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Abstract 

Investigators will sometimes consider clinical trials involving more than one 

treatment or intervention, as these trials allow for the simultaneous evaluation of the 

individual efficacy of multiple treatments. The most common design choice is a factorial 

trial, in which patients are randomized to all possible combinations of treatments, 

including control. Factorial trials are an attractive choice in examining individual 

treatment effects provided certain conditions are met, including the important 

assumption that no interaction exists between the treatments of interest.  

 

However, even without interaction, the statistical power for a treatment can be 

substantially influenced by the effectiveness of the other treatment in the trial, an issue 

that has not been widely recognized. This issue is compounded by the fact that the 

impact on power depends on the scale on which interactions are defined. 

 

In the current work, we evaluate how the power for a treatment in a binary 

outcome 2x2 factorial trial changes as a function of the effectiveness of a second 

treatment in the same trial, under a range of possible parameter conditions. We provide 

analytical results to describe the behavior of these functions on the additive, risk ratio, 

and odds ratio scales and attempt to determine where the maximum power occurs for 

each scale. 
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Sets of numerical evaluations were also implemented to support these analytic 

results, as well to evaluate how the minimum required sample size for the trial changes 

as a function of the first and second treatment effects. Controllable parameters within 

the evaluations include the event rate in the control group, sample size, treatment effect 

sizes, and Type-I error thresholds. Separate evaluations were created for scenarios 

where the treatments are assumed to not have an interaction on either the additive, risk 

ratio, or odds ratio scales. We also provide two examples of factorial trials using real 

data to illustrate our findings. 

 

In general, we find that power for an individual treatment decreases as a function 

of the effectiveness of the other treatment if they do not interact on the risk ratio scale. A 

similar pattern is observed in the odds ratio case at low base rates, but at high base 

rates, power increases may occur if the first treatment is moderately more effective than 

its planned value. When treatments do not interact on the additive scale, power may 

either increase or decrease depending on the response rate in the control group. 

 

Results from these analyses may benefit investigators in planning clinical trials. 

Assumptions about the anticipated effects of each treatment under study, even if there 

is no interaction between them, are critical in calculating a valid sample size that will 

yield sufficient power for individual treatments in the context of factorial studies. 
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Chapter 1 

Introduction 

1.1 Study Outline 

The objective of the current work is to examine how the statistical power for an 

individual treatment effect in a binary-outcome 2x2 factorial randomized controlled trial 

(FRCT) may be influenced by the effectiveness of the other treatment in the trial.  

 

FRCTs are a widely used class of clinical trial designs that allow researchers to 

investigate the effects of two or more treatments (or factors) simultaneously. These 

trials can provide a more comprehensive approach to studying treatment outcomes and 

are advantageous in certain scenarios. Mainly, if investigators wish to examine the 

effects of two treatments, an FRCT may be a more efficient design as it requires fewer 

total participants to test each treatment than would be needed to conduct two separate 

single factor trials. This “two-for-one” benefit in terms of sample size efficiency is valid in 

studies where there is assumed to be no interaction between the two treatments.  

 

 In planning for an FRCT, investigators determine the minimum number of patients 

needed for recruitment by using postulated main effects of the treatments along with the 

desired level of power for the trial. If the main effect for one of the treatments is 
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analysed and found to differ from its originally proposed value, investigators may use 

this new estimate yielded from the analysis in favor of the value proposed prior to the 

study. In doing this, however, the anticipated marginal effect for the other treatment in 

the FRCT may change as a result. This change in the expected marginal effect for the 

second treatment will then result in a modification to its associated power if the originally 

planned sample size is maintained for the analysis. Depending on the effect of the first 

treatment, this could result in either an increase or decrease in power for the second 

treatment. While power increases for the second treatment would be of obvious benefit 

to investigators, scenarios where the power is found to decrease would necessitate a 

larger sample to maintain the planned power for the second treatment effect.  

 

When conducting a binary outcome FRCT, this issue is further complicated given 

that the anticipated event rate in the combined treatment group—and by extension the 

anticipated main effects—depends on the scale of measurement chosen to define 

treatment interactions. Separate examinations of the scenarios in which the treatments 

in a binary outcome FRCT are assumed to have no interaction on each scale (additive, 

risk ratio, and odds ratio) are therefore needed to have a comprehensive understanding 

of how the power for one treatment may change based on the observed effect of the 

other treatment.  

  

The remainder of this chapter outlines the background and motivation for the current 

work. A brief introduction on FRCTs is provided with specific consideration for the 

scenario in which they are conducted for reasons of efficiency. The chapter finishes with 
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general outline of the problem under study and preludes the main methods that will be 

used to address it throughout. 

 

 In chapter 2, relevant formulas pertaining to power and sample size calculations 

as well as the main scales of measurements are introduced. The relationship between 

power and measurement scale are then examined to derive the expected change in 

power for a treatment in a FRCT given some updated treatment estimate for the other 

factor along with the assumption of no interaction on a specific scale.  We also 

introduce the evaluation work conducted to show (both numerically and graphically) how 

the power for a treatment in a FRCT changes as a function of the effectiveness of the 

other treatment in the trial under a variety of scenarios and parameter settings. A 

corresponding set of evaluations are presented to show the sample size adjustment that 

may be needed for the analysis of the second factor to maintain a desired level of 

power.      

 

Chapter 3 introduces two real-world examples of FRCTs to illustrate how the 

power and required sample size for an FRCT may change depending on the observed 

effect of the first treatment in the trial. 

 

 Finally, chapter 4 describes the main findings and trends of the evaluation results 

and provides general recommendations as to how the current work may be applied to 

the future conduction of FRCTs. Connections of the results to broader issues in clinical 

trial work are then discussed, along with areas of future work. 
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1.2 Overview of Factorial Randomized Clinical Trials (FRCTs) 

FRCTs may be used to test the effectiveness of multiple treatments simultaneously 

by randomly assigning participants to groups in which they receive the treatments either 

alone or in combination. The simplest case of a FRCT involves two treatments (A and 

B), in which participants are randomly assigned to receive either treatment A, treatment 

B, both treatment A and B, or neither (control group). Typically, control groups receive 

either a placebo or an alternative treatment regimen to be compared to treatments A 

and B. Given that the two treatments are administered at two different levels (either 

present or absent), the scenario described constitutes a 2x2 (two treatments each at 

two levels) FRCT.  

 

Following the randomization and treatment administration phases, the outcome 

of interest is measured in each group at some future point in the study as determined by 

the investigators. In clinical trials, binary outcomes—clinical endpoints that can take on 

one of two possible values—are commonly used. Examples of these outcomes include 

mortality, disease recurrence, or a continuous outcome dichotomized to a “yes/no” 

value. In measuring a binary outcome, the proportion of patients in each treatment 

group who exhibit the outcome of interest is determined. We refer to this proportion as 

the event rate. When conducting a binary-outcome 2x2 FRCT, these groups and their 

associated event rates can be described using the following table: 
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Group Event Rate Description 

𝑝11 Receives both treatments 

𝑝10 Receives first treatment and control for second treatment 

𝑝01 Receives second treatment and control for first treatment 

𝑝00 Receives control for both treatments 

 

Binary outcomes are useful to both investigators and patients, as they can 

provide a simplified understanding of whether a treatment has a beneficial effect on a 

clinically relevant outcome. Throughout the current work, we exclusively examine 2x2 

FRCTs with binary outcomes, as these outcomes are both frequent and practical.  

 

FRCTs are advantageous for two main reasons. By using this design, 

researchers may examine the individual effects of each treatment while gaining the 

additional advantage of studying potential treatment interactions—situations in which 

the effectiveness of a treatment differs depending on the levels of one or more other 

treatments in the trial. However, if the treatment effects act independently on the 

outcome (i.e., there is no interaction present between them), FRCTs may be used for 

the advantage of efficiency, which is a more common objective. A clinical trial review by 

McAlister et al. (2003) found that of 44 binary outcome 2x2 FRCTs, 36 of them (82%) 

were conducted for the main purpose of efficiency, with the remaining 18% conducted 

mainly to assess interaction effects between treatments. 
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 In 2x2 FRCTs designed for efficiency, the marginal effects for each treatment 

are obtained by averaging the effectiveness of each treatment across the levels of the 

other. The magnitude of this effect is then obtained by comparing the average 

effectiveness among the groups where each treatment is present to the average when it 

is not. When using a binary outcome, this involves measuring the event rate in each of 

the four treatment groups, and comparing the average event rates in the treatment-

present and treatment-absent groups.  

 

By using this technique, investigators may assess the effects of multiple 

treatments within the same trial, thus providing a timely and economical alternative to 

conducting multiple single-factor experiments. In the latter case, a single treatment 

effect is usually measured by comparing the average proportion in the treatment group 

compared to a control group. In a FRCT, the observed marginal proportions are used to 

assess the main effects for both treatments. By computing the treatment effects in this 

way, all patients in the sample are included in the analysis of each main effect, allowing 

investigators to analyse the effects of multiple treatments with the same sample size 

that would have been needed to analyse them separately.  

 

However, the interpretation of main effects in a FRCT can be misleading if an 

interaction exists between the two treatments (i.e., the effect of one treatment is 

dependent on the level(s) of the other treatment). Scenarios where even small 

interactions exist can lead to biased estimates of the main treatment effects (McAlister 

et al., 2003). Since the presence and potential magnitude of interactions are rarely 
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known in advance, preliminary interaction testing within a trial is sometimes used to 

determine how the main effects should be evaluated. There are points of contention 

surrounding this topic, as FRCTs are frequently underpowered to detect interactions 

and investigators may use inappropriate methods to assess them (Kahan et al., (2019), 

Montgomery (2003)). Moreover, the definition of an interaction depends on the scale of 

measurement used, and the absence of interaction on one scale directly implies 

interaction on another scale (Vanderweele, 2014). In the current work, we exclusively 

consider FRCTs where no interaction is assumed on a specified scale, and the analysis 

of the main effects is therefore unaffected. We separately consider the cases in which 

no interaction is assumed on the additive, risk ratio, and odds ratio scales. 

 

1.3 Study Motivation 

In a standard FRCT where no interaction is present, the minimum number of 

participants needed to obtain a desired level of power for a treatment main effect may 

be determined using sample-size calculations (the details of which are explained in the 

next chapter). In a 2x2 FRCT, sample size determinations are typically calculated for 

the anticipated main effects of both treatments, with the maximum of the two taken to be 

the total sample size needed for the FRCT. This practice is meant to ensure sufficient 

power for both treatment effects. In the case where the calculated sample size for one 

treatment is larger than the other, this will result in a total sample size that provides the 

desired target power for the treatment requiring the larger sample size while providing 

excess power (“overpowering”) for the treatment requiring the smaller sample size. 
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However, it is critical to note that the marginal event rates anticipated for a 

treatment in an FRCT will depend on the other treatment effect. Consider again two 

treatments, A and B, administered in a 2x2 FRCT with some binary outcome. If the 

treatment effect of A is analysed first and is found to differ from its originally planned 

value, investigators may use the estimate in favor of the planned value as their best 

information on the effect of A. Now using the estimate of A’s effect, the expected 

marginal event rates for B will be modified, and by association, its power. This is true 

provided that the investigators maintain their originally planned estimate for the effect of 

B as well as the assumption of no interaction between the two treatments. 

 

By realizing that the power for the second treatment may have changed due to 

the effectiveness of the first, investigators may be better positioned to adapt the study 

accordingly. For example, they may choose to recruit additional patients prior to the 

analysis of the second treatment if it is found that the power has decreased due to the 

effectiveness of the first. Understanding how the power of a main effect in a 2x2 FRCT 

is influenced by the effectiveness of the other factor can be useful in ensuring that 

investigators have a sufficient sample to maintain the planned power throughout the 

study.  

