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SCOPE AND CONTENTS:
This thesis presents an analytical method based 

on classical matrix methods for computing the dynamic 
response of elastic-plastic multi-storey building frames. 
The method developed is comparatively simple and is of 
much use for building frames having large number of 
storeys. By this method, response of multi-storey build­
ings could be calculated on high-speed digital computers 
of high storage capacity. The computer program developed 
saves huge storage locations and thus makes it possible 
to analyze multi-storey frames which till now were con­
sidered as very difficult. Dynamic response of a two- 
storey and six-storey frame are shown to demonstrate the 

utility of the method.
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NOTATION

(A] Displacement Deformation Matrix
(B) Column vector as defined in Eq. 3.19
(Cj Damping Matrix
<D) Joint Displacement Column Vector
<Dr} Sub Column Vector of (D)
E Modulus of Elasticity

Foi Amplitudes of Applied Dynamic Forces
Fi(t) Dynamic Force actinc at ith Mass
(GJ Matrix as defined in Eq. 2.7
[H] Matrix as defined in Eq. 3.19

Xi Moment of Inertia of ith Member
J Matrix as defined in Eq. 2.7

(KJ Frame Deformation-Force Transformation Matrix
(x"j Member Stiffness Matrix

(L] Matrix as defined in Eq. 2.7

M, F* Moment, Plastic Moment

<M} Column Vector as defined in Eq. 2.8

(N) Column Vector as defined in Eq. 2.7

<Q} Joint Load Column Vector
(Or) Subvector of Q

(R) Structural Resistance Vector

(S] Frame Stiffness Matrix
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[T] Submatrix of [S]
IW] Submatrix of [S]
(X} Floor Displacement Vector
[Y] Submatrix of [S]
[Z] Submatrix of [S]

Indiees

h Length of ith Member
m Number of Members in a Frame

mi Lumped Mass at ith Floor
n Number of degrees of Freedom
{pl Frame Force Vector
{pm} Member Force Vector

qi ith load at a joint
t Time

tif fc2 Times at Beginning and End of the Small
Time Interval At

{u} Frame Deformation Vector
r{u } Member Deformation Vector
yi ith Block of Elements of [A] Matrix as

shown in Table 3.1

At Small Time Interval as used in Numerical 
Integration Procedure

E Indicates Summation

6ij Kronecker Delta, = 1 if i=j, = 0 if iij

♦ Curvature

p Exponential Decay Factor of Applied Force

w Circular Frequency of Applied Force
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£ Strain
a, a* Stress, Yield Stress

[ Inverse Matrix
[ )T Transpose Matrix

J
Superscripts Sinrle Dot and Double Dot denote 

Differentiation w.r.t:. Ti.me
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CHAPTER I
INTRODUCTION

1.1 General

Structural systems such as high multi-storey 
building frames, when subjected to strong dynamic forces, 
are usually stressed in the inelastic region. Dynamic 
analysis of such multi-degree of freedom system in the 
inelastic region is one of the most important and most 
involved areas in the field of structural dynamics. The 
importance lies in understanding the dynamic response 
characteristics in the inelastic region so that suitable 
design criteria could be formulated. The formulation of 
design criteria will not only result in the overall 
economy of the structure but will also enhance the 
dependability on the behaviour of the structure under 
strong dynamic forces. The formulation of design criteria 
of such structures depends entirely on the availability of 
a simple and reasonably practical method for computing the 
dynamic response which was hitherto considered as perhaps 
the most complex and difficult. The methods available so 
far for carrying out such analysis are a bit cumbersome to 
use and in addition their use is limited to a small number 
of storeys due to their requirements of computer having

1
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high storaqe capacity.

In this thesis a method is presented for calcu­
lating the dynamic response of inelastic multi-storey 
frames. The method is particularly developed for analyzing 
building frames having large number of storeys. This 
method is much simpler to use and requires minimum storage 
capacity of the computer. Economy of storage capacity has 
been achieved by makinq use of the repetitive qeometrical 
shape of the structural system and elimination of some 
large matrices through logical programming.

1.2 Nature of the Problem
The complexities involved in the dynamic analysis 

of multi-deqree of freedom structural system are manifold. 
As the structure vibrates back and forth under stronq 
dynamic forces, there are frequent transformations of the 
system from one elastic behaviour to another inelastic 
behaviour and from resulting inelastic behaviour to a 
different inelastic behaviour and vice-versa. In all 
these transformations, the properties of one inelastic or 
elastic behaviour will be entirely different from the 
previous inelastic or elastic system. Such complex and 
frequently changing behaviour arises due to the formation 
of plastic hinges at different sections of the structure 
where the moments reach the plastic moment. Formation of 
a single hinge at any section of the structural system 
completely changes the stiffness of the system. Due to 
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this changed stiffness, response characteristics of the 
system become altogether different from those existing 
before the formation of plastic hinge. At subsequent 
instants, as this new system responds, other sections may 
plasticize. This may further change the properties of 
the structure. Subsequently, more sections may either 
plasticize or some of the plastic hinges may re- 
elasticize due to reversal of stresses resulting from 
reversed curvature changes. Under this situation it 
becomes a formidable task to compute the response of such 
a structural system possessing multi-degree of freedom and 
whose properties are chancing frecuently as it vibrates. 
The problem becomes still more complicated and challenging 
when the formation of plastic hinges or re-elasticizing 
of the formed plastic hinges occur at different instants 
during a very short time interval. The complications 
arise due to the fact that at every instant various sec­
tions likely to plasticize or sections where plastic 
hinges exist, should be checked to ascertain whether a 
plastic hinge is forming or the one already formed is 
elasticizing respectively or not. In case at any section, 
a plastic hinge is forming or any plastic hinge already 
formed is elasticizing, the stiffness of the resulting 
structural system should be reassessed to determine the 

future behaviour of the structure.



The process of assessing the changed stiffness of 
the structure at every transition of its changing from one 
structural system to another structural system, is itself 
quite complicated. In addition to this, after each small 
time interval every elastic section likely to become 
plastic is required to be checked whether a plastic hinge 
is occurring there or not. Similarly it is required to 
ascertain whether a section where a plastic hinge exists, 
is re-elasticizing or not at the end of each time inter­
val. This whole process elaborated above poses a 
challenge even now due to limited capacity of digital 
computers unless some simplifving assumptions are made 
and special programming techniques are applied.

In the future discussion of inelastic behaviour, 
the term "phase" refers to a particular state of elastic 
plastic deformation and the term "transition" refers to 
a change of phase either by formation or re-elasticizing 
of one or more hinges;.

1.3 Previous Work
To date various approaches pursued in this field 

could be categorized as (a) Normal Mode Approach and (b) 
Lumped Mass System. Several authors have proposed methods 
which fall mainly in either of the above categories.

(a) Normal Mode Approach
A general method using the normal mode approach
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for dynamic analysis of elastic plastic structures was 
presented by Bleich and Salvadori.l The method was

initially used for dynamic analysis of elastic plastic 
beams. Its application for dynamic analysis of elasto- 
plastic structures was extended by DiMaqgio. In this 
method normal modes of vibrations of the elastic struc­
ture are computed. As the structure responds, moments 
at sections likely to develop maximum moments are coim­
puted and when these moments become equal to plastic 
moment, a hinge is inserted at this section with 
plastic moment constraints applied. A new set of normal 
modes are now computed for the resultant system. The 
procedure of computation of normal modes and boundary 
conditions at every stage of transition limits this 
approach to relatively simple structures loaded symme­
trically, such as a free beam or a simple fixed or two 
hinged single storey portal frame whose normal modes are 
usually simple to calculate. This approach is certainly 
impracticable from the point of view of computational 
difficulties for a multi-storey building frame in which 
numerous plastic hinges may occur and re-elasticize 
during a very short interval of time. At every transition 
of such a system, the computation of normal modes and 
boundary conditions for a multi-degree of freedom system

♦Numbers refer to the Bibliography listing 
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will not only be a formidable task but will also be a 
sheer waste of time when the transitions occur frequently 
in a short interval of time. Convergence problems with 
the series of modes for determining flexural moments 
further emphasizes the impracticability of the method to 
multi-storey frames Further difficulties appear in this 
method when a structure turns into a mechanism. In the 
mechanism state the consideration of rigid body modes of 
separate component segments of the structure going 
through rigid body motion further complicates the whole 
normal mode approach and makes it unsuitable for analysis 
of multi-storey frames.

(b) Lumped Mass System
In this approach masses are assumed to be concen­

trated at floor levels and computation of dynamic response 
is carried by following some numerical integration pro­
cedure.

3Berg and DaDeppo presented a method in which 
masses are assumed to be concentrated at floor levels. 
Response is calculated by numerical integration of equation 
of motion for an elastic system. The bending moments are 
calculated elastically after each time interval. If these 
moments exceed tie plastic moments, linear corrector solu­
tions composed of frames with actual hinges and moment 
constraints at those points at which a plastic hinge occurs, 
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are superimposed in such a way that none of the moments 
exceed the yield moment at any point of the frame. At 
each hinge formed, moment and hinge constraints are 
introduced so that idealized moment curvature relation­
ship is achieved. At each step plastic hinge rotations 
are calculated by iteration. For multi-storey frames 
this method will be too cumbersome and time consuming 
because of precalculation of the basic corrector solu­
tions for all points and also because of actual computa­
tion requiring complex operations durinc the analysis.

4Penzien also uses numerical integration pro­
cedure for solution of differential equation of motion. 
The initial assumptions made are that the masses are 
concentrated at floor levels, all floor systems are 
infinitely rigid and all the storey heights are equal. 
There is only relative horizontal movement between floors. 
An idealized elastic-plastic force-deformation relation­
ship is assumed. The equations of motions are expressed 
in terms of inter-floor shear resistance and are inte­
grated by 'mid-acceleration' method. The assumptions 
made, though simplying the method, make it inapplicable 
for modern framed buildings with nonrigid floor system.

5Heidebrecht developed a method using the single 

step forward numerical integration procedure. Horizontal 
resistance to motion at each floor level is expressed in 

terms of the horizontal deflection at floor levels for
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any state of elastic plastic behaviour. Yielding of both 
columns and beams is considered. The horizontal resist­
ance to motion and horizontal floor deflection relation­
ship has been derived using the conjugate frame method 
developed by Leei. The method is versatile and could be 

used for large multi-storey frames except that its 
practical application is limited by the storage capacity 
of the particular computer being used to perform the 
computation.

