s_{1}}(B)\) be transportable for \(T\) ，the relation of transport entails the equality
\[
f_{1}\left(\tau_{s_{2}}\left(s_{1} \in x_{1}\right)\right)=\tau_{t}\left(t \in f_{1}\left(x_{1}\right)\right)
\]

This consequently entails that for every set \(E\) ，the image of \(\tau_{x}(x \in E)\) for every bijection of \(E\) onto a set \(\bar{F}\) is the element \(\tau_{x}(x \in F)\) ，which is absurd，for example，for every set with two elements．

CT17．Let R be a transportable relation，U a transportable term
of type \(\mathrm{S}_{\mathrm{j}}\) ．U＇a transportable term of tyue \(S^{\prime}\) ．Then the relation （U｜ \(\mathrm{g}_{j}\) ）度is transportable，anj the term（ \(\mathrm{O} \mid \mathrm{B}\) ）U＇is transportible of type \(\mathbf{S}^{\prime}\) 。

In effect，be \(V\) the set of \(s_{j} \in S_{j}(x, A)\) such that \(R, V\) is a transportable torm（CT13），and the rolation \(T\) entaile（in \(C\) ）the relation
\[
\left(\left(U \mid s_{j}\right) R\right) \Leftrightarrow(U \in V) .
\]

Consequently \(\left(u \mid \delta_{j}\right) R\) is transportable (CT9). Let \(z\) be a letter distinct from those alroady introduced; the relation \(z=\left(\left.U\right|_{j}\right) U\) is identical to \(\left(U \mid s_{j}\right)\left(z=\sigma^{\prime}\right)\), and \(z=U^{\prime}\) is transportable for this typification. The conclusion results from CTl2 when we show that the term (\(U \mid s_{j}\))U' is of type \(S^{\prime}\) for the typification \(T\). Now in \(C\), the relation \(T\) entaila thus the relation \(\left(U \mid g_{j}\right)\), and since \(e_{j}\) does not figure in the term \(U^{\prime} \in S^{\prime}(x, A)\), \(T\) entails finally the relation \(\left(U \mid g_{j}\right) U^{\prime} \in S^{\prime}(x, A)\) (criterion C2).

CT18. Let \(U\) be a transuortable tern ior \(T\) of trpe 抒 \((X(S))\). Then the term \(\bigcup_{X \in U} x\) is transportable of type \(\$(S)\), and 80 is the term \(x \in U\)
ก \(x\) when \(T\) entails \(0 \neq 0\). \(x \in 0\)

CT19. If \(U\) and \(U\) ' are tranoportable teras of type \(\nexists(S)\), then so are the torms \(U U^{\prime}, U \cap U^{\prime}\) and \(S(X, A)-U\).
 are transportable of trpes \(S\) and \(S^{\prime}\) respectively. If \(J^{\prime}\) is transportable of type \(7\left(\mathrm{SXS}^{\prime}\right)\), then \(⿷_{1}\left\langle U^{\prime}\right\rangle\) and \(u r_{2}\left\langle U^{\prime}\right\rangle\) are tranaportable of types \(7(S)\) and \(7\left(S^{\prime}\right)\) respectively.

We give the demonstration for example, of the first part of
CT18: Let \(z\) and \(t\) be two letters distinct from themselves and from the letters already introduced; the relation \(T\) ontails the relation
\[
\{z \in U \text { and } t \in z) \Rightarrow\left(t \in S(x, A) \text { and } z \in \nexists^{\prime}(S(x, A))\right) \text {. }
\]

It thus suffices to show that the set of \(t \in S(x, A)\) such that \((\exists z)(z \in J\) and \(t \in z)\) is transportable of type \(\dot{\psi}(s)\), for the
typification T. Now this term is of type fo (S) for \(T\), and is transportable of type \(\mathcal{P}(S)\) for the typification \(\because T \xi x, B, A \xi\) and \(z \in \notin(S(x, A))\) and \(t \in S(x, A) \geqslant\); as it contains neither \(z\) nor \(t\), one has the desired conclusion by CT12. The demonstrations of the other criteria are anelogous.
N.B. In that which follows, we will make no distinction between a correspondence and its graph.

CT21. If 0 is transportable of type 打 \(3 x 5^{\circ}\)), and if \(U^{\prime}\) is transportable of trpe \(\not \mathcal{F}^{\prime}\left(S^{\prime} x S^{\prime \prime}\right)\), then \(U^{\prime} \circ 0\) is tranaportable of trpe \(\not \ddagger\left(S_{x} \bar{w}^{\prime \prime}\right)\) and \(0^{-1}\) is tranonortable of type \(\not \prod^{\prime}\left(s^{\prime} x 3\right)\).

CT22. If \(U\) is transportiole of trpe \(\mathbb{P}\left(3 \times 5^{1}\right)\) and \(V\) transportable of type \(\beta^{3}(S)\), then the term \(U\langle V\rangle\) is transuortable of type \(\#\left(S^{\prime}\right)\).

CT23. If U is transuortable of type \(P(S)\), then the identity mapoing I of D onto itself is transportable of type \(\mathrm{P}(\mathrm{SxS})\).

C224. Suppose that \(U\) be transportable of type \(\mathbb{P}(S)\), \(U^{\prime}\) transportable of type \(\$\left(S^{\prime}\right)\), and \(V\) transport: ble of type \(X\left(S x S^{\prime}\right)\). Then the relations
\[
\begin{aligned}
& \text { "V is a mappiag of } U \text { into } U ' " \\
& \text { "V is an injection of } U \text { into } I: " \\
& " V \text { is a surjection of } U \text { onto } U " " \\
& \text { "V is a bijection of } U \text { onto } U "
\end{aligned}
\]
are transportable.
We give the demonstration for the first relation which we designate
by \(R\). It is immediate that, in \(e\), the typification \(T\) ontails the relation
\[
R \Leftrightarrow\left(\left(V\langle U\rangle \subseteq U^{\prime}\right) \text { and } V \circ V^{-1}=I_{V}\langle U\rangle\right) \text {. }
\]

The conclusion thus results from CT9 and the criteria CT21, CT22, CT23,

CT25. Let \(O_{0} U^{1}, U^{\text {¹ }}\), and \(V\) be transportable terms of typee
 Suppose that the relation I entails the relations "V: UU \(\rightarrow\) U"" and \(U \in U \cdot\). The torm \(V(U)\) is then transportable of type \(S^{\prime \prime}\). If moreover "' \(^{\prime}\) is a term transportable of type \(P(S)\) and if the relation T entails the relation \(W \subseteq W^{\prime}\), then the term is the restriction of \(V\) to \(\left.\|^{\prime}\right\rangle\) is tranuportable of type \(7\left(\mathrm{~S}_{\mathrm{S}} \mathrm{S}^{1}\right)\).

CT26. If \(R\) is a transportable relation, then the graph w.r.t. \(s_{j}\) and \(\varepsilon_{K}\) of the relation
\[
\| s_{j} \in S_{j}(x, A) \text { and } s_{k} \in S_{K}(x, A) \text { and } R \geqslant
\]

Is a transportable term of type \(\vec{P}\left(S_{j} X_{K}\right)\).
CT27. Suppose that for two distinct indices inan is the schemas \(\underline{S}_{\text {j a }}\) and \(S\) are the same, and for a typification Is let \(U\) be a transportable terin of type \(\mathcal{P}^{(S}{ }_{j}\)) and let \(\&\) be a trunsportable relation. Suppose in addition that the relation \(T\) entails the relation
\(《 \underline{R}\) in an equivalence relation in \(U\) between \(B_{j}\) and \(B_{k}\).
Then the terw \(U / \bar{K}\) in transportable of trpe \(\ddagger\left(\nexists\left(S_{j}\right)\right.\)) and the canonical mapping of \(U\) onto \(U / R\) is a transportable term of type \(\mathcal{H}(S, j x(S\),\() .\).

CT28. For a typification T, let \(V\) be a transportable term of type \(B\left(S S^{\prime}\right)\), then the canonical extension of \(V\) to \(\nexists(S(x, A))\) and
 U. \(U_{2} \cup_{1}{ }^{\prime}\) and \(U_{1}{ }^{\prime}\) be transportable terms of tywes respectively \(\nexists(S)\), \(\ddagger\left(S^{\prime \prime}\right)\), \(\nexists\left(S^{\prime}\right)\), and \(\nexists\left(S^{\prime \prime \prime}\right)\) : Iet \(V\) be a trancportable term of type \(B\left(S^{\prime \prime} S^{\prime \prime \prime}\right)\), and suppose that the rolation \(T\) entails the rolations

《V is a mappiag of \(U\) into \(\left.U^{\prime}\right\rangle\) and \(\left\langle V V_{1}\right.\) is a mapping of \(U_{1}\) into \(U U_{i}^{\prime}\)). Then the canonical extension of \(V\) and \(V_{i}\) to \(U_{x U} 18\) a transportable tern of type \(\beta\left(\left(S x S^{\prime \prime}\right) x\left(S^{\prime} x S^{\prime \prime}\right)\right)\).

CT29. Let U U', and U'" be three transportable terms of types
 of (\(U \times U^{\prime}\)) \(x U^{\prime \prime}\) onto \(U x\left(U^{\prime} \times U^{\prime \prime}\right)\) and the canonical bijection of \(\mathrm{UX}^{\prime} U^{\prime}\) onto UixU are transportable terms of types respectively
\[
P\left(\left(\left(S x W^{\prime}\right) x S^{\prime \prime}\right) \times\left(S x\left(S^{\prime} x S^{\prime \prime}\right)\right)\right) \text { and } P\left(\left(S x S^{\prime}\right) x\left(S^{\prime} x S\right)\right) \text {. }
\]

CT30. Let \(U\) and \(U^{\prime}\) be two transportable terms of types respectively \(\Phi(5)\) and \(\sharp\left(S^{\prime}\right)\). Then the set of mapuinge of \(U\) into

CT31. For a tyifification f. let \(U\) be a trans ortable terle of
 the relation = entails the relation " \(V\) is a mapping of \(U\) into \(f(G(x, A))\) " and that \(s\) figures in neither 0 nor \(V\). Shen the terals \(\prod_{s_{j}} V\left(s_{j}\right)\) and \(\bigcup_{j \in U} V\left(s_{j}\right)\) are transportable of types \(\neq\left(\neq\left(S_{j} \frac{x S)) \text { and }}{s_{j} \in \mathbb{Z}(S)}\right.\right.\) \(s_{j} \in U\) If \(T\) entails the relation \(U \in O\), then the term is triansportable of tyee \(f(S)\).

> "e are now finally ready to explicate the notion of "species of structure».
\[
\text { Dofinition 2. - Let } e \text { be a theory stronger than the theory }
\]
of sets (which of course may be the theory of sets itself). A species of structure in \(C\) is a text (specification) \(\sum\) formed of the following assemblages:
1. A certain number of letters \(x_{i}, \ldots, x_{n}\), s distinct from themselves and from the constants of \(E\). (The letters \(x_{i}\) are called the principal base seta of \(\Sigma\); the letter s is called the generic structure of \(\sum\).)
2. A certain number of terms \(A_{1}, \ldots, A_{m}\) of \(\tau\) (called the auxiliary base sets of \(\sum\)) in which none of the \(x_{1}\), - figure.
3. A typification \(\left.T\} x_{1}, x_{2}, \ldots, x_{a}, s\right\}\) \& \(s \in S\left(x_{1}, \ldots, x_{n}\right.\), \(A_{1}, \ldots, A_{n}\)) where \(S\) is a rung construction schema over \(n+m\) terms (called the typical characterization of \(\Sigma\)). (S may be the product of rung construction schemas \(S_{1} \mathrm{~S}_{1} \times \ldots x \mathrm{~S}_{\mathrm{p}}\), then 3 will be a "multiplet» \(\left(s_{1} \ldots . . s_{p}\right.\) j.)
4. A relation \(k x_{1}, \ldots, x_{n}, s \xi\) which is transportable (in \(e\)) for the typification \(I\), with the \(x_{i}\) as princtpal base sets, and the \(A_{k}\) as auxiliary base sets. (\(R\) is called the axiom of \(\Sigma\).) (\(R\) may of course be the conjunction of one or more transportable relations which will then be called the axioms of \(\sum\).)