 

This issue is complicated further by the impact of measurement scales. As 

mentioned previously, the analysis of treatment main effects in a 2x2 FRCT depends on 

the assumption of no interaction. However, when measuring a binary outcome, 

interactions may be defined differently depending on the scale of measurement. This 
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means that the event rate expected in the combined treatment group (A+B+) in an FRCT 

depends not only on the main effect estimates of both treatments but on the interaction 

scale as well. Descriptions of three common scales of measurement (additive, risk ratio, 

and odds ratio) and definitions of interactions on each respective scale are provided in 

chapter 2. 

 

The main interest of the current work is to analyse how the power for a treatment 

effect in a binary 2x2 FRCT is impacted by the main effect estimate of the other 

treatment in the trial. Numeric evaluations are used to illustrate these effects through 

both graphs and tables. These evaluations consider a variety of parameter inputs 

relevant to the power of the factors in the study, including the base rate, sample size, α-

level, and whether power is assessed using a one or two-tailed test. Separate 

evaluations are created for the cases where the treatments are assumed to have no 

interaction on the risk ratio, odds ratio, or additive scale, the results of which will be 

individually discussed.  

 

 A second set of evaluations is used to determine the change in the minimum 

sample size needed to achieve sufficient power, again using adjustable parameter 

settings. This set of evaluations may be of more practical use to investigators, as it 

depicts the adjustment in sample size that would be required to compensate for a 

potential loss in power. 
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Together, these evaluations may be used to both better understand how power 

changes under a variety of experimental scenarios and serve as a guide to anticipate 

how power may change in a planned 2x2 FRCT. In chapter 3, two examples are 

provided using real data to illustrate the potential for the power of a treatment to vary in 

a FRCT. 
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Chapter 2 

Methodology 

 

2.1 Power and Sample Size Calculations 

The probability of finding a significant treatment effect in a clinical trial naturally 

depends on the sample size of the trial. The smaller the effect, the more difficult it will 

be to detect, and as such a larger sample will be required. In planning a study, 

investigators may use a postulated estimate of the treatment effectiveness to determine 

the power for the study, which is the probability of finding a statistically significant effect 

given that a treatment effect of the postulated size is present. In dealing with binary 

data, the estimated power to detect the difference two groups (treatment and control) 

relies upon the experimental parameters and typically involves a binomial approximation 

to the standard normal distribution. The power to detect the difference between two 

independent proportions, 𝑝1 and 𝑝2, using a two-sided test with respective sample 

sizes of 𝑛1 and 𝑛2 can be expressed by the formula: 

Power =  Φ [
|𝑝2 − 𝑝1|

√𝑝1(1 − 𝑝1) 𝑛1⁄ + 𝑝2(1 − 𝑝2) 𝑛2⁄
− 𝑍(1 − 𝛼 2⁄ )

√�̅�(1 − �̅�)(1 𝑛1⁄ + 1 𝑛2⁄ )

√𝑝1(1 − 𝑝1) 𝑛1⁄ + 𝑝2(1 − 𝑝2) 𝑛2⁄
] (𝟐. 𝟏) 

 

where  �̅� = (𝑛1𝑝1 + 𝑛2𝑝2) (𝑛1 + 𝑛2)⁄  , Φ is the cumulative distribution function of the 

standard normal distribution, and 𝑍(1 −𝛼 2⁄ ) is the Z-score associated with the (1 − 𝛼 2⁄ )𝑡ℎ 
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percentile of the standard normal distribution. Assuming equal sample sizes in the two 

groups under comparison (𝑛 = 𝑛1 = 𝑛2), this equation simplifies to: 

Power =  Φ [
|𝑝2 − 𝑝1| − 𝑍(1 − 𝛼 2⁄ )√�̅�(1 − �̅�)(2 𝑛⁄ )

√𝑝1(1 − 𝑝1) + 𝑝2(1 − 𝑝2) 𝑛⁄
] (𝟐. 𝟐)  

 

For a one-sided test, the 𝑍(1 − 𝛼 2⁄ ) terms in equations 1.1 and 1.2 are replaced by 

𝑍(1 − 𝛼). In a 2x2 FRCT, marginal estimates of the overall control and treatment group 

proportions for each treatment are obtained to individually assess the power for each 

treatment. A treatment’s marginal estimates are calculated by taking the arithmetic 

average of the estimated group proportions for the treatment-present and treatment-

absent groups across the levels of the other treatment in the trial. The calculation of 

marginal estimates is explained in Section 2.3, with consideration as to how these 

estimates differ depending on the scale of measurement used.    

 

A modified version of the power equation may be used to determine the minimum 

sample size needed to obtain a specified power given an anticipated effect size. This 

equation is often of more practical use to investigators as trials are typically designed 

with a planned power in mind. A target power of 0.80 is commonly suggested by clinical 

guidelines (Sakpal, 2010). Assuming a two-tailed test, this formula is given by: 

𝑛∗ = ([√�̅�(1 − �̅�) × 𝑍
(1 − 

𝛼
2
)
− √𝑝1(1 − 𝑝1) + 𝑝2(1 − 𝑝2) × 𝑍(1 − 𝛽)] |𝑝2 − 𝑝1|⁄ )

2

(𝟐. 𝟑) 

where β is equal to one minus the planned power for the study (this is also known as 

the Type II error rate).  
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 A continuity-corrected estimate of the sample size yielded from the above 

equation can be used to give a more accurate approximation of the sample size needed 

to reach the desired level of power. Once such correction, introduced by Casagrande, 

Pike, and Smith (1978), is given by: 

𝑛 =  
𝑛∗

4
(1 + √1 +

4

𝑛∗|𝑝2 − 𝑝1|
)

2

(𝟐. 𝟒) 

This version of continuity correction is regarded as a highly accurate 

approximation and is used throughout the evaluation work to obtain sample size 

estimates. 

 

In a 2x2 FRCT, equations 2.3 and 2.4 can be used to calculate the required 

sample size for each treatment main effect, with 𝑝1 and 𝑝2 set as the expected 

marginal proportions for each treatment, resulting in two sample sizes. Afterwards, the 

maximum of the two sample sizes can be used as the total sample size for the trial. This 

results in having minimum sufficient power for the treatment with the larger calculated 

sample size and more-than-sufficient power for the treatment with the smaller sample 

size. 
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2.2 Scales of Measurement  

In determining whether an interaction is present, it is critical to first establish the 

scale of measurement used to define them. Here, the additive, risk ratio, and odds ratio 

scales are introduced along with definitions of interactions on their respective scales.  

 

On the additive scale, effect sizes are defined in terms of absolute risk reduction, 

which is the arithmetic difference in proportions between a group of participants 

administered a treatment and a group who does not receive the treatment (control). In a 

2x2 FRCT, the interaction between two treatments on the additive scale is defined using 

the proportions of each treatment group: 

𝑝11  −  𝑝10  −  𝑝01  +  𝑝00  

If the above quantity does not differ from zero, then there is said to be no additive 

interaction between the two treatments. A positive or negative result would constitute a 

positive or negative interaction on the additive scale, respectively. 

 

On the risk ratio scale, effect sizes are instead defined by the proportional 

difference between the treatment and control groups. Risk ratios are computed by 

taking the ratio of the average risk in a treatment group and the average risk in the 

control group. Thus, for two treatments in a 2x2 FRCT, the risk ratios for each treatment 

group are: 

𝑅𝑅(11) =
𝑝11

𝑝00

  

𝑅𝑅(10) =
𝑝10

𝑝00

  

𝑅𝑅(01) =
𝑝01

𝑝00

  



15 
 

Interactions on the risk ratio scale can be calculated by: 

𝑅𝑅(11)

𝑅𝑅(10) × 𝑅𝑅(01)
   =    

𝑝11 × 𝑝00

𝑝10 × 𝑝01
 

 

If the above ratio equates to one, then there is said to be no interaction between A and 

B on the risk ratio scale. A ratio greater than one indicates a positive interaction while a 

ratio less than one indicates a negative interaction. 

 

 Odds ratios are an alternative proportional measure that takes the proportion of 

the odds in a treatment group to the odds in the control group. The odds ratios for each 

of the three treatment groups in a 2x2 FRCT are: 

𝑂𝑅(11) = 
𝑝11/(1 − 𝑝11)

𝑝00/(1 − 𝑝00)
  

𝑂𝑅(10) = 
𝑝10/(1 − 𝑝10)

𝑝00/(1 − 𝑝00)
 

𝑂𝑅(01) = 
𝑝01/(1 − 𝑝01)

𝑝00/(1 − 𝑝00)
 

Interactions on the odds ratio scale can be assessed similarly by the ratio: 

𝑂𝑅(11)

𝑂𝑅(10) × 𝑂𝑅(01)

 

As before, no interaction is said to be present if the above ratio equals one. A ratio 

greater than one or less than one corresponds to a positive or negative interaction on 

the odds ratio scale, respectively.  
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2.3 Relationship Between Power and Scales of Measurement 

To generate accurate sample size estimates in a 2x2 FRCT, investigators must 

estimate both the simple and combined effects of each treatment. Under the 

assumption of no interaction, the anticipated effect size in the combined treatment 

group depends on the scale of measurement used to define treatment effects. This in 

turn influences the main effect estimates of both treatments and the minimum sample 

size required to detect them at a specified level of power.   

 

In this section, we show algebraically how the power for a treatment in a 2x2 

FRCT may change as a direct consequence of the other treatment producing a main 

effect different from its planned value. We also show that the associated minimum 

required sample size required to achieve a desired level of power changes depending 

on the effectiveness of the other treatment in the trial. Separate cases are examined for 

when the treatments in the FRCT are presumed to have no interaction on the additive, 

risk ratio, and odds ratio scales. 

 

For the first case, suppose a trial is planned with two treatments (A and B) which 

have some additive effect on a binary response outcome with no additive interaction 

between them. Let 𝑝00 denote the population base rate, with Δ𝐴 = 𝑝10 − 𝑝00  and Δ𝐵 =

𝑝01 − 𝑝00 denoting the postulated additive effects of treatments A and B, respectively. 

Under these assumptions, the expected marginal proportions in the control (𝑝1) and 

treatment (𝑝2) groups used to assess the main effect of treatment B are: 

𝑝1 =
𝑝00 + (𝑝00 + Δ𝐴)

2
 =  𝑝00 + 

Δ𝐴

2
     (Treatment B Absent) 
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𝑝2 =
(𝑝00 + Δ𝐵) + (𝑝00 + Δ𝐴 + Δ𝐵  )

2
 =  𝑝00 + Δ𝐵 + 

Δ𝐴

2
     (Treatment B Present) 

Suppose that treatment A is analysed first, and investigators observe that A 

appears to have a treatment effect different from its planned estimate. From this 

observation, the investigators update their estimate of Δ𝐴 to (Δ𝐴 + 𝑘), where 𝑘 is 

bounded by (−(𝑝00 + Δ𝐴) ≤ 𝑘 ≤ 1 − 𝑝00 − Δ𝐴). When determining the marginal effect of 

treatment B, the new expected observed proportions of the control (𝑝1
′ ) versus 

treatment (𝑝2
′ ) groups are: 

𝑝1
′ = 𝑝00 + 

Δ𝐴 + 𝑘

2
     (Treatment B Absent)  

𝑝2
′ = 𝑝00 + Δ𝐵 + 

Δ𝐴 + 𝑘

2
     (Treatment B Present) 

Given these new proportions, if the power for treatment B were re-assessed 

using the same sample and effect size for treatment B as originally planned, the 

updated power for treatment B becomes: 

Power =  Φ [|𝑝2
′ − 𝑝1

′ | − 𝑍(1−𝛼 2⁄ )√𝑝′̅(1 − 𝑝′̅)(2 𝑛⁄ ) √𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄⁄ ] (𝟐. 𝟓)  

