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Lay Abstract

A passive indoor visible light positioning system is proposed where the user does not

hold any device or sensor tags for localization. The proposed system employs existing

luminaires in an indoor area and does channel sounding between luminare-receiver

pairs in order to locate the user. The presence of user alters measured diffuse light

reflections that can be related to their position. The proposed work is divided into

single-bounce model and realistic room model. The single-bounce model considers

one bounce of the reflected light rays, whereas the realistic room model considers

multiple bounces along with furniture inside the room. Furthermore, a fall detection

system is developed to classify state of the user i.e., upright or prone. The proposed

passive localization system leverages existing lighting infrastructure in the indoor

environment and can be used to monitor patients in a home or hospital environment

while keeping their privacy intact.
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Abstract

In this thesis a proof-of-concept of passive indoor localization system using visible

light is proposed that does not require active participation of a user in the localiza-

tion process. The user neither holds any device nor do they have any sensor tags

attached to their body. The system can be implemented by employing existing light-

ing infrastructure that is used in visible light communication systems.

The sources and receivers can be arranged in any form in the room, but in this work

they are considered co-located on the ceiling. This arrangement is advantageous since

it reduces installation complexity and is most commonly used in indoor environments.

The proposed approach measures impulse response (IR) between the source-receiver

pairs in order to localize a localization object (LO) i.e., the user. The presence of

the LO inside the room alters the IR measurements between the source-receiver pairs

that can be related to its position. The changes in measured IRs are leveraged for

position estimation. The proposed research work can be divided into two main parts

as follows.

In the first part, a single-bounce reflection model of light rays is considered and

the room contains only LO inside it. The fingerprinting method is used to estimate

position of the LO and analytical expression of Cramér-Rao lower bound is derived

on the positioning error. In the second part, a realistic room model using reasonable
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parameters and multi-order reflections is considered where the furniture is also placed

inside the room. A deep learning framework is employed that learns changes in

IRs corresponding to random locations of LO in the room in order to estimate its

position from the unknown IR measurements. Furthermore, a fall detection system

is developed that classifies upright or prone states of the LO from single set of IR

measurements.

v



To my beloved Mom, Dad, and Siblings

vi



Acknowledgements

In the Name of Allah - the Most Compassionate, Most Merciful.

All praise is for Allah - Lord of all worlds.

First of all, I would like to thank my thesis advisor Dr. Steve Hranilovic for his

continuous support and guidance throughout my Ph.D. degree program. His guidance

and feedback helped me extensively in order to complete my research work. The

valuable experience I gained is definitely going to help me in my future endeavors.

Then I would like to thank my committee members Dr. Thia Kirubarajan and

Dr. Shiva Kumar for providing me with the valuable feedback during the committee

meetings. I would also like to thank my external examiner Dr. Mäıté Brandt-Pearce
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Chapter 1

Introduction

Positioning and navigation systems have undergone vast technological developments

in the past few decades due to the development of sophisticated hardware e.g., mobile

devices, inertial sensors, cameras, light sources, etc. This advancement has led to the

deployment of positioning systems for variety of applications. Though there have been

considerable advances to outdoor navigation, localization and navigation indoors is

a difficult problem since the transmitted electromagnetic waves undergo attenuation

and multi-order reflections due to the structure and layout of the area and materials

used to coat walls, ceiling, floor, furniture, etc.

This chapter describes background of positioning in both outdoor and indoor sce-

narios. In particular, emphasis is made on indoor localization since the main contri-

butions of the thesis fall under the category of indoor positioning. Indoor positioning

has been sought out to a large extent lately due to high demand of location based ser-

vices (LBS) in indoor environments. The applications related to outdoor and indoor

positioning are also highlighted, especially the ones related to the proposed visible

light-based passive indoor localization approach.
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The organization of this chapter is as follows. The background of navigation

is described in Sec. 1.1 with emphasis on outdoor scenarios and technology used

for navigation. The challenges of using outdoor positioning technology in indoor

environments is also discussed. Existing technologies used for indoor positioning are

summarized in Sec. 1.2 while visible light positioning (VLP) is described in Sec. 1.3

where the concepts of active and passive localization are also explained. Sec. 1.4 gives

an overview of existing localization techniques related to the VLP. The thesis layout

and contributions are summarized in Sec. 1.5. Finally, the chapter is concluded in

Sec. 1.6.

1.1 Positioning Background

The history of navigation dates back to 4000 BC when travelers used coast view [1]

and constellations in night sky as reference points in order to reach their destina-

tions. Digital technologies have recently been applied to provide accurate location

information outdoors over the entire globe. In particular, outdoor navigation was

revolutionized by the development of the global positioning system (GPS) [2] that

became fully operational in 1995 [3]. The GPS consists of more than 24 satellites

that orbit the Earth approximately 20,000 km away from its surface [3]. The GPS

satellites in the Earth’s orbit are arranged in order to cover a majority of its surface,

however, the receiver on the Earth requires a subset of these satellites in its view for

localization. In order to localize via GPS, the receiver must detect signals from at

least four satellites in clear sky view and use trilateration methods (see Sec. 1.4.1).

A recent method developed for smartphones using GPS provides accuracy around 5
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m under open-sky [4]. However, GPS performance is degraded when signals are ob-

structed or weakened due to high-rise buildings or mountains. The advent of GPS led

to many outdoor positioning applications e.g., navigating a user to a desired point of

interest marked on the map, military applications, automobile navigation, and social

networking to name a few [5].

In order to localize the user, there is a requirement of direct path i.e., line-of-sight

(LOS) scenario between the GPS satellites and the receiver. The GPS is effective in

outdoor environments as long as there is no blockage of signals between the receiver

and satellites. The system does not work when the user carries the receiver inside

the building or any closed indoor environment. This is due to the fact that the GPS

signals become weak while entering the buildings due to large attenuation and fading

[6]. These limitations of GPS have necessitated work in developing complementary

indoor localization approaches in order to navigate users in indoor environments e.g.,

homes, offices, buildings, malls, airport, grocery stores, hospital, university campus

buildings, etc.

1.2 Existing Indoor Localization Technologies

The need to provide LBS to people in indoor areas have led to the development

of various methods and techniques that require mobile devices or sensor tags. Some

recent surveys on methods and technologies used to deploy indoor positioning systems

are described in [7, 8, 9, 10]. The choice of technology depends on many factors e.g.,

cost, accuracy, security and privacy, robustness, complexity, commercial availability

and most importantly, the problem domain i.e., the type of localization application.

Existing technologies for indoor localization as described in [7, 8, 9, 10] can be
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grouped in the following manner: radio frequency (RF) (e.g., ultra-wide band (UWB),

WiFi, radio frequency identification device (RFID), Bluetooth, Zigbee), inertial sen-

sors in smart phones and mobile devices, audible sound or ultrasound, lasers or light

detection and ranging (LiDAR), computer vision or camera, and visible light or in-

frared. The aforementioned technologies are briefly surveyed in the following.

1.2.1 Radio Frequency

In UWB-based techniques [11], a pulse of duration in the subnanosecond range is

transmitted and detected at the receiver. The important characteristics of received

signals such as time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-

arrival (AOA), or signal strength (SS) are extracted and related to the position of

receiver in order to localize the user. The large bandwidth of UWB signals enables

them to pass through obstacles and furthermore, the received signals are less prone

to interference and multipath effects [11]. Though UWB positioning methods provide

high accuracy and high resolution [11], their usage is limited due to high cost of the

equipment required [12].

In contrast to UWB, WiFi infrastructure is ubiquitously available in indoor areas

[9] and is used to provide Internet connectivity to users. The WiFi infrastructure

consists of WiFi access points (APs) that are arranged to cover majority of the indoor

environment. Current mobile devices are capable of communicating with WiFi APs

using RF signals and the communication between them is based on IEEE 802.11

standard [13]. The characteristics of signals received at the mobile device e.g., received

signal strength (RSS) [7, 14, 15, 16], TOA, TDOA, AOA [17, 18, 19] can be measured

and used to provide LBS to the user. Some techniques use a radio map of RSS
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values that is constructed in an offline phase [20]. The measurements obtained in the

online phase are compared to the values stored in the map in order to estimate the

position of the user. However, the radio map databases needs frequent updating due

to temporal variations in the RSS values.

A similar set of measurements are used in Bluetooth and Zigbee networks [8].

However, these networks consume low power and cover a smaller range as compared

to WiFi networks. A recent example of location awareness is introduced by Apple

Inc. that uses Bluetooth to detect the presence of a mobile device in a certain region

[21]. The system consists of a beacon that transmits signals periodically and a mobile

device capable of receiving these signals which identifies whether it is in the vicinity

of the signal transmitting beacon.

A similar category of location awareness techniques provide an approximate loca-

tion of a user by using RFID tags [22, 23]. The RFID tag consists of an integrated

circuit that is capable of storing information e.g., a unique code. This code is de-

tected at an RFID reader and the measured RSS is used to approximate distance of

the tag from the reader. The technique proposed in [23] enables location awareness

for visually impaired people. The major challenge of RFID-based techniques is the re-

quirement of infrastructure for localization. This is in contrast to WiFi infrastructure-

based approaches which leverage existing wireless networks in the buildings in order

to provide LBS to the users.

The choice of RF-based techniques depends on the type of localization application

[9]. RF-based indoor localization systems are prone to security and privacy issues [10]

since RF signals are not fully contained inside the room and can easily pass through

walls of the room.
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1.2.2 Inertial Sensors

Another class of indoor localization relies on measurements obtained from inertial sen-

sors in smart phones [8, 24] e.g., proximity sensor, gyroscope, accelerometer, compass,

camera, ambient light sensor, etc. An example of a typical measurement scenario is

to count steps of a person walking in the area, which is then used to compute the

distance covered by the person [24]. Similarly, these measurements can be used to

detect the direction of movement or count the number of stairs climbed in order

to compute the height traveled by the person [24]. Inertial sensor-based techniques

are typically used in conjunction with WiFi infrastructure where measurements from

both the inertial sensors and WiFi are used together to improve the position estimate

of the user [8, 24].

The major challenge in using readings from inertial sensors is the accumulation

of errors over time due to noisy sensors or random human behavior that adds bias

to the sensor measurements [24]. This phenomenon is termed as dead reckoning and

the errors occurred thereof in the measurements are minimized by using pedestrian

dead reckoning algorithms [25].

1.2.3 Audible or Ultrasound Approaches

In audible source- or ultrasound-based techniques [26, 27, 28], acoustic sensors are

used to measure the time-of-flight (TOF) of the received signals. Audible source-

based systems use acoustic signals of frequency less than 20 kHz while ultrasound-

based use ultrasound signals of frequency greater than 20 kHz. In order to localize,

phase and frequency information are extracted from the received signals and are

related to distance of a source from the receivers. The major challenge in using these
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techniques is the requirement of additional hardware and continuous power source

(e.g., batteries) in order to obtain frequent measurement updates which eventually

requires replacement or charging the batteries [10].

1.2.4 Laser or LiDAR Techniques

Laser- or LiDAR-based techniques [29, 30, 31] work on the principle that estimates

range of a target from the LiDAR sensor using TOF between the transmitted and

reflected signals, which is quite similar in principle to range estimation in radar sys-

tems [32]. LiDAR-based systems are extensively used in simultaneous localization

and mapping (SLAM) techniques that produce a three-dimensional (3D) map of the

indoor environment [33].

LiDAR systems work by transmitting a laser pulse to a target and measuring the

reflected signals in order to extract features of the received signals e.g., TOF and

wavelength. The extracted features are used to estimate the range of the target and

are also labeled with respect to reference coordinates in order to build a 3D map

of the environment. LiDAR-based systems have found applications in both indoor

and outdoor environments. Modern vehicles are equipped with LiDAR scanners that

help to build 3D map of a view ahead of the vehicle in order to notify drivers of

potential warnings or assist in self-driving tasks [34]. Though LiDAR-based indoor

localization systems provide estimation errors in centimeters [35], however, they are

usually mounted on mobile robots or moving objects which requires the sensor to

rotate or move in order to scan layout of the indoor area [35, 36].
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1.2.5 Vision or Camera Methods

Vision- or camera-based techniques [37, 38, 39] use camera to acquire images of the

indoor environment. The cameras can be installed in the indoor area [40] or on smart

phones can be used to acquire images of the indoor area [41]. The captured images

contain light beacons, where a beacon is defined as a light source that transmits

a unique ID. An example of an indoor localization system that uses visible light

communication (VLC) and sensors in smart phone can be found in a commercial

system [42], where the proposed system provides geo-location of a mobile device in

the indoor area. Such camera-based approaches pose high security risks since the map

of an indoor area is stored on a phone or a cloud and is prone to unauthorized access

[43]. The authors in [43] proposed a method that preserves privacy of the images

gathered for localization by encoding 3D points in the indoor map to 3D lines that

are used to conceal the original 3D map.

The visual sensor-based systems are less expensive as compared to the LiDAR-

based systems (Sec. 1.2.4) and the future SLAM techniques have potential of infor-

mation fusion from both LiDAR and visual sensors in order to provide improved 3D

map of the indoor environment [44].

1.2.6 Visible Light or Infrared Systems

In visible light- or infrared-based localization systems, visible light or infrared sources

are used to provide LBS to users. Lighting infrastructure in buildings is enabled to

provide VLC to users in the area [45]. However, existing infrastructure can also

be used to provide LBS to users without the need of requiring additional hardware

resources [46]. The use of visible light-based localization systems proves reliable in
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terms of user privacy in indoor areas since the light rays are contained inside the area

and do not travel through opaque walls [46]. The algorithms and techniques developed

for visible light-based localization systems are often analogous to the ones in RF-based

positioning [46, 47]. Visible light-based localization has several advantages over other

technologies e.g., cost effectiveness, security, energy efficiency, ubiquitous availability

of light sources in indoor areas, etc [46, 47]. Visible light-based localization is the

main theme of the thesis and is discussed in detail in the remaining of this chapter

and the thesis.

The technologies used for indoor positioning have their own pros and cons. The

basic comparison of existing technologies is presented in Table 1.1.

1.3 Visible Light Positioning

The ubiquity of solid-state light-emitting diode (LED) light sources in indoor envi-

ronments has revolutionized indoor communication systems. Consequently, VLC [45]

systems have gained attraction recently due to simple infrastructure, low cost and

high efficiency of LED light fixtures [48]. In order to provide current and future VLC

applications, short-range optical wireless communications are standardized e.g., IEEE

802.15.7 [49] and IEEE 802.11bb [50].

Visible light positioning (VLP) systems can be considered an add-on to the VLC

systems since they do not require the installation of extra hardware. They leverage

existing modulated light sources from VLC networks and intensity detectors to infer

user locations. The development of VLP [51, 46, 47, 52, 10, 53] systems has gained

much momentum recently due to the high demand in indoor LBS e.g., guiding a user

to the correct aisle in a grocery store, guiding people in shopping malls or airports,
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Table 1.1: Comparison of Existing Indoor Localization Technologies

Technology Accuracy Complexity and Challenges

RF (UWB,
WiFi, Zigbee,
Bluetooth,
RFID)

Few cm to few m
(depending on the
RF-based technology)

Increased complexity in
hardware that require time
synchronization, prone to
security and privacy issues since
RF signals travel through walls

Inertial Sensors 10’s of cm to few m Error accumulation due to dead
reckoning, typically used in
conjunction with WiFi

Audible or
Ultrasound

Few m to around 20
m

Require continuous battery
source, prone to noise pollution

Laser or LiDAR Few cm Require the sensor to move or
rotate in order to scan the area,
require time synchronization and
generate large amounts of data
for processing

Camera Systems Order of few cm Prone to user privacy issues
since algorithms uses images of
an indoor area

Visible Light or
Infrared

Few mm to cm Ambient light noise affects
performance, time
synchronization - small changes
in time result in large changes in
distance calculation
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monitoring patients in a hospital environment, providing guided tours to the people

in an art gallery, assisting students in university campus buildings, etc. [47, 51].

VLP systems have an added advantage in contrast to radio frequency (RF)-based

localization systems in terms of user privacy and security. This is due to the fact

that visible light is constrained within an indoor area and does not travel through

opaque objects e.g., walls or adjacent rooms unlike RF signals which are prone to

snooping [54]. VLP systems offer accuracy on the order of centimeters [46, 47] and

can be broadly classified into active and passive localization systems based on the

involvement of a user in the localization process and the measurement of specific

signal parameters as well. Moreover, this classification can be application specific.

Active and passive VLP scenarios are explained in the following.

1.3.1 Active VLP Scenario

In an active VLP scenario, a user is directly involved in the localization process e.g., a

user equipped with a mobile device containing receiver or having sensor tags attached

to their body. An example of active VLP scenario is shown in Fig. 1.1. The user

holds receiver r that receives signals from sources si and sj. Though only two sources

are shown in the figure, in fact there could be receptions from more than two sources.

Indoor areas typically contain multiple luminaires and they can be located on ceiling,

walls, floor, mobile robots, etc. in order to provide LBS.

The scenario in Fig. 1.1 shows only direct LOS between the sources and receiver

however, light rays can also reach the receiver after multi-order reflections. Typically

such diffuse reflections are ignored and position estimates in active VLP methods rely

on the energy received in LOS component of the received signals i.e., RSS. On the
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Figure 1.1: Active VLP scenario showing a LOS between the sources (si and sj) and
receiver (r). A user is holding a mobile device to receive signals, which are sent to
a backbone server or can be processed at the mobile device in order to obtain their
position estimate (clipart silhouette is reproduced from [55]).

other hand, TOA, TDOA, or AOA of the received signals can be measured in order to

provide LBS as described in Sec. 1.4.1. The signals received at the mobile device are

processed at the device or sent to a server at the back end in order to obtain position

estimate of the user. The luminaires can be connected via power-over-Ethernet [56]

and the mobile device needs to establish a connection with the network in order to

obtain position estimate. A literature survey of different active VLP techniques is

presented in Sec. 1.4.1.

1.3.2 Passive VLP Scenario

In passive VLP scenarios, a user is not directly involved in the localization process.

An example case of passive localization is shown in Fig. 1.2, where the sources and

receivers are affixed on the ceiling and are co-located. This arrangement of sources

12



Ph.D. Thesis – Khaqan Majeed McMaster – Electrical & Computer Engineering

Figure 1.2: Passive VLP scenario showing sources and receivers co-located on the
ceiling. An example ray is shown that originates from source si and is received
at receiver rj after bouncing off from the user’s head. The signals received at the
receivers are sent to a server at the back end in order to localize the user (clipart
silhouette is reproduced from [55]).

and receivers is not strictly required, however, it is used in this research work since

the indoor environments usually have symmetrical arrangement of luminaires on the

ceiling.

In passive VLP, a user is detected in an indoor area by measuring reflected signals

from the user or shadows formed due to their presence in the area [53]. The presence

of a user in the area produces changes in signal measurements that are leveraged

in localization. As observed from Fig. 1.2, this is important to note that the user

neither holds any device in their hand nor do they have any sensor or photodetector

(PD) attached to their body. Furthermore, it is not necessary to have a LOS between

sources and receivers. A LOS scenario can also occur in passive VLP where the user

can be detected in a region of blockage between the sources and receivers. Fig. 1.2
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shows only first-order reflection, however, light rays can also reach the receivers after

multi-order reflections. As an example, consider a light ray that emerges from source

si and bounces off from the head of a person before it is received at the receiver rj.

The presence of a person inside the room produce changes in the received signals in

contrast to when they are not present inside the room. Localization algorithms are

developed that leverage these changes in order to estimate position of the user.

The recent abundance of mobile devices and smart devices and their further in-

crease in future arose the concept of Internet-of-things (IoT), where these devices are

capable of communicating with each other or a central server through the Internet.

In contrast to active VLP, passive VLP relies on a backbone server in order to provide

LBS since the user does not carry a mobile device. The concept of smart buildings

show that luminaires can be controlled through power-over-Ethernet [56]. Ultimately,

the luminaires in smart buildings can be connected to the IoT. This allows the con-

trol of luminaires from a central backbone network, which is advantageous to provide

LBS in variety of applications ranging from casual services to healthcare domain to

high risk indoor environments. A literature review of some passive VLP techniques

is described in Sec. 1.4.2

1.4 Related Work in Visible Light Positioning

VLP uses a variety of signal measurements in order to develop localization algorithms.

These algorithms typically depend on the type of signal characteristics and hardware

infrastructure. The algorithms and techniques used in existing research work for VLP

are described in the following.
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1.4.1 Active Localization Techniques

Proximity-based Methods

Proximity-based methods are used in location awareness applications e.g., coarse

localization stage in [57] or iBeacon [21] by Apple Inc. in case of RF-based localization.

In proximity-based algorithms, the location of each luminaire is known and a unique

code is assigned to it [46]. The receiver is detected when it receives signals from

a luminaire under which it is present and the reported location is the area covered

by the luminaire. An example of navigating a person indoors is proposed in [58]

where the receiver detects a luminaire present in its vicinity by identifying the code

transmitted by the luminaire.

Proximity-based techniques have low complexity, less accuracy and are cost ef-

fective as compared to other techniques [47]. These algorithms can be used in ap-

plications that do not require high accuracy (i.e., on order of cm) and can also be

deployed in real time [46, 47]. The improvement in accuracy in these techniques occur

at the expense of increasing the density of luminaires in an indoor area [47]. Some

applications of proximity-based techniques are described in [51] e.g., guiding a person

to a specific painting in art gallery.

Received Signal Strength-based Methods

RSS-based methods measure signal strength of the received signals at the receiver.

The RSS values vary according to the propagation loss model that can be related to

the position of the receiver. The various techniques and methods that employ RSS

measurements for localization are described in the following.

The localization method proposed in [59] uses a fingerprinting approach where
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optical signals from multiple sources are collected to form a unique set of readings at

a selected location. In order to develop a unique fingerprint at a discrete location, the

LED light sources are modulated with distinct frequencies and the signals from these

sources are detected at the receiver. The metric used for fingerprinting is the power

spectral density (PSD) of each unique modulating frequency. The advantage of using

PSD is that no synchronization is required between the light source and receiver. The

modulated measurements are gathered at discrete locations in the indoor area during

an offline phase in order to build up the fingerprinting map. In the online phase,

the PSDs extracted from measurements with unknown position are then compared

with the readings in the fingerprinting map. The reading with minimum error in

the map provides position estimate of the user. The best reported accuracy of the

fingerprinting method in [59] is around 15 cm at grid step size of 10 cm.

The method in [60] makes use of RSS to estimate location of the user. A Lamber-

tian source model is used to relate distance to power measurements at the receiver.

The position is then estimated using trilateration or multilateration. The authors in

[61] provide a method for simultaneous indoor localization and high data rate VLC

system. They employ discrete multi-tone (DMT) [62] modulation for positioning and

use RSS-based ranging. Furthermore, a theoretical bound is also derived for estima-

tion error.