Definition 10. - The theory of the species of structure \(\Sigma\) is that theory \(\mathcal{C}_{\Sigma}\) which has the same axioms schemas as \(\mathcal{C}\), the same explicit axioms as \(\tau\), and the axiow \(\approx T\) and \(R\) "; the constants of \(\tau_{\varepsilon}\) are then the constants of \(\tau\) and the letters which figure in \(T\) or in \(R\).

Definition 12. - Let \(e^{\prime}\) be a theory stronger than \(e\) and let \(k_{1} \ldots . . E_{n}\), U be terms of \(C^{\prime}\). We say that (in the theory \(C^{\prime}\)) \(U\) is a structure of species \(\sum\) (or \(\sum_{- \text {- Btructure) over the principal }}\) base sets \(E_{1}, \ldots, E_{n}\), with \(A_{1}, \ldots, A_{m}\) for auxiliary base sets if the relation
\[
《 T\} E_{1}, \ldots, E_{n}, U \xi \text { and } R \xi E_{2}, \ldots, E_{n}, ण \xi \geqslant
\]
is a theorem of \(e^{\prime}\).

It is then the case that for every theorem \(B \xi x_{1} \ldots \ldots, x_{a}, 8 \xi\) of the theory \(\mathcal{E}_{\mathcal{L}}\), the relation \(B\left\{E_{1}, \ldots, E_{B}, 0 \xi\right.\) is a theorem of \(C^{\prime}\).

Vefinition 12. - wo say that (in (\({ }^{(}\)) the priacipal base sets \(E_{2}, \ldots, E_{n}\) are supjlied (or furnished) with the structure \(U\). For brevity we often will under such conditions say that \(E_{1} \ldots \ldots i_{n}\) is a \(\sum\)-set.

It is clear then that \(U\) is an element of the set \(S\left(E_{1}, \ldots, E_{n}\right.\), \(\left.A_{1}, \ldots, A_{m}\right)\). The set of those lements \(V\) of \(S\left(E_{1}, \ldots, E_{n}, A_{1}, \ldots, A_{m}\right)\) which satisfy the relation \(R \xi E_{1}, \ldots, E_{n}, V \xi\) is thus the set of \(\sum\)-structures over \(E_{i}, \ldots, E_{\Delta}\). It may be empty, for example, if the axioms of \(\Sigma\) are contradictory!

Definition 13. - By abuse of language, in the theory of sets, the specification of a distinct letters without typical characterization or axiom is considered as the species of structure \(\Sigma_{0}\) called the species of structure of a set over the \(n\) principal base sets \(x_{1}, \ldots, x_{a}\).

Euample 1. Let \(C\) be the theory of sets and consider the species of structure, without auxiliary base set, consisting of the principal
base \(E\), the typical characterization \(s \in P(E x \mathbb{E})\) and the axiom《SOB \(=S\) and \(s \cap s^{-1}=\Delta_{A}\) " (where \(\Delta_{A} i_{B}\) the diagonal of ArA), which is indeed a transportable relation for the typification \(s \in\left(\begin{array}{l}\text { (}\end{array}\right.\) as is shown by application of the definition or by CT2, CT21, CT5, CT19, CT25, and CT3. This apecies of structure is of course the species of structure of a (pertially) ordered set. The theory of this species of structure is nothing other than the theory of (partially) ordered sets which has two constants, the letters E and S. (For the sake of completeness we mention that \(\mathcal{H}(\mathbb{E} \mathbb{E})=S(\mathbb{E})\) where \(S=((0,1),(1,1),(2,0))\) although the importance of the schemas lies more in their existence than in any particular example of their use.)

Example 2. Again let \(C\) be the theory of sets and consider the species of structure of a topolosical sace which has one principal base set \(E\), no auxiliary base set, typical characterization \(V \in \notin(\notin(E))\) and axion

《 \(\left.\left(\forall V^{\prime}\right)\left(V^{\prime} \subseteq V\right) \Rightarrow(U X \in V)\right)\) and \((\forall X)(\forall Y)(X \in V\) and \(\left.I \in V) \Rightarrow((X \cap Y) \in V)\right)\) \(x \in V^{\prime}\) and \(\mathbb{E} \in V\).

That this axiom is indeed a transportable relation for the typification \(V \in P^{P}(P(E))\) may be seen from the definition or by consulting CT18, CTI4, CT19, CT5, CT3, and CT2, etc. A structure of this species is of course a topology and the relation \(\langle X \in V\) " is expressed by \(« X\) is open for the topology \(V>\). (Again for expository completeness, one may take \(S=((0,1),(1,0),(2,0))\).\() The theory of topolofical suaces has two\) constants \(E\) and \(V\).
we may within this context say what one means by an algebraic structure.

A species of algebraic structure \(\sum\) (in a theory stronger than the theory of sets) defined over the principal base sets \(x_{1}, \ldots, x_{n}\) and auxiliary base sets \(A_{1}, \ldots, A_{m}\) has a generic structure of the form \(\left(s_{1}, \ldots, s_{p}\right)\) and a typical characterization of the form
\[
\left\langle s_{1} \in T_{1} \text { and } s_{2} \in T_{2} \text { and } \ldots \text { and } s_{p} \in T_{p}\right\rangle
\]

Where each \(T_{j}\) is obtained by replacing in the term \(f\left(\begin{array}{l}\text { f }\end{array}\right.\) (uxy)xv) each of the letters \(u\) and \(v\) by one of the terms \(x_{i}\) or \(A_{k}\). In addition the axiom of \(\sum\) is written in the form " \(P\) and \(Q »\), where \(P\) is the relation
"E \({ }_{1}\) is a functional graph and ... and \(s_{p}\) is a functional graph", (which thus expresses that the \(s_{i}\) are the graphs of the laws of composition, (external if \(s_{i} \in \supsetneqq\left(\left(A_{k} x x_{i}\right) x x_{2}\right)\)) and internal if \(s_{1} \in\left(\left(x_{1} \times x_{1}\right) \times x_{1}\right)\)). The relation wo which expresses the supplementary conditions which the laws of composition satisfy, is generally called (by abuse of language) the axiom of \(\sum\) (or if a conjunction of several relations, the axioms of \(\sum\)). The axiom is as always required to be a transportable relation for the typlification \(\left(s_{1}, \ldots, s_{p}\right) \in T_{1} x_{\ldots} \ldots T_{p}\). A structure of such a species will be called an algebraic structure.

We shall now give two examples of algebraic structure species.
Sxample 3. Let \(C\) be the theory of seta; in \(V\), the species of (algobraic) structure of a group has one principal base set \(x_{1}\), no auxiliary base sets and a typical characterization \(\left.s_{1} \in \ddagger\left(x_{1} \times x_{1}\right) x x_{1}\right)\) with axiom " \(s_{1}\) is a law of composition of a group over \(x_{1}\) ". This ax lom is

Indeed transportable for the typification \(T: B_{1} \in \mathcal{F}\left(\left(x_{1} \times x_{1}\right) \times x_{1}\right)\) aince it is equivalent to the conjunction of the following relations： \(R_{1}\) \＆ \(\mathrm{B}_{1}\) is a law of composition everywhere dofined over \(x_{1}\) 》 which in transportable by CT24．
\(R_{2}\) ：（associativity）\(s_{1} \circ\left(s_{1} x I_{x_{1}}\right)=S_{1} \circ\left(I_{x_{1}} x S_{1}\right) \circ J\) ，where \(J\) denotes the canonical mapping of \(\left(x_{1} \times x_{1}\right) \times x_{1}\) onto \(x_{1} \times\left(x_{1} x_{1}\right)_{1} H_{2}\) is transport－ able by means of CT21，CT23，and CT23．
\(R_{3}\) ：（unit element）\(<(\exists z)\left(z \in x_{1}\right.\) and \(\left(\forall z^{\prime}\right)\left(\left(z^{\prime} \in x_{1}\right) \Rightarrow\left(s_{11 i t \bar{y}}\left(z, z^{\prime}\right)=z^{\prime}\right.\right.\) and \(\left.\left.\left.s_{1}\left(z^{\prime}, z\right)\right)=z^{\prime}\right)\right)\) ）which is certainly transportab／for the typil－ Ication \(\|\) I and \(z \in x_{1}\) and \(\left.z^{\prime} \in x_{1}\right\rangle\) ；transportable for \(T\) then resulte from CT8 and case disjunction where one observes that upon adjoining the relation \(x_{1}=\varnothing\) to \(C, R_{3}\) is false anu hence transportable by CT7 and CT3．
\(R_{4}: \quad\)（inverses）\(《(\forall z)\left(\forall z^{\prime}\right)\left(\left(z \in x_{1}\right.\right.\) and \(\left.z^{\prime} \in x_{1}\right) \Rightarrow\left(\left(\exists z^{\prime \prime}\right)\left(z^{\prime \prime} \in x_{1}\right.\right.\) and \(\left.s_{1}\left(z, z^{\prime \prime}\right)=z^{\prime}\right)\) and \(\left(\exists z^{\prime \prime \prime}\right)\left(z^{\prime \prime \prime} \in x_{1}\right.\) and \(\left.\left.\left.s_{1}\left(z^{\prime \prime \prime}, z\right)=z^{\prime}\right)\right)\right)\) ） which is transportable for \(T\) by similar reasoning as for \(R_{3}\) ．

The theory of groups \(C_{\Sigma}\) thus has two constants，the set \(x_{1}\) and the law of composition \(s_{1}\) ．In the theory of sets \(C\) we have two terms ＂the set of real numbers＂and 《the addition of real numbers＂． If we substitute these terms for \(x_{1}\) and \(s_{1}\) respectively in the explicit axioms of \(\mathcal{C}_{\Sigma}\) ，we obtain theorems of \(C\) ．Thus by CS we may 《apply the results of the theory of groups to the addition of real numbers＂． Une says that one has constructed a model for the theory of groups Within the theory of sets．Also since the theory of groups is stronger than the theory of sets，we may apply the results of the theory of sets
to the theory of groups, but if the theory of groups should prove contradictory, then the theory of sets is also.

Example 4. Take for C, the theory of the species of structure of a field, which has (among others) the constant \(K\) as its unique principal base sets. In \(C\), the species of structure of a (left) vector space over \(K\) has \(E\) for principal base sets, \(K\) for auxiliary base set and for typical characterization \(V \in N((\overline{y s}) x=x) x\left((K x \Sigma) x x^{2}\right)\). pry is of course the addition and \(\mathrm{pr}_{2} V\) is the scalar multiplication. Its axioms are the familiar axioms for a vector space over \(K\) which are all transportable relations as may be seen by the transportability criteria already developed.
we shall now proceed to define the important notions of isomorchian and transport of structures.