7Clough and Benuska developed a method for com­
puting the inelastic earthquake response of tall buildings 
by assuming a special bilinear moment rotation property 
prescribed to each member of the structural system. The 
masses are assumed to be concentrated at floor levels. 
During a short time interval the acceleration is assumed 
to vary linearly and displacements are computed using a 
numerical integration procedure. In assuming a special 
bilinear moment rotation property associated with each 
member, the member is assumed to consist of two compon­
ents in parallel. The first component is a basic 
elasto-plastic beam which develops a plastic hinge at 
either end when the respective end moment exceeds the 
yield moment while the second component remains fully 
elastic. The elasto-plastic beam component is assumed to 
possess a rigid plastic moment rotation property. The 
procedure adopted to calculate the response requires 
ascertaining the moments at sections at which maximum 
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moments may develop to check whether elasto-plastic com­
ponent develops a hinge or not. In case any elasto- 
plastic component develops a hinge the stiffness matrix 
associated with the structure is modified. In this 
approach simplifying assumptions prescribing a special 
bilinear moment curvature relationship makes the computa­
tion relatively simple, but renders the method unsuitable 
for frames consisting of members which do not possess 
special moment curvature relationship prescribed by the 
authors. The assumptions made obviously neglect the 
penetration of plastic zone towards the centre of the 
member possessing usual bilinear moment curvature 
relationship.

gSaul presented a method of dynamic analysis of 
structures assuming a piecewise bilinear moment curva­
ture and stress-strain relationship. The masses are 
assumed to be concentrated at floor levels. The pene­
tration of plastic zone towards the centre of the column 
has been considered. £n iterative method has been 
adopted to solve the differential equation of motion. 
Floors are considered as infinitely rigid, thus limiting 
the analysis only to shear buildings. In this method 
the effect of a concentrated load on floor system cannot 
be considered. These limitations renders the method 

applicable to limited cases.



CHAPTER II
DYNAMIC ANALYSIS

2.1 General

As elaborated earlier, dynamic analysis of a 
multi-storey building frame stressed in the inelastic 
reqion is an extremely complicated matter due to varying 
characteristics of the structural system resulting from 
frequent formation of plastic hinaes and re-elastifica- 
tion of these hinges at various time instants. The 
assessment of stiffness at each change of phase could 
well be done by understanding the stress-strain relation­
ship of the material used and also the moment curvature 
relationship of components forming the structural system.

2.2 Basic Assumptions
Usually multi-storey building frames are designed 

using structural steel which is fairly ductile, with 
ductility factor varying from eight to fifteen for various

9 steels as shown by Beedle . The stress-strain relation­
ship of steel within the strain hardening range is assumed 
to be of an idealized form as shown in Fig. 2.1a. This 
type of relationship is usually known as elastic per­
fectly plastic stress-strain relationship and has been

10
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(a) STRESS-STRAIN RELATIONSHIP

(b) MOMENT-CURVATURE RELATIONSHIP

FIG. 21
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shown by Beedle to be a very good approximation to the 
actual stress-strain relationship of mild steel in the 
normal working range of strains.

The usual shapes used in multi-storey buildings 
are wide flange and I sections. Using the above men­
tioned idealized stress-strain relationship, the moment 
curvature relationship of flexural members, i.e. beams 
and columns, can reasonably be assumed to be of idealized 
form as shown in Fig. 2.1b, as shape factor for these 
shapes is approximately 1.15.

q 10 11 1?Various authors'' ' ' in this field have
confirmed the assumption of idealized moment curvature 
relationship to be practically the same as that obtained 
experimentally.

The masses are assumed to be concentrated at 
floor levels. This assumption is practically justifi­
able as in multi-storey buildings; the maximum mass is 
contributed by floor system. The contribution of mass 
due to columns on either side of the floor is also 
assumed to be lumped at floor levels. This simplifying 
assurnption has been made by various other authors3'4'5'6'7'8 

in this field.
Any damping is assumed to be of viscous type.

2.3 Differential Equation of Motion
The differential equation of motion for a viscously

damped multi-degree of freedom system is given by



13

where F(t) is the applied dynamic force, R. is the

.. . (2.1)

structural resistance to deformation are the damping
coefficients, Fis the horizontal deflection of ith 
floor, m^ is the ith mass and n is the number of degrees 
of freedom, i.e. the same as the number of storeys and
Xr and Xr are the velocity and accelerations of ith mass 
respectively.

It will be shown later in this thesis that Rr can 
be expressed in terms of horizontal floor deflections Xr 
as

. ..(2.2)

(i = 1,2....,n)
in which Hr^ and Rr are constant coefficients and are 
computed from known external loads and stiffnesses of the 
members in any phase.

Substituting R. from Eq. 2.2, Eq. 2.1 yields

... (2.3)

(i — 1^2, ..., n)

2.4 Numerical Integration Procedure
Eq. 2.3 can most conveniently be solved by a 

single step forward numerical integration procedure de-
13veloped by Fleming and Romualdi . In the development of 

this integration procedure, the deflection-velocity and
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velocity-acceleration relationships are assumed to be 
linear over a small time interval and are given by

... (2.4)

and ... (2.5)

in which At « t2~tl an<3 t is the time variable. The 
quantities X^tp, X^(tn), etc. are at time t^, t2 res­
pectively.

Substituting Eg. 2.5 in Eq. 2.4 yields

... (2.6)
Substituting the values of

from Eq. 2.5 and 2.6 into Eq. 2.3 yields

(2.7)

in which

and is Kronecker delta and is defined as

if i#j.
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The numerical solution of differential equation

is carried out by using Eq. 2.7 which is expressed in its
general form. In matrix form Eq. 2.7 can be written as

. . . (2.8)
in which [G] is the matrix of coefficients in Eq. 2.7
and (M) is a column vector consisting of total quantities 
on the right hand side of Eq. 2.7.

For calculating the deflections X(t2) vector {M} 
is evaluated from known velocity, acceleration, deflections 
X(t^) at time t^, the known coefficients Band applied 
force Fi<t2) at time t2« Eq. 2.8 is then solved by finding 
the inversion of [G]. Now using Eq. 2.5 and 2.6 velocities 
and accelerations at time t2 are computed. Knowing all 
quantities at time t2» the forward integration procedure 
is repeated over the next time interval. In case a hinge 
develops at any section or an already existing hinge re- 
elasticizes, the matrix [G] is modified by taking into 
account the changed stiffness of the structural system. 
Similarly, vector {B} is also modified by reassessing the 
stiffness of the structure.



CHAPTER III
DISPLACEMENT METHOD

2.if_ jener^^ i

Multi-storey building frames are highly indeter­
minate structures. The degree of indeterminacy of such 
structures increases with the increase in number of 
storeys. For carrying out the dynamic response computa­
tion of such structures in the inelastic range it is 
necessary to know the value of moments developed at 
sections which are known to have extremum value of 
moments. At sections which have developed plastic 
hinges, it is necessary to know the hinge rotations in 
order to ascertain whether a particular hinge is tending 
to retain its hinge property or if it is reverting back 
to the elastic state. Apart from the suitability of 
computation of the above mentioned requisites, the 
repetitive geometrical shape o* multi-storey building 
frames can best be utilized by adopting the displacement 
method. This method of analysis is also known as the 
stiffness method and has been described in detail by 
McMinn1\ Gennaro15 and vadous other authors for the 

static analysis of elastic structures. It will be shown 
in later sections that using this method, the structural 
resistance can be expressed in terms of floor displacements.

16
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3.2 The I?Metho<3

The displacement method can be called an organized 
augmented form of the well known slope deflection methocl, 
as in this method, both, the basic assumptions and ex­
pressions seladt.ng member forces and deformations are the 
same, except that in the former the set of equations are 
expressed in the matrix form so that the computation of 
unknown forces and deformations of highly indeterminate 
structures can be carried out easily on digital computers.

Using displacement method, member deformations 
and member forces are expressed in terms of joint dis­
placements which are found by the solution of a set of 
simultaneous moment equilibrium equations at the joints 
and shear equilibrium equations for the members. It will 
be shown further that once the joint displacements are 
computed, the member deformations and member forces can 
be obtained easily.

3.3 Member Stiffness Matrix
The relation between end forces and deformations

of any ith member of a frame as shown in Fig. 3.1 can be

shown to be

...(3.1)
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FIG. 3.1 MEMBER FORCES AND DEFORMATONS
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This relation can be expressed as

... (3.2)

The member sriffness matrix (k^) is abo caMed 

the deformation-force transformation matrix of ith member 
as it transforms the deformations into forces.

.4 Frame Deformation-Force Transformation Matrix
Relation expressed by Eq. 3.2 can be extended to

all the members of a frame comprising a number of members 
as below

...(3.3)

when

and

where superscript m denotes the total number of members
IO

in the frame. K, K . ...K cienote the member stiff-
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ness matrices of 1st, 2nd, ..., nth
{p^} and {u1} are the force

member.
and deformation vectors

respectively of ith member shown in Fig. 3.1 and are given
by

and

and [K^J is the menfoer stiffness matrix as shown in
section 3.3

The number of rows and number of columns of [K]
matrix will be 3m each.

3.5 Displacement-Deformation Matrix
In order to obtain member deformation produced 

by the joint displacements, a matrix 'A* called the 
displacement deformation matrix is obtained from the 
rigidity of the joints and geometry of the frame. To 
facilitate the computation of 'A' matrix, the members of 
the multi-storey frame and the loads acting on each 
joint are numbered as shown in Fig. 3.2a. The numbering 
of members starts from the bottom most storey and is 
carried out upward for successive storeys. Each load 
point on a floor is considered as a joint hence the beam
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(a)

(b)

FIG. 3.2 NUMBERING OF LOADS AND MEMBERS OF 

n STOREY FRAME •
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is divided into two components as shewn and each of these 
components is considered as a different member. This is 
done so that a plastic hinge could be allowed to form at 
the load point if the moments there become equal to 
plastic moment of the beam. All the floors are numbered 
starting from 1st floor and in the increasing order 
upwards. The horizontal dynamic loads are also numbered 
starting the 1st load on 1st floor and in increasing 
order upwards. It will be shown later in this chapter 
that numbering the loads in such a manner facilitates 
expressing the structural resistance in terms of horizon­
tal floor deflections. The remainder of the loads on 
the joints are numbered starting from the concentrated 
load followed by three joint moments on each floor as 
shown in Fig. 3.2a. The external moment loads qn+2, 
qn+3 and qn+4... in Fig. 3.2a are eoual to zero.

To obtain ’A' matrix, as shown in Table 3.1, the 
first three rows of 'A' are assigned to three member

11 12 13deformations u , u , u of the first member in order, 
the next three rows are assigned to second member 
deformations and similarly for other members. Thus for 
a structure comprising m members, which happens to be 
4n members for n storey building, the number of rows in 
’A' matrix will be 12^ Each column of ’A’ matrix 
corresponds to a joint displacement which in turn corre­
sponds to a joint load. First n columns are assigned
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Elements of [A] Matrix

TABLE 3.1 
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to horizontal floor displacements and initially the 
remainder columns are sequentially assigned to displace- 
ments of each storey joint.

Thus, as shown in Table 3.1, columns n+1 to n+4 
correspond to vertical displacement of first storey 
concentrated load, rotation of joints where moments 
qn+2, qn+3 and qn+4 are acting respectively.

