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Abstract

This thesis is devoted to the fundamental properties and applications of the Bargmann
transform and the Fock–Segal–Bargmann space. The fundamental properties include uni-
tarity and invertibility of the transformation in L2 spaces and embeddings of the Fock–
Segal–Bargmann spaces in Lp for any p > 0. Applications include the linear partial differ-
ential equations such as the time-dependent Schrödinger equation in harmonic potential,
the diffusion equation in self-similar variables, and the linearized Korteweg–de Vries equa-
tion and one nonlinear partial differential equation given by the Gross–Pitaevskii model
for the rotating Bose–Einstein condensate. The main question considered in this work in
the context of linear partial differential equation is whether the envelope of the Gaussian
function remains bounded in the time evolution. We show that the answer to this question
is positive for the diffusion equation, negative for the Schrödinger equation, and unknown
for the Korteweg–de Vries equation. We also address the local and global well-posedness
of the nonlocal evolution equation derived for the Bose–Einstein condensates at the lowest
Landau level.
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Chapter 1

Introduction

1.1 Historical notes

In 1923, following discussions of Max Planck’s and Albert Einstein’s research on wave-
particle duality in the context of photons, Louis de Broglie formulated an idea that the
electrons could be described as waves. Attracted by this idea, Erwin Schrödinger wrote
down in 1925 a relativistically invariant equation for the wave function of the electron,
which is now known as the Klein–Gordon equation. The electron energy levels (which
were known from experiments) were recovered from the new equation; however, the rela-
tivistic corrections to the energy levels of the hydrogen atom were inconsistent with the
experimental measurements. As a result, Schrödinger shelved his relativistic equation
and retreated to the nonrelativistic limit, where he derived what is now known as the
Schrödinger equation.

Few years later, Vladimir Fock worked on the representation of eigenstates of many
particles in the Schrödinger equation as products of eigenstates of a single particle in
a Hilbert space [16]. This representation bears now the name of the Fock space, which
is the direct sum of the symmetric or antisymmetric tensors in the tensor powers of a
single-particle Hilbert space.

In 1961, Valentine Bargmann introduced the space of holomorphic functions square-
integrable with respect to a Gaussian measure and the transformation between this space
and a finite-dimensional Hilbert space [3]. Independently, Irving Segal [39] developed
a similar concept in the setting of an infinite-dimensional Hilbert space. This space of
holomorphic functions squared integrable with the Gaussian weight is now known as the
Segal–Bargmann space and the transformation between the spaces is now known as the
Bargmann transform.

It was shown by Segal [40] and Bargmann [4] in the setting of multi-particle wave
functions that the Segal–Bargmann space is isomorphic to a bosonic Fock space. The
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Schrödinger representation and the Fock representation are unitarily equivalent under
the Bargmann transform. The review [41] gives a technically better description of the
Segal-Bargmann space in infinitely many degrees of freedom and describes explicitly the
corresponding transform.

Since then, the Bargmann transform and the Fock–Segal–Bargmann space have been
widely used in many fields of mathematics [17, 27, 43]. An example of how the Bargmann
transform is influential is given by the high number of citations of the pioneering paper
[3], e.g. it was cited 22 times in 2020 according to MathSciNet.

Applications of the Bargmann transform in the quantized Yang–Mills theory on a
space-time cylinder were developed in [12]. The Segal–Bargmann space was generalized to
the group manifold of a compact Lie group [25, 26], which can be applied to the rotational
degrees of freedom of a rigid body, where the configuration space is the compact Lie group.
Recent paper [30] uses applications of the Bargmann transform to the imaginary time flow
of a quadratic hyperbolic Hamiltonian on the symplectic plane.

Some special operators have been studied in the Fock space such as Toeplitz operators
with generating symbols invariant under some group actions [24, 37]. Various properties
of these operators such as boundedness, compactness, and eigenvalues have been studied
by many authors, see [35, 44]. The C∗-algebra generated by such operators was explicitly
described in [14] for the Fock space. Radial operators of polyanalytic or truepolyanalytic
functions were recently analyzed in Fock spaces [32].

In the context of the nonlinear PDEs, the Bargmann transform was applied to study
the Gross–Pitaevskii equation [1, 21] and Lagrangian systems in the semi-classical limit
[31, 36]. Numerical aspects of the Bargmann transform for the time-dependent Schrödinger
problems were discussed in the recent paper [38].

The purpose of this thesis is to review the basic properties of the Segal–Bargmann
space and the Bargmann transform in applications to the partial differential equations
such as the Schrödinger, diffusion, and Korteweg–de Vries equation. Although these
equations are formulated in one spatial dimension, we will also review applications in the
two-dimensional space in the context of the nonlinear Gross–Pitaevskii equation.

The following two sections of the introduction overview results obtained in the three
different chapters of the thesis.

1.2 Properties of the Bargmann transform

In the simplest setting, the Bargmann transform is a transformation of a given real func-
tion of a single real variable to its complex-valued image in a single complex variable. To
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be precise, if ϕ(y) : R 7→ R is given, then the Bargmann transform of ϕ is

(Bϕ)(z) :=

(
2α

π

) 1
4

e
α
2
z2
∫ ∞
−∞

e−α(z−y)2ϕ(y)dy, z ∈ C, (1.1)

provided that the integral is finite. Here parameter α > 0 is fixed arbitrarily.
Chapter 2 reviews properties of the Bargmann transform (1.1). We will show in

Lemma 2.1 that B is a unitary transformation from L2(R) to F ⊂ L2
ρ(C), where F is the

Fock–Segal–Bargmann space given by

F =
{
f ∈ L2

ρ(C) : f(z) is entire in z ∈ C
}

(1.2)

and ρ is the weight in the weighted L2 space given by

ρ(z) :=
α

π
e−α|z|

2

. (1.3)

The adjoint Bargmann transform is given by

(B∗f)(y) =
2

1
4α

5
4

π
5
4

∫∫
R2

e
α
2
z̄2−α(y−z̄)2−α|z|2f(z)dxdξ, (1.4)

We will show in Lemma 2.2 and Corollary 2.1 that B∗ : L2
ρ(C) 7→ L2(R) and moreover,

B∗ is the left inverse of B. On the other hand, B∗ : F ⊂ L2
ρ(C) 7→ L2(R) is also the right

inverse of B, which allows us to introduce the orthogonal projection operator

Π := BB∗ : L2
ρ(C) 7→ F ⊂ L2

ρ(C). (1.5)

Lemma 2.3 shows that Π is an identity in F and also gives a useful computational formula
for the projection operator:

(Πf)(z) =
α

π

∫∫
R2

f(z′)eα(z−z′)z̄′dx′dξ′. (1.6)

Corollary 2.2 ensures that B∗ : F ⊂ L2
ρ(C) 7→ L2(R) is a unitary transformation.

Extending the Bargmann transform into Lpρ(C) spaces for any p > 0 and the Fock–
Segal–Bargmann space Fp defined similarly to (1.2), we show in Lemma 2.4 that if f ∈ Fp,
then for every z ∈ C,

|f(z)| ≤ ‖f‖Lpρe
1
2
α|z|2 . (1.7)

Due to this bound, Lemmas 2.5 and 2.6 establish the following sharp bound on the
embedding of Fp into Fq for every 0 < p < q <∞:(αq

2π

) 1
q ‖u‖q ≤

(αp
2π

) 1
p ‖u‖p (1.8)

where u(z) = f(z)e−
1
2
α|z|2 , f ∈ Fp, and ‖u‖p is the standard Lp norm on C. The sharp

bound (1.8) is very useful in applications of the Bargmann transform in the context of
nonlinear partial differential equation.
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1.3 Applications of the Bargmann transform

The main goal of this thesis is to study applications of the Bargmann transform to partial
differential equations (PDEs). Chapter 3 explains applications to PDEs in one spatial
dimension. Chapter 4 reviews applications to PDEs in two spatial dimensions.

1.3.1 PDEs in one spatial dimension

In the context of PDEs in one spatial dimension y and one temporal variable t, the
Bargmann transform (1.1) maps a solution Φ(t, y) : R×R 7→ R to an equivalent solution
F (t, z) : R × C 7→ C which depends on artificial complex variable z. Since the time
evolution is greatly simplified after the transform, the PDE for F (t, z) can be analyzed
and solved in a closed form. If Φ(t, ·) belongs to a subset of L2(R) space, then F (t, ·)
belongs to a subset of Fock–Segal–Bargmann space (1.2).

A basis in the Fock–Segal–Bargmann space F is reviewed in Section 3.2. The basis is
given by monomials which represent Taylor series of holomorphic functions of a complex
variable. By using the properties of the basis, it is then shown in Sections 3.3, 3.4, and
3.5 how the time evolution of the following three PDEs is simplified in the Fock–Segal–
Bargmann space F. The PDEs are given by the time-dependent Schrödinger equation
with harmonic potential:

i
∂Φ

∂t
= −∂

2Φ

∂y2
+ (y2 − 1)Φ, (1.9)

the diffusion equation with harmonic potential:

∂Φ

∂t
=
∂2Φ

∂y2
+ (1− y2)Φ, (1.10)

and the linearized log–KdV (Korteweg–de Vries) equation:

∂Φ

∂t
= −∂

3Φ

∂y3
+ (y2 − 1)

∂Φ

∂y
+ 2yΦ. (1.11)

We show that the Bargmann transform maps the three evolution PDEs to their equivalent
forms:

i
∂F

∂t
= 2z

∂F

∂z
, (1.12)

∂F

∂t
+ 2z

∂F

∂z
= 0, (1.13)

and
∂F

∂t
= 2z

∂2F

∂z2
+ (2− z2)

∂F

∂z
. (1.14)
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The time-dependent Schrödinger equation (1.9) after Bargmann transform (1.12) can be
solved in the general form F (t, z) = f(ze−2it), where f ∈ F represents the initial data
F (0, z) = f(z). The diffusion equation (1.10) after Bargmann transform (1.13) can be
solved in the general form F (t, z) = f(ze−2t), where f ∈ F also represents the initial
data F (0, z) = f(z). Finally, solvability of the Cauchy problem for the linearized log–
KdV equation (1.11) after Bargmann transform (1.14) is shown in Lemma 3.15 by using
methods from [34].

The main motivation to study the three physically important PDEs (1.9), (1.10), and
(1.11) was to answer the following general question formulated in [7]:

Let Φ(t, y) = H(t, y)e−
1
2
y2 be a solution to the time evolution problem with the initial

condition ϕ(y) = h(y)e−
1
2
y2 . If h ∈ L∞(R), does H(t, ·) remain in L∞(R) for t > 0?

We show in Lemma 3.9 that the answer to this main question is negative for the
Schrödinger equation (1.9). We construct a counter-example with a specific h ∈ L∞(R)
for which H(t, ·) /∈ L∞(R) for all t > 0. On the other hand, we show in Lemma 3.11 that
the answer is positive for the diffusion equation (1.10). In the context of the linearized
log–KdV equation (1.11), the answer to this main question is still unknown.

Among other interesting applications considered in Chapter 3, we mention the fol-
lowing. In Lemma 3.8, we verify the following representation of solution Φ(t, y) to the
time-independent Schrödinger equation (1.9):

Φ(t, y) =

∫
R
Kt(y, y

′)ϕ(y′)dy′, Kt(y, y
′) :=

1√
π(1− e−4it)

e
− 1

2
y2+ 1

2
(y′)2− (y′−ye−2it)2

1−e−4it ,

(1.15)
where Φ(0, y) = ϕ(y).

A similar representation is also derived for the diffusion equation (1.10). We discuss
applications of this representation to analysis of the nonlinear diffusion equation with
the power nonlinearity written in self-similar variables, which were applied for study of
blowup in [22, 23] (see also recent work [33]).

In Lemma 3.12, we show applications of the explicit solution of the diffusion equation
(1.10) in analysis of another diffusion equation with the logarithmic nonlinearity:

∂u

∂t
=
∂2u

∂x2
+ 2u log(u). (1.16)

Blow-up versus global decay in the solutions of the nonlinear diffusion equation (1.16) was
investigated recently by Alfaro & Carles [2]. We show how some results can be recovered
by using the diffusion equation (1.10) arising after the applications of self-similar variables.

Finally, the linearized log–KdV equation (1.11) is related to the linearization of the

5
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log–KdV equation
∂u

∂t
+

∂

∂x
u log(u) +

∂3u

∂x3
= 0 (1.17)

at the Gaussian solution u0(x) = e
1
2
− 1

2
x2 . The log–KdV equation (1.17) was derived

in [29] and justified in [13] in the context of the granular chains with nearly harmonic
interactions. Analysis of the time evolution of the log–KdV equation (1.17) was reported
in [7] and [34].

Although the time evolution of the linearized log–KdV equation (1.17) is well-posed,
as we show in Lemma 3.15, this useful feature is special for the class of linearized log–KdV
equations. In the final Lemma 3.16, we construct another example of the linear equation
of the same class:

∂Φ

∂t
= −∂

3Φ

∂y3
+ y

∂2Φ

∂y2
+ (y2 − 1)

∂Φ

∂y
+ y(3− y2)Φ, (1.18)

for which the Bargmann transform gives the linear transport equation

∂F

∂t
= −2z2∂F

∂z
. (1.19)

It is clear from the exact solution F (t, z) = f( z
1+2tz

), where F (0, z) = f(z) that the time
evolution of the linear equation (1.18) is not well-posed in a subset of L2(R).

