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Abstract

In almost all computer vision and perception based applications, particularly with

camera and lidar; state-of-the-art algorithms are all based upon deep neural networks

which require large amounts of data. Thus, the ability to label data accurately and

quickly is of great importance. Approaches to semi-automated labeling (SAL) thus far

have relied on using state-of-the-art object detectors to assist with labeling; however,

these approaches still require a significant number of manual corrections. Surprisingly,

none of these approaches have considered labeling from the perspective of multiple

diverse algorithms. In this thesis a new framework for semi-automated labeling is

presented, it is called F-SAL which stands for Fusion Based Semi-automated Labeling.

Firstly, F-SAL extends on the idea of SAL through introducing multi-algorithm fusion

with learning based feedback. Secondly, it incorporates new stages such as uncertainty

evaluation and diversity evaluation. All the algorithms and design choices regarding

localization fusion, label fusion, uncertainty and diversity evaluation are presented

and discussed in significant detail. The biggest advantage of F-SAL is that through

the fusion of algorithms, the number of true detections is either more or equivalent

to the best single detector; while the false alarms are suppressed significantly. In the

case of a single detector, to lower the false alarm rate, detector parameters must be

adjusted, which trade lower false alarms for fewer detections. With F-SAL, a lower
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false alarm rate can be achieved without sacrificing any detections, as false alarms

are suppressed during fusion, and true detections are maximized through diversity.

Results on several datasets for image and lidar data show that F-SAL outperforms

the single best detector in all scenarios.
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Chapter 1

Introduction

1.1 The Importance of Data

The advancements in artificial intelligence within the past decades have been ex-

traordinary. Similarly, impressive advancements were made in computer vision in the

last decade. An algorithm for classification first proposed in 1989; the Convolutional

Neural Network (CNN) [15] trained through back propagation, began replacing es-

sentially all of classical computer vision in 2012. However, what is more interesting

is why this algorithm’s performance went unutilized for 23 years. At the time, only

a select few companies had the proper hardware to implement neural networks, and

the datasets required to train such algorithms did not exist. It was not until the year

2010, that an enormous dataset called ImageNet [4] was released; which contained

1.5 million labeled images with 1,000 object categories. This dataset, along with the

advancements in GPUs, is what allowed for the deep learning revolution to begin

and provided empirical proof for deep neural networks. Nonetheless, this trend is

not specific to only the CNN model. In fact, in figure 1.1, one can see a general
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trend throughout history where the average number of years for a breakthrough with

respect to datasets is three years, while for novel learning algorithms this is 18 years.

Figure 1.1: A comparison of the time required for a breakthrough in artificial
intelligence tasks with respect to datasets and algorithms. Image taken from [40]

This is not a coincidence, especially not within the machine learning domain.

Classical learning algorithms, which are now mostly referred to as base models; simply

were not able to fully utilize even the limited data at the time for tasks such as

image classification or speech recognition. Figure 1.2 shows a comparison of classical

algorithms and modern deep neural networks. Evidently, the success of deep neural

networks is possible because this limitation does not apply to them, more data simply

increases their generalization capability.

For researchers who work in pattern recognition and with perception algorithms,

many sensors such as camera and lidar now obtain state-of-the-art results for detection

and tracking through deep learning models, which can run in real-time and on critical

hardware. However, neural network architectures are getting even deeper now, and

new novel models are requiring even more data than the enormous architectures from

a few years back, and this trend will only continue into the future.

2
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Figure 1.2: Classical learning algorithms plateau after a certain point and cannot
make use of the additional data we provide to them. On the other hand, more data
leads to deep learning algorithms being able to perform even better. Image taken

from [37]

It is evident that data is of critical importance and will play an even bigger role in

the future of technology. There seems to be an enormous interest in algorithm design,

however the problem of how to obtain labeled data efficiently has not attracted as

much attention. In fact, getting data is not always challenging, for example, to

obtain data for perception algorithms, the only requirement is to keep the sensor on.

However, this raw data is of no importance; labeled data is what is desired.

1.2 The Bottleneck of Modern Algorithms

Unfortunately, labeled data is challenging to obtain, while labeled data will continue

to be critical for all future models; obtaining labeled data will be the bottleneck of

all future models. Labeling is challenging because it is slow, expensive and requires

human labour. Figure 1.3 took the author 2 minutes to label, and the dataset it

originates from has hundreds of thousands of such images. Moreover, this is a very
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simple scene as a rectangle bounding box is used. In some labeling scenarios, polygon

bounding boxes are needed, and they contain 100s of vertices; labeling such a scene

would take significantly longer. For an application such as autonomous vehicles, the

perception algorithms used require a lot of labeled data, and need to be frequently

updated to handle edge cases. To maintain robustness, data from multiple cities,

diverse climates/weather, different times of the day and with diverse scene types is

a necessity. The time commitment for such a task is enormous, and for this reason

labeling seems to be the bottleneck when developing learning algorithms.

Figure 1.3: A labeled scene with a large number of objects.

1.3 Existing Methods for Labeling

In order to reduce the time spent labeling, two strategies are possible. The first is to

somehow reduce the number of training examples needed to train a model without

effecting its accuracy. Trivially, fewer examples means less time spent labeling. This

is possible through semi-supervised learning approaches such as active learning. The

second is to rely on labeling algorithms, and then make corrections on their outputs.
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For example, an object detector was able to label the scene in figure 1.3 in only 12ms,

and with only 4 false alarms.

1.3.1 Active Learning

Semi-supervised learning combines both unsupervised and supervised learning where

there is labeled data and some unlabeled data. If the objective is to generate labels

to train a specific algorithm, a form of semi-supervised learning known as Active

Learning [27] may be beneficial. When considering training a model, it is often from

the perspective of passive learning. In passive learning,there is an implicit assumption

that all labels contain the same amount of information. As in, there is no strategy to

explicitly decide which labels are useful or which are not to the model being trained.

One simply labels some data related to objects of interest, and then trains the model

with them. However, active learning is based upon the principle that all labels are

not created equally and they contain different amounts of information. When one

explicitly selects labels that maximize the information gain, models perform better

with less training data. Information gain in this context can be interpreted in many

ways, however high uncertainty is the general idea. This strategy is successful because

the model focuses on difficult objects, which ultimately leads to it generalizing better

with less data. If an algorithm has 95% accuracy with cars but only 60% accuracy

with trucks, it does not require more examples of cars, instead it should be provided

more examples of trucks so it may generalize better. Figure 1.4 shows a plot which

compares active learning and passive learning. Notice how with only 45% of data, an

algorithm trained using active learning can achieve 30% more accuracy than a passive

learning approach.
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Figure 1.4: A comparison of Active and Passive Learning. Image Source:
https://www.kdnuggets.com (permission was obtained from the author)

Active Learning has several variants, but the most popular and successful is iter-

ative pool-based sampling. In this method queries from a set of unlabeled instances

Q are selected, and probabilistic techniques are often applied to select some labels

from the unlabeled set that the model believes have high uncertainty. The general

architecture for this can be seen in Figure 1.5, while the general pipeline is as follows:

1. We initialize by having a small amount of labeled data in a set L with which

we train the current model.

2. We then select a random subset of unlabeled examples (Q) and evaluate each

element in this set and obtain its corresponding label distribution from the

current model.

3. Using an information gain measure on the distributions of each of the elements

6
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Figure 1.5: Pool-based Active Learning Pipeline

of the set Q, we create a subset of highly uncertain examples that the model

was unsure about.

4. The model then queries a human to label these examples, any examples it has

strong certainty about are discarded.

5. After a human labels these examples they are added to the set L and we retrain

our model and repeat steps 1 – 4 again.

6. We continue this approach until stopping criteria. This usually means we run

out of labels, or see a plateau in an accuracy vs data plot.

There are several techniques in the literature for assessing uncertainty with labels.

One technique called uncertainty sampling assigns a measure to each candidate object

based upon that objects label distribution using an entropy-based measure. For

example, in Figure 1.6, the model is certain that object 1 is a car so information gain is
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minimal (high entropy), however, object 2 has a very large uncertainty with it as both

Car and Truck have a similar confidence score (low entropy). There is another strategy

called query-by-committee (QBC) which is also based upon probabilistic methods but

requires multiple models. It searches for uncertainty through disagreement by experts.

Density weighted methods also exist, these use either uncertainty sampling or query-

by-committee as a base method but add an additional weight for informativeness of

an example using an input distribution related to the set Q.

Figure 1.6: Left: High certainty so low information gain, Right: Low certainty so
high information gain

Active learning assumes that training data is easy to obtain with respect to the

labeling process itself. For image classification tasks where there is one object in

one frame this works well as no localization is needed. However, to train detection

and tracking algorithms one must label complex scenes where a single frame contains

dozens of objects. This is where the problem occurs, as objects need to be localized in

a scene before they can be classified. Therefore, fundamentally, active learning is not

applicable to tasks outside of trivial image classification and could not be used to label

a scenario such as figure 1.3. Another problem with active learning is that it proceeds

in rounds and the model must be retrained at every iteration, this is computationally
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difficult for deep neural networks (DNN). The above being said, significant research

has been conducted over the years to unify DNNs into a framework so that Active

Learning may be used with negligible training times [29][26] and more recently [42].

However, the research so far has shown only marginal improvements, and it seems that

Active Learning is not as effective for DNNs as it is for classical learning algorithms.

1.3.2 Semi-automated Labeling

Consider a scenario where perception algorithms are unable to generalize to the driv-

ing conditions in Northern Canada. In this case, the system must be updated with

more training examples pertaining to the winter conditions there. If one is interested

in labeling cars, pedestrians, and traffic signs in a new dataset, and has algorithms

from a previous one that can detect the same classes to some extent, then using them

reduces the time spent labeling. The ideal situation for labeling is when human level

ground truth accuracy can be maintained with the lowest possible time commitment.

Humans can achieve near perfect accuracy for most objects easily but are too slow.

On the contrary, algorithms can label much quicker but have a probability associated

with their accuracy. The idea of using both human and algorithm to conduct label-

ing is referred to as semi-automated labeling (SAL). This approach is far superior to

active learning as the algorithms used in SAL can also handle localization.

The most extensive evaluation of SAL so far was conducted by UC Berkeley,

Georgia Institute of Technology, Peking University and Uber AI Labs in [43]. The

authors had human annotators initially label 55, 000 clips by hand. Then they trained

a Fast-RCNN object detector on this data. Subsequently, they asked the human
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annotators to use this detector to assist in labeling the remaining data. Ultimately,

they recorded that through using SAL, the time a human annotator spent labeling

and adjusting for corrections was reduced by 60%. Moreover, in [3] the authors were

interested in the idea of SAL in industrial robotics. They had a 2D camera mounted

on a robot and used it to generate two datasets using a YOLO object detector for

one dataset, and an SSD for the other. What would have taken a human 10 hours to

label, took their algorithm less than one hour. In [1], SAL was applied for generating

polygon labels (see section 2 instance segmentation). Here a human would select

regions of interest to apply a polygon segmentation algorithm on, and the algorithm

would generate a polygon bounding box around that object. Additionally, whenever

the human made corrections on an object, all the vertices would be readjusted. This

idea of using algorithms to do initial labeling, then having a human make corrections

also seems popular outside of academia, as several popular enterprise labeling tools

and open source implementation are based off of this.

1.4 Semi-automated Labeling Motivation

In this thesis, the focus is on improving SAL. As stated previously, labeling algorithms

are probabilistic; hence they produce errors. More specifically these errors are:

1. Inaccurate Localization: The output position is noisy and needs to be ad-

justed, but this output is still correct and has the appropriate class.

2. Incorrect Classification: An algorithm localized an object correctly, but pro-

vided the wrong label (e.g. a car was labeled as a bus).

10



M.A.Sc. Thesis – A. Zaidi McMaster University – Electrical Engineering

3. Missed detection: Information in the new dataset that the algorithm could

not generalize too.

4. False Alarm: Algorithm incorrectly localizes and classifies background objects.

These errors can be ranked in order of time required to correct them as: Missed

Detections, Incorrect Localization, Incorrect Classification and False Alarms. Missed

detections are usually the worst scenario because one must label from scratch – mean-

ing time is spent looking for the object in a scene and placing a bounding box around

it. In the other scenarios, the objects are localized, and either the coordinates need

to be adjusted, a label needs to be changed, or the bounding box needs to be deleted.

Figure 1.7 shows a visual of these errors.

Figure 1.7: From the top, the first image is a missed detection. The second is an
incorrect localization, the third is an incorrect classification, and the fourth is a false

alarm. A purple bounding box corresponds to a car. A green bounding box
corresponds to a pedestrian. A blue bounding box corresponds to a truck.
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Denote the # of frames in a dataset as nframes, the average number of objects

in a frame as nav and the average time required to label an object as tav; then an

expression for how long it takes a human to label a dataset can be written.

THuman =
tav ∗ nframes ∗ nav

3600
(1.4.1)

Moreover, an expression for the time taken by a labeling algorithm is trivial and

is just the number of frames divide by the algorithm’s inference frame rate.

TAlgorithm =
nframes

FPS ∗ 3600
(1.4.2)

Often a labeling algorithm has between 50% and 65% accuracy on a new dataset,

and the time taken to run this algorithm is several magnitudes lower than labeling

by hand. However, the fundamental question here is how much time is required to

go from this 50-65% accuracy to 100% accuracy through human corrections. This is

equal to the time needed for a labeling algorithm to run on the dataset, as well as

the time required for a human to correct the four sources of errors mentioned above.

TSAL =
nframes

FPS ∗ 3600
+

(neltel + nectec + nmdtmd + nfatfa)

3600
(1.4.3)

However, one should keep in mind that the average time taken to label a bounding

box, or correct an existing one, is extremely subjective and depends on what sensor

the data was generated from (camera, lidar, etc..), the type of bounding box needed

(rectangle, polygon, cuboid, etc..), and even the content of the dataset itself, as

labeling frames from a wide angle high resolution satellite as opposed to dash camera

data is vastly different.
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Using SAL, more time is spent labeling than a stand-alone algorithm as human

corrections are needed, however, far less time is spent than a lone human labeler. The

advantage with SAL is that human level accuracy is obtained but at a fraction of the

time. Table 1.1 compares the accuracy/time trade-off and summarizes these results.