The authors in [63] propose a localization method that uses received signal strength

indication (RSSI) and time division multiplexing of the received signals in order to

identify sources. The IDs of LED light sources are embedded in the control signal

used for VLC and the receiver is mounted on a robot that moves in the indoor area.

Similarly, the authors in [64] use RSSI for localization and also derive Cramér-Rao
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lower bound (CRLB) on the positioning error. The proposed method requires at least

three sources and uses triangulation to estimate the position of the receiver.

The authors in [37] propose a localization method that uses LED sources as bea-

cons. The LED beacons transmit light patterns that are detected at a digital camera

equipped in the mobile device. The LED light source is partitioned into different

parts in order to transmit a unique pattern, which is identified at the camera to es-

timate position of the user. A similar type of method that employs LED beacons

is proposed in [39], however, the location of LED source is transmitted instead of

physical partitioning of its surface as proposed in [37].

The authors in [65] propose a localization system that uses signal transmission in

an up-link fashion i.e., a source located on the floor and receivers on the ceiling. A

fingerprinting map is constructed in the offline phase where each fingerprint consists

of a LOS component, diffuse component and time difference between them. The

measurements with unknown position are obtained in the online phase and compared

with the readings in a fingerprinting map in order to estimate the position of the user.

The authors in [66] use inertial sensors and ambient light sensor in smart phones

in order to localize a user. The method uses the changing intensity values to infer

the speed of motion of the user, however, it does require a map of the lighting in an

area.

The accuracy of RSS-based VLP systems is reported as low as several centimeters,

however, the accuracy is relatively lower around corners or edges of the room [46, 47].

Moreover, transmitted signals may undergo interference if adjacent rooms have glass

walls or the performance may get worse if the room has ambient light [47].
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Trilateration- or Triangulation-based Methods

Trilateration-based methods estimate the position of a receiver using its distance from

the sources. The distance estimates can be obtained by using TOA or TDOA of the

received signals and speed of light which is a constant [46, 47]. On the other hand,

triangulation-based methods measure the AOA of the received signals in order to

estimate position of the receiver [46, 47]. These techniques typically require received

signals from at least three sources in order to estimate location of the user. The

working principle in these techniques is similar to GPS outdoors where the location

of the receiver is estimated using trilateration method.

The method proposed in [67] makes use of an aperture-based receiver for local-

ization, which is similar to the one used in [68]. The aperture-based receiver consists

of multiple PDs with apertures in front of them at a fixed distance. The apertures

lie in a plane that is parallel to the PDs and their diameter is chosen larger than

the wavelength of light. The light rays reach the PDs only through their apertures.

The authors use a set of sinusoids as reference signals and correlate them with op-

tical signals transmitted by LED light sources in order to distinguish between the

sources. Furthermore, the CRLB is derived on location estimate of the user in order

to evaluate performance of the system.

The method in [69] uses TOA-based ranging in order to provide a user’s position

estimate along with the derivation of CRLB. The method in [70] performs localization

using TDOA, where LED light sources are assigned to unique frequency IDs. The

light sources are assumed Lambertian and the optical channel is modeled as scaled

and delayed Dirac delta function [45]. The TDOA is estimated at the receiver by

measuring phase difference from three light sources. The estimated TDOAs are then
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used to localize the receiver.

The method proposed in [71] measures AOA at the receiver from multiple light

sources. The LEDs are arranged as a grid on the ceiling and the receiver contains three

PDs arranged in an orthogonal fashion. Such arrangement of PDs provides angular

measurements at the receiver that helps to estimate the position of the receiver.

A similar type of positioning algorithm is proposed in [72], where the receiver also

consists of multiple PDs. The orientation of the PDs is first estimated in receiver’s

coordinate system. This information is then translated to the physical coordinate

system and the position of the receiver is estimated along with its orientation.

The method in [73] provides position estimate of the user in 3D by combining RSS

and AOA of the received signals. A single LED light source is considered in an indoor

area, which is assumed to follow a Lambertian radiation pattern. The incident angle of

the rays detected at the receiver are measured by an image sensor. The measured RSS

and AOA then help to estimate the position of the receiver. Similarly, the work in [74]

proposes a hybrid RSS/AOA technique, which makes use of signal strength, elevation

and azimuthal angles in order to estimate position of the user. The proposed method

consists of coarse localization and fine localization stages. In the coarse localization

stage, an approximate location of the receiver is estimated using RSS at the receiver.

In the fine localization stage, the position estimate is improved by triangulation.

The authors in [75] propose a localization approach which uses a novel luminaire

topology to provide angular information directly to a single element detector (like an

ambient light sensor on a mobile phone).

The reported accuracy of trilateration or triangulation-based techniques can be as

low as few millimeters [47]. However, these techniques have an additional requirement
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that the sources and receivers are required to be time synced with each other. The

geometric analysis of the indoor area and requirement of additional hardware make

these systems complex in contrast to RSS-based methods [47].

1.4.2 Passive Localization Techniques

In Sec. 1.4.1 for active localization approaches the user is directly involved in the lo-

calization process i.e., transmitting received signals from multiple sources to a central

server or processing the signals at a mobile device in order to obtain their position

estimate. In contrast, passive localization approaches do not require the explicit ac-

tions of a user to provide positioning information. A summary of passive localization

methods is described in [53], where these methods mainly use a unique arrangement

of sources and receiver and/or additional hardware resources. Following describes

some passive localization techniques.

The authors in [76, 77] propose a passive localization scenario in outdoor envi-

ronment, where a bar code is used to assign an ID to the object that is similar to

the one in [78]. The bar code is decoded at the receiver after sensing the reflected

signals from the object. The decoded code and received power in reflected measure-

ments help to identify and locate the object. The reported accuracy is on the order

of several centimeters [77].

The authors in [79] study the blockage of signals between the sources and receivers

in order to estimate location of an object. The user devices are located on the floor

and transceivers on the ceiling. The proposed system offers a predicted accuracy on

the order of few centimeters. However, performance is greatly affected due to multi-

order reflections since the power in non-LOS components may be detected as the
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power in LOS component. Secondly, the proposed system requires sources located on

the floor that results in modifying the lighting infrastructure in the indoor environ-

ment since the typical arrangement of luminaires is on the ceiling in the area. In [80],

the proposed system model is similar to [79] and the authors consider multi-order re-

flections while simulating the channel model. The performance bounds are computed

on fingerprinting-based localization and a nearest neighbor fingerprinting approach

is used to evaluate tightness of the derived bound. The reported error is near 5 cm

using 4 PDs in the area.

The method in [81] uses receivers that are attached to a wall instead of floor or

ceiling. The changes in RSS at the receivers are sensed due to the presence of an

object and, therefore, are used to estimate the location of the object. The authors in

[82] use shadows of light formed due to humans in the indoor area in order to detect

them and construct their 3D postures.

The authors in [83] makes use of time slots to transmit signals from different

sources in order to identify them at the receiver. The proposed system senses shadows

formed by an object in order to identify its occupancy in the room. The position of the

object is estimated by measuring changes in the power detected at the receiver. The

reported median error is 0.89 m in a room of dimensions 7.5m×6m×2.74m containing

a table in the center. A similar type of methodology is proposed in [84] that estimates

location of the object and occupancy in the indoor environment by sensing changes

in voltage measurements detected at the receiver. The signals are transmitted in

time division multiplexed format and are identified at the receivers. Moreover, the

algorithm requires positions of light sources to be known in advance.

The method in [85] also uses shadows cast on the floor in order to estimate location
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of an object. However, in contrast to [83, 84], the floor contains PDs equipped with

RFID tags in order to power the PDs. A user is sensed under the luminaire by

detecting blockage of light between the luminaire and PD.

Existing passive localization techniques [53] either require the modulation of light

sources and using polarizable materials in the indoor area (e.g., [86]) or modification

of lighting infrastructure in the indoor area along with positioning of receivers (e.g.,

receivers on walls in [81]). Moreover, the techniques use certain characteristics of

the received signals e.g., voltage measurements, RSS, or shadow-based RSS that offer

challenges in positioning in case of multi-order reflections.

The aforementioned arrangement of luminaires and receivers makes the system

deployment application specific. One of the main goals in designing passive indoor

localization systems is to use existing lighting infrastructure with minimal modifica-

tions in order to enable deployment of localization systems feasible in multiple indoor

scenarios and environments. Secondly, the objective is to relieve user from carrying

a mobile device or sensor.

1.5 Thesis Contributions and Outline

This section summarizes the main contributions and general outline of the thesis.

The thesis is written in “sandwich-style” format, where the chapters correspond to

individual papers and journal articles. The papers have been modified slightly in order

to follow the thesis format, however, the main content in the papers is unchanged.

The research work presented in the papers and consequently, restated in the thesis

is completed solely by Khaqan Majeed under the supervision of Dr. Steve Hranilovic.

The manuscripts and thesis have been improved in clarity and presentation through
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feedback received from Dr. Hranilovic. The acknowledgments are made in some

papers and the thesis in regards to useful discussions that were carried out with the

concerned persons.

The research work presented in this thesis arises from published/submitted papers

or articles, which are listed in the following.

1. [87] K. Majeed and S. Hranilovic, “Passive Indoor Localization for Visible

Light Communication Systems,” 2018 IEEE Global Communications Confer-

ence (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6, doi:

10.1109/GLOCOM.2018.8647875.

2. [88] K. Majeed and S. Hranilovic, “Performance Bounds on Passive Indoor

Positioning Using Visible Light,” in Journal of Lightwave Technology, vol. 38,

no. 8, pp. 2190-2200, 15 April 15, 2020, doi: 10.1109/JLT.2020.2966365.

3. [89] K. Majeed and S. Hranilovic, “Passive Indoor Visible Light Position-

ing System using Deep Learning,” in IEEE Internet of Things Journal, doi:

10.1109/JIOT.2021.3072201.

4. [90] K. Majeed and S. Hranilovic, “Passive Indoor Visible Light-based Fall

Detection using Neural Networks,” under preparation.

5. [91] K. Majeed and S. Hranilovic, “Passive Positioning using Visible Light

Systems,” invited paper in The Optical Networking and Communication Con-

ference & Exhibition (OFC) 2021, OSA.
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Figure 1.3: Passive scenario showing co-located light sources and receivers on the
ceiling. The rays undergo multi-order reflections before being detected at the receiver.
A clipart silhouette is reproduced from [55] (Figure is taken from our paper [89]).

1.5.1 Summary of Contributions

The passive techniques surveyed in Sec. 1.4.2 require rearrangement of luminaires

and receivers in an indoor area in order to provide LBS. Some passive techniques

described in [53] require users to have sensor tags attached to their body while others

require installation of RFID tags on the floor. Some techniques rely on only RSS mea-

surements or RSS-based shadows in the area, which in case of multi-order reflections

affects performance of the system.

The proposed method relieves user from carrying any mobile device or sensor tags

and provides a proof-of-concept of passive indoor localization system that leverages

existing lighting infrastructure. The proposed passive indoor localization paradigm

is described in the following.
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Proposed Passive VLP Paradigm

The proposed passive localization scenario is shown in Fig. 1.3 where the sources and

receivers are co-located on the ceiling. The terms localization object (LO), object

of interest (OI), and target object (TO) are used interchangeably in the thesis to

represent the same object i.e., a user whose position estimate is required. The LO is

placed inside the room and impulse response (IR) measurements are obtained between

all source-receiver pairs. The presence of LO inside the room produce changes in IRs

that can be related to its position. The fundamental notion behind the proposed

passive approach is to estimate position of the LO using the changes observed in the

IRs that occur due to the presence of LO inside the indoor area.

In order to measure IRs between the source-receiver pairs, each source is turned

on at a time and IR acquisitions are obtained at all the receivers. This process is

repeated for all the sources. The time extent of an IR can be upper bounded by

the geometry of the indoor environment and the location of sources and receivers.

The length of each IR is usually on the order of 10’s of ns and thus all IRs can be

accumulated within fraction of a second.

It is important to note that the IR measurements are affected by limited rise time

of the luminaires and receivers. In the IR acquisition process it is assumed that the

employed devices have sufficient bandwidth ratings in order to capture details of the

indoor environment corresponding to room furnishings, especially the peaks occurring

in IR due to the presence of the LO inside the room.

The proposed research results are divided into two main parts based on the type

of room model used in the localization process. The first part employs a single-

bounce model where the room is considered empty with first-order reflections only.
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The single-bounce model is tractable and permits for the derivation of theoretical

results on performance. The second part uses a realistic room model with multi-

order reflections and furniture inside the room. The sources are modeled as having

wavelength-dependent flux variation and the surfaces of different entities in the room

are coated with real coating materials that have wavelength-dependent reflectivity

values. The realistic room model provides a proof-of-concept of passive VLP to un-

derstand performance in a realistic scenario since the actual room contains furniture

and the IR measurements include multi-order reflections.

1.5.2 Single-bounce Model

As described in Sec. 1.5.1, the single-bounce model considers only first-order reflec-

tions in an empty room in order to model the IRs. The first-order reflections help to

derive the theoretical performance of the proposed passive indoor VLP system. The

proposed approach considers existing luminaire infrastructure. The changes in IR

measurements between source-receiver pairs due to the presence of LO in the room

correspond to its location. The IR measurements, in contrast to RSS-based measure-

ments [53], inherently contain time information along with amplitude of a peak that

corresponds to the location of LO in the room. The peak occurring in IR correspond-

ing to LO is dominant in first-order reflection from the LO as compared to higher

order reflections and furthermore, the amplitude and time delay of the peak depend

on location and height of the LO. Chapters 2 and 3 employ single-bounce model and

the contributions therein are described in the following.
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Chapter 2 - Passive Indoor Localization for Visible Light Communication

Systems

The research work described in Chapter 2 appeared in the following conference pro-

ceeding.

• [87] K. Majeed and S. Hranilovic, “Passive Indoor Localization for Visible

Light Communication Systems,” 2018 IEEE Global Communications Confer-

ence (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6, doi:

10.1109/GLOCOM.2018.8647875.

Chapter 2 describes fingerprinting method, which is used to estimate position of

the LO [87]. The proposed room scenario is based on single-bounce model where the

room is considered empty along with first-order reflections only. The luminaires and

receivers are affixed on the ceiling in a co-located fashion. A network of luminaires

and receivers can be controlled from a central location at the back end as shown

in Fig. 1.2. The proposed approach measures the IR between the source-receiver

pairs. In order to represent the IR due to the LO only, IR differences are obtained by

subtracting the IR of the empty room from the IR when the LO is present inside the

room. The IR differences are modeled using an exponential integrating-sphere model

[92], where the amplitude, time delay, and decay rate of the fitted model correspond

to the location of the LO at a certain discrete positions in the room. The fitted model

parameters corresponding to LO at discrete locations are stored in a fingerprinting

map instead of storing complete waveforms in order to reduce storage requirements.

It is important to note that the fingerprinting map is obtained in the offline phase.

In order to estimate the position of the LO at an unknown location, the IRs are

measured in the online phase and then IR differences are obtained. The exponential
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integrating-sphere model [92] is fitted to the IR differences in a similar fashion to the

readings in the fingerprinting map. The fitted model is then compared to the readings

stored in the map. The closest point in the map using a minimum error criterion is

reported as a position estimate of the LO. The system performance is evaluated by

using fingerprinting map with different grid spacing and varying brightness of the

luminaires.

Chapter 3 - Performance Bounds on Passive Indoor Positioning using Vis-

ible Light

The proposed research work in Chapter 3 appeared in the following journal paper.

• [88] K. Majeed and S. Hranilovic, “Performance Bounds on Passive Indoor

Positioning Using Visible Light,” in Journal of Lightwave Technology, vol. 38,

no. 8, pp. 2190-2200, 15 April 15, 2020, doi: 10.1109/JLT.2020.2966365.

Chapter 3 describes the derivation of a CRLB on the positioning error of LO in an

empty room that is modeled using single-bounce model [88]. The acquisition of IRs

and IR differences are obtained in a similar fashion as described in Sec. 1.5.2. The

IR differences are zero-clipped to remove negative part in the difference in order to

fit the exponential integrating-sphere model [92]. The parameters of the fitted model

i.e., amplitude, time delay, and decay rate can be related to the position of LO inside

the room as described earlier.

In order to derive analytical expression of the CRLB, the Fisher information ma-

trix is obtained that consists of partial derivatives with respect to individual Cartesian

coordinates of the position of LO. Furthermore, a maximum likelihood estimator is

used to estimate position of the LO and evaluate the tightness of the derived bound.
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The variation of CRLB over the spatial domain of the room is calculated in order to

observe the performance variation over the room since some receivers are unable to

see the LO in certain regions of the room due to limitation in their field-of-view. The

effect of brightness of the luminaires and the number of source-receiver pairs used in

order to derive the bound are also studied.

1.5.3 Realistic Room Model

Though the simpler single-bounce model is tractable for theoretical study, in order to

characterize the performance of passive VLP a more complete model is required. As

described in Sec. 1.5.1, realistic room model considers multi-order reflections and all

surfaces and entities in the room are simulated with coatings which have reflectivity

values measured for real materials [93, 94, 95]. The realistic room model provides a

proof-of-concept of passive VLP in order to characterize the performance in a realistic

scenario. Chapters 4 and 5 employ realistic room model and the contributions therein

are described in the following.

Chapter 4 - Passive Indoor Visible Light Positioning System using Deep

Learning

The research work presented in Chapter 4 is accepted for publication in the following

journal.

• [89] K. Majeed and S. Hranilovic, “Passive Indoor Visible Light Position-

ing System using Deep Learning,” in IEEE Internet of Things Journal, doi:

10.1109/JIOT.2021.3072201.
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Unlike Chapters 2 and 3, the indoor scenario used in Chapter 4 is based on realistic

room model. The luminares and receivers do not have LOS between them since they

are co-located on the ceiling as described in Sec. 1.5.2. However, the luminaires

are assumed to have wavelength-dependent characteristics. The coating materials

used to represent the optical properties of different surfaces and objects in the room

are also assumed to have wavelength-dependent reflectivity values. Furthermore, the

room contains furniture and the IRs that are measured in the same way as described

in Sec. 1.5.1, however, the IRs in this case contain multi-order reflections. A deep

learning framework composed of a feed-forward neural network architecture [96] is

employed in order to learn the relationship between IRs and position of LO since

the IRs contain multi-order reflections and the room contains furniture which is in

contrast to the single-bounce model described in Sec. 1.5.2. Multiple sets of IRs are

obtained when the LO is present at randomly selected positions in the room, where

each set of IRs correspond to measurements from all source-receiver pairs in the room.

The presence of a LO at a certain location produce changes in IRs, which are crucial

in the position learning process.

The gathered data are divided into training and validation data sets and prepro-

cessed before feeding them to the deep learning framework. It is important to note

that only training data are used to train the network, whereas the validation data are

used only to evaluate performance of the network. The trained network is then used

to estimate position of the LO located at unknown location in the room by using a set

of IR measurements at that location. The reported root-mean-square error is around

80 cm by using sets of IR measurements at as low as 10 randomly selected training

positions in the room.
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Chapter 5 - Passive Indoor Visible Light-based Fall Detection using Neural

Networks

The research work in Chapter 5 is completed and the paper is under preparation.

• [90] K. Majeed and S. Hranilovic, “Passive Indoor Visible Light-based Fall

Detection using Neural Networks,” under preparation.

Chapter 5 describes a passive fall detection system based on visible light that

detects human fall in a room. The room scenario employs realistic room model

similar to the one described in Chapter 4. The measurement process of IRs is the

same as described in Sec. 1.5.1. Feed-forward neural networks [96] are used in order

to classify the state of the user i.e., upright or prone. In order to gather data (training

and validation) to train the network, the LO is placed at random positions in the room

and assumed to have either of the following states: upright or prone. The prone state

of the LO is modeled as lying on the floor along either one of the following directions:

horizontal (x-axis) or vertical (y-axis).

The set of IR measurements are obtained corresponding to upright or prone states

of the LO and are labeled into two classes. The labeled data are divided into training

and validation sets and preprocessed before feeding them to the neural network clas-

sifier. The trained network is then employed to estimate state of the LO using a set of

acquired IR measurements in order to detect the fall. The sensitivity of the proposed

technique is evaluated by considering an additional state (tilted) that models the LO

to lean towards one of the following directions: north, east, south, and west. This

state is labeled with the same class as the upright state in order to differentiate it

from the prone state. The observation of results show that the algorithm maintains
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similar performance while classifying the prone state from upright or tilted sates. The

proposed system shows accuracy greater than 97% in predicting upright and prone

states of the user even when the measurements corresponding to tilted state are in-

cluded in the validation data (training data is comprised of only upright and prone

states).

1.5.4 Chapter 6 - Conclusions and Future work

The conclusions of the research work proposed in the thesis are summarized in Chapter

6. Furthermore, possible directions for continuation of the research work are also

described in this chapter.

1.6 Conclusions

A brief overview of outdoor navigation systems is presented since outdoor navigation

has evolved and matured over time, especially during the recent past. The global

positioning system (GPS) is widely used in outdoor environments in order to pro-

vide location based services (LBS). The GPS signals undergo high attenuation while

passing through buildings. Therefore, the need arises to seek other technologies for

localization in indoor environments. Existing technologies used for indoor localiza-

tion are radio frequency (UWB, WiFi, RFID, Bluetooth, Zigbee), inertial sensors in

mobile devices, audible or ultrasound, LiDAR, camera, visible light or infrared.

The choice of technology typically depends on the domain of application. VLP

offers a cost effective solution due to the use of light-emitting diode sources and

preserves user privacy because the light rays are contained within the room. Moreover,
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future luminaire fixtures have the capability of being controlled through internet-of-

things devices, which enables a convenient means to provide a backbone connection

to a server for a VLP system.

VLP methods can be broadly divided into active and passive localization scenar-

ios. The active scenario involves a user directly in the localization process which

is in contrast to passive scenario. Active localization methods use different signal

characteristics e.g., received signal strength, time-of-arrival, time-difference-of-arrival,

angle-of-arrival, or their hybrid combination. Nevertheless, the user is required to

carry some device or sensor in order to access the LBS.

The proposed research work presents a proof-of-concept of passive indoor local-

ization system that is based on visible light. The work is divided into two parts

based on the room model. In the first part, a single-bounce model is used where the

room is considered empty and impulse responses (IRs) contain first-order reflections

only. The single-bounce model helps to characterize the performance of the passive

localization systems theoretically. A position estimate of the localization object (LO)

is obtained by using fingerprinting method. Furthermore, analytical expression of

Cramér-Rao lower bound is derived on the positioning error spatially over the room.

