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PREFACE

The material of this thesis is largely concerned with the 
formal explication of the naive notions of "maahamaatcal structure’’, 
’’isomorphism", "morphism", etc. which are fundamental in all of 
modern maheeimatcs.

A first step toward such an explication was made by Birkhoff 
in 1935 with his notion of an "abstract algebra". In his paper 
(Birkhoff 35) he showed that by suitably abstracting the common 
proppeties of the purely algebraic systems such as groups, rings, 
fields, moodu^es, etc. one could give a single definition which in 
particular speciiaLizations woiJ.d give all these algebraic objects 
back again, and by the use of which a large number of theorems 
previously proved separately for each of these algebraic objects 
could be replaced by a single theorem for abstract algebras, which 
woiQd give each of the previously proved theorems back as corollaries.

In spite of the power of this abstraction, its extension to 
cover other iaaherliatcal systems such as topologies never got beyond 
the employment of analogous notational conventions, e.g., in analogy 
to the definition of abstract algebra, a topological space was defined 
as a p^r (X,V). In addition to this difficulty, there were a number 
of inelegances of the original definition of abstract algebra which 
made their use cumbersome, e.g., in order to consider a mmdule as an 
abstract algebra, one had to allow for the poossbility of an infinite 
number of binary relations in addition to the finite number of ternary 
relations which sufficed in all other cases.

A meea-theory of aathermatcal structures of sufficient genneality 
to cover algebraic, tlp)llgical, and order structures was not forth­
coming until 1957 when Bourbati published Copper IV of his Theorie 
des Ensembles (Bom-baki 57)» In this chapter, Bourbati presented a 
meea-theory which not only eliminated the itelegancies of Birkic^f's 
approach (which for algebraic structures it supercedes) but was 
presumably adequate for all presently known maahemaatc^tl structure.

Untfotmnltely, in spite of the power and beauty of Bolr•baai.• s 
approach, the apparent cumbersomeness of the notation to the "rntnitiatrd" 
and the large amount of unfarniiiar antecedent maateial necessary for 
its comppreunnion, have made this chapter one of the mmst neglected of 
all fhe raises in Bourbaai^ treatise. Kiis t^sis arises out of an 
attempt to obviate some of these difficulties.

To do this we have abstracted relevant matTial from Chhppers I, 
II, and III of the Theorie des rnsrmiles (Bolr•b£akL 5) 56) and have 
presented this iattrial as parts I and II of this thesis. In general, 
proofs have been eliminated much in the meantier of Bourlbaki (58) which 
is unfortunately inadequate for our purposes.
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Pwrt III then presents in an a^ppj^fied and extended fashion 
the sattrial found in section 1 and part of section 2 of Boiurbaki's 
Qhipter IV, the remaining sections having already been presented by 
the author in a Depirtrnental S^i^iiu^ir in the Fall of 1962.

It Will be apparent to the reader familiar with the theory of 
"categories and functors” that much of the matTial considered in 
Chhpper IV presents very close analogies to the subject mater of that 
theory and this thesis may also be viewed as a study preliminary to the 
rewriting of one of these "theories" in terms of the other.
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PART I

FORMAL MATlHflMAAICS

1. TERMS AND RELATIONS

A ratheamtical theory consiste of signs, relations, terms, 

axioms, proofs and theorems. The meeaiing of each of these notions 

will become clear as we proceed.

The signs of a lmthetmtical theory C fall into three distinct 

types.

1. Logical Signs: v , 1 , t , D

2. Letters: x, y, A, A', etc.

3. Specific Signs: e.g. in the theory of sets the

specific signs are« =, e , O'i.

Once the specific signs are specified for a particular theory

C , one may form the assemblages of 'O , i.e. strings of signs of C 

in Which each occurrence of the sign <( □ h may be joined by a horizontal 

line (called a bond) to the sign which ordinarily will occur to

its left. For example (< Tt xO and « X € • '-1 •'*

of the theory of sets.

In any assemblage of C * we are permitted the operation of 

subssitution. i.e. the replacement of one or more of the signs occurring 

in the assemblage by other signs or assemblages of "C . We stoQl use 

the following notation for such subsSiiuiions: If A and B designate 

assemblages of C , and x designates a letter Wh.ch may or may not 
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figure in A, then (BlxA will designate the simultaneous replacement of 

the letter x, in each of its occurrences in A, by the assemblage B. For 

example, ( "E e y~Q | x)xy designates T ° y □ y. Of course if x does not 

figure in A, then (BlxA is just A. As an alternative to this notation, 

we shall occasionally use the following sort of notation: Suppose that 

we are given some assemblage R in which the letters x and y may or may 

not occur and we wish to call attention to the fact of the possbblity 

of such an occurrence; under such circumstances, we shall write R fx,y| 

to single out the poossbblity of the occurrence of x and/or y in R. If 

this has been done, then we stall use the notation R tz,w'| to designate 

the assemblage obtained by the simultaneous replacement of x by z and y 

by w in each of their respective possible occurrences in R. (Tis same 

notation will be used wwthout limiting the number of letters which we 

may wish to call attention to in any purticular assemblage of 'C .)

It wwil become ap^rent that the exclusive use of assemblages

woidld result in typographically - not to meetion metnatly-

insurmontable difficulties; for this reason, we shall, at convenient 

spots, introduce abrogating symtalL, notably words of ordinary language, 

to designate various assemblages^ The introduction of these symmols is 

the object of the definitions of 73 • For example the assemblage vT 

will be represented by => •

Let A be an assemblage of 73 ; we designate by T*(A) the 

assemblage of 73 obtained in the following maimer: One takes the 

assemblage A and in each occurrence of the letter x, one replaces it by 

the sign □ ; this done, one wwites to the left of the resulting assemblage

the sign X and joins each the occurrences of Q by a bond to the T .
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For txumml•, T *( € xy) i^i^:igw^tes the ME^rab^^ X fe a j.

In developing some particular theory fe , we shall often concern 

ourselves with maunpulations involving various substitutions in various 

tssembbages. Because of the extreme length of such reasonings and the 

frequency of similar forms of such reasonings about subbsitutions, it is 

very convenient to group together the final result of a succession of 

certain maiipuations over certain assemblages as mftt/amthhemt'fncii 

substitution criteria Tieir justification of course does not belong 

to the formal mthernmtics itself but rather to the metamathetmtics of 

the theory. These criteria we shtLl designate by CS followed by a 

nuneeat. The first ones are the following:

C»i. Let A and B be assemblages, x and x* letters. If x* does 

not figure in A, (B I x)A is identical to (B I x)A.

CS2. Let A, B and C be assemblages, x and y distinct letters.

If y does not figure in B, (B I x)(C I y)A is identical to (C*l y)(Bl x)A, 

where C* is the assemblage (B \ x)C.

CS}. Let A be an assemblage, x and x' letters. If x* does not 

figure in A, T ^(A) is identical to X^.(A'), where A* is tne assemblage 

(x*| x)A.

CS4. Let A and B be assemblages, x and y distinct letters. If 

x does not figure in B, (Bi y)T . (A) is identical to X 1), ..here A * 

is the assemblage (i. I y)A.

CS5. Let A« B, and C be assemblages, x a letter. The assemblage

(C I x)( ~l A) is identical to ~1 A*;

(ClxXvAB)" " " A*B*-i



(C | x)(=>AB) is identical to ^A’B*;

(C lx) (SAB) " " " SA*B*.

where A' is (Cl x)A, B1 is (C I x)B, .nd S it a specific s+ji.

A mathematical theory consists of certain rules which permit 

one to say which assemblages of the theory are relations or terms of the 

theory and other rules which permit one to say that certain assemblages 

are the theorems of the theory. The description of these rules which we 

will give here does not, of course, belong to the formal mathematics 

itself but rather to the metamathematics of the theory.

The specific signs of a mathematical theory fall into two distinct 

types, relational signs and substantive signe. Additionally, each specific 

sign is assigned one and only one whole number, called the weight of the 

specific sign. For example, in the theory of sets « = ■>), and « t v> 

are relational signs of weight 2, while « O >> is a substantive sign of 

weight 2.

We classify our assemblages into two species: A it, of the first

8 ecies if it commences by a X , a substantive sign, or reduces to a 

letter, A is said to be of the second species in all other cases.

A formative construction of a theory 7Z is a sequence of 

assemblages of ^3 which possess the following property.

For each assemblage A of the sequence, one of the .oilowing 

conditionals verified:

a) A is a letter.

b) There occurs in the sequence preceding A a second species 

assemblage B, such that A is ~l B.

c) There occurs in the sequence, preceding A, two (not necessarily 

distinct) assemblages B and C such that A is v BC.
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d) There occurs in the sequence preceding A, a second species 

assemblage B and a letter x, such that A is T (b).

e) There is a specific sign S of weight n of "C , and there 

occurs in the sequence preceding A, n first species assemblages 

AA , such that A is SA,A^...A .in 1 2 n

We call the teros of C the first species assemblages of C , 

which figure in the formative constructions of C . e'e call the relations 

of "C the second species assemblages which so figure.

example: In the theory of sets, where G is a relational sign 

of weight 2, the following sequence of assemblages is a formitive cornrtruc- 

tion:

(1) A

(2) A'

(3) A”

(4) € AA*

(5) € AA”

(6) 1 € AA*

(7) vl € AA1 € AA”

(8) tv 1 eoA' e □ A”

Let us verify this fact. (1), (2), and (3) verify a) since they are aLl

letters; (4) verifies e) since 6 is a relational sign of wwigit 2 and

A and A* are first species assemblage which occur in the sequence 

preceding CM, similarly for (» (6) verifies b) since € AA’ is a

s«cond species assemblage occur^g in the sequence preceding (6)j (7) 

verifies c) since 1 € AA* and 6 AA” are both second species assemblages 

^nnrri^ in the sequences preceding(?) ; 8 8 ) verifies d) since k8) is
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sisply x/ ItAA'e AA"), thi "triasent" of whiah is (7) whiah is

t siaond speciis tssisblage. Thi final tssisbltgi (8), sinai it aosmsnces
tnd

wth 1 X , tnd is thas of thi fiist ^ecdu/is teas t turn of thi thioiy 

of sits, sisiltiLy (1), (2), tnd (3) tri tlso turns, wWhli (U), (5), (6) 

tnd (?) tri tLL of thi siaond spiciis tnd hinai tri riLttions of thi thioiy 

of sits.

Wi atn now aosLsnt on thi intuitivi significtnai of oar lo^atl 

tnd specifia signs in iilttion to thi foisally definid turns tnd iilttions 

of t thioiy. Thi tires of thioiy intaitivily iipiisint thi obbects, thi 

description of whiah is thi parposi of thi thiory, wWhli thi nitrons 

npiisint nitrons bitwiin thi objicts oi thi propiitiis of thi obbects, 

or tssirtions tboat thi objicts of XL . Cwth this in aind, wi ntt^h thi 

intliprlt1tign of nigation to 1 so, thtt if A is tn tssirtion, thin 

(noIt A) is tn tssirtion; V is to bi intiipiitid ts inalasivi disjanation 

thus if A tnd B tii tssiiti^o^ns tbout objects, thin V AB, (A or B) is tn 

tssirtion of '<C • Siilarly if S is t specifia sign tnd A*««»A& m 

objicts of "C , thin SA^,..,^ riprisints tn objiat of C (if S is t 

sabstmtivi sign) or t nation bitwiin objicts of C (if S is t rl11tion11 

sign). Fntlly if R is i nitron andirstood ts tn tssirtion tbout thi 

objict x, thin X ,(R) designatis that objict, which, if it iXsts, is 

privilegid wl.th possissing thi property tssiitid by R.

It is aliti fros thi specifiattion of what aonntitatis t foii^t;ivi 

aonntraction of O , thtt thi inititl sign of t ^1^^ of C suat bi 

y , "I , oi t rl11tiont1 sign, wld.li thi inititl sign of t tirs of C sust 

bi X , i sabstmtivi sign, or ilsi thi turn redaaid to biing si^j^Zly t 

littii. In ftat, onai thi specifia signs of t thioiy C tii spicifiid, 

thi tiiss tnd rl11tiont of C tii iffiativily ditirsinid in thi sinsi
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that given any assemblage of C one has at one's disposal an effective 

decision procedure which will enable one to determine whether the given 

assemblage is a term or a relation of ‘C (cf. Boiu-teati 195^, AppemcdLx 1 

to Ctapter I).

In a more practical vain we present a collection of metama the- 

mttcally justified gormaaive Criteria each of which summaizes chains 

of reasonings about the formative constructions of a theory . These 

criteria, when they appear here in the text are designated by CF and an 

appropriate niuBeerl. The first eight of these are the following:

CF1. If A and B are relations of a theory C, v AB is a relation 

of C.

CF2, If A is a relation of ~C , ~IA is a relation of "C .

CJJ If A is a relation of C , and x a letter X(A) is a 

term of 7X ,

CFU, If A^ • A^ ,.,. are terns of C , and S is a relational 

(resp. substantive) sign of wwiriit n of 'C , ,A& is a relation

(rasp, term) of "C .

to
CJ5, If A and B are relations of C , =>AB is a relation of "C .

CF6, Let A. ,A_..........A be a forMtive construction of t , x and- ■ - 12 n — -------------------------------" ----------
y letters. If y does not figure in any of the A^, then (yI x)A.« 

Cyl x)A„,...,(y I x)A is a formative construction of ' C .
- n

CJ7. L»t A be a relation (reap, term) of .7 , x and y letters.

Then (y| x)A ls a re^t.ion (resp. term) of____ .
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ccF8 L»t A te-.a Metlon (reap, term) of C , x a l^^r, and

T t terp of Then _ (T I x)A ia a slattern torn) of X .

-e are now tt the stage where we can describe the rules which 

enable us to determine which assemblages of _ are the theorems of "C . 

Before we do this we shall make a few conventions which will greatly 

enhance the retdatility of the text. They tre the following: we shall 

commonly write « not (A) )> in place of << "IA » , « A => B y> in place 

of « _ AB _ , « A or B )) in place of « v AB » « This, whhle enhancing 

the intuitive interpretation of the text, is not without its own difficulties. 

For 1x005^6, our notation, heretofore was, in the meanner of LWkisiewicz, 

(({parenthesis free)) , but now to avoid interpretationt tibiguiiits, 

we must make use of such tuxiitry devices as parenthesis to render the 

meetning of our expressions clear, e.g. we write (A or B) or C for vv ABC

to distinguish this from A or (B or C) which is the convention for

V A y BC •

2. THEOREMS AND PROOFS

The specification of the specific signs of C c<emptltely 

determines the Uras and relations o^ "C . In order to construct the 

theorems of X _ we first write down a certain number of r^sUons of 

which will be called the exploit axioms of TZ ; the letters which figure 

in the exploit axioms are called the constants of _ . Intuitively the

constants represent the wwH determined objects, of the theory 73 and 

the exploit axioms represent the fundi'amena!, or evident assertions that 

we wish to make about these well determined obiects
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Je next may write down one oir more « rules » called the 

schemas of TL which each must have the following prop^eties: 1) The 

application of such a rule R mimt furnish a rel< * tion oft ; 2) if S is 

a relation furnished by such a rule, T a term of "C , and x a letter 

then the relation (T I x)S must again be constrictible by means of an 

application of the rule R. Intiu-tivity. if x is a letter, then it 

represents a co^pXd^t^<^^Ly undetermined object so that if some assertion is 

made involving the letter x, which we wish to be true as an axiom, then 

this axiom must be of the sort that it be true for an arbitrary object 

T of theory "C • A relation furnished by the application of a schema 

o^ "C wil be called an iniAldt axiom of XL.

We are now in a position to make clear wimt we mean by a proof 

and a theorem of ~C . »e do this in the following muinnr.

We say that a demonsSrative text of a theory XL compprsea:

1. An aucilia-ry formative conn traction of terms and relations

of C ,

2. A d^Dansration (proof) of "C , i.e. a sequence of relations 

of * figuring in the awd-liary formative construction, such 

that, for each relation R of the sequence, at least one of 

the following conditions is verified:

aa) R is an expHc^ axiom of C »

aa) R results from the application of a schema of 'C to 

the terms or relations figuring in the tlucilitry 

formative construction;

b) there are in the sequence two relations S, T preceding

R, such that T is S -=^» R



10

Ms now say that a theorem of £ is a relation in a

>roof of "C • Howeevr, we should note that thia notion is essentially 

relative to the state of development of the theory at a particular moment 

of wrrting: a relation of 73, becomes a theorem of 73 when one has 

successfully inserted it in a proof of ^3 . Thus to say that a relation 

of "C is not a theorem of "C may be without precise sense since it can

only refer to the present stage of development of the theory. in lieu

of « theorem of we will also say (< true relation in 71» or

((pirjposstion > , ((lemma?) etc. If a is a relation of 71, xa letter

and T a term of 73, and if (T I x)R is a theorem of 'C , we shall say

that T verifies the relation I in 73 (or is a solution of R) when R is

considered as a relation involving x.

A relation is said to be false in C if its negation is a theorem

of U . Ono can say that a theory 73 is contradictory if one has a 

relation at hand which is both true and false in 73. Here again, we 

should be on guard against saying that once we have a false relation R 

in C that (< the relation R is not true in C » for thia latter state­

ment may not actually make good sense, since it eisentially refers to the 

present stage of development of the theory.

*e now stall present a number of mtia^mat^ee^t^jti^c^a^ly justified 

deductive criteria which permit us to abbreviate proofs in a theory 'C. 

These will be designated by C followed by a rnuneeal. The Mjooity of 

these criteria will be presented without proof, but as the first five are

iunmedate consequences of the notion of proof, we shall present them

and theirmeta-) proofs here.
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Cl* (Modus ponens) Let A and B be relatione of a theory £, If

A and »■ =»D are laeo r e«& of ~C, then B is a theorem of

In effect Let be a denoocStation of r where A figures,

and S^(**«v8 ba a deimoncSr&tion of r where A r b figures. It is evident 

that • c c tAn* ^^•••■S is a deoonsSrction of "C in which A and
P

A r B figure. Thus

R, , S„ ,S_..........S . B1 2 n’ 1’ 2* * p*

is a dMfioonstation of r , so that B is a theoreo of "C .

We present this oeta-theoreo and its oeea-proof in full to 

denoonstate the general sethod of proof for all such criteria. Tiis one 

criterion is particularly iajpotant as it is essentially the only rule of 

inference available in our construction of a oatheeottcal theory. Thus 

our logic is strictly classical.

To illustrate how our forotive criteria and subssitution criteria 

are used in these otz^-t^heor^^o3, we present the following criterion and 

its oeea-proof.

Let C ba a theory. A_,...,A its expPicit axions, x a letter,x n
T a term of Let (T I x) C be the theory whose signs and scheoas are

the same as those of "C- , but whose expPicit axioas are (T I x)A^, 

(T I X)^a...,T I x)A .

C2. Let A be a theoreo of a theory C, T a terrn of r , x a 

letter. Then (T I x)A is a theoreo of (T I x) O «

In effect, let C-,R_,*..,*b r a de^nonnttation o^ "C where A 

figures. Connider the sequence (T I x)Rp (T I x)»2,...,Tl x)Rq, which
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is a sequence of relations by CF8. One muut see that this is a demon­

stration of (T I x) O, which will establish the criterion. If R, is an 
k 

impllcit axiom of "C , (T I x)!^ is again an implicit axiom of 'C 

the definition of schema of 'C , and thus of (T I x) "C . If R is an 

explicit axiom of "C , then (T I x)R^ is an explicit axiom of (II x) C . 

Finely, if Rr is preceded by the relations Rr and R^, R^ being 

(T I x)R is preceded by (T I x)Ri and by (T I x)R^, and this last relation 

is identical to (T I x)R^ R (T lx)R by CS$.

CJ. Let A be a theorem of a theory R . T a tera of TS . and 

x a letter which is not a constant of R, Phen (T lx)A is a trieormm 

of R .

Tris is an iMmddate result of 02, since x, by hyjp>thesis is 

not a constant of 'C and hence, by definition does not figure in the 

explicit axioms of 'C .

In larticUlar, if 'C has no explicit axioms, or if the explicit 

axioms of "O contain no letters, CJ alplies without restriction on the 

letter x.

A theory is said to be stronger than a theory - c if aLl of

the signs of "C are signs of , if all of the explicit axioms of C 

are theorems of '"O ', and if the schemas of — are schemas of "C ' •

The above notion has several consequences. One of these is 

that all of the terms and relations o^ "C are again terms and relations 

of R» since ail of the signs of 7S are signs of o’ and hence any 

formtive construction of — is a forteori, a formative construction of 

"C ’. Anther consequence is the following criterion.
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V a theory C1 ja stronger than a theory C t aL! of th« 

theorems of are theorems of C '.