Thus for all n storeys, 'A' initially will have
5n columns. In order to calculate the element Aij of 'A*
matrix, a unit displacement at joint j is given. The 
deformations at i caused by the above displacement gives 
the value of Aj. provided all other joint displacements 
are kept zero. For example, if a unit horizontal
displacement is given to first floor, the first and 
fourth members are displaced by same amount and fifth 
and eighth members are displaced by unity in the negative 
sense. These are entered in the 3rd, 12th, 15th and 24th 
columns respectively corresponding to lateral deformation 
of 1st, 4th, 5th and 8th members respectively. Similarly 
if a unit rotation is applied at 1st storey left joint 
corresponding to (n+2)nd column of 'A* matrix, 2nd end 
of first member rotates by unity, and first ends of 2nd 
and 5th members rotate by unity which are entered in the 
2nd, 4th, and 13th rows respectively against (n+2)nd 
column which corresponds to the above joint rotation. 

In the same manner all the elements are calculated.
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In case a plastic hinge forms at a certain end 
of a member, the hinqe is considered as a separate joint 
for purposes of rotational displacement. In such a 
situation, a column is added to 'A' matrix beyond 5n th 
column and an entry of plus one is made in this column 
against the row corresponding to rotational deformation 
of the member where this hinge has formed. The element 
of 'A' corresponding to rotation of member where hinge 
has formed is made zero. Thus, as is shown in Table 3.1, 
if a hinge develops at 6 which is 2nd end of member 3, 
the element Ao . is made zero and column 5n+l is 
added and element Ag 5n+1 becomes unity as a unit rota­
tion at this hinged joint causes unit rotation at the 
end of this 3rd member. All other elements of this 
5n+l column remain zero as no other member deformations 
take place. If each column beyond 5n columns of 'A' 
matrix is reserved for formation of each hinge, another 
8n columns would be needed as no. of possible hinges
as shown in Fig. 3.3 is 8n. It will be shown in 
Chapter IV that this huge matrix having 12n rows and 
13n columns can be manipulated to reduce storage thereby 
facilitating the computation of inelastic response of 

multi-storey frames.
Knowing displacement deformation matrix, the 

relation between member deformations for whole structure 
and joint displacements can be expressed as
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FIG. 3.3 NUMBERING THE ENDS OF MEMBERS AND JOINTS
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. . (3.5)
where vector (D) represents the joint displacements 
corresponding to the loads acting on the joints. In 
case of absence of an external load on the joint, the 
load is considered to be zero. For instance, all the 
external moments on the joints are considered zero.

For a multi-storey building frame as shown in
Fig. 3.2a, the load vector (Q) will be given by

3.6 The Force-Load Matrix
The force load matrix transforms the member 

forces of a structural system to joint loads. It can 
be shown by the principle of virtual work that relation 
between joint loads and member forces is given by 

(3.6)
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Twhere [A] is the force load matrix, which is the trans­

pose of the previously defined displacement-deformation
matrix.

3.7 Displacement-Load Matrix
From the relations expressed in Eqs. 3.5 and 3.6,

a relation between joint displacements and loads could be 
derived. Substituting for (pl from Eq. 3.3, Eq. 3.6 
yields

... (3
and substituting {u} from Eq. 3.5, Eq. 3.7 yields

.. (3.8)
or ...(3.9)

where [S] is a square matrix and
could be inverted. Thus, joint displacements are obtained 
from the known load vector (Q) and known [A] as below

...(3.10)

3.8 Expression for Moments
Member forces which include moments at the ends

of member are given by (p) from Eq. 3.3

Substituting for {u} from Eq. 3.5 in above equation
... (3.11)

again substituting for <D} from Eq. 3.10, Eq. 3.11 yields
...(3.12)
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As shown in 3.4 vector {p} consists of three rows 
for each member of the structural system. Thus it will 
have three times as many elements as the number of 
structural members. The first two out of these three 
represent the end moments at the left and right end of 
the member respectively. The third element represents 
the shear. Thus, every 1st, 4th, 7th .... [12n-2)th
elements represent the left end moment and 2nd, 5th, 
8th .... [12n-l)th elements represent the moment on the
right end of the member. These moments are obtained 
from the corresponding elements of (p) .

In order to designate left and right end of 
vertical and horizontal members, each storey is con­
sidered to be flattened by opening out its lower columns 
as shown in Fig. 3.2b for ith storev. Thus the left end 
of left column will be the lower end and right end the 
upper end. For right column, the left end will be the 
upper end and right end the lower end. For beam there 
is no confusion because of its horizontal configuration.

3.9 Hinge Rotia-t ±ons
The sections at which moments may attain 

extremum values are shown in Fig. 3.3. As soon as 
moments at these sections become equal to plastic mo­
ment, a plastic hinge is inserted at these points. If 
a hinge develops at sections 1 or 8, the hinge rotations 
at such points,where only one end of a member exists, are 
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given by angular displacement at the end considered. 
Similarly, where three members meet:, if all the member 
ends develop hinges, the hinge rotations are the angular 
displacements of respective members at the end considered. 
In the situation at such joints when only one or two 
hinges exist in a particular phase, the hinge rotations 
are the algebraic difference of the displacements at the 
end of hinged member and the rotational displacement of 
the remaining elastic joint.

At sections where beams are loaded by a concen­
trated vertical load, the beam is divided into two 
elements as in Fig. 3.2. If a hinge develops at this 
section, the hinge rotation is given by the algebraic 
difference of the rotational displacement of the end of 
member under consideration and that of the other end of 
the member meeting at the joint. Such sections are 4, 5; 
12, 13; 20, 21; ....  8n-6, 8n-5; 8n-2, 8n-l th sections
of a frame of n storeys.

3.10 Resistance Deflection Relationship
As shown in Fig. 3.2a, the horizontal loads 

q^, q^, .... qn are the resistances required to hold the 
frame in its deformed state. For integration of differ­
ential equation of motion, Eq. 2.1, it was stated in 
section 2.3 that the structural resistances Ri could be 
expressed as a function of horizontal floor displacements 

xi-
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From Eq. 3.9
{Q> = [S] (D)

or

...(3.13)

where (Q) is partitioned into (R), the structural re­
sistance vector and (Q } the remaining external loads 
vector. Similarly, (D) is partitioned into horizontal 
floor displacement vector {X} and the remaining dis­
placements vector {Dr}. Accordingly, [S] is partitioned 

into [T] , [W], [Y] and [Z] matrices in which [T] and [Z]
are square matrices and can be inverted. Thus Eq. 3.13 

can be written as

...(3.14)

or
...(3.15)
...(3.16)
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From Eq. 3.16

... (3.17)

substituting {Dr} from Eq. 3.17 in Eq. 3.15 we get

or ...(3.18)

where
and

. . . (3.19)

Matrix [II] and vector [13] are constant for a 
particular phase and are re-calculated after each transi­
tion as the structural stiffness matrix is re-calculated 
after each transition because of addition or subtraction 
of plastic hinges in the structure.



CHAPTER IV
COMPUTER PROGRAM

4.1 General

The computer program for computing the dynamic 
response of multi-storey building frames when stressed 
in the inelastic region is a bit involved due to large 
matrices such as [K], [S] and [A] which require large 
storage locations and thus would have limited the analysis 
to a small number of storeys only. It will be shown in 
the following paragraphs, as to how the storage necessity 
of [K] and [A] has been eliminated through logical pro­
gramming and how the size of [S] is controlled and 
varied so that minimum storage is required and time is 
saved in the inversion of [Z] by reducing its size to 
the minimum possible.

4.2 Computer Program Outline
The first operation in the computer program is 

to read in the initial data which consists of (a) pro­
perties of given structural system, (b) the properties of 
numerical integration procedure and (c) the properties of 
the applied dynamic force. The details of these properties 
are shown in Appendix A. After this the natural fre­
quencies of the system are computed and if desired, the

33
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damping matrix can be computed and stored. The computation 
of damping matrix incorporated in the program is based on 
percentage of critical damping in the various modes as 
obtained fr°m rnodal analysis and discussed by Biggs1^. Now 

the initial conditions are calculated which are initial 
deflections of floors, initial accelerations and velocities 
of the masses. The matrices [S], [T], [W], [Y], [Z] and 
{B} are then computed and differential equation of motion 
Eq. 2.8 is solved for deflections at the beginning of the 
next time interval. Knowing these deflections, moments at 
all the elastic sections and hinge rotations at all the 
plastic sections are computed!. All these sections are now 
tested to ascertain whether any section is passing through 
a transition from elastic to plastic or plastic to elastic 
phase. If it is found that elastic-plastic transition is 
occurring, the computation is reversed back to the beginn­
ing of the time interval, and at this time a smaller time 
interval of y-yy th of the previous time interval is 

adopted and point of transition is approached slowly till 
it is achieved. If plastic-elastic transition is indicated, 
it becomes necessary to go two time steps back as shown by 
Heidebrecht and approach the transition with a smaHer
time interval. Elastic-plastic transition occurs if any 
section attains moment equal to the plastic moment for 
that section. Plastic-elastic transition occurs if the 

plastic hinge rotation begins reversing direction. This
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is indicated by the change in sign of the plastic hinge 
rotation velocity.

The transition procedure adopted is basically the 
same as described in detail by Heidebrechtt\ except that 

in the transition loop it is checked to know at what joint 
how many hinges are being formed and released. If a hinge 
is formed, a column is added to [A] in the end. If a 
hinge is released, the corresponding column of (A] is 
eliminated and all the columns following the one eliminated 
are shifted one column position to the left so that size 
of [Z] is kept as small as possible. Matrix [Z] is required 
to be inverted at each time interval and keeping its size 
to a minimum possible results in saving of computational 
time. The procedure of manipulating column numbers and 
their positions in [A] matrix is explained in details later 
in this chapter.

After checking the transitions, velocities and 
accelerations of masses at the beginning of next time 
interval are computed from Eq. 2.5 and Eq. 2.6 respectively 
to repeat the procedure. In case transition has taken 
place, matrices [S], [H] and {B} are re-calculated from new
[A] before solving differential equation of motion Eq. 2.8. 
Thus, knowing all the quantities at the beginning of next 
time interval, the above procedure is repeated to compute 

further response.
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4.3 Storage of [K] Matrix

As expressed in 3.4, [K] contains three times as
many rows and columns as number of members of the struc­
tural system. In multi-storey single-bay frames, the 
number of members in each storey are four. Thus, for a 
six storey building, number of members will be 24 and 
number of columns and rows of [K] will be 72 each and 
hence it will require 72 x 72 = 5184 storage locations. 
For a multi-storey building of n storeys, the storage 
required for [K] will be 144n locations. This will be 
a heavy drain on the available storage locations.

A careful study of [K] reveals that three rows 
of [K] are assigned to a particular member. These three
rows contain nine elements, three per row which are not 
equal to zero. For a particular member, say mth member, 
the locations of these in [K] matrix are given by 
(3m -2, 3m - 2) (3m - 2, 3m - 1) (3m - 2, 3m)
(3ra-l, 3m - 2) (3m - 1, 3m - 1) (3m - 1, 3m)
(3m, 3m - 2) (3m, 3m - 1) (3m, 3m)
where first expression within the bracket shows the row 
number and second the column number in which the element 

is located.
Out of these nine elements, as shown in Eq. 3.1, 

for m equal to 1, (3m - 2, 3m - 2)th and (3m -1, 3m - l)th 
elements are having the same value. Similarly, 
(3m - 2, 3m - 1) and (3m - 1, 3m - 2) are identical. The
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remaining elernents,excluding (3m, 3m)th element, are 
identical. Thus, for each member actually there are four 

constant values which need real storage. The remaining 
five are identical to one of these four. It is possible 
to store only four constant values per member and use 
these in proper order so that (K] matrix is reproduced. 
With this technique 144n - 16n storage locations are
saved. For a ten storey building frame, this figure will 
be 14240 locations which is a significant economy.