In the second part, a realistic room model is considered with furniture inside it and

the IRs contain multi-order reflections. A deep learning framework is employed in or-

der to estimate position of the LO from the gathered data that is obtained by placing

the LO at uniformly distributed locations in the room. Furthermore, a fall detection

system is developed that detects state of the LO i.e., upright or prone. Feed-forward

neural networks are employed in order to classify the state of LO from a set of IR

measurements.
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The proposed passive indoor localization techniques can be used in variety of

applications where the user is not required to carry any mobile device with them e.g.,

monitoring people in private indoor environments, locating workers in high-risk indoor

areas, monitoring seniors at home or hospitals in order to provide timely healthcare,

etc.
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The research work presented in this chapter appeared in the following conference
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COM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6, doi: 10.1109/GLO-
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The paper is reproduced in this chapter with minor modifications in formatting in

order to follow the thesis format i.e., setting of equations, equation numbers, citations,

figures, etc.

In this chapter, single-bounce model of the room is used where first-order reflec-

tions are considered only and source-receiver pairs are co-located on the ceiling. A

fingerprinting method is used to localize a localization object (LO) i.e., a person. In

order to build up the fingerprinting map, the LO is placed at predefined grid points

and impulse response (IR) measurements are obtained between all source-receiver

pairs. The IR due to LO only is obtained by calculating IR difference, where the

difference is obtained by subtracting the IR of empty room from the IR when the

LO is present inside the room. An exponential integrating-sphere model [92] is fitted

to the IR differences. The fitted model provides three important parameters namely

amplitude, time delay and decay rate of the exponential. The fingerprinting map

contains the parameters of the exponential model at discrete locations. This greatly

reduces storage costs as compared to storing the complete IR waveform at each loca-

tion. The IR differences in the online phase are then compared to the ones stored in

the fingerprinting map in order to estimate the position of LO.
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2.1 Abstract

In this paper we present a new methodology for indoor localization using visible light

emissions which does not require users to actively participate in the process. Our

passive positioning approach utilizes a network of luminaires and receivers on the

ceiling and measures the impulse responses (IRs) between each source-receiver pair.

This channel sounding approach leverages changes in the measured IRs to localize an

object in the room. Simulation results show that with a database of sampled IRs,

the root mean squared (RMS) positioning error can be made on the order of 4 cm.

In order to lower storage requirements, a simplified database based on fitting to an

integrating sphere model of the IR yields localization performance with RMS error

around 6 cm.

2.2 Introduction

The use of solid-state light-emitting diodes (LEDs) for indoor illumination is nearly

ubiquitous. The economic and energy-efficiency benefits of LEDs make them nearly

ideal candidates for indoor lighting. With the proliferation of LED illumination, ap-

plications such as visible light communications (VLC) and visible light positioning

(VLP) have become attractive. In particular, the use of visible light for indoor local-

ization offers benefits of privacy and security since all light emissions are confined to

a given room [51, 46, 97, 98].

Existing indoor VLP techniques rely on users to provide measurements of light,

perhaps via a smartphone, to enable localization. These techniques can be broadly

classified into the following categories.
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In proximity-based techniques, each light source transmits a unique emission which

can be identified at the receiver. The approximate location of the user is estimated

using this unique ID which is detected at the receiver. In the context of navigation

for the visually impaired, [99, 100] experimentally demonstrated a coarse localization

approach using simple receivers carried by the users. Scene analysis techniques, such

as those in [37, 39], use a camera as receiver and infer position by using luminaires

as beacons. The identity of the luminaire is communicated through LED spatial

patterns or temporal changes which are sensed by the digital camera receiver. The

third category are triangulation techniques, which rely on range, direction of the

received signal, or a combination of both. In [101], each luminaire is assumed to

identify itself with a unique temporal sequence. A position estimate is achieved

assuming a known Lambertian emission pattern and location for each luminaire. User

measurements of received signal strength are fit to a simplified propagation model.

In [102] a hexagonal arrangement of LED sources is exploited to reduce coverage

holes as well as the areas where coverage overlaps. Time delay-of-arrival information

in conjunction with an Extended Kalman Filter is used to localize the receiver and

improve position estimation in the indoor area. The method in [71] relies on angle-

of-arrival measurements from the LED sources. The LEDs are arranged in a grid

on the ceiling while a complex photo-receiver consisting of three photo diodes (PDs)

arranged in a corner cube are used to measure arrival angle.

In recent work, [65] considers users with infrared beacons which are measured by

sensors in a room. Both line-of-sight (LOS) and non-LOS components are tabulated

and used for localization. Unlike earlier approaches, [65] localizes using an uplink

channel rather than a downlink VLC channel.
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In this paper, we propose a fundamentally new approach to indoor VLP termed

passive localization in which the user does not explicitly participate in the localization

process. Such type of localization provides convenience at the user’s side since the user

does not need to carry a receiver. The proposed technique promises to be useful in

localizing elderly people at home since the timely help can be provided to them if they

fall down on the floor and get injured. Luminaires are assumed to be distributed in a

room in order to provide sufficient illumination. Optical receivers are also assumed to

be present on the ceiling and can be potentially co-located with the LED sources. All

sources are assumed to be connected via a network, such as power-over-ethernet or

power line communications, in order to synchronize and communicate measurements

to a central server. Localization is performed based on repeated measurements of the

impulse responses (IRs) between all sources and receivers. Changes in the measured

IRs are then used to infer the presence and location of an object or person in the

room. This process is similar to channel sounding in the context of underwater

acoustic channels, where dedicated signals are transmitted through the channel and

IRs are measured [103]. Notice that in contrast to existing active VLP approaches,

our positioning technique does not require the use of specialized beacons, luminaire

arrangements or user interaction to enable the localization process at the expense of

additional complexity in networking the luminaires.

The remaining parts of the paper are organized as follows. The system model for

the proposed passive localization technique is explained in Section 2.3. The localiza-

tion algorithm is presented in Section 2.4 and the performance of proposed method

is evaluated in Section 2.5. Finally, the paper concludes in Section 2.6.
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2.3 System Model

2.3.1 Problem Setup

Consider the localization scenario depicted in Figure 2.1 where the goal is to deter-

mine the location of an object (in this case a cuboid). Luminaires and receivers are

located on the ceiling at known positions. Define S = {si : i = 1, 2, · · · , Ns} as the

collection of luminaires within the room and similarly, R = {rj : j = 1, 2, · · · , Nr}

as the collection of receivers, where Ns and Nr are the total number of sources (i.e.,

luminaires) and receivers respectively.

Light emitted from each source is reflected from the floor, ceiling, walls and the

object and is ultimately detected at each of the receivers in R. A key assumption

in this work is that the IR hsirj(t) for any si ∈ S and rj ∈ R can be measured

independently. This can be accomplished by scheduling localization intervals via a

network between the luminaires to ensure a single source is turned on individually and

measurements of IR are collected. Given that time extent of hsirj(t) is on the order of

10’s of ns, the frequency of these measurements can be made sufficiently fast to make

them imperceptible. It is further assumed that a database of hsirj(t) between sources-

and-receivers is measured and known at several points in the room with and without

the presence of the object. The position of an object in the room can be determined

by measuring the set of IRs between all sources-and-receivers and using the database.

Notice that the object o, in Figure 2.1, does not participate explicitly in localization

and hence the term passive localization is adopted. This IR measurement process is

similar to channel sounding used in acoustic communication, where the channel IR

is measured using probe-signals transmitted within the environment.
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Figure 2.1: A room showing co-located light sources and receivers affixed on the
ceiling with presence of an object (i.e., a cuboid). The light ray from source si is
reflected from a patch on the object or floor (or walls) and received at receiver rj.

2.3.2 Optical IR for Indoor Channels

For Ns luminaires and Nr receivers, define the collection of IRs between each source-

receiver pair in an empty room (i.e., without the object) by set He as

He =



{
hs1r1,e(t), hs1r2,e(t), · · · , hs1rNr ,e(t)

}
{
hs2r1,e(t), hs2r2,e(t), · · · , hs2rNr ,e(t)

}
...{

hsNsr1,e(t), hsNsr2,e(t), · · · , hsNsrNr ,e(t)
}


(2.3.1)

In practice, He could be measured by turning each source on one at a time and

performing measurements which are stored in a database a priori. These IRs do not

change appreciably in time and can be accurately estimated using many repeated

measurements in the room.

Consider now that an object o is present inside the room as shown in Figure 2.1.

In a similar fashion, define the collection of IRs when the object is located at position
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(x, y, z) as

Ho (t;x, y, z) =



{
hs1r1,o (t;x, y, z) , · · · , hs1rNr ,o (t;x, y, z)

}
{
hs2r1,o (t;x, y, z) , · · · , hs2rNr ,o (t;x, y, z)

}
...{

hsNsr1,o (t;x, y, z) , · · · , hsNsrNr ,o (t;x, y, z)
}


(2.3.2)

The measured Ho (t;x, y, z) depends on the location of object as well as the back-

ground. In order to estimate the IR due to the presence of object only (i.e., without

ceiling, floor, walls and background elements) consider the approximation

hsirj ,d (t;x, y, z) = hsirj ,o (t;x, y, z)− hsirj ,e (t) (2.3.3)

where hsirj ,d (t;x, y, z) is termed an IR difference and is difference between the IR

when the object is located at (x, y, z) and the empty room. Define Hd (t;x, y, z) as

Hd (t;x, y, z) =



{
hs1r1,d (t;x, y, z) , · · · , hs1rNr ,d (t;x, y, z)

}
{
hs2r1,d (t;x, y, z) , · · · , hs2rNr ,d (t;x, y, z)

}
...{

hsNsr1,d (t;x, y, z) , · · · , hsNsrNr ,d (t;x, y, z)
}


. (2.3.4)

Notice that Hd (t;x, y, z) does not represent the collection of IRs of the object

alone because of shadowing of the sources and receivers by the object. The location

of the shadow depends on which light source and receiver is used as well as on the

location of the object. Consider the example in Figure 2.2 which plots the DC gain

of the IR from s1 to r6. There are two shadows present: shadow A arises due to
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Figure 2.2: Plot of the DC gain of the IR hs1r6,o(t). The object is located at
(1.5 m, 3.25 m, 1.5 m). The source s1 is located at (1 m, 1 m, 3 m) and receivers r5

and r6 are located at (2.5 m, 2.5 m, 3 m) and (2.5 m, 4 m, 3 m) respectively. ‘A’ de-
notes the shadow of object from s1 while ‘B’ denotes the shadowing of receiver r6 by
the object.

the object shadowing s1 and shadow B arises due to the obstruction of r6 by o. In

practice, however, the difference between the IRs in Hd (t;x, y, z) and the IRs due

to the object alone is small due to the negligible amount of power neglected in the

shadowed regions and is quantified in Section 2.5.

2.3.3 Database of IR Differences

The indoor area is assumed to be discretized at some regular spacing interval, e.g.,

at points (xn, yn, zn) where n = 1, 2, · · · , Nx × Ny × Nz. With an empty room,

the dataset He is measured between all source-receiver pairs. In a calibration step,

consider moving the object to each grid point where measurements of Ho (t;x, y, z)

are made and the data set Hd (t;x, y, z) in (2.3.4) of IR differences is collected at each
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grid point. The resulting database is represented as {Hd (t;xn, yn, zn)}.

2.3.4 Extraction of IR Parameters

The approach in Section 2.3.3 requires a large database of sampled time waveforms

representing IR differences to be stored. As an alternate approach, consider forming a

smaller database which stores parameters extracted from the measured IR differences.

Consider fitting all IR differences to the exponential integrating-sphere model for

indoor diffuse optical wireless communications [104],

h (t) = ηe−
(t−t1)
τ u (t− t1) (2.3.5)

which is parameterized by amplitude η, time delay t1, delay spread τ and u (t) denotes

the unit step function. At position (x, y, z) the IR difference hsirj ,d(t;x, y, z) is fit to

the model in (2.3.5) to yield parameters

hsirj ,f (x, y, z) = [η(x, y, z), τ(x, y, z), t1(x, y, z)].

The database of model parameters for each grid point is denoted {Hf (t;xn, yn, zn) :

n = 1, 2, · · · , Nx ×Ny ×Nz} .

The procedure for fitting the IR difference to the model in (2.3.5) is to normalize

hsirj ,d (t;x, y, z) to have a peak of 1. The delay t̂1 is estimated by detecting time

instant of the peak. The signal after t̂1 is divided into N windows of fixed length

which may overlap. The N windows of length L each are stored in columns of a

matrix Y and the auto-covariance matrix Ryy is computed. The decay rate τ̂ is then

estimated using MUSIC [105]. Given t̂1 and τ̂ , the amplitude η̂ is then estimated
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Figure 2.3: IR difference, hsirj ,d(t), and exponential model fit, hsirj ,f (t), from (left)
s1 to r6 and (right) s1 to r5 by considering the scenario depicted in Figure 2.2 .

using least-squares method.

Figure 2.3 shows an example of the IR difference and the one obtained after

parameter fitting. Notice the IR difference hsirj ,d(t) can be negative since it is the

difference of two optical intensity IRs. The fit is tight only for the positive portion

of hsirj ,d(t) which accounts for the reflections from the object while the negative

components are due to shadowing. Though the fit is approximate and is often loose,

the reduction in storage requirements is compelling and localization performance is

quantified in Section 2.5.

2.4 Localization Algorithm

Assume that the object is located at position (x, y, z) in the room. The passive

indoor localization algorithm begins with a noisy measurement of the IR difference
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between all source-receiver pairs with an object inside the room. It is assumed that

the collection of IRs in empty room, He, has already been measured in a calibration

stage and is available. An estimate of the received reflections from solely the object

is

h̃sirj ,d (t;x, y, z) = hsirj ,o (t;x, y, z) + nsirj(t)− hsirj ,e(t) (2.4.1)

where h̃sirj ,d (t;x, y, z) denotes the noisy IR difference and nsirj (t) is receiver noise.

The location of the object is estimated by selecting the (xn, yn, zn) in {Hd (t;xn, yn, zn)}

which minimizes the mean square error between h̃sirj ,d (t;x, y, z) and the database.

More precisely, for Ns sources and Nr receivers, the error matrix at nth grid point is

calculated as

En =


e

(n)
11 · · · e

(n)
1Nr

...
. . .

...

e
(n)
Ns1

· · · e
(n)
NsNr

 (2.4.2)

where e
(n)
ij is defined as root mean square error between h̃sirj ,d (t;x, y, z) and hsirj ,d (t;xn, yn, zn)

i.e.

e
(n)
ij =

√√√√√ tmax∫
0

∣∣∣h̃sirj ,d (t;x, y, z)− hsirj ,d (t;xn, yn, zn)
∣∣∣2dt (2.4.3)

where tmax denotes the maximum time used in IR acquisition.

To estimate the location, the Frobenius norm of En at each grid point is computed.

The grid point at which ‖En‖F is minimum is reported as the estimated position of

the object and is denoted as α̂ = [x̂n, ŷn, ẑn]. If αo = [x, y, z] is the actual location of

the object, the RMS error is calculated as

erms =

√
|α̂− αo|2 (2.4.4)
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An identical procedure is used for the database of IR parameters {Hf (t;xn, yn, zn)},

where eij in (2.4.3) is computed by sampling (2.3.5) with parameters η(xn, yn, zn),

τ(xn, yn, zn), t1(xn, yn, zn) at the same rate as the measured h̃sirj ,d(t).

The accuracy of the proposed technique depends on density of the luminaires as

well as the grid points. Thus, increasing the density of these increases the size of

database. So there is a trade off between the accuracy and workload requirement for

deployment. However, crowdsourcing of IR readings can reduce the workload.

2.5 Simulation Results

2.5.1 Simulation Environment

The room has dimensions 5 m× 5 m× 3 m and is illustrated in Figure 2.4. The total

number of sources and receivers is Ns = Nr = 9 which are co-located on the ceiling

and equally spaced. Table 2.1 presents a list of parameters used in the simulations.

To simplify the simulations, positioning is simulated in two-dimensions and z = zh =

1.5 m which is the height of the object.

The sources are considered Lambertian with radiation pattern [106]

R (φ) =
m+ 1

2π
Pscosm (φ) (2.5.1)

where m is the Lambertian index, Ps is the power emitted by the light source and φ

is the angle formed between the light ray and normal of the light source. The ceiling-

mounted receivers are modelled as having an effective area Ar with a field-of-view

(FOV) ψr. Moreover, the reflections of light in the room are considered diffuse.
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Table 2.1: Values for Simulation Parameters

Room

Size, 5 m× 5 m× 3 m
Discretization step, 10 cm
Patch size, 10 cm× 10 cm
No. of sources and receivers, Ns = 9, Nr = 9
Reflection coefficient, ρfloor = 0.7, ρwalls = 0.85
Sampling rate of IR, ∆t = 0.35 ns

Light Source
Transmit power, Ps = 1 W
Lambertian index, m = 1

Receiver
FOV (half-angle), ψr = 45 deg
Surface area, 1 cm2

Responsivity (γ) = 1 A/W

Object
Size, 0.3 m× 0.3 m× 1.5 m
Patch size, 3 cm× 3 cm
Reflection coefficient, ρtop = 0.5, ρsides = 0.6
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Figure 2.4: Top view of the room used in analysis. An example placement of the
object is also shown, which is at (1.5 m, 3.25 m, 1.5 m). The sources and receivers are
co-located on the ceiling.

In order to simulate the IRs, the well known algorithm in [106] is used where the

room is segmented in a series of non-overlapping patches (of size 10× 10 cm) where

the light is emitted from source si and received at the receiver rj after l reflections

from the floor or walls. To simplify the analysis, all IRs are simulated using a single

bounce model (i.e., l = 1) and are sampled on a time scale of 0.35 ns. In the following

the superscript ‘(1)’ is used to denote the IRs generated in this fashion.

The signal-to-noise ratio is defined here as

SNR =
γ2P 2

s

σ2
n

(2.5.2)

where γ (A/W) is receiver responsivity, Ps is the power emitted by the source, and

the variance of the noise at each receiver is σ2
n. For all simulations, σ2

n = 10−16A2.
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2.5.2 IRs with and without Object

Figure 2.5 presents an example of the IRs computed in the room with and without

the presence of an object from source s1 to receiver r6 shown in Figure 2.2. Notice

that the response of the empty room, h
(1)
s1r6,e (t) and when the object is in the room,

h
(1)
s1r6,o (t;x, y, zh) have a significant similarity. The IR difference between these signals,

h
(1)
s1r6,d

(t;x, y, zh), is a short time signal with a positive pulse followed by a later

negative pulse. Recall that the IR difference signal may assume negative values when

hsirj ,o(t) is smaller than hsirj ,e(t) at any time instant due to shadowing.

Notice that background response of the empty room is largely removed in h
(1)
s1r6,d

(t;x, y, zh)

and the early non-negative portion corresponds to the IR from the object itself. The

negative pulse in h
(1)
s1r6,d

(t;x, y, zh) is due to object shadowing and aids localization

in the case of the full database {Hd (t;xn, yn, zn)}. In the case of the fitted database

{Hf (xn, yn, zn)}, however, this negative pulse is clipped to aid fitting (as described

in Sec. 2.3.4) and does not contribute to localization.

2.5.3 Performance Evaluation

Figures 2.6 and 2.7 show the localization performance using both a complete database

{Hd (xn, yn, zn)} as well as the fit database {Hf (xn, yn, zn)} averaged over 1000 ran-

dom positions inside the target room. For each choice of database the simulations are

done for different grid sizes which correspond to different database sizes. Since the

primary function of the luminaires is to provide illumination to the room, localization

performance is also plotted versus source brightness variation which can arise due to

dimming of the sources.

As expected, the performance degrades by decreasing the number of grid points for
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Figure 2.5: IR with and without an object inside the room along with the IR dif-
ference. The source s1 is located at (1 m, 1 m, 3 m) and receiver r6 is located at
(2.5 m, 4 m, 3 m). The object is located at (1.5 m, 3.25 m, 1.5 m). The values used in
simulation are shown in Table 2.1.

both techniques. However, the improvement in increasing the database sizes quickly

saturates. The performance using the larger {Hd (xn, yn, zn)} is superior to the less

complex {Hf (xn, yn, zn)}. Additionally, the performance with {Hf (xn, yn, zn)} is

more sensitive to dimming and degrades more quickly as Ps is reduced. The fit-

ted database, though requiring less storage, shows degraded performance since the

extracted parameters from IR differences are sensitive to noise.

The previous results were obtained using a single IR reading for each source-

receiver pair. Performance can be further improved by collecting several IR readings

at a single position and averaging them to reduce the effect of noise at the expense of

small added latency. Table 2.2 shows the mean and standard deviation (STD) of the

RMS error for a single and an average of IR readings collected for each source-receiver

pair at full brightness using complete and fitted databases.
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Figure 2.6: Localization error against the decreasing brightness of light sources using
the complete database of IR differences {Hd (t;xn, yn, zn)}.
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Figure 2.7: Localization error against the decreasing brightness of light sources using
the fitted database of IR differences {Hf (xn, yn, zn)}.
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Table 2.2: Mean and STD of RMS error by using complete and fitted database (grid
spacing of 10 cm)

Database
No. of collected
IR readings = 1

No. of collected
IR readings =

1000
mean STD mean STD
(cm) (cm) (cm) (cm)

{Hd (t;xn, yn, zh)} 5.38 4.45 4.45 2.51
{Hf (xn, yn, zh)} 10.43 15.65 6.35 4.96

The average localization performance is particularly improved for the case of

{Hf (xn, yn, zn)} given the sensitivity of the fit to the noisy data. Additionally, for

both approaches the variance in the location estimate is greatly reduced by averaging

over 1000 IR measurements.

2.5.4 Sensitivity of H(1)
d (t;x, y, z) to Background Variation

The sensitivity of the IR difference H(1)
d (t;x, y, z) to a variation in the background is

tested by adding a fixed element to the room. Consider a single source-receiver pair,

as shown in Figure 2.8, which is heavily shadowed by the fixed element.

Denote h
(1)
sr,e′(t) as the IR when fixed element is present and h

(1)
sr,o′(t;x, y, zh) when

both the actual object and fixed element are present together. The IR difference

in the case of a fixed element is denoted h
(1)
sr,d′(t;x, y, zh). Figure 2.8 presents the

normalized mean square error between IR differences computed as

10 log


tmax∫
0

(
h

(1)
sr,d (t;x, y, zh)− h(1)

sr,d′ (t;x, y, zh)
)2

dt

tmax∫
0

(
h

(1)
sr,d (t;x, y, zh)

)2

dt

 (2.5.3)

for different object locations in the room. The figure demonstrates that even in the
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Figure 2.8: Normalized mean square error (2.5.3) between h
(1)
sr,d(t;x, y, zh) and

h
(1)
sr,d′(t;x, y, zh). The fixed element has dimensions (0.5 m, 0.5 m, 1.5 m) and is located

at (3 m, 2.5 m, 1.5 m). The source s and receiver r are located at (1.5 m, 2.5 m, 3 m)
and (3.5 m, 2.5 m, 3 m) respectively.

presence of a major changes in the background environment, that the IR difference is

essentially unchanged for a large portion of the room. The largest differences occur

due to the shadowing of the fixed element. Thus, when changes to the background

occur, the database needs to be updated for only those locations which fall in the

shadowed areas.