L*^ ^1*^2* • * **» be a in C . W stall staw one aft«r

another, that each R± is a theorem of 'C’, which will establish the 

criterion. >-e suppose our assertion established for the relations 

preceding and establish for J^. If R. is an axiom of C , it is 

a tneorem of "C’, by e;^)PtheeiB. If R. is preceded by the relations 

R± and R^ R., one has thus that R. and R. => R. are theorems of 

'C’» thus C i« a theorem o^ "C’ by Cl.

The preceding criterion was established by a strictly fitatistic 

method which might best be called C experimennal induction » . It is 

typical o^ the oHy additional method which we use in these meta-proofs.

If each of two theories 'C and * is stronger than the other, 

one says that C and IS’ are t^q<d.vvaent, Then every theorem of "C is 

a theorem of 'C, and vice versa. In pa*ticular every theory "<C is 

eqtd valent to itself.

C5. Let C be a theory, A,......... A its explicit axiom], a............. a1 i n 1 n

its conniiains, ,...,T. terms of C . Suppose that (T. I a^)(T^I a....

(T. | a.)Ai (for i = l,2......... n) be theorems of a theory C’, in which

tne signs of C are signs of 'C ’, and in which the schemas of "C are 

B£eema8 of "C ’. Th 8! if A ls a ttaprem of (T^ I a.... . (T. C s.)A

is a theorem of C *.

In effect, 'C* is stronger than the theory (T. I a^XT.I a2)...(RCI a.) "C 

and the criterion follows by application of C2 and C4.

Wen one deduces, by the preceding criterion, a theorem of C

from a theorem of C , one says that one has applied in "C ’, the results 

of TZ . Intuitively, the axcioms of O express properties of a.,..,.
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and A express a property which is a consequence of these axioms. If 

the objects ^,...,T^ possess in • the properties expressed by the 

axioms of"C , they also possess the property A.

Note that under the hypothesis of C5, if the theory 'C involves 

a contradiction it is the same for'C *. Tor, in effect, if A and « not 

A » are theorems of C , | a^A, and not (T^J ,(T I a2)

sure theorems of 7X ’.

e have introduced the preceding five criteria because they are 

applicable to any theory O whatever. We have presented their meta­

proofs also in full to illustrate the general methods whereby we establish 

all of such criteria. Hereafter, we shall limit our attention to parti­

cular theorie , which will be supposed to contain certain particular 

schema. It will be made clear which particular theory we are referring 

to at any given moment. In general when we present certain criteria 

which are consequences of certain axioms or schema, we shall not give 

the appropriate meta-proofs, all of them being established by methods 

similar to those which justify Cl - Q$.

3. LOGICAL THEORIES

We call a logical theory any theory C- in which the schemas SI 

to S4 together furnish implicit axioms.

51. If A is a relation of C . the relation (A or A) A is 

an axiom of .

52. If A and B are relations of C . the relation A =» (A or B)

i~ an axiom of . 
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s5- If A and B are relations of tt the relation (a or B) =»

(B or A) is an axiom of XL .

If A. B and C are relations of XL, the relation (A

(( or A)^»(Cor B)) is an axiom of XL .

These four rules, which are in effect the Russell-mt ehead prin­

cipals of tautology, addition, permutation and summation, respectively 

(cf. Russell-whitehead 1J, p. 96), merely serv to give a formal explica­

tion of the sense which we wish to attach to the words « or» and

«implies 1 in ordinary mathematical usage. The theory XL which has 

these four schema as its schema and no explicit axioms and only the two 

logical signs < v » and «-|» is often calted ths propositional calculus.

■i'e should keep in mind the fact that if a logical theory XL

should prove contradictory, then every relation of XL is a theorem of XL«

In all that follows, XL will designate a logical theory.

C6. Let A, B, C be relations of XL . If A ^>B and B -=> C are 

theorems of L, A C is a theorem of XL .

C7. If A and B are relations of XL . B [A or B) is a theorem 

of XL.

C8. If A is a relation •£ , A A is a theorem of XL .

C9. If A is a relation, and B a theorem of XL , A ^>B is a 

theorem of XL .

CIO. If A is a relation of XL , << A or (not A) » is a theorem

of XL .
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dl. If _A_ . is a relation of _ A => (not not A) Mb a theorem 

of _ .

C12. Let A and a be two relations of ~C . The relation

(A =»B) _ ((not B) _ (not A))

is t thiores of C .

Clj5. Let A, B, G bi ^l1ttiont of ~C- . If A C B is t thiores 

of 'C t (B C C) '==> (A ~>C) is t thiores of "C .

C14. (Critirion of deduotion). Let A bi t riltt^:^o^n of C ,

tnd C 1 bi thi thioiy obttinid on ^joining A to thi ixIoss of ~C. . 

If B is t thiores of • g1, thin A C B is t thiores of "C .

Resark. In practiai, oni thtt oni is tpplying this

aritirion by t phrtsi of thi following giniri I «Sappoai thtt A bi 

tid » . Tiis phrtsi signifiis thtt oni is rusoning in thi thiory 

^2*. On ristins in -e* long inoagh to provi thi rilttion B. T^JLs done, 

it is l8t1b1i6eid thtt A C B lt t thiorem of 'C tnd oni thin aontinais 

to ritson in O wwthoat indiatting thi ^^doMant of XS. Thi rilttion 

A thtt oni hts introdaaid is t niw txios is aallid thi mcilitiy hyppohesis 

tnd thi sethod of rusoping risting on C14 is anll-id thi sethod of thi 

mcXlitry ey^x:>OheiXfi.

CIS, Let A bi t iiIi-Xcm of C , tat bi thi thiory obttinid

on td.-joining thi txi.cs d not A » to thi ixL^c^ss of C . If ZZ,1 is 

aonnrtdiatory, A is t th^res of "C .

Remark. In practiai, oni indi^tis thtt oni is issloying this

aritirion by t pI-isi of thi following gineri : <( Sapp^si that A bi
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fa1se . . This phrase signifies that one is reasoning for the soment 

in C . One rebins in C 1^ enough to establish two theorems of 

the form B and Knot B». This done, it is established that A is a 

theor*em of C , winch one i^ica^s in general by a phrase of the 

following generes « But this (meeaning Band « not B » ) is absurd; thus 

A is true » . One then res^imea reasoning in 'C as before. Tils general 

method of proof is called reductio ad absurdnm.

016» &_£e1atLOn_O^__j^_t(■not not A) ~=. A ls a _ th<^°^j^i^m

of . .

Cl 7. If A and B are relations of 75 ,

B) . (not A)) . (A =»-B)

is a theorem of X ,

018. Let A, B, C bee relations of X . If « A or B » . AC,

fmd B J ore theorems of 75 , then t, is a theorem of .

Remark. In order to prove C, it thus suffices whet one has at 

one's (dispoMl a theorem i Aor B » , to prove C on adjoining B tothe 

axioms of 75- . The general method of proof which hangs on this 

criterion is called the method of case disjunction.

C19. Le x be a letter, A and B relations of C such that:

1. The letter x is not a constant of 75 and does not 

figure in B.

2. One has a term T of TSsuch that (T I x)A is a theorem 

of 75.

Let 75- * be the theory obtained on adjoining A to the axicms of 75 .

If B is a theorem of 75* , then B is a theorem of 75 .
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fet^Hy^, the cowiiBts of the utlliz.ttius. in order

to prove B, of an arbitrary object x (called an tuXlitry conn taut) 

which one supposes to be invested with certain pruptetita which are 

expressed by A. It is evident that before one can make use of such 

and object, one must insure oneself of the existence of such ^bects. 

The theorem (T I x)A guarantees this existence and is called the theore 

of legitimation. In practice, one indicates the employment of this 

criterion by a phrase o^ the following genera: « let x be an object 

such that A » . The conclusion of the reasoning of course does not 

depend on x, as in the method of tuxiiar^y hyJP>UhheSs. The general 

method of proof which rests on C19 is called the method of the auxil­

ary ch^e^B^i^i^E;.

Before we proceed further we mtie the following definitions of 

conjunction and equivalence. Ab with all such definitions, we have as 

an imB^da^ result a formative criterion and a 6ubititutien criterion, 

which we shall present aa usual without their immtiatt meea-proofs.

Definition 1. - Let A and B be assemblages. The assemblage

(not ((not A) or (not B))

wil be designated by « A and B i) .

CS6. Let A, B, and T be assemblages, x a letter. The assem­

blage (T I x)(A and BB ia identical to- (T - xJA sand (1 _ xB >- .

CF9. If A Mid B are rtlttUoss of C .- A and B » ia a

relation (called the flonjigctUn^ of- _ nd d B)*

020. If A etnd B are theorems of C , « A md B » ia a theorem

of <
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C21. If A, B are relations of C ,(A and 3) =» A« 

(A <rd B are theorems of 'C .

Dseinition 2. - Let A and B be assemblages. The assemblage 

(A =? B) and (B — A)

will be designated by A <=> B.

C57. Let A, B, and T be assemblages x a letter. The assemblage 

(T| B) is identical to (T | x)A R> (T| x)B.

C1FLO. If A and B are relations of "C . A £=» B is a relation 

ofC .

If A and B are theorems of "C- , one says that A and B are 

equivalent in AS and if considered as relations in x, every term 

which verifies A also verifies B and vice versa.

C22. L^it R - B. and G be relations of — . If A <=» B is a thiorw

ofC , B <=$> A is a theorem of R . If A 4=> B and B <=> C are

theorems of C , A <=> C is a theorem of R .

C2JJ. Let . A and B be equivalent relations in — , and C a rela­

tion of 'C- . Then, one has in R the following theoremBt

(not A) 4=> (not B>; (Aa»C) <=» (B =»C); (C — A) — (C — Bj;

(A and Q (Band C)t (A or C) — (B orC).

C24. Let A, B, and C be relations of ; one has in R the 

following theorems;

(not not A) 4=a A; (A — B) — ((not B) => (not A));

(A and A) <==$> A; (A and Bja> (B and A);
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(A and (B and C))<=> ((A and B) and 0));

(A or A) A; (A or B) <==> (13 or A);

(A or (B or C))<=i> ((A or B) or C);

(A and (B or C)) ((A and B) or (A and C));

(A or (B and C)) <=> ((A or B) and (A or C));

(A and (noit B) <=$> not (A B); (A or B) ((not a) =>B.

C25» If A is a theoreo of r and B a relation of r , (A and B) 

b is a theorem of r , If <■ not A » is a theorem of C, (A or b? <=» 3 

ir a theorem of "C .

4. ^UANTFIaD THiBORlSS

So far we have made no use of the logical signs other than 3 

and v . We shill now develop the use of the only two remaining logical 

signs r and □ .

_Dffinition__1. - If R is an assemblage, and x a letter, the 

assemblage (Tx(R)l x)R will be designated by < there eXsts an x such 

that R r or by (3xR. The assemblage not ((3 x)(not R)) will be 

designated by V for all x, R » or by « watavt^ir be x, I » , or (V x)R. 

The abbreviated symbols 3 and V will bo called the ex-steama! and 

uX.versal quantifiers* respectively.

Since the letter x does not figure in the asseoblage designated 

by T (R)j it thus does not figure in the assemblages designated by 

(3 x)R and (Vx)H. It is thus that we see the usefulness of the rules 

glnv^»rt^itg the employment of r and s • This usage has the effect of 

binding free variables (letters) by effectively eliminating them from 

the corresponding asseobLages.
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CS8. Let R be an assemblage, x and x1 letters. If x* doei

not (3 x).. and (V x)R are identical respectively to

'■>3 x* ).l* and y x*)R*, where R1 is (x* I x)

CS9. Let R and U be asaemblagee. x and y distinct letters. If

x does not figure in U« (Ul y)(3 x)R and ,//(Vx)8 are identical 

respectively to 13 x/d1 and (Vx)R1, where R* is (U \ JR.

CF17- If 5 is a relation of a theory and x a letter, (3 x)R

and (Vx)R are relations of 'C .

Intuitively, let us con lider R as expressing a property of an 

object designated by x. By the intuitive signification of the tern

(R), to affirm (H x)R amounts to saying that this is an object 

passing the property R. To affirm « not (3 x)(not R) is to say that 

there are no objects with the property << not R thus to say that 

every object possess the property R.

If in a logical theory , one has at one's disposal a theorem 

of the form (3 x)R, where the letter x is not a constant of "C , this 

theorem may serve as the theorem of legitimation in the method of the 

auxiliary constant since it is identical to (<C^(R)I x)R and thuB

(R) is the desired term T.
x

C26. Let be a logical theory, k a relation of O and x 

a letter. The relations V x)R and (rC^(not R) I x)R are equivalent 

in C .

C27. If R is a theorem of a logical theory C jn which the 

letter x is not a coiutunt. (V x)R is a theorem of_C—.
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C28. Let bi t 1oiiit1 thloiy, R t rili^on of 12 tnd x

t littir, Thi rilitionsU not ( Vx)R »tnd (Hx)(not R) tri iguivtlint 

in 7S.

A thioiy will bi siid to bi gueiinifiid if thi sahms

Si — 34 togithi^ with thi sahist S5 tri isong thi sahisas of C . 

Uftin thi thiory C whiah his thi logiatl signs v, 1 , 10, tnd □ 

togethir w.th jcst thi sahlias SI throuih S5 is aHlid thi first ordir 

functional aa^a^s (without iquatity).

S5. If R is t rilttion of 72, T t tirs of 72 , tnd x t 

littir, thi rilttion (T I x)R ( 3xR is tn ix-os.

Intdtivily thi ibovi sahist ixpraBsis thtt, if oni has tn 

objict T for whiah thi rilttion R, aon^^dirid is ixpressing t property 

of x, is trai, thin R is trai for thi objict Xr)R), whiah is, of aoa-si, 

in i^ord with thi intdtivi signifi-atticm of T (R). It is aliir tlso 

that T c (R) is just t version of Hlbbit’s < C-opmtor c tnd that 

thi ibovi 1xioi-8ahei1 is just Hilbii’s ^vdne. for thi ^-operator.

Thus T, icts intdtivily is t kind of singli < sl1lition operator » 

wU^h sty bi usid to riprisint t ahosin objict whiah tttitfiit thi 

rilition R (if suah idsts). It should bi notid that its usi givis 

no information tbout thi p^1,tLiultr objict siliatid by thi operator. 

For ixisj)le, wi know thtt T = 1 or x » 2 or x • 3) suet bi 1, 2, 

or 3, but we htvi no siins of detirsining whiah oni of 1, 2, o^ 3. 

gets siliatid. It also bi notid in passing that many objiitions

htvi biin riisid to thi usi of suah in operator, sist of wdah tri si^i^ltr 

to thosi whiah htvi biin livilid against thi K ixios of ahoiai C . 

Howwivr, thi usi of thi K H-operator C is wi hivi prisintid it hiri 
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does not by itself mate such an « axiom of choice » derivable in our 

system. The axiom of choice js derivable in our theory of sets, as we 

shall see, but this derivation is possible only through the use of the 

schema S8, which we present much later and not solely due to the 

presence of the« T -operator » in our « underlying logic » . It’s 

presence here does mate our underlying logic of the « non-standard » 

variety however . (cf. Fraenkel 58, Section 77, p. 182 et seq. and 

Carnap 61 p.156 et. seq.)

From now on "C will designate a quannified theory.

C29. Let 2 be a relation of O . and x a letter. The relations

< not ( I x)k » and (fx)(not R) are equivalent in C .

C28 and C29 permit us to derive the piopletits of one of the 

quantifiers from those of the other.

CJO. Let R be a relation of 7S . T a term of T2 , x a letter. 

The relation (V x)« ~C (T I x)R is a theorem of "C .

Let R be a relation of C , by C26, C27» end C50, it a^c^iants 

to the seme (when x is not a constant of .C) to eniuiniate in 'C the 

theorem R, or the theorem (V x)R, or finally to give the mie^amthetlmttcal 

rule: if T is an arbitrary term of .2 , (T | x)R is a theorem of "C .

C51. Let R and S be relations of C , and x a letter which

is not a constant of 'O . If R =»S (reap. R<=» S( ie , theorem of 7. , 

(Vx)< => (fx)S and (3x)k (3 x)S (res! ( Y x)R C (V x)S and

(2 x)«<=> (3 x)S) are theorems of "C

C52. Let R and S be relations of C . and x a letter. The 

relations
( fx)(R and S) 4. (( Y x)R and ( Y x)S)

(3x)(B or S) C ((3x)R or (3x)S)

are theorems of "C •
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c33. Let R and S be relations of XS . and x a letter which

does not figure in li. The r^lation^

( Vxl(a or S) (Bor ( Vx)S) 

(3 x)(R and S) *=» (R and ( 3 x)S)

are theorems w£ TS .

CJ4. Lot R be a relation, x and y letters. The relations

(Vx)(Vy)a^ (Vy)(Vx)R

(3 x)(3 y)R (3 y)( 3 x)R

(3x](Vy}.R ,Vy/(3x)B

By constrast, if (Vy)(3x)B is a theorem of C , one may not 

conclude that (3 x)( Vy)R is a theorem of . Intuitively to say 

that the relation (Vy)(3 x)R is true signifies that being given an 

arbitrary object y, there is an object x such that R is a true relation 

between the objects x and y. But the object x in general will depend 

on the choice of the object y. To the contrary, to say that (3x)(Vy)B 

is true signifies that there is a fixed object x such that R is a true 

relation between this fixed object and every object y.

The definitions which follow are not strictly necessary but are 

highly useful because of the fact that moat of the usual mathematical 

reasoning involving quantifiers is actually of the type which is 

embodied in the criteria which follow from these definitions.

Definition 2. - Let A and R be assemblages, and x a letter.

We designate the assemblage (3x)(A and R) by (3 Ax)R, and the assemblage 

« not (9 xXnot R) * by ( Vx)R. Read respectively « there exists an 

x of the type A such that R and«for all x of the type A, R The
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abbreviated symbols 3 V are called typical qmatifiers. The

letter x of course does not appear fn either of these assemblages.

CS1O. Let A and n be assembbages. x and x* letters. If x' 

figures neither fn H noir fn A. (3 qx)8 and (VAx)8 are identical 

respectively to (3 .,x')8' and (V..x')Rl, where 81 is (x1 I x)k. and 

where A* is (x1I x)A.

CS H. Let A. 8. and U be assemblages. x and y distinct letters. 

If x does not figure in 0. the assemblages (U I y)(3 ^xHH and (U I yXV.x^ 

are identical respectively to (3 . .x)8* and (V ..x)R’ where 8* isA 1 .

(U I y)R and where A’ is (U I y)A.

CfL2. Let A and a be relations of R- and x a letter. Then 

(VAx)a and (HAx)R are relations of — .

CJ5. ^t A and a be relations of —. x a letter. The relations 

LVAx)a_andj—V xj(A a=» a) are eqiU valent in "C .

Cj6. Let A and R be relations of R - ana x a letter. Let

C be the theory obtained on adjoining A to - the axioms of — . If x 

is not a constant of JO xnd if R id a theorem of 7T1. ( VAx)k is a 

theorem of XB .

In practice, one indicates the employment of this criterion by

a phrase of the following generei « Let x be an arbitrary object such 

that A > . In the theory "C* thus conssituted. one seeks to prove 8. One 

may not naturally affira that the relation 8 is itself a theorem of H . 

of course.

CJ7. Let A and a be relations of ~C. x a letter. Let ZC* be 

the theory obtained on adjoining to the axioms of H the relations A and 

«not 8y. If x is not a constant of H . and if TT* is contradictory
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(V.x^ io a theorem of 'C .-- f  I

In practice one says: (1 Suppose that there eXista an object x 

v^j^iifyi^ng A» for which R be false. — Ono then seeks to establish a contra­

diction.

The usefulness of typical qlULtStilctties comes from the fact 

that the proppi'tiea of typical qlunStiitra are analogous to those of 

quantllera.

Cj8. Let A and x? be relations of "C , x a letter. The relations 

not (Vax)r¥^» (3^pXnot R), not (3 Ax)R <<=» ( VAP)(nut R) are ^orems 

of 'G .

