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ABSTRACT

Secondary structures may have to endure severe vibration amplitudes under the 

influence of the primary structures on which they are mounted. A series of numerical case 

studies are presented in this thesis to investigate the effectiveness of a passive vibration 

controller which combines a conventional tuned absorber with an impact damper, to attenuate 

the excessive vibration amplitudes of light secondary structures. In addition, experimental 

measurements are reported for some selective cases and comparisons are made with numerical 

predictions. This suggested configuration seems to suit ideally as an add-on enhancer for 

existing conventional absorbers. Most of the Results are presented for random white noise 

excitation, and a few representative transient vibration cases are also studied.
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CHAPTER 1

INTRODUCTION

A modified tuned vibration absorber is studied for the application on light secondary 

structures. The new passive vibration controller combines a conventional tuned absorber with 

an impact damper. The studies consist of dynamic modeling, numerical simulation and 

experimental verification.

Term "secondary structure" is used generically for light systems which are under some 

influence of larger primary systems. Therefore, response of a light secondary system is an 

indirect one through the dynamic response of the primary system to an external disturbance. 

Flexibly mounted machinery, transport of delicate cargo or the piping system in buildings may 

be envisaged as examples of secondary structures. Prediction and control of the excessive 

dynamic response of secondary structures have attracted significant attention in the literature 

[1-5]. A new approach of combining two conventional passive controllers is investigated in 

this thesis.

Tuned vibration absorbers have been used effectively to control excessive vibrations
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of resonant systems [5,6], A tuned absorber is an auxiliary oscillator added to the primary 

system to be controlled. The purpose here is to interact strongly with the primary system and 

to absorb the energy input from the external disturbance. Control is accomplished by tuning 

the parameters of the auxiliary oscillator so that an opposite force to the external disturbance 

is generated by intentionally resonating the absorber. Control may be very effective on 

restraining vibration amplitudes at the tuning frequency. However, effectiveness of a 

conventional tuned absorber deteriorates rapidly as the frequency of oscillations differs from 

this critical tuning frequency.

Many practical applications expose dynamic systems to wide-band excitations, rather 

than single-frequency excitations. Naturally, a passive conventional tuned absorber is 

inadequate for such cases. Some other means are required to improve the performance of the 

conventional tuned absorber. Active interference to maintain the resonance condition for the 

auxiliary absorber system promises to be effective for varying frequencies [7], However, the 

approach taken in this study is to attempt to improve the performance by passive means only. 

Passive systems have the unquestionable advantage of simplicity and robustness, provided that 

they are effective. It has been demonstrated that the effectiveness of a passive tuned absorber 

could be enhanced significantly if another passive vibration controller, an impact damper, is 

used to complement the tuned absorber [8, 9],

An impact damper is a loose rigid mass placed in a container which is secured to a 
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resonant system to be controlled. The dimensions of the container are chosen so that there 

is an intentional clearance around the impact damper to allow intermittent collisions. Hence, 

an impact damper is another passive vibration controller which works on the principle of 

generating an intermittent control force through intentional collisions. Each collision 

dissipates some energy and imposes an exchange of momentum. As a result of this exchange 

of momentum, the smaller impact damper reverses its direction of motion. On the other hand, 

the larger primary mass only slows down due to the momentum lost to the damper. Control 

is the consequence of this slowing of the primary mass leading to a smaller excursion 

amplitude. An impact damper's effectiveness largely depends upon the proper choice of the 

clearance. Reference 10 outlines the general approach in designing an impact damper, 

presents information in the form of design charts and lists significant publications.

An impact damper is used in this study to enhance the vibration control ability of a 

tuned absorber. Impact damper is placed in the tuned absorber to control the secondary 

system. As mentioned earlier, the concept of using these two passive controllers to 

complement each other's deficiencies has been introduced in References 8 and 9. Therefore, 

the purpose of this thesis is to extend its use in secondary structures and to provide 

performance charts for potential practical applications.

The focus of Chapter 2, Chapter 3 and Chapter 4 is on secondary structures under 

wide band random excitation. Specifically, Chapter 2 presents the dynamic model and a series 
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of numerical results and Chapter 3 demonstrates the experimental results for one 

representative physical structure. In Chapter 4, the new controller is modified by tuning the 

natural frequency of the absorber, which is part of the new controller, off the natural 

frequency of the system to be controlled. Then the effects of off-tuning are presented for 

representative cases. Chapter 5 shows the performance of the new controller for secondary 

structures under transient excitation. Chapter 6 consists of the conclusions of this thesis and 

some recommendations for using the new controller. In addition, the computer program used 

for the numerical simulations in this thesis is listed in Appendix with input and output 

examples.



CHAPTER 2

AN NUMERICAL STUDY OF THE NEW VIBRATION CONTROLLER 

ON SECONDARY STRUCTURES UNDER RANDOM EXCITATION

2.1 INTRODUCTION

In this chapter, a 4 Degree-Of-Freedom (4DOF) dynamic model was developed to 

represent a secondary structure controlled by a new vibration controller which consisted of 

a conventional tuned absorber and an impact damper (a modified tuned vibration absorber). 

Based on this primary system - secondary system - absorber - impact damper model, a 

computer program ( Appendix ) was designed to simulate the dynamic responses of this 

model under wide band random excitation. A series of case studies were performed to 

investigate the effectiveness of the combined controller to the secondary system.

2.2 NUMERICAL SIMULATIONS

The model used in numerical simulations is shown in Figure 2.1 schematically. In this 

4 Degree-Of-Freedom (4D0F) model, the first oscillator (mH cb kJ, represents the primary 

5
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system excited by the disturbance F(t). The smaller secondary system (m2, C2, k2) is mounted 

on the primary system. Attention will be mostly focused on this secondary system to restrain 

its response as much as possible with the new controller (a combination of a tuned absorber 

and an impact damper). The tuned absorber (m3, c3, k3) is the auxiliary oscillator attached to 

m7. Finally, the rigid mass m, is the impact damper, which is placed in a cavity of m3 with a 

total clearance of d.

The differential equations of motion of the 3D0F oscillator (m(, m2 and m3) between

collisions are

(1)

(2)

,whereas the impact damper experiences a constant velocity motion resulting

(3)
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(4)

Numerical procedure consisted of using a standard fourth order Runge-Kutta finite 

difference scheme to integrate all four equations of motion simultaneously until a contact 

between m3 and m4 was established. A time step of smaller than 1/100 of the natural period 

of the primary system was used to ensure the stability of integration. A collision was assumed 

to take place when the difference between the two coordinates x3(t) and x4(t), was obtained 

to be smaller than one millionth of the total clearance, d, in Figure 2.1. Iteration on the time 

step was performed by simple Bisection to locate the instant of contact.

Standard instantaneous collision assumption was used to implement the energy 

dissipation and momentum transfer [8], Each collision resulted in an incremental change of 

velocities of the impact damper and the tuned absorber according to

(5)

and

(6)
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where /z is the mass ratio (m4/m3) and e is the coefficient of restitution. Equations 5 

and 6 may be obtained easily from the simultaneous solution of the conservation of linear 

momentum (before and after a collision) and from the definition of the coefficient of 

restitution:

(7)

where subscripts - and + indicate the instances immediately before and after a 

collision. Consistent with the instantaneous collision assumption, the displacements of m3 and 

m4 were left unchanged. A collision caused no change in the primary and the secondary 

systems. Numerical integration always started with zero initial conditions. After every 

collision, integration resumed with new initial conditions until a new contact was located.

The random white noise excitation was approximated by using the expression 

suggested in reference 11, which can be expressed as

(8)
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where is the desired power spectral density of F(t) with N equally spaced

spectral components, Sen and ° are

random variables uniformly distributed over the ranges ±0.05 Aw and 0 to 2n, respectively. 

S0(coO was taken to be unity. The cut-off frequency of the excitation, d)u, was set to be twice 

as large as the natural frequency of the uncontrolled primary system with 100 spectral 

components (N).

Performance of the new controller was evaluated by comparing the Root Mean Square 

(RMS) displacement of the secondary structure between the cases with and without the 

presence of the impact damper. In other words, the comparison was made between the 

secondary structure controlled by the new controller and that controlled by the conventional 

tuned absorber. Previous work [28] has shown that a conventional tuned absorber has 

positive, though limited, effect on the secondary structures under random excitation in terms 

of vibration reduction. Therefore, in this chapter, attention was focused on the investigation 

of the improvement of adding an impact damper.

RMS averages were calculated after every time step of integration until they were 

observed to reach stationary state. A1000 second simulation was generally found to be long 

enough to obtain stationary RMS averages (where the fundamental frequency of the primary 

system was 1 rad./s). Hence, one 1000 second long sequence of values for F(t), was
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generated from equation 8 and the same sequence was used invariably for each case of 

simulation, in order to maintain a consistent excitation for comparison purposes.

Case studies were performed for mass ratios between the secondary and the primary 

systems (m/m^2) ranging from 1 to 1000. Smaller ratios represented cases in which the 

primary and the secondary systems were comparable in size, whereas large ratios represented 

light resonant secondary structures in buildings. The fundamental frequency of the primary 

system (lq/mj)1'2 was set to be unity (1 rad./s). The natural frequency of the secondary system 

(k2/m2)iz2 was taken to be identical with that of the primary system, as this case represented 

the strongest interaction between these systems and hence the most critical case for the 

secondary structure [12,13), The critical damping ratio of the primary system, 

5^/(2^, , was varied from 0 to 0.10. The secondary system was taken to be 

undamped (c2=0.0).

A mass ratio (m3/m2) of 0.10 was maintained between the secondary system and the 

absorber. The absorber was tuned to the natural frequencies of the primary and the secondary 

systems, (kj/mj = (kj/mj)^ = (kj/nt))172 = 1 rad./s, and assumed undamped (c3=0.0). The 

mass ratio between the absorber and the impact damper, // = m4/m3, was kept at 0.25. Hence, 

although the value of m was quite large, the addition of the impact damper raised the inertia 

of the secondary system only by a relatively insignificant factor of 1.025.
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2.3 NUMERICAL RESULTS

In Figure 2.2, RMS displacement ratios, Ox2/°x20, of the secondary system are 

presented for different non-dimensional clearances, d/ox20. Here, and ox20 represent the 

RMS displacement of the secondary system with and without the impact damper; and d is the 

total clearance of the impact damper. Hence, ratios smaller than unity represent attenuation, 

whereas a ratio of unity represents no change due to the impact damper.

Two different coefficients of restitution, e, were used for these simulations. A value 

of 0.3, for instance, represents contacts between hard neoprene and metal surfaces. These 

results are marked with (■) in Figure 2.2. A coefficient of restitution of 0.8, on the other 

hand, represents contacts between polished surfaces of hardened metals, such as tool steels. 

These results are marked with (□ ). For all cases presented in Figure 2.2, e = 0.3 (■) 

produced more effective attenuations than those of e = 0.8 (□ ). Hence, all further 

discussions will be limited to the smaller coefficient of restitution. This trend is in agreement 

with earlier findings reported for random excitations [9,14], Different ratios of the primary 

mass to the secondary mass, m/m^ are presented in each row in an ascending order from top 

to bottom, namely 110,100 and 1000. Each column corresponds to a critical damping ratio 

of the primary system, . , of 0.001, 0.01 and 0.05 from left to right.

Generally, all parameter combinations in Figure 2.2 show attenuations due to the
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presence of the impact damper. These attenuations are quite marginal for cases with small 

d/oX20, producing values of close to unity. Small d/<c2o causes too many collisions

which mostly occur with small relative approach speeds before contact. In turn, these slow 

speeds drastically inhibit the momentum exchange between the impact damper and the tuned 

absorber. When d/o^ is large, on the other hand, too few collisions occur. As a result, 

attenuations are again quite insignificant. Absence of collisions due to too large a clearance 

is always indicated with a o^/G,^ of unity for each case. Between too small and too large 

clearances, results for each set of parameters indicate an optimal clearance to produce the 

largest attenuations. These optimal clearances, produce relatively large approach speeds with 

an average frequency of two collisions per cycle. Term "cycle" is used loosely here due to 

the random nature of the disturbance.

In Figure 2.2, for m//m2 = 1 and mi/im = 10 (in the first two rows), as the critical 

damping ratio of the primary system increases from 0.001 to 0.05 (from the first to the third 

column) effectiveness of the impact damper decreases. This trend is not surprising since any 

increase in damping will result in a smaller excursion amplitude in the absorber's oscillations. 

Effect of the impact damper on the secondary system is an indirect one through the response 

of the tuned absorber. Therefore, smaller excursion of the absorber gives the impact damper 

less of a chance to make a difference . Best attenuations are in the order of 50% for m/m2 = 

1 and 80% for mjm2 =10. These attenuations deteriorate to approximately 25% and 45%, 

respectively, in the third column of each row. The last two rows of Figure 2.2, for ny/m, = 
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100 and m/mm = 1000 show a different trend than the first two rows. Particularly for mj/m2 

= 1000, increasing values of produce more effective attenuations from approximately 50% 

in the first column to 80% in the third column. This drastic change may be attributed to the 

ratio of the primary and the secondary masses. When the secondary system's mass is 1000 

fold smaller than that of the primary system, it is virtually impossible for the primary system 

to be affected by changes in the response of the secondary system. Hence, excitation applied 

on the primary system is in fact perceived as a moving base disturbance by the secondary 

system for control purposes, therefore, the "apparent" degree of freedom of the system is now 

reduced by one. Increasing damping in the primary system only enhances this apparent 

reduction phenomenon.

Dependence of the attenuations of the impact damper on m^m^, is demonstrated 

further in Figures 2.3 and 2.4. In Figure 2.3, the RMS displacement ratios of the primary (°), 

secondary (*) and the tuned absorber (a) systems are given for the same non-dimensional 

clearances as in Figure 2.2 but for a constant m/mj = 10 and again for e = 0.3. Each frame 

from Figure 2.3 (a) to 2.3 (e) corresponds to a of 0.0, 0.001, 0.01, 0.05 and 0.10. Hence, 

RMS displacement ratios of the secondary system (*) in the middle three frames are repeated 

from Figure 2.2. Because of the relatively strong interaction between the primary and the 

secondary systems for this m//m2 = 10, as the damping in the primary system increases, the 

relative performance of the impact damper deteriorates from approximately 80% attenuation 

in frames Figure 2.3 (a) and 2.3 (b) to 30% in frame 3 (e). What is very interesting in Figure 
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2.( is that, when the impact damper is effective, the attenuations are achieved in about the 

same order for all three of the primary, secondary and tuned absorber systems simultaneously. 

On the other hand, when the performance deteriorates, attenuations follow a reverse order 

depending on how large each system's mass is. They are most pronounced in the tuned 

absorber, then the secondary system and the primary system.

Results in Figure 2.4 are presented in an identical format to that of Figure 2.(, but this 

time for m/n^ = 1000. As discussed briefly earlier, the effectiveness of control of the 

secondary system is particularly pronounced in Figures 2.4 (d) and 2.4 (e), for f^ of 0.05 and 

0.10, producing approximately 80% attenuation for non-dimensional clearances of 1.5 to 4. 