The non-zero elements having different values are 
four per member and these are stored in an array XA(i,j) 
where i refers to a particular non-zero element value and 
j refers to the number of member. Thus, for first 
member, the four values are XA(1,1), XA(2,1), XA(3,1) and 
XA(4,1).

4.4 Storage of [A] Matrix
As is evident from Table 3.1, the [A] matrix con­

sists of 12n rows and as many columns as number of ex­
ternal loads, i.e. horizontal loads, vertical loads, and 
external moments at the joints. (Zero in the elastic
phase of the structure). Thus, initially it will have n 
columns for resistances R, and 4n columns for other 
static loads. Thus, total number of columns in the 
elastic phase will be 5n. This will be 30 for six storey 

building and 50 for 10 storey building. If provision is 
made for all the possible hinges to develop, the number
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of columns of [A] matrix will become 5n + 8n = 13n. This 
will mean 78 columns for a six storey frame and 130 
columns for a 10 storey frame. It is quite clear from 
above figures that [A] matrix will require huge storage

2capacity of 156n memory locations unless it is augmented 
so that these locations could be saved.

A careful examination of [A] shows that except 
for 2n - 2 rows which are 15th, 27th, 39th ... (12n-9)th 
and 24th, 36th, 48th ... 12nth, every row contains only 
one element having a non-zero value and this too is unity 
and positive except in 9th, 21st, 33rd ... 12n-3 th rows 
in which it is minus one. The remainder of the elements 
in each row are zeros. At the hinge points, not only 
the row contains an element unity but the corresponding 
column also contains only one element having a value of 
plus one. All other elements are zero.

These properties are made use of to reproduce 
the [A] matrix through logical programming and augmenta­
tion in such a way that only minimum storage is used. 
This is achieved by the following technique.
(a) Reproduction of [A] up to 5n columns.

The one dimensional subscripted variable KP(i) is 
used whose subscript corresponds to the number of the row 
of [A] and whose numerical value is an integer corresponding 
to the column number in which the element under considera­
tion has a value of one. Thus, each time an element of [A],
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say is used in computation, the value of KP(i) is
compared with j. In case it is equal to j
assigned a value of unity; otherwise, it is taken as zero.

Thus, using only 13n+l locations for storage, one 
for each row of [A], 156n-13n-l storage locations are 
saved. For a six storey building this comes to a saving 
of 5537 locations and a saving of 15469 storage locations 
for a ten storey building as shown in Table 4.1.

(b) Reprodctiinn of [AJ beyodd 5n columns.
As already discussed, the size of [A] is increased 

by one column if a hinge is formed and is decreased by one 
column if a hinge is released.

At a joint where two members meet, if a hinge is 
developed, only one column is added as the other hinge 
which is at the same location is assumed to be formed by 
giving a value of one to a variable DIC(i) which is 
multiplied by the element of [A] having the unit value. 
Similarly, for removing the element when a hinge has 
developed, the element is multiplied by a variable 
(1 - DIA(i)f) where i refers to the location of the par­
ticular hinge. The variable DIA(i) is defined as follows:
DIA(i) = +1.0 if i is plastic and moment at i is positive
DIA(i) = -1.0 if i is plastic and moment at i is negative

DIA(i) = 0.0 if i is elastic.

For all such even numbered sections DIC(i) takes a

value of 1.0 or 0.0 at elastic-plastic of plastic-elastic 

transitions respectively.



Matrices [K] (A]

No. of Storeys Normal Storage 
Required

Storaqe Used % Saving in 
Storaqe

Normal Storage 
Required

Storage Used % Saving in 
Storage

(1)1 (2) (3) (4) (5) (6) (7)

n 144n2 16n (2)-(3) x inn(2) x 100 156n2 13n + 1 (5)-(6)r?) x 100

2 576 32 94.5 624 27 95.6

6 5184 96 98.1 5616 79 98.5

10 14400 160 98.8 15600 131 99.2

Storage Requirement and % Saving of Same for [K] & [A] Matrices

TABLE 4.1

o
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At a joint where three members meet, there is 

possibility of one hinge developing first and a second 
following or second and third developing at the same time 
to keep the moment equilibrium. In the worst case all 
the hinges may develop at the same time.

For the first hinge developing at such a joint, a 
column is added in the end of (A] matrix. A variable 
JT(j) is used which assumes a value equal to the number of 
elastic ends meeting at a joint. Here j corresponds to 
the number of joint marked in Roman figures as shown in 
Fig. 3.3. Initially it has a value of three and it becomes 
less by one if the end of a member meeting at the joint in 
question develops a hinqe. Thus, the value of this 
variable keeps record of the number of hinges formed at

J

the joint. If a hinge already formed is released, the 
value of JT(j) increases by one. In case such a joint 
develops three hinges in a particular phase, no extra 
column is added to [A] matrix for the last hinge formed. 
In such a situation, DIC(i) assumes a value of unity for 
the last hinge formed. The original column for jth joint 
is used for this last hinge. The record of retaining the 
column for the last hinge formed in the column correspond­
ing to the joint in question is maintained by another 
variable LX(j) which assumes a value of i at such an occa­
sion. In a situation where a particular joint has all the 
hinges formed and if ith hinge is released subsequently, 
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the value of LX(j) is compared with i. If it equals i, 
DIC(i) assumes a value of zero and the column correspond­
ing to jth joint is restored in its original place. If 
i does not equal to LX(j), the column corresponding to i 
beyond 5n columns is eliminated and columns after this 
removed column are moved to the left by one column to 
fill this gap. The element corresponding to ith section 
is restored in the column corresponding to jth joint and 
another column is added in the end to restore the hinge 
which was formed in the end and which is indicated by the 
value of LX(j).

The number of columns added beyond 5n and then 
reduced for elastic-plastic and plastic-elastic transi­
tions, respectively, are taken care of by the value of 
a variable KF. Its value initially is zero but is in­
creased by one if a column is added and decreased by one 
if a column is eliminated. The tracing as to which 
column corresponds to which hinge is done by another 
variable KL(j). The value of KL(j) gives the hinge 
number for which (5n + j)th column was added in [A]. In 
case of plastic-elastic transition of ith hinge, the 
value of i is compared with KL(j) by varying j from 1 to 
KF. At the point where KL(j) becomes equal to i, the 
particular column, i.e. (5n + j)th column of [A] matrix 
is eliminated and the rest of the columns beyond (5n + j)th 
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column are shifted by one column space to fill this gap.

In this manner the number of columns of [A] are 
kept minimum which results in the reduction of the size 
of [S] as the number of rows and columns of [S] equal the 
number of columns of [A]. This technique ultimately 
results in the reduction of the size of [Z] which is to 
be inverted after each transition.

(c) Repttitinn of the elemnttf of AA].
Because of the repetitive geometrical shape of 

the multi-storey frame, a careful examination of the non­
zero elpmentt of [A] as shown in Table 3.1 reveals that 
the elements of block y in first storey repeat in sub­
sequent storeys and the block is shifted by four column 
positions to the right for every additional storey.

(2)Similarly, the elpmpnis of block y in first storey 
repeat in subsequent storeys and this block is shifted by 
one column position to the right. The hlemenis of block 
y^3) and y^ in second ttorey repeat in subsequent 

storeys and their positions are shifted by one column 
space and four column spaces respectively to the right.

The above property is useful in calculating the 
values of KP(i) variable for a frame of n storeys where 
i refers to the number of the row of the [A] matrix. The 
value of KP(i) for a frame of n storeys can be calculated 

as follows:
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KP(12j - 11) « 4j + n-6
KP(12j - 10) - 4j + n-2
KP(12j -9) . j

KP(12j - 8) = KP(12j - 10)
KP(12j - 7) - 4j + n-1
KP(12j - 6) = 4j + n-3
KP(12j - 5) = KP(12j - 7)
KP(12j - 4) . 4j + n
KP(12j - 3) = KP(12j - 6)
KP(12j -2) = KP(12j - 4)
KP(12j - 1) - 4j + n-4
KP(12j) - KP(12j - 9) when j = 1,2...n

except that KP(1) = KP(ll) « 0.
This variable KP(i) is used to reproduce [A] matrix 

as described in section 4.4b above.

4.5 Computation of [S] Matrix
As per Ea. 3.9
[S] - (at] [KJ [A)

It has been described in section 4.3 that all the 
non-zero elements of [K] are stored in an array XA(i, j). 
Because of this definition it can be shown that an element

of matrix [S] is given by
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This expression is further simplified by manipu­
lation of [A] matrix as described in details in 4.4.
The elements of [A] occurring above are stored in a 
variable AG(i) where i = 1,2...6. The six elements of 
[A] corresponding to a particular member are reproduced 
through logical programming and thus final expression of

becomes
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4.6 Computation of {u} and {P}

Similar techniques as described in section 4.5 
are used to reproduce [A] which appears in Eqs. 3.5 and 
(K) which appears in Eq. 3.3, in order to calculate {u} 
and {P} vectors. In calculating {u}, [A] is reproduced 
by a single variable AGX. AGX keeps on attaining values 
of +1.0 or -1.0 whenever a non-zero element of [A] appears 
in subroutine for calculating {P}. Logical sequence is 
developed which reproduces [A] through a single variable 
AGX. (K] is reproduced through XA(i,j) as already des­
cribed in section 4.3.

4.7 Saving in Storagn Locatrons
Using the repetitive geometry of the multi-storey 

frame and developing a logical sequence to reproduce 
sparse matrices like [K] and [A], which normally require

2 2huge storage of 144n and 156n memory locations res­
pectively, it has been possible to reduce their storage 
necessity to only 16n and 13n+l locations respectively. 
Table 4.1 shows the details of the saving in storage 
for frames of varying storeys. The saving in storage of 
[K] and [A] is 98.1% and 98.5% respectively for a six 
storey frame which would normally require 10800 memory 
locations for both these matrices. The corresponding 
figures for normal storage requirement for [K] and [A] 
matrices for ten storey frame is 30,000 memory locations 
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but by using the logical secruence this figure has been cut 
down to only 291 locations which gives 99% saving. Using 
this technique the program developed could handle a frame 
of up to ten storeys on a computer having about 32,000 
memory locations.



CHAPTER V
ANALYTICAL RESULTS AND CONCLUSIONS

5.1 General

As discussed in Cahpter IV, a computer program has 
been developed which could handle the computation of re­
sponse up to ten-storey frame. The program developed as 
shown in Appendix A is fairly general and could be used 
for any number of storeys. The IBM 7040 available at 
McMaster Computing Center has a core memory of 32,000 
locations. With this capacity the program developed 
could handle up to a ten storey frame. Computation of 
response of two and six storey frames has been carried 
out and the results obtained are discussed in the follow­
ing paragraphs.

