A FORCE SENSING RESISTOR
FOR MONITORING PLANTAR FORCE
UNDER FOOT

A FORCE SENSING RESISTOR
 FOR MONITORING PLANTAR FORCE
 UNDER FOOT
 By
 David Martin Hiemstra, B.Eng.Mgt.

A Project
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Master of Engineering
McMaster University

(Electrical Engineering)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: A Force Sensing Resistor for Monitoring Plantar Force

AUTHOR: David Martin Hiemstra, B.Eng.Mgt. McMaster University

SUPERVISOR: Dr. H. de Bruin

NUMBER OF PAGES: vii,93

ABSTRACT

The needs for obtaining quantitative plantar force information range from basic research into foot function to assisting patients in the use of prosthetic devices. This project reviews present force monitoring techniques, describes the evaluation of a Force Sensing Resistor for monitoring plantar force and proposes a low power portable plantar force monitoring system utilizing an array of force sensing resistors.

TABLE OF CONTENTS

page
1
Chapter 1 INTRODUCTION
1.0 Project Summary 1
1.1 Need for Monitoring Plantar Force 2
1.2 Review of Force Sensing Techniques 2
a) Resistive Techniques 3
i) Resistive Strain Gage 3
ii) Semiconductor Strain Gage 3
iii) Force Sensing Resistor 4
b) Piezoelectric Techniques 5
i) Polycrystalline Ceramics 5
ii) Polymers 5
c) Capacitive Techniques 6
1.3 Transducer Types 6
Chapter 2 BACKGROUND 9
2.0 Review of Plantar Force Monitoring Techniques 9
a)Qualitative Techniques 9
b) Stationary Sensors 9
c) Insole Sensors 10
d)Outside Sole Sensors 10
2.1 Time Domain Characteristics of Plantar Force 11
2.2 Ideal Characteristics of a Plantar Force Sensor 13
Chapter 3 IMPLEMENTATION OF THE SENSOR 15
3.0 The Force Sensing Resistor 15
a) FSR Construction 15
b) FSR Principle of Operation 16
c) FSR Characteristics 17
3.1 PSPICE Macromodel of FSR 21
3.2 Readout Circuitry for Evaluation of Force Sensing 25
Resistor
a) Schematic of Readout Circuitry for FSR 25
b) Technical Description of Readout Circuitry 28
c) Simulation of Readout Circuitry 29
i) DC Analysis 29
ii) AC Analysis 33
iii) Transient Analysis 36
iv) Noise Analysis 39
d) Evaluation of Force Sensing Resistor/Readout 42
Circuitry
Chapter IV A PROPOSED LOW POWER PORTABLE PLANTAR FORCE 47
READOUT SYSTEM
4.0 Force Sensing Resistor Configuration 47
4.1 Readout Electronics Configuration 49
Chapter V CONCLUSIONS 51Appendix

1) PSPICE Circuit File Listing for FSR Readout 52
Circuitry
2) Technical Overview Force and Position Sensing 61
Resistor
3) Test Data Sheet FSR/Readout Electronics DC Transfer 67
Characteristic
4) Test Data Analysis DC Transfer Characteristic 69
5) Active Component Data Sheets for FSR Evaluation 75
Readout Circuitry
6) Active Component Data Sheets for Proposed Readout 79
Circuitry
References 92

CHAPTER 1

INTRODUCTION

1.0 Project Summary

This project entitled "A FORCE SENSING RESISTOR FOR MONITORING PLANTAR FORCE UNDER FOOT" first covers the need for monitoring plantar force. This is followed by a review of force sensor characteristics, which leads into an evaluation of present techniques for plantar force monitoring. A quantitative discussion of plantar force time domain characteristics is then provided. This leads into a brief description of the ideal characteristics of a sensor to monitor plantar force. Once the background has been established a detailed description of the "FORCE SENSING RESISTOR (FSR)" is provided including construction, principle of operation, terminal characteristics and a macromodel. A suitable readout circuit for $F S R$ evaluation is presented in schematic form, along with a technical description and FSR/readout circuit simulation results. Experimental evaluation of prototype FSR/readout circuitry is presented. Finally a proposal for further work is presented describing a completely portable plantar force monitoring system based upon the "FORCE SENSING RESISTOR". This system shows considerable promise since it is accurate and reliable with relatively low cost.

1.1 Need for Monitoring Plantar Force

The need for obtaining quantitative plantar force information is driven by a diverse range of interests, which range from basic research into foot function to assisting patients in the use of prosthetic devices. The list below provides a detailed summary:

1) Provide a description of normal foot function. [12]
2) To assess pathological foot function.[15]
3) To assess lower limb disorders.[14]
4) Research into biomechanics.
5) Monitor usefulness of drug therapy, surgery, physiotherapy and orthopaedic foot wear.
6) Dynamic change between walking and running. [12]
7) Feedback for sensory impaired foot or limb.
8) Feedback for prosthetic and assistive devices.[15]
1.2 Review of Force Sensing Techniques

To sense force a transducer is used to convert the force to an electrical signal. This electrical signal may be a direct result of the applied force or due to a change in transducer characteristics as a result of applied force which modulates a electrical excitation. Respectively these are called two port passive and three port active force transducers. Examples of each type are found in the following discussion of different force sensor types.
a) Resistive Techniques
i) Resistive Strain Gage

In a resistive strain gage the force is measured indirectly by measuring deflection in a calibrated carrier. The resistive element changes in length and is placed under strain hence causing a change in its resistance. These can be formed with an unbonded wire stretched between two points or the more practical bonded configuration in wire or foil. Figure 1 shows typical patterns of a bonded wire and foil strain gage.[18]

ii) Semiconductor Strain Gage

The semiconductor strain gage principle of operation is similar to the resistive strain gage, improved sensitivity is provided by increased piezoresistive sensitivity at the price of linearity and temperature sensitivity. The ability to micromachine 3-D structures in silicon allows for the fabrication of a diaphragm which flexes under a applied force and results in piezoresistive elements grown on it to change in value. These devices can be
quite user friendly if they include amplifiers and compensation circuitry. Figure 2 shows a picture of a typical device, packaged in a hybrid fashion with readout electronics. $[17,18,19,20]$

Figure 2 Typical Semiconductor Strain Gage. [10]
iii) Force Sensing Resistor

A FSR's terminal resistance responds to force in a piecewise linear power law fashion as shown in Figure 7. This is a result of compression of a conductive polymer against two interdigitated conductors. Figure 3 shows a picture of a typical force sensing resistor.[2]

b) Piezoelectric Types

Piezoelectric materials generate an electrical potential when mechanically strained. The electrical potential is a result of lattice distortion due to applied force causing a displacement of charge. The response of piezoelectric devices is inherently AC coupled. These devices are passive in nature and thus require no external excitation.
i) Polycrystalline Ceramics

Ceramics such as barium titanate and lead zirconate can be rendered piezoelectric by subjecting them to a strong electric field (1E6 V / m) for a given period of time. These passive transducers can produce for example $140 \mathrm{pC} / \mathrm{N}$ response.[19]
ii) Polymers

Polyvinylidene fluoride film (PVDF) is made piezoelectric by
extruding a sheet, then orienting material by stretching and poling by application of a high electric field. The main advantage of this material is it's flexibility and ability to form complex arrays and shapes.[16]
c) Capacitive Types

Capacitive force transducers rely on placing a compliant dielectric material between two plates which are to be subjected to the mechanical force. The response is inherently AC coupled if excitation is DC, but a DC coupled response can be obtained by AC excitation with phase sensitive detector readout circuitry. The material used as the dielectric must be compressible to allow for variation in plate spacing to achieve acceptable sensitivity.[13]

1.3 Transducer Types

The chart below provides a quick overview of the different force transducer types.

Strain Gage
Terminal Characteristics: Resistance shift with applied strain. Typical resistance is $100-350$ Ohms with a total variation of 0.1% for full scale applied force.

Readout Circuitry: Requires high quality low level instrumentation amplifier and stable excitation source.

Accuracy: Better than 0.05% of full scale with suitable compensation.[18]

Semiconductor Strain Gage
Terminal Characteristics: Resistance shifts with applied
force. Typical resistance is $1000-4000$ ohms with a total variation of 1% for full scale applied force.

Readout Circuitry: Requires instrumentation amplifier, stable excitation source and temperature compensation is typically included.

Accuracy: Better than 0.5% of full scale possible.[18]

Force Sensing Resistor

Terminal Characteristics: Resistance varies in a piecewise linear power law fashion with applied force. Ranges from 1 MOhm to 2 kOhm.

Readout Circuitry: Simple buffer or transimpedance amplifier with low gain. For a linear readout, linearization is best performed digitally in software.

Accuracy: Better than 2% of full scale range possible.[3]

Piezoelectric Types

Terminal Characteristics: True charge output device providing AC coupled response up to 50 kHz . Is equivalent to a variable capacitor in series with a voltage source.

Readout Circuitry: Charge amplifier with low bias current. [19]

Accuracy: Better than $+/-3 \%$ of full scale.[14]

Capacitive Types

Terminal Characteristics: Capacitance shift with applied force. Capacitance increases inversely with decreasing plate spacing as applied force increases.

Readout Circuitry: Requires a fixed frequency excitation, transimpedance amplifier and phase sensitive detector for DC response. Alternatively a frequency output can be obtained by including sensor in a oscillator circuit. [20]

Accuracy: Better than $+/-5 \%$ of full scale possible.[13]

CHAPTER II

BACRGROUND

2.0 Review of Plantar Force Monitoring Techniques There are many techniques for establishing plantar force.

 These techniques can be categorized as qualitative, and quantitative: single step stationary, insole and outside sole.a) Qualitative Techniques

A qualitative measure of plantar force pattern and magnitude can be obtained by clinical observation of patients gait, observations of shoe wear pattern, location of calisites and foot print type studies. Foot print studies can be achieved with contour mats, inked paper and cinematography through glass.[11] These observations though not providing quantitative measures may be useful for determining sensor placement and establishing that the patient's gait is not affected by the quantitative plantar force measuring technique.
b) Stationary Sensors

Typically stationary sensors consist of a plate with an integrated array of force transducers. These transducers have been capacitive (NICOL Mat) or resistive (similar to force sensing resistor)[14]. A considerable number of disadvantages with these stationary types arise: 1) Only a limited number of steps can be monitored; 2) Requires exact placement of bare foot; and 3) The
restrictive highly clinical environment may affect patient's gait. [15]
c) Insole Sensors

A number of insole sensors have been developed based upon many different transducer types. Insole transducers have the following advantages: 1) They allow the patient to wear normal footwear; 2) The ability to monitor many steps; and 3) The potential for unrestricted portability. The main drawback is that positioning of sensors is critical and previous devices could not provide a high resolution of force distribution. [15]
d) Outside Sole Sensors

This technique, though allowing multiple steps to be monitored, requires the use of special foot gear over ordinary footwear or socked feet.

Most of the previously discussed sensor types described in Chapter I have been used for monitoring insole plantar forces. Resistive strain gages have been used but they require the development of a custom load cell, which are very expensive and require high quality readout electronics.[11] Piezoelectric ceramics have been imbedded into an insole to form an array of sensors but they are quite brittle, provide only AC response and require high quality charge amplifiers.[14] Capacitive sensors have been demonstrated but they exhibit considerable offset shift with use, are sensitive to stray pickup and require phase sensitive
detection techniques to provide a DC response.[13] The FSR shows significant promise in that these devices can be manufactured in an array of sensors in the shape of an insole which would be very thin, flexible and inexpensive, while not having any of the problems of the other sensor types mentioned previously.

2.1 Time Domain Characteristics of Plantar Force

To properly describe the distribution and timing of plantar force under the foot, Figure 4 below outlines the anatomy of the plantar foot surface.

Anatomy.[11]

1 Posterior Heel
2 Medial Heel
3 Lateral Heel
4 1/3 lateral heel to
5 2/3 5th metatarsal head
6 5th metatarsal head
7 4th metatarsal head
8 3rd metatarsal head
9 2nd metatarsal head
10 1st metatarsal head
115 th toe
12 4th toe
13 3rd toe
14 2nd toe
15 1st toe

For a typical individual under normal comfortable speed barefoot
walking conditions (1.5 meters/second), at most locations on the foot the force waveform shows a gradual increase to a peak followed by a relatively steep decline, as shown in Figure 5. The total foot plant time is approximately 500 msec . For the first 200 msec . of a foot fall all force is placed upon the heel. From 200 msec to 300 msec the force distribution shifts between heel and metatarsal heads. At 300 msec all force is applied to the metatarsal heads and 460 msec into a foot fall all force is applied to the first toe. The maximum force is in the range of $8 \mathrm{~kg} / \mathrm{cm}^{2}$. It is interesting to note that use of footwear results in significant redistribution of force, typically peak pressure on heel and metatarsal heads is reduced except for the first metatarsal head, while pressure on the toes is increased. [11,15]

Figure 5 Typical Plantar Force Time Domain Waveforms.[15]

2.2 Ideal Charactersitics of a Plantar Force sensor

The ideal plantar force sensor would have the following qualities. A transducer allowing insole monitoring of plantar force would be the ideal configuration considering this would allow for continuous monitoring of plantar force in both clinical and everyday life situations (provided suitable portable readout and data storage electronics is available). To be located insole the transducer must be thin and flexible so that it can not be perceived by the patient and possibly modify the gait. Considering that force distribution under the foot will be different from patient to patient due to normal variations or pathological considerations, an array of sensors for each insole transducer in critical areas would be essential. The configuration of sensors should allow readout electronics to easily multiplex between sensors in critical regions ie. heel, metatarsal heads and toes.

The sensor must be able to withstand high peak forces without degradation, for example as a result of stepping on small objects such as stones on concrete surfaces. The insole transducer must have a undetectable change in dimensions due to applied force, ie. be incompressible. A sensor with this characteristic will likely be more durable and repeatable. The overall accuracy with respect to full scale should be about $+/-2 \%$ suggesting that factors which can not be calibrated out such as repeatability and hysteresis must be less than this target. The other factors affecting accuracy should be relatively low drift to ensure infrequent calibration and that unsophisticated compensation techniques can be used. The
transducer should be relatively low cost, say less than \$200/insole.

CHAPTER III
 IMPLEMENTATION OF THE SENSOR

3.0 The Force Sensing Resistor

The force sensing resistor is manufactured by INTERLINK of Santa Barbara, California. This device's response is a piecewise linear power law function, between terminal resistance and applied force. It is available in standard single unit configurations in varying diameters and leadout configurations, costing a few dollars per unit in quantities of 10 or higher. These devices are also available in arrays of sensors in standard dimensions. The possibility exists to develop custom arrays configured as insoles for monitoring plantar force.
a) FSR Construction

The construction of a typical "Force Sensing Resistor" is shown in Figure 6 on the next page. It consist of two polymer sheets. On one sheet a set of 2 interdigitated electrodes are deposited with a electrode spacing and width of typically 0.4 mm . The second sheet has a semiconductive film deposited on it. The sheets are bonded together.

Figure 6 FSR Construction. [2]
b) FSR Principle of Operation

An applied force on the FSR results in interdigitated electrodes being shunted by semiconductive film thus causing a decrease in resistance between electrodes. The FSR responds in a piecewise linear power law manner to force over 3 decades. The conductor design has the most impact on device response, basically the finer the electrode pitch the wider the dynamic range over which the device will respond.

c) FSR Characteristics

The FSR force versus resistance response for a typical device (\#302) is shown in Figure 7.

