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Abstract  

Polyhydroxyalkanoates (PHAs) are biodegradable plastic synthesized by microorganisms from 

renewable carbon resources and they are promising substitutes for conventional fossil-fuel-based 

plastics due to their similar physical properties. Pure cultures of particular microorganisms are 

commonly used for industrial PHA production but high production costs due to requirements of 

sterile conditions and refined substrates hinder the mass production of PHAs. Thus, model 

development for PHA production by microbes is essential to investigate the PHA formation and 

microbial metabolisms for enhanced productivity and PHA contents. In the present study, a 

comprehensive numerical model has been developed and calibrated for the non-growth associated 

PHA production process by Cupriavidus necator. The model parameters were calibrated with 8 

selected experimental studies and the simulation results show good agreement with experimental 

data. Two methods were used to conduct sensitivity analysis: the simple method and the overall 

relative sensitivity analysis method. Maximum specific residual biomass growth rate was the most 

sensitive parameter. The calibrated model was used to investigate fed-batch feeding strategies that 

optimize PHA accumulation by limited nutrient feeding in the PHA production phase. The 

simulation results showed limited phosphorous feeding accumulated more PHA than limited 

nitrogen feeding. The optimal feeding strategy was determined to be limited phosphorous feeding 

at 5% of initial phosphorous during the PHB production phase, yielding simulated 226.0 g/L PHB 

at the end of the 168-hour operation.  
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1 Introduction 
1.1 Background and research scope 

Wastewater and sludge in wastewater treatment plants are now acknowledged as renewable 

resources because new material can be recovered from organic matters, nutrients, or solids 

contained in the sludge for secondary use [1]. Biodegradable plastic is one type of material that 

can be recovered from wastewater [2]. Plastic use is one of the environmental issues in these years 

because plastics in daily use are mostly derived from petroleum that is a non-renewable resource 

and non-biodegradable. For this reason, replacing synthetic fossil-fuel polymers with 

biodegradable plastics could reduce plastic pollution in the environment and cut down plastic 

production from fossil feedstock. 

Polyhydroxyalkanoates (PHAs) are one type of bioplastics that are made from renewable carbon 

resources and biodegradable [3]. Figure 1-1 shows the general structural formula for PHA.   

 

Figure 1-1:The general molecular structure of PHA[4] 

 A typical PHA molecule has x = 1,000–30,000 repeating units, and the molecule becomes 

polyhydroxybutyrate (PHB) when R is methyl and n=1[5]. PHB is the most well-known member 

of the family of PHA and was firstly identified in Bacillus megaterium by Lemoigne [5]–[7]. Based 

on the number of carbons in a PHA monomer, PHAs are categorized into either short chain length 



M.A.Sc. Thesis – Li Xu; McMaster University-Civil Engineering 

 

 2 

PHAs (scl-PHAs) with 3-5 carbon atoms or medium chain length PHAs (mcl-PHAs) with 6-14 

carbon atoms[8]. Scl-PHAs, such as PHB, are stiff and brittle, whereas mcl-PHAs are soft and 

elastic [2], [8].PHAs have great potential to replace conventional petroleum-based plastics not only 

because they are synthesized by utilizing renewable carbon resources from wastewater, but also 

because they have similar structural properties to those of polypropylene and have good 

biodegradability [9], [10]. 

The industrial PHA production uses either mixed culture or pure culture. The use of mixed culture 

requires an enrichment step before PHA accumulation to enrich microbes capable of producing 

PHA[11]. One enrichment method is applying a cyclic feast-famine condition in which the periods 

for substrate availability (feast) and substrate deficiency (famine) are alternated [12]. The feast 

phase drives both PHA storage and cell growth. During the famine phase, PHA producers survive 

with stored PHA as a carbon source and they become dominant in the culture after several cycles 

[12]. The use of pure culture for PHA production focuses on maximizing process productivity and 

high PHA content, managed by the type of microbial strains, cell density attained in cultivation, 

and the feeding mode [13]. PHA production using pure culture leads to high PHA content in the 

cell as high as 90% of their cell dry weight [13]. The focus of the present study is not the 

enrichment process in mixed culture, but the PHA accumulation process by pure culture.  

There are more than 300 different microorganisms capable of producing PHA, but only a few 

bacteria can produce sufficient PHA for large-scale production [14]. These bacteria include 

Cupriavidus necator, Alcaligenes latus, Azotobacter vinelandii, Pseudomonas 

oleovorans, Paracoccus denitrificans, Protomonas extorquens, and recombinant E. coli [14]. 

PHA production is either growth-associated or non-growth-associated. For growth-associated 
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production, microbes such as Alcaligenes latus and  Paracoccus denitrificans accumulate PHA in 

parallel to cell growth with sufficient nutrients [8]. For non-growth-associated PHA production, 

intensive PHA accumulation is triggered by depletion of growth-essential nutrients [15]. For 

example,  C. necator synthesizes PHB with nutrient deficiencies [16] and utilizes different carbon 

sources, including glucose, fructose, glycerol, maltose, and CO2/H2 [17]–[21]. Cupriavidus 

necator is the most commonly used for non-growth-associated PHA production because it 

accumulates PHB up to 70% ~ 80% of cellular dry weight in an appropriate medium[16], [22], 

[23]. Pseudomonas sp. is another widely chosen non-growth-associated microbe in studies. 

Mozejko-Ciesielska et al. [24] reviewed that Pseudomonas sp. has been produced PHA in 

satisfactory amounts and at a low cost. Lee et al. [25] performed high cell density cultivation of 

Pseudomonas putida KT2442 from oleic acid coupled with phosphorus limitation and achieved a 

PHA content of 51.4%.  

Optimization of the PHA production process on an industrial scale facilitates the replacement of 

petroleum-based plastic production with biodegradable plastic, which is a significant contribution 

to sustainability. Industrial PHA production by pure culture fermentation incurs high production 

costs due to requirements of sterile conditions in reactors and refined substrates in the medium[26]. 

Thus, model development for PHA production by microbes is essential to better investigate the 

PHA formation and microbial metabolisms for enhanced productivity.  In the present study, a 

numerical model has been developed and calibrated for the non-growth associated PHB production 

process by Cupriavidus necator.  