1.3.2 PDEs in two spatial dimensions

In the context of PDEs in two spatial dimensions (x, y) and one temporal variable t, one
can introduce the complex variable z = x + iy from (x, y) and interpret the solution
u(t, x, y) of the PDE in complex variables as u(t, z). In this case, the adjoint Bargmann
transform (1.4) would map a complex-valued functions f ∈ F to an artificial real vari-
able. This artificial variable does not have many applications but the projection operator
written in terms of B and B∗ in (1.5) and (1.6) plays the central role in analysis of the
nonlinear PDEs in two spatial dimensions.

The content of Chapter 4 refer to just one example of such PDEs, given by the Gross–
Pitaevskii equation for rotating Bose–Einstein condensates:

i
∂u

∂t
= −∆u+ 2i(x∂y − y∂x)u+ (x2 + y2)u+ |u|2u− 2u, (1.20)

The rotation takes place at the critical rotational frequency, for which the model is sim-
plified at the lowest Landau level [5, 7]. We review the recent study of [20, 21], where the
Gross–Pitaevskii equation was reduced to the nonlocal evolution equation

i
∂u

∂t
= Π̂(|u|2u), (1.21)

6
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where Π̂ is an analogue of Π in (1.5) in the sense that it acts on general functions in

Lp(C) spaces and return functions of the class u(z) = f(z)e−
1
2
|z|2 , where f ∈ Fp ⊂ Lpρ(C).

Justification of the reduction is well elaborated in the recent works [15, 19].
In Lemmas 4.1 and 4.2, we show that the time evolution of the nonlocal equation

(1.21) is locally well-posed in Lp(C) for any p ≥ 1 and is globally well-posed in L2(C).

1.4 Further directions

Although the main results of this thesis are based on review of literature and reconstruc-
tion of the classical proofs and results, we believe that the methods of the Bargmann
transform and Fock–Segal–Bargmann spaces will be useful for future analysis of many
partial differential equations. The linear and nonlinear Schrödinger equations (including
the Gross–Pitaevskii model) and the linear and nonlinear diffusion equations are natural
examples where these methods have already been widely useful.

The new applications include the log–KdV equation and related to models, which
were much less studied in the literature. It remains to be seen if the methods will help
to solve the open problems for uniqueness of solutions and orbital stability of Gaussian
solitons discussed in [7] and [34]. Although the linear evolution is greatly simplified after
the Bargmann transform and the basis of Hermite functions is replaced by the basis of
monomials for Taylor series, we were still unable to answer positively or negatively on
the main question whether the envelope of the Gaussian function remains bounded in the
time evolution if it is bounded initially. Further work in this direction is needed.

We also hope that the Bargmann transform can find its way in the analysis of new
Gross–Pitaevskii models with the logarithmic nonlinearities, such as the model discussed
in [8]. Similarly to applications to the lowest Landau level model in [21] and in the semi-
classical limit [1], we can anticipate new inspiring applications of the Bargmann transform
to problems of Bose–Einstein condensation.

Finally, Bargmann constraints, Bargmann maps, and Bargmann systems are known
in the theory of integrable systems [6], e.g. when the Schrödinger eigenvalue problem
arises in the Lax system for the integrable Korteweg–de Vries equation. The class of
reflectionless potentials can be expressed as the sum of squared eigenfunctions of the
Schrödinger spectral problem, which inspired many new studies in integrable systems,
e.g. [11]. This is another area of applied mathematics, where the properties of the
Bargmann transform reviewed in this thesis can be useful in future applications.

7



Chapter 2

Bargmann transform

2.1 Introduction

Let z = x− iξ ∈ C be an extension of x ∈ R to z ∈ C. Let α > 0 be fixed arbitrarily and
define L2

ρ(C) by its weight

ρ(z) :=
α

π
e−α|z|

2

(2.1)

and the standard inner product

〈f, g〉L2
ρ(C) :=

α

π

∫∫
R2

f(z)g(z)e−α|z|
2

dxdξ. (2.2)

The induced squared norm in L2
ρ(C) is defined by ‖f‖2

L2
ρ(C) := 〈f, f〉L2

ρ(C).

For a given function ϕ(y) : R 7→ R, the Bargmann transform of ϕ is given by

(Bϕ)(z) :=

(
2α

π

) 1
4

e
α
2
z2
∫ ∞
−∞

e−α(z−y)2ϕ(y)dy, z ∈ C, (2.3)

provided that the integral is finite.
Transformation (2.3) was introduced by Bargmann in [3]. Different normalizations of

the complex variable z and the fixed parameter α were used in the literature. Analysis of
the Bose–Einstein condensation in the semi-classical limit in [1] uses α = 1/

√
h with the

small parameter h > 0. Introduction of the Bargmann transform in harmonic analysis
in [17, Section 1.6] uses α = 1/

√
π. Recent work on the lowest Landau level in [21] uses

α = 1. Monograph on Fock spaces [43] covers many properties of the Bargmann transform
in its general normalization with α > 0.

The L2-based Fock space denoted by F is the space of all entire functions in L2
ρ(C):

F =
{
f ∈ L2

ρ(C) : f(z) is entire in z ∈ C
}

(2.4)

8
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To make notations easier, we use notation f(z) for all complex-valued functions in L2
ρ(C),

independently whether they are holomorphic or not.
Fock spaces can be extended to the Lp-Lebesgue spaces. We use the following norm

in Lpρ(C) space:

‖f‖Lpρ :=

(
pα

2π

∫
C
|f(z)|pe−

1
2
pα|z|2dz

) 1
p

, (2.5)

which coincides with the definition of ‖f‖L2
ρ

for p = 2. Similarly to (2.4), we define the
Lp-based Fock space denoted by Fp by

Fp =
{
f ∈ Lpρ(C) : f(z) is entire in z ∈ C

}
. (2.6)

Thus, F ≡ Fp=2.
Section 2.2 reviews properties of the Bargmann transform in the L2-based Fock space

F ⊂ L2
ρ(C). Section 2.3 studies embeddings of a Fock space in Lpρ(C) into a Fock space

in Lqρ(C), where 0 < p ≤ q ≤ ∞.

2.2 Properties of the Bargmann transform

The following lemma shows that the Bargmann transform B is well defined as a unitary
transformation from L2(R) to F ⊂ L2

ρ(C).

Lemma 2.1 B : L2(R) 7→ F ⊂ L2
ρ(C) is a unitary transformation.

Proof. We shall prove that the range of B is in L2
ρ(C) and, moreover,

||Bϕ||L2
ρ(C) = ||ϕ||L2(R) for every ϕ ∈ L2(R). (2.7)

It follows formally that

‖Bϕ‖2
L2
ρ(C) =

α

π

∫∫
R2

|Bϕ(z)|2e−α|z|2dxdξ

=
2

1
2α

3
2

π
3
2

∫∫∫∫
R4

e−2αξ2−α(x−iξ−y)2−α(x+iξ−y′)2ϕ(y)ϕ(y′)dxdξdydy′

=
2

1
2α

3
2

π
3
2

∫∫∫∫
R4

e−2α(x− 1
2

(y+y′))
2
−α

2
(y−y′)2+2αiξ(y′−y)ϕ(y)ϕ(y′)dxdξdydy′

=
2

1
2α

1
2

π
1
2

∫∫
R
e−2α(x−y)2 |ϕ(y)|2dxdy

= ‖ϕ‖2
L2(R),

9
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where we have used the following property for Dirac δ distribution:∫
R
e2αiξ(y−y′)dξ =

π

α
δ(y − y′). (2.8)

In order to verify the previous formal computation, the interchange of integrations under
the four integrals needs to be justified. This can be done by approximating the δ dis-
tribution with the Gaussian kernel, applying Fubini’s theorem for absolutely integrable
functions, and taking the limit. The result ensures that Bϕ ∈ L2

ρ(C) with the isometry
property (2.7). Furthermore, since (Bϕ)(z) does not depend on z̄ for every z ∈ C, (Bϕ)(z)
is entire in C. Thus, Bϕ ∈ F.

The following lemma introduces the adjoint Bargmann transform B∗.

Lemma 2.2 The adjoint transform of B : L2(R) 7→ F ⊂ L2
ρ(C) is given by

(B∗f)(y) =
2

1
4α

5
4

π
5
4

∫∫
R2

e
α
2
z̄2−α(y−z̄)2−α|z|2f(z)dxdξ, (2.9)

where B∗ : L2
ρ(C) 7→ L2(R).

Proof. First, we prove that B∗f ∈ L2(R) for every f ∈ L2
ρ(C). We compute formally:

‖B∗f‖2
L2(R) =

∫
R
|(B∗f)(y)|2dy

=
2

1
2α

5
2

π
5
2

∫
R

∫∫∫∫
R4

g(z)g(z′)e−α(y−x)2−α(y−x′)2+2αi(ξ−ξ′)y+αi(x′ξ′−xξ)dxdξdx′dξ′dy

=
2

1
2α

5
2

π
5
2

∫
R

∫∫∫∫
R4

g(z)g(z′)e−2α(y−x+x
′

2
−i ξ−ξ

′
2

)2−α
2

(x−x′)2−α
2

(ξ−ξ′)2+αi(x′ξ−xξ′)dxdξdx′dξ′dy

=
α2

π2

∫∫∫∫
R4

g(z)g(z′)e−
α
2

(x−x′)2−α
2

(ξ−ξ′)2+αi(x′ξ−xξ′)dxdξdx′dξ′,

where g(z) = f(z)e−
α
2
|z|2 is defined in L2(C). Let us define

G(z) :=

∫∫
R2

g(z′)e−
α
2

(x−x′)2−α
2

(ξ−ξ′)2+αi(x′ξ−xξ′)dx′dξ′,

so that

|G(z)| ≤
∫∫

R2

|g(z′)|e−
α
2

(x−x′)2−α
2

(ξ−ξ′)2dx′dξ′ =: (h ∗ |g|)(z)

10
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is the double convolution operator with h(z) := e−
α
2
|z|2 . By using the Cauchy–Schwarz

inequality and Young’s convolution inequalities, we obtain

‖B∗f‖2
L2(R) ≤

α2

π2
‖gG‖L1(C)

≤ α2

π2
‖g‖L2(C)‖h ∗ |g|‖L2(C)

≤ α2

π2
‖h‖L1(C)‖g‖2

L2(C)

≤ 2α

π
‖g‖2

L2(C)

= 2‖f‖2
L2
ρ(C),

hence B∗f ∈ L2(R) if f ∈ L2
ρ(C).

It remains to prove that

〈f,Bϕ〉L2
ρ(C) = 〈B∗f, ϕ〉L2(R), for every f ∈ L2

ρ(C), ϕ ∈ L2(R).

This follows by combining all integrations into the triple integral

〈f,Bϕ〉L2
ρ(C) =

2
1
4α

5
4

π
5
4

∫∫∫
R3

f(z)e
α
2
z̄2−α(z̄−y)2−α|z|2ϕ(y)dydxdξ,

which coincides with the triple integral obtained from 〈B∗f, ϕ〉L2(R). All formal compu-
tations are justified because Fubini’s theorem can be used to interchange integrations.

The following corollary is deduced from Lemmas 2.1 and 2.2.

Corollary 2.1 B∗ : L2
ρ(C) 7→ L2(R) is the left inverse of B : L2(R) 7→ F ⊂ L2

ρ(C), so
that B∗Bϕ = ϕ for every ϕ ∈ L2(R).

Proof. By Lemma 2.2, we have for every ϕ ∈ L2(R):

‖Bϕ‖2
L2
ρ(C) = 〈Bϕ,Bϕ〉L2

ρ(C) = 〈B∗Bϕ, ϕ〉L2(R).

By Lemma 2.1, it follows that ‖Bϕ‖2
L2
ρ(C) = ‖ϕ‖2

L2(R), hence

〈B∗Bϕ, ϕ〉L2(R) = 〈ϕ, ϕ〉L2(R), for every ϕ ∈ L2(R).

This implies that B∗Bϕ = ϕ for every ϕ ∈ L2(R).

11
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Remark 2.1 The adjoint Bargmann transform B∗ is not a unitary transformation from
L2
ρ(C) to L2(R) in the sense that there exists f ∈ L2

ρ(C) such that ‖B∗f‖2
L2(R) 6= ‖f‖2

L2
ρ(C).

Indeed, B∗z̄ = 0 for nonzero z̄ ∈ L2
ρ(C):

B∗z̄ =
2

1
4α

5
4

π
5
4

∫∫
R2

(x+ iξ)e−
3
2
αx2− 1

2
αξ2−αy2+2αxy+iαξ(2y−x)dxdξ

=
2

1
4α

5
4

π
5
4

∫∫
R2

(x+ iξ)e−2α(x−y)2−αy2− 1
2
α(ξ+i(x−2y))2dxdξ

=
2

5
4α

3
4

π
3
4

∫
R
(x− y)e−2α(x−y)2−αy2dx

= 0.