2.6 Conclusions

The paper presents a new paradigm for indoor localization which does not require user

intervention to localize. This passive positioning provides estimates of the user loca-

tion by measuring the changes in the IR of the room between a series of LED sources

and receivers on the ceiling. Although this passive approach requires a network of
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connected luminaires and detectors, this vision is already in the progress of being

realized. Recent developments in IP connected lighting infrastructure connected via

power-over-Ethernet suggest that such backbone networks will be imminently avail-

able in new installations [56]. The workload required for building the database can

be significantly reduced by collecting crowdsourced readings. Our initial simulations

indicate that at high brightness an object can be localized to an accuracy on the order

of 5 cm which degrades as the luminaires are dimmed. Our ongoing work focuses on

reducing the storage overhead of this approach as well as experimental prototypes for

passive positioning.
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Minor modifications are done in the manuscript shown in this chapter in order to
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follow the thesis format i.e., formatting of equations, citations, figures, etc, however,

the main content in the reproduced article is the same. The paper also has some

supplementary material, attached to the journal article, which contains the details of

the derivations of the derivatives required to compute the Cramér-Rao lower bound

(CRLB). The contents of the supplementary material are shown in Appendix A of

the thesis.

The localization object (LO) in this chapter is assumed present inside the room in

order to calculate the CRLB. Furthermore, no ambient light sources are considered.

This results in detection probability of 1 with 0 false alarms.

This chapter employs the same single-bounce model used in Chapter 2. However,

in this chapter, theoretical performance is characterized on the positioning error of a

passive indoor localization system. The room and system model considered to obtain

impulse response (IR) measurements between the source-receiver pairs follow the

same methodology described in Chapter 2. Furthermore, only first-order reflections

are used to represent IRs between different source-receiver pairs. The IR difference

is obtained by subtracting the IR without the LO in the room from the IR when

the LO is present inside the room. The IR differences are zero-clipped in order to

remove the negative part and exponential integrating-sphere model [92] is used to

fit the zero-clipped IR differences. The amplitude, time delay and decay rate of the

fitted IR model is represented as a function of the Cartesian coordinates of the LO.

The fitted model is then used to derive CRLB on the positioning error using log-

likelihood function. The log-likelihood function is a function of the receiver noise and

parameters of the fitted model that are functions of the position of LO. The derivatives

of log-likelihood function are computed in order to obtain the Fisher information
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matrix (FIM) that is ultimately used to compute the analytical expression of CRLB.

The tightness of the bound is evaluated by using maximum likelihood (ML) estimator

that estimates position of the LO by maximizing the log-likelihood function.

This is important to note that the CRLB derived in this chapter is given as

the bound on any unbiased estimator. However, the mathematical analysis is not

performed in this chapter in order to verify that the ML estimator is unbiased.

The location of sources and receivers are considered fixed in the room in order

to derive the bound and estimate position. The luminaires are typically fixed in the

indoor area (i.e., on the ceiling) and are not moved over extended periods of time. The

estimation algorithms are usually sensitive to the position of sources and receivers.

Though mathematical analysis of the sensitivity due to changing location of sources

and receivers is not performed, however, small changes e.g. mm or even few cm in

the location do not impact the performance considerably. This is due to the fact that

peaks in the IRs because of the LO shift on the order of a fraction of a nanosecond

with a few cm offset in location of the sources/receivers.
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3.1 Abstract

In this paper, a novel method for passive indoor localization using LED luminaires is

proposed where explicit user participation is not required. This approach measures

changes in the impulse response between sources and receivers and estimates a loca-

tion based on optical channel sounding data. An exponential integrating-sphere model

is used to represent object impulse response (OIR) from each luminaire source-receiver

pair, which is obtained by subtracting impulse response (IR) of the room background

(i.e., without an object) from IR when the object is present inside the room. This

model is represented as a function of 3D position of the object and depends on both

source and receiver parameters and the physical geometry of the room. An analyt-

ical expression of Cramér-Rao lower bound (CRLB) on the proposed passive indoor

localization method is derived. The position is also estimated by using a maximum

likelihood (ML) estimator which gives the position estimate by maximizing the log-

likelihood function of the received noisy OIR waveforms. The results show that the

signal-to-noise ratio (SNR) and number of source-receiver pairs used in the estimation

play a crucial role in performance. Typical localization root-mean squared error is

less than 10 cm over a broad range of light intensities and object locations.

3.2 Introduction

Indoor illumination is dominated by the use of solid-state light-emitting diode (LED)

technology due to their energy-efficiency, cost-effectiveness and long life-span. In ad-

dition to their primary role as illuminators, the ubiquity of LED luminaires make

them suitable to support secondary functions such as indoor communications and
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positioning. In particular, visible light positioning (VLP) has benefits of leverag-

ing existing illumination installations while providing greater privacy, security and

accuracy over comparable radio frequency (RF) approaches. Since light is easily

contained by opaque boundaries, VLP emissions are contained to the room of in-

terest which stands in contrast to RF-based positioning where the RF signals travel

through walls and are susceptible to eavesdropping. Recent VLP-based techniques

[107, 101, 108, 65, 51, 99, 37, 109, 60, 110, 111, 112] can be broadly categorized into

the following categories: proximity-based, received signal strength (RSS)-based and

triangulation-based approaches.

In proximity-based approaches [39, 100, 113, 114, 37], the LED light sources are

considered to emit a unique signature which is detected by a receiver at the user

location. In proximity-based techniques the luminaires are treated as beacons and

receivers declare their position based on the closest beacon detected. These techniques

typically have low accuracy as compared to other methods [51]. For RSS -based

techniques [115, 116, 117, 118, 119, 59] the RSS of received optical signals are used for

localization. The average optical power measured at the receiver from several sources

is used to estimate receiver location by solving a set of equations which are based on

indoor optical wireless channel models (e.g., [45]). A subclass of these methods (e.g.,

[59, 65, 120]) create a fingerprint map of RSS measurements throughout an indoor

space which is constructed during an offline stage. Noisy measurements collected

during the online stage are then compared to the stored fingerprint map and the

grid point which gives minimum mean squared error between the noisy measurement

and stored value in the fingerprint map is returned as the position estimate. These

approaches require significant measurements and rely heavily on the accuracy of the
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underlying models of RSS measurements. Triangulation-based techniques [121, 111,

70, 112, 69] use time-of-arrival (TOA), time-difference-of-arrival (TDOA), or angle-of-

arrival (AOA) information from the received optical signals for localization. The time-

related information is extracted from the received signals from several sources in TOA

and TDOA-based methods, which is then used to solve a set of equations to obtain

the position estimate. The AOA-based methods typically employ complex multiple

photo-detector (PD) arrays at the receiver to estimate the elevation or azimuth angle

of the receiver. Some variants of PD array arrangement have also been studied, for

example in [122] a circular PD array for location estimation. The major challenge

of these methods is that perfect time synchronization is required between the source

and receiver.

In addition to positioning techniques, there has been considerably less work to

calculate performance bounds of VLP techniques [69, 64, 67, 123, 124, 125, 126,

127]. It is common to calculate the Cramér-Rao lower bound (CRLB), which is

given as a lower bound on the root mean squared error (RMSE) of an unbiased

estimate of unknown variables in mean squared error sense [128]. The CRLB of

RSS-based techniques was calculated in [64, 61]. The authors in [67, 123] calculate

CRLB for a hybrid RSS/TOA-based technique using multiple PDs at the receiver.

The methods in [126, 69] calculate CRLB on TOA-based positioning techniques. All

the methods mentioned earlier fall under an active localization paradigm, i.e., where

the user estimates their position by employing a receiver with a direct line-of-sight

(LOS) to the light sources.

This paper presents bounds on the performance of a fundamentally new paradigm

in VLP termed passive localization [120]. In this approach, light sources and receivers
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are affixed on the ceiling (potentially co-located) and are controlled by an underlying

network (e.g., power-over-ethernet or power line communication channels). Mea-

surements of the impulse responses (IRs) between source-receiver pairs are used to

estimate the location of an object in the room. In spite of the challenge of synchro-

nizing amongst sources and receivers, the underlying network can be calibrated to

provide a common time reference for measuring IRs as was done in earlier TOA and

TDOA work [69, 124, 123, 129]. The measurement of IRs is done such that one source

is on at a time and this process is repeated for all the remaining sources. The IR

measurements for a given source-receiver pair can be done on the order of 10’s of

ns and can thus easily be made imperceptible to the human eye. Assuming a single

object to be detected in the room, an exponential integrating-sphere model [104, 92]

is used to represent the IR of the object to be localized where the parameters of the

model depend on the location of the object and the geometry of the room. Using this

model, an analytical expression for CRLB is derived as a lower bound on the posi-

tion estimate error. The position of the object in the room is then estimated using

a maximum likelihood (ML) estimator to quantify the performance in a simulation

environment. This passive VLP is similar in approach to channel sounding employed

in underwater acoustic channels, where measured reflected signals are used to infer

position [103] as well as related work in MIMO radar with widely-separated antennas

[130]. A related approach has been proposed in parallel in [76], however, they rely

only on power measurements for outdoor localization scenarios.

In contrast to existing active VLP approaches, passive VLP does not require fixed

beacons, specialized PD arrangements or user involvement in the localization scheme.

This passive approach is especially attractive in applications where user involvement
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in the positioning process is not possible. As an example, consider the need to monitor

a patient at home or in a hospital in order to detect an accidental fall while preserving

their privacy.

The notation used in this paper are the following: scalar by x, constant by X,

vector by x, ith element of a vector x by xi, matrix by X, ith column of a matrix X

by xi, ij
th entry of a matrix X by xij, set by X , set cardinality by |X |, and Euclidean

norm of a vector x by ‖x‖2. Vectors are considered column vectors throughout the

paper and [·]T denotes the transpose operation.

The remainder of the paper is organized as follows. Section 3.3 describes the

proposed passive localization scenario and the model used to represent IR differences.

The analytical expression for CRLB is derived in Section 3.4. The ML position

estimation is obtained in Section 3.5. Numerical results are described and discussed

in Section 3.6. Finally, the paper is concluded in Section 3.7.

3.3 System Model

3.3.1 Problem Formulation

Consider an object o inside the room as shown in Figure 3.1 with Ns light sources

and Nr receivers affixed to the ceiling. Though shown to be co-located in Figure 3.1,

which may be the least costly in terms of deployment, sources and receivers can be

arbitrarily distributed on the ceiling and are assumed to be parallel to the floor.

The light sources are considered Lambertian emitters [106, 45] with radiation
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pattern in Watts/steradian

R (φ) =
m+ 1

2π
(βPs) cosm (φ) (3.3.1)

where m denotes the Lambertian index of the source, Ps denotes the total power

transmitted by the source in Watts, β is a factor to control the brightness of the

light source, and φ denotes the angle formed between the normal to the source and

a distance vector from source to the object or surface (see Figure 3.1). Receivers are

assumed to have field-of-view (FOV) ψ and effective area Ar. Moreover, surfaces of

the room and object are modelled as diffuse reflectors.

Consider the example of light rays emerging from source si and diffusely reflecting

from an object, the floor and walls as shown in Figure 3.1. The positions of source si

and receiver rj are represented by vectors x
(s)
i = [xsi ysi zsi ]

T and x
(r)
j =

[
xrj yrj zrj

]T
respectively. The object is modelled as a cuboid with a square top denoted by So

where xo = [xo yo zo]
T represents the unknown position of the centre of So.

Define the object impulse response (OIR), hsirj (t,xo), as the IR between si and rj

considering reflected rays solely from So located at xo. Using the approach in [106],

the OIR can be written as

hsirj (t,xo) =
∑
ok∈So

(βPs)
(m+ 1) ρoArj∆Aok

2πd2
siok

d2
okrj

cosmφsiok

cos θoksi cosφokrj cos θrjokδ

(
t−

dsiok + dokrj
c

)
(3.3.2)

where ok is the kth patch of So so that
⋃
k ok = So, ρo is reflectivity, Arj is area of the

receiver rj, ∆Aok is area of ok, and c is the speed of light. In order to compute the
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Figure 3.1: A room with light sources and receivers affixed on the ceiling. The sources
and receivers are co-located. An object (i.e., a cuboid) is also present. A light ray
originating from source si is reflected from the object (or floor and walls) and received
at receiver rj.

OIR in (3.3.2), the object surface is discretized into small patches as in [106]. There

is a unique path for each ray from source si to patch ok and finally to receiver rj. The

OIR in (3.3.2) is then the sum of reflected rays from all the patches on the object’s

top surface.

In practice, the OIR can be approximated by measurements of the IR between

sources and receivers in the room. Let hsirj ,e (t) denote the IR of an empty room from

si to rj and similarly, hsirj ,o (t,xo) denotes the IR when the object is present inside

the room. Define the IR difference, h̄sirj (t,xo), as

h̄sirj (t,xo) = hsirj ,o (t,xo)− hsirj ,e (t) (3.3.3)

≈ hsirj (t,xo) .

In practice the IR differences between source-receiver pairs are taken as an estimate

of the OIRs and can be obtained independently and imperceptibly by turning each
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source-receiver pair on one-at-a-time under the control of an underlying coordination

network. The task of the passive localization algorithm is to infer the position xo

from a collection of IR difference measurements of {h̄sirj (t,xo)} over si and rj.

3.3.2 Comparison of h̄sirj (t,xo), hsirj ,o (t,xo) and hsirj ,e (t)

The presence of object inside the room modifies the IR. The formation of shadows due

to an object o are shown in Figure 3.2 by considering a single source-receiver pair at a

location in an example room scenario. Figure 3.2a shows two shadows formed on the

floor. Shadow A is formed due to obstruction of the light path due to the object top

and sides. Shadow B, on the other hand, is formed due to shadowing of the receiver

because these areas are not visible to the receiver. Figure 3.2b shows a comparison

of IR with and without an object present inside the room, i.e., hs5r6,o (t,xo) and

hs5r6,e (t). Notice that the presence of an object creates a small peak in IR earlier in

time because the top surface of the object is at a shorter distance to the receiver as

compared to other surfaces of the object or the room. The difference of two IRs is

also shown by a dotted red line. The negative part in the difference corresponds to

the shadowing and occurs later in time. An important point to note here is that the

red curve is the difference of IRs and not an IR.

In this work only first-order reflections from all surfaces in the room and object

are simulated (i.e., light travels from source to receiver through a single reflection).

Higher order reflections carry very little power and are often buried in the noise floor

of the receiver. Notice also that higher order reflections occur at a later time after

the first-order reflections are received and can be easily removed from measured IRs

[106]. Thus, for the purposes of passive localization, the IR difference h̄sirj (t,xo) is
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Figure 3.2: The object of fixed height (zo = 1.6 m) is located at (3.25 m, 3.5 m, 1.6 m)
with all other parameters as defined in Section 3.6. Source s5 and receiver r6 are
located at (2.5 m, 2.5 m, 3 m) and (2.5 m, 4 m, 3 m) respectively: (a) Shadow plot with
presence of object and (b) comparison of IR with and without an object inside the
room as well as IR difference (first-order reflections considered only).

dominated by the first-order reflections from the object surfaces.

3.3.3 Modeling the OIR

Consider modelling the first-order reflections from the object, i.e., the OIR in (3.3.2),

with the continuous exponential model [104, 92]

h̃sirj (t,xo) = ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo) uσa,ε

(
t− tsirj (xo)

)
(3.3.4)

where the parameters ηsirj (xo), tsirj (xo) and τsirj (xo) are related to xo in the follow-

ing. The function uσa,ε (t) is the Gaussian cumulative distribution function

uσa,ε (t) =
1

2

(
1 + erf

(
t+ ε√

2σ2
a

))
.
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The values of ε and σa are free parameters chosen to ensure a good fit to the OIR in

practice as described in Section 3.6. Notice that for ε, σa → 0, that (3.3.4) approaches

the well-known integrating sphere model for indoor optical intensity impulse responses

[92].

The parameters in the OIR model in (3.3.4) are a function of unknown position

vector xo, the location of source-receiver pairs, Lambertian parameters of the sources,

receiver’s parameters, reflectivity of the room surfaces, and the reflectivity of the

object surfaces. The distances and angles shown in Figure 3.1 are defined as

dsio =
∥∥∥xo − x

(s)
i

∥∥∥
2

dorj =
∥∥∥x(r)

j − xo

∥∥∥
2

φsio = θosi = cos−1

 zsi − zo∥∥∥xo − x
(s)
i

∥∥∥
2


φorj = θrjo = cos−1

 zrj − zo∥∥∥x(r)
j − xo

∥∥∥
2


(3.3.5)

where the angles φsio, θosi , φorj , θrjo are defined with respect to normals nsi , no and

nrj .

The amplitude parameter ηsirj (xo) in (3.3.4) has the same form as the scaling

factor in (3.3.2) and is related to xo as

ηsirj (xo) = (βPs)
(m+ 1) ρoArjAo,eff

2π
×

(zsi − zo)
m+1(zrj − zo)2∥∥∥xo − x

(s)
i

∥∥∥m+3

2

∥∥∥x(r)
j − xo

∥∥∥4

2

. (3.3.6)

The value of Ao,eff is tuned to be a fixed proportion of the area of So in order to have

a good fit of h̃sirj (t,xo) to hsirj (t,xo) as described in Section 3.6.
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Figure 3.3: Top view of the object So showing x-y coordinates of its center a0 and
corners a1 to a4. The dimensions 2∆x× 2∆y.

The time delay tsirj (xo) with respect to the center of So is defined as

tsirj (xo) =

∥∥∥xo − x
(s)
i

∥∥∥
2

c
+

∥∥∥x(r)
j − xo

∥∥∥
2

c
. (3.3.7)

This is the total time-of-flight for the signal to travel from si to rj after a first reflection

from the object.

The delay spread τsirj (xo) is a function of So and depends on its orientation with

respect to si and rj. Consider the top view of So in Figure 3.3 where the dimensions

of So are 2∆x × 2∆y. In this work, the delay spread is estimated as the root mean

squared (RMS) value of the delays from the four corners of So with respect to the

centre at a0. More precisely,

τsirj (xo) =
1

2
×
(

(t(a1)
sirj

(xo)− tsirj (xo))
2

+ (t(a2)
sirj

(xo)− tsirj (xo))
2

+(t(a3)
sirj

(xo)− tsirj (xo))
2

+ (t(a4)
sirj

(xo)− tsirj (xo))
2
) 1

2

(3.3.8)

where tsirj (xo), t
(a1)
sirj (xo), t

(a2)
sirj (xo), t

(a3)
sirj (xo), and t

(a4)
sirj (xo) denote time delays from

the center a0 and corners a1, a2, a3 and a4 of So respectively, as shown in Figure 3.3.
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The expression for t
(a1)
sirj (xo) is given explicitly in (3.3.9) in terms of xo. The time

delays for the other corners can be defined in the similar manner.

t(a1)
sirj

(xo) =

√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

c

+

√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2

c
(3.3.9)

3.3.4 Comparison of h, h̄ and h̃

An example of the OIR, hsirj (t,xo), along with the IR difference, h̄sirj (t,xo), and

model OIR h̃sirj (t,xo) are shown in Figure 3.4 at a location in a prototypical room

(defined in Section 3.6). There is close agreement between the true OIR and the model

h̃sirj (t,xo). The estimate of the OIR as measured by the IR difference, h̄sirj (t,xo)

in (3.3.3), also corresponds closely to the OIR, however, has negative amplitudes

(at ≈ 20 ns) which occur after the reflections from the object (at ≈ 10 ns). These

negative amplitudes arise in h̄sirj (t,xo) since portions of the room are not visible to

the receiver due to shadowing of the object as discussed in Section 3.3.2 and shown

in Figure 3.2. An important point to emphasize is that h̄sirj (t,xo) in (3.3.3), is not

an IR but rather the difference of IRs with and without the object in the room. As

described in Section 3.5, in practice the negative amplitude shadowing artifacts in

h̄sirj (t,xo) are clipped at zero to provide a good estimate of the OIR.
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Figure 3.4: Simulated OIR (3.3.2), IR difference (3.3.3) and modelled OIR (3.3.4)
from source s5 to receiver r5 shown in Figure 3.5. The object is located at
(3 m, 3 m, 1.6 m) with all other parameters as defined in Section 3.6.

3.4 Cramér-Rao Lower Bound

The CRLB on unbiased estimate x̂o of position vector xo is derived in this section.

The derivation of the bound assumes that the OIR recorded at each receiver has

support over the time interval t = {0, tmax} typically on the order of 10’s of ns. The

selection of tmax can be related to the geometry of the room in order to ensure that

first-order reflections from the object, which are used to define the OIR in (3.3.2),

are included. Receivers are assumed to share a common time reference to record

the responses emitted from each source. In general, consider that a subset of the

measured OIRs are used to estimate position where D is defined as the collection of

(si, rj) pairs used in position estimation. The number of OIR measurements used is a

metric of the complexity of the positioning and D can in practice be selected in many

ways (e.g., using K OIRs of highest energy).
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The measured OIR from source si to receiver rj can be modelled as

zsirj (t) = h̃sirj (t,xo) + nsirj (t) (3.4.1)

where nsirj (t) is additive white Gaussian noise with zero-mean and variance σ2 which

is independent of all other source-receiver pairs. Define Z = {zsi,rj(t)|(si, rj) ∈ D}.

The log-likelihood function, considering the model in (3.4.1), using a subset of |D|

source-receiver pairs is [128]

Λ (Z,xo) = C −
∑

(si,rj)∈D

1

2σ2

tmax∫
0

(
zsirj (t)− h̃sirj (t,xo)

)2

dt (3.4.2)

where C is a constant that does not depend on xo. Define Fisher information matrix

(FIM) J (xo) as

J (xo) = E
{

(∇xoΛ (Z,xo)) (∇xoΛ (Z,xo))T
}

(3.4.3)

where ∇xoΛ (Z,xo) is gradient of Λ (Z,xo) with respect to xo and defined as

∇xoΛ (Z,xo) =

[
∂Λ(Z,xo)
∂xo

∂Λ(Z,xo)
∂yo

∂Λ(Z,xo)
∂zo

]T
. (3.4.4)

The CRLB on mean-squared error of the unbiased estimate x̂o of xo is given as

inverse of J (xo) i.e.,

E
{

(x̂o − xo) (x̂o − xo)
T
}
� J(xo)

−1. (3.4.5)

where M � N denotes that (M−N) is positive semi-definite. Given the dimensions
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of xo, in order for J(xo) to be invertible OIR measurements from at least three source-

receiver pairs are required.

From (3.4.2) and (3.4.3) the (k, l)th entry of matrix J (xo) can be expanded as

Jkl (xo) =
∑

(si,rj)∈D

1

σ2

tmax∫
0

∂h̃sirj (t,xo)

∂xo,k

∂h̃sirj (t,xo)

∂xo,l
dt k, l = 1, 2, 3 (3.4.6)

The partial derivatives in (3.4.6) with respect to kth element of xo can be expanded

as shown in (3.4.7).