Lot \(\sum\) be a species of structure in a theory \(\mathcal{C}\). over \(n\) principal base sets \(x_{1}, \ldots, x_{n}\), with m auxiliary base sets \(A_{1}, \ldots, A_{a}\). Lot \(S\) be the rung construction schema over \(n+m\) letters which figures in tho typical characterization of \(\Sigma\), and lot \(R\) be the axiom of \(\Sigma\). In a theory \(C^{\prime}\) stronger than \(C, I-t U\) be a \(\sum-\) structure over \(E, \ldots, E_{n}\) and [' also be a \(\sum\)-structure over \(E_{1}, \ldots . E_{n}^{\prime}\). Finally in \(C^{\prime}\) let \(\mathcal{I}_{1}: E_{i} \rightarrow E_{i}{ }^{\prime}\) be a bijection for \(1 \leqslant 1 \leqslant n\). Under these conditions wo wake the following definition:

Definition 14. - The wultiplet of mappings \(\left(f_{1}, \ldots, f_{n}\right)\) is called an lsonorchism of the sets \(\tilde{H}_{1}, \ldots B_{B}\) supplied with the structure \(U\) onto the sets \(K_{1}^{\prime}, \ldots, E_{n}^{\prime}\) gurgled with the structure \(0^{\prime}\) if (in \(e^{\prime}\)),
(4) \(\left\langle f_{1}, \ldots, I_{n}, I_{1}, \ldots, I_{m}\right\rangle^{S}(U)=U^{\prime}\),
where \(I_{k}: A_{k} \rightarrow A_{k}\) is the identity mapping.
Let \(\mathcal{l}_{1}^{-1}\) be the inverse bijection of \(\mathcal{1}_{1}\) for \(1 \leqslant 1 \leqslant\). Then it is an immediace result of \(\cos \mathrm{I}_{3}\) that \(\left\langle\hat{f}_{1}^{-1}, \ldots, \hat{1}_{n}^{-1}, I_{1}, \ldots, I_{n}\right\rangle^{S}\left(U^{1}\right)=0\) and hence that \(\left(I_{1}, \ldots, I_{n}\right)\) is an isomoryhism of \(E_{1}^{\prime}, \ldots, E_{n}^{\prime}\) supplied
onto \(E_{l}, \ldots, E_{n}\) supplied with \(U\).
With UJ/we say that these isomorphisms are inverses of each other.

Definition 15. - We say that \(E_{1}^{\prime}, \ldots, Z_{n}\) 'supplied with U' is isomorphic to \(H, \ldots\) supplied with \(U\) if there exists an isomorphism of \(E_{1}, \ldots, E_{n}\) onto \(E_{1}, \ldots . E_{n}^{\prime}\), furthermore we then say that the atructures \(U\) and \(U^{\prime}\) are isomorphic.

CST1 and the preceding definitions imediately give the following criterion:

CST4. Let \(U\), \(U^{\prime}\) and \(U^{\prime \prime}\) be three \(\sum\)-structures orer \(E_{1}, \ldots, B_{n}\), \(B_{1}^{\prime}, \ldots . E_{n}^{\prime}\) and \(E_{1}^{\prime \prime} \ldots, E_{n}^{\prime \prime}\) respectively. Let \(f_{i} \underbrace{}_{i} E_{i} \rightarrow E_{i}^{\prime}\) and \(E_{1}: E_{1}^{\prime} \rightarrow E_{1}^{\prime \prime}\) be bifections for \(1 \leqslant 1 \leqslant n\). Then if (\(\mathcal{L} \ldots{ }_{1}\)) and
 morphen.

One usually calls an isomorphism of \(E_{1}, \ldots, E_{n}\) onto \(E_{1}, \ldots, E_{n}\) (for the same structure) an automorphism of \(\mathcal{E}_{2}, \ldots, B_{0}\). It is then a result of CST4 and the definitions that the automorphism of E \(\ldots\)... En form a group.

The following criterion gives another reason for the requirement that the axiom of a species of structure be a transportable relation.

CST5. In a theory \(e^{\prime}\) stroner than \(\tau\) iet \(u\) be a \(\Sigma\)-structure

such that \(\left(f_{1} \ldots f_{n}\right)\) is an isomorphism of \(g_{1} \ldots \ldots \mathbb{E}_{n}\) onto \(\mathbb{E}_{1} \ldots \ldots e^{E^{\prime}}\)
In effect the desired structure is nothing other than the term U' defined by the relation (4). For what remains it suffices to verify that this term is a \(\sum\)-structure, i.e., that the relation \(\left.R \xi \xi_{1}, \ldots\right]^{Z}{ }^{\prime}, J^{\prime} \xi\) is true in \(C^{\prime}\). But this is an imediate result of \(R\} x_{1}, \ldots, x_{n}, a \xi\) being transportabla, for then \(R \xi E_{1}, \ldots, E_{n}{ }^{\prime}, U \xi\) is equivalent in \(C^{\prime}\) to the relation \(R \xi E_{1}, \ldots, E_{n}, 0 \xi\) which is true in \(C^{\prime}\) by hypotheais.

Definition 16. - We say that the structure \(U\) is obtained by transport of the structure \(U\) to the sets \(H_{1}^{\prime} \cdots \mathrm{E}_{\mathrm{n}}\) ' by means of the bijections \(f_{1}, \ldots, f_{n}\).

It thus amounts to say that two \(\sum\)-structures are isomorphic if one may be deduced from the other by atructure tranaport.

Definition 17. - If two urbitrary structures of the same species are necessarily isomorphic, one says that the species of structure is univalent.

This is indeed the case for classical Eucliden geometry and also for the following species of structure:
1. The species of an infinite monosenic broup (\(¥ \mathbf{Z}\))
2. The species of a prime field of characteriatic \(\circ\) (\(\cong\) Q)
3. The species of a complete, archemidian ordered field (\(\cong \mathbf{R}\))
4. The species of an alrobraically closed, connected, locally coinpact commutative fiold (\(\cong\) C)
5. The species of a connected, locally compact, non-com utative fiold (\(\cong K\)) .
(In fact for \(Q\) and \(R\) there are no automorphiams other than the identity mapping, but this is not always the case as \((x \longrightarrow-x): \quad Z \rightarrow Z\).

It is interesting to observe that the preceding structures are those which lie at the base of classical mathematics. By consrast the epecies of group, partially ordered set, topological space etc. (part of modern mathematics) are not univalent!

We shall now consider the notion of "relative tranaportability". (We chall use the notations already developed for the transportability criteria.)

Let be a species of structure in \(C\), with \(x_{1}, \ldots, x_{n}\) for principal base sets, \(A_{1}, \ldots, A_{\text {f }}\) for auxiliary base sets and \(s_{0}\) for its generic structure; let \(s_{0} t S_{0}\left(x_{1}, \ldots, x_{n} A_{1} \ldots . . A_{m}\right)\) be the typical charactorization which we will designate by \(T_{0}\), and let \(P\) be the axiom of \(\sum ; P\) is thus trensportable for \(T_{0}\) by definition.

Definttion 28. - We shall say that a relation \(R\) is transiortable (in \(\tau)\) relative to \(\sum\), for the typification " \(T\) and \(T\) ", when the relation \(P \Rightarrow R\) is transportable (in \(C\)) for \(" T_{0}\) and \(T\) " and the following conditions are satisfied:
1. the initial letters of \(T\) are \(x_{1} \ldots \ldots, x_{n}, s_{0}\) (and possibly additional letters \(x_{1}, \ldots, x_{r}{ }^{\prime}, s_{1}, \ldots, s_{p}\)); the initial terms are \(A_{1}, \ldots A_{\text {m }}\) (and poseribly adaitional terme \(A_{1}{ }^{\prime}, \ldots, A_{s}\) ' of e not containing any of the initial letters of \(T\);
2. Tis of the form
\[
《 s_{1} \in S_{1}\left(x, x^{\prime}, A, A^{\prime}\right) \text { and } \ldots \text { and } s_{p} \in S_{p}\left(x, x^{\prime}, A^{\prime} A^{\prime}\right) 》 \text {. }
\]
where the \(S_{j}(I \leqslant j \leqslant p)\) are rung construction schemas over \(n+r+m+s\) letters.

We shall show that this definition is equivalent to the following assertion concerning \(R\) :
 is a theorem of the theory \(\left(\tau_{e}\right)_{\Sigma}\), obtained by adjoining to the axioms of 2 the transport relation for the typification \(《 T_{0}\) and \(T \geqslant\) and the \(\operatorname{axiom} P\{x, \varepsilon \xi\).
(N.B. - This condition does not signify that \(R\) is tranaportable in \(e_{\Sigma}\) for \(\left\langle T_{0}\right.\) and \(T \|\) ince the \(x_{i}\) and \(s_{0}\) are constants of \(\tau_{\Sigma^{*}}\))

Suppose in effect that \(R\) is transportable (in \(C\)) relative to \(\Sigma\) for \(N T_{0}\) and \(Y_{\text {; }}\) then the relation
(1) \(\left(P\left\{x, s_{0} \xi \Rightarrow \mathbb{R}\left\{x, x^{\prime}, s_{0}, s \xi\right) \Leftrightarrow\left(P \xi y, s_{0}{ }^{\prime} \xi \Rightarrow R\left\{y, y^{\prime}, s_{0}^{\prime}, s^{\prime} \xi\right)\right.\right.\right.\) is a theorem of \(C\). Also \(P\left\{x_{0} s_{0}\right\} \Leftrightarrow P\left\{y_{0} s_{0}^{\prime}\right\}\) is a theorem of \(C\) since \(P\) is transportable for \(T_{0}(\ln C)\). In \(\tau_{C}\), the relation (1) is thus equivalent to
(2) \(\left.\left(P \xi x, s_{0} \xi \Rightarrow \mathbb{R}\left\{x, x^{\prime}, s_{0}, s \xi\right) \Leftrightarrow(P\} x, s_{0} \xi \Rightarrow \mathbb{R}\right\} y, y^{\prime}, s_{0}^{\prime}, s^{\prime} \xi\right)\). But in \(\left.\left(\tau_{c}\right)_{\Sigma}, R \xi x, x^{\prime}, s_{0}, s\right\}\) and (\(P\left\{x_{0} s_{0} \xi \Rightarrow R\left\{x, x^{\prime}, s_{0}, s \xi\right.\right.\)) are equivalent relations; similarly, \(R \xi y, y^{\prime}, s_{0}^{\prime}, s \xi\) and \(\left(P\left\{x_{1} s_{0} \xi \Rightarrow R\left\{y, y^{\prime}, s_{0}^{\prime}, s\right\}\right.\right.\) are equivalent in. \(\left(\tau_{\mathrm{C}}\right)_{\Sigma}\). Therefore one concludes that \(R \xi x, x^{\prime}, s_{0}, s \xi \Leftrightarrow R \xi y, y^{\prime}, s_{0}^{\prime}, s \xi\) is a theorem of \(\left(\varepsilon_{c}\right)_{\varepsilon}\).

Conversely, suppose that Definition \(18{ }^{\prime}\) holds, then in \(\tau_{c}\), the relation
(3) \(\left.P\left\{x, s_{0} \xi \Rightarrow\left(R \xi x, x^{\prime}, s_{0}, s\right\} \Leftrightarrow R \xi y, y^{\prime}, s_{0}^{\prime}, s\right\}\right)\) is a theorem; now it is well known that the relations \(B \Rightarrow(C \Leftrightarrow D)\) and \((B \Rightarrow C) \Longleftrightarrow(B \Rightarrow D)\) are equivalent in every logical theory; but (2) is
a theorem of \(e_{c}\) and consequently also (1), which thus proves our assertion.