CJ9. Let A, R, and o be relations of C . and x a letter which

is not a constant of C . If the relation A^=(R -»d) (reap. A =» (.-.<=>♦>))

js a theorem of TS- , the relations

<3Mx)R C 3Fax)S. (Vax)B (Vax)S

(reap, (3 aX)R (a^xS• (V ^x)R<» C V_aX)S)

are theorems ofC .

Cltf). Ln A, C, and U be relations of "C , and x a letter. The

relations

(V AX)(R and o) «=> ((V axR and ( VaX)S)

(3 Ax)(R or S) 4=* (OaxR or (3 aX)S)

are theorems of "C .

C41. Let A, R, and S be relations of 7Z . and x a letter which

does not figure in A. The relations

(V Ax)U or S) (R or (V .^xjS)

(2 ax)(R and Q)((R and (3 aXS)

are theorems of C .
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dCS. Let A, Bt 3 be relations of C , x and y letters. If 

x does not figure in 3, and if y does not fi^re in A, the relations

(S A»X3 ny>a ~ (S^Xa^H

(3A»>(VBy)B (VnyXaAx)a

are theorems of 15 .

5. EQUALITY THEORIES

as call an equaHty theory a theory "C in which figures a

relational sign of wwight 2 denoted • ( which we read « eqiuils?), and

in which the schemas SI through S5 together with the schemas S6 and S7 

furnish impplcit axioms; if T and U are terms of 'C , the assemblage 

= TUis a relation of<C(cLLled the relation of equal ty) by CF4; we 

designate it in practice by T = U or (T) = (U). The theory which has 

solely the relational sign 3 (in adcUtion to the logical signs) and has 

only the schemas SI - S7 and no explicit axioms is often called the 

first order functional calculus witn equal-ty.

56. Let x be a letter. T and U terms of 'C . and R ix| a 

relation of O ; the relation (T = 0) r (r I H R S Uj ) is an axire 

of C .

57. if R and 3 are relations of 7S and x is a letter, the 

relation ((Vx)(f^3)) ==> ( XjR) = Z^S)) 13 an axiom.

Intuitively, the schema S6 signifies that if two objects are 

eqiml, then they have the same proppeties. The schema S7 is an exten­

sion of our usual intuition. It signifies that, when two propprties 

of an object x are equivalent, then the selected objects T* (8) and
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^*(S) (selected from the objects which verify R and those which verify 

S, if such exist) are thesame. The schema is often Ackermann's axiom

for the C -operator, rephrased for our operator T . The presence of 

the quuntifier (V x) is essential here, otherwise we can obtain the 

theorem (¥ x)(x « y) wtdtch is certainly not to be desired as for 

example in the theory of sets we will have the theorem (3x)(3y)(x / y).

Let x be a letter, T and U terms, of ~C . end Uxj a 

relation of ; the relatinns (T = U and R) T\ ) and (T « 0 and R) U) ) arre

equuvalent.

The following theorems hold in any theory which has the

same signs as an equ^aity theory but only the schemas SI - S7.

Theorem 1. - x » x.

Theorem 2. - (x « y) <=> (y = x).

Theorem 3. - ((x « y) and (y = z)> ) (x = z).

C+4. Let x beat letter. T, U, V j xfr be terms of C . The 

relation (T = a) =. (V ITI « V CUi ) is a theorem of

One says that a relation o^ the form T = U, where T and U are 

terms of ) , is an eqiuition, a solution (in ”O) of the relation T = U 

considered as an equation in a letter x, is thus a term V of such 

that 11 VI * U 1 VI is a theorem of ) as is consistent with the previous 

definition of solution of a relation.

Let T and U be two teims of ) and let x.(X^,•«»,x^ be the 

letters figuring ^n T and not ..n u. If the relation (3 x^)(£! x^)).. 
(3 x )(T ® U) ts a theorem of ) , one says that U may be put in the 
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form T (in ~3). Let R to a ^Intion of "C ya httwr. Let V to a 

sQluti.on (in C ) of R» considered as a reletton in y. If ^ry action 

(in O of 3, considered as a relation in y, may be put in the form V, 

one says that V is the compete (or general) solution of R (in "C ).

Let R be an assemblage, x a letter, Let y and z be letters 

distinct from themselves, distinct from x and not figuring in R. Let 

y’ and z’ be two other letters w^h the same proppe-ties. By C>S8, CS9, 

CS2, CSfj, and CS6, the assemblages

(Vy)( Vi)(((y I x)R and (s I x)R) C (y = z))

and

(fy’)(fm’)(((y'L x)R and (z* I x)R) C (y • • *))

are idtnnicaL. If R is a relation of "C, the assemblage thus defined 

is a relation of "C, which will be designated by < there ex^jste at 

most one x such that h » . The letter x does not figure in this 

assemblage. *hen this relation is a theorem of 'C, one says that R 

is unique in x in .

C.5. Let K be a relation of G, and x a letter wd-ch is not a 

constant of G . If I is unique in x in G « R c (x = G(R)) is * 

theorem of TS . Convve8ely. if. for a term T of ~C not containing x. 

R =»(x = T) is a theorem of C . is unique in x in C .

Let R be a relation of C . The relation

« (3 x)R and there eXsts at most one x such that R V>

will be designated by « there eX-sts one and only one x such that B » .

If this relation is a theorem of 'C , one says that R is a functional 

relation in x in C .
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0^6. L-t 4ba a relation of C , and x a littir which, is not

a const ant of"C . If R is functional in x in 70 , R a (x = t-R))) 

la a theorem of ~C- . Connersely, if, for a term T of 71 not containing 

x, r<f»(x = T) is a theorem of 71 , R is functional in x in a .

Wien a relation R is functional in x in 71 , R is thus eqiu.valent 

to tne relation, often more mmnnaeable, x » X (H). Thus one generally 

introduces «a abbreviated symbol 2? to represent the term TRR). Such a 

symbol is called a functional symbol in 72- . Intuitively £ will represent

the unique object Which p^t^/Beas the property defined by R. •For example

in a theory where < y is a real number 7/ o » is a theorem, the relation

V x is a real nw^bee-s o and y = x » is functional in x, we take as 

corresponding functional symbol Sy' or y

047. Let x be a letter which is not a constant of c . and let

RuI and o (xj be two relations of . If k f xf is functional in x

in 72 . the relation S I is equivalent to (3 x)(R \x% and S ( x| ).



PART 2 

fUEMKMTARY SET THEORY

1. THE THEORY OF SETS

The theory of seta la a theory in which figure the relational 

signs ■, t , and the substantive sign 0 (iULI of which are to be of 

weight 2) • It contains the schemas SI — S8 and the explicit axioms

- A-. These explicit axioms, as will be seen, con tain no letters, 

thus the theory of sets has no conattaats. Trims the theory of sets is 

an equa.ity theory and aLl of our previous resists are applicable in 

it.

From now on, unless we expressly sen mon the contrary, all 

of our reasoning wil be assised to take place in a theory stronger 

than the theory of sets and may thus be asstmed to be the theory of 

sets itself. It will be apparent, from the sequernial development 

which follows, which particular theory weeker than the theory of 

sets in which the reasoning necessarily takes place.

If T and 0 are terms, the assemblage £ TU is a relation 

(called the relation of membership) wULch we shULl in practice 

denote in one of the following Nunners: T U, (T) €. (U), < T

belongs to 0 » , « T is a of U )> ,

etc. The negation will be denoted by T U.

From the naive point of view, much of maheimtics may be 

considered as collections oir sets » of objects. <e shULl not

31
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formiUze this notion, and in the formllst interpretation which follows 

the word R set» nay be considered as strictly synonymnin w.th C. term 

of the theory of sets » ; in pa*ticullr, such phrases as « let x be a 

set >> are in principal, totally superfiousj since every letter is a 
introduced

term. Such piraseswill be ./solely to facilitate the intuitive inter­

pretation of the text.

Defnition l, - The relation designated by (Vz)((ze x)=t> (s e y)), 

in which only the letters x and y figure, w.11 be denoted by x £y,

x, u x is contained in y» , « x is a subset of y» , etc.

CS12. Let I, U, and V be assemblages, and x a letter. The 

assemblage (Vi x)(T - U) is identical to (Vl x)T S (v I x)U.

CJFL3. If T and U are terme, T — U is a relation (called the 

relation of Inclusion).

From now on we w.11 not explicitly state the subbsitution, and 

formative criteria which result from the definitions.

Pronsition 1 - x r x

Pro]l>oitioo 2 - (x^y and y- z) => (x <=. z).

The following axiom is called the axiom of externrioinaity:

Ai. (V x)<Vy)((x « j and y <== x) -=> (x = y)).

Intuitively, this axiom expresses that two sets with the same 

elements are equaL.

C48. Lzt H be a relation, x a letter, y a letter distinct from

x and not figuring in a. The relation (V x)((x v. < » _B). is. unique in

*
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Let R be a relation, x a letter. If y and y' designate 

letters distinct from x and not figuring in R, the relations 

(H y)(Vx)i(x e y)«=> R) and (3 y')(Vx)((x & y') r R) are ^nti^l 

by CS8. The relation thus defined will be designated by Cod* (R).

'■When CoII^(R) is a theorem of a theory C , one says that S

i3 collective in x in t , If this is the case, one may introduce 

an aud.liary constant a, distinct from x, from the constants of 'C * 

and not figuring in R, with the axiom of introduction (y x)((x e a) <=> R), 

or, which amounts to the same if x is not a constant of "C , (x G a) 4=» R. 

Intuitively, to say that R is collective in x is to say that there 

ex^jsts a set a such that the objects x possessing the property R are 

precisely the elements of a.

Example 1. ~ The relation x fe y is evidently collective in x.

Example 2. - The relation x £xis not collective in x; i.e., 

(not Co1L*(x t x)) is a theorem. Reasoning by reductio ad absurdimt 

assume that x x is collective. Let a be an auX-liary conntant, dis­

tinct from x and from the constants of the theory, with the axiom of 

introduction (V x)((x £ x)=> (x e a)). Then the relation (a £ a)=> 

(ae a) is true by CJO. The method of case disjunction proves at 

first that a 4 a is true, since the relation a e a is true, which is 

absurd. It is by +his simple technique that Rsssd's paradox is 

eliminated in this set theory.

C49. ^t R be a rel-.tion and x a letter, IfRiscoLrective 

in x, the relation (Vx)((xc v)^=» R)< where y is a letter distinct 

from x and not figuring in R. is functional in y.



Very frequently, in wluit follows, we dispose of a theorem of the 

form Coll^CR), We then introduce to represent the terra y(VxY(x& y)<* R) 

which does not depend on the choice of the letter y (distinct from x and 

not figuring in R) a functional symbol; in what follows, we utilise the 

symbol £*(8) or | x I R} ? the corresponding term does not contain the 

letter x. It is this term that we mean when we speak of < the set of 

aLL x such that R » . Then Oy definition the relation (V x)((x€ £ (R)) 

<=► R) is identical to Coll*(R); consequently the relation R is thus 

equivalent to x € £*(R)«

CJ50. Let R and S Oe two relations and x a letter. If R and S 

are collective in x, the relation (Y x)(R=>3j is equivalent to

^,*(3); the relation (y x)(k«» S) is equivalent to 

8X(R) • £x<s).

The following axiom is called the axiom of phi-ring:

A2. (V x)(V y)Cooi (z = x on z = y).z

This axiom expresses that, if x and y are objects, there 

exists a set whose only elements are x and y.

Peffnition 2. - The set $ ^(z = x on z « y), whose only elements 

are x and y will oe denoted oy \x,y} .

The set { x,x} will Oe des^naUd s^ply oy {x} , and will

Oe e^Tl ied the set whose only element is x.

The following schema is celled the schema of selection and

union:
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s8« Lgt-g-b* a rglatj^on. _ x and y distinct letters, x and y 

distinct letters distinct from x and y and not figuring in R The 

relation

Ujr)(a (x fX;j ^(V Y)CquJ(3 y)((y - Y) and g))

is an axiom.

Intuitively, the relation (V y)( 3 D( Vx)(R =$> (x 6 X)) sigriLfies 

that, for every object y, there exists a set X((which may depend on y), 

such that the objects x which are in the relation R With the given 

object y are the elements of X (without necessarily conasituting all 

of the set X). The schema affirms that, if this is the case, and if Y 

is an arbitrary set, there exists a set whose elements are exactly all 

of the objects x which find themselves in the relation R with an object 

y out of the set Y.

C51. Let £' be a relation, A a set, and x a letter not figuring 

in A. The relation - F ana x 6 A » is collective in x.

The set £ (P and x € A) is called the set of x e A such thatx ---------------- —
P.

C52. Let a be a relation, a a set, x a letter not figuring in

A. If the relation A =» (x fe A) is a theorem, then R is collective in x.

C5J. Let 1 be a term A a set, x and y distinct letters.

Suppose that x does not figure in A andthht n ffggure nneihee in T 

nor in A, The relation (3 x)(y « T andx - -A fi cooleecive -i -.

The relation (3 x)(y ■ T and x € A) will be read as « y auay be 

put in the form T for an x belonging to A >— . -Te - et
r

and x e A)) is generally called the set t o - bjects - o -th -oom T for

x € Aa
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By C?1 the r'lation (x l A and x & X) col1'^^' -n x.

definition j. - Let A bt a subset of a set X. The set

£/x 1 A C^ x € X) ts calltd ttie complement of A with to X

and is designated by C*A or X - A or CA.

Theorem 1. - The relation (\/x)(x £ X) is functional in X.

The term .(((V x)(x | X) corresponding to this functional 

relation will bt represented by the functional symbol 0, and will 

bt called the void or empty set. (The term designated by 0 is thus
'LmfehLTIh dtd ) The r^ation (tyx)(x | X), is then

equivalent to X = | , which is read « the set X is empty » . *e havt 

as theorems x £ 0, 0 C X, C*X = 0, G*0 = X. Also if R | xj is a 

relation, the relation (Vx)((xt 0)=.R |x| ) is true. Furthermore 

0 / { x. is a theorem and hence (3 x)(3 y)(x / y) is also.

Tiert dots not ex.st a set all of whose objects are elements;

i.e., I not (3 X)(V x)(x ft X))) is a theorem. For, in effect, if there 

exist'd such a set, every relation would bt collective by C52. But, 

as we have seen the relation x | x is not ^11'^-™.

It is int'resting to note that (x • y) C (V X)((x G X) <=> (y g X)) 

is a theorem.

As wt have noted, the sign q is in this theory a substantive 

sign of weight 2. If T, U are terms, Q TU is thus a term, weLce wt 

will tn practice designate by (T,U).

The axiom of ordered pairs (or of couples) is the following 

axiomt

A}. ( Vx)(V x’)(V y)( Vy')(((x,y) • (x',y‘)) C (x = x' and

y • y’)).



By 044, the relation (x,y) = (x’.y’J is equivalent to « x = x‘

and y = y' » .

The relation (3 x)(3 y)(z = (x,y)) will be designated by « z is 

an ordered pair T orUais a couple V . If z is an orderSpir, the relations 

(3 y)(z = (x,y)) and O x)(z • (x,y)) are functional in x and y respectively 

by A3. The terms T ((3 y)(z = (x,y))) and T ((3 x)(z • (x,y))) will be
x y

designated by pr^z and pr^z respectively, which wil be called the first 

coordingte (or first projection) and second coordinate (or second projection) 

of z.

LT 8 |x,yj be a relation, the letters x and y being distinct

and figuring in R. Let z be a letter distinct from x and y and not figuring 

in R. Deeignate by X |z| the relation (3x)(3y)(z = (x,y) and R$x,y S ); 

it is thus a relation which contains a letter not figuring in R, and which 

is e 'ii^ii^£^a.ent to « z is an ordered pair and RS pr^z, p^z \ . RSx,yS

is eqiu.veaLent to S g (xty){ , and to (3 z)(z « (x.y) and S |z ?). This 

means that a relation between the objects x and y may be interpreted as 

a property of the ordered pair formed by these objects.

Theorem 2. - The relation

(yX)(V Y)O Z)(tfx)((z eft)** (3 x)(3y)(z = (x,y( and x eX and y t Y)) 

is true, i.e., whatever be X and Y, ttie relation « z is an ordered parr 

and r GX ad and p r^ y » i r Os eolleer iar in z«

Jeeinitioa J , - Being given too ett x X add Y, the set

F ((3 x)(a y((z • (x.y) and x r X and y e W is called the product oi

X and Y and is designated by X x Y.

The relation zr X x Y is thus eqULvaLent to < z is an ordered pair

an ri pr- z C - onX Prn- e - J •
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ft*O]X)8ition 3» - If A' and B’ are two non-empty sets, the

relation A' x B‘ Q A x B ia eeuivaleet t t ( A’ A A ann B’a B ».

PropooStion_4. - Lee B ann B Be two asttn (he arealion B x B = 0

is e-uii.T8n.ent to « A = 0 or B = 0 P.

If A, B, and C anr ts^, Bon Baet ( A a B’ a C a C b B b C. An 

element A(x,y),z) of A x B a B ( (Oich ta aritten also an ( A,b,c)) ia 

caLled n triplet. Similarly, one may define n muiliplet (x.tx_,c..,x ).Id n
The relation » {x»y\^ = < {«' ia eqiLvaLent

to << x = x' and y = y' p . This is known ns the Kiwatoraki definition

of the ordered pa.r (x,y)b i.e., (x,y) = {(x 'x.y • If r 18

the theory of sets and (. the theory oith the same schemas and expOicit 

axioms as oOth the exception of the axiom A3, it can be shorn, itilizing

the Kirn tooS^ii definition of the ordered pair, that if ( is not contra­

dictory, then neither is 7Z . This gives n relative consis^^y proofo

for A3.

definition 4. - G is said to be a graph iff every element of G 

is an ordered pair, i.e., if the relation (V z)(z C G ( i is an ordered 

pair) is trie.

If G is a graph, the relation (x,y) 6 G is expressed often by

<( y is corresponded to x by 3 p.

Let G be a letter distinct from x and y, x and y being distinct 

letters, and let Rf x,y^ be a relation in ohich G does not figure. If 

the elation (3 G)(G .s a graph and ( \/x)( V y)(((x,y) € J) 4=^ B)) is trie 

one says that R admits a graph (°.th respect to the ^tt^s x and y). hhe 

graph G is unique b the axiom of extensiona^y, and is called the graph 

of R with respect to x and y.
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Proposition p. - Let G be a graph. There exists a unique set

A and a unique set B which possess the following properties!

1) the relation (Hy)((x,y) t G) i.s eqi^valent to x e A;

2) the relation (3x)((x,y) e G) is eqiuivalent to y e B.

The sets A = £ *((3 y)((x,y) e G))) and B = Sy(O x)((x,y) e G))) are

called the respective first and second projections of the graph G, or the 

set of definition and the set of values of G, and are designated by 

pr^ (g) and pr_ (g) , respect^el.y.

Remark. The relation x = y does not admit a graph since if it did 

eX.st, its first projection would be the set of all objects, which we 

have noted does not exist.

D^fi^ition_^. - A tfippit P= R (,A,B)) —werr A and A are sstt 

and G is a graph such that pr^ (G) t A and pr^ (G) R- is said to be

a correspondence between A and B. Q is c^^LL^e^d the graph of P , A the

set of departure and B the set of arrival) of T .

If (x.y) 6 G, one says again that 4, y is corresponded to x by

the correspondence P . If x e pr^X one says that the correspondence 

P is defined for the object x, and pr^ (G) is called the domain (or 

set) of definition of P ; for y e pr2 <G> , one says that y is a value 

taken by P and pr^Gis called the range (or set) of values of P .

If R |x,y£ is a relation additing a graph G (wt. x and y), 

and if A and B are two sets such that p^ (G) SA and pr2 (G) £-B, one 

says thatr K is a relation between an element of A and an element of B 

(relative to x and y). One says that the correspondence T = (G,A,B) 

is the RRb^tw&ed_A —and B defined by the relation R (wwt. x

and y).
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subsftt I of B, th. lMg. f<Y> of Y by ? io again called the inverse

image of Y by P .

Let G and G’ be two grapha. Designate by A th. set pj^G and by 

C the set pr^'. The relation (3y)((x,y) €G and (y,z) € G’) entails 

that (x,z) < AxC; it thus awaits a graph wr,.t, x and 2.

DDejnition 2• - Let G and G* be graphs. We call the graph w.r.t. 

x and z of the relation (3y)((x,y) €G and (y,z) € G’) the cor, pooition 

of G* and G. It will be designated by G’oG.

• roposition b. - Let G and 3* be two graphs. The inverse graph 
of G’oG is ^G’.