∂h̃sirj (t,xo)

∂xo,k
= −ηsirj (xo)

∂

∂xo,k

{
tsirj (xo)

}
e
−

(t−tsirj (xo))
τsirj (xo) δσa,ε

(
t− tsirj (xo)

)
+

∂

∂xo,k

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

uσa,ε
(
t− tsirj (xo)

)
for k = 1, 2, 3

(3.4.7)

Define δσa,ε (t)
∆
= 1

σa
√

2π
e
− (t+ε)2

2σ2a as the derivative of uσa,ε (t). These partial derivatives

are derived in Appendix 3.A.

The CRLB can be computed as

CRLB =
√

tr
{
J(xo)

−1} (3.4.8)

where tr (·) denotes trace of a square matrix, which is a sum of diagonal entries.
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3.5 Position Estimation

In an analogous fashion to (3.4.1), define the noisy measurement of the OIR between

si and rj as

z̄sirj (t) = h̄+
sirj

(t,xo) + nsirj (t) (3.5.1)

and where Z̄ denotes the collection of such measurements. The signal h̄+
sirj

(t,xo)

is the measured IR difference in (3.3.3) where all negative amplitudes are clipped

to zero. Define x̂o as the ML estimate of xo obtained by maximizing the argument

of the log-likelihood function Λ
(
Z̄,xo

)
defined analogously to (3.4.2). Since C and

measurements Z̄ do not depend on position, Λ
(
Z̄,xo

)
can be simplified as

Λ
(
Z̄,xo

)
=

∑
(si,rj)∈D

 1

σ2

tmax∫
0

z̄sirj (t) h̃sirj (t,xo) dt−
1

2σ2

tmax∫
0

h̃2
sirj

(t,xo) dt

 (3.5.2)

In practice, the measured IR difference in (3.5.1) will be a bandlimited sampled noisy

waveform. In the computation of x̂o, we consider sinc interpolation to relate the

samples of z̄sirj (t) to its samples.

The ML estimate x̂o is given as

x̂o = arg max
x′o

∑
(si,rj)∈D

 1

σ2

tmax∫
0

z̄sirj (t) h̃sirj (t,x′o) dt−
1

2σ2

tmax∫
0

h̃2
sirj

(t,x′o) dt

 .

(3.5.3)

Notice that the CRLB developed in Section 3.4 is a lower bound on the positioning

performance using the ML estimator (3.5.3).
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Figure 3.5: Top view of the room showing light sources and receivers affixed to the
ceiling, which are co-located. The total number of sources and receivers are Ns = 9
and Nr = 9 respectively. The dimensions of the room are 5m× 5m× 3m. A cuboid
object is located at (3 m, 3 m, 1.6 m).

3.6 Numerical Results

3.6.1 Simulation Setup

The room considered for simulations is shown in Figure 3.5 along with an example

placement of an object. The values used for several simulation parameters are shown

in Table 3.1.

The OIR estimate h̄sirj (t,xo) in (3.3.3) is simulated by finding hsirj ,o (t,xo) and

hsirj ,e (t) using the technique in [106] considering only first-order reflections. The

surfaces of room and object are divided into patches of small size, given in Table 3.1,

in order to obtain h̄sirj (t,xo). Define ρfloor, ρwall, ρtop, and ρside as reflectivity of floor,

walls, object’s top surface and sides respectively. A value for Ao,eff is found using

many trial runs of OIR measurements from different source-receiver pairs and several
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Table 3.1: Simulation Parameters

Room

Size, 5 m× 5 m× 3 m
Patch size, 10 cm× 10 cm
No. of sources and receivers, Ns = 9, Nr = 9
Reflection coefficient, ρfloor = 0.7, ρwall = 0.85
Sampling rate of IR, ∆t = 0.2 ns

Light Source
Transmit power, Ps = 3 W
Lambertian index, m = 1

Receiver

FOV (half-angle), ψr = 45 deg
Surface area, Ar = 1cm2

Responsivity, γ = 1A/W
Noise variance, σ2 = 10−16A2

Object
Size, 0.3 m× 0.3 m× 1.6 m
Patch size, 3 cm× 3 cm
Reflection coefficient, ρtop = 0.5, ρside = 0.6

Other parameters
Gaussian approx. ε = 0.2 ns and σ2

a = 0.01ns2

Object top’s effective area, Ao,eff = 30% of Ao
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locations in the room to ensure a good fit with the model.

The signal-to-noise (SNR) is defined similarly to [131] as

SNR =
γ2(βPs)

2

σ2
(3.6.1)

where γ denotes the responsivity of the receiver, which is given in A/W, Ps denotes

the total power emitted by a source in Watts, β = P
Ps

is a factor controlling the total

power emitted where β ∈ {0.1, 1} i.e., variation from 10% to 100% brightness. The

receiver noise has variance σ2 and is assumed to be the same for all receivers.

For performance evaluation, the root mean square error (RMSE) between the

object’s estimated and actual position is obtained for the ML estimate, which is

given as

RMSE =

√
(x̂o − xo)2 + (ŷo − yo)2 + (ẑo − zo)2. (3.6.2)

The RMSE curves shown in the following subsections are obtained after averaging

over several Monte Carlo (MC) runs for each point in the following results.

3.6.2 Variation of luminaire brightness

Figure 3.6 shows RMSE of the ML estimator plotted against increasing brightness of

each source i.e., β is varied from 0.1 to 1. As is expected, the performance is poor

at low brightness and improves by increasing brightness of the sources. The RMSE

curves are also plotted in the figure for a differing number of source-receiver pairs,

i.e., varying |D|. Notice that better performance is achieved by increasing the number

of pairs used at low brightness levels. However, the performance saturates quickly

and shows little improvement after a certain number of pairs are used. Additionally,
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Figure 3.6: RMSE against the increasing brightness of sources by considering different
number of source-receiver pairs at a time. The object is located at (3 m, 3 m, 1.6 m)
and RMSE estimated from 100 MC runs.

at high brightness, the RMSE also saturates regardless of the number of pairs used.

Thus, the same level of performance can be achieved by using a smaller number of

pairs at high brightness. This supports the fact that increasing the number of pairs

adds up lower energy signals in building up the ML cost function, which do not aid

substantially in localization.

The figure also shows a plot of the CRLB from (3.4.8) as a lower bound on the

RMSE performance. The CRLB curve is obtained by using all source-receiver pairs

and varying β. It should be noted that using all pairs in CRLB evaluation does not

imply that all pairs contribute equally to the value of CRLB. This is because some

of the receivers can not see the object since it does not fall into receiver’s FOV and

thus h̄sirj (t,xo) consists only of noise.
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Figure 3.7: Contour plots of performance against source brightness and the number
of OIR measurement pairs for the case of an object located at (3 m, 3 m, 1.6 m): (a)
RMSE [cm] (estimated from 50 MC runs.), (b) CRLB [cm].

3.6.3 Variation of number of source-receiver pairs

Figure 3.7 shows contour plots of the RMSE and CRLB against the increasing bright-

ness of sources and number of source-receiver pairs used in estimation. From Figure

3.7a, while the RMSE is improved both by increasing the brightness of the sources

and number of pairs measured, the performance is most sensitive to the choice of β.

For example, at low brightness the performance is little improved even after includ-

ing a considerable number of pairs. At high brightness and using a large number of

measured pairs the performance, both in terms of RMSE and CRLB, becomes sat-

urated. It is observed that the performance of the positioning algorithm is typically

dominated by few high energy measured pairs which have a small time-of-flight from

the corresponding sources to receivers.
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Figure 3.8: RMSE and CRLB on RMSE of individual coordinates against the increas-
ing number of source-receiver pairs for the object located at (3 m, 3 m, 1.6 m). The
number of pairs are varied from 3 to 81, β = 1 and RMSE results estimated from 20
MC runs.

3.6.4 CRLB on RMSE of individual coordinates

The RMSE and CRLB on individual coordinates is evaluated by increasing the num-

ber of source-receiver pairs. Figure 3.8 shows plots of RMSE and CRLB on RMSE

of individual coordinates. The number of pairs are varied from 3 to all possible (81

in this case). Notice that the results in x an y axes largely mirror one another as

is expected. Additionally, notice that the positioning estimation for z-coordinate is

more accurate than the other coordinates. This is consistent with the fact that the

Lambertian model has uniaxial symmetry in the x-y plane as compared to the z-axis

and thus adds more uncertainty in the x-y plane. The positioning performance sat-

urates with increasing numbers of pairs since the addition of low energy pairs does

not contribute much to performance improvement.
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Figure 3.9: Contour plots of CRLB [cm] against spatial variation in the room for an
object of fixed height (zo = 1.6 m) for (a) β = 0.25, (b) β = 1.

3.6.5 CRLB variation over the room

The CRLB over a spatial grid is evaluated by moving an object of fixed height across

the room. All the source-receiver pairs are used to evaluate CRLB. The discretization

is done along x and y axes at a resolution of 10 cm and the CRLB is computed at

each point. Figure 3.9 presents contour plots of CRLB by using different brightness

levels of sources i.e., varying β. It can be observed from the plots that the CRLB is

improved by increasing the brightness in room. This is expected because changing

brightness of the sources means changing SNR of the received OIR. Notice also that

the CRLB is the highest along edges of the room. This is because when the object

is around those locations then only a few source-receiver pairs are visible and able to

contribute to the positioning estimate. It is also observed that the CRLB has small

fluctuations within the space between the luminaires and the receivers. This effect is

most prominent at low dimming levels, i.e., β = 0.25, and is largely due to the fact

that limited FOV of the receivers excludes certain pairs from the position estimate.
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3.7 Conclusions

Passive indoor positioning using luminaires and receivers in a room is proposed where

positioning estimates are derived using reflected energy from an object in the room.

Unlike earlier active positioning approaches, our passive positioning approach does

not require direct user intervention.

In particular, we model the reflected object impulse response (OIR) between dif-

ferent source-receiver pairs using exponential-integrating sphere model. The model

is represented as a function of the object’s position as well as source and receiver

parameters, and the physical geometry of the room. The OIR measurements can be

obtained from each source-receiver pair in a short interval of time by using a coor-

dinating backbone network. Both an ML estimator as well as an analytical CRLB

expression are derived.

The results show that performance is improved both by increasing the number of

collected source-receiver signals as well as the brightness of the luminaires. Position-

ing performance is shown to be most sensitive to the dimming level which controls

the overall SNR of the system. The performance is also improved by increasing the

number of source-receiver pairs measured, however, it saturates quickly. This is con-

sistent with the fact that performance is dominated by several high energy source-

receiver pairs. Thus, at high brightness satisfactory performance can be obtained

with less complexity by choosing the optimum number of OIR measurements to use

in the estimation. When the user dims the lights, similar performance is possible,

at greater complexity, by collecting more OIR measurements from a greater number

of source-receiver pairs. With typical in room parameters, RMSE of less that 10 cm

was found both through simulation and in the developed lower bounds on positioning
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performance.

Future work includes extending the formulation to consider multiple objects in the

room. In addition, the impact of tilt and misalignment in the sources and receivers as

well as synchronization errors will also be considered in the future to reflect realistic

physical impairments.

3.A Partial Derivatives

The partial derivatives needed to compute the CRLB given in Section 3.4 are rather

involved and the procedure to obtain them is described in this appendix. The partial

derivative in the first term of (3.4.7) with respect to xo is given as

∂

∂xo

{
tsirj (xo)

}
=

 xo − xsi
c
∥∥∥xo − x

(s)
i

∥∥∥
2

−
xrj − xo

c
∥∥∥x(r)

j − xo

∥∥∥
2

 . (3.A.1)

The derivative of the second term in (3.4.7) can be expanded using the product rule

of derivatives as shown in (3.A.2). The partial derivative of τsirj (xo) in (3.A.2) can

be further expanded as shown in (3.A.3). As an example, (3.A.4) presents the partial

derivative of time delay from corner a1 of So elaborated in Figure 3.3. The derivatives
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for other corners can be derived in the similar manner.

∂

∂xo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

 =ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

τsirj (xo)
∂tsirj (xo)

∂xo
−
(
tsirj (xo)− t

) ∂τsirj (xo)

∂xo(
τsirj (xo)

)2


+ ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo) 4

(
xrj − xo

)∥∥∥x(r)
j − xo

∥∥∥2

2

− (m+ 3) (xo − xsi)∥∥∥xo − x
(s)
i

∥∥∥2

2


(3.A.2)

∂τsirj (xo)

∂xo
=

1

4τsirj (xo)

×

{(
t(a1)
sirj

(xo)− tsirj (xo)
)(∂t(a1)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a2)
sirj

(xo)− tsirj (xo)
)(∂t(a2)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a3)
sirj

(xo)− tsirj (xo)
)(∂t(a3)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a4)
sirj

(xo)− tsirj (xo)
)(∂t(a4)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)}
(3.A.3)

∂t
(a1)
sirj (xo)

∂xo
=

c−1 ((xo −∆x)− xsi)√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
xrj − (xo −∆x)

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(3.A.4)
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The partial derivatives with respect to yo can be derived in the same fashion since

there exists symmetry in x and y coordinates.

Consider the partial derivative with respect to zo in (3.4.7) (i.e., k = 3). The

partial derivative in first term of (3.4.7) with respect to zo is similar to (3.A.1).

The partial derivative of second term of (3.4.7) with respect to zo can be expanded

similarly using the product rule of derivatives and is given in (3.A.5). The partial

derivative τsirj (xo) with respect to zo can be expanded in a similar fashion to (3.A.3).

As was done for x and y coordinates, the partial derivative of time delay from corner

a1 of the object top with respect to zo is given in (3.A.6). The partial derivatives for

other corners can be derived similarly.

∂

∂zo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

 = ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

τsirj (xo)
∂tsirj (xo)

∂zo
−
(
tsirj (xo)− t

) ∂τsirj (xo)

∂zo(
τsirj (xo)

)2


+ ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)− 2

zrj − zo
− (m+ 1)

zsi − zo
+

4
(
zrj − zo

)∥∥∥x(r)
j − xo

∥∥∥2

2

− (m+ 3) (zo − zsi)∥∥∥xo − x
(s)
i

∥∥∥2

2


(3.A.5)
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∂t
(a1)
sirj (xo)

∂zo
=

c−1 (zo − zsi)√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
zrj − zo

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(3.A.6)
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In contrast to single-bounce model in Chapters 2 and 3, a realistic room model

is used in this chapter in order to characterize the performance of the passive indoor

visible light positioning systems. The arrangement of sources and receivers and im-

pulse response (IR) acquisition process is the same as described in Chapters 1, 2, and

3.

The sources are modeled to have wavelength-dependent flux distribution and re-

ceivers are assumed to have certain field-of-view and fixed area. The room also

contains furniture as compared to the single-bounce model used in Chapters 2 and

3. Furthermore, the coatings used to model the optical reflectivity of surfaces in

the room e.g., floor, ceiling, walls, and furniture have reflection characteristics that

depend on wavelength of light source. The localization object (LO) is modeled as

a cuboid of fixed height with a head-like shape at the top in order to represent the

human head.

The IR measurements corresponding to a particular location of the LO are ob-

tained between all source-receiver pairs affixed in the room and are collected in a

set. In order to use deep learning, the sets of IRs between all source-receiver pairs

are collected when the LO is placed at uniformly distributed positions in the room.

The collected sets of IRs are represented as features and divided into training and

validation data sets with corresponding positions. The training and validation data

are input to the neural network architecture after preprocessing in order to train the

network. Once the network is trained it can be used to estimate position of the LO

from a set of IR measurements when the LO is present at a random location.
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The proposed method shows root-mean-square error around 30 cm by using lumi-

naires at full brightness and around 80 cm when the network is trained by using only

10 randomly selected locations in the room.

In order to represent features of IR measurements, a binning process is used instead

of filtering or peak detection. It is important to note that the peak corresponding to

the LO is quite small in amplitude and time spread as compared to rest of the IR

waveform. Peak detection becomes complex due to noise sensitivity at the receiver.

On the other hand, the binning process limits filtering of the noise to the respective

bins and aids in highlighting features corresponding to the LO especially at small bin

sizes.

Secondly, the IR measurements obtained at the receiver contain noise that is a

combination of different sources of noise e.g., thermal noise, shot noise, etc. The

noise at the receiver is modeled as additive white Gaussian noise and is considered

independent between the receivers. The IR measurements contain noise per sample

according to the assumed noise variance and the time binning changes the value of

SNR in the respective bin.

The realistic room scenario is modeled in Zemax® OpticStudio [132] which is a

commercial ray tracing software. The software uses global illumination algorithms

[133] and recursive or Monte Carlo ray tracing [106, 134] approaches in order to com-

pute intensity of the traced ray segments. Recent work in [135] verifies the closeness

of experimental channel measurements with the simulated channel model obtained

from Zemax®.
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4.1 Abstract

A passive indoor visible light positioning (VLP) system is proposed that does not

require active participation from the user and is suitable for IoT sensor networks.

This approach does not require a line-of-sight path and measures the impulse response

(IR) between sources and receivers installed in the room. The presence of an object of

interest (OI), i.e. a person to be localized, disrupts the IRs among the source-receiver

pairs which can be related to its position. A deep learning framework is developed

which learns the relationship between changes in sets of IRs and the OI position

through a set of training data obtained by placing the OI at random locations in the

room. This approach shows that the OI can be localized using a very limited set

of training data under a wide range of illumination levels. In order to represent a

realistic scenario, a room with furniture is modelled in optical system design software.

The ray trace information of the modelled room is used to construct IR measurements

among different source-receiver pairs that include multi-order reflections. The results

show that localization performance is crucially related to signal-to-noise ratio and

number of training data points used in the learning process. A root-mean square

error (RMSE) near 30 cm is possible in the case of high SNR and a large training set.

However, even with a very limited training set and over a range of dimming levels,

RMSEs of near 80 cm were obtained without the need for explicit user involvement.

4.2 Introduction

The ubiquity of light-emitting diodes (LEDs) in indoor areas has tremendously en-

abled the development of visible light communication (VLC) systems [45] and visible
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light positioning systems (VLP) [46]. These LED luminaires are capable of providing

communication and illumination simultaneously in an indoor area to support a wide

variety of IoT applications. Such VLP systems provide better accuracy, security and

privacy as compared to their radio frequency (RF)-based counterparts and do not

require extra hardware. The development of VLP has led in turn to the development

of various algorithms and techniques to leverage indoor luminaires for localization

[37, 113, 114, 136, 101, 59, 119, 137, 117, 115, 60, 138, 74, 139, 140, 141, 111, 51, 142,

143, 144, 129, 70, 46, 145, 146, 108, 65, 52, 47]. These approaches can be broadly

classified into the following categories: proximity-based, scene analysis-based and

trilateration/triangulation-based techniques.

Proximity-based techniques [37, 113, 114] provide a coarse position estimate of

a receiver. In order to approximate the location of a receiver, a unique code is

transmitted by a source that is identified at the detector or camera in the receiver.

The nearest identified source in the vicinity of the receiver thus provides its position

estimate. Scene analysis-based techniques [136, 101, 59, 119, 137, 117, 115, 60] use

received signal strength (RSS) from multiple sources at the receiver and typically

provide better accuracy than proximity-based techniques. The RSSs can be related to

the distance of a receiver from a set of sources in order to provide a position estimate of

the receiver. Triangulation/trilateration-based techniques [138, 139, 140, 141, 111], on

the other hand, measure time of arrival (TOA), time difference of arrival (TDOA), or

angle of arrival (AOA) of the received signals in order to estimate receiver’s position.

These techniques require sensitive hardware at the receiver and also need perfect

synchronization between the sources and receivers.

The aforementioned techniques fall under the category of active localization where
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a user is equipped with a receiver. These techniques require input from the user e.g.,

holding a receiver and initiating a localization request, hence the name, active. There

is also a direct line-of-sight (LOS) path between the source and receiver and thus the

localization algorithms rely highly on the power received from the LOS component.

In contrast, passive VLP approaches do not require explicit intervention of the user

and often rely on both LOS as well as diffuse components [87, 88]. The localization

process is typically based on existing system infrastructure where measurements are

obtained between the luminaires and receivers installed in the room rather than using

user equipped receivers/sources.

A review of some passive VLP techniques can be found in [53]. Most of these works

sense location of an object of interest (OI) by studying effects of received power due

to the shadows formed by the OI in the room. Some of these works use a special

arrangement of luminaires and receivers e.g., [147]. A related passive approach can

be found in [76], where position estimates are provided by using power measurements

in an outdoor scenario. Another passive approach is proposed in [148, 79], where the

blockage of LOS signals between sources and receivers are used to detect the location

of the OI. The proposed system in [148] uses transceivers affixed on the ceiling and

multiple receivers (e.g., phones, autonomous devices, wearable devices, etc.) that

are moving or stationary. The method in [80] uses a similar system topology that

includes multi-order reflections along with the derivation of Cramér-Rao lower bound

(CRLB) on fingerprinting-based positioning. The aforementioned techniques either

require hardware modifications or special arrangement of luminaires and receivers in

an indoor area.

In this paper, a proof-of-concept of passive VLP system is designed and tested in
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a realistic indoor scenario where position estimates are obtained using a deep learning

framework. Though similar in architecture to our earlier theoretical work [87, 88],

this paper presents a first system design for indoor passive VLP systems. In [88], a

CRLB on passive VLP in an idealistic scenario is derived, where the room is consid-

ered empty and the acquired impulse responses (IRs) contain first-order reflections

only. The approach in [87] requires fingerprinting map of IRs in the indoor area,

which uses exhaustive search to estimate position and also increases storage memory

requirements. This paper extends our earlier work by considering a complex real-

istic scenario in which a room containing furniture is modelled and the IRs among

the source-receiver pairs include multi-order reflections. The different entities and

surfaces in the room are represented with characteristics based on measured spectral

data. This commercial simulator allows considerable flexibility to accurately model

a wide variety of indoor scenarios and the focus of this paper is on the development

of algorithms to passively localize an indoor user with diffuse reflections.

This work demonstrates that the passive localization approach, when coupled with

a deep learning framework, is able to localize the OI under a wide range of illumination

levels and with limited training. Though this proof-of-concept work considers only

a single OI in the room for localization, the deep-learning framework has potential

to be extended. One of the crucial applications of passive VLP is to construct an

IoT sensor network to monitor patients in hospital or at home while simultaneously

preserving their privacy.

The following notations are used in this paper: scalar by x, vector by x, matrix

by X, set by X , jth element of a vector (with subscript i) xi by x
(i)
j , cardinality of a

set X by |X |. The transpose operator is denoted by [·]T and the Euclidean norm by
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‖ · ‖2. All vectors in this paper are column vectors.

Sec. 4.3 describes the passive indoor localization system, a realistic modelling of

the indoor environment, and the measurement of IRs. A deep learning framework

for position estimation is explained in Sec. 4.4 and the performance of the proposed

system is evaluated in Sec. 4.5. Finally, the paper is concluded in Sec. 4.6.