Best attenuations gradually deteriorate to approximately 65%, 50% and 40% as the value of 

changes to 0.01, 0.001 and 0.0, respectively. In Figures 2.4 (d) and 2.4 (e), the primary 

system's response remains unaffected for all clearances, whereas some marginal changes may 

be observed in Figures 2.4 (a) to 2.4 (c) due to the presence of the impact damper.

One of the drawbacks of a conventional tuned absorber is the large excursion 

amplitudes of the tuned absorber. Since the absorber is intentionally designed to resonate at 

the tuning frequency to be effective, resulting large amplitudes require sufficiently large space 

around the absorber and unavoidable maintenance or replacement of the absorber in time. 

Results presented so far invariably suggest that addition of the impact damper should negate 

this particular drawback of the tuned absorber.
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Displacement histories of the primary ( — ) secondary ( — ) and the tuned 

absorber (..... ) are shown in Figure 2.5 (a) for the system controlled by the conventional

absorber with m/m^ = 10 and Ej, = 0. In Figure 2 5 (b), the same system is shown with the 

addition of the impact damper at a non-dimensional clearance of d/o^ = 2.17. The first 150 

s (second) period of the histories shows the process of gradually building of the excursion 

amplitudes starting from zero initial conditions. The last 150 s period, on the other hand, 

exhibits an almost perfectly periodic character in response to the random white noise 

excitation. This periodic character is not surprising considering that an oscillator is expected 

to respond in a narrow band of frequencies regardless of the frequency content of the 

excitation. However, this natural self-organization process ' of deliberately picking a narrow 

band of preferred frequencies is a gradual one. If a randomly excited response may be 

envisaged as a sequence of short transient disturbances, gradual building of significantly large 

oscillation amplitudes requires the presence of the preferred frequency components as initial 

conditions for each of these short transient disturbances. When this gradual building of the 

oscillation amplitudes is interrupted by discontinuities of the impact damper's collisions, the 

resulting response is somewhat disorganized and certainly smaller than the case without the 

impact damper [15]. Responses in both Figures 2.5 (a) and 2.5 (b) are identical until the first 

contact is established at about 50s. Differences start emerging towards the end of the initial 

150 s period, though both cases are still quite similar. This similarity is due to the first few 

collisions having inevitably small approach speeds and being quite ineffective. However, 

displacement amplitudes with the new controller for the last 150 s are significantly smaller 
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than those of the displacements without the impact damper. Similar comparisons may be 

made between the displacement histories with and without the impact damper in Figures 2.6 

(a) and 2.6 (b), this time for m/n^ = 1000, j = 0.10 and for d/o^ = 2.95. In Figure 2.6 (b), 

oscillation amplitudes of the primary system controlled by the new controller remain virtually 

unchanged due to its large inertia.

Figure 2.7 shows the Fast Fourier Transformation (FFT) of the displacement of the 

same secondary system in Figure 2.5. In this figure, the vertical axis represents the spectral 

amplitude, horizontal axis represents the frequency (in Hz) and the depth represents the 

starting time of a FFT snapshot (approximately 150s long each). The top half of Figure 2.7 

is the response controlled by the conventional absorber (without the impact damper). The 

gradual building process discussed earlier, is displayed in this response without the impact 

damper, clearly emphasizing the exaggerated narrow band response after 600 s. For the first 

FFT, response with the impact damper, shown in the bottom half, has a very similar spectral 

distribution to that of the response without the impact damper. Starting from the second 

FFT, response's spectral amplitudes with the impact damper are significantly smaller with a 

wider frequency distribution. Figure 2.8 shows the same FFT histories in an identical format 

to that of Figure 2.7, but this time for the same parameters in Figure 2.6.

Figure 2.9 shows the effect of the clearance of the impact damper on the displacement 

of the secondary structure for m/n^ = 10 and = 0. For comparison purposes, only the last 
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FFT snapshot (between 850 and 1000 s) of the displacement spectra of the secondary system 

are shown in Figure 2.9 (a). Some selective non-dimensional clearances, dOo are marked 

along the depth axis. In Figure 2.9 (a), the second FFT corresponds to the best clearance 

case shown earlier in Figures 2.5 (b) and 2.7 (b). The clearance corresponding to the fifth FFT 

is deliberately chosen to be large enough to avoid collisions, and therefore to produce the 

response without the impact damper which is the same case shown in Figures 2.5 (a) and 2.7 

(a). As may be noted easily in this figure, too small a clearance (d/a^ = 0.54) produces a 

spectral distribution with a smaller peak frequency but with a comparable spectral amplitude 

to that of the case without the impact damper (d/c^o = 25.0) due to having too frequent 

collisions. Larger clearances, on the other hand, are again ineffective due to too infrequent 

collisions. Example cases shown here correspond to O^/O^o of approximately 0.37, 0.18, 

0.32, 0.36 and 1.00 for dOo of 0.54, 2.17, 7.60, 12.49 and 25.0 ( refer to Figure 2.3 (a) ). 

Same information for clearance dependence is presented this time using the probability 

distribution in Figure 2.9 (b). The optimal clearance case (d<Ooo = 2.17), which is cross 

hatched for easy comparison, suggests a three fold attenuation of the peak displacement as 

compared to the case when the impact damper is not active (d/o^ = 25.0). Other non- 

optimal clearances show similar attenuations in peak displacement to those of the 

corresponding RMS averages (refer to Figure 2.3 (a)).

In Figure 2.10, similar information to Figure 2.9 is presented in an identical format but 

for mj/m2 = 1000 and , = 0.10. In Figure 2.10 (a), the comments made for Figure 2.9 (a) 
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are valid in general. The exception is that the spectral distribution of the components is 

significantly narrower this time due to an apparent loss of degree of freedom discussed earlier. 

This narrow band response leads to an almost perfectly periodic response which is reflected 

in the shape of the probability distribution of the case in Figure 2.10 (b) when the impact 

damper is not active. This resemblance of the probability distribution to a harmonic variation 

may also be noticed in the first (d//o20 = 0.295) and the fourth (d/ox20 = 16.20) clearances at 

varying degrees as well.

Another look at the attenuation mechanism of the impact damper is presented in 

Figure 2.11, Figure 2.12 and Figure 2.13. In Figures 2.11 and 2.12, histories of the energy 

input to the primary system from the excitation for both cases without and with the impact 

damper (at optimal clearance) are presented. In addition, energy dissipated through collisions 

and the difference between the input and the dissipated energy (net-energy) are also marked 

for the case with the impact damper. In Figure 2.11, energy histories are given for m/im = 

10 and E,] = 0 and d//^x20 = 2.17. Energy input from the random excitation seems to produce 

rather large fluctuations due to large velocity fluctuations of the system without the impact 

damper. For the optimal impact damper, on the other hand, the input energy history is much 

smoother as compared to the case without the impact damper. This, of course, is due to the 

attenuations induced in the response of the primary system by the impact damper. 

Surprisingly, the cumulative energy input with the impact damper is larger than that of the 

case without the impact damper. Dissipated energy due to impacts, however, is just as large
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as the input energy, leaving only a minimal net energy. In Figure 2.12, energy histories are 

presented in the same format as in Figure 2.11 but for m/m, = 1000, = 0.10 and d/ax20 =

2.95. In this figure, energy histories without the impact damper, with the impact damper and 

net-energy with the impact damper seem very similar since the response of the primary system 

is virtually unaffected by any change in the secondary system. Histories in Figure 2.1( are for 

the same cases in Figure 2.12, but this time energy input to the secondary system rather than 

the primary system is plotted. Hence, this case is treated as if the primary system does not 

exist and the secondary system is given a base excitation. Trends in Figure 2.1( are very 

similar to those in Figure 2.11, leaving a minimal net-energy for the secondary system after 

the energy dissipation due to collisions subtracted from the energy input from the primary 

system.

2.4 CONCLUSIONS

A new passive vibration controller, which combines a tuned absorber with an impact 

damper, is investigated in this chapter for controlling excessive oscillations of light secondary 

structures. A numerical procedure is presented for predicting performance under random 

white noise disturbance. Addition of an impact damper provides significant improvement in 

the performance of the conventional absorber.
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When the mass of the secondary system to be controlled is ten fold smaller than the 

mass of the primary system, mj^ =10, impact damper is most effective when there is 

minimal damping in the system. Attenuations in the order of 80% are possible in the response 

of the secondary as well as the primary and the tuned absorber systems.

When the mass of the secondary system to be controlled is thousand fold smaller than 

the mass of the primary system, m//m2 = 1000, impact damper is most effective when primary 

system has at least 5% critical damping. For this case, 80% attenuation is possible for both 

the secondary and the tuned absorber systems. No control is attainable for the primary system 

due to its large inertia.



CHAPTER 3

AN EXPERIMENTAL STUDY OF THE NEW VIBRATION CONTROLLER

ON A SECONDARY STRUCTURE UNDER RANDOM EXCITATION

3.1 INTRODUCTION

A series of numerical case studies in Chapter 2 have shown that a new passive 

vibration controller combining a tuned absorber and an impact damper is effective on 

controlling a light secondary structure. In this chapter, the investigation of this new controller 

is continued with experimental observations. A prototype structure is built with selected 

parameters and tested under random excitation with the new controller as well as the 

conventional tuned absorber alone. Comparisons are made between the performances of the 

two controllers. In addition, measured results are compared with numerical predictions.

3.2 DETAILS OF THE EXPERIMENTS

A schematic drawing of the experimental model is shown in Figure 3.1. The design 

of the experimental rig is based on the 4 Degree-Of-Freedom (4DOF) model discussed in the 

previous chapter. The experimental structure consists of three mechanical oscillators and an 

impact damper. The primary structure is a rigid plate cantilevered from a fixed base by four

21
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thin strips of steel. The strips act as the resilient elements, and in the mean time they also 

contribute to the equivalent mass. On top of the primary structure is another oscillator, the 

secondary structure, which is mounted on the primary structure by two similar steel strips. 

The equivalent mass of the secondary structure is approximately 1/10 of the primary mass. 

The third oscillator is mounted on the secondary structure with two thin strips. The mass of 

the third oscillator is approximately 1/10 of the secondary’s. The third oscillator is designed 

as a conventional tuned absorber for the secondary system. Therefore, the natural frequency 

of the third structure is tuned to be the same as the secondary’s. The impact damper is 

suspended into the cavity of the absorber as the mass of a simple pendulum. Hence, the 

impact damper’s motion is free of all external forces between contacts with the walls of the 

cavity on the absorber. The radial clearance, d/2, between the damper and the absorber is 

indicated for clarity in Figure 3.1.

The parameters chosen for the experimental structure are listed in Table 3.1. Where 

Keq, meq and ) eq represent the equivalent stiffness, critical viscous damping ratio and mass 

when each system is considered individually as SDOF oscillators. The dynamic response of 

the secondary system depends upon the level of interaction between the secondary system and 

the primary system. The parameters of the system were chosen so that the resulting 

uncontrolled combination (without the impact damper) would produce the largest response 

of the secondary system. Previous work has demonstrated that the largest response of the 

secondary system is produced when the natural frequencies of the primary and the secondary
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systems are the same [12, 13], Hence, the natural frequencies of all three structures in Figure 

3.1 were tuned to be identical (within experimental variations) when they were tested as 

SDOF oscillators individually. The natural frequency of the simple pendulum which consists 

of the impact damper and a string was set to be approximately 0.6 Hz, much smaller than 

those of the primary, secondary and absorber systems.

Table 3.1 Parameters of the experimental structure

Resonant
Frequency1
(Hz)

Stiffness*
Ke(103N/m)

Masf* 
mcq (kg)

Damping 
Ratio*

^eo

Primary 
System

25.17 ±030 113.63 4.544 0.0053 ±
0.0002

Secondary
System

24.67 ±030 11.22 0.467 0.0026 ±
0.0002

Tuned 
Absorber

23.08 ±030 1.22 0.058 0.0034 ±
0.0002

Impact 
Damper

0.011±
0.002

t Measured $ Calculated

The experimental setup is shown in Figure 3.2. The primary system was randomly 

excited by an electromagnetic exciter. A soft spring was used between the exciter and the 

primary system to facilitate the excitation on the primary system from the motion of the coil 

of the exciter. The random signals were generated by an HP Spectrum Analyzer. The 

original signals were amplified by a power amplifier. Three accelerometers were placed on 
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the primary system, secondary system and the absorber to measure the responses. The signals 

collected by the accelerometers were amplified by another amplifier, then sent to the HP 

Analyzer for data processing. In the analyzer, first the low frequency noise below 5 Hz was 

filtered by built-in filters. Power spectra of the accelerations were measured by averaging 32 

samples to obtain a reliable average. Then by using built-in integrators, acceleration spectra
*

were converted to those of the displacements. Finally, the Root Mean Square (RMS) 

averages of the displacements were calculated. A printer was connected to the analyzer to 

obtain hard copies when needed.

During the experiment, the RMS displacement amplitudes of the primary system, the 

secondary system and the absorber, were measured both with and without the impact damper 

at each level of random excitation. Again, the attention was focused on the investigation of 

the improvement of adding an impact damper, since previous work [28] had shown that a 

conventional tuned absorber had positive, though limited, effect on the secondary structures 

under random excitation in terms of vibration reduction. Measurements were performed over 

a frequency span from 0 to 50 Hz, whereas the natural frequencies of the primary, secondary 

and the absorber were tuned to be around 25 Hz. The dimensionless variable d<Oo was 

chosen to represent the change of the clearance of the impact damper, where d was the 

measured value of the clearance and Ox(0 represents the RMS displacement of the secondary 

system without the impact damper (with the absorber alone), d was kept constant throughout 

the experiments. The variations of the clearance d/oX20, were obtained by gradually adjusting 
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the excitation level, and therefore changing ' values. The clearance was measured to be 

1,44±0.02 mm. The coefficient of restitution between the damper and the neoprene-lined 

walls of the tuned absorber was measured to be 0.34±0.05 [9],

3.3 RESULTS

Figure 3.3 shows the measured displacement spectrum of the electromagnetic exciter’s 

moving coil within the 50 Hz frequency span. This random signal was assumed to be close 

to a theoretical white noise for a 25 Hz natural frequency and was used as the excitation of 

the primary system.

The representative frequency spectra of the displacements of the secondary system are 

shown in Figure 3.4 for increasing levels of excitation from the first row to the fourth row. 

The left column represents the spectra with the conventional tuned absorber, whereas the 

right column represents the spectra with the new combined controller. The Root-Mean­

Square (RMS) values are obtained by integrating these displacement spectra to evaluate the 

performance of the new combined controller on the experimental structure. The RMS 

displacement value of the secondary system controlled by the new controller is denoted as °X2- 

The RMS displacement value of the secondary system controlled by the conventional tuned 

absorber is denoted as o^, here. The ratio of ais used here to indicate the effectiveness 

of the new controller comparing with the conventional tuned absorber. Hence, a value of 
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o^/o^o less than unity represents an additional attenuation of the RMS displacement of the 

secondary system for each level of excitation. As we mentioned in the previous section, 

changing the excitation level is equivalent to changing the clearance of the impact damper in 

this experiment. A non-dimensional variable d/ox20, where d is the measured value of the 

clearance of the impact damper, is used to represent the clearance. Because d remains 

constant (1.44 mm), the non-dimensional clearance do^ decreases when the excitation (Ox2o) 

increases.