The results in the table assume a naive example where an algorithm with an accuracy

of 65% and inference time of 5 FPS is used. Nframes = 15000, nav = 10, tav = 7.5s.

For simplicity and just to obtain a ballpark number, assume that all error corrections

require the same amount of time as tav. In reality this is not a practical assumption,

because tav is the amount of time taken to label an example from scratch, which is

normally the most amount of time it would take to apply a correction - therefore the

number below actually represents the worst case scenario.

Type Accuracy Time Taken Numerical Example

Ideal Labeler 100% - 0 hours
Human Labeler 100% Very Long 312 Hours

Labeling Algorithm 50 - 65% Relatively Quick 50 minutes
Semi-automated Labeling ≈ 100% TAlgorithm ≤ TSAL ≤ THuman 109 hours

Table 1.1: Accuracy vs Speed comparison of different labelers.

1.5 Contribution and Layout

In this thesis a brand-new framework which incorporates semi-automated labeling is

presented. It is fusion based semi-automated labeling or F-SAL. It extends upon the

idea of SAL but introduces several new components. From this, a multi-stage end-

to-end framework for labeling, which allows for more accurate and robust labels than

13
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traditional SAL is derived. Unlike all existing methods, F-SAL allows for the fusion of

multiple object detectors as opposed to using just one. The author empirically proves

that diversity between object detectors exists in both camera and lidar sensors and

can be utilized for object detector fusion. Due to the extension to multiple algorithms,

localization and label fusion are introduced. From the general taxonomy of F-SAL,

two configurations are presented and each is based off of a different localization fusion

algorithm. Likewise, in the case of label fusion, the fact that an algorithm and hu-

man label together means that a real-time dataset that reflects the reliability of each

individual algorithm (from human corrections) is always available. This is directly

used to introduce trainable feedback into the label fusion stage overtime which allows

the F-SAL system to label better as more corrections occur. Borrowed from uncer-

tainty sampling techniques from active learning, an uncertainty evaluation stage is

introduced which operates directly upon the label distributions from the label fusion

stage. This allows the F-SAL system to tag objects with high uncertainty ahead of

time and simply query a human labeler to label this example. Finally, since multiple

algorithms are used, a diversity evaluation stage is introduced, this is essentially to

manage the algorithms optimally. This stage monitors the diversity between algo-

rithms, and if there is low diversity it prompts a human asking if they would like to

prune such algorithms. Ultimately, it is shown that F-SAL outperforms stand-alone

object detectors in terms of accuracy as well as robustness on all datasets presented.

In section 2 the background knowledge needed to understand the field of labeling

is presented. In section 3 the F-SAL taxonomy with each of its individual components
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and their theoretical pinnings will be discussed in detail. In section 4 two configura-

tions in which F-SAL can be used will be presented. These will be evaluated on two

camera and two lidar datasets, and the significance of the results will be discussed.

This thesis will conclude with section 5 which briefly mentions future work.
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Chapter 2

Background

2.1 Types of Labeling

Labeled data is required to create datasets which are used to train machine learning

algorithms. There are several ways in which one can label depending on the problem.

More generally, the goal in labeling is to assign a bounding box to each object in a

sensor’s field of view. A bounding box is a structure which contains both location

and classification information about an object. This information is then stored into

a dataset, which is ultimately used to train a learning algorithm.

A bounding box can have several topologies. Some common bounding boxes are

rectangles, polygons and cuboids. Although any custom bounding box can be used,

the theoretical work for loss functions associated with these bounding boxes during

model training is very well studied. The simplest, most used and well known one is

the 2D rectangle bounding box, which is used on image data. It contains the label,

the confidence of the classifier on that label, as well as location information. More

specifically, it stores a center vertex denoted by (x,y) with a width and height offset,
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which gives it a rectangle shape.

rect =

[
label confidence bx by bh bw

]T
(2.1.1)

Likewise, the next most popular bounding box is the 2D polygon bounding box,

which also has a label and confidence score; however, it uses a set of n-connected

vertices for its shape. This bounding box is very popular for object segmentation

tasks.

polygon =

[
label confidence x1 y1 x2 y2 . . . xn yn

]T
(2.1.2)

For an application such as detecting vehicles, 2D bounding boxes are usually used

when labeling data from image sensors. However, if working with lidar data, then a

3D cuboid bounding box is needed. A 3D cuboid bounding box is an extension to the

2D rectangle bounding box with an additional dimension and axis of rotation. It has

3 coordinates which describe the center vertex (x,y,z) as well as a length, width and

height offset along with an orientation angle θ. This bounding box is very popular

in camera-lidar fusion as well, and a 3D bounding box can also be overlaid on an 2D

image.

cuboid =

[
label confidence bx by bz bl bw bh bθ

]T
(2.1.3)
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Depending upon the objective, several labeling scenarios are possible. The four

most popular types of labeling scenarios are:

1. Image Classification

2. Object Detection

3. Semantic Segmentation

4. Instance Segmentation

Image Classification is the most straightforward. There exists an image of some

scene (as a single frame) and a label must be applied to that entire frame. However, in

almost all applications, interest is not only in the label of a single object, but both the

locations and labels for several objects in a sensor’s field of view. This is referred to as

Object Detection, and it is mostly done through 2D rectangle or 3D cuboid boxes.

Instance Segmentation is when a label is represented through distinct polygon

bounding boxes. In Instance Segmentation the exact mask (polygon shape) around

an object is desired, and it must be separated from the background. Additionally,

each object is considered independent from another, i.e., if there are two vehicles,

they are considered different vehicles. Object detection and instance segmentation

are similar, however in instance segmentation every single object is segmented and is

distinct, while in object detection only the number of objects per class are known and

they are not considered distinct. Moreover, Semantic segmentation is when every

single pixel in a sensors field of view is associated to a label (even the background).

Figure 2.1 shows a comparison of the different types of labeling scenarios visually.
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Figure 2.1: Top to bottom: Image Classification, Object Detection, Instance
Segmentation, Semantic Segmentation.

Furthermore, labeling can be done with respect to multiple homogeneous (same

modality) and heterogeneous (different modality) sensors as well. One very active field

of research where heterogeneous labeled data is needed is in autonomous vehicles. In

this scenario camera and lidar data is fused to obtain more accurate scene information.

Figure 2.2 shows such a scenario.
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Figure 2.2: Synchronized lidar and camera scan.

2.2 The Theory of Labeling (Bayesian)

As algorithms which conduct labeling have a probability associated with their perfor-

mance, the problem of labeling can be formulated as a probabilistic theory. Careful

attention should be directed towards the definitions introduced here because they

are often used interchangeably throughout the rest of this thesis, and the correct

distinction depends on the context. The Bayesian framework presented here is from

[11].

The task of labeling objects is equivalent to the task of recognizing an object

from some information source such as a camera or lidar sensor. Objects may be

recognized based upon their features. For example, in most camera sensors, a frame

is discretized into a set of pixels over the red, green and blue colour channels. These

pixels are referred to as features; while they are initially in a matrix form, they are

flattened into a single set of size n that is represented as a feature vector, and the

set these features span is called the feature space. All elements in the feature space

are numerical values, any non-numerical values must be encoded. Some examples of
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features are size, shape and colour.

The set of features can be denoted as:

X = {x1, x2, . . . , xn} ∈ Rn (2.2.1)

For image sensors, the feature space spans the pixel range 0 to 255 normally, so

each element in (2.2.1) would be a value on that range. In scenarios with hetero-

geneous sensors, the set of features may be partitioned for each sensor and can be

denoted as:

Xheterogeneous = {X1, X2, . . . , Xm} (2.2.2)

Each Xi ∈ Rm is a distinct set of features from a different sensor modality, and the

values these features can span are dependent on that modality. The terms object and

feature are used interchangeably because features physically represent and distinguish

objects of different classes.

A class can then be defined as a grouping of objects, which have similar features.

Examples of classes are cars, trucks and pedestrians. The terms class and label

refer to the same phenomenon, however the term label is used within the context

of assignment. In any labeling task, a set of possible labels may be assigned to an

object, the elements of this set are referred to as classes. In most recognition tasks

there can only be a one-to-one assignment between an object and label. The set of

21



M.A.Sc. Thesis – A. Zaidi McMaster University – Electrical Engineering

classes can be denoted as:

Ω = {ω1, ω2, . . . , ωc} (2.2.3)

As mentioned earlier, in order to train algorithms for inference, labeled data is

needed, and to store labeled data, a structure called a dataset is used. A feature

matrix is a structure where the number of rows correspond to the number of objects

that have been labeled, and the number of columns correspond to the number of

features that represent that object (e.g. an 1920 x 1080 image contains 1920 x 1080 x

3 features). Hence, a single row contains all the features belonging to a single object,

and each object in a dataset is called a training sample. Next, we define a label vector.

The feature matrix has a one-to-one mapping with this vector, which contains the

labels associated with every object in this dataset. Side-by-side these two structures

form what we call a dataset. The feature matrix is denoted as Z and the associated

labels are denoted as Y.

Z =



z11 z12 . . . z1n

z21 z22 . . . z2n
...

...
...

...

zN1 zN2 . . . zNn


Y =



y1

y2
...

yN


. (2.2.4)

This matrix can also be rewritten in set notation as follows:

Z = {z1, z2, . . . , zN}, zj ∈ Rn, yj ∈ Ω, ∀j = 1, 2, ..., N (2.2.5)

Here N represents the number of objects in the dataset, n represents the number

of features, and the labels are from a predefined set of class labels Ω.
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As mentioned earlier, in labeling the objective is to assign labels to objects. A

classifier D is defined as a mathematical function that assigns a class label from Ω to

some object X based upon this objects n-feature vector.

D : Rn → Ω (2.2.6)

However, to understand this more conceptually, the idea of discriminant functions

must first be introduced. Any feature space can be partitioned into C classification

regions denoted by:

Rn = {R1, R2, . . . , Rc}

Through training a classifier on labeled data, these classification regions can be

learned. Each classification region has a corresponding discriminant function, which

can then be used to assess the likelihood that any new object is associated to it. To

classify an object, the object is passed through these C discriminant functions, and

the classification region, which maximizes some score (probability) is selected.

Ri = {x | x ∈ Rn, gi(x) = arg max
k=1,...,c

gk(x)}

Then a label wi that corresponds to the optimal region Ri is assigned. Therefore, a

classifier D is actually a set of C discriminant functions which take a feature vector as

input, and output a label distribution. From this distribution, the highest probability

output is selected, and all other labels are pruned.
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The goal in labeling when using classifiers is to find the true label of an object

from the features one believes it contains. Unfortunately, neither a perfect classifier

nor dataset exists. A classifier can only be trained with a dataset that contains a

finite number of training samples. Additionally, it is possible that two similar objects

(car and truck) may never be distinguishable from one another perfectly because the

overlap in their feature space is too significant. Therefore, the true goal is to find the

optimal label given uncertainty with imperfect features and an imperfect classifier.

To achieve this, the problem of labeling can be formulated through a probabilistic

framework such as Bayesian estimation. In this case, the posterior probabilities of

each class can be viewed as discriminant functions. The advantage of a Bayesian

approach is that the error is minimized in an optimal sense when the label with the

maximum posterior probability is selected.

Within this framework, the true class label w of an object X is a discrete random

variable that may take a value from the set of classes Ω. Assuming a classifier is

trained on labeled dataset, one can obtain a prior probability for each label from a

distribution based upon the labeled dataset:

P (wj) ∈ {p(w1), ...p(wc)}

Furthermore, assuming that at most one label may be assigned to a single object,

and accounting for all candidate labels j = 1, . . . C a PMF can be derived for this

random variable under the following conditions:
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0 ≤ p(wi) ≤ 1

C∑
n=1

p(wi) = 1

Similarly, a likelihood measure p(X|wj) based upon the distribution information

of the N objects in the labeled dataset can also be obtained. Then from both the

prior and likelihood, the posterior probability for a label can be calculated using

Bayes theorem.

p(wj|X) =
p(wj)p(X|wj)
C∑
i=1

p(wi)p(X|wi)
(2.2.7)

This represents the probability that the true class label of an object X is wj.

This calculation is done for every candidate label from the set of class labels, and

ultimately the label which has the highest posterior probability is selected.

P (wj
∗|X) = arg max

j=1,...,c

{
p(wj)p(X|wj)} (2.2.8)

We can then substitute the full posterior as the argument, and the denominator in

equation 2.2.7 is just a normalization constant that all candidates are scaled by so it

has no effect on selecting the optimal label and can be dropped. Alternatively, each

posterior probability for a label candidate is actually just a discriminant function,
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therefore the term inside the maximizing argument can also be rewritten as:

P (wj
∗|X) = arg max

j=1,...,c

{
gi(X)} (2.2.9)

For labeling scenarios in image and lidar sensors, interest is directed towards

object detection where there are several objects in a scene. However, the above

posterior calculation applies to a single object and assumes it is already localized.

Additionally, in its current form, this framework selects its decision from a single

algorithm perspective. In F-SAL, multiple algorithms are used, so this framework

has to be extended. This is done in the F-SAL label fusion section (3.4) later in this

thesis.

2.3 Algorithms for Labeling

In section 2.1 the different types of labeling scenarios were discussed, and in section

2.2 theory of labeling from a mathematical perspective was presented, specifically the

idea of a classifier was presented. In this section, a state-of-the-art classifier called the

Neural Network is presented along with its theoretical pinnings. The success seen in

object detection tasks in camera and lidar within the past decade are attributed to a

variant of this classifier called the Convolutional Neural Network [15]. From this one

can introduce the theory behind object detectors, which are labeling algorithms in

SAL. This knowledge is fundamental in order to understand the theoretical pinning’s

of the F-SAL system we present in section 3.
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2.3.1 Neural Networks

Neural networks are powerful because of the universal approximation property [25],

which states that any classification boundary irrespective of complexity can be ap-

proximated to any desirable precision with a finite neural network. Likewise, it is

mathematically proven that the set of discriminant functions that are learned by

minimizing 2.3.1, approach the posterior probability for that class as n → ∞ [23] -

meaning that the error is the guaranteed minimum the larger the dataset.

