By

 FRANK HOLUJ, B.Sc., M.Sc.A Thesis
Subrifted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

MoMaster University
October 1958

DOCTOR OF PHILOSOPHY (1958) (Physics)

TITLE: Nuclear Magnetic Resonance Study of Colemanite
AUTHOR: Frank Holuj, B.Sc. (University of London)
M.Sc. (McMaster University)

STPERVISOR: Professor H. E. Petch
NUMBER OF PAGES: $x, 72$.
SCOPE AND CONTENTS:
A single crystal of colemanite, which is ferroelectric at temperatures below about $-2.0^{\circ} \mathrm{C}$., has been investigated by means of nuclear magnetic resonance (n.m.r.) techniques, over a temperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$.

The splitting of the B^{11} n.m.r. signal in colemanite, caused by the perturbation of the nuclear Zeeman levels by the interactions between the nuclear electric quadrupole moment and the electric field gradients existing at the boron sites at room temperature and at $-40^{\circ} \mathrm{C}$., has been fully analysed, using the procedure developed by Volkoff and coworkers. The quadrupole coupling constants, the asymmetry parameters and the orientations of the principal axes of the electric field gradient tensors at room temperature and $-40^{\circ} \mathrm{C}$. are given in Tables $X X V$ - XXVII. A selected set of $B^{\text {ll }}$ n.m.r. lines has been examined over the temperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$. This investigation suggests that the ferroelectric transition is second-order and not the orderdisorder or martensitic type. The transition temperature itself has
been found to depend upon the history of the crystal, but is apparently about $2^{\circ} \mathrm{C}$. higher than previously reported temperatures of about $-2.0^{\circ} \mathrm{C}$. In addition, a previously unknown phase in colemanite is reported. A large temperature hysteresis loop is associated with the transition to the new phase; on cooling, the transition takes place at about $-80^{\circ} \mathrm{C}$. whereas on heating, the transition takes place at about $-35^{\circ} \mathrm{C}$. The point groups for the three phases have been determined as $2 / \mathrm{m}_{0}, 2$ and 1 going from room temperature to $-80^{\circ} \mathrm{C}$., respectively.

The results of the n.m.r. investigation have been interpreted, as far as possible at present, in terms of the crystal structure.

ACKNOWLEDGEMENTS

I woild like to express my sincere thanks to Professor Petch for his constant interest and kind help throughout my experimental work, culminating in this thesis, and expecially for his excellent suggestion as to the topic for this thesis. I would also like to thank Dr. H. D. Mogaw for many interesting discussions while she stayed at MoMaster Univeraity as a Visiting Professor. Acknowledgement is also due to Mr. R. D. Datars who carried out a preliminary work on some single orystals of colemanite.

Thanks are due to the employees of the Machine Shop for constructing the crystal holders, the cold-cell and the copper coils at the heat exchanger.

This research wes made possible by Defense Research Board of Canada grants-in-aid to Professor Petch. The author is grateful for financial support in the form of a Cominco Fellowship awarded for three consecutive years by the Consolidated Mining and Smelting Co. Ltd. of Canada.

TABLE OF CONTENTS

PAGE
CHAPIER I INTRODTCTION 1
CHAPIER II THEORY 13
CHAPIER III APPARATTIS AND EXPERIMGNTAL PROCEDTIRE 32
CHAPTER IV RESTITS 43
CHAPTER V DISCTESSION 59
REFERENCES 7

LIST OF HLUSTRATIOMS

EIG. SUBJECT PACE
Fig. 1 The Operation of the point Group $2 /$ In on (a) the Nuclear Site, (b) $\bar{\nabla} E$ 16
Fig. 2 Nuclear Zeeman Levels of a^{11} Nucleus, (a) Not Showing the Quadrupole Effect, (b) Showing the Quadrupole Effect 20
Fig. 3 A Block Diagram of a N.M.R. Spectrometer 33
Pig. 4 A Cross-Section of the Cold-Coll 37
Fig. 5 Chart Recordings of the B ${ }^{11}$ N.M.R. Spectrum in Colemanite at Room Temperature Showing (a) the Observed Maximum Number of Lines, (b) the Observed Maximum Number of Lines in the Reduced Spectrum 43
Fig. 6 The Rotation Pattern of B^{11} N.M.R. Lines in Cole- manite at Room Temperature for the X -Rotation 44
Fig. 7 The Rotation Pattern of N.M.R. Lines Belonging to the B^{11} Sites M in Colemanite at Room Temperature for the X-Rotation 44
Fig. 8 The Rotation Pattern of B^{11} N.M.R. Lines in Cole- manite at Room Termperature for the Y-Rotation 44
Fig. 9 The Rotation Pattern of B^{11} N.M.R. Lines in Cole- manite at Room Temperature for the Z-Rotation 44
F1g. 10 Chart Recording of the B ${ }^{11}$ N.M.R. Spectrum inColemanite at -40° C. Showing (a) the TypicalSpectrum, (b) the Typical Reduced Spectrum50
Fig. 11 The Rotation Pattern of B^{11} N.M.R. Lines in Cole- menite at $-40^{\circ} \mathrm{C}$. for the X-Rotation 50
Fig. 12 The Rotation Pattern of N.M.R. Lines Belonging to the $\mathrm{B}^{1 l}$ Sites M^{*} in Colemanite at $-40^{\circ} \mathrm{C}$. for the X -Rotation50

FII.

Fig. 13	The Rotation Pattern of $\mathrm{B}^{\text {Il }}$ N.M.R. Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the I-Rotation	50
Pig. 14	The Rotation Pattern of $\mathrm{B}^{11} \mathrm{~N} . \mathrm{M}_{\mathrm{A}}$ R. Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the Z-Rotation	50
Fig. 15	Temperature Dependence of a Selected Set of B^{17} Satellite Lines in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$.	56
Fig. 16	Temperature Dependence of a Selected Set of B^{11} Satellite Lines in Colemanite at Temperatures in the Range $52^{\circ} \mathrm{C}$. to $-100^{\circ} \mathrm{C}$.	57
Fig. 17	Stereogram of the Principal Axes of $\tilde{V E}$ at the B^{11} Sites M and of the Neighbours of $B_{1 A}$	63
Fig. 18	Stereogram of the Principal Axes of ∇E at the $B^{I 1}$ Sites I and of the Neighbours of $B_{2 A}$	63
Fig. 19	Stereogram of the Principal Axes of ∇E at the B^{11} Sites K and of the Neighbours of $B_{3 A}$	63
Fig. 20	Temperature Effects upon Satellite Lines Belonging to the B^{11} Sites K in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$.	67
Fig. 21	Temperature Effects upon Satellite Lines Belonging to the Bll Sites L in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$.	67
Fig. 22	Temperature Effects upon Satellite Lines Belonging to the $\mathrm{B}^{1 l}$ Sites M in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-15^{\circ} \mathrm{C}$.	67
Fig. 23	Typical Satellite Lines Belonging to the B^{11} Sites M in Colemanite in the Three Known Phases	70

LIST OF TABLES

TABLE	SUBJECT	PAGE
Table I	Experimentally Measured B^{11} Resonance Frequencies for the X-Rotation of Colemanite at Room Temperature	44
Table II	Experimentally Measured B^{11} Resonance Frequencies for the I-Rotation of Colemanite at Room Temperature	44
Table III	Experimentally Measured BII Resonance Frequencies for the Z-Rotation of Colemanite at Room Temperature	44
Table IV	The Separation of the Satellite Lines for the K Sites in Colemanite at Room Temperature	47
Table V	The Separation of the Satellite Lines for the L Sites in Colemenite at Room Temperature	47
Table VI	The Separation of the Satellite Lines for the M Sites in Colemanite at Room Temperature	47
Table VII	The Separation of the Central Line from the Unperturbed Frequency for Sites M in Colemanite at Room Temperature	47
Table VIII	The Separation of the Centre of Gravity of the Satellite Lines from the Inperturbed Frequency for the M Sites in Colemanite at Room Temperature	47
Table IX	The First- and Second-Order Fourier Coefficients for the MSites in Colemanite	48
Table X	The First-Order Fourier Coofficients for the K and L Sites in Colemanite at Room Temperature	48
Table XI	The Separation of the Satellite Lines for all B^{11} Sites in Colemanite Oriented in the Specified Directions	48
Table XII	The Components of $\overline{\nabla E}$ for all B^{11} Sites in Colemanite at Room Temperature	49

TABLE	
Table XIII	The Experimentally Measured B^{11} Resonance Frequencies for the X-Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.
Table XIV	The Experimentally Measured B^{17} Resonance Frequencies for the Y-Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.
Table XV	The Experimentally Measured B^{11} Resonance Frequencies for the Z -Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.
Table XVI	The Separation of the Satellite Lines for the E^{11} Sites K^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.
Table XVII	The Separation of the Satellite Lines for the B^{11} Sites L^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.
Table XVIII	The Separation of the Satellite Lings for the B^{11} Sites $\mathrm{M}^{(1)}$ Colemanite at $-40^{\circ} \mathrm{C}$.
Table XIX	The First-Order Fourier Coefficients for all B^{11} Sites in Colemanite at $-40^{\circ} \mathrm{C}$.
Table XX	The Separation of the Satellite Lines of the B^{11} Sites K^{*} and L^{*} in Colemanite Oriented in the Specified Direction
Table XXI	The Components of $\nabla^{2} E$ for B^{11} Sites K^{*} in Colemanite
Table XXII	The Components of $\tilde{\nabla E}$ for B^{17} Sites L^{*} in Colemanite
Table XXIII	The Components of $\nabla^{2} E$ for B^{11} Sites M^{*} in Colemanite
Table XXIV	The Averages of the Components of $\tilde{\nabla E}$ for all B^{11} Sites in Colemanite at $-40^{\circ} \mathrm{C}$.
Table XXV	The Quadmpole Coupling Constants and the Asymmetry Parameters for all Bil Sites in Colemanite at Room Temperature and $-40^{\circ} \mathrm{C}$.
Table XXVI	The Direction Cosines of the Principal Axes of $\nabla \mathrm{E}$ with Respect to the (X, Y, Z) Axes for $2 l l \mathrm{~B}^{11}$ Sites in Colemanite at Room Temperature

TABLE

PAGE
Table XXVII $\quad \begin{aligned} & \text { The Direction Cosines of the Principal Axes of } \\ & \text { with Respect to the }(X, Y, Z) \\ & \\ & \text { in Colemanite at }-40^{\circ} \mathrm{C} \text {. }\end{aligned}$
Table XXVIII The Separation of the Satellite Lines for all B^{11}
Sites in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$.

57
Table XXIX The Separations of the Satellite Lines for B^{11} Sites L and M in Colemanite at Temperatures in the Range $52^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$. and in the Range $-22^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C} .57$

CHAPTER I

IWTRODICTION

I. 1. The first successful nuclear magnetic resonance ($\mathrm{n} . \mathrm{m}_{\mathrm{m}} \mathrm{r}$.) experiments, using bulk material, were carried out independently near the end of 1945 by Purcell, Torey and Pound ('46) and by Bloch, Hansen and Packard (46). The first group of physicists found the n.m.r. signal of protons in paraffin whereas the second group found it in water. The two groups used methods which appeared different at that time but are now regarded as equivalent. The theoretical basis of both methods is the resonance condition:

$$
\nu_{0}=\frac{\mu H_{0}}{I h}
$$

Here V_{0} is the frequency at which the n.mor. absorption takes place, Ho is the externally applied magnetic field, μ is the nuclear magnetic moment, I is the nuclear spin quantum number and h is Planck's constant. The importance of the discovery lies in the facts that with values of Ho easily obtained in the laboratory (of the orders of several kilogauss) n.m.r. frequencies occur in the radio-frequency range and that the resonance frequencies can be measured with great precision.

The most direct application of n.m.r. methods is to the measurement of gyromagnetic ratios (g-factors) of stable isotopes. Only relative measurements can be made so that the absolute value of at least one nuclear g-factor must be known in order to put all the measurements on an absolute basis. The nuclear magnetic moment of a nuclide can be calculated if its spin, I, is known as well as its g-factor. Conversely,
the method can be used to neasixe Ho in absolute units once a nuclear g-factor is known. Apart from the extraordinary precision which it made possible in the measurements of some nuclear quantities, the n.m.r. technique was found useful in other branches of physics. The fine structures of n.m.r. spectra, arising from the interactions of nuclei with their surroundings, supplied a means of studying some aspects of nuclear environment. For example, the shift of the resonant frequencies due to the local variations of the magnetic field at nuclear sites, occupied by the same isotope, gave the chemist a means of studying chemical reaction rates and of solving some problems in stereochemistry. Also, the interaction of a nuclear electric quadrupole moment with an inhomogeneous electric field set up by its environment, supplied the solid state physicist with a tool to study electrical properties, phase transitions, and crystal symmetry in solids. It is this latter inter action with which we shall concern ourselves in this thesis. In other words, nuclei, already present in their normal sites in a crystal, will be used as probes to explore the properties of the crystal.
I. 2. What follows is a brief review of the origin and of some previous studies of n.m.r. spectra in crystals. The Hamiltonian of a single nucleus, whose spin quantum number is I and magnetic moment is μ, placed in a uniform magnetic field, $\overrightarrow{H o}$ is:

$$
\mathcal{H}=-\vec{\mu} \cdot \overrightarrow{H_{0}}
$$

The nucleus in these circumstances possesses $2 I+1$ equidistant Leman energy levels. A radiation field of frequency,

$$
v_{0}=\left|\frac{\mu H_{0}}{I h}\right|
$$

and with the correct polarisation properties, will induce transitions
between the adjacent energy levels. In a sample containing many identical nuclei which interact only with the uniform magnetic field Ho, the energy levels will be the same for all the nuclei. If the nuclear spins are in thermal equilibrium with their surroundings, the lower energy states will have a larger population, so that the induced transitions between adjacent energy levels will give a net absorption of energy. If in addition, the nucleus has a non-zero electric quadrupole moment, referred to from now on as \tilde{q}, it will interact with a non-vanishing electric fiold gradient, referred to from now on as $\nabla \tilde{\mathrm{E}}$. At the site of any nucleus, $\mathcal{V E}$ is oharacteristic of the crystal structure. The Hamiltonian of a nucleus in these circumstances is:

$$
x=-\vec{\mu} \cdot \overrightarrow{B 0}+a \cdot \tilde{v B}
$$

The last term in this expression represents the interaction of \hat{Q} with $\boldsymbol{\sim E}$. The result of this additional interaction is that the $2 I+1$ nuclear Zeeman levels are shifted in energy so that they no longer are equidistant. This means that the $2 I$ transitions between adjacent levels no longer involve the same energy, but give rise to a spectrum of $2 I$ distinct n.m.r. lines. If the quadrupole effect, $\tilde{Q} \cdot \tilde{\nabla E}$, is small when compared with the magnetic term, $\vec{\mu} \cdot \overrightarrow{\mathrm{Ho}}$, this yaraltonian can be solved by the perturbation method. The expression for the onergy eigenvalues are then given by \mathbb{E}_{q}. (8) of Chapter II. For most practical purposes only the first three terms are retained because the series converges rapidly. The second and the third terms of Eq. (8) are called in this thesis the first and the second order nuclear quadrupole terms, respectively. If the quadrupole effect is sufficiently small it is accurately described by the first order nuclear quadrupole term alone.

The first theoretioal and experimental investigation of the quadrupole ofioct in crystalline matter was carried out by Found ('50). He investigated the n.m.r. spectrum of $\mathrm{Na}^{2.3}$ in NaNO_{3} and of AI^{27} in $\mathrm{Al}_{2} \mathrm{O}_{3}$ (comendura). The Na^{23} n.in.r. spectrum was completely described by the first order nuclear quadrupole term, whereas in the case of the AI ${ }^{27}$ n.m.r. spectrum it was necessary to include the second order nuclear quadrupole term. Pound's work is actually a special case of the general theory. The lack of generality arises from the fact that all Na and Al nuclei ocoupy crystallographically identical sites in the unit cell of their respective, axially symmetric crystals. Volkoff and coworkers extended both theory and experimental procedure to the completely general oase of several non-equivalent nuclear sites por unit coll in non-arially symmetric orystals. They studied the nom.r. spectra of Li'7 (Volkoff, '51) and $A I^{27}$ (Petch,'53, and Volkoff, '53) in spodumene and of B^{71} in kernite (Waterman, '55). The first paper in the series describes the study of the n.m.r. spectrim of Li^{7} in spodumene. The case of Li^{7} in spodumene is similar to the case of Na^{23} in NaNO_{3} since all lithium nuclei occupy crystallographically identical sites and the $L i^{7}$ n.m.r. spectrum displays small nuclear quadrupole effect, but the case of Li^{7} in spodumene is more genoral because spodumene is non-axially symmetric. The next two papers of the series describe the n.m.r. spectrum of AL?? in spodumene. The analysis of the spectrum is carried out using only the second order nuclear quadrupole term. In other respects the $A I^{27}$ n.m.r. spectram is similar to that of $L i A^{7}$ because it originates from crystallographically identical A1 ${ }^{27}$ sites in the unit cell of spodumene. A perfectly general n.m.r. spectrum is described in the last paper of this series, 1.e., the n.m.r.
spectrum of $B^{1 l}$ in kernite. This generality lies in the fact that boron nuclei ocoupy several non-equivalent sites in the unit cell of kernite.
I. 3. It was mentioned before that the nuclear quadrupole effect can be used to study electrical properties, phase transitions, crystal symmetry, otc. in solids. The intarpretation of certain features of n.m.r. spectra in terms of crystal symmetry is a straightforward matter. The eigenvalues of the product $\hat{Q} \cdot \widetilde{\nabla E}$ and the orientations of its principal axes with respect to a syster of coordinate axes fixed in a crystal come out of the mathematical analysis of the spectra. However, the complete interpretation of n.m.r. results in terms of microscopic crystalline electric fields is difficult because of the following: the evaluation of the tensor $\widetilde{\nabla E}$ from the experimentally measured product $\widehat{Q} . \widetilde{\nabla E}$ is difficult because of the uncertainty of the values of Q quoted in the ifterature.* Another difficulty arises from the lack of a complete theory for the wave functions involved in chemical bonding in crystals. And yet another serious difficulty artses from the following: only a part of the total nuclear quadrunole effect, $\tilde{Q} \cdot \nabla^{2} E$, arises from the gradient of the electrostatic field denoted by $\nabla \tilde{\varepsilon}$ produced by all other atoms in the crystal structure. The balance is produced by the electric field gradient set up by the distortion of the atom in which the nucleus is situated. This distortion originates from the nuclear quadrupolar slectric field and from the electric field, ε, mentioned above, and adds, in effect, a contribution $\gamma \tilde{\nabla} \tilde{\varepsilon}$ to the total ifeld gradient, $\tilde{\nabla E}$. The coefficient

[^0]γ, called the "antishielding factor," plays a very important part in the theory of electric field gradients in crystals because of its large magnitude in some atoms (for example, for B^{+3} ion γ is -0.145 (Das, ${ }^{\prime} 56$) but for Cs^{+}ion it is +143.5 (Sternheimer, ${ }^{\text {5 }}$ 56). The accuracy with which γ is calculated is low because it is based on a series of approximations.

The n.m.r. method lends itself well to the study of relative changes occurring within the crystal framework at phase transitions. This is because the product $\tilde{Q} . \tilde{\mathrm{VE}}$ depends critically upon the crystal structure. The validity of this was amply demonstrated by Cotts and Knight ('54). They studied the n.m.r. spectra of Nb^{93} in KNbO_{3} as a function of temperature. KNbO_{3} had been known to exist in four different phases in the temperature range $410^{\circ} \mathrm{C}$. to $-196^{\circ} \mathrm{C}$. Three of these phases had been known to be ferroelectric, and the transition temperatures had been accurately established. The changes in the configurations of the n.m.r. spectra obtained when the orystal temperature was varied from $400^{\circ} \mathrm{C}$. to -196° c. confirmed the existence of the four phases. The temperatures at which these changes occurred corresponded to the transition temperatures. The abruptness with which each change occurred supplied information about the order of the respective transition. The three phase transitions in this temperature range were of first order because the change in the conflguration of the spectrim occurred abruptly at the three transition temperatures. Cotts and Knight encountered great experimental difficulties. The single crystals of KNbO_{3}, which they used, frequently twinned and shattered while their temperatures were varied. Considering that the crystals were difficult to replace and that the proper orientation
of the single crystal with respect to the magnotic field calls for a time consuming procedure, the experiment was unduly protracted. However, these experimental difficulties are by no means typical, as this thesis demonstrates.

Before formulating the problem for this thesis we shall first discuss the phenomenon of ferroelectricity.