Hence, B∗ : L2
ρ(C) 7→ L2(R) is not the right inverse of B : L2(R) 7→ F ⊂ L2

ρ(C).

The following lemma shows that the following operator

Π := BB∗ : L2
ρ(C) 7→ F ⊂ L2

ρ(C) (2.10)

is an identity on F ⊂ L2
ρ(C). This implies that B∗ : F ⊂ L2

ρ(C) 7→ L2(R) is the right
inverse of B : L2(R) 7→ F ⊂ L2

ρ(C).

Lemma 2.3 If f ∈ F ⊂ L2
ρ(C), then Πf = f .

Proof. Let us first deduce the explicit formula for Πf if f ∈ L2
ρ(C):

(Πf)(z) =
2

1
2α

3
2

π
3
2

e
1
2
αz2
∫
R
e−α(z−y)2

∫∫
R2

e
1
2
αz̄′2−α(y−z̄′)2−α|z′|2f(z′)dx′dξ′dy

=
2

1
2α

3
2

π
3
2

e−
1
2
αz2
∫∫

R2

f(z′)e−
3
2
αx′2− 1

2
αξ′2−iαx′ξ′

[ ∫
R
e−2αy2+2αy(x−iξ)+2αy(x′+iξ′)dy

]
dx′dξ′

=
α

π

∫∫
R2

f(z′)eα(z−z′)z̄′dx′dξ′.

Next, we show that if f ∈ F ⊂ L2
ρ(C), then Πf = f . We shall use the distributional

property for every z = x− iξ ∈ C and z0 = x0 − iξ0 ∈ C:

∂

∂z̄

1

z − z0

= πδ(x− x0)δ(ξ − ξ0),

12
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with δ being one-dimensional Dirac distribution and ∂z̄ = 1
2

(∂x − i∂ξ). Let us rewrite the
integral on R2 as the limit of the integral on the compact domain DR\Dε:

α

π

∫∫
R2

f(z′)eα(z−z′)z̄′dx′dξ′

=
1

π
lim

ε→0,R→∞

∫∫
DR\Dε

[
∂

∂z̄′
f(z′)eα(z−z′)z̄′

z − z′
+ πf(z′)eα(z−z′)z̄′δ(x′ − x)δ(ξ′ − ξ)

]
dx′dξ′,

where we have used that f ∈ F is entire and introduced the square DR := [−R,R] ×
[−R,R] and the hole Dε := {z′ ∈ C : |z′ − z| ≤ ε}. Since

lim
ε→0

∫∫
Dε

f(z′)eα(z−z′)z̄′dx′dξ′ = 0,

we have

1

π
lim
ε→0

∫∫
Dε

∂

∂z̄′
f(z′)eα(z−z′)z̄′

z − z′
dx′dξ′

= − lim
ε→0

∫∫
Dε

f(z′)eα(z−z′)z̄′δ(x′ − x)δ(ξ′ − ξ)dx′dξ′

= −f(z).

On the other hand, we claim that for every ε > 0:

lim
R→∞

∫∫
DR\Dε

[
∂

∂z̄′
f(z′)eα(z−z′)z̄′

z − z′
+ πf(z′)eα(z−z′)z̄′δ(x′ − x)δ(ξ′ − ξ)

]
dx′dξ′

= −
∫∫

Dε

∂

∂z̄′
f(z′)eα(z−z′)z̄′

z − z′
dx′dξ′, (2.11)

which yields

(Πf)(z) =
α

π

∫∫
R2

f(z′)eα(z−z′)z̄′dx′dξ′

= − 1

π
lim
ε→0

∫∫
Dε

∂

∂z̄′
f(z′)eα(z−z′)z̄′

z − z′
dx′dξ′

= f(z),

as stated above. In order to prove (2.11), we note that the second term with δ distribution
is identically zero for every ε > 0 because the support of δ-distribution is outside DR\Dε.

13
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For the first term, we integrate by parts,∫∫
DR\Dε

∂

∂z̄′
F (z, z′)dx′dξ′ =

1

2

∫ R

−R
[F (z, R− iξ′)− F (z,−R− iξ′)] dξ′

+
i

2

∫ R

−R
[F (z, x′ + iR)− F (z, x′ − iR)] dx′

−
∫∫

Dε

∂

∂z̄′
F (z, z′)dx′dξ′,

where

F (z, z′) :=
f(z′)eα(z−z′)z̄′

z − z′
.

It remains to prove that

lim
R→∞

∫ R

−R
F (z,±R− iξ′)dξ′ = lim

R→∞

∫ R

−R
F (z, x′ ± iR)dx′ = 0. (2.12)

We prove the second limit, whereas the proof of the first limit is analogous. To do so, we
use the representation

F (z, x′ ± iR) =
f(x′ ± iR)

(x− x′)− i(ξ ±R)
e−iα(ξx′∓Rx)−α(x′2+R2−xx′∓Rξ)

=
f(x′ ± iR)

(x− x′)− i(ξ ±R)
e−iα(ξx′∓Rx)− 1

2
α(x′−x)2− 1

2
α(ξ∓R)2− 1

2
α(x′2+R2)+ 1

2
α(x2+ξ2),

so that for every fixed z ∈ C, there exists an R-independent positive constant Cz such
that for every large R > 0, we have

|F (z, x′ ± iR)| ≤ CR−1|f(x′ ± iR)|e−
1
2
α(x′2+R2).

This implies that∣∣∣∣∫ R

−R
F (z, x′ ± iR)dx′

∣∣∣∣ ≤ CR−1

∫ R

−R
|f(x′ ± iR)|e−

1
2
α(x′2+R2)dx′

≤
√

2CR−1/2

(∫ ∞
−∞
|f(x′ ± iR)|2e−α(x′2+R2)dx′

)1/2

.

However, since f ∈ L2
ρ(C), we have∫ ∞

−∞
I(R)dR <∞, where I(R) :=

∫ ∞
−∞
|f(x′ ± iR)|2e−α(x′2+R2)dx′.

This implies that I(R)→ 0 as R→∞ since I(R) is smooth and positive for every R ∈ R
if f ∈ F ⊂ L2

ρ(C). Since R−1/2 → 0 as R → ∞, the estimate above justifies the second
limit in (2.12).

14
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The following corollary is deduced from Lemma 2.3.

Corollary 2.2 B∗ : F ⊂ L2
ρ(C) 7→ L2(R) is a unitary transformation.

Proof. We show that ‖B∗f‖2
L2(R) = ‖f‖2

L2
ρ(C) for every f ∈ F ⊂ L2

ρ(C). Indeed, by

Lemma 2.2, we have

‖B∗f‖2
L2(R) = 〈B∗f,B∗f〉L2(R) = 〈f,BB∗f〉L2

ρ(C).

By Lemma 2.3, it follows for every f ∈ F ⊂ L2
ρ(C) that

〈f,BB∗f〉L2
ρ(C) = 〈f, f〉L2

ρ(C) = ‖f‖2
L2
ρ(C),

and the assertion is proven.

Remark 2.2 The operator Π : L2
ρ(C) 7→ F ⊂ L2

ρ(C) is an orthogonal projection, since
for every f ∈ L2

ρ(C), we have

〈(I − Π)f,Πf〉L2
ρ(C) = 〈(I −BB∗)f,BB∗f〉L2

ρ(C)

= 〈f,BB∗f〉L2
ρ(C) − 〈BB∗f,BB∗f〉L2

ρ(C)

= 〈f,BB∗f〉L2
ρ(C) − 〈B∗BB∗f,B∗f〉L2(R)

= 〈f,BB∗f〉L2
ρ(C) − 〈B∗f,B∗f〉L2(R)

= 〈f,BB∗f〉L2
ρ(C) − 〈f,BB∗f〉L2

ρ(C)

= 0,

where the results of Lemmas 2.2 and Corollary 2.1 have been used.

Remark 2.3 The bound ‖B∗f‖2
L2(R) ≤ 2‖f‖2

L2
ρ(C) for every f ∈ L2

ρ(C) was obtained in

the proof of Lemma 2.2. The isometry result ‖B∗f‖2
L2(R) = ‖f‖2

L2
ρ(C) in Corollary 2.2

shows that the upper bound is not sharp on F ⊂ L2
ρ(C). The following examples suggest

that the upper bound is not sharp everywhere on L2
ρ(C).

Example 2.1 Consider f(z) = e
1
2
a|z|2 , with a ∈ C satisfying Re(a) ∈ (−∞, α), for which

f ∈ L2
ρ(C). We compute

B∗f =
2

1
4α

5
4

π
5
4

∫∫
R2

e
1
2
a(x2+ξ2)−2α(x−y)2−αy2− 1

2
α(ξ+i(x−2y))2dxdξ

=
2

1
4α

5
4

π
5
4

∫∫
R2

e−
1

2(α−a) [(2α−a)x−2αy]2−αy2− 1
2

(α−a)[ξ+ iα
α−a (x−2y)]2dxdξ

=
2

3
4α

5
4

π
3
4

√
α− a

∫
R
e−

1
2(α−a) [(2α−a)x−2αy]2−αy2dxdξ

=
2

5
4α

5
4

π
1
4 (2α− a)

e−αy
2

.
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If a = aR + iaI with aR, aI ∈ R, then we obtain:

‖B∗f‖2
L2(R) =

4α2

(2α− aR)2 + a2
I

, ‖f‖2
L2
ρ(C) =

α

α− aR
.

Hence, we have

‖B∗f‖2
L2(R)

‖f‖2
L2
ρ(C)

=
4α(α− aR)

(2α− aR)2 + a2
I

= 1− (a2
R + a2

I)

(2α− aR)2 + a2
I

≤ 1.

The quotient is exactly 1 if and only a = 0 when f(z) = 1 is entire.

Example 2.2 Consider f(z) = eaz+bz̄, with a, b ∈ C. Then, we compute

B∗f =
2

1
4α

5
4

π
5
4

∫∫
R2

ea(x−iξ)+b(x+iξ)−2α(x−y)2−αy2− 1
2
α(ξ+i(x−2y))2dxdξ

=
2

1
4α

5
4

π
5
4

∫∫
R2

e−2α(x−y)2− 1
2α

(a−b)2+2ay+2b(x−y)−αy2− 1
2
α(ξ+i(x−2y)+iα−1(a−b))2dxdξ

=
2

3
4α

3
4

π
3
4

∫
R
e−2α(x−y− b

2α
)2− 1

2α
(a2−2ab)+2ay−αy2dx

=
2

1
4α

1
4

π
1
4

e−
1
2α

(a2−2ab)+2ay−αy2 ,

from which we obtain
‖B∗f‖2

L2(R) = e
1
α

(|a|2+2Re(ab))

and
‖f‖2

L2
ρ(C) = e

1
α

(|a|2+2Re(ab)+|b|2),

so that
‖B∗f‖2

L2(R)

‖f‖2
L2
ρ(C)

= e−
1
α
|b|2 ≤ 1.

The quotient is exactly 1 if and only b = 0 when f(z) = eaz is entire.

2.3 Embedding of Fock spaces

Here we discuss embedding of a Fock space in Lpρ(C) into a Fock space in Lqρ(C), where
0 < p ≤ q ≤ ∞ and ρ is the same weight as in (2.1). The presentation is based on [10]
and Section 2.1 in [43].

The following lemma gives pointwise embedding of the Lp-based Fock space Fp.
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Lemma 2.4 Fix 0 < p <∞. For every z ∈ C and every f ∈ Fp, the following is true:

|f(z)| ≤ ‖f‖Lpρe
1
2
α|z|2 . (2.13)

Proof. First, we show that if f ∈ Fp, then |f |p is subharmonic for every 0 < p < ∞.
Indeed, let f = u+ iv, then |f |p = (u2 + v2)

p
2 , and we obtain

∇|f |p = p(u2 + v2)
p−2
2 (u∇u+ v∇v)

= p|f |p−2(u∇u+ v∇v), (2.14)

∆|f |p = p(u2 + v2)
p−2
2 (u∆u+ |∇u|2 + v∆v + |∇v|2)

+p(p− 2)(u2 + v2)
p−4
2 |u∇u+ v∇v|2

= p2|f |p−4|u∇u+ v∇v|2, (2.15)

where we have used ∆u = ∆v = 0 and the Cauchy–Riemann equations implying |∇u|2 =
|∇v|2 and ∇u · ∇v = 0. Hence, we have ∆|f |p ≥ 0 for every 0 < p <∞.

Next, by using the mean value property for subharmonic functions, we have

2πr|f(0)|p ≤
∫ 2π

0

|f(z)||z|=r|prdθ,

which yields

|f(0)|p
∫ ∞

0

2πre−
1
2
αpr2dr ≤

∫ ∞
0

∫ 2π

0

|f(z)||z|=r|pe−
1
2
αpr2rdrdθ,

where θ is the angle in the parametrization z = reiθ at fixed r. After integration, we
obtain

|f(0)|p ≤ αp

2π

∫
C
|f(z)|pe−

1
2
αp|z|2dz,

hence |f(0)| ≤ ‖f‖Lpρ for every f ∈ Fp.

