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PREFACE

The material of this thesis is largely concerned with the
formal explication of the naive notions of "maahamaatcal structure”,
“isomorphism”, "morphism", etc. which are fundamental in all of
modern maheeimatcs.

A Tirst step toward such an explication was made by Birkhoff
in 1935 with his notion of an "abstract algebra”™. In his paper
(Birkhoff 35) he showed that by suitably abstracting the common
proppeties of the purely algebraic systems such as groups, rings,
fields, moodu”es, etc. one could give a single definition which in
particular speciiaLizations woil.d give all these algebraic objects
back again, and by the use of which a large number of theorems
previously proved separately for each of these algebraic objects
could be replaced by a single theorem for abstract algebras, which
woiQd give each of the previously proved theorems back as corollaries.

In spite of the power of this abstraction, its extension to
cover other iaaherliatcal systems such as topologies never got beyond
the employment of analogous notational conventions, e.g., in analogy
to the definition of abstract algebra, a topological space was defined
as a p™r (X,V). In addition to this difficulty, there were a number
of inelegances of the original definition of abstract algebra which
made their use cumbersome, e.g., in order to consider a mmdule as an
abstract algebra, one had to allow for the poossbility of an infinite
number of binary relations in addition to the finite number of ternary
relations which sufficed in all other cases.

A meea-theory of aathermatcal structures of sufficient genneality
to cover algebraic, tlp)llgical, and order structures was not forth-
coming until 1957 when Bourbati published Copper IV of his Theorie
des Ensembles (Bom-baki 57)» In this chapter, Bourbati presented a
meea-theory which not only eliminated the itelegancies of Birkic™f's
approach (which for algebraic structures it supercedes) but was
presumably adequate for all presently known maahemaatc'tl structure.

Untfotmnltely, in spite of the power and beauty of Bolrebaai.ss
approach, the apparent cumbersomeness of the notation to the "‘rntnitiatrd”
and the large amount of unfarniiiar antecedent maateial necessary for
its comppreunnion, have made this chapter one of the mmst neglected of
all fhe raises in Bourbaai”™ treatise. Kiis t7™sis arises out of an
attempt to obviate some of these difficulties.

To do this we have abstracted relevant matTial from Chhppers I,
11, and 1Il of the Theorie des rnsrmiles (BolrebfakL 5) 56) and have
presented this 1attrial as parts | and 1l of this thesis. In general,
proofs have been eliminated much in the meantier of Bourlbaki (58) which

iIs unfortunately inadequate for our purposes.



Pwrt 111 then presents in an a”ppj~fied and extended fashion
the sattrial found in section 1 and part of section 2 of Boiurbaki's
Qhipter 1V, the remaining sections having already been presented by
the author in a Depirtrnental SMitiiutir in the Fall of 1962.

It Will be apparent to the reader familiar with the theory of
"categories and functors” that much of the matTial considered in
Chhpper IV presents very close analogies to the subject mater of that
theory and this thesis may also be viewed as a study preliminary to the
rewriting of one of these '"theories™ in terms of the other.
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PART |1

FORMAL MATIHfIMAAICS

1. TERMS AND RELATIONS

A ratheamtical theory consiste of signs, relations, terms,
axioms, proofs and theorems. The meeaiing of each of these notions
will become clear as we proceed.

The signs of a Imthetmtical theory C fall into three distinct

types.
1. Logical Signs: v ,1 ,«, D
2. Letters: X, y, A A' etc.
3. Specific Signs: e.g. in the theory of sets the
specific signs are« =, e , O'i.
Once the specific signs are specified for a particular theory
C , one may form the assemblages of 'O , i.e. strings of signs of C

in Which each occurrence of the sign < Oh may be joined by a horizontal
line (called a bond) to the sign which ordinarily will occur to

its left. For example ( TtxO and « X € "

of the theory of sets.

In any assemblage of C * we are permitted the operation of
subssitution. i.e. the replacement of one or more of the signs occurring
in the assemblage by other signs or assemblages of "C . We stoQl use
the following notation for such subsSiiuiions: |If A and B designate
assemblages of C , and x designates a letter Wh.ch may or may not

1



figure in A, then (BIXA will designate the simultaneous replacement of
the letter %, in each of its occurrences in A, by the assemblage B. For
example, ("E e y~Q|Xx)xy designates ~ ° yOd y. Of course if x does not
figure Iin A, then (BIXA is just A. As an alternative to this notation,
we shall occasionally use the following sort of notation: Suppose that
we are given some assemblage R in which the letters x and y may or may
not occur and we wish to call attention to the fact of the possbblity
of such an occurrence; under such circumstances, we shall write R TX,y|
to single out the poossbblity of the occurrence of x and/or y in R. If
this has been done, then we stall use the notation R tz,w'| to designate
the assemblage obtained by the simultaneous replacement of x by z and y
by w in each of their respective possible occurrences in R. (Tis same
notation will be used wwthout limiting the number of letters which we
may wish to call attention to in any purticular assemblage of 'C .)

It wwil become ap”™rent that the exclusive use of assemblages
woidld result in typographically - not to meetion metnatly-
insurmontable difficulties; for this reason, we shall, at convenient
spots, introduce abrogating symtalL, notably words of ordinary language,
to designate various assemblages™® The introduction of these symmols is
the object of the definitions of 73 « For example the assemblage vT
will be represented by =>

Let A be an assemblage of 73 ; we designate by T*(A) the
assemblage of 73 obtained in the following maimer: One takes the
assemblage A and in each occurrence of the letter x, one replaces it by
the sign O ; this done, one wwites to the left of the resulting assemblage

the sign X and joins each the occurrences of Q by a bond to the T .



For txummle, T *(€ xy) i"iigw”tes the ME”~rab™ X fea j.

In developing some particular theory fe , we shall often concern
ourselves with maunpulations involving various substitutions in various
tssembbages. Because of the extreme length of such reasonings and the
frequency of similar forms of such reasonings about subbsitutions, it is
very convenient to group together the final result of a succession of
certain maiipuations over certain assemblages as mftt/amthhemt'fncii
substitution criteria Tieir justification of course does not belong
to the formal mthernmtics itself but rather to the metamathetmtics of
the theory. These criteria we shtLl designate by CS followed by a

nuneeat. The Tirst ones are the following:

C»i. Let A and B be assemblages, x and x* letters. If x* does

not figure in A, (B | X)A is identical to (B I X)A.

CS2. Let A, B and C be assemblages, x and y distinct letters.
IT y does not figure in B, (Bl xX)(C 1 y)A is identical to (C*l y)(Bl x)A,

where C* is the assemblage (B \ x)C.

CS}. Let A be an assemblage, x and X' letters. If x* does not
figure in A, T ~A) is identical to X~™.(A'), where A* is tne assemblage
Ox<*| x)A.

CS4. Let A and B be assemblages, x and y distinct letters. If
x does not figure in B, (Bi y)T.(A) is identical to X 1), ..here A*

is the assemblage (i. | y)A.

CS5. Let A« B, and C be assemblages, x a letter. The assemblage

(C I x)(~ A) is identical to - A%

(CIxXvAB)" " " AYB*



(C | X)(=>AB) is identical to ~A’B%*

(C Ix) (SAB) " " " SA*B*,

where A' is (Cl x)A, Bl is (C1 x)B, .nd S it a specific s+iji.

A mathematical theory consists of certain rules which permit
one to say which assemblages of the theory are relations or terms of the
theory and other rules which permit one to say that certain assemblages
are the theorems of the theory. The description of these rules which we
will give here does not, of course, belong to the formal mathematics
itself but rather to the metamathematics of the theory.

The specific signs of amathematical theory fall into two distinct
types, relational signs and substantive signe. Additionally, each specific
sign is assigned one and only one whole number, called the weight of the
specific sign. For example, in the theory of sets « = m>), and «tw
are relational signs of weight 2, while « O » is a substantive sign of
weight 2.

We classify our assemblages into two species: A it, of the first
8 ecies 1T 1t commences by a X , a substantive sign, or reduces to a
letter, A is said to be of the second species in all other cases.

A formative construction of a theory 7Z is a sequence of
assemblages of ”~3 which possess the following property.

For each assemblage A of the sequence, one of the .oilowing
conditionals verified:

a) A is a letter.

b) There occurs in the sequence preceding A a second species
assemblage B, such that A is -l B.

c) There occurs in the sequence, preceding A, two (nhot necessarily

distinct) assemblages B and C such that A is v BC.



d) There occurs in the sequence preceding A, a second species
assemblage B and a letter x, such that A is T (b).

e) There is a specific sign S of weight n of "C , and there
occurs in the sequence preceding A, n first species assemblages

== A , such that A is SAi,@’\...A .
HE B a n

We call the teros of C the first species assemblages of C |,
which figure in the formative constructions of C . ee call the relations
of "C the second species assemblages which so figure.

example: In the theory of sets, where G 1is a relational sign

of weight 2, the following sequence of assemblages is a formitive cornrtruc-

tion:
1) A
2 A
3 A
(4) € AA*
(5) € AA”
(6) 1 € Aax

@) vI € AAL € AA”
(8) Tv 1e0cA' e O A”

Let us verify this fact. (1), (2), and (3) verify a) since they are aLl
letters; (4) verifies e) since 6 is a relational sign of wwigit 2 and
A and A* are Tirst species assemblage which occur in the sequence
preceding CM, similarly for (> (6) verifies b) since € AA is a
s«cond species assemblage occur”™g in the sequence preceding (6)j (7)
verifies c) since 1€ AA* and 6 AA” are both second species assemblages

~nnrri™ in the sequences preceding(?); 88) verifies d) since k8) is



sisply X' 1€AA'e AA"Y), thi "triasent” of whiahis (7) whiah is

t siaond speciis tssisblage. Thi final tssisbltgi (8), sinai it aosmsnces
wth 1 X | tnd is thas of thi ﬁist ’\echn/Oils teas t turn of thi thioiy
of sits, sisiltiLy (1), (2), tnd (3) tri tlso turns, wwhli (U), (5), (6)
tnd (?) tri tLL of thi siaond spiciis tnd hinai tri riLttions of thi thioiy
of sits.

Wi atn now aosLsnt on thi intuitivi significtnai of oar lo™atl
tnd specifia signs in iilttion to thi foisally definid turns tnd 1ilttions
of t thioiy. Thi tires of thioiy intaitivily iipiisint thi obbects, thi
description of whiah is thi parposi of thi thiory, wWwhli thi nitrons
Nnpiisint nitrons bitwiin thi objicts oi thi propiitiis of thi obbects,
or tssirtions tboat thi objicts of XL . (wth this in aind, wi ntt">h thi
intlipritltign of nigation to 1 so, thtt 1f A is tn tssirtion, thin
(nolt A) 1s tn tssirtion; V 1is to bi intiipiitid ts inalasivi disjanation
thus 1T A tnd B tii tssiiti“o”™ns tbout objects, thin V AB, (A or B) is tn
tssirtion of <C « Siilarly if S is t specifia sign tnd A*««»A& Mm
objicts of "C , thin SAN,..,” riprisints tn objiat of C (if S is t
sabstmtivi sign) or t mation bitwiin objicts of C (if S is t rllltionll
sign). Fntlly if R is i nitron andirstood ts tn tssirtion tbout thi
objict x, thin X ,(R) designatis that objict, which, if i1t i1Xsts, is
privilegid wl.th possissing thi property tssiitid by R.

It is aliti fros thi specifiattion of what aonntitatis t foii't;ivi
aonntraction of O, thtt thi inititl sign of t ™1™ of C suat bi
y , "l , oi t rllltiontl sign, wld.li thi inititl sign of t tirs of C sust
bi X , i sabstmtivi sign, or ilsi thi turn redaaid to biing si'Zly t
littii. In ftat, onai thi specifia signs of t thioiy C tii spicifiid,

thi tiiss tnd rllltiont of C tii1 iffiativily ditirsinid in thi sinsi



that given any assemblage of C one has at one's disposal an effective
decision procedure which will enable one to determine whether the given
assemblage is a term or a relation of '‘C (cf. Boiu-teati 195", AppemcdLx 1
to Ctapter I).

In a more practical vain we present a collection of metamathe-
mttcally justified gormaaive Criteria each of which summaizes chains
of reasonings about the formative constructions of a theory . These
criteria, when they appear here in the text are designated by CF and an

appropriate niuBeerl. The Tfirst eight of these are the following:

CF1. If A and B are relations of a theory C, Vv AB is a relation

of C.

CF2, If A is a relation of ~C, -~IA is a relation of "C

CJJ If A is a relation of C , and x a letter X(A) IS a
term of 7X ,

CFU, If Arepr, _, . are terns of C , and S is a relational
(resp. substantive) sign of wwiriit n of 'C , A& is a relation

(rasp, term) of "C .

f0
CJ5, |If A and B are relations of C , =>AB is a relation of "C

CF®6, I-‘Ft-A':l_’é- .......... An be a fo_thlve construction of € , x and
y letters. |If y does not figure in any of the A" then (yl X)A.«

Cyl X)A,,, -, (v | x)Arl Is a formative construction of 'C .

CJ7. L»t A be a relation (reap, term) of .7, x and y letters.

Then (y| X)A 1s a re”t.ion (resp. term) of



ccF8 L»t A te-.a Metlon (reap, term) of C, x . I™™r, and

T t terp of Then_ | X)A 1a a slattern torn) of X .

-e are now tt the stage where we can describe the rules which
enable us to determine which assemblages of __ are the theorems of "C
Before we do this we shall make a few conventions which will greatly
enhance the retdatility of the text. They tre the following: we shall
commonly write « not (A) > in place of « "JA » , « A =>B y In place
of « __ AB _, «A or B)) in place of « vAB » « This, whhle enhancing
the intuitive interpretation of the text, is not without its own difficulties.
For 1x00576, our notation, heretofore was, in the meanner of LWHKkisiewicz,
(({parenthesis free)) , but now to avoid interpretationt tibiguiiits,
we must make use of such tuxiitry devices as parenthesis to render the
meetning of our expressions clear, e.g.we write (A or B) or C for vv ABC
to distinguish this from A or (B or C)which is the convention for

VA y BCe

2. THEOREMS AND PROOFS

The specification of the specific signs of C c<emptltely
determines the Uras and relations o "C . In order to construct the
theorems of XX _ we first write down a certain number of r*sUons of
which will be called the exploit axioms of TZ ; the letters which figure
in the exploit axioms are called the constants of __ . Intuitively the
constants represent the wwH determined objects, of the theory 73 and
the exploit axioms represent the fundi'amena!, or evident assertions that

we wish to make about these well determined obiects



Je next may write down one oir more « rules » called the
schemas of TL which each must have the following prop”eties: 1) The
application of such a rule R mimt furnish a rel<*tion oft ; 2) if S is
a relation furnished by such a rule, T a term of "C, and x a letter
then the relation (T | X)S must again be constrictible by means of an
application of the rule R. Intiu-tivity. 1f x is a letter, then it
represents a co’pXd\t*<™Ly undetermined object so that if some assertion is
made involving the letter x, which we wish to be true as an axiom, then
this axiom must be of the sort that it be true for an arbitrary object
T of theory "C+ A relation furnished by the application of a schema
o™ "C wvil be called an iniAldt axiom of XL.

We are now in a position to make clear wimt we mean by a proof
and a theorem of ~C. »e do this in the following muinnr.

We say that a demonsSrative text of a theory XL compprsea:

1. An aucilia-ry formative conntraction of terms and relations
of C
2. A d™Dansration (proof) of "C, i.e. a sequence of relations
of * figuring in the awd-liary formative construction, such
that, for each relation R of the sequence, at least one of
the following conditions is verified:
aa) R is an expHc”™ axiom of C»
aa) R results from the application of a schema of 'C to
the terms or relations figuring in the tlucilitry
formative construction;
b) there are in the sequence two relations S, T preceding

R, such that T is S -=»R
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Ms now say that a theorem of £ is a relation in a
>roof of "C + Howeevr, we should note that thia notion is essentially
relative to the state of development of the theory at a particular moment
of wrrting: a relation of 73, becomes a theorem of 73 when one has
successfully inserted i1t in a proof of 3. Thus to say that a relation
of "C is not a theorem of "C may be without precise sense since it can
only refer to the present stage of development of the theory. in lieu
of « theorem of we will also say (< true relation in 71» or

((pirjposstion > , ((lemma?) etc. |If a is a relation of 71, xa letter
and T a term of 73, and if (T | X)R is a theorem of 'C , we shall say
that T verifies the relation | in 73 (or is a solution of R) when R is
considered as a relation involving x.

A relation is said to be false in C if its negation iIs a theorem
of U . Ono can say that a theory 73 is contradictory if one has a
relation at hand which is both true and false in 73. Here again, we
should be on guard against saying that once we have a false relation R
in C that (< the relation R is not true in C » for thia latter state-
ment may not actually make good sense, since it eisentially refers to the
present stage of development of the theory.

*e now stall present a number of mtia"mat’ee/thjtircharly justified
deductive criteria which permit us to abbreviate proofs in a theory 'C.
These will be designated by C followed by a rnuneeal. The Mjooity of
these criteria will be presented without proof, but as the first five are

iunmedate consequences of the notion of proof, we shall present them

and theirmeta-) proofs here.
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ClI* (Modus ponens) Let A and B be relatione of a theory £, If

A and » =»D are laeore«& of ~C, then B is a theorem of

In effect Let be a denoocStation of ¥ where A figures,
and SN(**«v8 ba a deimoncSr&tion of ¥ where A r b figures. It is evident
g

that e cc tAn* ’V\----SP is a deoonsSrction of "C in which A and

A r B figure. Thus

is a dMfioonstation of r , so that B is a theoreo of "C .

We present this oeta-theoreo and its oeea-proof in full to
denoonstate the general sethod of proof for all such criteria. Tiis one
criterion is particularly iajpotant as it is essentially the only rule of
inference available in our construction of a oatheeottcal theory. Thus
our logic is strictly classical.

To illustrate how our forotive criteria and subssitution criteria
are used In these otz™-t“heor*o03, we present the following criterion and
its oeea-proof.

Let C ba a theory. Ax—""’An its expPicit axions, x a letter,

T o term of Let (T | - C be the theory whose signs and scheoas are

the same as those of "C-, but whose expPicit axioas are (T | X)A",

(T X a..., T XA .

C2. Let A be a theoreo of a theory C, T a term of r, x a

letter. Then (T | X)A is a theoreo of (T I x) O «

In effect, let C-R_,*..,*b r a de”nonnttation o™ "C where A

figures. Connider the sequence (T | X)Rp (T I xX)»2,..., T1 xX)Rqg, which
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is a sequence of relations by CF8. One muut see that this is a demon-
stration of (T | xX) O, which will establish the criterion. If Rk iIs an
impllcit axiom of "C , (T | xX)!* is again an implicit axiom of 'C
the definition of schema of 'C , and thus of (TIx)"C . If R is an
explicit axiom of "C , then (T IX)R”" is an explicit axiom of (11 x) C .
Finely, 1T Rr is preceded by the relations Rr and R™, R* being

(T I X)R is preceded by (T | x)Ri and by (T | x)R”, and this last relation

is identical to (T | xX)R® R (T IX)R by CS$.

CJ. Let A be a theorem of a theory R . T a tera of TS . and
x a letter which i1s not a constant of R, Phen (T IX)A is a trieormm

of R

Tris is an iMmddate result of 02, since X, by hyjp>thesis is
not a constant of '‘C and hence, by definition does not figure in the
explicit axioms of 'C .

In larticUIlar, 1T 'C has no explicit axioms, or if the explicit

axioms of "O contain no letters, CJ alplies without restriction on the

letter x.

A theory is said to be stronger than a theory ¢ 1if aLl of
the signs of "C are signs of , 1T all of the explicit axioms of C
are theorems of ™O ", and if the schemas of — are schemas of "C '

The above notion has several consequences. One of these is
that all of the terms and relations o” "C are again terms and relations
of R» since ail of the signs of 7S are signs of O’ and hence any
formtive construction of — is a forteori, a formative construction of

"C 7. Anther consequence is the following criterion.
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\/ a theory CI! ja stronger than a theory C t aL! of th«

theorems of are theorems of C°'.