Thus, if the power for treatment B is determined according to some planned Δ𝐴 

and Δ𝐵, and the observed effect of A is found to be (Δ𝐴 + 𝑘), the change in power for 

treatment B may be expressed as the difference in powers calculated using Δ𝐴 and 

(Δ𝐴 + 𝑘), holding all other parameters constant: 

ΔPower =  Φ [
|𝑝2 − 𝑝1| − 𝑍(1 − 𝛼 2⁄ )√�̅�(1 − �̅�)(2 𝑛⁄ )

√𝑝1(1 − 𝑝1) + 𝑝2(1 − 𝑝2) 𝑛⁄
] −   Φ [

|𝑝2
′ − 𝑝1

′ | − 𝑍(1−𝛼 2⁄ )√𝑝′̅(1 − 𝑝′̅)(2 𝑛⁄ )

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] (𝟐. 𝟔) 

In this same scenario, the difference in the minimum required sample size 

needed to achieve a desired power target can be calculated. Equations 2.3 may be 

used to determine the sample size estimates (𝑛∗
𝐴 and 𝑛∗

𝐵) needed to power for the 
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main effects of treatments A and B, respectively. The marginal proportions used in the 

calculation of 𝑛∗
𝐴 are:  

𝑝1 = 𝑝00 + 
Δ𝐵

2
     (Treatment A Absent)  

𝑝2 = 𝑝00 + Δ𝐴 + 
Δ𝐵

2
     (Treatment A Present) 

Similarly, the proportions used in the calculation of 𝑛∗
𝐵 are: 

𝑝1 = 𝑝00 + 
Δ𝐴

2
     (Treatment B Absent)  

 𝑝2 = 𝑝00 + Δ𝐵 + 
Δ𝐴

2
     (Treatment B Present) 

Equation 1.4 can then be used to produce continuity corrected estimates of 𝑛∗
𝐴 

and 𝑛∗
𝐵  (𝑛𝐴 and 𝑛𝐵), with the planned sample size set to max(𝑛𝐴, 𝑛𝐵). If the observed 

effect of treatment A is found to be (Δ𝐴 + 𝑘), the updated estimates for the marginal 

proportions for treatment B become: 

𝑝1
′ = 𝑝00 + 

Δ𝐴 + 𝑘

2
     (Treatment B Absent) 

𝑝2
′ = 𝑝00 + Δ𝐵 + 

Δ𝐴 + 𝑘

2
     (Treatment B Present) 

 The updated sample size calculation for treatment B, denoted as 𝑛𝐵′, can then be 

obtained using the same formulas as before by replacing  𝑝1and 𝑝2 with 𝑝1
′  and 𝑝2

′ . 

Therefore, the difference in the minimum sample size needed for treatment B when the 

effect size of treatment A is Δ𝐴 versus (Δ𝐴 + 𝑘) is: 

Δ𝑛 = 𝑛𝐵′ −  max(𝑛𝐴, 𝑛𝐵) (𝟐. 𝟕) 

Next, we examine the risk ratio case. Let us first assume that A and B again are 

two treatments acting on a binary outcome this time with no interaction on the risk ratio 

scale. Here, let θA = 𝑝10/𝑝00 and θB = 𝑝01/𝑝00 denote the respective postulated 
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multiplicative effects of treatments A and B on the outcome variable. The expected 

marginal proportions in assessing the main effect of treatment B in this case are: 

𝑝1 =
𝑝00 + (𝑝00θA)

2
 =   

𝑝00(1 + θA)

2
     (Treatment B Absent) 

𝑝2 =
𝑝00θB + (𝑝00θAθB)

2
 =   

𝑝00θB(1 + θA)

2
     (Treatment B Present) 

If treatment A is analysed first and its effect estimate is updated to 𝑘θA for some 

𝑘 > 0, then the new expected proportions for treatment B become: 

𝑝1
′ =

𝑝00(1 + 𝑘θA)

2
     (Treatment B Absent) 

𝑝2
′ =

𝑝00θB(1 + 𝑘θA)

2
     (Treatment B Present) 

As before, equations 2.6 and 2.7 may be used to determine the change in power 

and sample size difference for treatment B when the trial is planned with an effect size 

of θAfor treatment A but an effect size of 𝑘θAis observed in the analysis. 

 

Finally, we consider the odds ratio scale. Let θA and θB again represent the 

respective multiplicative effects of treatments A and B, respectively. If there is no 

interaction on the odds ratio scale, the expected marginal proportions for treatment B 

are:    

𝑝1 =
𝑝00 + (𝑝00θA)

2
 =   

𝑝00(1 + θA)

2
 (Treatment B Absent) 

𝑝2 =
θAθB𝑝00(1 − 𝑝00)

2[(1 − θA𝑝00)(1 − θB𝑝00) + θAθB𝑝00(1 − 𝑝00)]
+  

𝑝00θB

2
   

 It can be shown that 𝑝2 can also be expressed together in one term as: 

𝑝2 =
𝑝00θB[θA(1 − 𝑝00) + (1 − θA𝑝00)(1 − θB𝑝00) + θAθB𝑝00(1 − 𝑝00)]

2[(1 − θA𝑝00)(1 − θB𝑝00) + θAθB𝑝00(1 − 𝑝00)]
    (Treatment B Present) 
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Again, if treatment A is analysed first resulting in an effect estimate of 𝑘θA for 

some 𝑘 > 0, then the new expected marginal proportions for treatment B become: 

𝑝1
′ =

𝑝00 + (𝑝00𝑘θA)

2
 =   

𝑝00(1 + 𝑘θ𝐴)

2
 (Treatment B Absent) 

𝑝2
′ =

𝑘θAθB𝑝00(1 − 𝑝00)

2[(1 − 𝑘θA𝑝00)(1 − θB𝑝00) + 𝑘θAθB𝑝00(1 − 𝑝00)]
+  

𝑝00θB

2
   

 

Equations 2.4 and 2.7 may then be used to determine the change in power for B 

given the updated effect of A by inserting the values of 𝑝1, 𝑝2, 𝑝1
′ , and 𝑝2

′ . In all three 

cases, equations 2.3 and 2.4, and 2.7 may be used to determine the change in the 

minimum sample size needed to analyse treatment B with the same level of power 

planned prior to the analysis of treatment A. 

 

 

2.4 Analysis of Power Across Scales of Measurement 

Across the scales discussed, it is assumed that both treatments in the FRCT are 

intended to reduce the event rate of the outcome under study. As such, we examine 

cases for which the first treatment analyzed in the trial either reduces the event rate or 

has a zero (null) effect. For the second treatment, we similarly examine cases where the 

treatment reduces the event rate, omitting the trivial case where the second treatment 

has no effect (as this will render the power for the second treatment equal to 𝛼 divided 

by the number of tails of the test, regardless of the first treatment’s effect). 

 

Given the possibility that the power for the second treatment in the trial may 

change depending on the effect of the first treatment, of particular interest are the cases 
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in which the second’s power treatment attains a maximum or minimum based on the 

first treatment’s observed effect. In the current section, we attempt to determine these 

points analytically for each of the three scales of measurement discussed (additive, risk 

ratio, and odds ratio). In sections 2.9 – 2.11, numerical evaluations are introduced to 

substantiate these results. 

 

Beginning with the additive scale, given some postulated Δ𝐴, we wish to 

determine the value of 𝑘 such that the observed effect of treatment A, Δ𝐴 + 𝑘, 

maximizes the power for treatment B. On this scale, the power for treatment B is 

calculated by:    

Power =   Φ [ 
|𝑝2

′ − 𝑝1
′ |  − 𝑍(1−𝛼 2⁄ ) √𝑝′̅(1 − 𝑝′̅)(2 𝑛⁄ )

√[ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄
 ] 

𝑝1
′ = 𝑝00 + 

Δ𝐴+𝑘

2
  ,       𝑝2

′ = 𝑝00 + Δ𝐵 + 
Δ𝐴+𝑘

2
 ,     𝑝′̅ = 𝑝1

′+ 𝑝2
′

2
 

where Φ is the standard normal cumulative density function. For simplicity in notation, 

we define 𝑓 = Δ𝐴 + 𝑘,  and ϕ as the standard normal probability density function. In this 

section, as well as in the following sections examining the risk ratio and odds ratio 

scales, we will further assume that the sample size is sufficiently large such that the 

term  𝑍(1−𝛼 2⁄ ) √𝑝′̅(1 − 𝑝′̅)(2 𝑛⁄ ) is approximately zero, thus simplifying the power expression 

to: 

Power =   Φ [ 
|𝑝2

′ − 𝑝1
′ | 

√[ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄
 ] 

Note that we considered this modified power equation only to simplify the 

algebraic analysis in this section; the forthcoming numerical evaluations later in chapter 

2 use the full power function. To further aid notation, we will define the argument inside 
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of the density function as 𝑄 =
|𝑝2

′−𝑝1
′ | 

√[ 𝑝1
′(1−𝑝1

′)+𝑝2
′(1−𝑝2

′ ) ] 𝑛⁄
. Next, we calculate the change in power 

for treatment B with respect to 𝑓: 

𝑑(𝑃𝑜𝑤𝑒𝑟)

𝑑𝑓
=  (𝜙(𝑄)) (

𝑑(𝑄)

𝑑𝑓
)  

where for the first term in the product: 

𝜙(𝑄) =
1

√2𝜋
exp (

−𝑄2

2
) 

=
1

√2𝜋
exp (

−(𝑝2
′ − 𝑝1

′ )2

2([ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄ )
) 

 

For the second term in the product, by separating and differentiating by parts, we have: 

𝑑(𝑄)

𝑑𝑓
  =            

𝑑

𝑑𝑓
[

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] [|𝑝2

′ − 𝑝1
′ |] + 

𝑑

𝑑𝑓
[|𝑝2

′ − 𝑝1
′ |]  [

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] 

It can be shown that for the partial derivative of the denominator portion is: 

𝑑

𝑑𝑓
(

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
) 

= 
𝑑

𝑑𝑓
((√[( 𝑝00 + 

𝑓

2
) (1 − ( 𝑝00 + 

𝑓

2
 )) + (𝑝00 + Δ𝐵 + 

𝑓

2
 ) (1 − ( 𝑝00 + Δ𝐵 + 

𝑓

2
 ))] 𝑛⁄ )

−1

) 

= 
−√𝑛 (1 − 2𝑝00 − 𝑓 − Δ𝐵)

2 ((𝑝00 + 
𝑓
2
) (1 − ( 𝑝00 + 

𝑓
2
 )) + (𝑝00 + Δ𝐵 + 

𝑓
2
 ) (1 − ( 𝑝00 + Δ𝐵 + 

𝑓
2
 )))

3/2
 

And for the partial derivative of the numerator portion: 

𝑑

𝑑𝑓
(|𝑝2

′ − 𝑝1
′ |) 

=
𝑑

𝑑𝑓
[Δ𝐵  ] = 0 

Together, we have: 
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𝑑(𝑄)

𝑑𝑓
  =             

− √𝑛(1 −  2 𝑝00 − 𝑓 − Δ𝐵)(|𝑝2
′ − 𝑝1

′ |)

2 [(𝑝00 + 
𝑓
2
) (1 − ( 𝑝00 + 

𝑓
2
 )) + (𝑝00 + Δ𝐵 + 

𝑓
2
 ) (1 − ( 𝑝00 + Δ𝐵 + 

𝑓
2
 ))]

3
2

 

 

From the above equations, we observe that 𝜙(𝑄) → 0 as 𝑄 → ± ∞. This will occur 

when ( 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ )) 𝑛⁄ → 0, which is possible under several scenarios. First, if 

𝑝1
′ = 𝑝2

′ = 0, a degenerate case in which the event rates in all four treatment group cells 

are zero. A second possibility is if 𝑝1
′ = 𝑝2

′ = 1, which is an alternative degenerate 

scenario where the event rates in all treatment cells are 1 with no effect of either 

treatment. Further analysis yielded 𝑓 = 1 − Δ𝐵 ± √1 − Δ𝐵
2 − 2 𝑝00 as possible algebraic 

roots, which also has the feasible solution 𝑓 = 0 when Δ𝐵 = 0 and  𝑝00 = 1 (again, the 

scenario with event rates of 1 in all treatment cells). 