The spectra in Figure 3.4 from frames (a), (c), (e) to (g) in the first column, and from 

frames (b), (d), (f) and (h) in the second column correspond to d/ox20 of 45.7, 30.9, 10.2 and 

4.7, respectively. From the spectra in the first column of Figure 3.4, it can be seen that the 

RMS of the secondary system controlled by the conventional absorber increases steadily with 

increasing excitation (decreasing of d/ct^o). Each spectrum shows three peaks around the 

original natural frequency of the secondary system (25 Hz). In the second column of this 

figure, the spectral responses, with the help of adding an impact damper, are flatter and the 

peak values are much smaller than those in the first column. The variation of the effectiveness 

of the new controller with different excitation levels reflects the dependence of the impact 

damper to its clearance. For d/Ox20=45.7, the ratio between the RMS displacement of the 

secondary system with the new controller (Figure 3.4 (b)) and that with the conventional 

absorber (Figure 3.4 (a)), Ox2/ox2o, is about 86%. It indicates about 14% RMS reduction for 

adding the impact damper. As the non-dimensional clearance d/o^ decreases to 30.9 in
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Figure (.4 (c) and (d), the RMS displacement reduction increases to (4% with the help of the 

impact damper. The best RMS attenuation for the secondary system was obtained at 

A0^o=10.2 (Figure (.4 (f) comparing with Figure (.4 (e)), where the RMS reduction is about 

57%. As the clearance continue to decrease, the effectiveness of the impact damper starts to 

decrease. For d/ox20 of 41.7 in Figure 3.4 g)) and 0i), the JMfS displacement reduction is 

about 5(% with the impact damper.

Very similar to the frequency spectra of the secondary system, Figures (.5 and (.6 

present the frequency spectra of the displacement of the primary system and the absorber 

system. For both Figure (.5 and (.6, Frames (a), (c), (e) and (g) in the first column, and 

frame (b), (d), (f) and (h) in the second column correspond to d/(Jx20 of 45.7, (0.9, 10.2 and 

4.7, which are the same cases listed in Figure (.4. Figure (.5 and Figure (.6 show that the 

addition of the impact damper to the conventional tuned absorber also helps reducing the 

displacements of the primary system and that of the absorber system. This trend is in 

agreement with the findings of the previous chapter. Comparing Figures (.5 (b), (d), (f) and 

(h) with Figures (.5 (a), (c), (e) and (g), the obtained RMS displacement reductions for the 

primary system are 6%, (0%, 56% and 55%. The RMS displacement reductions are 14%, 

(8%, 5(% and 59% for the absorber system in Figures (.6 (b), (d), (f) and (h) as compared 

with that in Figures (.6 (a), (c), (e) and (g). The vibration reduction achieved for the primary 

system is especially significant considering that the mass ratio of the primary system over the 

impact damper is approximately 400. The vibration reduction to the absorber is also useful 
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in practice at the situation where space is limited for adding an absorber on a system.

Both numerically predicted and experimentally observed RMS displacement ratios of 

the primary, secondary and tuned absorber systems are shown in Figures 3.7 (a), (b) and (c). 

Vertical axis of each frame represents the corresponding non-dimensional displacement ratio 

(°xi/°xl0 or Co/cZo or /°xz ), whereas the horizontal axes indicate the clearance non- 

dimensiona^ed with the RMS displacement of the secondary system (d/o^).

Two sets of numerical predictions are presented in this figure, considering the 

variation of the experimentally measured coefficient of restitution. Results for e=0.3 are 

shown with (o), whereas (n ) represents results for e=0.4. Experimentally measured ratios 

are marked with (*). Changing the coefficient of restitution between 0.3 and 0.4, produces 

quite insignificant differences. Generally, overall agreement between the numerical predictions 

and measurements is quite close for all three coordinates, particularly when the attenuations 

of the impact damper are most effective. This close agreement slowly deteriorates as the value 

of the non-dimensional clearance d/COo increases to values greater than 13. Here, it must be 

kept in mind that an experimental value of the non-dimensional clearance d/oz^, is varied by 

keeping the clearance constant and changing the level of excitation (whereas changing the 

clearance is a more practical approach in numerical simulations). Hence, a large d/o^ is only 

possible by lowering the level of excitation. At these low levels, it was found to be practically 

impossible to avoid the effects of small amplitude building vibrations. These structural 
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vibrations were confounded with the practical impossibility of centering the impact damper 

perfectly in its cavity. Hence, at low excitation levels, more frequent collisions were observed 

in the experiments as compared to what could be predicted in numerical simulations. As a 

result, these more frequent collisions at large d/oxM produced larger attenuations. For small 

d/Ooo experimental imperfections were largely overwhelmed by high excitation levels.

Figure 3.8 presents a set of acceleration spectra and histories for the secondary and 

the primary systems for a representative case. The non-dimensional clearance d/Ox20 in this 

case is 8.6. On the left side of Figure 3.8, frames (a) and (e) show the acceleration spectra 

of the secondary system and the primary system with the ' tuned absorber alone, whereas 

frames (c) and (g) show the corresponding spectra with the new controller for the secondary 

system and the primary system. On the right side of Figure 3.8, frames (b), (d), (f) and (h) 

present the histories of the acceleration corresponding to frames (a), (c), (e) and (f), 

respectively. Figure 3.8 indicates that the new controller is effective on reducing not only the 

displacements but also the accelerations of the system. The RMS acceleration attenuations 

are 35% for the secondary system and 21% for the primary system.

The ability of reducing the accelerations as well as displacements of the system is one 

of the advantages of the new controller over the conventional impact damper. Using the 

conventional impact damper as a vibration controller results in relatively large contact forces 

due to intermittent rigid body collisions. These collisions, when utilized properly, may control 
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the displacement excursions a resonant system effectively. However, the acceleration 

amplitudes of the system may in fact be exaggerated as a result of the contact forces [(0], 

Placing the impact damper within the absorber mass, rather than in direct contact with the 

secondary system helps alleviating this problem.

(.4 CONCLUSIONS

In this chapter, the experiments are detailed to demonstrate that using an impact 

damper as a supplementary controller for a conventional tuned vibration absorber enhances 

the vibration control significantly. The new controller, which combines an impact damper 

with a tuned absorber, is effective for both the primary system and the secondary system. For 

the experimental structure under a random white noise excitation, the best result for the 

secondary system is obtained at d/o^ =10.2 with 57% RMS displacement attenuation as 

compared with the result of the conventional tuned absorber. At the mean time, the RMS 

displacement attenuation to the primary system and the absorber system are 56% and 5(%. 

In addition to the displacement attenuation, the new controller also reduces the acceleration 

of the controlled system, which overcomes the inherent disadvantages of using the impact 

damper alone. An overall agreement between the experiment and the simulation is achieved 

with the exception of low levels of excitation. At these low levels, experimental model 

performs better than the numerical model.



CHAPTER 4

THE EFFECTS OF AN OFF-TUNED ABSORBER

ON SECONDARY STRUCTURES UNDER RANDOM EXCITATION

4.1 INTRODUCTION

In previous chapters, a new passive vibration controller combining a tuned absorber 

and an impact damper has been discussed for controlling a secondary structure under random 

excitation. In this treatment, the natural frequency of the absorber has always been assumed 

to be exactly the same as the natural frequency of the secondary system to be controlled. 

However, there might be difficulties in practice to obtain a precise tuning due to inaccuracies 

of measurement, manufacturing and assembly. In some other situations, the resonant 

frequency of the system might shift after the absorber is installed. In other words, it is 

possible that the natural frequency of the absorber is off tuned to that of the system.

Another reason for the investigation presented in this chapter, is to observe the 

possibility of improving the new controller by off-tuning its absorber. Such an observation 

may lead to a recommendation of deliberately designing an off-tuned absorber with the impact
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damper.

In this chapter, performance of an off-tuned absorber is investigated to control the 

secondary system under random excitation. The corresponding responses of the primary 

system are also presented. The investigation is conducted for the new vibration controller 

(with an impact damper and an absorber) as well as for the conventional absorber.

4.2 NUMERICAL APPROACH

The basic numerical approach used in this chapter is very similar to that in Chapter 2. 

The simulation is still based on the model illustrated in Figure 2.1. The system is configured 

as the 4DOF system discussed in previous chapters. As a quick reminder, this system consists 

of a primary system (mh cb kJ, a secondary system (m2, c2, k2), an absorber (m3, c3, k3) and 

an impact damper (mJ.

An off-tuned absorber was obtained by adjusting the stiffness of the absorber ( k3). 

The mass of the absorber ( m3) and the undamped natural frequency of the secondary system 

( f2 = (k/imj1Z2((2n) ) remained constant throughout. The natural frequency of the absorber 

(f = (k/mjjo/(2n)) was tuned to be up to 20% off the natural frequency of the secondary 

system (f2). Therefore, the tuning ratio, fyf/, ranged from 0.8 to 1.2. The natural frequency 

of the primary system (j = (k/mJ^/On) ) was taken to be identical to the natural frequency
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of the secondary system, E to represent the strongest interaction between these systems [12, 

13]. '

The investigation still concentrated on the effectiveness of the control of a light 

resonant structure. Two representative cases were studied in details, one with mass ratio 

ml/m2 = 10 and E; j = E; 2 =0, the other with mass ratio ml/m2 = 1000, E; j = 0.1 and O2 = 0. 

From previous finding in Chapter 2, these two represented the cases in which the new 

controller was most effective. A mass ratio of 0.10 was maintained between the secondary 

system and the absorber (m3/m2) and the mass ratio between the absorber and the impact 

damper ( m4/m3) was kept constant at 0.25. In addition, the absorber was taken to be 

undamped (E = 0.(0). The coefficient of restitution, e, between the impact damper and its 

container was kept to be 0.3 in this chapter. The random white noise excitation described in 

Chapter 2 was employed to excite the primary mass (m )• The critical system parameters 

investigated were the clearance between the impact damper and the container, d, the mass 

ratio between the primary system and the secondary system, m/m^ and the tuning ratio,

For comparison purposes, the dynamic model in Figure 2.1 was also configured as a 

2DOF system, only the primary and secondary systems, by simply setting k3 and c3 to be zero. 

This system represented the original uncontrolled structure, before a tuned absorber was 

introduced. Then the comparison of the effectiveness of off-tuning was made between the 

system controlled by the new controller and that controlled only by the absorber.
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4.3 NUMERICAL RESULTS

Figure 4.1 demonstrates the influence of off-tuning the absorber on the performance 

of the impact damper as part of the new controller for the case of mx/m2 =10. In this figure, 

RMS displacement ratios between the system controlled by the combined new controller and 

that controlled by an absorber alone are presented for different non-dimensional clearances, 

d/oxM In each frame of Figure 4.1, (□) represents the RMS ratio of the displacement of the 

primary system, Oxl/Oxlo. The RMS ratio of the displacement of the secondary system, 

oW°o^o> is represented by (*). Again, and represent the RMS displacements of the 

primary and secondary systems controlled by the new controller. oxl0 and 0x2O represent tire 

RMS displacements of the primary and secondary systems controlled by the conventional 

tuned absorber. Frames (a), (b), (c), (d) and (e) in Figure 4.1 correspond to the tuning ratios, 

f3/f2 of0.8, 0.9,1.0, 11 and 1.2. Where ffl.O is the same case as that discussed in Figure

2.3 (a) of Chapter 2, where the absorber is tuned to the resonant frequency of the secondary 

system.

Rather significant attenuations are suggested in Figure 4.1 due to the presence of the 

impact damper, even when the absorber is tuned 20% off the resonant frequency of the 

secondary system. From frame (a) to (e), the best RMS reductions for the secondary system 

are 55%, 77%, 79%, 67% and 75%, which are obtained at d/CO^ of3.24, 2.69, 2.72, 4.46 and 

1.10, respectively. The best RMS reductions of the primary system are 57%, 79%, 82%, 
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86% and 72%, corresponding to d/o^ of 3.24, 2.69, 2.17, 4.46 and 1.10. Comparing with 

each case, the best RMS reduction of x2 is obtained at f3/f2=l .0 and it decreases when the 

tuning is off the center. However, the best RMS reduction for Xj happens at f^/f^l. 1 and the 

attenuation decreases when f3/f2 changes from this point. Considering the secondary system 

is the major object to be protected, the best overall performance of the impact damper can be 

considered at fj/f=l.O (Figure 4.1 (c)), where the RMS reductions are 79% and 82% for x2 

and Xp Generally, off-tuning the absorber reduces the effectiveness of the impact damper.

The overall performance of the new controller and the conventional absorber to the 

off-tuning is summarized in Figure 4.2. In each frame, the horizontal axis is the tuning ratio 

f3/f2- Figure 4.2 (a) shows the performance of the conventional absorber on the secondary 

system. In this frame, the vertical axis is the RMS displacement ratio O^S^. Here, S3 is 

the RMS displacement of the secondary system of the original 2DOF system without the 

absorber. Similarly, Figure 4.2 (b) presents the performance of the conventional absorber on 

the primary system. The vertical axis in this frame is Oxl(/Sxl, where Sx1 is the RMS 

displacement of the primary system of the original 2DOF system. The overall performance 

of the new controller is demonstrated in Figure 4.2 (c) to (f) with two different approaches. 

As discussed earlier in this section, the best performance of the impact damper is obtained at 

different clearances (d/a^) for different tuning conditions. In Figure 4.2 (c), the RMS 

displacement ratio of the secondary system (o^/Sx ) is obtained by assuming that the impact 

damper works at its best clearance values for all off-tuning conditions. In other words, Figure 
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4.2 (c) shows the best results of the new controller. Figure 4.2 (d) shows the corresponding 

RMS displacement ratio of the primary system (coXi/Sxl). This approach is used to investigate 

the possibility of getting better performance from off tuning. The second approach is used 

to investigate the sensitivity of the new controller with a fixed clearance (d/c^) when the 

tuned frequency of the absorber is shifted. Therefore, in Figure 4.2 (e), the RMS 

displacement ratio of the secondary system (o^/So) is obtained by assuming the clearance of 

the impact damper (d/Goo) is fixed at 2.72 which is the best clearance for ff = 1.0 ( refer to 

Figure 4.1 (c) ). Figure 4.2 (f) shows the RMS displacement ratio of the primary system 

(oxi/Sxi) corresponding to this clearance.

In Figures 4.2 (a) and (b), the RMS ratio with the absorber alone shows large 

fluctuations. When ff changes from 0.8 to 1.2, Ouo/Su varies from 0.41 to 0.97, whereas 

oXio/SXi varies from 0.68 to 0.99. This is not surprising, considering the extreme sensitivity 

of the undamped system to any significant presence of a frequency component in the 

excitation close to a resonance frequency.