LN NLFNDE ek KKy e in C . W stall staw one aft«r
another, that each Rt is a theorem of 'C”, which will establish the
criterion. e suppose our assertion established for the relations
preceding and establish for J». If R. is an axiom of C , it is
a tneorem of "C”, by e;™)PtheeiB. If R. is preceded by the relations
R+ and R” R., one has thus that R. and R. => R. are theorems of
'C” thus C i« a theorem o "C' by CI.

The preceding criterion was established by a strictly fitatistic
method which might best be called C experimennal induction » . It is
typical o the oHy additional method which we use in these meta-proofs.

If each of two theories 'C and “*~ is stronger than the other,
one says that C and IS are t"g<d.vvaent, Then every theorem of "C 1is
a theorem of 'C, and vice versa. In pa*ticular every theory ' is

eqtdvalent to itself.

C5. Let C be a theory, AI ......... An its explicit axiom], B a,
its conniiains, ,---» 1. terms of C . Suppose that (T.| a™MN(TN a....
(T.| a)AI1 (for 1 = 1,2.... n) be theorems of a theory C”, in which
tne signs of C are signs of 'C”, and in which the schemas of "C are

BEoo8 of "C 7. Th8!If A 1s. ttapre. of (TrM a..... (T.0 s)A

is a theorem of C *.

In effect, 'C* is stronger than the theory (T.| a~XT.l a2)...(RClI a.) "C

and the criterion follows by application of C2 and C4.
Wen one deduces, by the preceding criterion, a theorem of C
from a theorem of C , one says that one has applied in "C?, the results

of TZ . Intuitively, the axcioms of O express properties of a.,..,.
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and A express a property which is a consequence of these axioms. If
the objects ..., T™ possess in + the properties expressed by the
axioms of"C , they also possess the property A.

Note that under the hypothesis of C5, if the theory 'C involves
a contradiction it is the same for'C *. Tor, in effect, 1f A and « not
A » are theorems of C , | a™A, and not (T (T 1 a2)

sure theorems of 7X .

e have introduced the preceding five criteria because they are
applicable to any theory O whatever. We have presented their meta-
proofs also in full to illustrate the general methods whereby we establish
all of such criteria. Hereafter, we shall limit our attention to parti-
cular theorie , which will be supposed to contain certain particular
schema. It will be made clear which particular theory we are referring
to at any given moment. In general when we present certain criteria
which are consequences of certain axioms or schema, we shall not give
the appropriate meta-proofs, all of them being established by methods

similar to those which justify Cl - Q$.

3. LOGICAL THEORIES

We call a logical theory any theory C- in which the schemas Sl
to S4 together furnish implicit axioms.

51. If A is a relation of C . the relation (A or A) A is
an axiom of

52. If A and B are relations of C . the relation A =» (A or B)

i~ an axiom of
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sb- If A and B are relations of Tt the relation (a or B) =»

(B or A) i1s an axiom of XL .

If A. B and C are relations of XL, the relation (A

(( or A)»»(Cor B)) i1s an axiom of XL .

These four rules, which are in effect the Russell-mtehead prin-
cipals of tautology, addition, permutation and summation, respectively
(cf. Russell-whitehead 1J, p. 96), merely serv to give a formal explica-
tion of the sense which we wish to attach to the words « or» and
«implies 1 in ordinary mathematical usage. The theory XL which has
these four schema as i1ts schema and no explicit axioms and only the two
logical signs < v » and <«-|» is often calted ths propositional calculus.

mt should keep in mind the fact that if a logical theory XL
should prove contradictory, then every relation of XL is a theorem of XL«

In all that follows, XL will designate a logical theory.

C6. Let A, B, C be relations of XL . If A ~>B and B -=>C are

theorems of L., A C is a theorem of XL .

C7. If A and B are relations of XL . B [A or B) is a theorem

of XL.

C8. If A is a relation <£, A A is a theorem of XL

C9. If A is a relation, and B a theorem of XL , A™>B is a
theorem of XL

CIO. If A is a relation of XL, « A or (not A) » is a theorem

of XL .
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dl. |If A.is a relation of _ A= (not not A) Mb a theorem

of
Cl12. Let A and a be two relations of ~C . The relation
(A=»B) __ ((hot B) __ (not A))
is t thiores of C

Clj5. Let A, B, G bi ~l1ttiont of ~C- . If A CB is t thiores

of 'C t (B CUC) =(A ~>C) is t thiores of "C

C14. (Critirion of deduotion). Let A bi t riltt™*0o™n of C ,
tnd C ! bi thi thioly obttinid on ~joining A to thi ixloss of ~C. .

If B is t thiores of 'g., thin A C B is t thiores of "C .

Resark. In practiai, oni thtt oni is tpplying this
aritirion by t phrtsi of thi following giniril «Sappoai thtt A bi
tid » . Tiis phrtsi signifiis thtt oni is rusoning in thi thiory
A2*. On ristins in -e* long inoagh to provi thi rilttion B. TALs done,
it is I8tlbli6eid thtt A C B It t thiorem of 'Ctnd oni thin aontinais
to ritson in O wwthoat indiatting thi ~doMant of XS. Thi rilttion
A thtt oni hts introdaaid is t niw txios is aallid thi mcilitiy hyppohesis

tnd thi sethod of rusoping risting on Cl14 is anll-id thi sethod of thi

mcXIlitry ey”x:>OheiXfi.

CIS, Let A bi t iili-Xcm of C , tat bi thi thiory obttinid
on td.-joining thi txi.cs d not A » to thi ixl%'ss of C . If ZZ! is

aonnrtdiatory, A is t th~res of "C

Remark. In practiai, oni indi“tis thtt oni is issloying this

aritirion by t pl-isi of thi following gineri: < Sapp”si that A bi
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false . . This phrase signifies that one is reasoning for the soment
in C . One rebins in C 1 enough to establish two theorems of
the form B and Knot B». This done, it is established that A is a
theor*em of C , winch one i™ica”™s in general by a phrase of the
following generes « But this (meeaning Band « not B » ) is absurd; thus

A is true » . One then res"imea reasoning in 'C as before. Tils general

method of proof is called reductio ad absurdnm.

016» &_£elatLOn_O"_j’\_t(Inot not A) =. A Is a _thd\"'m

of _
Cl7. I1If A and B are relations of 75,

B) - (hot A) - (A =»-B)

is a theorem of X

018. Let A, B, C bee relations of X . I1f« AorB» . A\C,

fmd B J ore theorems of 75 , then t, is a theorem of

Remark. In order to prove C, it thus suffices whet one has at
one's (dispoMI a theoremi Aor B » , to prove C on adjoining B tothe
axioms of 75 . The general method of proof which hangs on this

criterion is called the method of case disjunction.
C19. Le x be a letter, A and B relations of C such that

1. The letter x is not a constant of 75and does not

figure in B.

2. One has a term T of TSsuch that (T | X)A is a theorem

of 75.

Let 75-* be the theory obtained on adjoining A to the axicms of 75 .

ITf B is a theorem of 75*, then B is a theorem of 75 .
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fet™~"Hy”™, the cowiiBts of the utlliz.ttius. in order

to prove B, of an arbitrary object x (called an tuXlitry conntaut)
which one supposes to be invested with certain pruptetita which are
expressed by A. It is evident that before one can make use of such
and object, one must insure oneself of the existence of such ™bects.
The theorem (T | X)A guarantees this existence and is called the theore
of legitimation. In practice, one indicates the employment of this
criterion by a phrase o” the following genera: « let x be an object
such that A » . The conclusion of the reasoning of course does not
depend on X, as in the method of tuxiiar™y hyJP>UhheSs. The general
method of proof which rests on C19 is called the method of the auxil-
ary cheBinNirE;.

Before we proceed further we mtie the following definitions of
conjunction and equivalence. Ab with all such definitions, we have as
an imB~da”™ result a formative criterion and a 6ubititutien criterion,

which we shall present aa usual without their immtiatt meea-proofs.
Definition 1. - Let A and B be assemblages. The assemblage
(not ((not A) or (not B))
wil be designated by « A and B i) .
CS6. Let A, B, and T be assemblages, x a letter. The assem-
blage (T | X)(A and BB ia identical to- (T -xJA sand (1. xB »>-.

CF9. If A MidBare rtlttlUoss of C .- A andB» ia a

relation (called theflonjigctUn”™ of- _ ndd B)*
020. If A etndB are theorems of C , « A md B »ia a theorem

of <
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C21. If A, B are relations of C ,(A and 3) =» A«

(A <rd B are theorems of 'C .

Dseinition 2. - Let A and B be assemblages. The assemblage
(A=? B) and (B — A)

will be designated by A <=> B.

C57. Let A, B, and T be assemblages x a letter. The assemblage
(T B) is identical to (T | X)A R> (T| x)B.
CIFLO. If A and B are relations of "C . Af=» B is a relation

ofC

ITf A and B are theorems of "C- , one says that A and B are
equivalent in AS and 1T considered as relations in X, every term

which wverifies A also verifies B and vice versa.

C22. LA7itR- B. and G be relations of — .If A<=» B isa thiorw
ofC , B <$ A isa theorem of R . If A 4= B and B <=>C are

theorems of C , A <=>C is a theorem of R

C2J). Let A andB be equivalent relations in — , andC a rela-

tion of 'C- . Then, one has in R the following theoremBt
(not A) 4=> (not B> (Aa»C) <=» (B =»C); (C— A) — (C —Bj;
(A and Q (Band C)t (A or C) — (B orC).

C24. Let A, B, and C be relations of ; one has in R the
following theorems;
(not not A)4=a A; (A — B) — ((not B) == (not A));

(A and A) <p A (A and Bja> (B and A);
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(A and (B and C))<=> ((A and B) and 0));

(Aor Ay A (A or B) <> (13 or A);

(A or (B or C))<=i> ((A or B) or C);

(A and (B or C))  ((A and B) or (A and C));
(A or (B and C)) <=> ((A or B) and (A or C));

(A and (noit B) <» not (A B); (A or B) ((not a) =>B.

C25» If A is a theoreo of r and B a relation of r , (A and B)
b is a theorem of r , Ifa not A » is a theorem of C, (A or b?<» 3

ir a theorem of "C .

4. "UANTFlaD THBORISS
So far we have made no use of the logical signs other than 3
and v . We shill now develop the use of the only two remaining logical

signs r and 0O

_Dffinition__1. - If R is an assemblage, and x a letter, the
accemsiaae (TX(R)I X)R will be designated by < there eXsts an x such
that R r or by (3xR. The assemblage not ((3 x)(not R)) will be
designated by V for all X, R » or by « watavthir be x, 1 » , or (V X)R.
The abbreviated symbols 3 and V will bo called the ex-steama! and
uX.versal quantifiers* respectively.

Since the letter x does not figure in the asseoblage designated
by T (R)j] 1t thus does not figure in the assemblages designated by
(3 X)R and (Vx)H. It is thus that we see the usefulness of the rules
gnv™»re'itg the employment of r and s ¢ This usage has the effect of

binding free variables (letters) by effectively eliminating them from

the corresponding asseobl.ages.
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CS8. Let R be an assemblage, x and x! letters. If x* doei

not (3 X).. and (V x)R are identical respectively to

p3 x*).I* and y x*)R*, where Rl is (x* | X)

CS9. Let R and U be asaemblagee. x and y distinct letters. If
x does not figure in U« (Ul y)(3 x)R and JI(VX)8 are identical

respectively to 13 x/d! and (Vx)R1, where R* is (U\ JR.

CF17- If 5 is a relation of a theory and x a letter, (3 x)R

and (VX)R are relations of 'C .

Intuitively, let us con lider R as expressing a property of an

object designated by x. By the intuitive signification of the tern
(R), to affirm (H x)R amounts to saying that this is an object

passing the property R. To affirm « not (3 x)(not R) Is to say that
there are no objects with the property « not R thus to say that
every object possess the property R.

IT in a logical theory , one has at one's disposal a theorem
of the form (3 xX)R, where the letter x is not a constant of "C , this
theorem may serve as the theorem of legitimation in the method of the

auxiliary constant since it is identical to (<CMR)lI x)R and thuB

X(R) Is the desired term T.

C26. Let be a logical theory, k a relation of O and x
a letter. The relations V xX)R and (rC~(not R) | X)R are equivalent
in C

C27. If R is a theorem of a logical theory C jn which the

letter x is not a coiutunt. (V X)R is a theorem of C—.



22
C28. Let w: « loilitl thloiy, R t rili“on of 12 tnd x

t Littir, Thi rilitionsU not ( VX)R »tnd (HXx)(not R) tri iguivtlint
in 7S.
A thioily will bi siid to bi gueiinifiid if thi sahms
Si — 34 togithi™ with thi sahist S5 tri isong thi sahisas of C
Uftin thi thiory C whiah his thi logiatl signs v, 1, 10, tnd 0O

togethir w.th jcst thi sahlias Sl throuih S5 is aHIlid thi first ordir

functional aa™a”™s (without iquatity).

S5. If R is t rilttion of 72, T t tirs of 72, tnd x t

littir, thi rilttion (T | xX)R (3XR is tn ix-os.

Intdtivily thi ibovi sahist ixpraBsis thtt, if oni has tn
objict T for whiah thi rilttion R, aon™dirid iIs ixpressing t property
of X, iIs trai, thin R is trai for thi objict Xr)R), whiah is, of aoa-si,
in 1inord with thi intdtivi signifi-atticm of T (R). It is aliir tlso
that Tc(R) is just t version of HIbbit’s < C-opmtor c tnd that
thi ibovi 1xioi-8aheil is just Hilbii’s “vdne. for thi “-operator.

Thus T, icts intdtivily is t kind of singli < slllition operator »

wU”h sty bi usid to riprisint t ahosin objict whiah tttitfiit thi
rilition R (if suah i1dsts). It should bi notid that its usi givis

no information tbout thi p L, tLiultr objict siliatid by thi operator.

For ixisj)le, wi know thtt T =1or x»2orx-e3) suet bi 1l 2

or 3, but we htvi no siins of detirsining whiah oni of 1, 2, o" 3.

gets siliatid. It also bi notid in passing that many objiitions
htvi biin riisid to thi usi of suah in operator, sist of wdah tri si®M?MNtr
to thosi whiah htvi biin livilid against thi K ixios of ahoiai C .

Howwivr, thi usi of thi K H-operator C is wi hivi prisintid it hiri
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does not by itself mate such an « axiom of choice » derivable in our
system. The axiom of choice js derivable in our theory of sets, as we
shall see, but this derivation is possible only through the use of the
schema S8, which we present much later and not solely due to the
presence of the« T -operator » in our « underlying logic » . It’s
presence here does mate our underlying logic of the « non-standard »
variety however . (cf. Fraenkel 58, Section 77, p. 182 et seq. and

Carnap 61 p.156 et. seq.)

From now on "C will designate a quannified theory.

C29. Let 2 be a relation of O . and x a letter. The relations

< not (I X)k » and (fx)(not R) are equivalent in C .

C28 and C29 permit us to derive the piopletits of one of the

qguantifiers from those of the other.

CJO. Let R be a relation of 7S . T a term of T2 , x a letter.

The relation (V X)« ‘C (T 1 xX)R is a theorem of "C

Let R be a relation of C , by C26, C27» end C50, 1t a”c”iants
to the seme (when x is not a constant of .C) to eniuiniate in 'C the
theorem R, or the theorem (V xX)R, or finally to give the mie~amthetlmttcal

rule: 1f T is an arbitrary term of .2 , (T | X)R is a theorem of "C .

C51. Let R and S be relations of C , and x a letter which
is not a constant of 'O . If R =»S (reap. R<=» S( ie , theorem of 7. |,
(WX)< => (fx)S and (Bx)k (B X)S (res! (YX)RC (VX)S and
(2 X)«<=> (3 x)S) are theorems of "C

C52. Let R and S be relations of C . and x a letter. The

relations
(f™X)(R and S) 4. ((YX)R and (Y x)S)

(B3X)(B or S) C ((3X)R or (3x)S)

are theorems of "C
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c33. Let R and S be relations of XS . and x a letter which

does not figure in li. The r*ation®

(Vxl(a or S) (Bor (Vx)S)

(3 X)(R and S) *=» (R and (3 x)S)
are theorems wf TS .

CJ4. Lot R be a relation, x and y letters. The relations

G X)Cvy)an (Vy) (V)R

(CRIICRIL (B ¥)(3 xR

(BX](VYy}.R Vy/(3x)B

By constrast, if (Vy)(3x)B is a theorem of C, one may not
conclude that (3 xX)( VY)R is a theorem of . Intuitively to say
that the relation (Vy)(3 xX)R is true signifies that being given an
arbitrary object y, there is an object x such that R is a true relation
between the objects x and y. But the object x in general will depend
on the choice of the object y. To the contrary, to say that (3x)(Vy)B
Is true signifies that there is a fixed object x such that R is a true
relation between this fixed object and every object vy.

The definitions which follow are not strictly necessary but are
highly useful because of the fact that moat of the usual mathematical
reasoning involving quantifiers is actually of the type which is

embodied in the criteria which follow from these definitions.

Definition 2. - Let A and R be assemblages, and x a letter.
We designate the assemblage (3x)(A and R) by (3 AX)R, and the assemblage
« not (9 xXnot R) * by ( VX)R. Read respectively « there exists an

x of the type A such that R and«for all x of the type A, R The
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abbreviated symbols 3 ~ are called typical gmatifiers. The

letter x of course does not appear fn either of these assemblages.

CS10. Let A and n be assembbages. x and x* letters. If X'
figures neither fn H noir fn A. (3 gx)8 and (\VVAx)8 are identical
respectively to (3 .,x)8"' and (\V..xX")RI, where 8! is (xI | x)k. and

where A* is (X1l Xx)A.

CSH. Let A. 8. and U be assemblages. x and y distinct letters.
If x does not figure in 0. the assemblages (Ul y)(3 ™xHH and (Ul yXV.x"™
are identical respectively to (3 ,.x)8* and (V ;.x)R’ where 8* is

(U l'y)R and where A’ is (Ul y)A.

CfL2. Let A and a be relations of R- and x a letter. Then

(VAx)a and (HAX)R are relations of —.

CJ5. ~t A and a be relations of —. x a letter. The relations

LVAX, . andj--Xxj(A a=» a) are egiUvalent in "C.

Cj6. Let A and R be relations of R- ana x a letter. Let
C be the theory obtained on adjoining A to the axioms of — . If x
iIs not a constant of JO xnd if R id a theorem of 7T1. (VAX)Kk is a

theorem of XB .

In practice, one indicates the employment of this criterion by
a phrase of the following generei « Let x be an arbitrary object such
that A > . In the theory "C* thus conssituted. one seeksto prove 8. One

may not naturally affira that the relation 8 is itself a theorem of H
of course.
CJ7. Let A and a be relations of ~C. x a letter. Let IC* be

the theory obtained on adjoining to the axioms of H the relations A and

«not 8y. If x is not a constant of H . and if TT* iIs contradictory
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(V.x™ ip a theorem of 'C .

In practice one says: (I Suppose that there eXista an object x
v\rifyi'ng A» for which R be false. — Ono then seeks to establish a contra-
diction.

The usefulness of typical glULLtStilctties comes from the fact
that the proppi'tiea of typical glunStiitra are analogous to those of

quantllera.

Cj8. Let A and ¥ be relations of "C, x a letter. The relations
not (VaX)r¥» (3"pXnot R), not (3 A~ «» ( VAP)(nut R) are ~orems

of 'G .

CJ9. Let A, R, and o be relations of C . and x a letter which
is not a constant of C . If the relation AM=R -»d) (reap. A=» (.-.<=>¢>))

Jjs a theorem of TS-, the relations

<3Mx)R ( Fax)S. (\Vax)B (Vax)S
(reap, (3 aX)R (Anxs: (V ™)R<» (V. aX)S)
are theorems ofC .