Figure 7 FSR Response.[3]

In general the FSR response follows a piecewise power law characteristic. A clear threshold exists where for low forces, in this case up to $20 \mathrm{~g} / \mathrm{cm}^{2}$, the FSR resistance ranges from 1 MOhm to approximately 58 kOhm . For forces greater than $20 \mathrm{~g} / \mathrm{cm}^{2}$ and up to $10 \mathrm{~kg} / \mathrm{cm}^{2}$ the resistance ranges from 58 kOhm to 2.7 kOhm approximately. Above $10 \mathrm{~kg} / \mathrm{cm}^{2}$ but not shown the FSR exhibits no further appreciable reduction in resistance for increasing applied force.

The following describes the most important features of the FSR device 1) Unlike conventional load cells the FSR's resistance changes by up to 3 decades for a 3 decade range of applied force resulting in extremely high sensitivity, although nonlinear in nature. 2) Cycle to cycle repeatability is quite good $+/-2 \%$ of full scale applied force range. This implies that with proper calibration $+/-2 \%$ accuracy can be achieved for plantar force measurements. 3) The FSR devices are very thin, thickness ranging from 0.1 to 1 mm , making them appropriate for incorporating into an insole insert. 4) The device is zero travel in nature, leading to exceptionally long term stability ($+/-5 \%$ for $1,000,000$ actuations), and suggesting long intervals between calibrations are possible.
5) The FSR's response is directly coupled in nature allowing for static force measurement, unlike piezoelectric devices which can only respond to dynamic forces. Also, unlike piezoelectric devices, they are relatively insensitive to acceleration, acoustic noise and temperature variation. 6) The FSR device has a relatively slow response. A typical rise time however corresponds to a minimum bandwidth of 175 Hz , which is more than acceptable for the walking rate of applied plantar forces. 7) The FSR's response is proportional to the reciprocal square root area of force applied to the device. This will necessitate arranging force applications to result in a even distribution over the entire device. This is best accommadated by making the sensors smaller than the contact areas for which the force is being measured. A general FSR technical specification is shown on the following pages.[1,2,3,4]

FSR ${ }^{\text {w }}$ Technical Specifications

The Force Sensing Resistornis is a polymer thick film (PTF) dence which echibits a decrease in resistance with any incrense in force applied to the active surface. Its force sensitivity is
optimized for use in human touch control of electronic devica. The PSR is not a load cell or strain gauge, though it has similinr properties. The FSR is not suited for precision meccurement

Force vs. Resistance

The FSR force vs. resistance characteristic shown in Figure 1 provides an overview of the FSR's typial response behavior. For interpretational converience, the force vs. resistance data are plotted on a \log / \log format. These data are representative of our typical devices, with this particular force-resistance characteristic being the response of standard part $\$ 302$ (1.27 cm diameter circular active area). A 0.56 cm diameter flat stainless steel probe was used to acturte the FSR and a 0.6 mm thick silicone rubber overlay of 50 durometer was placed on the FSR to even out the force distribution. In general, the FSR's response approximately follows a power-law chancterstic

Refering to Figure 1, at the low force end of the forcoreststance characteristic, a switch-like response is evident. This threshold, or "break force", that swings the resistance from greater than $1 \mathrm{M} \Omega$ to about $50-100$ $\mathrm{k} \Omega$ (the beginning of the dynamic range that follows a power-law) is deternined by the subsirate materins, overlay thickness and flexibility, and spacer-adhesive thickness (the gap between the conductive elements). Break force increnses with increasing substrate and

overtyy rigidity, and specr-wathedive thictress. At the high force end of the dymmic range, the response deviates from the powertaw behavior, and eventually saturates to I potme where increases in torce yleld little or no decreve in resistorce.

Figune 2

Force vs. Conductonce (or force va Voltoge)

In Figure 2 , the force is plotied is conductince (the inverse of resstance). This format allows interpretation on a linerr scale. A simple circuit alled a current-tovoluge converter (see TectNotes, Sugested Interfaces page 1-7) gives a voluge output directly proportional to FSR conductance and an be useful where response linearity is desired. Figure 2 also includes a typical part-to-part repeatablity envelope. This ercer band determunes the accurncy of any force measwement. The spread, or width of the band, is strongly dependant on the repeatability of any actuaning and measunng system, as well as the manufacturing tolerance held by Interlink during FSR productor. Typically, this part-to-part manufactunng tolerance ranges from $\pm 15 \%$ to $\pm 25 \%$ of an established nomunal resstance.

FSR" Technical Specifications

These are typical parameters. FSRs are custom devios and can be made for use outside these spadications Consula Applications Engreanng with your specific requirements

3.1 PSPICE Macromodel of FSR

An electrical equivalent macromodel of the FSR including analog behaviourial models is shown in Figure 8 below.[5] It represents a macromodel for the FSR with characteristics as shown in Figure 7, for a range of force from $20 \mathrm{~g} / \mathrm{cm}^{2}$ to $10 \mathrm{~kg} / \mathrm{cm}^{2}$.

Figure 8 FSR Macromodel

Nomenclature for figure 8.
VFORCE- is a equivalent voltage input representing applied force as a function of time.

RMF3db \& CMF3db- is a RC lowpass filter representing the mechanical time constant of the FSR.

ELOG- is a behaviourial model providing a logarithmic response between equivalent input force voltage and corresponding output voltage to drive remainder of macromodel's voltage controlled
resistance. Note that the macromodel response is valid for forces above the break point $\left(20 \mathrm{~g} / \mathrm{cm}^{2}\right)$ and below saturation (10 kg/cm ${ }^{2}$) only.

EREC- is a behaviourial model providing an inversion of input voltage from the previous stage. This inversion is needed since the following stage provides a equivalent resistance inversely proportional to the applied voltage.

GVR- is a voltage controlled current source which provides a voltage controlled resistance at its terminals, inversely proportional to the reciprocal of the applied voltage EREC. Upper resistance limit is set by RIRES.[21]

The PSPICE file for this behaviourial model is shown below.

PSPICE File for FSR Behaviourial Model.
***VARIABLE RESISTOR MACROMODEL MODEL
VFORCE 5A 0 PWL(***
RMF3db 5A 5 1K
CMF3db 50 455NF
ELOG 40 VALUE $=\{\operatorname{PWR}(10,-0.49465 * \operatorname{LOG10}(\mathrm{~V}(5))+3.9260)\}$
RELOG 40 1E3
EREC 30 VALUE $=\{(1 \mathrm{~V} /(\mathrm{V}(4)))\}$
REREC $301 E 3$
RIRES 12 1E10
XI 123 VARISTR
.SUBCKT VARISTR 123
GVR 12 POLY(2) 12230000001
. ENDS

The response of the FSR macromodel is shown in Figure 9 on the following page. It compares favourably with the manufactures data Figure 7.
3.2 Readout Circuitry for Evaluation of Force sensing Resistor
a) Schematic Diagram of Readout Circuitry for FSR

The readout circuitry for $F S R$ is described schematically in Figure 10 below.

Figure 10 Schematic Diagram Readout Circuitry for FSR

Parts List:Designation	Readout Circuitry for FSR (Electronic)			
	Part Number	Manufacture	Description	Quantity
U1	REF01AJ	PMI	Precision	1
			Reference	
AR1, AR2	OPA27AJ	Burr-Brown	Opamp	2
			Low Noise	
R1, 3, 5, 7, 8	MRS25F100	Phillips	1000hm, 1\%	5
			1/4W,Metal	
R2	RN55C1002F	Dale	10Kohm, 1\%	1
			1/8W, Metal	
R4	RN55C5001F	Dale	5Kohm, 1\%	1
			1/8W, Metal	
R6	RN55C5622F	Dale	56.2Kohm, 1\%	1
			1/8W, Metal	
R9	MRS25F2K	Phillips	2Kohm, 1\%	1
			1/8W, Metal	
C1,2,4,6	CK05BXI105K	Centerlab	0.1uF, 10\%	5
			100V, Ceramic	
C3			6.8uF, 10\%	1
			35V, Tantalum	
C7 (4X)			4.7nF, 2\%	4
			100V, Polysty	rene

Parts List (cont'd): Readout Circuitry for FSR (Hardware)		
Description	Manufacture	Quantity
$3719-5$ Prototype Board	Vector	1, trimmed
Twisted Shielded Pair	M27500-22-RC-2506	1 meter
Alligator Clips		4
9V Battery Clips	Radio Shack	4
9V Battery	Signalman	4
22 AWG Wire Insulated		as required

b) Technical Description of Readout Circuitry

The readout circuitry for the FSR, consists of a transimpedance amplifier formed by $A R 2$ and a precision $-5 V$ bias source formed by $U 1$ and AR1. The current flowing through the parallel combination of the FSR device and set resistor $R 6$ is converted to a voltage by the transimpedance amplifier with a gain of $2000 \mathrm{~V} / \mathrm{A}$ as set by R9. The value of set resistor R6 is chosen near the break point terminal resistance of the FSR device which is approximately 58 kOhm for a applied force of $20 \mathrm{~g} / \mathrm{cm}^{2}$. This sets the lower limit of measurable force to $20 \mathrm{~g} / \mathrm{cm}^{2}$ which, considering that a tightly laced shoe will apply force greater than this to the foot, leads to no loss of information. This provides a relatively well defined set point for forces $<20 \mathrm{~g} / \mathrm{cm}^{2}$, of approximately 0.35 V . The value of feedback resistor R 9 has been chosen to provide a full scale output of approximately 3.9 V for a applied force of $10 \mathrm{~kg} / \mathrm{cm}^{2}$. This signal swing range is compatible with a low voltage/power design based upon $+/-5 \mathrm{~V}$ power rails. The value of feedback capacitance $C 7$ has been chosen to limit electrical bandwidth to 10 times the mechanical bandwidth of the FSR, approximately 4.0 kHz . This bandwidth allows for proper evaluation of the time domain response of the FSR, while limiting noise bandwidth to allow for proper resolution. The low value of R9 in this case minimizes the impact on the closed loop response of the transimpedance amplifier to stray and cable capacitance at it's inverting terminal. The cable shield is connected to the readout circuit ground reference which minimizes coupling of
interfering signals. The precision stable excitation source for the FSR device is provided by voltage reference $U 1$ and the inverting amplifier/ first order lowpass filter formed by AR1. The filter limits noise equivalent bandwidth to 7.4 Hz to reduce the excess noise associated with the voltage reference.
c) Simulation of Readout Circuitry For FSR

A complete simulation of readout circuitry interfaced to the previously developed macromodel for the FSR has been performed. The PSPICE circuit file listing is contained in Appendix 1.

The results of a complete $D C, A C$, transient and noise analysis are discussed in the following pages.
i) DC Analysis

Figure 11 shows the overall highly nonlinear response of the FSR/readout circuitry combined for forces ranging from $20 \mathrm{~g} / \mathrm{cm}^{2}$ to $10 \mathrm{~kg} / \mathrm{cm}^{2}$. The response sensitivity ranges from $4 \mathrm{~V} /\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$ to $0.2 \mathrm{~V} /\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$ as shown in Figure 12 , which is high. The log-log plot's linear characteristic shown in Figure 13 highlights the power law response of FSR/Readout circuitry.

Figure 11 DC Transfer Characteristic of FSR/Readout Circuitry.
Sensitivity $\left(V /\left(K g / \mathrm{Cm}^{2}\right)\right)$

Figure 12 Sensitivity Analysis of FSR Response.

Figure 13 LOG-LOG Plot of FSR/Readout Circuitry Response.
ii) AC Analysis

An AC analysis was performed at minimum ($20 \mathrm{~g} / \mathrm{cm}^{2}$) and maximum (10 $\mathrm{kg} / \mathrm{cm}^{2}$) applied force and is shown in Figures 14 and 15, respectively. The overall frequency response is second order in nature and exhibits no peaking, suggesting that gain and phase margin are adequate. The 3 dB bandwidth exceeds 316 Hz .

Figure 14 AC Response for a $20 \mathrm{~g} / \mathrm{cm}^{2}$ Applied Force

Figure 15 AC Response for $10 \mathrm{~kg} / \mathrm{cm}^{2}$ Applied Force

iii) Transient Analysis

A full scale pulse force ($10 \mathrm{~kg} / \mathrm{cm}^{2}$) with duration of 500 msec was applied to the FSR macromodel. Figure 16 shows a clean damped response with no overshoot. The rise time as shown in Figure 17 is less than 762 usec.

Figure 16 Pulse Response FSR/Readout Circuitry

Figure 17 Rise Time FSR/Readout Circuitry
iv) Noise Analysis

The noise analysis was performed for both maximum and minimum applied force conditions as shown in Figures 18 and 19, respectively. The total output noise was less than 1.8 uVrms in both cases which is much less than 1 bit in 12 of a 3.5 V range and is more than acceptable.

Figure 18 Total Output Noise for $20 \mathrm{~g} / \mathrm{cm}^{2}$ Applied Force

d) Evaluation of Force Sensing Resistor/Readout Circuitry

The Force Sensing Resistor/Readout Circuitry was evaluated by performing three separate tests to establish DC transfer characteristic, transient response and noise performance.

The DC transfer characteristic was evaluated by applying a calibrated uniform force over the entire sample FSR device with a custom aluminum test head of $1.7 \times 1.7 \mathrm{~cm}^{2}$ area, from $47 \mathrm{~g} / \mathrm{cm}^{2}$ to $9.397 \mathrm{~kg} / \mathrm{cm}^{2}$, using an Instron Model 4206. A digital voltmeter was used to monitor the output voltage of the readout circuitry. First, the no load readout circuit voltage was observed to be 0.1780 V . Then the preload output voltage due to test head mass was observed to be 0.1789 V . The preload delta readout voltage of 900 uV is insignificant for the purposes of this test. A calibrated force was applied in a cyclic manner three times, to establish the transfer characteristic over the specified force per unit area range. The results (also see Appendix 3) are shown in Figure 20 on the following page.

It can be concluded that the FSR exhibits an approximate power law response. The response can be approximated by equation 1 below.
Eq. $1 \operatorname{Rfsr}(F)=10^{(-0.71454 * \log (5)+3.79734)}$
where Rfsr - is the FSR's terminal resistance (ohms)
F - is applied force ($\mathrm{Kg} / \mathrm{cm}^{2}$)
This equation is different than the one used for the macromodel in simulations, since this is a different device. Full analysis of the test data is contained in Appendix 4. The observed maximum hysteresis and repeatability error were determined to be
$+/-6.072 \%$ and $+/-3.445 \%$ of full scale range respectively. The repeatability error is approximately 50% higher than specified by the manufacture. The manufacturer did not specify hysteresis.

Figure 20 DC Transfer Characteristic, 3 Cycles

The transient response was measured by hitting the custom aluminum test head, while it completely covers the FSR device, with a rubber mallet and monitoring the output voltage of the readout circuitry on a storage oscilloscope. The test results are shown in Figure 21 below. (Poor quality of photo has required retracing it.)

Figure 21 FSR Transient Response

From these results it can be determined that the rise time is 1 msec .