 

Next examining (
𝑑(𝑄)

𝑑𝑓
), the partial derivative will equal 0 if either |𝑝2

′ − 𝑝1
′ | = 0 or 

(1 −  2 𝑝00 − 𝑓 − Δ𝐵) = 0. The former clearly occurs when 𝑝2
′ = 𝑝1

′ , the trivial case where 

neither treatment has an effect (and therefore the power does not change). The latter 

occurs when 𝑘 = 1 −  2 𝑝00  −  Δ𝐴 − Δ𝐵, which is a feasible solution. An example using this 

solution is provided in section 2.8. As we will also see, points of zero-change in the 

power for B tend to occur at base rates close to 0.5. At lower base rates, the power for 

B increases as a function of the effect of A, with the inverse relationship observed at 

larger base rates. This means that the power curves in the additive case may either 

have a minimum or maximum power depending on the base rate. 
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Next, we examine the risk ratio model. On the risk ratio scale, the postulated 

effect of the first treatment (A) is denoted by 𝜃A, with the observed effect of A denoted 

by 𝑘𝜃A. As before, we wish to determine the value of 𝑘 to maximize the power of the 

second treatment, B. The power for treatment B is calculated by (again ignoring the 

second numerator term):   

Power =   Φ( 
|𝑝2

′ − 𝑝1
′ | 

√[ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄
) 

𝑝1
′ =

𝑝00(1+𝑘θA)

2
  ,       𝑝2

′ = 
𝑝00θB(1+𝑘θA)

2
,     𝑝′̅ = 

𝑝1
′+ 𝑝2

′

2
 

Here, we will define the quantity 𝑔 = (1 + 𝑘θA) with 𝑄 again denoting the 

argument inside of the distribution function. Analogous to the additive case, the partial 

derivative with respect to 𝑔 can be calculated by: 

𝑑(𝑃𝑜𝑤𝑒𝑟)

𝑑𝑓
=  (𝜙(𝑄)) (

𝑑(𝑄)

𝑑𝑔
) 

Where: 

𝜙(𝑄) =
1

√2𝜋
exp (

−(𝑝2
′ − 𝑝1

′ )2

2([ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄ )
) 

Following the same strategy as in the additive case and calculating (
𝑑(𝑄)

𝑑𝑔
) via 

differentiation by parts, we have: 

𝑑(𝑄)

𝑑𝑔
  =            

𝑑

𝑑𝑔
[

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] [|𝑝2

′ − 𝑝1
′ | ] + 

𝑑

𝑑𝑔
[|𝑝2

′ − 𝑝1
′ | ]  [

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] 

We can then calculate the partial derivatives of the denominator and numerator portions 

separately, yielding: 

𝑑

𝑑𝑔
[

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] 
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=
𝑑

𝑑𝑔

[
 
 
 

1

√
𝑝00(1 + 𝑔)

2
(1 −

𝑝00(1 + 𝑔)
2

) + (
𝑝00𝜃𝐵(1 + 𝑔)

2
) (1 −

𝑝00𝜃𝐵(1 + 𝑔)
2

) 𝑛⁄
]
 
 
 

 

=
√𝑛 (𝑝00 − 𝑝00

2𝑔 + 𝑝00𝜃𝐵 − 𝑝00
2𝑔𝜃𝐵

2)

4 ((
𝑝00𝑔

2
) (1 −

𝑝00𝑔
2

) + (
𝑝00𝑔𝜃𝐵

2
) (1 −

𝑝00𝑔𝜃𝐵

2
))

3/2
 

𝑑

𝑑𝑔
[|𝑝2

′ − 𝑝1
′ | ] 

=
𝑑

𝑑𝑔
[
𝑝00𝑔(1 − 𝜃𝐵)

2
 ] =

𝑝00(1 − 𝜃𝐵)

2
 

Together, 

𝑑(𝑄)

𝑑𝑔
 =  

√𝑛 (𝑝00 − 𝑝00
2𝑔 + 𝑝00𝜃𝐵 − 𝑝00

2𝑔𝜃𝐵
2)[|𝑝2

′ − 𝑝1
′ | ]

4 ((
𝑝00𝑔

2
) (1 −

𝑝00𝑔
2

) + (
𝑝00𝑔𝜃𝐵

2
) (1 −

𝑝00𝑔𝜃𝐵

2
))

3/2
 +   

(
𝑝00(1 − 𝜃𝐵)

2
)

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
 

 

As was observed in the additive case, 𝜙(𝑄) = 0 when 𝑝1
′ = 𝑝2

′ = 0 or 𝑝1
′ = 𝑝2

′ = 1. In 

looking for solutions to ( 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ )) = 0, which would also make 𝜙(𝑄) = 0, the 

only root we find is when 𝑘θA = 
4 − ( 𝑝00

(1 + 𝜃𝐵))

 𝑝00
(1 + 𝜃𝐵)

, which only has a feasible solution of 

𝑘θA = 1 which occurs when  𝑝00 = 𝜃B = 1  (the trivial case where the event rates are 1 in 

all of the treatment cells). For the second portion of the derivative, 
𝑑(𝑄)

𝑑𝑔
 , the quantity is 

strictly negative at all constrained values of the parameters and has no real roots apart 

from the trivial case of 𝑝1
′ = 𝑝2

′  (neither treatment has any effect). 

 

Together, this means that except for the degenerate cases, 
𝑑(𝑃𝑜𝑤𝑒𝑟)

𝑑𝑓
 is a strictly 

negative function, meaning that the power for treatment B always decreases as the 

multiplicative effect of treatment A increases, with a maximum power achieved when A 
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has no effect (i.e., a multiplicative effect of 1). The numerical evaluations for the relative 

risk model introduced in section 2.9 illustrate these trends. 

 

Finally, in examining power on the odds ratio scale, we denote the postulated 

effect of treatment A in terms of its odds ratio as 𝑂𝑅A, with the observed effect of A 

denoted by 𝑘𝑂𝑅A, which we will denote as ℎ. The power for treatment B in this scenario 

is calculated by (ignoring the second term in the numerator): 

Power =   Φ [ 
|𝑝2

′ − 𝑝1
′ | 

√[ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄
 ] 

                      𝑝1
′ =

𝑝00(1 − 𝑝00)

2(1 − 𝑝00  + ℎ)
            𝑝2

′ =
𝑝00𝑂𝑅B(2ℎ𝑂𝑅B𝑝00 − ℎ𝑝00 − 𝑝00  + ℎ + 1)

2(𝑂𝑅B𝑝00 − 𝑝00  + 1)(ℎ𝑂𝑅B𝑝00 −  𝑝00 + 1)
   

As in the previous two cases, we have: 

𝑑(𝑃𝑜𝑤𝑒𝑟)

𝑑ℎ
=  (𝜙(𝑄)) (

𝑑(𝑄)

𝑑ℎ
) 

where: 

𝜙(𝑄) =
1

√2𝜋
exp (

−(𝑝2
′ − 𝑝1

′ )2

2([ 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) ] 𝑛⁄ )
) 

Now, in evaluating the derivative of the inside power quantity with respect to ℎ, we have: 

 

𝑑(𝑄)

𝑑ℎ
  =            

𝑑

𝑑ℎ
[

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] [|𝑝2

′ − 𝑝1
′ | ] + 

𝑑

𝑑ℎ
[|𝑝2

′ − 𝑝1
′ | ]  [

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] 

 

where it can be shown that:  

𝑑

𝑑ℎ
[|𝑝2

′ − 𝑝1
′ | ] =

𝑝00 (1 + 𝑂𝑅B
2 ℎ𝑝00

2

(1 − 𝑝00)
2 − 𝑂𝑅B(1 + ℎ2 + 1 ))

2 (1 +
ℎ𝑝

1 − 𝑝
)

2

(1 +
𝑂𝑅Bℎ𝑝
1 − 𝑝

))
2   

Also, after denoting 𝑚 =
𝑝00

1−𝑝00
: 



27 
 

𝑑

𝑑ℎ
[

1

√𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ ) 𝑛⁄
] 

= [(
−𝑝00

2
−

ℎ𝑚

2(ℎ𝑚 + 1)
) (

𝑝00

2
+

ℎ𝑚

2(ℎ𝑚 + 1)
− 1) + (

−𝑂𝑅B

2(𝑂𝑅B𝑚 + 1)
−

𝑂𝑅Bℎ𝑚

2(𝑂𝑅Bℎ𝑚 + 1)
) (

1

𝑛
)]

−1/2

× [(
1

𝑛
) (

−𝑚2𝑝00ℎ − 𝑚𝑝00 + 𝑚

2(ℎ𝑚 + 1)3
−

𝑂𝑅B𝑚(𝑂𝑅B − 𝑂𝑅B𝑚 + 𝑂𝑅B
2ℎ𝑚 − 1)

2(𝑂𝑅B𝑚 + 1)(𝑂𝑅Bℎ𝑚 + 1)3
)] 

 

the above two portions can then be assembled into the full derivative 
𝑑(𝑄)

𝑑ℎ
. 

 

As with the previous two scales, 𝜙(𝑄) = 0 when 𝑝1
′ = 𝑝2

′ = 0 or 𝑝1
′ = 𝑝2

′ = 1. There are no 

other real solutions such that ( 𝑝1
′ (1 − 𝑝1

′ ) + 𝑝2
′ (1 − 𝑝2

′ )) = 0. For the second part of the 

derivative, the roots such that 
𝑑(𝑄)

𝑑ℎ
= 0 are difficult to solve in closed form, apart from the 

degenerate case of 𝑝1
′ = 𝑝2

′ . While we could not find a real solution to  

𝑑

𝑑ℎ
(( 𝑝1

′(1 − 𝑝1
′ ) + 𝑝2

′ (1 − 𝑝2
′ ) 𝑛⁄ )−1/2) = 0 , we do find that 

𝑑

𝑑ℎ
[|𝑝2

′ − 𝑝1
′ | ] = 0 under two degenerate 

cases, when 𝑝00 = 0 (and therefore, no event rates in any of the groups), and when 𝑂𝑅B =

1 (when treatment B has no effect). A third non-degenerate solution occurs when ℎ =

𝑘𝑂𝑅A =
(1−𝑝00)

𝑝00√𝑂𝑅B
. Under this third condition, 

𝑑(𝑄)

𝑑ℎ
=

𝑑

𝑑ℎ
(( 𝑝1

′ (1 − 𝑝1
′ ) + 𝑝2

′ (1 − 𝑝2
′ ) 𝑛⁄ )−1/2)[|𝑝2

′ − 𝑝1
′ | ] , 

which, if approximately equal to zero, implies 
𝑑(𝑃𝑜𝑤𝑒𝑟)

𝑑ℎ
=  0. Therefore, the effect of 

treatment A such that 𝑘𝑂𝑅A =
(1−𝑝00)

𝑝00√𝑂𝑅B
  should correspond (approximately) to the maximum 

power for treatment B. As we will illustrate through an example in section 2.7, 𝑘𝑂𝑅A =

(1−𝑝00)

𝑝00√𝑂𝑅B
 indeed yields a reasonable approximation for the effect of treatment A which 

maximizes power. 
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Across all three scales, we can use optimization methods to closely approximate the 

value of the effect of treatment A for which the maximum power of treatment B occurs. 

This involves testing for different values of the effect of treatment A within the 

constraints of the parameters (event rates in all treatment cells must be between 0 and 

1, both treatments must not increase the event rate, the sample size must be a positive 

integer, etc.). This is particularly useful in the odds ratio case, as we could not find a 

closed form solution. As we will see in the odds ratio numerical evaluations in the 

subsequent section, the maximum power occurs at a moderate effect of the first 

treatment when the base rate is large. At smaller base rates, the odds ratio power 

trends closely approximate those observed in the risk ratio case, i.e., the power for 

treatment B strictly decreases as a function of the effectiveness of treatment A. 