Proposition 7« - Let G^G^G) be graphs. One then has 

(G^oG^oG^ = GyoCGGoGG).

Propooition 8. - Let G and G’ be graphs and A a set. Then one 

has (G’oG) (A) > G* <G <A)> .

Delation 10. - Let P • (G,a,B) and f* = (G’,B,C) be two

correspondences such that the set of arrival of P is identical to the 

set of departure of r ’. Mt call the composition of T * and f1 the 

correspondence (G’oG,A,C). It is denoted by P'oT .

Dfinition 11. - If A is a set, the set A; of objects of the 

form (x,xi, for x € A, is called the diagonal of AxA. The correspondence 

Ia = (Aa,A,A) is called the identity correspondence of A.

Pd.!, nation 12. - One says that a graph F is a functional graph 

if, for every x, there eX.sts at most one object corresponded to x by F. 

One says that a correspondence f = (F,A,B) is a function if its graph F 

ia a functional graph, and if its set of dejparture A is equal to its
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domain of definition pr_F. It other woods, a correspondence 

f = (A ,A,B) is a function if, for every x t A, the relation (x,y)€ F 

is functional in y; the unique object corresponded to x by f ia called 

the value of f for the element x in A, and ia designated by f(x) or 

f (or F(x), or F ).x x

If f is a function, F its graph and x an element of the domiin 

of definition of f, the relation y ■ f(x) is thus equivment to (x,y) £ F.

Let A and B be sets; one cells a mapping (or application) of A 

into B a function f whose aet of departure (which is thus equal to its 

aet o^ definition since f is a function) is equal to A and whose set of 

arrival ia equal to B; one also says that such a function ia defined in 

A and taKeB its values in B. Tils is abbreviated by f: A—> B.

Is certain cases, a functional graph ia also called a family; 

the dommln is then called the aet oi isdicta,asd the set of values is 

called (by abuse of language) the aet of elements of the family. Wien 

the aet of indices is the product of two aeta, one speaks of a double 

ftmiy. Similarly, a function whose aet of arrival ia E is often called

, fw«A.ly of elements of E. Wien every element of E ia a subset of a aet 

F, one speaks of a family of subsets of F.

We will often use the word < function » in place of « functional 

graph) in that _hich follows.

^ampie - (0,0,0) is called the void function and the identity 

co^reBtundtnct, being a function, ia called the ide^t^tity mipplng.

One says that two functions f and g coincide in a aet E if E 

is ^ntai^d in the aeta of deiinitius oi f and of gt and if f(x) - g(x)



for every x €. E. To say that f = g arnomitB to saying that f and g have 

the same domain of definition A, the same set of arrival B, and coincide 

in A.

Let f « (F,A,B) and g ■ (G,C,D) be two functions. To say that 

FC G amouuits to saying that the domain of f, A, is contained in the 

domain C of g. If in ad(H.tion BSD, one says that g is an extension 

of f to C.

C5^. Let I1 and A be tw° Um, x and y distinct letters. 

Suppose that x does not figure in A. and that y figures neither in T 

nor in A. Let ft be the relation « x fe A and y = T » . The relation R 

admits a graph F with respect to the letters x and y. This graph is 

functional; its first projection is At its second projection is the 

set of objects of the form T for x E A. For every x A. one has 

F(x) = T.

If C is a set containing the set B of objects of the form T 

for x €. A (y not figuring in C), the function (F.A.C) is also designated 

by the notation x—> T (x € A, T <■ C). The assemblage corresponding to 

this in the formal mahemmaics contains neither x nor y and does not 

depend on the choice of the letter y verifying the preceding concdtions. 

rhen the context is sufficiently expllcit, one may be content with the 

motatio^ p-^T (x a A), (T) or p —* T and even ^^y T or (T).
At '

X

•For examf!*, on may speak of « the function » » or « x * 2x » in

some specific contexts involving the real nummers

Pronostion 9. - If f is a wpping of A into B, and g a mapping

of B into C, gof is a mapping of A into C



The function gof is written al6o x —>g(f(x)), or simply gf if 

no confusion is likely.

Defid.tion 15. - Let f be a rapping of A into B, One says that 

f is an injection (or 1-1 rapping), or is an injective rapping, if two 

distinct elements of A have distinct images under f (x / y f(x) / f(yj>. 

One says that f is a surjection, or that f is a surjective rapping (or is 

an onto rapping), if f(A) = B. One says that f is a bijection or bijective 

rapping (or 1-1. onto rapping) if f is at once injective and surjective.

In lieu of injection, one may say that f is a biunique. In 

lieu of surjection, one may say that f is a mapping of A onto B, or a 

parameerio representation of B by means of A (here, A is called the 

set of parameters of the representation). If f is bijective one may also 

say that f places A in a 1-1 correspondence with B. A bijection of A 

onto A is also called a iermuutaion.

Example - If A — B, the rapping of A into B whose graph is the 

diagonal of A is injective and is called the canoin.cal injection of A 

into B.

. ro-.ooition IQ. - Let f be a rapping of A into B. In order that
“I

f be a function, it is necessary and sufficient that f be bijective.

-i -»

W«i*e f is bijective, f ie called the inverse rapping of f f 

is bijective, f of is the identity rapping of A and f of is the identity 

rapping of B.
-I

Let f: A—> B; for every subset X of A one has that X f { f ( xT)

and for every subset Y of B» one has f f ( yY) ~ Y. If f is a surjection

f(f (y>) * Y for every Y < B. If f is an injection, for every X S a,

f (f <X)> = X.
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ProJP>ottioi 11. - Let f be a up ping of A into B. If there 

ex-sts a mapping r (reap, s) of B into A such that f ^esp. foS) 

is the identity upping of A (reap. B) f is injective (r^p. surjective). 

00X1^1-011! if f is surjective, there exists a mapping s of B into A, such 

that f o s is the identity mapping of B. If f is injective and if A > 0, 

there exists a mpping r of B into A auch that r o f is the identity 

mapping of A.

(corollary. Let A and B be sets, f a upping of A into B, g a 

mipping of B into A. If g o f is the identity upping A and f ° g the 

identity mapping of B, f and g are both bijective and g • f.

(eefnition_1L. - Let f be an injective mapping (resp. surjective 

mapping) of A into B. ffvery mmpping r (resp. s) of B into A auch that 

rof (-isp. foa) is the identity upping of A (resp. B) is called a 

retraction or left inverse (iesp. section or right inverse) associated 

with f.

A function of two aigummnts is a function whose domain of defin­

ition is a set of ordered pairs.

Definition 15. - Let u be a mapping of A into C and v a mapping 

of B into D. The upping » —* (^p^z), v(pr2z)) of AxB into CxD is 

called the canoxn.cal extension of u and v to the product set AxB, or 

simply the product of u and v when no confusion is lixely end is 

designated by u xv or (u,v).

Its set of values is u(A) x v(B). If u and v are injective 

(resp. surjective), then uxv is injective (resp. surjective) and if 

u and v are bijective, ther uxv is bijective and its inverse mapping 
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is u x v . If u’ is a mapping of C into E and v’ a mpping of D into

F, one has that

L»t X be a family, I its set of indices. In order to facilitate 

the intuitive interpolation of what follows, we shall say that X is a 

family of sets.

If (X'I'G) is a family of subsets of a set E (i.e., a family of 

elements whose sets of arrival (6 is such that the relation I® entails 

Y - E), we stoll use the notation (X^)^ fc • (<£ <5 ), or simply (X^)^ e ji

by abuse of notation, we shall use the notation (X^) for an arbitrary

family of sets, with I for the set of indices.

As the relation (Vx)((i € I and x G X.) (x 6 X^)) is true,

S5 allows us to conclude that the relation

is true. In virute of 38, the relation (3 i)(i G I and x g X^) is 

thus collective in x.

Definition 16, - Let (Xjk £ j be a family of sets (resp. a 

family of subsets of a set E). The union of this family designated by 

is the set

i.e., the set of those x which belong to at least one set out of the 

family (X^ e *.
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as the relationIt is immadiata if I = 0, one has 

€ I ani x e X^) is then false.

Sup.ose that 1/0. If a € I, the relation (Vi)(i e I)=>(x e X^) 

entails x t X* . thus, in virtue of C52, this relation is collective in x.

Deefnntion 17. - Let (X))) . * be a family of sets whose set of 

indices I is not void. The intersection of this family, designated by 

A X. . is the set [ x ( (Vi)((i € I) . (x £ X. ))} , i.e^ the set of
i e I 1 l 1 J
those x which belong to all of the sets in the family (X^ t p

N.B. If I = 0, the relation (Vi )((i 6 I) . (x € X )) is not

collective in x, for if it were the resulting set would be the « set of

all objects * which does not exist.

If (Xi)i . I i= a family of subsets of a set E, and if I / 0, 

the relatoon*x € £ and (Vi)((l€ I) =* (x€ » is equivalent to

(V i)((i€ I) . (x e X,))j consequunniy, it is collective in x and the 

set of x verifying this re^tion -s eqiual to X^en 1=0, the

relation « E and (V i)(i€ I) => (x e X )) D is eqi^valent to x £ £« 

it is thus again collective in x, and the set of all x verifying this 

relation is E.

Peeinition 18. - Let (X ) £ T be a family of subsets of a set £•

The intersection of this family, ^sign^^ by is the set

{ xT x € D and (V 1 )((i£ I)=> (xe X)} « i«e., the set of aU x wh-ch 

belong to E and all of the sets of the family (X))) £ I,

Peeinntion 19. - Let J be a family of sets, and let $ be the 

family of sets defined by the identity mapping of J. The union of the
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sets of £ , and (if J is non void) the intersection of the sets of 5

are called respectively the union and intersection of the sets of J,

and are designated by and

If A and B are sets, one lets

and

The intersection X n A is called the trace of X over A. If T 

is a family of sets, one also calls the trace of J over A, the set of 

traces over A of the sets belonging to 5.

Def nition 20, - We say that a family of sets (X^)) £ j is a

cover of a set £ if

Defirdition 21. - We say that two seta A and B are disjoint (or 

without common element) if An B = 0. If this is not so, we say that 

A and B meet each other. Let (X^)* € I be a family of sets; we say that 

the sets of this family are mutually disjoint (or two by two disjoint) 

if the conddtions i £ I, x e I, i / "X ennail X„ = 0.

Deefnition 22. - We call a petition of a set I a family of 

non void and mutually disjoint subsets of E, which is a cover of E.

peinition 2j. - Let ( I( h e j be a family of sets. We call the 

gam of this fomdly o.f_sejt5, the anion of the farndly of X^x £ i£ (i£ I).

Propoodtion 12. - Let (X±)i e j be a family of mutually disjoint 

sets. Let A be its anion and S its sam. Then there exists a bianiqae 

rapping of A onto S.



49

All of the wswOL properties of unions and intersections follow 

from the above definitions and will not br presented here. To outline 

our development of set theory further, we give another axiom called the 

axiom of the power set.

A4. — ,(TS x).

Tiis axiom signifies that, for every set X, there erfsts a set 

whose elements are alL of the subsets of X, vLz. the Mt \.Y 1 Y - X} . We 

will designate this set by -?(X), and rf.ll call Lt the power set of X or 

the set of subsets of X. Cle«a-ly, if X — X', then — (X) - PP(X').

Definition 24. - Let « ana — be two Bets, P a correspondence 

b^wom A and B. The fun^Uon X —X C (XC# Xh T(x) € P (B)

is called the canonical extension of P to the power set (or set of

subsets) of A and rfll be fonot^ by t* . It is a rapping of pA) 

into — (B).

If r ' is a correspondence between B and a set C, the formula 

( p' o P ) (x) a p • — X (.X)) shows that the canonical extension of 

p *op to the set of subsets is the rapping p 'op .

^^0^^ 13. - 1. If f is a surjection of a set E over a set 

F, the canonical extension f is a surjecti°n of — (l) rate ~(F).
A.

2. If f is an injection of £ into F, the canonical extension f 

-s an tajec^on of — (£) into % (F).
A

3. If f is a bijection of E into F, the canoid.cal extension f 

is a Ejection of # (C) onto 1(F).

Let E and F be sets. The graph of a rapping of E into F is 

a subset of ExF. The set of elements of — (ExF) wlh.ch possess the
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property of being graphs of mipp^uge of E into F is thus a subset of 

$(ExF) which we desi-gna^ by FE. The set of triplets f = (G.E.F), 

for □ £ F* is thus the set. of mappings of E into F, which we designs^ 

by 3(E,F). It .s clear t.hat G —* (G,E,F) is a biJecti°n called the 

ca^t^i^icitL bijecti^on of F onto 3(E,F). The mdstrntt of this bijection 

permits the imneddate translation of every propostion relative to the
Eset F Into a propooition restive to J(^E,F) and vic^v^aa.

Let (Afc-I be a family of sets, F a functional graph with I

for doein of definition, and such that, for every i€ I, one has

F(i) € X., then for every . € I, one has and conso-
•x c, A

cueetly F ic an element of ^(XxA). The functional graphs with the 

preceding property thus fores a subset of 4s (IxA).

UeefnitionZ^. - Let (X.)^ g j b® a family of sets. The set 

of functional graphs F, wWth I for a set of definition, and such that 

Hi) £ X. for every i G I, is called the product of the family of sets

eand is deei-gmted tby Tee mapping

is called the coordinate function (or projection) of index i,

and is denoted pr^.

we often use the notation (*4)4^. j to designate the elements

of

Let A and B be sets and let a and P be two distinct objects 

(e.g., 0 and ( 0] ). Consider the graph (obviously functional) 

{ (a,A), (p,B)] which is n^ithing other than the family auch

that X » A and Xo = B« For every pair (x,y) G AXB, let f v be the
a > ••'

funct.oual graph ( Ga.x),(P,y)} . It .s ^at the fuacti^
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(x.y)xfloa bijection of Axd onto *• J
ie

whc3« inveree mpning
L — V ' J

these t^wo Mippings are called canonical. This

correspondence is used to prove propeeties of the product of two seta 

by Deans of the properties of the product of a family of sets.

Proposstion 14. - Let (X.). . _ be a family of sets such that

\ X 0 for mry f £ I. Being gfven a mapping g of J f I
such that g(i) £ X^ fore veryi € J , thee*® exists an extension f of g to I

such that f(i) £ Xl for every i € I.

Proof. Inefffct, ffo tvery i t t - Jt designate by the term 

r (y £ X2* As X£ X 0 by hyppSheris, one has that T* € X^ for every

L £ I - J. If G fs the graph of g» the graph 

is the graph of the desired function f.

CoooSlary 1. - ^t (X^)^ j j be a family of sets sucn that for 

every L e I, one has / 0. Then, for every a €. I, the projection pr

is a mapping of onto X,.

Corollary 2. - Let (X^f, f be a family of sets. For

Lt is necessary and sufficient that there exist an L € I such that

XA = 0»

«e have seen that, if sne has a family (X,), c i °f non void sets, 

sne may introduce (by means sf an auxiliary constant) a function 

f with I fsr its domain of definition, which is such that f(i) £ X., fsr 

every i £ I. One says in practice* Take in each set X an element x, . 

Intuitively, one has thus f chssen )> an element i f in each of the X; 

the introduction of the logical sign X and the criteria which govern 

its employment have alSowed us to dispense with an appeal to the
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«axicm of choice)) to legitimate this operation. In fact, Proposition 14 

with g the void function is often called the « axiom of choice)) [cf.

Bourbaki 58, Section 4, No. 10J and Cooollary 2, which is equivtOLent

to it is usually called the < multiplicative axiom » [cf Russell 19, p. 117 et seq.J

It is with this simple four line proof that the axiom of choice becomes 

derivable in our system.

Let R jx,y| be a relation, x and y being distinct letters. One

says that the relation R is symmeeric (with respect to the letters x and

y) if cne has that From this definition, it is

immmddate that R|x,y| is equivalent to R £y,xl.

Lit z be a letter which does not figure in R. One says that

R Ix,y I is transitive (with respect to the letters x and y) if one has

that

If R |x,y| is at once symmetiic and transitive, one says that 

R |x,y^ is an equivalence relation (with respect to the letters x and y), 

and use the notation x = y (mod. R) in lieu of R |x,yf . If R is an

equivalence relation one has that in

virtue of the definition.

Let R x,yf be a relation. One says that the relation R is 

reflexive in B (wrt. x and y) if the relation R $x,x| is equivalent to 

X € E.

One calls an eqlivaLence__relaiiln__in E an equivalence relation 

which is reflexive in E. If this is so then R admmts a graph. One 

calls an equivalence in a set E a correspondence which has E sb its set 

of dejporture and arrival, whose graph F is such that the relation 

(x,y) R F is an equivalence relation in £•
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Let f be a function, 3 its set of definition, F its graph.

The relation « x £ B and f € B and f(x) = f(y) Y is an equivalence 

relation in 2, called the equivalence relation associated with f.

The criterion which follows will show at every equivalence relation R 

on E is of this type. Let 3 be the graph of R. For every x 6 £, the 

(non void) set 0(x) - L is called the equivalence class of x with 

respect to R. An element of such a clbtt is called a representative 

of this class. The set of equivalence classes with respect to R 

(i.e., the set of objects of the form G(x) for x fE) ia called the 

quotient set of £ by R and is designated by ty'Rj the napping x—> j(x)(x € B) 

whose domain is L and whose set of arrival is E/R is called the canonical 

mapnAng (surjection) of £ onto E/H.

CJ5* Let « be an equivalence relation in a set s and v the

canonical mapping of L onto L^R. One has that

Let R be an equivalence relation in a set E. The querent set 

i/R is a subset of 'P(B), and the identity mpping of tjR is a partition 

of s. Connvrsely every partition of n, (Xi - - - defn^n an quuVbafinee 

relation on B, vis., (3 i)(i fe I and xeaan ye X±). every subset S 

of B such that for each i t I, the set Sc Xi ia reduced to a single 

eLe^m^i^’t is called a system of representatives of the equivalence classes 

with respect to R.

Let R| x,x*| be an equivalence relation, and PjxL a relation. 

One says that x| is comppaible with the equivalence relation R |x,x’|

(with respect to x), if, given that y designates a letter which figures
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neither in P nor in K, one has

C56. Let aii.ilf be an equivalence relation in a set .. PI xl

a relation weeein . the __ letter x1 does not figure,. colmpanible (with respect 

to xj wit f tee 8^iiaaf.ncft e^j^ti^^nn I xx.I 1 t t h^e^enff tdese not figure

in P . I xl l tfeeelelaoo« t f -yR and (3 xAx6 t and PC xl J »

-b equivalent to the relatione t fc 1/R and (> xXCx £ .

The relation « t € e1/R tand ((J tXxe f tnn fF ex f > is called 

the relation deduced from Pl xj by passage to quooients.

Let R be an equivalence relation in a set L, and f a function 

whose dornin is L. One says that f is compaaible with the relation R 

if the relation y = f(x) is compa^h^ (with respect to x) with the 

relation R? x^x’I .

C57. Let R be an fqOivalfnce relation in a set ... anu Let g be 

the canonical mapping of t onto x/R. In order that a mapping f of d into 

' be corcoaaible with R, it is necessary and sufficient that f may be 

,ut in the form hog, ? being a Mpping of j/R into r. The maaking h 

is uniquely determined by f; if e is a section associated w.th g, one has 

that h = fo b.

The raping h is said to be the mapping deduced from f by 

passage t„ gupoients with respect to R.

Let f be a mapping of a set K into a set F, and let R be the 

equivalence relation associated w.th f. Then f is co^Bpanible with R 

and the mmpping h deduced from f by passage to quodents is an injection
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of E/R into F. Let k be the mapping of E/R onto f < E > which has the 

same graph as h; k is thus a bijection. If j is the canonical injection 

of f into F and > the canonical mapping of E onto E/R, one may

write f = J ° k ° this relation is called the canonical decoapoaition 

of f.

^t f be a mapping of a set E into a set F, R an equivalence 

relation in E, S an equivalence relation in F. Let u be the canonical 

mapping of E onto E/R and v the canonical mapping of F onto F/S. One says 

that f is compoaible with the equivalence relations R and S if v o f is 

co^poatLb^Le with R. The map, ing h of E/R into F/S deduced from v o f by 

passage to querents with respect to R is then called the map ing deduced 

from f by passage to ^uoiieits with respect to tt and j; it is character- 

ical by the relation v ° f = ho u.