 



M.A.Sc. Thesis – Li Xu; McMaster University-Civil Engineering 

 

 4 

1.2 PHA production by pure culture triggered by nutrient limitation 
 
In most PHA producing microorganisms, PHA accumulation is induced with excess carbon supply 

and limitation of important nutrients such as nitrogen and phosphorus [27]. The pathways of PHA 

synthesis are linked with the bacterium’s central metabolic pathways such as the tricarboxylic acid 

cycle (TCA cycle), and these pathways share the common intermediate, acetyl-CoA[28]. The flow 

of acetyl-CoA to PHA biosynthetic pathways depends on the nutrient conditions [29]. With 

sufficient nutrient, a high amount of coenzyme A produced in the TCA cycle blocks the PHA 

synthesis pathway,  so that acetyl-CoA flows mostly into the TCA cycle for energy production and 

cell growth; with limited nutrient, TCA cycle-related enzymes are inhibited, resulting in a low 

amount of coenzyme A and enabling acetyl-CoA to flows to PHA synthetic pathways for PHA 

accumulation [28],[29].  

PHA production system by pure culture fermentation with nutrient limitation is characterized by a 

cell growth stage with nutrient availability and the following accumulation stage with depletion of 

one key nutrient [19], [30]. Oliveira-Filho et al.[31] evaluated the effects of nitrogen limitations in 

B. sacchari LFM101 growth and PHA biosynthesis using xylose as the sole source of carbon by 

conducting fed-batch experiments, and they observed that the PHB content achieved 61.70% under 

nitrogen limitation. El-Sayed et al.[32] performed two-stage batch fermentation of Cupriavidus 

necator. In the first stage, cells were cultivated with nitrogen sufficient medium for 24 hours and 

harvested by centrifugation. In the second stage, harvested cells are resuspended into a nitrogen-

limited medium to promote PHB synthesis, yielding a PHB content of 51.84 %.  

High cell density in the cell growth stage promotes high concentrations of PHA[5]. Wang and Lee 

[33] and Mozumder et al.[34] studied PHA production by Cupriavidus necator and maximized the 
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cell density by keeping nitrogen sufficient in the cell growth phase. Wang and Lee [33] maintained 

sufficient nitrogen source by using NH4OH as pH control during the cell growth stage, and then 

nitrogen limitation was applied at 12 h by substituting NaOH solution for NH4OH. A sharp 

increase in PHA production was observed, from 52% to 83%, after application of nitrogen 

limitation. Mozumder et al. [34] designed fed-batch fermentation of Cupriavidus necator by 

controlling substrate at the desired amount; when residual biomass was accumulated at a certain 

amount, nitrogen limitation was applied to trigger PHB production by stopping feeding nitrogen.  

1.3 Kinetic modeling for PHA production by pure culture 

Kinetic models for PHA production can be categorized as but not limited to formal kinetic models 

and metabolic models [35]. Formal kinetic models describe chemical kinetic relationships between 

substrates, products, and biomass by applying the Monod equation that links the substrate 

concentration to the specific growth rate[5], [35]. Metabolic models require detailed knowledge of 

metabolic chains, and incorporation of intermediates metabolism products and enzymes into the 

model components[36].  

Metabolic models have been developed for getting insights into the effects of enzyme and 

metabolite concentrations on the PHA accumulation in microorganisms [37]. Lopar et al. [38] 

published a metabolic model for  PHB production on glycerol by C. necator DSM 545. The mass 

balance equations were constructed based on 48 metabolic equations and there were 42 model 

components including key enzymes and intermediate metabolites. Although metabolic models 

reflect real metabolic situations in cells leading to more accurate prediction, the complexity of 

equation systems requires high computational demand. The formal kinetic models are based 

on macroscopic biochemical conversion, so they are faster to be established and solved. Špoljarić 
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et al.[39] commented they are less accurate but they are reliable for rough assessments of 

fermentation for laboratory research or industrial processes.  

In the early stage of kinetic model development for PHA production, model components for formal 

kinetic models consist of substrate, biomass,  and product (PHA)[35]. Later, Heinzle and Lafferty 

[40] divided the whole-cell biomass into intracellular storage (PHA) and residual biomass. 

Incorporation of substrate inhibition, cell density inhibition, product inhibition, as well as cell 

maintenance process into formal kinetic models was an incredible adaption because it reflects 

biological characteristics of the growth and production[35].   

Luong [41] introduced carbon substrate inhibition (I!) on specific growth rate by studying the 

inhibitory effect of butanol yeast growth, expressed as  

"" = $1 − '
'#$%

(
&

 (1-1) 

where  ' is the substrate concentration, and n is an index of the inhibitory effect. Pérez Rivero et 

al.[19] explained high concentration of carbon substrate is likely to inhibit cell growth, especially 

if they are not adapted to the substrate.  

Mulchandani et al. [42] introduced cell densities inhibition (I') on biomass growth rate expressed 

by logistic model: 

"( = 1 − $ *
*		#$%

(
*

 (1-2) 

Where , is an index of the inhibitory effect, and * is cell concentration. Experimental data from 

pure culture fermentation by Mozumder et al. [34] shows that cells cannot grow in an unlimited 

way because high cell density limits biomass growth on the substrate and PHB.  
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Nutrient inhibition term in the PHA production rate equation describes the non-growth associated 

PHA production. Mozumder et al. [34] expressed nitrogen inhibition (I+) as 

", =
-,

-, + ',
 (1-3) 

Shang et al [43] expressed phosphorus inhibition (I-) as  
 

". =
-.

-. + '.
 (1-4) 

where	-, and	-. are half-saturation of nitrogen (',) and phosphorus ('.) respectively. With high 

concentrations of nitrogen and phosphorous, ", and ". tend to be low values inhibiting the PHA 

accumulation. Conversely, with a low concentration of nitrogen and phosphorous, I+  and I- 

approach to 1,  promoting PHA accumulation. 

Marang et al.[44] incorporated PHB inhibition (I-/0 ) term in PHB production rate equation 

to prevent unlimited accumulation of PHB:  

".12 = 1 − $ 3("#$)
3("#$)#$%	

(
4

       (1-5) 

where / is the index for adjusting the relation between the PHB production rate and the amount 

of product, and 0(.12) is the ratio of PHB to residual biomass. Novak et al.[35] stated some strains 

were observed to stop PHA production when the mass fraction of PHA exceeded a threshold value 

since PHAs occupy the intracellular volume with accumulation.  