The no load output noise of the FSR/Readout circuitry was measured using an HP3562A dynamic signal analyzer. The results are shown in Figure 22 on the following page. Total output noise was measured to be 3.2 uVrms in a $1-10 \mathrm{kHz}$ bandwidth. The measured value is approximately 6 X higher than the no load simulation results. It was anticipated that the $F S R$ would exhibit excess $1 / \mathrm{f}$ noise, which it did when compared with the predicted noise performance assuming the FSR exhibited thermal noise only, as shown in Table 1. However it is not significant enough to effect measurement accuracy, since for a 3.5 V range 12 bits of resolution
is 835 UV and the peak to peak wideband output noise was measured to be less than 50 uV , as shown in Figure 23 on the following page. This is more than acceptable to achieve better than 0.1% resolution of a $10 \mathrm{~kg} / \mathrm{cm}^{2}$ full scale force.

Figure 22 Output Noise
Table 1
Frequency(Hz) Predicted Measured
Spot Noise Spot Noise (n Vrms/ $\mathrm{Hz}^{0.5 \text {) }}$
1
39
3162
10
100
16
51.2
44.7

Figure 23 Wideband Output Noise

In conclusion the $F S R$ sample device's performance nearly satisfies all the requirements for it to be acceptable for plantar force monitoring. The repeatability of this device at $+/-3.445 \%$ exceeds the $+/-2 \%$ requirement. However rise time at less than 1 msec. and noise performance which allows resolution exceeding 12 bits are more than adequate. The FSR's hysteresis at $+/-6.072 \%$ needs improvement, however, since plantar force returns to zero at the end of each foot fall, rising force measurement accuracy of $+/-$ 3.445% could be achieved based upon the test data.

CHAPTER IV

A PROPOSED LOW POWER PORTABLE PLANTAR FORCE READOUT SYSTEM

In the following a proposal is presented, which describes a configuration for a "LOW POWER PORTABLE PLANTAR FORCE READOUT SYSTEM" based upon the FSR device manufactured by Interlink Electronics of Santa Barbara CA.

4.0 Force Sensing Resistor Configuration

The FSR as manufactured by Interlink is a simple structure which can be manufactured in custom sizes, shapes, and profiles. It can be combined with others to form an array of FSR's on a common substrate. The size of each individual FSR can range from $0.2^{\prime \prime}$ to $24^{\prime \prime}$ diameter or square. Complete flexibility in the choise of material for the substrate and conductors, as well as overlap, allows for optimal terminal and environmental characteristics for a given application. In this case, a common bus array of FSR's can be custom designed and fabricated in mass quantities for different shoe sizes with the sensors located in critical areas, which are the heel, metatarsal heads and toes.[1] A clinical device for higher resolution would be possible but power dissipation and data storage requirements would be excessive for truly portable applications. In Figure 24 an engineering sketch of the Plantar Force Common Bus FSR Array is shown, for a size ten male foot.

Figure 24 Plantar Force Common Bus FSR Array Sensor.

4.1 Readout Electronics Configuration

The proposed readout circuitry can best be described as a "Common Bus Array Transimpedance Amplifier/Sampling ADC Converter with Serial Output". A simplified schematic diagram of this architecture is shown in Figure 25, on the following page. This circuit has many advantages. 1)It requires only one amplifier to readout all the sensors in a serial multiplexed fashion. 2) The common reference only needs to bias a single FSR sensing element at one time.[1] 3)Only a small amount of glue logic is required to drive the multiplexer and completely integrated sampling analog to digital converter, which also contains the voltage reference. 4) Switch mode regulators provide efficient power conversion and allow for low battery end of life terminal voltage. The lifetime of this circuit with low power CMOS electronics should be more than adequate with a 9V cell.

Figure 25 Common Bus Array Transimpedance Amplifier/ADC.[7,8]

CHAPTER 5
 CONCLUSIONS

In this project the possible sensor types for monitoring plantar force were reviewed. The reasons for monitoring plantar force were stated and are many. It has been shown that the FSR could be a suitable device for monitoring plantar force with a 50\% improvement in repeatability. This is likely possible since specified performance of the FSR device at $+/-2 \%$ repeatibility is more than adequate. A common bus FSR array which can be designed in the shape of an insole, with an array of these devices in critical areas has been proposed. Readout electronics for these devices are very simple.

```
PSPICE CIRCUIT FILE LISTING fOT FSR READOUT CIRCUITRY
```

```
    READOUT CIRCUIT FOR FORCE SENSING RESISTOR
****U1 REFO1AJ VOLTAGE REFERENCE
x3 11 0 13 14 REF01A
RTRIM1 14 13 5K
RTRIM2 13 0 5K
```

****INVERTING LOWPASS FILTER
R2 $14 \quad 15$ 10K
R4 15 1B 5K
C3 15 1B 6.8UF
****AR1 OP27AJ
$\begin{array}{lllllll}\mathrm{X} 4 & 0 & 15 & 11 & 12 & 1 B & O P-27 A\end{array}$
****SET RESISTOR
R6 1B 2B 56k
****LUMPED CABLE MODEL WITH LOSS
RCABLE1 1A 1B 0.072
RCABLE2 2A 2B 0.072
LCABLE1 1 1A 928NH
LCABLE2 2 2A 928NH
CCABLE 1B 2B 92.8pf

****TRANSIMPEDANCE AMPLIFIER

```
R9 2B 10 2k
C9 2B 10 20nf
****AR2 OP27AJ
x2 0 2B 11 12 10 OP-27A
```

****DC POWER SUPPLIES
vsp 110 dc 15
vsn $120 \mathrm{dc}-15$

* REFO1A SPICE MACROMODEL[9]
5/91, Rev. A
* Copyright 1991 by Analog Devices, Inc.
* NODE NUMBERS

*	VIN		
*	i	GND	
*	i	I TRIM	
*	i	i	I
*	VOUT		
.SUBCKT REF01A	2	4	5

* 1.23V REFERENCE

I1 $4 \quad 10 \quad 537.719 \mathrm{E}-9$
R1 $10 \quad 4 \quad 2.284 \mathrm{E} 6 \quad \mathrm{TC}=8.5 \mathrm{E}-6$
G1 $4 \quad 10 \quad 2 \quad 4 \quad 54.0 \mathrm{E}-12$
F1 410 VS 43.2E-9

* INTERNAL OP AMP
$\begin{array}{llllll}\text { G2 } & 4 & 11 & 10 & 19 & 2 \mathrm{E}-3\end{array}$

R2	4	11	150E6
C1	4	11	$2.1 \mathrm{E}-10$
D1	11	12	DX
V1	2	12	2.0
* SECONDARY POLE			
G3	4	13	11
R3	4	13	1 E 6
C2	4	13	$1.2 \mathrm{E}-13$
* OUTPUT			
ISY	2	4	$0.78 \mathrm{E}-3$
FSY	2	4	V1
G4	4	14	13
R4	4	14	40 E 3
R4	17	$25 \mathrm{E}-6$	
R7	17	19	14.2114 E 3
R8	19	4	2 E 3

. MODEL QN NPN(IS=1E-15 BF=1000)
. MODEL DX D(IS=1E-15)
. ENDS REFOIA

* OP-27A SPICE Macro-model [9]

12/90, Rev. B

* Node assignments
* non-inverting input
| inverting input
| | positive supply
| i i negative supply
| i | | output
1 i i i i
.SUBCKT OP-27A 12995039
* INPUT STAGE \& POLE AT 80 MHZ
$\begin{array}{lll}\text { R3 } & 5 \quad 97 & 0.0619\end{array}$
R4 $6 \quad 97 \quad 0.0619$
CIN $124 \mathrm{E}-12$
C2 5 6 16.07E-9
$\begin{array}{llll}\text { I1 } & 4 & 51 & 1\end{array}$
IOS 121 17.5E-9
EOS $910 \quad$ POLY(1) $30 \quad 33 \quad 25 \mathrm{E}-6 \quad 1$
Q1 $5 \quad 2 \quad 7$ QX
Q2 $\quad 6 \quad 9 \quad 8 \quad$ QX
$\begin{array}{llll}\text { R5 } & 7 \quad 4 & 0.0107\end{array}$
$\begin{array}{llll}\text { R6 } & 8 \quad 4 \quad 0.0107\end{array}$
D1 21 DX
D2 12 DX


```
GN1 0
```



```
EREF 98 0 33 0 1
EPLUS 97 0 O9 0 1
ENEG 51 0 50 0
* VOLTAGE NOISE SOURCE WITH FLICKER NOISE
DN1 11 12 DEN
DN2 12 13 DEN
VN1 11 0 DC 2
VN2 0 13 DC 2
* CURRENT NOISE SOURCE WITH FLICKER NOISE
DN3 14 15 DIN
DN4 15 16 DIN
VN3 14 0 DC 2
VN4 0 16 DC 2
* SECOND CURRENT NOISE SOURCE
DN5 17 18 DIN
DN6 18 19 DIN
VN5 17 0 DC 2
VN6 0 19 DC 2
* FIRST GAIN STAGE
RG1 40 98 1
GG1 98 40 % 5 6 79.86
DG3 40 41 DX
```

```
DG4 42 40 DX
EG1 97 41 POLY(1) 97 33 -2.1 1
EG2 42 51 POLY(1) 97 33 4-2.1 1
* GAIN STAGE & DOMINANT POLE AT 7.2 HZ
R7 \(20 \quad 98 \quad 37.58 \mathrm{E} 3\)
C3 20 98 588E-9
G1 }\begin{array}{llllll}{98}&{20}&{40}&{33}&{0.333}
V1 97 21 1.9
V2 22 51 1.9
D5 20 21 DX
D6 22 20 DX
* POLE - ZERO AT 2.9MHZ / 6MHZ
R8 23 98 1
R9 23 24 0.935
C4 24 98 28.4E-9
G2 98 23 20 33 1
* ZERO - POLE AT 6.8MHZ / 40MHZ
R10 25 26 1
R11 26 98 4.88
L1 26 98 19.4E-9
G3 
* POLE AT 60 MHZ
R12 27 98 1
C5 27 98 2.65E-9
G4 98 27 25 33 1
* ZERO AT 28 MHZ
```

```
R13 28 29 1
C6 28 29 -5.68E-9
R14 29 98 1E-6
E1 28 98 27 33 1E6
* COMMON-MODE GAIN NETWORK WITH ZERO AT 11.9 KHZ
R15 30 31 1
L2 31 98 13.3E-6
G5 98 30 POLY(2) 1 33 2 33 0 997.6E-9 997.6E-9
D7 30 97 DX
D8 51 30 DX
    * POLE AT 80 MHZ
R16 32 98 1
C7 32 98 1.99E-9
```



```
* OUTPUT STAGE
R17 33 97 1
R18 33 51 1
GSY 99 50 POLY(1) 99 50 3.47E-3 40E-6
F1 34 0 V3 1
F2 0}344\quad\mathrm{ V4 1
R19 34 99 180
R20 34 50 180
L3 34 39 1E-7
G7 37 50 32 34 5.56E-3
G8 38 50 34 32 5.56E-3
G9 34 99 99 32 5.56E-3
```

```
G10 50 34 32 50 5.56E-3
V3 35 34 2.5
V4 34 36 3.1
D9 32 35 DX
D10 36 32 DX
D11 99 37 DX
D12 99 38 DX
D13 50 37 DY
D14 50 38 DY
* MODELS USED
.MODEL QX NPN(BF=12.5E6)
.MODEL DX D(IS=1E-15)
.MODEL DY D(IS=1E-15 BV=50)
.MODEL DEN D(IS=1E-12, RS=1.74K, KF=4.01E-16, AF=1)
.MODEL DIN D(IS=1E-12, RS=43.5E-6, KF=11.1E-15, AF=1)
.ENDS OP-27A
****FORCE INPUT
VIN 5A 0 pwl(0 0.02 0.02 0.02 10 10)
***VARIABLE RESISTOR MACROMODEL MODEL
RVIN 5A 5 1K
CMECH \(50455 N F\)
ELOG 40 VALUE \(=\{\operatorname{PWR}(10,-0.49465 * \operatorname{LOG} 10(V(5))+3.9260)\}\)
RELOG 401 1E3
EINREC 30 VALUE \(=\{(1 \mathrm{~V} /(\mathrm{V}(4)))\}\)
REINREC 30 1E3
```

```
RIRES 1 2 1E10
X1 1 2 3 VARISTR
.SUBCKT VARISTR 1 }2
G 1 2 POLY(2) 1 2 3 0 0 0 0 0 1
. ENDS
```

****ANALYSIS CONTROL STATEMENTS
. PROBE V(5) V(10)
.$T R A N \quad 0.01 \quad 10 \quad 0.02 \quad 0.01$
. END

APPENDIX 2

Technical Overview Force and Position Sensing Resistors.[2]

Astract

Dr. Stuart I. Yanieer Vice Presioent and Chief Scientist

Force Sensing Resistor ${ }^{\text {m }}$ devices (FSR ${ }^{\text {m }}$) superficially resemble a membrane switch, but unlike the conventional switch, change resistance inversely with applied force. For example, with a typical $F S R$ sensor, a human finger applying from 10 g to 1 kg will cause the sensor to change resistance continuously from $400 \mathrm{~K} \Omega$ to $40 \mathrm{k} \Omega$. These sensors are ideal for touch control, and may be applied where a semi-quantitative sensor is called for that is relatively inexpensive, thin (20.15 mm), durable ($10,000,000$ actuations), and environmentally resistant. These sensors can be made into arrays or single elements up to $60 \mathrm{~cm} \times 80 \mathrm{~cm}$, and cover forces in the tens of grams to tens of kilograms range.

Force and Position Sensing Resistor ${ }^{\text {T }}$ devices (FPSR ${ }^{m 1}$) can sense the position and normal force of a single actuator, such as a finger or a stylus, along either a straight line (a Linear Potentiometer) or on a planar surface (an XYZ Pad). Depending on the mechanical arrangement, positional resolution of 0.05 mm is possible.

Introuvcton

Force and position sensing are integral to a wide range of dynamical measurements. These range from podiatric gait analysis to electronic music to computer input devices. New sensor options for the designer are the Force Sensing Resistor (FSR)and the Force and Position Sensing Resistor (FPSR).

We will first deal with the simpler FSR. The construction of a typical $F S R$ is shown in figure 1 , and is based on two polymer films or sheets. A conducting pattern is deposited on one polymer in the form of a set of interdigitating electrodes. The electrode pattern is typically on the order of 0.4 mm finger width and spacing.

Next, a proprietary semiconductive polymer is deposited on the other sheet. The sheets are faced toget her so that the conducting fingers are shunted by the conducting polymer. When no force is applicd to the sandwich, the resistance between the interdigitating electrodes is quite high, usually $1 \mathrm{M} \Omega$ or more. With increasing force, the resistance drops, following an approximate power law.

A typical plot of resistance versus force is shown in Figure 2.

Note that, unlike a conventional load cell or strain gauge, the FSR resistance changes by nearly 3 decades.

Figure 1.

Unuke PIEZOELECTRIC TRANSDUCERS, THE FSR IS INSENSITVE TO VIBRATION AND ACOUSTC NOISE PICKUP AND IS A SLOW DEVCE

The FSR ues SOMEWHERE BETWEEN A FORCE AND A PRESSURE TRANSDUCER

interdigitating electrodes. As we will discuss, the finer the lines and spaces, for a given area of applied force, the higher the saturation force. With real world areas and sensors, this saturation force can be designed to be from $3-50 \mathrm{~kg}$.