1. 4. Megaw ('57) defines a ferroelectric crystal as "a crystal possessing reversible spontaneous polarisation as shom by a dielectric hysteresis loop." Other properties of ferroelectric crystals are as follows
1. They possess a dielectric hysteresis loop, indicating reversible spontaneous polarisation.
2. They show disappearance of hysteresis at a certain temperature, the Curie point.
3. They have a domain structure, which may be visible in polarised IIght.
4. They have a high dielectric constant, rising to a peak at the Curie point.
5. The falling-off of their dielectric constant above the Curie point follow a Curie-Weiss law.
6. They possess a pseudosymmetric structure.
7. Their symmetry places them in a polar class.
8. They have a transition at the Gurie point to a form of higher symmetry.
9. The Curie point is raised (or a lower Curie point lowered) by the application of a biassing field.
10. There is a sudden appearance of surface charges at the transition. The changes in atomic arrangement at the transition into the ferroolectric phase, since they are completely reversible, must be very small. In crystallographic language they are referred to as "displaciva" transitions which only involve very small distortions of the atomic network in contrast to the "reconstructive" transitions in which the network is broken up into small parts and reassembled. This description of the transition emphasises only the crumpling of the framework and not the small movements of atoms relative to the framework which are important In ferroelectrios. Accordingly, a more descriptive term for a ferroelectric phase is "pseudosymmetric," which means that the phase is derived from a structure of higher symetry by small displacements of some, or all, atoms in the network. The small, relative displacements of atoms in the ferroelectric phase give rise to electric dipoles, which are, in turn, responsible for the spontaneous polarisation. These atoroic movements can occur in opposite directions equally well and the directions of the electric dipoles are thereby reversed. The reversal of the direction of spontaneous polarisation can be offected by the application of an electric field greater than the coercive field (the blassing field) to the ferrom electric crystal or a small electric field ebove the Curie point.

From the thermodynamic standpoint the question arises: is it a first-order or a second-crder transition? It will be recalled that a first-order transition involves a discontinuous change of volume and energy which appears as a rel ase of latent heat in an infinitely narrow temperature range, A second-arder transition shows no discontinuity in the
volume or energy but the tempersture derivative of volune (thermal expansion coefficient) and of energy (specific heat), show nomalies extanding over a finite temperature range. It is not easy to detect changes in these thermodynanic quantities because their discontinulties are very 8mall.
I. 5. Although colemanite has long been known as a common horon-containing mineral found in California, it was only recently that interest had been aroused regarding its physical properties. The study of colemanite in this laboratory was started because of several hints which suggested that the crystal might have very interesting structural properties.

Certain faces of colemanite have sometimes been observed to collect dust particles in mineralogical museums. This is a common feature of crystals exhibiting a spontaneous polarisation. This may be taken to mean that colemanite is sometimes pyroelectric in which case its crystal symetry would allow it to be ferroelectric. This conjecture would be of great interest because no boron-containing material has been known to exhibit ferroelectricity. It seemed also plausible that colemanite undergoes a phase transition becanse these certain faces of colemanite tended to attract dust only under special circumstances. These observations, together with the facts that B^{11} is relatively ensy to study by n.rior. technique and the ready availability of large single crystals of colemanite, encouraged the present work.

Before the actual experimental work was begun in this laboratory, Christ et al. ('54) had published the preliminary results of an X-ray analysis of colemanite. They found that their results were consistent

With the space-group $\mathrm{P} 2 / \mathrm{a}$ and the unit cell dimensions were:

$$
\begin{aligned}
& a=8.743-0.004 \AA \\
& b=11.264-0.002 \\
& c=6.102-0.003 \AA \\
& \beta=110^{\circ} \eta^{\prime}
\end{aligned}
$$

They found that the structure of colemanite consists of infinite boronoxygen chains running parallel to the a-axis, the chain element being made up of a BO_{3} triangle and two BO_{4} tetrahedra forming a ring. Each Ca ion is roughly octahedrally coordinated by 5 oxygens and I water molecule. The formula for colemanite may thus be written $\mathrm{CaH}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and each unit celi contains 4-formule units. Refined colemanite parameters and boron-oxygen bond lengths became available to us by private comunication (Clark,'57).

During the preliminary stage of our work Davisson ('56) published the results of his dielectric breakdown studies of colemanite. On the one hand he obtained the centrosymmetric breakdown paths covaring a wide temperature range and on the other hand, the pyroelectric and the piezzoelectric tests indicated that colemanite cannot be centrosymatric.

These two papers leave the symetry properties of colemanite unsolved.

A little later Goldsmith (55) discovered that colemanite was indeed ferroelectric. Fie observed the following ferroelectric behaviour in colemanites it undergoes a transition at $-2.5^{\circ} \mathrm{C}$. with the ferroolectric direction along the monoclinic b-axis; it has a very sharp dielectric anomaly with a peak value of 7000 and a half-wicth of $0.5^{\circ} \mathrm{C}$. aiong the
b-axis and finally its spontaneous polarisation is 5×10^{-17} covil./ $\mathrm{cm}{ }^{2}$. Colemanite displays square hysteresis loops on a plot of the applied electric field versus the dielectric displacement with a coercive field of $10^{4} \mathrm{Volts} / \mathrm{cm}$. at $60 \mathrm{c} . / \mathrm{sec}$. and at $-6^{\circ} \mathrm{C}$.

Goldsmith's work posed more questions regarding the structure of colemanite. These questions refer to the followings

1. What are the symetry properties of colemanite below the transition temperature?
2. Which atoms in colemanite structure undergo displacement relative to their room temperature positions?

3 What is the thermodynamic order of the observed transition?
4. Are there other transitions?

In August 1957 Chynoweth ('57), using a refined technique, reoxamined the pyroolectric and ferroelectric behaviour of colemanite. He found that the curve of pyroelectric coefficient versus temperature showed a high and narrow peak at $-2.5^{\circ} \mathrm{C}$., possessed an appreciable tail extending to low temperatures and a rapidly decreasing tail on the high temparature side. He concluded that an ideal single crystal of colemanite would show no pyroelectric effect above the transition temperatures and therefore was consistent with the centrosymetric point group 2/m. Prior to the date of publication of Chynoweth's work, however, we had publicly communicated (Petch,'57) our room temperature reavits in colemanite, including the fact that we had found its structure consistent with the point group $2 / m$.

```
Sumarising, the problera for this thesis was to use the nomor. mothod to answer at least some of the questions raised in the above discussion and to supply completely new information regarding the physical properties of colemanite.
```


CHAPTER II

THEORY

II. 1. This chapter outlines the theory of the dependence of the nuclear magnetic resonance frequencies in a single crystal on the orientation of the crystal with respect to the uniform magnetic field, Ho, in which the crystal is immersed. For a particular nucleus in a particular situation, the energy due to the interaction of its quadrupole moment tensor, \tilde{Q}, with the electric field gradient tensor, $\overline{\nabla E}$, existing at its site, is not necessarily small as compared to the interaction of its magnetic moment, $\vec{\mu}$, with the external magnetic field, $\overrightarrow{H o}$. However, this discussion, following Pound ('50), Bersohn ('52), and Volkoff ('53), is restricted to cases where the nuclear electric quadrupole interaction, $\tilde{Q} . \tilde{\nabla} E$, is weak as compared to the nuclear magnetic interaction, $\vec{\mu} \cdot \overrightarrow{\mathrm{Ho}}$, but large as compared with magnetic dipole-dipole interactions which are neglected. Furthermore, this discussion is limited to cases where the nuclear spin quantur number I is $3 / 2$, since for B^{11}, the case in which we are interested, I equals $3 / 2$.
II. 2. An elementary description of the electric field gradient tensor, $\tilde{\nabla E}$, will be useful in the following pages. $\tilde{\nabla E}$ is a tensor of rank two. In Cartesian coordinates (X, Y, Z), fixed with respect to crystal axes, it has nine components

$$
\left(\begin{array}{l}
\phi_{\mathrm{XX}} \tag{1}\\
\phi \\
\phi_{\mathrm{YX}}
\end{array}\right.
$$

$\phi X Y$
$\phi Y Y$
$\phi Y Y$

$$
\left.\begin{array}{l}
\phi_{\mathrm{XZ}} \\
\phi_{\mathrm{YZ}} \\
\phi_{\mathrm{ZZ}}
\end{array}\right)
$$

where $\phi X X=-\partial V / \partial X^{2}$ etc. with ∇ being the electrostatic potential. Not all components of this tensor are independent. Firstly, it will be recalled that the scalar product, $\vec{\nabla} \cdot \vec{E}$, is equal to zero and is invariant under a coordinate transformation, hence the sum of the diagonal components is always zero. Secondly, the vector product, $\vec{\nabla} \times \vec{B}$, is also zero and is invariant under a coordinate transformation. Hence $\bar{\nabla} \tilde{E}$ is symuetric, ie., $\phi \mathrm{XY}=\oint_{\mathrm{YX}}$, etc. Thus only five components are independent.

A symmetric tensor can always be diagonalised; that is, there exists a coordinate system (x, y, z), fixed with respect to the crystal in which the off-diagonal components vanish. When diagonalised the tensor assumes the following forms

$$
\left(\begin{array}{ccc}
\phi_{z x} & 0 & 0 \\
0 & \phi_{y y} & 0 \\
0 & 0 & \phi_{z z}
\end{array}\right)=\left(\begin{array}{ccc}
{\left[\phi_{z z}(\eta-1)\right] / 2} & 0 & 0 \\
0 & -\left[\phi_{z z}(1+\eta)\right] / 2 & 0 \\
0 & 0 & \phi_{z z}
\end{array}\right) \cdots(2)
$$

where $\eta=\left(\phi_{x a x}-\phi_{y y}\right) / \phi_{z z}$ is called the "asymmetry parameter." Since $\phi x x+\phi y y+\phi z z=0$, the magnitude*of $\nabla \mathbb{E}$ is specified by two parameters, in this case $\phi \mathrm{zz}$, which is chosen to have the largest absolute value of the three eigenvalues, and the asymetry parameter, η. $\phi x x$ and ϕ yy are chosen negative with $\left|\phi_{x a}\right| \leqslant\left|\phi_{y y}\right|$. With this definition, the asymotry parameter is specified within the linits $O \leqslant \eta \leqslant D$ (At first sight, it might appear that by referring $\tilde{\mathrm{VF}}$ to its principal axes the number of independent components has been reduced to two. However, this is not the case because three additional quantities are necessary to specify the orientation of the principal axes (x, y, z) with respect to the (X, Y, Z) system).

[^1]The tensor scalar product, \tilde{Q}. $\overline{V E}$, must be calculated in coordinates that diagonalise the magnetic part of the Hamiltonian Eq.(4), that is, in Cartesian coordinates ($x^{\prime} y^{\prime} z^{\prime}$) whose z^{\prime} direction coincides with that of $H o$ and the x and y axes are chosen arbitrarily. Both tensors appearing in this scalar product are expressed in their irreducible forms. The five irreducible tensor components of $\tilde{\nabla E}$ are $\nabla^{\prime} \mathrm{Eq}$ where $q=0, \pm 1, \pm 2$. Expressed in terms of the components in ($x^{\prime} y^{\prime} z^{\prime}$) system, $\nabla^{\prime} E q$ are

$$
\begin{aligned}
& \nabla^{\prime} E_{0}=-1 / 2 \phi x^{\prime} x^{\prime} \\
& \nabla^{\prime} E_{ \pm 1}= \pm \sqrt{6} / 6\left(\phi x^{\prime} z^{\prime} \pm i \phi x^{\prime} y^{\prime}\right) \\
& \nabla^{\prime} E_{ \pm 2}=-\sqrt{6} / 12\left(\phi x^{\prime} x^{\prime}-\phi y^{\prime} y^{\prime} \pm 2 i \phi x^{\prime} y^{\prime}\right)
\end{aligned}
$$

$\tilde{\nabla E}$ reflects strongly the symmetry of a nuclear site.
From the point of view of symmetry, nuclear sites can be identical or non-identical in a unit cell. The non-identical character of nuclear sites arises from two sources:
(a) The formula unit contains more than one atom.
(b) More than one formula unit is allowed to occur in the unit cell by the crystal symmetry. It is obvious that in case (a) the nuclear sites are unrelated by symmetry. This implies that the magnitudes and orientations of the $\nabla^{\sim} E^{\prime} s$ at these sites are unrelated. We speak of these sites as non-equivalent. In the case (b), starting with any one nuclear site in general position in the crystal structure, other sites can be generated by the operation of the crystal space group. $\tilde{\nabla E}$'s at these

Fig. 1. (2) Nuclear Sites Related by the Point Group $2 / \mathrm{m}$. (b) ∇ E's Related by the Point Group $2 / \mathrm{m}$.
nuclear sites are then identical in magnitude, but differ in the orientations of their principal nres. We refer to these sites as the symuetry-equivalent sites.

Consider, for example, a nuclear site in a crystal whose point group is $2 / \mathrm{m}$. This point group demands that, in addition to a two-fold symmetry axis, there exists a mirror plane whose perpendicular coincides with the two-fold axis. An equivalent interpretation of this point group is that in addition to the two-fold symmetry axis there exists a centre of symnetry. Fig. $I(a)$ illustrates the inter-relation between the nuclear sites under these circunstances. The sites are represented by dots and brackets each numbered by $1,2,3$, and 4,1 and 2, 3 and 4 are related by the two-fold symmetry axis; 1 and 3, 2 and 4 are related by the centre of symetry. The inter-relation between the $\overline{\mathrm{E}}$'s existing at these sites is illustrated in Fig. $\mathcal{I}(\mathrm{b})$ where each $\nabla \mathbb{E}$ is described by its representative quadric, the hyperbolold of two sheets. The four $\nabla^{2} E^{\prime} s$, numbered $1,2,3$, and 4 in Fig. $1(b)$, are related in the following way. 1 and 2, 3 and 4 , by the two-fold symmetry axis, 1 and 3,2 ard 4, by the centre of symmetry. It follows from Fig.I(b) that $\nabla \tilde{F}$ denoted by I can be derived from that denoted by 3 by translation through the centre of symmetry. The case of 2 and 4 is similar. From the point of view of n.m.r. theory 1 and 3 (or 2 and 4) are identical in all respects. These ideas can be expressed in the tensor notation as follows. The operation of two fold rotation axis assumed along the Y-axis sends X into $-\bar{X}, Z$ into $-Z$ but leaves I unchanged. It follows that the tensor components, $\phi X X, \phi X Y, \phi Z Z$, and $\phi Z X$ remsin
unchanged, out the tensor components $\phi Z Y$ and $\phi X Y$ are sent into - $\phi Z Y$ and - $\phi \mathrm{XY}$, respectively. Hence $\tilde{\mathrm{VE}}$ retaíns its inagnitude but differs only in the orientation of its principal axes. Mext, conaider the operation of the centre of symmetry on $\widetilde{\nabla E}$. This operation sends X into $-\bar{X}, Y$ into $-\bar{Y}$, and Z into $-\%$. It follows that the tensor components remain unchanged, hence the operation of the centre of symmetry on $\nabla^{2} \mathbb{E}$ leaves it unchenged in both the magnituie ama the orientation of its principal axes.
II. 3. This section is devoted to the celculation of the shift of the nuclear Zeeman levels by the quadrupole effect. We have seen that the Hamiltonian of the nucleus in these circumstances is

$$
\begin{equation*}
\mathscr{H}=-\vec{\mu} \cdot \vec{H}_{0}+F \tag{4}
\end{equation*}
$$

where $\mathbb{F}=\tilde{Q} \cdot \tilde{\nabla} \mathbb{E}$.

$$
=Q_{0} \nabla^{\prime} \mathbb{E}_{2}+Q_{ \pm 1} \nabla^{\prime} \mathbb{E}_{ \pm 1}+Q_{ \pm 2} \nabla^{\prime} \mathbb{E}_{ \pm 2} .
$$

In the case when $\tilde{Q} \cdot \tilde{\nabla} \mathrm{E}$ is much smaller than $\vec{\mu} \cdot \overrightarrow{\mathrm{Ho}}$, the energy eigenvalues are calculated using the perturbation method. For this purpose we calculate the matrix elements of F in the renresentation diagonalising the Zeeman energy operator, $-\vec{m} \cdot \overrightarrow{H 0}$. In their general form, these matrix elements are

$$
\begin{align*}
F m m^{\prime} & =\sum_{q=2}^{-2}\langle\alpha I m| Q_{q} \nabla^{\prime} E_{g}\left|\alpha I m^{\prime}\right\rangle \\
& =\sum_{q=2}^{-2}\langle\alpha I m| Q_{q}\left|\alpha I m^{\prime}\right\rangle \nabla^{\prime} E_{q} \tag{5}
\end{align*}
$$

since $\nabla^{\prime} E q$ is assumed to be independent of the nuclens.* Here, il denotes

[^2]the magnetic quantum number, I the angular momentum quantum number, and α the additional quantum number characterising the nucleus. The energy of the perturbed level which in the limit of zero perturbation is characterised by the magnotic quantum number in is given as a sum:
\[

$$
\begin{equation*}
u_{m}=u_{m}^{(0)}+u_{m}^{(1)}+u_{m}^{(2)}+\ldots \tag{6}
\end{equation*}
$$

\]

where $U_{i n}^{i}=-m \mu H_{0} / I$

$$
\begin{align*}
& u_{m}^{(1)}=F_{m m} \\
& u_{m}^{(2)}=\sum_{m}^{m \neq m^{\prime}}\left(F_{m m^{\prime}} F_{m^{\prime} m}\right) /\left(u_{m}^{(0)}-u_{m^{\prime}}^{(0)}\right) \tag{7}
\end{align*}
$$

All terms higher than the second have been ignored because they are not generally useful. Substituting Eq.(5) into (7) wo get

$$
\begin{align*}
U_{m}^{(1)}= & e Q /[2 I(2 I-1)]\left[3 m^{2}-I(I+1)\right] \nabla^{\prime} E_{0} \\
U_{m}^{(2)}= & \frac{3 e^{2} Q^{2}}{[2 I(2 I-1)]^{2}} \frac{I m}{\mu H 0}\left\{\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}\left[4 I(I+1)-1-8 m^{2}\right]-\right. \\
& \left.\left|\nabla^{\prime} E_{ \pm 2}\right|^{2}\left[2 I(I+1)-1-2 m^{2}\right]\right\} \tag{8}
\end{align*}
$$

To clearly demonstrate the perturbation of nuclear Zeeman energy levels by the quadrupole effect, Eq.(8) will now be used to calculate the energy levels for $B^{l l}$ nuclei at one of the sites in colemanite. Assume a particular orientation of the orystal such that the coordinate axes (X, Y, Z)* arbitrarily fixed in the crystal bear the following relation to ($x^{\prime}, y^{\prime}, z^{\prime}$) axes fixed in the laboratory:

$$
X=y^{\prime}, \quad I=z^{\prime}, \quad Z=x^{\prime}\left(i . \theta_{0}, \quad \theta_{x}=0\right)
$$

*See section III. 2 for definition of (X, I, Z) system.

Using Eqs. (3), ∇^{\prime} Eg's are

$$
\begin{align*}
& \nabla^{\prime} E_{0}=-1 / 2 \phi_{y y} \\
& \nabla^{\prime} E_{ \pm 1}= \pm \sqrt{6} / 6\left(\phi_{z y} \pm i \phi_{x y}\right) \\
& \nabla^{\prime} E_{ \pm 2}=-\sqrt{6} / 12\left(\phi_{z z}-\phi_{x x} \pm 2 i \phi_{z x}\right) \tag{9}
\end{align*}
$$

Inserting the numerical values for I and into Eq.(8) and substituting Eqs.(9) into Eq.(8), and denoting $\mu \mathrm{HO} / \mathrm{I}$ by U°, wo get the following energy levels

$$
\begin{align*}
U_{3 / 2}= & -3 / 2 u^{0}-h / 4 \psi_{y y}+I h /\left(8 \mu H_{0}\right)\left\{-2 / 3\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 12\left[\left(\psi_{z z}-\psi_{x x}\right)^{2}+4 \psi_{x z}^{2}\right]\right\} \\
U_{1 / 2}= & -1 / 2 u^{0}-h / 4 \psi_{y y}+I h /\left(24 \mu H_{0}\right)\left\{2\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
- & \left.1 / 4\left[\left(\psi_{z z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} \\
U_{-1 / 2}= & 1 / 2 U^{0}+h / 4 \psi_{y y}-I h /\left(24 \mu H_{0}\right)\left\{2\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 4\left[\left(\psi_{2 z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} \\
U_{-3 / 2}= & 3 / 2 u^{0}-h / 4 \psi_{y y}-I h /\left(8 \mu H_{0}\right)\left\{-2 / 3\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 12\left[\left(\psi_{2 z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} . \tag{10}
\end{align*}
$$

where $\psi_{i j}=(e Q / h) \phi_{i j}$ and is in units of frequency. Using the appropriate values of $\psi_{i j}$ from Table XII and the experimental value of $\mu \mathrm{Ho} / \mathrm{Ih}$ (11.981 mc./sec.) we get the following set of energy levels in kc./sec. for B^{11} nuclei at the M sites:

$\left(U_{3 / 2}\right) / h$	$\left(J_{1 / 2}\right) / h$	$(0-1 / 2) / h$	$\left(U_{-3 / 2}\right) / h$
-18331	-5633	6308	17656

Fig. 2. Nuclear Zeeman Levels, in Mc./Sec., of $B^{1 l}(I=3 / 2)$ Nuclei in External Magnetic Field of 8.75 Kilogauss, (a) Not Showing a Quadrupole Interaction, (b) Showing the Quadrupole Interaction ai $\mathrm{B}^{l l}$ Sites M in Colemanite at Room Temperature and at $\theta_{x}=0^{\circ}$. The Arrows Show the N.M.R. Transitions. The Spectrum is Drawn at the Bottom.