Let Rl x,y| be an equivalence relation not necessarily possessing 

a graph. It is irnmedate that if x,x', and y are three distinct letters

the relation entails thus also the

relation By melons of S7 we see that if

one lets the relation im^pies that

For the other part note that, by definition,

is nothing other then the relation which is equivalent to

»e conclude that the relation and and

is equivalent to The term is called

the class of objects equivalent to x (for the relation R).

Suppose that T be a term such that the relation

is true. Then the ^i^tiern is collective
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in z. Let @ be the s©t of objects of the form © | xL for x& T. — e 

call (§) the set of classes of e^uivalent objects with respec<t to R»

B) x,y| be a relation, x and y being distinct letters.

One says that H is an order rel-tion (or paatial order rel ■ tion) with 

respect to the letters x and y (or between x and y) if the relations

are true.

One calls an order relation in a set — — an order relation R 1 x,y| 

with respect to two distinct letters x and y such that the relotion 

LL I x,x I is equivalent to x € E.

One calls an order over a set E a correspondence P = (G,EiE) 

witn b as its set of departure and arrival such that the relation (x,y) € G 

is an order relation in E.

If ilx,y| is an order relation, we shill often use the 

notation x 4 y in lieu of B |x,y! and speak of 4 in place of R.

<>e write x < y for the relation 4 x 4 y and x / y — .

058. Let 4 be -<n order relation, x and y being two distinct 

letters. .'he relation x 4 y is equivalent tot x < y and x = y » . 

each of the relations << x 4 y an d y <■ z » , < x < y and y 4 z 4 ennail 

x < z.

W often wrrte x 4 y < • for < x 4 y and y 4 z — etc.
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^erinLtiOnL.er" ” Let E be an ordered set. One says that an 

element a E is the least element (resp. greatest element) of £, if 

for every x c £ one has a 4 x (reap, x 4 a).

^efin^ionj^. - One says that two elements x,y of an ordered 

set E are comparable if the relation! x 4 y or y 4 x » is true. A set 

E is said to be totally ordered if it is ordered and if any two elements 

of E are commaaable. One then says that the order over £ is a total 

order and the corresponding order relation is a total order relation.

Let E be an ordered set, a and b two elements of £ such that

a b then we mace the following definition

These are called respectively the closed interval a,b, the right half 

open interval a,b, the left half open interval a,b, etc. following in 

the usual terminology.

One says that a relation R| x,yj is a wwei ordering relation 

between x and y if R is an order relation between x and y and if for 

every non empty subset of S over which R }x,y| induces an order

relation s ordered by this relation admits

a least element.

deeinition 28. - One says that E is wwei ordered if it is ordered

and if every non empty subset of E admits a least element.
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~j£>^LiLoil _>2- “ 11 an ordered set E, one calls f a segment of F 

E a subBet S of E such that the relations x t S, ye 1 and y 4 x entail

y € S.

_proo^^SitiSn_-5• • In a wwll ordered set E, every segment of E 

dis^^t from B -s an interval )<- ,a( , where a € £.

For every element sf a wwII ordered set E, we use the notation 

Jx ior 1 f segment f i ,xf which w call segment with extremity x.

Let us now consider ourselves in a theory X where E is a set 

well ordered by a relation denoted x 4 y. We now can enunciate the 

following criterion called the principle of transOinite Induction (sr 

recurrence):

C59• Let aj xi be a relation sf 'C (x not being a conntant of 

'O, such that the relation

is a theorem of C « these csnnidtisns, the relation (x £ >)=» Rf xi

i- a theorem of C .

In the application o^ C59» the relation x € E and (Vy)((y& E

and y < x) t R |y| ) is usually called the inductive

For every mpping g of a segment S of E into a set F, and fsr

(x)every x e 3, we shall designate by g the mapping of the segment

S = )<.x( of E onto g(S), which coincides with g in - . With
x / • k ■ ° X x

this notation, we have the following criterion called the definition 

of a mapping by transOinite inductions



C60. Let u be a letter, T j a term of the theory £ . There 

exists a set U and a mapping f of S onto U such that, for every x fe E.
(x)one has f(x) = Tj f | « In addition, the set u and the mainnit f

are determined in a unique manner by these ctnndiitiB■

Hoot often, one applies the preceding criterion in a cbtf where 

there eX-sts a set F such that, for every mapping h of a segment of E 

onto a subset of F, one has that T{ h) e F. Then the set U obtained 

by application of C60 is a subset of F.

Def nition JO. - One says that a set X is equipotent to a set 

Y if there exists a bijection of X onto Y. We denote Eq(X,Y) the relation 

« X is equipotent to YJ .

The relation Eq(X,Y) is clearly an equivalence relation, which 

is reflexive in every set. It does not, however, possess a graph.

Defr^n•titn JI. - The set tCEq(X, Z)) is called the cardinal of 

X (or the txowwr of X) and is denoted by Card (X).

We note that Card (X) is nothing other than the class of objects 

^iHval^t to X for the rmtw of ^uipot^ce. (cf. Pc5).

As Eq(X,X) is true, Card (X) is equipotent to X by S5 and we 

have the following proportion:

Proppostion 16. - In order that two sets X and Y be equipotent, 

it is necessary and sufficient that their cardinals be equal.

N.B. To say that lit is a cardinal means that there exists a set

X such that UL 3 Card (X).
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Mcaampe. We use the notation 0 for the Card (0). The only

set equips tent to 0 being 0, one has that 0 » Card (0) = 0,

examine. A.1 one element sets ire equipotent since {(i^)] is 

the graph of a bijection of {1} onto { b\ , in particular, they ire 

equipment to £01 • We denote by 1 the cardinal

Here Lt is not to confuse the eaah(tneatcal term designated by

the symbol « 1 » and the oord A oneW of ordinary language. The tero 

designated by < 1 A ie equal, by definition, to the term designated 

by the symbol

The actual assemblage designated by this symbol consists of course of 

hundreds of signs, each one of which is one of the signs

Example. W denote by 2, the ordinal Card )* etc.

Propoostion 17. - The relation th

k IX and S are cardinals and ft is equi^te^ to a subset of lx.

is a wei ordering relation.
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shall denote the relation R $ U ,4} by 1U 4.

S=f===tJOn^Z’ - Le '■ el be a family of cardinils. The

candLnal of the product set (reap. sum) of the sets ft . is called the 

cardinal product (rasp, cardinal sum) of the U . and is denoted by

Ip W . (resp. Z. ft ),
Lt I 1 i € I 1

Propo^t.^ 18. - Let fl. ,4 be cardijnOLs. then

Definition - Let ft and 4 be cardinals; the cardinal of

the set of rappings of 4 into ft (Card( J(4.1t ))) is denoted by

4VI , by abuse of notation.

PropooStion 19* - Let X be a set and ft its cardinal; the 

cardinal of the set ^(X) is 2^ .

it

Prop osHion 20. - For every cardinal ft , one has that 2 f

This is the celebrated theorem of Curtor.

Coopoimry. - There does not exist a set of which every cardinal

is an element.

Deef-nition 34 . - One says that a cardinal fl is finite if

f. + 1; a finite cardinal is also called a natural number. One 

says that a set E is finite if Card (E) is a finite cardinal; one also 

says that Card (E) is the number of elements of £.
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The following criterion ia called the principle of induction?

CSl. Let A | nJ be a relation in a theory (n not boing a

constant of duijose that the relation

R J Oj and (Vn)((n is a n^ltuj^j^-L number and A J nJ fn r lj

ia a theorem of . Under these conddtions, the relation

(Vn)((n is a natural numbbr) . ti | nl ) 

is a theorem of . .

In applications of the above criterion, the relation

n is a natural number and A J nJ » or simply 2 J nJ

is called the inductive hy.othesis.

The following criteria , which are consequences of the above 

are also known as induction trincipla:

1) Let S |n] be the relation

( Vp)((n is a natural number and p is a natural number and

and suppose that Then the relation

is true.

2) < inaction after k 7) : Let k be a natural nurnber,

be a relation such that the relation

and
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is true. Then the relation

is true.

3) << induction limited to an interval »i Let a and b be two 

natural r<<imbers such that a b, and let K | n^ be a relation such that 

one has

Then the relation

is true.

4) < descending induction 7> : Let a and b be two natural

numbers such that a b, and let R | nl be a relation such that one has

is a natural number and a

Then the relation

is a natural number and a

is true.

Defiaition^^. - One says that a set is infinite if it is not 

finite.

In particular, a cardinal is infinite if it is not a natural

number.



in<troduce the fsllowing axiom called the axiom of

A5« There exists an infinite net.

It is net known ° not the above axiom is icdlolcdent

oO the foregoing axioms. Tiis problem is still an open question. Ey 

placing it here, we presim it to be independent.

Proposition 21. - The relation <x is a natural numbee*is 

collective in x.

We designate by N the set of natural numbels. The cardinal oO 

N is denoted by H .
o

ieOinitiSnigS. - One says that a set is dlnu^nbelabll (or 

countable) if it is equipotent to a subset of natural numbbrs hl .

For every infinite cardinal Hl sne has that Card ( >4 ) 4 Hl .

The set N is indeed wwII ordered and one may apply C60, which

we rewrite here using the same notation as before as

C62. Let u be a letter, T, ul a term. There eri.sts a set I- 

and a ma -fjint 1 sf M snts U such that Osr every natural number n, one 

has that f(n) * T { fil . where is the mapping of (s.n( snts

f( (s,n( ) which csin^des with f in os.n( . The set U and Un 

mapiing O -re then uniquely deteraiinsd by this conndtisn.

From C61 follows the following criterion called the definition

sf a mapping by induction:

C6jj. Let Sj vj and a be two terms. There ex joists a set V and 

a may i ling O oO N onto V such that f(0) = a and Osr every natural number 

n > 1, f(n) = 3 io(n - 1)1 . In adhtisn, the set V and the spring f 

amunjique-ly determined by these csi^c^litisns.
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Tile complete our simum&ry of the theory of sets.

Finally we summrize here the signs and axioms and schemas of

the theory of sets.

Signs: Logical; V , 1 , X, □

Letters; x» y, A, B, etc.

Specific signa; relational (of weight 2); = , 6.

substantive (of weight 2 ); □

Axioms and Schemas of the Th<eory of Sets

Principal of Tautology

S1. If A is a relation of 73, the relation (A or A) A

is an axiom of C .

Principal of Addition

52. If A and B are relations of 73, the relation A c (A or B) 

is an axiom of C .

Principle of Permutation

53. If A and B are relations of C , the relation (A or B) =>(B or A) 

is an axiom of "C.

Principle of Summaion

54. If A, B, and C are relations of "C, the relation

(A=->B) ((C or A) C (C or B)) is an axiom of C .

Hilbert1 s L -formula

S5. If R is a relation of 73, T a trim of C ♦ and x a letter,

thr rrla'tiion
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S6. Let x be a letter, T and U terms of X2 , and R ( x| a re­

lation of 'C | the relation la an axiom

of r.

Ackermann's Axiom (as a schema)

S7» If R and S are relatione of C— and x a letter, the relation

is an axiom of "C .

Schema de selection et reunion

S8. Let R be a relation, x and y distinct letters, X and Y 

distinct letters distinct from x and y and not figuring in R. The 

relation

is an axiom.

dxtensionaaity Axiom

Pairing Axiom

Ordered Pairs Axiom

Power Set

The Axiom of Infinity

A5. There exists an infinite set.



PART III

THE THEORY OF STRUCTURES

It has been our purpose in the preceding two sections to 

describe and then present a formal language sufficient for the purposes 

of modern maheematcs. Since fm>st of modern m^t^l^Mmat.cs investigates 

wtat might be called structured sets » , it is one of the primal

purposes of the theory of structures to explicate the more or less 

vague notion of na^t^t^nmati^t^^l structure within the framework of our 

formal language.

Let us think for amount of wluat we usiua.ly mean when we speak 

of a babh<rmatcal structure. For example, when we speak of a partially 

ordered set E, we are usually thinking that we are given a set £, certain 

elements of which are related two by two in some p«a'ticilbr fashion. 

That is for some x and y in £ we have that x 4 y, i.e., the ordered 

pair of elements (x,y) satisfy the order relation R|x,yJ . Now as we 

have noted before such a binary relation between elements of a set is 

equivalent to defining a particular subset of the product set ExE 

and thus a particular element of the power set 'P(ExB). Connvf8ely 

if we bie given a particilar eluent S of the p^er tft f(£xE), 

about whlnh we assert certain iflbtitns, i.e., S • S • S and SfS ■ 

we say that such an element which satisfies the particular relations

67
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i.e., the axions (or by conjunction the axiom) of a partial order, 

defines over £ (or supplies a with) the structure of a partially 

ordered set.

As another example, what do we mean when we speax of the 

topological space £? We usually are then thinking that we have a set 

E together with a certain distinguished collection of subsets of E, 

i.e., a subset of $ (E) or equivalently, a single element S of Is (15(E)), 

called the system of open sets of E, which satisfies certain relations, 

called the axioms of a topological apace. We may then say that the 

giving of such an element S of £(%*(£)) which satisfies the particular 

axioms of a topological opace defines over E (or supplies E with) the 

structure of a topological opace.

As a final example, let us consider what we mean when we speak 

of a group with operators. Ordinarily, we would say that we have a

set E and a set A, which may be presumed to already have a structure 

of its own (as in the case of, say, A-modules) together with two law®

of composition, one of which is said to be internal and the other

involving A and E which is called external. Now the internal law of

composition (e.g., addition) is nothing other than a function from Exi.

into E, i.e. a subset of (ExE)xE or equivalently an element of

£((ExE)xE), the external law of composition is nothing other than

a correspondence from AxE into E, i.e., a subBet of (AxE)xE or 

equivalently an element of :fl((AxE)x£) which satisfies certain relations

with respect to the internal law (viz., it ia distributive). Thus to

say that E is a group with a set of operators A, is equivalent to

asserting the existence of a pair S s fc ^(CSxE)xE) x ^((AxE)x£)
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which satisfies the axions of a group with operators. The pdr (SrS * )

thus may be said to supply E with the structure of a group with operators.

In this case the set E usually is considered to play the principal role 

wwhle the term A is said to play an auxiliary role.

Several observations might be made from the consideration of

examples such as the foregoing ones.

*• generally speak of one (or more) sets as having a structure 

when we have defined certain relations between mernmbrs or subsets or 

between subsets and meiumers or between sets of subsets and memmbrs and 

so forth. In all such cases, these relations define a single mbrnmsr of 

a set obtained from the basic set (or sets) by the formation of power 

sets and cartesian products. Connvrrely, to define such relations on 

the basic sets (or their subsets, etc.) is equivalent to the specifi­

cation of a certain member of a particular set (obtained from the basic 

sets by meeuns of the formation of cartesion products and power sets) which

satisfies certain propeeties.

If we were to consider all such possible formaaionsobtained from 

the basic sets by means of cartesian products and power sets taken in 

any possible order as defining a sort of « laduer of sets *wth the 

basic sets as its base)) , then the consideration o^ a particular

« rung > of this ladder will be equivalent to the consideration of a 

particular type > of relation defined over the basic sets of the

ladder. Any particular such rung will itself be characterized by its 

scheme of formation, i.e., some method which tells one the order in 

which one is to take the cart^lon products and power sets of sets 

ohrtained from performing such operations on the basic sets, e.g., how 

the rung %(ExE) is obtained from the base set E.
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by means of such observations as these, we can arrive at some 

tentative views as to the noti .n of what a .species of structure V •> 

may connsst of and some general requirements that auch a notion miurt 

satisfy. First we have noted that the consideration of any parti color 

v«ariety or (type)) of relation (((type of structures))) that may be defined 

over a given collection of sets is equivalent to the consideration of 

one single element of one particular set which is itself a ft rung)) of 

the gladder of sets) which has the given collection of seta as its 

((based . Furthermore, it is apparent that some of these ((base sets) 

will play a ((principal) role wtd.le others will only play an ((aiuciliaury) 

role, and these roles ri.ll have to be noted as such.

Being given such a collection of sets and noting which ones are 

to play a principal role and which are to play an auriliary role we then 

may specify the ty i)e of relation or (( type of structure) that we wish

to consider over ti ese (base sets) by means o^ some particular ((rung) 

of the (ladder of sets» wwth the given sets as base. We may then take 

a particular member of such a rung and say that it is a ((truetureP 

over the base sets providing it satisfies certain relations relative to 

it and the base sets.

*e would all agree that for any given collection of sets, such 

a device will define what we would all call a ((structure) over the

given sets. It is apparent that if such a proc^se is to be adequate in 

all cases that we woi^d like to have all structures of the exact same 

(vsarietyn to be given the same name. Thus we must arrive at some 

notion of a « species of structured which is independent of the 

jarticular choice of base sets over which we define our structures
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in the sense that any other « structure) satisfying the ((c^ame)) 

relations would be given the same name..

any relations which are to be taken as axioms for such 

a structure must be independent of the particular sets which appear in 

their formulation in the sense that if S is a structure over the base 

set, which is thus preaimed to satisfy some relation R|x,S| and 

if we have a bijection of this base set x onto another set y, the 

corresponding relation Rjy,S*£ must be equivalent to it C x,S| ,

I.e., the relations which are to be taken as axioms for a 

certain species of structure must be in some sense « ti^ansi^i^t^i^l^b^e» 

relative to the particular ((typifice^^) of the structure S for 

bijections of base sets.

Ml of the preceding analysis is necessarily vague and is 

intended to only be of a heuristic nature, to aid the intuitive under­

standing of that which follows. It is hoped that by keeping the 

first few exampPes in mind together with the preceding ((analysis) 

wtuat follows will be more intelligible and at least plausible.

We noted that ((types) of relations over given sets could be 

specified by means of a particular ((rung)) of the ((ladder of sets! 

with given sets as base )) and that such rungs could be characterized 

by giving their particular (.(scheme of construction) . To first 

make this notion clear, we wwil employ the natural numbers in their 

meta*-naahemarical usage, i.e., to specify ((ranges of a certain order)) . 

Taeir use here has nothing to do wwth the mat.heimaical theory of the 

natural numhbra which outlined in Part II. Their usage here may

be considered here as analogous to their usage as abbreviated expressions for 

((first one wrrtes down this and second one writes down that) , etc.
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Dfinition 1. - By a construction schema S for a run,; we mean

a finite sequence of pairs of natural numbers

satisfying the following conditions:

Tiese two conditions imply that for if not

then either a, / 0 ani b, X 0 or a. X 0 ani b. = 0, ani we have that1 A 1 1
by (b) in the first case 1 6 a_ < 0 which is impoosible ani in the second

MM by (a), that 1 4 a, 4 0 wkhLch is also impoosible.

Thus if then we My that

is a conntruction schema over n terms.

Peffnition 2. - Let S = (c1t ...,c ) be a construction schema 

over n terms, ani let be n teres of a theory O which is

stronger than the theory of sets. Then by the conntruction, of schema S 

(or S-comtruction), over we mean a sequence Ai,A2,...,na of

m terms of . iefinei recusively by the following conditions:

pef^tionA of the S-coMtruction overThe final term Am m

K..........En is called the rung, of schema S (or Sprung) over the base

8ets £^,...v£q and is dfnotei by
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is & rung construction schema over a = 2 terms as may be seen immediately 

from Definition 1. The S^-construction over the base sets Ep a is the

following sequence

the term is and i a thus th« ^-rung over Ep Ep

More than one schema can give rise to the same rung as the 

following example will show. (We shill give it in its full deeail):

then the S-construction over E_.E^ is

Thus while Tiis fact, howwevr, causes

no particular difficulties as we shall see.

We now turn our attention to some other possible schemas which 

may be constructed out of given ones.

be two rung construction

schemas over n terras. We can define a rung construction schema over n

term.s denoted by SxS* such that

This is accompPished by first defining by
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Then the sequence (c»...,cr, Cr+q’,,-,cr+Bh C ® a rung construction 

schema S" over n terms, and one has

so that if finally we let cr+a+1 = (r,r+s), the sequence (c^»•••»cr+s+i) 

is the desired schema SxS*.

we can define in a similar fashion (only mmre simply) a schema 

denoted by 1(3), composing r+1 pairs of integers which has the

property that

We now shall show that to every schema we can associate a 

rapping which has several interesting propeeties. Our previous analysis 

has given us no motivation for this notion, but its importance will 

readily become apparent when we formulate our notion of «transportable 

relations % and isomorphisms of structures.

be rung construction schema over n terms.