In order to extend this result for every z ∈ C, we set F (ω) := f(z − ω)eαωz̄−
1
2
α|z|2 and

use |F (0)|p ≤ ‖F‖Lpρ , which yields

|f(z)|pe−
1
2
αp|z|2 ≤ pα

2π

∫
C
|f(z − ω)|peαpRe(z̄ω)− 1

2
αp|z|2− 1

2
αp|ω|2dω

=
pα

2π

∫
C
|f(z − ω)|pe−

1
2
αp|z−ω|2dω

=
pα

2π

∫
C
|f(ζ)|pe−

1
2
αp|ζ|2dζ

= ‖f‖p
Lpρ
.
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Extracting the p-root yields the inequality (2.13).

The following lemma gives an embedding of Fp to Fq for 0 < p < q <∞.

Lemma 2.5 Fix 0 < p < q <∞. Then, Fp $ Fq and the inclusion is continuous.

Proof. By using bound (2.13), we obtain for every f ∈ Fp:

‖f‖q
Lqρ

=
qα

2π

∫
C
|f(z)|qe−

1
2
qα|z|2dz

=
qα

2π

∫
C
|f(z)|p|f(z)|q−pe−

1
2
qα|z|2dz

≤ qα

2π
||f ||q−p

Lpρ

∫
C
|f(z)|pe−

1
2
pα|z|2dz

=
q

p
||f ||q

Lpρ

Extracting the q-th root yields the bound

‖f‖Lqρ ≤
(
q

p

) 1
q

‖f‖Lpρ , (2.16)

hence Fp ⊆ Fq is a continuous embedding. It remains to show that Fp 6= Fq.
Let us assume that Fp = Fq and obtain a contradiction. If Fp = Fq, then the identity

map I : Fp 7→ Fq is bounded and bijection. By the open mapping theorem, there exists
C such that

C−1||f ||Lpρ ≤ ||f ||Lqρ ≤ C||f ||Lpρ , for every f ∈ Fp. (2.17)

Consider f(z) = zn, n ∈ N and compute

||zn||p
Lpρ

=
pα

2π

∫ 2π

0

∫ ∞
0

rnpe−
pα
2
r2rdrdθ

= pα

∫ ∞
0

rnp+1e−
pα
2
r2dr

=
1

(pα)
np
2

∫ ∞
0

s
np
2 e−sds

=
1

(pα)
np
2

Γ
(np

2
+ 1
)
,

where Γ is the Gamma function. By Stirling’s formula, we have

Γ
(np

2
+ 1
)
∼
(np

2e

)np
2
√

2πn as n→∞,
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hence

‖zn‖Lpρ ∼
( n

2αe

)n
2

(2πn)
1
2p as n→∞.

Since ‖zn‖Lqρ grows slower for q > p as n → ∞, there is no positive constant C in the
lower bound (2.17) for large n ∈ N. Hence, Fp 6= Fq.

The bound (2.16) is not sharp. The following lemma provides the sharp bound for the
embedding of Fp into Fq.

Lemma 2.6 Fix 0 < p < q <∞. For every f ∈ Fp, it is true that(αq
2π

) 1
q ‖u‖q ≤

(αp
2π

) 1
p ‖u‖p (2.18)

where u(z) = |f(z)|e− 1
2
α|z|2 and ‖u‖p is the standard Lp norm on C.

Proof. First, we note the following elementary identity for every s > 0:∫
C
|∇u

s
2 (z)|2dz =

αs

2

∫
C
us(z)dz (2.19)

Indeed, we have∫
C
|∇u

s
2 |2dz =

∫
C

(
|∇|f |

s
2 |2 +

α2s2

4
|z|2|f |s − αs

2
z · ∇|f |s

)
e−

1
2
αs|z|2dz

=

∫
C

(
|∇|f |

s
2 |2 +

1

4
|f |s∆ +

αs

2
|f |s +

1

2
(∇|f |s) · ∇

)
e−

1
2
αs|z|2dz

=
αs

2

∫
C
|f |se−

1
2
αs|z|2dz +

∫
C

(
|∇|f |

s
2 |2 − 1

4
∆|f |s

)
e−

1
2
αs|z|2dz,

where the Green identity has been used with the zero boundary terms at infinity. It
follows from (2.14) and (2.15) that the second term is identically zero, and we obtain
(2.19).

Next, it follows from Lemma 2.4 that if f ∈ Fp, then u ∈ L∞(C) and |u(z)| ≤ ‖f‖Lpρ .
Since u ∈ Lp(C), we have u ∈ Ls(C) for every p ≤ s ≤ ∞ by interpolation. Let us set the
function

g(s) :=
α

2π
‖u‖ss (2.20)

for the given u ∈ Ls(C). The function g is continuously differentiable in s on (p,∞) with
the derivative given by

s
d

ds
g(s) =

α

2π

∫∫
R2

us lnusdxdy. (2.21)
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We use the logarithmic Sobolev inequality from [9]:∫
C
ρ ln ρdz ≤ 1

πt

∫
C
|∇ρ

1
2 |2dz + ln t− 2, (2.22)

where t > 0 is parameter and ρ is a positive function on C satisfying ρ
1
2 ∈ H1(C) and the

normalization
∫
C ρdz = 1. To satisfy the constraint, we choose ρ := us

||u||ss
and obtain from

(2.22) that ∫
C
us ln

(
us

‖u‖ss

)
dz ≤ 1

πt

∫
C

∣∣∇u s2 ∣∣2 dz + (ln t− 2)‖u‖ss.

By using identity (2.19), the bound can be rewritten in the form:∫
C
us lnusdz ≤

(
ln t+ ln ‖u‖ss +

αs

2πt
− 2
)
‖u‖ss,

Setting t := αs
2π

and using (2.20) and (2.21) yields a closed inequality for g(s):

s
d

ds
g(s) ≤ (ln s+ ln g(s)− 1) g(s). (2.23)

When the inequality (2.23) is replaced by the equality, there exists the exact solution

given by G(s) = 1
s
. Substitution g(s) := h(s)

s
reduces the inequality (2.23) to the form

d

ds
h(s) ≤ 1

s
h(s) lnh(s). (2.24)

If h(p) = 1 and s > p, then the comparison principle for differential equations gives
h(s) ≤ 1 and lnh(s) ≤ 0. Therefore, we obtain for every q > p:

qg(q) = h(q) ≤ 1 = h(p) = pq(p),

which recovers (2.18) in view of (2.20).

Example 2.3 If f(z) = 1 and u(z) = e−
1
2
α|z|2, then

‖u‖qq =

∫
C
e−

1
2
αq|z|2dz = 2π

∫ ∞
0

e−
1
2
αqr2rdr =

2π

αq
.

Hence, the inequality (2.18) becomes the equality for the Gaussian functions. In other
words, the inequality (2.18) is sharp.
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Chapter 3

Applications to partial differential
equations in one dimension

3.1 Introduction

The Bargmann transform B defined by (2.3) is useful for applications to the Schrödinger
operator with the harmonic potential in one dimension. We fix α = 1

2
everywhere in this

chapter and consider the Schrödinger operator L : D(L) ⊂ L2(R) 7→ L2(R) defined by
the differential expression

L := −∂2
y + y2 − 1 (3.1)

and the domain

D(L) :=
{
ϕ ∈ L2(R) : ∂2

yϕ ∈ L2(R), y2ϕ ∈ L2(R)
}
. (3.2)

Review of properties of this operator can be found in [28].
Section 3.2 reviews orthonormal basis in the Fock space F ⊂ L2

ρ(C) related to the
orthonormal basis of Gauss–Hermite functions, which are eigenfunctions of the operator
L in L2(R). Sections 3.3, 3.4, and 3.5 study applications of the Bargmann transform to
the linearized Schrödinger, heat, and Korteweg–de Vries equations, respectively.

3.2 Orthonormal basis in the Fock space

Recall the orthonormal basis {un}n∈N0 in L2(R) given by the Gauss–Hermite functions

un(y) =
1√

2nn!
√
π
Hn(y)e−

1
2
y2 , n ∈ N0, (3.3)
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where Hn is the Hermite polynomial of degree n and N0 := {0, 1, 2, . . . }.
The following lemma computes the image of the orthonormal basis {un}n∈N0 under

the Bargmann transform B : L2(R) 7→ F ⊂ L2
ρ(C) given by (2.3) with α = 1

2
.

Lemma 3.1 Let un be given by (3.3) and α = 1
2
. If fn := Bun, then

fn(z) =
zn√
2nn!

, n ∈ N0. (3.4)

Proof. Substituting (3.3) into (2.3) yields

Bun =
1√

2nπn!

∫
R
Hn(y)e−( 1

2
z−y)

2

dy.

By using the generating formula for Hermite polynomials,

Hn(y) = (−1)ney
2 dn

dyn
e−y

2

,

we evaluate the integrals for every n ∈ N0 by integrating by parts n times thanks to the
fast decay of the integrand at infinity:

Bun =
1√

2nπn!
(−1)ne−

1
4
z2
∫
R
eyz

dn

dyn
e−y

2

dy

=
1√

2nπn!
zn
∫
R
e−( 1

2
z−y)

2

dy

=
1√
2nn!

zn,

where the last equality is justified for a fixed z ∈ C since e−y
2

is extended as the entire
function in a complex plane with fast decay as Re(y)→ ±∞.

By Lemma 2.1, the transformation B : L2(R) 7→ F ⊂ L2
ρ(C) is unitary, which suggests

that the set of monomials {fn}n∈N0 given by (3.4) is an orthonormal basis in F ⊂ L2
ρ(C).

Indeed, this can be checked directly.

Lemma 3.2 Let fn be given by (3.4). Then, we have

〈fn, fm〉L2
ρ(C) = δn,m, (3.5)

where δn,m is the Kronecker’s symbol and the inner product in L2
ρ(C) is normalized by

(2.2).
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Proof. We use the polar coordinates for (x, ξ) in R2:

〈fn, fm〉L2
ρ(C) =

1

2π
√

2n2mn!m!

∫
R2

znz̄me−
1
2
|z|2dxdξ

=
1

2π
√

2n2mn!m!

(∫ 2π

0

ei(n−m)θdθ

)(∫ ∞
0

rn+m+1e−
1
2
r2dr

)
.

This yields zero for n 6= m. For n = m, we further compute

〈fn, fn〉L2
ρ(C) =

1

2nn!

(∫ ∞
0

r2n+1e−
1
2
r2dr

)
=

1

2nn!

(∫ ∞
0

(2t)ne−tdt

)
,

which yields the normalization 〈fn, fn〉L2
ρ(C) = 1.

As an application of the Bargmann transform B, we can establish the orthogonality
and normalization conditions for the Hermite polynomials {Hn}n∈N0 , which is well-known
in the properties of the Hermite polynomials.

Corollary 3.1 The Hermite polynomials {Hn}n∈N0 satisfy the orthogonality and normal-
ization conditions: ∫

R
Hn(y)Hm(y)e−y

2

dy = 2nn!
√
πδn,m. (3.6)

Proof. This follows by the transformation of Corollary 2.1 with the account of (3.4)
and (3.5):

δn,m = 〈fn, fm〉L2
ρ(C) = 〈Bun,Bum〉L2

ρ(C) = 〈B∗Bun, um〉L2(R) = 〈un, um〉L2(R).

Substitution of (3.3) yields (3.6).

Remark 3.1 Every entire function f can be represented by the Taylor series which con-
verges uniformly and absolutely for every z ∈ C:

f(z) =
∞∑
n=0

1

n!
f (n)(0)zn. (3.7)

If f ∈ F ⊂ L2
ρ(C), this Taylor series becomes the decomposition over the orthonormal

basis of monomials {fn}n∈N0 given by (3.4):

f(z) =
∞∑
n=0

〈f, fn〉L2
ρ(C)fn(z). (3.8)
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It follows from (3.7) and (3.8) that

f (n)(0) =
1

2n+1π

∫∫
R2

f(z)z̄ne−
1
2
|z|2dxdξ, n ∈ N0.

In particular, for every f ∈ F, it is true that

f(0) =
1

2π

∫∫
R2

f(z)e−
1
2
|z|2dxdξ,

which is a remarkable identity in complex analysis.

Remark 3.2 If ϕ = B∗f with f given by (3.8), then we obtain a decomposition of a
function in L2(R) over the Gauss–Hermite functions given by (3.3):

ϕ(y) =
∞∑
n=0

〈ϕ, un〉L2(R)un(y). (3.9)

Indeed, using transformations in Corollary 2.1 and the correspondence (3.4), we obtain:

〈ϕ, un〉L2(R) = 〈B∗f, un〉L2(R) = 〈f,Bun〉L2
ρ(C) = 〈f, fn〉L2

ρ(C). (3.10)

The following two lemmas explore the orthonormal basis in F ⊂ L2
ρ(C).

Lemma 3.3 Let f ∈ F. Then for every z ∈ C, it is true that

|f(z)| ≤ e
1
4
|z|2‖f‖L2

ρ(C). (3.11)

Proof. By Parseval’s equality, we have

‖f‖2
L2
ρ(C) =

∑
n∈N0

〈f, fn〉2L2
ρ(C).