These energy levels have been drawn to scale in Fig.2(a) and (b). To the left, Fig.2(a), are the unperturbed energy levels given by $\mu \mathrm{Ho} / \mathrm{Ih}$, i.e., in units of frequency; those to the right, Fig. $2(\mathrm{~b})$, are the perturbed levels. The arrows indicate transitions between adjacent levels. For $I=3 / 2$ there are three possible frequencies. They are denoted by $\nu_{s_{1}}, \nu_{e}$ and $\nu_{s_{2}}$ in Fig.2(b). $\nu_{s_{1}}$ and $\nu_{s_{2}}$ are the satellite frequencies corresponding to the transitions $m= \pm 3 / 2 \leftrightarrow \pm 1 / 2$ and ν_{c} denotes the central frequency corresponding to the transition $m=I 1 / 2 \leftrightarrow \mp 1 / 2$. Except at very low temperatures, there is no way of determining experimentally which of the two satellite frequencies $\nu_{s_{1}}$ and $\nu_{s_{2}}$ corresponds to the transition $m=+3 / 2 \leftrightarrow+1 / 2$ and which to $m=-3 / 2 \leftrightarrow-1 / 2$. All the transitions in Fig.2(a) have been indicated by a single symbol ν_{0}. Additional relationships between $\nu_{s_{1}}, \nu_{0}$ and $\nu_{s_{2}}$ can be obtained from Eq.(8). Inserting values for I and m we get

$$
\begin{align*}
& \Delta \nu=\nu_{s_{2}}-\nu_{s_{1}}=2(e Q / h) \nabla^{\prime} E_{0}+3^{r d} \text { order term }+\ldots \tag{II}\\
& \bar{\nu}-\nu_{0}=\left(\nu_{s_{1}}+\nu_{s_{2}}\right) / 2-\nu_{0}=(e Q / h)^{2} 1 / \nu_{0}\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}+ \\
& 4^{+/ 2} \text { order term }+\ldots \tag{12}\\
& \nu_{c}-\nu_{0}=(e Q / h)^{2} 1 / \nu_{0}\left(1 / 2\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}-\left|\nabla^{\prime} E_{ \pm 2}\right|^{2}\right)+ \\
& 4^{+h} \text { order term }+\ldots . \tag{13}
\end{align*}
$$

in units of frequency. $\bar{\nu}=\left(\nu_{s_{1}}+\nu_{s_{2}}\right) / 2$ is called the centre of gravity of the satellite frequencies and ν_{0} is the inperturbed frequency, $/$. $H_{0} / I h \mid$. Eqs.(11)-(13) show that, if the second-order terms are negligible, the two satellite frequencies are symmetrically situated below and above the central frequency, V_{c}, which in this case coincides
with vio. If the second-order terms are not negligible they show that the centre of gravity of the satellite frequencies and the central component no longer coincide with ν_{0}. This is demonstrated at the bottom of Fig.2(b) where the n.m.r. spectmam of B^{11} has been drawn to scale. The frequency V_{0} is represented there by the broken line.
II. 4. Eqs.(3) and (1.1)-(13) show that by measuring the spectra at five different crystal orientations with respect to Ho one can detarmine the five independent components of $\widehat{\nabla E}$. This, however, would hardly constitute a satisfactory experiment for the following reasons. The satellite lines, belonging to the same nuclear site, depend strongly on the crystal orientation with the result that they may cross and overlap. This makes the identification of the lines difficult. These difficulties increase when the complete n.m.r. spectrum consists of $2 n$ I-lines, where n is the number of both the non-equivalent and the symnetry-equivalent nuclear sites in the unit cell. Another important reason is that the accuracy of the experimental results would then be very low. For these reasons a systematic investigation of the spectra is necessary. It permits not only a reliable classification of the lines but also increases experimental accuracy. A scheme for such investigation was first developed by Volkoff et al ('52).

In Volkoff's scheme we select a set of axes (X, Y, Z) fixed with respect to the crystal (for example, this set may involve some of the crystallographic axes), and study the relation between the components of ∇E in this system of axes, and in the laboratory systen of axes
$\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ as the crystal is rotated about, say, its X axis which is kept in coincidence with the y^{\prime} axis perpendicular to Bo. The initial position of the crystal, in which the angle of rotation is zero, is chosen so that \bar{Y}, z coincide with z^{\prime}, x^{\prime}. The transformation between (X, Y, Z) and $\left(X^{\prime}, y^{\prime}, Z^{\prime}\right)$ is given by

$$
\begin{align*}
& x=y^{\prime} \\
& y=\cos \theta \times 2^{\prime}+\sin \theta \times x^{\prime} \\
& z=-\sin \theta \times z^{\prime}+\cos \theta \times x^{\prime} \tag{14}
\end{align*}
$$

The tensor components in the $\left(x^{\prime}, y^{\prime}, z^{1}\right)$ systems are related to those in the (X, Y, Z) by the transformation law:

$$
\begin{equation*}
\phi g_{i}^{\prime} g_{j}^{\prime}=\sum_{\alpha, \beta} \phi Q_{\alpha} Q_{\beta} \frac{\partial Q^{\alpha}}{\partial g_{i}^{\prime}} \frac{\partial Q^{\beta}}{\partial g_{j}^{\prime}} \tag{15}
\end{equation*}
$$

where Q refers to the (X, Y, Z) system, while q^{\prime} to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ system, $\alpha, \beta, 1$ and ρ each take the values $1,2,3$, and $\phi, q ;$, $\phi O_{\alpha} Q_{\beta}$ are the tensor components in $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ and (x, Y, z) system, respectively. Using Eq. (14) and (15) we get

$$
\begin{aligned}
\phi_{2 z^{\prime}}^{\prime} & =\sum_{\alpha, \beta} \phi Q_{\alpha} Q_{\beta} \frac{\partial Q^{\alpha}}{\partial z^{\prime}} \frac{\partial Q^{\beta}}{\partial z^{\prime}} \\
& =1 / 2\left(\phi_{y y}+\phi_{z z}\right)+1 / 2\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta_{x}-\phi_{y z} \sin 2 \theta_{x}
\end{aligned}
$$

Similar relationships hold for $\phi x^{\prime} x^{\prime}$. $\phi^{\prime} y^{\prime} y^{\prime}$, otc. Substituting these relationships into (3) we get

$$
\begin{align*}
& \nabla^{\prime} E_{0}= 1 / 4\left(\phi_{y y}+\phi_{z 2}\right)+1 / 4\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta_{x}- \\
& 1 / 2 \phi_{z y} \sin 2 \theta_{x} \\
& \nabla^{\prime} E_{ \pm 1}= 1 / \sqrt{6}\left\{\mp\left[\phi_{y z} \cos 2 \theta_{x}+1 / 2\left(\phi_{y y}-\phi_{z z}\right) \sin 2 \theta_{x}\right]-\right. \\
&\left.i\left(\phi_{x y} \cos \theta_{x}-\phi_{z x} \sin \theta_{x}\right)\right\} \\
& \nabla^{\prime} E_{ \pm 2}= 1 / \sqrt{24}\left[3 / 2\left(\phi_{y y}+\phi_{z z}\right)-1 / 2\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta_{x}+\right. \\
&\left.\phi_{y z} \sin 2 \theta_{x} \pm 2 i\left(\phi_{z x} \cos \theta x+\phi_{x y} \sin \theta_{x}\right)\right] \tag{17}
\end{align*}
$$

Substituting (17) into Eqs.(11)-(13) and introducing* $\psi_{i j}=e Q / h \phi_{i j}$ we get the following equations:

$$
\begin{equation*}
\Delta \nu_{x}=a_{x}+b_{x} \cos 2 \theta_{x}+c_{x} \sin 2 \theta_{x} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{x}=1 / 2\left(\psi_{y y}+\psi_{z 2}\right) \\
& G_{x}=1 / 2\left(\psi_{y y}-\psi_{z 2}\right) \\
& c_{x}=-\psi_{z y} \tag{19}
\end{align*}
$$

[^3]\[

$$
\begin{align*}
\left(\bar{\nu}-\nu_{0}\right) x= & \bar{n}_{x}+\bar{p}_{x} \cos 2 \theta_{x}+\bar{r}_{x} \sin 2 \theta_{x}+ \\
& \bar{u}_{x} \cos 4 \theta_{x}+\bar{v}_{x} \sin 4 \theta_{x} \tag{20}
\end{align*}
$$
\]

where,

$$
\begin{align*}
& \bar{\eta}_{x}=1 /\left(12 \nu_{0}\right)\left(b_{x}^{2}+c_{x}^{2}+c_{y}^{2}+c_{2}^{2}\right) \\
& \bar{p}_{x}=-1 /\left(12 \nu_{0}\right)\left(c_{y}^{2}-c_{z}^{2}\right) \\
& \bar{\nu}_{x}=-1 /\left(6 \nu_{0}\right) c_{y} c_{z} \\
& \bar{u}_{x}=-1 /\left(12 \nu_{0}\right)\left(\sigma_{x}^{2}-c_{x}^{2}\right) \\
& \bar{v}_{x}=-1 /\left(6 \nu_{0}\right) \sigma_{x} c_{x} . \tag{21}\\
& \left(\nu_{c}-\nu_{0}\right) x=12 x+p_{x} \cos 2 \theta_{x}+r_{x} \sin 2 \theta_{x}+ \\
& u_{x} \cos 4 \theta_{x}+v_{x} \sin 4 \theta_{x}, \tag{22}
\end{align*}
$$

where,

$$
\begin{align*}
& n_{x}=1 /\left(96 \nu_{0}\right)\left[18 a_{x}^{2}-7\left(6_{x}^{2}+c_{x}^{2}\right)-4\left(c_{y}^{2}+c_{2}^{2}\right)\right] \\
& p_{x}=1 /\left(8 \nu_{0}\right)\left(-a_{x} 6_{x}-c_{y}^{2}-c_{z}^{2}\right) \\
& r_{x}=1 /\left(8 \nu_{0}\right)\left(a_{x} c_{x}+2 c_{y} c_{z}\right) \\
& u_{x}=3 /\left(32 \nu_{0}\right)\left(66_{x}^{2}-c_{x}^{2}\right) \\
& v_{x}=3 /\left(16 \nu_{0}\right) 6 x c_{x} \tag{23}
\end{align*}
$$

Similar relations hold for the I and Z rotations by cyclic permutation
of the subscripts. Eqs.(19) show that the coefficients c_{1}, b_{1}, and c_{i} in the three rotations are related by the following identities:

$$
\begin{align*}
& a_{x}=1 / 2\left(b_{y}-a_{y}\right)=-1 / 2\left(b_{z}+a_{z}\right) \\
& 6 x=-1 / 2\left(3 a_{y}-b_{y}\right)=1 / 2\left(3 a_{z}-b_{z}\right) \tag{24}
\end{align*}
$$

Eqs.(24) are useful in checking the consistency of the experimental data.

As can be seen from Eqs.(11)-(13) and from Eqs.(18)-(24), the separation of the satellites $\Delta \nu=\nu_{S_{2}}-\nu_{S_{1}}$ is independent of V_{0} and so independent of $H 0$, if the third-order term is neglected. For this reason the coefficients a_{i}, b_{i}, and o_{1} are sometimes referred to as the first-order coefficients. The separation of the centre of gravity of the satellite frequencies from the unperturbed frequency, $\nu_{0}, \bar{y}-\nu_{p}$, and the separation of the central component from ν_{0}, $\nu_{c}-\nu_{0}$ are entirely dependent upon the second-order term (again, if we neglect the fourth-order tern, etc.) and so are inversely propertional to Ho. For this reason the coefficients \bar{n}_{i} etc. and n_{i} etc. are referred to as the second-order coefficients. If the secondorder term is large one single rotation deterinines the five independent tensor components $\psi_{i j}$ as follows: an analysis of $\Delta \nu_{i}$ gives the three diagonal. components plus the component $\psi_{j} \cdot{ }^{2}$. The remaining components $\psi_{i} k$ and $\psi_{i j}$ can be got from the second-order coefficients. However, this procedure would result in a low experimental accuracy. The three rotations are therefore necessary from the point of view of improving the experimental accuracy.

Having determined the tensor $Y_{i j}$ in X, Y, Z coordinates we may now refer it to its principal axes (x, y, z) by determining its eigenValues and the direction cosines of (π, Y, Z) with respect to (X, Y, Z). The characteristic equation for the eigenvalues, γ, is the equation

$$
\begin{equation*}
\gamma^{3}-a \gamma-b=0 \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
a= & \psi_{x y}^{2}+\psi_{y z}^{2}+\psi_{z x}^{2}-\psi_{x x} \psi_{y y}- \\
& \psi_{y y} \psi_{z z}-\psi_{z z} \psi_{x x} \tag{26}\\
G= & \psi_{x x} \psi_{y y} \psi_{z z}+2 \psi_{x y} \psi_{y z} \psi_{z x}-\psi_{x x} \psi_{y z}^{2}- \\
& \psi_{y y} \psi_{z x}^{2}-\psi_{z z} \psi_{x y}^{2} \tag{27}
\end{align*}
$$

The reversal of signs of $\psi_{i} ;$ leaves the sign of a of Eq.(26) unchanged but it reverses the sign of b of Eq.(27). The undetermined common sign of $\psi_{i j}$ is always chosen so that $b=|b|$. The trigonometric solution of the cubic equation with three real roots is

$$
\begin{equation*}
\gamma_{n}=2(a / 3)^{1 / 2} \cos (\alpha-2 \pi n / 3) \tag{2x}
\end{equation*}
$$

where

$$
n=1,2,3
$$

and

$$
\cos 3 \alpha=|b| / 2(3 / a)^{3 / 2} .
$$

γ_{3} is always positive while γ_{2} and γ_{1} are always negative and $\left|\gamma_{3}\right|>\left|\gamma_{2}\right|>\left|\gamma_{1}\right|$.

If we denote the principal axes of the tensor $\psi_{i j}$ by (unprimed)
(x, y, z) then γ_{n} are defined as:

$$
\begin{align*}
& \gamma_{3}=\psi_{x z}=e Q / h \phi_{x x} \\
& \gamma_{2}=\psi_{y y}=e Q / h \phi_{y y} \\
& \gamma_{1}=\psi_{x x}=e Q / h \phi_{x x} \tag{30}
\end{align*}
$$

As it was shown earlier we define the asymmetry parameter as

$$
\begin{equation*}
\eta=\left(\gamma_{1}-\gamma_{2}\right) / \gamma_{3}=\left(\phi_{x x}-\phi_{y y}\right) / \phi_{z x} \tag{31}
\end{equation*}
$$

γ_{3} is also frequently called the "quadrupole coupling constant."
The process of diagonalisation also gives the direction cosines of the principal axes (x, y, z) with respect to the axes (X, Y, Z),

$$
\begin{equation*}
\lambda_{n} / D_{1 n}=\mu_{n} / D_{2 n}=\nu_{n} / D_{3 n}= \pm 1 /\left(D_{1 n}^{2}+D_{2 n}^{2}+D_{3 n}^{2}\right)^{1 / 2} \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{1 n}=\psi_{x y} \psi_{y z}-\psi_{z x}\left(\psi_{y y}-\gamma_{n}\right) \\
& D_{2 n}=\psi_{y x} \psi_{x z}-\psi_{z y}\left(\psi_{x x}-\gamma_{n}\right) \\
& D_{3 n}=\left(\psi_{x x}-\gamma_{n}\right)\left(\psi_{y y}-\gamma_{n}\right)-\psi_{x y}^{2} \tag{33}
\end{align*}
$$

The relative signs of λ_{n}, H_{n} and Y_{n} for each value of γ are fixed by the relative signs of $D_{1 n}$, but not their absolute 81 gn , because for the second rank tensor, $\psi_{i j}$, it does not matter which direction along a principal axis is chosen to be the positive one.
II. 5. The theory developed above is adequate for a full analysis of the n.m.r. spectra, simple or complex.* If the complex spectrum is investigated in a crystal possessing a two-fold symmetry axis, mirror plane, etc., and if one of the axes about which the crystal is rotated coincides with the direction of these symmetry elements, then the secondorder term is very helpful in the analysis of the spectra, because of the following, Consider a crystal with the point group $2 / \mathrm{m}$, the case in which we are especially interested. It was shown previously that an operation of twofold symmetry axis, coinciding with Y-axis, on $\nabla{ }^{2} \mathrm{E}$ leaves its magnitude unchanged but changes the orient action of its principal axes, and that the two tensors have the form (correct to a relative sign),

$$
\left(\begin{array}{ccc}
\phi x x & \phi_{x y} & \phi_{x z} \tag{34}\\
\phi_{y x} & \phi_{y y} & \phi_{y z} \\
\phi_{z x} & \phi_{z y} & \phi_{z z}
\end{array}\right) \text { and }\left(\begin{array}{ccc}
\phi x x & -\phi x y & \phi x z \\
-\phi_{y z} & \phi y y & -\phi y z \\
\phi z x & -\phi z y & \phi z z
\end{array}\right)
$$

Experimentally, however, the two tensors are determined in the form

$$
\left(\begin{array}{ccc}
\phi x x & |\phi x y| & \phi x z \tag{35}\\
|\phi y x| & \phi y y & |\phi y z| \\
\phi z x & |\phi z y| & \phi z z
\end{array}\right)
$$

[^4]The problem is, what combination of signs in front of $\phi x y$ and $\phi 2 y$ is the correct one? An inspection of the sign of $\overline{\mathbf{r}}_{1}$ in Eq. (21) and the value of r_{i} in Eq.(22) furnishes an answer to this problem only if the second-order term is measurable. If, however, the second-order term in not measurable one has to modify the experimental procedure in one of the three ways. Firstly, one can reduce Ho until the secondorder term is measurable. However, the measurements of n.m.r. spectra at low fields are inherently more difficult then at high fields. Secondly, one can make different choice of axes (X, Y, Z) so that none of them coincides with the axis of symmetry. This, however, may be objectionable from both the experimental point of view and from the point of Few of analysis of the spectra. Thirdly, one conducts the experiment as if the second-order term were present except that a few additional measurements of the n.m.r. spectra are made with the crystal oriented in such a way that none of the (X, Y, Z) axes are either parallel or perpendicular to Ho. Since this procedure is not mentioned in the literature it is fully developed below.

Consider an orientation of the crystal such that the laboratory axes $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ have $\left(1_{1}, m_{i}, n_{i}\right)$ for their direction cosines in (X, Y, Z) system. Using the transformation law, Eq.(15), we arrive at the following relations between $\phi_{q_{i}^{\prime}} q_{j}^{\prime}$ and $\phi Q_{\alpha} Q_{13}$,

$$
\begin{aligned}
\phi_{x x^{\prime}}^{\prime}= & \phi_{x x} l_{3}^{2}+\phi_{y y} m_{3}^{2}+\phi_{22} n_{3}^{2}+ \\
& 2\left(\phi_{x y} l_{3} m_{3}+\phi_{y z} m_{3} n_{3}+\phi_{z x} n_{3} l_{3}\right) \\
\phi_{y y^{\prime}}^{\prime}= & \phi_{x x} l_{2}^{2}+\phi_{y y} m_{2}^{2}+\phi_{z 2} n_{2}^{2}+ \\
& 2\left(\phi_{x y} l_{2} m_{2}+\phi_{y 2} m_{2} n_{2}+\phi_{2 x} n_{2} l_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \phi x x^{\prime}= \phi x x l_{1}^{2}+\phi_{y y} m_{1}^{2}+\phi_{22} n_{1}^{2}+ \\
& 2\left(\phi x y l_{1} m_{1}+\phi_{y 2} m_{1} n_{1}+\phi_{2 x} l_{1} n_{1}\right) \\
& \phi x^{\prime} y^{\prime}= \phi x y l_{1} l_{2}+\phi_{y y} m_{1} m_{2}+\phi_{22} n_{1} n_{2}+ \\
& \phi x y\left(l_{1} m_{2}+l_{2} m_{1}\right)+\phi_{y 2}\left(m_{1} n_{2}+m_{2} n_{1}\right)+\phi_{2 x}\left(n_{1} l_{2}+l_{1} n_{2}\right) \\
& \phi y^{\prime} z^{\prime}= \phi x x l_{2} l_{3}+\phi_{y y} m_{2} m_{3}+\phi_{22} n_{2} n_{3}+ \\
& \phi x y\left(l_{2} m_{3}+l_{3} m_{2}\right)+\phi_{2 x}\left(l_{2} n_{3}+l_{3} n_{2}\right)+\phi_{y 2}\left(m_{2} n_{3}+m_{3} n_{2}\right) \\
& \phi z^{\prime} x^{\prime}= \phi x x l_{1} l_{3}+\phi_{y y} m_{1} m_{3}+\phi_{22} n_{1} n_{3}+ \\
& \phi x y\left(l_{1} m_{3}+l_{3} m_{1}\right)+\phi_{y 2}\left(m_{1} n_{3}+m_{3} n_{1}\right)+\phi_{2 x}\left(n_{3} l_{1}+n_{1} l_{3}\right) \tag{36}
\end{align*}
$$

Inserting these values into Eqs.(11)-(13), using also Eq.(3), we can predict $4 \nu, \bar{\nu}-\nu_{0}$ and $\nu_{c}-\nu_{0}$ for this particular crystal orientation. Actually, only the value of $\phi x^{\prime} z^{\prime}$ needs to be calculated for our purpose; the additional calculation of $\bar{\nu}-\nu_{0}$ and of $\nu_{c}-\nu_{0}$ is desirable for checking purposes.* The two combinations of signs in front of $\phi x y$ and $\phi 2 y$, for example, $(+\phi x y,+\phi z y)$ and $(-\phi x y,+\phi z y)$ are tried in calculating $\Delta \nu$ from Eq.(36). The correct combination predicts the experimentally measured ΔV.