Figures 4.2 (c) and (d) show that the new controller provides much larger and stable 

reductions on the RMS displacements of the structure when working at its best clearance. 

When f/fj changes from 0.8 to 1.2, Ox2/Sx2 ranges from 0.09 to 0.(2, and O^i/Sxl ranges from 

0.14 to 0.0. Figures 4.2 (c) and (d) show very clearly that the performance of the new 

controller decreases with off-tuning. The best performance of the new controller is obtained 
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at fj/f =1.0 for both the secondary system and the primary system. Therefore, off-tuning can 

not be used to improve the performance of the new controller for this case.

With the clearance (d/ox20) fixed at 2.72, the new controller has slightly less 

performance for both the secondary and primary systems when the frequency of the absorber 

is shifted from its center. In Figures 4.2 (e) and (f), O^/S^ ranges from 0.09 to 0.43, and 

Ox1/Sxi ranges from 0.14 to 0.52, while f3/f 2 changing from 0.8 to 1.2. Within 10% of off- 

tuning range (ff = 0.9 to 1.1), oQSq variation is only about 15%, whereas Oxi/SXl variation 

is only about 5%. Comparing with the conventional absorber in Figures 4.2 (a) and (b), the 

new controller provides better RMS displacement performance, and it is less sensitive to off- 

tuning.

The effect of off-tuning on the performance of the impact damper for a large mass 

ratio (mj/nij) structure is demonstrated in Figure 4.3. This time m/nQ is set to be 1000, and 

( = 0.1 and (2 = 0. It is one of the best cases discussed in Chapter 2. In Figure 4.3 the RMS 

displacement ratio variations of the secondary system (x), Oq^/ox20, and the primary system 

(°), Oxi/cxno, are presented in an identical format to those in Figure 4.1. The horizontal axes 

are the non-dimensional clearance, d/i^o- Again, in this figure, frames (a), (b), (c), (d) and 

(e) correspond to the off-tuning ratios of 0.8, 0.9, 1.0, 1.1 and 1.2.

The primary system with 1000 mass ratio shown in Figure 4.3 has a very different 
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response to the tuning of the absorber as compared with the 10 mass ratio case in Figure 4.1. 

Due to the large mass ratio between mi and m2, the impact damper has almost no effect on 

the primary system when fj/fj changing from 0.8 to 1.1. Further simulation results show that 

both the new controller and the conventional absorber have simply no effect on the primary 

system for this case. This is due to the large mass ratio of the structure. As discussed in 

Chapter 2, when the secondary system’s mass is 1000 fold smaller than that of the primary 

system, it is virtually impossible for the primary system to be affected by changes in the 

response of the secondary system.

On the other hand, the response of the secondary system shows very similar trend to 

that of the 10 mass ratio case illustrated in Figure 4.1. From frames (a) to (e), the best RMS 

displacement reductions for the secondary system are 72%, 81%, 82%, 77% and 73%, which 

are obtained at d/ox20 of 2.82, 3.18, 2.95, 2.25, and 2.17, respectively. It is obvious that the 

impact damper is still in favor of f3/f2=1.0, at which the best RMS reduction ( 82% ) is 

obtained.

The overall performance of the new combined controller and the conventional 

absorber under off-tuning condition for the secondary system is summarized for this 1000 

mass ratio case in Figure 4.4. The comparison in Figure 4.4 is made only for the secondary 

system since both of the controllers do not have any effect on the primary system.
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In the same format as that used in the first column of Figure 4.2, Figure 4.4 (a) shows 

the RMS displacement ratio of the secondary system ( Ooo/Sa ) with the conventional 

absorber. Figure 4.4 (b) presents the RMS displacement ratio of the secondary system ( 

Oo/S*/ ) with the new controller when the impact damper is assumed working at its best 

clearances under off-tuning conditions. In Figure 4.4 (c), the RMS displacement ratio, 

<O/Ss is obtained at a fixed impact clearance. This time the clearance, d/ox2C), is set at 2.95 

which is the best clearance value for the secondary system at ff^ .0.

In Figure 4.4 (a), while f/f2 changing from 0.8 to 1.2, ox2(/Sx2 varies between 0.56 to 

0.98. At f(f=l.O, OsqSSxz is 0.78. The conventional absorber shows its best performance at 

f3(f2= 1.1 on the secondary system with OooSSo of 0.56 (about 44% total reduction).

The presence of the impact damper provides large additional attenuation to the 

secondary system. In Figure 4.4 (b), while the impact damper working at its best clearances 

within 20% off-tuning, ranges from 0.13 to 0.28, which indicates about 87 - 72% total 

reduction. However, the best RMS reduction of the secondary system is obtained still around 

fj/fj of 1.0. There is no improvement of the performance obtained when f3(f2 is off its center. 

Therefore, off-tuning the absorber is not an effective way to improve the performance of the 

new controller in this large mass ratio case either.

With the clearance (d/Ox2() fixed at 2.95, Figure 4.4 (c) is essentially very similar to 
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Figure 4.4 (b). The new controller keeps very good performance when f3/f2 shifting between 

0.8 to 1.2. It has its best performance within 10% of off-tuning range ( f3f2= 0.9 to 1.1).

4.4 CONCLUSIONS

In this chapter, the effect of tuning an absorber is investigated. Comparisons are 

presented between performances of the new controller and the conventional absorber. For 

the range of parameters investigated, the new controller shows much better performance than 

the absorber alone. Presence of the impact damper always contributes additional 

displacement attenuation to the system. However, no significant improvement has been 

observed by tuning the absorber of the new controller off the natural frequency of the 

secondary system. In addition, it has been found that the performance of the new controller 

is not a strong function of the tuning of its absorber. Especially within 10% of off-tuning, the 

new controller may be able to remain in its best effectiveness range. The insensitivity to 

absorber's frequency shifting of the new controller may be useful in applying the new 

controller for practical problems.



CHAPTER 5

EFFECTIVENESS OF THE NEW VIBRATION CONTROLLER

FOR TRANSIENT OSCILLATIONS OF SECONDARY STRUCTURES

5.1 INTRODUCTION

In this chapter, the new passive vibration controller combining a tuned absorber and 

an impact damper will be studied further for the applications of secondary structures. A 

parametric study will be presented to determine the capabilities of this new controller in 

attenuating the excessive transient vibrations of a resonant secondary structure in response 

to an initial velocity. Comparisons will be made among the new controller, the conventional 

impact damper and the conventional tuned absorber. Next, the numerical approach will be 

discussed along with the system parameters chosen for numerical simulations.

5.2 NUMERICAL APPROACH

The basic numerical approach followed in this chapter is very similar to that in Chapter 

2. Again, the attention in this chapter will be still focused on the response of the secondary 
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system. The response of the primary system will be discussed briefly. The effectiveness of 

the new vibration controller to attenuate the transient oscillations of a secondary structure will 

be investigated by comparing its response with those of: (1) the uncontrolled secondary 

structure; (2) the structure controlled by a conventional tuned absorber; (3) the structure 

controlled by an impact damper alone. The 4D0F model in Figure 2.1 was designed to be 

flexible enough to simulate the dynamic responses of these four different configurations. The 

details of the parameter setting are as following:

(1) The uncontrolled secondary structure is obtained by setting k3 and c3 in Figure 2.1 

to zero. Where mb kb C2 and m2, k2, c2 constitute the primary system and the secondary 

system.

(2) The secondary structure controlled by a conventional tuned absorber is obtained by 

choosing the clearance, d, to be very large to avoid collisions between m4 and its container. 

Here m3, k3, and c3 constitute the tuned absorber.

(3) The secondary structure controlled by a conventional impact damper is obtained by 

setting mx to be very large so that it will be virtually motionless. This time, m2, k^2 and c2 will 

represent the primary system and m^ k3 and c3 will represent the secondary system. The 

impact damper is m4.
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(4) The secondary structurecontrolled bythe new controller's the original 4DOF system.

The new controller is represented by the combination of m3, k^3, c3 and m4.

The differential equations of motion of the 4DOF oscillator have been discussed in 

Chapter 2 and will not be repeated here. In the case studies of this chapter, the external force 

F(t) in equation 1 of Chapter 2 is set to zero. A non-zero V10, initial velocity of the primary 

system, is imposed as the disturbance. All other initial conditions of the system are zero.

Similar to Chapters 2 and 4, the case studies in this chapter are performed for mass 

ratios of 10 and 1000 between the secondary and the primary systems (mj/m2). The natural 

frequency of the secondary system (^^“ and the primary system (k/m^'x are taken to be 

identical to represent the most critical case for the secondary system. The studies are 

focused on light damped resonant structures, therefore the critical damping ratios of the 

primary system, l ,, and the secondary system, E2, are set to be 0.01 and 0.0 throughout.

The absorber is tuned to the natural frequencies of the primary and the secondary 

systems and assumed undamped. That is (kj/mj)^2 = (k2/m2)V2 = (^1/m)1/2 and c3 = 0.0. The 

coefficient of restitution of the impact damper, e, will be kept at 0.3.

The ratio of the controller’s total mass over the secondary system’s mass, /zc, is kept 

constant for the three controlled configurations. For the structure controlled by the
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conventional absorber, the mass ratio /zc is equal to m3/m2- For the structure controlled by 

the conventional impact damper, the mass ratio /zc is equal to m^i^, where m becomes the 

secondary mass for this configuration. For the structure controlled by the new combined 

controller, the mass ratio /zc is taken to be (m3+m4)/m2 while maintaining m4 = 0.25

throughout.

Before performing the parametric case studies, the validity of the computer code was 

tested extensively by using previously published data [8, 10, 28], No experimental 

verification will be sought in this study, since the model presented in Figure 2.1 has been 

demonstrated to be an accurate representation of the impact process in references 8 and 28.

5.3 NUMERICAL RESULTS

Figure 5.1 shows the time histories of the secondary system (x2), for the case of mass 

ratio m/n^ =10 and 0.01, in response to an initial velocity V10 imposed on the primary 

system. Figure 5.1(a) represents the response of the uncontrolled secondary system, whereas 

Figure 5.1(b) shows the response of the system controlled by a conventional tuned absorber. 

Starting from the second row, the first column represents the representative responses of the 

system controlled by a conventional impact damper with different clearances. On the other 

hand, the second column shows the results of the system controlled by the new controller 

corresponding to the same clearances. The clearance of the impact damper is taken to be 
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non-dimensional as d^V^/mJ, where d is the absolute clearance, Vw is the initial velocity of 

the primary system and 0)d is the damped natural frequency of the SDOF primary system. 

As mentioned in previous section, the ratio of the total mass of the controller over the 

secondary system, /zc, is kept to be 0.10 for all the controlled cases in Figure 5.1.

To evaluate the performance of the three different controllers, two kinds of 

performance indicators are used, namely the maximum displacement amplitude (xm;tx) and the 

duration required for this displacement amplitude to decay to an acceptably small value. 

Although the first criterion is quite intuitive, the second requires some elaboration. Two 

different settling times are used in the studies. A 10% settling time (t10) represents the time 

required for the displacement amplitude to decay within ±10% of the uncontrolled 

displacement peak of the original 2DOF secondary structure in response to the same initial 

velocity. A 5% (t5) settling time has the same definition for ±5% of the uncontrolled peak.

As suggested in Figures 5.1(c) and (e), for the structure with mass ratio of 10 

(mj/m2=10), the response of the secondary system controlled by the conventional impact 

damper decays much faster than that of the uncontrolled secondary system. For 

d/(V1Q/(Od)=2.0 in Figure 5.1(c), the 10% settling time, ) is reduced by 65% as compared 

with the uncontrolled case in Figure 5.1(a), whereas the 5% settling time, t5> has 58% 

reduction, which are the best results in this group as far as the settling time is concerned. For 

d^Vjg/jMl.O in Figure 5.1(e), t10 and t5 reductions are 57% and 48%. In Figure 5.1(g), for 
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d/(V1(/(i)d)=6.0, the impact damper has no effect on the system, because the clearance is too 

large for the impact damper to have any collisions. Although the effectiveness of the impact 

damper is always clearance dependent, further simulation shows that for 1.0 < d/(Vlo/C0d) < 

5.8, at least 40% reduction of tw and t5 can be obtained. However, the impact damper shows 

little effect on the maximum amplitude (xJ of the system. The best reduction of x from 

the impact damper is only 12% of the uncontrolled peak, which shows in Figure 5.1(c).

Unlike the impact damper, the conventional tuned absorber (Figure 5.1(b)) does not 

reduce the settling time of the secondary system, but it reduces the maximum amplitudes 

(Xiux) by about 24%. Comparing the absorber controlled response in Figure 5.1(b) with the 

uncontrolled response in Figure 5.1(a), after 75 seconds the amplitudes of the controlled 

response are even larger than those of the uncontrolled response. The system controlled by 

the conventional absorber will need longer settling time. Hence, the classical tuned absorber 

is not at all an effective controller of transient vibrations.

The new controller as a combination of a tuned absorber and an impact damper retains 

the advantages of both of its individual components. As shown in Figures 5.1 (d), (f), (h) 

with d^VK/^d) of 2.0, 4.0 and 6.0, the responses of the ■ secondary system under the control 

of the new controller show both reduction on settling time and maximum displacement 

amplitudes. Comparing with the uncontrolled case, the t10 and t5 reductions corresponding 

to Figures 5.1(d), (f), (h) are 55%, 68%, 74% and 66%, 61%, 62%, respectively. The 
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reductions for all three cases are about 24%, which are very close to the attenuations obtained 

with the tuned absorber alone. Comparing with the conventional impact damper, the new 

controller not only provides better attenuation to xmax but also has further reduction to t10 and 

t5. In addition, the new controller works in a wider range of clearance.

The comparison between the conventional impact damper and the new controller for 

m1/m2=10, is summarized in the first column of Figure 5.3. In these figures, the horizontal 

axes represent the non-dimensional clearance while the vertical axes represent xmax

ratio (Figure 5.3(a)), t10 ratio (Figure 5.3(c)) and t5 ratio (Figure 5.3(e)) of the controlled over 

the uncontrolled response, respectively. The performance of the conventional impact damper 

is denoted by the curves with (A), and the performance of the new controller is denoted by 

the curves with (□). For the structure controlled by the conventional impact damper, when 

d/(V10/tod) increases beyond 6.0, the clearance becomes too large for the impact damper to 

establish contact. Hence, beyond the point d/(V10/o>d) of 6.0, the curves horizontal

lines with unity value. Similarly, the new controller starts working as a conventional tuned 

absorber after d/(V10/u)d) of 20.0.

In Figure 5.3(a), the system with the new controller (□) shows almost a horizontal line 

at 0.76, which indicates its stable attenuation of x^ (about 24% reduction), over a wide 

range of clearances. On the other hand, the system with the conventional impact damper (A) 

provides only small attenuations of xax (0-12%) in a smaller range of clearances. In Figures
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5.3 (c) ^d ((e), the conventional iir^jpa^c^c damper shows good attenuation ofthe settllng time 

in its effective clearance range. However, the new controller has either comparable or better 

attenuations of the settling time with wider endive clearance range.