FSRs can be fabricated in various sizes, from 0.5 to $4800 \mathrm{~cm}^{2}$, as single sensors or as arrays. The resistancerange can also be tailored to specific applications. Varying the force range is also possible, but is best accomplished in the mechanical de-

With proper mechanical arrangement, repeatability of this curve cycle-to-cycle is better than $\pm 2 \%$ over a specified force range. For the device from which the data in figure 2 was obtained (a 2.5 cm diameter circular FSR), the specified force range was $200 \mathrm{~g}-10$ kg. Deviceto-device variation is typically $\pm 15 \%$ over that range.

The curve of Figure 2 does not show forces above a 10 kg load. At higher forces, the force/resistance characteristic starts to deviate from the power law response, eventually reaching a saturation force, beyond which the resistance does not vary strongly with force. The saturation force is a function of the ratio of the area of the applied force to the spacing between the FSR conductive inter
sign. Zero travel is also a feature of the $F S R$. Where tactile feedback is desired, elastomeric overlays or molded domes can be laid over the parts to give travel or a tactile "snap."

The thickness of an FSR depends on several design variables. These include desired sensitivity, presence of overlays, and specified flexibility. Nearly all FSR designs to date have been in the thickness range of 0.1-1 mm.

Unlike piezoelectric transducers, the FSR is a slow device (typical mechanical rise time of $1-2 \mathrm{~ms}$), and is rehtively insensitive to vibration and acoustic noise pickup.

Effect of mechanical design on fsr response

a. Area Effects

The force/resistance response of an FSR is an extremely sensitive function of the manner in which it is mechanically addressed. A true force sensor will give a constant reading at a constant force, independent of the area over which the force is applied, or its distribution. A true pressure sensor will give, with the same constant force, a reading which is inversely proportional to the area of the applied force.

In actuality, the $F S R$ lies somewhere bet ween a force and a pressure transducer. A typical FSR will show a resistance that varies roughly as the reciprocal of the square root of the area of the applied force. This holds true under the condition where the forcefootprint is smaller than the $F S R$ active area, and large compared to the spacing between theconducting fingers.

The sensitivity of the FSR resistance to the area and distribution of theforce means that either the $F S R$ must be used as a qualitative sensor, or that by proper mechanical arrangement, the force footprint can be held constant in area, position, and distribution. Other tradeoffs must be considered in the actual sensor design; for example, tailoring the sensor for minimum creep under load conflicts with some application requirements that the FSR have a very large no-load resistance.

The FSR can be used as a pressure sensor when the applied force is large compared to the FSR active area. Semi-quantitative biomedical gauging has been accomplished by orthopedists attaching small FSRs to various body parts in configurations such that the force is constant across the sensor active area.

The COMPUANCE Of THE FORCE ACTUATOR IS A KEY ISSUE

A key element in PROPER FSR SENSOR DESIGN IS THE FINENESS OF PITCH OF THE CONDUCTVE FINGERS

The FSR is
A RUGGED,
DURABLE
DEVICE

b. Actuator Characteristics

The compliance of the force actuator (i.e., the actual component or finger that physically contacts and transfers force to the FSR) is also a key issue. Frequenlly, a rubber or other elastomeric overlay is placed over the part to help spread the fore out, extending the dynamic range.

Figure 3 shows how a typical force/resistance characteristic is changed by the use of overlays of varying thickness and hardness (or durometer, Shore A). Note that the greatest effect is seen at low to intermediate forces.

Figure 3.

c. Conductor Design

A key element in proper $F S R$ sensor design is the fineness of pitch of the conductive fingers. For a given area, the finer the pitch (or "space and trace"), the greater thenumber of fingers actuated. The effect of the greater number of shunted fingers can be seen to increase the dynamic range of the device. With a fine space and trace, the force-resistance characteristic maintains its power-law characteristic over a greater force range (i.e., linearity on a log-log plot). Additionally, there is often an increase in the slope of this characteristic (i.e, a larger exponent in the power law). For example, a standard FSR formulation was tested with $0.020^{\circ}, 0.015^{\prime \prime}$ and $0.010^{\circ}(0.50,0.38$ and 0.25 mm$)$ conduc-
 tor pitch. The results are plotted in Figure 4, and clearly show the performance advantages of the fine pitch.

The trade-off here is cost. With a finer space and trace, quality assurace inspection takes longer and the rejection rate is higher. This needs to be balanced agrinst the real-world requirements of a given design.

Device durability

The $F S R$ is a rugged, durable device. The temperature range of our standard devices extends to $170^{\circ} \mathrm{C}$, continuous. Higher temperature range devices are also available, with use temperatures as high as $400^{\circ} \mathrm{C}$ $\left(750^{\circ} \mathrm{F}\right.$). Typical temperaturecoefficients are in the range of $1000 \mathrm{ppm} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ near room temperature. The FSR relatively insensitive to humidity.

Figure 5 shows the results of repeated use. For these data, a 25 cm diameter circular FSR was placed in a cycling force tester. A

Figure 5. Texi Condtren: Iz dat arcule probe: 10 milion sunke $=52$ ps - 5 secinepetion

The high dinamac range Of The FSR SIMPUFIES ELECTRICAL INTERFACING

Ruggedied KEYPADS EVEN WTHSTAND HAMMERS

12 lb . force was applied uver ca. $1.5 \mathrm{~cm}^{2}$, through a 3 mm thick 45 Shore A rubber foot. The force was applied and relcased at a 2.5 Hz rate, with a 50% duty cyele. A small change to ward lower resistance is observed after $10,000,000$ cycles; however, this represents less than a 5% deviation (logarithmic) from the new part cnaracteristic.

Electrical interacing

As we have seen, the FSR changes resistance dramatically with applied pressure. Additionally, its impedance is nearly purely resistive. These properties make FSR electrical interfaces extremely simple. Unlike strain-gauge sensors with their low $\Delta R / R$, no bridge is needed in FSR circuits, and the signals are usually in the $0-5$ volt range.

Two general rules must be kept in mind, however. first, the FSR force-resistance response characteristic is a power law, so it may make sense to measure the logarithm of resistance changes; second, the maximum permissible device current is about 1 milliamp per cm^{2} of applied force. Typical FSR current excitation is in the tens of microamps. You can use the FSR to control larger loads by using suitable buffer circuits.
The most unpredictable part of the FSR force/resistance characteristic is the pressure range under about 100 grams/ cm^{2}. If it is necessary to measure small forces in that range, you can pre-load the FSR with $100-200$ grams/ cm^{2}, and measure the change in resistance when the small load is applied. At a somewhat higher part cost, high sensitivity can be designed in (eg, by using a thinner substrate), but it is generally more economical to achieve this in the mechanical interface.

The high dynamic range of the FSR simplifies electrical interfacing. For instance, a simple force to frequency converter is shown in Figure6. In this circuth, the FSR is used as a feed back element around an inverter, with the time constant set by the FSR resistance and the capacitor. At zero force, the FSR resistance is very high, and the oscillator does not run. With increasing force, the output repetition rate is a linear function of the FSR resistance. R1 is included to limit current through the sensor. A great deal of control of the force/frequeny curve is possible by including other elements in the feedback system. For example, bypassing R1 with a capacitor causes the curve to be steeper at higher forces; connecting a large value resistor in parallel with the capacitor C quenches any tendency to oscillate at low applied forces.
Analog interfaces are also quite simple The FSR is placed in series with a current source (current kept within the maximum FSR rating). The voltage measured across the FSR is then related to theapplied force. Alternately, the FSR can be used as one element in a voltage divider, with a fixed resistor as the other element. A voltage is applied to the divider, and the output voltage, taken from the resistor/FSR junction, is measured (Figure 7).

This type of interface is quite adequate for qualitative force sensing (for example, a touch panel). Precision measurements, however, are difficult, due to the shape of the power law curve. For higher precision measurements, it is usually most economic to go to the digital domain as soon as possible so that the \log / \log characteristic of the device can be translated to something more linear. If a design calls for a measurement of an impact (for example, a data entry keypad adhered behind a ngid plate) the FSR can be placed in a voltage divider, as above, and the junction of the voltage divider capacitively coupled to the succeeding stages. This eliminates any offset problems due to a preload. In the application just cited, denting the keypad protective plate with a hammer did not affect theoperation of the pad; the offset created by the constant resistance of the FSR under the dent was blocked by the coupling capacitor.

Two basic ITpes of FPSRS ARE AVAILABLE, the Linear Potentiometer and THE XYZ PAD

Depending on CONNECTION, FPSRS CAN

MEASURE BOTH POSTIION AND FORCE.

F
 ORCE AND POSITION SENSING RESISTORS

Two basic types of FPSRs are a vailable, the Linear Potentiomeler (FSR-LP) and the XYZ Pad. The FSR-LP, besides being force sensitive, measures the position of an applied force along its sensing strip. The XYZ Pad is similar, but is used to measure position of an applied force in a plane

The construction of an FSR-LP is shown in Figure 8. Generally, a voltage is applied bet ween the Hot and Ground ends of the fixed resistor strip. When force is applied to the Force Sensing layer, the wiper contacts are shunted through that layer to one of the conducting fingers of the resistor strip. The voltage read from the wiper is thus proportional to the distance along the strip that the
 force is applied. An equivalent circuit for this arrangement is shown in Figure 9. The wiper series resistance varies with force.

To sense force, a resistance measurement is made between the wiper terminal and either the Hot or Ground end (or both, connected toget her) of the fixed resistor strip. The two alternate connections (force and position) are also shown in Figure 9.

It is obvious that force and position measurements are not totally independent. However, the position measurement can be made urambiguously if the measuring device draws negligible current (<1 uA) so that there is no voltage drop across the wiper resistance. For example, an LF411 or similar low V_ and i device is suitable for this application. Also, the contact between the wiper and the resistor is momentary - some sort of sample and hold must be used in the interface. Connection of a small capacitor bet ween wiper and ground is usually sufficient.

Force measurements are not quite so unambiguous, but good approximate measurements can be obtained by shorting the two fixed resistor ends (Hot and Ground) together, and measuring the resistance between the combined leads and the wiper. Some crror can result from the fixed resistor being in series with the Force Sensing Resistor unless it is compensated for in the
 product design.

For example, if the force is applied at the middle of the FSR-LP, the FSR part will have an additional series resistance of $1 / 2$ of the total fixed resistance, because the resulting middle contact effectively parallels the two halves of the fixed resistor. If, on the other hand, force
is applied to either end of the device active area, the fixed resistance is essentially shorted out. This problem can be mostly overcome by making the FSR resistance high compared to the potentiometer resistance, making low-current position measurement a must.

The force measurement error can also be subtracted out with a simple analog circuit or, given a position mcasurement, compensated for in software.

With the above topologies, force measurement is of one point only. It can be shown that the measured force position corresponds to the barycentric position, that is, a positional average weighted over the force distribution ${ }^{2}$. For the common case of a finger actuation, the point sensed by the FSR-LP is the center of the area covered by the fingertip; the user can finely control the FSR-LP output by a gentle rock of the finger.

Positional Resolution and Accuracy

Resolution of a measurement device must be distinguished from accuracy. Resolution refers to the smallest change in position that can be detected. The positional resolution of a FPSR depends on the width of the applied force distritution and the fineness of the conductive fingers on the FSR-LP. It is typically in the 10-100 micron range.

Resolution can be approximated by $\Delta x=2 w_{0}^{2} / w_{1}$, where w_{0} is the width of the conductive fingers and w, is the width of the applied force. This approximation assumes a relatively constant force across the force footprint. Typical numbers for a finger and an inexpensive FPSR are $\Delta x=(2)(5 \mathrm{~mm})^{2} /(15 \mathrm{~mm})=0.033 \mathrm{~mm}$ (or $\left.0.0013^{\prime}\right)$. In practice, it is easy to achieve 300 counts per inch with a finger as the actuator. The resolution could be increased by decreasing the width of the conductive fingers and spaces; the trade-off is a more expensive part.

Positional accuracy refers to the absolute knowledge of a point's position, as opposed to resolution, which refers to the relative knowledge of position. The absolute positional accuracy of an FPSR is $\mathbf{1 \%}$ or better.

The xirpad

As we have seen, the FSR-LP gives a measurement of normal force and position along a line. It is often desirable to measure the position of an applied force in a plane (e.g., a graphics input pad for a computer).

If linear position of a point is measured in two orthogonal directions, then the position of the point on a plane is completely specified. Conceptually, by placing two FSR-LPs back-to-back and perpendicular to each other, one can measure the position of a force on a plane, as well as the magnitude of the force. The $X Y Z$ pad is so called since it can measure plane coordinates (X and η) and normal force (Z).

Figure 10 shows the construction of an $X Y Z$ pad. Note that an unambiguous position can only be measured for a single applied force; multipic contacts will have degeneracies (that is, a non-unique set of solutions) in force-position measurements. Thus is not a problem for, e.g., graphics pads, but it does mean thal the XYZ Pad cannot be used for complex pattern recognition.

APPENDIX 3

Test Data sheet FSR/Readout Electronics DC Transfer Characteristic Test Date: NoV S/92_Time: 3:38Am
Cycle Applied Force(lbs) Readout (volts)

0	No Lant	0.1790
0	TEST AEAD	0.1789
11	0.3	81.1798
14	0.6	0.2003
11	1.0	0.2528
$1 \uparrow$	3.0	0.6180
14	6.0	1.415
$1 \uparrow$	10.0	$2 \cdot 338$
14	30.0	5.222
14	60.0	7.685
$1 \downarrow$	30.0	5.515
$1 \downarrow$	10.0	2.864
14	6.0	2.060
16	$3 \cdot 6$	0.9317
$1 \downarrow$	1.0	0.2689
14	0.6	0.2143
$1 \downarrow$	0.3	0.1792
$2 \uparrow$	0.6	0.1993
24	1.0	0.2486
27	3.6	0.5342
21	6.0	1.358

2.4	120	1.358
24	30.0	5.349
24	60.0	7.800
$2 \downarrow$	30.0	5.705
$2 \downarrow$	10.6	3.015
2 \downarrow	6.0	2.051
2v	3.0	0.9436
$2 \downarrow$	1.0	0.2816
$2 \downarrow$	0.6	0.2182
$2 \downarrow$	0.3	0.1802
$3 \uparrow$	0.6	0.2029
$3 \uparrow$	1.0	0.2326
$3 \uparrow$	3.0	0.5375
$3 \uparrow$	6.0	1.276
$3 \uparrow$	10.0	2-213
$3 \uparrow$	30.0	5.614
34	60.0	8.230
$3 \downarrow$	30.0	5.805
$3 \downarrow$	10.0	2.916
$3 \downarrow$	6.0	2.236
$3 \downarrow$	3.0	0.850
3 2	1.0	0.2753
$3 \downarrow$	0.6	0.2077
$3 \downarrow$	0.3	0.1789
	ND TEST	11.52 mm