Definition 12．－w＇e will say that a term \(U\) of \(C\) is transjortable of true \(S\left(\ln Z\right.\) ）relative to \(\Sigma\) ，for the typification \(\mathrm{T}_{0}\) and \(T\) 》 if in \(\left(\tau_{C}\right)_{\Sigma}\) ，the relations \(U \in S\left(x, x^{\prime}, A, A^{\prime}\right)\) and \(U \xi y, y^{\prime}, \delta_{0}^{\prime},^{\prime} \xi=\) \(f^{S}\left(U\left\{x, x^{\prime}, s_{o}, s\right\}\right)\) are theorams．

It is possible to verify that the criteria（CP）still hold when one replaces＂trausportable》 by《transportable relative to \(\sum 》\) and （in CT7，CT9，CT16），the theory \(e\) by the theory \(\tau_{\varepsilon}\) ．The majority of the relations and terme that one considers in the theory of a species of structure \(\sum\) are transportable relative to \(\sum\) for some suitable typification，e．8．，in the theory of groups，the 《routral element＂， the＂subgroup generaled by \(W\) ．where \(w\) is a subset of the group＂，etc． are relatively transportable．

Suppose that \(R\) is a transportable relation rolative to \(\Sigma\) ，for a typification 《To and \(T\rangle\) ，where \(r=0\) ．In a theory \(\tau^{\prime}\) stronger than \(E\) ，let \(\mathcal{L}\)（resp．\(J^{\prime}\) ）be a \(\sum\)－atructure over \(\mathcal{F}_{1}, \ldots, \mathbb{N}_{n}\) （resp．\(\left.g_{1}, \ldots, E_{n}{ }^{\prime}\right)\) and \(\left(g_{1}, \ldots, g_{n}\right)\) be an isomorphism of \(E_{1}, \ldots, Z_{n}\) supplied with \(\mathcal{S}\) onto \(\mathcal{H}_{1}^{\prime}, \ldots, E_{n}^{\prime}\) supplied with \(J^{\prime}\) ．Furthermore lot \(C_{1} \ldots . . C_{p}\) be terms of \(C^{\prime}\) such that the relations
\[
c_{j} \in S_{j}\left(E_{1}, \ldots, E_{n}, A_{1}, \ldots, A_{m}, A_{2}^{\prime}, \ldots, A_{s}^{\prime}\right)
\]
are theorems of \(\tau^{1}\) for \(1 \leqslant j \leqslant p\) ．Let \(g\) be the canonical extension of \(g_{1} \ldots g_{n}\) and the identity mappings of \(A_{i k}\) and \(A_{h}{ }^{\prime}(1 \leqslant k \leqslant m, 1 \leq h \leq s)\) to a rung of type \(S\) over \(E_{1}, \ldots, S_{n}, A_{2}, \ldots, A_{m}, A_{1}, \ldots, A_{s}\) ；one has in particular that \(\left.\delta^{S o(~} \mathcal{S}\right)=\mathcal{J}^{\prime}\) ．Under these conditions the relation
\[
R \xi E_{1}, \ldots, E_{n}, \mathcal{S}, C_{1}, \ldots, C_{p} \xi \Leftrightarrow R \xi E_{1}^{\prime}, \ldots, E_{n}^{\prime}, \rho^{\prime}, g^{S_{1}}\left(C_{1}\right), \ldots, g^{S_{P}}\left(C_{p}\right) \xi
\]
is a theorem of \(e^{\prime}\) ．

In offect, if, in the term \(f^{S j\left(B_{j}\right)}\) we substitute \(g_{i}\) for \(f_{1}\), \(E_{i}\) for \(x_{i}, E_{i}\) 'for \(y_{i}, J\) for \(g_{0}\), and \(C_{1}\) for \(\varepsilon_{1}(1 \leqslant i \leqslant n, 1 \leqslant 1 \leqslant p)\) we obtained the tern \(g^{5} j\left(C_{j}\right)(1 \leqslant j \leqslant p)\). Since the same substitution effected in \(\xi^{\prime}, T_{0}, T\), and in the transport relation for \(《 T_{0}\) and \(T \geqslant\) give theorems of \(e^{l}\), our acsertion is an immediate result of the definition of a transportable relation relative to \(\Sigma\).
similarly frow the definition, we may observe that if 0 is a transport ble term of type \(S\) relutive to \(\Sigma\), for the typification《To and \("\rangle(\) with \(r=0)\), the relation
\[
g^{S}\left(U \xi E_{1}, \ldots, E_{n}, J, C_{1}, \ldots, C_{p} \xi\right)=U \xi E_{1}^{\prime}, \ldots, E_{n}^{\prime}, J^{\prime}, g^{S_{1}\left(C_{1}\right), \ldots, g^{S} p(c)}
\]
is a theorem of \(e^{\prime}\).

Definition 20. - say that a term \(V \xi x_{1}, \ldots, x_{n}: 8\) of is intrinsic for \(s_{0}\) of tyive \(T\), provided it contains no lettors other than the constants of \(e_{\Sigma}\), and is transportable relative to \(\Sigma\) for the typieication \(T_{0}\).

Because of the importance of this notion wo shall restate this definition in full:

Definition 20. - Let \(\sum\) be a species of structure in a theory \(e\) e over \(n\) principal base sets, \(x_{1}, \ldots, x_{n}\), with \(m\) auxiliary base sets \(A_{1}, \ldots . A_{m}\); with \(\delta_{0} \in T_{0}\left(x_{2}, \ldots, x_{n}, A_{1} \ldots . . A_{\text {m }}\right)\) as typical characterization for \(\sum\). Let \(T\) be a rung construction schema over \(n+m\) torms. Gne says that a term \(V \xi x_{1}, \ldots, x_{n}, s_{0} \xi\) which contains no letters other than the constants of \(\tau_{\Sigma}\) is intrinsic for \(s_{0}\), of type \(T\left(x_{2}, \ldots, x_{m}, A_{1}, \ldots, A_{m}\right)\) if it satisfies the following conditions:

1．The rolation \(\left.\left.\left.V \xi x_{1}, \ldots, x_{n} ; s_{0}\right\} \in T\right\} x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right\}\) is a theorem of \(\tau_{\Sigma}\) ．

2．Let \(\left(\tau_{c}\right.\)＇\(\Sigma\) bo the theory obtained by adjoining to the axioms of \(e_{\Sigma}\) the axioms \(《 f_{i}: x_{i} \longrightarrow y_{i}\) is a bijection》 for \(1 \leqslant i \leqslant n\) the letters \(f_{i}, y_{i}\) being distinct from themselves and from the constants of \(\tau_{\varepsilon}\) ．Let \(\varepsilon_{0}^{\prime}\) be the structure obtained on transporting \(s_{0}\) by \(\left(f_{I}, \ldots, f_{n}\right), 1 . e . s_{0}^{\prime}=\left\langle f_{1} \ldots \ldots f_{n}\right.\) \(\left.I_{1}, \ldots, I_{n}\right\rangle^{T_{0}}\left(s_{0}\right)\) ．Then
\(V \xi y_{1}, \ldots, y_{n}, s_{0}{ }^{\prime} \xi=\left\langle f_{1}, \ldots, f_{n}, I_{1}, \ldots, I_{n}\right\rangle^{T}\left(V \xi x_{1}, \ldots, x_{n}, s_{0} \xi\right)\) is a theorem of \(\left(\tau_{c}\right)_{\Sigma}\) ．

It can be shown that in the theory of groups，says，the neutrul element，the group of comiutators，the center，and the groups of auto－ morphisms，etc．are intrinsic．

Let：\(V \xi x_{1}, \ldots, x_{n}, s_{0} \xi\) be an intrinsic term for \(s_{0}\) ，of type T． It is immediate that the relation \(\psi\left(f_{1}, \ldots, f_{n}\right)\) is an automorphism of \(x_{1}, \ldots, x_{n}\) supplied witín \(s_{0} "\) entails in \(\tau_{\Sigma}\) ，the relation \(f^{\prime \prime}(V)=V_{\text {i }}\) we shall under such oonditions say that \(V\) is invariant for all of the automorghisms of \(x_{1}, \ldots, x_{n}\) supplied with \(s_{0}\) ．This latter condition，it should be emphasized，is not sufficient to guarantee intrinsicity，however．

In view of the conventions introduced concerning＂the species of structure of a set》，to say that a relation（resp．term）is transjortable relative to the species of structure of a set simply means that the relation（resp．term）is transportable in the unrelativised meaning of the term．

Definilion 21. - when a term \(V\), intrinsic for \(B_{0}\). is such that in addition the relation \(" V\) is a correspondence between \(X\) and \(Y\) 》 (rosp. " \(V\) is a mapping of \(V_{1}\) into \(\left.V_{2}\right)\)) is a theorem of \(\tau_{\Sigma}\left(V_{1}\right.\) and \(V_{2}\) being two torme also intrinsic for \(s_{0}\)), wo say that \(V\) is a canonical correspondence (resp. mapping) for s. The terminology of " canonical maping " introduced in the theory of sete is thus in accord with the conventions already introduced.
- shall now give an equivalent characterization of intrinsic mppings in the most commor special care.

Lot \(U_{1}\) and \(U_{2}\) be two terms of \(C\) which are intrinsic for \(S_{o}\) of types \(\mathrm{T}_{\mathrm{T}}\left(\mathrm{S}_{2}\right)\) and \(7\left(\mathrm{~S}_{2}\right)\) respectively. Thon a mapping \(\mathrm{V}: \mathrm{U}_{2} \rightarrow \mathrm{~J}_{2}\) is canonical for \(s_{0}\) if and only if \(10\left(\tau_{c}\right)_{\Sigma}\left\langle\varepsilon_{1} \ldots \ldots I_{n}, I_{1} \ldots \ldots I_{m}\right\rangle^{s_{2}} \quad 0\) \(V \xi x_{1}, \ldots, x_{n}, s_{0} \xi=V \xi y_{1}, \cdot y_{n}, s_{0}{ }^{\prime} \xi \circ\left\langle f_{1}, \ldots, r_{n}, I_{1}, \ldots, I_{n}\right\rangle^{s_{1}}\) i.e., with our usual abbroviated notation, in \(\left(\tau_{c}\right)\), the following diagram is commutative:

The above assertion is an imediate consequence of the dofinitions for intrinsicity when we recall that \(V\) is intrinsic, i.e., canonical under the hypothesis of the theorem iff \(\left.f^{S_{2} x S_{2}}\left\langle V \xi x_{0} s_{0}\right\}\right\rangle=v \xi y_{0} 0_{0}{ }^{1} \xi\) 。 and that we always have \(f^{S_{2} \times 8_{2}}=f^{S_{2}} \times 8^{S_{2}}\).

We now shall consider the important notion of a "process of deduction \(>\).

Dofinition 22. - Let \(\Theta\) be a second species of structure in the theory \(e\), over \(r\) principal base sets \(u_{1}, \ldots, u_{r}\), with \(p\) auxiliary base sets \(B_{1}, \ldots, B_{p}\); iet \(t \in T\left(u_{1}, \ldots, u_{r}, B_{1}, \ldots, B_{p}\right)\) be the typical characterization of (\()\). ie call a process of deduction of a structure of species © from a structure of species \(\Sigma\) any sequence of \(r+1\) terms \(Q_{1} U_{1}, \ldots, U_{r}\) each intrinsic for \(s_{0}\) : and such that \(\mathbb{P}\) is a \(\Theta\)-structure over \(U_{1}, \ldots, U_{r}\) in the theory \(C_{\Sigma}\). (By abuse of language we will occasionally refer to the single torm \(\mathbb{P}\) as the process of deduction.)