A summary of the methods of analysis of the experimental results will be appropriate in concluding this chapter. The coefficients of Eq.(18) are determined by the Fourier analysis of the experimental values
*The calculation of the second-order term for sites which do not display it is, of course, pointless. However, such calculation in the case of other sites, whose second-order term is measurable, serve as a reliable check on whether the axes (X, Y, Z) have been followed consistently both during the three rotations of the crystal and during these additional measurements.
of $\Delta \nu$. These Fourier coefficients are next used to deternine the tensor components $\psi_{i j}$ with the aid of Eq. (19). The experimental values of $\left(\vec{\nu}-\nu_{0}\right)$ and $\left(\nu_{c}-\nu_{0}\right)$, if measurable, are treated similarly. In this way we obtain the second-order Fourier coefficients. If present, \bar{r}_{i} and r_{i} are used to identify the symmetry equivalent $\nabla \mathrm{E}$ in the manner indicated above. If they are absent, additional measurements are made as described above. The tensor $\psi i j$ is finally diagonalised using Eqs.(25)-(28) and the direction cosines of its principal axes determined using Eqs.(32) and (33).

CHAPTER III

APPARATUS AND EXPERTMENTAL PROCEDURE

III. 1. This chapter describes briefly the n.m.r. spectrometer and ancillery equipment used in this work. A complete description of the spectrometer is given by Datars ('56).

The magnetic field was produced by a $12^{\prime \prime}$ Varian electromagnet. The magnet pole-faces measured $12^{\prime \prime}$ in diameter and the gap between them was 5^{n}. Two sets of caps were availi.isa which, when attached to the pole-faces, produced gaps $11 / 2^{\prime \prime}$ in width by $7^{\prime \prime}$ in diameter and 3^{n} in width by $7^{\prime \prime}$ in diampter. The work with the crystal at room temperature was carried out using the $11 / 2^{\prime \prime}$ gap. The 3^{n} gap was used for the work at other crystal temperatures because it afforded more space for the cold-cell.

The magnet, energised by a stabilised power-supply, provided a field with long- and short-term stabilities of $2: 100,000$ and $1: 100,000$, respectively, in the current range from 0.02 to 2 amperes, provided the temperature of the room was held constant. Variations in the field due to temperature changes in the laboratory were compensated by manual adjustment of the current; a proton signal displayed on an oscilloscope served as a field-monitor.

A block diagram of the n.m.r. spectrometer is shown in Fig.3. The oscillating-detector, similar to the Volkoff, Petch and Smollie type, consists essentially of a marginal oscillator of the Colpitts typa, a

Fig. 3. A Block Diagram of a N.M.R. Spectrometer.
radio-frequency amplifier, a detector, and a wide-band audio-frequency amplifier. The tank circuit of the marginal oscillator consists of a sample coil, located inside the magnet gap between a pair of Helwholts coils and a variable condenser. The frequency of the oscillating detector is varied by a Haydon clock-drive connected to the variable condenser through a chain of reduction gears. The frequency sweep-rate mostly employed in this work was $250 \mathrm{kc} . / \mathrm{sec} . / \mathrm{hr}$. The Helmholtz coils are energised by a $210 \mathrm{c} . / \mathrm{sec}$. alternating current supplied by the audiofrequency power amplifier. Other parts of the spectrometer are: a narrow-band amplifier tuned to $210 \mathrm{c} . / \mathrm{sec}$. , a phase-sensitive detector, and a recording milliameter. The frequency is measured with the aid of a Hallicrafter Radio model 5I-62A and a General Radio heterodyne Prequency meter and calibrator type No. 620-A.

The spectrometer functions in the following way. The Helmholts coils modulate the external magnotic field with an amplitude much smaller than the width of a n.mor. signal (of the order of 3 gauss in crystals). The resonance condition for the nuclei inside the sample coil, which manifests itself as a drop of potential difference across the coil, is thus made repetitive at the modulation frequency. The signal, after radio-frequency amplification, is detected and then fed to the wide-band audio-frequency amplifier, the narrow-band audio-frequency amplifier and finally to the phase-sensitive detector which produces a d.c. signal approximately proportional to the first derivative of the absorption curve. The d.c. signal is plotted on the recording milliameter. At suitable intervals frequency markers are accurately placed on the recorder chart.

The orientation of crystal with respect to the external magnetic field, Ho, has to be accurately known at all stages of n.m.r. work. An accurately calibrated angle-measuring device meets this demand. The angle-measuring device employed for the room temperature work is sketched in Fig. 3. It consisted of a brass block which conld be adjusted by a set of screws to fit tightly between the magnet pole-faces and a calibrated dial assembly. The calibrated dial assembly could rotate in the brass block with its axis of rotation always held perpendicular to Ho. The dial was calibrated at one degree intervals and, with the aid of a magnifying glass, relative measurements could be repeated to better than half a degree. Lucite crystal mounts were, in turn, held by the dial assembly. Several lucite mounts, with shapes machined to fit the colemanite crystals in their particular orientations, were used. This arrangement allowed accurate alignment of the crystal.
III. 2. A qualitative investigation of the B^{11} n.m.r. spectrum in colemanite preceded the quantitative investigation. The purpose of this investigation was to establish the maximum number of resonance lines and the frequency region in which they occur for a given Ho. A number of crystals and cleavage fragments of colemanite from Inyo and San Bernardino Counties in California were used in this particular study. Colemanite has a perfect cleavage plane parallel to the (010) plane and consequently the crystallographic b-axis is well defined. In addition, sevaral available crystals had an edge defining the crystallographic c-axis. Several of these crystals were oriented on their mounts with these crystallographic axes in turn parallel to the rotation axis of
the onlibrated dial assombly, and their $B^{l l}$ n.m.r. signals investigated. From most of these samples, the signals were found to be very broad. Ordinarily this woild not be very serious, but, in the case of colemanite, the saparation between many lines, which were later identified as balonging to K and Lesites, were unusually small, so that their excessive breadth made their resolution impossible over a wide range of crystal orientations. Also some lines, later identified as belonging to the M site, were so broadened at cortain oryistal orientations that it was not possible to detect them. Finally, a cleavage fragment from San Bernardino County, which, fudging from its outor appearance did not differ markediy fros other samples already tried unsuccessfully, gave the desired narrow signals which were detectable at all crystal positions. Since this particular crysta] was used throughout the present work we may note its physical appearance. It was a transparent cleavage fragment, measuring $11 / 2 \mathrm{~cm}, \times 1 \mathrm{~cm}, \times 2 \mathrm{~cm}$. after 1 t had been ground. In addition to a perfect cleavage which defined the (010) plane, it had a 2 cm. edge which dofined the c-crystallographic axis. The crystallographic axes were verified with the aid of X-rays. Because of these external crystal features the set of (X, Y, Z) sxes was chosen as follows the $\vec{b} \times \vec{c}$ crystal direotion dofined the \bar{X}-axis, the \vec{b} direction the \bar{Y}-axis and the \vec{c} direotion the Z -axis. Henceforth we shall use X, Y, Z to denote these crystal directions.

For the systematic investigation, the axes \bar{X}, \bar{Y}, Z were held in turn aecurately parallel to the axis of rotation of the calibrated d:Lal assembly and the B^{11} n.mor. spectre were recorded at many crystal orientations. The orientation for which the X-axis was along the rotation
axis and the Y-axis along the direction of Ho is marked $\theta_{x}=0$. It was chackod against the cross-over points of the lines denoted by ys, $\mathrm{y}_{\text {, }}^{\mathrm{min}}$ and $\nu_{s_{s}}^{M_{2,4}}, \nu_{s_{1}}^{M_{1,3}}$ and $\nu_{s_{2}}^{M_{2,4}}$ in Fig.6, Chapter IV. These cross-over points occurred exactly at the dial reading $0^{\circ}, 90^{\circ}, 130^{\circ}$, and 270°. A similar procedure was used when the crystal had its Z-axis along the rotation axis. The $\theta_{z}=0^{\circ}$ orientation was marked by the cross-over points of the same Ines as shown in Fig.9, Chapter IV. The procedure used in aligning the crystal with its Y-axis parallel to the rotation axis differed somewhat from the above. This difference arose from the fact that in this case a reduced spectrum was obtained. Accordingly, the crystal alignment for the Y-rotation was checked by comparing the spectra obtained at $\theta_{\Gamma}=0$ and 90° with those obtained at $\theta_{x}=90^{\circ}$ and $\theta_{z}=0^{\circ}$, respectively. The reduced spectrum was obtained in the range $\theta_{y}=0$ to $\theta_{y}=180^{\circ}$. In the range $\theta_{y}=180^{\circ}$ to $\theta_{\bar{y}}=360^{\circ}$, however, small splittings of the lines marked by $\nu_{S_{1}}^{M}$ and $\nu_{S_{2}}^{M}$ in Fig.8, Chapter IV, occurred. Normally such small splittings would have been disregarded as arising from a slight misalignment of a crystal. In our case, however, sicne there was a controversy regarding the symmetry properties of colemanite, it was essential to know whether such splittings were due simply to a misalignment or due to an inherent property of colemanite, or both. When the crystal was re-examined, using a gondometer arc set in the crystal mount, the splitting of these lines no longer appeared and therefore, this proved that the splittings were due to misalignment. The B^{11} n.m.r. spectra were recorded at 15° intervals in the range $0^{\circ}-360^{\circ}$ for each of the three crystal rotations. The spectra

Fig.4. A Cross-Section of the "Cold-Cell."
> were very complicated, and it was difficult to sort out the lines. It Was therefore necessary to re-examine the spectra over some regions at smaller intervals of from 2° to 5° with higher resolution. If two particular lines belonging to different sites overlapped, their frequencies were determined by interpolation. Some lines belonging to K and L sites overlapped throughout the entire Z-rotation. The experimental frequencies used in the complete analysis of the spectra were obtained by taking the averages between the values measured at θ° and $180^{\circ}+\theta^{\circ}$.
III. 3. Since it was planned to study colemanite at temperatures other than that of the laboratory, it was necessary to construct the apparatus which is described below. Fig. 4 shows the cross-section of the "coldcell" which, for all intents and purposes, replaced the calibrated dial assembly used for the room temperature work. The rotator-mount assembly consists of a teflon rod, D, with calibrated circular scale, A, at one end and a crystal mount at the other end. The circular acale is attached to a perspex disc, B, which, by means of a pair of screws, C, is attached to the teflon rod. The crystal mount consists of a inicam single crystal goniometer arc set incorporating two mutually perpendicular arc sets, G and F, and a platform of brass and lucite, H, to which a crystal can be glued. One end of the crystal mount fits tightly into the socket provided for it in the teflon rod and is secured in position by means of a pin, E. The sample coil, N, which is wound around the crystal, is connected to the oscillating detector via two copper wires, P, embedued in the teflon rod, a pair of amphenol connectors, R, and two coaxial cables.

This rotator-mount assembly is received into the brass block, J, with the teflon rod fitting tightly into a carefully machined and polished cylindrical hole, and with the circular scale fitting into a socket provided for it in the brass disc, K. K also carried a circular vernier. The brass block, which is expanded by means of two screws, fits tightly between the magnet pole-faces so that the axis of rotation of the rotator-mount assembly is accurately perpendicular to the magnetic field. The cylinder, L, is attached to the brass block by means of a screw-on cap, M. The inside of the oylinder is lined with teflon. L also carries an inlet and an outlet pipe which are bent in the manner indicated in Fig.4. The apparatus was assembled as shown and was rendered alr-tight by a system of 0-rings. The use of the expensive teflon was dictated by the fact that it has nearly the same therraal expansion coefficient as brass at low temperatures and because no lubrication is necessary on well polished metal-teflon contacts.

The cold-cell was cooled by a stream of cold, dry air which was circulated through the cell and a heat exchanger by means of a vacuum pump and compressor. The heat exchanger consisted of three copper coils connected in series. One terminal of the series was connected to the compressormend of a "Spesdivac Combined Compressor and Vacuum Pump," model RB/4, manufactured by Edwards High Vacuum Ltd., while the other terminal was joined to the cold-cell by means of the copper tube, T, of Fig. 40 The copper tube, U, on the same diagram, was connected to the vacuum-end of the pump. The three copper coils forming the series were designated as follows the one nearest to the pump was
designated the first coil; the next one, the drying coil; and the last one, the cooling coil. The first coil was immersed in a cold water bath and served to precool the hot air issuing from the pump. The drying coil served essentially as a trap for ofl and moisture which had joined the stream of air during its passage through the pump. The cooling coil served to bring the temorature of the air stream to that of the refrigerant to maintain the crystal temperature at $-40^{\circ} \mathrm{C}$. The latter two coils were both immersed in an acetone-dry-ice bath. To attain crystal temperatures in the range -40° to $-136^{\circ} \mathrm{C}$. the drying coil and the cooling coil were immersed in dry-ice and liquid air, respectively. For other temperature ranges the drying coil was omitted. The $60^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$. range was produced by controlled heating of an ethylene glycol bath, whereas the range $25^{\circ} \mathrm{C}$. to $-40^{\circ} \mathrm{C}$. was produced by cooling the bath using a "Blue M Electric Portable Cooling Unit," model PCC4. For fine control of the crystal temperatures the speed of pumping of the air stream was varied or the air stream was allowed to impinge upon a heated metal surface before it entered the cold-cell. The metal tubes connecting the cold-cell to the cooling coil were thermally insulated either with styrofoam sheaths or glasswool jackets.

The temperaiures of the crystal were measured by means of a standardised copper-constantan thermocouple. One junction of the thermocouple was always kept in an ice-water mixture, whereas the other was inserted into the cold-cell until it touched the crystal. The thermal e.m.f. was measured by means of a "Thermocouple Potentiometer,"
type P4, manufactured by the Croydon Precision Instrument Co., Ltd. The potentiometer gave consistent readings to 2 microvolts. The thermocouple was standardised by measuring, with respect to the ice point, the thermal e.m.f. at two temperatures, the solid CO_{2} point and the liquid 0_{2} point. The deviation of the thermal e.m.f., when compared with the Adam's Scale,* was assumed to be of the form $\triangle E=a E+b E^{2}$, where E is the measured thermal e.m.f., a and b are the constants determined by standardisation.
III. 4. The three rotations with the crystal at $-40^{\circ} \mathrm{C}$. were carried out using the same crystal and the same technique as that described in Section III.2. The crystal was first aligned at roon temperature using the arc set. In this connection it should be mentioned that the arcs were oriented so that the axis of rotation of one, arc (1), was parellel to the $0^{\circ}-180^{\circ}$ line on the circular scale while that of the other arc, arc (2), was parellel to the $90^{\circ}-270^{\circ}$ line. Let us consider the procedure for aligning the crystal for the X-rotation. The crystal was glued with its X-axis approximately parallel to the axis of rotation of the rotator-mount assembly and its Y-axis approximately parallel to the axis of arc (1). The Y-axis was then brought accurately perpendicular to Ho by rotating the rotator-mount assembly and noting the exact reading of the circular scale when the $\nu_{S_{1}}^{M_{1 / 3}}$ and $\nu_{S_{1}}^{M / 2,4}, \nu_{S_{2}}^{M_{1 / 3}}$ and $\nu_{S_{2}}^{M_{2,4}}$ resonance lines crossed. With exactly the same reading on the circular scale, the axis of arc (2) was varied until \bar{X} - and Z-axes were, respectively, exactly

[^5]perpendicular and parallel to Ho. This occurred when the separation of the lines $\forall_{s_{1}}^{M}$ and $\nu_{s_{2}}^{M}$ was the same as that obtained with the orientation $\theta_{y}=0$ and the mount described in the previous section. The procedure used in aligning the crystal for the Z-rotation was similar. The orientation of the crystal for the Y-rotation consisted simply of manipulating the two ares until no splitting of either νs_{1}^{M} or νs_{1}^{M} line occurred at any crystal position.

The spectre were recorded at least 90 minutes after the cooling apparatus had been switched on. This procedure was necessary in order to allow the crystal to attain the temperature of the cold-cell. Owing to their very complicated rotation pattern the spectrs obtained in the X - and Z-rotations were recorded at 5° intervals in the range $0^{\circ}=90^{\circ}$ which was sufficient to establish the pattern. In its other respects the procedure used at $-40^{\circ} \mathrm{C}$. was similar to that used at room temperature.

The investigation of the n.m.r. spectra as a function of temperature was carried out with selected crystal orientations which gave measurable splitting of all the lines at $-40^{\circ} \mathrm{C}$. One crystal orientation would have been preferable because it would have eliminated the misalignment error. Since no single crystal position was found at which the separation of all the lines was measurable, the experiment had to be carried out with two crystal positions. They are defined in Section IV.6. The influence of a static electric field upon the splitting of the lines was also investigated. An electric field of $2100 \mathrm{volts} / \mathrm{cm}$. Was applied to the orystal in the following manner. The cleavage faces, (010) and (010), were painted with "aquadag," a suspension of
graphite in water, waich served as electrodes. They were cunnected by means of suall gauge copper wire to a 2100 volt power supply. After the field had been applied the crystal was cooled to $-10^{\circ} \mathrm{C}$. It was necessary to switch the field off while the spectrum was actually being recorded since the arrangenent otherwise caused an enormous increase in the spectrometer noise. This procedure was repeated with the field direction reversed. No change in the spectrum was observed.
(a)

Fig. 5. Chart Recordings of the B^{21} N.M.R. Spectrum in Colemanite at Room Temperature Showing (a) the Observed Maximum Number of Lines, (b) the Observed Maximum Number of Lines in the Reduced Spectrum (for $\theta_{y}=150^{\circ}$). The Orientation of the Crystal in the Case (a) is Explained in Table XI $\left(\alpha=80^{\circ}, \beta=45^{\circ}\right)$.

CHAPTER IV

RESULTS

IV. I. This chapter describes the complete analysis of the $B^{1 l}$ nuclear magnetic resonance spectrum in colemanite at room temperature and at $-40^{\circ} \mathrm{C}$. It also includes the results of the investigation of a selected set of resonance lines over the temperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$. The number of lines observed and the dependence of their frequencies on the orientation of the crystal with respect to the external magnetic field, Ho, at both temperatures, are explained by the discussions of Chapters I and II. It is assumed, in particular, that the boron nuclei occur at several sites per unit cell and that the resulting spectrum is a superposition of the simple 3-line spectra due to $B^{\text {ll }}$ nuclei at each type of site.
IV. 2. At room temperature, the observations consisted of recording the $n \cdot m \cdot r$. spectrum of $n_{1}^{1 l}$ in colemanite over a wide frequency range as the crystal was rotated in turn about its X-axis $(\vec{b} \times \vec{c}$-crystallographic axis), Y-axis (\vec{b}-crystallographic axis), and Z-axis (\vec{c}-crystallographic axis). Two sample chart records are reproduced in Figs.5(a) and (b), where the frequency scale is roughly $107 \mathrm{kc} . / \mathrm{sec}$. per chart division. Fig.5(a) shows the maximum number of Ines observed at room temperature, which is 15. The crystal orientation in this case is explained in Table XI. Fig.5(b) represents a reduced spectrum at the crystal orientation for which $\theta_{y}=150^{\circ}$. The total number of lines in this case is only 8.