This gives by the Schwarz inequality for sequences

|f(z)| ≤
∑
n∈N0

|〈f, fn〉L2
ρ(C)||fn(z)| ≤

(∑
n∈N0

|fn(z)|2
)1/2

‖f‖L2
ρ(C).

The proof is completed with the explicit computation:∑
n∈N0

|fn(z)|2 =
∑
n∈N0

|z|2n

2nn!π
= e

1
2
|z|2 .

Taking square root yields (3.11).
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Remark 3.3 Bound (3.11) coincides with the bound (2.13) for p = 2 and α = 1
2
.

Remark 3.4 The uniform bound (3.11) can be used in the proof of Lemma 2.3 to control

|F (z, x′ ± iR)| ≤ CR−1|f(x′ ± iR)|e−
1
4

(x′2+R2) ≤ CR−1‖f‖L2
ρ(C).

However, this is still insufficient for the proof of (2.12).

Lemma 3.4 Let f ∈ F. The Taylor decomposition over the basis in (3.7) can be written
in the form of representation

f(z) = 〈f, Ez〉L2
ρ(C), (3.12)

where Ez ∈ F is given by Ez(z
′) := e

1
2
z̄z′.

Proof. Formal interchange of integration and summation in the representation (3.8)
yields

Ez(z′) :=
∑
n∈N0

fn(z)fn(z′) =
∑
n∈N0

zn(z̄′)n

2nn!
= e

1
2
zz̄′ ,

from which Ez(z
′) in (3.12) follows by complex conjugation.

Remark 3.5 Comparison of (3.11) and (3.12) suggests that ‖Ez‖L2
ρ(C) = e

1
4
|z|2 , which

can be confirmed by an explicit computation. The representation formula (3.12) is in
agreement with the explicit formula:

(Πf)(z) =
1

2π

∫∫
R2

f(z′)e
1
2

(z−z′)z̄′dx′dξ′ (3.13)

obtained in Lemma 2.3 for the projection operator Π in (2.10).

Next, we obtain the explicit formulas of projections of monomials zmz̄k to the Fock
space F by using the projection operator Π = BB∗ defined by (2.10). By Lemma 2.3, we
have Πzm = zm for every m ∈ N0. The following lemma gives us the general case.

Lemma 3.5 For every m, k ∈ N with k ≤ m, it is true that

Π(zmz̄k) =
(2m)!!

(2m− 2k)!!
zm−k =

2km!

(m− k)!
zm−k, (3.14)

whereas Π(zmz̄k) = 0 if k > m.
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Proof. The following computational formula

∂zΠf =
1

2
Πz̄f(z) (3.15)

follows by the formal differentiation of (3.13). Using (3.15) with f(z) = zm and f(z) =
zmz̄, we obtain Π(zmz̄) = 2mzm−1 and Π(zmz̄2) = (2m)(2m − 2)zm−2 respectively. By
induction, we obtain (3.14) for every k ≤ m.

For k = m, we have Π(|z|2m) = Cm with constant Cm = (2m)!!
(2m−2k)!!

, hence further

iterations of (3.15) yield Π(zmz̄k) = 0 for k > m.

3.3 Evolution of the linear Schrödinger equation

The Gauss–Hermite functions (3.3) are eigenfunctions of the Schrödinger operator L given
by (3.1) and (3.2). To be precise, we know that

Lun = (2n)un, n ∈ N0. (3.16)

Since {un}n∈N0 is an orthonormal basis in L2(R), it diagonalizes operator L in L2(R).
The following lemma gives the transformation of the operator L defined in L2(R) to

the operator BLB∗ defined in the Fock space F ⊂ L2
ρ(C).

Lemma 3.6 If L := BLB∗ : D(L) ⊂ F 7→ F, then

(Lf)(z) = 2z
df

dz
, f ∈ D(L), (3.17)

with
D(L) =

{
f ∈ L2

ρ(C) : z∂zf ∈ L2
ρ(C)

}
. (3.18)

Proof. By using the decomposition over the orthonormal basis for every ϕ ∈ L2(R)
given by (3.9), we can write

Lϕ =
∑
n∈N0

2nanun, an := 〈ϕ, un〉L2(R).

Let f := Bϕ ∈ F, so that ϕ = B∗f . Then,

Lf =
∑
n∈N0

2nanfn, an = 〈f, fn〉L2
ρ(C),

where the last equation is due to (3.10). Since fn are monomials given by (3.4), we confirm
that (Lf)(z) = 2zf ′(z) for every f ∈ F.
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Remark 3.6 The representation (3.17) implies Lfn = 2nfn for the monomials in (3.4),
in agreement with Lun = 2nun for the Hermite–Gauss functions in (3.3).

Corollary 3.2 The inverse transformation to (3.17) is L = B∗LB : D(L) ⊂ L2(R) 7→
L2(R), where

Lϕ = B∗(|z|2 − 2)Bϕ, ϕ ∈ D(L). (3.19)

Proof. This follows from the computational formula (3.15) applied to f ∈ F: 2f ′(z) =
Π(z̄f(z)), from which

2zf ′(z) = 2
d

dz
[zf(z)]− 2f(z) = Π(|z|2f)− 2f = BB∗(|z|2 − 2)BB∗f.

By using the inverse operators, thanks to Lemmas 2.3 and 3.6, we obtain

L = B∗LB = B∗(|z|2 − 2)B,

which gives the assertion.

Remark 3.7 The representation (3.19) implies that the Schrödinger operator L in L2(R)
is equivalent to the nonlocal operator Π(|z|2 − 2) in the Fock space F ⊂ L2

ρ(C).

We shall now express the general solution of the Cauchy problem for the time-dependent
Schrödinger equation: {

iΦ̇ = LΦ
Φ|t=0 = ϕ ∈ L2(R),

(3.20)

where the dot denotes the derivative with respect to time. Solutions to the Cauchy prob-
lem (3.20) can be obtained in a closed integral form by reducing L under the Bargmann
transform in the Fock space F.

After the Bargmann transform B, the Cauchy problem (3.20) is rewritten in the form:{
iḞ = LF
F |t=0 = f ∈ F,

(3.21)

where f = Bϕ and F (t, ·) = BΦ(t, ·). The following lemma gives the unique solution of
the Cauchy problem (3.21) in a closed analytical form.

Lemma 3.7 For every f ∈ F, there exists the unique solution to the Cauchy problem
(3.21) which can be written in the form:

F (t, z) = f
(
ze−2it

)
. (3.22)
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Proof. The partial differential equation

i
∂F

∂t
= 2z

∂F

∂z
(3.23)

is nothing but the transport equation after a transformation of variables z → log z and
t→ 2it. Hence, its general solution is given by

F (t, z) := G(log z − 2it),

where the function G is found from the initial condition G(log z) = f(z). Expressing G
yields (3.22). The solution to the Cauchy problem (3.21) is conjugate to the solution to
the Cauchy problem (3.20) since B is a unitary transformation. Therefore, the solution
to (3.21) is unique because the solution to (3.20) is unique.

Remark 3.8 Decomposition of f ∈ F via the monomials {fn}n∈N0 yields the solution to
the Cauchy problem (3.21) for F (t, z) written in the series form

F (t, z) =
∑
n∈N0

〈f, fn〉L2
ρ(C)fn(z)e−2int. (3.24)

By using B∗ and B, the corresponding solution to the Cauchy problem (3.20) can be
written in the series form:

Φ(t, y) =
∑
n∈N0

〈ϕ, un〉L2
ρ(C)un(y)e−2int, (3.25)

which is the decomposition of Φ ∈ L2(R) over the Hermite–Gauss functions {un}n∈N0 .

Lemma 3.8 The unique solution to the Cauchy problem (3.20) can be expressed in the
integral form:

Φ(t, y) =

∫
R
Kt(y, y

′)ϕ(y′)dy′, (3.26)

where

Kt(y, y
′) :=

1√
π(1− e−4it)

e
− 1

2
y2+ 1

2
(y′)2− (y′−ye−2it)2

1−e−4it . (3.27)

Proof. By using the series form (3.24), the unique solution to the Cauchy problem
(3.21) can be rewritten in the integral form: in the Green’s function form:

F (t, z) =
1

2π

∫∫
R2

Gt(z, z
′)f(z′)e−

1
2
|z′|2dx′dξ′, (3.28)
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where
Gt(z, z

′) :=
∑
n∈N0

fn(z)fn(z′)e−2nit = e
1
2
zz̄′e−2it

= Eze−2it(z′). (3.29)

As follows from Example 2.2 with a = 1
2
z̄′e−2it, b = 0, and α = 1

2
, we have

B∗
(
e

1
2
zz̄′e−2it

)
=

1

π
1
4

e−
1
4

(z̄′)2e−4it+z̄′e−2it− 1
2
y2 .

By using B∗ and B, the corresponding solution to the Cauchy problem (3.20) can be
rewritten in the integral form (3.26) with

Kt(y, y
′) :=

1

2π
3
2

∫∫
R2

e−
1
2

(y−z̄e−2it)2− 1
2

(y′−z)2+ 1
4
z̄2e−4it+ 1

4
z2− 1

2
|z|2dxdξ, (3.30)

where we replaced z′ by z. The kernel Kt(y, y
′) is the π-periodic function in t. In the

limits t→ 0 and t→ π/2, we obtain

lim
t→0

Kt(y, y
′) =

1

2π
3
2

∫∫
R2

e−
1
2

(y2+(y′)2)+(y+y′)x+i(y−y′)ξ−x2dxdξ = δ(y − y′)

and

lim
t→π

2

Kt(y, y
′) =

1

2π
3
2

∫∫
R2

e−
1
2

(y2+(y′)2)+(y′−y)x−i(y+y′)ξ−x2dxdξ = δ(y + y′),

where the property (2.8) is used for Dirac δ distribution. By factorizing the argument of
the exponential function in Kt(y, y

′) as

1

2
(y − z̄e−2it)2 +

1

2
(y′ − z)2 − 1

4
z̄2e−4it − 1

4
z2 +

1

2
|z|2

=
1

4
(1− e−4it)

[
ξ − ix+ 2i

y′ − ye−2it

1− e−4it

]2

+ (x− y′)2 +
1

2
(y2 − (y′)2) +

(y′ − ye−2it)2

1− e−4it

and performing integrations first in ξ and then in x, we obtain a closed-form expression
(3.27).

Next, we investigate the main question of this thesis on the evolution of the envelope to
the Gaussian function. If Φ(t, y) = H(t, y)e−

1
2
y2 and ϕ(y) = h(y)e−

1
2
y2 , then the envelope

function H(t, y) is a solution to the Cauchy problem:{
iḢ = −∂2

yH + 2y∂yH,
H|t=0 = h.

(3.31)

We ask the following: If h ∈ L∞(R), does H(t, ·) remain in L∞(R) for t > 0? The
following lemma gives a negative answer to this question.
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Lemma 3.9 There exists h ∈ L∞(R) and t0 > 0 such that the unique solution to the
Cauchy problem (3.31) satisfies H(t, ·) /∈ L∞(R) for every t ∈ (0, t0).

Proof. Instead of solving (3.31) directly, we use the transformation

H(t, y) = e
1
2
y2B∗F (t, ·),

where F (t, z) is the unique solution to the Cauchy problem (3.21) given by Lemma 3.7.
It suffices to construct one example of such h for which the assertion is true.

Let us consider f(z) = sin(z), then the unique solution to the Cauchy problem (3.21)
is given by (3.22) rewritten in the explicit form F (t, z) = sin(ze−2it). By using the result
of Example 2.2 with a = ±ie−2it, b = 0, and α = 1

2
as well as the linear superposition

principle, we obtain

H(t, y) =
1

π
1
4

ecos(4t)−i sin(4t) [sin(2y cos(2t)) cosh(2y sin(2t))− i cos(2y cos(2t)) sinh(2y sin(2t))] .

We confirm that h ∈ L∞(R) by computing

h(y) = H(0, y) =
1

π
1
4

e1 sin(2y).

However, we have

|H(t, y)|2 =
1

2π
1
2

e2 cos(4t) [cosh(4y sin(2t))− cos(4y cos(2t))] ,

hence H(t, y) is unbounded as |y| → ∞ for every t ∈ (0, π
2
).

Lemma 3.10 The unique solution to the Cauchy problem (3.31) can be obtained in the
integral form:

H(t, y) =
1√

π(1− e−4it)

∫
R
e
− (y′−ye−2it)2

1−e−4it h(y′)dy′. (3.32)

Proof. The integral form follows from (3.26) and (3.27). Alternatively, the same solution
can be derived by reducing the evolution equation

i
∂H

∂t
= −∂

2H

∂y2
+ 2y

∂H

∂y

by using the similarity reduction. Indeed, let us define H(t, y) = H̃(τ = α(t), η = β(t)y)
for some α(t) and β(t). If we pick them from solutions to differential equations

α′(t) = β2(t), iβ′(t) = 2β(t), (3.33)
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then H̃(τ, η) satisfies the linear Schrödinger equation iH̃τ = −H̃ηη with the exact solution

H̃(τ, η) =
1√

4πiτ

∫
R
H̃(0, η′)e−

(η′−η)2
4iτ dη′. (3.34)

Solving differential equations (3.33) by

α(t) = α0 −
1

4i
β2

0e
−4it, β(t) = β0e

−2it (3.35)

and picking integration constants α0 = 1
4i
β2

0 and β0 = 1 from the initial conditions
α(0) = 0 and β(0) = 1, we verify that the fundamental solution (3.34) recovers (3.32)
with H(t, y) = H̃(τ = α(t), η = β(t)y).