Uefinition 22. - Let \(\mathcal{Z}^{\prime}\) be a theory stronger than \(\mathcal{V}\). If, in \(\mathcal{C}^{\prime}, \mathcal{S}\) is a \(\sum\)-structure over \(\mathbb{E}_{1}, \ldots, E_{n}\), then \(\left.P\right\} E_{1}, \ldots, E_{n},\{ \}\) is a \(\Theta\)-structure over the \(r\) sets \(F_{j}=U_{j} \xi E_{1} \ldots E_{n}, f \xi\) (\(1 \leqslant \mathrm{j} \leqslant r\)), said to have been deduced from \(\mathcal{\rho}\) by the process \(\mathbb{P}\), or to have been subordinated to \(\rho\).

The hypothesis that the terme \(\mathbb{P}_{1}, \mathbb{U}_{2}, \ldots, \mathbb{U}_{r}\) are intrinaic for so entails the following criterion:

CST6. Let \(\left(B_{1}, \ldots, g_{n}\right)\) be an isomorphism of \(E_{1}, \ldots, E_{n}\) supplied With a \(\sum\)-structure \(\mathcal{J}\) onto \(\delta_{1} \prime \cdots, E_{n}^{\prime}\), sup liod a \(\Sigma\)-structure \(\mathcal{J}^{\prime}\). If \(0_{j}\) is of type \(\ddagger\left(T_{j}\right)\), let \(h_{j}=\left\langle E_{1}, \ldots, g_{n}, I_{1}, \ldots, I_{m}\right\rangle^{T_{j}}(1 \leqslant i \leqslant r)\) and let \(F_{j}^{\prime}=U_{j} \xi E_{1}^{\prime}, \ldots, E_{n}^{\prime}, j \xi \quad(1 \leqslant j \leqslant r)\), then \(\left(h_{1}, \ldots, h_{r}\right)\) is an isomor hism of \(F_{1}, \ldots, F_{r}\) onto \(F_{1}{ }^{\prime}, \ldots, F_{r}\) ' when supplied respectively with the \((1)\)-structures deduced from \(\mathcal{S}\) and \(\mathcal{I}^{\prime}\) by the process \(\mathbb{P}_{,} U_{1}, \ldots, 0_{r}\).

Dofinition 24. - The mappings \(\left(h_{1}, \ldots, h_{r}\right)\) are said to be the isomoryhism deduced from \(\left(g_{1} \ldots, \mathcal{B}_{n}\right)\) by the process \(P_{1} U_{2} \ldots, U_{r}\).

Suppose that \(P_{1} U_{1} \ldots U_{r}\) and \(P^{\prime}, \mathbb{O}_{1}{ }^{\prime} \ldots U_{F}{ }^{\prime}\) are both processes of deduction of a \(\Theta\)-structure from a \(\Sigma\)-structure. Let \(\left(V_{1} \ldots \ldots V_{r}\right)\) be a sequence of canonical mappings such that \(V_{j}: U_{j} \rightarrow U_{j}\) is a bijection for \(1 \leqslant j \leqslant r\). If, furthermore \(\left(V_{1}, \ldots, V_{r}\right)\) is an isomorphism of \(U_{2} \ldots, U_{r}\) supplied with \(P\) onto \(U_{I} ' \ldots, U_{r}\) ' supplied with \(P\), we say that \(\left(V_{1}, \ldots, V_{r}\right)\) defines a canonical equivalence of the process of deduction \(P\) and \(P^{\prime}\).

Let us suppose that the hypothesis of \(\operatorname{CST} 6\) are satisfied and let us use the following notational conventions:

Let \(D_{j}\left(x_{1}, \ldots, x_{n}\right)=0_{j} \xi x_{1} \ldots, x_{n}, s_{o} \xi, D_{j}\left(g_{1}, \ldots, g_{n}\right)=\)
\(\left\langle g_{1}, \ldots, \varepsilon_{n}, I_{1}, \ldots, I_{m}\right\rangle^{T_{j}}\) for \(1 \leqslant j \leqslant r\) and
\(D_{j} \prime\left(x_{1}, \ldots, x_{n}\right)=U_{j} \prime \xi x_{1}, \ldots, x_{n}, \delta_{o} \xi\) and \(D_{j}\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1}, \ldots, g_{n}, I_{1}, \ldots, I_{m}\right\rangle^{T}\) and finally \(\left.F_{j}\left(x_{1}, \ldots, x_{n}\right)=v_{j} \xi x_{1}, \ldots, x_{n}, s_{0}\right\}\) for \(1 \leqslant j \leqslant r\), then under the hypothesis of CST6, the following \(r\) diagrams are commutative

CST6 implies that \(D_{j}\left(g_{1}, \ldots, g_{n}\right)(I \leqslant J \leqslant r)\) are isomorphisms and also that the \(D_{j}\left(g_{1}, \ldots . g_{n}\right)\) are isomorphisms. If \(\left(F_{1}, \ldots, F_{r}\right)\) is a canonical equivalence, then it is also an isomorphism.

It is clear that the terms \(x_{1}, \ldots, x_{n}\) are intrinsic for \(s_{0}\). In many cases the terms \(U_{1} \ldots \ldots U_{r}\) are certain of the letter ix \(x_{1}, \ldots, x_{n}\), in such cases we speak of the \(\cap\)-structure deduced from \(s_{0}\) by the process \(P\) as underlying \(6_{0}\) (cf. Example 1)

Suppose that (®) has the same base sets (both principal and auxiliary) as \([\), and also the same typical characterization. If furthermore, the axiom of \(\sum\) implies (in \(\tau\)) the axiom of \(\Theta\), it is clear that the term \(s_{0}\) is a process of deduction of a \(\Theta\)-structure from a \(\sum\)-structure. We then say that \((\mathbb{C})\) less rich than \(\sum\) or that \(\Sigma\) is more rich than \(\Theta\). Every \(\Sigma\)-structure in a theory \(\tau^{\prime}\) stronger than \(\tau\) is then also a \(\Theta\)-structure. (cf. Example 3).

In the case that \(P\) is a multiplet (\(P_{1}, \ldots, P_{q}\)), one also says that the terms \(P_{2} \ldots, P_{q}\) constitute a process of deduction of a (6) -structure frow a \(\sum\)-structure.

Example 1. The species of structure of a topological grour has a single principal base set E, no auxiliary base sets, and a generic atructure which is a pair \(\left(s_{1}, B_{2}\right)\) (\(s_{1}\) being the internal law of composition over \(E\) and \(s_{2}\) being the system of open sets of the topology of E). Each of the terms \(B_{1}\) and \(B_{2}\) is a process of deduction furnishing respectively the underlying structure of a group and of th anderlying structure of topology. Similarly, from the structure of a moduie we can deduce the underlying structure of an abelian group. From the structure of a ring we can deduce the underlying structure of an abelian group and also a multiplicative semigroup, etc.

Example 2. If \(\sum\) and \(\Theta\) the species of structure of a group (resp. ring). we may define a process of deduction associating to each group structure (resp. ring structure) the structure of a group (resp. ring) over its centre. If \(\sum\) is the structureimodule over a comutative ring with a unit \(K\) and \(\Theta\) is the species of structure of an algebra over \(K\) we can define a process of deduction which assigns to each module
over \(K\) its tenson algebra and its exterior algebra, etc.
Example 3. The species of structure of a totally ordered set (obtained by the adjunction of the axiom " \(S \cup S^{-1}=E x E\) " to the axioms of the structure of an ordered set is richer than the species of structure of an order. Similarly the species of an abelian group is richer than the species of a group and the species of a compact topology space is richer than the species of a topology, etc.

It is well known that there is "more than one way of defining a topology " (0.G.. by means of open sets and closure operators) and that an abelian group and a unitary \(Z\)-module are the \(\|\) same thing ". We now show that such naive notions of "equivalence" of various species of structure can be given a satisfactory formal meaning by means of "process of deduction".

Definition 25. - In the same theory \(e\), let \(\Sigma\) and \(\Theta\) be two species of structure with the same principal base sets \(x_{1}, \ldots, x_{n}\). Let \(s\) and \(t\) be the generic structures, respectively of \(\Sigma\) and () and suppose that the following conditions are satisfied:
1. One has a process of deduction \(\mathbb{P}\left\{x_{1} \ldots \ldots x_{n}, s\right\}\) for a © - structure over \(x_{1} \ldots, x_{n}\) from a \(\Sigma-s t r u c t u r e ~ o v e r ~\) \(x_{1}, \ldots, x_{n}\).
2. One has a process 0 i deduction 竨 \(x_{1}, \ldots, x_{n}, t \xi\) of a \(\sum-s t r u c t u r e ~ o v e r ~ x_{1}, \ldots, x_{n}\) from a \(\Theta\)-structure over \(x_{1}, \ldots, x_{n}\).
3. The relation \(\left.f\} x_{1}, \ldots, x_{n}, P \xi x_{1}, \ldots, x_{n}, s\right\}=s\) is a theorem of \(\tau_{\varepsilon}\) and the relation \(p\left\{x_{1}, \ldots, x_{n}, \forall\left\{x_{1}, \ldots, x_{n}, t \xi\{=t\right.\right.\) is a theorem of \(\tau_{\theta}\).

Under these conditions wo say that the sjocies of atructure \(\Sigma\) and \((4\)

In this case for ach theorean \(\left.B\} x_{1}, \ldots, x_{n}, s\right\}\) of \(\mathcal{E}_{\Sigma}\), the relation \(B\} x_{1}, \ldots, x_{n}, \downarrow \xi\) io a theorem of \(C_{0}\) and oonversuiy, for each thoorem \(C\left\{x_{1}, \ldots, x_{n}, t \xi\right.\) of \(C_{0}\), the relation \(\left.\left.C\right\} x_{1}, \ldots, x_{n}, P\right\}\) is a theorem of \(\tau_{\varepsilon}\).

Definition 26. - If U 18 a \(\sum\)-atructure, one suye that the structure doduced frow \(U\) by the proceso \(P\) is Qquivalent to \(\tilde{U}\).

Our criterion CST6 has as an lumediate consequence the following criterion:

CST7. Lat \(\mathcal{J}\) and \(\mathcal{J}^{\prime}\) be two \(\Sigma\)-structuras orer (\(E_{1}\) _unaz)

 be gü iagmorinh of tho structures \(\mathcal{\rho}^{\rho}\) anu \(\mathcal{\rho}_{0}^{\prime}\) it is nocosary and gufficiont that \(\left(g_{1} \ldots \ldots E_{n}\right)\) be an 1 Bomorihism of the atructures \(\mathcal{J}\) and \(\mathcal{J}^{\prime}\).

Example. Let \(\sum\) be the species of structure of a topology with
\(\therefore\) as its base set and \(V\) its generic structure. Consider the rolation \(《 x \in E\) and \(X \subseteq E\) and \((V U)((U \in V\) and \(x \in U) \Rightarrow(X \cap O \notin \not \subset)) 》\) i it adnits a graph \((P\) with respect to the puir \((X, x)\) and \(P \subseteq B(E) x E\). \(\left.P \xi \overline{E_{0}} V\right\}\) is then a torm of \(C\) (called the \(\mathbb{}\) set of pairs \((X, x)\) such that \(x\) is in the closure of \(X\) for the topology \(V \geqslant\)) and we cen prove that the following relutione are theorens of \(e_{2}\) :
(1) \(\mathbb{Q}(\varnothing)=\varnothing\).
(2) \((\forall Y)((I \subseteq Y) \Rightarrow(Y \subseteq P(Y))\).
(3) \((\forall Y)(\forall Z)((Y \subseteq E\) and \(Z \subseteq E) \Rightarrow((P(Y \cup Z)=P(Y) \cup P(Z)))\),
(4) \((\forall Y)((Y \subseteq \mathbb{E}) \Rightarrow(P(\mathbb{P}(Y))=\mathbb{P}(Y)))\).