The fundamental building block of a neural network is a neuron - which can

be thought of as a single information source, which takes a set of inputs, applies a

weight to each input and then takes their summation. This result is then passed into

a non-linear function called an activation function, which produces a single output

that is propagated forward. Similarly, a perceptron [24] is a model for a neuron.

Through connecting a set of perceptrons, a feed-forward structure called the multi-

layer perceptron (MLP) can be created, this is a very famous neural network. When

using the term ‘multi-layer’, each layer refers to a collection of neurons, which are

adjacent to each other but are not connected. There are a few types of layers in a

MLP, however the fundamental layers that all networks must include are the input

layer, hidden layers, and an output layer. The input layer is directly connected to

the feature vector of an object X (one would like to either train or inference) in a

one-to-one manner. Therefore, there are n neurons in the input layer, where n is the

number of features an object has. The input layer’s only function is to transmit the

features into the hidden layers. In the hidden layer, all neurons from the previous

layer are passed as inputs to each neuron in this new layer in a one-to-all manner.
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Hidden layers can be connected subsequently. Finally, the output layers correspond

to the set of discriminant functions, therefore there are C neurons in the output layer,

where C is the number of classes in the dataset. A visual can be seen in Fig 2.3.

Figure 2.3: A standard Neural Network architecture

The input information for any given neuron in any layer l is denoted:

Ul = {ul,1 u2l , . . . , uNl }

The associated weights with each information source is denoted as:

Wl = {wl,1w2
l , . . . , w

N
l }

The output of a single neuron (input into next layer) then becomes:

Ul+1 = G(
N∑
i=1

wilu
i
l)

Here the symbol G represents a non-linear activation function.
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Assume a dataset of N objects denoted Z exists, and each object has n features.

This dataset contains objects belonging to the set of classes Ω. Like any other clas-

sifier, a neural network is trained using the dataset with its N objects and their

features, and learns a set of C discriminant functions - each corresponding to a class

from the set Ω. The classifier training is done through minimizing square error over

the training set Z, using a cost function such as:

Error Cost =
N∑
j

C∑
i

(gi(zj)− Sim(wi, yj))
2 (2.3.1)

Where the Sim(wi, yj) is a binary function, which equals 1 when the predicted

label from the network wi = yj, and is 0 when the prediction is incorrect. The network

is trained through error backpropagation.

Through training a neural network on a dataset, a set of weights are obtained,

which are associated with each neuron, and these can be used for inference. The

number of hidden layers, the number of neurons and the choice of activation function

are hyper parameters that are hand-picked before training. If there are many hidden

layers, a neural network is referred to as a deep neural network (DNN) [14]. In

DNNs, each subsequent hidden layer has the ability to learn higher level feature

representations than previous layers. With DNNs, we are not required to explicitly

tell the algorithm what features to learn, there are enough parameter weights that

simply based upon the training examples, the network is able to learn the features

required to classify objects on its own. All state-of-the-art object detectors are based

upon deep neural network designs.
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2.3.2 Convolutional Neural Networks

However, traditional neural networks cannot be used when working with very high-

resolution feature data often found in camera and lidar – as the number of parameters

required for learning is far too great. Fortunately, there exists a very special neural

network that is designed for classification in such high correlation scenarios. It is

called a Convolutional Neural Network (CNN) and its neuron model is a filter. This

neural network is the backbone of all object detectors and is the state-of-the-art for

image and point cloud classification, detection and segmentation.

Traditionally in image classification, if one wanted to extract objects from an

image, they would have to hand-pick filters to extract feature information. A filter in

this context is simply a matrix which one convolves an input image with to extract

information. For example, one could have filters to extract vertical and horizontal

lines, and even specific edges.


1 0 −1

1 0 −1

1 0 −1




1 1 1

0 0 0

−1 −1 −1



If one convolves an image with the filter on the left they would extract all the

vertial lines in that image. Likewise, with the filter on the right they would extract

all the horizontal lines. This always begged the question, is it possible that an entire

class of objects (car, dog, human, cancer cell, etc..) can be decomposed into a set

of filters which may be used for inference. In 2013 CNNs proved they were able to

achieve this task [9]. Through training on a dataset using back propagation, a CNN
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was able to learn decomposition patterns to inference on objects in the ImageNet

dataset, achieving human level performance.

Unlike classical NNs, in CNNs the neurons are in the form of these filters, and

instead of choosing handpicked filters, each filter has a n x n x d (n is the size of the

filter and d is the dimension) set of weights, which are learned through training.


w1 w2 w3

w4 w5 w6

w7 w8 w9



The number of filters one may select and their size are chosen hyperparameters

when designing the network. For simple tasks smaller and fewer filters are required,

however for complex objects many more are needed. This idea of representing filters

as learnable weights is the most influential idea in all of computer vision. Through

simply training on a dataset, the classifier figures out on its own what filters are

needed to learn the representation of an object.

As mentioned previously, in deep neural networks as we go deeper, the network

is able to learn more complex features. In the earlier layers of a CNN, the network

learns small colour, texture and orientation patterns, in further layers this information

is fused to create more complex features such as contours, finally in the deepest

layers the network is able to obtain detailed feature maps which uniquely identify

objects belonging to classes. This simplification is only possible because image and

point clouds have a lot of features which are highly correlated. Allowing CNNs

31



M.A.Sc. Thesis – A. Zaidi McMaster University – Electrical Engineering

to take advantage of two ideas: Parameter Sharing and Sparsity of Connections.

In parameter sharing, each Neuron (filter) is special because it has the exact same

weight. For example, if a vertical edge is learned by a CNN network, it can be

propagated to different layers in the network and is just computed once. By sparsity

of connections, we mean that in each layer, each output value depends only on a small

number of inputs around it. Intuitively in images when searching for an object, the

pixels that border an object are dependent on the neighbouring pixels and differ from

pixels outside the border. Ultimately, these two ideas allow a CNN to achieve with

fewer than 100 filters, what a traditional neural network may require several million

parameters to achieve. A CNN has several new layers it adds to the traditional NN

introduced previously, the most important are the convolutional and pooling layers.

The convolutional layer is where the filters are, and the output of these layers are

often called feature maps. Pooling layers are used to reduce computational costs

and make features more robust. When using CNNs, a few standard NN layers are

needed at the end, and these are referred to as fully connected layers. The actual

classification task is done by these layers while the convolutional layers are for feature

extraction.

CNNs are the backbones of all object detectors and over the years there have

been several famous CNN architectures that have performed very well and most CNN

designs are based off of these. Some of these popular architectures are VGG-16 [33],

ResNETS [6], and Inception [36].
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2.3.3 Object Detectors

Figure 2.4: An image based object detector.

To detect objects in a scene such as a lidar scan or an image from a camera, a class

of algorithms called object detectors are used. When using the term labeling algo-

rithms within the context of this thesis, this is a direct reference to object detectors.

Classically, object detection was done using a sliding window and template matching

approach, where one would sequentially run a template match over all areas in an

image and then try to classify regions that have a high overlap. Overtime, the litera-

ture moved away from template matching and instead tried to use feature extraction

with classification. Two famous detectors which were popular for a while were the

Viola-Jones Detector, and the famous Histogram of Oriented Gradients (HOG) with

a Support Vector Classifier. However, all modern object detectors are now based off

of the CNN architectures mentioned in last section. When CNNs were introduced in

the last section, they were described from the perspective of passing in a single image

and obtaining a classification output. However, CNNs can be transformed to also

handle localization, which is not a classification but a regression problem, through

introducing another loss function. This is needed for object detection. Recall that

in object detection, multiple objects may exist in single frame, so both localization
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and classification problems need to be solved (see figure 2.4). To solve this problem,

modern object detectors apply a CNN classifier to different regions in an image to

attempt to localize and classify multiple objects. These detectors are known as fully

convolutional. A fully convolutional object detector is an object detector that has

been designed to integrate the entire detection pipeline into a CNN. There are two

philosophies for how to approach this problem and they are split into one-stage and

two-stage detectors (see Figure 2.5). In one stage detectors, something similar to a

sliding window approach is used, however the implementation is completely differ-

ent and convolutional operators within the CNN are used. The advantage with this

approach is that instead of having to re-run the CNN sequentially on some n x n

region in a frame (traditional sliding window), it can be done in one-go through a

single network pass - this allows for an incredible speed up in computational time. In

two-stage detectors, the CNN has been designed to detect region proposals and then

classify them.

2.3.4 CAMERA based detectors

One-stage detectors are incredibly fast and can be implemented in real-time. Some

famous state-of-the-art one-stage detectors are YOLO [21], SSD [17], RetinaNET[16].

One problem with one-stage detectors is that a lot of regions in which a CNN may be

executed are empty (see RetinaNET section below for details). Two-stage detectors

in general obtain greater performance because they extract regions with a high proba-

bility of containing an object and then evaluate those regions only. Additionally, they

obtain much better performance on smaller objects. The downside is that two-stage

detectors are much slower and often cannot be used in real-time. The most popular
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state-of-the-art two-stage detector is Faster-RCNN [22]. Figure 2.5 illustrates the

difference between one-stage and two-stage detectors

Figure 2.5: One-stage vs Two-stage detectors. FC stands for fully-connected layer.

In the YOLO (you only look once) algorithms, we split an image into a grid of

n x n cells, and we run a CNN on each of those cells (using convolutions this is

done in a single step and NOT sequentially). A small n x n size is used to ensure

situations where two objects are inside the same candidate cell are limited. Each

cell produces a hypothesis (m hypotheses if using anchor boxes, see below) of what it

believes is in that region. to reduce redundancy, which arises in such a situation, a non

maximum suppression (NMS) step is applied to prune overlapping bounding boxes

that belong to the same object. Another problem in object detection is that there

may be overlapping bounding boxes for objects from different classes,for example, a

human standing infront of their car. To handle such issues, an anchor box can be

used. An anchor box is a template bounding box that is learned by the network and is
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class specific. It allows for the detection of class specific overlapping objects to some

degree using similarity measures such as intersection over union (IOU). Therefore,

for each grid cell we predict a total of m hypotheses if using anchor boxes. The

fundamental weakness of this detector is that it runs into trouble when there are

small objects or closely spaced objects. This is because we divide an image into a

n x n grid where each cell can predict either a single object or multiple objects. If

more objects make it into these regions and anchor boxes cannot detect them, then

we get missed detections. A YOLO detector is fully convolutional, and includes a

CNN backbone such as ResNET, and uses fully FC layers for classification (bounding

box label) and regression (bounding box location).

SSDs (single shot detectors) are similar to YOLO detectors, however, instead

of relying on detections from a single feature map, they perform them at various

resolutions. The idea is that often in CNN architectures we start with a feature map,

which slowly gets fine tuned to a smaller one as we fuse more and more information

down the layers. Unfortunately, it is possible that for small objects that this resolution

becomes so small that classification is no longer accurate on that feature map and may

result in a missed detection. With SSDs, instead of detecting only at the final map,

we also detect at other larger resolutions (layers before the final). With this approach,

this detector can detect smaller objects in the earlier layers, and much larger objects

in the deeper layers. Ultimately, this allows for much more robust detections. Any

SSD is comprised of three components, like YOLO it has a standard CNN backbone

as well as the fully connected regression and classification heads. However, in addition

to these, it has a feature pyramid network which is directly connected to the CNN
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backbone and this is what allows for detections at multiple resolutions.

One major drawback of one-stage detectors is that they suffer from severe foreground-

background class imbalances [16]. In object detection, there is a natural imbalance

between foreground objects and background objects in a scene. Often we have a lot

of background noise and fewer foreground objects. In two-stage detectors such as

Faster-RCNN, a region proposal network (RPN) selects the top 2k candidate regions

to evaluate. By only selecting the top 2k regions, we filter out majority of these

background objects. Therefore, the Faster-RCNN algorithm can obtain more robust

results and true detections because it is only focusing on important foreground ob-

jects during training. In the case of YOLO and SSD they focus on background regions

equally as much as foreground regions, and these background regions either generate

false alarms or are uninteresting and do not benefit training. The idea here is that

these regions require focus from the network but have a negative contribution, this

leads to object detectors not being trained properly because they should be instead

focusing on feature rich foreground regions. A special SSD called RetinaNET ad-

dresses this problem through changing the loss function for standard SSDs using a

novel focal loss. This loss function was able to resolve the class imbalance problem

and led to RetinaNET surprisingly outperforming the two-stage Faster-RCNN.

The original RCNN (regions with CNN) object detector was based upon the two-

stage detector paradigm. It used a region proposal method called selective search

to segment and crop 2000 candidate regions which may contain objects. Then it

applied a CNN on these proposals to extract features, finally the extracted features
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were classified using an SVM. Although this method worked well it was extremely

slow (inference time of 49s per frame), and this algorithm was not fully convolutional.

The slowdown in speed was due to the fact that each of the 2000 candidate regions

had to be cropped and passed to the classifier sequentially. In 2015, Fast-RCNN

was proposed. The detector still relied upon a selective search style region proposal

strategy, however it added a new module, which allowed for the network to be fully

convolutional. The selective search unlike before was now applied on convolutional

feature maps and not a raw image. Additionally, like the single-stage detectors we

mentioned earlier, fully connected layers with regression and classification heads were

incorporated and convolutional operators could be used to implement a sliding win-

dow approach. This allowed for an enormous improvement in speed since we were

no longer sequentially evaluating CNNs on 2000 region proposals. However, this ap-

proach was still not adequate because the selective search step still took quite some

time (inference time of 2.3s per frame). Luckily in the same year, Faster-RCNN was

proposed. This was also a fully convolutional network; however, the novelty was that

the region proposal strategy, which was previously a bottleneck, was now incorpo-

rated through a region proposal network (RPN)and in turn allowed for an incredible

speed up in performance (inference time of 0.2s per frame). Although this detector

cannot be used for real-time inference, it is still an extremely good detector which

is particularly useful for F-SAL systems. While its performance is sometimes worse

than RetinaNET, it allows for very diverse results when conducting object detector

fusion, as will be seen in the results section.