TABLE I

Reporimentelly Measured Values of the B^{11} Rosonance Frequencies
in MC./Sec, for the X-Rotation of Colemanite at Room Temperature

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
		10.748	10.819	11.138	11.586		11.586	11.134	10.824	10.752	
		11.773	11.459	11.389	11.591		11.592	21.390	11.461	11.776	10.950
	10.947	11.914	11.904	11.910	11.926		11.924	11.910	11.901	11.910	11.827
21.347	11.826	11.831	11.923	11.929	11.934		11.932	11.930	11.923	11.930	21.940
11.941	11.942	11.959	11.942	21.935	11.939	21.931	11.937	11.935	11.940	11.959	11.942
11.969	11.956	11.963	11.969	11.949	11.945	11.953	11.945	11.951	11.971	11.962	11.956
11.974	11.959	11.967	21.976	11.965	11.961	11.968	11.960	11.966	11.976	11.967	11.960
21.979	11.980	11.980	11.980	11.980	11.981	11.980	11.980	11.980	11.981	11.979	11.980
11.989	11.986	12.000	11.985	11.996	12.004	11.983	12.004	11.997	11.985	12.000	11.986
11.994	12.001	12.003	11.997	12.006	12.016	11.995	12,017	12.006	11.998	12:003	12.002
12.697	12.005	12.033	12.020	12.028	12.032	12.032	12.032	12.029	12.022	12.033	12.006
	12.024	12.053	12.040	12.035	12.037	12.056	12.037	12.035	12.039	12.055	12.027
	12.232	12.247	12.062	12.055	12.409		12.412	12.058	12.065	12.248	12.232
	13.056	13.222	12.517	12.577	12.466		12.467	12.576	12.516	13.219	13.052
			13.161	12.890				12.892	13.157		

TABLE II

Experimentally lieasured Ve lues of the $\mathrm{B}^{11 \text {. Pesonance Fraquencies }}$
In Ko./Sec. for the Y-Rotation of Colemanite at Room Tomperature

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
		21.854	11.803	11.623						11.717	11.882
11.933	11.916	11.941	11.827	11.839	11.455	11.342	11.318	11.390	11.538	11.848	11.899
11.953	11.951	11.951	11.923	11.910	11.890	11.946	11.925	11.864	11.837	11.898	11.904
11.970	11.974	11.954	11.961	21.974	11.920	11.963	11.977	11.940	11.912	11.971	11.959
11.979	11.981	21.981	11.982	11.986	11.980	11.979	11.979	11.979	11.984	11.982	11.982
11.985	11.992	12.011	12.041	12.053	11.989	12.001	11.982	11.999	12.054	12.063	12.057
11.992	12.011	12.099	12.134	12.120	12.044	12.003	12.006	12.023	12.129	12.216	12.066
12.029	12.037	12.107	12.230	12.390	12.074	12.018	12.042	12.099	12.459	12.301	12.150
12.055	12.047				12.535	12.628	12.644	12.585			

TABLE III

Eroorimantally Moasured Values of the B^{17} Resonance Frequencies

in Ko./Sec, for the Z-Rotation of Colemanite at Room Temperature

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	$150{ }^{\circ}$	165°
	11.809										
	11.328	11.511	11.832		11.334		21.336		11.817	11.512	11.325
	11.550	11.843	11.833	11.507	11.544		11.544	11.511	11.833	11.845	11.546
	21.884	11.878	17.869	11.855	11.904	11.350	11.904	11.856	12.871	21.878	11.886
11.339	11.911	11.884	11.882	11.862	11.922	11.947	11.922	11.860	11.882	11.886	11.913
11.945	21.947	11.905	11.937	11.891	11.931	11.969	11.936	11.890	11.937	11.905	11.949
11.961	11.950	11.952	11.954	11.936	11.940	11.974	11.939	11.938	11.955	11.952	11.952
11.979	11.979	11.980	11.980	11.980	11.979	11.980	11.980	11.980	11.980	11.979	11.979
31.997	12.004	12.060	12.080	12.069	12.027	11.989	12.027	12.07	12.083	12.060	12.004
12.002	12.011	12.086	12.081	12.072	12.039	11.994	12.041	12.107	12.092	22.085	12.021
12.017	12.018	12.119	12.091	12.106	12.057	12.698	12.059	12.199	12.128	12.176	12.016
12.626	12.053	12.157	12.127	12.200	12.515		12.514	12.547	12.202	12.156	12.052
	12.078	12.486	12.202	12.552	12.717		12.707		12.246	12.486	12.075
	12.453		12.250								12.455
	12.635									-	12.637

Fig. 6. The Fiotation Pattern of all the $B^{l l}$ Lines in Colemanite at Room Temperature for the Rotation About the X-Axis.

Fig. 7. The Rotation Pattern of the B^{11} Lines Depending Strongly Ifpon
$2 \theta \mathrm{x}$ in Colemanite at Room Temperature.

Fig. 8. The Rotation Pattern of all the $B^{1 l}$ I.ines in Colemanite at Room Temperature for the Rotation About the Y-Axis.

Fig. 9. The Rotation Pattern of all the $\mathrm{B}^{\text {ll }}$ Lines in Colemanite at Room Temperature for the Rotation about the Z -Axis.

The frequencies of the lines, except the ones marked by ν_{0} in Figs.5(a) and (b), depended upon the angular orientation of the crystal. Their relative intensities, however, did not vary appreciably. The line widths, measured between the two maxima of each line, were of the order of $5 \mathrm{kc} . / \mathrm{sec}$. The angular dependence of these lines in the X-, Y-, and Z-rotations are reproduced in Figs.6, 7, 8, and 9. A chart of the type shown in Fig. 5 was obtained for each crystal orientation on these figures and each point represents a line on the chart. The numerical data for Figs.6, 7, 8, and 9 are listed in Tables I, II, and III.

A detailed inspection of Figs.6, 7, 9, and 5(a) reveals that the lines can be conveniently grouped into four groups on the basis of their angular dependence. In the first group there are two resonance Ines marked by $\nu_{c}^{M_{43}}$ and $\nu_{c}^{N_{24}+}$. These two lines always remain close in frequency to ν_{0}. Their dependence on θ contains an appreciable 4θ component, in addition to a constant component and a 2θ component. On the basis of the discussion in Chapter II, these two lines must be central frequencies belonging to at least two different sites in the unit cell and they arise from transitions between the energy levels which contain an appreciable second-order term. Hence, these two lines are central frequencies belonging to two sites at which the quadrupole interaction is fairly strong. In the second group there are four lines (two pairs), marked by $\nu_{s_{1}}^{M_{13}}$, $\nu_{s_{2}, ~}^{M_{1 / 3}}, \nu_{s}^{\mu_{2, t}}$, and $\nu_{s_{2}}^{M_{2, t}}$. They depend strongly on 2θ and are nearly symmetrically situated with respect to ν_{0}. Hence, they are satellite frequencies belonging to at least
two sites and they arise from transitions between energy levels which are strongly perturbed by the quadrupole interaction. In the third group there are eight lines (four pairs), marked by $\nu_{s_{1}}^{L /{ }_{1 / 3}}$, $\nu_{s_{4}}^{L /, s}$ $\nu_{s_{1}}^{L_{2,4}}, \nu_{s_{2}}^{L_{2,4}}, \nu_{s_{1}}^{K_{1,3}}, \nu_{s_{2}}^{k_{1,3}}, \nu_{s_{1}}^{k_{2,4}}$ and $\nu_{s_{2}}^{k_{2,4}}$, whic: depend simost entirely on 2θ and are symmetrically located about Vo. We can say that they are satellite frequencies belonging to at least four sites which arise from transitions between the energy levels Which are weakly perturbed by the quadrupole interaction. Lastly, there is one line, marked by ν_{0}, which stands out by its lack of angular dependence and its great intensity. In order to assign this line to a particniar transition, or transitions, it should be noted that the centra? frequencies for the four sites at which the auadrupole interactions are weak have not been accounted for yet. These transitions should all occur at frequencies almost exactly equal to ν_{0}, the unperturbed frequency, because the expressions for their respective energy levels are expected to contain negligible second-order terms. The line, marked $\nu_{0,}$ satisfies these conditions, hence, it is a composite line consisting of four separate, but inresolved, signals. Sumarising, the first two groups of six lines in all must belong to the same two sites, while the next two groups of twelve lines in all, the third and fourth, must belong to additional four sites. Hence, the n.m.r. spectrum of B^{11} in colemanite at room temperature contains 18 separate signals, not all of which can be resolved, and it arises from six non-identical B^{11} sites whose $\nabla \mathrm{E}^{\prime}$ s differ in some respects.

Our next aim is to establish the point group of colemanite at room temperature. On the basis of chemical data and the unit cell
dimensions, the formula for colemanite is $4 \mathrm{CaO} \cdot 6 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$. Hence, the unit cell of colemanite contains 12 boron sites. It will be recalled from Section II. 2 that the $\nabla \mathbb{E}^{\prime}$ s at two sites related by a centre of symmetry are identical from the point of view of the theory dealt with in Chapter II. Hence, colemanite must have a centrosymmetric structure since of the 12 borons present in the unit cell we have found that only 6 have non-identical $\tilde{\nabla} \mathrm{E}^{\prime} \mathrm{s}$. Let us now refer to Figs.6, 7, and 9. It can be seen that the rotation pattern is symmetrical with respect to $\theta=0^{\circ}$ and $\theta=90^{\circ}$ in the X - and Z-rotations, and that the reduced spectra occur at the following positions: ${ }_{x}=0^{\circ}$ and $\theta_{z}=90^{\circ}$ (Y parallel to $H o$), $\theta_{X}=90^{\circ}$ and $\theta_{z}=0^{\circ}$ (Y perpendicular to Ho). Furthermore, a reduced spectrum results for the complete Y-rotation. The Y-axis must therefore be parallel to a two-fold rotation axis or to normal to a mirror plane or to both. However, the combinations, mirror plane plus centre of symmetry two-fold rotation axis plus centre of symetry mirror plane plus two-fold rotation axis
are identical, all three being denoted by the point group symbol $2 / m$. Actually, anticipating our low-temperature results, the presence of 12 boron sites in the unit cell of colemanite, and hence of the centre of symmetry at room temperature, will be established by the analysis of n.m.r. spectra alone. We shall return to this point later.

The B^{11} sites were classified on the basis that colemanite at room temperature possesses point group $2 / \mathrm{m}$. The three non-equivalent groups of sites were named by capital letters K, I, and M. Each group

The Soparations, in $\mathrm{Kc} \cdot / \mathrm{Sec}$, of the B^{11} Satollite Lines Bolonging to the K Sites in Colemanite at
Room Temporature. The Signs Are Relative.

Rotation	θ°	\bigcirc	15	30	45	60	75	90	105	120	135	150	165
X	$K_{1,3}$	15	-49	-102	-117	-93	-43	27	100	148	164	145	87
	K 2,4	15	83	139	158	145	98	27	-44		-116	-103	-50
I	K	22	-131	-253	-307	-281	-18/4	-38	117	235	292	268	167
Z	$K_{1,3}$	-36	-142	-208	-222	-181	-96	15	119	181	201	155	67
	$K_{2,4}$	-36	71	155	198	181	117	15	-91	-181	-221	-207	-139

TABLE ∇

The Separations, in Kc./Sec. of the 8^{11} Satellite Lines Bolonging to the L Sites in Colemanite at Room Temperature. The Signs Are Relative.

Rotation	θ°	0	15	30	45	60	75	90	105	120	135	150	165
X	L/, 3	25	-6	-44	-78	-106	-111	-101	-72	-31	9	38	42
	L2,4	25	42	37	9	-31	-71	-101	-113	-105	-82	-44	-6
I	L	-96	-18	57	118	143	124		-5	-83	-142	-165	-153
z	L, 3	72	-61	-155	-199	-178	-96	25	155	251	295	271	189
	- 2,4	72	194	276	294	251	153	25	-91	-181	-201	-155	-59

TABLE VI

Th Soprations, in $\mathrm{KC} /$.Sec . of the $\mathrm{B}^{1 l}$ Satellite Lines Boloncing to the M Sites in Colemanite at Room Temperature. The Signs Are Relative.

g O + + + 0 \sim	1-4te θ°	0	15	30	45	60	75	90	105	120	135	150	165
X	M1,3	1350	2109	2474	2342	1752	880	-73	-820	-1186	-1055	-472	405
	M2,4	1350	406	-474	-1058	-1188	-818	-73	881	1758	2333	2467	2102
I	M 1	-70	-26	-158	-427	-767	-1080	-1286	-1326	-1195	-921	-584	-268
2	$M_{1,3}$	-1287	-1307	-975	-370	338	971	1348	1371	1036	429	-270	-909
	$M_{2,4}$	-1287	-903	-273	441	1045	1377	1348	970	339	-369	-974	-1312

TABLE VII
 Mc./Sec. for the M Sites in Colemanite at Room Tomperature

Rotation	θ°	0	15	30	45	60	75	90	105	120	135	150	165
X	$M_{1,3}$	-40	-22	-4	-12	-32	-42	-28	4	25	17	-14	-39
	$M_{2,4}$	-40	-40	-14	16	25	4	-28	-44	-30	-10	-4	-21
I	N	-28	-30	-30	-20	-7	8	22	25	18	4	-10	-22
z	${ }^{-1} M_{1,3}$	21	23	2	-27	-45	-42	-40	-42	-43	-44	-29	-1
	M2,4	21	-1	-29	-44	-45	-41	-40	-45	-43	-26	2	23

TABLE VIII

The Separations. Ko./Sec. of the B ${ }^{1 l}$ Centre of Gravity of the Satellite Lines from the Unperturbed Frequency, $\nu_{0}=21.231 \mathrm{Mc} . / \mathrm{Sec}_{\text {. . for }}$ fhe M Site in Colemanite at Room Temperature

of these sites consists of four symetry-equivalent sites which were denoted by the subscripts 1, 2, 3, and 4, as shown in Fig.1. Thus \mathbb{K}_{1} and \mathbb{K}_{2} are related by the two-fold symmetry axis and so are \mathbb{K}_{3} and \mathbb{K}_{4}. Since K_{1} and K_{3} (or K_{2} and K_{4}) are related by the centre of symetry, $\tilde{\nabla E}$ at these sites are identical; hence, at room temporature, these two sites are simply denoted by $K_{1,3}$ (or $K_{2,4}$). The I and M sites are similarly denoted. The three lines arising from the transitions $m= \pm 3 / 2 \leftrightarrow \pm 1 / 2$ and m $m=I I / 2 \leftrightarrow \mp I / 2$ were denoted by $\left(\nu s_{1}, \nu_{s_{2}}\right)$ and ν_{c}, respectively; the subscripts s_{1} and s_{2} were chosen so that $\Delta \nu=\nu_{s_{2}}-\nu_{s_{1}}$ was positive. The site of thair origin was indicated by a superscript, thus $\nu_{S_{1}}^{M /, 3}, \nu V_{S_{2}}^{M 1,3}, \nu_{c}^{N 1,3}$. Each line occurring in the reduced spectrum should be denoted by the superscript $P_{i, 2,3, i}(P=K, L, M)$ but, for brevity, it was denoted simply by the superscript P. The group of ines ν_{c}^{k}, ν_{c}^{L} in the Y-rotation and $\nu_{c}^{K_{1,3}}, \nu_{c}^{k_{2,4}}$, $\nu_{c}^{L /, 3}$, $\nu_{c}^{L 2,4}$ in the X - and Z-rotation and in Fig.5(a) were denoted simply by ν_{0}, since their frequencies were very close to $\nu_{0}=(H \mu) /($ Ih $)$.
IV. 3. For the quantitative analysis of the angular dependence of the frequencies, the separations of the satellite frequencies y_{s}, and $\nu_{S_{2}}$ have been deduced from the Tables I - III for each site, and are listed in Tables IV - VI. The relative signs have been chosen so that b of Eq.(27) is positive. The experimental values of $\nu_{e}^{M i, j}-\nu_{0}$ and $\left(\nu_{S_{1}}^{M i, j}+\nu_{S_{2}}^{M_{i, j}}\right) / 2-\nu_{0}$, also deduced from Tables I - III, are listed in Tables VII - VIII, respectively. The corresponding experimental values for the sites K and L have not been considered since they are negligibly small.

TABLE IX

Eroorimental Fourier Coefficients, in Kc./Sec.e for 8^{11} Sites M in
Colemanite at Room Temperature

Rotation	Site	a	b	c		
X	$M_{1,3}$	642.17	711.03	1699.08		
	$\mathrm{M}_{2,4}$	640.50	708.00	-1697.77		
I	$M_{1,2,3,4}$	-675.67	609.17	246.27		
2	M, 3	31.25	-1315.30	-402.17		
	$\mathrm{M}_{2,4}$	33.50	-1316.87	406.07		
		n	p	u	r	∇
I	$\mathrm{M}_{1,3}$	-15.583	-6.230	-18.333	-14.033	18.767
	$\mathrm{M}_{2,4}$	-15.500	-6.117	-18.833	13.250	-19.033
Y	$\mathrm{MH}_{1,2,3,4}$	-5.830	-24.870	2.500	12.750	-2.020
2	M, 3	-22.167	30.400	13.167	9.100	8.083
	$\mathrm{M}_{2,4}$	-22.333	30.667	12.750	-9.433	-8.217
		$\bar{\square}$	\bar{p}	\bar{u}	$\overline{\mathbf{r}}$	$\overline{\mathrm{v}}$
I	$M_{1,3}$	26.250	0.917	16.000	0.417	-15.867
	$\mathrm{M}_{2,4}$	25.833	0.767	15.917	-1.283	15.733
Y	$\mathrm{M}_{1,2,3,4}$	25.083	17.900	-2.500	9.167	-1.883
2	$M_{1,3}$	33.250	-20.133	-10.750	-6.300	-7.367
	$\mathrm{M}_{2,4}$	33.417	-20.567	-10.333	6.683	6.650

TABLE X

Experimental Fourier Coefficients in $K c_{0} /$ Sece. $_{\text {, of }}$ of the B^{11} Satellite Lines for the K and L sites in Colemanite

at Room Temperature

Rotation	Site	a	b	c
X	$K_{1,3}$	23.50	-5.75	-140.6
	$\mathrm{K}_{2,4}$	21.52	-6.28	138.08
Y	$K_{1,2,3,4}$	-7.75	29.95	-299.33
2	$\mathrm{K}_{1,3}$	-11.80	-26.98	-210.48
	$\mathrm{K}_{2,4}$	-11.50	-26.40	209.17
${ }^{18}, x_{3} x_{2} 2$	1.4.4			
	L, 3 L167	-36.25	63.53	-44.42
	$\mathrm{L}_{2,4}$	-36.67	63.50	45.00
7	$L_{1,2,3,4}$	-12.33	-83.85	130.00
2	$L_{1,3}$	48.53	22.66	-247.48
	$\mathrm{L}_{2,4}$	48.17	22.62	248.48

TABLF. XI

A Comparison of the Values of $\Delta \nu$ Predicted for Specified Crystal Orientations Assuming Fossible Sign Combinations of C_{z} and C_{x}, with the Experimentally Measured Values of $\Delta \nu$.

α^{0}	β°	Site	Sign Combination		$\begin{gathered} \text { Sign } \\ \text { Combination } \end{gathered}$	${ }_{k} \Delta \nu^{\prime}$	Experimental ay Ke/rec
50	165	$\begin{array}{\|ll} \mathrm{K}_{\mathrm{I}, 3} & \\ \mathrm{~L}_{2,3} & \\ \mathrm{~K}_{2,4} \\ \mathrm{M}_{2,3} & \mathrm{~L}_{2,4} \\ & \mathrm{M}_{2,4} \end{array}$	$=$	-321	=	-409	326
			\pm	-249 42	$\pm \pm$	-161 232	212 31
			$= \pm$	204	\pm	14	206
			$=+$	-1116	\pm	-808	1130
			\pm	286	$=$	-22	341
50	195		$=$	-249	\mp	-161	254
		${ }^{1,3} \times$	\pm	-321	\pm	-409	322
		$L_{2}, 3^{2,4}$	$=$	204	\pm	14	195
		${ }^{-, 3} L_{0,4}$	\pm	42	\mp	232	39
		$\because 2,3$	\mp	286	\pm	-22	282
		${ }^{1,3} \mathrm{M}_{2,4}$	$\pm \pm$	-1116	=	-808	1086
80	45	K		121		169	125
		${ }^{1,3} \mathrm{~K}_{2}$	\pm	-245		-293	240
		$L_{2}, 3^{2,6}$		305		-183	305
		${ }^{1,3} L_{2,4}$	- +	- -167	$+$	321	170
		$\mathrm{M}_{1}, 3$, ${ }^{\text {a }}$		792	\pm	6	749
		${ }^{1,3} \mathrm{M}_{2,4}$	$\pm \pm$	-596	$=$	190	675

In order to determine the coefficients occurring in Eqe.(18), (20), and (22), a harmonic analysis of the experimental results listed in Tables IV - VIII has been carried out using the method of 12-point analysis by whittaker and Robinson ('4). The values of these coofficients for site M are listed in Table $I X$; those for sites \mathbb{K} and I are listed in Table X.