Clitf). Ln A, C, and U be relations of "C , and x a letter. The

relations

(V AX)(R and 0) «=> ((VaxR and ( VaX)S)
(B3 AX)(R or S) 4= (OaxR or (3 aX)S)
are theorems of"C .
C41. Let A, R, and S be relations of 7Z . and x a letter which
does not figure in A. The relations

(V AX)U or S) (R or (V ~xjS)

(2 ax)(R and Q)((R and (3 aXS)

are theorems of C



27
dCS. Let A, Bt 3 be relations of C, x and y letters. |If

x does not figure in 3, and if y does not fi~re in A, the relations

(S A» X3 ny>a — (S™"XaSH

(3A»=>(VBy)B (\VnyXaAx)a

are theorems of 15

5. EQUALITY THEORIES

as call anequaHty theory a theory "C in which figures a
relational sign ofwwight 2 denoted < ( which we read « eqiuils?), and
in which the schemas Sl through S5 together with the schemas S6 and S7
furnish impplcit axioms; 1f T and U are terms of 'C , the assemblage
=TUis a relation of<C(cLLled the relation of equalty) by CF4; we
designate it in practice by T = U or (T) = (U). The theory which has
solely the relational sign 3 (in adcUtion to the logical signs) and has
only the schemas Sl - S7 and no explicit axioms is often called the

first order functional calculus witn equal-ty.

56. Let x be a letter. T and U terms of 'C . and R iX| a

relation of O ; the relation (T =0 r (rI H RSUj ) 1Is an axire

of C.

57. 1F R and 3 are relations of 7S and x is a letter, the

relation ((VX)(f™3)) ==> ( XjR) = Z~S)) 13 an axiom.

Intuitively, the schema S6 signifies that if two objects are
eqiml, then they have the same proppeties. The schema S7 iIs an exten-
sion of our usual intuition. It signifies that, when two propprties

of an object x are equivalent, then the selected objects T*(8) and
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N*(S) (selected from the objects which verify R and those which verify
S, if such exist) are thesame. The schema is often Ackermann's axiom
for the C -operator, rephrased for our operator T . The presence of
the quuntifier (V x) is essential here, otherwise we can obtain the
theorem (¥ X)(X « y) witdtch is certainly not to be desired as for

example in the theory of sets we will have the theorem (3X%X)(3y)(Xx 7 y).

Let x be a letter, T and U terms of ~C . end UXj a
relation of ; the relatinns (T = Uand R) T\ ) and (T « 0 and R) U) ) arre

equuvalent.

The following theorems hold in any theory which has the

same signs as an equ”aity theory but only the schemas SI - S7.
Theorem 1. - X » X.
Theorem 2. - (X « y)<=> (y = X).
Theorem 3. - (X «y) and (y = 2)> D> (X = 2).

C+4. Let x beat letter. T, U, Vjxir be terms of C . The

relation (T = a) =. (VITI « V CUi ) is a theorem of

One says that a relation o” the form T = U, where T and U are
terms of ) , is an eqiuition, a solution (in "O) of the relation T = U
considered as an equation in a letter x, is thus a term V of such
that 11 VI * Ul VI is a theorem of ) as is consistent with the previous
definition of solution of a relation.

Let T and U be two teims of ) and let X.(X"™,e«» X" be the
I€ttelS Ffiguring ~n T and not .n wu. If the relation (3 xM (¢! x’\))..

(3 x )T ® U) ts a theorem of ) , one says that U may be put in the
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corm T (in =3). Let R to a ~Intion of "C Ya httwr. Let V to a

sQlution (in C ) of R» considered as a reletton iny. If ~ry action
(in @O of 3, considered as a relation in y, may be put in the form V,
one says that V is the compete (or general) solution of R (in "C).

Let R be an assemblage, x a letter, Let y and z be letters
distinct from themselves, distinct from x and not figuring in R. Let
y' and z’ be two other letters w”h the same proppe-ties. By C>S8, CS9,

CS2, CSf], and CS6, the assemblages

WY)CVD(((y I ¥R and (s IX)R) C (y = 2))

and

Yy ) M) (((Y'L ¥R and (z*1 x)R) C (y* = ™))

are idtnnicaL. |If R is a relation of "C, the assemblage thus defined
Is a relation of "C, which will be designated by < there ex”jste at
most one x such that h » . The letter x does not figure in this
assemblage. *hen this relation is a theorem of 'C, one says that R
IS unique INn X In

C.5. Let K be a relation of G, and x a letter wd-ch is not a

constant of G . If I is unique in X In G« R c (x = G(R)) Is *
theorem of TS . Convve8ely. 1f. for a term T of ~C not containing X.
R =»(x = T) is a theorem of C . IS unique in x in C .

Let R be a relation of C . The relation
« (B X)R and there eXsts at most one x such that R W

will be designated by « there eX-sts one and only one x such that B » .

IT this relation is a theorem of 'C, one says that R is a functional

relation in x in C .
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0"6. L-t 4ba a relation of C , and x a littir which, is not
a constant of"C . |If R is functional in x In70, Ra X = £-R)))
la a theorem of~C- . Connersely, if, for a term T of 71 not containing

X, r<f»(XxX = T) is a theorem of 71, R is functional in x in a .

Wien a relation R is functional in x in 71 , R is thus eqgiu.valent
to tne relation, often more mmnnaeable, x » X (H). Thus one generally
introduces «a abbreviated symbol 2? to represent the term TRR). Such a
symbol is called a functional symbol in 72- . Intuitively £ will represent
the unique object Which p’t"/Beas the property defined by R. eFor example
in a theory where< y is a real number7/ o » 1is a theorem, the relation
V x is a real nw?bee-s 0 and y = x » 1is functional in x, we take as

corresponding functional symbol Sy' or y

047. Let x be a letter which is not a constant of c . and let
Rul and o (XJ be two relations of . If kfxf is functional in x

in 72 . the relation S I is equivalent to (3 X)(R X% and S ( x| ).



PART 2
fUEMKMTARY SET THEORY

1. THE THEORY OF SETS

The theory of seta la a theory in which figure the relational
signs m, t , and the substantive sign O (iULI of which are to be of
weight 2)¢ It contains the schemas SI — S8 and the explicit axioms

- A-. These explicit axioms, as will be seen, contain no letters,
thus the theory of sets has no conattaats. Trims the theory of sets is
an equa.ity theory and aLl of our previous resists are applicable in
it.

From now on, unless we expressly senmon the contrary, all
of our reasoning wvil be assised to take place in a theory stronger
than the theory of sets and may thus be asstmed to be the theory of
sets itself. It will be apparent, from the sequernial development
which follows, which particular theory weeker than the theory of
sets in which the reasoning necessarily takes place.

IT T and 0 are terms, the assemblage £ TU is a relation
(called the relation of membership) wULch we shULI in practice
denote in one of the following Nunners: T U, (T) £ (U), < T
belongs to 0 » , « T iIs a of U )y |
etc. The negation will be denoted by T U.

From the naive point of view, much of maheimtics may be

considered as collections oir sets » of objects. <e shULI not

31
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formiUze this notion, and inthe formlist interpretation which follows
the word R set» nay be considered as strictly synonymnin w.th C. term
of the theory of sets » ; in pa*ticullr, such phrasesas « let x be a
set » are in principal, totally superfiousj since every letter is a

introduced
term. Such piraseswill be./solely to facilitate the intuitive inter-

pretation of the text.

Defnition 1, - The relation designated by (Vz)((ze x)=t (s e Vy)),
in which only the letters x and y figure, w.11 be denoted by x £y,

X, U X is contained in y» , « X is a subset of y» , etc.
CS12. Let I, U, and V be assemblages, and x a letter. The
assemblage (Vi xX)(T - U) is identical to (VI X)T S (v I x)U.

CIFL3. If T and U are terme, T — U is a relation (called the

relation of Inclusion).

From now on we w.11l not explicitly state the subbsitution, and

formative criteria which result from the definitions.

Pronsition 1 - xr X

Pro]l>oitioo 2 - (Xy and y- z) => (X < 2).

The following axiom is called the axiom of externrioinaity:
Al (VX))<VY)((X« j and y¢ X) -=> (X = y)).

Intuitively, this axiom expresses that two sets with the same

elements are equal.

C48. Lzt H be a relation, x a letter, y a letter distinct from

x and not figuring in a. The relation (V xX)((Xx Vv.<» B) is. unique in
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Let R be a relation, x a letter. |If y and y' designate
letters distinct from x and not figuring in R, the relations
HY)Y(VX)i(x e y)x=> R) and (3 y)(VX)((X & y) r R) are ™“nti™l
by CS8. The relation thus defined will be designated by Cod*(R).

aWhen ColI™M(R) 1s a theorem of a theory C , one says that S
i3 collective in x in € , If this is the case, one may introduce
an aud.liary constant a, distinct from x, from the constants of 'C *
and not figuring in R, with the axiom of introduction (y X)((X e a) <=> R),
or, which amounts to the same i1f x iIs not a constant of "C , (x G a) 4» R.
Intuitively, to say that R is collective In x is to say that there
exMjsts a set a such that the objects x possessing the property R are

precisely the elements of a.
Example 1. ~ The relation x fe y is evidently collective In x.

Example 2. - The relation x £xis not collective in x; 1.e.,
(not ColL*(x t X)) is a theorem. Reasoning by reductio ad absurdimt
assume that x x is collective. Let a be an auX-liary conntant, dis-
tinct from x and from the constants of the theory, with the axiom of
introduction (V xX)((x £ xX)=> (x e a)). Then the relation (af£ a)=>
(ae a) i1s true by CJO. The method of case disjunction proves at
first that a4 a is true, since the relation ae a is true, which is

absurd. It i1s by +his simple technique that Rsssd's paradox is
eliminated in this set theory.
C49. ™t R be a rel-.tion and x a letter, IfRiscoLrective

in X, the relation (\VX)((xc v)*=» R)< where y is a letter distinct

from x and not figuring in R. is functional in vy.



Very frequently, in wluit follows, we dispose of a theorem of the
form ColI"CR), We then introduce to represent the terra y(VXYX& y)<* R)
which does not depend on the choice of the letter y (distinct from x and
not figuring in R) a functional symbol; in what follows, we utilise the
symbol £*(8) or | x| R} ? the corresponding term does not contain the
letter x. It is this term that we mean when we speak of < the set of
aLL x such that R » . Then Oy definition the relation (V xX)((x€ £ (R))
<» R) is identical to Coll*(R); consequently the relation R is thus

equivalent to x € £*(R)«

Clh0. Let R and S Oe two relations and x a letter. |If R and S
are collective in x, the relation (Y X)(R=>3j is equivalent to
~N,*(3); the relation (y X)(k«» S) iIs equivalent to

8X(R) = £x<5).
The following axiom is called the axiom of phi-ring:
A2, (V X)(V y)CooiZ(z =X on z-=y).

This axiom expresses that, if x and y are objects, there

exists a set whose only elements are x and vy.

Peffnition 2. - The set $ ~(z = x on z « y), whose only elements

are x and y will oe denoted .y \X,y} .

The set { x,x} will Oe des™naUd s™ply -y X , and will

Oe ¢l ied the set whose only element is Xx.

The following schema is celled the schema of selection and

union:
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s8« Lgt-g-b* a rglatj'on. x and y distinct letters, x and y

distinct letters distinct from x and y and not figuring in R The

relation

Ujr(a X =Xj MV Y)CquI(EB Y)Y T Y) ana Q)

is an axiom.

Intuitively, the relation (Vy)(3 D(VX)(R =% (x 6 X)) sigriLfies
that, for every object y, there exists a set X((which may depend on y),
such that the objects x which are in the relation R With the given
object y are the elements of X (without necessarily conasituting all
of the set X). The schema affirms that, if this is the case, and if Y
IS an arbitrary set, there exists a set whose elements are exactly all
of the objects x which find themselves in the relation R with an object

y out of the set Y.

C51. Let £ be a relation, A a set, and x a letter not figuring

in A. The relation - F ana x 6 A » is collective In X

The set £X(P and x € A) is called the set of x e A such that

C52. Let a be a relation, a a set, x a letter not figuring in

A. If the relation A=» (x fe A) i1s a theorem, then R is collective in Xx.

C5J. Let 1 be a term A a set, x and y distinct letters.
Suppose that x does not figure in A andthht n ffggure nneihee in T

nor in A, The relation (3 X)(y « T andx - -A fi cooleecive -i -.

The relation (3 X)(y m T and x € A) will be read as « y auay be

put in the form T for an x belonging to A»> . -Te -et
.

and x e A)) is generally called the set to -bjects -0 -th -oom T for

X € A4



36

By C?~ the r-lation (x 1 A and . & X) coll™ ™" -n x.

definition J. - Let A bt a subset of a set X. The set
—— 1 A cr. o X) tS calitd ttie complement of A with to X

and is designated by C*A or X - A or CA.
Theorem 1. - The relation (\/x)(x £ X) is functional in X

The term .((C\V/ xX)(x | X) corresponding to this functional
relation will bt represented by the functional symbol O, and will
bt called the void or empty set. (The term designated by O is thus
LmfehLTiIhdtd ) The r™ation (tyx)(x | X), is then
equivalent to X = |, which is read « the set X is empty » . *e havt
as theorems x £ 0, 0O C X, C*X =0, G*0 = X. Also ifR|Xxj] 1is a
relation, the relation (\/X)((xt 0)=.R |X]| ) is true. Furthermore

0/ { x. is a theorem and hence (3 X)(3 y)(X 7 y) is also.

Tiert dots not ex.st a set all of whose objects are elements;
i.e., I not (3 X)(V X)(x ft X))) is a theorem. For, in effect, if there
exist'd such a set, every relation would bt collective by C52. But,
as we have seen the relation x | x is not ~"11'A-T™,

It is int'resting to note that (X = y)C (VW X)(X G X)<=> (y g X))
IS a theorem.

As wt have noted, the sign g is in this theory a substantive
sign of weight 2. If T, U are terms, QTU is thus a term, welLce wt
will tn practice designate by (T,U).

The axiom of ordered pairs (or of couples) is the following

axiomt

Al (VX)V X))V CVY)URY) = (X7,y9) € (x = X' and

Yy ° Y.



By 044, the relation (x,y) = (X’.y’J iS equivalent to « = x'
and y = y'» .

The relation (3 x)(3 y)(z = (x,y¥)) will be designated by « z is
an ordered pair T oruais a couple V. |If z IS an orderSpir, the relations
G Y)(z = (x,¥)) and O x)(z * (x,y)) are functional in X and y respectively
by A3. The terms TX((3 w(z = (x,¥))) and Ty((3 xX)(z * <y))) will be
designated by pr~z and pr~z respectively, which wil be called the first
coordingte (or first projection) and second coordinate (or second projection)
of z.

LT 8 |X,Yy] be a relation, the letters x and y being distinct
and figuring in R. Let z be a letter distinct from x and y and not figuring
in R. Deeignate by X |Z]| the relation (3X)(3Y)(Zz = (x,y) and R$x,y$ );
it is thus a relation which contains a letter not figuring in R, and which
IS e'iiriifEraent to « Z IS an ordered pair and RS prrz, p~z\ . RSx,yS
IS eqgiu.veaLent to S g (xty){ , and to (3 z)(z « (x.y) and S |z ?). This

means that a relation between the objects X and y may be interpreted as

a property of the ordered pair formed by these objects.

Theorem 2. - The relation
X))V Y)O Z2)(tFx)((z eft)™™ 3B x)@BV)(z = (x,y( and xeX and y t Y))

IS true, 1.e., whatever be X and Y, ttie relation « z IS an ordered parr

and rGX ad and pr*y » 1 r 0s eolleeriar in z«

Jeeinitioa J, - Being given too ettx X add Y, the set

F (3B )@ yl{(z ® (xy) and X r X and y e W IS called the product oi

X and Y and is designated by X x Y.
The relation Zr X X Y IS thus eqULvalent to < Z IS an ordered pair

anri pr-z C - onX Prn- e - J°
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ft*O]X)8ition 3» - If A" and B’ are two non-empty sets, the

relation A' x B' Q A x B ia eeuivaleet tt ( A” A A ann B”a B ».

PropooStion_4. - LeeB ann B Be two asttn (he arealion B x B = 0

is e-uii.T8n.ent to «A =0 or B = 0 P.

If A B, and C anr ts”™, Bon Baet (AaB>aCaCbBbC. An
element A(X,y),z) of A x B a B ((Oich ta aritten also an (A,b,c)) ia
caLled n triplet. Similarly, one may define n muiliplet (x.té_,c..,xn).

The relation y oy = ¢ {« ia egilLvalLent
to « x =x"andy =y p . This is known ns the Kiwatoraki definition
of the ordered pa.r (X, y)b i.e., (X,y) = {(x X.y « If r 18
the theory of sets and (. the theory oith the same schemas and expOicit
axioms as 0o0th the exception of the axiom A3, it can be shorn, itilizing
the KirntooS?ii definition of the ordered pair, that if  is not contra-

dictory, then neither is 720. This gives n relative consis™y proof

for A3.

definition 4. - G 1s said to be a graph 1ff every element of G
is an ordered pair, i1.e., if the relation (Vz)(z CG (i is an ordered
pair) is trie.

IT G is a graph, the relation (X,y) 6 G iIs expressed often by

{y 1s corresponded to x by 3 p.

Let G be a letter distinct from x and y, x and y being distinct
letters, and let Rf X,y be a relation in ohich G does not figure. If
the elation (3 G)6 .s a graph ana cVX)(VY)W((XY) < J) 4= B)) iS trie
-n€ says that R admits a g.ap. (°.th respect to the ™Mt™S . ..o Y). «he

graph G is unique b the axiom of extensiona”™y, and is called the graph

of R with respect to x and vy.
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Proposition p. - Let G be a graph. There exists a unique set

A and a unique set B which possess the following properties!

1) the relation (Hy)((X,y) t G) i.s eqgi™valent to x e A;

2) the relation (3x)((x,y) e G) is eqgiuivalent to y e B.

The sets A = £ *((B y)((X,y) e G))) and B = Sy(O x)((x,y) e G))) are
called the respective first and second projections of the graph G, or the
set of definition and the set of values of G, and are designated by

pr™ (g) and pr_ (g) , respect™el.y.

Remark. The relation x = y does not admit a graph since if it did
eX.st, its first projection would be the set of all objects, which we

have noted does not exist.

DAfinNition_~. - A tfippit P= R(,A,B)) —werr A and A are sstt
and G is a graph such that pr®* (G)t A and pr® (G) R- is said to be
a correspondence between A andB. Q is ¢"LL%\d the graph of P, A the

set of departure and B the set of arrival) of T

IT (X.y) 6 G, one says again that 4,y is correspondedto x by
the correspondence P . I x e pr*X one says that the correspondence
P is defined for the object x, and pr® (G) is called the domain (or
set) of definition of P ; for y e pr2 <G> , one says that y is a value

taken by P and pr*Gis called the range (or set) of values of P

If R |[X,yE is a relation additing a graph G (wt. x and Yy),
and if A and B are two sets such that p™ (G) SA and pr2 (G) £-B, one
says thatr K is a relation between an element of A and an element of B
(relative to x and y). One says that the correspondence T = (G,A,B)

is the RRbMw&ed A -and B defined by the relation R (wwt. x

and vy).
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subsftt 1 of B, th. IMg. f<Y> of Y by ? 1io again called the inverse

image of Y by P
Let G ana = we two grapha. Designate by A th. set pj*G nd by

C the set pr™'. The relation (3y)((X,y) €G and (y,z) € G”) entails

that (x,z) < AxC; it thus awaits a graph wr,.t, x and 2.

DDejnition 2+ - Let G and G* be graphs. We call the graph w.r.t.

x and z of the relation (3y)((Xx,y) €G and (y,z) € G”) the cor,pooition

of G and G. It will be designated by G’0G.

roposition b. - Let G and 3* be two graphs. The inverse graph
of G’0G is ™G’.