5.2 Response of Two Storey Frames
The dynamic response of the two storey frame shown 

in Fig. 5.1 has been computeci. The computation has been 
carried out for various loading conditions, of which two 
examples are included here. These examples are chosen in 
particular because the forcing function and damping matrix 
are such that the frame responds in the inelastic region 
and has several transitions between the elastic and plastic

48
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FIG..5.1 TWO-STOREY FRAME
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phases. For both of these examples the forcing function 
is of the form

where i = 1,2

The data used in the a • ’Ove expression are shown 
in Table 5.1.

(a) Example 5.1

The dynamic response curves for the floor deflec­
tions X| and Xj are shown in Fig. 5.2.

As the structure responds, hinges appear at 
sections 6, 14 and 16. These are soon released as the 
floor deflections move in the opposite direction. Now 
the hinges appear at 10 and 9 and are soon released. 
Section 1 and 2 become plastic and then become elastic 
soon after. In the next cycle of response, hinge forms 
at 12 and soon released. Beyond this point, i.e. after 
0.68 seconds, the forcing function decays so much that 
the response reamins elastic thereafter.

(b) Example 5.2
The dynamic response curves for this example are 

shown in Fig. 5.3.
As the structure responds, a plastic hinge appears 

at section 8 followed by hinges at 6 and 1. Soon after, 
hinge at 6 is released and section 7 becomes plastic.



Example Masses
V 2Kip x sec 

in

Amplitudes 
Kips

Mus
Rad/sec

wi
Rad/sec

ICJ
Kip x sec 

in

5.1

ml m2 Fol Fo0 Po P2 “1 w2 C CC11 C12
c cC21 C22

0.0817 0.0538 -36.0 -23.0 6.0 6.0 13.0 13.0
0.2816 0.0000
0.0000 0.1855

5.2 0.0041 0.0021 -29.0 -21.75 48.0 48,0 13.0 13.0
0.0456 0.0000

0.0000 0.0234

Data for Examples 1 & 2

TABLE 5.1 <3



FIG. 5.2 DYNAMIC RESPONSE CURVES, EXAMPLE 5.1
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FIG. 5.3 DYNAMIC RESPONSE CURVES, EXAMPLE 5.2
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Now the floors start moving in the positive directions 
and hinges at 8, 1, and 7 are released and structure 

returns to elastic behaviour. Now after a little lapse 
of time, hinge forms at 16 and is soon released. Now 
hinges appear at 10 and 9 and are released immediately 
after and the structure returns to the elastic phase. 
The process of formation of hinges and their subsequent 
release continues till the forcing function decays so 
much that no hinges form subsequently and the structural 
response becomes elastic.

5.3 Response of Six Storey Frame
Dynamic response of six storey aluminium frame 

shown in Fig. 5.4 was computed. The elastic properties 
of the frame are listed in Fig. 5.4 and the forcing 
function which is a bilinear pressure wave is shown in 
Fig. 5.5. As stated in the beginning, the masses of 
beams and columns were assumed to be lumped at the floor 
levels. The masses lumped at first through fifth floor

2are 0.00021 Kip x sec /inch each and that at sixth
2floor level is 0.000205 Kip x sec /in.

The response curves of first and sixth floors are 

shown in Fig. 5.6. The floor deflections are plotted 
against small time interval which for this particular 
example has been taken as th of the first natural period.

-4Thus, each time interval represents 6.88 x 10 seconds.
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FIG. 5.4 SIX STOREY FRAME DETAILS 8 ELASTIC PLASTIC

PROPERTIES
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FIG. 5.5 FORCING FUNCTION FOR SIX STOREY FRAME
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The response has been computed using a damping 
^c^r to masses. The dampi5g matrix is
shown in Table 5.2.

As the structure responds, sections 1 and 8 
become plastic at the 19th time interval. At the 25th 
time interval, section 2 and 7 also become plastic. 
This turns the first storey into sway mechanism. The 
deflections continue to increase up to 284th interval. 
At 285th interval, hinges at sections 2 and 7 are re­
leased. Immediately after this, hinqes at section 1 and 
8 are released at 286th interval. As the first storey 
starts moving backwards, while remaining storeys continue 
to move forward, hinges form at sections 9, 10, 15 and 
16 at 288th interval followed by formation of hinges at 
1, 2, 7 and 8 in the negative direction. As the first 
two storeys become plastic, the deflections of first storey 
increase rapidly in the negative direction as shown by the 
dropping curve in Fig. 5.6. The remainder of the storeys 
continue to vibrate with a small amplitude in the absence 
of forcing function. This phase continues till at 488th 
interval hinges are released at 10 and 15 followed by 
further releasing of hinges at 1, 2, 7, 8, 9 and 16 at 
489th interval. Soon after, hinges are formed at 17, 18, 
23 and 24, followed by formation of hinges at 1, 2, 7, 8, 
9, 10, 11, 14, 15 and 16. This helps in regaining the 
negative deflection of first storey as shown by the rising



0.009584 0.0 0.0 0.0 0.0 0.0
0.0 0.009584 0.0 0.0 0.0
0.0 0.0 0.009584 0.0 0.0
0.0 0.0 0.0 0.009584 0.0 0.0
0.0 0.0 0.0 0.0 ' 0.009584 0.0
0.0 0.0 0.0 0.0 0.0 0.009356

Damping Matrix for Six Storey Frame

TABLE 5.2
*0
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response curve of the first floor. There is little change 
in the"deflections of rernaining Hoors as the amplitude 
of vibrati°n is very small except the second floor which 
starts moving in the negative direction with slow rate due 
to forming of sway mechanism in the first three storeys. 
The rigid body motion of first and second floor is now 
very small. The configuration of the frame after 496th 
interval is shown in Fig. 5.7. At this stage the third 
storey has again become elastic. There is little change 
in the position of remaining floors. The residual de­
flections till this stage are -0.89, 0.83, 2.57, 2.45, 
2.43 and 2.43 inches of first through sixth floors res­
pectively. The first floor is still moving in the posi­
tive direction. It may be expected that the first mass 
might reach near about the original position and the 
remainder of the masses may have permanent delfections of 
about 2y-" or so.

5.4 Conclusions
The object of this investigation has been to 

develop a simple method which could permit computation of 
dynamic response of multi-storey frames using high speed 
digital computer of high storage capacity. The method 
formulated here is quite simple and is applicable to any 
number of storeys. Though the computer program developed 

is meant for a single-bay frame, of n storeys, the same 
program with slight modification in the procedure for
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FIG. 5.7 DEFORMED CONFIGURATION OF SIX STOREY FRAME

AT 496TH TIME INTERVAL
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reproduction of [A] matrix could be used for a multi—bay 
multi-storey frame. The generality of the program has 
been kept such that only the basic data need to be read 
in along with the value of number of storeys and the 
program automatically takes care of all the computational 
work of initial conditions, and response. Any type of 
forcing function could be used and also the concentrated 
loads are allowed to act on the beams where hinges may 
form.

The program developed could compute inelastic 
dynamic response of up to ten storey frame on a computer 
having a core memory of 32,000 locations. As the method 
and program is developed for n number of storeys, the 
same could be used for computation of response of frames 
having larger number of storeys depending upon the storage 
capacity of the particular computer used.

The author feels that the objective of developing 
a simple and general method for dynamic analysis of in­
elastic multi-storey frames, which usually have idealized 
elastic perfectly plastic behaviour, has been attained. 
However, it is worth mentioning that there is still a 
vast field lying uncovered in the dynamics of inelastic 
structures which need to be explored. For example, areas 
like ’dynamic stability of structures', 'nature of damping 
in the inelastic region' need special attention due to 
their paramount importance in the dynamic analysis of
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structural systems. It still needs further exploration 
to determine the maximum number of storeys which could 
be handled for inelastic dynamic analysis of multi-storey 
frame for a given storage capacity of the computer as 
the economy in the use of storage locations depends on 
manipulation of large matrices to eliminate their storage.



APPENDIX A

PKOGKAM foR COMPUTATION OF DYNAMIC RESPOND OF INELASTIC 

MULTI-STOREY FRAI-ES

DIMFNTICNT CAN HANDLE A MiM-TI-STOREY FRAME UP TO TEN STOREYS

C (A) PROPERTIES OF GIVEN STRUCTURAL SYSTEM

... MODULOUS OF ELASTICITY

...

. .. L^I^NGtTH OF TH MEMBER IN INCHES

... NO. OF DEGREES OF FREDDMM

pm(I) ... plastic tment at ith sfction
Q(I) ... ITH EXTERNAL LOAD

L (B) PROPERTIES OF NUMERICAL INTEGRATION PROCEDURE

AMASo(I) ... ITH MASS CONCENTRATED AT ITU FLOOR LEVEL
DECOl I ) ... DAMPING COEFFICIENTS

DKU I,J) ... KRONECKER DELTA
SIME!I) ... TIME

XK(I) ... SMALL TIT INTERVAL

XK(2) ... A FRACTION OF SMALL TIME INTFRVAL FOR TRANSITI

AMU ( I ) ... EXPONENTIAL DECAY FACTOR.
APL(I) ... AMPLITUDE OF ITH DYNAMIC FORCE
OOEG(I) ... CIRCULAR FREQUENCY OF APPLIED DYNAMIC FORCE
TDF ... TIME DURATION OF FORCE, IF TIME EXCFEDS TDF

C ... FORCc = C.
TIM ... TIME DURATION OF FIRST FORCING FUNCTIONS

€4

L SUbROuTlOFS UTFD ARF SHF FOLLOWING

FORCE ••• THIS COMOUPUS THE DYNAMIC FORCES

SSFO • • • THIS COMDMPES SHE STRUCTURAL STIfN(FTSS MATRIX
XFCF ••• THIS COMDMPES THE MEMBER FORCES

c other variables used .

AC L(I,J) ... ACClLERATIDNT
D(,J) ... DISPLACEMENT VECTOR
DOX(I»J) ... DAMfPlNG MATRIX

C EEP ... FLATSIC PLATTIC TRANE ITIDN INDIC'TDR

IF.EQ.l. transition occurs
L IF.EQ.O. EXIT SIE LOOP AND TSARS INTEGRATING

c as she beginning of previous time interval
L USING SUB INTFRVAL
(, EPE ... PLASTIC-ELASTIC TRANSITION INDICATOR

IT FENCTIDNo IN THE sAME ><AY As eEP
FCE(I,J) ... DYNAMIC FORCE VECTOR

KA ... IF.EQ1
C IF.FQ.2 SUB TIME INTERVAL IT USED

C (C) PROPERTIES OF APPLIED DYNAMIC FORCE



••• F ■ •Q.3 IT SETS ST1 = O. and BECOMES Zer ®*I TS^f
••• A VARIABLE WHOSE VALUE Sl'OiWS THE TOTaI

C HINGES EXISTING AT a CERTAIN TIME instant
••• AN ARRAY WHOSE VAIUE GIVES THE HINGE no.