Example 3.1 Let h(y) = e−
1
2
a2y2 with a > 0. The convolution integral in (3.32) can be

evaluated after the solution is rewritten in the explicit form:

H(t, y) =
eit√

2πi sin(2t)

∫
R
e−

1
2
a2(y′)2− 1

2i sin(2t)
(eity′−e−ity)2dy′

=
1√

1 + ia2 sin(2t)e−2it
e
− 1

2
a2y2e−4it

1+ia2 sin(2t)e−2it . (3.36)

It is clear that H(t, y) becomes unbounded in a finite time. Indeed,

H
(π

4
, y
)

=
1√

1 + a2
e

1
2
a2y2

1+a2

is unbounded and so is H(t, y) for t ∈ (t0,
π
2
− t0), where t0 ∈ (0, π

8
) is given by the root of

Re
e−4it

1 + ia2 sin(2t)e−2it
= 0,

or equivalently, by the root of cos(4t0) = a2/(2 + a2).

Remark 3.9 The exact solution in Example 3.1 is related to the reduction of the time-
dependent Schrödinger equation iΦ̇ = LΦ for the Gaussian solutions

Φ(t, y) = A(t)e−
1
2
B(t)y2 . (3.37)

to a system of differential equations for A(t) and B(t). Indeed, direct substitution yields

iȦ = A(B − 1), iḂ = 2(B2 − 1),
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which have exact solutions

A(t) =
1√

1 + ia2 sin(2t)e−2it
, B(t) = 1 +

a2e−4it

1 + ia2 sin(2t)e−2it
. (3.38)

Substituting (3.38) to (3.37) and extracting H(t, y) = Φ(t, y)e
1
2
y2 yields the exact formula

(3.36). It is easy to verify that ReB(t) > 0 for all t ∈ R, which implies that Φ(t, ·) ∈ L2(R)
for all t ∈ R.

Example 3.2 Let h(y) = sin(πy)
πy

. By using the Fourier transform

ĥ(ξ) =

∫
R
h(y)eiyξdy = 1[−π,π]

we can rewrite the convolution integral in (3.32) in the following equivalent form:

H(t, y) =
1

2π
√
π(1− e−4it)

∫
R

∫ π

−π
e
− (y′−ye−2it)2

1−e−4it e−iξy
′
dξdy′

=
1

2π

∫ π

−π
e−iξye

−2it− 1
4
ξ2(1−e−4it)dξ.

For every t ∈ (0, π
2
), the solution can be rewritten in the form

H(t, y) =
1

2πy sin(2t)

∫ πy sin(2t)

−πy sin(2t)

e
−iz cot(2t)−z− iz2

2y2
cot(2t)− z2

2y2 dz,

from which we prove hereafter that |H(t, y)| → ∞ as |y| → ∞. For definiteness, we work
for t ∈ (0, π

4
), a similar result for t ∈ (π

4
, π

2
) can be obtained by symmetry, whereas the

estimates for t = π
4

can be obtained directly from

H
(π

4
, y
)

=
1

2πy

∫ πy

−πy
e
−z− z2

2y2 dz.

By using the transformation

u = z + z2/(2y2), z = −y2 + y2
√

1 + 2u/y2,

we write

ImH(t, y) = − 1

2πy sin(2t)

∫ f(t,y)

−f(t,y)

e−u sin[u cot(2t)]√
1 + 2u/y2

du,

where

f(t, y) := πy sin(2t)

[
1− π sin(2t)

2y

]
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and t ∈ (0, π
4
) is fixed. Define a sequence {yn}n∈N such that

yn

[
1− π sin(2t)

2yn

]
=

2n

cos(2t)
, n ∈ N.

We have yn → +∞ as n → ∞. Fix N ∈ N such that for every n ≥ N , we have the
following estimate:

eπ tan(2t) >

(
1− 2π(2n+ 1)

cot(2t)y2
n

.

)−1/2

.

Let us use the following anti-derivative:∫ β

α

e−u sin(au)du =
1

1 + a2

[
e−α sin(aα)− e−β sin(aβ) + ae−α cos(aα)− ae−β cos(aβ)

]
.

Since sin[u cot(2t)] ≥ 0 for u ∈ [−π(2n+2) tan(2t),−π(2n+1) tan(2t)] and sin[u cot(2t)] ≤
0 for u ∈ [−π(2n + 1) tan(2t),−π(2n) tan(2t)] for t ∈ (0, π

4
), we obtain the following

estimate: ∫ −f(t,yn)

−f(t,yn+1)

e−u sin[u cot(2t)]√
1 + 2u/y2

n

du

≥
∫ −π(2n+1) tan(2t)

−π(2n+2) tan(2t)

e−u sin[u cot(2t)]du

+
1√

1− 2π(2n+1)
cot(2t)y2n

∫ −π(2n) tan(2t)

−π(2n+1) tan(2t)

e−u sin[u cot(2t)]du

≥ sin(2t) cos(2t)(eπ tan(2t) + 1)e2πn tan(2t)

[
eπ tan(2t) −

(
1− 2π(2n+ 1)

cot(2t)y2
n

.

)−1/2
]
.

The lower bound is posivite and diverges exponentially fast as n→∞. Since∣∣∣∣∣
∫ ∞
−f(t,yN )

e−u sin[u cot(2t)]√
1 + 2u/y2

du

∣∣∣∣∣ <∞,
for the fixed N ∈ N and the previous lower bound is positive and diverges exponentially
fast, we confirm that |ImH(t, yn)| → ∞ as n→∞.

3.4 Evolution of the linear diffusion equation

Here we consider the linear diffusion equation

∂Φ

∂t
=
∂2Φ

∂y2
+ (1− y2)Φ. (3.39)
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Bargmann transform with F (t, ·) = BΦ(t, ·) maps it to the following transport equation

∂F

∂t
+ 2z

∂F

∂z
= 0. (3.40)

With a simple modification of computations of Section 3.3 (or by formal change of t 7→
−it), the Cauchy problem associated with the transport equation (3.40) is solved in the
form

F (t, z) = f(ze−2t). (3.41)

Similarly, the Cauchy problem associated with the diffusion equation (3.39) is solved in
the Green’s function form (3.26) with the kernel Kt(y, y

′) in the form

Kt(y, y
′) :=

1√
π(1− e−4t)

e
− 1

2
y2+ 1

2
(y′)2− (y′−ye−2t)2

1−e−4t . (3.42)

If Φ(t, y) = H(t, y)e−
1
2
y2 , then the envelope of the Gaussian function H(t, y) satisfies

the linear diffusion equation in self-similar variables:

∂H

∂t
=
∂2H

∂y2
− 2y

∂H

∂y
. (3.43)

It follows from (3.42) that the unique solution of the Cauchy problem associated with the
diffusion equation (3.43) is given in the integral form:

H(t, y) =
1√

π(1− e−4t)

∫
R
e
− (y′−ye−2t)2

1−e−4t h(y′)dy′. (3.44)

This solution can also be found by using the similarity reduction

H(t, y) = H̃(τ = α(t), η = β(t)y),

where α′(t) = β2(t), β′(t) = −2β(t), and H̃τ = H̃ηη.
Referring to the main question on the evolution of the envelope of the Gaussian func-

tion, the following lemma gives a positive answer to the question.

Lemma 3.11 For every h ∈ L∞(R), the unique solution to the diffusion equation (3.43)
with H(0, y) = h(y) satisfies H(t, ·) ∈ L∞(R) for every t ∈ R+.

Proof. By the change of variables, we can rewrite the exact solution (3.44) as the
convolution integral

H(t, y) =

∫
R
Gt(y − y′)h(y′e−2t)dy′, Gt(y) :=

1√
π(e4t − 1)

e
− y2

e4t−1 ,
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hence we obtain by standard estimates that

‖H(t, ·)‖L∞ ≤ ‖Gt‖L1‖h(·e−2t)‖L∞ ≤ ‖h‖L∞ . (3.45)

Hence, if h ∈ L∞(R), then H(t, ·) ∈ L∞(R) for every t > 0.

Remark 3.10 The bound (3.45) is equivalent to the weak maximum principle for the
diffusion equation (3.43).

Remark 3.11 More general convolution estimates give for 1 ≤ q ≤ ∞:

‖Gt‖Lq =
1

(qπq−1)
1
2q

e−2(1− 1
q

)t

(1− e−4t)
q−1
2q

and for 1 ≤ p, q ≤ ∞:

‖H(t, ·)‖Lp =
1

(qπq−1)
1
2q

e
2
p
t

(1− e−4t)
q−1
2q

‖h‖Lr ,

where r = 1
1+p−1−q−1 . No singularity appears in the estimates at t = 0 if r = p (and q = 1)

but the upper bound grows exponentially as t → ∞ if 1 ≤ p < ∞. On the other hand,
there is no exponential growth at infinity if p =∞ (and r = q

q−1
) but the upper bound is

singular at t = 0 if 1 ≤ r <∞ (and 1 < q ≤ ∞).

Example 3.3 Let h(y) = e−a
2y2 with a > 0. The convolution integral in (3.44) can be

evaluated explicitly:

H(t, y) =
1√

π(1− e−4t)

∫
R
e
−a2(y′)2− (y′−ye−2t)2

1−e−4t dy′.

=
1√

1 + a2(1− e−4t)
e
− a2y2e−4t

1+a2(1−e−4t) . (3.46)

It is clear that H(t, y) is bounded for every t > 0 and although it is decaying to zero at
infinity for t > 0, it becomes delocalized as t→ +∞:

lim
t→+∞

H(t, y) =
1√

1 + a2
, y ∈ R.

Remark 3.12 The exact solution in the previous example is related to the reduction of
the linear diffusion equation Φ̇ + LΦ = 0 for the Gaussian solutions

Φ(t, y) = A(t)e−
1
2
B(t)y2 . (3.47)
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to the following system of differential equations for A(t) and B(t):

Ȧ = A(1−B), Ḃ = 2(1−B2).

This system admits the exact solutions

A(t) =
1√

1 + a2(1− e−4t)
, B(t) = 1 +

2a2e−4t

1 + a2(1− e−4t)
, (3.48)

which can be verified by a substitution. Substituting (3.48) to (3.47) and extracting

H(t, y) = Φ(t, y)e
1
2
y2 yields the exact formula (3.46). Since B(t) ≥ 1, we have Φ(t, ·) ∈

L2(R) for all t ∈ R including the limit t→ +∞.

We give two examples on how the linear diffusion equation (3.43) arises in the context
of the nonlinear diffusion equations.

The first example is the nonlinear diffusion equation

∂u

∂t
=
∂2u

∂x2
+ |u|p−1u, (3.49)

where p > 1. The space-independent solutions of the differential equation

ẋ = |x|p−1x

blows up in a finite time if x(0) > 0. The self-similar blow-up solutions to the nonlinear
diffusion equation (3.49) were studied in [22, 23] (see also recent work [33]). By using the
substitution

u(t, x) = (T − t)−
1
p−1w(s, y), y =

x

2
√
T − t

, s = −1

4
log(T − t), (3.50)

for a fixed blow-up time T > 0, we obtain the nonlinear diffusion equation in self-similar
variables

∂w

∂s
=
∂2w

∂y2
− 2y

∂w

∂y
+ 4

(
|w|p−1 − 1

p− 1

)
w. (3.51)

Linearizing at the constant solution w0 := (p − 1)−
1
p−1 and using the exponential trans-

formation
w(s, y) = w0 +H(s, y)e4s

yields the linear diffusion equation (3.43) with t = s. Hence, the result of Lemma 3.11 is
relevant for analysis of the linearization of the nonlinear diffusion equation (3.51).
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The second example is the logarithmic diffusion (log-diffusion) equation

∂u

∂t
=
∂2u

∂x2
+ 2u log(u). (3.52)

This nonlinear equation was investigated in many details by Alfaro & Carles [2].
Compared to the nonlinear diffusion equation (3.49), unique positive solutions with

bounded continuous derivatives up to the second order exist globally and no blow-up may
occur in a finite time [2]. This is already clear from the space-independent solutions of
the differential equation

ẋ = 2x log(x)

with the exact solution
x(t) = (x0)e

2t

, t > 0

for x0 > 0. If x0 ∈ (0, 1), the solution decays to zero super-exponentially fast: x(t) → 0
as t → +∞. If x0 ∈ (1,∞), the solution blows up to infinity super-exponentially fast:
x(t)→ +∞ as t→ +∞. Both decay and growth occur in the infinite time intervals.

The authors of [2] has shown that the same conclusion remains true if the initial
condition u0(x) to the log-diffusion equation (3.52) satisfies either u0(x) ≤ 1− ε (decay)
or u0(x) ≥ 1+ε (blow-up) for ε > 0 and all x ∈ R. They also obtained a similar conclusion
for the Gaussian solutions

u(t, x) = B(t)e−
1
2
A(t)x2 , (3.53)

where A(t) and B(t) satisfy the following system of differential equations:

Ȧ = 2A(1− A) Ḃ = 2B log(B)− AB.