The cell maintenance process is expressed by relating maintenance energy to the carbon substrate 

and product of storage (XSTO) [45]. Cell maintenance on the carbon substrate (1#& ) and cell 

maintenance on XSTO (1#&'() are expressed as  
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1#& = 21,"
'"

-	" + '"
'8

-	8 + '8
*1 	                    (1-6) 

1#&'( = 21,"98
-"

-" + '"
'8

-	8 + '8
*"98/*1

-"98 + *"98/*1
*1                    (1-7) 

where '"	is carbon substrate, '8 is oxygen, 	-" and	-8 are half-saturation of the carbon substrate 

and oxygen respectively, XH is heterotrophic bacteria, 21,"  is maintenance coefficient on the 

substrate, and 21,"98 is maintenance coefficient on the product of storage.  

1.4 Sensitivity analysis  

Sensitivity analysis investigates the impact of small changes in nominal values of model 

parameters on model outputs and identifies the influential parameters in a model. The simplest 

method for sensitivity analysis is to quantify the percentage change in model output when changing 

one parameter at a time while keeping the others constant [46]. Then, the sensitivity of parameters 

can be ranked based on the change in model outputs. Marang et al. [44] identified significant 

parameters for their PHA producer growth model by measuring the change in time needed for the 

producer to reach 95% of the total biomass when the original value of each kinetic parameter is 

increased or decreased by 20%.  

Another technique for sensitivity analysis is based on partial differentiation. The partial derivative 

of a dependent variable to a parameter is approximated by the first-order Taylor series [46]. The 

sensitivity of a particular parameter is expressed by the sensitivity coefficient (∅:) as  

∅: =
56:
57

7
6:
		 (1-8) 

where 6: is a particular dependent variable, 7 is the parameter, and the quotient %;) is to normalize 

the coefficient to eliminate the effect of units. Partial derivatives are usually solved numerically 
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when models involve complex equations [46].  Vega et al.[30] and Mozumder et al.[34] quantified 

the sensitivity of model parameters of their kinetic models of PHA production based on ∅:. They 

approximated the partial derivatives with the finite difference method, as shown in Equation (1-9) 

56:(9)
57 = 6(9, 7 + ∆7) − 6(9, 7)

∆7  (1-9) 

 
  

1.5 Research objectives  

There are existing kinetic models for the PHA accumulation by pure cultures; however, they have 

some limitations to be used as comprehensive models for scaled-up PHA production because 

parameters were calibrated to fit specific cultivation conditions and the reported value of each 

parameter for comparison or initial guess is from the single published study. In existing model 

studies for pure culture, calibration is simply the procedure implemented for parameter estimation 

by applying estimation algorithms, but the estimated parameters are not compared to reported 

values from various studies, and the reliability of calibrated values for metabolic processes and 

kinetics of reactions is hardly investigated and discussed. The reliability of the model parameter is 

essential for a model because it assures the realistic prediction of production and provides a reliable 

process design.  

The objectives of the present study are as follows: 

(1) To develop a numerical model describing substrate consumption, cell growth, and PHB 

accumulation.  

(2)  To calibrate model parameters by fitting the model simulations with data from each 

published study and then calibrated values were compared to reasonable ranges of reported 

values in literature.  
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(3) To perform a sensitivity analysis to determine the most influential parameters affecting the 

model outputs.  

(4) To apply the calibrated model to investigate optimal feeding strategy for maximizing PHB 

accumulation. 
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2 Numerical model development  
2.1 Model development and calibration 

The non-steady-state numerical model in this study described the production of PHB by 

Cupriavidus necator in batch or fed-batch reactor. There are 7 model components: soluble carbon 

substrate (SS); ammonium plus ammonia nitrogen (SN); phosphate phosphorus (SP), residual 

biomass (XR), slowly biodegradable particulate (XS), inert particulate (XI), and PHB (XPHB). The 

units for carbon-based components are expressed in COD units; the unit for ammonium plus 

ammonia nitrogen concentration is expressed in gL-1 as N (nitrogen); the unit for phosphate 

phosphorus concentration is expressed in gL-1 as P (Phosphorous). Such units allow the model to 

be applied to studies with different substrates. The model consists of the following kinetic 

processes:  

(1) PHB production on carbon substrate (r<) 

(2) cell growth on carbon substrate (r=) 

(3) cell growth on PHB (r>) 

(4) cell maintenance on carbon substrate (r?) 

(5) cell maintenance on PHB (r@) 

(6) cell decay (rA) 

(7) hydrolysis (rB).  

These kinetic processes are shown in Table 2-1
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Table 2-1: Kinetic process expression and stoichiometric matrix of PHB production model 

Kinetic process Reaction rate equation Soluble components Particulate components 
SS SN SP XR XPHB XS XI 

1.PHB 
production 

 
 

!! = #"#$
$%

%%	 + $%
' %'
%' + $'

+ 	 %"
%" + $"

	 − * %'
%' + $'

%"
%" + $"

+
(
, -1 − ' /("#$)

/("#$)012	
,
+
34, 

                                                                                                                                    (2-1) 

− 1
5"#$/%

    1   

2.Cell growth on 
SS 

 

!. = 6%
$%

%% + $%
$'

%' + $'
$"

%" + $"
'1 − * 4,

4	,	/01
+
2
,4, 

                                                                                                                                    (2-2) 
− 1
53!/%

 
−7'$4 

 
 

−7"$4 
 1    

3. Cell growth 
on XPHB 

 

!5 = 6"#$
%%

%% + $%
$'

%' + $'
$"

%" + $"
/("#$)

%"#$ + /("#$)
'1 − * 4,

46	/01
+
2
,4, 

                                                                                                                                    (2-3) 
 −7'$4 

 
−7"$4 

 1 − 1
5	3!/"#$

   

4.Maintenance 
on SS 

 

!7 = 0%
$%

%	% + $%
4, 

                                                                                                                                    (2-4) 
-1       

5.Maintenance 
on XPHB 

 

!8 = 0"#$
%%

%% + $%
/("#$)

%"#$ + /("#$)
4, 

                                                                                                                                    (2-5) 
    -1   

6.Decay 

 

!9 = 8 %"#$
%:;< + /"#$

4, 
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7'$4
− /=7'$4 

 
 

7"$4
− /=7"$4 
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7.Hydrolysis 
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The present model is based on ASM 3[47] featuring in Monod equation with some modifications. 