C _ CORRESPONDING TO 5*NF+JTH COLUMN of a MATRIX
••• IF INITAALLY .EOl FRESH DATA FOR FORCE IS READ

C AFTER TIE EQUALS TIM

C KP ( I J ••• A VARIABLE WHICH STORES THE NON ZERO ELEMENTS
C OF A MATRIX

••• FE^Q.S COMPITES DAMPIMG MATRIX from mod/L
C ANALYSIS

• •• IF.EQ.S READS DAMPIMG MATRIX
• •• IF.E':.3 COMPUTE ONLY DIAGONAL ELEMENTS OF

C DAMPIMG mATRIS PROPORT IONAS TO MASSESS
C NCTR ••• NUMBER OF TRANSITIONS OCCURED TILL A CERTAIN
C TIMS ISTANTT

NE ••• TOTAL NO. OF MEMBERS IN THE STRUCTURAL SYSTEM
C NTL ••• TOTAL NO. OF EXTERNAL LOADS

••• MAXIMUM NO# OF TRANSITIONS FOR WHICH Response
C IS COMPUTED

S( I-J) ••• structur/ls stifntsss matrix
SLTi • .. IF.TQel ■ ITEERRATINS IS REVERIES ONYS ones TIF

C STEP EAA'CM

C IF•EQ-O- INTEGRATION IS REVERSED TWO TIME
C steps eaack •

• •• IF •EQ^ NO TRANSITION HAS CCURTE D AND) NORMAL
c integrath is contimeed
C IF.IQ.l. TRANSITU LA^S'^(URTEEn AND STIF'isSS
C MATRIX IS MODIFIED

C U(I ) • .. MEMBER DEFORMATION VECTOR

C V(IjJ ) •.. VELOCITIES
TLM ••• TOTAL TIME LIMIT FOP WHICH COMPUTATION of

C RESPONSE IS TO EE CARRIED
XA((-J) ••• AN ARRAY WHICH STORES NON ZERO I TH ELEMENT

C OF K MATRIX FOR JTH MEMBER
Uli) ••• NATURAL FREQUENCIES

DIMENSION PM i 80 J-WB(90 J -WAI 90)-EK( 1-10 J -AA(10-10 J-> i10 J-PEI1-J- 
1WI 1— -EMX(13,10) ,FCE(10.3)-V(10-3) • ACL(10-3)-TAA(10,10), 

2TBE •AMASSI 10 J -XMF(10)-AL(10)-

3AM(10) - EI B(8 - J • PA(80) - AB (1 OwO) -ehR(80) -HR(?O ,3 ). TURI80 J - 

4EECC0 10) - PPA ( 8 - J - EL I 4 0 ) - T I*( 40 J - JT ( 18 J - I X i 18 J -n I (100 J
DIMENSION XK(2 J *ET(2)» TA(2J ♦ TE E2) ,TC(2J»TIME(3J
COf '''ON KP( 12-) - KL ( 5 0 J »EI A ( 8- ) • EI C ( 8 0 J »U I 120) - o I 120) - APLI10J * 

1AMlU 10) - O‘’EG( 10) • Q ( 1-0) - NTL •''E-NF - IX - KF JjN-E *XA(4»4C0*S(100-100) 

2,E(1'uU-,3)
READI5-15 )T
READ (5»10)NF-NTR,KREP»KLEM

READ I 5,1 5)T TIM-TEF-TLM

REaE(5»15)XK(1)•XK(2)«(TIME(I)-I=1«1)

DO 7001 1=11NF
REEAfSslSiMDDf1,-!),'J=l*Mi J

70-1 CONTINUE

READ (5-15 )( AM^SS i I J - I = 1-NF J

READ(5-15)(APL(I J - I = 1-NF)
READ(5-15)(AMU(I J - I = 1>NF)
READ (5-15 ) (OMMT( I ) -1 = 1»IFJ 
READI5-1b)(ETCO(I),I=1*NFJ 

NH = 8*NF
NT=4*NF



N=3*NE -z
KJ=5*NF

KD=2*NF+1

<K=KJ+1
NTL=KJ

IX=NF-1

MA=2*NF

la=nf+i
IP=8*NF-4

IK=MA-3
READ(5 * 15) (PM(I ) * 1 = 1*NH)

READ(5*15) (ELt I ) ,1 = 1.ME)
READ(5, 15 ) (El ( I ) , I =1*NE)
READ( 5,15 ) (Q ( I ) * I =LA*NTL )

READ(5*15) (Q(1 ) * 1 = 1*NF)
DC 70CC J=12,N*12

K=J/3+NF
KP(J-ll)=K-6
KP(J-10)=K-2

KP(J-9)=J/12
KP(J-8)=KP(J-10)

KP (J-7)=K-1
KP(J-6)=K-3
KP(J-5)=KP(J-7)

KP(J-4)=K
KP(J-3 ) =KP(J-6)

KP(J-2)= KP (J-4)

KP (J-l)=K-4

KP(J)=KP(J-9)

700C CONTINUE
KP(1)=0
KP(11 ) =0

DO 300 M=1*NE
XA(1»M)=4•*E I(M)/EL(M)

XA(2’M)=2. ‘El ( M) /EL(M)
XA ( 3 ,.M ) =-6 • *E I <-1) / ( EL ( M ) **2 )

300 XA(4, ‘ 1) = 12•MEI (M)/(EL(M)**3 )
WRITE(6 »1019)NF *NTR.KREP’KLEM*(KP( I ) , I=1 . 1)

WRITE(6’2 )NH»NE ’ (PM(1)•1=1«NH)

WRITE(6»1C3O)E
WRITE(6»1031 ) < EL( I ) * I = 1 ’NE)

WRITE(6,1 32 ) (EI (I) * 1=1*NE)
’WRI TE ( 6»1033 )XK ( 1) * XK ( 2 ) * TLM
WRITE(6 »14 34 ) (AMASS(I)•I=1*NF)
WRITE(6*1>35)(Q(I)’I=LA*NTL)

WRITE(6,1036) (APL <I ) * 1 = 1*NF )
WRITE(6*1037)( AMU(I)*1=1*MF)
WRITE(6* 1038 ) (OMEG( I ) * 1 = 1 ’NF )
WRITE(6*1039) (DECO(I)* 1 = 1’NF)

15 FORMAT(8F1D.6)

19 FCRMAT(4OI2) utmcpc, - . t ->,/*. i MP OF ELEMENTS
20 FORMAT(1H-*25H NO OF POSSIBLE (j^GES - .. ’J

1 ,I2//1X,2OH PLASTIC MOMENTS A”E///(1X•8F16.

22 FORMAT(1H-»2JH STIFFNESS MATRIX I ///)

211 FORMAT(IX *8E16•6)
213 FORMAT <1H->13H E 1 G^IVALUE = . E16.8 > ? ( )

215 FORMAT(1H-*26H CORRESPONDING EIjE
23^ FORMAT(IX*13 )

66
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1019 FOOMAT(1H--,27HN0 OF DEGREES OF FREEDOM = . 4 I 6/,(40I 3))
1030 FORMAT (1H-,4HE = ,F16.6)
1031 FORMAT(1H-»11HEENGTHS AREE(8F1666))

1032 FORMAT ( Jh-,2|H-IMOMENT r>F INERTIAS AI E E (8F Fl 6 6 6))

1033 FORMAT(1H-,18HTImE INTERVALS AnE/(8F16.6))
1035 FORMAT(1H-»9HL0ADS ARRE(8F1666))

1034 FORMAT ( 1H-,1UH?MASSES ARRK 8F16.6 ) )

1036 FOR:M\T(1^-,14HAM^I_n^UDES AP E E (8F16.6))
1037 FORMAT(1H-,8HA"US ARE/(8F16.6))
1038 FORMAT ( 9HOMEGS ARRE (8Flo 66))
1039 FORMAT (1H-»24HD A MPINNG COEFFICIENTS ARE E (8F16 6t>))

C CALCULATIOA OA INITILA CONDITINSS

C CALCULATE. CA STFFNNESA MATRIX
TMSsTLMEO )
EQU I VALENCE(TIME(3),TMS)

CALL STEM
CALL INVMAT(S,100 ,NTL,0.,IEO,N )
wRITE(6*230)IER
DO 314 K=1»NTL

D(K,3)=u.c

DO 311 J=1,^NTL
311 D(K»3)=D(K»3)+S((KJ)*Q(J)

D(K»3)=D(K3 )/E
314 CONTINUE

DO 393 I=1»NF
DO 393 J=1 ,NF

A( I J) =S(I , J)/E
393 CONTINUE

WII^T^((5,22)

CALL INVMAT(A,10»NF,0.»IER,NI)
C A NOW BECOMES STIFFNESS MATRIX

DO 395 I=1»NF

395 WIT|E(6,211) (A (I »J) ,J = 1»NF)

DO 322 I=1,NF
DO 322 J=1»NF
B( I ,J) =0.0

I F(I.EQ.J)B(I»J) = 1.0
322 AA(I,J)aA(I,J)/AMASS(I)

CALL EBERVCJ AA,NF,1,200,.01 ,. 001,10000,10 ,B ,-1.0)
C XNFF ARE NATURAL FREQUENCISS

C B IS EIGNWECTOR

DO 323 1=1,NF

XNF(I)=SQRT(AA(1,1))
WRITE(6,213)XNF(I )

32 3 WWITE(6,2H )(B(I,J),J=1,NF)
GO TO 410

409 C^=AAAJjJ)

AAAJjJ)=AA( 1,1)
AA(( ,I)=CA

GO TO 407
410 K=2

J = K-1
407 DO 396 IaKNF

IF(AA(J,J).GT.AA(I,I>)GO TO 409

396 CONTINUE

QP=SQRT(AA(1 ,1 ) )
WOITE(6,223)QP r,

223 FORMAT(1H-+,27H FIRST OATUOAL FOE.0 U . JKY = ,E *6



DO 3 1=1,2 «•
DT(I ) =XK(I)*6.28/QP
TA(I)=2./DT(I)

TB(I)=TAU)*2.
3 TCI I)=TT(I)/DT(I )

GO TO^aS^l^AHKREP

933 DO 326 K=1,NF

DO 325 I = 1 ,NF •
DO 324 J=1,NF

324 AAU , J)=BU ,J)/B(I K)

325 W ( I ) =2.AXMASS ( K ) *XNF ( I ) *DECO( ( )
CALL S^I_'^E(AA,W,ID,Nr,10)
DO 326 L=1,NF

326 DMX(K,L)=W(L)
GO TO 932

931 READ(5,15)) (DMX((,J),J=1,NF),I=1,NF)
GO TO 932

934 DO 935 1=11NF
DO 935 J=1,NF
DMX(I,J)=0.0
IF(I.EQ.J)DMX(I,J)=2.AXMASS(I)*QP*DECO(I)

935 CONTINUE

932 WRITT((,212)
212 FORIXAT(1H-,3OH DAMPING COEFFICIENT mIrIX IS//)

DO 327 1=1,NF
327 WRITE(612111 (DMX( IU,,J11N^FI

CALL TICKS

CALL FORCCITMS.FCE)

DO 333 1=11NF
DU ,1)jDI ,3 )
ACL(1,1)=FCE(1,3)/AMASS( I )