Let be sets iterms of C ) and let

be terms of "C such that the relations are theorems

of Cfo Let be the 3-con-

struction over 'de now define recusively

a sequence of m ^ras auci that for each i

subject to the following conditions:
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(a)

(b)

(c)

Definition 4. - The final so defined term g^ of this sequence

is called the canonical extension, of schema S (or canonical S-extension)
/ , Sof the mp^ings f ,...,fn and is designated by \fp...,fn>

As a consequence of this definition, we have that

Euusple. a As in the preceding example 2, let S = ((0,1), (0,2), 

(1,0), (S,0), (2,0), (4,5)) which is schema over two terms. Let ef, 

E* E. * be terms and f.i E""> i^' and f(i «2—’’*2'* then we have one 

after another
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Froa the elementary properties of the two canonist! extensions

used in tho above definition which we outlined in Part II 

we obtain, the following criteria:

C6T1. If then for

every rung construction schema S for a rung over n terms,

CST2. If f i« injective (rest-, aurjactive) for 14 i 4 n. then 

(fp...,^) J js injective (reap. surjectiLveJ.

If
-4

is a oijection and f. its inverse bijection

for la a bijection and Lts
inverse bijettiot. i.e.,

■ith the notion of canorn.cal extensions of trappings at iiand we 

can mdee precise our vague notion of « tranaporabbiity» Which we 

noted that all relations which say be taken an axioms for a « species of 

structure » suet satisfy. we shall go into this notion in some detail 

and shall develop a collection of criteria which will enable us to 

decide just how restrictive this notion is.

definition 5. - Let C be a theory stronger than the theory of 

seta. x...........x . a....... distinct letters (distinct from themselves and’ 1 * t n t i t t p

from the constants of t )t terms of "O in which none of1 ®

the letters figure, and finally let

be rung construction schemas over n ♦ a terms. Under these

conditi°ns we will say that the region
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... and

is a typification of the letters

be a relation

of "C , possibly containing certain of the letters x.,s. (and possibly 

other letters). Then to say that B is transportable (in C) for the

ty . . ification f with the considered as principal base

sets, and the considered as auxiliary base sets is to

say that the following condition is satisfied:

Let y,...y , f, ,...f be letters distinct from themselves x n a n
and from the and the constants of ,

and also from the letters which figure in R or in the

Let be the identity rapping of .. onto itself. Then the

relation

is a bijectinnMind

.. - and

implies, in 'C , the relation

where

(We may formuUate a simpler definition in case the auxiliary base sets 

do not appear,)

The relation (1) above is called the transport relation for the 

typification T.



The relation <2) naans (in word^ that the relati°n H, posa^y 

involving the letters x^...,*^ s^.........s^ is equivalent to the

relation H wWth each occurrence of an x± replaced by a y^ and each 

occurrence of an s^ replaced by its « image) under the canonical 

extension of the f±, by the schema Sp

To give a trivial example, suppose that n = p » 2 and that T is

« ’1 *1 and a2 G i i , then the relation « s^ a e * i i transportable

(since the relation of transport for this T implies that

while the relation ia not (since

*9 shill develop a number of criteria which will greatly 

facilitate the determination of wWhther or not a given relation ie 

transportable.

For brevity, the terms x^, s^, and A* WH be referred to as

the initial letters and terms of the criterion. «e shall use the 

notation S(x,A) for the rung S(x1(..Mx » A.,...,A_)* where S is a rung1 n x m
construction schema over n+a letters. We shall also use the notation

, oir simply T) to designate a particular typi-

fication are p

rung construction schemas over n+m letters, the Xp s^, A^ being the 

initial letters and terms of the criterion. In euch of the criteria 

considered, there being the further question of relations of , 

denoted in genex-a! by U, U’, U,,.., these relations and terms will 

be considered as possibly involving the initial letters of the criterion.

We shOLl also designs by (or sisply theoryc

obtained upon adjoining the relation of transport (1), to the axioms
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of "C • Thus if S is a rung construction schema over n+m terms, and

if we designate the tera of denoted by

the relation

is (by CSTJ) a theorem of TZ . Also with s.' defined as in (3), for ' — c j ' '
every assemblage , we designate by W J y.s’J the assemblage

obtained on replacing each of the x. by y. and each of the a by s'1 i j • j
in W.

With these notations, to say that the relation R is transportable

(in 'C; for the typification T is the same as saying that the relation

is a theorem of "C •————— c

DfiEdtdLgn?. - With these same notations, we say that a term 

U is o^ type (s,x,A) for the typification T (or by abuse of language, 

of type (S(x,A) or of type S) if the relation

is a theorem of "C .

Dfinntion 8. - We say that U is a transportable term of type 

(s,x,A) (or of type S(x,A) or of_ty£e S) for the typification T if the 

the following conditions are satisfied:

Remember that if C ' ia a theory stronger than "C . every relation 

(reap, term) of 7S which is transportable for a typification T is again 

transportable for the same typification when considered as a relation
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(reap, taraj of 75 Note also that the preceding definitions (in a 

simpler forrn) extend to the case whore there are no lettez-s a. occiwri^g 

and similarly for aLl of the criteria (it will suffice to replace T by 

any true relation of 75 ).

As an i^i^mdds^lte example we may note that the term Card (x) is 

not transportable since there is no rung of which Card (x) is a meinmer. 

but the relation

is transportable since it is equivalent to « x is equipotent to a subset of 

y » which is transportable as wo shall soon see.

For brevity we shall say "transportable" in lieu of "transport­

able for the typification T" where no confusion will arise. In the 

some criterion "transportable" will always mean for the same typpfi- 

cation unless expressly no'ted otherwise.

CTI. If none of the letters x^,...,x&, s^f...,s^ figure in a 

relation R. then R is transportable. The term 0 is transportable of 

type f (S) (whatever be the schema S).

CT2. For the typification T fx.s.Af t x^ is a transportable 

term of type 3S(xjJ. s^ is a transportable term of type S^(x.A) and 

is a transportable term of -W-

These criteria are an imaediate result of the definitions.

CTJ. If R and R* are transportable relations. then so are the

relations « not R )) . « R or R* » . Lh and 8*0 . y R => R*» . <C R R R«> .
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CTl** H the teraB U and U1 are . transportable of types S and 

$*» respectively, then (U>u*; is transportable of type SxS*. If 0 and 

U* are transportable of type ^(S) and 3* (-?■*) respectively, then 

UxU* is transportable of type ^(SaS1 J and #UJ is transportable of

type *S ( H* (S)).

CTjj. IfU and u' are transport ..ble tai^ms of _ the _Bjag„type_^>. 

the relation S = 01 is transportable. If u is transportable of tyte 

S and U* is transportable of type IC^St then the relation U € U* 

V-3 _t‘«. porC . ble. I . U and p* are traoe portal la of tvoe I1 >p ' , thea 

the relation u . v* is transportable.

These criteria are the result of the definition and the propeeties 

of canood-cal extensions.

CT6. For every rung construction schema S qver n»m terms,

S(x.AJ is a trai sports^e term of type ff(S(a,A)) for toe typification

T- f x,s,A| .

This is a result of CT2 and CT4 applied one after another over 

the S-conntruction.

CT7. If Us a relation such that T =* R is valid in , then 

R is transportable for T. If U and U* are two terms such that T =» (U » U*) 

is valid in . , and if U is transportable of type S for T, then so is 

up.

The second pa^'t o^ the criterion is a result of the definition 

°f a tnwprtabb tens and of schema S6 ^pli^ in the theory p*. - 

For the other pu-t, the relation T< x,s,A| is transportable (for the 

typification Tfx.s.A) in virtue of CTS, CT and CT6; the relation
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is thus a theorm of C • and hence similarly

so is T| y,s’tA| , The hypothesis on B entrails that R (x,s^ .s a theorem 

of C ; thus R I x,s'| is a theorem of 'C and one has it concusion that c c
the relation is also a theorem of 73 . hence the c
first part of the criterion.

CT8. Let z be a letter distinct from both the constants of

and the letters figuring in the typification T(x.B,Al, Let 0 be a

run# construction schema over n+m letters, and let T* be the typification

Finally, let R be a relation containing no z. Under these contHtions, if 

H is transportable (in C ) for the typification T1, R is transportable 

for the typification T in the theory C * obtained by adjoining to the 

axioms of C the relation q

Tils result is obtained easily by the method of the au:X.liary

conntant.

The preceding criterion is applied notably in the following

two cases:

a) the rung S(x,A) is of the form £

b) t;he schema 3 is identical to one of the sche®as S (1 4 j 4 p)

involved in the typification T.

In these two cases one concludes from CT8 that R is transportable

in the theory 7s for the typification T in case S(x,A) / 0 .b a the°rem 

of C .c
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CT9. Let K be a transportable relation for the typificatjon T 

andlet K' be a relation such that T R* ) ia a theorem of

Then the relation a* is transport ble for T.

as
In effect, the same reasoning /that in the criterion CT8 shows 

that the relations R |x,s | a R'| x,si and R |y,s’< a R* fy,s’ I

are theorems of C , since by hyppohesis, the relation

is valid in 72 , it is the same for c

CT1O. For the typification T Ix.s.ai . let -J be a term of

ty,,e in wth-cnthe letter s does not fj-ure, For U t> be trans-
J J

portable for T, it is necessary and sufficient that the relation s^ 0

be transportable for T.

The contH-tlon is necessary in virtue of CT5. Conveesely, if

it is satisfied, the relation

s •
is true in 'C . As, in the theory , f J is bijective, it is a c c

result that the relation is a theorem of ZZ0

which establishes the criterion.

CT11. For the tyoificaticn T ix.s.Aj , let U be a term of type

S in which the letter s , does not figure. For P to be_ transportable
-i--------------------------- --------- i
for T, it is necessary and sufficient that the relation s^ = U be trans­

portable for T.

Proof is similar to that of CT1O.
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CH2. Let___be__a letter distinct lron the constants of 'C and

from itha lettera figuring in the typificatlon Tjx.s.At . and let 0 be 

a term of type S 1 reap. p(S)) for T in which tee leteer a does not

figure. Then the foiowwir*; three conddtions are equivalent:

a) 0 is transportable of typo S kresp. P()_ ) for T;

b) U is transportable of type S (resp, foo the

typification (( 7 |x,3,Al and z £S(x,A) »;

c) the relation z = U presp. z _ _ s t^nsa^^table_fo for 

the typ^^a^on ( T I x,s,Al andi z G S(x,A) ».

The equivalence of b) and c) results from CT10 and CT11 and a)

evidently entails b). For the remainder, the method of the aux.liary 

constant shows that b) entails that U is transportable ffor T in the 

theory obtained on adjoining to _ the axiom S(x,A) / 0* But if U is 

of type S, the hy^^osis (in _ entails the reaatonn U € S(x,A), and

consequently the relation S(x,A) / 0; this last is thus a theorem of 

which proves that in this case, U is transportable for T in the theory

C, If U is of type $(S), the relation < T Ox,s,A| and S(x,A) / 0» 

entails U = 0 in _ , and then U is transportable for T in the theory 

obtained on adjoining to _- the axiom S(x,A) = 0» in virtue of CT1; 

the conclusion then results by the method of the case disjunction.

CT1J , Let R be a relation transportable for the typifi-cation

T f x,s.A I . Then for every infox j (1 4 j 4 p), the ter.m

the set of the a. G S.(x.A) such that R »

is transported^ of type .) por _ _ •
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In effect, if one designates thia term by U, it is clear that 

U ia of type T* (S,) and that a . does not figure in it. Now in a , 

T entails the relation (s,e U)v> e S . (x.A) and R), and the relation 

« 8J a Sj(x»A) and R a is transportable for T (Criteria CT5, CT6, and 

CTT). One thus has the conclusion desired with the aid of CT9 and CT1O.

For the typification Tlx.e.A^ t let 3 be a transportable

relation. ;mT let U be a term, transportable of type 1(Sj, Then the

relations

are transportable for T.

In effect, let U' be the tejm i the set of s . € o.(x,A) such 
J J

that R » . In 7,, the relation T entails the relation (U £ U'), 

((y Sj)((b^ c U) a R), As U' is transportable of type 1* (S,) for T 

by means of CT1J, the second assertion of the criterion results from 

CT5 and CTJ; the first is then deduced with the aid of CTJ and CT9.

CT15, For the typification T( x.s.a( , let 3 be a transportable

term of type S, U* a transportable term of type such that s
J

does not figure in U. Taen the term

« the set of objects of the form 0 for s, e »

is transportable of type f (S) for T.

In effect, let z be a letter distinct from the letters introduced 

in the preceding. The teim considered is the set V of the z t S(x,A) 
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such that one has (3Sj)(Sj€ U' and z • U). AppljyLng successively

CT5» W, and CT1.J, one observes that V Ls transport. ble of type C (®) 

for the typifLcation ( T| x,s,A| and z &S(x,A) . • The conclusion La 

then obtained with the aid of CT12.

CT16. Let H be a transportable relation for the typifLcation T.

If, Ln , the relation (( T and R C is fmctioml in s., the term
J

T (T and R) Ls transportable of type S .-.j------------ A-----------------R------------------- XiL_j

Let V be thLs term, WhLch Ls evidently of type S,. In "C , the
w

relation I entails (s. « V) O (T and R) and s. does not figure Ln V,
J J

one concludes the crLterion with the aLd of CT9 and CT11.

By contrast, Lf one does not suppose that « T and R v> be 

functLonal Ln s ., the conclusion of crLterion CT16 Ls Lnexact. Suppose
J

for example that C be the theory of sets, that n = p • 1, m = 0, and 

that T and R be both Ldentical to the relation s. x.. If C (R) be
1 

transportable for T, the relation of transport eDitai-ls the eqiuaity

This consequently entails that for every set £, the Lmage of T.Cx C L; 

for every bijection of JI onto a set F Ls the element “C.Cx e F), which 

Ls absurd, for example, for every set W^h two elements.

CT17• Let R be a transportable relation. U a transportable term

of type C . . U* a transportable term of type S*. Then the relation
J

(U I s.n Ls transpootable^ ana the term (U IsUO* Ls transportable of
j K J

type 3 *.

In effect, be V the set of s . € S.(x,A) such that R, V Ls a
J V

transportable texm (CTT1), and the relation T enislis Un C) the relation
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Consequontly (U 1 b.b l.s t^ans^rUbh <CT9). Let z be a letter disUn^ 
J

from those already introduced; the relation z = (U | s.U‘ is identical 
J

to (U I a.)(z « U). and zeU’ i.s ^ansportable for this typification.

The conclusion results from CT12 when we show that the term (U I s )U’ 
J

is of type S‘ for the typification T. flow in "C , the relation T

entails thus the relation (U | s.)T, and since s, does not figure in
J J

the term U’ € S'(x,A), T entails finally the relation (U Is .)U' € S'(x.A) 
J

(criterion C2).

CT18. Let 0 be a transportable term lor T. of type f( #(Sj).

when T entails U / 0.

Then the term is transportable of type ^(S), and so is the term

CT19. If U and U* are transportable terms of type ff(S), then 

so are the terms U uU, U nU' and S(x.A) - U.

CT<20. If U is transportable of type SxX1, then ur^O and pr^U 

are transportable of types S and S* respectively. If U* is transportable 

of type ffiSSxS1 ) . then -^ ( 0*) and pr^ < U*> are transportable of 

types #(S) and ff(S') respectively.

■e give the deoonnsration for exammle, of the first part of

CT18< Let z and t be two letters distinct from themselves and from 

the letters already introduced; the relation T entails the relation

It thus suffices to show that the set of t fe S(x,A) such that 

(St)(z e U and t € z) is transportable of type ¥ (S). for the 
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typ^Lficat^^a^n T. Now this term is of type y>(S) for T, and is transport­

able of type <(S) for tte typificaticrn « T|x,s,A| and z € $(S(x,A)) 

and t € S(x,A) » ; as it contains neither z noir t< one has the desired 

conclusion by CT12. The demoonStations of the other criteria are analogous.

N.B. In that which follows, we will oWce no distinction between

a correspondence and its graph.

CT21. If 0 is transportable of type ffiCoxS*), and if U* is 

transportable of type ffG^'j^S^**then 0°U is transportable of type 

^(8x3**) and 0 1 is ^aneporta'ble o f type

CT22. If U is trains portable of type 0 ( SxS*) and V transportable 

of type '((S), then the term 0 (V) js transportable of type T(S*).

CT23. If 0 is transportable of type $(3), then the identity 

gaping 1y of 0 onto itself is transportable of type $

CT24. Suppose that 0 be transportable of type $*(S), U* trans­

portable of type $(3'), and V transportable of type $(SXS'). Then 

the relations

U V is a sopping of U inta 0’ )>

(( V is an injection of U ntp} li1 )>

(( V is a surjection of U 0* »

HV is p bijection of 0 onto 0* »

are transportable.

We give the demonnSration for the first relation Which we designate 

by R. It is iornoedate that, in & , the typification T enttuLls the 

relation

The conclusion thus results from CT9 and the criteria CT21, CT2?, CT2J,

CT5 and CT3. ______________________________________
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CT25• Let ) , U1, UTI, and V be transportable terms of types 

respectively S, fl(S ) , .13(3), nod t(SxS') for a typification T.

■Suppose that the relation T entails the relations « V: U1—> 0"» 

and U € U. The term V(U) is then transportable of tyte S', If 

moreo-ver ■ ' is a term transportable of type t(S) and if the relation 

T en^ils the relation W £ U, then the term ) the restriction of 

V to )■■ » is transportable of type t*(£^xS*).

CT26. If R is a transportable relation, then the graph w.r.t. 

s , and s, of the relation -j----------k---------------------------

is a transportable term of type

CT27. Suppose that for two distinct indices j and k, the schemas

S. and S, are the same, and for a typification I, let U be a transportable 

ten-i, of type ft-.) and let ) be a transportable relation. .Oup pose
J

in addition that the relation T entails the relation

« R Lb an equivalence relation in U between b, and b, ).

Then the term U/k la transportable of type ,(,(SJ) and the canonical

mapping of U onto U/R is a transportable term of type

CT28. For a typification T, let V be a transportable term of 

type MSxS*). then the canonical extension of V to #(S(x.A)) and

is a transportable term of type Let

U, p a p * and U,* be transportable terms of types respectively

and let. V be a transportable term of

type. ana suppose that the relation T entails the relations
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<V is.a mapping of U into U» » and < Vj. js a mapping of U x into ly )) . 

Thentho canonical extension of V and V, to UxU^ is a transportable term 

of type f((S»S")x(:>,)y'j).

0T29• Let U. U1, and U" be three transportable terms of types 

respectively fL^ ji, )(£'). and Then the canonl-ca! bijection

of (UuU'W onto UxCU'xU") and the canonical bijection of PxU' onto 

U'xU are transportable terms of types respectively

CTJO. Let U and U1 be two transportable terms of types 

respectively 9(5) and f^(S'), Then the set of mappings of li into

U is a transportable term of type Sa( t(3x3 */>.

CT^l. For a typification U. let U be a trans. . orUble term of

type -P (S ;. V a trsainsprtaabe term of tyye 4Ks.x4*(S))t suppose that
J J

the relation - entails the relation K V is a mapping of U into P(j(x,A)) ) 

and that 3. figures in neither L nor /. -hen the terms and

are transportable of types and*
e : <=• u
respectively. If T entails the relation U / 0« then the term

Lb transportable of type

we are now finally ready to explicate the notion of « species 

of structure > .

Deffcntion 9. - Let C be a theory stronger than the theory 

of 3et3 (which of course may be the theory of 3et3 it3elf). A 

of structure in C i3 a text ^ecincaticn) £ for^d of the following 

assemblages!
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1. A ceirtain number of letters x,...,x , s dLstinct
x n

from themselves and from the constants of C

letters are called the prLncipal^base^sets^of 22 j 

the letter s is called the generic structure of 22 .)

2. A certain number of terms A,...A of 73 (called the1 m
auxiliary base sets of £ ) in which none of the

s figure.

3. A typification

where 3 is a rung construction schema over

n+m tenas (called the typical characterization of 22 ). 

(S may be the product of rung construction schemas

then * will be a < multtiPlt»

A relation which is transportable

(inC ) for the typification T, with the as principal 

base sets, and the A as auxiliary base sets. (R is 

called the axiom of 7 •) ( R may of course be the

conjunction of one or more transportable relations 

which will then be called the axioms of 7 .)

” The theory of the species of structure 2 is 

that theory C which has the same axioms schemas as 73 « the seme 

exxplcit axioms as 73 , and the axiom C T and R» ; the constants of 

Ti are then the constants of 73 and the letters wtd.ch figure in T 

oir in R.
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“ Let C' be a theory stronger than -C and 

let E1,...,£n, U be terms of e' . W say that (in the theory C* ) 

U is a structure of species y (or y-structure) over the principal 

base sets with for auxiliary base sets if the

relation

is a theorem of 'C .