38



M.A.Sc. Thesis – A. Zaidi McMaster University – Electrical Engineering

2.3.5 LiDAR based detectors

Object Detectors in lidar are similar to those in camera, as both one-stage and two-

stage detectors can be used, however the outputs are usually 3D bounding boxes.

Additionally, lidar outputs are point clouds which are sparse and unstructured, and

fundamentally different than image pixels.

In a standard camera sensor, the coordinates for an object are with respect to

the top left corner of an image. The camera physically represents an image as pixels,

and pixels have an ordered structure (x,y) over colour channels. This implies that if

one were to change the location of any set of pixels in an image, one would obtain

a completely different image and objects in that image would be altered, therefore

it is important to maintain this order. In lidar, instead of pixels, a point cloud

representation is used. Points clouds are an unordered set of points that are obtained

when a rotating laser scans the environment. Each such point is a tuple which contains

4 values: (x, y, z, intensity). The lidar coordinate frame is also different and has the

center as the origin unlike a camera. More importantly, changing the order of these

points has no effect on the objects these points represent.

For object detection in images, one could simply provide raw images to a detector

and it could detect objects in that frame. However, the CNN backbones presented

in the previous section, all made an implicit assumption that the raw pixel data pro-

vided was always ordered. In the literature, this is called the permutation invariance

property. It is known that CNNs perform well due to sparsity of connections and

parameter sharing, both of which rely on strong local structures. Since point clouds
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are unordered, CNN based object detectors cannot be used directly on them. Luckily,

there are a few alternatives which allow for the use end-to-end NNs on point clouds.

One strategy is to design new NN Architectures, which can directly process raw

point cloud data while still satisfying the permutation invariance property. These are

called point-based methods. Examples of such an architecture is PointNet [19]. This

is primarily based upon the theorem that a function of a set of variables called f(x)

is symmetric, if in its product of a function γ and composite function g(h(x)); γ is

symmetric.

f(x1, x2, ..., xn) = γ ∗ g(h(x1), h(x2), ...h(xn))

With this in mind, an end-to-end architecture that takes raw point clouds and

outputs detections can be designed. Specifically, PointNet uses max-pooling as its

symmetric function to combat permutation invariance. Additionally, to handle geo-

metric transformation invariance it applies a separate transformation using another

network. Unfortunately, PointNET was not too successful because it was unable to

extract local structures, however PointNET++ [20] improved on this and provided

much better results.

Alternatively, there are grid-based methods. Here raw point clouds are encoded

into an ordered representation, these are called pseudo-images. Through this trans-

formation, point cloud detectors are no longer pinned by the permutation invariance

property and can make use of CNNs. A popular method to achieve this is voxeliza-

tion. A voxel can considered as a pixel generalized to a volume. In voxelization, a 3D
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region is essentially split into subspaces or sub-cuboids of equal size, which are called

voxel cells. However, due to computational reasons, we create cells only along the x-y

plane and not the z dimension. Although we do not select a z value, the voxel cells

still span this region with a fixed height - in the literature, 2D voxel cells are referred

to as pillars. Each pillar is a vector which stores different points. Pillars allow for the

representation of point clouds as ordered 3D structures so CNNs may be scaled to

point cloud data. These pillar encoders can be learned using an end-to-end architec-

ture during detector training on labeled data. A well-known end-to-end network that

incorporates this idea is PointPillars [13] which is based upon a one-stage detector.

Presently, some state-of-the-art lidar detectors are Point-RCNN [31], Part-A2Net

[32] and PV-RCNN [30]. These are all built upon the idea of two-stage RCNN de-

tectors. However, there are other architectures as well such as SECOND [41], and

even detectors which fuse image and lidar data together [2]. However, in the case of

Fusion, the aforementioned detectors actually surpass performance from even camera-

lidar fusion for 3D object detection tasks.
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Chapter 3

F-SAL Taxonomy and Design

3.1 Proposed Method

The general taxonomy for F-SAL (sensor invariant) can be seen in Figure 3.1. This

is a framework where both a human and multiple object detectors may label together

frame-by-frame in an iterative manner. The taxonomy of the proposed SAL system is

as follows: First, a localization proposal strategy that is based upon data association

measures is introduced. this is to evaluate what bounding boxes from each algorithm

are likely to be true objects. Secondly, a label fusion strategy that is based upon

feedback is included, and this determines what each localized candidate’s label will

be. Third, an uncertainty evaluation (similar idea to uncertainty sampling used in

Active Learning) step is applied on the label distribution of each object after label

fusion - this is to tag high uncertainty labels. After these steps have concluded, a

human validates the results and makes any needed corrections. This stage contains a

learning step where after each frame is labeled, the ground truth and the algorithms

performance are compared and weights are assigned to algorithms that perform better
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on respective classes. Finally, a diversity evaluation node logs the performance of each

algorithm against the ground truth and calculates the diversity, determining if fusion

is effective, or whether algorithms are not contributing any new information and can

be pruned.

Figure 3.1: The proposed F-SAL System.

With respect to errors, the localization fusion nodes allow for a reduction in missed

detections, incorrect localizations and false alarms, while the label fusion node im-

proves incorrect classifications. Likewise, the uncertainty evaluation step further im-

proves on incorrect classifications by tagging objects that have high uncertainty so

a human may correct them more easily. Diversity evaluation does not contribute to

any error reduction but ensures the efficient use of computational resources. These

are the fundamental building blocks for F-SAL, and from these, several architectures

can be derived for specific scenarios. Each block will now be discussed in detail from

its theoretical pinnings before being applied to camera and lidar data.
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However, before continuing, the work in this thesis mostly addresses problems

in labeling with respect to autonomous driving. While the general framework of F-

SAL is applicable to all problems, for certain disciplines such as bioinformatics where

labeling scenarios are vastly different; information fusion approaches from [34] [38]

may be more beneficial in both the localization and label fusion blocks.

3.2 Diversity and The Motivation for Fusion

One of the novelties in this thesis is to use several labeling algorithms as opposed to

one, however, to understand why an approach like this may work the idea of diversity

must be discussed. Diversity is a fundamental requirement when fusing several sources

of information. All labeling algorithms have a probability associated with them, and

as previously described, they make errors. However, if using multiple algorithms, one

is interested in whether they make the same errors together. If these errors are not

made in unison or are not correlated, then fusion is possible, and the fused output

shows an improvement over the independent outputs. Therefore, diversity can be

defined as a measure of how often the algorithms are correct amongst one another

with respect to the ground truth and to the extent their mistakes are uncorrelated.

More formally: if one algorithm makes a mistake, will other reliable algorithms be

able to compensate for this mistake.

Figure 3.2 represents a scenario where there are three algorithms and five objects,

and the assumption is that all the algorithms are equally reliable experts. Notice

how in the left image algorithm 1 only detects three objects, algorithm 2 detects four

objects, and algorithm 3 detects three objects. However, for every mistake made by
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an algorithm, 2 other algorithms exist to compensate for it. Ultimately, although

none of the algorithms could generalize to all five objects, their fusion can. On the

contrary, the image on the right illustrates a scenario where there is no diversity at

all. All the algorithms make the same correct predictions and the same mistakes.

Whether fusion is used or not, the output will be the same.

Figure 3.2: Left: Optimal Diversity, Right: Bad Diversity

Based upon the definition of diversity mentioned above, one can define a pairwise-

matrix which assesses the diversity between two object detectors. As interest is in

whether an algorithm correctly labels an object, therefore a diversity measure that

fits in quite well in the F-SAL framework is the disagreement measure [11].

dij =

a b

c d

 (3.2.1)

This measure is introduced through defining a 2x2 matrix whose elements are

probabilities that must sum to 1, while the subscripts i, j refer to the two algorithms

being compared. a is the probability that two algorithms will agree on the same

correct objects, b and c are the probabilities that one algorithm was correct while the

other was incorrect, and d is the probability that both were incorrect. These values
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are calculated whenever the detector outputs and ground truth results are compared;

with respect to the F-SAL system this is right after a human makes corrections. The

disagreement measure tells us the probability that two algorithms will disagree on

their decision but still be correct, it is defined as the sum of both b and c.

dij = b+ c (3.2.2)

Therefore, it sufficient to say that if the diagonals have values greater than 0

then diversity exists to some extent, and fusion of labeling algorithm outputs may

increase accuracy. Otherwise, the algorithms are getting the same lahels correct and

incorrect, and fusion is of no value. The number of such pairwise-matrices needed

for diversity evaluation is L(L−1)
2

, where L is the number of algorithms being fused.

For example, if 3 algorithms are available, diversity values must be evaluated for

algorithm 1 and algorithm 2, algorithm 1 and algorithm 3, and finally algorithm 2

and algorithm 3. Likewise, the disagreement measures of each individual algorithm

pair can be averaged to get a general consensus. One advantage with this measure is

that it also scales to multi-modal scenarios if the sensors are synchronized.

However, to better understand the idea of diversity with multiple algorithms it

is more appropriate to plot it. Figure 3.3 shows a plot where the x-axis represents

the number of algorithms that correctly agreed on the same objects, while the y-

axis represents the number of correct objects those L algorithms labeled. In the

optimal diversity case, the number of correct algorithms and all occurrences are all

over the majority vote line and a very sizeable number of objects were classified by

2 algorithms, meaning there is diversity as at least one algorithm disagreed. This
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illustrates that all the information obtained from independent algorithms was fully

utilized, and none went to waste. While in the worst-case scenario, there is no diversity

at all because either all algorithms agreed or disagreed on the same objects, fusion

would not provide any information gain in this situation.

Figure 3.3: Left: Optimal Diversity, Center: No Diversity, Right: Realistic
Diversity

Based upon empirical results shown in section 4, more realistically a diversity

distribution similar to the far right graph in figure 3.3 is observed when conducting

labeling. In this case, there is clearly diversity since there are many objects where only

a single or two classifiers agreed on and were correct. However, this also illustrates

another important idea with diversity, that, diversity may exist but be unutilizable.

Since an implicit assumption was made that all algorithms are equal experts, any

output from a single algorithm cannot be utilized unless a second algorithm agrees.

In this case, there was a scenario where only one algorithm was correct 900 times,

but since a second algorithm did not agree, those 900 objects were treated as false

alarms. This also ties into the idea of how many algorithms should be selected for

fusion, theoretically as L→∞ many of correct objects below the majority vote line

are able to pass through and be utilized as more algorithms can support their vote.
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For the F-SAL system, as fusion is needed, algorithms which are known to be

both diverse and accurate are desirable. Fortunately, the backbone of all labeling

algorithms in camera and lidar are NN based, and NNs are known to have sensitive

classification boundaries making them optimal candidates for fusion tasks [28]. After

having mentioned object detectors, their NN backbones and various other design

choices in section 2.3, it should come as no surprise that due to so many possible

configurations, diversity between object detectors is possible, even if not intentional.

Firstly, there are object detectors that have different region proposal methods. In

the YOLO algorithm, an image is split into a n x n grid, in the Faster-RCNN algorithm

a RPN detects region candidates, and for RetinaNET a feature pyramid network that

allows for merging several feature maps is used. Secondly, all object detectors have

CNN backbones, the choice of the CNN backbone may also vary between object

detectors. However, another source of diversity is the dataset. Through training

on different datasets, object detectors learn different generalization; although this

requirement is often hard to meet because in general the best dataset is desirable,

and all models are usually trained on it. Additionally, for a sensor like lidar, different

pseudo-image conversion methods such as point-based, and grid-based methods exist,

which may introduce diversity to an extent. More generally, in the case of lidar

detectors there seems to be an enormous difference in the architecture design choices

between state-of-the-art detectors. A more general strategy to induce diversity is to

vary thresholds of an object detector which control the extent to which low confidence

bounding boxes make it through as valid detections. Lowering this threshold for

certain scenarios such as small objects allows for true detections to make it through
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at the cost of also allowing some false alarms through. Luckily, in the localization

fusion stage, a vote from multiple experts is required, therefore even through lowering

this threshold, false alarms can still be suppressed significantly. Proof of diversity

between object detectors under some of these scenarios can be seen in the results

section. (Section 4).

3.3 Localization Fusion

While object detectors output both location and classification info together, in the

F-SAL system, localization fusion occurs first, and then label fusion is applied on a

candidate set of high probability localizations after. This choice is tied to the idea of

diversity introduced in the previous section, as the localization stage is actually where

diversity can be exploited between object detectors. One method to induce diversity

is to select CNNs that have different region proposal strategies, from the theory of

CNN based object detection, classification is not difficult for CNNs, localization seems

to be the actual problem. Therefore, labeling algorithms that have different region

proposal methods are desirable. This claim is proven in section 4.

Consider a frame is passed to 3 object detectors like in figure 3.4. Each algorithm

outputs a set of bounding boxes – each corresponding to a candidate object. Now

the problem is that each candidate bounding box (from each algorithm) needs to be

associated to an actual object, and double counting must not occur. There are 3

objects in this scene but 8 bounding boxes. Firstly, a data association measure along

with a decision strategy to determine the criteria for a valid object is needed. State-

of-the-art object detectors roughly have the same accuracy, and results on several
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datasets in section 4 validate this.

Figure 3.4: There are 3 objects but 8 bounding boxes

Since there is not a large variance, one can assume that all the object detectors

being used are roughly experts to the same degree. Based upon this, a majority vote

fusion rule can be selected as the decision strategy. From the theoretical perspective,

the majority vote fusion rule is the optimal fusion rule when fusing information sources

with equal reliability. The criteria then becomes: if L(L−1)
2

of the detectors agree on

a localization, then it is accepted. As for the data association measure, the best

measure for bounding boxes is the IOU measure, which can be generalized to both

2D and 3D bounding boxes [44]. While a weighted vote method is not used, it is

possible that if there is a large variance in the object detectors one has available,

then weighted methods would be beneficial.