 

2.5 Introduction to Numerical Evaluation Work 

 In the previous section, analytic methods for calculating the power for a treatment 

effect based on the effect estimate of the other treatment in the trial were discussed. In 

the current section, we introduce numeric and graphical evaluations to show how power 

may change under a variety of different scenarios. Separate sets of evaluations were 

created for when the examined treatments are presumed to have no interaction on 

either the risk ratio, odds ratio, or additive scales. For each set of evaluations, example 

outputs are provided and discussed along with notes of the general trends observed.  

The evaluation examples presented throughout use two-sided testing with α = 0.05. 

Manipulating the α-level or “number of tails” parameters changes the power at each 
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point in the evaluation table and graph but does not affect the overall power trends that 

are described in the following sections. 

 

2.6 General Assumptions 

• Evaluations examine the power and associated sample sizes of binary outcome 

2x2 FRCTs with two treatments (A & B), each with some postulated effect size. 

• Treatment A is analyzed first and its observed effect size is used in favor of the 

effect originally postulated. 

• For all evaluations, the base rate, alpha level, and number of tails are taken as 

required inputs by the user.  

• The evaluations calculating power require as input the total sample size, while 

the evaluations used to calculate the minimum required sample size take as 

required input the desired target power. 

• In all cases, the total sample size is assumed to be randomized equally across 

the four treatment groups. 

• In all cases, it is assumed that the outcome event is undesirable (e.g., mortality), 

and both treatments in the trial are intended to reduce the event rate. 

 

2.7 Determination of Effect Size Range - Cohen’s h  

 In designing the evaluations, the range of possible effect sizes for each treatment 

in the 2x2 FRCT needs to be established. The goal of setting a range is to enable the 

examination of a variety of possible combinations of effect sizes while restricting the 

focus to effect sizes that may be realistically predicted or estimated by investigators. In 
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other words, the range should ideally include effect sizes that are detectable while 

excluding those that are extremely large and unlikely in practical settings. 

 

When considering binary outcomes, effect sizes are calculated by computing the 

absolute difference between two group proportions (|𝑝1 − 𝑝2|). As such, a naïve 

assumption might be to use the additive difference between the proportions to directly 

measure the detectability of the effect, as larger effect sizes should intuitively be easier 

to detect. This is not sufficient however, as the power to detect an effect size does not 

depend solely on the difference |𝑝1 − 𝑝2|. For example, if 𝑝1 = 0.2 and 𝑝2 = 0.1, a 

sample size of 200 patients per group would yield 80% power to detect this difference 

using a two-tailed test and 𝛼 = 0.05. Compare this to a second case where 𝑝1 = 0.6 

and 𝑝2 = 0.5. Here, a sample size of 200 patients per group would now yield only 52% 

power using the same test, even though |𝑝1 − 𝑝2| = 0.1 in both cases. A more refined 

measure is therefore required to indicate the detectability of effect sizes. 

 

 One popular solution, described by Cohen (2013), involves performing a 

nonlinear transformation (𝝓) on the proportions of interest, and calculates the difference 

in 𝝓 rather than 𝑝. The transformation from to 𝑝 to 𝝓 results in approximately 

normalized proportions whose standardized effects can be determined by comparing 

the transformed values. The result of this calculation, denoted by ℎ, serves as a more 

useful indicator of the detectability of effect sizes, as equal differences in 𝝓 correspond 

to effect sizes that are equally detectable. Equations for 𝝓 and ℎ are given by: 

𝝓 = 2 sin−1 √𝑝 
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ℎ = |𝝓𝟏 − 𝝓𝟐| 

Cohen further proposed guidelines to interpret (in general terms) the magnitude 

of the effect size given some calculated value of ℎ. These are given below along with a 

range for the corresponding effect size in terms of the additive difference in proportions 

(|𝑝1 − 𝑝2|). The difference ranges given below are approximations obtained from 

selecting a range of 𝑝1 and 𝑝2 values between 0.05 and 0.95. Note that not all possible 

additive differences are covered in these ranges, and “in-between” effects in terms of 

Cohen’s  ℎ effect sizes are possible (e.g.,  |𝑝1 − 𝑝2| = 0.15 could be considered between 

a small and medium effect size). 

Small effect size:  ℎ = 0.2 (0.05 ≤  |𝑝1 − 𝑝2| ≤  0.10) 

Medium effect size: ℎ = 0.5 (0.20 ≤  |𝑝1 − 𝑝2| ≤  0.25) 

Large effect size: ℎ = 0.8 (0.35 ≤  |𝑝1 − 𝑝2| ≤  0.39) 

While the ranges given on the right are a helpful in interpreting effect sizes in 

terms of additive differences, it is more conventional to use ℎ values to label effect 

sizes. It should also be noted that ℎ values and their associated descriptions are mainly 

designed as an aid to broadly interpret effect sizes and should not be recommended 

over more precise numerical methods pertinent to a specific study. For the current work, 

Cohen’s ℎ serves as reasonable guide in creating an effect size range for the 

evaluations, as we are considering a variety of different possible 2x2 FRCT cases. The 

range of effect sizes should therefore be flexible to apply to different scales of 

measurement, as well as to parameters such as the base rate which may be highly 

variable from study to study. 
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For the evaluations with no interaction assumed on the additive scale, additive 

proportional differences from 0 to 0.25 were considered for both treatments in 

increments of 0.05. This range roughly covers small and medium effect sizes in terms of 

Cohen’s ℎ. Large effect sizes—which correspond to an additive effect size of about 0.35 

or more—were excluded as they could often result in predicting negative proportions in 

the combined treatment group for small and medium-sized base rates. For example, if 

both treatments had predicted additive effects of 0.35, the expected proportion in the 

combined treatment group would be negative for any base rate value lower than 0.7.  

 

For the evaluations with no interaction assumed on either the risk ratio or odds 

ratio scales, multiplicative effect sizes from 1 (no effect) to 0.5 (50% relative risk 

reduction) were considered for both treatments in increments of 0.05. Unlike the 

additive case, there is no possibility of predicting negative proportions in the combined 

treatment group. For this reason, the chosen range was designed to consider effect 

sizes up to approximate “large” effects in terms of Cohen’s ℎ for base rates up to 0.8. A 

maximum of ℎ ≈ 0.85 is attained in the case of a treatment reducing the event rate from 

0.8 to 0.4 (relative risk reduction of 0.5, or equivalent OR of 0.167). 
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2.8 Additive Scale Evaluation 

The first set of evaluations were designed to examine power in the case where 

the treatments do not interact on the additive scale. Example outputs are shown below. 

Figure 2.1: Power for Treatment B as a Function of the Effectiveness 

of Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟕, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 

 

Table 2.1: Associated Power Table for Figure 2.1 
Power for Treatment B Additive Effect of A 

Additive Effect of B 0 -0.05 -0.1 -0.15 -0.2 -0.25 

 
-0.05 0.186 0.181 0.177 0.173 0.171 0.170 

-0.1 0.555 0.542 0.533 0.525 0.520 0.517 

-0.15 0.875 0.868 0.861 0.857 0.854 0.854 

-0.2 0.985 0.983 0.982 0.982 0.981 0.982 

-0.25 1 1 1 0.999 0.999 0.999 
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Figure 2.1 depicts the power changes for B as a as a function of the additive 

effective effect of treatment A under the specified parameter settings. The additive 

effect of A is incremented in quantities of 0.05 along the x-axis from 0 to -0.25, with the 

colored lines representing the additive effects of B along the same interval. Table 2.1 

shows the numeric values of the power for B at each combination of the treatment 

effects, rounded to the nearest three decimal places. 

 

From the graph and table, we can see that the power for treatment B decreases 

as a function of the additive effect of A, though the decreases at each increment tend to 

be small. As a result, the power for B does not change substantially even if the estimate 

of A is considerably more than its postulated effect. In summary, when the treatments in 

a 2x2 FRCT are assumed to have no additive interaction, the resulting estimate 

following the analysis of the first treatment does not have a strong negative influence on 

the power for the second treatment, and so it is unlikely that investigators would need to 

compensate with an increased sample size to maintain power. This is true in cases 

where the base rate is high as in the current example. 

 

As was described in section 2.4, 𝑘 = 1 −  2 𝑝00  −  Δ𝐴 − Δ𝐵 is a solution to the point of 

zero-change in the power for treatment B. Using Figure 2.1 and Table 2.1 as an 

example, we will look at the case where Δ𝐴 = −0.2 and Δ𝐵 = −0.15. Given a base rate of 

 𝑝00 = 0.7, we should expect no change in the power when 𝑘 = 1 −  2(0.7) + 0.2 + 0.15 =  −0.05. 

Therefore, we should expect no change in power for B if the postulated effect of A is  

Δ𝐴 = −0.2 and an effect of Δ𝐴 + 𝑘 =  −0.25 is observed. Looking at Table 2.1, we can see 
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that the power for treatment B when Δ𝐴 = −0.2 and Δ𝐵 = −0.15 is 0.854. When Δ𝐴 = −0.25,  

the power for treatment B remains at 0.854, in accordance with our algebraic result.  

 

Interestingly, in cases of moderate or small base rates, an increased effect of A 

can result in a slightly increased power for B. As an example, consider a second set of 

outputs given below: 

Figure 2.2: Power for Treatment B as a Function of the Effectiveness 

of Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟓, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 
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Table 2.2: Associated Power Table for Figure 2.2 

 

Power for Treatment B Additive Effect of A 

Additive Effect of B 0 -0.05 -0.1 -0.15 -0.2 -0.25 

 
-0.05 0.169 0.170 0.171 0.173 0.177 0.181 

-0.1 0.520 0.525 0.533 0.542 0.555 0.570 

-0.15 0.861 0.868 0.875 0.885 0.896 0.908 

-0.2 0.985 0.987 0.989 0.991 0.993 0.995 

-0.25 1 1 1 1 1 1 

 

Figure 2.2 and Table 2.2 are evaluation outputs similar to the previous example 

with the parameters held constant except for the base rate, which has been reduced 

from 0.7 to 0.5. From this we can see that an increased effect of A is associated with a 

slightly increased power for B. In general, when holding all other parameters constant, 

starting with a high base rate will result in small power decreases for B, which gradually 

reduce in magnitude and shift to small power increases as the base rate is 

decremented. At which specific base rate the power relationship shifts from decreases 

to increases depends on the settings of the other parameters, mainly the sample size, 

but is generally in the range of 0.5 to 0.6. Figures 2.8-2.14 in the Appendix provide an 

example that show the gradual shift in the additive power relationships by covering a 

wide range of base rates. Overall, both power increases and decreases may be 

observed with the additive scale depending on the parameters, though the power 

differences in either case tend to be small. 
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2.9 Risk Ratio Scale Evaluation 

 The graph and table below depict an example output from an evaluation 

calculating the power for treatment B, where both treatments are assumed to have no 

interaction on the risk ratio scale. Here, the parameters are set with a control rate of 0.3, 

total sample size of 2000 (500 per 2x2 group),  𝛼 = 0.05, and as a two-sided test. 