The problers of determining the relative signs of the offdiagonal components of two $\nabla \tilde{E}^{\prime}$'s, related by a two-fold symmetry axis, was discussed at length in Section II.5. The sites $M_{1,3}$ and $M_{2,4}$ can be dealt with in a straightforward way since they possess an appreaiable second-order term. Accordingly, the inspection of the sign in front of \bar{r}_{i} in Table IX, reveals that, for $M_{2}, 3, \bar{r}_{\mathrm{x}}$ is positive, $\overline{\bar{r}}_{\bar{J}}$ is positive, \bar{r}_{8} is negative; for $M_{2,4}, \bar{r}_{\bar{A}}$ is negative, $\bar{r}_{\bar{y}}$ is positive, and \bar{r}_{z} is positive. It follows from Eqs. (21) that the signs of C_{i} are: $+C_{z}+C_{y},-C_{z}$ for $H_{1,3}$, and $-C_{x},+C_{y}$, and $+C_{z}$ for $M_{2,4}$. The offdiagonal tensor components follow from these values, using Eqs.(19). The remaining two non-equivalent sites, \mathbb{K} and L, have to be dealt with by the alternative method described in Chapter II. Table XI lists the valnes of $\Delta \nu$ calculated by means of Eqs. (36), using the two possible combinations of signs of C_{x} and C_{y}. The experimental values of $\Delta \nu$ are listed in the last colume. As can be seen, the following combination of signs predicts the experimental results: $-C_{x}, C_{z}$ for $K_{1,3} ;+C_{x},+C_{z}$ for $K_{2,4} ;-C_{x},-C_{z}$ for $L_{1,3}$; and $+C_{x},+C_{z}$ for $L_{2,4}$. Table XI also lists the $\mathrm{H}_{2,2}$ and $\mathrm{M}_{2,4}$ sites. The agreement between the theoretically predicted and the experimental values of $\Delta \nu$ is poor for

TABLE XII

Experimental Values of the Tensor Components Ψ_{11}. in Kc./Sec..
for all Bll Sites in Colemanite at Room Tamperature.

M sites because the M sites reflect a misalignment error much more strongly than the K and L sites. However, the agreement for K and L sites is very good.

Using the values of a_{1}, b_{1}, and c_{1} listed in Tables $I X$ and X, and Eqs.(19), the tensor components $\psi_{\text {ij may now be calculated. }}$ They are listed in Table XII. The values of $\psi_{i 1}$ deduced from a_{x} and b_{x} for the K and L sites, though, have not been used in the averaging process because these coefficients carry a large experimental error. This error arises chiefly from very small separations between the satellite lines in the X -rotation, as compared with the other two rotations. The average values listed in Table XII for each nuclear site have been used in diagonalisation calculations, using Eqs.(25)-(29). The resulting values of the coupling constants and the asymnetry parameters are listed in the first and the third columns, respectively, in Table XXV. The estimated experimental error is included. The direction cosines of the principal axes (x, y, z) of ∇E, with respect to (X, Y, Z) axes, have been calculated with the aid of Eqs.(32) and (33), and are listed in Table XXVI for all the sites. The signs are relative.
IV. 4. At $-40^{\circ} \mathrm{C}$., as at room temperature, the observation of the spectrum consisted of recording the n.m.r. spectrum of B^{11} over a wide frequency range as the crystal of colemanite was rotated in turn about the three axes (X, Y, Z) defined in Section III.2. Two sample chart recordings are reproduced in Figs. $10(a)$ and (b), with the frequency scales roughly $71 \mathrm{kc} . / \mathrm{sec}$. per chart division and $138 \mathrm{kc} . / \mathrm{sec}$. per chart division, respectively. The spectrum in Fig.10(a) corresponds

Exporimentally Measured Values of the Bil Resonance Frequencies
in Nc./Sec. for the X -Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.

Exmorimantally Mossured Values of the A^{11} Resonance Frequencios
In Ma/Sece for the Y-Rotation of colemanite at $-40^{\circ} \mathrm{C}$.

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
								8.711	8.880		
8.937	8.917		8.818	8.635		8.335		8.375	8.524	8.738	8.890
8.941	8.931	8.851	8.827	8.640	8.455	8.359	8.305	8.410	8.556	8.843	8.896
8.944	8.942	8.864	8.832	8.839	8.471	8.943	8.340	8.864	8.830	8.850	8.002
8.951	8.948	8.947	8.925	8.843	8.891	8.458	8.926	8.869	8.836	8.894	8.904
8.966	8.972	8.957	8.935	8.921	8.896	8.961	8.932	8.937	8.907	8.909	8.911
8.975	8.977	8.963	8.959	8.978	8.924	8.967	8.974	8.962	8.932	8.971	8.960
8.982	8.981	8.986	8.985	8.981	8.983	8.982	8.983	8.984	8.987	8.984	8.986
8.991	8.986	9.006	9.037	9.054	8.993	9.002	8.997	9.009	9.041	9.057	9.053
9.009	9.000	9.020	9.046	9.126	9.046	9.009	9.014	9.039	9.066	9.074	9.058
9.031	9.022	9.104	9.135	9.130	9.078	9.013	9.044	9.104	9.131	9.120	9.064
9.036	9.032	9.115	9.142	9.400	9.083	9.027	9.050	9.110	9.137	9.128	9.076
9.072	9.041	9.122	9.235	9.409	9.534	9.618	9.633	9.575	9.460	9.310	9.172
9.079	9.054		9.247		9.551	9.644	9.663	9.606	9.485	9.327	9.179
	9.061										

Exporimentallv Measured Values of the $B^{1 l}$ Resonance Frequencies
in lho. $/$ Soc. for the 2 -Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
		8.513									
		8.547	8.813						8.913		
		8.833	8.824						8.828	8.511	
	8.319	8.966	8.849	8.516			8.334	8.512	8.856	8.547	8.321
	8.354	8.882	8.853	8.550	8.334		8.378	8.554	8.857	8.833	8.354
	8.554	8.884	8.860	8.835	8.382		8.547	8.836	8.858	8.862	8.552
8.329	8.559	8.885	8.873	8.873	8.552	8.345	8.568	8.868	8.872	8.881	8.559
8.355	8.885	8.887	8.876	8.874	8.569	8.383	8.893	8.872	8.875	8.882	8.885
8.947	8.894	8.899	8.882	8.882	8.893	8.934	8.923	8.882	8.878	8.896	8.891
8.960	8.916	8.913	8.894	8.892	8.922	8.966	8.929	8.894	8.893	8.897	8.918
8.963	8.941	8.935	8.911	8.997	8.928	8.975	8.932	8.898	8.909	8.909	8.943
8.9.72	8.952	8.951	8.929	8.912	8.934	8.978	8.939	8.911	8.927	8.934	8.952
8.971	8.973	8.954	8.952	8.927	8.945	8.982	8.942	8.928	8.951	8.948	8.977
8.980	8.983	8.984	8.985	8.985	8.984	8.984	8.984	8.985	8.984	8.985	8.984
9.005	8.995	9.c37	9.058	9.056	9.025	8.987	9.026	9.055	9.060	9.038	8.996
9.006	9.013	9.062	9.080	9.073	9.033	8.990	9.032	9.068	9.078	9.061	9.013
9.014	9.016	9.075	9.087	9.079	9.045	8.991	9.035	9.074	9.089	9.074	9.020
0.015	9.032	9.086	9.092	9.085	9.050	8.994	9.046	9.085	9.094	9.086	9.031
9.025	9.052	9.092	9.108	9.097	9.079	8.995	9.050	9.094	9.105	9.093	9.054
9.619	9.074	9.104	9.114	9.134	9.532	9.001	9.079	9.132	9.113	9.104	9.075
9.647	9.084	9.138	9.155	9.233	9.544	9.002	9.543	9.237	9.155	9.139	9.085
	9.462	9.183	9.198	9.544	9.706	9.706	9.550	9.547	9.195	9.181	9.463
	9.475	9.471	9.220	9.579	9.743	9.732	9.707	9.581	9.220	9.188	9.475
	9.621	9.504	9.250				9.745		9.248	9.470	9.621
	9.658		9.279						9.275	9.503	9.656

(a)

Fis. 20. Chart Recordings of the EIN. M. R. Spoctrum in Colomanite at -40° C. Showing (A) the Typical Spactrum, (b) the Typical Roduced Spectrum (for $A_{y}=150^{\circ}$). The Orientation of the Crystal in the Case (a) 1s Explained in Table xx.

Fig. 11. The Rotation Pattern of all the B^{11} Lines in Colemanite at
-40° C. for the Rotation About the X-Axis.

Fig. 12. The Rotation Pattern of the B^{11} Lines Depending Strongly Ijpon
29 x in Colemanite at $-40^{\circ} \mathrm{C}$.

Fig: 13. The Rotation Pattern of all the $B^{1 l}$ Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the Rotation about the Y -Axis.

Fig. 14. The Rotation Pattern of all the $B^{1 l}$ Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the Rotation about the Z -Axis.
to the crystal position which is defined in Table XX. The spectrum in Yig.IO(b) corresponds to $\theta_{y}=150^{\circ}$. Even though it was obtained with a perfectly general crystal orientation, Fig.IO(a) does not show the observed maxinum number of lines, because certain lines for the K sites overlap for this particular orientation. Tables XIII, XIV, and XV list the frequencies of the lines at 15° intervals for the $X-, Y$, and Z-rotations, respectively. As explained in Section III.4, additional measurements at 5° intervals have been made in order to establish the rotation pattern but are not listed in these tables. The results listed in Table XIII have been plotted in Figs. 11 and 12. Those listed in Tables $X I V$ and XV have been plotted in Figs. 13 and 14, respectively. The frequencies listed in Tables XIII - XV, and the scale of frequencies in Figs. 11-14, are different from their room temperature analogues, i.e, , Tables I III and Figs. 6-9, respectively, because V_{0} in this case was 8.985 mc ./sec., as compared to $\nu_{0}=11.981 \mathrm{mc} . / \mathrm{sec}$. at room temperature. The line widths of most of the lines were, as at room temperature, of the order of $5 \mathrm{kc} . / \mathrm{sec}$., measured in the usual way, and their relative intensities were independent of the crystal orientation. One feature of the spectrum at $-40^{\circ} \mathrm{C}$. was found pussling, namely, consistently smaller intensities of the lines bearing the superscript H_{3}^{*} and H_{4}^{*} than those bearing the superscript M_{1}^{*} and M_{2}^{*}. We shall, however, return to this topic in Section IV.

An inspection of Figs.11-14 reveals that the rotation pattern consists of 27 curves in the X - and Z-rotations and 14 in the Y-rotation. A comparison of Figs.11-14 with their room temperature analogues, Figs.6-9,
confirms the following:
(a) The curves denoted by superscripts $M_{2}^{*}, M_{2}^{*}, M_{3}^{*}$, and M_{4}^{*} have comparable amplitude with their room temperature analogues, i.e., the curves belonging to the sites $M_{1,3}$ and $M_{2,4}$. In the same way, the curves having the superscripts $K_{1}^{*}, K_{j}^{*}, L_{i}^{*}$ and L_{j}^{*} are similar to the room temperature curves belonging to the sites $K_{1, j}$ and $L_{i, j}$, respectively.
(b) At -400 C. , as at room temperature, ν_{0} stands out by its great intensity, as exemplified by Figs.10(a) and (b), and by its lack of angular dependence.

In consequence of this similarity the spectral lines can be grouped at -40° C. in exactly the same way as they were grouped at room temperature.
(i) The first group contains 8 satellite lines (4 pairs).
(ii) The second group contains 4 central lines which, however, were not resolved and appeared as 2 lines, except for a small splitting at certain crystal orientations.
(iii) The third group contains 16 satellite lines (8 pairs). (iv) ν_{0} representa 8 separate, though unresolved, central lines.
We can conclude that the n.m.r. spectrum of B^{31} in colamanite at $-40^{\circ} \mathrm{C}$. contains 36 lines and therefore the unit cell of colemanite at $-40^{\circ} \mathrm{C}$. contains 12 boron sites at which $\overline{\nabla E}$ differs in some respect. We can establish the point group of colemanite at $-40^{\circ} \mathrm{C}$. as follows. The presence of the 12 boron sites per unit cell of colemanite at -40° C. at which $\tilde{\sigma_{E}}$ differs in some respects proves that the crystal
has lost the centre of symetry. Referring now to Figs.21, 12, and 14, it can be seen that the rotstion pattern is symmetric with respect to $\theta=0^{\circ}$ gnd 90°, and that the reduced spectrum occurs at these crystal orientations. Figs.10(b) and 13 show that the reduced spectrum also occurs throughout the entire Y-rotation. Hence, the Y-axis must be parallel either to a two-fold rotation axis or to the normal to a mirror plane, but it sannot be parallel to both of them simiteneously since the crystal structure is no longer centrosymmetric. The point group is therefore either 2 or $m_{0} *$ Incidentally, the fact that there are 12 boron sites detectable by the n.m.r. method at $-40^{\circ} \mathrm{C}$. establishes also the centrosymetric structure of colemanite at room temperature.

The logic behind the system of classification of the lines will now become clear. In the foregoing pages we stressed the similarity between the room temperature and $-40^{\circ} \mathrm{C}$. spectra. This similarity will deepen even more on comparing the corresponding quadrupole coupling constants and the orientation of the principal axes of the tensor $\tilde{\nabla E}$ at the two temperatures. In view of this it should not be surprising that it has been possible to assign each line of the spectrum at $-40^{\circ} \mathrm{C}$. to its parent line at room temperatize. The disappearance of the centre of symatry has caused any two sites, formerly related by the centre, to become non-equivalent, i.e., the two identical $\tilde{\nabla}{ }^{\prime}$'s at room temperature have become non-equivalent at $-40^{\circ} \mathrm{C}$. In accordance with this, the room temperature sites are denoted by $P_{1, i+2}$; the two sites at -40° C. are denoted by P_{1} and $P_{j}+2$ as follows:

* In the next chapter we shall establish that the point group of colemanite at $-40^{\circ} \mathrm{C}$. is 2 .

The Separations, in Kc./Sec., of the $\mathrm{B}^{I l}$ Satellite Lines for the \mathbb{K}^{*} Sites in Colemanite at $-40^{\circ} \mathrm{C}$.

¢ ¢ + + + 0		0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
X	K_{1}^{*}	5	-41	-85	-88	-61	-17	43	105	138	142	117	61
	K_{2}^{*}	5	67	116	142	135	108	43	-18	-67	-97	-87	-41
	K_{3}^{*}	19	-67	-116	-142	-120	-64	15	100	157	176	160	97
	K_{4}^{*}	20	100	155	182	100	108	16	-68	-126	-142	-117	-67
Y	$\mathrm{K}_{1,2}{ }^{*}$	43	-110	-240	-303	-283	-192	-48	112	235	295	285	186
	$\mathrm{K}_{3,4}^{*}$	16	-137	-271	-315	-291	-182	-35	124	246	307	270	108
Z	K_{1}^{*}	-48	-136	-199	-219	-187	-99	5	103	170	185	152	68
	E_{2}^{*}	-48	64	149	286	176	99	5	-103	-180	-222	-205	-136
	x_{3}^{*}	-34	-136	-201	-219	-187	-99	19	127	203	211	177	68
	K_{4}^{*}	-36	64	176	205	203	128	20	-93	-180	-222	-205	-136

TABLE XVII
The Separations, in Kc./Sec., of the B^{31} Satellite Lines for the L^{*} Sites in Colemenite at $-40^{\circ} \mathrm{C}$.

		0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
X	L_{1}^{*}	13	-21	-63	-99	-120	-119	-99	-68	-32	10	36	35
	L_{2}^{*}	12	31	32	11	-27	-64	-98	-115	-126	-97	-63	-22
	$\mathrm{L}_{3}{ }^{*}$	36	12	-22	-53	-84	-108	-90	-68	-32	4	36	43
	L_{4}^{*}	35	4	32	7	-27	-64	-90	-105	-91	-56	-26	10
Y	$L_{1,2}^{*}$	-99	-28	43	102	133	122	34	23	-47	-109	-148	-142
	$\mathrm{L}_{3,4}^{*}$	-90	-9	73	121	133	122	55	-23	-102	-159	-180	-154
2	L_{1}^{*}	84	-22	-102	-147	-144	-80	13	117	203	247	242	184
	L ${ }_{2}$	84	180	238	248	203	117	12	-84	-144	-151	-104	-19
	L_{3}	54	-91	-210	-265	-223	-117	36	186	296	342	306	200
	L_{4}^{*}	55	199	305	342	299	186	35	-117	-222	-257	-211	-88

The Separations, in Kc./Sec., of the Satellite
Lines for the M^{*} Sites in Colewanite at $-40^{\circ} \mathrm{C}$.

Exporimental Fourier Coofficionts, in Ke./Sec., of the Separations of the B^{11} Satellite Lines for all Sites in Colemanite at $-40^{\circ} \mathrm{C}$.

Rotation	Site	a	b	c
X	15	26.50	-19.91	-114.72
	x_{2}^{*}	25.50	-18.82	117.78
	K_{3}^{*}	17.92	0.38	-160.15
	Ψ_{4}^{*}	19.00	0.85	162.45
I	$\mathrm{K}_{1,2}^{*}$	-1.67	45.43	-300.20
	$\mathrm{K}_{3,4}$	-8.33	25.02	-310.17
$\underline{2}$	\mathbb{K}_{1}^{*}	-17.08	-21.73	-203.35
	K_{2}^{18}	-17.92	-22.98	203.98
	$\mathrm{x}_{3}^{\mathrm{E}}$	-5.92	-26.03	-218.35
	K_{4}^{*}	-6.33	-29.12	216.53
I	L_{2}^{*}	-43.92	58.10	-54.07
	L_{12}^{*}	-43.83	55.63	54.67
	L_{3}^{*}	-27.17	65.17	-31.30
	L_{4}^{*}	-27.58	63.35	34.37
Y	$L_{1,2}^{*}$	-5.56	-91.88	106.47
	$\mathrm{L}_{3,4}$	-17.75	-73.48	141.27
Z	L_{1}^{*}	49.58	36.63	-198.98
	L_{2}^{*}	48.33	36.72	199.28
	L_{3}	42.83	10.68	-300.05
	L_{4}^{*}	43.83	10.82	298.67

Rotation	Site	a	b	c
I	K_{1}^{*}	652.75	729.83	1652.08
	M_{2}^{*}	654.67	736.68	-1647.65
	N_{3}^{*}	625.00	695.93	1743.10
	K_{4}^{*}	626.00	702.85	-1740.38
I	$\mathrm{M}_{1,2}^{*}$	-695.42	614.25	263.22
	$M_{3,4}^{*}$	-660.33	597.65	242.42
Z	M_{1}^{*}	36.92	-1349.57	-409.48
	H_{2}	38.17	-1351.58	404.85
	N_{3}	31.00	-1290.58	-360.15
	x_{4}^{*}	33.83	-1291.62	359.18

The symetry-equivalent sites at -40° C. are P_{I}° and P_{2}^{\prime}, or P_{3} and P_{4}°. In all other respects the nomenclature has been preserved.
IV. 5. The quantitative analysis of the angular dependence of the n.m.r. lines has been performed in the same way as described in

Section IV.3. The values of the separation between the satellite ines, $\Delta \nu$ have been deduced from Tables XIII - XV and are listed in Tables XVI, XVII and XVIII for each of the K^{*}, L^{*} and M^{*} sites, respectively. The values of $\bar{y}^{-M_{i}^{*}}-\nu_{0}$ and of $\nu_{c}^{M_{i}^{*}}-\nu_{0}$ have not been listed since they are not essential in the analysis of the spectra at $-40^{\circ} \mathrm{C}$. (see, however, below). The Fourier analysis of the data in Tables nVI - XVIII has been carried out as described in Section IV. The resulting values of the coefficients a_{1}, b_{1}, c_{i} are listed in Table KIX for all the sites. According to the evidence presented in the previous section, the sites P_{1}^{*} and P_{2}^{*}, or F_{3}^{*} and P_{4}^{*}, are related by a two-fold symmetry ads; therefore they possess numerically identical $\tilde{\nabla_{E}}$'s which differ only

TABLE XX

A Comparison of the Values of $\Delta \nu$ Predicted for Specifled Crystal Orientation. Assuming the Possible Sign Combinations of C_{z} and C_{x}, with the Experimental Values of Δv.