Proposition 7« - Let GM"G”™G) be graphs. One then has
(GMoG™MoGN = GyoCGGoGG).

Propooition 8. - Let G and G’ be graphs and Aa set. Then one

has (G’0G) (A) > G* <G <A)»>

Delation 10. - Let P » (G,a,B) and ¥ = (G”,B,C) be two
correspondences such that the set of arrival of P is identical to the
set of departure of r ”>. Mt call the composition of T* and fl the

correspondence (G’0G,A,C). It is denoted by P'oT .

Dfinition 11. - If A is a set, the set A; of objects of the
form (x,xi, for x € A, is called the diagonal of AxA. The correspondence

la = (Aa,AA) is called the identity correspondence of A.

Pd.l,nation 12. - One says that a graph F is a functional graph
if, for every X, there eX.sts at most one object corresponded to x by F.
One says that a correspondence f = (F,A,B) is a function if its graph F

ia a functional graph, and 1f its set of dejparture A is equal to its
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domain of definition pr_F. It other woods, a correspondence
f=(A ,AB) is a function if, for every x t A, the relation (X,y)€ F
is functional in y; the unique object corresponded to x by f ia called
the value of f for the element x in A, and ia designated by f(x) or

fX (or F(x), or FX).

IT f is a function, F its graph and x an element of the domiin
of definition of f, the relation y » f(X) is thus equivment to (Xx,y) £ F.

Let A and B be sets; one cells a mapping (or application) of A
into B a function f whose aet of departure (which is thus equal to its
aet o” definition since f is a function) is equal to A and whose set of
arrival ia equal to B; one also says that such a function ia defined in
A and taKeB its values in B. Tils is abbreviated by f: A—> B.

Is certain cases, a functional graph ia also called a family;
the dommin is then called the aet oi isdicta,asd the set of values is
called (by abuse of language) the aet of elements of the family. Wien
the aet of indices is the product of two aeta, one speaks of a double
ftmiy. Similarly, a function whose aet of arrival i1a E is often called
. fwcA.ly of elements of E. Wien every element of E ia a subset of a aet
F, one speaks of a family of subsets of F.

We will often use the word < function » in place of « functional

graph) in that _hich follows.

~ampie - (0,0,0) is called the void function and the identity

co”reBtundtnct, being a function, ia called the ide”” tity mipping.

One says that two functions f and g coincide in a aet E if E

is ~ntai™d Iin the aeta of deiinitius oi f and of gt and If f(x) - g(x)



for every x € E. To say that f = g arnomitB to saying that f and g have
the same domain of definition A, the same set of arrival B, and coincide
in A

Let f « (F,A,B) and g ®m (G,C,D) be two functions. To say that
FC G amouuits to saying that the domain of f, A, is contained in the
domain C of g. If in ad(H.tion BSD, one says that g is an extension

of f to C.

C5”. Let Il and A be tw® Urnm, X and y distinct letters.
Suppose that x does not figure in A. and that y figures neither in T
nor in A. Let ft be the relation « x fe Aand y = T » . The relation R
admits a graph F with respect to the letters x and y. This graph is
functional; its first projection is At its second projection is the
set of objects of the form T for x E A. For every x A. one has

F(x) = T.

If C is a set containing the set B of objects of the form T
for x € A (y not figuring in C), the function (F.A.C) is also designated
by the notation x—>T (X € A, T a4« C). The assemblage corresponding to
this in the formal mahemmaics contains neither x nor y and does not
depend on the choice of the letter y verifying the preceding concdtions.
rhen the context is sufficiently expllcit, one may be content with the

motatio™ p-*"T (X a A), of o—* T ara eVe. — o T or (T).
At
X

eFor examf!*, on may speak of « the function » » or «Xx * 2x» in

some specific contexts involving the real nummers

Pronostion 9. - If f is a wpping of A into B, and g a mapping

of B into C, gof is a mapping of A into C



The function gof is written al6o x—>g(f(x)), or simply gf if

no confusion is likely.

Defid.tion 15. - Let f be a rapping of A into B, One says that
f is an injection (or 1-1 rapping), or is an injective rapping, 1f two
distinct elements of A have distinct images under f (x 7/ vy f(x) /7 f(yj>.
One says that f is a surjection, or that f is a surjective rapping (or is
an onto rapping), if f(A) = B. One says that f is a bijection or bijective

rapping (or 1-1. onto rapping) if f is at once injective and surjective.

In lieu of injection, one may say that f is a biunique. In
lieu of surjection, one may say that f is a mapping of A onto B, or a
parameerio representation of B by means of A (here, A is called the
set of parameters of the representation). If f is bijective one may also
say that f places A in a 1-1 correspondence with B. A bijection of A

onto A is also called a iermuutaion.
Example - If A— B, the rapping of A into B whose graph is the
diagonal of A is injective and is called the canoin.cal injection of A

into B.

. ro-.ooition 1Q. - Let T be a rapping of A into B. In order that

f be a function, it is necessary and sufficient that f be Dbijective.

W«i*e T is bijective, f ie called the inverse rapping of ¥ f

is bijective, f of is the identity rapping of A and fof is the identity

rapping of B.
Let f: A—> B; for every subset X of A ... has that X 1;{ T «xT)

and for every subset Yof =» on-. has f f (yY) ~Y. |f f Is a surjection

f(F (y») * Y for every Y< B. If f is an injection, for every X S a,

f (f <X)> = X
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ProJP>ottioi 11. - Let f be a upping of A into B. If there
ex-sts a mapping r (reap, s) of B into A such that f ~esp. foS)
is the identity upping of A (reap. B) T is injective (r™p. surjective).
00X171-011! if f is surjective, there exists a mapping s of B into A, such
that fo s is the identity mapping of B. If f is injective and if A > O,
there exists a mpping r of B into A auch that r o f is the identity

mapping of A.

(corollary. Let A and B be sets, f a upping of A into B, g a
mipping of B into A. If go f is the identity upping A and f° g the

identity mapping of B, f and g are both bijective and g = f.

(eefnition_1L. - Let f be an injective mapping (resp. surjective
mapping) of A into B. ffvery mmpping r (resp. s) of B into A auch that
rof (-isp. foa) is the identity upping of A (resp. B) is called a
retraction or left inverse (iesp. section or right inverse) associated
with f.

A function of two aigummnts is a function whose domain of defin-

ition is a set of ordered pairs.

Definition 15. - Let u be a mapping of A into C and v a mapping
of B into D. The upping » —* (™“"p”™z), Vv(pr2z)) of AxB into CxD is
called the canoxn.cal extension of u and v to the product set AxB, or

simply the product of u and v when no confusion is lixely end is
designated by uxv or (u,v).
Its set of values is u(A) x v(B). If u and v are injective

(resp. surjective), then uxv is injective (resp. surjective) and if

u and v are bijective, ther uxv is bijective and its inverse mapping
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isuxv . Ifu i1s a mapping of C into E and v’ a mpping of D into

F, one has that

L»t X be a family, | its set of indices. In order to facilitate
the intuitive interpolation of what follows, we shall say that X is a
family of sets.

ITf (X"I'G) is a family of subsets of a set E (i.e., a family of
elements whose sets of arrival (6 is such that the relation I®  entails
Y - E), we stoll use the notation (X" ft « (<£ <& ), or simply (X™M)" e ji
by abuse of notation, we shall use the notation (X%) for an arbitrary
family of sets, with | for the set of indices.

As the relation (WVxX)((1 € 1 and x G X)) (x 6 X)) is true,

S5 allows us to conclude that the relation

is true. In virute of 38, the relation (3 1)(1 G I and xg X" is

thus collective In x.

Definition 16, - Let (Xjk £ j be a family of sets (resp. a
family of subsets of a set E). The union of this family designated by

is the set

i.e., the set of those x which belong to at least one set out of the

family (X e *.
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It is immadiata if I = O, one has as the relation
€ 1 ani x e X") is then false.
Sup.ose that 1./0. |If a € I, the relation (Vi)(i e D=>(x e XN)

entails x t X*. thus, in virtue of C52, this relation is collective in x.

Deefnntion 17. - Let (X))) . * be a family of sets whose set of

indices | i1s not void. The intersection of this family, designated by

A X .istheset [ x ( (WVD(IED - (X £X.))}, i.e™ theset of
iell 1 1
those x which belong to all of the sets in the family (Xt p

N.B. If | = O,the relation (Vi )((16 1) _ (x € X ))is not
collective in x, for if 1t were the resulting set would be the « set of

all objects * which does not exist.

If (Xi . | i= a family of subsets of a set E, and if | /7 O,

the relatoon*x € £ and (VD)€ 1) =* (x€ » 1S equivalent to

Vv D€ 1) - (xe X,))] consequunniy, it is collective in x and the
set of x verifying this re”~tion -s eqiual to X"en 1=0, the
relation « Eand (V D@UE 1) =>(xe X ))D 1is eqgi®valent to x £ £«

it is thus again collective In X, and the set of all x verifying this

relation is E.

Peeinition 18. - Let (X ) £ T be a family of subsets of a set £e

+~e Intersection of this family, ~sign™"™ by is the set

{ T x€ Dand (V1)(GE D=> (xe X)} « i«e., the set of aU X wnen

belong to E and all of the sets of the family (X))) £ 1,

Peeinntion 19. - Let J be a family of sets, and let $ be the

family of sets defined by the identity mapping of J. The union of the
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sets of £ , and (if J is non void) the intersection of the sets of5

are called respectively the union and intersection of the sets of J,

an. are designated by ana
IT A and B are sets, one lets

and

The intersection X n A is called the trace of X over A. If T
is a family of sets, one also calls the trace of J over A, the set of

traces over A of the sets belonging to 5.

Defnition 20, - We say that a family of sets (X)) £ jJ is a

cover of a set £ if

Defirdition 21. - We say that two seta A and B are disjoint (or
without common element) if An B = 0. If this is not so, we say that
A and B meet each other. Let (XM)* € 1 be a family of sets; we say that
the sets of this family are mutually disjoint (or two by two disjoint)

if the conddtions 1 £ I, x e I, i1 / "X ennail X, = 0.

Deefnition 22. - We call a petition of a set I a family of

non void and mutually disjoint subsets of E, which is a cover of E.

peinition 2j. - Let (I(h e j be a family of sets. We call the

gam of this fomdly o.f_sejt5, the anion of the farndly of X EI1E (1 |)

Propoodtion 12. - Let (X*)i e jJ be a family of mutually disjoint

sets. Let A be its anion and S its sam. Then there exists a bianigae

rapping of A onto S.
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All of the wswOL properties of unions and intersections follow
from the above definitions and will not br presented here. To outline
our development of set theory further, we give another axiom called the

axiom of the power set.

A4, (TS x).

Tiis axiom signifies that, for every set X, there erfsts a set
whose elements are all of the subsets of X, vLz. the Mt\Y!lY - X} . We
will designate this set by -?(X), and rf.ll call Lt the power set of X or

the set of subsets of X. Cle«a-ly, if X — X', then —(X) - PP(X).

Definition 24. - Let « ana — be two Bets, P a correspondence
bAwom A and B. Th. fun™Uon X —X C (XC#Xh T € P(B)
Is called the canonical extension of P to the power set (or set of
subsets) of A and rfll .e fonot™ .. G |t iIs a rapping of pA)
into — (B).

If r' is a correspondence between B and a set C, the formula

(p'oP )X a p+*-X (X)) shows that the canonical extension of

p fop to the set of subsets is the rapping p ‘op

NANONN™ 130 - 1. If T is a surjection of a set E over a set

F, the canonical extension f IS a surjecti°n of — (I) ratt —@.
A
2. If f is an injection of £ into F, the canonical extension f

-S an tajec™on of —(£) into % (F).
A
3. If f is a bijection of E into F, the canoid.cal extension f

is a Ejection of # - onto 1(F).

Let E and F be sets. The graph of a rapping of E into F is

a subset of ExF. The set of elements of — (ExF) wlh.ch possess the
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property of being graphs of mipp®uge of E into F is thus a subset of

$(ExF) which we desi-gna”™ by FE. The set of triplets f = (G.E.F),
for O£ F* is thus the set. of mappings of E into F, which we designs™

by 3(E,F). It .s clear that 6G—* (G,E,F) i1s a biJecti°n called the

ca’Niticitl bijectiton of F onto 3(E,F). The mdstrntt of this bijection
permits the imneddate translation of every propostion relative to the
set FE Into a propooition restive to J("E,F) and vic™vMaa.
Let (ANfc-l1 be a family of sets, F a functional graph with I
for doein of definition, and such that, for every i€ |1, one has
F(i) « X.. then for every . € | one has an. conso-
xc A

cueetly F ic an element of ~(>XxA). The functional graphs with the

preceding property thus fores a subset of 4s (IxA).

UeefnitionZ”™. - Let (X.)™g J b® a family of sets. The set
of functional graphs F, wwWth I for a set of definition, and such that
Hi) £ X for every i G I, is called the product of the family of sets

eand 1s deei-gmted thy Tee mapping

iIs called the coordinate function (or projection) of index 1,

and is denoted pr~.

we often use the notation (*4)4”. J to designate the elements

of

Let A and B be sets and let a and P be two distinct objects
(e.g., 0 and ( O] ). Consider the graph (obviously functional)

{ (a,A), (p,B)] which is n”ithing other than the family auch

that Xa » A and X>o = B« For every pair (x,y) G AXB, let f v be the

funct.oual graph ( Ga.x),(P,y)} . |t .S ~at the fuactin
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) L=V"])
e these t'wo Mippings are called canonical. This
correspondence is used to prove propeeties of the product of two seta

by Deans of the properties of the product of a family of sets.

Proposstion 14. - Let (X.). . _ be a family of sets such that

N\ X O for mry f = 1. Being gfven a mappi.. o Of Jf I

such that g(i) £ X" foreveryi € J, thee*® exists an extension f of g to |

such that f(1) £X1 for every 1 € |I.

Proof. Inefffct, ffo tvery 1 t t - Jt designate by the term

r(y £ X2* As XE X O by hyppSheris, one has that T* € X* for every

L. - J |f G fs the graph of g» the graph

iIs the graph of the desired function f.

CoooSlary 1. - ™t (XM™ j J be a family of sets sucn that for
every L e 1, one has / 0. Then, for every a € |, the projection pr

IS a mapping of onto X,.

Corollary 2. - Let (X, T be a family of sets. For

Lt is necessary and sufficient that there exist an L € | such that
XA = 0»

«e have seen that, i1f sne has a family (X,), ¢ i °f non void sets,
sne may introduce (by means st an auxiliary constant) a function
f with 1 fsr i1ts domain of definition, which is such that f(i) £ X, fsr
every 1 £ I. One says in practice* Take in each set X an element X,
Intuitively, one has thus ¥ chssen)> an element if in each of the X;
the introduction of the logical sign X and the criteria which govern

its employment have alSowed us to dispense with an appeal to the
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«axicm of choice)) to legitimate this operation. In fact, Proposition 14

with g the void function is often called the « axiom of choice)) [cf.

Bourbaki 58, Section 4, No. 10J an. Cooollary 2, which is equivtOLent
to i1t is usually called the < multiplicative axiom » [cf Russell 19, p. 117 et

It is with this simple four line proof that the axiom of choice becomes
derivable in our system.

Let R jX,y| be a relation, x and y being distinct letters. One
says that the relation R is symmeeric (with respect to the letters x and
y) 1f cne has that From this definition, 1t is
immmddate that R|X,y| 1is equivalent to R £y,XI.

Lit z be a letter which does not figure in R. One says that
R 1x,y | is transitive (with respect t0 the letters x and y) if one has
that

IT R |X,y| 1is at once symmetiic and transitive, one says that
R X,y 1s an equivalence relation (with respect to the letters x and y),
and use the notation x =y (mod. R) in lieu of R |[xX,yf . If R iIs an
equivalence relation one has that in
virtue of the definition.

Let R x,yf be a relation. One says that the relation R is
reflexive in B (wrt. x and y) if the relation R $x,X| is equivalent to
X € E.

One calls an eqlivaLence__relaiiln__in E an equivalence relation
which is reflexive in E. If this is so then R admmts a graph. One
calls an equivalence in a set E a correspondence which has E sb i1ts set
of dejporture and arrival, whose graph F is such that the relation

(x,¥) R F is an equivalence relation in £e

seqJ
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Let f be a function, 3 its set of definition, F its graph.
The relation « x £B and f € B and f(x) = f(y) Y is an equivalence
relation in 2, called the equivalence relation associated with f.
The criterion which follows will show at every equivalence relation R
on E is of this type. Let 3 be the graph of R. For every x 6 £, the
(non void) set O(x) — L is called the equivalence class of x with
respect to R. An element of such a clbtt is called a representative
of this class. The set of equivalence classes with respect to R
(i.e., the set of objects of the form G(x) for x fE) ia called the
quotient set of £ by R and is designated by ty'Rj the napping xX—> j(X)(x € B)
whose domain is L and whose set of arrival is E/R is called the canonical

mapnAng (surjection) of £ onto E/H.

CJ5* Let « be an equivalence relation in a set s and v the

canonical mapping of L onto L*R. Onehas that

Let R be an equivalence relation in a set E. The querent set
iI/R is a subset of 'P(B), and the identity mpping of tjR is a partition
of s. Connvrsely every partition of n, (Xi- - - defn”™n an quuVbafinee
relation on B, vis., (3 i)(i fe 1 and XxXe=aan ye X*). every subset S
of B such that for each 1 t I, the set Sc Xi 1a reduced to a single

eLe'm”it is called a system of representatives of the equivalence classes

with respect to R.

Let R| x,x*| be an equivalence relation, and PjxL a relation.
One says that X| Is comppaible with the equivalence relation R |X,X’|

(with respect to x), if, given that y designates a letter which figures
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neither in P nor in K, one has

C56. Let ainn.ilf be an equivalence relation in a set .. Pl xl
a relation weeein. the letter x! does not figure,. companible (with respect
to xj witftee 8Miaaf.ncft enjtiM™nn 1 xx. 11t t Ie*enff tdese not figure
in P1 xl 1tfeeelelaco« t f -yR and (3 xAx6 tand PC xI J »

-b equivalent to the relatione t ft 1/R and (> xXCx £

The relation « t € ¢l/R tand (0 tXxe f tnn fF ex f > is called
the relation deduced from Pl Xj by passage to quooients.

Let R be an equivalence relation in a set L, and f a function
whose dornin is L. One says that f is compaaible with the relation R
if the relation y = f(X) is compa™h” (with respect to x) with the

relation R? x*X’I

C57. Let R be an fgOivalfnce relation in a set ... anu Let g be
the canonical mapping of t onto x/R. In order thata mapping f of d into
' be corcoaaible with R, it is necessary and sufficient that f may be
,ut in the form hog, ? being a Mpping of j/R into r. The maaking h

iIs uniquely determined by f; 1f e is a section associated w.th g, one has

that h = fo b.

The raping h is said to be the mapping deduced from f by
passage t,, gupoients with respect to R.

Let ¥ be a mapping of a set K into a set F, and let R be the
equivalence relation associated w.th f. Then f is co”™Bpanible with R

and the mmpping h deduced from f by passage to quodents is an injection
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of E/R into F. Let k be the mapping of E/R onto f<E> which has the

same graph as h; k is thus a bijection. If j is the canonical injection

of f into F and > the canonical mapping of E onto E/R, one may
write f = J° k?® this relation is called the canonical decoapoaition
of f.

~t f be a mapping of a set E into a set F, R an equivalence
relation in E, S an equivalence relation in F. Let u be the canonical
mapping of E onto E/R and v the canonical mapping of F onto F/S. One says
that f i1s compoaible with the equivalence relations R and S if vo f is
co”poatLb”Le with R. The map, ing h of E/R into F/S deduced from v o f by
passage to querents with respect to R is then called the map ing deduced
from f by passage to “~uoiieits with respect to tt and j; i1t is character-
ical by the relation v°f = ho u.