APPENDIX

Test Data Analysis DC Transfer Characteristic.
FSR/READOUT CIRCUITRY DC TRANSFER CHARARACTERISTIC CYCLIC TEST
$F:=\left[\begin{array}{c}0.3 \\ 0.6 \\ 1.0 \\ 3.0 \\ 6.0 \\ 10.0 \\ 30.0 \\ 60.0\end{array}\right] \quad$ Voutul $:=\left[\begin{array}{c}.1789 \\ .2003 \\ .2528 \\ .6180 \\ 1.415 \\ 2.338 \\ 5.222 \\ 7.685\end{array}\right] \quad$ Voutdl $:=\left[\begin{array}{l}.1792 \\ .2143 \\ .2689 \\ .9317 \\ 2.060 \\ 2.864 \\ 5.515 \\ 7.685\end{array}\right]$

Applied lbs force.
Readout Voltage
$\mathrm{i}:=0 . .7 \quad \mathrm{Fkg}_{\mathrm{i}}:=\frac{\mathrm{F}_{\mathrm{i}}}{6.38486} \quad\left[\begin{array}{l}.1792 \\ .1993 \\ .2486 \\ .5342 \\ 1.358 \\ 2.404 \\ 5.349 \\ 7.800\end{array}\right] \quad$ Voutd2 $:=\left[\begin{array}{l}.1802 \\ .2182 \\ .2816 \\ .9436 \\ 2.051 \\ 3.015 \\ 5.705 \\ 7.800\end{array}\right]$

Convert to $\mathrm{kg} / \mathrm{cm}^{\wedge} 2$

Fkg $_{\mathrm{i}}$
0.047
0.094
0.157
0.47
0.94
1.566
4.699
9.397

.2029

.2326

.5375

1.276

2.213

5.614

8.230\end{array}\right] \quad\) Voutd3 $:=\left[\begin{array}{l}.1789 \\
.2077 \\
.2753 \\
.8550 \\
2.236 \\
2.916 \\
5.805 \\
8.230\end{array}\right]$

[^0]Readout voltage for each cycle uxup d-down volts Log-Log Plot FSR/Readout

Applied Force kg/cm^2
Calculate hysteresis error-errorh, repeatibility-errorr \& against power law errorc
errorh $_{i}:=\frac{\text { Voutul }_{i}-\text { Voutdl }_{i}}{0.07905}$

$$
\text { errorr }_{\mathrm{i}}:=\frac{\text { Voutul }_{\mathrm{i}}-\text { Voutu2 }_{\mathrm{i}}}{0.07905}
$$

errorc $_{i}:=\frac{\text { Voutul }_{i}-\text { Vout }_{i}}{0.07905}$

Error of full scale

$$
\begin{aligned}
& \text { further error calaculations for other cycles } \\
& \text { errorh1 }_{i}:=\frac{\text { Voutu2 }_{i}-\text { Voutd2 }_{i}}{0.07905} \quad \text { errorr }_{i}:=\frac{\text { Voutd1 }_{i}-\text { Voutd2 }_{i}}{.07905} \\
& \text { errorcl }_{i}:=\frac{\text { Voutd1 }_{i}-\text { Vout }_{i}}{0.07905} \\
& \text { Error \& of full scale }
\end{aligned}
$$

Applied Force $\mathrm{kg} / \mathrm{cm}^{\wedge} 2$

$$
\text { erru1 }_{\mathrm{i}}:=\frac{\text { Voutu1 }_{\mathrm{i}}-\text { Voutu2 }_{\mathrm{i}}}{0.07905}
$$

$$
\text { erru2 }_{i}:=\frac{\text { Voutu1 }_{i}-\text { Voutu }_{i}}{0.07905}
$$

errul $_{\text {i }}$
-0.004
0.013
0.053
1.06
0.721
-0.835
-1.607
-1.455

[^1]
errd2 $_{i}:=\frac{\text { Voutd1 }_{i}-\text { Voutd3 }_{i}}{0.07905}$

errdl $_{\text {i }}$
-0.013
-0.049
-0.161
-0.151
0.114
-1.91
-2.404
1.455

Decreasing force repeatibility error of full scale

$$
\text { errh1 }_{i}:=\frac{\text { Voutu1 }_{\mathrm{i}}-\text { Voutd1 }_{\mathrm{i}}}{0.07905} \quad \text { errh2 }_{\mathrm{i}}:=\frac{\text { Voutu2 }_{\mathrm{i}}-\text { Voutd2 }_{\mathrm{i}}}{0.07905}
$$

$$
\text { errh }_{i}:=\frac{\text { Voutu }_{i}-\text { Voutd }_{i}}{0.07905}
$$

-0.004
-0.177
-0.204
-3.968
-8.159
-6.654
-3.707
0

enth2 $_{i}$
0.013
-0.239
-0.417
-5.179
-8.767
-7.729
-4.503
0

errh $_{i}{ }_{\mathbf{i}}{ }^{0.016}$
-0.061
-0.54
-4.016
-12.144
-8.893
-2.416
0

Hysteresis error by cycle of full scale
Calculate vave minimum error piecewise curve fit
vave $:=\frac{\text { Voutu1 }_{i}+\text { Voutu2 }_{i}+\text { Voutu3 }_{i}+\text { Voutd1 }_{i}+\text { Voutd }_{i}+\text { Voutd }_{i}}{6}$

$$
\begin{aligned}
& \text { Calculate error against curve fit } \\
& \text { erau1 }_{i}:=\frac{\text { vave }_{i}-\text { Voutu1 }_{i}}{0.07905} \text { erau2 }_{i}:=\frac{\text { vave }_{i}-\text { Voutul }_{i}}{0.07905} \\
& \text { erau }_{i}:=\frac{\text { vave }_{i}-\text { Voutu }_{i}}{0.07905} \text { erad1 }_{i}:=\frac{\text { vave }_{i}-\text { Voutd1 }_{i}}{0.07905} \\
& \text { erad }_{i}:=\frac{\text { vave }_{i}-\text { Voutd2 }_{i}}{0.07905} \text { erad }_{i}:=\frac{\text { vave }_{i}-\text { Voutd3 }_{i}}{0.07905}
\end{aligned}
$$

* error by cycle against curve fit

eraul.	erau2.	erau3	eradl	d	erad3
0.007	0.007	-0.01	0.003	-0.01	0.007
0.086	0.086	0.053	-0.091	-0.14	-0.007
0.091	0.091	0.346	-0.113	0.274	-0.194
1.501	1.501	2.52	-2.467	2.618	-1.497
4.019	4.019	5.777	-4.141	4.027	-6.367
3.631	3.631	5.212	-3.023	4.934	3.681
3.96	3.96	-0.999	0.253	2.151	3.416
2.783	2.783	4.111	2.783	1.328	4.111

Circuitry.[6]

FEATURES

ORDERING INFORMATON '

$\begin{aligned} & T_{A}=+25^{\circ} C \\ & v_{\text {os }} M A x \\ & \text { im } \\ & \hline \end{aligned}$	PACKACE				operating TEMPERATURE RANCE
	1000	CERDP BPW	PLISTIC CPN	$\begin{gathered} \text { LCC } \\ 20 \text {-CONTACT } \end{gathered}$	
25	OP27AF	OP27AT	-	-	ML
25	OP27EJ	OP27E2	OP27EP	-	moccan
60	OP278	OPZ7ET	-	OP27日R283	ML
60	OP27FJ	OP27F2	OP2FP	-	NDCOM
100	OP27C」	OP27C2	-	-	ML
100	OP276.	OP27E2	OP27EP	-	XND
100	-	-	OP27Gs ${ }^{\text {P }}$	-	XND

- For devices processed in Dow compliance of MIL-STD-883, add /se3 aher par number Consull facrory for 103 dara sheel.
- Burn-in is avadabie on cormercial and industial temperaure range perts in CorDIP, plastic DIP. and TO-can packeges. For ordering intormation, wee 1900-91 Data Book, Secton 2.
H. For avilablity and bum-in intormation on SO and PLCC padkeges. coniact your local sales otfice.

GENERAL DESCRIPTION

The OP-27 precision operstional amplifier combines the low offsel and driff of the OP-07 with both high-speed and lownoise. Offsets down to $25 \mu \mathrm{~V}$ and oritf of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum make the OP-27 ideal for precision instrumentation applications. Exceptionally low noise, $e_{n}=3.5 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$, at 10 Hz, a low $1 / \mathrm{f}$ noise corner frequency of 2.7 Hz , and high gain (1.8 million), allow accurate high-gain amplification of low-level

LOW-NOISE PRECISION OPERATIONAL AMPLIFIER
signals. A gain-bandwidth product of emHz and a $2 . a \mathrm{~V} /$ meec slow rate provides excellent dynamic accuracy in high-speed data-acquisition systoms.
A low input bias current of $\pm 10 \cap \mathrm{~A}$ is achieved by use of a bias-current-cancellation circuit. Over the military temperature range, this circuit typicelly holds 1 and $\mathrm{I}_{0 \text { os }}$ to $\pm 20 \mathrm{nA}$ and $15 n A$ respectively.

The output stage has good load driving capability. A guaranleed swing of $\pm 10 \mathrm{~V}$ into 600Ω and low output distortion make the OP-27 an excelient choice for professional audio applicstions.

PSRR and CMRR exceed 120dB. These characiertstics, coupled with long-term drift of $0.2 \mu \mathrm{~V} /$ month, allow the circuit designer to achieve performance lovals previously attained only by discrete designs.

PIN CONNECTIONS

TO-99 (d-Suffix)

8-PIN HERMETIC DIP (Z-Suffix)

EPOXY MINL-DIP (P-Suffix) 8-PIN SO (S-Suffix)

OP-27BRC/883 LCC PACKAGE (RC-Suffix)

SIMPLIFIED SCHEMATIC

Low cost. high-volume production of OP- 27 is achieved by using an on-chip zener-zap trimming network. This reliable and stable offset inmming scheme has proved its effectiveness over many years of production history.
The OP-27 provides excellent performance in low-nolse high-accuracy ampilication of low-tevel signals. Applicetions include stable integrators, precision summing amplifiers. precision voltage-threshold detectors, comparators. and professional audio circuits such as tape-head and microphone preamplitiers.
The OP-27 is a direct replacement for 725, OP-06, OP-07 and OP-05 amplifiers: 741 types may be directly replaced by removing the 741's nulling potentiometer.

ABSOLUTE MAXIMUM RATINGS (Note 4)

Supply Voltage ... $\pm 22 \mathrm{~V}$
Input Voltage (Note 1)
Output Shorr-Circuit Duration $\pm 22 \mathrm{~V}$

Differential Inpur Vohage (Note 2) Indefinite

Differential Input Current (Note 2) $\pm 0.7 \mathrm{~V}$

Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range
OP-27A. OP-27B, OP-27C (J. Z, RC) $-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$

OP-27E, OP-27F (P) .. $0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$
OP-27G (P, S, J, Z) $-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering, 60 sec) $300^{\circ} \mathrm{C}$
Junction Temperature $-65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$

PACRACE TYPE	$\theta_{\text {ja }}$ (Note 3)	, 16	UNITS
TO-90(J)	150	18	${ }^{\text {C/M }}$
--Pn Harmosic DiP (Z)	148	16	${ }^{*} \mathrm{CN}$
8-Pin Plaste DIP (P)	103	43	CN
20-Conluct (CC (RC)	0	38	${ }^{\circ} \mathrm{CNH}$
8-PuSO(S)	158	43	${ }^{\circ} \mathrm{CN}$

NOTES:

 aquad to the umply voltage
2. The OP-2Ta inputa me protocted by beck-bo-bect dodes. Current limititg resision are not used in order to achiove low noise. Idilicrensal inpul voltage excends $\pm 0.7 \mathrm{~V}$. the hiput ourtont should be wrind 1025 ma .
3 - ${ }_{a}$ is upedfiod for worst case mounting conditoms. Lo.. θ_{μ} is speafied for dence in soctal ler TO. COTDIP. P-DIP, and LCC pectupes; Θ_{μ} is specifiod for donce soldered to printed arant boerd ior SO pectice.
4. Abooluv marinum raonges apply to both DrCE and pechuged perts, unlowe othenwise noted.

ELECTRICAL CHARACTERISTICS at $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PARAMETEA	SYMBOL	CONDTIION	OP-27AE			OP-27E/F			OP-27C/G			UNITS
			MIN	тYp	max	MIN	TYP	Max	M1M	TY	Max	
Input Otreet Voltage	$v_{0 S}$	(Note 11	-	10	23	-	20	60	-	30	100	${ }^{-} \mathrm{V}$
Long. Term V_{os} Stability	Vostios	(Notes 231	-	0.2	10	-	0.3	15	-	04	20	mV/Mo
Input OMas Current	Ios		-	7	35	-	9	50	-	1	73	na
Inpul Bua Curram	18		-	± 10	± 40	-	± 12	- 56	-	± 15	$\pm \infty$	na
Input Nowe Vorkere	\cdots nob	0.1 Hat to 101t (Notere 3. 3)	-	008	018	-	000	0 น	-	0.09	025	M V D-0
Input Noisa Voruge Density	e_{n}		-	35 31 30	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$	-	35 3.1 30	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$	-	$\begin{aligned} & 31 \\ & 3.3 \\ & 32 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \\ & 45 \end{aligned}$	nv/. $\overline{\mathrm{Hz}}$
Inpul Norse Current Damaly	'n		-	1.7 10 0.4	4.0 23 00	-	1.7 1.0 0.4	$\begin{aligned} & 4.0 \\ & 2.3 \\ & 0.6 \end{aligned}$	-	$\begin{aligned} & 1.7 \\ & 1.0 \\ & 04 \end{aligned}$	$\begin{gathered} - \\ - \\ 08 \end{gathered}$	-A, $\mathrm{Hz}^{\text {a }}$
Input Rewatance -Difterenial-Mode	${ }^{+\pi}$	(Mone 71	1.3	8	-	004	5	-	07	4	-	M 11
Inpul Rearitance -Common-Mode	$\mathrm{R}_{\text {uncu }}$		-	3	-	-	25	-	-	2	-	GII
Inpul Vollaga Aange	IVA		± 110	± 12.3	-	± 110	± 123	-	± 11.0	± 123	-	v
Common-Mode Aejection Aalio	CMAR	$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$	114	126	-	106	123	-	100	120	-	dB
Pawer Supph Aejection Ratio	PSAR	$V_{5}= \pm 4 \mathrm{to}$ to	-	1	10	-	१	10	-	2	20	\% V/N
Lerge-Signal Vollage Gain	Avo	$\begin{aligned} & A_{\mathrm{L}} \geqslant 2 \mathrm{~W} 11 \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{~A}_{\mathrm{L}} \geqslant 60011 . V_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 1000 \\ 600 \end{array}$	$\begin{aligned} & 1800 \\ & 1500 \end{aligned}$	-	$\begin{array}{r} 1000 \\ 800 \end{array}$	1800 1500	-	700 600	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	-	Vmv
Ouipul Vollage Swing	Vo	$\begin{aligned} & A_{\mathrm{L}} \geq 2 \mathrm{hn} \\ & A_{\mathrm{L}} \geq 600 \mathrm{l} \end{aligned}$	± 120 ± 100	± 138 ± 115	-	+120 ± 100	± 138 ± 115	-	+115 +100	.135 -115	-	v
Slow Rala	SR P	$\mathrm{A}_{1} \geq$ 2ull Note 41	1.7	28	-	17	28	-	17	20	-	V

FEATURES

- 10 Vali Outpur \qquad $\pm 0.3 \%$ Max
- Adjustment Range \qquad +

Exceilent Temperalure Stability \qquad 8.5ppm/ C Max

- Low Nolse \qquad
Low Supply Current .
WIde Inpu
...... 12 V to 40V
- HIgh Load-Drtving Capability 20mA
- No External Components
- Short-Clrcult Proof
- MIL-STD-883 Screening Arallable
- Available in Dia Form

ORDERING INFORMATION '

$\begin{aligned} & T_{A}=25^{\circ} C \\ & \Delta V_{M}=1 \times X \\ & (m V) \end{aligned}$	Package				operatng TEMPERATURE thange
	10-90	cernep	PLASTIC E-PIN	LCC 20-CONTACT	
. 30	REFDIAS	heforaz	-	-	MIL
*30	REFOIES	REF01EZ	-	-	com
250	REFO1s	Reforic	-	REFOIRCM	3 MIL
50	REFOTHJ	REFOILZ	REFOTHP	-	COM
. 100	REFO1C	PEEPICZ	-	-	COM
. 100	-	-	REFOCP	-	Xino
. 100	-	-	REFO1CSP9	-	X ${ }^{\text {No }}$

- For devices procissed in toter complience to MIL-STD-se3, edd/es3 aller part number Conaun bectory for sess deala sheot.