The adaption includes cell growth on the substrate, cell density inhibition in biomass growth, PHA 

accumulation inhibition in PHA production, as well as cell maintenance on substrate and PHA, 

based on the model study by Mozumder et al. [17]  

The assumptions made for the model are as follow: 

(1)  The total biomass (X) was assumed to consist of residual biomass (XR) and PHB (XPHB). 

(2)  SS represents a single carbon substrate such as glucose.  

(3) !!"# is derived from PHB content of total biomass, expressed as 

!!"# = !"$	&'()*()
+,!"$	&'()*()			       (2-8) 

(4) The oxygen concentration in the process was assumed to be in a non-limiting amount, so 

dissolved oxygen is not included in the model components.  

(5) The temperature is maintained at 30℃.  

(6) pH is set to be 7.0.  

(7) The carbon substrate inhibition is not taken into account in the model.  

The non-steady-state mass balance differential equations were built based on kinetic reaction rate 

expressions and stoichiometric matrix in Table 2-1. Differential equations were numerically 

approximated by the Crank-Nicolson method, and they were solved by fixed-point iteration. The 

convergence criteria of fixed-point iteration is |xn-xn-1| <10-5, where xn is nth root and xn-1is n-1th 

root. The numerical model was programmed in Visual Basic for Applications (VBA).  
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2.2 Model calibration with published experimental results  

Model kinetic parameter and stoichiometric coefficients were calibrated by fitting the model to 

published data from the literature. Experimental data from literature were extracted from images 

of figures by using the data extracting software WebPlotDigitizer (Version 4.4, USA). However, 

the data extracting software cannot assure 100% accuracy due to human error when selecting 

points on an image, especially the initial point of biomass and PHA which close to zero. Change 

of initial value of biomass for model simulation from 0.01 to 0.1 g/L could make a non-negligible 

difference in simulation results of model components. Thus, reasonable assumptions for the initial 

value of biomass were made based on the experimental data.  

In the studies used for calibration of the present model, C. necator was used as a microorganism 

and cultivated in either batch or fed-batch reactors under controlled conditions at 30℃ and neutral 

pH. Oxygen was supplied with sufficient amount to ensure the process was not limited by levels 

of dissolved oxygen. Table 2-2 shows operational conditions, initial conditions for substrates and 

biomass, and maximum PHA content for selected studies. The initial inert particulates and slowly 

biodegradable particulates are set to be zero.  
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Table 2-2: Operational conditions, initial conditions, and maximum PHA content for selected experimental works 

 

 

Selected 
experimental 

work 
Reactor Organic substrate 

(SS0) 
Nutrient Biomass Operation 

time pH Max. PHB 
content SN0 SP0 XPHB0 XR0 

[58] Batch 42.24 !"#$%&  glucose 2.41 !"'&  0.58 !"(&  0.13 !"#$%&  0.74 !"#$%&  23 hr 
 

7.0 
 

20 % 

[48] Batch 24.35 !"#$%&  glycerol 0.42 !"'&  1.13 !"(&  0.05 !"#$%&  0.85 !"#$%&  36 hr 6.8 65 % 

[49] 
 Batch 16.00 !"#$%& 	glucose 0.38 !"'&  3.03 !"(&  0.37 !"#$%&  0.11 !"#$%&  52 hr 6.8 67 % 

[19] Batch 
24.35 !"#$%&  glycerol 

0.21 !"'&  1.12 !"(&  0.08 !"#$%&  0.07 !"#$%&  
92 hr 

6.8 
73 % 

36.52 !"#$%&  glycerol 104 hr 79 % 

[50] Fed-batch 60.87 !"#$%& 	glycerol 0.6 !"'&  1.12 !"(&  0.03 !"#$%&  0.75 !"#$%&  120 hr 6.8 87 % 

[13] Batch 40.21!"#$%& 	glucose 0.34 !"'&  2.04 !"(&  0 !"#$%&  0.1 !"#$%&  72 hr 6.8 90 % 

[16] Batch 60.87 !"#$%& 	glycerol 1.79 !"'&  1.93 !"(&  0.74 !"#$%&  0.38 !"#$%&  32 hr 6.8 50 % 

[17] Fed-batch 
12.8 !"#$%&  glucose 

0.6 !"'&  3 !"(&  0 !"#$%&  0.1 !"#$%&  
66.5 hr 

6.8 
76 % 

17.4 !"#$%&  glycerol 45 hr 70 % 
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In model calibration study with each published study, the initial guess of parameters was made 

based on reported values in literature shown in Table 2-3.  

Table 2-3: Model parameters and their reported values from literature at 30℃. 

Parameter Reported range from 
literature 

Reference Suggested value 
for this model 

Max. specific XR growth rate on SS 
(μS) 0.11~0.46 h-1 [16], [17], [19], [22], [30], [39], 

[43], [48], [49], [51]–[55] 0.3 h-1 
Max. specific XR growth rate on 

PHB (μPHB) 0.08 ~0.18 h-1 [13], [17], [54] 0.18 h-1 

Half-saturation constant on SS (Ks) 1.2 ~ 1.92 !"#$%&  [17], [19], [30], [43], [54] 1.9 !"#$%&  

Saturation constant on PHB (KPHB) 0.18~0.26 !'()"#$%!*!"#$%
 [17], [19], [54] 0.25 !'()"#$%!*!"#$%

 

Nitrogen affinity constant (KN) 0.01 ~0.39 !"+&  [17], [19], [22], [30], [52], [54] 0.25 !"+&  

Phosphorous affinity constant (KP) 10-5 !"'
&  [47] 0.25 !"'&  

Maintenance coefficient on SS (mS) 0.015 ~ 0.048 h-1 [17], [30], [43], [49], [52] 0.015 h-1 
Maintenance coefficient on PHB 

(mPHB) 0.0044 h-1 [45] 0.0044 h-1 
Max. specific PHB production rate 

(kPHB) 0.034~0.23 h-1 [17], [19], [22], [39], [43], [53]–
[55] [52] 0.18 h-1 

Decay rate coefficient (b) 0.0018 ~0.02 h-1 [47], [56], [20] 0.01 h-1 

Max. PHB to XR ratio (f(PHB)
Max) 1.22 ~ 11.5 !'()"#$%!*!"#$%

 
[22], [48], [17],[49], [51], [39], 
[17], [19] [54], [53],[13], [20], 

[55] 
4 !'()"#$%!*!"#$%

 