Figure 5.2 presents the time history of the displacement of the primary system (x) for 

the case of =10 with the same format as that used in Figure 5.1. Comparing with the

uncontrolled case in Figure 5.2 (a), the case controlled by the conventional absorber in Figure 

5.2(b) shows no attenuation for sax and even longer settling time. Starting from the second 

row, Figures 5.2 (c), (e) and (f) on the left side show the effects of the conventional impact 

damper for (S(VhSu)(0 of 2.0,4.0 and 6.0, whereas Figure 5.2 (d), (f) and (h) demonstrate the 

effects of the new controller. It can be easily observed that both the conventional impact 

damper and the new controller reduce the settling time of the primary system during their 

effective clearance ranges. However, they have no efect on the maximum displacement of 

the primary system. For d/V^Wd) of 2.0 and 4.0 in Figure 5.2 (c) and (e), the conventional 

impact damper has 66% and 67% reductions for tn 51% and 43% for t5. For of

6.0 in Figure 5.2 (g) the clearance is out of the effective range of the conventional impact 

damper. Corresponding to . d/VO of 2.0, 4.0 and 6.0, the new controller has 55%, 69% 

and 82% reductions for t0, 69%, 65% and 68% for t5.

The comparison between the conventional impact damper and the new controller on 

the primary system of these 10 mass ratio cases is summarized in the second column of Figure 
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5.3. Very similar to the first column, frames (b), (d) and (f) in Figure 5.3 show the x^, t10 

and t5 ratios with different clearances d/(V10/(Dd). There are two overlapped horizontal lines 

(symbol A and □) at x^ ratio of 1.0, because there is no attenuation on x x for both 

controllers. In Figures 5.3 (d) and (f), for both tw and t5 the new controller (□) shows better 

attenuation and wider effective clearance range than the conventional impact damper does 

(A).

Figures 5.4 presents the time histories of the secondary system (x2) of m1/m2=lCOO 

and Xi = 0.01, responding to an initial velocity of the primary system. The results are 

arranged with the same format as in Figure 5.1 to compare the performance of the three 

controllers.

As shown in Figure 5.4(b), the conventional tuned absorber reduces the maximum 

displacement amplitudes of the secondary system (xJ by an impressive 74% comparing with 

the uncontrolled case in Figure 5.4(a). However, similar to Figure 5.1(b), the conventional 

absorber is relatively less effective on the settling time, producing attenuations of 34% and 

0% for tj0 and t5, respectively.

Figures 5.4 (c), (e) and (g) show the effect of the conventional impact damper on the 

displacement of the secondary system x2 for d/XVK3Dd) of 1.8, 3.6 and 25.0. In these 1000 

mass ratio cases, the impact damper provides larger reduction on the maximum displacement 
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amplitudes than that of the 10 mass ratio cases except the too large clearance case in Figure

5.4 (g). The peak displacement amplitudes also decay sooner comparing with the 

uncontrolled time history in Figure 5.4 (a). In each case with the impact damper, however, 

a relatively large amplitude residual vibrations remain for a long period of time, after the initial 

decay. Hence, t10 and ts reductions are not very impressive for most of the cases with the 

conventional impact damper.

The histories of the displacement of the secondary system (1000 mass ratio) with the 

new controller are shown in Figures 5.4(d), (f) and (h) for d/(V10/o)d) of 1.8, 3.6 and 25.0. 

The new controller provides smaller maximum displacement amplitudes and shorter settling 

time in most of the cases, than those of the conventional impact damper.

The x™ ratio, tw and t5 ratios to the uncontrolled values are demonstrated in Figures 

5.6(a), (b) and (c) for the new controller (□ ) and the conventional impact damper (A), for 

different non-dimensional clearances d/(V10/(i)d). For a wide range of clearances 

(2<d/(VK)/a)d)<27 ) the new controller has consistent attenuations to xo, t10 and t5. The 

overall best reduction for x™, tw and t5 are 74%, 69% and 43% at d/(VK/u)d)=25.0. On the 

other hand, the conventional impact damper has only slight reduction for t5 in a small 

range of clearances (1.0<d/(Vlo/(i)d)<2.0), even producing amplifications of t5 for some other 

clearances. Also, the conventional impact damper is generally less effective on x™ and tK).
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Figure 5.5 presents the time histories of the primary system for the same cases listed 

in Figure 5.4 with the same format. The responses of the primary systems controlled by the 

conventional absorber (Figure 5.5 (b)), the impact damper ( Figures 5.5 (c), (e)) and the new 

controller ( Figures 5.5 (d), (f) and (h)) are surprisingly very similar, except the response in 

Figure 5.5 (g) which is identical to the uncontrolled case in Figure 5.5 (a) since the impact 

damper is out of its working range at this clearance (d/(VK/a)d) = 25.0). On the other hand, 

it is not surprising that all the three controllers do not work well on the primary system for 

such large mass ratio cases. For all the controlled cases, and t5 remain almost unchanged

as compared with the uncontrolled values in Figure 5.5 (a). The systems controlled by the 

conventional absorber ( Figure 5.5 (b)) and the impact damper (Figures 5.5 (c), (e)) have 

about 80% longer tw, while those controlled by the new controller ( Figures 5.5 (d), (f) and 

(h) ) have 110% increase in tw. For both the conventional impact damper and the new 

controller, changing the clearance d/(V1(0/(/i)d) makes almost no difference on their 

performance. Therefore, the xx ratio, t10 and t/ ratios versus d/(V10/o0d) would be almost 

horizontal lines if they were plotted.

Generally, for a system with a mass ratio (m1/m/) as large as 1000, all the controllers 

which has been discussed (including the new controller) have no effect on the maximum 

displacement on the primary system, and they make the primary system need longer time to 

settle down. This drawback shows the limitation Of these passive controllers for this large 

mass ratio case. But this does not offset the impressive positive effect of the new controller 
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on the secondary system which is the major object to be protected.

Comparing the 10 mass ratio structure with the 1000 mass ratio structure, as far as 

the secondary system is concerned, the first one has better settling time attenuation with both 

the conventional impact damper and the new controller, and the second one has better 

maximum amplitude reduction. It is found that the impact damper is more effective on 

reducing settling time for small mi/m2 ratio, and it is more effective on reducing the maximum 

displacement amplitudes for large m/m,. For the primary system, both the conventional 

impact damper and the new controller work better for small ratio.

5.4 CONCLUSIONS

In this chapter, the effectiveness of the new passive vibration controller combined with 

a tuned absorber and an impact damper to the secondary structures under transient vibration 

is investigated and compared with that of the conventional tuned absorber and the 

conventional impact damper.

The investigation is focused on protecting the secondary system (m2, k2, and c2) from 

excessive vibration. It has been found that the conventional tuned absorber mostly 

contributes to the attenuation of the maximum displacement amplitudes of the secondary 

system (xj), it has less effect on the settling time. Generally, the conventional impact damper 
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can be effective on both the maximum displacement amplitudes and the settling time, but the 

effectiveness is limited on the maximum displacement amplitudes for a system with small 

m(/m2 ratio, and it is also limited on the settling time for a system with large m2m2 ratio.

As a combination of a tuned absorber and an impact damper, the new controller takes 

the advantageous features of both the conventional tuned absorber and the impact damper, 

and it produces larger attenuations for both the maximum displacement amplitudes and the 

settling times on the secondary system as compared to those of its individual components. 

As the indirect application of the impact damper, the new controller works effectively in a 

wider range of clearances than the conventional impact damper. Generally, the maximum 

amplitudes of the secondary system with the new controller are largely determined by the 

absorber and have little change with the clearance variation. On the other hand, the settling 

time is mostly determined by the impact damper. Settling time is more sensitive to the 

clearance variation than the maximum displacement.

For the structure with m/im2=10, the new combined controller also provides the best 

vibration attenuation on the primary system comparing with the conventional impact damper 

and the conventional tuned absorber. However, for the structure with a mass ratio as large 

as 1000, the primary system controlled by any of the three controllers requires longer settling 

time as compared with the uncontrolled system.



CHAPTER 6

CONCLUSIONS

In this study, a new passive vibration controller which combines a tuned absorber and 

an impact damper was investigated for controlling the vibrations of light secondary structures. 

A series of parametric studies were conducted by computer simulation. Experiments were 

performed along with numerical predictions. Most of the studies were based on random 

excitation. Some representative transient vibration cases were also investigated. Following 

are the major conclusions of this study.

For a light secondary structure under random vibration, adding an impact damper on 

the conventional tuned absorber may provide significant improvements in controlling the 

excessive vibrations of the secondary system as well as those of the primary system. In 

addition, the displacement of the absorber itself as part of the new controller is smaller than 

that of the absorber when working alone.

When the mass ratio between the primary system and the secondary system (m/mj) 

is 10, the impact damper as part of the new controller is most effective for system with

54
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minimal damping. RMS displacement attenuations in the order of 80% based on the 

effectiveness of a conventional absorber are possible in the responses of the secondary, the 

primary, and the tuned absorber systems. This indirect benefit of controlling the primary 

system through the controlled response of the secondary system, may prove particularly 

useful for practical applications.

For the structures with m1/m2=1000, the impact damper as part of the controller is 

most effective when primary system has at least 5% critical damping. The impact damper can 

provide about 80% further RMS displacement attenuation for both the secondary and the 

tuned absorber systems. No control is attainable for the primary system due to its large 

inertia.

For the experimental structure (mxXm2=10, £ =0.0053, 0=0-0026) under a random 

white noise excitation, the best result for the secondary system was measured at d/Qoo =10.2 

with 57% RMS displacement attenuation as compared with the result of the conventional 

tuned absorber, whereas the RMS displacement attenuations to the primary system and the 

absorber system are 56% and 53%.

Tuning the natural frequency of the absorber off the natural frequency of the 

secondary system to be controlled is found to be ineffective to further improve the 

performance of the new controller. Keeping the absorber within 10% off-tuning (f3/f2 
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ranging from 0.9 to 1.1) will ensure that the new controller works in its most effective range

For secondary structures under transient vibration, the new controller takes the 

advantageous features of both the conventional tuned absorber and the impact damper. It 

produces larger attenuations, for both the maximum displacement amplitudes and the settling 

times on the secondary system, than those of the two conventional controllers when they are 

used individually. In addition, as the indirect application of the impact damper, the new 

controller works effectively in a wider range of clearances than the conventional impact 

damper does.

For transient vibrations, the new controller also provides large vibration attenuation 

to the primary system with m(/m2=10, as it does to the secondary system. For the primary 

system with m1/m2=1000, the new controller has no effect on the maximum displacement and 

some negative effect on the settling time though its performance on the secondary system is 

quite impressive.
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Figure 2.1 The Four Degree-Of-Freedom model to represent a secondary structure
controlled by a tuned absorber and an impact damper.
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Figure 2.2 Variation of IMIS displacement ratios of the secondary structure with
clearance for e=0.3 (■) and e=0.8 (□) and

for mj/m2 = 1 
for mj/m2 =10 
for mt/m2 =100 
for mj/m2 = 1000

(a) $,=0,001, (b) $,=0.01, (c) $,=0.05;
(d) $,=0.001, (e) $,=0.01, (f) $,=0.05;
(g) $,=0,001, (h) $,=0.01, (i) $,=0.05;
Q) $,=0,001, (k) $,=0.01, (1) $,=0.05.
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Figure 2.3 Variation of MIS displacement ratios of the primary system (□),secondaiy
system (*) and the absorber (A) for e=0.3 and for mj/m2=10 and (a) £=0, (b) £==).001, 
(c) £f=0.01, (d) ^=0.05 and (e) ^^.W.
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Figure 2.4 Variation of RMS displacement ratios of the primary system (□),secondary
system (*) and the absorber (A) for e=0.3 and for m/m2=1000 and (a) £=0, (b) £=0 001
(c) £==0.01, (d) £f=0.05 and (e) £,=0.10. * ’ ' ' " ’
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Figure 2.5 Time History of the primary (— ), secondary ( — ) and absorber ( — )
displacement for the system controlled by (a) the absorber alone, (b) the new controller at
d/ax20=2.17. mj/mj = 10 and Ej = 0.
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Figure 2.6 Time History of the primary ( — ), secondary (— ) and absorber ( -— )
displacement for the system controlled by (a) the absorber alone, (b) the new controller at
d/Ox2o= 2.95. m./m2 = 1000 and ^=0.10.



69

Figure 2.7 Variation of FFT of the displacement of the secondary system with time for
the system controlled by (a) the absorber alone, (b) the new controller at d/o^ = 2.17. m/im
= 10 and £i = 0.
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Figure 2.8 Variation of FFT of the displacement of the secondary system with time for
the system controlled by (a) the absorber alone, (b) the new controller at d/co^ = 2.95. m/ir^
= 1000 and = 0.10.
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Figure 2.9 Variation of (si) FFT and (b) probabiiiry distribution of the displacement of
the secondary system with clearance. m/m^W and
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Figure 2.10 Variation of (a) FFT and (b) probability distribution of the displacement of 
the secondary system with clearance. m1/m2=1000 and ^=0.10.
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Figure 2.11 History of the input energy to the primary system, dissipated energy and
net energy for m1/m2=10 and Oi=0.
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Figure 2.12 History of the input energy to the primary system, dissipated energy and
net energy for m1/m2=1000 and £=0.10.