Now consider the species of structure \(\Theta\), with principal base
 and exion \(\forall(\eta)=\varnothing\) and \((\forall Y)\left(Y \subseteq \sum \Rightarrow Y \leq V(Y)\right)\) and \((\forall Y)(\forall z)((I \subseteq E\) and \(Z \subseteq E) \Rightarrow(V(Y \cup Z)=(Y) \cup W(Z)))\) and \((\forall Y)((Y \subseteq \mathbb{E}) \Rightarrow(W(W(Y))=W Y))\).

Now consider the relation \(« U \in E\) and \((\forall x)(x \in U \Rightarrow x \notin W(E-U))\)). The set of all \(U \in \ddagger(E)\) which satisfy this relation is a subset \(\mathcal{V}\{\bar{B}\), \(W\) of \(\#(E)\) and we can show that the following relations are theorems of \(e_{0}:\)
(1) \(E \in V\),
(2) \((\forall M)(M \subseteq \vartheta \Rightarrow\{U X \mid X \in M\} \in \vartheta)\),
(3) \((\forall X)(V X)((X \in \vartheta\) and \(Y \in \mathcal{V}) \Rightarrow(X \cap Y) \in \vartheta))\).

Thus the terms \(\mathbb{Q}\{\mathcal{L}, V\}\) and \(\mathcal{V}\left\{E_{0} \| \xi\right.\) verify conditions 1 and 2 and also 3 of Definition 25 and hence the species \(\Sigma\) and (©) are equivalent and we can consider a -i) -structure as a topology by means of the process of deduction \(\downarrow\} E, V\}\).
we shall now show that the notion of intrinsicity can be extended so that we can define the notion of a « process of dejuction from two species of structure furnisting atructure of a third species" .

In a theory \(e\) stronger than the theory of sets, let \(\Sigma\) be a species of structure over n principal buse sets \(x_{1}, \ldots, x_{n}\), wauxiliary base sets \(A_{1}, \ldots, A_{\text {Iu }}\), with \(s \in S\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right)\) as typical characterization and \(R_{\Sigma}\left\{x_{1}, \ldots, x_{n}, s\right\}\) as axiom. Also in \(C\), let \(I\) be a species of structure with 0 principal base sets \(\nabla_{1}, \ldots, \nabla_{0}\), \(q\) auxiliary base sets \(C_{1}, \ldots, C_{q}\), with \(w \in W\left(v_{1}, \ldots, v_{0}, C_{1}, \ldots, C_{q}\right)\) as typical
characterization and \(\bar{\omega}\) i for axiom. In addition lot \(C_{\text {r, } \mathbf{q}}\) denote the theory obtained by adjoining to the axioms of \(e\), the axiom " \(R_{\Sigma}\) and \(\left.R_{\Phi}\right\rangle\), so that the constants of \(\mathcal{V}_{\sum_{\Phi} \text { are the constants of }}\) Rtogether with the letters which figure in \(R_{\mathcal{E}}\) or \(\ln R_{\Phi}\).

Dofiuition 27. - A term \(U\) of \(C\) will be said to be bi-intrinsic for \((s, w)\), of type \(V\left(x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{0}, A_{1}, \ldots, A_{m}, C_{1}, \ldots, c_{q}\right)\) provided U contains no letters other than the constants of \(\mathcal{C}_{\Sigma, \underline{\Phi}}\) and satisfies the following conditions:
1. the relation \(U \xi x, v, s, w \xi \in V(x, v, A, C)\) is a theorem of \(e_{\varepsilon, \bar{\Psi}}\) where \(V\) is a rung construction schema over \(n+0+m+q\) letters.
2. Let \(\left(\tau_{c}\right)_{\sum, \Phi}\) be the theory obtained by odfoining to the axiome of \(\mathcal{E}_{\varepsilon, 1}\), the axioms \& \(f_{i}: x_{1} \rightarrow y_{i}\) is a bijection" \((1 \leqslant i \leqslant n)\) and \(\| g_{j}: \nabla_{j} \longrightarrow z_{j}\) is a bijection 》 \((1 \leqslant j \leqslant 0)\) (the letters \(y_{i}, f_{i}, g_{j}, z_{j}\) being distinct from themselves and from the conatants of \(\tau_{\sum, \mp}\)); let \(I_{i}\) be the identity mapping of \(A_{1}\) for \(1 \leqslant i \leqslant m\) and let \(I_{j}\) ' be the identity mapping of the \(C_{j}\) for \(I \leqslant j \leqslant q\). Then if \(s^{\prime}\) is the structure obtained on transport of a by (\(p_{1}, \ldots, f_{n}\)) and \(w\) ' is the structure obtained on transport of \(w\) by (\(g_{1}, \ldots, g_{0}\)), then \(0 \xi y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n} \cdot s^{\prime}, w^{\prime} \xi=\)
\(\left\langle I_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}, I_{1}, \ldots, I_{m}, I_{1}^{\prime}, \ldots, I_{q}^{\prime}\right\rangle^{V}\left(U^{\prime}\right)\)
(where \(U^{\prime}=U \xi x_{1}, \ldots, x_{n}, v_{1}, \ldots, \nabla_{0}, s, w \xi\))
is a theorem of \(\left(C_{c}\right)_{2, \text {. }}\).

The above definition of bi-intrinsicity is thus equivalent to the requirement that \(U\) contains no letters other than tho constants of \(e_{\text {Exand }}\) be relatively transportable both for \(\Sigma\) and \(\Phi\).

Example. For any species of structure \(\Sigma\) and \(\Phi\) having only one principal base set, say \(x\) and \(y\) respectively, the term \(f(x, y)\) (" the set of all mappings of \(x\) into \(y>\)) is bi-intrinsic for (\(s, w\)).

\section*{Definition 28. - We shall call a process of deduction of a} \(\Theta\)-structure from a \(\sum\)-structure and a \(\Phi\)-structure any sequence of \(r+1\) terws of \(C, \odot_{,} O_{\mathcal{L}}, \ldots, O_{r}\), each bi-intrinsic for \((s, w)\), such that \(\mathbb{P}\) is a \(\Theta\)-structure over \(U_{2}, \ldots, U_{r}\) in \(\tau_{\Sigma, \Phi}, 1 . e\).
\[
\begin{aligned}
& \left.\left.\| P\{x, v, s, w\} \in T\left(U_{1}\{x, v, s, w\} \ldots, U_{r}\right\} x, v, s, w\right\}, B_{1}, \ldots, B_{p}\right) \text { and } \\
& \quad R e^{\xi} U_{1}\{x, v, s, w\} \ldots, \bar{u}_{r}\{x, v, s, w\}, P\{x, v, s, w \xi\{》
\end{aligned}
\]
are theorems of \(\tau_{\sum, \overline{\text { a }}}\).
As an immediate consequence of this definition we have that if \(C^{\prime}\) is a theory stronger than \(C\) in which \(f\) is a \(\Sigma\)-structure over \(E_{1} \ldots \ldots E_{n}\) and \(W\) a \(\Phi\)-structure over \(F_{1} \ldots F_{0}\), then (P) \(\xi E_{1}, \ldots, \mathbb{Z}_{n}, F_{1}, \ldots, F_{0}, \mathcal{S}, W\) is a \(\Theta-\) structure over

Definition 29. - The \(\Theta\)-strynture \(\left.P\} F_{1} \ldots E_{0}, F_{1}, \ldots, F_{0}, f, W\right\}\) is said to be the 0 -structure deduced from the yair (of 2 and \(\Phi\)-structures) (\(1, W\)) by the process of deduction \(P_{1} 0_{2}, \ldots, U_{5}\).

In virute of the definition of bi-intrinsic terms, we have the following criterion for such a process of deduction \(P_{1} \mathbb{O}_{1}, \ldots, U_{r}\).

CST6'. Let \(\left(\varepsilon_{2} \ldots \ldots f_{n}\right)\) be an isomorvhism of \(\mathcal{S}_{1} \ldots \ldots E_{2}\)
supplied with \(\mathcal{J}\) onto \(E_{i}^{\prime} \ldots . . E^{\prime}\) supplied with \(S^{\prime}\left(S\right.\) and \(f^{\prime}\) both being \(\Sigma\)-structures \()\) and let \(\left(g_{1} \ldots \ldots g_{0}\right)\) be an isomor phism of \(F_{i} \ldots \ldots F_{0}\) supplied with \(W\) onto \(F^{\prime} \mathcal{D}^{\prime} \ldots F_{0}^{\prime}\) supilied With \(W^{\prime}\left(W\right.\) and \(W^{\prime}\) both beine \(\Phi\) structures), then if \(U\) is of type \(B(V\),\() and we let\) \(n_{j}=\left\langle I_{1}, \ldots, I_{n}, E_{1}, \ldots, \delta_{0}, I_{1} \ldots \ldots I_{1}, I_{1}, \ldots . I_{q},\right\rangle^{\prime} V_{j}\) for \(1 \leqslant j \leqslant r_{\text {, }}\) we have that \(\left(h_{1} \ldots h_{1}\right)\) is an isomorphism of the \(r\) sets \(U_{j} \xi_{1} \ldots \ldots \xi_{n}\),
 \((1 \leqslant j \leqslant r)\) supplied respectively with the structures \(Q\} E_{1} \ldots \ldots\),
 from (\(1,2 r\)) and (\(J^{\prime}, x^{\prime}\)) by the rucess of deduction \(\mathbb{P}, \mathbb{U}_{1} \ldots \ldots .{ }_{r}\).

> In effect.
\[
h_{j}=\left\langle f, E, I, I^{\prime}\right\rangle V_{j}: \quad U_{j} \xi E_{,}, F, \mathcal{J}, \mathcal{N} \rightarrow U_{j} \xi E_{1}^{\prime}, F_{i}^{\prime}, f^{\prime}, W^{\prime} \xi
\]

Is a bijection for \(1 \leqslant j \leqslant r\) since \(0_{j}\) is bi-intrinsic for \((s, w)\) and \(\left(f_{i}, \ldots, f_{a}\right)\) and \(\left(g_{1}, \ldots, g_{0}\right)\) are both isomorphisms (so that the respective structures obtained on transport of \(S\) and \(W\) aro indeed \(\mathcal{S}^{\prime}\) and \(\mathcal{W}^{\prime}\)). Similarly
\[
\left\langle h_{1}, \ldots, h_{r^{\prime}}, I_{1}^{\prime \prime}, \ldots, I_{p}^{\prime \prime}\right\rangle^{T}=\left\langle f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n}, I_{1}, \ldots, I_{m}, I_{1}, \ldots, I_{q}\right\rangle^{V}
\]
(where \(I_{i}^{\prime \prime}\) is the identity mapping of \(B_{n}\) for \(1 \leqslant k \leqslant p\)) since \((\mathbb{P}\) being of type \(T\) over \(U_{1}, \ldots, U_{r}, B_{1}, \ldots, B_{p}\) implies that it must be of type \(V\) over \(x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{0}, A_{1}, \ldots, A_{m}, C_{1} \ldots, C_{q}\). Thus the required bi-intrinsicity and the fact that the (\(f\)) and (\(g\)) are isomorphisms implies that \(\left.\left\langle h_{1} \ldots, h_{r^{\prime}}, I_{1}{ }^{\prime \prime}, \ldots, I_{p}{ }^{\prime \prime}\right\rangle^{T}(P\} E, F_{0} f, \mathcal{W} \xi\right)=P \xi E^{\prime}, F^{\prime}, f^{\prime}, X^{\prime} \xi\) and bence that \(\left(h_{1}, \ldots, h_{r}\right)\) is an isomorphism.