Max. residual biomass (XR max) 96.28 ~98 !"#$%&  [17], [43] 96.28 !"#$%&  
Max. hydrolysis rate 

(kH) 0.125 h-1 [47] 0.125 h-1 

Hydrolysis affinity constant (KX) 0.03 !"#$%!"#$% [47] 0.03 !"#$%!"#$% 
Yield coefficient for growth on SS 

(Y!!/#) 
0.4 ~0.65 !*!"#$%!,""#$%

 [19], [20], [30], [43], [49], [52]–
[54] 0.6 !*!"#$%!,""#$%

 

Yield coefficient for PHB (Y$%&/#) 0.4 ~0.75 !'()"#$%!,""#$%
 [13], [19], [20], [22], [30], [39], 

[43], [49]–[51], [53]–[55] 0.4 !'()"#$%!,""#$%
 

Yield coefficient for growth on PHB 
(Y!!/$%&) 0.51 ~ 0.74 !*!"#$%!'()"#$% [17], [51] 0.74 !*!"#$%!'()"#$% 

Fraction of XI (fI) 0.2 !"#$%!"#$% [47] 0.2 !"#$%!"#$% 

Nitrogen content of biomass (iNBM) 0.06 ~ 0.19 !"+
!"#$% [19], [30], [39], [49], [52], [54], 

[55] 0.1 !"+
!"#$% 

Nitrogen content of XI (iNXI) 0.06 !"+
!"#$% [47] 0.06 !"+

!"#$% 
Phosphorus content of biomass 

(iPBM) 0.03 ~ 0.036 !"'
!"#$% [22], [43] 0.03 !"'

!"#$% 

Phosphorus content of XI (iPXI) 0.03 ~ 0.036 !"'
!"#$% [22], [43] 0.03 !"'

!"#$% 
Cell density inhibition index (α) 5.8 [17], [42] 5.8 

PHB production inhibition index (β) 3.85 [17], [57] 3.85 

Constant to keep specific PHB 
production rate less than 1 (γ) 0.95 this study 0.95 
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Model parameters were then calibrated to fit experimental data by trial and error. The calibrated 

parameters were compared to the range of reported values. Then, a unified value for each 

parameter was estimated based on the model. 

2.3 Sensitivity analysis  

Two sensitivity analysis methods were performed to identify the most sensitive parameters 

affecting the model outputs. One method is the simple method. A parameter is changed by 1% of 

the default value and the percentage change of the model output was determined at a specific 

arbitrary time. Maximum XPHB, Maximum XR, the time required for achieving maximum XPHB, 

and the time required for achieving maximum XR are the model outputs for the analysis.  

The other method is the overall relative sensitivity analysis based on partial differentiation of 

model output to the parameter. The relative sensitivity function used in this study is adapted from 

Mozumder et al. [17]. The relative sensitivity function is dimensionless and the overall sensitivity 

of different parameters over a certain period was determined. The relative sensitivity function 

(!!"(#)) of variable 	& towards parameter ' at time instant # is defined as  

!!"(#) =
!&#(#)
!'

'
&#(#)

=
&(#, ' + ∆') − &(#, ' − ∆')

2∆'
'

&#(#)
	

	
	 (2-9) 

∆' is the change of parameter, which is 1% of '.  

The overall sensitivity ! is defined as  

! =
∑ !&#(#)

!'
'

&#(#)
$
#%&

/ 	 (2-10) 

where n is the number of virtual measurements, and # is the operation period.  
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The criteria of sensitive parameters for the simple method is the change of the model outputs 

greater than 0.1%, and the criteria for overall sensitivity is ! > 0.1. The simulation scenario in the 

sensitivity analysis is the batch cultivation over 60 hours. The initial values for model components 

are shown in Table 2-4.  

Table 2-4:Initial conditions for sensitivity analysis 

Component SS0 SN0 SP0 XPHB0 XR0 XS0 XI0 

Concentration 32 
!"#$%

&  0.53 
!"'
&  1.12 

!"(
&  0.0167 

!"#$%
&  0.142 

!"#$%
&  0 0 

 

2.4 Model applications  

The calibrated model was applied to investigate the nutrient feeding strategy that maximizes PHB 

production by maintaining residual cell growth during the PHB production phase, based on  

Schmidt et al.[23]. The process is designed as fed-batch cultivation with cell recycle for 7 days 

(168 hr). The initial conditions of fresh medium and particulates for the simulations are shown in 

Table 2-5.  

Table 2-5:Initial condition for the simulations 

Component SS0 SN0 SP0 XPHB0 XR0 XS0 XI0 

Concentration 16 
!"#$%

&  0.6 
!"'
&  1.12 

!"(
&  0.0167 

!"#$%
&  0.142 

!"#$%
&  0 0 

 

Whenever SS is consumed by 99% of the initial SS, 25% of the culture medium is removed and 

replaced with the fresh medium; the biomass in the removed medium is recycled back to the 

bioreactor to maintain high cell density. Residual cell growth is maintained during the PHB 

production phase by supplying a limited amount of a key nutrient during repeated fed-batch 

feedings of fresh medium. The concentration of SN or SP in the fresh medium for the following 
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repeated fed-batch feeding depends on simulation scenarios. In 1st scenario, the amount of nitrogen 

is at a limited level, varying from 10% to 70% of SN0, and SP is the same as SP0. In 2nd scenario, 

the amount of phosphorous is at a limited level, varying from 1% to 7% of initial SP, and SN is kept 

the same as SN0.  
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3 Results and discussion 

3.1  Model calibration with published experimental results 

The present model was calibrated with 8 published studies for PHA production by C. necator and 

fit the experimental data well. Model parameters for each experimental study were calibrated 

within the reported range and were kept as unified as possible among selected studies.  

Figure 3-1 shows the model prediction for the short-term batch culture of Cupriavidus necator on 

glucose, conducted by Belfares et al [58]. The fitness of the model outputs to experimental data 

proves the model can effectively describe the cell growth phase of non-growth-associated PHB 

production. With the availability of nitrogen throughout the operation, the predicted amount of 

PHB accumulated at the end of the period is at an insignificant level that is less than 3 g/L, 

comparing to residual biomass (XR) which is around 10 g/L.  