4.3 System Model

This section describes the passive localization scenario with a proposed system archi-

tecture and realistic modeling of a room in Zemax® OpticStudio [132]. The process

of constructing IRs by using the data gathered from Zemax® is also explained along

with the measurement model for IR acquisition.

4.3.1 Passive Localization Scenario

In a passive localization scenario there is not necessarily a direct LOS path between

a source-receiver pair and thus the light rays are detected at the receiver after po-

tentially undergoing multi-order reflections. The order here refers to the number of

times a ray hits any surface or entity in the room (e.g., walls, floor, ceiling, furniture,

OI, etc.) before they are detected at the receiver. An example of a passive scenario

is depicted in Fig. 4.1, which shows cross section of the room containing luminaires

and receivers co-located on the ceiling. Notice that this definition of passive local-

ization does not impose a strict criterion on the location of sources and receivers.

The co-location of sources and receivers is considered here given the convenience for

implementation since most indoor areas are equipped with symmetrical arrangement
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Figure 4.1: A room containing transceivers (luminaires and receivers) co-located on
the ceiling. The light rays A, B, C and D after originating from source si and
undergoing multi-order reflections are detected at receiver rj. Notice that the path
of D is influenced by presence of a person (clipart silhouette reproduced from [55]).

of luminaires on the ceiling. The proposed passive localization approach does chan-

nel sounding between each of the sources and receivers that is similar to underwater

acoustic channel sounding [103]. In the particular case of co-located sources and

receivers, shown in Fig. 4.1, notice that only non-LOS components of the IR with

multi-order reflections are detected at the receiver. For instance, consider the light

rays A, B and C originating from source si that undergo 3rd, 1st and 2nd-order reflec-

tions respectively, which are indicated by color spot at each point of incidence on the

surface before being detected at the receiver rj. Additionally, the path of ray D from

source to receiver is influenced by the position of the OI (i.e., a person in the room).

The collection of detected rays are then used to construct the IR between source si

and receiver rj.

The luminaires are considered to have a Lambertian radiation pattern [149, 45]
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R (θ) in Watts/steradian given as

R (θ) =
m+ 1

2π
(αPs) cosm (θ) (4.3.1)

where θ denotes the angle formed between a ray emerging from the source and normal

to the source, α ∈ (0, 1] denotes a dimming parameter that controls brightness of the

luminaire, Ps is the maximum power emitted by the source in Watts, and m denotes

Lambertian index of the source. Notice that the radiation pattern in (4.3.1) has

uniaxial symmetry.

The receivers are assumed to have a fixed area of Ar, field-of-view (FOV) Φ, and

responsivity γ.

Define hsirj (t) as the IR between source si and receiver rj. The IRs among all com-

binations of Ns sources {si|i = 1, 2, · · · , Ns} and Nr receivers {rj|j = 1, 2, · · · , Nr} are

accumulated in set H with cardinality |H| = Ns ×Nr as

H =



hs1r1 (t) , hs1r2 (t) , · · · , hs1rNr (t)

hs2r1 (t) , hs2r2 (t) , · · · , hs2rNr (t)

...

hsNsr1 (t) , hsNsr2 (t) , · · · , hsNsrNr (t)


(4.3.2)

In practice, a sampled version of the hsirj(t) that are limited to a certain time extent

are used for OI position estimation as described in Sec. 4.3.3.
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M2

(a) (b)

Figure 4.2: A realistic model of the room in Zemax® that contains source-receiver
pairs, furniture and OI. The source-receiver pairs are affixed on the ceiling as indicated
by white dots and are co-located. The furniture is located towards edge of the room
along positive x-axis. An example placement of the OI at (2.57 m, 2.70 m, 1.6 m) is
also shown. The dimensions of the room are 5m × 5 m × 3 m. A graphic illustration
of the room: (a) 3D view and (b) top view.

4.3.2 Room Modeling using Realistic Parameters

The optical system design software Zemax® [132] is used to model a room. The non-

sequential ray tracing mode of the software is used to obtain ray trace information,

where the rays originating from a source hit surfaces or objects depending on their

locations in the room. The generated rays can hit small portions of an object or a

surface multiple times while being traced. The modeled room is shown in Fig. 4.2,

where the furniture is located towards edge of the room along positive x-axis. The

figure shows both 3D and top view of the modeled room. An example placement

of OI near center of the room is also shown for illustrative purposes. The room is

modeled in two steps as described in the following.

In the first step, the furniture is modeled as CAD objects in Blender [150] that

includes a closet, table and chair as shown in Fig. 4.2. Typical dimensions of the
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Figure 4.3: Flux variation of the source against the visible light wavelengths used
for ray tracing in Zemax®. The graph is obtained by using flux versus wavelength
analysis in Zemax® [132].

furniture are listed in Table 4.1. The OI is modeled as a cuboid with head-like shape

at its top to resemble a human head. In the second step, the room environment is set

up in Zemax® and the CAD objects are imported and placed inside the room. The

source-receiver pairs are affixed on the ceiling as described in Section 4.3.1 and are

co-located.

The sources are modeled by using the source rectangle object, which provides

flexibility to control the Lambertian index m of the source. The source is considered

photopic that has variable flux distribution against the visible light wavelengths as

depicted in Fig. 4.3 [132]. The receivers are modelled using the detector rectangle

object in Zemax®, which provides flexibility to control the size and FOV Φ of the

detector. Nominal room temperature and pressure are set as given in Table 4.1.

All surfaces in the room are defined by reflectivity of typical materials. Pine wood is

defined to coat the furniture and plaster is defined to coat the walls. The reflectivity of
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Figure 4.4: Reflectivity values of real materials [93, 95, 94] against the visible light
wavelengths that are used to coat room surfaces and furniture used in Zemax®.

the coating materials has measured wavelength-dependent characteristics [93, 95, 94]

as shown in Fig. 4.4. Moreover, the surfaces of different entities in the room are

modelled as diffuse reflectors.

4.3.3 Construction of Impulse Response Waveform

The ray trace of the modeled indoor environment in Zemax® produces a database file

that contains important information (e.g., path length, intensity, hit object number,

level of segments, etc.) about the rays detected at the receiver. The values of these

parameters are essential to construct the IRs between all source-receiver pairs. The

path length and intensity of the rays detected at the receiver corresponding to a cer-

tain source-receiver pair are used to construct the IR between that pair. For example,
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hsirj (t) can be approximated from the ray trace data obtained from simulation as

hsirj (t) ≈
No∑
k=1

pkδ (t− τk) (4.3.3)

where pk denotes the intensity of last segment of the kth ray detected at the receiver

rj, τk = dk
c

denotes the time taken by the kth ray to travel a total path length dk from

source si to receiver rj after multi-order reflections, No denotes the total number

of rays detected at the receiver rj in the simulation, and c is the speed of light.

This process is repeated to construct the IRs between all source and receiver pairs.

The constructed IRs are set to span the range t = {0, tmax}, where tmax denotes the

maximum time chosen for IR acquisition. The choice of tmax depends on both the

geometry of the room as well as maximum storage capacity of database.

As an example, consider hs5r5 (t) the IR between source s5 and receiver r5 as

shown in Fig. 4.5 when the OI is located near center of the modeled room (see Fig.

4.2). The figure shows the constructed IR without and with the presence of OI in

the room. It can be observed from the figure that a small peak occurs around 10 ns

when the OI can be located in vicinity of receiver r5. The comparison of IRs shows

that the presence of the OI alters the IRs between source-receiver pairs, where the

observed changes are considerable in the first-order reflection and relatively smaller

in higher-order reflections. Similarly, the IRs among other source-receiver pairs also

show small changes in them according to the location of OI. In Sec. 4.4, these changes

in the IRs among the source-receiver pairs are leveraged in a deep learning framework

to estimate the position of OI in the room.

It is important to note that the proposed system considers an OI of fixed height.

This application scenario can arise, for example, in cases where monitoring of patients
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Figure 4.5: Impulse response hs5r5 (t) between source s5 and receiver r5 when the OI
is located at (2.57 m, 2.70 m, 1.6 m) as illustrated in Fig. 4.2. The values of different
parameters used are listed in Table 4.1.

in a hospital room is required. The observation of IR in Fig. 4.5 shows that the initial

peak occurring in IR waveform around 10 ns is due primarily from reflections from

the top surface of the OI while the peak at 25 ns is due to reflections from the floor.

Reflections from side surfaces of the OI appear later in time and have considerably

less energy as compared to the top surface reflection pulse. Furthermore, multi-order

reflections from the OI are very small in energy as compared to the first bounce from

the top surface and are very small compared to the dominant reflection from the

floor. Therefore, the position of OI is crucially related to the first peak in the IR

corresponding to the first bounce from the top of OI, which plays an important part

in the localization using the deep learning framework.
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4.3.4 Measurement Model of Impulse Response Waveform

In order to acquire the IRs, it is assumed that the light sources and receivers are

arranged as a network at the back end that is controlled from a central entity. The

measurement process of IRs is achieved by setting up a common time reference among

all the receivers and a single source is turned on at a time. The individual light sources

are turned on and off at an imperceptibly fast rate so that light flicker does not impact

on the illumination performance of the luminaires given that the main role of light

sources in the indoor environment is to provide illumination. The IRs among all

source-receiver pairs can be accumulated in a fraction of a second since the length of

a typical IR in the room is on the order of 10’s of ns.

Define gsirj (t) the IR measured between source si and receiver rj modelled as

gsirj (t) = hsirj (t) + nsirj (t) (4.3.4)

where nsirj (t) is additive white Gaussian noise (AWGN) between source si and re-

ceiver rj with mean zero and variance σ2. The noise nsirj (t) is considered independent

among all source-receiver pairs. The measured IRs among all source-receiver pairs

can be accumulated in set G as

G =



gs1r1 (t) , gs1r2 (t) , · · · , gs1rNr (t)

gs2r1 (t) , gs2r2 (t) , · · · , gs2rNr (t)

...

gsNsr1 (t) , gsNsr2 (t) , · · · , gsNsrNr (t)


(4.3.5)

where cardinality of G is same as H i.e., |G| = Ns×Nr. In other words, the set G is a
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noisy version ofH. The noise in the measurements in G can be mitigated by averaging

repeated IR measurements [151] between each source-receiver pair as discussed in Sec.

4.5 at the expense of greater latency in producing a location estimate.

The task in passive VLP is to localize the user using a measurement of G while

the user is at a fixed location. As described in Sec. 4.4, multiple sets (G’s) of IRs

among all source-receiver pairs are obtained by placing the OI at randomly selected

positions in the room to produce a training set to learn the relationship between IRs

and positions.

4.3.5 Modelling of Indoor VLC Environments

The indoor environment in this work is modelled using the commercial ray tracing

software tool Zemax® [132]. This software tool allows for the control of source, re-

ceiver, and coating material parameters along with multi-order reflections inside of

the room. In the context of indoor optical wireless systems, ray tracing approaches

are the most popular modelling tools used in the literature. For example, the sem-

inal approach of Barry et al. in [106] is a recursive approach to simulate IRs and

model multi-order reflections in indoor environment. The authors of [106] demon-

strate a close correspondence between the simulated and measured IRs in indoor

environments.

Apart from the recursive approach of [106], several methods [152, 153, 154, 155,

135] have employed Zemax® Opticstudio in order to model a realistic indoor envi-

ronments for VLC systems. Recently, [135] specifically compares the indoor optical

IR between those simulated in Zemax® and experimental measurements. The re-

ported mean-square error between the experimental and simulated channel model is
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within 2% in the presence of multi-order reflections. Given this earlier work verify-

ing the accuracy of Zemax® in characterizing IRs in indoor VLC environments, in

Sec. 4.5 numerical results on our passive localization approach are provided based on

ray tracing models as well as measured optical parameters for room surfaces.

4.4 Deep Learning Framework for Position Esti-

mation

In this section, a deep learning framework is employed that learns the relationships

between the changes in the IRs between source-receiver pairs due to the OI in order to

infer position. The network does not directly learn the position of OI but rather the

relationship between changes in IRs due to the presence of the OI which is used to infer

its position. The IRs are first preprocessed before feeding them to the neural network.

The proposed framework uses a feed-forward neural network (FNN) architecture with

multiple hidden layers [96]. Fig. 4.6 shows the layout of complete deep learning

framework employed for position estimation.

4.4.1 Feature Representation of Impulse Response Waveform

The IRs among all source-receiver pairs are divided into Nb =
⌈
tmax

tb

⌉
time bins each

i.e.,

Tn =


[(n− 1) tb, ntb), n = 1, 2, · · · , Nb − 1

[(Nb − 1) tb, tmax), n = Nb

(4.4.1)
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Figure 4.6: Deep learning framework showing set of measured IRs G, feature-based
vector x and the FNN architecture [96]. The FNN contains Nb × Ns × Nr dimen-
sional input layer of preprocessed features, which is followed by Nl hidden layers with
each layer composed of fully connected (FC) and ReLU layers. The last layer is Nz

dimensional output layer estimating the position of the OI.

where tb is the duration chosen for the time bin and Tn denotes the nth time bin. It

is important to note that when the ratio tmax

tb
is an integer then all the Nb time bins

have equal size, tb, and when the ratio is a non-integer then the first Nb− 1 time bins

have equal size, tb, and the last N th
b time bin has smaller size, i.e., tmax − (Nb − 1)tb.

As an example, consider the measured IR gs5r5 (t) between source s5 and receiver

r5 with Nb time bins as shown in Fig. 4.7 (notice that this corresponds to a noisy

version of the IR in Fig. 4.5). Recall that gs5r5 (t) corresponds to the OI located near

center of the room as illustrated in Fig. 4.2. The portion of the IR in each time bin

is integrated to represent a feature which results in Nb features in total for single IR

measurement.

The selection of tb affects the performance of the system especially at low dimming

level of luminaires as discussed in Sec. 4.5. Moreover, since the receiver typically has

a band-limited response thus representing IRs with large time bins tb (or alternately
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Figure 4.7: An example of measured IR gs5r5 (t) between source s5 and receiver r5

showing Nb time bins. The OI is located at (2.57 m, 2.70 m, 1.6 m) as shown in Fig.
4.2.

smaller Nb) reduces complexity of IR acquisition in the analog-to-digital (A2D) con-

verter at the receiver.

Consider the measured IR g
(o)
sirj (t) ∈ Go between source si and receiver rj when

the OI is located at oth position zo = [ z
(o)
1 z

(o)
2 z

(o)
3

]T , where z
(o)
1 , z

(o)
2 and z

(o)
3 are

the Cartesian coordinates of the OI. The integral feature f
(o)
sirj ,n of the nth time bin

Tn for g
(o)
sirj (t) is

f (o)
sirj ,n

=

∫
Tn

g(o)
sirj

(t) dt (4.4.2)

Similarly, all of the remaining IRs in Go are represented with Nb features each. The

features from all IRs in Go are concatenated to form the feature-based vector fo as

fo =
[
f

(o)
s1r1,1

· · · f (o)
s1r1,Nb

· · · f (o)
sNsrNr ,1

· · · f (o)
sNsrNr ,Nb

]T
(4.4.3)
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where the length of fo is Nb×Ns×Nr. It is important to note that (4.4.3) represents

features from all source-receiver pairs when the OI is located at position zo.

In order to collect data for deep learning, the OI is placed at randomly selected

positions in the room (shown in Sec. 4.5) and feature-based vectors are obtained at

each location by using (4.4.3). The gathered data points are divided into training and

validation data sets X = {xp|p = 1, 2, · · · , Nt} and Y = {yq|q = 1, 2, · · · , Nv} respec-

tively. The positions corresponding to the data elements in X and Y are collected

in data sets ZX = {zp|p = 1, 2, · · · , Nt} and ZY = {zq|q = 1, 2, · · · , Nv} respectively.

The vector xp ∈ X is the feature-based vector when the OI is located at zp ∈ ZX and

can be represented by changing notations in (4.4.3) as

xp =
[
x

(p)
s1r1,1

· · · x(p)
s1r1,Nb

· · · x(p)
sNsrNr ,1

· · · x(p)
sNsrNr ,Nb

]T
(4.4.4)

Similarly, yq ∈ Y is the feature-based vector when the OI is located at zq ∈ ZY and

can be represented as

yq =
[
y

(q)
s1r1,1

· · · y(q)
s1r1,Nb

· · · y(q)
sNsrNr ,1

· · · y(q)
sNsrNr ,Nb

]T
(4.4.5)

It is important to note that the positions corresponding to validation data Y i.e.,

zq ∈ ZY are unknown to the deep learning framework since the validation data are

only used for performance evaluation. The subscript of elements in vectors xp and yq

are dropped in the following for simplicity as shown in Fig. 4.8 and are chosen equal

to the dimensions of feature-based vectors i.e., Nb ×Ns ×Nr.
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Figure 4.8: Data sets containing feature-based vectors for elements in training data
set X and validation data set Y .

4.4.2 Data Preprocessing

The objective of data preprocessing is to represent all features on a common scale since

some features show large variation in values as compared to others. The preprocessing

step is a common practice in deep learning since it greatly affects the learning process

[96]. The choice of preprocessing method depends on the domain of the problem

under consideration. The scaling method is chosen here since the changes observed in

IRs among the source-receiver pairs due to OI are related with each other. In order

to do the scaling, the maximum value among all features in the training data set X

is computed, which is given as

MX = max
1≤i≤Nb×Ns×Nr
1≤p≤Nt

x
(p)
i (4.4.6)

The value MX is then used to normalize data points in both X and Y . Define x̃p as

the pth normalized data point for xp ∈ X and ỹq the qth normalized data point for
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yq ∈ Y , i.e.,

x̃p :=
xp
MX

ỹq :=
yq
MX

(4.4.7)

The normalization in (4.4.7) results in normalized training and validation data sets

X̃ = {x̃p|p = 1, 2, · · · , Nt} and Ỹ = {ỹq|q = 1, 2, · · · , Nv} respectively.

4.4.3 Feed-forward Neural Network Architecture

The proposed deep learning framework employs an FNN architecture with multiple

hidden layers that help to learn the relationship between set of IRs among multiple

source-receiver pairs and position of the OI. The FNN architecture is highlighted by

a dotted block shown in Fig. 4.6. The FNN takes an Nb×Ns×Nr dimensional input

vector of preprocessed features that are obtained using (4.4.4), (4.4.5) and (4.4.7).

This is followed by Nl hidden layers and an output layer. Notice that the output

from the previous layer is connected to the input of the current layer and there is

no feedback path between the layers, hence the term feed-forward. The output layer

contains the estimate of the OI position denoted by vector ẑo corresponding to the

OI located at zo.

Each hidden layer contains a fully connected (FC) layer of neurons followed by

rectified linear unit (ReLU) layer [156]. For instance, the Lj
th FC layer contains Nuj

number of neurons and has connections to all neurons in the layer from the previous

input. This is followed by a ReLU layer that performs a nonlinear operation on the
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output of neuron from the previous FC layer and is given as

a (w) = max (0, w) (4.4.8)

where a (w) denotes the ReLU activation function and w denotes the output of neuron

from previous FC layer. The ReLU activation function provides a greater convergence

rate and is also computationally less expensive than sigmoid and tanh functions [157].

The final hidden layer LNl is then connected to the output layer. Since the coordi-

nates of position have continuous domain i.e., {zo ∈ <3|zo < 0}, in order to estimate

position the output layer is implemented as a regression layer [96].

The data points in X̃ with corresponding positions ZX are used to train the

FNN. The trained network is then used to estimate positions of the data points with

unknown positions. In practice, once the network is trained then a position estimate

of the OI can be obtained by the following steps.

1. Obtain a set of IR measurements i.e., G in (4.3.5), corresponding to the OI with

unknown position zo.

2. Represent G as feature-based vector fo using (4.4.3).

3. Preprocess fo using (4.4.6) to obtain preprocessed vector f̃o.

4. Use preprocessed vector f̃o as an input to the trained network in order to esti-

mate position ẑo of the OI.
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4.4.4 Network Training

The objective of training the network is to minimize the error between the predicted

and actual position with respect to the training data, i.e., X and ZX , [96] and to avoid

overfitting [158]. The efficacy of network training is characterized by computing the

mean square error (MSE) between the predicted and actual positions of the OI. Define

ep as the MSE when zo = zp ∈ ZX , that is

ep =
1

Nz

Nz∑
i=1

(
ẑ

(p)
i − z

(p)
i

)2

(4.4.9)

where ẑ
(p)
i denotes the ith predicted output and z

(p)
i the ith output coordinate corre-

sponding to the OI at location zp ∈ ZX , and Nz denotes the number of coordinates

in the output layer.

The optimization algorithms in deep learning typically use a subset of training

data points from the training data set X in order to train the network. The term

mini-batch is used to refer to the subset of training data points. Define XBi ⊂ X

the ith mini-batch that contains NBi training data points and fBi the corresponding

mini-batch loss defined as [159]

fBi =
1

2NBi

NBi∑
p=1

ep. (4.4.10)

The loss function for training data set is then defined as the average of all mini-batch

losses and is given as

floss =
1

Nc

Nc∑
i=1

fBi (4.4.11)

where Nc are the total number of mini-batches.
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It is important to note that only training data X and ZX are used to train the

network, whereas the validation data Y are used only to evaluate the training perfor-

mance and assess overfitting of the trained network. In order to compute validation

loss, unlike training loss, the MSE is averaged over the complete data set Y instead

of the mini-batches.

4.5 Simulation Results

4.5.1 Simulation Setup

The room depicted in Fig. 4.2 is modelled in Zemax using the parameters listed in

Table 4.1. All of the Ns luminaries and Nr receivers are assumed to have identical

parameters. The light sources and receivers are also assumed co-located on the ceiling.

The data set of IR measurements are collected by placing the OI at randomly selected

positions in the room. The region for selection of positions is chosen such that the

areas covering furniture are excluded to avoid overlap of OI with the furniture. The

total number of randomly selected positions in the room are Nt + Nv = 1000 to

generate the data set of IR waveforms, where the duration of each IR waveform is

tmax = 100 ns. The number of data points in validation data set Y are set to Nv = 200.

Define Nti as the number of training data points that are used to train the neural

network and Nti ≤ Nt = 800.