333 VU ,1)=0.0

WRII-Td *214 )
214 FORMAT(1H-,13X,4HTIME,15X , 5HDEFLN , 16X,3HVEL,16X,5HACCLN,15X,5HFO

IE//)
WRITE <^^|1?)TIM^(11^(11,W1,1) ,ACL(1,1 1) FCE(1,3)

DO 344 1=2,NF
344 WRITE(61218)DU ,1 )»V(I ,1) ,ACL U,1),FCE(I,3)

DO 345 1=11NF
DU ,2)jDU ,1 )
VU ,2)=V( I ,1 )
PDU )=0.0

345 ACCU,2)=ACL(1,1)
SLTi=u.u
KB = O
K=2*KJ

DO 899 I=K( ,K
899 QI ) = 0.0

DO 362 1 = 1|nH
DIC(I)j0. >
PPA(I)=L.u
DIA(I)= 0 . u
PHH(()=0.
HR(I,1)j0.u

HH((,2)=0.0
362 HR(I,3)=0.0

K=2*IX
DO 33 1 = 11K
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33 JT(1)=3

kF = u

4-2 CALL TICKS
SLT2-0.0
EEP=0.0
EPEeO.0

KA = 1
CALL STEM
mx=ntl-nf
DO 335 1=1iNF

DO 335 J=1.NF
335 TAAII»U)=5(I.J)

DO 336 1=11NF
DO 336 J=1.MX
K=J+NF

336 n^B^bJ)=^(I»K)

DO 337 1=1.MX
K=NF+I

DO 337 J=1.NF
337 TCCII. J)=S(K J)

DO 334 1=1.MX

K=NF+I

DO 334 J=1»MX
L=NF+J

334 S I,J)=SIK.L )
CALL I / < VM ATIS.1 • ■ , X»O..1 E R» HI)
AAITC(6.23o) IFR

DO 366 1 = 1 .NF
DO 365 J=1»MX
C = 0.0
DO 364 L=1»MX

364 C==cTTBII.L))S(L»J)
365 U(J)=C

DO 366 J=1mMX

366 TBB(I.J)=UIJ)

DO 339 1=1.MX

K=NF+I
339 AWII)=Q I K)

DO 368 1=1.NF
AAI I ) = u. O
DO 368 J=1.MX

368 AAII )=AA(I JtT^E^UlJU^WBIJ)

DO 9o2 1 = 1.NF
DO 901 J=1.NF
C = 0 .0

DO 90- L=1mMX
9uu C=CcTTBII»l)*TCCILlJ)

9ul UIJ)=C
DO 9-2 J=1.NF
TBBII.J)=U<J)
TAAII,J)=TAAII,J)-TBBII,J)

902 AI ,J) = TAAI I , J )
CALL INVM AT IA»1o. N F I-l , I E ' ♦I )

A19 IFI IEIRNE.- )W ITEI6.229)

call ticks

229 FOfRMATI1H-.3oH RESISTANCE MATRIX IS SINGULAR)

4uo IFIKA.FG.11KB = KB + 1
IFlKB.FQ.3)SLT1=0.0



IF(KE.EQ.3.OR.KA<JfcQ.2)KB = O
TIME(3)=TIME(2)+DT(KA) 70
IF(TI - E(3).GE.TDF)GO TO 1300
IF(TIEE(3).GC. TT M)KLEM = IKLEM' + 1

IF(KLEE.EQ.2)GO TO 937
938 GO TO 88

937 READ(5'15) (AMU(I)»I = 1 ,NF))(OMEE( I),I = 1,FF)
SLT1=1.O
KLEE=KLEE+1

88 CALL FORCE(TfES,FCE)

1003 GO TO 1002
100c DO 1001 1=1,NF

l--1 FCE(I»3)=c.
1OU2 DO 328 1=11NF

DO 328 J=1»FF
328 AB(I »J)=TC(KA)*DK(I ,J)*EMASS( I )+TA(IKA)*d1x( I , J)+TAA( I , J)*E

DO 33- 1=11FF
AL U)=0.
AM<I )=0.
DO 329 J=1»FF
AL( I )=AL ( I) + (TC ((KA)*DK( I ,))*EiEASS( I ) +TA(KA)*DMX( I, J))dd(J»2 >

329 AE I )=AE( I ) + (TB(KA)*DK( I iJHAEASSU )+DMX( I,J))*V(J»2)
33u AW) I )=AL( I )+AE( I )+AIEASS( i ^aCEU ,2)+FCE( I ,3 )-WA A T )

CALL SOOLEtAAiM, ILdNF»10)

DO 331 1=1.FF
AD( I) = WA ( I )
WAU ) = AWU ) — PD ( I )

331 D( I ,3 )=rtA( I )
DO 9c4 1=1»NX

X = c.c
DO 9c3 J=1»FF

903 X=X+TCC(I»J)*WA(J)
9cA UU=X

DO 372 1=11EX

9-5 AW) I ) = -U( )
I F(FCTF .EQ.0 )WA( I )=WW( I ) /E + WA) ( )

372 CONTINUE

DO 907 1 = 1,E1X

X = — . 0
DO 9c6 J = 1eEX

906 X = X+S(I,J)*WA(J )
907 UI)=X

DO 908 1=1,EX
9u8 AW) I)=UU )

DO 352 I=lA,FTl

K=I-FF

352 D(I»3fcAAHK )

I F(KF.EU. 0)GO TO 405
DO 380 1 = 1»IK,2

IE = 2* I +FF
IL=I+1
IF(JT(I).FE.O)GO TO 438

E1 = LX(I)
HR (i il ♦ 3 ) = D ( E , 3 )

4j8 IF(JT((L).FE.O)GO TO 380

E12 = LX (IL )
HR (Ei2,3 ) = D (I'i + ' - ’ 3 )

38- COFTIFUE

70



I

DO 36- J=1»KF
MZ = J+nJ

L = KL(J )
MPX=L/8
NPZ = i-OD ( L »8 )+1

GO TO (700>701»702»702,360,705*706,706)»MPZ
702 MPX=MPX+1

I F(MPX.EQ.NF)GO TO 7-3
7-1 IFtL.EQ.DGO TO 711

I L=2*MPX-1

GO TO 707

7-6 MPX=MPX+1

I F(MPX.EQ.NF)GO TO 709

I L = 2*MPX

GO TO 707

700 ifmpx.ec,.i 1 go to 711
IL=2*MP*-2

7-7 I F(JT(I L).EQ.0)GO TO 711
M==*IL+NF

HR(L»3)=DMZ ,3)-D(M3)
GO TO 360

709 M=KJ
GO TO 708

7-3 M=KJ-2

GO TO 7-8
705 M=(L+1 )/2+NF

708 HR(L»3)=D(MZ,3)-D(M,3)
HR(L-1,3)=-HR(L»3)
GO TO 360

711 HR(L»3)=D(MZ»31
360 CONTINUE

4-5 DO 354 I = iNH

DIB(I)=U.O

354 THR([)=HR(I,3)+PHR(I)
CALL XFCE

DO 390 1=11NE

PA(2*I-1)=P(3*I-2)+PPA(2 * I-1 1
39u PA(2*I )=P(3*I-1)+PPA(2* I )

C PLASTIC - ELASTIC TRANSITION
DO 341 I = 1nNH

IF(DIA(I).EG.-.J)GO TO 341
DIBU)=l.u

916 IF(DIA(I)*(HR(I»3>-HR(I ♦ 2)).LT.0.)GO TO 341

IF(EPE.EG.-.0)GO TO 4C

GO TO 42

4- IF(EEP.EQ.o.u) GO TO 43
42 DIA(I)=0.0

DIC(I)=0.
WRITE(6>22-) I
SLT2=1.0

SLT1=1.O
DO 35 8 M = 1IK»2
K = J*M-2

IL=M+1

IF( Ieq<^..O F< . I. EQ. (K + l ). . ' . ’
IF( I.EJ. ( k+4 ).OR.IiEQ.( K+5 ).OR.I.ECQ ( K+K Hr

358 Continue
DO 387 J=4,IP,8

71



IF (I•Eq•J)GO i0 1014

I r (IeQ.C^-^IIH^Q TO 42 5 72
387 CONTINUE

IF(I.,Eq(I P~2) Igo TO 1012
I F<I.EQ.(IP+2)Igo To 1013

IF(I»ECG1«OI'r. • I •EG«8»0rJ I»rQ. ( IP —i ) OP t fq ( iP+o) igo to z-»e
GO TO 341 ’

424 jT ( ILI=JT( lL_) + 1
M=IL

GO TO 8u2
423 JT ( •') = JT (M} + 1

8U2 IF(JT(M).GTt11 GO TO 1015

IF(JT(M.EQ.l.AND.LX(M)iNEr1IGO TO 431
IF(jT(MlirQ.1iAND.LX(M).rQ.IlG0 TO 435
GO TO 341

431 IT=LX(MI
LX(MI=O

434 DIC(IT)=0.v
LAX=2*M+NF

Q(LAX ) =PA ( I )
KF=KF+1

KL(KF)=IT

Lt3X = KF+KJ
Q(LBX)=PA( IT }

GO TO 425
435 LX(M)=0

GO TO 432
1012 Q(KJ-2|=0.0

GO TO 432
1013 Q((jJ)=0.0

GO TO 432
1014

1011 Q(LCX )=u.O

432 D1C(I 1=u.u
8U5 GO TO 341

1015 LDX=2*M+NF

1O1U Q(LDX)=Q(LDX(+PA< I )
425 DO 301 J=1»jF

IF(I.EQjJL(J))GO TO 403
301 CONTINUE

GO TO 341

403 KF=KE-1

I F(JF.LT.J|GO TO 341
DO 8 o 7 L = J > K F
JL(LI=JL(L+1 )
LEX=L+KJ
Q(LEX)=Q(LEX + 1 )

807 CONTINUE
341 CONTINUE

220 F0RMAT(1H-»24H HINGE IS RELEASED AT - ,121

ELASTIC - PLASTIC TRANSITION

DO 342 1 = 1 , NEI
I F(DIo(I|.GT.0.-)G0 TO 342
IF(PA( I1 l1.(1.0.AND.PA( 1 |+pN< 11 1 iGT.0.D)r0 TO 34?
IF(PA(I).GT.0.0.AND.(flA(II-PM(I)l.lT.0.0IG0 TO 342

^(^.■^.0.0)60 TO 45

GO TO 47

45 IFIEP^ • >E^q 0.0IG0 TO 48



47 DIAC I)=SIGN(1.0»AA(I)) 73
I F(PA( I ).FQ.-. )G0 TO 412

WRITE(6»221 ) I»DA^( I ) ,PA(I )
PMC I ) = PAH)*DaG)