It is then the case that for every theorem

of the theory 'C, the relation Iis a theorem of C

definition 12. - We say that (in ^- ) the principal base 

sets are suppieed (or with the structure U.

For brevity we often will under such conddtions say that Ei,...,En 

is a 2-set.

It is clear then that U is an element of the set S( ,

A,...|A ). The set of those elements V of1 m
which satisfy the rel^ion is hhus hhe set of

F -structures over L. It may be empty, for exampPe, if the ———————— x n

axioms of L are contradictory!

^efi^tiQnglm~ - By abuse of language, in the theory of sets, 

the specification of n distinct letters without typical characterization 

or axiom is considered as the species of structure called the 

species of structure of a set ovt^ir the n principal base sets x^,.<..,x^.

e 1. Let 'C be the theory of sets and consider the species 

of structure, wWthout auxiliary base set, consisting of the principal
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base E, the typical chaaracterization s €'K(Ex£) and the axion

(where &A is the diagonal of AXA), Which

is indeed a transportable relation for the typification s t £(;XE) 

as is shown by application of the definition or by CT2, CT21, CT5, CT19, 

CT25, and CT}. This species of structure is of course the species 

of structure of a (partially) ordered set. The theory of this species 

of structure is nothing other than the theory of (partially) ordered sets 

which has two consttaits, the letters E and S. (For the sake of complete­

ness we mention that

although the importance of the schemas lies more in their existence 

than in any particular example of their use.)

Ample 2. Again let be the theory of sets and consider the 

species of structure of a topological space which has one principal

base set E, no auxiliary base set, typical characterisation

and axiom

That this axiom is indeed a transportable relation for the typifi-cation

nay be seen from the definition or by consisting CT18, CT14,

CT19, CT5, CTj5, and CT2, etc. A structure of this species is course

a topology and the relation «■ X € V » is expressed by « X is open for 

the topology V » . (Again for expository comppleeness, one my take 

S = ((0,1), (1,0), (2,0)).) The theory of topological spaces has two 

constants E and V.

we may within this context say what one means by an algebraic 

structure.



' sp3ciLes of algebraic structure E (in a theory stronger than 

the theory of sets) defined over the principal base sets x .....x
1 n

and auxiliary base sets has a structure of the form

(slt...,s_) and a typical characterization of the form

where each T^ is obtained by replacing in the term P ((uxv)xv) each 

of the letters u and v by one of the terms x. oir In addition theA K
axiom of E .s written .n the form « P and Q » , where P is the 

relation

<( s^ is a functional graph and ... and is a functional graph's ,

(which thus expresses that the s. are the graphs of the laws of composi­

tion, ( external if s^ € 'P ((A^ x x^) x x^)) and internal if 

s^ € ((x^xx^)xx^) ). The relation 4 , which expresses the supple-

meetary conditions which the laws of comppoition satisfy, is generally 

called (by abuse of language) the axiom of 2? (or if a conjunction of 

several relations, the axioms of J ). The axiom is as always required 

to be a transportable relation for the typifi-cation

A structure of such a species will be called

an algebraic structure.

re shall now give two examples of algebraic structure species.

e 3. Let "C be the theory of sets; in 'C » the species of

(algebraic) structure of a group has one principal base set x^, no aucxiiary

base sets and a typical characterization with axiom

< is a law of compoostion of a group over x^) . This axiom is
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indeed transportable for the typification

since it is equivalent to the conjunction of the following relations: 

*1’ X S1 ia a l-* of composition everywhere defined over x^ » which i a 

transportable by CT2U.

where J denotes

the canonical napping of xis transport­

able by means of CT£i CT2J, and CT23.

L L V

which is certainly transp^rtab/ for the typif­and

ication \i T and z £ x^ and z' t x^ ; transportable for T then resULts 

from CT8 and case disjunction where one observes that upon adjoining 

the relation x^ = / to C t is false ana hence transportable by 

CT7 and CT3.

and

which is transportable for T by similar reasoning as for R^.

The theory of groups X^thus has two constants, the set x^ and 

the law of composstion s^. In the theory of sets O we have two terms 

< the set of real numbers )) and «the addition of real numbers .

If we substitute these terms for Xt and st respectively in the exppicit 

axioms of we obtain theorems cf <X • Thus by C£ we nay «apply the

results of the theory of groups to the addition of real numbbrs >5 .

One says that one has constructed a model for the theory of groups 

within the theory of sets. Also since the theory of groups is stronger 

than the theory of sets, we may apply the results of the theory of sets
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to the theory of groupie, but if the theory of groups should prove 

contradictory, then the theory of seta is also.

Example 4, Take for C , the theory of the species of structure 

of a field, which has (among others) the constant K as its unique 

principal base sets. In ,3 , the species of structure of a (left) 

vector space over K has E for principal base sets, K for amciliary base 

set and for typical characterization V f "P(( «ht£)x£)x Is ((Kx£)r£). 

pr^V is of course the addition and pr_>V is the scalar mulliplication. 

Its axioms are the familiar axioms for a vector space over K Wh.ch are 

all transportable relations as may be seen by the transportability 

criteria already developed.

we shall now proceed to define the important notions of iso-

morphiam and transport of structurea.

Le 2! he a apoeCie ao strucCm*e in a theoo*y tC , ooee a

principal e>ae sets x. ,...,i , with a auxiliary base sets A t, ...A .in x a
Let S be the rung construction schema over n+m letters Which figures 

in the typical chjaraccerization of 22 , and let B be the axiom of 21 . 

In a theory C stronger than C , 1-t U be a 2 -structure over 

and U’ also be a 2 -structure over £', ...,E ’ . Fiully i.n c' let
be a bijection for 1 4 if n. Under these conditions we

oOko the following definition:

Peffnition l4. - The muuliplet of mappings (f f.,.,ff) is called 

an isomorphism of the sets t , • • • , t supplied with the structure U onto 

the sets willed with Uo structure U' if Un C ),

(4)
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where is the identity mapping.

L»t f be the inverse bijection of f. for 1 4 i f n. Then

it is an imneeiate resuit of CST> that

and hence that (f. , • ••,£ ) is an isomorp^sa of • s^pli^
onto supplied with U. in

with U/ tfe say that these isomorphisms are inverses of each other.

Deflation 15. - We say that ' supplied with U' is

isomorphic to f,• ••*& supplied with U if there exists an isoaorphim 

of onto »••••£*• furthermore we then say that the structures

U and U' are isomorpih.c.

CST1 and the preceding definitions imneedately give the following 

criterion:

CST4. Let U, U' and U" be three I -structures over ,

En' and El"En" respectively. Let fj —*- E^* and

gi Ei’—be bijcciions for 1 4j 4 n . Then ff ff^.........f ) and

are isomorphisms, (g^ o f^, g^Q f...... ° f^ i8 an iso~

mmrpthism.

One usually calls an isomorphism of E««*«tEa onto

(for the same structure) an automorphism of o, . It is then a1 n
result of CSTU and the definitions that the automorphisms of f ,.••, E& 

form a group.

The following criterion gives another reason for the requirement

that the axiom of a species o^ structure be a transportable relation.

CST>. In a theory stronger than g . let U be a £ -structure

over E............ E and f. be a bijection x. owo - -el * * for 14 14 n.

Then there exists over L. ’......... E ’a.. £ -structure (which is unique)■■ ■ i B
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such._t.hat (fp ..., la an isomorphism of ......... g^ onto ’.......... E J.

In effect the desired structure is nothing other than the term

U' defined by the relation (4). For what remains it suffices to verify 

that this term is a Z-structure, i.e., that the relation

•I i • • • • x,n’io true in "C . But this is an immediate result of 

B| xlt...,xn,s| being transportable, for than R f .... ,E ’,Uf is 

equivalent in C' to the relation Rf E. ,...,E ,U | which is true in "C1
1 n

by hypothesis.

definitio^l6. - We say that the structure U* is obtained by 

transport of the structure U to the seta E •,..., • by means of the

bijections f ^,..., f .

It thus amounts to say that two 7" -structures are isomorphic if

one may be deduced from the other by structure transport.

definition 1/. - If two arbitrary structures of the same species

are necessarily isomorphic, one says that the species of structure

is univalent.

This is indeed the case for classical Eucliden geometry and also

for the following species of structure:

1. The species of an infinite monogenic group ( 35 Z)

2. The species of a prime field of characteristic o ( 2£ Q)

3. The species of a complete, archemidian ordered field (< R

4. The species of an algebraically closed, connected, locally

coi; act commutative field ( - C

5. The species of a connected, locally compact, non-com utative 

field ( = KJ.
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(In f&ct for Q and R thara ara no autonorphinns other than the identity 

mapping, but this is not always the case as (x —>-x): Z~*Z).

It is interesting to observe that the preceding structures 

are those which lie at the base of classical mathematics. By conmriawt 

the species of group, partially ordered set, topological space etc. 

(part of modern are not univalent!

We shall now consider the notion of « relative trtn8prtitbilty» . 

(We chall use the notations already developed for the transportabblity 
criteria.)

Let be a species of structure in "C , Wth Xp...,xn for principal

base sets, A . ,..,,Am for auxXliary base sets and s o for its generic 

structure; let sq t SqC^x****,x Ap’.’Af be the typical characterization 

which we will designate by Tq, and let P be the axiom of E ; P is thus 

transportable for by defimtirn.

Defnit=o=LL=* " We shall say that a relation R is transportable 

(in 73 ) relative to £ , for the typification « Tq and T » , when the

relation P => R is transportable (in C ) for (< Tq and T » and the 

following conditions are satisfied:

1. the initial letters of T are Xj,...xn,so (and possibly 

additional letters x,',...,x*, sx,...,s p); the initial terms1 r x p
are A.,..., A (and possibly add.tional terms A , ’,...,A ' of1 ffi AB

C not containing any of the initial letters of T);

2. T is of the form

where the S (14 j 6 p) are rung construction schemas over 
a

n+r+m+s letters.
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Ue shill show that this definition is equivalent to the 

following assertion concerning R:

- The relation

is a theorem of the theory ( , obtained by adjoining to the axioms

of Zs the transport relati°n for the typification « T and T» and th® 
o 

axiom P f x,s | .

(N.B. - Tixs wncUticm does not signify that R is trcrnap^tatt^

—— *z. for (( To and T » since the x^ and s o are constants of )

Suppose in effect that R is transportable (in "C ) relative to £ 

for * To and T > j then the relationo '

is a theorem of * . Also is a theorem of "C

since P is transportable for T (in C). In C , the relation (1) is o c
thus equivalent to

But in and are

eqiU.valent relations; similarly, and

are eqid.valent in ( "C • Therefore one concludes that

is a theorem of

Convvrsely, suppose that Dfi^r^i-ti^on 18' holds, then in 73- « the c

relation 

is a

theorem; now it is wen known that the relations B => (C4=> D) and 

(B-=>C)f (B * D) are equivalent in every logical theory; but (2) is 

a theorem of 'C and consequently also (1), which thus proves our 
c

assertion.
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Definition 1?. - «9 wil say that a term U of C is trans portable

tf s (in 5 > restive to L , for the typificatla^ «Tq and T »

if in (^c)£ , the relations U e S(x,x',A,A’) and U| y,y’,s ',s’I ■

are theorems.

. S
are theorems of C for 1 4 J $ p. Let g be the canonical extension of

g,...,g and the identity mappings of A. and A ' (1 k 4 ■» 104 s) In kb

to a rung of type S over X A^’ 5 one has in

pirtiCular that gS°( 3 ) = 3* • Under these conddtions the relation

is a theorem of 'C* .



102

In affect, if, in the tcra fJ(b.) we substitute g. for f , 
J i i

for x±, • for y±, • for and for e (1 < i< n, 1< IS; p)

we obtained the term g J(Cj) (1 • j $ p), Since the same substitution 

effected in I ,T,T, and in the transport relation for « T and T» give 

theorems of C , our assertion it an iraneddate result of the definition 

of a transportable relation relative to ZZ .

similarly from the definition, we may observe that if U is a 

transport•ble terra of type t relative to Z , for the typification 

« Tq and • • (with r = o), the relation

is a theorem of .

definition 20. - • • say that a term V .............x .st of is----------- a -.-... i ■ . • 1’ • n • o
intrinsic for s^, of type T, provided it contains no letters other than 

the conntants of • , and is transportable relative to T for the 

typification T°.

Because of the importance of this notion we stall restate this 

definition in full:

definition 20*. - Let £ be a species of structure in a theory

-e , over n principal base sets, Xp...,xn, with m auxiliary base sets 

A,,..,,A ; with s 6 T (,....x , A.,,.., A ) as typical characterization 

forZ. . Let T be a rung conntruction schema over n+m terms. One says 

that a term Vf i^f...,in,s^oI which contains no letters other than the 

constants of is intrinsic for s. of type T(i,,...,x_ , A_,.,.,A ) if

it satisfies the following conditions:
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1. The relation V F»

is a theorem of Th ,

2> Let (t^c >£ be the theory obtained by adjoining to the axioms 

of the axioms « x*.—> y^ Ss a bijeciion* for 14 i4 n

the letters f^, y^ being distinct from themselves and from 

the constants of 7X . Let s ’ be the structure obtained on*- o
transporting s by (f), i.e., s ’ » < f_,...,f ,o 1 n o s 1* ’ n
I, 7 T°(S ). Then
x n o

is a theorem of (72 ) •c Z

It can be shown that in the theory of groups, says, the neutral 

element, the group of comrnmtators, the center, and the groups of auto­

morphisms, etc. are intrinsic.

Let Vf * ,...,x ,s $ be an intrinsic term for s , of type T.i n o o
It is imneedate that the relation 4 (f. ,... ,f ) is an automorphism of1 n ----------- u------A
x_,...,x supplied witn st y entails in 'Cg , the relation f * (V) = V;

we shall under such conditions say that V is invariant for all of the 

automorphisms of supplied with s°. This latter conation, it

should be emphaaszed, is not sufficient to guarantee intrinsicity, however.

In view of the conventions introduced concerning « the species

of structure of a set )> , to say that a relation (resp. term) is transportable 

relative to the species of structure of a set simply means that the 

relation (resp. term) is transportable in the unrelativised meaning of 

the term
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efinition .1 *hnn a term V, intrinsic for s , is sucho
that in addition the relation (( V la a correspondence between X and Y » 

(reap. U is a sapping of V. into V» ) is * theorm of ^((V, and V, 
id x 2

being two terms also intrinsic for s ). we say that V is a canonical o — ■ —.

correspondence (reap, mgping) for srf The terminology of « canonic^ 

mapping > introduced in the theory of sets is thus in accord with the 

conventions already introduced.

«e shall now give an equivalent ctairaccerization of intrinsic 

Mppings in the most common special case.

Let U_ and U_ be twe terms of C which are intrinsic for S12 o
of types and respectively. 'Then a mipping V: —*• U?

is canonncal for s if and only if in ("C k /f-,...,f . I, .....I \ 2 0o ' c £ \ 1* ’ n 1* ’ m'
V] Xp...txn,so| 3 V^i’‘yn’8o'l X

i.e.,  with our usual abbreviated notation, in ( TZ ,’ c z. the following

diagrim is coimiutaaive: 

The above assertion is an iMsedate consequence of the definitions for 

intrinsicity when we rec^.1 that V is intrinsic, i.e., canorncal under 

the hyppthesis of the the°rem iff f ( vj x,s°|} = V£ y»8o’J •
Six So -.‘*1and that we always have f • f x f •
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now shall consider the imppotant notion of a « process of 

deduction 7> .

definition 22. - Let 0 be a second species of structure In 

the theory "C , over r principal base sets , with p auxiliary

base sets let tt T du,.......... Bp...,>p be the typical

characterization of ® • we call a edition of a sti*ucture

of species 0 from a structure of species ZZ any sequence of r+1 terms 

each intrinsic for s > and such that (P is a 0 -structure xr o

over U iin the theory . (By abuse of language we will

occasionally refer to the single term (P as the process of deduution.)

Definition d, - Let "C be a theory stronger than "C . If, 

in . 3 is a Z -structure over , then (P? ,E
1 n ’ 1 n '

is a © -structure over the r sets F . = U , [ £.,.,.,£ ,31 (1 1 J 4 r),
j j i n

said to have been deduced from % by the process (P. or to have been 

subordinated to -3 •

The hypthesis that the terms d?, are intrinsic for

s ent^ls the following criterion:o

CST6. Let (g......... ga) be an isomorphism of £^,...,£&, supplied

with a ZZ -structure onto L1,...,E^’, sup lied a 2Z -structure -3 .

If Uj io of type (T^)t ~ (14 j 4 r)

and let F? = fJ (1 J r), then (l^,...,^) is

an isomor hism of F ,...,onto >r’ when supplied respectively

with the 0 -structures deduced from -3 and 3 by the process (P,,...,.

Peeinition 24. - The mappings (h|...,hr) are said to be the 

isomorphism deduced from (g^» •• • by the protess (, .
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Suppose that (pUp... ,U^ and <P' ,U^',... ’ are both processes

of Eduction of a ©-structure from a L-structure. Let (V , ...,V )
1 r

be a sequence of canonical mappings such that V : U.—* U.’ is a bijection 
J J J

for 1 4 j 4 r. If, furthermore is an isomorphism of Il>•••«*_

supplied with (P onto U U ’ supplied with <P ’, we say that (V , ...,V )
x r x r

defines a canonical equivalence of the process of deduction P and P*.

Let us suppose that the hypothesis of CST6 are satisfied and

let us use the following notational conventions:

Let DJ(x1,...,xn) ■ UjJxj......... xa,so< , LJ(g1,...,gn) •

for 1 j r and
TDj’Cxp... ,xq) = uj’ I x^ ... ,xn,sol and B.• (g.^ ... .g^) = ( g^ ... .g^,^,... ,1^ J 

and finally F .(x, ,... ,x ) = V J x. ,... ,x ,s 1 for 1 < j 4 r, then under
Ji n Ji no

the hypoohesis of CST6, the following r diagrams are commutative

CST6 iupOies that D.(g_ , ...,gj (1 j 4 r) are isomorphisms and also 
J •

that the D,’(g j.. ...*£& ) are iaMorphi^s. If ^^....F^ is a canonical 

equivalence, then it is also an isomorphism.

It is clear that the terms are intrinsic for sQ. In

many cases the terms U ,•••••% are certain of the letters x^...^, in 

such cases we speak of the ©-structure deduced from sq by the process

as underlying s^. (cf. Example 1)
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Suppose that ® has the same base sets (both principal and auxi­

liary) as T . and ala° the aame ^pic^ cha,acterization. If f^therDore, 

the axiom of L (in "C ) the axiom of ® , it is clear that the

term s^ is a process of deduction of a 0 -structure from a L -structure. 

We then say that © is less rl,ch ttan 21 or that L is more rich th®n ® . 

Every L -structure in a theory 'C' stronger than 7S is then also a

© -a^uc^re. (cf. example 3).

In the case that Pisa mulliplet ), one also says

that the terms ,<P conssitute a process of deduction of a

“0 -structure from a H -structure.

Example 1. The species of structure of a topological group 

has a single principal base set E, no auxxiiary base sets, and a generic 

structure which is a pair (s^ being the internal law of cnlnppoatinn

over E and b? being the system of open sets of the topology of E). Each 

of the terms and is a process of deduction furnishing respectively

the underlying structure of a group and of th • underlying structure of 

topology. Similarly, from the structure of a module we can deduce the 

underlying structure of an abelian group. From the structure of a ring 

we can deduce the underlying structure of an abelian group and also a 

iuUtiplicativf semigroup, etc.

Example 2. If T and ® the species of structure of a group 

(resp. ring). ee may define a process of deduction associating to each 

group structure (resp. ring structure) the structure of a group (resp.
e J •

ring) over its centre. If £ is the atructurfl.module over a camimtaaive 

ring with a unit I and ® is the species of structure of an algebra 

over K we can define a process of deduction which assigns to each module
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over K its tenson algebra and its exterior algebra, etc.

Example 3. The species of structure of a totally ordered set 

(obtained by the adjunction of the axiom « S u s”1 = ExE » to the 

axioms of the structure of an ordered set is richer than the species 

of structure of an order. Similarly the species of an abelian group 

is richer than the species of a group and the species of a compact 

topology space is richer than the species of a topology, etc.