 

Figure 2.3: Power for Treatment B as a Function of the Effectiveness 

of Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟑, 𝑵 = 𝟐𝟎𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 
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Table 2.3: Associated Power Table for Figure 2.3 

 
Power for 

Treatment B 

Multiplicative Effect of A 

Multiplicative Effect 

of B 

 
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

 
0.95 0.111 0.108 0.106 0.104 0.101 0.099 0.097 0.095 0.092 0.090 0.089 

0.9 0.318 0.308 0.299 0.291 0.282 0.273 0.265 0.256 0.248 0.240 0.232 

0.85 0.613 0.598 0.583 0.568 0.553 0.537 0.522 0.506 0.491 0.475 0.460 

0.8 0.856 0.844 0.832 0.818 0.804 0.790 0.774 0.758 0.742 0.725 0.707 

0.75 0.968 0.964 0.958 0.952 0.945 0.937 0.929 0.920 0.909 0.898 0.886 

0.7 0.996 0.995 0.994 0.993 0.991 0.989 0.986 0.983 0.979 0.975 0.970 

0.65 1 1 1 1 1 0.999 0.998 0.998 0.997 0.996 0.995 

0.6 1 1 1 1 1 1 1 1 1 1 1 

0.55 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 

 

 

Figure 2.3 illustrates how the power to detect the effect of treatment B changes 

as a function of the effectiveness of treatment A. On the x-axis is the multiplicative effect 

of A ranging between 0.5 and 1, with each of the colored lines representing a different 

multiplicative effect of treatment B. The y-axis shows the power for treatment B. 

Together, the points on each line correspond to the power for treatment B at a specific 

combination of the multiplicative effects of both treatments. Table 2.3 shows the 

numerical values of the power for B at each combination of the treatment effects, 

rounded to the nearest three decimal places. 

 

 These outputs can then be used to examine the differences in power for 

treatment B under a variety of effect size possibilities. To illustrate using the example 

outputs, suppose a 2x2 FRCT is planned with postulated multiplicative effects of 0.8 for 

both treatments, again with a base rate of 0.3. From the table, we can see that this 

would result in having a power of 0.804 for treatment B using the example parameters. 

Suppose treatment A is analysed first and is estimated to have no effect on the base 
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rate (i.e., a multiplicative effect of 1), and this estimate of treatment A’s effect is used 

instead of its proposed value of 0.8. If treatment B is now analysed using the same 

parameters, its power would now be 0.856, roughly 6% more than it was prior to the 

analysis of treatment A. This increase in power corresponds to a 28% relative decrease 

(from 0.20 to 0.144) in the type II error test for the main effect of treatment B. 

 

Alternatively, suppose that A was found to be greatly more effective than 

anticipated with an estimated multiplicative effect of 0.5. Now, if B is analysed using the 

same example parameters, its power drops to 0.707, an absolute decrease of over 9% 

from the original power. This represents a 46.5% relative increase (from 0.20 to 0.293) 

in the type II error rate of the test for the main effect of treatment B. Cases such as this 

where power decreases can occur may be of interest to investigators, as they may then 

choose to recruit additional participants prior to the analysis of the second treatment to 

increase the power back to a desirable level.  

 

Continuing with this example, sample size evaluations were implemented to 

determine the number of additional patients needed to maintain power for the trial.  

Figure 2.4 shows the minimum required total sample size needed to achieve a power of 

0.8 for both treatments given some postulated effects of both treatments. Table 2.4 on 

the following page displays the associated values of each point on Figure 2.4. 
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Figure 2.4: Minimum Required Total Sample Size as a Function of the 

Effectiveness of Treatment A and Treatment B 

 (𝑷𝟎𝟎 = 𝟎. 𝟑, 𝐏𝐨𝐰𝐞𝐫 = 𝟎. 𝟖, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 

 

 

Table 2.4: Associated Sample Size Table for Figure 2.4 

 
Total N 

 
Multiplicative Effect of A 

        

Multiplicative 
Effect of B 

 
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

 
0.95 #N/A 30196 31304 32472 33706 35012 36392 37856 39412 41068 42836 

 
0.9 #N/A 31304 7770 8058 8360 8680 9020 9378 9758 10166 10600 

 
0.85 #N/A 32472 8058 3552 3686 3824 3970 4128 4294 4470 4660 

 
0.8 #N/A 33706 8360 3686 2054 2130 2212 2300 2390 2488 2592 

 
0.75 #N/A 35012 8680 3824 2130 1350 1402 1454 1512 1574 1640 

 
0.7 #N/A 36392 9020 3970 2212 1402 962 998 1038 1080 1124 

 
0.65 #N/A 37856 9378 4128 2300 1454 998 724 754 784 816 

 
0.6 #N/A 39412 9758 4294 2390 1512 1038 754 570 592 614 

 
0.55 #N/A 41068 10166 4470 2488 1574 1080 784 592 460 480 

 
0.5 #N/A 42836 10600 4660 2592 1640 1124 816 614 480 382 
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 The minimum total sample size at each point is determined by separately 

calculating the minimum required sample size to detect each treatment main effect (with 

a power of 0.80) and then taking the maximum of the two. As before, the multiplicative 

effect of A is depicted on the x-axis with each colored line representing a different 

multiplicative effect of B. Whereas in Figure 2.3 the y-axis measured the power for B 

given a total sample size input of 2000, the y-axis in Figure 2.4 measures the total 

sample size needed given a desired power threshold of 0.80. Table 2.4 gives the values 

of the continuity-corrected sample sizes needed at each combination of the 

multiplicative effects of the treatments, rounded up to the nearest integer.  

  

 Using these outputs with the example given before (multiplicative effect of 0.80 

for both treatments with a base rate of 0.30), a minimum sample size of 2054 patients 

would be needed to achieve a power of 0.80. 

 

 If the analysis for treatment A is conducted first and its multiplicative effect is 

estimated to be 0.50, we previously noted that this would drop the power for treatment B 

from 0.80 to 0.717. Using the new estimate of the effect of A, we can determine the 

sample size needed in the analysis of treatment B to maintain a power of 0.8. Figure 2.5 

and Table 2.5 show the minimum required sample size needed to achieve a power of 

0.80 for treatment B given some effect combination of the treatments: 
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Figure 2.5: Minimum Required Sample Size for Treatment B as a 

Function of the Effectiveness of Treatment A and Treatment B 

(𝑷𝟎𝟎 = 𝟎. 𝟑, 𝐏𝐨𝐰𝐞𝐫 = 𝟎. 𝟖, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 

 

 

Table 2.5: Associated Sample Size Table for Figure 2.5 

 

Sample Size for 
Treatment B  

 
Multiplicative Effect of A 

 

 Multiplicative 
Effect of B 

 
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

 
0.95 29142 30196 31304 32472 33706 35012 36392 37856 39412 41068 42836 

0.9 7242 7500 7770 8058 8360 8680 9020 9378 9758 10166 10600 

0.85 3198 3310 3428 3552 3686 3824 3970 4128 4294 4470 4660 

0.8 1786 1846 1912 1980 2054 2130 2212 2300 2390 2488 2592 

0.75 1134 1172 1212 1256 1302 1350 1402 1454 1512 1574 1640 

0.7 778 806 834 864 894 928 962 998 1038 1080 1124 

0.65 566 588 606 628 650 674 700 724 754 784 816 

0.6 430 444 460 474 492 510 528 548 570 592 614 

0.55 336 346 360 370 384 398 412 426 444 460 480 

0.5 270 278 286 298 306 316 330 340 354 368 382 
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 From the output, we can see that if treatments A and B have multiplicative effects 

of 0.50 and 0.80, respectively, a total sample size of 2592 would be needed to achieve 

a power of 0.80 for treatment B. This is 528 patients more than the 2054 needed 

originally when using the postulated effect value of 0.8 for treatment A, which can be 

expressed as a roughly 26% increase in the total sample size.  

 

 In terms of general observations, a larger effectiveness of A always results in a 

decreased power for B when the treatments do not interact on the risk ratio scale, 

holding all other parameters constant. Broadly speaking, if the estimate of A’s treatment 

effect is within 10% of its postulated value, the difference it makes on the power for B 

tends to be small (< 5%), regardless of the base rate. Large drops in power are 

generally observed only when the effect of A is estimated to be far larger than 

anticipated, in which case it may be beneficial to consider recruiting additional patients 

prior to the analysis of B.  An interesting note is that greatest overall power drop is 

observed for some intermediate value of the effect of treatment B, rather than either the 

largest or smallest values. From the example given in Figure 2.3, the largest power drop 

was observed when the multiplicative effect of B was 0.85 (power = 0.631 when the 

effect of A is 1 vs. power = 0.460 when the effect of A is 0.5, for an overall power drop 

of 0.153). For which value of B’s effect the greatest power drop is observed varies 

depending on the parameter settings. 
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2.10 Odds Ratio Scale Evaluation 

The final set of evaluations were designed to examine power in the case where 

the treatments do not interact on the odds ratio scale. Example outputs are provided 

below using the same parameter settings as in the risk ratio case.  

 

Figure 2.6: Power for Treatment B as a Function of the Effectiveness 

of Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟑, 𝑵 = 𝟐𝟎𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 
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Table 2.6: Associated Power Table for Figure 2.6 

 

Power for 
Treatment B 

Multiplicative Effect of A 

Multiplicative 
Effect of B 

 
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

 
0.95 0.111 0.110 0.108 0.107 0.106 0.104 0.103 0.101 0.099 0.097 0.095 

0.9 0.318 0.313 0.309 0.304 0.298 0.292 0.286 0.279 0.272 0.264 0.257 

0.85 0.613 0.606 0.598 0.589 0.580 0.569 0.558 0.546 0.533 0.519 0.505 

0.8 0.856 0.850 0.844 0.836 0.828 0.818 0.808 0.796 0.784 0.770 0.754 

0.75 0.968 0.966 0.963 0.960 0.956 0.951 0.946 0.940 0.933 0.925 0.916 

0.7 0.996 0.996 0.995 0.994 0.993 0.992 0.990 0.989 0.987 0.984 0.981 

0.65 1 1 1 1 1 1 1 1 0.999 0.998 0.997 

0.6 1 1 1 1 1 1 1 1 1 1 1 

0.55 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 

 

 Analogous to before, the graph (Figure 2.6) and associated table (Table 2.6) 

show the power for the effect of treatment B over a large range of treatment effect 

combinations. Comparing these outputs to Figure 2.3 and Table 2.3, we see that the 

calculated powers in each table are close numerically, and the power curves in both 

figures exhibit the same general shape. In both cases we observe an overall decrease 

in the power for B as the effectiveness of A increases. Holding the parameters constant, 

the power relationships observed in the relative risk and odds ratio evaluations tend to 

be more similar the closer the base rate is to zero. 

 

 However, there is a caveat as the base rate becomes larger (𝑃00 >  0.6) in the 

odds ratio case. As the base rate increases beyond this point, the power functions 

which were elsewhere strictly decreasing for lower base rates begin to show slight 

concavity for some effect sizes of B. The degree of the concavity varies depending on 
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the other parameter settings. Figure 2.7 and Table 2.7 provide an evaluation output 

demonstrating this relationship. 

 

Figure 2.7: Power for Treatment B as a Function of the Effectiveness 

of Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟕, 𝑵 = 𝟔𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Tailed Test) 

 

Table 2.7: Associated Power Table for Figure 2.7 
Power for 

Treatment B 

Multiplicative Effect of A 

Multiplicative 

Effect of B 

 
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 

 
0.95 0.149 0.152 0.154 0.155 0.154 0.154 0.152 0.149 0.146 0.142 0.137 

0.9 0.443 0.451 0.456 0.458 0.456 0.452 0.445 0.436 0.424 0.410 0.393 

0.85 0.769 0.777 0.782 0.782 0.780 0.774 0.766 0.754 0.738 0.720 0.698 

0.8 0.946 0.949 0.951 0.951 0.949 0.946 0.941 0.935 0.926 0.915 0.900 

0.75 0.993 0.994 0.994 0.994 0.993 0.993 0.992 0.990 0.987 0.984 0.979 

0.7 1 1 1 1 1 0.999 0.999 0.999 0.999 0.998 0.997 

0.65 1 1 1 1 1 1 1 1 1 1 1 

0.6 1 1 1 1 1 1 1 1 1 1 1 

0.55 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 
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In Section 2.4, we posited that  𝑘𝑂𝑅A =
(1−𝑝00)

𝑝00√𝑂𝑅B
  should yield an approximate 

solution in calculating the effect of A which maximizes the power for treatment B.  Using 

Figure 2.7 and Table 2.7 as an example, suppose we are interested in estimating the 

effect of treatment A such that the power for treatment B is maximized when the 

multiplicative effect of treatment B is 0.85 (corresponding to the grey curve in Figure 

2.7). Given that 𝑃00 = 0.7 and treatment B reduces the event rate to (0.7)(0.85) = 0.595, we 

can easily calculate that 𝑂𝑅B =
(0.595)/(1−0.595)

(0.7)/(1−0.7)
= 0.63. From here, we calculate that the effect 

of treatment A to maximize the power for treatment B is 𝑘𝑂𝑅A =
(1 − 0.7)

0.7√(0.63)
= 0.54.  