75

Figure 2.13 History of the input energy to the secondary system, dissipated energy and
net energy for m1/m2=1000 and ^=0.10.
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Figure 3.1 Schematic drawing of the experimental structure.
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Figure 3.2 Experimental setup and instrumentation.
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Figure 3.3 Frequency spectrum of the moving coil of the magnetic shaker.
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Figure 3.4 Displacement spectra of the secondary system controlled by the conventional
absorber (the first column) and the new controller (the second column) for d/axM of (a), (b)
45.7; (c), (d) 30.9; (e), (f) 10.2; and (g), (h) 4.7.
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Figure 3.5 Displacement spectra of the primary system controlled by the conventional
absorber (the first column) and the new controller (the second column) for d/o^ of (a), (b)
45.7; (c), (d) 30.9; (e\ (f) 10.2; and (g) (h) 4.7.
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Figure 3.6 Displacement spectra of the absorber system when it works alone (the first
column) and when it works as part of the new controller ( the second column) for d/o^o of
(a), (b) 45.7; (c), (d) 30.9; (e), (f) 10.2; and (g), (h) 4.7.
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Figure 3.7 RMS displacement variation of: (o) the simulation results of e=0.3, (□) the 
simulation results of e=0.4; and (A) the experiment results for (a) the primary system 
(oxl/oxl0); (b) the secondary system (c) the absorber (Oo/Ooo) versus the non-
dimensional clearance do.
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Figure 3.8 Acceleration spectra (the first column) and the corresponding time histories
(the second column) for d/OX20=8-6. (a), (b): The secondary system with the absorbe!"; (c),
(d): the secondary system with the new controller; (e), (f): the primary system with the
absorber; (g), (h) the primary system with the new controller.
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Figure 4.1 variation of the RMS displacement ratios (Ox/oxq) of the primary system 
(□) and the secondary system (x) versus the non-dimensional clearance (d/ax20) for the 
cases of ml/m2==ia, £=£,=0.0 and the off-tuning ratio (fff of (a) 0.8; (b) 0.9; (c) 1.0, (d) 
1.1 and (e) 1.2.
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Figure 4.2 RMS displacement ratios of the secondary system (the first column) and
the corresponding primary system (the second column) versus the off-tuning ratio (f3/f2)
for the case of m1/m2=10, (a) and (b): system controlled by absorber alone; (c)
and (d): system controlled by new controller working at the best clearances; (e) and (f):
system controlled by new controller working at a fixed clearance (d/ox20==272).
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Figure 4.3 Variation of the RMS displacement ratios (ox/oxq) of the primary system 
(□) and the secondary system (*) versus the non-dimensional clearance (d/o^) for the 
cases of m1/m2=1000, ^=0.10, E>2=0.0 and the off-tuning ratio (f3/f2) of (a) 0.8, (b) 0.9; (c) 
1.0; (d) 1.1 and(e) 1.2.
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Figure 4.4 RMS displacement ratios of the secondary system versus the off-tuning
ratio (f3/f2) for the case of m1/m2=1000, ^=0.10, £2=0.0. (a) : system controlled by 
absorber alone; (b): system controlled by new controller working at the best clearances; 
(c): system controlled by new controller working at a fixed clearance (d/CJx20=2.95).
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Figure 5.1 Time histories of the secondary system for the structure with m1/m2=10,
^=0.01, and ^2=0, while the structure is (a): uncontrolled; (b): controlled by absorber
alone; (c), (e) and (g): controlled by impact damper with i of 2.0, 4.0 and 6.0;
(d), (f) and (h): controlled by new controller with d/(vl0/w^) of 2.0, 4.0 and 6.0.
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Figure 5.2 Time histories of the primary system for the structure with m/m^lO, E, =
0.01, and £2=0, while the structure is (a): uncontrolled; (b): controlled by absorber alone,
(c), (e) and (g): controlled by impact damper with d/fy/a) of 2.0, 4.0 and 6.0; (d), (f)
and (h): controlled by new controller with d/(Vio/a)d) of 2.0, 4.0 and 6.0.
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Figure 5.3 Comparison of (a), (b): the maximum displacement ratio; (c), (d): 10% 
settling time ratio; (e) (f): 5% settling time ratio between the structure controlled by the 
new controller (□) and that controlled by the conventional impact damper (A) versus the 
non-dimensional clearance d/(vip/u)d) for the case of mi/m2=10, ^=0.01 and £,=0. The first 
column is the secondary system, and the second column is the primary system.



91

Figure 5.4 Time histories of the secondary system for the stnicture with m^nirlOOO,
V=^0.01, and £>==0, while ihe structure is (a): unctnirflled;(b): controlled by absorber
alone; (c), (e) and (g): controlled by impact damper with d/(v1(/w) of 1-8, 3.6, and 25.0;
(d), (f) and (h): control by new controUer whh d/fo^u^) of 1.8, 3.6 and 25.0.



92

Figure 5.5 Time histories of the primary system for the stnicture with mi/m2=lOOO,
= 0.01, and ^=0, while the structure is (a): uncontrolled; (b): controlled by absorber
alone, (c), (e) and (g): controlled by impact damper with d/(v10/wd) of 1.8, 3.6 and 25.0;
(d), (f) and (h): control^ by new controUer whh dAy^oJ of I.8, 3.6 and 25.0.
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Figure 5.6 Comparison of (a): the maximum displacement ratio; (b): 10% settling 
time ratio; (c): 5% settling time ratio of the secondary system between the structure 
controlled by the new controller (□) and that controlled by the conventional impact 
damper (A) versus the non dimensional clearance d/Cv^o^) for the case of =1000, 
£==0.01 and E,2=0.0.



APPENDIX

THE PROGRAM USED FOR THE NUMERICAL STUDIES

1. PROGRAM LIST

PROGRAM FOUR

C THIS FORTRAN PROGFAM IS DESIGNED TO SOLVE THE COUPLED 
C SYSTEM OF EQUATIONS FOR A 3DOF SYSTEM WITH AN IMPACT1 
C DAMPER USING A FOURTH ORDER RUNGE-KUTTA METHOD.
C ml : prim ay mass
C m2 : seconday mass
C m3 : mass of the vibration absorber
C m4 : mass of the impact damper (interacting with m3)
C k1 : primary stiffness
C k2 : seconday stiffness
C k3 : stiffness of the vibration absorber
C k4 : optional stiffness of the vibration absorber
C b : distance from centre of impact damper to the left wall
C c : distance from centre of impact damper to the right wall
C c1 : viscous damping coefficient for the primary system
C c2 : viscous damping coefficient of the secondary system
C c3 : viscous damping coefficient of the vibration absorber
C c4 ; optional viscous damping coefficient of the vibration absorber
C d : diameter of spherical impact damper
C e : coefficient of restitution
C TO : time
C Ttotal : total time
C h : time step of integration
C K1Z1...K4X3 : coefficients needed for integration
C SIDE : variable to flag impact - rightlleft indicator
C X1 ,Z1 : displacement and the velocity ft the primay system
C (at t = TO + H )
C X2,Z2 : displacement and the velocrty of the seconday syseem
C (at t = TO + H)
C X3,Z3 : dssplacement and toe vetocy of toe vibaaflon absorber
C (at t = TO + H )

'Refer to Figure 2.1 for the mathematical model and variables.

94



95

C X10.Z10 : initial conditions at t = TO
C X20.Z20 : initial conditions at t = TO
C X30,Z30 : initial conditions at t = TO
C
C FORCEOFORC): VECTOR CONTAINING THE RANDOM FORCE
C READ FROM AN INPUT DATA FILE FFORCE
C
C OPTION ADDED FOR CHATTER DETECTION. IF THERE ARE > 20
C COLLISIONS DETECTED DURING THE LAST TIME INCREMENT 'H' THE
C EXECUTION IS TERMINATED THROUGH CCOUNT AND DCOUNT.
C
C declare variable status
C

IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 M1,M2,M3,M4,K1,K2,K3,K4
INTEGER CCOUNT.DCOUNT
DIMENSION FORCE(20000)
CHARACTER*20 FILE1,FILE2,FFORCE
CHARACTER'S SIDE
COMMON FORCE, IFORC
COMMON FOLD,FNEW,FNOW
COMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3
COMMON RMSF,RMSA1,RMSA2
COMMON RMSX4,RMSV4,RMSA3,XMAX4
COMMON XMAX1,XMAX2,XMAX3,XMAXF

C
C INITIALIZE THE COUNTER TO DETERMINE THE # OF IMP ACTS IN ONE
C TIME STEP
C COUNT=0
C

WRITE(*,'(A)') ' ENTER THE NAME OF THE INPUT DATA FILE 
READ(*,'(A)') FILE1

C
C set the output option
C

WRITE(*,'(A)')' ENTER 1 FOR SCREEN OUTPUT
$' ENTER 2 FOR SAVING THE OUTPUT IN A DATA FILE
READ(*,'(I1)') IOUT
IF(IOUT.EQ,2) THEN
WRITER,'(A)') ' ENTER THE NAME OF THE OUTPUT DATA FILE 
READ(*,'(A)') FILE2
OPEN(6,FILE=FILE2,STATUS='new')
END IF

C
C read in parameters from data file
CQ*********************
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IMASS=1
id=O

9 COMTINUE
OPEN(5,FILE=FILE1 ,STATES=,old')

READ(5,10)FFORCE,M1,M2,M3,C1,C2,C3,C4,K1,K2,K3,K4,TO,H,TTOTAL, 
$X10, Z10, XO, Z20, X30, Z30, e, dmin, dmax, dinc , m4
READ(5,,(I2),) IPRITTJFORCE

10 FORMAT(A,/,(e14.7))
CLOSE (5)
if(dmin.lt.O.O) id=1

C IF(IFORCE.NE.O) OPEN(7,FILE=FFORCE,STATES='OLD')
c
Q*********************
c
c INCREMENT FOR DIFFERENT MASS RATIOS FROM 1 TO 1000 IN
C FOUR STEPS :

M1=M1*10**(IMASS-1)
K1=K1*10**(IMASS-1)
C1=C1‘10**(IMASS-1)

IF(IMASS.EQ.1.ATD.ID.EQ.1) THEN
DMINu1000.0
DMZAK700.0
DITC=50.0

ELSE IF(IMASS.EQ.2.ATD.ID.EQ.1) THEN
DMIN=1000.0
DMAX= 120.0
D1NC=1O.O

ELSE IF(IMASS.EQ.3.ATD.ID.EQ.1) THET
DMIN=1000.0
DMAX=25.0

ELSE IF(ID.EQ.I) THET
DM IN=1000.0
DMMAX5.00
DITC=0.25
ETD IF

Q****************************************************

c
C echo input
Write(61,(a,2x,e14.7)'),m1\m1,,m2\m2;m3\m3,,k1',k1,,k2,,k2,

AIVUAAW-U.A
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$,k3,,k3,,W,l^^^,,c^'l,c^1,,c2\(2^z^,,(c^'ic3i,c4,lc4,2t0,,t0,'ttotari 
$ttotal,'H (,h,2x10\x10;x20\x20;v10\z10/v20\z20,■x30'1x30, 
$(v30',z30,'e '.e/dia'.d/c '.c.'b ’^>4 ',m4 
write(6,'(a,i2)') 'IPRINT ’.iprint.'IFORCE '.iforce 
IF(IPRINT.EQ.1.OR.IPRINT.EQ.2) THEN 
WRITE(6,XA,A)')

$' t xl x2',
$' x3 x4 v4 F(t)' 

WRITE(6,'(A,A)')(ht _ 1
END IF

C set the values of d,c and b for the desired clearance
d=0.05

11 b=dmin/2.0+d/2.0 
c=dmin/2.0+d/2.0

C
C open the data file to input the random force 
IF(IFORCE.NE.O) OPEN(7,FILE=FFORCE,STATUS='OLD')  
C
C set initial conditions of impact damper to x=0, z=0 

Z4=0.0
X40=0.0
TINC=H
HOLD=H
IFLAG=0
SIDE- '
IFORC=1
FOLD=0.0
FNOW=0.0
FNEW=0.0
RMSX1=0.0
RMSV1=0.0
RMSX2=0.0
RMSV2=0.0
RMSX3=0.0
RMSV3=0.0
RMSX4=0.0
RMSV4=0.0
RMSF =0.0
RMSA1=0.0
RMSA2=0.0
RMSA3=0.0
XMAX1=0.0
XMAX2=0.0
XMAX3=0.0
XMAK4=0.0
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XM/AXF=0.0
15 CONTINUE
C
C Accelerations
A10=F1 (M1, K1 ,K2,C1 ,C2,T0,Z101X10,Z20,X20, 

$4,IFLAG,TINC,H,IFORCE) 
A20=F3(M2, K2,K3,C2,C3,T0,Z10,X10,Z20,X20,Z30,X30, 
$4,IFLAG,TINC,H,IFORCE)
A30=F5(M3,K3,K4,C3,C4,T0,Z20,X201Z30,X30,
$4,IFLAG,TINC,H,IFORCE)

C
C output

CALL PRINTCTO.HOLD.XIQ.zlO.alO.XCO.zZO^O.xSO.zSO.aSO.x^.Z^  
$SIDE,IPRINT,IFORCE)
IF(SIDE.NE.'') SIDE- '

C
C call solution routine for next time step (t=T0+H)
20 CALL RK4(M1lM2lM3,C1,C2,C3,C4,K1,K2,K3lK4J0,H,Z10,X10,Z20,X20, 

$Z30,X30,Z1 ,X1 ,Z2,X21Z3,X3,IFLAG,TINC,IFORCE)
C
C check for u^fpact damper (through m4)
IF(M4.LE.Q.Q) GO TO 21

X4=X40+Z4*H
C
C check for impact on left wall
IF((B-D/2)+(X4-XO).LT.Q.O.GND.IFLAG.NE.1) THEN

IFLAG=1
SIDE-L'
H=H/2.0
START=0.0
FINISH=H
GO TO 20

END IF
C
C check for impact on right wall
IF((C-D/2)+(XO-X4).LT.Q.Q.AND.IFLGG.NE.1) THEN

IFLAG=1
SIDE='R'
H=H/2.0
START=0.0
FINISH=H
GO TO 20

END IF
C
C check for convergence of a collision if the two masses are located to be 0.00001*D, 
C assume that the contact has established
IF(lf^LLGG^C^.I) THEN
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IF( (DABS((B-D/2)+(X4-X3)).LE.0.00001*D) .OR.
+ (DABS((C-D/2)+(X3-X4)).LE.0.00001*D) ) THEN

C
C The next 3 statements determine the velocities of the vibration
C absorber [Z3] and of the impact damper [Z4]. The dummy variable,
C [ZZ2] is only an intermediate variable because the velocity of the
C vibration absorber before the impact is required to determine the 
C mass of the impact damper.
C
C the following conditions are obtained from the conservation of
C linear momentum and the coefficient of restitution.

ZZ2=(M4*Z4+M3*Z3-M4*E*(Z3-Z4))/(M3+M4) 
Z4=E*(Z3-Z4)+ZZ2
Z3=ZZ2

C
C CHECK FOR CHATTER. IF FOUND, GO TO SUBROUTINE CARRY 

CCOUNT=CCOUNT+1
IF(CCOUNT-DCOUNT.GT.20) GO TO 23
T0=T0+H 
HOLD=H 
H=TINC-H 
IFLAG=2 
GO TO 22 

END IF
END IF

C
C call bisect to determine impact instant, if convergence has not been satisfied yet 

IF(IFU\G.EQ.1.AND.SIDE.EQ.'L') THEN
CALL BISECT(START,FINISH,H,(B-D/2)+(X4-X3),-1) 
GO TO 20

END IF
C

nF(O^lU^G^JE^C^.1.^l^l^..3II^I^.I^<Q.'R') THEN
CALL BISECT(START,FINISH,H,(C-D/2)+(X3-X4),-1) 
GO TO 20

END IF
C
C increment time
21 T0=T0+H
IF(IFLAG.EQ.O) HOLD=H 

DCOUNT=CCOUNT
C RESTORE THE CONTROL PARAMETERS AFTER COMPLEMENTING THE 
C FULL STEP

IF(IFIlAG.EQ.2) THEN
HOLD=H
H=TINC
IFLAG=0
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END IF
C
22 Z10=Z1

X10=X1
Z20=Z2
X20=X2
Z30=Z3
X30=X3
X40=X4

C
IF(TO.LT.TTOTAL) GO TO 15
GO TO 25

23 CONTINUE
C
C 20 COLLISIONS HAVE BEEN DETECTED WITHIN ONE TIME STEP.
C THIS SITUATION IS INTERPRETED TO BE "CHATTER"
C THIS SECTION OF THE PROGFAM ASSUMES THAT THE IMPACT DAMPER 
C m4 AND MASS m3 WOULD WANT TO MOVE TOGETHER.