The system admits the exact solution

A(t) =
a0e

2t

1 + a0(e2t − 1)
(3.54)

and

logB(t) = e2t

[
log b0 +

a0

2(1− a0)
log(a0 + (1− a0)e−2t)

]
, (3.55)

where A(0) = a0 and B(0) = b0. If log b0 + a0 log(a0)
2(1−a0)

< 0, the solution decays super-

exponentially fast as t → ∞, whereas if log b0 + a0 log(a0)
2(1−a0)

> 0, the solution grows super-
exponentially fast as t→∞.

By using the substitution

u(t, x) = γ(t)w(y, s), y =
x

2
√
T − t

, s = −1

4
log(T − t), (3.56)
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with γ(t) satisfying the differential equation γ̇ = 2γ log γ, for a fixed ”blow-up” time
T > 0, we obtain the log–diffusion equation in self-similar variables

∂w

∂s
=
∂2w

∂y2
− 2y

∂w

∂y
+ 2e−4sw log(w), (3.57)

which is non-autonomous compared to the nonlinear diffusion equation in self-similar
variables given by (3.51).

The following lemma describes bounded solutions of the log-diffusion equation (3.57).

Lemma 3.12 For every ε > 0 (small), there exists δ > 0 such that if w0 ∈ L∞(R)
satisfies ‖w0−1‖L∞ ≤ δ, then the unique solution of the log–difusion equation (3.57) with
the initial condition w(0, y) = w0(y) satisfies W (s, ·) ∈ L∞(R) for s ∈ R+ and

‖W (s, ·)− 1‖L∞ ≤ ε, s > 0. (3.58)

Proof. Let N(w, s) := 2e−4sw log(w). The variation of parameter formula that extends
the solution given by (3.44) is given by

w(s, y) =
1√

π(1− e−4s)

∫
R
e
− (y′−ye−2s)2

1−e−4s w0(y′)dy′

+

∫ s

0

ds′√
π(e−4s′ − e−4s)

∫
R
e
− (y′−ye−2s)2

e−4s′−e−4sN(w(s′, y′), s′)dy′,

where w0(y) := w(0, y) is the initial condition. The previous formula can be rewritten as
a weighted convolution in the form:

w(s, y) =
1√

π(e4s − 1)

∫
R
e
− (y′−y)2

e4s−1 w0(y′e−2s)dy′

+

∫ s

0

ds′√
π(e4(s−s′) − 1)

∫
R
e
− (y′−y)2

e4(s−s′)−1N(w(s′, y′e2s), s′)dy′.

If w = 1 + W with ‖W (s, ·)‖L∞ ≤ ε� 1 for all s > 0, then the nonlinearity is expanded
in powers as

N(1 +W, s) = 2e−4s

[
W +

1

2
W 2 +O(W 3)

]
,

with the obvious bound as long as ‖W (s, ·)‖L∞ ≤ ε� 1:

‖N(1 +W (s, ·), s)‖L∞ ≤ 4e−4s‖W (s, ·)‖L∞ . (3.59)
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As a result, the bound on ‖W (s, )̇‖L∞ can be controlled globally over s ≥ 0. Indeed, it
follows from the variation of parameter formula with the same convolution estimate as in
the proof of Lemma 3.11 that

‖W (s, ·)‖L∞ ≤ ‖W0‖L∞ + 4

∫ s

0

e−4s′‖W (s′, ·)‖L∞ds′, (3.60)

where the bound (3.59) has been used. By Gronwall’s inequality, this yields

‖W (s, ·)‖L∞ ≤ ‖W0‖L∞e4
∫ s
0 e
−4s′ds′ ≤ ‖W0‖L∞e1 ≤ ε, (3.61)

provided that ‖W0‖L∞ ≤ εe−1 =: δ. Hence, the bound (3.61) yields (3.58).

Remark 3.13 The global solution obtained in Lemma 3.12 gives

1− ε ≤ ‖w(s, ·)‖L∞ ≤ 1 + ε,

for every s > 0. However, this only corresponds to the finite interval t ∈ [0, T ] due to
the self-similar reduction (3.56). Therefore, the result of Lemma 3.12 is weaker than the
result of Corollary 3.10 in [2].

Remark 3.14 Consider a modified transformation in self-similar variables given by

u(t, x) = γ(t)w(y, s), y =
x

2
√
T + t

, s =
1

4
log(T + t), (3.62)

with γ(t) satisfying the same differential equation γ̇ = 2γ log γ. Here T > 0 is the
parameter and the solution (3.62) is formally defined for all t > 0. The function w(y, s)
satisfies the log–diffusion equation in self-similar variables

∂w

∂s
=
∂2w

∂y2
+ 2y

∂w

∂y
+ 2e4sw log(w), (3.63)

which has exponentially growing term compared to (3.57). The solution can be written
as a weighted convolution in the form:

w(s, y) =
1√

π(1− e−4s)

∫
R
e
− (y′−y)2

1−e−4sw0(y′e2s)dy′

+

∫ s

0

ds′√
π(1− e−4(s−s′))

∫
R
e
− (y′−y)2

1−e−4(s−s′)N(w(s′, y′e2s), s′)dy′,

where N(w, s) := 2e4sw log(w) is the nonlinear term and w0(y) := w(0, y) is the initial
condition. Expansion near w = 1 with the estimate like in (3.59) leads to the linear
integral inequality with exponentially growing kernel compared to the inequality (3.60)
with the exponentially decaying kernel. As a result, the global bound like (3.61) cannot
be obtained in this case and ‖W (s, ·)‖L∞ is expected to grow in time. With the decaying
γ(t) = γe

2t

0 double-exponentially if γ0 ∈ (0, 1) and growing ‖W (s, ·)‖L∞ , the decomposition
w(s, y) = 1 +W (s, y) is no longer useful.
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3.5 Evolution of the linear KdV equation

Here we consider the Cauchy problem for the linear Korteweg–de Vries (KdV) equation:{
Φ̇ = ∂yLΦ,
Φ|t=0 = ϕ ∈ L2(R).

(3.64)

In order to reformulate the Cauchy problem (3.64) in the Fock space F, we need to see
how the Bargmann transform B is applied to the derivative ∂y and to the multiplication
by y. The following lemma gives the transformation formula.

Lemma 3.13 Fix f ∈ F. Then,

(B∂yB
∗f)(z) = f ′(z)− 1

2
zf(z) (3.65)

and

(ByB∗f)(z) = f ′(z) +
1

2
zf(z). (3.66)

Proof. It follows from integration by parts for every ϕ ∈ H1(R) that

(B∂yϕ)(z) =
1

π
1
4

e
1
4
z2
∫ ∞
−∞

e−
1
2

(z−y)2ϕ′(y)dy

=
1

π
1
4

e
1
4
z2
∫ ∞
−∞

(y − z)e−
1
2

(z−y)2ϕ(y)dy

=
1

π
1
4

e
1
4
z2 d

dz

∫ ∞
−∞

e−
1
2

(z−y)2ϕ(y)dy

=
d

dz
(Bϕ)(z)− 1

2
z(Bϕ)(z),

which yields the formula (3.65) for f = Bϕ with ϕ = B∗f . Similarly, for every ϕ ∈ L2(R)
with yϕ ∈ L2(R), we obtain

(Byϕ)(z) =
1

π
1
4

e
1
4
z2
∫ ∞
−∞

e−
1
2

(z−y)2yϕ(y)dy

=
1

π
1
4

e
1
4
z2 d

dz

∫ ∞
−∞

e−
1
2

(z−y)2ϕ(y)dy + z(Bϕ)(z)

=
d

dz
(Bϕ)(z) +

1

2
z(Bϕ)(z),

which yields the formula (3.66) for f = Bϕ with ϕ = B∗f .
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Remark 3.15 Transformation (3.17) follows from (3.65) and (3.66) because

L = −∂2
y + y2 − 1 = (−∂y + y)(∂y + y)

and

(B(∂y + y)B∗f)(z) = 2
df

dz
, (B(−∂y + y)B∗f)(z) = zf(z).

By using (3.17) and (3.65), we rewrite the Cauchy problem (3.64) in the equivalent
form: {

Ḟ = 2∂zz∂zF − z2∂zF,
F |t=0 = f ∈ F,

(3.67)

where f = Bϕ and F (t, ·) = BΦ(t, ·). Compared to (3.23), the evolution equation is now
generated by the second-order differential operator. Using the following decomposition
over the monomials in (3.4)

F (t, z) =
∞∑
n=0

bn(t)fn(z) =
∞∑
n=0

an(t)zn, (3.68)

one can derive the system of differential equations:

dan
dt

= 2(n+ 1)2an+1 − (n− 1)an−1, (3.69)

or equivalently,

dbn
dt

=
√

2
[
(n+ 1)

√
n+ 1bn+1 − (n− 1)

√
nbn−1

]
. (3.70)

System (3.69) is closed for a := {an}n∈N, whereas a0(t) is obtained from the decoupled
equation a′0(t) = 2a1(t). By using the substitution

bn(t) =
incn(t)√

n
, n ∈ N (3.71)

one can rewrite system (3.70) in the form

dcn
dt

=
√

2i(Jc)n, (Jc)n := (n+ 1)
√
ncn+1 + n

√
n− 1cn−1, (3.72)

where c := {cn}n∈N and J is the Jacobi operator.
The Jacobi operator is said to have a limit circle at infinity if a solution c of Jc = zc

with c1 = 1 belongs to `2(N) for some z ∈ C [42]. This property is justified J in (3.72).
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Lemma 3.14 Consider Jc = 0 with c1 = 1. Then, c ∈ `2(N).

Proof. The solution c of Jc = 0 satisfies the recurrency relation

cn+1 =

√
n(n− 1)

n+ 1
cn−1, n ∈ N, (3.73)

from cn = 0 for even n and cn 6= 0 for odd n with the explicit solution given by

c2m+1 = (−1)m
m∏
k=1

√
2k(2k − 1)2k + 1, m ∈ N. (3.74)

In order to analyze the decay |c2m+1| → 0 as m→∞, we rewrite

|c2m+1| = exp

[
1

2

m∑
k=1

log(1− 1

2k
)−

m∑
k=1

log(1 +
1

2k
)

]

= exp

[
−3

4

m∑
k=1

1

k
+O(

1

m
)

]
, as m→∞.

Hence, there is C > 0 such that

|c2m+1| ≤
C

m3/4
, m ∈ N (3.75)

so that c ∈ `2(N).

As a consequence of Lemma 3.14, there exists a self-adjoint extension of the Jacobi
operator J subject to a boundary condition at infinity, so that the spectrum of J in `2(N)
consists of a countable set of simple real isolated eigenvalues [42]. The existence of the
self-adjoint extension of J guarantees local well-posedness of the Cauchy problem (3.67)
in a subspace of F.

Lemma 3.15 Assume that f ∈ F is given by the decomposition (3.68) with

∞∑
n=0

n|bn(0)|2 <∞.

There exists the unique solution of the Cauchy problem (3.67) with F (t, ·) given by the
decomposition (3.68) for every t > 0 with

∞∑
n=0

n|bn(t)|2 =
∞∑
n=0

n|bn(0)|2 <∞.
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Proof. Since J has a self-adjoint extension in `2(N) subject to a boundary condition at

infinity [42], the evolution operator e
√

2iJ : `2(N) → `2(N) is unitary. Hence, there exists

the unique solution to the evolution problem (3.72) in the form c(t) = e
√

2itJc(0) satisfying
for every t > 0:

∞∑
n=0

n|bn(t)|2 =
∑
n∈N

|cn(t)|2 =
∑
n∈N

|cn(0)|2 =
∞∑
n=0

n|bn(0)|2.

The unique solution defines the unique solution of the Cauchy problem (3.67) with F (t, ·)
given by the decomposition (3.68) for every t > 0.

Remark 3.16 The results of Lemmas 3.13, 3.14, and 3.15 are very similar to the results
of [34] for the following Cauchy problem:{

Φ̇ = ∂y(L− 2)Φ,
Φ|t=0 = ϕ ∈ L2(R).

(3.76)

The Cauchy problem (3.76) arises in the linearization of the logarithmic KdV (log-KdV)
equation

∂u

∂t
+

∂

∂x
u log(u) +

∂3u

∂x3
= 0

at the Gaussian solutions
u0(x) = e

1
2
− 1

2
x2 .

By using the travelling reference frame in the form Φ(t, y) 7→ Φ(t, y − 2t), the shifted
problem (3.76) can be cast in the form (3.64). This explains why both problems share
the same properties.

Let us modify the Cauchy problem (3.64) as follows:{
Φ̇ = (∂y − y)LΦ,
Φ|t=0 = ϕ ∈ L2(R).

(3.77)

This toy problem does not arise in modeling of physical processes. Nevertheless, this
example shows that the Cauchy problem associated with the linear KdV equation may
be ill-posed in a subspace of L2(R).