 

Figure 3-1:Model calibration with experimental data of Belfares et al. [58]. 



M.A.Sc. Thesis – Li Xu; McMaster University-Civil Engineering 

 

 21 

Figure 3-2 shows model fitting with the experimental data of Gahlawat and Soni [48]. They 

conducted batch cultivation for PHB production by Cupriavidus necator on glycerol. Predicted 

glycerol consumption, biomass growth, and PHB accumulation had a good agreement with the 

data.  

 

Figure 3-2: Model calibration with experimental data of Gahlawat and Soni [48] 

Suggested values for the model parameters were estimated by taking the most frequently appeared 

values obtained from calibration studies. Calibrated μS and kPHB vary among studies because they 

are dependent on experimental conditions or experimentally measured specific growth rate and 

PHB production rate. For example, Gahlawat and Soni [48] measured the maximum growth rate 

of C. necator by utilizing glycerol ranged from 0.26 to 0.28 h-1. f(PHB)Max varies among studies 

because it is determined based on PHB content (%) measured in the experiments. The value of 

f(PHB)Max for the model was estimated as 4 derived from a PHB content of 80% since C. necator 

can accumulate PHB up to 80% of the dry weight of biomass[23]. Y'()/+	varies from 0.4 to 0.7 
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because it depends on the experimental accumulation of PHA. Table 3-1 lists the calibrated kinetic 

and stoichiometric parameter values. 

Table 3-1: Model calibration results with published studies   

Figure 3-1 3-2 3-3 S1A S1B S2 S3 S4 S5A, B S5C Suggested value 
in this study Data Reference [58] [48] [49] [19] [50] [13] [16] [17] 

μS (h-1) 0.3 0.26 0.3 0.3 0.3 0.3 0.14 0.4 0.3 
μPHB (h-1) 0.18 0.1 0.18 0.18 

Ks (
!"#$%

& ) 1.9 1.9 

KPHB (
!()*"#$%
!+'"#$%

) 0.25 0.25 

KN (
!"'
& ) 0.25 0.05 0.25 0.25 

KP (
!"(
& ) 0.25 0.25 

mS (h-1) 0.015 0.015 

mPHB (h-1) 0.0044 0.0044 

kPHB (h-1) 0.12 0.18 0.23 0.13 0.18 0.18 

b (h-1) 0.01 0.02 0.01 

f(PHB)Max (
!()*"#$%
!+'"#$%

) 4 2.5 2.03 4 6.9 9 3 2.3 4 

XR max (
!"#$%

& ) 96.28 96.28 

kH (h-1) 0.125 0.125 

KX ( 
!"#$%
!"#$%) 0.03 0.03 

Y,(/. (!+'"#$%!/)"#$%
) 0.6 0.6 

Y012/. (
!()*"#$%
!/)"#$%

) 0.4 0.7 0.4 0.4 0.5 0.4 0.4 

Y,(/012 ( !+'"#$%!()*"#$%) 0.74 0.74 

fI ( 
!"#$%
!"#$%) 0.2 0.2 

iNBM (
!"'
!"#$%) 0.11 0.15 0.1 0.06 0.1 0.1 

iNXI (
!"'
!"#$%) 0.06 0.06 

iPBM (
!"(

!"#$%) 0.03 0.03 

iPXI (
!"(

!"#$%) 0.03 0.03 

α 5.8 5.8 

β 3.85 3.85 

γ 0.95 0.95 
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Calibrated KN  is 0.25 g N.L-1 for the most selected studies, except that KN is  0.05 g N.L-1 for 

Marudkla et al. [49]. Marudkla et al. [49] performed batch cultivation of PHB production by C. 

necator on glucose. As shown in Figure 3-3, the model is calibrated with the data by setting KN to 

0.05 g N.L-1. With such value, modeled PHB accumulation could fit the measured PHB 

accumulation that started after 16 hours.  

 

Figure 3-3: Model calibration for experimental data of Marudkla et al. [49] 

3.2 Sensitivity analysis  

The sensitivity of parameters to model output was evaluated by two sensitivity analysis methods 

that are the simple method and the overall relative sensitivity analysis method. Table 3-2 shows 

the parameter sensitivity analysis results by two methods. Bold fonts indicate the values above the 

criteria of sensitive parameters.  
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Table 3-2: Parameter sensitivity results by the simple method and the overall relative sensitivity 
analysis with respect to model outputs.  

Parameter 
(θ) 

The simple method The overall relative 
sensitivity analysis 

Increase in 
Max. XPHB 
with 1% 
increase of θ 

Increase in the 
required time 
for max. XPHB 
with a 1% 
increase of θ 

Increase in 
Max. XR 
with 1% 
increase of θ 

Increase in the 
required time 
for max. XR 
with a 1% 
increase of θ 

&	 for	 XPHB 
with ∆, =
1%, 

&	 for	 XR 
with ∆, =
1%,	

μS 0.04% -0.57% 0.00% -1.09% 0.888 0.751 
μPHA -0.02% 0.00% 0.01% -0.10% -0.018 0.018 
Ks -0.03% 0.11% 0.00% 0.10% -0.110 -0.032 

KPHB 0.00% 0.00% -0.01% 0.00% -0.015 -0.024 
Y,(/. 0.39% 0.11% 0.00% 0.00% 0.202 0.003 

KN 0.00% 0.11% -0.01% 0.79% -0.127 -0.274 
KP 0.00% 0.11% 0.00% 0.30% -0.071 -0.139 
mS -0.05% 0.00% 0.00% 0.10% -0.023 0.000 

mPHB -0.01% 0.00% 0.00% 0.00% -0.007 0.000 
Y012/. 1.00% 0.34% 0.01% -0.20% 0.500 0.006 
Y,(/012 0.04% 0.00% 0.00% 0.10% 0.054 0.001 

kPHB 0.05% -0.46% 0.00% 0.30% 0.531 0.016 
f(PHB)

max 0.00% 0.00% 0.00% 0.10% 0.002 0.000 
β 0.00% 0.00% 0.00% 0.10% 0.001 0.000 
b -0.01% 0.00% -0.01% 0.00% -0.037 -0.028 
γ 0.02% -0.23% 0.00% 0.20% 0.218 0.006 
fI 0.00% 0.00% -0.01% 0.00% 0.002 -0.003 

iNBM 0.44% 0.34% -0.95% -0.40% 0.247 -0.572 
iNXI 0.00% 0.00% -0.01% 0.00% 0.002 -0.003 
iPBM 0.00% 0.00% 0.00% 0.10% -0.001 -0.003 
iPXI 0.00% 0.00% 0.00% 0.00% 0.000 0.000 
α 0.00% 0.00% 0.00% 0.00% 0.000 0.000 