In relation to the measurement model of IRs in (4.3.4), the signal to noise ratio

SNR is defined similarly to [131] for IR acquisition as

SNR =
γ2 (αPs)

2

σ2
(4.5.1)
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Table 4.1: Parameter values for simulation

Room

- Dim. (L×W ×H), 5 m× 5 m× 3 m
- Number of sources, Ns = 9
- Number of receivers, Nr = 9
- Reflection coefficient (ρfloor, ρwall, ρceiling), see Fig. 4.4,
where ρwall uses plaster coating
- Room temperature, 20 °C
- Atmospheric pressure, 1 atm

Light Sources
- Total transmit power, Ps = 1 W
- Lambertian index, m = 1
- Flux distribution vs wavelength, see Fig. 4.3

Receivers

- Responsivity, γ = 1A/W
- half-angle FOV, Φ = 45 deg
- Surface area, Ar = 1cm2

- Noise variance, σ2 = 10−16A2

Object of Interest
- Dim. (L×W ×H), 0.3 m× 0.3 m× 1.6 m
- Reflection coefficient, ρobj = 0.5

Furniture

- Desk (L×W ×H), 0.5 m× 1 m× 0.85 m
- Chair (L×W ×H), 0.43 m× 0.41 m× 0.95 m
- Closet (L×W ×H), 1 m× 1.6 m× 1.85 m
- Reflection coefficient, (ρdesk, ρchair, ρcloset), see pine
wood coating in Fig. 4.4
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where γ denotes responsitivity of the receiver measured in A/W, Ps (as mentioned

in Sec. 4.3.1) is the maximum power emitted by the source in Watts, and α ∈

[0.1, 1] controls brightness of the light source i.e., 10% to 100%. The noise σ2 is

assumed independent and same at all the receivers. In order to evaluate VLP system

performance, the root mean square error (RMSE) is calculated between the actual

and estimated positions of the data points in validation data set Y . The RMSE is

given as

RMSE =

√
1

Nv

‖zq − ẑq‖2
2 (4.5.2)

where zq ∈ ZY and ẑq denotes the estimated positions of the OI and Nv = |Y|.

The dimension of the input layer of the FNN is controlled by the number of time

bins Nb as well as Ns and Nr. In the simulation setup in Fig. 4.2, Ns = Nr = 9. The

parameters of the FNN are chosen after experimentation to ensure convergence and

avoid overfitting. The number of hidden layers are Nl = 8 with each layer containing

500 neurons i.e., Nu1 = Nu2 = · · · = Nu8 = 500. The size of the mini-batch to

compute training loss is NB = 128 elements. Since the data are collected for the OI

of fixed height, the number of output variables in the output layer are set to Nz = 2.

The deep learning toolbox in MATLAB [159] with adam optimizer is used to train

the network.

4.5.2 Averaging IR Acquisitions for Noise Reduction

The noise in measured IRs can be reduced by accumulating IR acquisitions over

Navg number of times and then averaging the results [151]. As the measured IRs

are typically on the order of 10’s of ns, averaging IRs over several acquisitions still

enable them to be obtained within fraction of a second e.g., the IR acquisition for one
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Figure 4.9: Comparison of loss function between training and validation data for
averaging different number of IR acquisitions Navg. The number of training and
validation data points are Nt = 800 and Nv = 200 respectively. The time bin size is
tb = 20 ns (Nb = 5). The luminaires are set at full brightness (α = 1).

source-receiver pair in case of Navg = 2 and duration tmax = 100 ns can be obtained

in 200 ns. In this simulations, tb = 20 ns (or Nb = 5) and light sources are set at

100% brightness i.e., α = 1. The number of training and validation data points are

Nt = 800 and Nv = 200 respectively.

Fig. 4.9 shows the loss function for training and validation data sets against the

increasing number of epochs, where one epoch is defined as a complete pass of the

training data set through the FNN in Fig. 4.6 to update the weights and biases of the

network. As inferred from the figure, the loss functions become stable after a small

number of epochs and hence no overfitting [158] is observed in the curves. The figure

shows two sets of curves that correspond to two values used for averaging IRs i.e.,

Navg = 1 for no averaging and Navg = 100 for averaging over 100 acquisitions. The

curves show that performance is improved by averaging IRs over several acquisitions
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Figure 4.10: RMSE against the increasing brightness of light sources α. The number
of training and validation data points are Nt = 800 and Nv = 200 respectively. The
size of time bins is tb = 20 ns (Nb = 5).

before the network is trained for position estimation at the expense of latency. The

latency for each IR measurement G increases from 900 ns for Navg = 1 to 90 µs for

Navg = 100.

It is important to note that both Navg and α essentially change SNR, however, α

is in control of the user in contrast to Navg. Therefore, a small increase in latency

due to large Navg can considerably aid in mitigating the effects of noise.

4.5.3 RMSE vs Brightness of Light Sources

Fig. 4.10 shows RMSE plotted against the increasing brightness of light sources for

different values of Navg. In this simulation tb = 20 ns (i.e., Nb = 5) and the number

of training and validation points are Nt = 800 and Nv = 200 respectively.

The localization performance is sensitive to the brightness of the light sources.
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Figure 4.11: RMSE against the increasing size of time bins tb or equivalently, the
decreasing number of bins Nb for different brightness of light sources. The number
of training and validation data points are Nt = 800 and Nv = 200 respectively. The
number of acquisitions for averaging IRs are Navg = 100.

The different curves in the figure correspond to different values of Navg, which indi-

cates that the performance is greatly improved when IRs are averaged over several

acquisitions. For instance, in the case of Navg = 100 the RMSE is around 60 cm at

only a 10% brightness level of the luminaires.

4.5.4 RMSE vs Size of Time Bins for Feature Representation

The larger the time bin size tb the smaller the value of Nb which reduces complexity of

IR acquisition at the receivers. The performance here is evaluated by changing size of

the time bins tb when converting IRs into feature-based vectors. Fig. 4.11 shows the

RMSE in localization of the OI against the increasing size of time bins. The number

of training and validation data points are Nt = 800 and Nv = 200 respectively and

Navg = 100. The different curves shown in the figure correspond to different values
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Figure 4.12: RMSE against the increasing number of training data points Nt for
different values of α. The number of validation data points are Nv = 200. The
number of runs for averaging IRs are Navg = 100. The size of time bins is tb = 20 ns
(Nb = 5).

of brightness of light sources i.e., α = {0.1, 0.25, 0.5, 1}.

The best performance is observed at full brightness of light sources where the

variation in RMSE is around 10 cm i.e., 30 cm at tb = 20 ns (Nb = 5) to 40 cm at

tb = 100 ns (Nb = 1). This indicates that the system can be operated at tb = 100

ns (Nb = 1) with a small trade off in RMSE that results in reduction of the input

dimensions by a factor of 5. The worst performance is observed at 10% brightness

level of luminaires as expected, where variation in RMSE is around 40 cm i.e., 60 cm

at tb = 5 ns (Nb = 20) to near 1 m at tb = 100 ns (Nb = 1). In this scenario, the time

binning of IRs with small size is required to train the network in order to achieve the

best performance.
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4.5.5 RMSE vs Number of Training Data points

In practice, the acquisition of training data points is a tedious and complex process.

Fig. 4.12 shows the RMSE in OI localization (4.5.2) against the size of the training set

Nt. The curves are obtained by averaging RMSE over 10 separate experimental runs of

network training while using random combinations of the training data points in each

run. The different curves in the figure correspond to different values of brightness

of the light sources i.e., α = {0.1, 0.25, 0.5, 1}. The number of IR acquisitions for

averaging are Navg = 100, tb = 20 ns (Nb = 5) and the number of validation data

points are set at Nv = 200.

Clearly, the performance is improved by increasing the number of training data

points. A great improvement in accuracy can be observed at Nt = 100 after which the

RMSE saturates. Notice, however, that the localization performance is still consider-

able even with a very small number of training data points i.e., the RMSE is 80 cm

at Nt = 10. This is advantageous because it offers a huge reduction in the workload

required to gather the data points and the system is still viable for many applications.

If coarse localization of an OI is required then the deep learning framework can be

trained using a limited number of training data points.

4.5.6 Spatial Distribution of RMSE in the Room

The localization performance depends on the position of OI in the room. In order to

assess localization performance based on OI position, the spatial variation of RMSE

in the room is plotted in Fig. 4.13 for different number of training data points, Nt.

The RMSE plot shown in the figure is averaged over 10 separate experimental runs of

network training while using random combinations of the training data in each run.
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(a) (b)

Figure 4.13: Spatial variation of RMSE in the room for training data set of size: (a)
Nt = 10 and (b) Nt = 100. The number of validation data points are Nv = 200 with
same locations in both the figures. The number of IR acquisitions for averaging are
Navg = 100. The size of time bins of IRs is tb = 20 ns (Nb = 5). The luminaires are
set at full brightness i.e., α = 1. The average RMSE in (a) and (b) corresponds to
α = 1 curve in Fig. 4.12 at Nt = 10 and Nt = 100 respectively.

The figure shows vacant areas in the top right and bottom corners, which are due to

presence of furniture in those areas. These areas do not show any variation in RMSE

since the OI is not placed in those regions while collecting the data.

The number of validation data points are Nv = 200 which are distributed uni-

formly in the room. The locations of validation data points are same in Figs. 4.13a

and 4.13b. The number of acquisitions for averaging IRs are Navg = 100, tb = 20 ns

(Nb = 5) and the luminaires are set at full brightness i.e., α = 1.

The average RMSE values for α = 1 at Nt = 10 and Nt = 100 are around 80 cm

and 46 cm respectively, as apparent from Figs. 4.12 and 4.13. The comparison of

figures shows that spatial performance is improved when a larger number of training

data points are used to train the network. This can also be inferred that performance

is relatively degraded when the OI is located near furniture of similar height e.g.,
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closet in the top right corner. The performance also gets worse when the OI is

located towards the edges of the room. This is due to the fact that reflections from

the wall around same height as the OI are also accounted for in the IR. Moreover,

at the edge of the room only a few receivers can sense the presence of OI in their

vicinity due to their limited FOV.

4.6 Conclusions

A passive visible light positioning (VLP) system is proposed that employs a deep

learning framework to estimate the position of an object of interest. The impulse

responses (IRs) including multiple reflections among multiple source-receiver pairs

affixed on the ceiling are constructed by using the ray trace data obtained from

commercial optical system design software and realistic parameters. The presence of

an OI inside the room creates small changes in IRs among the source-receiver pairs

that can be related to the position of the OI. The deep learning framework learns the

relationships between changes in IRs by the OI in order to estimate its position. It is

important to note that although the proof-of-concept system proposed here considers

a single OI in the room in order to train the deep learning framework, the approach

and framework has interesting future extension to more general scenarios.

Simulation results demonstrate that the performance is greatly improved by using

luminaires at full brightness as well as by averaging IRs over a large number of

acquisitions. This averaging over a number of IR measurements increases SNR and

leads to a tolerable increase in system latency due to the short time duration of the

IR measurement in a room. The choice of large time bin size has an added advantage

of reduced input dimensions when the luminaires are set at full brightness. The
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performance improvement can also be observed when the number of training data

points used in training the network are increased. However, the performance at a

small number of training data points is still sufficient for many applications i.e., the

reported RMSE is around 80 cm at as low as 10 training data points. This has

the advantage of a vast reduction in workload required to gather the data points

since in practice, gathering the data points is a time consuming and difficult process.

Furthermore, if coarse localization is required then the network can be trained by

using a very small number of training data points. This passive VLP approach is

an enabling localization approach for indoor IoT monitoring of patients in a hospital

or home environment. Our future work considers experimental demonstration of this

approach and location estimation of multiple OIs simultaneously in the room to make

the system more widely applicable in indoor scenarios.
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Chapter 5

Passive Indoor Visible Light-based

Fall Detection using Neural

Networks

IEEE Copyright Notice

If accepted, the copyright of the material in this chapter will be held by the IEEE.

The research work presented in this chapter is prepared for submission [90] to the

IEEE and is shown in the following.

• K. Majeed and S. Hranilovic, “Passive Indoor Visible Light-based Fall Detec-

tion using Neural Networks,” prepared for submission to the IEEE.

The contents of the paper are formatted according to the thesis requirements i.e.,

formatting of figures, equation numbers and settings, tables, etc.

In this chapter, a fall detection system is developed that classifies the orientation

state of a user i.e., upright or prone in a room. This chapter employs same room
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model used in Chapter 4. Moreover, the process of impulse response (IR) acquisition

is also similar to the previous chapters. The localization object (LO) i.e, a person is

assumed present inside the room and considered to have one of the following states:

upright or prone. The prone state of the LO is considered as a person lying on the

floor along x or y axes.

The IR measurements corresponding to upright and prone states are labeled as

class 1 and 2 respectively. The neural network takes in labeled data as input for

training, where the labeled data is collected for the LO at uniformly distributed

positions in the room in either states of the LO. In order to classify the state of the

LO, the trained network takes a set of IR measurements as input and predicts the

output class. The robustness of the proposed method is also evaluated by using a

tilted state that is labeled with the same class number as the upright state. The

results show that the trained network is able to differentiate the tilted state from the

prone state even when the tilted state is not used to train the network. The reported

accuracy is greater than 97% when the luminaires are set at full output power and

the network is trained with only upright and prone states of the LO.

One of the strengths of machine learning algorithms is their ability to correctly

predict the output when unseen measurements are fed to the trained network. The

trained network should be robust to small changes in the indoor environment. For

example, the tilted state considered in this chapter along four directions (north, east,

south, and west) changes the IR measurements between the source-receiver pairs in

comparison to the upright state. Though the tilted state is not used to train the

network, the results show that the algorithm is correctly able to distinguish between

the upright/tilted and prone states.
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Secondly, the LO in prone state is considered lying along two directions only for

the simplicity of data generation and simulations but in fact it can be oriented in any

direction on the floor. A comparison of the IRs between upright and prone states of

the LO show that the peaks corresponding to LO in the prone state occur much later

in time with relatively smaller amplitudes as compared to the upright state and lie in

the similar time range even when the LO is oriented along any direction on the floor.

It is important to note that the path lengths of the traced rays increase considerably

for the LO in prone state in contrast to the upright or tilted states.
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5.1 Abstract

In this paper, a passive fall detection system based on visible light luminaires is

proposed that uses neural networks to learn the state (upright or prone) of a target

object (TO) e.g., a person. The proposed method measures the impulse response (IR)

between different source-receiver luminaire pairs in a passive scenario, where the user

does not hold a device or sensor. The IR measurements are collected in a realistically

modeled room and neural networks are employed to learn the relationship between

the IR measurements and the states of the TO at randomly selected positions in the

room. The performance evaluation of the system shows that an accuracy of more than

97% is attainable by utilizing a large number of data samples and high brightness

factor of the luminaires. The robustness of the proposed method is validated by using

a tilted state which is labeled with same class as the upright state, however, the tilted

state is not used to train the network. The correct prediction of the prone state is

particularly critical in health care settings where emergency situations may arise from

a fall.

5.2 Introduction

Visible light positioning (VLP) systems [46, 53] have attracted much attention re-

cently due to the common availability of luminaires in the indoor environment. VLP

techniques can be broadly classified into active and passive localization techniques

based on the involvement of a user in the localization process.

In active localization, the user participates in the localization process by carrying a

mobile device or a receiver and transmitting signals that are measured at the receiver
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[46]. The energy in line-of-sight (LoS) components of the detected signals play an

important role in positioning. However, a direct LoS is not necessarily required in

passive localization scenarios [53, 87, 88] where the user does not hold any device,

which is in contrast to more conventional active localization.

The detection of a human fall in a passive scenario can be considered as a com-

plementary application of passive localization techniques [87, 88, 89] since it does not

require additional hardware resources but rather employs signal measurements that

are already available in the passive VLP methods. The authors in [160, 161] provide

a comprehensive overview of the fall detection techniques. A majority of approaches

require the use of devices worn by an individual to detect the fall. These devices

include cameras, sensors attached to the user’s body e.g., wrist, waist, ankle, etc.,

remote sensing receivers or a combination of aforementioned devices. Moreover, the

privacy of the user is also at risk especially when using camera systems in an indoor

area. The method proposed in [162] uses a purpose built motion depth sensor to

detect human fall, where the data from the sensor are used to compute velocity of the

object. The anomalous change in computed velocity is used to classify the fall. The

methods in [163, 164] use cameras to obtain image or video of a person in order to

detect the fall. The useful features required to classify the fall are extracted from the

images captured by the camera. In [165], an infrared-based motion detector is used

to detect a fall. The method in [166] employs an array of ultrasonic sensors that is

used to perform gesture analysis of human posture in order to detect the fall.

In this paper, a fall detection system is proposed that uses existing luminaires in

a room in order to classify state (i.e., upright or prone) of a target object (TO) (i.e.,

a person) in the indoor environment. The proposed infrastructure is similar to the
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passive scenario proposed in [87, 88, 89]. In order to classify the state of TO, impulse

response (IR) measurements between source-receiver pairs are obtained for upright

and prone states of the TO at uniformly distributed locations in the room. Neural

networks are then applied to learn the relationship between the IRs and the states

of the TO. The proposed method does not require the user to wear a sensor or hold

a device in order to detect the fall as compared to many earlier methods [167, 160,

161]. Furthermore, the proposed method leverages existing lighting infrastructure,

preserves the privacy of the user, and offers low complexity in predicting the fall due

to the collection of IR measurements in a short period of time i.e, µs. It is important

to note that, in order to detect the fall, the TO is assumed to be present inside the

room. One of the important applications of fall detection techniques is to detect falls

in healthcare settings since such events can result in serious injuries or even death in

case of delayed emergency response.

The remainder of the paper is organized as follows. Sec. 5.3 describes modeling

of a realistic room scenario. Sec. 5.4 shows performance evaluation of the proposed

method. Finally, the paper is concluded in Sec. 5.5.

5.3 System Model

An example of passive scenario is shown in Fig. 5.1, where all three states (upright,

tilted, and prone) of a user are shown with multi-order reflections of light rays between

a source-receiver pair. The light rays w1, w2, w3, and w4 undergoing 2nd-order,

1st-order, 1st-order, and 3rd-order reflections respectively, between the source si and

receiver rj are also shown in the figure. This concept is realized by modeling a room

in Zemax® Opticstudio [132] as described in Sec. 5.3.1.
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Figure 5.1: An example room scenario showing all three states (upright, tilted, and
prone) of a user in the room. The rays w1, w2, w3, and w4 show 2nd-order, 1st-
order, 1st-order, and 3rd-order reflections respectively. The silhouettes of a person are
reproduced from [55].

5.3.1 Realistic Room Model

A realistic room environment similar to the one in [89] is modeled in Zemax® Op-

ticStudio and is shown in Fig. 5.2 with the sources and receivers co-located on the

ceiling. The figure shows an example of upright, tilted, and prone states of the TO

at several random locations, where all possible cases of the tilted state (north, east,

south, and west directions) and prone state (horizontal (x-axis) and vertical (y-axis)

directions) are shown. It is important to note that the tilted state is not used in

the training process, but rather used only to evaluate robustness of the proposed fall

detection method.

The sources are assumed to have a Lambertian radiation pattern [149] given as

R (ϕ) =
m+ 1

2π
ξPmaxcosm (ϕ) (5.3.1)
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Figure 5.2: Zemax® model of the room containing co-located sources and receivers
on the ceiling, furniture, and TO with upright, tilted, and prone states. The TO is
located at (1.94 m, 2.01 m, 1.6 m) in upright position and room dimensions are 5m
× 5 m × 3 m. The tilted (north, east, south, and west) and prone (horizontal and
vertical) states at random locations are also shown in (a) 3D view and (b) top view
of the room.

where m, ξ, and Pmax are the Lambertian index, brightness factor, and total output

power of the source respectively, and ϕ is the angle formed between the normal of the

source and the ray emerging from the source. Moreover, the sources are also assumed

to have variable flux distribution against wavelengths of visible light (i.e., photopic

source in Zemax® [132]). The receivers have area Ar and field-of-view (FOV) Ψ.

Furthermore, coating materials with measured wavelength-dependent characteristics

are used to coat different surfaces in the room including furniture [95, 94, 93]. The

CAD objects corresponding to the furniture are modeled using Blender [150].

Consider the IR hsirj (τ) between source si and receiver rj that can be approxi-

mated as

hsirj (τ) ≈
Np∑
k=1

Ikδ (τ − τk) (5.3.2)

whereNp are the total number of rays detected at the receiver, Ik is the intensity of last
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Figure 5.3: Impulse response hs5r5 (τ) between source s5 and receiver r5 when the TO
is located at (1.94 m, 2.01 m, 1.6 m) as illustrated in Fig. 5.2 for upright, tilted, and
prone states (Note that the tilted and prone states are not shown in Fig. 5.2 for this
TO location). The values of parameters used in simulation are listed in Table 5.1.

segment of the detected ray, and τk is the time corresponding to total path length of

the detected ray. Examples of IR waveforms hs5r5 (τ) corresponding to upright, tilted

and prone states (west direction in case of the tilted state and horizontal direction

i.e., along x-axis in case of the prone state) between source s5 and receiver r5 when

the TO is located near center of the room (see Fig. 5.2) are shown in Fig. 5.3. The

IRs can be well approximated as being time-limited, i.e. τ = [0, τmax] and τmax can

be chosen such that sufficient details of multi-order reflections are captured and is

limited in practice by the storage available at the receiver.

The IR can be measured between a source-receiver pair by considering a single pair

active at a time with measurement process repeated for all the pairs. The measured
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Figure 5.4: Block diagram showing a complete system architecture along with feed-
forward neural networks for classifying output state of a TO.

IR gsirj (τ) between source si and receiver rj can be modeled as

gsirj (τ) = hsirj (τ) + nsirj (τ) (5.3.3)

where nsirj (τ) is additive white Gaussian noise (AWGN) with zero mean and variance

σ2. Furthermore, the noise is considered to be independent amongst the receivers.

The measured IRs between Ns sources and Nr receivers corresponding to a single

state of the TO can be gathered in set G as

G =


gs1r1 (τ) , · · · , gs1rNr (τ)

...

gsNsr1 (τ) , · · · , gsNsrNr (τ)

 (5.3.4)
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5.3.2 Neural Network Classification

Neural networks are used to classify state of the TO i.e., upright or prone in the room.

Fig. 5.4 shows a complete system model including the feed-forward neural networks

(FNN) architecture [96] that is employed for classification of the state of the TO.

The IRs are measured in a similar fashion as shown in [89]. The measured IRs

gsirj (τ) ∈ G in (5.3.4) are divided into Nb time bins each where the time bins are

defined as

Tn =

 [(n− 1)τb, nτb) , for n = 1, 2, · · · , Nb − 1

[(Nb − 1)τb, τmax) , for n = Nb

(5.3.5)

The nth feature of gsirj (τ) is defined as bsirj ,n =
∫
Tn
gsirj (τ) dτ . The Nb features from

all IRs are accumulated in an Nb×Ns×Nr dimensional feature vector (data sample)

as

b =

[
b1 b2 · · · bNb×Ns×Nr

]T
(5.3.6)

where the subscript of elements in b are simplified with correspondence to its dimen-

sions.

Define TU,P the training data set containing samples corresponding to upright and

prone states only and TU,T,P the training data set containing samples corresponding

to all three states i.e., upright, tilted, and prone. The validation data set is defined

as VU,T,P and contains samples corresponding to all three states. In order to train the

network, two independent cases of network training are considered that depend on

the type of training data used, as described in Sec. 5.4. Define ΓU,P as the scenario

when the network is trained using TU,P and validated with VU,T,P . Similarly, ΓU,T,P

refers to network training with TU,T,P and validation using VU,T,P . It is important to

note that the validation data set contains all three TO states i.e., VU,T,P in both cases

133



Ph.D. Thesis – Khaqan Majeed McMaster – Electrical & Computer Engineering

of network training.