Let Rl x,y| be an equivalence relation not necessarily possessing

a graph. It is irnmedate that i1f X,x', and y are three distinct letters

the relation entails thus also the
relation By melons of S7 we see that if
one lets the relation im”~pies that

For the other part note that, by definition,

is nothing other then the relation which is equivalent to
»e conclude that the relation and and
is equivalent to The term iIs called

the class of objects equivalent to x (for the relation R).

Suppose that T be a term such that the relation

is true. Then the "i“tiern is collective
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in z. Let @ be the sOt of objects of the for.. © | xL for x& T. -e

call (8) the set of classes of e”uivalent objects with respec<t to R»
B) x,y| be a relation, x and y being distinct letters.
One says that H is an order rel-tion (or paatial order reli tion) with

respect to the letters x and y (or between x and y) if the relations

are true.

One calls an order relation in a set — an order relation R1 X,y|
with respect to two distinct letters x and y such that the relotion
L1 x,x1 1s equivalent to x € E.

One calls an order over a set E a correspondence P = (G,EiE)
witn b as its set of departure and arrival such that the relation (Xx,y) € G
iIs an order relation in E.

IT 11xX,y| 1is an order relation, we shill often use the
notation x 4 y in lieu of B |[X,y! and speak of 4 in place of R.

g write x <y for the relation 4 x 4 yand x /7y -.

058. Let 4 be <n order relation, x and y being two distinct
letters. .'he relation x 4y is equivalent tot x <y and x =y ».

each of the relations« x 4yandy a4z », < x <y and y 4 z 4 ennail

X < Z.

W often wrrte x 4 y < e for< x4 yandy 4 z — etc.
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NerinLtiOnL.er" ” Let E be an ordered set. One says that an
element a E is the least element (resp. greatest element) of £, if

for every x ¢ £ one has a 4 x (reap, x 4 a).

Nefin™Monj”™. - One says that two elements X,y of an ordered
set E are comparable if the relation! x 4y or y4 x » is true. A set
E is said to be totally ordered if it is ordered and if any two elements
of E are commaaable. One then says that the order over £ is a total

order and the corresponding order relation is a total order relation.

Let E be an ordered set, a and b two elements of £ such that

a b then we mace the following definition

These are called respectively the closed interval a,b, the right half
open interval a,b, the left half open interval a,b, etc. following in
the usual terminology.

One says that a relation R| X,yJ is a wwei ordering relation
between x and y 1f R Is an order relation between x and y and i1f for

every non empty subset of S over which R }x,y| induces an order

relation s ordered by this relation admits

a least element.

deeinition 28. - Onesays that E is wwei ordered 1f it is ordered

and if every non empty subsetof E admits a least element.
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~JE>"LiLoil >2- “ 11 an ordered set E, one callsfa segment of F
E a subBet S of E such that the relations xt S, ye 1 and y 4 x entail

y € S.

prooMSitiSn_-5¢ « In a wwll ordered set E, every segment of E

dis™t from B -s an interval )<- ,a( , Where a € £.

For every element sf a wwll ordered set E, we use the notation
Jx 10r 1#F segment fi ,Xf which w call segment with extremity Xx.

Let us now consider ourselves in a theory X where E is a set
well ordered by a relation denoted x4 . We now can enunciate the
following criterion called the principle of transOinite Induction (sr

recurrence):

C59 Let aj xi be a relation sf 'C (x not being a conntant of

'O, such that the relation

Is a theorem of C « these csnnidtisns, the relation (X £ >)=» Rf xi

i- a theorem of C

In the application o” C59 the relation x € E and (Vy)((y& E
and y < xX) € R |y| ) is usually called the inductive
For every mpping g of a segment S of E into a set F, and fsr

every x e 3, we shall designate by g(x) the mapping of the segment

SX = )<..x& of E Emto g(?), which coincides with g in v With

this notation, we have the following criterion called the definition

of a mapping by transOinite inductions



C60. Let u be a letter, T j a term of the theory £ . There
exists a set U and a mapping f of S onto U such that, for every x f E.
one has f(x) = Tj f(X)| « In addition, the set u and the mainnit f

are determined in a unique manner by these ctnndiitiBi

Hoot often, one applies the preceding criterion in a cbtf where
there eX-sts a set F such that, for every mapping h of a segment of E
onto a subset of F, one has that T{ h) e F. Then the set U obtained

by application of C60 is a subset of F.

Defnition JO. - One says that a set X is equipotent to a set
Y if there exists a bijection of X onto Y. We denote Eq(X,Y) the relation

« X 1S equipotent to YJ .

The relation Eq(X,)Y) is clearly an equivalence relation, which

is reflexive Iin every set. It does not, however, possess a graph.

Defr™netitn JI. - The set ®CEq(X,Z)) is called the cardinal of

X (or the txowwr of X) and is denoted by Card (X).

We note that Card (X) is nothing other than the class of objects
~NiHval”™ to X for the rmtwv of Nuipot™ce. (cf. Pch).

As Eq(X,X) is true, Card (X) iIs equipotent to X by S5 and we

have the following proportion:
Proppostion 16. - In order that two sets X and Y be equipotent,
it is necessary and sufficient that their cardinals be equal.

N.B. To say that lit is a cardinal means that there exists a set

X such that UL 3 Card (X).
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Mcaampe. We use the notation 0 for the Card (0). The only

set equipstent to O being O, one has that 0 » Card (0) = O,

examine. A.l one element sets ire equipotent since {(i"™)] is
the graph of a bijection of {1} onto {b\ , in particular, they ire

equipment to £01 ¢ We denote by 1 the cardinal

Here Lt is not to confuse the eaah(tneatcal term designated by
the symbol « 1» and the oord A oneW of ordinary language. The tero
designated by < 1 A ie equal, by definition, to the term designated

by the symbol

The actual assemblage designated by this symbol consists of course of

hundreds of signs, each one of which is one of the signs

Example. W denote .. 2, the ordinal Cara. )* etc.
Propoostion 17. - The relation th

k IX and = are cardinals and ft IS equi~te”™ to a subset of Ix.

IS a wei ordering relation.
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shall denote the relation R $ U ,4} by 1U 4.

S=f===tJOn™Z’ - Le i el .. a family of cardinils. The
candLnal of the product set (reap. sum) of the sets ft. is called the

cardinal product (rasp, cardinal sum) of the U . and is denoted by

IpW . (resp. Z ft ),
Lt I 1 i €1 1

Propo™t.™ 18. - Let fl 4 e cardijnOLs. then

Definition - Letft and 4 be cardinals; the cardinal of

the set of rappings of 4 intoft (Card( J(4.1t ))) is denoted by

VI4, by abuse of notation.

PropooStion 19* - Let X be a set and ft its cardinal; the

cardinal of the set ~(X) is 2 .
it
ProposHion 20. - For every cardinal ft , one has that 2 ¥

This is the celebrated theorem of Curtor.

Coopoimry. - There does not exist a set of which every cardinal

is an element.

Deef-nition 34. - One says that a cardinal fl is finite if
f. + 1; a finite cardinal is also called a natural number. One
says that a set E is finite if Card (E) is a finite cardinal; one also

says that Card (E) is the number of elements of £.
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The following criterion ia called the principle of induction’

CSI. Let A| n)J] be a relation in a theory (n not boing a
constant of duijose that the relation

RJOj and (VWn)((n is a nMtu*L number and A J nJ fnr Ij
ia a theorem of . Under these conddtions, the relation

vn)((n is a natural numbbr) _ ti|nl )

is a theorem of _

In applications of the above criterion, the relation

n is a natural number and AJnJ » or simply 2] nJ

is called the inductive hy.othesis.
The following criteria , which are consequences of the above

are also known as induction trincipla:
1) Let S |Nn] be the relation

( Vp)((n is a natural number and p is a natural number and

and suppose that Then the relation

is true.

2) < Inaction after k 7): Let k »- a natural ..urnber,

be a relation such that the relation

and



63

is true. Then the relation

is true.

3) « induction limited to an interval »i Let a and b be two
natural r<<imbers such that a b, and let K| n™® be a relation such that

one has

Then the relation

is true.

4) < descending induction P : Let a and b be two natural

numbers such that a b, and let R | nl be a relation such that one has

is a natural number and a

Then the relation

IS a natural number and a
is true.
Defiaition™™. - One says that a set is infinite if It is not
finite.
In particular, a cardinal is infinite if it iIs not a natural

number.



in<troduce the fsllowing axiom called the axiom of
A5« There exists an infinite net.

[t IS net known < not the above axiom is icdlolcdent
00 the foregoing axioms. Tiis problem is still an open question. Ey

placing it here, we presim it to be independent.

Proposition 21. - The relation <x is a natural numbee*is

collective in X.

We designate by N the set of natural numbels. The cardinal 00

N is denoted by H0

1eOinitiSnigS. - One says that a set is dlnu™nbelabll (or

countable) if i1t is equipotent to a subset of natural numbbrs Hhl

For every infinite cardinal H sne has that Card (> ) 4 H .

The set N is indeed wwll ordered and one may apply C60, which

we rewrite here using the same notation as before as

C62. Let u be a letter, T, ul a term. There eri.sts a set I

and a ma-fjint 1 sf M snts U such that Osr every natural number n, one

has that f(n) * T{ «<== . where is the mapping of (s.n( snts
f( (s,n( ) which csin™des with f iIn os.n(. The set U and Un

mapiing 0 -re then uniquely deteraiinsd by this conndtisn.

From C61 follows the following criterion called the definition
st a mapping by induction:
C6jj. Let Sj vj and a be two terms. There exjoists a set V and

a mayiling 0 0O N onto V such that f(O) = a and Osr every natural number

n>1, f(n) = 3 1o(n - 1)1 . In adhtisn, the set V and the spring f

amunjique-ly determined by these csi”c/litisns.
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Tile complete our simum&ry of the theory of sets.

Finally we summrize here the signs and axioms and schemas of

the theory of sets.

Signs: Logical; v , 1 , X, O
Letters;, x» y, A, B, etc.
Specific signa; relational (of weight 2); =, 6.

substantive (of weight 2); @O

Axioms and Schemas of the Th<eory of Sets

Principal of Tautology
S1. If A is a relation of 73, the relation (A or A) A

is an axiom of C .

Principal of Addition
52. If A and B are relations of 73, the relation A < (A or B)

is an axiom of C .

Principle of Permutation

53. If A and B are relations of C, the relation (A or B) =>(B or A)

is an axiom of "C.

Principle of Summaion

54. 1f A, B, and C are relations of "C, the relation

(A=->B) ((C or A) C (C or B)) is an axiom of C

Hilbertls L -formula

S5. If R is a relation of 73, T a trim of C + and x a letter,

thr rrla'tiion



66

S6. Let x be a letter, T and U terms of X2 , and R (x| a re-
lation of 'C | the relation la an axiom

of m.

Ackermann's Axiom (as a schema)

S7» If R and S are relatione of C— and x a letter, the relation

is an axiom of "C

Schema de selection et reunion
S8. Let R be a relation, x and y distinct letters, X and Y
distinct letters distinct from x and y and not figuring in R. The

relation

is an axiom.

dxtensionaaity Axiom

Pairing Axiom

Ordered Pairs Axiom

Power Set

The Axiom of Infinity

A5. There exists an infinite set.



PART 111

THE THEORY OF STRUCTURES

It has been our purpose in the preceding two sections to
describe and then present a formal language sufficient for the purposes
of modern maheematcs. Since fm>st of modern m"*"Mmat.cs investigates
wtat might be called structured sets» , it is one of the primal
purposes of the theory of structures to explicate the more or less
vague notion of na* “nmatit™ structure within the framework of our
formal language.

Let us think for amount of wluat we usiua.ly mean when we speak
of a babh<rmatcal structure. For example, when we speak of a partially
ordered set E, we are usually thinking that we are given a set £, certain
elements of which are related two by two in some p«a'ticilbr fashion.
That is for some x and y in £ we have that x 4 y, i.e., the ordered
pair of elements (X,y) satisfy the order relation R]|x,yJ . Now as we
have noted before such a binary relation between elements of a set is
equivalent to defining a particular subset of the product set EXE
and thus a particular element of the power set 'P(ExB). Connvf8ely
if we bie given a particilar eluent S of the p~er tft T(£xE),
about whinh we assert certain iflbtitns, i.e., S*S « S and SfS »

we say that such an element which satisfies the particular relations

67
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i.e., the axions (or by conjunction the axiom) of a partial order,
defines over £ (or supplies a with) the structure of a partially
ordered set.

As another example, what do we mean when we speax of the
topological space £? We usually are then thinking that we have a set
E together with a certain distinguished collection of subsets of E,
i.e., a subset of $ (E) or equivalently, a single element S of Is (15(E)),
called the system of open sets of E, which satisfies certain relations,
called the axioms of a topological apace. We may then say that the
giving of such an element S of £(%*(£)) which satisfies the particular
axioms of a topological opace defines over E (or supplies E with) the
structure of a topological opace.

As a final example, let us consider what we mean when we speak
of a group with operators. Ordinarily, we would say that we have a
set E and a set A, which may be presumed to already have a structure
of 1ts own (as in the case of, say, A-modules) together with two law®
of composition, one of which is said to be internal and the other
involving A and E which is called external. Now the internal law of
composition (e.g., addition) is nothing other than a function from Exi.
into E, i.e. a subset of (EXE)XE or equivalently an element of
E£((ExE)xE), the external law of composition is nothing other than
a correspondence from AxE into E, i.e., a subBet of (AXE)xE or
equivalently an element of :fI((AXE)XE) which satisfies certain relations
with respect to the internal law (viz., it iadistributive). Thus to

say that E i1s a group with aset of operators A, is equivalent to

asserting the existence of apair S s ft N(CSXE)XE) x (AXE)XE)
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which satisfies the axions of a group with operators. The pdr (SrS*)
thus may be said to supply E with the structure of a group with operators.
In this case the set E usually is considered to play the principal role
wwhle the term A is said to play an auxiliary role.

Several observations might be made from the consideration of
examples such as the foregoing ones.

*e generally speak of one (or more) sets as having a structure
when we have defined certain relations between mernmbrs or subsets or
between subsets and meiumers or between sets of subsets and memmbrs and
so forth. In all such cases, these relations define a single mbrmsr of
a set obtained from the basic set (or sets) by the formation of power
sets and cartesian products. Connvrrely, to define such relations on
the basic sets (or their subsets, etc.) is equivalent to the specifi-
cation of a certain member of a particular set (obtained from the basic
sets by meeuns of the formation of cartesion products and power sets) which
satisfies certain propeeties.

IT we were to consider all such possible formaaionsobtained from
the basic sets by means of cartesian products and power sets taken in
any possible order as defining a sort of « laduer of sets *wth the
basic sets as its base)) , then the consideration o” a particular
rung > of this ladder will be equivalent to the consideration of a
particular type > of relation defined over the basic sets of the
ladder. Any particular such rung will itself be characterized by its
scheme of formation, i.e., some method which tells one the order in
which one is to take the cart™lon products and power sets of sets

ohrtained from performing such operations on the basic sets, e.g., how

the rung %(EXE) is obtained from the base set E.
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by means of such observations as these, we can arrive at some
tentative views as to the noti.n of what a _species of structureV »
may connsst of and some general requirements that auch a notion miurt
satisfy. First we have noted that the consideration of any particolor
v«ariety or (type)) of relation (((type of structures))) that may be defined
over a given collection of sets is equivalent to the consideration of
one single element of one particular set which is itself a ftrung)) of
the gladder of sets) which has the given collection of seta as its
((based . Furthermore, i1t is apparent that some of these ((base sets)
will play a ((principal) role wtd.le others will only play an ((aiuciliaury)
role, and these roles ri.ll have to be noted as such.

Being given such a collection of sets and noting which ones are
to play a principal role and which are to play an auriliary role we then
may specify the tyie of relation or ((type of structure) that we wish
to consider over ti ese (base sets) by means o~ some particular ((rung)
of the (ladder of sets» wwth the given sets as base. We may then take
a particular member of such a rung and say that it is a ((truetureP
over the base sets providing it satisfies certain relations relative to
it and the base sets.

*e would all agree that for any given collection of sets, such
a device willdefine what we would all call a ((structure) over the
given sets. It is apparent that i1f such a proc”se is to be adequate iIn
all cases that we woi™d like to have all structures of the exact same

(vsarietyn to be given the same name. Thus we must arrive at some
notion of a « species of structured which is independent of the

jarticular choice of base sets over which we define our structures
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in the sense that any other « structure) satisfying the ((c"ame))
relations would be given the same name..

any relations which are to be taken as axioms for such
a structure must be independent of the particular sets which appear in
their formulation in the sense that 1f S is a structure over the base
set, which is thus preaimed to satisfy some relation R|X,S| and
if we have a bijection of this base set x onto another set y, the
corresponding relation Rjy,S*£ must be equivalent to it( x,S| ,

I.e., the relations which are to be taken as axioms for a
certain species of structure must be in some sense « ti“ansiMNi™MNNNb e»
relative to the particular ((typifice™) of the structure S for
bijections of base sets.

Ml of the preceding analysis is necessarily vague and is
intended to only be of a heuristic nature, to aid the intuitive under-
standing of that which follows. It is hoped that by keeping the
first few exampPes in mind together with the preceding ((analysis)
wtuat follows will be more intelligible and at least plausible.

We noted that ((types) of relations over given sets could be
specified by means of a particular ((rung)) of the ((ladder of sets!
with given sets as base)) and that such rungs could be characterized
by giving their particular (.(scheme of construction) . To first
make this notion clear, we wwil employ the natural numbers in their
meta*-naahemarical usage, 1.e., to specify ((ranges of a certain order)) .
Taeir use here has nothing to do wwth the matheimaical theory of the
natural numhbra which outlined in Part 1l. Their usage here may
be considered here as analogous to their usage as abbreviated expressions for

((First one wrrtes down this and second one writes down that) , etc.
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Dfinition 1. - By a construction schema S for a run,; we mean
a finite sequence of pairs of natural numbers

satisfying the following conditions:

Tiese two conditions imply that for 1f not

then either aI/ 0 ani b,AX 0 or ?. X 0 ani b, = 0, ani we have that

1
by (b) in the first case 1 6 a_ < 0 which is impoosible ani in the second
MM by (a), that 1 4 a, 4 0 wkhLch 1s also impoosible.

Thus if then we My that

is a conntruction schema over n terms.

Peffnition 2. - Let S = (clt...,c ) be a construction schema
over n terms, ani let be n teres of a theory O which is
stronger than the theory of sets. Then by the conntruction, of schema S
(or S-comtruction), over we mean a sequence Ai,A2,...,na of

m terms of _ iefinei recusively by the following conditions:

pefAtionA The final term Ap of the S-coMtruction over

K. En is called the rung, of schema S (or Sprung) over the base

8ets £7,...vEq and is dfnotei ..
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IS & rung construction schema over a = 2 terms as may be seen immediately
from Definition 1. The S”-construction over the base sets Ep a is the
following sequence

the term is and ia thus th« ™~-rung over Ep Ep

More than one schema can give rise to the same rung as the

following example will show. (We shill give it in its full deeail):

then the S-construction over E_.E" is

Thus while Tiis fact, howwevr, causes

no particular difficulties as we shall see.

We now turn our attention to some other possible schemas which

may be constructed out of given ones.

be two rung construction

schemas over n terras. We can define a rung construction schema over n

term.s denoted by SxS* such that

This is accompPished by first defining by
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Then the sequence (c»...,Cr, Cr+q’,,=,cr+Bh C® . rung construction

schema S" over n terms, and one has

so that if finally we let cr+a+l = (r,r+s), the sequence (C”™»eee»Cr+s+i)
is the desired schema SxS*.

we can define in a similar fashion (only mmre simply) a schema
denoted by 1(3), composing r+1 pairs of integers which has the
property that

We now shall show that to every schema we can associate a
rapping which has several interesting propeeties. Our previous analysis
has given us no motivation for this notion, but its importance will
readily become apparent when we formulate our notion of <«transportable

relations % and isomorphisms of structures.

be rung construction schema over n terms.