CALL CARRY(M1,M2,M3,M4,K1,K2,K3,K4,01^2,03^4,TO,H,TINC,X1,Z1,
$X2,Z2|X3|Z3|SIDE|B,C|D|IPRINT1IFORCE)
Z4=Z3

C
IF(SIDE.EQ.'L') THEN

X4=X3-B+D/2
ELSE

X4=X3+C-D/2
END IF

C
T0=T0+H
HOLD=H
H=TINC-H
IFLAG=2
GO TO 22

25 continue
close(7)

write(6,'(a,e14.7)')
$'d1 = '.(b+c-d),
$'x1 = ',sqrt(RMSX1),,v1 = ',sqrt(RMSV1),'a1 = '|Sqrt(RMSA1)|
$'x2 = ,,sqrttRMSX2),'v2 = ',sq^t(RMSV2)|'a2 = ',sqrt(RMSA2),
$'x3 = ',sqrt(RMSX3),'v3 = ',sqrt(RMSV3)|'a3 = (,sqrt(RMqA3),
$'x4 = |,sqrt(RMSX4)1,v4 = '1sqrt(RMSV4),'f1 = ,|Srrt(RMSF)|
$'X1 = ^XMAX,^ = ,,XMAX2,'X3 = ^AX^X = ||XMAX4|
$'F1 = '.XMAXF

C
WRITE(6,'(a)')

C
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if(dmin.lt.dmax) then
dmin=dmin+dinc

to=o.o
x10=0.0
o10=0.0
x20=0.0
o20=0.0
x00=0.0
030=0.0
h=tinc
go to 11

end if

c
C INCREMENT FOR THE MASS RATIO IN FOUR STEPS
IMASS = IMASS+1

IF(IMASS.LT.5.GND.ID.EQ.1) GO TO 9

STOP
END

C
0=============================================================

SUBROUTINE CGRRY(M1,M2,M3IM4,K1 ,O2,O3,K4I111,C21C3,04,TO,H,TINC, 
$X1 ,Z1 ,X2,Z2,X3,Z3,SIDE,B,C,D,IPRINT,IFORCE)

C
IMPLICIT REAL‘8 (A-H.O-Z)
REAL*8 M1,M2,M3,M4,K1,K2,K3,K4
CHARACTER'S SIDE
COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOLD,FNEW,FNOW
COMMON RMSX1 .RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3
COMMON RMSF^MSA^RMSAZ
COMMON RMSX4,RMSV4,RMSA3,XMAX4
COMMON XMAX1 ,XMGX2,XMGXO,XMAXF

C
IF(SIDE.EQ.'L') THEN

X4=X3-B+D/2
ELSE

X4=X3+C-D/2
END IF

C
OLDMO=MO
MO=MO+M4
IFLAG=2
T0=T0+H
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HOLD=H
C
C COMPLEMENT THE TIME STEP COMING FROM CHATTER
C

IDUMMY=T0/TINC
H=(IDUMMY+1)*TINC-T0

Z10=Z1
X10=X1
Z20=Z2
X20=X2
Z30=Z3
X30=X3

5 continue
C
C EVALUATE THE ACCELERATION
A10=F1(M1,K1,k2>,C1,C2,T0,Z10,X10,Z20,X20, 

$4,IFLAG,TINC,H,IFORCE)
A20=F3(M2,K2,K3,C2,C2,T0,Z10,X10,Z20,X20,Z30,X30| 
$4,IFUAG,TINC,H,IFORCE)
A30=F5(M3,K31K4|C31C4,T0,Z20,X20,Z30,X30| 
$4|IFLAG1TTNC1H,IFORCE)

C
CALL PRlNT(T0|HOLD,X10,z10,a10|X20|Z20,a20,X30,z30,300,x4,Z30, 

$SIDE|IPRINT|IFORCE)
C
C SOLVE FOR TO+H
10 CALL RK4(Ml,M2,M3|Cl,C2,C3,C4,K1,22,K2,K4,T0,H,Zl0,Xl0,Z20,X20, 

$Z30|X30|Z1 |X1 02,0273,X3,IFGF,TINC, IFORCE) 
ACCEL=F5(M3,K3,K4,C3,C4.T0+H,Z2|X2O31X3,
$4|IFLAG |TINC|H ,IFORCE)

C
C CALCULATE THE POSITION OF THE IMPACT DAMPER : 

IF(SIDE.EQ.'L') THEN
X4=X3-B+D/2

ELSE
X4=X3+C-D/2

END IF
C
C CHECK FOR SEPARATION

IF(SIDE.EQ.'L’) THEN 
IF(ACCEL.LT.0.0.AND.IFLAG.NE.1) THEN

IFLAG=1
H=H*ABS(A30)/(ABS(A30)+ABS(ACCEL)) 
START=0.0
FINISH=H
GO TO 10

END IF
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ELSE
IF(ACCEL.GT.O.O.AND.IFU\G.NE.1) THEN

IFLAG=1
H=H*ABS(A30)/(ABS(A30)+ABS(ACCEL))
START=0.0
FINISH=H
GO TO 10

END IF
END IF

C
IF(IFIl\G.NE,1) GOTO 15 *
C

IF(DABS(ACCEL).LE.0.000001) GO TO 20
C

IF(SIDEiEQi’L’) THEN
CALL BISECT(START,FINISH,H,ACCEL,-1)
GOTO 10

ELSE
CALL BISECT(START1FINISH,H,ACCEL,1)
GO TO 10

END IF
C
15 T0=T0+H

IF(IFLAGiEQ.O) HOLD=H
IF(IFLAG.EQ.2) THEN

HOLD=H
H=TINC
IFLAG=0

END IF
C

Z10=Z1
X10=X1
Z20=Z2
X20=X2
Z30=Z3
X30=X3
GO TO 5

C
20 M3=OLDM3

C
RETURN
END

C
0=============================================================

SUBROUTINE RK4(M1,M2,M3,C1,C2iC3iC4iK1iK2iK3iK4iT0iHiZ10,X10,
$Z20iX20iZ30,X30,Z1 ,X1 iZ2iX2iZ3iX3iIFLAGiTINCJFORCE)

C
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IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 M1,M2,M3,K1,K2,K3,K4
REAL*8 K1Z1.K1X1, K1Z2, K1X2, K1Z3, K1X3, K2Z1, K2X1,K2Z2,K2X2,K2Z3, 

$K2X3, K3Z1 , K3X1, K3Z2,K3X2,K3Z3, K3X3, K4Z1, K4X1, K4Z2, K4X2, K4Z3, K4X3 
COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOLD,FNEW,FNOW
COMMON RMSX1|RMSV1,RMSX2|RMSV2,RMSX3|RMSV3
COMMON RMSF,RMSA1,RMSA2
COMMON RMSX4,RMSV4,RMSA3,XMAX4
COMMON XMAX1 ,XMAX2,XMAX3,XMAXF -

C
C fourth order runge kutta integration subroutine
C statements (200 - 300)
C
200 CONTINUE

C
K1Z1=F1(M1,K1lIK>,C1lC2,T0,Z10,X10,Z20,X20,

$1 JFLAG.TINC.HJFORCE)
K1X1=F2(Z10) 
k1Z2=F3(M2,,K,K:^,(^i^,<^3,Tl3|Z10|X10|Z20,X20,Z30|X30,

$1 JFLAG.TINC.HJFORCE)
K1X2=F4(Z20)
K1Z3=F5(M3, K3, K4, C3, C4,T0 ,Z20,X20|Z30|X30, 

$1|IFLAG,TINC|H|IFORCE)
K1X3=F6(Z30)

C
K2Z1=F1 (M1 ,K1 ,K2|C1 ,C2iT0+H/2.0iZ10+H/2.0*K1Z1, 

$X10+H/2.0*K1X1,Z20+H/2.0*K1Z2,X20+H/2.0*K1X2| 
$2|IFLAG,TINC|HJFORCE)
K2X1=F2(Z10+H/2.0*K1Z1)
K2Z2=F3(M2,K>,K3,C21C3,T0+H/2.0|Z10+H/2.0*K1Z1 , 

$X10+H/2.0*K1X1iZ20+H/2.0*K1Z2|X20+H/2.0*K1X2, 
$Z30+H/2.0*K1Z3,X30+H/2.0*K1X3,
$2|IFLA3,TINC,H,IFORCE)
K2X2=F4(Z20+H/2.0*K1Z2)
K2Z3=55(M3,K3|K4|C3|C41T0+H/2.0|Z20+H/2.0*K1Z2, 

$X20+H/2.0*K1X2,Z30+H/2.0*K1Z3,X30+H/2.0*K1X3 , 
$2,IFLAG|T|NC,H||FORCE)
K2X3=F6(Z30+H/2.0*K1Z3)

C
K3Z1=F1 (M1 ,K1 ,K2|C1 |C2|T0+H/2.0,Z10+H/2.0*K2Z1, 

$X10+H/2.0*K2X1|Z20+H/2.0*K2Z2|X20+H/2.0*K2X2i 
$3,IFLAG,TINC|H|IFORCE)
K3X1=F2(Z10+H/2.0*K2Z1)
K3Z2=F3(M2|K2|K3,C2|C3|T0+H/2.0,Z10+H/2.0*K2Z1, 

$X10+H/2.0*K2X1,Z20+H/2.0*K?Z2,X20+H/2.0*K2X2,
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$Z30+H/2.0*K2Z3,X30+H/2.0*K2X3,
$3 ,IFLAG, TINC, H, IFORCE)
K3X2=F4(Z20+H/2.0*K2Z2)
K3Z3=F5(M3,K3,K4,C3,C4,T0+H/2.0,Z20+H/2.0*K2Z2,

$X20+H/2.0*K2X2 , Z30+H/2.0*K2Z3 ,X30+H/2.0*K2X3 ,
$3 ,IFLAG, TINC, H, IFORCE)
K3X3=F6(Z30+H/2.0*K2Z3)

C
K4Z1=F1 (M1, K1, K2.C1 ,C2,T0+H,Z10+H*K3Z1,

$X10+H*K3X1 ,Z20+H*K3Z2,X20+H*K3X2,
$4,IFLAG,TINC,H,IFORCE)
K4X1=F2(Z10+H*K3Z1)
K4Z2=F3(M2, K2, K3, C2 , C3 ,T0+H ,Z10+H*K3Z1, 

$X10+H*K3X1,Z20+H*K3Z2,X20+H*K3X2, 
$Z30+H*K3Z3,X30+H*K3X3,
$4,IFLAG, TINC, H, IFORCE)
K4X2=F4(Z20+H*K3Z2)
K4Z3=F5(M3,K3,K4,C3,C4,T0+H,Z20+H*K3Z2, 

$X20+H*K3X2,Z30+H*K3Z3,X30+H*K3X3,
$4,IFLAG,TINC,H,IFORCE)
K4X3=F6(Z30+H*K3Z3)

C
Z1 =Z10+H/6.0*(K1 Z1 +2.0*K2Z1 +2.0*K3Z1 +K4Z1)
X1 =X10+H/6.0*(K1 X1 +2.0*K2X1 +2.0*K3X1 +K4X1)
Z2=Z20+H/6.0*(K1Z2+2.0*K2Z2+2.0*K3Z2+K4Z2)
X2=X20+H/6.0*(K1X2+2.0*K2X2+2.0*K3X2+-K4X2)
Z3=Z30+H/6.0*(K1Z3+2.0*K2Z3+2.0*K3Z3+K4Z3)
X3=X30+H/6.0*(K1X3+2.0*K2X3+2.0*K3X3+K4X3)

C
300 CONTINUE

RETURN
END

C 
0=============================================================

FUNCTION F1 (M1 ,K1 ,K2,C1 ,C2,T,Z1 ,X1 ,Z2,X2, 
$ICOUNT,IFLAG,TINC,H,IFORCE)

C
C function subprogram for the velocity (Z1) of the primary mass
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
REAL*8 M1,K1,K2
COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOLD,FNEW,FNOW
COMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3
COMMON RMSF,RMSA1,RMSA2
COMMON RMSX4,RMSV4,RMSA3,XMAX4
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COMMON XMAX1,XMAX2,XMAX3,XMAXF
C
IF(IFORCE.EQ.1.OR.IFORCE.EQ.4.OR.IFORCE.EQ.5.OR.IFORCE.EQ.7)THEN

F1=1.0/M1*(RANDF(T,ICOUNT,IFLAG,TINC,H)-
$(C1 +C2)*Z1 +C2*Z2-(K1 +K2)*X1+K2*X2)
ELSE IF(IFORCE.EQ. 8. OR. IFORCE. EQ. 11. OR. IFORCE. EQ. 12. OR .

$lFORCE.EQ. 14) THEN
F1=1.0/M1*(FORCE1(T)-

$(C1 +C2)*Z1 +C2*Z2-(K1 +K2)*X1 +K2*X2)
ELSE
F1=1.0/M 1 *(-(C1 +C2)*Z1 +C2*Z2-(K1+K2)*X1+K2*X2)
END IF

C
RETURN
END

C 
0=============================================================

FUNCTION F2(Z1)
C function subprogram for the displacement (X1) of the primary mass
C

IMPLICIT REAL*8 (A-H.O-Z)
F2=Z1

C
RETURN
END

C 
0============================================================= 
c

FUNCTION F3(M2,K2,K3,C2,C3,T,Z1 ,X1 ,Z2,X2,Z3,X3,
$ICOUNT,IFLAG,TINC,H,IFORCE)

C function subprogram for the velocity (Z2) of the secondary mass
C

IMPLICIT REAL‘8 (A-H.O-Z)
REAL*8 M2,K2,K3
COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOLD,FNEW,FNOW
COMMON RMSX1, RMSV1, RMSX2,RMSV2,RMSX3,RMSV3
COMMON RMSF,RMSA1,RMSA2
COMMON RMSX4,RMSV4,RMSA3,XMAX4
COMMON XMAX1,XMAX2,XMAX3,XMAXF

C

F3=1.0/M2*(RANDF(T,ICOUNT,IFLAG,TINC,H)-
$(C2+C3)*Z2+C2*Z1((K2’+K3)*X2+K2*X1+C3*Z3+K3*X3)
ELSE IH(IHORCE.EQl9lO0.IFORCE.EQ.11.OR.IFORCE.EQ.113ORl 

$ICOCCElEQl14) THEN
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F3=1.0/M2*(FORCE2(T)-
$(C2^+^C^:3*^22^-^(^2Z71-0<2+K3)*X2+K2*X1-+C3 ‘Z3+K3*X3)
ELSE
F3=1.0/M2*(-(C2+C3)zZ2+C2*Z1-(kC2+K3)*>2’+K2*X1+C3*Z3+K3*X3)
END IF

C
RETURN
END

0============================================================= 
C

FUNCTION F4-Z2)
C function subprogram for the displacement (X2) of the
C secondary mass
C

IMPLICIT REAL*8 (A-H.O-Z)
F4=Z2

C
RETURN
END

C 
0=============================================================  
C

FUNCTION F5(M3,K3,K4,C3,C4,T,Z2,X2,Z3,X3,
$ICOUNT,IFLAG,TINC,H,IFORCE)

C function subprogram for the velocity (Z3) of the mass of the
C vibration absorber
C

IMPLICIT REAL*8 (A-H.O-Z)
REAL*8 M3,K3,K4
COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOLD,FNEW,FNOW
COMMON RMSX1, RMS21, RMSX2,RMS22,RMSX3,RMS23
COMMON RMSF,RMSA1,RMSA2
COMMON RMSX4,RMS24,RMSA3,XMAX4
COMMON XMAX1,XMAX2,XMAX3,XMAXF

C
IF(IFORCE.EQ.3.OR.IFORCE.EQ.5.OR.IFORCE.EQ.6.OR.IFORCE.EQ.7)THEN
F5=1.0/M3)(RANDF(T, (COUNT, IFLAG,TINC,H)( 

$(C3+C4)*Z32C3*Z2i(K3+K4))X3+K3)X2)
ELSE IF(IFORCE.EQ.10.OR.IFORCE.EQ.12.ORJFORCE.EQ.13.OR.  