XR max 0.00% 0.00% 0.00% 0.00% 0.000 0.000 
KX 0.00% 0.00% 0.00% 0.00% 0.000 0.000 
kH 0.00% 0.00% 0.00% 0.00% 0.000 0.000 

 

The parameters μS, kPHB, Y,!/+,	Y'()/+, Ks, KN, KP, iNBM, and γ were found sensitive based on the 

overall relative sensitivity. μS has the highest overall sensitivity and positive correlation to PHB 

and residual biomass. It is also sensitive to accumulation time for maximum PHB and residual 

biomass with a 1% increase since the time for accumulating maximum PHB and growing 

maximum residual biomass is shortened by 0.57% and 1.09% respectively. The reported range of 
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μS is wide, from 0.11 to 0.46 h-1, so it is important to carefully measure the specific growth rate 

experimentally when estimating μS for a specific bioreactor.  

kPHB is sensitive to PHB accumulation and is positively correlated. The time for accumulating 

maximum PHB is shortened by 0.46% but the time for growing maximum residual biomass is 

prolonged by 0.3% with a 1% increase of kPHB. kPHB ranges from 0.034 to 0.23 h-1, depending on 

experimental conditions. Thus, increasing the PHB production rate to the high end of the reported 

range accelerates PHB production and makes PHB production more dominant than cell growth.  

Y,!/+	is sensitive to PHB accumulation and time for accumulating maximum PHB with positive 

correlation. 1% increase of Y,!/+ increases maximum PHB accumulation by 0.39% but increases 

the time for accumulating maximum PHB by 0.11%. The positive correlation of PHB 

accumulation with Y,!/+	can be explained by higher cell density leading to a higher amount of 

PHB. Y'()/+	has higher sensitivity to PHB accumulation than Y,!/+ because the yield of PHB over 

the substrate is directly related to the formation of PHB. It also shortens the time for growing 

maximum residual biomass. Thus, calibrating Y'()/+	is in the higher priority than Y,!/+. Y,!/+ and 

Y'()/+	 can be calculated based experimentally measured PHB and biomass formation and 

substrate consumption, so comparing the estimated value to experimentally determined value can 

enhance the accuracy of the model prediction.   

KN is sensitive to PHB and residual biomass accumulation with negative correlation, 

corresponding to its positive correlation with time for accumulating maximum PHB and residual 

biomass. KP is sensitive to residual biomass accumulation with negative correlation, as well as 

sensitive to time for accumulating maximum PHB and time for growing maximum residual 
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biomass with positive correlation. KN has a wide reported range from 0.01 to 0.39 -./0 , and the 

studies for estimating KP are limited, so experimental studies are essential to determine the initial 

guess for KN and KP. Ks is sensitive to PHB accumulation with negative correlation, as well as 

sensitive to time for accumulating maximum PHB and time for growing residual biomass with 

positive correlation. KS has a narrow reported range from 1.2 ~ 1.92 -.1230 , so the estimated value 

can be directly used.  

iNBM is sensitive to all model outputs evaluated by both methods. It is positively correlated with 

maximum PHB accumulation and its required time but negatively correlated with maximum 

residual biomass and its required time.  Since iNBM has a wide range from 0.06 ~ 0.19 -./
-.123, it is 

necessary to verify the estimated value by calculating the ratio of nitrogen uptake rate to cell 

growth rate [49].  

γ is sensitive to PHB accumulation with a positive correlation. 1% increase in γ shortens the time 

for accumulating maximum PHB but prolongs the time for growing maximum residual biomass. 

γ is an index in the nutrient inhibition term of PHB production rate, so studying the value of γ 

with experimental data helps understand the relationship between PHB production and nutrient 

inhibition and makes simulation results more reliable.  

The results of parameter sensitivity evaluated by the two methods are not completely consistent. 

In the simple method, Y'()/+ is the most sensitive to PHB accumulation, and iNBM is the most 

sensitive to XR. In the overall relative sensitivity analysis method, μS is the most sensitive to PHB 

and XR. The reason for the inconsistency is that the overall sensitivity analysis method considers 

the sensitivity of parameters over the whole period and takes the average, but the simple method 
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only evaluates sensitivity at a time instant when maximum amount is realized. Thus, required time 

for maximum amount accumulation is the supplement model output to provide with the full picture 

of parameter sensitivity in the simple method.  

3.3 Model applications  

The simulations for PHB accumulation over a 7-day operation for two scenarios are illustrated in 

Figure 3-4.  In 1st scenario (Figure 3-4 A), the amount of PHB accumulated at a different level of 

nitrogen concentration starts to differentiate around 68 hours. In 2nd scenario (Figure 3-4 B), the 

amount of PHB accumulated at a different level of phosphorous starts to differentiate around 72 

hours. Hence, at least 68 hr of operation with limited nitrogen and 72 hr of operation with limited 

phosphorous are required for maximizing PHB accumulation by maintaining residual cell growth 

in the production phase. The increase of nutrient amount in fed-batch feeding medium leads to a 

higher PHB accumulation rate, so the time for accumulating a particular amount of PHB could be 

shortened with increasing of nutrient amount. The optimal feeding amount of nutrient at which 

PHB is maximized at the end of the operation is 40% SN0 for nitrogen-limited medium and 5% SP0 

for phosphorous limited medium. 
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Figure 3-4:Simulated PHB accumulation at the varying amount of nutrient in the medium (A) 1st 
scenario: nitrogen-limited (B) 2nd scenario: phosphorous limited 

The simulated PHB accumulation illustrated in Figure 3-4 also indicated that the medium for 

repeated fed-batch feeding with limited phosphorous leads to higher PHB accumulation than with 

limited nitrogen. In the case of limited nitrogen (Figure 3-4 A), the maximum amount of PHB 

accumulated at 168 hr is 182.0 g/L. In the case of limited phosphorous (Figure 3-4 B), the 

maximum amount of PHB accumulated at 168 hr is 226.0g/L. Therefore, limiting phosphorus 

amount in the medium is more favorable to maximize PHB accumulation than limiting nitrogen 

amount. 