3.3.1 Algorithm for Localization Fusion

A robust algorithm for localization can be formulated as follows:

1. Given one has L object detectors and each outputs a set of candidates bounding
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boxes:

D1 → {bb1, bb2, . . . , bbn}

D2 → {bb1, bb2, . . . , bbn}
...

DL → {bb1, bb2, . . . , bbn}

2. � If labeling 2D objects, compare every pair of algorithms output against

one another using 2D IOU, if the two bounding boxes between a pair have

a score greater than 0.5 (0.25 if pixel area is less than 2500) then they are

valid candidates that may represent the same object and are inserted into

a cost matrix with their 2D IOU score. If using L object detectors, then

there will be L(L−1)
2

cost matrices, one for each algorithm pair.

� If labeling 3D objects, the steps are identical but use 3D IOU and keep

the threshold at 0.5.

3. After exhaustively computing IOU over all pairs, each cost matrix is in the

form of standard assignment problem which can be solved using combinatorial

optimization algorithms such as Hungarian [10] with a guarantee of O(n3). The

assumption here is that only one-to-one assignments are permitted. The output

from this operation would return a set with the optimal assignments, one for

each of the L(L−1)
2

cost matrices, a sample output from the optimization for an

L = 3 example would look like:
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D1→ D2 = {0 : 1, 1 : 0, 2 : 9, 3 : 7, 4 : 4, 6 : 3, 9 : 6, 10 : 5, 11 : 2, 12 : 8}

D1→ D3 = {0 : 0, 1 : 4, 2 : 8, 3 : 9, 4 : 7, 5 : 5, 6 : 2, 9 : 3, 10 : 6, 11 : 1, 12 : 11}

D2→ D3 = {0 : 4, 1 : 0, 2 : 1, 3 : 2, 4 : 7, 5 : 6, 6 : 12, 7 : 9, 8 : 11, 9 : 10}

Here each element in the set D1 → D2 represents the optimal assignment be-

tween detectors 1 and 2 for a set of bounding boxes which satisfied both the IOU

and majority vote requirement. For example in D1 → D2, 5 : 11 implies that

bounding box 5 from detector D1 is associated to bounding box 11 in detector

D2.

4. However, since there are L(L−1)
2

hypotheses amongst detectors, all of them need

to be merged and duplicates need to be removed. They are then added to an L-

tuple. Each element in the L-tuple is the contribution from an object detector.

If any pairs of algorithms did not detect an object while the others did, a -1

is inserted to indicate a missed localization from that detector. From this we

obtain the final set of valid candidates. Again, using the L = 3 example from

above, the final list of hypotheses looks like:

{(0, 1, 0), (1, 0, 4), (2, 9,−1), ...}

Each L-tuple can be interpreted as ”What D1,D2 and D3 call 0,1,0 are in fact

the exact same target”, In the case of 2,9 -1 this is interpreted as ”what D1 and

D2 call 2 and 9 are in fact the same target”.
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3.3.2 IOU Remarks

The IOU threshold for 2D bounding boxes can be adjusted depending on the sce-

nario, however, very good results were obtained by using an IOU measure of 0.5 for

all objects that were larger than 2500 pixels, while a score of 0.25 was used for smaller

objects as they are very noisy, and it is easy to unintentionally suppress them. How-

ever, if one is not interested in labeling objects below 50 x 50 pixels, there is no need

to apply this. In regard to 3D IOU, this measure is slightly more robust, however, a

slight improvement might be obtainable by lowering the threshold to 0.25 for small

objects. For example, on the KITTI dataset, a threshold of 0.25 was applied when

the volume of a box was less than 4m, this allowed for 400 more true detections with

a negligible false alarm increase.

3.3.3 Computational Cost Remarks

For 2D object detection, calculating IOU is a microsecond operation and is extremely

quick, therefore the run-time cost is negligible compared to the cost of detector infer-

ence. A 2D assignment problem can be solved in O(n3), however, due to fusion, this

must be solved L(L−1)
2

times. Furthermore, all the independent hypotheses which were

produced must be merged and any duplicates must be removed, this step requires ad-

ditional O(n) time but is negligible in comparison to solving the above assignment

problems. Altogether, per frame, the end-to-end algorithm is a millisecond operation

in the 2D case.

Unfortunately, this is not the case in 3D object detection. The algorithm used

to approximate 3D IOU relies on several other algorithms for approximations and is
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significantly slower than 2D IOU. Having to apply this operation L(L−1)
2

times quickly

adds up. Yet, practically speaking, it is difficult to obtain more than 3 detectors, and

often 5 is the hard limit for any scenario. Similarly, it is rare for the number of

detector outputs to be more than 20 for a given scene. In worst case scenarios, the

run-time for the above localization algorithm in lidar was up to 3-5 seconds per frame.

However, this result can be significantly improved by computing this operation on a

GPU if one is available.

3.4 Label Fusion

3.4.1 Extension to multiple algorithms

Since we are now dealing with the fusion of multiple detector outputs, the Bayesian

theory of labeling from the previous chapter must be extended to now handle multiple

algorithm outputs. The theoretical foundations used here and in label fusion are

based upon the work from the book of [11]. When initially discussing classification

in section 2, interest was in finding a label through maximizing the posterior based

upon some set of features. However, for label fusion, it is assumed that a set of L

algorithms inference on an object and each provides a label distribution (hypothesis),

Now, given a set of L label distributions (hypotheses), one must decide on how to

optimally assign a label.

For a given object X, a set of classifiers D which output labels are denoted as:

D = {D1, D2, . . . , DL}
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The set that contains each classifier output is denoted as:

s = {s1, s2, . . . , sL} ∀ ∈ Ω

Each s may either be an abstract label or a soft label (mentioned later). Interest

is now in the posterior of the form:

P (wk|s1, s2, . . . , sL) ∀k ∈ Ω

From the assumption that each classifier output is independent:

P (s1, s2, . . . , sL|wk) = P (s1|wk)P (s2|wk)...P (sL|wk)

Then from Bayes Theorem this can be written as:

P (wk|s1, s2, . . . , sL) =
P (wk)

∏L
i=1 P (si|wk)

P (s1, s2, . . . , sL)

As before, the goal is to apply an optimization where the posterior is maximized,

since the normalization constant does not depend on the label, it can removed.

P (wk|s1, s2, . . . , sL) = P (wk)
L∏
i=1

P (si|wk) (3.4.1)

3.4.2 Label Fusion Taxonomy

The taxonomy for label fusion is simple, one can have either abstract labels or soft

labels, and the combiner used to fuse decisions can be trainable or non-trainable.
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An abstract label disregards the confidence score associated with an object. Soft

labels on the other hand keep the entire label distribution associated with an object.

Non-trainable combiners are usually based upon hardcoded rules such as majority

vote or averaging a distribution. While on the other hand, trainable combiners as-

sign weights to each individual algorithm that contributes to the combiner. These

weights are learned through training on a dataset. The idea with trainable combiners

is that more reliable algorithms should be assigned greater weights than less reliable

ones. Fortunately, in F-SAL, a very special scenario exists which allows for trainable

combiners to be utilized. This is possible because a human and several algorithms

label simultaneously frame by frame. Since the human provides corrections at every

time step, there is always a real-time dataset of each individual algorithm’s perfor-

mance on each class with respect to the ground truth. From this data, one can assign

weights that reflect the reliability of an individual algorithm on a class. In fact, the

true reliability improves and becomes known as the number of corrected objects by

a human tends to infinity.

3.4.3 Abstract Label Fusion

All modern object detectors are based upon NN architectures, and generally NNs

are very overconfident in their predictions and produce skewed label distributions.

Therefore, in a sense it is arguable that abstract labels may produce better results

in some scenarios. Additionally, it is not always possible for a detector to output the

entire label distribution of an object. If one is designing their own object detectors

they are able to do this. However, with several open source implementations, authors

apply a threshold and only return the top label.
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Weighted Majority Vote (WMV) is a well known trainable fusion method, however,

it is not well suited for label fusion in F-SAL. As there is a false assumption that

all the information sources being fused have the same probability of classification on

each class. Interest is instead in methods which allow for assigning weights not only

to a classifier as a whole, but also to its performance on specific classes, as datasets

are usually imbalanced and one can obtain a much better representation with such a

distribution.

Naive Bayes Combiner

One fusion method that allows for this is the Näıve Bayes Combiner (NBC) [11]. It

allows for real-time training in O(1) as only a few matrix operations are required to

update a confusion matrix or index it. On the other hand, inference time is O(n),

where n is the number priors and likelihoods that must be computed. Often this is

small, as n is equal to the number of classes in a dataset. While NBC assumes an

independence assumption, empirical evidence in literature and results on two datasets

in this thesis have shown that it still performs well even if this is not met.

In this combiner, equation 3.4.1 is maximized directly using approximations for

the likelihood and prior:

P (wk
∗|s1, s2, . . . , sL) = arg max

k=1,...,c

{
P (wk)

L∏
i=1

P (si|wk)} (3.4.2)

Both the prior and likelihood are computed from a confusion matrix. Table 3.1
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shows a sample confusion matrix. If there are L classifiers, then there will be L confu-

sion matrices. An element in the confusion matrix can be read as: class ‘i’ (row) was

the true label, while the classifier predicted label ‘j’ (column). Therefore, the diagonal

elements of the confusion matrix track the occurrences of correct classifications, while

all other elements represent the occurrence of misclassification’s. The numbers in a

confusion matrix encode all the information needed in order to calculate the exact

probability of classification of a classifier on a specific class. It’s dimensions are C+1

x C+1 where C denotes the number of classes in the dataset, and the +1 term is to

account for a missed detection where there is no label.

Classifier 1 Car Truck Pedestrian Missed

Car 150 10 0 5
Truck 5 40 0 1

Pedestrian 0 0 50 4
Missed 0 0 0 0

Table 3.1: Confusion Matrix for C = 3

The prior is class specific for all wk, k = 1, . . . , C and can be estimated as the

ratio between the number of objects that belong to a class k in the dataset divided

by the total number of objects in that dataset.

P (wk) =
Nk

N
=

∑
j

CM(k, j)∑
k

∑
j

CM(k, j)
(3.4.3)

While the likelihood can be estimated as:

P (si|wk) =
CM i(k, si) + 1

C

Nk + 1
(3.4.4)
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The 1
C

term is an offset to ensure that a single classifier does not have veto power

as this may occur for very small numbers when taking a product.

Finally, the posterior becomes:

P (wk
∗|s1, s2, . . . , sL) = arg max

k=1,...,C

{Nk

N

L∏
i=1

CM i(k, si) + 1
C

Nk + 1
} (3.4.5)

Training

1. Anytime a human validates algorithm outputs in F-SAL, update the L confusion

matrices {CM1, CM2, . . . , CML} corresponding to each specific detector. Each

confusion matrix is indexed by the predicted label and the true label (in their

numerical encoded form) and the count at that specific location is incremented.

Inference

1. After receiving an object X from the localization fusion block, based upon the

output s1, . . . , sL calculate the prior (3.4.3) and likelihood (3.4.4) for each class

k = 1, . . . , C and for all i = 1, . . . , L

2. Select the label which maximizes the posterior using (3.4.5)

Behaviour Knowledge Space Combiner

Bayesian frameworks are optimal under an independence assumption. However, if

there is a scenario where there is strong dependence between the outputs, the optimal

combiner is the Behaviour Knowledge Space Combiner (BKS) [7]. This is essentially
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a look-up-table approach, which provides an estimate of the posterior P (wk|s) for all

k = 1, . . . , c and for every single combination of outputs s ∈ Ω. Like NBC, BKS

training time is O(1). What this means is that to update the dataset BKS uses, the

number of operations is always constant. This can be implemented as a hashmap

which has O(1) insertion (amortized). Likewise, for inference one only needs to index

the hashmap, which again has O(1) (amortized) access. BKS is slightly slower than

the NBC because collisions occasionally occur in hashmaps but seems to perform

better on the datasets evaluated (see table 3.2).

Training

1. Initialize a look-up-table (LUT) of size CL which contains every possible com-

bination of s1, s2, . . . sL, which are the ordered permutations with repetition.

2. Anytime a human validates algorithm outputs in F-SAL, this LUT is updated.

This is done through indexing the LUT by its classifier outputs s1, s2, . . . sL

(key) and inserting the ground truth value as the look-up (value).

Inference

1. After receiving an object X from the localization fusion block, from outputs

s1, . . . , sL index the LUT and then select the label from the candidate list that

had the most votes.

2. If there is a scenario where no key value has been assigned, apply majority vote

on s1, s2, . . . , sL. However, one problem with this approach is ties, in such a

scenario a label must be picked at random. However, instead of doing this,

since confusion matrices are actually very useful for analytics, they are always
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maintained in F-SAL. Therefore, instead of picking at random, a NBC can be

used instead.

Machine Learning based Combiners

Additionally, other classifiers can be used as combiners as well, this is called stacking.

In this case, the classifier outputs are combined over an intermediate feature space,

and the labels are features, which are passed into another classifier for classification.

SVM, LDC, and KNN were evaluated on 2 separate datasets using 3 classifiers and

5 classes (Car, Truck, Pedestrian, Traffic Light, and Motorcycle), the results can

be seen in Table 3.2. Since machine learning models need initial data for accurate

inference, a majority vote strategy for the first 2000 objects was used, and they

were only allowed to inference after this point. All these machine learning methods

performed worse than both the NBC and BKS, in performance and in training as well

as inference times. Although the SVM classifier came very close, having to retrain

it every frame takes longer than the other approaches, and becomes problematic for

large datasets. Between BKS and NBC, it is better to go with the BKS combiner.

It has produced better results on all datasets and theoretically dependency between

accurate classifiers is expected. Additionally, both the BKS and NBC do not require

any special initialization strategies to be incorporated into our F-SAL system, and

unlike machine learning techniques, they do not require any hyperparameter tuning

either.
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Method Errors on Dataset 1 Errors on Dataset 2

LDC 8637 10926
KNN 1906 2642
SVM 1600 2356
NBC 1572 2345
BKS 1497 2092

Table 3.2: Label Fusion Performance on Two Datasets

3.4.4 Soft Label Fusion

With soft labels one has access to an object’s entire label distribution, in general

this is very useful as more features exist to make decisions than with abstract labels.