Definition 30. - The mappings (\(h_{1}, \ldots, h_{r}\)) are said to be the maviogs doduced from \(\left.\left(f_{1} \ldots \ldots f_{n}\right),\left(\delta_{1} \ldots, g_{0}\right)\right)\) by the process of deduction \(\mathbb{P}_{1} U_{I} \ldots U_{5}\).
N.B. The immediately preceding notions can be generalized without difficulta to tri-intrinsic, indeod n-intrinsic terms and the consequent definitions of processes of deduction frow three or indeed a species can be then immediately formulated. The analog of CST6' will then follow just as easily as it has here.
we now come to the important notion of "morpiaisas" . For simplification, we for the moment assume the species of structure under consideration here have only a single (necessarily principal) buse set.

Let \(\sum\) be a species of atructure in a theory \(\mathcal{C}\) stronger than the theory of sets and let \(x, y, s, t\) be four distinct letters, distinct from themselves and frow the constants of \(\mathbb{C}_{\varepsilon}\). we shall use the notation \(\mathcal{F}(x, y)\) to designate the set of mappings of \(x\) into \(y\).

Suppose that we are given a term \(\sigma\{x, y, B, t \xi\) of \(C\) which verifies the following conditions:
(MO \()\)) The relation \(«\) is a \(\sum\)-structure over \(x\) and \(t\) is a Z-structure over \(y \gg\) implies, in \(C\), the relation \(\sigma\{x, y, z, t \xi \subseteq f(x, y)\).
(MO II) If, in a theory \(C^{\prime}\) stronger than \(C\), we let \(B, Z^{\prime}\), and \(E^{\prime \prime}\) be three sets supplied with \(\sum\)-structures \(\mathcal{S}, S^{\prime}\), and \(\mathcal{S}^{\prime \prime}\), then the relation 《 \(\mathcal{P} \in \sigma^{\prime}\left\{\Sigma_{,} E^{\prime}, \rho, \rho\right\}\) and \(\left.g \in \sigma \xi E^{\prime}, \Sigma^{\prime \prime}, \rho^{\prime}, \rho^{\prime \prime}\right\}, 》\) implies the relation \(\left.g^{\circ} \mathfrak{f} \in \sigma \xi=E^{\prime \prime}, \rho, \rho^{\prime \prime \prime}\right\}\).
(\(\mathrm{MO}_{\text {III }}\)) Given, in a theory \(e^{-1}\) stronger than \(C\), two sets \(E\) and \(E^{\prime}\) supplied with the \(\mathcal{L}\)-structures \(\mathcal{I}\) and \(I^{\prime}\) respectively, then for
a bijection \(\mathrm{I}: \mathrm{E} \longrightarrow \mathrm{E}^{\prime}\) to be an isomorphism, it is necessary and sufficient that \(\mathcal{f} \in \sigma \xi \mathbb{E}, \mathbb{E}^{\prime}, \rho, \rho^{\prime} \xi \quad\) and \(f^{-1} \in \sigma \xi E^{\prime}, S, \rho^{\prime}, \rho \xi\).
\[
\text { Definition 31. - If } \sum \text { and } \sigma \text { are given, we express the relation }
\] \(f \in \sigma \xi x, y, s, t \xi\) by saying that \(i\) is a morphism (or \(\sigma\)-moruhism) of \(x\), furnished with \(B_{\text {, into }}\) y, furnished with \(t\). If (in a theory \(C^{\prime}\) stronger than ()\(^{e}\) and \(E^{\prime}\) are two sets furnished with \(Z\)-structures \(\mathcal{S}\) and \(S^{\prime}\), the term \(\sigma \xi E_{0} \sum^{\prime}, \rho \rho_{\rho}^{j} \xi\) is called the set of \(\sigma\)-morphisme of E into \(E^{\prime}\) and if the context is clear simply by \(\operatorname{Hom}\left(E, E^{\prime}\right)\) or \(\operatorname{Mor}\left(E, E^{\prime}\right)\).
\[
\left(\mathrm{MO}_{\text {III }}\right) \text { and the properties of bijections give the following }
\]
criterion:
CST8. Let \(E\) and \(E^{\prime}\) be two sote, each furnished with a \(\Sigma\)-structure.
Let \(f: E \rightarrow E^{\prime}\) be a \(\sigma\)-morphism and \(R: E^{\prime} \rightarrow \mathbb{E}\) also be a \(\sigma\)-morphian. If \(\mathrm{f} \circ \mathrm{f}: \mathrm{E} \rightarrow \mathrm{S}\) is the 1dentity mapiag and \(\mathrm{I} \circ \mathrm{g}^{\prime} \mathrm{E}^{\prime} \rightarrow \mathrm{E}^{\prime}\) the identity maping then \(f\) is an isomoruhism of \(E\) onto \(B\) and \(f\) is its inverse isomorphism.

In case the species \(\Sigma\) consists of more than one principal base set, say \(x_{1}, \ldots, x_{x_{i}}\) and one or more auxiliary base sets \(A_{1}, \ldots, A_{m}\) then a \(\sigma\)-morphism is a system \(\left(f_{1}, \ldots, f_{n}\right)\), where \(f_{i}: x_{1} \rightarrow y_{i}(1 \leqslant 1 \leqslant n)\) such that the system verifies the analogous statements of (\(\mathrm{MO}_{\mathrm{I}}\)), \(\left(\mathrm{MO}_{\mathrm{II}}\right)\), and (\(\mathrm{HC}_{\text {IIII }}\)).
H.B. It may be possible to define more than one term \(\sigma\) which satialies \(\left(\right.\) MO \(\left._{I}\right)-\left(\right.\) MO \(\left._{\text {III }}\right)\) so that the notion of aorphism in contrast to that of isomor hism is not uniquely determined by the specification of \(\Sigma\) 。

We shall now outline the construction of a theory in which most
of our previous resulta may be aubsumed and the netamathematical device of rung construction schemas may be eliminated. This thoory may tentatively be called the theory of structures.

Let \(A\) be an assumblage (of a thoory \(e\)) in which only letters and substantive signs figure. Let us call the length of \(A\) the total number of signs which figure in \(A\) and the woight of \(A\) the sum of the waights of the aigns which figure in \(A\). If \(A\) has the form \(A^{\prime} B A^{\prime \prime}\) where \(A^{\prime}, B\) and \(A^{\prime \prime}\) are also assemblages, we shall say that the assemblage \(B\) is a sernent of \(A(\) (roper segment if \(B \neq A)\). If \(A\) ' is void we shall say that \(B\) is an initial sogment of \(A\). We shall say that such an assemblage \(A\) is balanced if its length is one groater than its weight and if for every propor initial segment \(B\) of \(A\), we have that the length of \(A\) is less than the woight of \(B\). If \(A\) is a balanced assemblage and begins with a substantive sign then \(A\) may be put in the form \(\mathrm{rB}_{1}, \ldots . \mathrm{B}_{p}\), where f is a substantive \(s i g n\) of weight \(p(\geqslant 1)\) and all of the \(B_{i}\) are balanced. We call the assemblages \(B_{1}\) the assemblages antecedent to \(A\).

Let \(e\) be a theory stronger than the theory of sets in which \(P_{i s}\) a substantive sign of woight \(1, X\) a substantive sign of weight 2 . Let \(x_{1}: \ldots, x_{n}\) be distinct letters, each of which has weight 0 . Lot T be a balasced assemblage of the foregoing signs, i.e., of \(\mathbf{P}, X\). \(x_{1}, \ldots, x_{n}\); wuch an assemblage will be called a rung type over \(x_{1} \ldots \ldots x_{n}\). From now on let \(E_{1} \ldots, E_{n}\) be \(n\) term of a theory stronger than the theory of sets. For every rung type \(T\) over \(x_{1} \ldots, x_{n}\), we define a term \(T\left(B_{1}, \ldots, E_{n}\right)\) in the following manner:
1. if \(T\) is a letter \(x_{i}, T\left(L_{i} \ldots, \sum_{n}\right)\) is the set \(E_{i}\);
2. if \(T\) is of the form \(P U\), where \(O\) is the assemblace antecedent to \(T, T\left(E_{2}, \ldots, B_{n}\right)\) is the assemblage
\[
P\left(u\left(B_{1}, \ldots, B_{n}\right)\right) ;
\]
3. If \(T\) is of the form \(X U V\), where \(\mathbb{O}\) and \(V\) are the assemblages antecedent to \(T, T\left(E_{1}, \ldots, E_{n}\right)\) is the set \(U\left(E_{1}, \ldots, E_{n}\right) \times V\left(E_{1}, \ldots, E_{n}\right)\).

It may be easily shown that, for each rung type \(I\) over \(x_{1}, \ldots, x_{n}\), \(T\left(E_{1}, \ldots, E_{n}\right)\) is a rung over the termB \(E_{1}, \ldots, E_{n}\), and conversely (reasoning by induction over the length of the rung type or over the construction schema for the rung). Moreover every rung over n distinct terms may be written in one and only one manner in the form \(m\left(x_{1}, \ldots, x_{n}\right)\), where is a rung type.

The tera \(T\left(E_{1} \ldots E_{n}\right)\) will be called the realization of the rung type I over the terme \(z_{1}, \cdots, \delta_{n}\).

In a fashion similar to the above definition but in analogy to Definition 4 we can show that one may associate to a rung type \(T\) over n letters, and to \(n\) mappings \(f_{1} \ldots f_{n}\), a canonical extension of these mappings and we may then deduce that if two rung construction schemas \(S\) and \(S^{\prime}\) over \(n\) terms are such that \(S\left(x_{1}, \ldots, x_{n}\right)=S^{\prime}\left(x_{1}, \ldots, x_{n}\right)\), the \(x_{i}\) being distinct letters, that one has \(\left\langle f_{1}, \ldots, f_{n}\right\rangle^{S}=\left\langle f_{1}, \ldots, f_{n}\right\rangle^{S}\).

How let \(e\) be a theory stronger than the theory of sets, in
Which \(P\) and \(P^{-}\)are substantive signa of weight \(1, X\) and \(X^{-}\)are substantive signs of weight 2 .

For every assemblage \(A\) of these signs and \(n\) distinct letters \(x_{1}, \ldots, x_{n}\), we define the variance of \(A\) in the following manner.

First we define the variance of the letters \(x_{1}\) and also the signs \(P\) and \(X\) as 0 ; we say that \(P^{-}\)and \(X^{-}\)have variance 1 . Finally we call the variance of A the binary sum of the variances of the individual signs which figure in \(A\), i.e., \(A\) is of 0 variance if there an even number of signs of variance 1 , and 1 otherwise.

We now call a signed rung type a balanced assemblage \(A\) of the preceding bigns satisfying the following two conditionss
1. The assemblages ante eedent to \(A\) are signed rung types;
2. If \(A\) begins with the sign \(X\), the two antecedent assemblages must have \(O\) variance; if \(A\) begins with the sign \(X^{-}\), the two antecedent assemblages must have variance 1.

A signed rung type will be said to be covariant if it has variance 0 , contravariant if it has variance 1.

If in a signed rung type \(A\) we replace \(P^{-}\)by \(P\) and \(X^{-}\)by \(X\), we obtain a rung type \(A^{*}\); every realization of the rung type \(A^{*}\) over n terms \(E_{1}, \ldots E_{n}\) will be said to be a realization of the signed rung type \(A\) over \(E_{1}, \ldots, E_{n}\) and will be denoted by \(A\left(E_{1}, \ldots, E_{n}\right)\).