1. Burn hin ta avais abie on commercial and inducteral lemperalure renge parte in CorDIP, pleatic DIP, and TO-ean packiges. For ordenng information, 100 1890191 Data Book Section 2.
H. For avalisbility and burinn intormation on $\mathbf{8 0}$ and PLCC pnckeges. contad your boal males office

GENERAL DESCRIPTION

The REF-01 precision voltage reference provides a stable
+10 V outpul which can be adjusted over a $\pm 3 \%$ range with minimal elfect on temperature stability. Singl-supply operation over an inpul voltage range of 12 V to 40 V . low current drain of 1 mA , and excellent lemperature stablity are achieved with an improved bandgap design. Low cost, low noise, and low power make the REF-01 an excellent choice whenever a stable voltage reference is required. Applications include D/A and ADD comverters. portable instrumentation, and digital voltmeters. Full military temperature range devices with screening to MIL-STD-883 are available. For guaranteed long-term drift see the REF-10 data sheet.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC

DICE CHARACTERISTICS ($125^{\circ} \mathrm{C}$ TESTED DICE AVALLABLE)

DIE SIZE 0.074×0.048 inch, 3552 sq. mils $(1.81 \times 1.22 \mathrm{~mm}, 2.29 \mathrm{mq} \mathrm{mm})$	2 mpert VOLTACE ($V_{1 N}$) 4. EnOUNO c. TRIM a. OUTPUT VOLTAGE (Vout) For addilional DICE ordering information, refer to 1090/91 Data Book, Section 2.

WAFER TEST LIMITS at $V_{I N}=+15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ for REF-01N and REF-01G devices: $T_{A}=125^{\circ} \mathrm{C}$ for REF-01NT and REF-01GT devices, unless otherwise noted. (Note 1)

PARAMETER	SYMBOL	COMDITIONS	REF-OTNT Lyit	REF-O1N LMATT	REF-01GT LIMIT	REF-01G LIMIT	UNTT
Outpul Voltage	V_{0}	$16=0$	10.05	10.03	10.10	10.05	\checkmark max v MIN
Output Adjustment Range	$V_{\text {vim }}$	$\mathrm{A}_{\mathrm{p}}=10 \mathrm{k} \boldsymbol{n}$	-	± 3.0	-	± 3.0	\% MIN
Line Regutation		$V_{\text {MN }}=13 \mathrm{~V}$ to 33 V	0.015	0.01	0.015	0.01	2v max

NOTE:

Elecirical teste are performed at waler probe to the umits shown. Due to variations in asembly methods and normal yheld lose. ybeld after packeging be not guaranteed for atandard product dice Consult factory to negotiate specifications baed on dice iol qualification through sample lot aseembly and meting

TYPICAL ELECTRICAL CHARACTERISTICS al $V_{I N}=+15 V, T_{A}=25^{\circ} \mathrm{C}$. unless otherwise noted.

PARAMETER	SYMBOL	CONDMONS	REF-OINT TVPICAL	REF-OTN THFICAL	REF-O1GT trpical	REF-01G TYMCAL	Unart
Lose Regulation		$\begin{aligned} & I_{L}=0 \text { to vomA } \\ & I_{L}=0 \text { to } \operatorname{sinA}, \mathrm{NT}, \mathrm{GT} e+125^{\circ} \mathrm{C} \end{aligned}$	0.007	0.005	0.008	0006	WmA
Output Voltage Noise	$0_{\text {ng-p }}$	0.142 to 1012	20	20	20	20	${ }^{\circ} \mathrm{E}$
Turn-On Settling Time	Ion	To $\pm 0.1 \%$ of Final vilue NT. GT © $+125^{\circ} \mathrm{C}$	7.5	5.0	7.5	5.0	\cdots
Ouiescent Current	Isr	No Load. MT, G7 e $+125^{\circ} \mathrm{C}$	1.4	1.0	1.4	1.0	mA
Losd Curremt	1		21	21	21	21	$m A$
Sink Current	I_{3}		-0. 5	-0. 5	-0.5	-0 5	mA
Shon-Circuit Current	1 lac	$v_{0}=0$	30	30	30	30	ma
Output Voltage Tomperature Coptliciont	TCVo		10	10	10	10	pomp

NOTE:

1 For $+25^{\circ}$ C apecifications of REF-ONT and REF-MGT, wo REF-01N and REF-01G reapeclivaly

Active Component Data sheets for Proposed Readout Circuitry.[6,7]
 10-4ras. an a, 1201
 /VIXXV

16-Channel/Dual 8-Channel High Performance CMOS Analog Multiplexers

Abstract

General Descriptlon The DG406/DG407 are monolithic CMOS analog multiplexers (muxes) The DG406 is a single-ended 1 -of-16 device, and the DG407 is a differential 2-01-8 device. Both are pin and functionally compatible with the industrystandard DG506ADG507A. The DG406/DG407 are fabricated with Maxim's new improved silicon gate process Both parts offer low on resistance (100Ω max), improved leakage over temperafure, low power consumption ($I_{\text {mer }}=75 \mu \mathrm{~A}$ max) and fast switching speeds (lnuns $^{2}=250 \mathrm{~ns}$ max) The 44V maximum breakdown voltage allows switch-off blocking capability ral-to-rail. These muxes can be used with a single positive supply $(+12 \mathrm{~V} 10+30 \mathrm{~V}$ or solit supplies $(\pm 45 \mathrm{~V} 10 \pm 20 \mathrm{~V})$ while retaining CMOS logic input compatiblity. CMOS inputs provide reduced input loading.

Appllcatlons
Sample-and-Hold Circuits
Test Equipment
Winchester Disk Drives
Heads-Up Displays
Guidance and Control Systems
Milltary Radios
Communications Systems
Battory-Operated Systems
PBX. PABX
Pin Comilgurations

- 'taun: 250ns Max
- Leakage - $T_{A}=T_{\text {mana }}$ to $T_{\text {mux }}$
Iram: 50 nA Max
Hom: 100nA Max (DG407), 200nA Max (DG406)
$I_{\text {rove: }}$ 100nA Max (DG407), 200nA Max (DG806)
- 0 : 20pC Typ
- Immri $75 \mu \mathrm{~A}$ Max
- Single- or Bipolar-Supply Operation
TILCMOS Logic Compatible

Ordering Information

PART	TEMP. RANOE	PINPACKAGE
DG406C/D	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	Dica
DG4060」	$40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	28 Plastic DIP
DG406DN	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	28 PLCC
DG406DK	$-40^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	28 CERDIP
DG406AK	$-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$	28 CERDIP
DG407C/D	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	Dice ${ }^{\circ}$
DG407DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Plasuc DIP
DG4070N	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 PLCC
DG407DK	$-40^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	28 CERDIP
DG407AK	$.55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 CEROIP

Confact factory for dice specticalions
Contact factory for a vailabity and processing to MIL - STD-883

Functional Dingrams

Done ILCMANEL BMOLEENDED MULTMEXA
OG407 on inst page

16－Channel／Dual 8－Channel High Performance CMOS Analog Multiplexers

ABSOLUTE MAXIMUM RATINGS

Voltage Relerenced to V ．	
GND	
Digita inputs $\mathrm{V}_{\mathbf{a}} . \mathrm{V}_{0}$（Note 1）	V － 2 V to $\mathrm{V}++2 \mathrm{~V}$ or 30 mA （whichever occurs first）
Current（any terminal，except Sor ）	30 mA
Continuous Current． $\mathrm{S} \propto \times \mathrm{D}$	20 mA
Peak Current．S or D （pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max）	40 mA

Nole 1：Siqnals on Sx, Dx ，or INx exceeding $\mathrm{V}+\boldsymbol{o r} V$－are clamped by internal diodes．Limit fonward current to maximum current ratings
Note 2：All leads are soldered or welded to PC boerd．
Stresses bevond inose listed under＂Absolve Maximum Rethgs＂may cause pormanent demege to the dovice These cee itroes rathges anty．and tunctional operation of the device at these or any other conditons beyond those indicated in the operational sections of ite specitiomons is not mpted Exposuro io absolute menmum rating conctions for exended pencois may affoci dence relinality

ELECTRICAL CHARACTERISTICS（Dual Supplies）

$\left(V+=15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{V}_{N H}=+2.4 \mathrm{~V}, \mathrm{~V}_{N}=+0.8 \mathrm{~V}, T_{A}=T_{\text {mun }}\right.$ to $T_{\text {mux }}$ ．unless othenvise noted．）

AMAX1／UI
 High－Speed，Micropower Op Amps

＿＿＿Ceneral Description

The MAX402MAX403 high－speed．micropower op amps are fabricated with Maxim＇s high－irequency complemen－ tary bipolar process．These devices leature a combina tion of high－speed performance and low－power operation that offers significant improvement over other available op amps
The MAX402 guarantees a $5 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 14 MHz bandwidth while drawing only $75 \mu \mathrm{~A}$ of supply current． For applications requiring increased speed，the MAX403 guarantees a $25 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 7 MHz bandwoth while drawing a maximum supply current of $375 \mu \mathrm{~A}$ ． These micropower op amps have excellent load－driving capability $\pm 3.6 \mathrm{~V}$ into a $10 \mathrm{k} \Omega$ load for both amplitiers， and $\pm 33 \mathrm{~V}$ into a $2 \mathrm{k} \Omega$ load for the MAX403 Both op amps are unity－gain stable and operate from $\pm 3 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ sup－ plies，or a single supply from +6 V to +10 V ．
The combination of high speed and low power makes the MAX402MAX403 ideal for high－speed．battery－powered applications．

Max402		
－1．ambe Man Unity Galn Bandwldth		
－5Vhus Min Siow Rate		
－75ya Mar Supply Current		
Max403		
－7MHz Miln Unity Gain Bendwidth		
－25V／us Min Slow Rate		
－375un Max Supply Current		
Ordering Information		
PART	TEMP．RANGE	Pm－PACKAGE
MAX402CPA	$0^{\circ} \mathrm{C}$ Lo $+70^{\circ} \mathrm{C}$	8 Plasuc DIP
maxa02CSA	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	8 SO
MAX402CD	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	Dice ${ }^{\text {P }}$
MAX402EPA	$40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX402FSA	$40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	850
MAX403CPA	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	8 Plestic DIP
MAX $003 C 51$	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	8 SO
Max403C／D	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	Dice ${ }^{\text {a }}$
MaX403EPA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 Plastic DIP
Max403ESA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8SO
muxac3mia	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	BCEROIP

－Contacr factory for dice specfications and miltary ternoercture range avarebiry．

Pin Configuration

\qquad

High-Speed, Micropower Op Amps

Operating Temperature Ranges.	
MAX40-C	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$
MAX40	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX 403 MUA	$55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$
Slorage Temperalure Range	$65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}$
Lead Temperature (soldering.	+300\%

Note 1: Absolute maximum ratings apply to packaged parts only, unless othenwise noted

 operabon of the divice these or eny other condibons beyond those noricated in the operavonsi sections of the specticahons is not mphed Exposice io cosolute marmum reing conctions for extended perods miy efecl device rewebury

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$. uniess otherwnse noted)

PARAMETER	SYM8OL	CONDITONS	MAX402			Max403			UnTTS
			MIN	TYP	Max	MN	TYP	max	
Inpul Offsel Votage	Vos			0.5	2		0.5	2	mV
Ofiset Vollage Tempco $\Delta V_{\text {gos }} / \Delta T$	TCVos	$T_{A}=$ TMN $^{\text {do }}$ TMAX		25			25		$\mu \mathrm{V} \mathrm{C}$
Input Bias Curent	IB			± 2	± 5		± 10	± 25	na
Input Volnage Range	IVR		± 3.5	± 3.8		± 3.5	± 3.8		\checkmark
Difterential inpul Ressiance	Rw (DIFF)			90			18		Mo
Common-Mode Input Resiatance	Pwn (CM)			1			1		GO
Input Noise Vollage Density	Q	$10=10 \mathrm{~Hz}$		43			33		$n \vee / \sqrt{H z}$
		$10=1000 \mathrm{~Hz}$		26			14		
Input Noise Current Density	in	$10=10 \mathrm{~Hz}$		006			0.25		OAWH2
		$10=1000 \mathrm{~Hz}$		0.03			007		
Common-Mode Rejection Ratio	CMRR	$V C M= \pm 35 \mathrm{~V}$	75	95		66	80		dB
PowerSupply Rejection Pratio	PSRA	$\mathrm{V}_{5}=14.5 \mathrm{~V}$ 10 $\pm 5.5 \mathrm{~V}$	56	65		60	70		dB
Large-Signat Gain	Ano	$R_{L}=1060$	68	75			80		dB
		$R_{L}=2 \mathrm{k} \Omega$				68	75		
Outpul Vohage Swing	Vout	$\mathrm{A}_{\mathrm{L}}=10 \mathrm{kO}$	± 36	± 39		± 36	± 39		V
		$\mathrm{A}_{\mathrm{L}}=2 \mathrm{k} \Omega$				± 3.3	± 36		
Short-Circuit Outpui Current	IsC			3			5		ma
Slew Rate	SR	10k0 1120 pF load	5	7		25	40		V/us
Gain Bandwnth	GBW	10k 21120 pF load	14	2		7	10		M Hz
Quiescent Current	10		40	50	75	200	250	375	$\mu \mathrm{A}$

ノVノエIルVI
 Dual，Low－Noise Low－Voltage Precision Op Amp

Theral Description

The MAX412 dual operational amplifier sets a new standard for noise pertormance In low－voltage systems． Input voltage noise density is 100% tested and is guaranteed to be less than $2.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz ．A unique design not only combines low noise with $\pm 5 \mathrm{~V}$ operation． but also consumes less than 2.5 mA supply current per amplifier．Low voltage operation is assured with a guaranteed output voltage swing of $\pm 3.6 \mathrm{~V}$ into $2 \mathrm{k} \Omega$ ．The MAX412 also operates from supply voltages between $\pm 2.4 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ for greater supply flexibility．
Unity－gain stability， 28 MHz bandwidth，and $4.5 \mathrm{~V} / \mu \mathrm{s}$ slew rate ensure low noise performance in a variety of wideband and measurement applications．The MAX412 is available in 8－pin DIP and SO packages in the industry－standard dual OD amp pin configuration．