Since there are several distributions, a structure is needed to store all of them. One

such structure is the decision profile[11]. This is a matrix that contains the entire

ranked output for all classifiers along with their probabilities for a given object X. It is

denoted as DP (x). Each row corresponds to a classifiers label distribution, and each

column corresponds to the support from classifiers D1, . . . DL for a class wj. Each

element in this matrix, denoted dij, is an estimate of the posterior P (wj|x). Since

these are probabilities, each row must therefore sum to 1.

DP(x) =



d11 d1j . . . d1C
...

...
...

...

di1 dij . . . diC
...

...
...

...

dL1 dLj . . . dLC


(3.4.6)

Like abstract label combiners, when training soft combiners, each classifiers set

of confidence scores can be used as features to infer what the fused label is. The
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obvious advantage for soft combiners is that the number of features available for a

single object is C X L. The theoretical pinnings for the next few methods are very

strong, as fusion rules which involve averages and products on distributions can be

shown to minimize metrics such as the average Kullback-Leibler divergence [18]. This

is also proven from Bayesian estimation for weighted scenarios [8].

Weighted Average Combiner

As mentioned previously, with trainable combiners the goal is to find weights which

reflect the reliability of each classifier on each class. One strategy is to treat this

as a regression problem where the objective is to fit to the posterior probabilities.

This can be implemented through the weighted average combiner [11]. Weights for a

class j are denoted as wikj, and there are a total of C x C X L + 1 weights (+1 for

intercept). This is the same idea as how the NBC had a confusion matrix of weights

associated with each classifier.

Training

1. In the F-SAL system, any time a human validates algorithm outputs, a new

entry is inserted into a real-time dataset. This dataset is represented by a

feature matrix Z and ground truth vector y. The feature matrix Z is constructed

by taking the decision profile of an object and flattening it into a row vector,

this is done for all objects. The ground truth vector is then simply the true

label, which is associated with each object.
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Z =



d111 . . . d1LC

d211 . . . d2LC
...

...
...

dN11 . . . dNLC


Y =



y1

y2
...

yN


.

2. Train a regression for each class j = 1, . . . , C and return the weights from the

C regressions using the following function:

µj(x) =
L∑
i

C∑
k

wikjdik(x)

Inference

1. After receiving an object X from the localization fusion block, a decision profile

is constructed from the L label distributions generated by L detectors.

2. The confidence associated with each class can then be evaluated using the

weights obtained during training. Select the class that maximizes the confi-

dence scores.

P (wk
∗|DP (x)) = arg max

k=1,...,C

{ L∑
i

C∑
k

wikjdik(x)}

However, one problem with this approach is that one would have to retrain a re-

gression every frame or every few frames for an accurate representation, as the number

of objects increases, the time required to train this regression also increases. Also, for

a regression one must carefully select a loss function and well as a regularization term,

which requires some hyperparameter tuning. Therefore, this is not a good strategy
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to use for soft label fusion in F-SAL. Similarly, other machine learning technique can

also be applied to this problem, however, the issue is that they too are impractical

due to training time requirements and hyperparameter tuning.

Decision Template Combiner

One alternative to weighted methods is the Decision Template Combiner (DTC) [12].

This approach is similar to the BKS approach with abstract labels but is generalized

to handle distributions. The idea here is to keep a reference to the average decision

profiles for each class wj through a template decision profile. All the decision profiles

over N objects from the dataset are merged, where a specific j was the true label,

and this is done for all classes j = 1, . . . , C. Then at inference time, one compares a

new objects decision profile to each class template through a distance measure, and

then selects the label whose profile minimizes this distance measure (or maximizes

a similarity measure). Through averaging several distributions, a single accurate

distribution which reflects the consensus from multiple experts is obtained. DTC

is an excellent strategy for fusion and feedback in F-SAL as it allows for real-time

training in O(1) as only a few matrix operations are required to update the templates.

Training

1. Initialize a set of C matrices which represent a decision template associated

with a class label, each decision template DTj for j = 1, ..., C is the mean of all

decision profiles for all instance of wj observed in the run-time dataset so far.

DT = {DT1, DT2, . . . , DTC}
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2. Anytime a human validates algorithm outputs in F-SAL, the corresponding

decision templates are updated by adding the new outputs and reweighing the

mean. This can be calculated through:

µj(x) =
1

Nj

∑
DP (Zk) where Yk = wj and Zk ∈ Z

Inference

1. After receiving an object X from the localization fusion block, a decision profile

is constructed from the L label distributions generated by L detectors.

2. Compare the object’s decision profile to the set of templates and assess the

similarity score using square euclidean distance, then select the label as the one

which minimizes this distance.

P (wk
∗|DP (x)) = arg min

k=1,...,C

{
(1− 1

L ∗ C
)

L∑
i

C∑
k

(DTj(i, k)− di,k(x))2}

3.5 Uncertainty Evaluation

This idea was inspired from querying techniques in Active Learning [27]. Sometimes

classes in datasets will have very similar features (e.g., it is common for trucks, cars,

and buses to me mistaken for one another) and may be misclassified. Recall how

in all of the label fusion methods mentioned, a label which maximizes a posterior

distribution is used. In uncertainty evaluation, if several label hypotheses in the

posterior are very close, instead of pruning them, which may induce errors, this

object can be flagged for human validation. The idea here is through flagging these
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uncertain labels, the time spent making corrections is reduced as the human does

not need to search for errors. To illustrate, in Figure 3.5, from observing the label

distribution, it is clear with a high degree of confidence that the label on the left is a

car. However, with the distribution on the right there is uncertainty as it seems there

is still a strong chance this may be a truck.

Figure 3.5: The label distribution of two objects

3.5.1 Measures for Soft and Abstract Labels

For soft labels, a decision profile which was introduced in the last section contains

the distribution for all L classifiers on an object, this is enough information to assess

if there is high uncertainty with a label post fusion. After obtaining the decision

profile of an object, the L distributions must be averaged into a single distribution

to get a consensus. From this new distribution, several information theory based or

thresholding techniques can be used to determine any uncertainty.

Pav(y|x) =
1

L

L∑
i=1

Pi(y|x) (3.5.1)

Similarly, uncertainty evaluation can also be applied to abstract labels if using the

NBC or BKS combiners. In the case of the NBC, the posterior from which argmax
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is taken, is a distribution. Likewise, the same can be for BKS as for an entry in the

LUT can have multiple label candidates, and from their frequency of occurrence a

distribution can be created. Although both methods require an additional step to

apply a normalization to scale the values accordingly.

The most trivial measure that can be applied is a simple threshold condition. For

example, if the highest ranked label has a probability lower than say 0.5, then it can

be flagged as uncertain. This technique however only relies on the top value from the

distribution and ignores everything else.

arg max
x

{
Pav(y|x)} > T (3.5.2)

A better strategy is margin sampling, where the top two n candidates in the label

distribution can be compared, and if their difference is within a threshold, then the

label output is flagged as uncertain (e.g. in Figure 3.5 if a threshold of 0.15 was used,

and the top two candidates were compared, this would be an uncertain scenario).

However, this approach may not be reliable if the number of classes is very large.

|(Pav(y1|x))− (Pav(y2|x))| > T (3.5.3)

If the number of classes is very large, an entropy-based measure, which weights

in the entire distribution, can be used. Entropy measures the amount of information

needed to encode a distribution. Therefore, high entropy means there are several

close candidates and therefore an uncertain scenario. However, low entropy means a
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single component dominates and there is certainty about the prediction.

C∑
i=1

Pav(yi|x) log(Pav(yi)) > T (3.5.4)

In this section some measures to assess the uncertainty with a label were pre-

sented. As mentioned previously, neural network architectures for object detection

are extremely overconfident with their label scores, therefore, the measures specified

here are sufficient to assess any uncertain scenario if using object detectors with CNN

backbones.
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Chapter 4

Methods and Results

In the previous sections, the fundamental theory required to construct the proposed

F-SAL system was presented. In this section, using the general taxonomy proposed

in section 3, some methods which may be useful for labeling both image and point

cloud data are presented. Furthermore, the results and their significance will also be

discussed.

4.1 Datasets

The following datasets will be used for evaluation of the proposed F-SAL system.

4.1.1 Image Datasets

Firstly, results are presented on the Udacity Autonomous group dataset. This is an

open-source dataset that contains 15000 labeled frames with 5 classes (car, person,

traffic light, truck, motorcycle). This dataset represents driving conditions for several

scenes at different times of the day, although they are bound to the same city and
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climate.

Secondly, results are presented on a small available subset of the BDD100 dataset

[43]. This dataset contains 10000 labeled images and 147350 objects over 5 classes

(car, person, traffic light, truck, motorcycle) obtained from Kaggle. This dataset is

the most challenging autonomous vehicle dataset to date and has data from dozens

of cities, varying climates and times of the day from all over the world.

4.1.2 LiDAR Datasets

The KITTI dataset [5] is a famous multi-modal dataset for perception algorithms,

which contains data for both lidar and camera sensors. Each training example in this

dataset is a scenario that represents a labeled 3D scene captured from a synchronized

camera and lidar sensor. The camera sensor outputs a standard RGB image while the

lidar sensor outputs a 360-degree laser scan – this can be thought of as a 360-degree

image captured over a small interval of time through a rotating laser. Furthermore,

by synchronized, this means that the camera captures an image exactly when the

lidar scan is aligned with the center of the camera’s field of view. The KITTI dataset

contains a second grayscale camera, however, we never make use of this information,

so it is omitted. KITTI has become stricter and no longer allows unauthorized access

to its test set. Therefore, it has now become common convention to take the training

set and split it into a training (3712) and validation set (3769). In the case of lidar

detectors, they were all trained on this training set. While inference was done on the

validation set which contains 17544 objects over 3 classes: Car, Pedestrian, Cyclist.
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Additionally, we also evaluate lidar results on the waymo dataset [35]. This dataset

is enormous and due to computational limitations results are evaluated on a single

validation set (validation set 0). Unlike the KITTI dataset, the configuration is

different and there are several cameras in different directions which are synchronized

with central lidar sensors. However, the object detectors (trained on KITTI) used for

evaluation are only trained to label objects in the front field of view, so we evaluate

only on this range. There are 4898 training samples with 45681 objects over 3 classes:

Car, Pedestrian, Cyclist.

4.2 Design Choices

4.2.1 Image Detectors

Machine Specifications for Inference

For image inference, the results were evaluated in a Windows 10 environment, on an

Intel Core i7-8750H CPU @ 2.20GHz processor with 6 cores and 12 logical processors.

The graphics card is a NVIDIA GeForce RTX 2070 with Max-Q Design and contains

8.0GB of dedicated GPU Memory.

Selected Detectors

For image data, Faster-RCNN, YOLOV5-M and RetinaNET object detectors were

used. Each of these detectors were pre-trained on the COCO dataset and are based

upon ResNET backbones. The two-stage Faster-RCNN detector is the slowest and

has an average inference time of 200ms, while YOLOV5 had an inference time of

12ms, and for RetinaNET this was 70ms.
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4.2.2 LiDAR Detectors

Machine Specifications for Inference

For LiDAR inference, the results were evaluated on an Ubuntu 18.04 environment,

on an Intel Core i7-10750H CPU @ 2.60 GHz processor with 6-cores and 12 logical

processors. The graphics card is a NVIDIA GeForce GTX 1650 Ti Mobile with 4.0GB

of dedicated GPU Memory.

Selected Detectors

For LiDAR data, PV-RCNN, Part-A2 Free, PartA2-Anchor, Point-RCNN and SEC-

OND were used. Each of these detectors were trained on the KITTI dataset (subset

of it, see dataset section for split). PV-RCNN has an average inference time of 330ms,

PartA2-Anchor has 260ms, and SECOND is the quickest at 130ms.

4.2.3 Localization Fusion

For image data, 2D IOU with Majority Vote (see section 3.2 for formulation) was

selected as the localization fusion strategy. As the accuracy of the algorithms is

roughly the same, no benefit was obtained by using weighted methods in any of the

datasets tested. Regarding the IOU value, the best balance between detections and

false alarms were obtained when an IOU threshold of 0.5 was set for any object

larger than 2500 pixels, and 0.25 for any object less than this. This adaptive value is

required because IOU penalizes mismatches very heavily, and small bounding boxes

tend to have more variance amongst detectors. Therefore, majority of small targets

are filtered out if a smaller threshold is not used. In the case of LiDAR, 3D IOU

with majority vote was used. The 3D IOU is to 0.5 for objects that had a volume
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larger than 4, and 0.25 for objects which had a volume lower than 4. However,

these values only apply to the above mentioned object detectors. It is quite likely

that future object detectors will be much better at detecting smaller targets and

these thresholds may change. In such a scenario, one can calculate the optimal value

through evaluating detector performance on a dataset and recording how different

IOU values effect false alarms and detections.

4.2.4 Label Fusion

BKS Combiner was chosen as it performed the best on all datasets, and this is in line

with its theoretical backing (see section 3.3 for comparison of performance of several

combiners on datasets), where it is derived as the optimal abstract combiner when

there is heavy dependency between algorithms. Soft Label fusion approaches could

not be used as some detector implementations were not able to provide the complete

label-score distribution for objects during inference.

4.2.5 Uncertainty Evaluation

Margin Sampling on BKS Combiner Outputs with T = 0.15 (see section 3.4) was

selected. If two labels from the distribution of fused label outputs are within a 0.15

margin, then a human is required to label this example. More advanced measures such

as an entropy-based measures produced the exact same result and did not provide

any improvement. This is in line with the idea that NNs are generally overconfident

in their performance and their results are often skewed towards a particular class;this

is true even for false alarms. However, it is likely that if we had more classes in our

datasets, which had similar features, entropy measures would probably outperform
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Margin Sampling.

4.2.6 Diversity Evaluation

This parameter is not needed for simulations and does not effect accuracy. However,

when an oracle validates the algorithm outputs, the original outputs as well as any

edits made by the oracle are all recorded for diversity evaluation. Here we are tracking

the pairwise matrices associated with each algorithm combination. If any two pairs

of algorithms are not seeing an increase in their diversity values (pairwise matrix

diagonals) for some latency period, a user is prompted and asked if they would like

to terminate any redundant algorithms.