Let \(E_{1}, \ldots, E_{n}, E_{1}, \ldots, i_{n}^{\prime}\) be sets, and \(f_{i}: E_{i} \longrightarrow E_{i}^{\prime}\) be map ings for \(1 \leqslant i \geqslant n\). We can casily show that to each signed rung type \(S\) over \(x_{1}, \ldots, x_{n}\), we may associate a mapping \(\left\{f_{1}, \ldots, f_{n}\right\}^{S}\) which has the following definitive properties:
1. if \(S\) is covariant (resp. contravariant), then
\[
\begin{aligned}
& \left\{f_{1}, \ldots, f_{n}\right\}^{S}: S\left(E_{1}, \ldots, E_{n}\right) \rightarrow S\left(E_{1}^{\prime}, \ldots, E_{n}^{\prime}\right) \\
& \left(r e s p \cdot\left\{f_{1}, \ldots, f_{n}\right\}^{S}: S\left(E_{1}^{\prime}, \ldots, E_{n}^{\prime}\right) \rightarrow S\left(E_{1}, \ldots, E_{n}\right)\right) ;
\end{aligned}
\]
2. If \(S\) is a letter \(x_{1},\left\{f_{1}, \ldots, f_{n}\right\}^{S}\) is \(f_{1}\);
3. if \(S\) is \(P\) \(T\left(\right.\) resp. \(P^{-} T\)), and if \(g=\left\{f_{1}, \ldots, f_{n}\right\}^{T:}\) \(F \rightarrow F^{\prime}\), then \(\left\{\xi_{1}, \ldots, f_{n}\right\}^{3}=\hat{g}\) (resp. \({ }^{-1}\));
4. If \(S\) is \(X\) TU or \(X\) TU, where \(T\) and \(U\) are the antecedent assemblages, and if \(\left\{f_{1}, \ldots, f_{n}\right\}^{T}=g: F \longrightarrow F^{\prime}\) and \(\left\{f_{1}, \ldots, f_{n}\right\}^{U}=n: G \rightarrow G 1\), then \(\left\{f_{1} \ldots, s_{n}\right\}^{S}=\) \(\delta \times h: F \times G \longrightarrow F^{\prime} \times a^{1}\).

The mapping \(\left\{f_{1}, \ldots, f_{n}\right\}^{S}\) will be called the signed canonical extension of the mappings \(f_{1} \ldots, f_{n}\) with respect to the signed rung trice \(S\).

Of course if \(S\) is a rung type (1.8.., when \(P^{-}\)and \(X^{-}\)do not figure in \(S\)) the signed canonical extension \(\left\{f_{1} \ldots \ldots f_{n}\right\}^{s}=\left\langle\mathcal{f}_{1}, \ldots, f_{n}\right\rangle^{s}\).

It may also be shown that if \(f_{i}: E_{i} \longrightarrow E_{i}^{\prime}\) and \(f_{i}^{\prime}: E_{i}^{\prime} \longrightarrow E_{i}^{\prime \prime}\) (\(1 \leqslant 1 \leqslant n\)), one has for a covariant signed rung type \(S\) that
\[
\left\{p_{1}^{\prime} \circ f_{1}, \ldots, f_{n}^{\prime} \circ f_{n}\right\}^{S}=\left\{f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right\}^{S} \circ\left\{p_{1}, \ldots, f_{n}^{\prime}\right\}^{S},
\]
while for a contravariant signed rung type \(S\)
\[
\left\{f_{1}^{\prime} \circ f_{1}, \ldots, f_{n}^{\prime} \circ f_{n}\right\}^{S}=\left\{f_{1}, \ldots, f_{n}\right\}^{S} \circ\left\{f_{1}, \ldots, f_{n}^{\prime}\right\}^{S} .
\]

Also, we have that if \(f_{i}: E_{1} \longrightarrow E_{i}\) ' is a bijection and \(\mathcal{f}_{1}^{-1}\) the inverse bijection for \(1 \leqslant 1 \leqslant n\), then \(\left\{f_{1}, \ldots, q_{n}\right\}\) S is a bijection and \(\left\{f_{i}, \ldots, \hat{f}_{n}^{-1}\right\}\) its inverse bijection. Moreover in this case if \(S^{*}\) is the (unsigned) rung type corresponding to the signed rung type S, \(\left\{\varepsilon_{1} \ldots \ldots, f_{n}\right\}^{S}\) is equal to \(\left\langle f_{1} \ldots ., f_{n}\right\rangle^{g^{*}}\) or to \(\left\langle f_{1}^{-1} \ldots . \hat{f}_{n}^{-1}\right\rangle^{s^{*}}\) depending on whether \(S\) is covariant or contravariant.

Let us call a signed rung type Troper if it has the form \(P\) U where \(U\) is the assemblage antecedent to \(T\).

We define a categury type \(C\) over \(x_{1}, \ldots, x_{n}\) to be a balanced assemblage of proper signed rung types and the sign \(X\) all the antesedent assemblages of which are category types.

If \(C\) is a category type, then every realization of the rung type C* will be said to be a realization of the category type \(C\) and will be denoted by \(C\left(E_{1} \ldots, E_{n}\right)\).

Let \(E_{1}, \ldots, E_{n}, E_{1}^{\prime}, \ldots, E_{n}^{\prime}\) be sets and let \(I_{i}: E_{i} \longrightarrow E_{i}^{\prime}\) for \(1 \leqslant 1 \leqslant n\). To each category type \(C\) over \(x_{1}, \ldots, x_{n}\) we may associate a term \(\left[\delta_{1}, \ldots, f_{n}\right]^{C}\) with the following properties:
1. if \(C\) is a signed rung type, then \(\left[f_{1}, \ldots, f_{n}\right]^{C}=\left\{f_{1}, \ldots, f_{n}\right\}^{C}\);
2. if \(C\) is of the form \(X\) TU where \(T\) and \(U\) are assemblages not concordant (i.e., not having the same variance), then
\[
\left[f_{1}, \ldots, f_{n}\right]^{C} \text { is }\left(\left[f_{1}, \ldots, f_{n}\right]^{T},\left[f_{1}, \ldots, f_{n}\right]^{U}\right) \text {. }
\]

The term \(\left[f_{1}, \ldots, f_{n}\right]^{C}\) will be called the canonical extension of the mappings \(f_{1}, \ldots, r_{n} w . r . t\). to the category type \(C\).

If \(C\) is a category type over \(x_{1} \ldots \ldots x_{n}\), then if \(P S_{1} \ldots \ldots, S_{p}\) are the \(p\) proper signed rung types which figure in \(C,\left[f_{1}, \ldots, f_{n}\right]^{C}\) may be written as \(\left(\left\{f_{1}, \ldots, f_{n}\right\}^{P} S_{i_{1}} \ldots,\left\{\delta_{1} \ldots \ldots f_{n}\right\}^{P} S_{i}\right)\).

Now let \(C\) be a category type over \(n+m\) letters. Let \(\Sigma\) be a species of structure with \(x_{1}, \ldots, x_{n}\) for principal base sets, \(A_{1}, \ldots, A_{m}\) for auxiliary base sets, whose typical characterization is of the form \(s \in C\left(x_{1}, \ldots x_{n}, A_{1}, \ldots, A_{m}\right)\). we shall show that one may define a notion of \(\sigma\)-morphism for this species of structure in the following manner:

Being given n sets \(\varepsilon_{1} \ldots, \dot{u}_{n}\) supplied with a \(\sum\)-structure \(U=\left(U_{i}, \cdots, U_{i}\right)\), and a mapping \(s_{i}: E_{i} \rightarrow E_{i}^{\prime}\) for \(1 \leqslant 1 \leqslant n\), we say that (\(f_{1} \ldots, f_{n}\)) is a \(\sigma\)-morphism if and only if the mappings \(f_{i}\) verify the following conditions:
for each signed rung type \(P S_{i j}\) liguring in \(C\)
1. if \(S_{i j}\) is a covariant signed rung type
\[
\left\{f_{1}, \ldots, f_{n}, I_{1}, \ldots, I_{m}\right\}^{S_{i_{j}}}\left\langle U_{i}\right\rangle \subseteq U_{j}
\]
2. if \(S_{j}\) is a contravariant rung type
\[
\left\{f_{1}, \ldots, f_{n}, I_{1}, \ldots, I_{m}\right\}^{S_{i j}}\left\langle U_{i_{j}}\right\rangle \subseteq U_{i_{j}} .
\]

That the mappings (\(f_{1}, \ldots, f_{n}\)) which satisfy these conditions satisfy (\(\mathrm{MO}_{I}\)) (\(\mathrm{MO}_{I I}\)) and (\(\mathrm{MO}_{\text {III }}\)) follows immediately from the definitions and the properties of the canonical extension of the mapping to signed rung types which we have already outlined.

Example 1. Let \(\sum\) be the species of structure of an ordered set with
\[
S_{0} \in(\boldsymbol{P}(x \mathbf{X} x) \quad(E)=\$(E X E)
\]
as typical characterization then the above definition of \(\sigma\)-morphisw gives the set of mappings \(f: E \rightarrow E^{\prime}\) such that \(f \times f\langle\rho\rangle=S^{\prime}\) i.e.. such that \((u, v) \in \mathcal{S} \Rightarrow f x f(u, v) \in \mathcal{S}^{\prime}\), but \(f \times f(u, v)=(f(u), f(v))\) so that in the usual notation the relation \((u, v) \in S \Rightarrow(f(u), f(v))=S^{\prime}\) becomes \(u \leqslant v \Rightarrow f(u) \leqslant^{\prime} f(v)\) which is usually expressed by saying that \(f\) is an increasing maping. If we use the contravariant category type
\(\boldsymbol{P}\left(x \mathbf{X}_{x}\right)\) to define the structure, the corresponding notion of \(\sigma\)-morphism gives these mappiags \(f: E \longrightarrow E^{\prime}\) such that \(u \leqslant \nabla \Rightarrow f(v) \Xi^{\prime} f(u)\), i.e.. It gives the decreasing mappings of E into \(\mathrm{F}^{\prime}\). Both of these notions of morphism are the usual definitions of morphism for order sets.

Example 2. Let \(\sum\) be a species of algebraic structure having a single internal law of composition which is determined by the category type \(P((x \times x) \times x)\) then the above defined notion of \(\sigma\) morphism gives those mappings fi \(\vec{c} \rightarrow E^{\prime}\) such that \(J^{\prime \prime}(f(x), f(y))=f(J(x, y))\) for \(x, y \in E\) which are indeed the homomor hisms of \(E\) into \(E^{\prime}\). Using \(X^{-}\)we would get the anti-homomor hisms of \(\bar{s}\) into E . If we have more than one internal law of composition and/or an external law of composition, we again get the usual notion of homomorphism for such algebraic structures.

Example 3. Let \(\Sigma\) be the species of a topology with its typical characterization given by the category type \(\boldsymbol{P}(\boldsymbol{P}(x)\)). The above notion of \(\sigma\)-morphisw gives those mappings \(\mathrm{f}: \mathrm{E} \rightarrow \mathrm{E}^{\prime}\) such that \(x \in V \Rightarrow f\langle X\rangle \in V^{\prime}\) where \(V\) and \(V^{\prime}\) are the topologies on \(E\) and \(E^{\prime}\) respectively, i.e., it gives the open mappings of Einto 厄'. Using the category type \(P\left(P^{-}(x)\right)\) we get those mappings \(f\) such that \(X^{\prime} \in V^{\prime} \Rightarrow^{-1}\left(x^{\prime}\right) \in V\) i.e.. we get the continuous maypings of E into E .

Bzamule 4. Let \(\sum\) be the species of a topological group with the typical characterization given by the category type \(\mathbf{P}((x \times x) \times x) \times \mathbf{P}(\vec{P}(x))\) then the above notion of \(\sigma\)-morphism gives the continuous howomorphisms of \(E\) into \(E\).```