𝑘𝑂𝑅A = 0.54 corresponds to treatment A reducing the event rate from 0.7 to 0.56, or a 

multiplicative effect of approximately 0.8. Looking at Figure 2.7 and Table 2.7, we see 

that the power for B is approximately 0.780 when the multiplicative effect of A is 0.8. 

This is reasonably close to the true maximum power for B, which was verified by 

software to be 0.783 and occurs when the multiplicative effect of treatment A is 0.863 

(OR = 0.66). In summary, 𝑘𝑂𝑅A =
(1−𝑝00)

𝑝00√𝑂𝑅B
 can be used to approximate the effect of A such 

that the power for treatment B is maximized, though these approximations do have a 

noticeable degree of error.  

 

Examining the general power trends, we observe that slight power increases for 

B are observed when the effect of A is smaller (from approximately 1 to 0.8). As the 

effectiveness of A increases past this point, these power increases level off and begin to 

transition into decreases. Compared to the risk ratio case, the overall drop in power 

across the range of the effectiveness of A tends to be substantially smaller when the 
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parameters are held constant at a high base rate. For example, from Table 2.5, the 

largest overall drop in power is seen when the effect of B is 0.85 (a raw difference of 

about 0.07 when the effect of A is 1 versus 0.5). Using the same parameters in the risk 

ratio evaluation, the largest drop in power is also when the effect of B is 0.85, but with a 

much larger absolute decrease (a difference of about 0.26 when the effect of A is 1 

versus 0.5). Overall, the risk ratio and odds ratio evaluations produce similar results 

when the base rate is small, which might be expected given the close numeric similarity 

between risk ratios and odds ratios calculated at small base rates. However, we 

observe a clear divergence in the evaluations between the two scales when the base 

rate is high. 
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Chapter 3 

Applications Using Example Data 

In this section, two examples are provided using real data FRCT data to show 

how the power (and associated minimum sample size), needed to detect a treatment 

effect may change depending on the effectiveness of the other treatment in the trial. 

 

3.1 Illustration Using Example Data (Heyland et al., 2013) 

In the following example based on a study by Heyland et al. (2013), we examine 

how the observed effect of the first treatment in a 2x2 FRCT may influence the analysis 

of the second treatment and its associated power. In this trial, critically ill patients 

experiencing multiorgan failure were randomly assigned to receive supplements of 

antioxidants, glutamine, both, or neither (placebo), with 28-day mortality measured as 

the primary outcome. The study was planned to detect a 25% relative risk reduction 

from 0.30 to 0.225 for both treatments (RR = 0.75, OR = 0.677), with a calculated total 

sample size of 1200 to obtain 80% power for each treatment in the trial. The study 

employed two-tailed testing with α =  0.05. The authors were interested in assessing 

the main effects of each treatment and did not anticipate an interaction on the odds ratio 

scale. Assuming these conditions are met, the anticipated 2x2 table for the trial is:  
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Table 3.1: Anticipated 2x2 Table (Heyland et al.)  

 Antioxidants 

Present Absent Marginal Event 

Rate (Glutamine) 

Glutamine Present 0.164 0.225 0.195 

 Absent 0.225 0.300 0.263 

Marginal Event 

Rate (Antioxidants) 

0.195 0.263  

* Cells indicate the expected event rate of patient death in each of the four treatment groups. 

   

 

A total of 1223 patients were enrolled and randomized to each of the four 

treatment groups after being assessed for eligibility, with 1218 patients included in the 

primary analysis. The table below shows the results with the observed numbers of 

patient deaths out of the total patient count per group with the associated group 

proportions. 

Table 3.2: Resulting 2x2 Table (Heyland et al.)  

 Antioxidants 

Present Absent Marginal Event 

Rate (Glutamine) 

Glutamine Present 101/310 (0.326) 97/301 (0.322) 194/611 (0.318) 

 Absent 89/307 (0.290) 76/300 (0.253) 165/607 (0.272) 

Marginal 

Event Rate 

(Antioxidants) 

190/617 (0.308) 173/601(0.288)  

* Cells indicate the event rate of patient death in each of the four treatment groups. 
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After determining that there was no significant interaction between the two 

treatments on the odds ratio scale (p = 0.49), the investigators assessed the main 

effects of each treatment. The authors reported no significant difference in mortality 

among patients who received antioxidants versus no antioxidants (0.308 versus 0.288, 

OR = 1.09, p = 0.48) and a tendency of increased mortality for patients who received 

glutamine versus no glutamine (0.324 versus 0.272, OR = 1.28, p = 0.05).   

 

Using the data from this study, we explore the hypothetical scenario in which the 

main effect of one treatment is analysed first and assess the resulting impact on the 

power for the other treatment in the trial. In accordance with the original trial, we 

assume no interaction on the odds ratio scale. Suppose the analysis for the main effect 

of antioxidants had been conducted first, with the investigators still blinded to the effect 

of glutamine. Here, the authors failed to find evidence of a non-zero effect of 

antioxidants (p = 0.48). If the investigators update their estimate of the effect of 

antioxidants to zero based on this test, the anticipated marginal effect of glutamine and 

its associated power will change as a result. Originally, a 25% risk reduction from 0.30 

to 0.225 was anticipated for both antioxidants and glutamine, with no interaction 

between the two treatments. Table 3.1 depicts the proportions anticipated in each 

treatment group under these assumptions. In this case, marginal proportions of 0.195 

and 0.263 would be expected for the glutamine-present versus glutamine-absent 

groups, respectively. As determined by the investigators, a total sample size of 

approximately 1200 patients would be needed to provide 80% power to detect this 

effect. 
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In the new hypothetical case, the main effect of antioxidants is analyzed and 

found to have no effect, with a subsequent analysis planned to assess the main effect of 

glutamine. If the investigators maintain the originally postulated value for glutamine’s 

effect and assumption of no interaction between the two treatments, the anticipated 2x2 

table becomes: 

 

Table 3.3: Updated 2x2 Table (Heyland et al.)  

 Antioxidants 

Present Absent Marginal Event 

Rate (Glutamine) 

Glutamine Present 0.225 0.225 0.225 

 Absent 0.300 0.300 0.300 

Marginal Event 

Rate (Antioxidants) 

0.263 0.263  

* Cells indicate the event rate of patient death in each of the four treatment groups. 

 

Here, marginal event rates of 0.225 and 0.30 would be expected for the 

glutamine-present and glutamine-absent groups, respectively. If the marginal analysis 

for glutamine is conducted maintaining the originally planned sample size of 1200, the 

power to detect the main effect for glutamine increases from 0.80 to approximately 0.84. 

This change represents a 20% relative decrease in the type II error rate of the test (from 

0.20 to 0.16), reducing the chance of investigators failing to find a significant main effect 

for glutamine. As we have shown through this example, the anticipated marginal 

estimates of the glutamine-present and glutamine-absent groups are changed by the 
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updated information on the effect of antioxidants, consequently improving the power to 

detect the effect of the glutamine treatment. 

 

 

 

3.2 A Second Example (Poldermans et al., 1999) 

As previously illustrated, an increase in power for a treatment (glutamine) 

occurred when the observed effect size of the other treatment (antioxidants) was found 

to be smaller than the planned estimate. In the second example, based on a study by 

Poldermans et al. (1999), we examine a counterexample in which a treatment’s power 

may decrease if the observed effect size for the other treatment is found to be larger 

than the planned estimate. 

 

In this study, patients at high risk of cardiac complications and who were 

undergoing major vascular surgery were randomized to receive a standard care 

regimen with or without bisoprolol, a beta blocker medication used to reduce the risk of 

adverse cardiac events. The primary outcome measure was the overall proportion of 

patients in each group who either died of a cardiac event or had a non-fatal myocardial 

infarction. The study was planned to detect a 50% relative risk reduction (or 

equivalently, OR = 0.41) in the primary outcome from 0.30 to 0.15 at 80% power using a 

two-tailed test (α = 0.05). An interim analysis was conducted following the enrolment of 

the first 100 patients and a stop for safety was planned if a significant difference (p = 

0.001) in the primary endpoint was found between the bisoprolol and control groups. 
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The results of the interim analysis are shown in the table below, with each cell 

indicating the number and proportion of patients in each group who exhibited the 

primary outcome (non-fatal myocardial infarction or death): 

 

Table 3.4: Results Table (Poldermans et al.)  

Bisoprolol Group (N = 59) Standard Care Group (N = 53) 

2/59 (0.034) 18/53 (0.34) 

* Cells indicate the event rate of non-fatal myocardial infarction or death. 

From the interim results, a significant difference was found in the primary 

outcome between the bisoprolol and standard care groups (0.034 versus 0.340, p < 

0.001), leading the investigators to stop the study following the interim analysis. 

 

Using this data, consider a scenario in which a hypothetical second treatment, 

which we will denote as treatment B, had been administered along with bisoprolol in a 

2x2 FRCT, such that participants received either bisoprolol, treatment B, both, or 

neither. Further suppose the investigators had planned for a 50% relative risk reduction 

in the primary outcome for both bisoprolol and treatment B, with no interaction between 

the treatments on the odds ratio scale. Under these assumptions, the anticipated 2x2 

table for the trial is: 
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Table 3.5: Anticipated 2x2 Table (Poldermans et al.)  

 Treatment B 

Present Absent Marginal Event 

Rate (Bisoprolol) 

Bisoprolol Present 0.068 0.150 0.109 

 Absent 0.150 0.300 0.225 

Marginal Event 

Rate (Treatment B) 

0.109 0.225  

* Cells indicate the event rate of non-fatal myocardial infarction or death. 

 

From this table, marginal event rates of 0.109 and 0.225 would be expected for 

the treatment-present and treatment-absent groups for B, respectively. In order to 

obtain a power of 0.80 for the main effect treatment B (using a two-tailed test and α = 

0.05), a minimum sample size of approximately 324 participants would be required. 

Next, suppose that the main effect of bisoprolol is analysed first, and is observed 

to reduce the rate of the primary outcome from 0.30 to 0.10, an effect that would be 

considered significant (p ≈ 0.02) but not enough to stop the study for benefit. Analogous 

to the previous example, this new information on the effect of the first analysed factor 

(bisoprolol) may be used to re-compute the power for the second factor (treatment B). 

Updating the 2x2 table using the observed estimate of bisoprolol’s effect, while 

maintaining the assumption of no interaction, we get: 
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Table 3.6: Updated 2x2 Table (Poldermans et al.)  

 Treatment B 

Present Absent Marginal Event 

Rate (Bisoprolol) 

Bisoprolol Present 0.044 0.100 0.072 

 Absent 0.150 0.300 0.225 

Marginal Event 

Rate (Treatment B) 

0.097 0.200  

* Cells indicate the event rate of non-fatal myocardial infarction or death. 