Site	$\begin{gathered} \text { Sign } \\ \text { Combination } \end{gathered}$	$\begin{gathered} \Delta \nu \\ \alpha c \cdot 1,1) 6 \end{gathered}$	$\begin{gathered} \text { Sign } \\ \text { Combination } \end{gathered}$	$\begin{aligned} & \Delta \nu \\ & \text { ke. 1sec } \end{aligned}$	Experimental $\|\Delta \nu\| \mathrm{kc}$.
K_{2}^{*}	$=$	+ 322	\pm	+292	314
R_{2}	+	+ 270	\mp	+ 300	258
K_{3}	$=$	+ 322	\pm	+ 290	314
K_{4}^{*}	\pm	+ 260	干	+292	258
L_{2}^{*}	$=$	-123	\pm	-151	127
L_{2}^{*}	\pm	-162	F	-133	166
L_{3}	$=$	-152	\pm	-196	152
L_{4}^{*}	+	-202	\mp	-158	196

TABLE XXI

Components, in Kc./Sec., of the Tensor $\Psi_{i 1}$ for the B^{11} Sites K^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.
Site Rotation $\psi_{x x} \psi_{y y} \psi_{z z} \psi_{x y} \psi_{y z} \psi_{z x}$
$\left.\begin{array}{llllll} & X & -53.00 & 6.58 & 46.42 & 114.72\end{array}\right]$

	X	-51.00	6.68	44.32	-117.78	
K_{2}^{*}	Y	-47.10	3.34	43.76		300.20
	Z	-40.90	5.06	35.84	-203.98	

	X	-35.84	18.30	17.54		160.15	
K_{3}^{*}	Y	-33.35	16.66	16.69			310.17
	Z	-31.95	20.11	11.84	218.35		
	X	-38.00	19.85	18.15		-162.45	
K_{4}	1	-33.35	16.66	16.69			310.17
	Z	-35.45	22.79	12.66	-216.53		

TABLE XXII

Components, in Kc./Sec. 1 of the Tensor $\Psi_{i j}$ for the B^{11} Sites L^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.

Site Rotation $\psi_{x x} \psi_{y y} \psi_{z z} \psi_{x y} \psi_{y z} \psi_{z x}$

	X	87.84	14.18	-102.02	54.07	
L	Y	86.38	11.00	-97.38		-106.47
Z	86.21	12.95	-99.16	198.98		

	X	87.66	11.80	-99.46		-54.67
L_{2}^{*}	Y	86.38	11.00	-97.38		-106.47
Z	85.05	11.61	-96.66	-199.28		

	X	54.34	38.00	-92.34		31.30	-141.27
I_{3}^{*}	I	55.73	35.50	-91.23			
	2	53.51	32.15	-85.66	300.05		
	X	55.16	35.71	-90.93		-34.37	
L_{4}^{*}	I	55.73	35.50	-91.23			-141.27
	2	54.65	33.01	-87.66	-298.67		

TABLE XXIII

Comporarta, in Kc./Seo. of the Tensor $4: 11$ for the B^{11} Sites M^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.

Site	Rotation	$\psi_{x x}$	UYy	$\psi 22$	$\Psi z y$	$4 y z$	$\psi_{2 x}$
$\begin{gathered} \mathrm{M}^{*} \\ 2 \end{gathered}$	X	$-13 C 5.50$	1382.58	-77.08		-1652.08	-263.22
	I	-1309.67	1390.84	-81. 17			
	Z	-1312.65	1386.49	-73.84	409.48		
M_{2}^{*}	X	-1309.34	1391.35	-82.01		1647.65	-263.22
	I	-1309.67	1390.84	-81.17			
	2	-1313.47	1389.75	-76.34	-404.85		
M_{3}^{*}	I	-1250.00	1320.93	-70.93		-1743.10	-242.42
	Y	-1257.98	1320.66	-62.68			
	Z	-1259.58	1321.58	-62.00	360.15		
n_{4}	X	-1252.00	1328.85	-76.85		1740.38	-242.42
	I	-1257.98	1320.66	-62.68			
	Z	-1257.79	1325.45	-67.66	-359.18		

TABLI XXIV

Averages of the Components, in Kc./Sec., of the Tensor ψ ij for all B^{11} Sites in Colemanite at $-40^{\circ} \mathrm{C}$.

	$\Psi x X$	*yy	ψ_{22}	$4 x y$	$\psi_{y z}$	$\psi_{2 x}$
$K_{1,2}^{*}$	-46.318	4.943	41.375	203.665	116.250	300.20
$K_{3}{ }_{3}^{*}$	-34.657	19.062	15.595	217.440	161.300	310.170
$L_{2}{ }_{2}^{*}$	86.587	12.090	-98.677	199.130	54.370	106.470
$L_{3,4}^{*}$	54.853	3.4 .988	-89.841	299.360	32.835	-141.270
M_{1}	-1310.040	-1388.642	-78.602	407.165	1649.865	-263.
$\mathrm{M}_{3,4}$	-1255.888	1323.021	-67.133	359.665	1741.740	-242.420

in the orientation of their principal axes. We encounter, therefore, the same problem of assigning the appropriate signs to the off-diagonal components of $V \tilde{E}$. However, in view of the similarity of the spectrum at $-40^{\circ} \mathrm{C}$. to that at room temperature, one expects that $\nabla^{\prime} \mathrm{E}^{\prime} \mathrm{s}$ at the sites $P_{1,1+2}, P_{1}^{*}$ and P_{i+2}^{*} should be similar, i.e., their corresponding off-diagonal components should have the same signs. In the case of the M^{*} sites this can be easily established simply by inspecting the curves $\nu_{c}^{M_{i}^{*}, i+1}$ in Figs. 11-14 and noting that they have the same shape as their analogues at room temperature, i.e., they contain nearly the same coefficient r_{1} measured at the same Ho. In the case of the K^{*} and L^{*} sites, however, this cannot be so easily established and therefore an additional measurement was done in the manner indicated in Section II.5. The results of this measurement are presented in Table $X X$, where only the \mathbb{K}^{*} and L^{*} sites are listed. As can be seen, the offdiagonal components of $\nabla^{2} E^{\prime}$ s at sites P_{1}^{*} and P_{1+2} mast have the same signs as those at the sites $P_{1,1+2}$, since they predict the experimental results. Accompanying Table $X X$ is the diagram indicating the crystal orientation at which the measurement was done. Incidentally, the spectrum of Fig.10(a) also corresponds to this crystal orientation. The numerical values of a_{i}, b_{i} and c_{i} in Table XIX have been used to determine the tensor components, ψ if, for each of the sites. Tables XXI, XXII and XXIII list the results for K^{*}, L^{*} and M^{*} sites, respectively, and Table XXIV lists the averages for all the sites. The results in Table XXIV have been used in the diagonalisation process which was carried out in the usual way. The resulting values of the quadrupole

TABLE XXV

Puadrupole Coupling Constants and Asymotry Pararnetors at Room Temperature and at $-40^{\circ} \mathrm{C}$. at the B^{11} Sites in Colomanite.

$$
\begin{array}{lrrrr}
\begin{array}{l}
\text { Boron } \\
\text { Sites }
\end{array} & \text { Quadrupole Coupling Constant, } & \text { Asymatry Parameter, } \\
& \text { Room Temp. } & -40^{\circ} \mathrm{C} . & \text { Room Temp, } & -40^{\circ} \mathrm{C} \\
\mathrm{~K}_{1}, \mathrm{~K}_{2} & 0.436 \pm .002 & 0.421 \pm .005 & 0.57 \pm .01 \\
\mathrm{~K}_{3}, \mathrm{~K}_{4} & 0.462 \pm .005 & 0.48 \pm .01 & 0.43 \pm .01 \\
& & 0.259 \pm .005 & & \\
\mathrm{~L}_{1}, \mathrm{~L}_{2} & 0.309 \pm .002 & 0.359 \pm .005 & 0.83 \pm .01 & 0.86 \pm .01 \\
\mathrm{~L}_{3}, \mathrm{~L}_{4} & & & 0.79 \pm .01 \\
\mathrm{M}_{1}, \mathrm{M}_{2} & 2.540 \pm .003 & 2.521 \pm .003 & & \\
\mathrm{H}_{3}, \mathrm{M}_{4} & 2.552 \pm .003 & 0.058 \pm 0.001 & 0.086 \pm .001 \\
& & & 0.023 \pm .001
\end{array}
$$

Direction Cosines of the Principal (x, y, z) Axes of $\nabla \tilde{r}$ with Respect to the (X, Y, Z) Axes at all B^{11} Sites in Colernite at Room Temperature. The Two Sets of Signs Given for Each Set of Cosines Refer to the Two Sites Related by the Two-Fold Axig.

The Signs Are Relative Only.

Boron Sites	Axis	X	Principal Axes	
K	X	$\mp 0.138 \pm 0.005$	$\mp 0.781 \pm 0.005$	$\pm 0.609 \pm 0.005$
	I	$+0.827 \pm 0.005$	$+0.247 \pm 0.005$	$+0.505 \pm 0.005$
	2	$\mp 0.545 \pm 0.005$	$\pm 0.574 \pm 0.005$	$\pm 0.611 \pm 0.005$
L	X	$\pm 0.258 \pm 0.005$	$\pm 0.603 \pm 0.005$	$\mp 0.754 \pm 0.005$
	1	- 0.527 ± 0.005	-0.567 ± 0.005	-0.633 ± 0.005
	Z	$\mp 0.810 \pm 0.005$	$\pm 0.561 \pm 0.005$	$\pm 0.172 \pm 0.005$
M	X	$\mp 0.115 \pm 0.002$	$\mp 0.991 \pm 0.002$	$\mp 0.123 \pm 0.002$
	Y	-0.538 ± 0.002	$+0.126 \pm 0.002$	-0.826 ± 0.002
	Z	$\mp 0.835 \pm 0.002$	$\pm 0.036 \pm 0.002$	$\pm 0.549 \pm 0.002$

Direction Cosines of the Principal (xayez) Axes of E with Respect to the $(X, Y, 2)$ Axes at all B^{11} Sites in Colomanite at $-40^{\circ} \mathrm{C}$. The Two Sets of Signs Given for Eiach Set of Cosines Refer to the Two Sites Relatod by the Two-Fold Axis. The Signs Are Relative.

Boron Sites	Axis		Principal Axes	8
$K_{1,2}^{*}$	X	$\mp 0.078 \pm 0.01$	F0.786 ± 0.01	$\pm 0.613 \pm 0.01$
	Y	$+0.830$	$+0.289$	$+0.476$
	Z	∓ 0.552	± 0.546	± 0.631
$\mathrm{K}_{3,4}^{*}$	\mathbf{X}	$\pm 0.184 \pm 0.01$	$\pm 0.775 \pm 0.01$	$\mp 0.604 \pm 0.01$
	1	-0.831	-0.206	-0.517
	Z	± 0.525	F0.597	∓ 0.606
$L_{1,2}$	X	$\pm 0.295 \pm 0.01$	$\pm 0.544 \pm 0.01$	$\mp 0.785 \pm 0.01$
	Y	-0.566	-0.562	-0.603
	2	∓ 0.770	± 0.623	± 0.142
$L_{3,4}^{*}$	X	$\mp 0.208 \pm 0.01$	$\mp 0.649 \pm 0.01$	$\pm 0.731 \pm 0.01$
	I	$+0.409$	+0.590	$+0.657$
	2	± 0.858	∓ 0.480	∓ 0.182
${ }_{1,2}^{*}$	X	$\pm 0.005 \pm 0.002$	$\mp 0.992 \pm 0.002$	$\pm 0.126 \pm 0.002$
	I	-0.544	-0.108	-0.832
	2	± 0.839	∓ 0.064	∓ 0.542
$M_{3,4}^{*}$	X	$\mp 0.018 \pm 0.002$	$\pm 0.993 \pm 0.002$	$\mp 0.113 \pm 0.002$
	I	$+0.559$	+0.103	$+0.823$
	2	∓ 0.829	± 0.050	± 0.557

coupling constants and the asymmetry paraneters, and their eatimated experimental errors, are listed in the second and fourth columns of Table XXV. The resulting values of the direction cosines of the principal axes of $\widehat{V E}$ with respect to the (X, Y, Z) axes, and the estimated experimental error, are listed in Table XXVII. The results listed in Tables XXV - XXVII will be discussed in Chapter ∇ of this thesis.
IV. 6. For the investigation of the temperature dependence of the resonance lines, the orystal was accurately aligned so that its I-axis coincided with the rotation axis. This choice of orientation was made for the following reasons. Firstly, at room temperature the lines are more intense for this orientation. Secondly, for this crystal orientation any departure from the room temperature symmetry shows up in an obvious way. Thirdly, the alignment of the Y-axis parallel to the rotation axis could be made to better than 10 minutes. Each of the three sites, K, L and M, were examined; K sites were examined at $\theta_{y}=35^{\circ}$ while L and M sites were examined at $\theta_{y}=149^{\circ}$. The investigation of these sites consisted of recording the satellites at selected temperatures over the range $+52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$.

We shall first describe the resulta obtained over the temperature range $+25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$., which includes the Curie point. Table XXVIII lists the observed values of the separation of the satellite lines belonging to the K, I and M sites. Because the changes of the lines were quite small, separations rather than actual frequencies of the satellite lines have been used to eliminate the errors due to drift of the magnetic field. The values listed in Table XXVIII are plotted in

Fig. 15 . Temperature Dependence of a Selected Set of Satellite Lines for all $\mathrm{B}^{\text {ll }}$ Sites in Colemanite for $\theta y=35^{\circ}$ (K Sites) and for $\theta y=149^{\circ}$ (L and MSites).

Fig. 15 and the direction of temperature cycling is indicated. An inspection of Fig. 15 reveals that there is no clear-cut transition temperature which is assumed to coincide with the temperature at which the lines are first aplit. Following are the temperatures at which the splitting clearly occurred for various satellites:

$$
\begin{array}{ccc}
M & L & K \\
-2.0^{\circ} \mathrm{c} . \uparrow & -2.0^{\circ} \mathrm{c} . \uparrow & -3.0^{\circ} \mathrm{c} . \uparrow \\
-1.0^{\circ} \mathrm{c} . \downarrow & -2.9^{\circ} \mathrm{c} . \downarrow & -2.7^{\circ} \mathrm{c} . \downarrow \\
-2.0^{\circ} \mathrm{c} . \uparrow & -2.5^{\circ} \mathrm{c} . \uparrow & \\
0.1^{\circ} \mathrm{c} . \downarrow & 0.1^{\circ} \mathrm{c} . \downarrow &
\end{array}
$$

The arrow pointing up indicates that the crystal temperature was being increased, while the arrow pointing down indicates that it was being decreased. The scatter of the temperatures at which the splitting was first observed is unlikely to be due to errors in the measurements of the crystal temperatures since great care was exercised to ensure that the temperatures, measured by the thermocouple, corresponded to that of the crystal. The variation in the splitting point is probably directly connected with the history of the crystal, i.e., with the rate at which it has been cooled or warmed up, with the amount of strain present in the crystal, etc. Further details of the results obtained are:
(a) Broadening of the lines belonging to the site M occurs at about $+1^{\circ}$ C. irrespective of the direction of temperature cycling.
(b) There is a consistent increase in the values of $\Delta \nu$ for site M which starts at about $+10^{\circ} \mathrm{C}$. and persists until the lines separate.

TABLE XXVIII

Separation, in Kc./Soc.. of the B^{11} Satolitte Lines in Colomanite at Various Temperatures. Mand L Sites Were Measured at $0 y$ n 149 . K Sites at $\theta \mathrm{y}=35^{\circ}$.

Decreasing Crystal Temperatures

Sites	25	18.2	15.9	11.7	9.7	7.3	6	4.6	3.4
M	602	602	602	602	604	605	606	607	606
L	166	169	167	167	165	165	167	167	165
K	278								
Sites	2.9	1.4	0	-0.7	-1	-1.2	-1.6	-1.9	-2.7
M	607	606	608	608	607	612	613	611	616
					605	600	603	598	597
L	166	166	166	166	164	170	163	170	171
r								161	160
4				278	277	275	277	276	277
${ }^{\circ} \mathrm{C}$, 274									
Sites	-2.9	-3.3	-3.4	-4.2	-5.6	-6.8	-7.5	-8.4	-16
M	616	615	618	619	619	620	622		625
	597	599	597	596	595	593	592	590	590
L	173	175	174	173	174	175	178	177	177
K	162	159	160	156	156	155	153	154	151
	278	278	280	280	279	280	283	281	284
		275	275	274	272	271	271	271	267
Increasing Crystal Temperatures									
${ }^{\circ} \mathrm{C}$.									
Sites	-14.8	-11.9	-10.8	-4.3	-2.6	-2.5	-2	-1	
M	626	626	626	618	609			608	
L	592	593	594	599	604	604	609		
	178 150	176	176	174	167	168	166	166	
	150	152	151	160	162	162			
Decreasing Crystal Temperatures									
Sites	27	13.6	11.7	3.7	1	0.1	-0.3-0.6		
M	600	602	605	604	607				
L	167	167	166	167	167	600	600	611	
						168	167	166	
						162	162	163	

TABLE, XXIX

Separations, in Kc./Sec, of the Bll Satellite Lines in Colemanite at Various Terperatures for $\theta y=149^{\circ}$.

Sites	${ }^{\circ} \mathrm{C}$	52	47	43	40	37	33	32	29	25
M		598	597	598	598	598	599	600	600	60
L		170	170	170	168	170	169	168	168	167

Decreasing Crystal Temperatures

	${ }^{\circ} \mathrm{C}$.						
Sites	-46	-50	-60	-62	-75	-84	-126
	633	633	636	637	640	640	Incomplete
M	588	587	587	587	591	544	
			589	Incomplete			

L

- - 180 -

Increasing Crystal Temperatures

	${ }^{\circ} \mathrm{C}$.									
Sites	-136	-99	-90	-87	-68	-60	-44	-38	-29	-22
		645	647	643	643	642	639	637		
		630	629	634	635	631	634	632	630	628
M	\pm	596	596	596	594	593	595	592	589	589
	-	578	577	583	584	582	586	583		
L	0				178	-	178	-	-	177
	0	-	175	-	178	-	140	-	-	147

Fig. 16. Temperature Dependence of a Selected Set of Satellite Lines for L and M Sites in Colemanite for $\theta y=149^{\circ}$.

As a final step in this investigation, the spectrium of $\theta_{y}=149^{\circ}$ was examined at crystal tomperatures covering the ranges $+52^{\circ}$ C. to room tomperature and -22° C.to $-136^{\circ} \mathrm{C}$. Table KXIX lists the separation between the satellite lines belonging to the sites L and M_{0}. The results listed in Table XXIX, and some results for sites L and M listed in Table XXVIII, are plotted in Fig.16. Referring to Fig.16, there occurs a slight increase in the values of $\Delta \nu$ for site B and a slight decrease in this value for site L as the temperature is lowered from $+52^{\circ} \mathrm{C}$. to room temperature. The results obtained in the temperature range -22° C. to -136° C. Indicate that an additional splitting of the lines belonging to the site M occurs at about -80° C. with decreasing temperatures, and at about $-35^{\circ} \mathrm{C}$. with increasing temperatures. The satellite lines belonging to the L site were broadened under exactly the same oircumstances. These broadenings (L site), and the additional splittings (M site), could arise from two sources. First, the crystal has been misaligned, or second, the crystal has undergone an additional transition. The first case cannot be true. The crystal orientation was repeatedly checked for misalignment before and after each set of measurements. In order to eliminate the possibility of misaligament due to anisotropic thermal contraction of the crystal platform, a perspex platform was used in addition to a lucite platform. These precautions did not influence the above results. The second case must therefore be true, i.a., colemanite undergoes an additional transition. Fig. 16 shows that this newly discovered transition is characterised by a large thermal hysteresis loop extending from about $-35^{\circ} \mathrm{C}$. to about $-80^{\circ} \mathrm{C}$.

The fact that the lines belonging to the sites $M_{1,2}^{*}$ and $M_{3,4}^{*}$ are aplit, and those belonging to the sites $I_{7,2}$ and $L_{3,4}^{*}$ are broadened, indicates that the two-fold rotation axis has disappeared. In other words, the point group of colemanite in this phase is the triclinic point group 1.

CHAPIER V

DISCITSSION
V. I. Let us first discuss the room temperature results. The symmetry properties of colemanite have been studied by other workers using three independent methods and following are the conclusions as to its symmetry at room temperatures
(a) X-ray analysiss centrosymetric, point group $2 / \mathrm{m}$ (Christ et al., '54).
(b) Dielectric breakdown studiess centrosymmetric (Davisson,'56).
(c) Pyroelectric and piezzoelectric studies: non-centrosymmetric (Davisson, '56).

It appears from the above that the evidence for the centrosymmetric structure is not conclusive. Davisson (56) has proposed that the structure of colemanite remains essentially centrosymetric at all temperatures, viz. including the room temperature, and that the asymmetry may be due to slight displacements of certain constituents, presumably the light atoms, from centrosymetric positions.

As was stated in Chapter I, one of our objectives was to check the point group of colemanite at room temperature. As described in Chapter IV, the results supplied an unambiguous answer supporting the centrosymetric point group 2/m.