Applications

Low Noise－Frequency Synthesizers
Infrared Detectors
High－Quality Audio Amplifiers
Accelerometer and Gyro Amplifiers
Magnetic Search Coil Amplifiers
Ultra－Low Noise Instrumentation Amplifiers Bridge Signal Conditioning

Pin Conflguration

TOP VIEW

Features
－100\％Tesled Voltage Nolso： 2． $\mathrm{AnV} / \sqrt{\mathrm{Hz}}$ Max at 1 kHz
－ 2.5 mA Supply Current Per Amplifier
－Low Supply Voltage Operation： $\pm 2.4 V$ to $\pm 5 \mathrm{~V}$
－28MHz Unily－Gain Bandwidth
－4．5V／ar Slew Rate
－ $250 \mu \mathrm{~V}$ Max OHsel Voltage
－115dB Min Voltage Gain
－ 2 Amplifiers In One 8－PIn DIP／SO
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX412CPA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX412CSA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 SO
MAX412C／D	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	Dice
MAX412EPA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 8 Plastic DIP
MAX412ESA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 8
MAX412MJA	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	8 CERDIP

－Dice ane specifled al $T_{A}=+25^{\circ} \mathrm{C}, ~ D C$ parameters only．
＿＿＿＿Typical Operating Circult

Dual，Low－Noise，Low－Voltage Precision Op Amp

ABSOLUTE MAXIMUM RATINGS

Supply Voltage（V＋to V－）．．．．．．．．．．．．．．．．．．．．．．．12V
Differential Input Current（Note 1）．．．．．．．．．．．．．．．$\pm 20 \mathrm{~mA}$
Ditterential input Voltage ．．．．．．．．．．．．．．．．．．．．．V + to V－ Common－Mode Input Voltage ．．．．．（V＋+0.3 V ）io（ $\mathrm{V}-\mathrm{-0.3V}$ ） Shor－Circult Current Duration ．．．．．．．．．．．．．．．．．．Indefinite Continuous Power Dissipation（TA $=+70^{\circ} \mathrm{C}$ ）

8 －pin Plastic DIP（derate $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．． 552 mW G－pin SO（darate $588 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．． 471 mW
－pin CERDIP（derate $8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．． 640 mW
Note 1：The amplifier inputs are connected by internal back－to－back clamp diodes．In order to minimize nolse in the input stage， current－limiting resistors are not used．If differential input voltages exceeding $\pm 1.0 \mathrm{~V}$ are applied，input current should be limited to 20 mA ．

Stresses beyond those under Absofure Maz／num Ratings＂may cause permanent damege to the dovice．These are siress ratings only，end functionat pperation of the device at these or any other conditions beyond those indicated in the operationul sections of the specification is not implied．Exposure to absoluto maximum rating conditions for extended periods may effect the device rollebility．

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}\right.$ ．Unless otherwise noted ．）

PARAMETER	8YMEOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Oftset Votrage	Vos			± 120	± 250	$\mu \mathrm{V}$
Input Bias Current	IB			± 80	± 150	nA
Input Ottset Current	los			± 40	± 80	nA
Difterential Inpul Reststance	Rin（Dif）			20		$\mathrm{k} \Omega$
Common－Mode Input Resiatance	RIn（CM）			40		$\mathrm{M} \Omega$
Input Capecitance	CIN			4		pF
Input Nolse－Voltage Density	e_{n}	$\mathrm{t}_{0}=10 \mathrm{~Hz}$		7		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		$t_{0}=1000 \mathrm{~Hz}(100 \%$ tested）		1.8	2.4	
Input Noise－Current Density	in	$\mathrm{f}_{0}=10 \mathrm{~Hz}$		2.6		$\mathrm{pA} \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{0}=1000 \mathrm{~Hz}^{2}$		1.2		
Common－Mode Inpus Voltage	Vcm		$\begin{array}{r} +3.5 \\ -3.5 \end{array}$	$\begin{aligned} & +3.7 \\ & -3.8 \end{aligned}$		V
Common－Mode Rejection Ratio	CMRR	$V_{C M}= \pm 3.5 \mathrm{~V}$	115	130		dB
Power－Supply Rejection Ratio	PSRR	$V_{S}= \pm 2.4 \mathrm{~V} 10 \pm 5.25 \mathrm{~V}$	96	103		dB
Large－Signal Gain	Avol	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{0}=3.8 \mathrm{~V}$ 10－3．7V	115	122		dB
		$R_{L}=600 \Omega, V_{O}= \pm 3.5 \mathrm{~V}$	110	120		
Output Voltage Swing	Vout	$R_{L}=2 \mathrm{k} \Omega$	$\begin{aligned} & +3.6 \\ & -3.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +3.7 \\ -3.8 \end{array}$		V
Short－Circuit Output Current	IsC			35		mA
Slew Rate	SR	10k $\Omega / 20 \mathrm{pF}$ load		4.5		V／rs
Unity－Gain Bandwidth	GBW	$10 \mathrm{k} \Omega / 20 \mathrm{pF}$ load		28		MHz
Serting Time	ts	To 0．1\％		13		μ
Channel Separation	CS	$\mathrm{f}_{0}=1 \mathrm{kHz}$		135		dB
Operating－Supply Voltage Range	Vs		± 2.4		± 525	\checkmark
Supply Current	Is	Both amplifiers		5	525	mA

Low－Power Single－Supply 12－Bit Sampling ADC

General Description

The MAX190 is a complete monolithic CMOS 12 －bit analog－to－digital converter（ADC）that features a differen－ tial input，track－and－hold（T／H），adjustable voltage refer－ ence，internal or external clock，and both parallel and serial $\mu \mathrm{P}$ interfaces．It has a conversion time of $7.5 \mu \mathrm{~s}$ and tested sampling rate of 76 kHz while requiring only 5 mA from a single 5 V supply．A $50 \mu \mathrm{~A}$ power－down mode saves power in slow sampling rate applications．
No external components are needed other than decoupling capacitors for the power supply and reference．This ADC operates with an internal or external reference．The inter－ nal reference features an adjustment input for trimming system gain errors．

The MAX190 provides three interface modes．Two 8－bit parallel modes，and a serial interface mode that is compat－ ible with common serial interface standards．

Applications
Battery－Powered Data Logging
High－Accuracy Process Control
Electro－Mechanical Systems
Data－Acquisition Boards for PCs
Automatic Testing Systems
Telecommunications
Digital－Signal Processing（DSP）
Functional Diagram

－12－Bit Resolution，1／2LSB Linearity
－Single＋5V Operation 5mA Max Current
－Power－Down Mode－50 4 A Max
－Built－In Track－and－Hold
－7．5us Conversion Time （12．5 μ s including T／H Acquistion）
－Internal Roference with Adjustment Capability
－Serial and 8－Bir Parallel $\mu \mathrm{P}$ Interface
－24－Pin Narrow DIP and Wide SO Packages

Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE ER	$\begin{aligned} & \text { ERROR } \\ & \text { (LSBe) } \end{aligned}$
MAX190ACNG	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	$\pm 1 / 2$
MAX190BCNG	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	
MAX190ACWG	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX1908CWG	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX190BC／D	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	Dice＊	± 1
MAXI90AENG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Narrow Plastic DIP	$\pm 1 / 2$
MAX190BENG	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	24 Narrow Plas ic DIP	
MAXI90AEWG	$-40^{\circ} \mathrm{C}$ io $+85^{\circ} \mathrm{C}$	24 Wide SO	$\pm 1 / 2$
MAX190BEWG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Wide SO	± 1
MAX190AMRG	$-55^{\circ} \mathrm{C} 10+125^{\circ} \mathrm{C}$	24 Narrow CERDIP	$\pm 1 / 2$
MAX190BMRG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Namow CERDIP	± 1

－Contact factory for dice specifications．

Low－Power Single－Supply 12－Bit Sampling ADC

```
ABSOLUTE MAXIMUM RATINGS
\begin{tabular}{|c|}
\hline \(V_{O O}\) to OOND ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－0．3V，+ TV \\
\hline AGND．VREF．REFADJ to DGND ．．．．．．．．．．．．．．．．．．． \(0.3 \mathrm{~V} . \mathrm{V}_{\mathrm{DO}}+0.3 \mathrm{~V}\) \\
\hline AIN＋．AIN－，PD to VSS ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \(0.3 \mathrm{~V}, \mathrm{~V}_{D O}+0.3 \mathrm{~V}\) \(\overline{C S}, \overline{A D}\) ，CLK，BIP，HEEN， \\
\hline PAR to DGND ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． \(0.03 \mathrm{~V}, \mathrm{~V}_{D D}+0.3 \mathrm{~V}\) \\
\hline \\
\hline
\end{tabular}
```

Continuous Power Dissipation（amy package）
$10+75^{\circ} \mathrm{C}$ ．． 941 mW
derate above $+75^{\circ} \mathrm{C}$.. $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Ranges:

MAX190＿C＿ Ranges： \qquad $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX190＿E
MAX190＿M $-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$

Storage Temperature Range ．． C to $+160^{\circ} \mathrm{C}$
Lead Temperafure（soldering， 10 sec ）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$
 meximum rating condrions for extended panods mey affect device rehabwity

ELECTRICAL CHARACTERISTICS

$N_{D D}=+5 \mathrm{~V} \pm 5 \%$, ICLK $=1.6 \mathrm{MHz}, 50 \%$ duty cycle，AIN－＝AGND，BIP＝GND．Slow－Memory Mode，Internal Reference Mode． External Compensation Mode．Synchronous Operation，Figure 6，$T_{A}=T_{\text {MiN }}$ to $T_{\text {Max，}}$ unless otherwise noted）．（Note 1）

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNTS
DC ACCURACY（Note 2）							
Resolution				12			Brts
Integral Nonlinearity	INL		MAX190A			$\pm 1 / 2$	LSB
			MAX1908			± 1	
Differential Nonlinearity	DNL	Monotonic ovar temperature				± 1	LSB
Offset Error			MAX190A			± 1	LSB
			MAX190B			± 2	
Full－Scale Error（Note 3）		$\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ ，includes reference error	MAX190A			± 2	LS8
			MAX190B			± 3	
FullScale Tempco（Note 4）		Excludes internal reference drift		± 0.2			ppmp
Conversion Time（Note 5）	${ }^{\text {t conv }}$	Synchronous CLK （12 10125 CLKs）		750		781	μs
		Internal CLK．$C_{L}=120 \mathrm{pf}$		6	12	18	
DYNAMIC ACCURACY（sample rate＝ 76 kHz ）							
Signal－ro－Noise plus Distortion Ratio	SINAD	1 kHz input signal，$T_{A}=+25^{\circ} \mathrm{C}$		70			dB
Total Harmonic Distortion （up to the 5th harmonic）	THD	1 kHz input signal． $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$				－80	$d 8$
Spurious－Fies Dynamic Range	SFDR	1 $k H z$ input signal． $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$		80			d8

General Description
 \qquad

The MAX639 high－efficiency step－down switching regulator converts battery voltages between +5.5 V and +11.5 V to +5 V ，and supplies 100 mA of output current over the entire input voltage range． $10 \mu \mathrm{~A}$ quiescent current，greater than 90% efficiency，and 0.5 V dropout （ 0.12 V dropout at 25 mA output current）extend battery life in portable applications．Additional features in－ clude a logic－level shutdown control and low－battery detection circuitry．
The MAX639 requires only four external components： a small low－cost inductor．a diode，an input bypass capacitor，and an output filter capacitor．No compen－ sation components are needed．Voltages other than +5 V can be generated by adding two resistors．
The MAX639 is pin compatible with the MAX638，ex－ cept for the addition of the SHUTDOWN input，and is available in 8 －pin DIP and SO packages．

Applications

High－Efficiency DC－DC Step Down Regulation
Linear Voltage Regulator Replacement
+9 V to +5 V Conversion
Battery－Life Extension
Portable Instruments
Typical Operating Circuit

\qquad
\qquad Features
－High Efficiency 94% at IOUT $=25 \mathrm{~mA}$ 91% at lout＝ 100 mA
－Ultra Low 20uA（Max）Quiescent Current
－Output Currents Up to 225mA
－Preset +5 V or Adjustable Output Voltage
－Only 4 External Components
－TTLCMOS Compatible Shutdown Control
－Low－Battery Detector
－ 500 mV （Typ）Dropout Voltage（ 100 mA Load）
－8－Pin SO and Plastic DIP Packages
Ordering Information

PART	TEMP．RANGE	PIN－PACKAGE
MAX639CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX639CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX639C 0	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	Dice
MAX639EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX639ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX639MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

－Contact factory for dice specifications．

\qquad

High－Efficiency，＋5V Adjustable Step－Down Switching Regulator

ABSOLUTE MAXIMUM RATINGS	
${ }^{+}$	12 V
LX ．．．．．．．． ．．．．．．．．．．．．．．（V＋ 12	$\left(V_{+}-12 \mathrm{~V}\right)$ 10 $\left(V_{+}+0.3 \mathrm{~V}\right.$
LBI，LBO，VFB，SHON，VOUT ．．．．．．．．．． 0	$0.3 \mathrm{~V} 10(\mathrm{~V}++03 \mathrm{~V})$
LX Output Current	
LBO Output Current	nA
Continuous Power Dissipation	
Plastic DIP（derate $909 \mathrm{~mW} / \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）	＋70C）．．．．．727mW
SO（derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）	471 mW
CERDIP（derate $800 \mathrm{~mW} / \mathrm{C}^{\text {C }}$ above $+70^{\circ} \mathrm{C}$ ）	$\left.70^{\circ} \mathrm{C}\right)6 .640 \mathrm{~mW}$

Operating Temperature Ranges：	
MAX639C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX639E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX639MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ 10 $+160^{\circ} \mathrm{C}$
Lead Temperature（solder	$+300^{\circ} \mathrm{C}$

Siresses beyond those isted under＂Absolula Marimum Ratings＂may cause permanent damage to me device These are stress ratings only，and functional operation of the device at these or any other conditions beyond those molicated m the operational sections of the specifications is nor mpited Exposure to absolute maximum raling condifions for extended pornods may atlect dence reblabulty

ELECTRICAL CHARACTERISTICS
$\left(V+=9 \mathrm{~V}\right.$, LOAD $=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\text {Max，}}$ ，unless otherwise noled．）