Let be sets iterms of C ) and let
be terms of "C such that the relations are theorems
of Cfo Let be the 3-con-

struction over '‘de now define recusively

a sequence of m ~ras auci that for each i

subject to the following conditions:
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©

Definition 4. - The final so defined term g" of this sequence
is called the canonical extension, of schema S (or canonical S-extension)

of the mp~ings f ,...,fn and is designated by (fp-..,fn> S

As a consequence of this definition, we have that

Euusple. a As in the preceding example 2, let S = ((0,1), (0,2),
(1,0), (S,0), (2,0), (4,5)) which is schema over two terms. Let eF,
E* E.* be terms and f.i E""> 1™ and (i «2—'7*2'* then we have one

after another
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Froa the elementary properties of the two canonist! extensions
used in tho above definition which we outlined in Part 11

we obtain, the following criteria:

CceT1. If then for

every rung construction schema S for a rung over n terms,

CST2. If ¥ i« injective (rest-, aurjactive) for 14 1 4 n. then

fp-.-.,m™ J js injective (reap. surjectiLvel.

-4
It is a oijection and f. its inverse bijection
for la a bijection and Lts

inverse bijettiot. 1.e.,

mith the notion of canorn.cal extensions of trappings at iiand we
can mdee precise our vague notion of « tranaporabbiity» Which we
noted that all relations which say be taken an axioms for a « species of
structure » suet satisfy. we shall go into this notion in some detail
and shall develop a collection of criteria which will enable us to

decide just how restrictive this notion is.

definition 5. - Let C be a theory stronger than the theory of
seta. XGegerrennn *nt ait"'t'p distinct letters (distinct from themselves and

from the constants of € )t 1 ® terms of "O in which none of

the letters figure, and finally let

be rung construction schemas over n ¢ a terms. Under these

conditi°ns .. will say that the region
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and

is a typification of the letters

be a relation
of "C , possibly containing certain of the letters x.,s. (and possibly
other letters). Then to say that B is transportable (in C) for the
ty ..ification ¥ with the considered as principal base
sets, and the considered as auxiliary base sets is to
say that the following condition is satisfied:

Let -V fé,...fn be letters distinct from themselves
and from the and the constants of
and also from the letters which figure in R or in the
Let be the identity rapping of .. onto itself. Then the
relation

is a bijectinnMind
and

implies, in 'C, the relation

where

(We may formuUate a simpler definition in case the auxiliary base sets

do not appear,)

The relation (1) above is called the transport relation for the

typification T.



e relation <2) naans (in word”™ that the relati°n H, posa™y
involving the letters XxX™...,* "™ s™... s”™ is equivalent to the
relation H wWth each occurrence of an x+ replaced by a y* and each
occurrence of an s™ replaced by its « image) under the canonical
extension of the f, by the schema Sp

To give a trivial example, suppose that n = p » 2 and that T is

«’1l *1 and a2 G ® i, then the relation « s a e * 1i transportable

(since the relation of transport for this T implies that

while the relation ia not (since

*9 shill develop a number of criteria which will greatly
facilitate the determination of wWhther or not a given relation ie
transportable.

For brevity, the terms x», s®, and A* WH be referred to as
the initial letters and terms of the criterion. «e shall use the
notation S(x,A) for the rung S(x}(--Mxn» A)\(A_m)* where S 1s a rung
construction schema over n+a letters. We shall also use the notation

, oir simply T) to designate a particular typi-

fication are p

rung construction schemas over ntm letters, the Xp s”, A" being the
initial letters and terms of the criterion. In euch of the criteria
considered, there being the further question of relations of ,

denoted in genex-a! by U, U”, U,,.., these relations and terms will

be considered as possibly involving the initial letters of the criterion.

We shOLI also designs .y (or sisply . theory

obtained upon adjoining the relation of transport (1), to the axioms
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of "C ¢ Thus if S Is a rung construction schema over ntm terms, and
iIf we designate the tera of denoted by

the relation

is (by CSTJ) a theorem of TZC. Also with Sj defined as in (3), for
every assemblage , we designate by | Jy.s’J the assemblage
obtained on replacing each of the Xy by Y; and each of the aj by SJ
in W.

With these notations, to say that the relation R is transportable
(in 'C,; for the typification T is the same as saying that the relation

is a theorem of "G -

DfiEdtdLgn?. - With these same notations, we say that a term
U is o" type (s,x,A) for the typification T (or by abuse of language,

of type (S(x,A) or of type S) if the relation

is a theorem of "C

Dfinntion 8. - We say that U is a transportable term of type
(s,x,A) (or of type S(x,A) or of _tyfe S) for the typification T 1f the

the following conditions are satisfied:

Remember that if C' ia a theory stronger than "C. every relation
(reap, term) of 7S which is transportable for a typification T is again

transportable for the same typification when considered as a relation
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(reap, taraj of 75 Note also that the preceding definitions (in a
simpler forrn) extend to the case whore there are no lettez-s a. occiwri™g
and similarly for aLl of the criteria (it will suffice to replace T by
any true relation of 75 ).

As an i"i“mddstlte example we may note that the term Card (X) is
not transportable since there is no rung of which Card (x) i1s a meinmer.

but the relation

Is transportable since it is equivalent to « x is equipotent to a subset of
y » which Is transportable as wo shall soon see.

For brevity we shall say "transportable™ in lieu of "transport-
able for the typification T" where no confusion will arise. In the
some criterion "transportable™ will always mean for the same typpfi-

cation unless expressly no'ted otherwise.

CTI. If none of the letters x™,...,x&, s™f...,s" figure In a
relation R. then R is transportable. The term O is transportable of

type T (S) (whatever be the schema S).

CT2. For the typification T fx.s.Af t x* is a transportable
term of type 3S(xjJ. s™ is a transportable term of type S™(x.A) and

is a transportable term of —\/\/—
These criteria are an imaediate result of the definitions.

CTJd. If R and R* are transportable relations. then so are the

relations « not R)). «Ror R*» . Lhand 80 . yR => R®» . ¢(R R R«
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CTI* H the teraB U and Ul are . transportable of types S and
$*» respectively, then (U>u*; is transportable of type SxS*. If 0 and
U* are transportable of type ~(S) and 3*(-”a*) respectively, then

UxU* is transportable of type ~(SaS!J and #UJ is transportable of

type *S( H*(S)).

CTjj. IfU and u' are transport..ble tai®ms of the Bjag,type ">.
the relation S = Ol is transportable. If . Is transportable of tyte
S and U* 1s transportable of type B CASt then the relation U € U*
V-s _v<_porC.ble. 1. u ana o* are traceportal 1a of tvoe Ilsp' thea

the relation u . v* is transportable.

These criteria are the result of the definition and the propeeties

of canood-cal extensions.

CT6. For every rung construction schema S gver n»m terms,
S(X.AJ 1s a trai sports™e term of type ff(S(a,A)) for toe typification

T f X,8,A| .

This is a result of CT2 and CT4 applied one after another over

the S-conntruction.

CT7. If Us a relation such that T =* R is valid in , then
R is transportable for T. If U and U* are two terms such that T=» (U » U¥*)
iIs valid in _ , and if U is transportable of type S for T, then so is
up.
The second pa™t o™ the criterion is a result of the definition
°f a tnwprtabb tens and of schema S6 ~pli~™ in the theory p*. -
For the other pu-t, the relation T< X,s,A| is transportable (for the

typification Tfx.s.A) in virtue of CTS, CT and CT6; the relation
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Is thus a theorm of C + and hence similarly
SO iS T| y,s’tA| , The hypothesis ... B entrails that R (X,s’\ .S 8 theorem
of CC; thus R 1 x,s'| 1is a theorem of 'CC and one has it concusion that
the relation is also a theorem of 73C. hence the

first part of the criterion.

CT8. Let z be aletter distinct from both the constants of
and the letters figuring in the typification T(xX.B,Al, Let 0 be a

run# construction schema over n+tm letters, and let T* be the typification

Finally, let R be a relation containing no z. Under these contHtions, if
H is transportable (in C ) for the typification T1, R is transportable
for the typification T in the theory C * obtained by adjoining to the

axioms of C the relation q

Tils result is obtained easily by the method of the au:X.liary

conntant.

The preceding criterion is applied notably in the following

two cases:

a) the rung S(x,A) is of the form £
b) the sche.a 3 iS identical to one of the sche®a- S (14 j 4 p)

involved in the typification T.

In these two cases one concludes from CT8 that R is transportable

in the theory 7s for the typification T in case S(X,A) /7 O .b a the°rem

of C .
c
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CT9. Let K be a transportable relation for the typificatjon T
andlet K' be a relation such that T R*) ia a theorem of

Then the relation a* is transport ble for T.

as
In effect, the same reasoning/that in the criterion CT8 shows

that the relations R |X,s | a R’'| X,si and R |y,s’< &a R* Fy,s’ |
are theorems of C , since by hyppohesis, the relation

is valid in 720, it is the same for

CT10. For the typification T Ix.s.ai . let - be a term of
ty,.e ] in wth-cnthe letter sJ does not fj-ure, For U t> be trans-
portable for T, it is necessary and sufficient that the relation s* 0

be transportable for T.

The contH-tlon is necessary in virtue of CT5. Conveesely, if

it is satisfied, the relation

, . . St . - . o
IS true iIn 'CC. As, in the theory c f J is bijective, it is a
result that the relation is a theorem of ZZ0

which establishes the criterion.

CT11l. For the tyoificaticn T ix.s.AJ , let U be a term of type

S_ in which the letter s, does not figure. For P to be transportable
e e i

for T, 1t is necessary and sufficient that the relation s* = U be trans-

portable for T.

Proof is similar to that of CT10.
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CH2. Let_ be a letter distinct Iron the constants of 'C and

from itha lettera figuring in the typificatlon Tjx.s.At . and let 0 be

a term oftype S 1 reap. p(S)) for T in which tee leteer a does not

figure. Then the foiowwir*; three conddtions are equivalent:

a) 0 is transportable of typo S kresp. P()_ ) for T,

b) U is transportable of type S (resp, foo the
typification (( 7 |x,3,Al and z £S(X,A) »,

c) the relation z = U presp. z _ _ s t™nsa™table_fo for

the typ™a™on ( Tl x,s,Al and z G S(x,A) ».

The equivalence of b) and c) results from CT10 and CT1l and a)
evidently entails b). For the remainder, the method of the aux.liary
constant shows that b) entails that U is transportable ffor T in the
theory obtained on adjoining to __  the axiom S(x,A) / 0* But if U is
of type S, the hy”™"™osis (in _ entails the reaatonn U € S(x,A), and
consequently the relation S(x,A) / O; this last is thus a theorem of
which proves that in this case, U is transportable for T in the theory

C, If U is of type $(S), the relation < T 0Ox,s,A| and S(x,A) /7 O»
entails U =0 in _ , and then U is transportable for T in the theory
obtained on adjoining to - the axiom S(x,A) = 0» in virtue of CTJ,

the conclusion then results by the method of the case disjunction.

CT1J), Let R be a relation transportable for the typifi-cation

T fx,s.Al . Then for every infox j (1 4 J 4 p), the term

the set of the a. G S.(X.A) such that R »

is transported™ of type .) por __°
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In effect, if one designates thia term by U, it is clear that
U ia of type T* (S,) =~a that a. does not figure in it. Now in a ,
T entails the relation (s,e U)v> e S.(X.A) and R), and the relation
« =J a SJ(x»A) and R a is transportable for T (Criteria CT5, CT6, and

CTT). One thus has the conclusion desired with the aid of CT9 and CT10.

For the typification TIx.e.A™ t let 3 be a transportable
relation. ;mT let U be a term, transportable of type 1(SjJ§, Then the

relations

are transportable for T.

In effect, let U be the tejm i the set of sJ. € oJ.(x,A) such
that R» . In 7,, the relation T entails the relation (U £ U"),
((y SI)((b* c U &a R), As U is transportable of type 1* (S,) for T
by means of CT1J, the second assertion of the criterion results from

CT5 and CTJ; the Tirst is then deduced with the aid of CTJ and CTO.

CT15, For the typification T( x.s.a( , let 3 be a transportable
term of type S, U* a transportable term of type such that sJ

does not figure in U. Taen the term

« the set of objects of the form 0 for s, e »

Is transportable of type ¥ (S) for T.

In effect, let z be a letter distinct from the letters introduced

in the preceding. The teim considered is the set V of the z t S(Xx,A)
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such that one has (3Sj)(Sj€ U' and z < U). AppljyLng successively
CT5» WV, and CT1J, one observes that V Ls transport. ble of type C (®)
for the typifLcation ( T]| X,s,A|] and z &S(x,A) .+ The conclusion La

then obtained with the aid of CT12.

CT16. Let H be a transportable relation for the typifLcation T.
If, Ln , the relation ( T and R Cis fmctioml in SJ the term

T_j(T.and R)._Ls_transportable_of tyge S .

Let V be thLs term, WhLch Ls evidently of type SW,. In "C, the
relation | entails (Sj « V) O (T and R) and Sj does not figure Ln V,
one concludes the crLterion with the aLd of CT9 and CT11.

By contrast, Lf one does not suppose that « T and Rw be
functLonal Ln Sj’ the conclusion of crlLterion CT16 Ls Lnexact. Suppose
for example that C be the theory of sets, that n = p « 1, m = O, and
that T and R be both Ldentical to the relation s. X.. If C (R) be

1
transportable for T, the relation of transport eDitai-Is the eqgiuaity

This consequently entails that for every set £, the Lmage of T.Cx C L;
for every bijection of Jl onto a set F Ls the element ‘C.Cx e F), which

Ls absurd, for example, for every set W”h two elements.

CT17¢ Let R be a transportable relation. U a transportable term
of type C.. U* a transportable term of type S*. Then the relation
J

(Ul s.n Ls trans?(ootable’\ ana the term (U IsLJJO* Ls transportable of
J

type 3*.

In effect, be V the set of Sj € SV(X,A) such that R, V Ls a

transportable texm (CTT1l), and the relation T enislis Un C) the relation
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Consequontly (U 1 b.b ls thans~rUbh <CT9). Let z be a 1t{er disun~
from those already introduced; the relation z = (U | SJ.U‘ is identical

to (Ul a.)(z « U). and zeU is Nansportable for this typification.
The conclusion results from CT12 when we show that the term (U | sJ)U’

is of type S' for the typification T. flow in "C , the relation T

entails thus the relation (U | s.J)T, and since s, does not figure in

J
the term U € S'(X,A), T entails finally the relation (U ISJ.)U' € S'(X.A)

(criterion C2).

CT18. Let 0 be a transportable term lor T. of type ¥T( #(S)).

Then the term is transportable of type ~(S), and so is the term

when T entails U / O.

CT19. If U and U* are transportable terms of type ff(S), then

so are the terms U uU, U nU"' and S(x.A) - U.

CT<20. If U is transportable of type SxX1, then ur™0 and pr~U
are transportable of types S and S* respectively. If U* is transportable
of type ffiSSxS!). then -~ (0" and pr* <U*> are transportable of

types #(S) and ff(S') respectively.

me give the deoonnsration for exammle, of the first part of
CT18 Let z and t be two letters distinct from themselves and from

the letters already introduced; the relation T entails the relation

It thus suffices to show that the set of t & S(x,A) such that

(St)(z e U and t € z) is transportable of type ¥ (S). for the
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typ~Lficat™a™n T. Now this term is of type y>(S) for T, and is transport-

able of type <(S) for tte typificaticrn « T]x,s,A| and z € $(S(x,A))
. S(X,A) » ; as it contains neither z noir T« one has the desired

conclusion by CT12. The demoonStations of the other criteria are analogous.

N.B. In that which follows, we will oWce no distinction between

a correspondence and its graph.

CT21. If 0 is transportable of type ffiCoxS*), and 1f U* is

transportable of type ffGN"SM**then O°U is transportable of type

~NBx3**) and 0 1 is ~aneporta'ble of type

CT22. If U is trainsportable of type O (SxS*) and V transportable

of type '((S), then the term 0 (V) Js transportable of type T(S¥*).

CT23. If 0 is transportable of type $(3), then the identity

gaping ly of 0 onto itself is transportable of type $

CT24. Suppose that 0 be transportable of type $*(S), U* trans-
portable of type $(3"), and V transportable of type $(SXS'). Then

the relations

UV isa sopping ofU inta O’ )
(Vv isan injectionof U ntp} lilp
(v 1isa surjection of U 0»

HV is p bijection of 0 onto O* »

are transportable.

We give the demonnSration for the first relation Which we designate

by R. It is iornoedate that, in & , the typification T enttuLls the

relation

The conclusion thus results from CT9 and the criteria CT21, CT2?, CT2J,

CT5 and CT3.
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CT25+ Let ), U1, UTI, and V be transportable terms of types
respectively S, fI(S), .13(3), nod t(SxS') for a typification T.
aSuppose that the relation T entails the relations « V. Ul—> O™»
and U € U. The term V(U) is then transportable of tyte S', If
moreo-ver &' Is a term transportable of type t(S) and if the relation
T en”ils the relation W £ U, then the term ) the restriction of

V to m » is transportable of type t*(£/xS¥*).

CT26. If R is a transportable relation, then the graph w.r.t

sj--and.sk--of 1he_relation

IS a transportable term of type

CT27. Suppose that for two distinct indices j and k, the schemas
S. and S, are the same, and for a typification I, let U be a transportable
ten-i, of type ft—j) and let ) be a transportable relation. Quppose

in addition that the relation T entails the relation
« R Lb an equivalence relation in U between b, and b, ).

Then the term U/k la transportable of type ,(,(SJ) and the canonical

mapping of U onto U/R is a transportable term of type

CT28. For a typification T, let V be a transportable term of
type MSxS*). then the canonical extension of V to #(S(x.A)) and
iIs a transportable term of type Let

U pap *and U, be transportable terms of types respectively
and let.V be a transportable term of

type. ana suppose that the relation T entails the relations
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<V is.a mapping of U into U» » and <Vj. js a mapping of Ux into ly ) .
Thentho canonical extension of V and V, to UxU" is a transportable term

of type f((S»S")X(=.)DV')).

0T29¢ Let U. U., and U" be three transportable terms of types

respectively fL* ji, )(£"). and Then the canonl-ca! bijection
of (UuU'WV onto UxCUxU") and the canonical bijection of PxU' onto

U'xU are transportable terms of types respectively

CTJO. Let U and Ul be two transportable terms of types
respectively 9(5) and f~(S'), Then the set of mappings of I into

U is a transportable term of type Sa( ®(3x3*/>.

CT~l.  For a typification U. let U be a trans.orUble term of
type P (SJ ;. V a trsainsprtaabe term of tyye 4KsJ.x4*(S))t suppose that

the relation - entails the relation K V is a mapping of U into P((x,A)))
and that 3. figures in neither L nor /. -hen the terms and

are transportable of types and*
e «u
respectively. If T entails the relation U /7 0« then the term

Lb transportable of type

we are now finally ready to explicate the notion of « species

of structure >

Deffcntion 9. - Let C be a theory stronger than the theory

of 3et3 (which of course may .. the theory of 3et3 |t3e|f) A

of structure in C 113 a text ~ecincaticn) £ for~d of the following

assemblages!
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1. A ceirtain number of letters x,...,x , s dLstinct
X n
from themselves and from the constants of C
letters are called the prLncipal®base”sets™of 22 |

the letter s is called the generic structure of 22 .)

2. A certain number of terms Al\Am of 73 (called the
auxiliary base sets of £ ) in which none of the

s figure.