It is well Known that there is 44 more than one way of defining 

a topology »(•.&.* by means of open sets and closure operators)and that 

an abelian group and a unitary Z-module are the 4 same thing » .

We now show that such naive notions of « equivalence * of various 

species of structure can be given a satisfactory formal meaning by means 

of <<■ process of deduction > .

■'•eTinition 23. - In the same theory C , let 21 and ® be 

two species of structure with the same principal base sets Xx.,,..,**. 

Let S and t be the generic structures, respectively of £ and © and 

suppose that the following conditions are satisfied.

1. One has a process of deduction ( 1 x^,...,xn»8] for a

© -structure over x»*,*«*n from a T -structure over

Xi i • • • i X n •1 n
2. One h.s a process of deduction vI X****’*1*^1 of a

-structure over x»* * *X| a ® -structure over

X|»••••X *

>. The relation ......... *n , f .......... «n.= sisa theorem

of and the re1ation f ] x^t... ,xn) •••»X^»tH = t

is a theorem of f.
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Under these conditions we say that the species of structure L and @ 

ar® bidi.alent oy intermediation of the rr,cess of deduct \ on (P an .• .

In this case for each theorem Bj .^...^nts! of , the 

relati°n B| i^txxx,iQ1yi is a thror^ of and conversely f°r

each U^rrn C| °f C , the relati°n CH

is n theorem of n• .

” If (J ia a 1 -structure, one rays that the

structure deduced from U by the process P is equivalent to u.

Oiur criterion CST6 has as an im&e01ato consequence the following 

criterion:

C3T7. Lut $ and S tBtM E -—tiuct^es over J

and (af..........respectively. Let _ and _be_________ g-alajcturet

equivalent roopectivoly to 3 and .■ . . U. .QU^r ■ that kp.-,&- -gJ 

be aa ioyfflar. ■ ■ ■ of the structures 3 aad 3. K is aacewurv and 

sufficiont Uat ......... be an Ucmorphiiw of the sUu^uw ■ and3 -

hxaBple. Let ■ be the species of structure of a topology with

ii as its base set and V its generic structure. Consider the relation

« x c £ and X G £ and (V U((U t V and i 4 U)-=> (X ■ □ / #)) » ; 

it admits a graph CP with respect to the pair (X,x) and <P <Sp(E)xE.

(? | u,V| is then a term of C (called the « set of pairs (Xtx) such that 

x ia in the closure of X for the topology V ■ ) and we can prove that 

the following relations are theorems of .£ :
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Now consider the species of structure ® , with principal base 

set L, generic structure V and, typical characterization 4 ■ ^(PCEjxE), 

and axi os -(/) = 0 and ( V Y)(Y £ E=* Y ■ «(Y)) and

( VYX V 2)((Y c E and L £ E) =» (..(Y u z) = „(Y) u W(Z))) and 

(Yy)((y * E)=>(w(*(Y)) =wy)).

Now consider the relation « U C E and (Vx)(x t U =* x <i b(B - U))» . 

The set of all U t $ (g) which satisfy this relation is a subset 

of ■?(&) and we can sh°w that the following relations are theorems of

C6‘

Thus the terms (F z E,V- and iH E>*i verify conditions i and 2 

and also J of De^ni^on 25 and hence the species L and ® are equiva­

lent and we can consider a ® -structure as a topology by means of the 

process of deduction £, W } .

we shall now show that the notion of intrinsicity can be

extended so that we can define the notion of a (k process of deduction 

from two species of structure furnishings structure of a third species)' .

In a theory C stronger than the theory of sets, letZh be a 

secies of structure over n principal base sets , m auxiliary

base sets A,,...,A , with . A ) as typical character-1* ’ nr 1 n 1 m
ization and 4■ ■ \ x,,..,x ,a| as axiom. Also in O , let 4 be a

'1 n
species of structure with o principal base sets Vv.,*«*»vot q auxiliary 

base sets C^,...,C^, with w < W(v^,...,vq, as typical
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characterisation and 8 4 for axiom. In addition let denote

the theory obtained by adjoining to the axioms of "C , the axiom 

' R £. and , so that the constants of Tyyare the constants of

C together with the letters which figure inl < or in Sj •

definition 2?. - A term U of 8 will be said to be bi-intrinsic 

for fe ,w), of type VCx^,... .x^, v^,... Ai**’*’Am* ) provided

U contains no letters other than the constants of » and satisfies 

the following conditions:

1. the relation is a theorem of Cf-

where V is a rung construction schema over n+o+m+q letters.

2. let be the theory obtained by adjoining to the

axioms of 8* 8 , the axioms 4 f.i 88 a bijection»

(1 i i ( n) and (( g.s v. —> z is a bijection » (1 8 j < o)
J J J

(the letters yyfy.gyZy being distinct from themselves 

and from the constants of )» let 1y be the identity

mapping of Ac for 1 8 i m and let I. ’ be the ddentiyy

mapping of the C . for 1 j q8 Then ff s' is hes sructtree
J

obtained on transport of s by (fy,...,fy) and w* is the structure 

obtained on transport of w by (g j '•••g f ), then

Uyyf•••> y • Zy|•••*z | s |w f —

(fl*”-*fn‘ «i......... gn’ T1.......... Tm’ (U,)

(where U* = v^,... »Vo,s»w| )

is a theorem of ( •
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Th* above definition of bi-intrinsicity is thus eqiu.valent to 

the requirement that U contains no letters other than th* constants of 

be relatively transportable both for H and * .

example. For any species of structure 2Z and * having only one 

principal base set, say x and y respectively, the term J(x,y) ( « the set 

of all mappings of x into y >> ) is bi-intrinsic for (s,w).

D®finision=8’ - We shill call a process of deduction of a 

0 -Btructure fio<^m a H -stru^ure and a * -structure any sequence of 

r+1 terms of C , (P,^ , ...,Dr, each bi-intrinsic for (s,w), such that 

<P is a 0-structure over in , i.e.,

(P J x,v,s,w| fcT(Uj x,v,«,w| ,...,U I x,v,s,w 1 , B ,... ,B ) and1 r 1 p

1^1.1 x,v,s,w I ,. •. , UrI x,v,8,</| , (P | X,V,S,wH »

are theorems of •

As an immediate consequence of this we have that if

72' is a theory stronger than "C in Which 4 is a Z-structure over 

Ei,...,En auad W a 5 -stuucture over Fi...,Fo, then

(P < Z F. is a ©-structure over
1 n X o

- The 0 -str—^e ( (....p Fi,...,F°,^ 

is said to be the 0 -struct^ure deduced from the pair (of Z and

$ -structures) ( ,M ) by the process of deduction (P,,...U..

In virute of the definition of bi-intrinsic terms, we have

the following criterion for such a process of deduction (,0^,..., Ur.
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CST6’ . Let ' U u »...tfJ be an iommorphsmm of

supplied with U onto E.*............... 1 supplied <ith 1 ( 3. U 1 both

bejng Z -structures) and let (K.p,..,fg) be an isomorphism of F«...tF

supplied with X onto r\1 supplied wi.~th W1 ( SVand 1 1 both

being , 1 -structures). then if 0, is of type ~#(V , ) and we let 
J Jy

hj 3 .f j.*****^* ^1• * ’ * * 8q’ l^***’*1^» 1^**•••»4 f°r 1 4 j 4 r,

we have that (h..........h.) is an isomorphism of the r sets 0 .

F ..... Jo u 4 'Hl (1 4 j 1 r) onto the r sets U. f '. 1 .....S.1. FJ,... ,FJ, .j* F

U, U ) Ur) supplied respectively with the structures 1 ......... S^.

......... f,, 3 .M and^ Y..........dj, ......... )U ,#'■}________ deduced

from (4 .X) and ( f . A’* j by tu- u ur ocess of deduction IP.0......... ,U .

In effect,

is a bijection for 14 j 4 r since U. is bi-intrinsic for (s,w) and

(f,....,f ) and (g,,....8 ) are both isomorphisms (so that the respective 1 n 1 o
struc cures obtained on transport of U and N are indeed U and W ) •

Similarly

(where I . ’’ is the identity mapping of B. for 1 4 4 4 p) since (P being of 
£ *

type T ove U^...,^, BB.........B. implies that it must be of type V over

......... xn, vx.......... vQ, Ax.......... Am. Cx..........Cq. Thus the rquired b^i^rins^ty 

and the fact that the (t) and (g) are isomorphisms Implies that

srnd

hence that is an
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de Ignition pO. - The mppings (h.,,..,h ) are said to be the .......  x r
makings deduced from ((fp...,f ^). (g^....,go)) by th* process of 

deduction (P.U........... U .
1 1 • ’V r

N.B. The irnaeddately preceding notions can be generalized without 

difficulty to tri-intrinsic, indeed n-intrinsic teres and the consequent 

definitions of processes of deduction fro< three or indeed n species can 

be then iemeddately formulated. The analog of CST6* will then foioow 

just as easily as it has here.

w'e now come to the ie^ootant notion of « eorphiems » . For 

sii^eUf^cation, we for the moment assies the species of structure under 

consideration here have only a single (necessarily principa^L) base set.

Let . be a species of structure in a theory C stronger than 

the theory of sets and let x,y,8,t be four distinct letters, distinct 

froe theeselves and froe the constants of Cf . ,<e shall use the

notation 3(x,y) to designate the set of eppings of x into y.

Suppose that we are given a tere a'|x,y,s,t| of C which 

verifies the following conditions:

(MOj) The relation <1 a is a l-structure uver x and t is a

^-structure over y » ieppies, in C

(MOj) The relation <1 a is a ^-structure uver x and t is a 

^-structure over y » ieppies, in C , the relation <fx,y»s,M *— "^(x,y).

(MOjj) If, in a theory C' stronger than "C- , we let and E”

be three sets suoDliei with . -ntructi^^ -) , , and -5 , then the

relate ion ^plies

the re^tion

(MOjij) Given, in a theory C1 stronger than C , two seta E and 

E* with the L-structures 5 and C ’ r^^ct^ly, then for



115

sufficient that

a bijection f: E 1 ► E* to be an isomorphism, it is necessary and

definition ji. - If 2_ and <r are gxven, we express the relaiOnn

by saying ttat f i.s a morph^m Cor < -morphism) of x,

furnished with s, into y, furnished with t. If (in a theory C* stronger 

than "C ) n and E* are two sets furni.shed with 2 -structures — and 3 , 

the term < f E,E’ — f i.s called the set of c -mortis ms of E into

E* and if the context is clear simply by Horn(E,£') or Mor(E,E’).

(MOj_j) and the propeeties of bijections give the following 

criterion:

CST8. Let E and E* be two sets, each furnished with a 2Z -structur

Let f: £—»E' be a — -morphism and g: E1—»E also be a < -morphism.

If g °f: E—is the identity doping and fog: E1 —— J the identity 

mapping, then f is an isomorphism of E onto J and < is its inverse iso­

morphism.

In case the speciesH connists of more than one principal

base set, say x»e,,X^r and one or more awciliary base sets 

then a 0" -morphism is a system 

such that the system veeifies the analogous statements of (MO^), 

and (MOg^).

N.B. It may be possible to define more than one term < which 

satisfies (MMj) - (M0m) 80 that the notion of morphism in contrast to 

that of isomorphism is not uniquely determined by the specification of 

L .

We shall now outline the conntruction of a theory in which most
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of our previous results may be subsumed and the mettanathematical 

device of rung construction schemas may be eliminated. Thit theory 

may tentatively be called the theory of structures.

Lit A be an assemblage (of a theory C) in which gnly letters 

and substantive signs figure. Let us call the length of A the total 

number of signs which figure in A and the weight of A the sum of the 

wights of the signs which figure in A. If A has the form A’BA" where 

A’,B and A" are al3O assemblages, we shall say that the assemblage B 

is a se^aent of A((proper segment if B / A). If A’ is void we shall 

say that B is an initial segment of A. We shall say that such an 

assemblage A is balanced if its length is one greater than its weight 

and if for every proper initial segment B of A, we have that the length 

of A is less than the wight of B. If A is a balanced assemblage and 

begins with a substantive sign then A may be put in the form

fB».«.»B , where f is a substantive sign of weight p (>/ 1) and all of
1 P

the B, are balanced. We call the assemblages B, the assemblages ante - 

cedent to A.

Let C be a theory stronger than the theory of sets in which 

pis a ^bstanti^e sign of wwight 1, X a sutostantive sign of weight 2. 

Let x_.....x be distinct letters, each of which has wwight 0. Let
1 ’ ‘ n

T be a balanced assemblage of the foregoing signs, i.e., r , X » 

x_,...,x ; such an as^e^«^mb;Lage will b® called a run£ type Qver x»,,,,Xn*
1 n

From now on let be n terma of a thoory stronger than

the theory °f sets. For every rung ^ype T over x^,...,xn« w® define 

a term in the following mtumer;
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1. if T is a latter x., T(2.»...,£ ) ie the aet Ea;i an i ’
2. if T is of the form P U, where U is the assemblage

antecedent to T, T(E ) is the assemblage

3» if T is of the form X UV, where U and V are the

assemblages antecedent to T, E ) is the set n
U (E^,...,En) x V(&i,...,En)•

It may be easily shown that, for each rung type T over

T(EE»...En) is a rung over the terms Ep...,E , and conversely 

(reasoning by induction over the length of the rung type or over the 

construction schema for the rung). Mooeover every rung over n distinct 

terms may be written in one and only one manner in the form TCx^ .•••,XQ), 

where T is a rung type.

The term TiE^,... .E*) will be called the realization of the rung 

type T over the terms ,.••,£•

In a fashion similar to the above definition but in analogy to

Deffnition 4 we can show that one may associate to a rung type T over 

n letters, and to n mappings f*,...,f*, a canoni.cal extension of these 

mappings and we may then deduce that if two rung construction schemas

S and S' over n terms are such that 

x. being distinct letters, that one has

the

How let "C be a theory stronger than the theory of sets, in 

which p anl P' are substantive siLgns of weight 1, X and X ar«

substantive signs of weight 2.

For every assemblage A of these signs and n distinct letters 

, we define the variance of A in -the foUowing manner.
1 n ’
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First we define the variance of the letters x± and also the signs P 

and X as 0; we say that P* and X” have variance 1. Finally we call 

the vsariance of A the binary sum of the variances of the individual signs 

Wh ch figure in A, i.e., A is of 0 variance if there an even number of 

signs of variance 1, and 1 otherwise.

Ue now call a signed rung type a balanced assemblage A of the 

preceding signs satisfying the following two conddtions:

1. The assemblages antecedent to A are signed rung types;

2. If A begins with the sign X , the two antecedent 

assemblages must have 0 variance; if A begins with the 

sign X • the two antecedent assemblages muut have 

variance 1.

A signed rung type will be said to be covariant if it has 

variance 0, contravariant if it has variance 1.

If in a signed rung type A we replace P by P and X by X , 

we obtain a rung type A*; every realization of the rung type A* over 

n terms E, .....E will be said to be a realization of the signed rung
1 n

type A over and will be denoted by A(Ee»... »2>,)«

Let Ex......... En, £1\...,En’ be sets, and f±: Ej —* be

map4 ings for 14 i 4 n. We can easily show that to each signed

1 1 Srung type S over x.**««,xaV we may associate a mapping 

which has the following definitive properties

1. if S is covariant (resp. connravardann), then
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2. if S is a letter x., is fU

J. if 3 is P T (reap. P’ »)t and if g « <fp... ,f } *!

F—* F’, then {f^,...,^^ ° = g (reap, g); 

if 3 is X TU or X TU, where T and U are the anti-
T

cedent assemblages, and if (f1,...,fn^ = g: F—* F’ and

^f^,...,fna = h: G ► G*, then ^f^,...,^^ =

g x h J F x G —* F’ x G*.

The mapping will be called the signed canonical

extension of the mappings f.,...,f. with respect to the signed rung

type S.

Of course if S is a rung type (i.e., when P and X do not

figure in S) the signed canonical extension {f1,...,fn \ « (fi,...,fn) •

It may also be shown that if f.l B^ * and f^'s E^’ —*■ B^”

(1 4 i 4 n), one has for a covariant signed rung type S that 

while for a contravariant signed rung type S

-t
Also, we have that if f^» E*—> K’ is a bijectOon and f± tie inverse 

bijection for 1 4 i 4 n, then is a bijection and

S its inverse bijection. Mooeover in this case if S* 

is the (unsigned) rung type corresponding to tie signed rung type 

S. jfp...,^ ® is equal to (flt...,fn) or to \jf1»’**»fn)

depending on whither S is covariant or contravariant.
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Let us call a signed rung type T proper if it has the form P U 

where U is the assemblage antecedent to T.

We define a category type C over x. to be a balanced1 n
assemblage of proper signed rung types and the sign X all the antecedent 

assemblages of which are category types.

If C is a category type, then every realization of the rung 

type C* will be said to be a realization of the category type C and will 

be denoted by C(£_,...,E).1 n

Let E , ’ be set6 and let f.: E. —> E. ’ for1 n 1 n 1 1 x
1 $ i - n. To each category type C over we may associate a

term ^ff 1 G with the f,ollowl.ng propeeties:
1 n

i i C f i c1. if C is a signed rung type, then tf 3 [ff,,..,fn] '

2. if C is of the form X TU where T and U are assemblages not 

concordant (i.e., not having the same variance), then

The term Lfp.ff^ will be called the canonical extension

of the mappings f.,...,fn w.r.t. to the category type C.

If C is a category type over ip,..,int then if rS',...,pS. 

are the p proper si.gned rung types which figure in C, 'f,...,'3 
wr:i.tten as ( { f. ..., f^ 'i, • • •* (fp • • • »fnl ) •

Now let C be a category type over n+rn letters. Let £ be a 

species of structure with i^,,..,^ for principal base sets, Ap...,A, 

for auxiliary base sets, whose typical characterization is of the form 

s w ......... xn. A1 ••••A®)• W shall show that one may define a notion

of ar -morphism for this species of structure in the following mmnner:
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Being given n sets Kp..a,S supplied with a Z. -structure

U = (U , and a mapping ft £.—*£' for 1 4 i n. we
*1* *p ill •

say that (f^t...,f^) is a v -morphism if and only if the mappings

f^ verify the following conddtions:

for each signed rung type P S. figuring in C
J

1. if S. is a covvaiant signed rung type
J

2. if S. is a contravariant rung type 
J

That the mappings which satisfy these conddtions

satisfy (MO^) CNOjj) and follows immediately from the definitions

and the propeeties of the canonical extension of the mapping to signed 

rung types which we have already outlined.

Euammle 1. Let^ be the species of structure of an ordered set 

with

as typical chirs-terization then the above definition of <r -morphism 

gives the se of mappings f: E * E such that fxf^? — such

that (u,tR4 =*> fxf(u,v)€^' , but fxf(u,v) = (f(u), f(v)) so that in 

the usual station the r^ftion (f(u)»f(v)) t . becomes

u4 v . f(u) * f(v) which is usually expressed by saying that f is 

an increasing wjppipg« If we use the contravtariant category type
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P(xXx) to define the structure, the corresponding notion of 1 -morphism 

gives these mappings fc E—> E’ such that u 4 v — f(v) /'((u), i.e., 

it gives the decreasing mappings of E into E’. &>th of these notions

of morphism are the usual definitions of morphism for order sets.

Example 2. Let 1 be a species of algebraic structure having a 

single internal law of comppostion which is determined by the category 

type P((xXx)Xx) then the above Ae^n^ no^on of — -morphi.M gives 

those mappings fi J — — such that ('((fx), f(y)) = f(( (x,y)) for 

x,y t E which are indeed the homomor.hisms of £ into 1*. Ooing X we 

would get the antjhhomomor '.hisms of E into E’. If we have more than 

one internal law of comppostion and/or an external law of comppoiiion, 

we again get the usual notion of hhoolomrphiso for such algebraic 

structures.

Example J. Let 1 be the species of a topology with its 

typLcal characterization given by the ca^gory type P(p(x)). The 

above notion of — -morphism gives those mappings f; E —v £’ such that 

X & V — f (x) — V’ wnere V and V' are the topologies on X and £’ 

respectively, i.e., it gives the open mappings of E into E’. Using

the category type P (P (x)) we get those mippings f such that X’ € V = f(X*) t V 

i.e., we get the continuous tmp pings of £ into E’.

Exampe 4. Let Z2 be the species of a topological group with 

the typical ^aracte^zatdon given by the category t>ype p((xX x)X x) xP( p (x)) 

then the above notion of — -morphism gives the continuous homommrphisos 

of £ into E’.