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voliage		4.0		11.5	V
Supply Current	SHDN $=V+$ ，No load		10	20	$\mu \mathrm{A}$
Vout（Nole 1）	$V+=6.0 \mathrm{~V}$ to 115 V ，0mA $<10 \mathrm{~T}<100 \mathrm{~mA}$	4.80	5.00	5.20	\checkmark
Dropour Voltage	IOUT $=100 \mathrm{~mA}$ ． $\mathrm{L}=100 \mu \mathrm{H}$		0.5		V
Efficiency	$l \mathrm{O}$		91		\％
	lout $=25 \mathrm{~mA}$ ．L $=470 \mu \mathrm{H}$		94		
ION	$V_{+}=9 \mathrm{~V}$. VOUT $=5 \mathrm{~V}$	11.0	12.5	14.0	μs
	$\mathrm{V}_{+}=6 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}$	14.2	16.7	19.2	
toff	$V_{+}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	8.5	10.0	11.5	$\mu \mathrm{s}$
	$V+=6 \mathrm{~V}, \mathrm{~V}_{\text {our }}=3 \mathrm{~V}$	14.2	16.7	192	
LX Peak Current				600	mA
LX Switch row	$V_{+}=9 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$		0.8	1.5	Ω
	$V+=6 \mathrm{~V}$			2.5	
LX Switch Leakage	$V+=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{UX}}=0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$		0.003	1.0	$\mu \mathrm{A}$
	$V+=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}$			30	
VFB IBIAS	$V F B=2 V$		4	15	nA
VFB Dual Mode Trip Point			50		mV
vF̈̃ Tnresnola	MAX639C	1.26	1.28	1.30	V
	MAX639E．M	1.24	1.28	1.32	
LBI IBIAS	$\mathrm{V}_{\text {LII }}=2 \mathrm{~V}$		2	10	nA
LBi Thresnoid	MAX639C	1.26	1.28	1.30	V
	MAX639E，M	1.24	1.28	1.32	
LBO Sink Current	$V_{\text {LBO }}=0.4 \mathrm{~V}$	0.80	2.50		mA
LBO Leakage Current	$V_{L 80}=12 \mathrm{~V}$		0.001	0.1	$\mu \mathrm{A}$
LBO Delay	50 mV Overdrive		25		μs
SHDN Threshold		0.80	1.15	200	V
SHDN Pull－Up Current	VSHON＝OV	010	020	040	$\mu \mathrm{A}$

Note 1．Load regulation guaranteed by correlation to DC pulse measurements
\qquad

Preset／Adjustable Output CMOS Inverting Switching Regulators

ABSOLUTE MAXIMUM RATINGS

 ooeraion of the ofvice ai these or any olher conditions beyond inose undicated in the operational sections of the specitcabond a not mohed Exposure lo tel cunce rentubity．

ELECTRICAL CHARACTERISITICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNTTS
Supply Voltage（Note 1）	＋Vs	$T_{A}= \pm 25^{\circ} \mathrm{C}$ Over Temperature	$\begin{aligned} & 23 \\ & 2.6 \end{aligned}$		$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	V
Supply Current	Is	No Load．LX Off． Over Temperature $+V S=+5 V$ $+V s=+15 V$		$\begin{gathered} 80 \\ 260 \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$
Reference Voltage	VREF	$T_{A}=+25^{\circ} \mathrm{C}$ Over Temperature	$\begin{aligned} & 1.24 \\ & 1.20 \\ & \hline \end{aligned}$	1.31	$\begin{array}{r} 138 \\ 1.42 \\ \hline \end{array}$	V
VOUT Vohage（Nore 2）		No Load．VFB $=$ VREF，+ VS $=+5 \mathrm{~V}$ Over Temperature $\left.\begin{array}{l} \text { MAX635B } \\ \text { MAX6368 } \\ \text { MAX637B } \end{array}\right\} 10 \% \text { Output Accurecy }$	$\begin{gathered} -4.75 \\ -11.4 \\ -14.25 \\ -4.5 \\ -10.8 \\ -135 \end{gathered}$	$\begin{array}{r} -5.0 \\ -120 \\ -15.0 \\ -5.0 \\ -12.0 \\ -15.0 \end{array}$	$\begin{gathered} -525 \\ -126 \\ -15.75 \\ -5.5 \\ -13.2 \\ -165 \end{gathered}$	V
Eficiency				85		\％
Lne Regulation（Note 2）		＋ 5 V ＜$+\mathrm{VS}<+15 \mathrm{~V}$		0.5		\％VOUT
Load Regulaton（Note 2）		Pout＝OmW 10150 mW		0.2		\％VOUT
Oscillator Frequancy	10	$-V S=+5 V$ MAX63＿A MAX63＿B	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \end{aligned}$	kHz
Oscillator Duty Cycle		$+\mathrm{VS}=+5 \mathrm{~V}$	40	50	60	\％
LX On Resistance	Row	$\begin{aligned} I X=100 \mathrm{~mA} .+V S & =+5 V \\ & =+15 V \end{aligned}$		9	$\begin{gathered} 16 \\ 8 \end{gathered}$	Ω
LX Leakage Curens	IXL	$\begin{aligned} & +V S=+16.5 \mathrm{~V} \\ & +\mathrm{A}=+25^{\circ} \mathrm{C} \\ & \text { Over Temperature } \end{aligned}$		0.01	$\begin{aligned} & 1.0 \\ & 30 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
VFB Input Bias Current	$1 F B$			0.01	10	nA
Low Batlery Threshold	VLBI			1.31		\checkmark
Low Battery Inpul Bias Current	LBI			001	10	nA
Low Battery Output Current	180	$\begin{aligned} & \mathrm{V} 2=+04 \mathrm{~V}, \mathrm{~V} 3=+1.1 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Over Temperature } \end{aligned}$	05	1.0		mA
Low Baltery Output Leakage Current	IBCOL	$\mathrm{V} 2=+16.5 \mathrm{~V}, \mathrm{~V} 3=+1.4 \mathrm{~V}$		001	3.0	$\mu \mathrm{A}$

Note 1：In addition to the Absolute Maximum Rating of +18 V ，the input voltage also must not exceed $24 \mathrm{~V} \cdot|-\mathrm{VOUT}|$
Note 2：Guaranteed by correlation with DC pulse measurements．
\qquad

1VIXK/VI
 Preset/Adjustable Output cMOS Inverting Switching Regulators

General Description

The MAX635/MAX636/MAX637 inverting switching regulators are designed for minimum component DC-DC conversion in the 5 mW to 500 mW range.
Low power applications require only a diode, output fiter capacitor, and a low-cost inductor. An additional MOSFET and driver are needed for higher power applications. Low battery detection circuitry is included on chip.
The MAX635/636/637 are presel for -5V, -12V. and -15V outputs, respectively. However, the regulators can be set to other levels by adding 2 resistors.
Maxim manulactures a broad line of step-up. step-down, and inverting DC-DC converters, with leatures such as logic-level shutdown, adjustable oseillator frequency. and external MOSFET drive.
Minimum Component, Hign-Efficiency
DC-DC Converters
Portable Instruments
Battery Power Conversion
Board Level DC-DC Conversion

Pin Configuration

- Preset -5V, -12V, -15V Output Vollages
- Adjustable Output with 2 Resistors
- 85\% Typ Eticiency
- Only 3 External Components
- 80μ A Typ Operating Current
- Low Battery Detector

Ordering Information

PART*	TEMP. RANGE	PIN-PACKAGE
MAX635XCPA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX635XCSA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 Narrow SO
MAX635XC/D	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	Dice
MAX635XEPA	-40 $0^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX635XESA	- $40^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	8 Narrow SO
MAX635XEJA	- $40^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	8 CERDIP
MAX635XMJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP
MAX636XCPA	$0^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX636XCSA	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	8 Narrow SO
MAX636XC/D	$0^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}$	Dice
MAX636XEPA	$40^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX636XESA	-40 $40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 Narrow SO
MaX636XEJA	$-40^{\circ} \mathrm{C} 10+85^{\circ} \mathrm{C}$	8 CERDIP
MAX636XMJA	-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

$x=A$ for 5% Oulpul Accuracy. $X=8$ for 10\% Outpul Accuracy. Ordenng information continued on las! page.

Typical Operating Circuit

Preset／Adjustable Output CMOS Inverting Switching Regulators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage．＋Vs（Note 1）	＋18V
Inpul Vollage，LBO，LBI，VFB ．．．．．．．．．． 0	$(+V S+0.3 V)$
LX Output Current	525mA Peak
LBO Oulpul Current	50 ma
Power Dissipation	
Plastic OIP（derate $8.33 \mathrm{~mW} / \mathrm{C}$ above $+50^{\circ} \mathrm{C}$ ）	625 mW
Small Outline（derate $6 \mathrm{~mW} / \mathrm{C}$ above $+50^{\circ} \mathrm{C}$ ）	450 mW
CERDIP（derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+50^{\circ} \mathrm{C}$ ）	800 mW

 MAX63－M ．．．．．．．．．．．．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$
Storage Temperature ．．．．．．．．．．．．．．．．．．．． $65^{\circ} \mathrm{C} 10+160^{\circ} \mathrm{C}$
Lead Temperalure（Soldering． 10 sec．）．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$

Stressas beyond inose hsted under Absolute Maximum Aatings may cause permanent damage to the dence these are sbess rabings anty and functional operation of the device al these of any other condtions beyond mose indicated in the operational sections of the specifcations ia not mphed Exposua io absolute marmum raling condilions for extended perods mav affect device reliabiury

ELECTRICAL CHARACTERISITICS

（ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	Max	UNITS
Supply Voltage（Note 1）	＋Vs	$T_{A}=+25^{\circ} \mathrm{C}$ Over Temperature	$\begin{aligned} & 2.3 \\ & 2.6 \\ & \hline \end{aligned}$		$\begin{aligned} & 16.5 \\ & 165 \\ & \hline \end{aligned}$	V
Supply Current	Is	No Load．LX Ofi． Over Temperature $+V S=+5 V$ $+V s=+15 V$		$\begin{aligned} & 80 \\ & 260 \end{aligned}$	$\begin{aligned} & 150 \\ & 500 \end{aligned}$	μA.
Relerence Voltage	VREF	$T_{A}=+25^{\circ} \mathrm{C}$ Over Temperature	$\begin{aligned} & 1.24 \\ & 1.20 \end{aligned}$	1.31	$\begin{aligned} & 138 \\ & 1.42 \end{aligned}$	V
－VOUT Voltage（Note 2）		No Load．VFB $=$ VREF．$+\mathrm{VS}=+5 \mathrm{~V}$ Over Temperature $\left.\begin{array}{l}\text { MAX635A } \\ \text { MAX636A } \\ \text { MAX637A }\end{array}\right\} 5 \%$ Output Accuracy MAX635B MAX636B MAX637B 10\％Output Accuracy	$\begin{gathered} -475 \\ -114 \\ -1425 \\ -4.5 \\ -10.8 \\ -13.5 \end{gathered}$	$\begin{array}{r} -50 \\ -120 \\ -15.0 \\ -5.0 \\ -12.0 \\ -15.0 \end{array}$	$\begin{gathered} -525 \\ -12.6 \\ -1575 \\ -5.5 \\ -13.2 \\ -165 \end{gathered}$	V
Eficiency				85		\％
Line Regulation（Nole 2）		＋5V＜＋Vse＋ 15 V		05		\％VOUT
Load Regulation（Note 2）		Pout $=0 \mathrm{~mW} 10150 \mathrm{~mW}$		0.2		\％VOUT
Oscillator Frequency	10	$+V S=+5 V \quad \begin{array}{ll} \text { MAX63_A } \\ & \text { MAX63_B } \end{array}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 56 \\ & 65 \end{aligned}$	kHz
Oscillator Duty Cycle		$+\mathrm{V}_{S}=+5 \mathrm{~V}$	40	50	60	\％
LX On Resistance	Ron	$\begin{aligned} X=100 \mathrm{~mA},+V S & =+5 \mathrm{~V} \\ & =+15 \mathrm{~V} \end{aligned}$		9 4	$\begin{gathered} 16 \\ 8 \end{gathered}$	Ω
LX Leakage Current	｜XL	$\begin{aligned} & +V_{S}=+165 \mathrm{~V} \\ & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { Over Temperature } \\ & \hline \end{aligned}$		0.01	$\begin{aligned} & 1.0 \\ & 30 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
VFB Input Bias Current	IFB			0.01	10	กA
Low Battery Threshold	VLBI			1.31		V
Low Battery Inpul Bias Current	LBI			001	10	nA
Low Battery Output Current	ILBO	$\begin{aligned} & \mathrm{V} 2=+04 \mathrm{~V}, \mathrm{~V} 3=+1.1 \mathrm{~V} \\ & \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Over Temperature } \end{aligned}$	0.5	1.0		ma
Low Battery Output Leakage Current	l 280 L	$\mathrm{V} 2=+165 \mathrm{~V}, \mathrm{~V} 3=+1.4 \mathrm{~V}$		001	30	$\mu \mathrm{A}$

Note 1：In addition 10 the Absolute Maximum Rating of +18 V ，the inpul voltage also must not exceed $24 \mathrm{~V}-1$－VOUT｜
Note 2：Guaranteed by correlation with DC pulse measurements
\qquad

REFERENCES

1) Suggested Interfaces, Tech Notes. Interlink Electronics, Sept.,1990
2) Technical Overview, Force and Position Sensing Resistors. interlink Electronics, 1990
3) FSR Technical Specification. Interlink Electronics
4) Force Sensing Resistors, Unlock the Power of Touch. Interlink Electronics
5) The Design Center Analysis-Reference Manual Version 5.1, Irvine, CA Microsim Corporation ,Jan 1992
6) Volume 10 Data Book Analog Integrated Circuits, Santa Clara, CA, Precision Monolithics Inc.
7) Maxim 1993 New Release Data Book Volume II, Sunnyvale, CA, Maxim Integrated Products Inc. 1993
8) Maxim 1992 New Release Data Book, Sunnyvale, CA Maxim Integrated Products Inc. 1992
9) SPICE Model Library, Analog Devices Release F, 4/92
10) Pressure Sensor Handbook, Sunnyvale, CA SenSyn Inc. 1987
11) Blake C.D., Brewerton D.A., Goodbody A., Soames R.W., Staff J.R.R. "Measurement of pressure under foot during function." Med. \& Biol. Eng. \& Comput., 1982,20,489-495.
12) Gerber H. "A system for measuring dynamic pressure distribution under the human foot." J. Biomechanics vol. 15. No. 3 pp 225227,1982
13)Ishida A., Miyazaki S. "Capacitive transducer for continuous measurement of vertical foot force." Med. \& Biol. Eng. \& Comput.,1984, 22, 309-316.
13) Albert H.T., Cavanagh P.R., Hennig E.M., Macmillan N.H. "A piezoelectric method for measuring the vertical contact stress beneath the human foot." J. Biomed. Eng. 1982, Vol. 4, july pp 213222.
14) Tompkins Willis J., Webster John G., Wertsch Jacqueline J., "A portable insole plantar pressure measurement system." Journal of Rehabilitation Research and development Vol. 29 No. 1, 1992 pp 1318.
15) Maliniak David "Piezoelectric-Film sensors Leave Niches Behind", Electronic Design 1991, Dec. 5 p. 37.
16) "Pressure Sensors \& Transducers" EDN 1986, May 1, pp 100-113.
17) Shiengold Daniel H., Transducer Interface Handbook. Norwood, MA Analog Devices Inc., 1980.
18) Webster John G., Medical Instrumentation Application and Design. Boston, MA. Hougton Mifflin Company, 1978.
19) Wobschall Darold, Sensors: Interfaces and Applications, McGraw Hill Seminar Center, 1985
20) Hymowitz Charles E., Meares Lawerence G. Simulating with SPICE, SanPedro CA Intusoft, 1988.

NOTE: Certain Figures (as noted by [*] in the figures caption) contained in this report were taken from these references.

[^0]: Applied force per
 unit area $\mathrm{kg} / \mathrm{cm}^{\wedge} 2$

 $$
 \text { Vout }_{\mathrm{i}}:=\frac{10000}{10^{-.71454 \cdot \log \left(\mathrm{Fk}_{\mathrm{i}}\right)}+3.79734}
 $$

 End point power law approximation

[^1]: Increasing force repeatibility error