3. A typification
where 3 1s a rung construction schema over
ntm tenas (called the typical characterization of 22 ).
(S may be the product of rung construction schemas

then * will be a < multtiPIt»

A relation which is transportable
(inC ) for the typification T, with the as principal
base sets, and the A as auxiliary base sets. (R is
called the axiom of 7 ) ( R may of course be the
conjunction of one or more transportable relations

which will then be called the axioms of 7 )

”  The theory of the species of structure 2 is

that theory C which has the same axioms schemas as 73 « the seme
exxplcit axioms as 73 , and the axiom C T and R» ; the constants of

T1i are then the constants of 73 and the letters wtd.ch figure Iin T

oir in R.
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“ Let C' be a theory stronger than -C and
let E1,...,£n, U be terms of € . W say that (in the theory C*)
U Is a structure of species y (or y-structure) over the principal
base sets with for auxiliary base sets if the

relation

is a theorem of 'C

It i1s then the case that for every theorem

of the theory 'C, the relation iIs a theorem of C|

definition 12. - We say that (in ~- ) the principal base

sets are suppieed (or with the structure U.
For brevity we often will under such conddtions say that Ei,...,En
iIs a 2-set.

It is clear then that U is an element of the set S( ,
,61\,---|Am). The set of those elements V of
which satisfy the rel”™ion is hhus hhe set of

F -structures over F—n It may be empty, for exampPe, if the

axioms of L are contradictory!

~efirtiQnglm~ - By abuse of language, in the theory of sets,
the specification of n distinct letters without typical characterization
or axiom is considered as the species of structure called the

species of structure of a set ow'ir the n principal base sets Xx#,.<..,x".

e 1. Let 'Cbe the theory of sets and consider the species

of structure, wWthout auxiliary base set, consisting of the principal
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base E, the typical chaaracterization s €K(Ex£) and the axion

(where &A IS the diagonal of AXA), Which
is indeed a transportable relation for the typification s t £(;XE)
as is shown by application of the definition or by CT2, CT21, CT5, CT19,
CT25, and CT}. This species of structure is of course the species
of structure of a (partially) ordered set. The theory of this species
of structure is nothing other than the theory of (partially) ordered sets
which has two consttaits, the letters E and S. (For the sake of complete-
ness we mention that
although the importance of the schemas lies more in their existence

than in any particular example of their use.)

Ample 2. Again let be the theory of sets and consider the
species of structure of a topological space which has one principal
base set E, no auxiliary base set, typical characterisation

and axiom

That this axiom is indeed a transportable relation for the typifi-cation

nay be seen from the definition or by consisting CT18, CT14,
CT19, CT5, CTj5 and CT2, etc. A structure of this species is course
a topology and the relation « X€ V » iIs expressed by « X is open for
the topology V » . (Again for expository comppleeness, one my take

S = ((0,1), (1,0), (2,0)).) The theory of topological spaces has two
constants E and V.
we may within this context say what one means by an algebraic

structure.



* sp3ciLes of algebraic structure = (in a theory stronger than
the theory of sets) defined over the principal base sets x ..... x
and auxiliary base sets has a structure of the form

(slt...,s_) and a typical characterization of the form

where each T" is obtained by replacing in the term P ((uxv)xv) each
of the letters u and v by one of the terms XA oir K In addition the
axiom of E .s written .n the form « P and Q » , wher. P iS the

relation

{( s™ is a functional graph and ... and Is a functional graph's ,

(which thus expresses that the s. are the graphs of the laws of composi-
tion, ( external if s"€ 'P ((A*xx") xx”)) and internal if

N € ((X™XXM)XX”N) ). The relation 4, which expresses the supple-
meetary conditions which the laws of comppoition satisfy, is generally
called (by abuse of language) the axiom of 2? (or if a conjunction of
several relations, the axioms of J ). The axiom is as always required
to be a transportable relation for the typifi-cation

A structure of such a species will be called

an algebraic structure.

re shall now give two examples of algebraic structure species.

e 3. Let "C be the theory of sets;in 'C » the species of
(algebraic) structure of a group has one principal base set x”, no aucxiiary
base sets and a typical characterization with axiom

< Is a law of compoostion of a group over x”) . This axiom is
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indeed transportable for the typification
since 1t iIs equivalent to the conjunction of the following relations:
*1' X S1 id a I-* of composition everywhere defined over x* » which ia
transportable by CT2U.

where J denotes
the canonical napping of Xis transport-
able by means of CTEi CT2J, and CT23.
and which is certainly transp’\rtab; lzcv)r the typif-
ication \i T and z £ x* and z' t X ; transportable for T then resULLts
from CT8 and case disjunction where one observes that upon adjoining
the relation x» =/ to C t is false ana hence transportable by

CT7 and CT3.

and

which is transportable for T by similar reasoning as for R™

The theory of groups X~thus has two constants, the set x* and
the law of composstion s”. In the theory of sets O we have two terms
< the set of real numbers )) and <«the addition of real numbers
IT we substitute these terms for Xt and st respectively in the exppicit
axioms of we obtain theorems cf X+ Thus by C£ we nay <«apply the
resullts of the theory of groups to the addition of real numbbrs >
One says that one has constructed a model for the theory of groups
within the theory of sets. Also since the theory of groups is stronger

than the theory of sets, we may apply the results of the theory of sets
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to the theory of groupie, but if the theory of groups should prove

contradictory, then the theory of seta is also.

Example 4, Take for C , the theory of the species of structure
of a field, which has (among others) the constant K as its unique
principal base sets. In ,3 , the species of structure of a (left)
vector space over K has E for principal base sets, K for amciliary base
set and for typical characterization V T "P((«htE)xE)x Is ((KXE)rg).
pr*V is of course the addition and pr >V is the scalar mulliplication.
Its axioms are the familiar axioms for a vector space over K Wh.ch are
all transportable relations as may be seen by the transportability

criteria already developed.

we shall now proceed to define the important notions of iso-

morphiam and transport of structurea.

Le 2! he a apoeCie ao strucCm*e in a theoo*ytC , ooee a
principal e>ae sets X'i’ r—‘{ ,with a auxiliary base sets A1§< "'Aa
Let S be the rung construction schema over ntm letters Which figures
in the typical chjaraccerization of 22 , and let B be the axiom of 21 .
In a theory C stronger than C , 1-t U be a 2 -structure over
and U also be a 2 -structure over £', ...,E '. Fiully in C let

be a bijection for 1 4 1f n. Under these conditions we

olOko the following definition:

Peffnition 14. - The muuliplet of mappings (f f.,.,fF) is called

an isomorphism of the sets «,+++, € supplied with the structure U onto

the sets wvilled with Uo structure U if Un C ),

(4)
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where is the identity mapping.

L»t ¥ be the inverse bijection of f. for 14 if n. Then

it is an imneeiate resuit of CST> that

and hence that (f.,cee,£ ) iS an isomorp”sa of o sMphin

onto supplied with U. E
with U/ tfe say that these isomorphisms are inverses of each other.
Deflation 15. - We say that ' supplied with U' is
isomorphic to T, ee*& supplied with U if there exists an isoaorphim
of onto »eeeef*e furthermore we then say that the structures

U and U' are isomorpih.c.

CST1 and the preceding definitions imneedately give the following

criterion:

CST4. Let U, U and U" be three 1 -structures over ,

En' and E1 = ™ En" respectively. Let Tj —* B and
gl Ei’—Dbe bijcciions for 1 43 4 n. Then ff ™. f ) and
are isomorphisms, (g®o Y ¢g"Q Tf...... ° ™ 18 an iso~
mmrpthism.

One usually calls an 1somorphism of E««*«tEa onto
(for the same structure) an automorphism of 0y . It is then a
result of CSTU and the definitions that the automorphisms of ¥ ,.ee E&
form a group.

The following criterion gives another reason for the requirement

that the axiom of a species 0" structure be a transportable relation.

CST>. In a theory stronger than g . let U be a £ -structure
over E.......... E and f. be a bijection x owo - -el * * for 14 14 n.
Then the'ﬁe elxists over Li T E_.”a.£ -structure (which is unique)

B



such._t.hat (fp ..., la an isomorphism of ... g” onto 7 i EJ.

In effect the desired structure is nothing other than the term

U' defined by the relation (4). For what remains 1t suffices to verify

that this term is a Z-structure, i.e., that the relation

e| jeeeoxn io true in "C . Butthis is an immediate result of

B| xIt...,xn,s| being transportable, for than Rf ....,E 7,Uf 1is

equivalent in C'to the relation Rf E.l,...,E ,U| which is true in "C
n

by hypothesis.

definitio™Nl6. - We say that the structure U* is obtained by
transport of the structure U to the seta Ee,..., * by means of the

bijections t~,..., T .

It thus amounts to say that two 7" -structures are isomorphic If

one may be deduced from the other by structure transport.

definition 1/. - If two arbitrary structures of the same species
are necessarily isomorphic, one says that the species of structure

is univalent.

This 1s indeed the case for classical Eucliden geometry and also
for the following species of structure:
1. The species of an infinite monogenic group ( % Z)
2. The species of a prime field of characteristic o ( £ Q)
3. The species of a complete, archemidian ordered field (<R
4. The species of an algebraically closed, connected, locally
coi; act commutative field ( - C

5. The species of a connected, locally compact, non-com utative

field ( = KJ.
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(In f&ct for < and =~ thara ara no autonorphinns other than the identity
mapping, but this is not always the case as (X —>-X): Z~*Z2).
It is interesting to observe that the preceding structures
are those which lie at the base of classical mathematics. By conmriawt
the species of group, partially ordered set, topological space etc.
(part of modern are not univalent!
We shall now consider the notion of « relative trtn8prtitbilty» .

(We chall use the notations already developed for the transportabblity

criteria.)
Let be a species of structure in "C , Wth Xp...,xn for principal
base sets, A.,..,,An for auxXliary base sets and so for its generic

structure; let Sgt SqCx****x Ap’.” AT be the typical characterization

which we will designate by Tqg, and let P be the axiom of E ; P is thus
transportable for by defimtirn.

Defnit=o=LL=* " We shall say that a relation R is transportable
(in 73) relative to £ , for the typification « Tq and T » , when the

relation P => R is transportable (in C ) for [ Tq and T » and the

following conditions are satisfied:

1. the initial letters of T are Xj,...xn,so (and possibly

additional letters Xp'a e X, s)>(<,...,sB)); the initial terms
are Al\.,...,Affi (and possibly add.tional terms A, 5"';A of

C not containing any of the initial letters of T);

2. T is of the form

where the S (14 j 6 p) are rung construction schemas over
a

n+r+m+s letters.
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ue shill show that this definition is equivalent to the

following assertion concerning R:

- The relation

is a theorem of the theory ( , Obtained by adjoining to the axioms
of ZS the transport relati®n for the typification « T0 and T» ana the
axiom P fXx,s| .

«N.B. - Tixs wncUticm does not signify that R is trcrnap”tatt™

*z. for (( To and T» since the x* and so are constants of )

Suppose in effect that R is transportable (in "C) relative to £

for * T8 and T > ] then the relation

is a theorem of * . Also is a theorem of "C
since P is transportable for To (in C). In Cc’ the relation (1) is

thus equivalent to

But in and are

egiU.valent relations; similarly, and
are eqid.valent in ("C « Therefore one concludes that

is a theorem of

Convvrsely, suppose that Dfi*ri-ti“on 18' holds, then in 73-C« the

relation

IS a
theorem; now it is wen known that the relations B => (C4=> D) and
(B-=>C)® (B *~ D) are equivalent in every logical theory; but (2) is

a theorem of 'CC and consequently also (1), which thus proves our

assertion.
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Definition 1?. - «9 wil say that a term U of C is transportable
tf s (in 5 > restive to L , for the typificatla™® «Tqg and T »
if in (™c)E, the relations U e S(X,x'’A,A”) and U| y,y’,s ",S’l n

are theorems.

: S
are theorems of C for 1 4 J $p. Let g be the canonical extension of
Oy g9 and the identity mappings of A and.CA) Q1 kd4m 1O4 5s)

to a rung of type S over X A— ——'5 one has iIn

pirtiCular that gS°( 3 ) = 3* ¢« Under these conddtions the relation

is a theorem of 'C
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In affect, if, in the tcra f‘](bj) we substitute g.i for fi,
for x+, « for yx, e for and fore (1< i< n, 1< IS; p)

we obtained the term g J(Cj) (1= j $ p), Since the same substitution
effected in 1, T, T, and in the transport relation for « T and T» give
theorems of C |, our assertion it an iraneddate result of the definition
of a transportable relation relative to ZZ

similarly from the definition, we may observe that if U is a
transporteble terra of type t relative to Z , for the typification

«Tg and ¢ = (with r = 0), the relation

is a theorem of

definition.20. - e« say that a term V .. ..x .St of is
intrinsic for s”, of type T, provided it contains no letters other than

the conntants of = | and is transportable relative to T for the

typification T°.

Because of the importance of this notion we stall restate this

definition in full:

definition 20*. - Let £ be a species of structure in a theory

-e , over n principal base sets, Xp...,xn, with m auxiliary base sets
A, ...,,A ; withs 6T (,--..>x<, A.,,..,A ) as typical characterization
forZ. . Let T be a rung conntruction schema over n+tm terms. One says

that a term Vf i~f.._,ings"ol which contains no letters other than the
constants of is intrinsic for s. of type T(i,,....,.x_, A_,.,.,A ) if

It satisfies the following conditions:
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1. The relation VFf

iIs a theorem of Th ,

2> Let (tc> .- the theory obtained by adjoining to the -xiom-
of the axioms « x*—> y™ Ss a bijeciion* for 14 ®4 n
the letters f, y™ being distinct from themselves and from

the constants of 7X . Let so’ be the structure obtained on

transporting So by ?‘Fn) i.e., s
I, 7 T°(S ). Then
X n 0

» § fI*,_._,f ,

0 n

iIs a theorem of (72C )Z .

It can be shown that in the theory of groups, says, the neutral
element, the group of comrnmtators, the center, and the groups of auto-
morphisms, etc. are intrinsic.

Let Vf *i ,...,xn,so$ be an intrinsic term for Sy of type T.

It 1s imneedate that the relation 4 (f1 ,fn) is an automorphism of
X_,...,X supplied witn st y entails in 'Cg , the relation f*(V) =V,

we shall under such conditions say that V is invariant for all of the
automorphisms of supplied with s°. This latter conation, it
should be emphaaszed, is not sufficient to guarantee intrinsicity, however.

In view of the conventions introduced concerning « the species
of structure of a set) , to say that a relation (resp. term) is transportable
relative to the species of structure of a set simply means that the

relation (resp. term) is transportable in the unrelativised meaning of

the term
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efinition .1 *hnn a term V, intrinsic for s , is such
that in addition the relation (( V la a correspondence between X and Y »
(reap. U is a sapping of V.iintocy») is * theorm of ’\((V;( and V2
being two terms also intrinsic for so). we say that V is a_ciawl
correspondence (reap, mgping) for sif The terminology of « canonic”®
mapping > introduced in the theory of sets is thus in accord with the
conventions already introduced.

«e shall now give an equivalent ctairaccerization of intrinsic
Mppings in the most common special case.

Let U_:‘?l_n% be twe terms of C which are intrinsic for So
of types ana respectively. 'Then a mipping V. —* U?
Is canonncal for S if and only if in ("CCIE (ff*’""fn' Il*....,lm\ 20

V] Xp...txn,so|] 3 V™i17‘yn’80’l X

€., , with our usual abbreviated notation, in (TZC ;o the following

diagrim 1s coimiutaaive:

The above assertion is an iMsedate consequence of the definitions for
intrinsicity when we rec”™.1l that V is intrinsic, i.e., canorncal under
the hyppthesis of the «.-°re.. iff T ( V] X,s°|} = VE y»807’J)

and that we always have XS0
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now shall consider the imppotant notion of a « process of

deduction »

definition 22. - Let O be a second species of structure In
the theory "C , over r principal base sets , with p auxiliary
base sets let tt T du,......... Bp...,>p be the typical
characterization of ® +« we call a edition of a sti*ucture

of species 0 from a structure of species ZZ any sequence of r+1 terms
— each intrinsic for Sy> and such that (P is a O -structure
over U m m mm the theory . (By abuse of language we will

occasionally refer to the single term (P as the process of deduution.)

Definition d, - Let "C be a theory stronger than "C . If,
in . 3 1s a Z -structure over , then (P? E
1 n 1 n ‘'
iIs a © -structure over the r sets F. = U, [ fi"""£n’31 1134 ),
J |

said to have been deduced from % by the process (P. or to have been

subordinated to -3 e

The hypthesis that the terms d?, are intrinsic for

So ent™ls the following criterion:

CST6. Let (g......... ga) be an isomorphism of £/,...,£&, supplied

with a ZZ -structure onto L_1,...,E””, sup lied a 2 -structure -3

If Uj io of type (Tt ~ (14 j4 )
and let F? = ¥J @a J r), then (™,...,) 1is

an isomor hism of F ,... _ onto >r’ when supplied respectively
with the 0 -structures deduced from -3 and 3 by the process P, , - - - 5.

Peeinition 24. - The mappings (h]...,hr) are said to be the

isomorphism deduced from (g"» ee - by the protess (,
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Suppose that (pUp... U and <P ,U~N',... ' are both processes

of Eduction of a ®©-structure from a L-structure. Let (V ,...,.\V )
1 r

be a sequence of canonical mappings such that VJ: UJ.—* LJJ is a bijection
for 1 4 jJ 4 r. If, furthermore is an isomorphism of ll>eee«™
supplied with (P onto U_ U ' supplied with ¢*, we say that (V_,...,\V )
defines a canonical equivalence of the process of deduction P and P*.

Let us suppose that the hypothesis of CST6 are satisfied and
let us use the following notational conventions:

Let DI(X1,...,xNn) m UgJIxj......... xa,so< , LJ(gl,...,gn) -

for 1 | r and

Dj’Cxp... ,xq) = uj’ I x™~ ... ,xn,sol and B (@."....g") = (g™ ....g™N", ... ,1’\TJ
and finally F\.ﬁx.l ,xn) = V;JJx.. ,xﬁ%l for 1 < j4 r, then under

the hypoohesis of CST6, the following r diagrams are commutative

CST6 iupOies that DJ.(g_., .---gJ (1 J 4 r) are isomorphisms and also
that the D,’(gj.. -..*£&) are 1aMorphi®s. If ™ .. F™ iS a canonical
equivalence, then i1t is also an isomorphism.

It is clear that the terms are intrinsic for sQ. In
many cases the terms U,eeeeeQ% are certain of the letters <x™...", in

such cases we speak of the ®©-structure deduced from sq by the process

as underlying s”™. (cf. Example 1)
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Suppose that ® has the same base sets (both principal and auxi-
liary) as T . ..o ala® the aame ~pic”™ cha,acterization. If f~therDore,

the -xio.. of L (in "C ) the axiom of ® , it is clear that the

term s~ is a process of deduction of a O -structure from a L -structure.
We then say that © is less rl,ch ttan 21 or that L iS more rich th@n ® .
Every L -structure in a theory 'C' stronger than 7S is then also a
© -a™~uc”re. (cf example 3).
In the case that Pisa mulliplet ), one also says
that the terms <P conssitute a process of deduction of a

‘O -structure from a H -structure.

Example 1. The species of structure of a topological group

has a single principal base set E, no auxxiiary base sets, and a generic
structure which is a pair (s™ being the internal law of cnlnppoatinn
over E and b? being the system of open sets of the topology of E). Each
of the terms and IS a process of deduction furnishing respectively
the underlying structure of a group and of th' underlying structure of
topology. Similarly, from the structure of a module we can deduce the
underlying structure of an abelian group. From the structure of a ring

we can deduce the underlying structure of an abelian group and also a

iuUtiplicativf semigroup, etc.

Example 2. If T and ® the species of structure of a group
(resp. ring). ee may define a process of deduction associating to each
group structure (resp. ring structure) the structure of a group (resp.
ring) over its centre. If £ is the atructurfeifﬁwodule over a camimtaaive
ring with a unit I and ® is the species of structure of an algebra

over K we can define a process of deduction which assigns to each module
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over K 1ts tenson algebra and its exterior algebra, etc.