$IFORCE.EQ.14) THEN
F5=1.0/M3)(FORCE3(T)(

$-C32C4))Z32C3*Z2-(K3+K4)*X32K3*XC)
ELSE
F5=1.0/M3)1-1C32C4))Z32C3*Z2-(K32K4)*X3+K3)X2)
END IF
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c
RETURN
END

C
FUNCTION F6(Z3)

C function subprogram for the displacement (X3) of the mass of the vibration absorber
C

IMPLICIT REAL*8 (A-H.O-Z)
F6=Z3

C *
RETURN
END

C
C============================================================= 
c

FUNCTION FORCE1(T)
C function subprogram for forcing on the primary mass
C

IMPLICIT REAL*8 (A-H.O-Z)
FORCE1=1.0*DSIN(1.80245*t)

C FORCE1=0
C

RETURN
END

C
C=============================================================
C

FUNCTION FORCE2(T)
C function subprogram for forcing on the secondary mass
C

IMPLICIT REAL*8 (A-H.O-Z)
FORCE2=1 ,0*DSIN(1.80245*t)

C
RETURN
END

C
0=============================================================
C

FUNCTION FORCE3(T)
C function subprogram for forcing on the mass of the vibration absorber
C

IMPLICIT REAL*8 (A-H.O-Z)
FORCE3=1.0*DSIN(1.80245*t)

C
RETURN
END
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c
0=============================================================  
c

SUBROUTINE BISECT(START,FINISH,DT,CHECK,I)
C Subroutine subprogram to iterate by bisection.
C If the control flag I is negative, CHECK<0 means mass 4 has
C exceeded the required limit for bisection, and vice versa.
C

IMPLICIT REAL*8 (A-H.O-Z)
INTEGER I

C REAL START,FINISH,DT,CHECK
IF(I.LT.O) GO TO 5

C
IF(CHECK.GT.O.O) THEN
DT=DT-(FI NIS H-START)/2.0
FINISH=DT
ELSE
DT= DT+(F I Nl S H-START)/2.0
START=FINISH
FINISH=DT
END IF
GOTO 10

C
5 CONTINUE

IF(CHECK.LT.0.0) THEN
DT=DT-(FINISH-START)/2.0
FINISH=DT
ELSE
DT=DT+(FINISH-START)/2.0
START=FINISH
FINISH=DT
END IF

C
10 RETURN

END
X^________________________________________________________-----------------------------------------------------------------------------------------------
c

FUNCTION RANDF(T,ICOUNT,IFLAG,TINC,H)
C CONTROLLER SUBROUTINE TO PROVIDE A SEQUENCE OF RANDOM
C NUMBERS WITH A GAUSSIAN DISTRIBUTION (WHITE)
C SEE MARK DOLATA'S THESIS FOR REFERENCE
IMPLICIT REAL*8 (A-H.O-Z)

COMMON FORCE, IFORC
DIMENSION FORCE(20000)
COMMON FOL.D,FNEW,FNOW
COMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3
COMMON RMSF.RMSA1.RMSA2
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COMMON RMSX4,RMSV4,RMSA3,XMAX4
COMMON XMAX1,XMAX2,XMAX3,XMAXF

C READ IN THE FORCE VECTOR FOR EVERY 20000 FULL TIME STEP 
C

IF0FORC.EQi1iAEDJCOUET.EQi1) THEE
C write(*,,(a,i5)') 'IFORC = ',IFORC,
C $' GOING TO THE DATA FILE TO READ SOME FORCE '

DO 10 II=1,20000
READ(7,*,EED=11) FORCE(II)

10 CONTINUE *
GO TO 12

11 write(*,'(a)') 'end of data file encountered '
12 CONTINUE

END IF
C
C A NEW FORCE IF THERE IS EOT A COLLISION
C ELSE, INTERPOLATE FOR THE FORCE
C

IFOFIlAG.EQ.O.AED.ICOUET.EQ.1) THEE
C
C A NEW FORCE FOR ADVANCING BY A CONSTANT TIME STEP
C **** NOTE :
C THIS SECTION WHICH READS IN THE FORCING NEEDS
C MODIFYING TO ACCOMODATE MULTIPLY FORCED CASES
C
C F=RAND1 (T, E,WU)SOWK|iG)ly,lz)

F=FORCE(IFORC)

C CHECK IF END OF THE FORCE VECTOR (20000). IF SO,
C INITIALIZE THE INDEX TO READ IN NEW FORCE
IFOFORC.EQ.20000) THEE

IFORC=1
ELSE
IFORC=IFORC+1
END IF

C
FOLD=FNOW
FEEW=F
feow=feew

ELSE IF(IFLAG.EQ.1iAEDJCOUET.EQ.1) THEN
C ADJUST THE UPPER LIMIT OF THE FORCE DURING ITERATION 
FNOW= FOLD+(FNEW-FOLD)/TINC*H
ELSE IF(IFLAG.EQ.2.AEDJCOUNT.EQl1) THEE
C USE THE FIRST UPPER LIMIT WHICH DID EOT GET USED DUE TO 
C ITERATIONS
FOLD=FEOW
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FNOW=FNEW
END IF
C
C PROVIDE THE FOUR-STEP FORCE FROM FOLD TO FNOW TO USE IN RK4 
C

IF(ICOUNT.EQ.I) RANDF=FOLD
IF(ICOUNT.EQ.2) RANDF=FOLD+(FNOW-FOLD)/2.0
IF(ICOUNT.EQ.3) RANDF=FOLD+(FNOW-FOLD)/2.0
IF(ICOUNT.EQ.4) RANDF=FNOW

C
C write(),'(a,i5)') 'ICOCC = ,|ICOCC, -
C $' RETURNING TO THE CALLING PROGRAM '
20 RETURN

END
C
0=============================================================
C

SUBROUTINE PRINT(T,H,X1 ,V1 ,A1 rX2,V2,A2,X3,V3,A3,X4,V4,SIDE 1 
$IPCINT1ICORCE)
IMPLICIT REAL*8 (A-H.O-Z)
CHARACTERS SIDE
COMMON FORCE, IFORC
DIMENSION CQCEE(20000)
COMMON COLD1CNEW1CNOW
COMMON RMSX1, RMSV1, CMSX21CMSV21CMSX31CMSV3
COMMON RMSC1RMSA11CMSA2
COMMON RMSX41RMSV4,RMSA3,XMAX4
COMMON XMAX11XMAX21XMAX31XMAXC

C
C T : present time
C H : last time step
C

if(t.eq.O.O) go to 10
C

RMSX1=(RMSX1 *(T-H)+X1 **2*H)/T
RMSV1=(RMSV1 *(T-H)+V1 **2*H)/T
RMSX2=(RMSX2)(T-H)+X2))2)H)/T
RMSV2=(RMSV2)(T-H)+V2*)2)H)/T
RMSX3=(RMSX3*(T-H)+X3))2)H)/T
RMSV3=(RMSV3)(T-H)+V3))2)H)/T
CMSX4=(CMSX4*(T-H)+X4))2)H)/T
RMSV4=(RMSV4*(T-H)+V4*)2)H)/T
RMSF =(RMSF )(T-H)+FNOW^))2*H)/T
RMSA1=(RMSA1 *(T-H)+A1 **2*H)/T
RMSA2=(RMSA2)(T-H)+A2*)2)H)/T
RMSA3=(RMSA3*(T-H)+A3*)2)H)/T
IF(ABS(X1).GT.ABS(XMAX1)) XMAX1=X1
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IF(ABS(X2).GT.ABS(XMAX2)) XMAX2=X2
IF(ABS(X3).GT.ABS(XMAX3)) XMAX3=X3
IF(ABS(X4).GT.ABS(XMAX4)) XMAX4=X4
IF(ABS(FNOW).GT.ABS(XMAXF)) XIWA<F=FNOW

C
10 continue

C
IF(IFORCE.EQ. 1) F=FNOW
IF(IFORCE.EQ.2) F=FNOW
IF(IFORCE.EQ.3) F=FNOW
IF(IFORCE.EQ.4) F=FNOW .
IF(IFORCE.EQ.5) F=FNOW
IF(IFORCE.EQ.6) F=FNOW
IF(IFORCE.EQ.7) F=FNOW
IF(IFORCE.EQ.8) F=FORCE1(T)
IF(IFORCE.EQ.9) F=FORCE2(T)
IF(IFORCE.EQ.IO) F=FORCE3(T)
IF(IFORCE.EQ.11) F=FORCE1(T)+FORCE2(T)
IF(!FORCE.EQ.12) F=FORCE1(T)+FORCE3(T)
IF(!IZ(^F^(^E.EQ.13) F=FORCE2(T)+FORCE3(T)
IFQFORCE.EQ. 14) F=FORCE1(T)+FORCE2(T)+FORCE3(T)

C
C WRmE(6,'(a1i2,a1e10.3)') 'IFORCE = '.IFORCE,' F = *F
C WRITE(6,'(A,e10.3)') 'FORCE3(T) = FORCE3(T)

C if(iprinteq.l) WRITE(6,16)T,X1.V1.X2,V2,X31V31X4)V41F,SIDE
C if(iprinteq.2) WRITE(6,17)T,sqrt(RMSX1),sqrt(RMSV1),
C $sqrt(RMSX2)>sqrt(RMSV2),sqrt(RMSX3),sqr((RMSV3),sqrt(RMSX4),
C $Sqrt(RMSV4),Sqrt(RMSF),SIDE
C 16 FORMAT(F7.3,9(1X, E9.2) ,A)
C 17 FORMATTFF.S.gUlX.EO^A)

ifGprint.eqJ) WRITE(6,16)T,X1,X2,X3,X4,V4'F.SIDE 
ifOprinteq^) WRITE(6,17)T,Sqrt(RMSX1)r 

$Sqrt(RMSX2) . Sqrt(RMSX3) 'Sqrt(RMSX4) ' 
$Sqrt(RMSV4). Sqrt(RMSF) .SIDE

16 FORMAT(F8.3,6(1X, E10.3),A)
17 FORMAlXFS^.eaXEIO.SXA)
20 RETURN

END
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2. EXAMPLE OF INPUT DATA FILE2

force.out2 3
10.0 ml

1.0 m2
0.1 m3
0.4 c1
0.04 c2
0.0 c3
0.0 c4

40.0 k1 «
4.0 k2
0.4 k3
0.0 k4
0.0 to
0.5 H

300.0 Ttotal
0.0 x10

10.0 z10
0.0 x20
0.0 z20
0.0 x30
0.0 z30
0.3 e

30.0 dmin; if negative, incremented from the program
0.0 dmxx

10.0 dine
0.025 m4
1 IPRINT 11:TIME VARIATION; 2:RMS VARIATION)
0 IFORCE (0: NO FORCE;

1 1 F1;
2 1 F2;
3 1 F3;
4 1 BOTH F1 & F2;
5 1 BOTH F1 & F3;
6 1 BOTH F2 & F3;
7 1 F1, F2 & F3;
8 1 sine on 1;
9 1 sine on 2;
101 sine on 3;
111 sine on both 1 & 2;

2This example is for the structure excited by an initial velocity on the primary system.
3A file contains radom data is needed for the simulation of random excitation.
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12: sine on both 1 & 3;
13: sine on both 2 & 3;
14: sine on 1, 2 & 3;)

3. EEXAMTE OF OUTPUT DATA FUT

ml 0.1000000E+02 
m2 0.1000000E+01 
m3 0.1000000E+00 
k1 0.4000000E+02 
k2 0.4000000E+01 
k3 0.4000000E+00 
k4 0.0000000E+00 
cl 0.4000000E+00 
c2 0.4000000E-01 
e3 0.0000000E+00 
c4 0.0000000E+00 
to 0.0000000E+00 
ttotal 0.3000000E+03 
H 0.5000000E+00 
x10 0.0000000E+00 
x20 0.0000000E+00 
v10 0.1000000E+02 
v20 0.0000000E+00 
x30 0.0000000E+00 
v30 0.0000000E+00 
e 0.3000000E+00 
dia 
c 
b
m4 0.2500000E-01 
IPRINT 1
IFORCE 0

t x1 x2 x3 x4 v4 F(t)

0.000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
0.500 0.404E+01 0.865E+00 0.417E-02 0.000E+00 0.000E+00
1.000 0.411E+01 0.417E+01 0.106E+01 0.000E+00 0.000E+00
1.500 0.570E+00 0.658E+01 0.502E+01 0.000E+00 0.000E+00
2.000 •-0.286E+01 0.327E+01 0.987E+01 0.000E+00 0.000E+00
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297.500 0.181E-02 0.922E-02 0.247E-01 -0.102E+02 0.107E+00 
298.000 -0.910E-03-0.218E-02 0.672E-03-0.101 E+02 0.107E+00 
298.500-0.287E-02-0.119E-01 -0.257E-01 -0.101E+02 0.107E+00 
299.000-0.298E-02 -0.143E-01 -0.387E-01 -0.100E+02 0.107E+00
299.500 -0.137E-02 -0.837E-02 -0.287E-01 -0.994E+01 0.107E+00 

d1 = 0.3000000E+02
x1 = 0.3619602E+00 
v1 = 0.6889547E+00 
a1 = 0.1553189E+01 
x2 = 0.9958209E+00 
v2 = 0.1903709E+01 
a2 = 0.4304667E+01 
x3 = 0.3036091 E+01 
v3 = 0.5267406E+01 
a3 = 0.1249212E+02 
x4 = 0.9978499E+01 
v4 = 0.7187268E+01 
f1 = 0.0000000E+00
X1 = 0.4111829E+01 •
X2 = -0.9562503E+01
X3 = 0.2795332E+02 
X4 = -0.3946021E+02 
F1 = 0.0000000E+00