SLT2=1.u
SLTl=l.u
DO 303 J=1♦IJ>2
j=4*J-2

IT=J+1
IF(I.EQK.COiI.EQ.(K+1 ).OR.I.EQ. (K + 7))G0 TO 420

IFII.EGQ (K + 4).OR.I.EQ.(K + 5).OR.I.FCQ (K + 14))GO TO 421
303 CONTINUE

DO 386 Ji4,IP,8
IF(IfQQ.J)GO TO 1016

I F( I.EQ.I3 + 1) )GO TO 1005
386 CONTINUE

IF( I.FQ. ( IP-2 )G0 TO 1009
IFC iEQ. ( IP+2 ) )G0 TO 1006
IFC I .FQ. 1 .OR. I .FQi8«OR. I .FQ. ( I P-1 ) .OR. I .FQ. ( T P+ ) )G0 TO
GO TO 342

421 J=IT
42^ JT(J)iJT(J)-1

8u6 IFCUT(T).GTtJ)GO TO 422
IFCJT ( J) .EQ.OJTXC J) = I
GO TO 427

422 KF=KF+1 ~

KL(KF)=I
TFX=KF+KT

Q(LFX ) =PA ( I )
LGX = l2*J+NF

Q(LGX)pQ(LGX)-PA( I )
GO TO 342

10T9 Q(JJ-2))PPU )
GO TO 427

1016 THX=JT2+NF+1

10T4 QU^HX ) pPA( I )
GO TO 427

1006 QUA) =PA( I )
427 DIC(()p1.0

GO TO 342

1005 KFpJF+1
KLCKF) = I
tixpkf+jt
Q(TIX)= PA( I )

342 CONTINUF

221 FORMAT(1H4»22H HINGF IS FORMFD AT - , I2»2 F2O.6)
DO 391 I=1»NF
D(1»3)= WD( I )
C = Db3l-Db2)
V( I,3) pTA(KA))-C-V( I >2)

391 ACL(I,3)pTC(AA1*J-TB(JA)*V( I ,2)-ACL (( ♦?)

I F(SLT2»;G«0 •t.AND*JA.FO.2)GO TO 1017

WITE(6,21f) TIMF C 3 »D (1»3),V(1’3) >aJL UG ) ♦ FCF( b')
219 FORMAT(IX»5F20.6)

DO 343 I=2,NF
34 3 WIT E(6» 218 ) DC I»3HV( 1 >3 ) >ACL(I»3 > GCE (I ♦ Q )
218 FORi«lAT(21 X IkEF2 • 6)

1017 DO 359 IpINJF



74DII»1)=DII,2) 74
V(I Jh=V(I,2 )
ACL 11) =ACL I1,2)
DI ,2)=DI ,3 )
VI ,2)iV(I ,3 )

359 ACL(I,2)=AAL(I,3)

DO 3^2 1 = lnNH

HR(I,I)= HR (I,2)

3u2 HRII»2)=HR(1,3)
TImJ(1)=TIMEI2)

TIME(2)=TImEI3 )
936 IF(TIME(2).GT.TlM)GO TO 406

IFISLT2.EQ.0.0)qO TO 400

NCTR=NCTR+1

917 IF(NCTR.GT.NER)GO TO 406
DO 361 K=1,NH

PPAHO=PA(K)
HR((.»2)=(.v

361 PHR(K)=THR(K )
DO 351 1 = 1 NF

351 PDI)=D(I,2 )
ntl=kj+kf

918 GO TO 402
C 43 IS EXIT STATEMENT FOR PLASTIC - ELASTIC TRANSITION

43 EPE=1.J
KA = 2

IFISLTl.GT. »U)GO TO 400
DO 370 1=l,NF

VI ,2)=V (I ,1 )

DI »2)=D( I ,1 )
370 ACLII ,2)=ACLI I ♦ 1 )

DO 930 1=1,NH
930 HRII,2)=HRI1,1)

TIMEI2)=TIMEI1)
GO TO 400

C 48 IS EXIT STATEMENT FOR ELASTIC - PLASTIC TRAN I TIT ON

48 EEPp1.0
KA = 2
GO TO 400

915 GO TO 406

412 WRIIT(6»222)
222 FORMATI1H+,7HERROR=l)
4u6 wl&TT(6»23)

23 FORMATlIU-i^H COMPUTATION ENDS)

STOP
END

SIBFTC STFM8

SUBROUTINE STFM

0 SUBROUTINE TO COMPUTE STIFFNESS MATRIX

DIMENSION AGI6)
COMMON KP <12 - )»l LI5C ),DIA(flO),DILIAO),UI12n ),PI1 2n)AP|. I10),

1AMTI 10 ) , OMEG I10 ,QI100) ,NTL,NE,NF, IX,KF,KJ-N,F«XA(4aP) ,EI1 00,1 "0 )
2,DI100,3)

DO 38 T=1,NTL
DO 38 K=1,NTL

IT = -1
IK = u

1 ( u , ) - -• •



75DO 38 M=1,NE 75
I=3*M

IJ=IJ+2

IK=IK+2
DO 375 L=l»6

375 AG(L)=o.u

IF(J•j••Kj• > K D• • •K J)G 0 TO 111
Ml=KP(1-2 )

M2 = KP(I -1)
M3 = KP( I )
IF(J.EQ.M1)AG(1)=1.0-DIA ( I J)**2aDIC(I J)
IF(K.EQ.M1)AG(4) = 1.O-DIA1I J)**2 + DIC(I J)

IF(j.EQ.M2)AG(2)=11 0-DIA(lK)**?+D1CTTK)
if(k.eg.mm)ag(5)=1i0-dia( ik)*^-^;^+^di^g( ik)

IF(j.EQ.M3)AG(3 ) = 1.0
IF(K.EG»M3)AG(6) = 1 . 0

DO 376 IC=1,NF
MMz11*IC-3

I F ( j. EQ M3.AND. I .EQ.MZ) AG U) =-1.0
IF1K.EQ.M3•ANDd I.EQ.MZ)AG( 6)1-1.0

376 CONTINUE

I F(j.GT.IX.AND.K.GT.IX)GO TO 200

DO 373 ID=1,IX
MLLialD

I F ( I .EQ. (ML + 3 ) .AND. J. EQ. ID) A.GU) i_] .0

I F(IeQ. (ML a 3).ANDk.Eq ID)AG(6)i-1.0
IF1I.EQ. (MLA12 ) .AND.J.EG. ID)AG(3)i-i .

IF(I.EQ.(ML+12).AND.K.EQ.ID)AG(fc)i-l.

378 CONTINUE

2uu IF(KF.EG.~)GO TO 38

IF(j.lE.Kj«A'N^«I^»LE.KJ)GO TO 38

111 DO 384 L=1»KF
IY=KL(L)

ID=L+KJ

IF1IY.EQ.IJ.AND.J.EQ.ID)AG( 1 I = 1.0
IF(IY.EQ.IJ.AND•).EQ•ID)AG(4)i].0

I F1IY.EQ.IK.AND.J.EQ.ID)AG(2) = 1.0
IF ( I t .eq.IK.AND.K. - 0 .[l- I AG ( 5 I = 1 .

384 CONTINUE

38 T(j,K) = (AG(1)*XA( 1 . )+AG(2>*XA(2»M)+AGO)*XAO,m))*AG(a)-(AG -]»♦
1(2 »IM)+AG( 2)*XA( 1 »M)+AG( 3)*XA(3»M) )*AG(5) + (A G (1|*XA(3 »M+AG())*X

2»M Ji-AAG I^iXX J)*AG(6 ) aT ( J»K)

RETURN
END

5IBFTC XFGE8

subroutine xfge
0 SUBROUTINE TO COMPUTE MEMBER FORGES

COMMON KP(12 2),KK(50 ),DIA(80)>DIC(?0)♦((12C)»P(120) ,APL(10)»

1AMU(1G ,OMEG( 1 0 ,Q(100) ,NTL»NE»NF,IX, 'F»K J-QE»XA(4.40)»S(100u00)

2»D (10 o 0,3)

K = 0
KG = 0

DO ..312 1 = 1 >N
U( )=v.^

KG = KG"A1

IF(TG.uTt3)K=K+1
IF(KG.EQ.3)GG=>

DO 312 J=1NTL

AND.J.EG


AuX = u . 0
I F(J.G1.nJ)GO TO 912 76
IA = KP( I )

I F (j • • •••<•*• • _Q.O)AGX=1»Q
IF(j». • • • T.))AGX = l.O-r'IA(K)*2? + Dir(K)
I F(J.GT.IX)GO TO 7

M=12*J+3
IF( I .EQ.MAAGX = -1.

I F(I.EQ.(M+9))AGX = -1.

7 CONTINUE

IF( I.NE.3H J+2-NF) )GO TO 312
I F(MOD(I,122.NE.9)GO TO 312

IFd.LE. ( 12*NF-3) )AGXx-1.t

7> GO TO 312
912 DO 71 L=1,KF

IY = Kl (L)
ID=L+KJ

IF( Y'E^Qk.aN^D.^ .JeQ. iIJG^O TO 72
71 CONTINUE

GO TO 312
72 IF(KG.EqJ3)GO TO 312

AGXx11Q
312 UI ) =U(I)+AGXxDI(j3)

DO 313 M=1»NE

P( 3*M-2 ) = (U( 3*M-2 )*XA ( 1 ,‘1 )+U( 3*M-1 )*XA( 2 ,M)+U( 3*M ) *XA ( 3 ) ) *E
P 3*M-1 ) = (U( 3*M-2)*XA(2 »M)+U(3*M-1 ) *XA(1,M)+U(3*M) *XA (3»M))*E

313 P ( 3*M ) = (U ( 3*.M-2 )*XA ( 3M ) +L ( 3*M-1 ) *XA ( 3 , M ) +U ( ?*M ) *XA (4 ,") )*r
return
END

S1BFTC FORCE7

SUBROUTINE FORCE(TME,FCS)
C SUBROUTINE TO COMPUTE THE DYNAMIC FORCES USED IN THE ANALYSIS
C OF TWO-STOREY FRAME

DIMENSION FCS(1O»3)

COMMON KP(122),KL(5G),DIA(8 0),DIC(P0),U(120HP(120) ,APL(1Q),

1AMIU1U) , OMEG (1Q,Q(100),NTL ,NE »NF , IX ,KF,KJ • N,E»XA )4,4Q ) ,SdQ0,1QQ)
2»D(luu,3)

DO 332 1=1,NF

332 FCC((, 3)=AP_(I)*EXP(-AMUd)*TME)*CUSIUMEG(I)tT1E)
RETURN

END
S1BFTC F0RCE8

SUBROOITINE FOfR^[E(TME,FCS)
C SUBROUTINE TO COMPUTE THE DYNA'TC FORCES USED IN THE ANALYSIS dr
C SIX-STOREY FRAME

DIMENSION FCC(1D»3)
COMMON KPd2Q,KL(5Q) ,DIA(8 0 ),DIC(8 0),T(120),P(12 C),APLdQ) ,

1AMT (D »OMEG (10) ,Q(1QQ) NILNE’NF ,IX,KF,KJ »N ,e,xA(4,4C), S(1OC,1QT)

2 > ID Dluu ,3 )
DO 332 »1,NF

332 FCS( I ,3)=APL( I )*IAMU( I ) "TME + Q^^GC I ) )
RETURN

END



FIG. A.I FLOW DIAGRAM FOR RESPONSE COMPUTATION
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