At this point one should enquire into the origin of this controversy, viz. the evidence from the piezzoelectric and pyroelectric
studies. Normally, in cases such as this, one would be tempted to accept the results of the pyroelectric and piezzoslectric studies in preference to the X-ray and dielectric breakdow results since the slight displacements from centrosymetric positions, if such exist, are likely to be associated with the light atoms which have relatively little influence on the X-ray and dielectric breakdown results. However, Chynoweth ('57) has suggested that an ideal crystal of colemanite would show no pyroelectric and piezzoelectric effect at room temperature. According to Chynoweth, the pyroelectric behaviour at room temperature can be explained by either a space-charge field inside the crystal resilting in an induced polarisation when the crystal is in the paraelectric state or by a shift of the transition temperature in parts of the crystal as a result of strains. It is interesting to recall at this point that in our preliminary study we encountered many colemanite crystals exhíbiting excessively broad lines, a fact which oan be blamed on the existence of strains in a single crystal.
V. 2. It is interesting to speculate on a possible correlation between the electric field gradient tensors found in this work and the boron positions proposed by Christ et al. (54). They propose that the three boron atoms in the asymmetric unit are located near the centres of two slightly distorted O_{4} tetrahedra and a slightly distorted O_{3} triangle. In the discussion to follow it will be assumed that only the oxygen nearest-neighbours make significant contributions to $\tilde{\nabla E}$ at each of the boron sites. Let us first consider a BO_{4} unit. At the centre of a perfect tetrahedron the symmetry is cubic so that $\overline{\nabla E}$ must be
identically zero. In a slightly distorted tetrahedron, bowever, one would expect $\tilde{\nabla}$ E to be small at the centre, although it need no longer be zero, but there seems to be no reason to expect the asymmetry parameter to take any specific value within its range $(0 \leqslant \eta \leqslant 1)$ or the prinoipal axes to point in any specific direction. Considering now a BO_{3} unit, the symmetry of $\hat{\nabla E}$ at the centre of an equilateral triangle requires that η be zero and that the z-principal axis be along the normal to the plane of the triangle. Unless the O_{3} triangle is greatly distorted, η should still be small at the boron site. Also, one might reasonably expect $\nabla^{\tilde{E}}$ to be larger at the boron site near the centre of the slightly distorted equilateral triangle than at the boron sites at the centres of the slightly distorted tetrahedra because in the triangle the average B - O distance is shorter than in the totrahedra (Christ et al., '54) and the symmetry is not as close to being cubic. As shown in Table XXV, we have indeed found that the quadrupole coupling constants at the $B^{\lambda l}$ sites K and L are small and the values of η are not unusual whereas the quadrupole coupling constant is considerably larger and η is very small at the B^{11} sites M. Also, it follows from the atomic coordinates, made available to us through the courtesy of Dr. C. L. Christ of the U. S. Geological Survey, that the z-principal axis of $\overline{\nabla E}$ at the sites M is nearly normal to the plane of the O_{3} triangle. This is show by the direction cosines with respect to the $\vec{b} \times \vec{c}, \vec{b}, \vec{c}$ directions, Iisted below:
\qquad
Direotion cosines of z-principal axis $0.123 \quad-0.826-0.549$
Direction cosines of normal to clane $0.109 \quad-0.843-0.527$

These argumentis strongly suggest that the boron sites K and L are in the O_{4} tetrahedra and the M sites are in the O_{3} triangle.

Incidentally, it is of interest to note that the n.m.r. study of the B^{11} sites in kernite (Waterman and Volkoff,'55) revealed that the electric fields existing at boron sites C and D (using Waterman and Volkoff's nomenclature) are very similar to those at our sites K and L; while the electric fields existing at boron sites E and F are very sinilar to those at our sites M. We summarise our and Waterman and Volkoff's results below:

kernite	C	D	E	F
そ	0.54	0.60	0.163	0.117
Q.c.c. (ke./sec.)	645	588	2563	2567
colemanite	K	L		M
そ	0.48	0.83	0.058	
Q.C.C. (kc./sec.)	436	309	2540	

In view of this similarity, we sugerst that kernite contains two BO_{4} tetrahedra and two BO_{3} triangles in the asymmetric unit, contrary to the results of X-ray analysis by Portoles ($47,{ }^{\prime} 48$). This idea is supported by Dr. Christ (private comunication) on the basis of Morimoto's ('56) X-ray analysis of borax. The structure of borax which, except for the water of hydration, has the same chemical formula as kernite, contains two BO_{4} tetrahedra and two BO_{3} triangles in its asymmetric unit. Also, Dr. Christ suggested that, since kernite is derived from borax, kernite must contain infinite chains whose unit is formed by two BO_{4}

- Out of the plane of paper

Fig. 17. Stereogram of the Principal Axes of $\nabla \mathbb{E}$ at the B^{11} Sites M in Colemanite at Roor Temperature and at $-40^{\circ} \mathrm{C}$., and of the Nearest- and the Next-Nearest-Neighbours as Seen by B B_{A} Boron Atom in Colemanite.

- Out of the plane of paper

Fig. 18. Stereogram of the Principal Axes of $\tilde{\nabla F}$ at the $B^{1 l}$ Sites L in Colemanite at Room Temperature and at $-40^{\circ} \mathrm{C}$., and of the Nearest- and the Next-Nearest-Neighbours as Seen by $\mathrm{B}_{2 \mathrm{~A}}$ Boron Atom in Colemanite.

Fig. 19. Stereogram of the Principal Axes of $\overline{\nabla E}$ at the B^{11} Sites K in Colemanite at Room Temperature and at $-40^{\circ} \mathrm{C}$., and of the Nearest- and the Next-Nearest-Neighbours as Seen by $B_{3 A}$ Boron Átom in Colemanite.
tetrahedra and two BO_{3} triangles.
We have attempted to correlate closely our results with the structure of colemanite as proposed by Christ et al. ('54, also private communication mentioned earlier). We summarise our findings in Figs.17, 18 and 19, which are atereograms of the principal axes ofVE's at the sites M, L and K, respectively. The direction cosines in Table XXVI were used in this plot. Included in Figs. 17-19 are the directions of the nearest- and the next-nearest-neighbours as seen by the three borons in the asymetric unit. Let us denote one arbitrarily chosen asymmetric unit as follows:
BO_{3} triangle: $\quad{ }^{\mathrm{F}} 1 A^{-0}{ }_{2} A^{-0} 2 A^{-0} 4 A$
 water anlecule: $0_{8 A}$ and calcium ion, Ca_{A}. Two other asymnetric units, B and C, appearing in Figs.17-19, are derived from A by the operation of the g glide plane and the 2_{1} axis, respectively. The asymmetric unit D is derived from C by the operation of the glide plane. The 2_{1} axis is at $1 / 4 a$ and $0 x c$ whereas the glide plane is at $1 / 4 b$, where a, b, c are the unit cell dimensions. The normal to the O_{3} plane of the BO_{3} triangle is indicated by N in Fig. I7. It should be noticed that the insertion of the $B^{I l}$ sites L and K in the same stereograms as $B_{2 A}$ and $B_{3 A}$, respectively, does not imply that these sites are identical. As can be seen in Fig.17, N is parallel, to within 1°, to the z-principal axis. The other two principal axes, x and y, are nearly parallel to the $B_{1 A^{-0}}{ }_{4 A}$ and $B_{1 A}-B_{2 A}$ lines, respectively. Regarding the K and L sites shown in Fig3. 18 and 19, there seems to be no clear-cut
correspondence botween their principal axes and the neighbouring atoms as seen by both borons, $B_{2 A}$ and $B_{3 A}$, except that the z-axis of \mathbb{Y} is pareiliol, to within 7°, to the $B_{2 A}-B_{3 A}$ dilrection and so is the y-ards of L, to within $11 / 2^{\circ}$. This fact appears to be significant in that one could picture the electron-cloud of the intervening oxygens, $O_{5 A}$, $\mathrm{O}_{2 \mathrm{~A}}$ and $\mathrm{O}_{1 \mathrm{~A}}$ to be distorted by the borons, which fact in turn contributes significantly to the non-spherical symmetry of $\hat{V} \tilde{E}^{\prime} s$ at the sites \mathbb{K} and L. $\mathrm{B}_{2 \mathrm{~A}}$ seams to stand out in another respect. Fig. 17 shows that the y-axis of $\nabla \tilde{\mathrm{E}}$ at the sites M is nearly parallel to $B_{1 A}-B_{2 A}$ and this fact may also be interpreted in terms of strong polarisation of the intervening oxygen, $\mathrm{O}_{2 A^{\circ}}$. Figs. 17-19 include also the orientations of the $\nabla^{\prime} E ' s$ at the boron sites in colemanite at $-40^{\circ} \mathrm{C}$.
V. 3. Let us now discuss the results obtained at $-40^{\circ} \mathrm{C}$. Piezzoelectric, pyroelectric and ferroelectric studies of colemanite suggest that the crystal undergoes a transition at about $-2^{\circ} \mathrm{C}$. below which it is ferroelectric. An X-ray investigation of colemanite in the temperature range $155^{\circ} \mathrm{C}$. to $-195^{\circ} \mathrm{C}$. by Christ ('53) revealed no evidence for such a transition.

We have studied colemanite at $-40^{\circ} \mathrm{C}$., the results of which study are described in Chapter IV. The doubling of the resonance lines in the spectrum at $-40^{\circ} \mathrm{C}$., as compared with the room temperature spectrum, has been interpreted as resulting from the lack of a centre of symmetry at -40° C. Thus, on the basis of our results alone we can say that colemanite at $-40^{\circ} \mathrm{C}$. possesses either the point group 2 or the point group m. Since colemanite at $-40^{\circ} \mathrm{C}$. is also ferroelectric with the
ferroelectric direction (i.e., the direction of spontaneous polarisation) coinciding with its crystallographic b-axis, the only acceptable point group is 2. Therefore, the alternative point group whas to be rejected.

The results obtained at $-40^{\circ} \mathrm{C}$. imply a redistribution of charges which is most certainly accompanied by displacements of the atoms from their centrosymnetric positions. At present, it is impossible to say conclusively which atoms have undergone displacements. The possibility of all atoms undergoing displacement in the ferroelectric phase cannot be completely ruled out but it is very unlikely that calcium and oxygens are displaced since displacement of these heavy atoms would be revealed by X-rays on account of their high X-ray scattering cross-section as compared with that of other constituents. It appears then, that hydrogen and boron atoms are the constituents most likely to have undergone displacement.

It is with this advance knowledge that results can be interpreted to a limited extent in terms of atonic movements. For the purpose of discussion, let us first consider the BO_{3} triangle. Table XXV shows that the quadrupole coupling constant for the sites $M_{2,2}^{*}$ has a smaller value whereas that for the sites $M_{3,4}{ }^{*}$ has a larger value than the quadrupole coupling constant for the sites M. This can be taken to imply that the boron nuclei at the sites $M_{1,2}^{*}$ have moved farther from and the boron nuclei at the sites $M_{3,4}$ have moved closer to the centre of the O_{3} triangle, when compared to the boron sites
occupled at room temperature. The values of the asymetry parameters for the M sites listed in Table XXV support these ideas. As far as the boron sites K and L are concerned, the quadrupole coupling constants at $-40^{\circ} \mathrm{C}$. split, relative to their room temperature values, into one having a larger value and the other having a smaller value. This fact can be interpreted similarly as in the case of M sites. On one hand the boron nucleus at the site possessing the larger quadrupole coupling constant has moved further away from the centre of the tetrahedron and on the other hand, the boron nucleus at the site possessing a smaller quadrupole coupling constant has moved closer to the centre of the tetrahedron than their corresponding sites at room temperature. If this hypothesis is true then it implies that the boronoxygen units form electric dipoles in the phase with the point group 2, and that the resultant of these individual dipoles must be parallel to the monoclinic axis.

Although we feel that our results indicate that the boron atoms have undergone displacements with respect to the oxygen atoms, one cannot mile out the possibility that the effects at the boron sites are simply due to the new orientations of the hydrogen atoms. However, the contributions of H atoms to the $\tilde{\mathrm{VE}} \mathrm{s}$ at boron sites are Ifkely to be small because the oxygen nearest-neighbours provide a shield to the influence of the next-nearest-neighbours and because hydrogen atoms are both small and far removed from these sites. Although bydrogen atoms may not contribute appreciably to the resultant dipole moment per unit cell, they still may play a very important rôle in the ferroelectricity

Fig. 20. The Temperature Effect upon the Satelifteines Belonging to the B Sll Sites K in Colemanite at Seleoted Temperatures (for ey $=35^{\circ}$ i.

F1g. 27. The Temperature Fiffect upon the Satellite Lines Belonging to the $B^{l l}$ Sites L in Colemanite at Selected Temperatures (for $\theta_{y}=149^{\circ}$)

Fig. 22. The Temperature Efect upon the Satellite Lines Belonging to the B^{11} Sites M in Colemanite at Selected Temperatures (for $\theta_{y}=149^{\circ}$).
in colemanite. They may trigger the ferroelectric transition in a way similar to their action in the $\mathrm{KH}_{2} \mathrm{PO}_{4}$ type of ferroelectrics.
V. 4. We shall now discuss the phase transitions in colemanite. The results of the investigation of the selected set of $B^{1 l}$ n.m.r. lines over a temperature range were described in Chapter IV and summarised in Fig.15. The effects are illustrated in Figs. 20,21 and 22, which show the changes which occurred in representative resonance lines belonging to the K, L and U sites, respectively, at selscted temperatures over the range room temperature to -16° C. As the temperature is lowered, the narrow signals are first broadened which implies a very small splitting, then they are split by a measurable amount and, finally, they separate into two components. It should be noted in particular that the changes in the n.m.r. spectrum occurring at the transition are not due to a gradual growth of the signals belonging to the ferroelectric phase at the expense of the signal belonging to the centrosymmetric phase. This implies that, provided the temperature of the single crystal is uniform, the two phases, the ferroelectric and the centrosymetric, never coexist together. In other words, the transition cannot be of the order-disorder or martensitic type. The fact that the separation of the signals is at first infinitesimal indicates that, as far as the positions of the atoms are concerned, the two phaees differ only by infinitesinal amount when they are at exactly the transition temperature. Also, the fact that the separation of the signals is not rapid but is brought about gradually over a finite temperatiure range

Indicates that the transition is of the thermodynamic second-order type.
Incidentally, it was mentioned in Section IV. 4 that the intensities of the lines belonging to sites M_{3}^{*} and were consistently smaller and broader than those belonging to the sites M_{1}^{*} and 1_{2}^{*}. Since this effect was observed only at temperatures lower than $-20^{\circ} \mathrm{C}$., its possible explanation may involve the second transition which was discussed in this work, but it is not certain in what way.

The point group of colemanite in the newly discovered phase cannot be other than the triclinic point group 1. Now, while this point group admits ferroelectricity, no known crystal possessing this point group has ver been observed to be ferroelectric. Taking into consideration the fact that colemanite has been observed to be ferroelectric right down to -195° C. by both Chynoweth ('57) and Goldsmith (156), hence it must be ferroelectric in this newly discovered phase since the transition temperature occurs between $-38^{\circ} \mathrm{C}$. and $-80^{\circ} \mathrm{C}$. Thus, It appears that colemanite is the only known example of a ferroelectric crystal with point group 1. This phase is also interesting because the ferroelectric axis is not confined by symmetry to any particular crystal direction.

Since it does not seem to have been pointed out in the literature, it may be worth mentioning that colemanite is likely to be anti-ferroelectric at room temperature. Glide planes and two-fold screv axes, the symmetry elements of colemanite at roon temperature, permit the existence of individual dipole moments within the unit cell although, of course, their resultant per unit cell must vanish for the point group

2/m. Also, calculations based on the atomic coordinates show that all the borons are off-centre in their respective O_{3} triangles and O_{4} tetrahedra but the displacements involved are so small that they may not be significent. In addition, the variations of the $\Delta \nu$ values plotted in Fig. 16 for the temperature range $52^{\circ} \mathrm{C}$. to Curie point and the room temperature results support this idea that the boron atoms are displaced from the centre of gravity of their oxygen nearest-neighbours.

An enumeration of the results described in this thesis may now be appropriates

1) The point group of colemanite at room temperature has been found to be $2 / \mathrm{m}$.
2) The point group of colemanite at $-40^{\circ} \mathrm{C}$. has been found to be 2 .
3) Tho electric field gradient tensors at all B^{11} sites in colemanite at room temperature and at $-40^{\circ} \mathrm{C}$. have been completely determined.
4) The results have been partially interpreted in terms of the crystal structure.
5) The ferroelectric transition has been studied thoroughly with the following results:
(i) The Curie point depends upon the history of the crystal. It probably lies close to $0^{\circ} \mathrm{C}$. in a colemanite crystal free of strains.
(i1) The transition is not of the order-disorder, or martensitic, type.

Fig. 23. Typical Satelife Ines Belonging to the B^{11} Sites M in Colemanite in the Three Phases (for $\theta_{y}=149^{\circ}$).
(iii) The transition is second-order.
6) A new phase in colemanite has been discovered. The transition into this phase is characterised by a large tharmal hysteresis 100p extending between the temperatures of about $-35^{\circ} \mathrm{C}$. to about $-80^{\circ} \mathrm{C}$.

Thus, following are the known phases in colemanite stable in the decreasing temperature scales
monoclinic
monoclinic
triclinic
point group 2/m point group 2 point group 1

Fig. 23 portrays typical satellite signals belonging to $B^{11} \mathrm{M}$ sites at $\theta_{y}=149^{\circ}$ in these three phases.

PEFLRENCES

Bersohn, R. J. Chem. Phys. 20: 1505, 1952.
Bloch, F., Hansen, W. N. and Packard, M. Phys. Rev. 69: 37, 1946.
Christ, C. L. Am. Min. 30: 411, 1953.
Christ, C. L., Clark, J. R. and Evans, H. I. Acta Cryst. Is 453, 1954.
Chynoweth, A. G. Acta Cryst. 10: 511, 1957.
Cotts, R. M. and Knight, W. D. Phys. Rev. 26: 1285, 1954.
Das, T. P. and Bersohn, R. Phys. Rev. 102: 733, 1956.
Datars, R. D. M. Sc. Thesib, MoMastar University, Hamilton, Ont., 1956.
Davisson, J. W. Acta Cryst. 2: 9, 1956.
Goldsmith, G. J. Bull. Am. Phys. Soc., Ser. II ly 322, 1956.
Megaw, H. D. Ferroelectricity in Crystals, Methuen \& Co., London. 1957.
Morimoto, N. Min. (Japan) 2: 1, 1956.
Potch, H. E., Cranna, N. G. and Volkoff, G. M. Can J. Phys. 31: 837, 1953.

Petch, H. E. and Holuj, F. Abstracts of the Commications at the Fourth Annual Congress of International Inion of Crystallographers, 51. 13, 1957.

Portoles, L. Estud. Geol. Inst. Malada 5: 3, 1947; 2: 21, 1948.
Pound, R. V. Phys. Rev. 79: 685, 1950.
Purcell, E. M., Torrey, H. C. and Pound, R. V. Phys. Rev. 72: 474, 1946. Sternheimer, R. M. and Foley, H. M. Phys. Rev. 102: 731, 1956.

Volkoff, G. M., Petch, H. E. and Smellie, D. W. L. Phys. Rev. s 2 $602,1951$.

270, 1952.
Can. J. Phys. 30:

Volkoff, G. M. Can. J. Phys. 3l: 820, 1953.
Waterman, H. H. and Volkoff, G. M. Can. J. Phys. 33: 156, 1955.
Waterman, H. H. Ph. D. Thesis, University of British Columbia, Vancouver, B. C., 1954.

Whittaker, F. and Robinson, G. The Calculus of Observations, Blakie \& Son Ltd., London. 1948.

[^0]: * Q denotes the nuclear electric quadrupole tensor. Q stands for the customarily defined nuclear electric quadrupole moment, i.e., the lergest component of \bar{q} measured in the direction of the spin axis of the nucleus.

[^1]: *The term "magnitude" refers to the eigenvalues of $\tilde{\mathrm{E}}$.

[^2]: *The contribution of the quadrupolar part to $\tilde{\nabla E}$ is 1 gnored.

[^3]: *For reasons discussed earlier the experimental results appear in terms of $\psi_{i j}$. The symbol $\psi_{i j}$ is reserved for the $\nabla^{2} \mathrm{~B}$ components ${ }^{i} j$ times the constant $\theta Q / h$. Thus $\psi_{x x}=e Q / h \phi_{x x}$, $\Psi_{x^{\prime} x^{\prime}}=$ eQ /h ϕx^{\prime} etc.

[^4]: *The term, "simple spectrum," refers to the n.m.r. spectrum consisting of $2 I$ lines, the term, "complex spectrum," refers to the one consisting of $2 \pi I$ lines, where n is the number of nonequivalent or symetry-oquivalent nuclear sites.

[^5]: *See "Temperature, Its Measurement and Control in Science and Industry." Edited by the Americen Institute of Physics, Table 1, p. 210.