Example 3. The species of structure of a totally ordered set
(obtained by the adjunction of the axiom « S u s”1 = EXE » to the
axioms of the structure of an ordered set is richer than the species
of structure of an order. Similarly the species of an abelian group
Is richer than the species of a group and the species of a compact

topology space is richer than the species of a topology, etc.

It 1s well Known that there is #4 more than one way of defining
a topology »(-.&.* by means of open sets and closure operators)and that
an abelian group and a unitary Z-module are the 4 same thing »
We now show that such naive notions of « equivalence * of various
species of structure can be given a satisfactory formal meaning by means

of « process of deduction >

reTinition 23. - In the same theory C , let 21 and ® be

two species of structure with the same principal base sets Xx.,,..,™™.

Let S and t be the generic structures, respectively of £ and © and

suppose that the following conditions are satisfied.
1. One has a process of deduction (1 x*,...,xn»8] for a
© -structure over x»>,*«*n from a T -structure over
Xi ieeeiXge

2. One hs a process of deduction vi N Gaiataiattd RN R

-structure over X»*‘* *_, a ® -structure over
Xl))oooox*
>, The relation ... *n, ¥ ... «n — = sisa theorem
of an. the relation ] X~ t... ,xn) eoenX™»tH = t

is a theorem of 1.
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Under these conditions we say that the species of structure L and @

ar® bidi.alent oy intermediation of the rr,cess of deduct\on (P an: .

In this case for each theorem Bj .~...~nts! of , the
relati®n B| 1", iQlyi IS . thror™ of and conversely f°r
eaen UNrrNn C| °f C . the relati°n CH

is n theorem of NMe .

» If ( id a 1 -structure, one rays that the

structure deduced from U by the process P is equivalent to u.

Oiur criterion CST6 has as an imé&eOlato consequence the following

criterion:

C3T7. Lut $ and S tBtM E -—tiuct™es over J
ana (@f...... respectively. Let __ and _be g-alajcturet
equivalent roopectivoly to 3 an. .m . - U..QU”r 1ithat kp.-,& -gJ

be aa ...fflar. amm of t.e structures 3 aad 33. K is aacewurv and

sufficiont Uat ... e an Ucmorphiiw of the sUu™Suww m ...o=

hxaBple. Let m be the species of structure of a topology with
il as i1ts base set and V its generic structure. Consider the relation
« xc £and XG £ and (VUQUt Vand 1 4 U)-=> Xm0/ #))>» ,;
it admits a graph CP with respect to the pair (X,x) and <P <Sp(E)XE.
(? ] u,V| is then a term of C (called the « set of pairs (Xtx) such that

x 1a in the closure of X for the topology V m ) and we can prove that

the following relations are theorems of _£:
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Now consider the species of structure ® , with principal base
set L, generic structure V and, typical characterization . - ~(PCEjxE),
and axios -(/) =0 and (VY)Y £ E=*Y m «(Y)) and
(VWWXV2DY(Y cEana L EE =» .Y U 2) = ,,(+) U WD) ana
Yy * BE)=>(w((+)) =wy)).
Now consider the relation « U C E and (WMX)(X t U=*x 4 b(B - U))» .

The set of all U t $ (g) which satisfy this relation is a -usece

of m?(&) -na We <o sh°w that the following relations are theorems of

Cco’

Thus the terms (F- =.V- and iH E>*i verify conditions i and 2

a-« also J of De™ni™on 25 an. hence the species L an. ® are equiva-

lent and we can consider a ® -structure as a topology by means of the
process of deduction £, .} .

we shall now show that the notion of intrinsicity can be
extended so that we can define the notion of a « process of deduction
from two species of structure furnishings structure of a third species)’

In a theory C stronger than the theory of sets, letZh be a

secies of structure over n principal base sets , = auxiliary
base =ot= '%*”Ahr with 1 . f m) as typical character-
ization and 4m \ X, ._...—,a] as axiom. Also in O, let . be a

I n

species of structure with o principal base sets Vv.**»v.t q auxiliary

base sets CH,...,C”, with .. < W(\™,...,vq, as typical



characterisation and 8 4 for axiom. In addition let denote
the theory obtained by adjoining to the axioms of "C, the axiom
"RE£ and , so that the constants of Tyyare the constants of

C together with the letters which figure Nl < orin Sj

definition 2?. - A term U of 8 will be said to be bi-intrinsic
for fe ,w), of type VCx~,... X, Vv/N, ... Ai**7*7 Am* ) provided
U contains no letters other than the constants of » and satisfies

the following conditions:

1. the relation is a theorem of C+-
where V 1Is a rung construction schema over n+to+m+q letters.

2. let be the theory obtained by adjoining to the
axioms of 8*8, the axioms 4 fT.i 88 a bijection»
Qi1 (n)and (( gjs Vj —> zJ is a bijection» (1 8 j<o)
(the letters yyfy.gyZy being distinct from themselves
and from the constants of » let ly be the identity
mapping of Ac for 18 i m and let 1.’ be the ddentiyy
mapping of the Cj for 1 j g8 Then ff s' is hes sructtree
obtained on transport of s by (fy,...,fy) and w* is the structure
obtained on transport of w by (gj‘'eeegf), then

Uyyf..o>y ) Zyl.oo*z | S IWf —

CFI*77 %N i g’ T T’ (U)

(where U* = VA,..oV0,9W|

is a theorem of ( .
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Th* above definition of bi-intrinsicity is thus egiu.valent to
the requirement that U contains no letters other than th* constants of

be relatively transportable both for H and * .

example. For any species of structure 2 and * having only one
principal base set, say x and y respectively, the term J(X,y) ( « the set

of all mappings of x into y » ) iIs bi-intrinsic for (s,w).

D®finision=8" - We shill call a process of deduction of a

o -Btructure fiom . . -stru”™ure an. a * -structure an. sequence of

r+1 terms of C , (P,n,...,Dr, each bi-intrinsic for (s,w), such that
¢ is a O-structure over in , 1.e.,
(P J x,v,s,w| ch(?j X,V,«<,W| ,...,Url X,V,Ss,w 1l , Bl"" ,Bp) and

17M1.1 x,vs,wil o,oe  Url x,v,8,</| , P| X,V,SS\wWH »

are theorems of .
As an immediate consequence of this we have that i1f
72'is a theory stronger than "C in Which 4 is a Z-structure over

Ei,...,En avad W a 5 -stuucture over Fi...,Fo, then

P<Z F. is a ©-structure over
1 n X 0

- The 0 -str—e C (C....P2 ~0,...,F°e"™
iS said tobe the o -structure aeaucea from the pair (of Z an.

$ -structures) ¢ ,M) by the process of deduction P, , - -.U..

In virute of the definition of bi-intrinsic terms, we have

the following criterion for such a process of deduction (,O™,..., Ur.
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CST6 . Let "Uu>»...tFJ be an iommorphsmm of

supplied with U onto E.*............ I supplied <ith 1 ( 3 Ul both

bejng Z -structures) and let (Kp,..,fg) be an isomorphism of F<«...tF

supplied with X onto m— ! supplied wi~th W! ( SvVand 1! both

being , 1 -structures). then if 0, is of type -~#(V,) and we let
J Jdy
h_] 3 _fj.*****/\* /\1,*’**8q1 INFEXTE|N,, ] N FFeee>>, fOr 1 4 _I 4 r,

we have that (h-....... h.) is an isomorphism of the r sets 0
Fo..... Joud '"HI (14 ] l r) onto the r sets U. f ".1_..... S.1. RJ3,....FJ J}
WJ,|) Ur) supplied respectively with the structures 1 ... Sh
......... T, = .M and”™ Y .....dj, RN 4 | deduced
from (4 .X) and ( ¥ . A" j by tu- wrocess of deduction IP.O......... U .
In effect,

is a bijection for 14 j 4 r since U. is bi-intrinsic for (s,w) and

(fl"""fn) and (q,,....80) are both isomorphisms (so that the respective

struc cures obtained on transport of U and N are indeed U andW ):

Similarly

(where I.£” iIs the identity mapping of B.* for 14 4 4 p) since (P being of
type T ove U™...,", BB.... B. implies that it must be of type V over

......... XN, vX......vQ, AX.......Am. CX........Cq. Thus the rquired b ™ I">rins ™ty
and the fact that the (t) and (g) are isomorphisms Implies that

srnd

~ence that IS ..
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makings deduced from ((Fp...,f™). (g”™....,g0)) by th* process of

deduction (P.U........... U .
1 1o \V4 r

N.B. The irnaeddately preceding notions can be generalized without
difficulty to tri-intrinsic, indeed n-intrinsic teres and the consequent
definitions of processes of deduction fro< three or indeed n species can
be then iemeddately formulated. The analog of CST6* will then foioow
just as easily as it has here.

we now come to the ie”ootant notion of « eorphiems» . For
siifeUfcation, we for the moment assies the species of structure under
consideration here have only a single (necessarily principa™L) base set.

Let - be a species of structure in a theory C stronger than
the theory of sets and let X,y,8,t be four distinct letters, distinct
froe theeselves and froe the constants of Cf. <e shall use the
notation 3(X,y) to designate the set of eppings of x into y.

Suppose that we are given a tere a'|Xx,y,s,t|] of C which

verifies the following conditions:

(M@j) The relation ¢ a is a A-structure uver x and t is a

A-structure over y » ieppies, in C , the relation <fx,y»s,M '— "~(x,y).
(MOjj) If, In a theory C' stronger than "C-, we let and E”

be three sets suoDliei with . -ntructi™ ) , , ama b, then the

relateion ~plies

the re”~tion

(MOjij) Given, in a theory Cl stronger than C , two seta E and

E* with the L-structures s an. C' r™~"ct™ly, then for
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a bijection £ E » E* to be an isomorphism, it is necessary and

sufficient that

definition ji. - If 2. and <r are gxven, we express the relaiOnn

by saying ttat f i.s a morphm Cor < -morphism) of X,

furnished with s, into y, furnished with t. If (in a theory C* stronger
than "C ) n and E* are two sets furni.shed with 2 -structures - and 3 ,
the term <f EFE —f i.s called the set of c -mortisms of E into

E* and 1T the context is clear simply by Horn(E,£) or Mor(E,E”).

(MOj_j) and the propeeties of bijections give the following

criterion:

CST8. Let E and E* be two sets, each furnished with a 2Z -structur
Let f: £—>»E' be a —-morphism and g: El—»E also be a < -morphism.

If g °f: E

Is the identity doping and fog: El — J the identity
mapping, then f is an isomorphism of E onto J and < is Its inverse isoO-

morphism.

In case the speciesH connists of more than one principal
base set, say x>»e,,Xr and one or more awciliary base sets
then a 0" -morphism is a system
such that the system veeifies the analogous statements of (MO"),

and (MOg").

N.B. It may be possible to define more than one term < which
satisfies (MMj) - (MOrm) 80 that the notion of morphism in contrast to
that of isomorphism is not uniquely determined by the specification of
L

We shall now outline the conntruction of a theory in which most
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of our previous results may be subsumed and the mettanathematical
device of rung construction schemas may be eliminated. Thit theory
may tentatively be called the theory of structures.

Lit A be an assemblage (of a theory C) in which gnly letters
and substantive signs figure. Let us call the length of A the total
number of signs which figure in A and the weight of A the sum of the
wights of the signs which figure in A. If A has the form A’BA" where
A’ B and A" are al30 assemblages, we shall say that the assemblage B
is a se™aent of A((proper segment if B /7 A). If A is void we shall
say that B is an initial segment of A. We shall say that such an
assemblage A is balanced if its length is one greater than its weight
and if for every proper initial segment B of A, we have that the length
of A is less than the wight of B. If A is a balanced assemblage and
begins with a substantive sign then A may be put in the form
fB».«.»BP, where f is a substantive sign of weight p (>/ 1) and all of

1
the B, are balanced. We call the assemblages B, the assemblages ante -

cedent to A.
Let C be a theory stronger than the theory of sets in which
pis a "bstanti™e sign of wwight 1, X a sutostantive sign of weight 2.

Let Xl‘* ..... ‘Xn be distinct letters, each of which has wwight 0. Let

T be a balanced assemblage of the foregoing signs, i.e., r , X
xl_,...,xn; such an ase™mb;Lage will .® called a runf type Qver x»,,,,Xn*
From now on let be n terma of a thoory stronger than

the theory °f sets. For every rung “ype T over X,...,xXn« w® define

a term in the following mtumer;
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1. 1f T is a latter x., T(2.»...,£ ) ie the aet Ea,
1 = N 1
2. 1f T is of the form P U, where U is the assemblage

antecedent to T, T(E ) Is the assemblage

» 1F T is of the form X UV, where U and V are the
assemblages antecedent to T, En) is the set

U(E™, ...,En) x V(&i,...,En)e

It may be easily shown that, for each rung type T over
T(EE»...En) is a rung over the terms Ep...,E , and conversely
(reasoning by induction over the length of the rung type or over the
construction schema for the rung). Mooeover every rung over n distinct
terms may be written in one and only one manner in the form TCx".eee XQ),
where T IS a rung type.

The term TIiEN,... .E*) will be called the realization of the rung
type T over the terms ,.°® Lo

In a fashion similar to the above definition but in analogy to
Deffnition 4 we can show that one may associate to a rung type T over
n letters, and to n mappings f*,...,f*, a canoni.cal extension of these
mappings and we may then deduce that i1f two rung construction schemas
S and S' over n terms are such that the
X. being distinct letters, that one has

How let "C be a theory stronger than the theory of sets, In
which p anl P' are substantive siLgns of weight 1, X ..o X ar«
substantive signs of weight 2.

For every assemblage A of these signs and n distinct letters

. . we define the variance of A in -the foUowing manner.
n
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First we define the variance of the letters x+ and also the signs -
and X as 0; we say that P* and X” have variance 1. Finally we call
the vsariance of A the binary sum of the variances of the individual signs
Wh ch figure in A, i.e., A is of 0 variance if there an even number of
signs of variance 1, and 1 otherwise.
Ue now call a signed rung type a balanced assemblage A of the

preceding signs satisfying the following two conddtions:

1. The assemblages antecedent to A are signed rung types;

2. If A begins with the sign X , the two antecedent
assemblages must have 0 variance; if A begins with the
sign X ¢ the two antecedent assemblages muut have

variance 1.

A signed rung type will be said to be covariant if it has
variance O, contravariant if it has variance 1.

IT in a signed rung type A we replace P by P and X by X ,
we obtain a rung type A*; every realization of the rung type A* over
n terms E, ..... En will be said to be a realization of the signed rung
type A over and will be denoted by A(Ee>... »2>)«

Let Ex......... En, £1\...,En’ be sets, and f+: Ej—* be
mapiings for 14 1 4 n. We can easily show that to each signed

1S

rung type S over X.**««,xaV we may associate a mapping

which has the following definitive properties

1. if S is covariant (resp. connravardann), then
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2. 1T S is a letter x., is fU

J. if3is P T (reap. P” »)t and if g « <fp...,f } *!
F—* F’, then {f,...,~ ° =g (reap, 09),
if 3 is X TU or XTU, where T and U are the anti-
cedent assemblages, and if (fl,...,fn"T =g F—F and
N, fna = ht G » G* then ™M, AN =

gxhJ]FxG—F x G*

The mapping will be called the signed canonical
extension of the mappings f.,...,F. with respect to the signed rung
type S.
Of course if S is a rung type (i.e., when P and X do not
figure in S) the signed canonical extension {fl,...,fn\ « (fi,---,fn) .
It may also be shown that if f.1 B" *and ™N's EN —f BV

(1 41 4n), one has for a covariant signed rung type S that

while for a contravariant signed rung type S

-t
Also, we have that if *» E*> K’ is a bijectOon and f+ tie inverse

bijection for 1 . | 4 n, then iS a bijection ana

S i1ts inverse bijection. Mooeover in this case i1f S*
is the (unsigned) rung type corresponding to tie signed rung type
S. JFp...,™ ® is equal to (flt...,fn) or to \jfl»”**»fn)

depending on whither S is covariant or contravariant.
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Let us call a signed rung type T proper if it has the form P U
where U i1s the assemblage antecedent to T.

We define a category type C over x1 . to be a balanced
assemblage of proper signed rung types and the sign X all the antecedent
assemblages of which are category types.

If C is a category type, then every realization of the rung
type C* will be said to be a realization of the category type C and will
be denoted by C(£1_,-.-,I%).

Let 1 Eri 1 n’ be set6 and Ietlf.: El_> EX’ for

1$1 -n To each categorytype C over we may associate a

term - ~® % 1 G with the followl.ng propeeties:
1 n

1. 1f C i1s a signed rung type, then 'cF e 3 tff,,..,fn] C.
2. 1Ff C 1s of the form X TU where T and U are assemblages not

concordant (i.e., not having the same variance), then

The term Lfp.FF will be called the canonical extension
of the mappings f.,...,fn w.r.t. to the category type C.

|f C is a category type over ip,.-,int then 1if rS',...,pS.
are the p proper si.gned rung types which figure in -, "F, ... 3

written as ({F. ...~ i,eeex (Fpeeenfl )

Now l€L ¢ be a category type over n+m letters. Lete .. a
species of structure with 1™,,..,” for principal base sets, Ap....A,
for auxiliary base sets, whose typical characterization is of the form
SW o XN. Aleeee A®)» W shall show that one may define a notion

of a -morphism for this species of structure in the following mmnner:
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Being given n sets Kp..a,S supplied with a Z. -structure

U= (U , and a mapping Ft £.—*£" for 1 4 i n. we
*1* *Pp = 0 BN .

say that (f~t...,f™) is a v -morphism if and only if the mappings

f~ verify the following conddtions:

for each signed rung type P S. figuring in C
J

1. 1T S is a covvaiant signed rung type
J

2. 1f S. is a contravariant rung type

J
That the mappings which satisfy these conddtions
satisfy (MO”) CNOjj) and follows immediately from the definitions

and the propeeties of the canonical extension of the mapping to signed
rung types which we have already outlined.
Euammle 1. Let™ be the species of structure of an ordered set

with

as typical chirs-terization then the above definition of « -morphism

gives the se of mappings f: E * E -.c that fxXf? — such
that (u,tR4 =*> fxf(u,v)€™' , but fxf(u,v) = (f(u), f(v)) so that in

e usual station the r~~Ftion (f(U)»f(V))t - becOmes
u4d v - Tf(u) * f(v) which is usually expressed by saying that f is

an increasing wjppipg« If we use the contravtariant category type
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P(xXXx) to define the structure, the corresponding notion of 1 -morphism
gives these mappings fc E—> E’ such that u 4 v — f(v) /'((u), 1.e.,
it gives the decreasing mappings of E into E”. &>th of these notions

of morphism are the usual definitions of morphism for order sets.

Example 2. Let 1 be a species of algebraic structure having a

single internal law of comppostion which is determined by the category
type P((XXX)Xx) then the ..ove Ae™n”™ no”on of — -mor.hi.M gives
those mappings fi J— — suc. that (((fx), T(y)) = Ff(( (x,y)) for
X,y t E which are indeed the homomor.hisms of £ into 1*. Ooing X we
would get the antjhhomomor'.hisms of E into E*. If we have more than
one internal law of comppostion and/or an external law of comppoiiion,
we again get the usual notion of hhoolomrphiso for such algebraic

structures.
Example J. Let 1 be the species of a topology with its

typLcal characterization given by the ca”~gory type P(p(X)) The
above notion of — -morphism gives those mappings f; E—v £ such that
X& V— f(X) — V wnere Vand V' are the topologies on X and £’
respectively, 1.e., 1t gives the open mappings of E into E’. Using
the category type P (P (X)) we get those mippings f such that X’ € V=f(X*)t V

i.e., we get the continuous tmppings of £ into E’.

Exampe 4. Let Z2 be the species of a topological group with
the typical ™aracte”™zatdon given by the category t>ype p(<xx X)X X) Xec » (X))

then the above notion of — -morphism gives the continuous homommrphisos

of £ into E”.