The final amount of PHB starts to decrease once the feeding of a nutrient exceeds the optimal 

amount since the further increase of nutrient feeding increases residual biomass growth rate so that 

residual biomass hits XRmax when PHB accumulation is still far from reaching its capacity. The 

more nutrient is supplied in the PHB production phase, the faster residual biomass reaches the cell 

growth capacity and less PHB is accumulated. As shown in Figure 3-5, fPHB for 7% SP0 and 9% 

SP0 are less than fPHBmax = 4 over the operation, meaning that PHB accumulation has not approached 
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the production capacity over the operation period. Thus, PHB accumulation is non-stationary for 

7% SP0 and 9% SP0 after the linear phase (Figure 3-4 B).  

 
Figure 3-5: fPHB over the operation period at different amount of phosphorous 

Figure 3-6 shows the simulated output for all model components under the optimal condition that 

is fed-batch feeding with limited phosphorous at 5% SP0 during the PHB production phase. The 

PHB production rate is linear when cell growth is maintained by feeding a limited amount of 

phosphorus until residual biomass reaches the cell growth capacity. After residual biomass hits the 

XRmax, PHB production starts to slow down, and then PHB accumulation enters the stationary 

phase. The amount of inert particulate and slowly biodegradable particulate accumulated in the 

end of the operation are 0.002 g/L and 0.007 g/L respectively, which are negligible compared to 

the amount of biomass. Thus, inert particulate and slowly biodegradable particulate are not 

influential components in the PHB production process by pure culture.   



M.A.Sc. Thesis – Li Xu; McMaster University-Civil Engineering 

 

 30 

 

Figure 3-6: Simulation results under optimal condition (the nutrients in the fed-batch feeding 
medium: 5% SP0 and SN0) 

The Feeding frequency is dependent on nutrient concentration in the feeding medium. The more 

nutrient concentration supplied during the PHB production phase, the higher feeding frequency. 

The shortest time between consecutive feedings under the optimal condition in Figure 3-6 is 2 

hours. In the case of feeding with 1% SP0 and SN0, the shortest time between consecutive feedings 

is 3 hours. The feeding frequency is a factor to be considered for designing a fed-batch cultivation 

process. The feeding frequency determines the use of an automated feeding system. In the 

simulation scenario under the optimal condition, since the operation period is more than 1-day and 

the shortest time interval for feedings is 2 hours, an automated feeding system is required to 

accomplish the overnight feedings. Besides, the feeding frequency affects the process control. The 

process is easier to be controlled with lower feeding frequency. The less frequent feeding provides 

more time to fix the process if the biomass growth and PHB accumulation go in the wrong direction.   
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4 Conclusions  
 
The comprehensive numerical model for non-growth-associated PHB production by Cupriavidus 

necator has been developed and calibrated for predicting PHB production and cell growth. The 

model parameters have been calibrated with 8 selected experimental studies with the goal of using 

unified values to fit the experimental data among selected studies. The calibrated model shows 

good agreement with experimental data. After comparing calibrated parameters to reported ranges, 

unified values of parameters were determined for the present model.  

Then, these estimated parameters were used as base values for sensitivity analysis. Sensitivity 

analysis were conducted by the simple method and by the overall relative sensitivity analysis. μS, 

kPHB, Y,!/+,	Y'()/+, Ks, KN, KP, iNBM, mS, and γ were sensitive parameters. These parameters are 

important to be investigated when studying the kinetics of the PHB production process for a 

specific bioreactor system. Parameters like max. specific growth rate and yields depend on the 

experimental conditions of the reactor, so verifying parameters with calculated values based on 

the experimental measurement is essential to make the model prediction reliable.  

Finally, the calibrated model was applied to investigate fed-batch feeding strategies that optimize 

PHB accumulation. The investigated feeding strategy is fed-batch feeding with a limited amount 

of one nutrient to maintain cell growth in the PHB production phase. Scenarios of limiting nitrogen 

and limiting phosphorous were simulated, and the simulation results showed limited phosphorous 

feeding yields more PHB accumulation than limited nitrogen feeding. In such a feeding strategy, 

PHB accumulation can be maximized with a limited carbon substrate that is 16 -.1230  in the fresh 

medium. The optimal feeding strategy was found to be limited feeding of phosphorous at 5% SP0 

during the PHB production phase, leading to simulated 226.0 g/L PHB at the end of the 168-hour 
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operation. The PHB production rate is increased by increasing the amount of the nutrient that keeps 

cell growth. Such a feeding strategy can make the operation time shorter by increasing the amount 

of limited nutrient feeding.  

The present model calibrated with various studies can be used to control and design the PHB 

production process for various cultivation conditions. In future research, the model could be 

improved by calibrating with data from pilot studies or full-scale plants for designing or optimizing 

full-scale systems for industrial PHB production. More experimental studies could be conducted 

for measuring sensitive parameters to improve the reliability of the parameters. In terms of feeding 

strategy investigation, conducting lab experiments according to the model simulated scenarios is 

essential to investigate the feasibility of the designed feeding strategy. The lab experiments could 

be designed for the scenarios of nitrogen-limited feeding and phosphorous-limited feeding to 

verify if the experimental results agree with the simulated results.   
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Supplementary information   
 
Model calibration with selected experimental studies 
 

 
Figure S1: Model calibration with experimental data of Pérez Rivero et al. [19] A. 20 g/L 
glycerol B. 30 g/L glycerol 
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Figure S2: Model calibration with experimental data of Salakkam and Webb [50] 

 
Figure S3: Model calibration with experimental data of Biglari et al. [13] 

 
Figure S4: Model calibration with experimental data of Tanadchangsaeng and Yu [16] 
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Figure S5: Model calibration with experimental data of Mozumder et al. [17] A. fed with glucose 
and stop nitrogen feeding at XR=69 g COD /L  B. fed with glucose and stop nitrogen feeding at 
XR=79 g COD /L  C. fed with glycerol and stop nitrogen feeding at XR=9.91 g COD/L 