4.3 Metrics

The objective in this thesis is to show that the fusion of several strong object detectors

with feedback can reduce time spent labeling. Specifically, through minimizing the

four sources of error associated with object detectors. Therefore, one only needs to

compare those four sources of error with respect to the independent detectors and

the F-SAL result. Additionally, the number of true detections is also included to give

a clearer picture of performance – since minimizing those four errors is equivalent to

maximizing the correct detections.

The metrics used in this comparison are simply the number of:

1. Correct Detections

2. Incorrect Classifications
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3. False Alarms

4. Missed Detections

There are dozens of measures that can be evaluated using just these base metrics

(e.g. accuracy, precision, recall, etc...), and object detectors are often evaluated using

mAP (mean average precision). However, within the context of labeling, relying on

these measures does not highlight the improvements associated with a F-SAL system

for the task of labeling, therefore they are omitted.

4.4 Evidence of Diversity with Object Detectors

Before discussing specific methods, evidence for diversity will be presented as it is

fundamental to F-SAL. The theoretical pinning’s of how object detectors contain

diversity was mentioned in section 3.2. However, one rule of thumb which is ex-

perimentally verified next, is to select detectors that have different region proposal

methods - this applies to both camera and lidar based detectors. Additionally, in the

case of lidar detectors there seems to be a significant difference between architecture

design choices between state-of-the-art detectors.

Diversity in Image based Object Detectors

To prove diversity exists amongst image sensors, YOLOV5, RetinaNET and Faster-

RCNN are evaluated - all of which have different region proposal methods - on two

datasets. It is reasonable to claim that the results that are about to be obtained are

in fact due to each detectors region proposal method, because all three detectors were

trained on the same COCO dataset and used the same ResNET backbone. Therefore,
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the only difference is in how the algorithms detect region proposals. More generally,

a good strategy may be to obtain the best one-stage and the best two stage detector

and complement them with a 3rd detector similar to RetinaNET, which has a feature

pyramid network (most SSDs have this).

Dataset 1

Using a graphical representation for diversity (Figure 4.1), one can see that all

three detectors were simultaneously correct on 41, 115 objects, while two out of the

three agreed on an additional 13, 737 objects and a further 8406 objects were situ-

ations where only one detector was correct. We can see each individual algorithms

diversity using pairwise matrices. Faster-RCNN detected 2038 true detections which

YOLO did not detect, and YOLO detected 3636 detections which Faster-RCNN

Missed. Similar trends can be seen with the remaining two comparisons between

Faster-RCNN and RetinaNET as well as YOLO and RetinaNET. The diversity here

is good, the average disagreement measure over the pairwise matrices is 9.26%.

Figure 4.1: The diversity of the three detectors on Dataset 1.
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YOLOV5 Correct YOLOV5 Wrong

Faster-RCNN Correct 50103 2038
Faster-RCNN Wrong 3636 37309

Table 4.1: Diversity between Faster-RCNN and YOLOV5

RetinaNET Correct RetinaNET Wrong

Faster-RCNN Correct 45106 7035
Faster-RCNN Wrong 3515 37430

Table 4.2: Diversity between Faster-RCNN and RetinaNET

RetinaNET Correct RetinaNET Wrong

YOLOV5 Correct 46360 7379
YOLOV5 Wrong 2261 37086

Table 4.3: Diversity between YOLOV5 and RetinaNET

Dataset 2

Using a graphical representation (Figure 4.2), one can see that all three detectors

were simultaneously correct on 45, 507 objects, while two out of the three agreed

on an additional 19,655 objects and a further 11,155 objects were situations where

only one detector was correct. Again, from the pairwise matrices, one can view

the performance of each algorithm, which shows a pairwise disagreement measure of

10.3%. This is slightly more than the previous smaller dataset. The results obtained

are only for a small sample of 147350 objects, however, the famous BDD100k dataset

is much larger and has 100, 000 videos, and each video is 40 seconds long at 30fps.

Fusion for such a scenario would allow for a significant decrease in labeling time over

independent detectors.
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Figure 4.2: The diversity of the three detectors on Dataset 2.

YOLOV5 Correct YOLOV5 Wrong

Faster-RCNN Correct 49849 7303
Faster-RCNN Wrong 8939 81259

Table 4.4: Diversity between Faster-RCNN and YOLOV5

RetinaNET Correct RetinaNET Wrong

Faster-RCNN Correct 50982 6170
Faster-RCNN Wrong 8920 81278

Table 4.5: Diversity between Faster-RCNN and RetinaNET

RetinaNET Correct RetinaNET Wrong

YOLOV5 Correct 52278 6510
YOLOV5 Wrong 7624 80938

Table 4.6: Diversity between YOLOV5 and RetinaNET

Diversity in LiDAR based Object Detectors

Likewise, a similar trend is observed with lidar sensors. However, unlike image based

detectors, all of the state-of-the-art lidar detectors are two-stage detectors. From the

literature it seems that top state-of-the-art methods are fundamentally very different

79



M.A.Sc. Thesis – A. Zaidi McMaster University – Electrical Engineering

from the architecture perspective. This is again due to varying region proposal strate-

gies, but in the case of lidar specifically, this is also true because of varying pseudo-

image conversion methods. In PointRCNN, region proposals are pooled through seg-

menting point clouds into foreground and background points in a bottom-up manner.

In the second stage, there is point cloud region pooling which allows for further re-

finement of proposed bounding boxes. In PV-RCNN, the authors actually combined

voxel and point based methods to obtain more accurate bounding boxes. The moti-

vation was that point based methods have flexible receptive fields while voxel based

methods produce high quality 3D proposals. Similarly, if one compares the frame-

works for Part-A2 and SECOND, it can be seen that they too are fundamentally very

different.

Dataset 3

Using a graphical representation for configuration 1 (Figure 4.3), it can be seen

that all three detectors were simultaneously correct on 10555 objects, while two out

of the three agreed on an additional 3882 objects and a further 612 objects were

situations where only one detector was correct. Again, from the pairwise matrices,

one can see the performance of each algorithm, which shows a pairwise disagreement

measure of 14.59%. Moreover, looking at configuration 2 (Figure 4.4), one can see

that all three detectors were simultaneously correct on 13484 objects, while two out

of the three agreed on an additional 1234 objects and a further 597 objects were

situations where only one detector was correct. From the pairwise matrices an average

disagreement measure of 3.6% is obtained. In configuration 1, detectors that are based

off of completely different architectures that have diverse region proposal strategies

are used. In configuration 2, two detectors which are both very precise but at the same
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time have similar region proposal strategies (Part-A2 Anchor and Part-A2 Free) are

intentionally chosen. The result is that less diversity is observed, proving our claim

that region proposal methods can induce diversity between detectors. While the gains

from diversity do not seem to be much in this case compared to the image detector

dataset. This is only because the KITTI dataset is extremely small and the accuracy

of these detectors is already very high, therefore only marginal gains are possible in

such a scenario.

Configuration 1: PV-RCNN, Point-RCNN and Part-A2-Anchor were used

Figure 4.3: The diversity between PV-RCNN, Point-RCNN and Part-A2-Anchor

Point-RCNN Correct Point-RCNN Wrong

PV-RCNN Correct 10910 3514
PV-RCNN Wrong 115 3005

Table 4.7: Diversity between PV-RCNN and Point-RCNN

Configuration 2 PV-RCNN, Part-A2-Free and Part-A2-Anchor were used
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Part-A2-Anchor Correct Part-A2-Anchor Wrong

PV-RCNN Correct 14210 214
PV-RCNN Wrong 116 3004

Table 4.8: Diversity between PV-RCNN and Part-A2-Anchor

Part-A2-Anchor Correct Part-A2-Anchor Wrong

Point-RCNN Correct 10814 211
Point-RCNN Wrong 3512 3007

Table 4.9: Diversity between Point-RCNN and Part-A2-Anchor

Part-A2-Free Correct Part-A2-Free Wrong

PV-RCNN Correct 13993 499
PV-RCNN Wrong 215 2837

Table 4.10: Diversity between PV-RCNN and Part-A2-Free

Part-A2-Anchor Correct Part-A2-Anchor Wrong

PV-RCNN Correct 14238 254
PV-RCNN Wrong 216 2836

Table 4.11: Diversity between PV-RCNN and Part-A2-Anchor

Part-A2-Anchor Correct Part-A2-Anchor Wrong

Part-A2-Free Correct 13954 254
Part-A2-Free Wrong 500 2836

Table 4.12: Diversity between Part-A2-Free and Part-A2-Anchor

Dataset 4

Since the detectors were trained on the KITTI dataset, the true cross-domain

generalization capability cannot be assessed unless another dataset is evaluated. In

this case the Waymo dataset is used. PV-RCNN, Part-A2-Anchor and SECOND

detectors were chosen, and using a graphical representation (Figure 4.5), it can be
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Figure 4.4: Diversity between PV-RCNN, Part-A2-Free and Part-A2-Anchor.
Notice how there is much less diversity in this case when two detectors with similar

region proposal methods are used.

seen that all three detectors were simultaneously correct on 1462 objects, while two

out of the three agreed on an additional 1143 objects and a further 1605 objects were

situations where only one detector was correct. Clearly, the accuracy of the detectors

was extremely low on this dataset. The result here is unusual and it is discussed in

more detail in the discussion section.

Figure 4.5: Diversity between PV-RCNN, Part-A2-Anchor and SECOND
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Part-A2-Anchor Correct Part-A2-Anchor Wrong

PV-RCNN Correct 1870 74
PV-RCNN Wrong 803 42934

Table 4.13: Diversity between PV-RCNN and Part-A2-Anchor

SECOND Correct SECOND Wrong

PV-RCNN Correct 1704 240
PV-RCNN Wrong 803 42934

Table 4.14: Diversity between PV-RCNN and SECOND

SECOND Correct SECOND Wrong

Part-A2-Anchor Correct 2433 240
Part-A2-Anchor Wrong 74 42934

Table 4.15: Diversity between SECOND and Part-A2-Anchor

4.5 Method 1 - Standalone Object Detector Fusion

The most practical method is to simply fuse independent object detectors. The

advantage of this approach is that there are many open-source implementations for

state-of-the-art object detectors and whenever new research is released it is often

accompanied with reproducible code. Additionally, because of transfer learning one

can train custom data very easily on these stand-alone object detectors. The general

F-SAL pseudocode using this method can be seen in Figure 4.7.

4.5.1 Speed Remarks

The following analysis is based upon the parameters specified in Section 4.2.

Multiple detector inference: The total average time required for inference
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Figure 4.6: The proposed F-SAL System.

Figure 4.7: Pseudocode for F-SAL Method 1

in image data is 282ms per frame. In the case of lidar data this is approximately

720ms per frame. real-time performance is not required therefore this result is excel-

lent. However, if resources are available, this multi detector inference can be handled

concurrently. In which case, the runtime is no longer T1 + T2, . . . ,+TL but instead

max(T1, T2, . . . , TL) + a small overhead for parallelization.

Localization Fusion: In the case of a highly cluttered 2D scene, this component

only took 15ms to execute. Evaluating this algorithm for the worst-case scenario in

a highly cluttered 3D lidar scene, the performance was 3-5s per frame (see section
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3.3 for bottleneck). However, in the case of SAL it takes a human much longer to

validate a frame. With that in mind, even the worst-case scenario with lidar is not

significant in the SAL process.

Label Fusion + Uncertainty Evaluation: This step takes 30 microseconds

per object, making this the fastest component in the entire system.

Human Corrections: This varies and depends on several factors such as if one

is interested in simply object detection or instance segmentation, or whether they are

working with image or LiDAR data, and even the scene type. For simple scenes this

may take only 15 seconds, while for more complex scenes this would take longer.

Diversity Evaluation: Here data is simply being logged to pairwise matrices.

This requires a few comparison operations and is a microsecond operation.

4.5.2 Results

Image Datasets

The results on Dataset 1 can be seen in Table 4.16. The number of correct labels

are slightly better than the best detector (YOLOV5 in this case). However, what is

incredible is the number of false alarms which are suppressed. In terms of robustness,

the F-SAL system is much better than any single algorithm. Moreover, with respect

to the specific stages in the pipeline, the label fusion stage reduced the number of

incorrect labels from 3165 (if simple majority vote was used) to 2107 (using BKS).

The uncertainty evaluation stage tagged 548 candidate labels with high uncertainty

which would have been incorrect, and the exact diversity values can be seen in section

4.4.
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Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 93086 0 0 0
Best Scenario 63258 29828 0 0
Faster-RCNN 54912 38174 2919 57712

YOLOV5 56334 36752 3911 49283
RetinaNET 50468 42618 2789 43028

F-SAL 57441 35645 2107 32683

Table 4.16: Results on Dataset 1. Best Scenario is if full diversity was utilized

Moreover, the results on Dataset 2 (Table 4.17) were also good. F-SAL actually

had more true detections than 2 out of the 3 detectors, while RetinaNET did have

more true detections, the number of false alarms it allowed through were an excess

of 35000 compared to F-SAL. Making the label outputs from F-SAL clearly more

robust. With respect to the specific stages in the pipeline, the label fusion stage

reduced the number of incorrect labels from 2560 (if simple majority vote were used)

to 1833 (using BKS). The uncertainty evaluation stage tagged 1030 candidate labels

with high uncertainty which would have been incorrect, and the exact diversity values

can be seen in section 4.4. Dataset 2 is considered an extremely challenging dataset

so the performance on this dataset highlights the improvement F-SAL brings.

Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 147350 0 0 0
Best Scenario 76317 71033 0 0
Faster-RCNN 62826 84542 2954 16689

YOLOV5 62649 84701 2508 16207
RetinaNET 71500 75850 3741 46620

F-SAL 67358 79992 1833 10413

Table 4.17: Results on Dataset 2. Best Scenario is if full diversity was utilized.
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Lidar Datasets

In regard to dataset 3 (Table 4.18 and Table 4.19), the results were good on both con-

figurations. For configuration 1, although the best detector did detect an additional

215 detections, it also generated 23907 additional false alarms. For configuration

2, 168 more detections were obtained, but 3445 extra false alarms were acquired in

comparison to configuration 1. Regardless, both F-SAL implementations performed

better than any independent detector and are far more robust. Comparatively, almost

as much detections as the best independent detector are obtained, while having 60%

less false alarms.

However, in both configurations, it seems that label fusion and uncertainty eval-

uation were not helpful. There was only a single label improvement from majority

vote using BKS, and only two labels were tagged by uncertainty evaluation. This

makes sense because the KITTI dataset is a benchmark dataset which only contains

three classes - Car, Pedestrian and Cyclist. Therefore, as the accuracy is already

high, and coupled with the fact that discriminating between three distinct classes is

very easy; only marginal returns can be obtained from stages such as label fusion and

uncertainty evaluation in such a scenario.

Moreover, the results on dataset 4 (Table 4.20) were not good. What occurred

was that the lidar detector trained on the KITTI dataset was unable to generalize

to the much more complex Waymo dataset (see discussion section 4.7). This per-

formance had nothing to do with the F-SAL system itself, yet interestingly enough

though, even with very poor lidar detectors, the F-SAL system still produced the
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Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 17544 0 0 0
Best Scenario 15049 2495 0 0

PV-RCNN 14703 2841 7 34372
Point-RCNN 11004 6540 4 13127

Part-A2-Anchor 14754 2790 6 39783
F-SAL 14539 3005 3 15876

Table 4.18: Results on Dataset 3 - Configuration 1. Best Scenario is if full diversity
was utilized.

Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 17544 0 0 0
Best Scenario 15315 2229 0 0

PV-RCNN 14703 2841 7 34372
Part-A2-Free 14334 3210 9 31659

Part-A2-Anchor 14754 2790 6 39783
F-SAL 14707 2837 0 19321

Table 4.19: Results on Dataset 3 - Configuration 2. Best Scenario is if full diversity
was utilized.

most robust results. The number of detections were lower than the best detector

but the suppression of the false alarms was significant. Similarly, label fusion and

uncertainty evaluation made no difference in this case, and the reasoning is the same

as in dataset 3.

Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 45681 0 0 0
Best Scenario 4210 41471 0 0

PV-RCNN 2027 43654 0 11369
Part-A2-Anchor 3593 42088 0 26757

SECOND 3182 42499 32 142060
F-SAL 2747 42934 0 9156

Table 4.20: Results on Dataset 4. Best Scenario is if full diversity was utilized.
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4.6 Method 2 - Object Detector Fusion with L - 1

validation

Figure 4.8: The proposed F-SAL System with a post validation stage

Figure 4.9: Pseudocode for F-SAL Method 2

Normally after Localization Fusion, a set of majority vote detections are allowed

into the label fusion block, and a set of unassociated detections are suppressed. How-

ever, recall in the diversity plots that there are often values for L = 1, and these

represent true detections which were wasted because other detectors did not agree. If
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one could get some of these detections over the majority vote line, one could obtain

even better results. One strategy to achieve this is to further evaluate the unassoci-

ated detections to confirm whether they are in fact false alarms. Surprisingly, if one

applies minor modifications to some of the true detections which were missed and

rerun them through the L – 1 detectors; a portion of them are classified correctly the

second time. One advantage with this method is that it does not require searching

for any extra object detectors, as the same detectors are used for validation. This

method applies only to image data.

From empirical evidence observed on two image datasets, it seems that object

detectors sometimes have difficulty with objects that are at the edge of a sensor’s

FOV, and objects which are small. Specifically, Faster-RCNN is very good at finding

small objects, while RetinaNET can still label some objects near the edges of a sensor’s

FOV. The following operations are designed around this idea and have shown good

results.

4.6.1 Post Validation Pre-processing

Assume there is a scenario where there are 3 detectors and one of the detectors located

an object that the other 2 did not, in this scenario one would:

1. Apply a mask to crop out this candidate object. Make sure to apply padding

to ensure all edges are extracted.

2. Overlay the cropped image onto an empty background.

3. Resize the crop based upon width (maintain aspect ratio). A size of 224 or 112
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is good, this value was chosen to match the resolution most neural networks

down sample an image to.

4. Translate it to the center.

One thing to note is that the object crop must be overlaid onto a frame of the

same size as the original image. This is because if an imaged is cropped with its

original dimensions (say 100 x 110) and run directly through an object detector, its

resolution will get scaled down and lead to a missed detection.

4.6.2 Post Validation Decision

After preprocessing the images, detectors 2 and 3 can be re-run, if at least one of the

detectors agrees that the object has the same label as what detector 1 claimed, this

object is allowed through to the label fusion stage.

Figure 4.10: (LEFT) The first time a detector evaluated this traffic light it was
missed, however, after applying preprocessing and running the detector again,

surprisingly it is 96% confident this is a traffic light. (RIGHT) The first time a
detector evaluated this truck it was missed, the second time a detector was 96%

confident this was a Truck.
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4.6.3 Detections to False Alarms Trade

This approach does allow for more detections but also leads to a significant number

of false alarms making it through. It is also computationally more demanding, where

most of the errors are due to the following.

Multiple Detections from Single Crop

Multiple detections sometimes arise from a single crop. One strategy to resolve this

is to classify these as false alarms as the objects are so small. Additionally, one may

be interested in just tagging the region as high uncertainty and notify the human for

validation.

Object Splits

Small objects may end up being split between detectors (see Figure 4.11). In this case

what happened was that one detector detected one half of a vehicle, and another de-

tector detected the other half. Initially none of these were allowed through, however,

through the post validation stage where other detectors revaluated these, they made

it through. This problem is challenging to fix because it requires some sort of post

processing where merges may be handled, which further increases the computational

cost of this method.
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Figure 4.11: A scenario where detectors detected two separate parts of the same
vehicle.

Approximations

The fundamental issue with this approach is the number of inference operations,

which may be required in the validation step. Fortunately, single-stage detectors

have remarkably fast inference times, and one strategy is to only allow single-stage

detectors to conduct validation. Additionally, in the case where there are L > 3;

one strategy is to only conduct validation on candidates that are 1 vote below the

majority vote line. For example, in the case where L = 5, one should only apply

post validation on candidates that had 2 votes. In the case of L = 7, the requirement

would be at least 3 votes. Furthermore, the moment an object has surpassed the

majority vote line, there is no need to evaluate the remaining detectors. However,

another strategy is to look at how the algorithms are performing, and only allow the

algorithms performing well on the ground truth to have their values validated.

Run-time Cost Remarks

This method is much more computationally demanding than Method 1 where we only

required L inference operations. Here, at worst Nunassociated(L–1) inference operations
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may be required, where Nunassociated is the number of unassociated detections which

are 1 vote below the majority vote line. Likewise, the time taken in pre-processing

must also be accounted for; while this time is negligible with respect to inference time,

it is still substantially more than the time required to evaluate a frame compared with

Method 1.

Practical Use Case

Instance Segmentation: This method is useful when a labeler is willing to trade

more false alarms for more detections. This sounds very unusual, but this can be

beneficial in a scenario where a labeler must label complex objects that may be 100+

polygon vertices per object. In that case, it’s easier to allow false alarms through and

simply delete them, rather than labeling missed detections from scratch. L = 2: So

far it was mentioned that L = 3 is normally the best we can do, and at best we may

be able to get L = 5. However, sometimes only 2 good detectors may be available.

Using this approach, a fraction of the unassociated true labels will be able to make

it over the majority vote line (which is 2) through the post validation step.

4.6.4 Results

The results on Dataset 1 can be seen in Table 4.21. Using this method more detections

were achieved at the cost of allowing more false alarms through. The setup was as

follows: any unassociated detections from Faster-RCNN were reevaluated by YOLO

and RetinaNET, and also any unassociated detections from YOLO were revaluated

by Faster-RCNN and RetinaNET. The outputs from RetinaNET already contained

an enormous number of false alarms so any unassociated detections from RetinaNET
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were not revaluated. In an actual labeling scenario, any of the methods mentioned

in section 4.6.3 under approximations may be used. In F-SAL, access to algorithm

performance in real-time is always available, therefore data similar to Table 4.16

is available to decide which approximation strategy may be best. Ultimately, this

method allowed for an additional 2909 detections at a cost of adding 12278 false

alarms. Whether this is useful or not, again depends on the labeling objective however

even with the additional false alarms, the F-SAL result is still more robust than any

of the other independent detectors.

Detector Correct Missed Incorrect Classification False Alarms

Ground Truth 93086 0 0 0
Best Scenario 63258 29828 0 0
Faster-RCNN 54912 38174 2919 57712

YOLOV5 56334 36752 3911 49283
RetinaNET 50468 42618 2789 47020

F-SAL 60350 32736 2143 44961

Table 4.21: Results on Dataset 1. Best Scenario is if full diversity was utilized

4.7 Discussion of Results

4.7.1 Image Data

Overall, the results were good for image data and F-SAL provided more robust labels.

It was shown that state-of-the-art object detectors in image data have a degree of

diversity amongst one another, and this diversity can be utilized to improve robust-

ness. All stages of the pipeline: Localization Fusion, Label Fusion and Uncertainty

Evaluation allowed for improvements in labeling. With respect to [43] which is the

only semi-automated labeling experiment to this authors knowledge, they used only a
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single Faster-RCNN detector to conduct labeling. While compared to an independent

Faster-RCNN detector, our F-SAL systems performance was better as we obtained

more detections as well as fewer false alarms.

4.7.2 Lidar Data

When evaluating the KITTI and Waymo datasets, it was observed that label fusion

and uncertainty evaluation did not play any role. This does not mean that label

fusion or uncertainty evaluation are not useful for lidar, what occurred was that all

the datasets which were available had a limited number of classes. For label fusion

and uncertainty evaluation to be of value, the number of classes has to either be more

or classes which have similar features are needed. This is verified by the excellent

performance obtained with image datasets which met this requirement.

Apart from the aforementioned, the most important question is, why did lidar

perform so poorly on the Waymo dataset? There are in fact several reasons for this,

and the paper: “Train in Germany, Test in the USA: Making 3D Object Detectors

Generalize” [39] illustrates that this is a general phenomenon with lidar detectors.

Essentially the authors through several experiments observed that there is a poor

generalization capability with lidar detectors when training on one dataset but testing

them on a different one.

Moreover, some reasons for this are that the KITTI dataset is very small and only

has 3712 training examples. It also only contains scenes from a single German city in

perfect weather conditions and only during the daytime. In the case of the Waymo
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dataset, there are scenes from several cities in the U.S. and in multiple climates and at

varying times of the day. Additionally, the KITTI dataset scenes were mostly on flat

roads; in the case of the Waymo dataset, there were several curved and hilly roads.

Secondly, in terms of configuration, the KITTI dataset had a single sensor that was

mounted exactly 1.6m from the ground; while in the case of the Waymo dataset 5

separate LiDAR sensors were used to generate each point cloud. One observation

to make is that unlike the large number of image based datasets; the largest lidar

dataset currently is the Waymo dataset itself. Fundamentally, the poor performance

observed in the Waymo dataset is attributed to very different data formats between

the training and testing sets.

In the future if a large dataset equivalent to what ImageNET, PascalVOC and

COCO have done for image recognition tasks is made available, F-SAL based systems

should not suffer from what occurred on the Waymo dataset. While cross domain

lidar lableing may be challenging presently, as the community has more need for the

sensor, more generalized datasets should be released, which would allow F-SAL to

produce results similar to the other excellent results observed in the other datasets.

4.7.3 Advantages of F-SAL

When labeling with a single object detector, in a scenario where the false alarm

rate is too large, it is possible to lower this by varying confidence thresholds. Es-

sentially, these parameters control the extent to which low confidence detections are

suppressed. Increasing this value allows for lower false alarms but also leads to some

true detections being suppressed. Another strategy is to use a two-stage classifier,
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in a two-stage classifier a second classifier is used to reduce false alarms. These two

classifiers are end-to-end and must be trained together. However, the biggest issue

with this approach is the same, several true detections have to be suppressed in order

to reduce false alarms.

The biggest advantage of F-SAL over these methods is that a lower false alarm

rate can be achieved without sacrificing any detections. This is possible because local-

ization fusion requires a majority vote in order to determine a true detection. When

L = 3, it is much more difficult for independent detectors to agree on false alarms,

therefore true detections can be maximized and false alarms can be suppressed. Also,

F-SAL is an end-to-end framework, which has label fusion with feedback as well as

uncertainty evaluation, and these stages also contribute to a performance over these

methods.
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Chapter 5

Conclusion

So far in the literature, the only technique to conduct SAL has been to use standalone

object detectors. In this thesis, a brand-new framework for semi-automated labeling

was presented. It is based on the fundamental idea that diversity between object

detectors seems to exist; this has been empirically verified in this thesis for object

detectors that have different region proposal methods. More specifically, F-SAL is a

framework that consists of localization fusion, label fusion with feedback and uncer-

tainty evaluation. Based upon human corrections, the system is able to label objects

more accurately. Through developing the theoretical pinnings behind F-SAL, it was

ultimately verified that F-SAL can produce better results for labeling than individual

object detectors. Therefore, if available, labeling should be done with respect to not

a single but multiple object detectors.

While the focus on this thesis was on using object detectors, it is also possible to

simply take the label fusion and uncertainty evaluation algorithms mentioned here

and use them with independent classifiers on a labeling tool. Meaning, a labeler may
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have a scenario where they may select a region-of-interest in a software program, and

then a bank of classifiers can be used to classify the object in that region.

However, one critical area for improvement with F-SAL is possible. Presently

feedback is only in the label fusion step, an obvious improvement would be to add

feedback to the localization fusion block. However, this is a challenging problem that

is not as simple as label fusion. This is based upon the idea that a region proposal

method should be learned on a real-time dataset as a human conducts labeling, and

based upon corrections the region proposal method of the network should adjust. This

would require a specific neural network architecture to be designed for the problem

of labeling specifically.
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