The Cauchy problem (3.77) can be easily solved with the Bargmann transform. By
Lemmas 3.6 and 3.13, we rewrite the Cauchy problem (3.77) in the equivalent form:{

Ḟ = −2z2∂zF,
F |t=0 = f ∈ F,

(3.78)

where f = Bϕ and F (t, ·) = BΦ(t, ·). The following lemma shows that the Cauchy
problem (3.78) is ill-posed.

43



Master of Science – Nabil AL ASMER – McMaster University

Lemma 3.16 The only f ∈ F, for which the Cauchy problem (3.78) gives the unique
solution F (t, ·) ∈ F for t 6= 0, is the constant function.

Proof. The partial differential equation

∂F

∂t
= −2z2∂F

∂z
(3.79)

is the transport equation after a transformation of variables z → z−1 and t→ 2t. Hence,
its general solution is given by

F (t, z) := G(z−1 + 2t),

where the function G is found from the initial condition G(z−1) = f(z). Expressing G
yields the unique solution to the Cauchy problem (3.78):

F (t, z) = f

(
z

1 + 2tz

)
. (3.80)

Since f is entire and z
1+2tz

has a pole at z = − 1
2t

for every t 6= 0, F (t, ·) is entire if and only
if |f(∞)| <∞. However, by Liouville’s theorem, the only entire and bounded function is
the constant function.

Corollary 3.3 The Cauchy problem (3.78) is ill-posed in L2(R).

Proof. This follows from the conjugacy of the Cauchy problem (3.77) in L2(R) and the
Cauchy problem (3.78) in F since B is a unitary transformation.

Remark 3.17 Since

(∂y − y)L = −∂3
y + y∂2

y + (y2 − 1)∂y + y(3− y2),

ill-posedness of the Cauchy problem (3.77) in Lemma 3.16 is related to ill-posedness of
the diffusion equation with operator y∂2

y which defines forward diffusion for y > 0 and
backward diffusion for y < 0. This term is absent in the Cauchy problem (3.64) since

∂yL = −∂3
y + (y2 − 1)∂y + 2y,

for which well-posedness in a subset of L2(R) follows from Lemma 3.15.
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Chapter 4

Applications to partial differential
equations in two dimensions

4.1 Introduction

Compared to applications of the Bargmann transform in one dimension, two-dimensional
problems in space (x, y) can be formulated by using the complex variable z = x + iy.
Therefore, holomorphic functions in F ⊂ L2

ρ(C) will be defined on the physical two-
dimensional space (x, y). The adjoint Bargmann transform B∗ transforms these functions
to a spectral space in L2(R), which is no longer the physical space.

This formalism is opposite to applications of the Bargmann transform in one dimension
where B transforms functions defined in the physical space L2(R) to the holomorphic
functions in the spectral space z = x− iξ.

Do to these differences, we fix α = 1 everywhere in this chapter and use z = x + iy.
The projection operator Π is rewritten in the form:

(Πf) (z) =
1

π

∫∫
R2

f(z′)e(z−z′)z̄′dx′dy′. (4.1)

The inner product in L2
ρ(C) (with new definition of ρ(z) = 1

π
e−|z|

2
) is given by

〈f, g〉L2
ρ(C) =

1

π

∫∫
R2

f(z) ¯g(z)e−|z|
2

dxdy. (4.2)

Section 4.2 reviews applications of the Bargmann transform to the Gross–Pitaevskii
equation for the rotating Bose–Einstein condensates at the lowest Landau level.
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4.2 Lowest Landau Level Equation

The lowest Landau level (LLL) equation arises when one considers rotating Bose–Einstein
condensates at the critical rotational frequency [5]. The main model is the following
Gross–Pitaevskii equation:

i
∂u

∂t
= −∆u+ 2i(x∂y − y∂x)u+ (x2 + y2)u+ |u|2u− 2u, (4.3)

where the frequency shift (the last term in the right-hand side) is added for convenience
and the rotational term (the second term in the right-hand side) has a specific coefficient
of the critical rotational frequency [18].

Let z = x+ iy and consider the functions in the form

u(z) = f(z)e−
1
2
|z|2 , (4.4)

where f ∈ F ⊂ L2
ρ(C) and L2

ρ(C) is defined from (4.2). The projection operator acting on

functions of the form u(z) = f(z)e−
1
2
|z|2 will be denoted by Π̂. It is given by

(Π̂u)(z) =
1

π
e−
|z|2
2

∫∫
R2

ezz̄
′− |z

′|2
2 u(z′)dx′dy′ = (Πue

1
2
|z|2)(z)e−

1
2
|z|2 . (4.5)

With the use of complex variable z = x + iy, the Gross–Pitaevskii equation (4.3) can be
rewritten in the form

i
∂u

∂t
=

(
z̄ − 2

∂

∂z

)(
z + 2

∂

∂z̄

)
u+ |u|2u (4.6)

For the functions u in the form (4.4) with f ∈ F, we have
(
z + 2 ∂

∂z

)
u = 0. However,

the evolution of a local equation

i
∂u

∂t
= u|u|2 (4.7)

is not closed in the space of functions in the form (4.4) because |u|2u = |f |2fe− 3
2
|z|2 is

not in the form f̃(z)e−
1
2
|z|2 with f̃ ∈ F ⊂ L2

ρ(C). The way to get around this issue is to
decompose u into the sum of two terms: the leading-order term satisfying the following
closed initial-value problem {

i∂u
∂t

= Π̂(|u|2u)
u(0, z) = u0(z).

(4.8)

and the error term which satisfies the residual equation. As is shown in many works (see,
e.g., [15, 19]), the approximation error can be controlled to be small in some norm during
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the time evolution on a finite time interval. The approximation result justifies the validity
of the leading-order approximation defined by solutions of the initial-value problem (4.8).

We refer to the nonlocal equation in (4.8) as the lowest Landau level (LLL) equation.
Well-posedness of the initial-value problem (4.8) has been obtained in [21] (see also earlier
works in [1, 20]). The review of these results is given next.

By Lemma 2.6 and Example 2.3, for every 0 < p < q < ∞ and every u in the form
(4.4), the following embedding property is true:( q

2π

) 1
q ‖u‖Lq(C) ≤

( p
2π

) 1
p ‖u‖Lp(C), (4.9)

where the inequality becomes the equality if and only if u(z) is constant proportional to

a translation of e−
1
2
|z|2 .

The following lemma states the local well-posedness of the initial-value problem (4.8)
in the Lp spaces.

Lemma 4.1 The initial-value problem (4.8) is locally well-posed in Lp(C) for any p ≥ 1.

Proof. It follows from (4.5) that

|(Π̂u)(z)| ≤ 1

π

∫∫
R2

e−
1
2

(x−x′)2− 1
2

(y−y′)2|u(z′)|dx′dy′.

By the generalized Young’s inequality for convolution integrals, the projection operator
Π̂ : Lp(C) 7→ Lp(C), 1 ≤ p ≤ ∞ is bounded with the p-independent bound:

‖Π̂u‖Lp(C) ≤ 2‖u‖Lp(C), (4.10)

due to the exact value: ∫∫
R2

e−
1
2

(x−x′)2− 1
2

(y−y′)2dx′dy′ = 2π.

Let us rewrite the evolution problem (4.8) in the integral form u = A(u), where

A(u)(t, ·) := u0 − i
∫ t

0

Π̂(|u(s, ·)|2u(s, ·))ds, t > 0.

We show that there exists a sufficiently small t0 > 0 such that the operator A is a closed
contraction operator in the ball Bδ defined by sup

t∈[0,t0]

‖u(t, ·)‖Lp(C) ≤ δ with δ := 2‖u0‖Lp(C).
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It follows from (4.9) and (4.10) that

sup
t∈[0,t0]

‖A(u)(t, ·)‖Lp(C) ≤ ‖u0‖Lp(C) +

∫ t0

0

‖Π̂(|u(s, ·)|2u(s, ·))‖Lp(C)ds

≤ ‖u0‖Lp(C) + 2

∫ t0

0

‖|u(s, ·)|2u(s, ·)‖Lp(C)ds

≤ ‖u0‖Lp(C) + 2

∫ t0

0

‖u(s, ·)‖L∞(C)‖u(s, ·)‖Lp(C)ds

≤ ‖u0‖Lp(C) + 2
( p

2π

) 2
p

∫ t0

0

‖u(s, ·)‖3
Lp(C)ds,

so that sup
t∈[0,t0]

‖A(u)(t, ·)‖Lp(C) ≤ δ = 2‖u0‖Lp(C) if

4
( p

2π

) 2
p
t0δ

2 ≤ 1.

Hence, the operator is closed in the ball Bδ. It is also a contraction in the ball Bδ because

sup
t∈[0,t0]

‖A(u)(t, ·)− A(v)(t, ·)‖Lp(C) ≤
∫ t0

0

‖Π̂(|u|2u− |v|2v)‖Lp(C)ds

≤ 2

∫ t0

0

(
‖u‖L∞(C) + ‖v‖L∞(C)

)2 ‖u− v‖Lp(C)ds

≤ 2
( p

2π

) 2
p

∫ t0

0

(
‖u‖Lp(C) + ‖v‖Lp(C)

)2 ‖u− v‖Lp(C)ds

≤ 8
( p

2π

) 2
p
t0δ

2 sup
t∈[0,t0]

‖u− v‖Lp(C)ds,

where we have used the elementary inequality

||u|2u− |v|2v| = |u2(ū− v̄) + (u+ v)v̄(u− v)| ≤ (|u|+ |v|)2|u− v|.

Thus, A is a contraction in the ball Bδ if

8
( p

2π

) 2
p
t0δ

2 < 1.

For any δ > 0, there is a sufficiently small t0 > 0 satisfying both the inequalities above
such that the operator A has a unique fixed point in Bδ by the Banach fixed-point theorem.
The proof of continuous dependence on the initial data u0 ∈ Lp(C) is standard and follows
from the contraction mapping property.
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Remark 4.1 Bound (4.10) is not sharp for p = 2 because Lemma 2.1 and Corollary 2.2
imply for the function u in the form (4.4) with f ∈ F ⊂ L2

ρ(C) that

1

π
‖Π̂u‖2

L2(C) = ‖Π(ue
1
2
|z|2)‖2

L2
ρ(C)

= ‖BB∗(ue
1
2
|z|2)‖2

L2
ρ(C)

= ‖B∗(ue
1
2
|z|2)‖2

L2(R)

= ‖ue
1
2
|z|2‖2

L2
ρ(C)

=
1

π
‖u‖2

L2(C),

so that ‖Π̂u‖L2(C) = ‖u‖L2(C).

The following lemma gives global well-posedness of the initial-value problem (4.8) in
the L2 space.

Lemma 4.2 The initial-value problem (4.8) is globally well-posed in L2(C) if u0 ∈ L2(C).
Moreover, for every t ∈ R, the following two quantities are conserved in time:∫∫

R2

|u(t, z)|2dxdy =

∫∫
R2

|u0(z)|2dxdy (4.11)

and ∫∫
R2

|u(t, z)|4dxdy =

∫∫
R2

|u0(z)|4dxdy (4.12)

Proof. By Lemma 4.1, if u0 ∈ L2(C), there exists a local solution to the initial-value
problem (4.8) in L2(C). By the embedding properties, u(t, ·) ∈ Lp(C), t ∈ [0, t0] for every
2 ≤ q ≤ ∞ including q = 4.

Next, we show the L2-conservation property (4.11). Since Π̂ is a bounded operator
by (4.10) and the solution u(t, ·) ∈ Bδ ⊂ L2(C) belongs to a bounded set closed with
its boundary, we have u ∈ C1((0, t0), L2(C)). Hence, it is allowed to differentiate the L2

norm and to use the time evolution equation in (4.8):

d

dt

∫∫
R2

|u(t, z)|2dxdy = i〈u, ¯̂
Π(|u|2u)〉L2(C) − i〈Π̂(|u|2u), u〉L2(C)

= i〈Π̂u, |u|2u〉L2(C) − i〈|u|2u,
¯̂
Πu〉L2(C)

= i〈u, |u|2u〉L2(C) − i〈|u|2u, u〉L2(C)

= 0,
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where we have used the fact that Π : L2
ρ(C) 7→ L2

ρ(C) is an orthogonal projection (Remark

2.2), which implies that Π̂ : L2(C) 7→ L2(C) is also an orthogonal projection due to the
relation (4.5). Due to the L2 conservation, the local solution u(t, ·) ∈ Bδ ⊂ L2(C),
t ∈ [0, t0] is continuously extended to the global solution u(t, ·) ∈ Bδ ⊂ L2(C), t ∈ R.

Finally, we show the L4-conservation property (4.12). By continuous embedding (4.9),
it follows that if u ∈ C1(R, L2(C)), then u ∈ C1(R, L4(C)). Hence, it is allowed to
differentiate the L4 norm and to use the time evolution equation in (4.8):

d

dt

∫∫
R2

|u(t, z)|4dxdy = 2i〈|u|2u, ¯̂
Π(|u|2u)〉L2(C) − 2i〈Π̂(|u|2u), |u|2u〉L2(C)

= 0,

by the same property that Π̂ : L2(C) 7→ L2(C) is an orthogonal projection.
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