 

From the updated table, the marginal estimates for treatment B become 0.097 in 

the B-present group and 0.2 in the B-absent group. If the analysis of B was then carried 

out using the originally planned sample size of 324 participants, the power for the main 

effect of B drops to approximately 0.74, a relative 7.8% drop from the original power of 

0.8. This also corresponds to a 30% relative increase in the type II error rate (from 0.2 

to 0.26). An additional 48 patients would be required in the analysis of treatment B to 

maintain a power of 0.8, an approximate 15% increase from the originally planned 

sample size of 324. 
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Chapter 4 

Discussion 

4.1 Summary of Findings 

 The current study examined how the power for a treatment in a binary outcome 

2x2 FRCT may change depending on the effect estimate of the other treatment in the 

trial. Numerical evaluations were implemented to examine how power relationships 

change under a variety of parameter settings, mainly by modifying the base rate and 

sample size. Separate evaluations examined these relationships when interactions were 

either defined on either the risk ratio, odds ratio, or additive scales. The main findings 

for each scale are summarized in Table 4.1 on the following page. Note that what is 

considered “larger” and “smaller” base rates depends on the parameter settings, but in 

general tends to be approximately 0.6. 
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Table 4.1: Summary of Main Findings 

 

Scale Base Rate Estimate for first treatment 
greater than postulated value? 

Effect on Power for 
second treatment 

Risk Ratio Smaller Yes Decrease 

 Smaller No Increase 

 Larger Yes Decrease 

 Larger No Increase 

Odds Ratio Smaller Yes Decrease 

 Smaller No Increase 

 Larger Yes May Increase or 
Decrease 

 Larger No May Increase or 
Decrease 

Additive Smaller Yes Increase 

 Smaller No Decrease 

 Larger Yes Decrease 

 Larger No Increase 

 

 

When treatments do not interact on the risk ratio scale, a treatment estimate that 

is greater than its postulated value always leads to a power decrease for the other 

treatment, regardless of the other parameters. Generally, this drop in power is between 

1-3% for every additional increment of 0.05 greater the first treatment’s estimated 

multiplicative effect is over its postulated value. Conversely, when the first treatment 

estimate is smaller than its postulated value, a 1-3% increase in power is observed for 
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each 0.05 increment greater the postulated multiplicative effect is over the estimate. At 

high base rates, large power drops (e.g., 40%) are theoretically possible, but only in 

extreme cases where the effect estimate of the first treatment is far greater than its 

assumed value (e.g., an estimated effect of 0.5 versus a postulated effect of 0.05). We 

also observe that the magnitude of the power decrease is greatest for some 

intermediate value of the second treatment’s postulated effect. For which value the 

largest power drop is observed varies depending on the parameter settings.  

 

When the treatments do not interact on the odds ratio scale, the power 

relationship closely approximates that observed in the risk ratio case when the base 

rate is small. That is, estimates for the first treatment effect greater than its assumed 

value results in a power decrease for the second treatment effect, while estimates 

smaller than the assumed value result in a power increase. This result is expected, as 

odds ratios and risk ratios closely approximate one another when the base rate is small. 

However, at larger base rates (> 0.5), the odds ratio power curves begin to show 

increased concavity. When this occurs, greater estimates for the first treatment effect 

result in slight power increases for the second treatment, which eventually shift to power 

decreases as the first treatment estimate approaches extreme values. Across the cases 

considered, the change in power when using the odds ratio scale tends to be small to 

moderate, with power differences of at most 15% even for extreme first treatment effect 

estimates, regardless of sample size or base rate. As before, the greatest change in 

power tends to be for some intermediate value of the postulated effect of the second 

treatment which varies based on the parameter settings.  



60 
 

 

Finally, in the case where the treatments do not interact on the additive scale, the 

power relationship may either show increases or decreases depending on the base 

rate. As the base rate approaches one, additive effect estimates for the first treatment 

that are greater than its assumed value result in power decreases for the second 

treatment, with power increases observed when the estimate is less than the assumed 

value. However, as the base rate approaches smaller values an opposite pattern is 

observed. Additive effect estimates for the first treatment that are greater than its 

assumed value now results in power increases for the second treatment, while 

estimates less than the assumed value result in power decreases. At which base rate 

this change occurs depends on the parameter settings but is generally between base 

rates of 0.5 and 0.6. Across a large range of parameter combinations, the change in 

power (either increase or decrease) tends to be less than 5% if the additive effect 

estimate of the first treatment is within a 0.05 increment of its assumed value. In 

extreme cases where the estimate of the first treatment is much greater than the 

assumed value (e.g., a difference of 0.2), power changes of 10-15% are possible but 

less likely to come up in practical studies.  
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4.2 Implications and Broader Connections to Clinical Trials 

In examining the evaluation results across different scales of measurement and 

parameter settings, we find that the estimate of the first treatment effect can have a 

noticeable impact on the power for the other treatment in the trial. Although large 

changes in power for the second treatment are possible, only small to moderate 

changes are observed when the estimate of the first treatment effect is close to its 

postulated value. In practice, effect estimates larger than the planned value are not 

common (Zakeri et al, 2018), and when they occur investigators may invoke stopping 

rules if the treatment is substantially more beneficial than anticipated. There is 

contention over when it is a correct decision for investigators to stop randomization to a 

treatment due to benefit (Montori et al., 2005, Pocock, 2005, Walter et al., 2019), as 

trials that are stopped early for benefit tend to overestimate the treatment benefit 

observed in the interim analysis, particularly in trials with small sample sizes. 

Regardless of the justification, stopping an FRCT for benefit will nonetheless affect the 

power relationships discussed here. 

 

However, as has been noted in the examples throughout, even a moderate 

change in power for a treatment may still represent a considerable change in the 

relative type II error rate when analyzing the effect (e.g., a 10% drop in power from 0.8 

to 0.7 represents a 50% increase in the type II error rate, from 0.2 to 0.3). Investigators 

conducting binary outcome FRCTs should be aware of the possibility of the first 

treatment analysis affecting the power for the other treatment in the trial, with particular 
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vigilance paid to cases in which the first treatment effect estimate differs greatly from its 

proposed value. 

 

These results also suggest that it may not be ideal to analyse both treatments 

simultaneously, even in situations where that is possible. Analyzing the effect of one 

treatment first, while still blinded to the effect of the second, affords investigators the 

opportunity to adjust the sample size prior to the second treatment analysis if a 

decrease in power has occurred. In other words, investigators gain the ability to adapt 

the study accordingly to prevent a loss in power.  

 

Additional considerations relate to which treatment effect should be analysed first 

in cases where the option is available. If the postulated effect for one of the treatments 

is smaller than the other, it is arguably preferable to conduct the first analysis for the 

treatment with the larger postulated effect. The justification for this stems from the fact 

that the sufficient total sample size for the trial is normally calculated based on the 

maximum of the minimum sufficient sample sizes needed to detect each of the two 

postulated effects. Using this method will result in having power for the smaller effect at 

the desired threshold level and more-than-sufficient power for the larger effect. For this 

reason, the power for the treatment with the smaller effect is at greater risk of falling 

below the desired target power depending on the effect estimate of the other treatment. 

It may therefore be beneficial to analyse the treatment with the larger postulated effect 

first, knowing that a sample size adjustment may have to be made to maintain power for 

the second (lower power) treatment.   
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In the case where the postulated effects of both treatments are the same, it may 

instead be preferable to first analyse the treatment for which the investigators are less 

confident in the assumed effect. This might be the case, for example, in a trial where a 

new treatment is being administered alongside an established treatment for which 

estimates of its effect have been obtained from previous data. Since it can be 

reasonable to assume that the treatment with the less established effect is likelier to 

produce an effect estimate different from its postulated value, investigators may be 

concerned that the less predictable effect of the new treatment may influence the power 

for the second (more predictable) treatment. By analyzing the new treatment first, 

investigators are better positioned to adapt the sample size for the second treatment 

analysis should the first analysis yield an unanticipated estimate that results in 

decreased power for the second treatment. Alternatively, if the first treatment estimate 

results in increased power for the second treatment, investigators then benefit by having 

a reduced type II error rate for the second treatment analysis. In either case, analyzing 

the treatment with the less predictable effect is beneficial for the second treatment 

analysis. the treatment whose effect is less predictable, assuming that the postulated 

effects of both treatments are the same.  

 

 Figure 4.1 outlines the previously described recommendations for which 

treatment to analyze first in a 2x2 binary FRCT, assuming investigators do not have a 

prior preference. Under these assumptions, these recommendations may be used to aid 

in designing the study protocol. As a final note, the preferred choice of which treatment 
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effect to analyse first may depend on other factors specific to the design of a trial and is 

left to the judgement of the investigators in these cases. 

 

Figure 4.1: Recommendations for Order of Treatment Analyses  

 

 

 

 

 

 

 

 

 

 

 

4.3 Limitations and Future Work 

We conclude by considering study limitations and directions for future study. One 

key limitation of the current work is that we exclusively examine 2x2 FRCTs with binary 

outcomes. The same issues discussed here have yet to be examined in FRCTs using 

continuous outcomes and remain left open to future investigation. Examining power 

changes with continuous measures adds additional dimensions to the issue, as 

considerations of different treatment variances, the possibility of non-normal effects, and 

potential heterogeneity in the variances of the different treatment effects in the trial are 

all factors that may have a significant contributing effect to the power relationship 

between treatments. 

Are the values of the 

postulated effects of 

both treatments 

different? 

Analyze treatment with 

the larger postulated 

effect first. 

Are the investigators 

more confident in the 

postulated effect of one 

of the treatments? 

Preference for order 

dependent on other 

factors in study  

Analyze treatment with 

the less-confident 

postulated effect first. 
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   A second limitation is that we exclusively consider scenarios in which the entire 

available sample is used to determine the effect estimate of the first treatment. We do 

not consider cases where this estimate comes from an interim analysis where some 

subset of the sample is used, which could alter the impact on the marginal estimates for 

the second treatment. For example, If the first treatment effect estimate is obtained 

using a subset of the sample and subsequent decision is made to stop randomization 

due to benefit, the change in the marginal effect estimate of the second treatment will 

now be weighted, based on how many patients were included in the first analysis. It is 

also possible that an interim analysis on the first treatment will yield more extreme 

estimates of the first treatment effect, as the variance of the estimator will be larger as a 

result of using a smaller sample. This in turn can increase the impact on the marginal 

estimates for the second treatment. Overall, the potential for the first treatment estimate 

to be obtained from an interim analysis provides an additional layer of complexity that is 

not discussed here, and remains an avenue for future research in this area. 

 

 In conclusion, the numeric evaluations implemented and discussed throughout 

are intended to be a framework for investigators to understand how the power for a 

treatment in a 2x2 binary outcome FRCT is influenced by the effect estimate of the 

other treatment in the trial. These evaluations are constructed under ideal trial 

assumptions, including that there is no interaction between the two treatments of 

interest on some scale of measurement. In the future, the examination other types of 

FRCTs may provide a more complete picture of how a treatment’s power may change 
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under other experimental scenarios, and can help develop a more thorough 

understanding of how investigators may adapt a study accordingly.  
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Chapter 5 

Appendix 

 

 

Figure 2.8: Power for Treatment B as a Function of the Effectiveness of Treatment 

A (𝑷𝟎𝟎 = 𝟎. 𝟖, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 
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Figure 2.9: Power for Treatment B as a Function of the Effectiveness of Treatment 

A (𝑷𝟎𝟎 = 𝟎. 𝟕𝟓, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 

 

Figure 2.10: Power for Treatment B as a Function of the Effectiveness of 

Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟕, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 
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Figure 2.11: Power for Treatment B as a Function of the Effectiveness of 

Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟔𝟓, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 

 

Figure 2.12: Power for Treatment B as a Function of the Effectiveness of 

Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟔𝟎, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 
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Figure 2.13: Power for Treatment B as a Function of the Effectiveness of 

Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟓𝟓, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 

 

Figure 2.14: Power for Treatment B as a Function of the Effectiveness of 

Treatment A (𝑷𝟎𝟎 = 𝟎. 𝟓𝟎, 𝑵 = 𝟒𝟎𝟎, 𝜶 = 𝟎. 𝟎𝟓, Two-Sided Test) 
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