The samples in TU,P , TU,T,P , and VU,T,P are obtained using (5.3.4) and (5.3.6)

and are first preprocessed before feeding them to the FNN architecture as indi-

cated in Fig. 5.4. The vector elements in TU,P , TU,T,P , and VU,T,P are simply rep-

resented by changing notations in (5.3.6). It is important to note that the samples

in TU,P , TU,T,P , and VU,T,P are obtained when the TO is located at randomly dis-

tributed locations in the room as described in Sec. 5.4. In order to preprocess,

the samples in data sets TU,P and VU,T,P corresponding to the first case of net-

work training ΓU,P are normalized as T̄U,P =
{

t̄i(U,P ) =
ti(U,P )

MTU,P
|i = 1, 2, · · · , |TU,P |

}
and V̄U,T,P =

{
v̄j(U,T,P ) =

vj(U,T,P )

MTU,P
|j = 1, 2, · · · , |VU,T,P |

}
respectively, where ti(U,P )

denotes the ith sample vector in TU,P , t̄i(U,P ) denotes the normalized ith sample vec-

tor in T̄U,P , vj(U,T,P ) denotes the jth sample vector in VU,T,P , v̄j(U,T,P ) denotes the

normalized jth sample vector in V̄U,T,P , MTU,P = max
1≤l≤Nb×Ns×Nr,1≤i≤|TU,P |

t
(i)
l(U,P ) is the

maximum element in all vectors in TU,P , and the operator | · | denotes cardinality of a

set. Similarly, the normalized data sets T̄U,T,P and V̄U,T,P are obtained for the second

case of network training ΓU,T,P .

The normalized training and validation data sets are fed to the FNN architecture

through an input layer as illustrated in Fig. 5.4. This is then followed by Nl hid-

den layers and finally an output layer that predicts output state û of the TO. The

parameter values used to model the FNN architecture are described in Sec. 5.4.
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Table 5.1: Simulation Parameters

Model Room

- L×W ×H (5 m× 5 m× 3 m)
- No. of sources and receivers (Ns = Nr = 9)
- Reflection coefficient for floor, walls, and ceiling [93]
- Room temperature and atmospheric pressure (20 °C
and 1 atm)

Luminaires
- Maximum transmit power (Pmax = 1 W)
- Lambertian index (m = 1)
- Photopic source distribution [132]

Receivers

- Responsivity (α = 1A/W)
- half-angle FOV (Ψ/2 = 45 deg)
- Surface area (Ar = 1cm2)
- Noise variance (σ2 = 10−16A2)

Target Object (TO)
- (L×W ×H) (0.3 m× 0.3 m× 1.6 m)
- Reflection coefficient (ρobj = 0.5)
- Tilted state angle w.r.t. vertical axis (30 °)
- Tilted state directions (north, east, south, west)
- Prone state directions (horizontal (x-axis), vertical (y-
axis))

Furniture

- Desk, L×W ×H (0.5 m× 1 m× 0.85 m)
- Chair, L×W ×H (0.43 m× 0.41 m× 0.95 m)
- Closet L×W ×H (1 m× 1.6 m× 1.85 m)
- Pine wood coating [95, 94]
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5.4 Numerical Results

5.4.1 Simulation Environment

The values of parameters used in defining the simulation environment for ray tracing

in Zemax® are listed in Table 5.1, which corresponds to the room model shown in

Fig. 5.2. The number of sources and receivers are Ns = Nr = 9 and are considered co-

located on the ceiling. In order to collect the training (TU,P or TU,T,P ) and validation

(VU,T,P ) samples, the TO is located at randomly selected positions in the room for

upright, tilted, and prone states and the IRs are measured between all source-receiver

pairs for the TO in each state. The maximum time duration of IR is chosen as

tmax = 100 ns in order to capture sufficient details from multi-order reflections as

evident from Fig. 5.3. The 100 ns time duration for IR acquisition corresponds to

total path length around 30 m when a ray is traced from a source to receiver with

multi-order reflections, which is sufficient given the dimensions of the room shown in

Table 5.1.

The tilted state is simulated randomly along four directions i.e., north, east, south,

and west and the prone state is modeled randomly along horizontal and vertical

directions i.e., x and y axes. The total number of locations considered are 1000 with

each position containing upright, tilted, and prone states, where the number of tilted

and prone states are equally divided among their respective directions i.e., 250 each

in case of tilted state and 500 each in case of prone state. The network is trained

using two types of training data i.e., ΓU,P and ΓU,T,P separately in order to compare

the performance between them as described in Sec. 5.3.2.

Define the state of the TO by u. In order to classify, the samples corresponding
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to the TO states are labeled as follows: upright state by u = 1 and prone state by

u = 2. The tilted state is a transition between upright and prone states and it is

considered as u = 1.

The noise model for signal-to-noise ratio (SNR) is considered similar to the one

described in [131] and is given as

SNR =
α2 (ξPmax)2

σ2
(5.4.1)

where α is responsivity of the receiver measured in A/W, Pmax is the total power

transmitted by the source in W, ξ ∈ [0.1, 1] controls brightness factor of the source,

and the noise is considered independent among all the source-receiver pairs. Define Na

as the total number of IR acquisitions corresponding to a single source-receiver pair.

The SNR can be improved by increasing Na and then averaging the measurements

[151, 89]. Notice that increasing Na improves the SNR but results in increased latency

for IR acquisitions.

The accuracy (%) of correctly predicting the TO state is calculated as

Accuracy =
1

|VU,T,P |

|VU,T,P |∑
j=1

1 (ûj = uj) (5.4.2)

where 1 (·) is an indicator function that outputs 1 when the predicted and actual class

values match and 0 vice versa and |VU,T,P | are the total number of validation samples.

The variables ûj and uj denote the predicted and actual class values respectively for

the jth sample in validation data set VU,T,P . In order to avoid overfitting, the number

of layers and neurons in each layer are chosen after experimentation, which are Nl = 3

with 500 neurons each and all the training samples are used as a single batch while
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Figure 5.5: Accuracy against the increasing time bin size τb of the IRs (or equivalently
decreasing no. of bins Nb) for different values of ξ of the luminaires. The number
of training and validation samples for ΓU,P are |TU,P | = 1600 and |VU,T,P | = 400
respectively, and for ΓU,T,P are |TU,T,P | = 2400 and |VU,T,P | = 600 respectively.

training the network [96].

5.4.2 Accuracy Against the Increasing Time Bin Size τb

The performance is evaluated by changing time bin size τb of IRs in time binning

process. The large τb reduces complexity of the analog-to-digital converter and storage

requirements of the receiver at the detector. Fig. 5.5 shows accuracy against the

increasing τb (or equivalently smaller number of bins Nb). The different curves in

the figure correspond to different values of brightness factor ξ of the sources. The

curves are obtained by averaging accuracy values over 30 separate experimental runs

and using random training and validation samples in each run. The solid curves

correspond to the first case of network training ΓU,P with |TU,P | = 1600 and |VU,T,P | =

400 and the dotted curves correspond to the second case of network training ΓU,T,P
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with |TU,T,P | = 2400 and |VU,T,P | = 600. It is important to note that the number of

samples in validation set VU,T,P are divided approximately evenly among the upright,

tilted, and prone states. The number of IR acquisitions for a single source-receiver

pair for averaging as defined earlier are Na = 150. This results in increased system

latency for collecting measurements in (5.3.4) i.e., 900 ns for Na = 1 to 135 µs for

Na = 150 in case of IR with length tmax = 100 ns and Ns = 9 sources since turning

one source on at a time enables IR acquisitions at all the receivers. However, IR

measurements between all source-receiver pairs can still be obtained within fraction

of a second.

The performance improves by increasing brightness factor ξ of the luminaires as

expected. This can be inferred from the figure that the improvement in accuracy is

modest with the inclusion of the tilted state in the training, which shows robustness

of the proposed approach. However, this improvement is at the cost of increased size

of training set i.e., |TU,T,P | = 2400.

5.4.3 Accuracy Against the Increasing Brightness Factor ξ

The performance is also evaluated with respect to the increasing brightness factor ξ

of the luminaires as shown in Fig. 5.6. The different curves in the figure correspond

to different values of Na used for averaging multiple IR acquisitions. The curves are

obtained by averaging accuracy values over 5 independent experimental runs using

random training and validation samples in each run for two separate cases of network

training i.e., ΓU,P and ΓU,T,P . The number of training and validation samples for both

the training cases are same as used in Fig. 5.5. The time bin size used for binning

IRs is τb = 1 ns (or Nb = 100), which is highest bandwidth sampling as shown in
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Figure 5.6: Accuracy against the increasing brightness factor ξ of the luminaires
for different averaging values Na of IR acquisition. The time bin size is τb = 1
ns. The number of training and validation samples for ΓU,P are |TU,P | = 1600 and
|VU,T,P | = 400 respectively, and for ΓU,T,P are |TU,T,P | = 2400 and |VU,T,P | = 600
respectively.
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Fig. 5.5. The comparison of the curves show that performance of the system can

be greatly improved by using IRs averaged over large Na. The performance also

improves by increasing brightness of the luminaires. Furthermore, the addition of a

tilted state in training (dotted curves) i.e., ΓU,T,P shows comparable performance to

using only upright and prone states (solid curves) i.e., ΓU,P , especially for Na = 150.

This demonstrates that the system is robust to distinguish the tilted state from the

prone state despite the fact of excluding tilted state in training the network.

5.4.4 Accuracy Against the Increasing Number of Training

Samples

Fig. 5.7 shows accuracy against the increasing number of training samples for different

brightness factor ξ of the luminaries. The time bin size for binning process of IRs

is τb = 1 ns (Nb = 100). The number of IR acquisitions for averaging are Na =

150. The accuracy curves are averaged over 5 separate experimental runs. Fig.

5.7a shows network training ΓU,P with |VU,T,P | = 400 samples and Fig. 5.7b shows

ΓU,T,P with |VU,T,P | = 600 samples. The training and validation samples are chosen

randomly during each experimental run and the number of elements in VU,T,P are

divided approximately equally among the three states. As inferred form the figure,

high accuracy can be achieved using a large training set with luminaires set at full

brightness. The comparison of Figs. 5.7a and 5.7b shows that the performance of

network training ΓU,P is comparable to ΓU,T,P . Secondly, the performance saturates

after |TU,P | = |TU,T,P | = 800 samples in both the figures. This indicates that the

network can be trained with less number of samples instead of using the complete

training data set.
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(a)

(b)

Figure 5.7: Accuracy against the increasing number of training samples for different
brightness factor (ξ) of the luminaires. The time bin size is τb = 1 ns and number of
IR acquisitions for averaging are Na = 150. (a) ΓU,P with |VU,T,P | = 400 samples and
(b) ΓU,T,P with |VU,T,P | = 600 samples.
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5.4.5 Confusion Matrix

Fig. 5.8 shows confusion matrix for one experimental run of network training using

training and validation data which are uniformly distributed in the room. Fig. 5.8a

uses |TU,P | = 1600 and |VU,T,P | = 400 samples while Fig. 5.8b uses |TU,T,P | = 2400 and

|VU,T,P | = 600 samples. The figure depicts state prediction accuracy for both upright

(or tilted) and prone states of the TO. The time bin size is τb = 1 ns (Nb = 100) and

number of IR acquisitions for averaging are Na = 200. The brightness factor of the

luminaires is set at ξ = 1. The accuracy of more than 97% can be observed in Fig.

5.8a when only upright and prone states are used in training the network i.e., ΓU,P .

On the other hand, the accuracy greater than 98% can be observed in Fig. 5.8b when

all three states are used in network training i.e., ΓU,T,P . The comparison of Figs. 5.8a

and 5.8b shows that the system is robust in predicting the state of TO even when it

is tilted.

The correct prediction of prone state is of utmost importance in fall detection

techniques. Apart from accuracy values, sensitivity and specificity measures are typ-

ically used in order to assess the performance of fall detection systems. Sensitivity

measure reflects the correct prediction of true positives i.e., it shows how well the

system performs in correctly predicting the fall and specificity measure shows cor-

rect prediction of true negatives i.e., robustness of the system in rejecting incorrectly

predicted falls [160]. The sensitivity and specificity values can be calculated as

Sensitivity =
NTP

NTP +NFN

Specificity =
NTN

NTN +NFP

(5.4.3)
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Figure 5.8: Confusion matrix showing prediction accuracy for upright/tilted (u = 1)
and prone (u = 2) states. The time bin size is τb = 1 ns (Nb = 100) and number of
IR acquisitions for averaging are Na = 200. The brightness factor of the luminaires
is ξ = 1. Network training (a) ΓU,P with |TU,P | = 1600 and |VU,T,P | = 400 and (b)
ΓU,T,P with |TU,T,P | = 2400 and |VU,T,P | = 600.
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Table 5.2: Sensitivity and Specificity values for experimental run (Fig. 5.8)

ΓU,P ΓU,T,P

Sensitivity 98.5% 99.5%

Specificity 97.3% 97.5%

Accuracy 97.8% 98.2%

where NTP , NTN , NFP , and NFN represent number of true positives, true negatives,

false positives, and false negatives respectively. Consider the prone state (u = 2) as

true positive and the upright (or tilted) state as true negative (u = 1). The sensitivity,

specificity, and accuracy values corresponding to ΓU,P and ΓU,T,P for the experimental

run in Fig. 5.8 are shown in Table 5.2. The comparison of the performance measure

values between ΓU,P and ΓU,T,P shows robustness of the fall detection system in pre-

dicting the prone state of the TO even when the tilted state is excluded in network

training i.e., ΓU,P .

The proposed method achieves accuracy greater than 97% and relieves the user

from carrying a device or wearing a sensor, which is in contrast to the most fall

detection methods surveyed in [168, 160, 161] that require wearable sensors, camera-

based sensors, ambient sensors, or combination of them in order to detect the falls.

The ambient sensors-based study in [161] describes methods that sense changes in the

indoor environment e.g., using radio frequency signals i.e., WiFi [169]. The method

in [169] uses channel state information of WiFi signals in order to detect the fall and
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the reported accuracy is around 93%. The reported accuracy in [170] is greater than

95%, however, the proposed method uses geophone sensors in the indoor area in order

to detect floor vibrations that occur due to the fall. The sensitivity and specificity of

the fall detection method in [168] is 96%, however, the method requires the user to

wear accelerometer sensor.

5.5 Conclusions

A fall detection system using visible light in a realistically modeled indoor environ-

ment is proposed that uses neural networks in order to predict output state of a

target object (TO). A set of impulse response (IR) measurements between different

source-receiver pairs in the room are obtained that correspond to upright or prone

states of the TO. The employed neural network architecture learns the relationship

between a set of IR measurements and the TO states. The proposed method does

not require any sensor tags attached to the user and predicts the fall assuming that

the user is present inside the room.

The robustness of the proposed method is also evaluated by excluding tilted state

in network training. The accuracy of more than 97% is reported when large number

of training samples are used with luminaires set at full brightness. Our future work

focuses on using dynamic falling motion models of a person in the indoor area and

collecting series of measurements in order to track their state.
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Chapter 6

Conclusions and Future Work

In this chapter, the contributions of the proposed research work are summarized.

Furthermore, possible future directions are also discussed in relation to the visible

light-based passive indoor localization paradigm.

6.1 Conclusions

In this thesis, a proof-of-concept of passive indoor localization system is proposed

that uses visible light as the underlying technology. The passive localization scenario,

in contrast to active localization, does not involve a user directly in the localization

process but rather sense changes in the indoor environment in order to estimate

position of the user. The user neither carries a device with them nor do they have

any sensor tags attached to their body. A network of luminaires and receivers are

installed in the room that can be controlled from a central back end server. An

example of controlling such a network can also be through Internet-of-things devices

that allows the control of devices over the Internet. Moreover, the smart buildings
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concept encapsulates control of luminaires through power-over-Ethernet (PoE), where

the network is able to provide communication and power to the luminaires through the

same channel. In order to acquire signals, the impulse response (IR) measurements are

obtained between all source-receiver pairs in the room. The presence of a localization

object (LO) inside the room produces changes in IRs between certain source-receiver

pairs depending on its position. The work presented in this thesis can be divided into

two parts based on the considered room model i.e., single-bounce model and realistic

room model.

In the single-bounce model, an empty room is considered with first-order reflec-

tions only. The IR due to LO is obtained by computing difference between the IRs

with and without the presence of LO in the room. An exponential integrating-sphere

model is fitted to the IR differences and a fingerprinting method is used to estimate

the position of the LO. Furthermore, the Cramér-Rao lower bound is derived on the

positioning error and the tightness of the bound is evaluated by using a maximum

likelihood estimator.

In a realistic scenario, the room is modeled with reasonable parameters in an

optical system design software where multi-order reflections are also included in the

measured IRs. The sources have wavelength-dependent characteristics. The optical

properties of surfaces in the room are modelled by measured wavelength-dependent

reflectivity coatings on all surfaces of the room i.e., walls, floor, ceiling, and furni-

ture. The furniture is modeled using a 3D graphics design software and exported as

computer-aided design objects that are placed inside the modeled room.

The presence of the LO inside the room produces changes in measured IRs between

the source-receiver pairs. Changes in the IRs correspond to the LO present at a certain
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position in the room. A deep learning framework is employed to learn these changes

in order to estimate the position of the LO at an unknown location. Secondly, a

passive fall detection system is proposed that classifies state of the LO i.e., upright

or prone. Neural networks are used to learn the state of LO from the IR acquisitions.

The trained network then classifies state of the LO from the IR measurements.

One of the proposed passive positioning solutions employs deep learning for posi-

tion estimation in a realistic indoor scenario. It is likely that the performance between

classical machine learning techniques is comparable to deep learning techniques given

the simple room layout. However, this may not be the case in more realistic indoor

scenarios with enriched furnishings or considerably larger extent. The use of deep

learning in these scenarios offers much larger benefits since they are able to learn

minute details of the indoor environment and outperform classical machine learning

algorithms.

The Passive visible light positioning (VLP) approach protects privacy of the user

while simultaneously providing positioning service. The applications of the proposed

passive VLP system include monitoring of patients in a hospital environment or at

home, surveillance of people in private indoor areas, detecting workers in high-risk

indoor environments, etc.

Passive positioning based on visible light relies on LED luminaires in order to

estimate the position of the user. Therefore, the system cannot work in the absence

of light or at night, however, it can be modified to include IR sources and sensors

because the wave propagation characteristics in IR spectrum are analogous to visible

light spectrum. Therefore, the algorithms developed for visible light positioning can

be used analogously for IR positioning.
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In terms of complexity, fingerprinting approaches are computationally complex

because they require exhaustive search in a stored map in order to estimate the

position of the user. The deep learning approach has larger computational complexity

only in the network training phase. However, the network training needs to be done

only once for a specific room. Once the network is trained then the computational

complexity for position estimation involves only multiplications and additions that is

a function of number of inputs, weights and biases in the network.

6.2 Future Work

The passive visible light positioning approach is proposed for both single-bounce

and realistic indoor environments that does not require a user to carry any device or

sensor tags. However, there are some possible research directions that can be explored

potentially in the future work.

6.2.1 User Tracking

The passive positioning approach considers position estimation of a user in an indoor

environment at a stationary location. However, the proposed work can be extended

to include real-time signal measurements in order to track movement of the user in

the indoor area using tracking algorithms e.g., extended Kalman filter (EKF). The

approach can also take into account motion models of a person walking in the area

in order to improve efficiency of tracking.

Another direction could be differentiating between a stationary and moving users

by collecting a series of IR measurements. This can be achieved by tracking peaks in
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the IR measurements corresponding to a user in order to detect their motion.

6.2.2 Position Estimation of Multiple Users

The proposed research work considers a single user in an indoor environment whose

position is estimated. The work can be extended to measure IRs when multiple users

are present in the room. The users present in respective localities of the room cause

changes in IRs in the source-receive pairs in their vicinity. Positioning algorithms

can be developed that relate changes in the IR measurements with locations of the

users in order to estimate their positions. An advanced deep learning framework e.g.,

convolutional neural networks (CNNs) can be employed to learn about the number of

peaks in IRs corresponding to the number of users present in a realistically modeled

indoor environment since CNNs exploit spatial information in the training data.

Secondly, the IR differences obtained in Chapters 2 and 3 have their negative

parts zero-clipped. The energy in the negative part depends on the location of a user

as well as the size of their shadow formed in the room. The negative part in the

IR differences can also be utilized and appropriately modeled in order to relate it

uniquely to a single user.

6.2.3 User count detection

Some indoor applications require calculation of user density in an indoor area in

order to provide communication services e.g., video streaming, web browsing, etc.

The density can be calculated by implementing a count estimator system that is able

to count the number of users simultaneously present in the indoor area. The IR

measurements can be obtained that show changes in them corresponding to multiple
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users similar to the one described in Sec. 6.2.2. The location of the user near a certain

source-receiver pair produces prominent peaks in first-order bounces as compared to

the higher order bounces. These peaks can be detected in order to count the number

of users in the area.

6.2.4 Scalability and Viability of Passive Indoor Positioning

System in Multiple Indoor Environments

The proposed passive localization method considers a room with a fixed layout. How-

ever, one of the challenges in implementation of indoor localization systems is that

they can be easily deployed in new indoor areas. Although machine learning algo-

rithms help to learn the layout of a particular room, however, in order to deploy

systems in new indoor areas, a transfer learning framework can be utilized. The

transfer learning approach learns positioning scenario in a room with specific layout

and the trained network can be used as a prior to predict outputs in a room with

different layout. Nevertheless, the transfer learning approach can help to implement

the indoor passive positioning system in different indoor environments without any

hassle, hectic planning or resource requirements.

Secondly, the proposed fall detection system considers a static state of a person

at a given time instant i.e., upright or prone. The system can be improved to include

measurements from dynamic model of a falling person. For example, the measure-

ments from two different states can be concatenated while training the network. The

concatenation of different states can provide more insights into observing the fall

through user motion as investigated in camera-based systems.
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6.2.5 Experimental Validation

The proposed work presents a proof-of-concept of passive indoor localization scenario

using single-bounce and realistic room models. Though the realistic room model

considers the modeling of a room in an optical system design software that considers

the environment as realistic as possible, however, an experimental setup can be used

to verify integrity of the proposed approach. The real luminaires and photodetectors

(PDs) can be used to implement such a system. The IR measurements can be obtained

by controlling luminaires and PDs through a central server.

The major challenge in the deployment of passive localization systems is the design

or selection of luminaires and PDs. The devices should be selected such that their

bandwidth allows to capture enough details corresponding to the presence of user in

the room. Secondly, each source should be synchronized with all the receivers through

some backbone network. However, no precise synchronization is required between the

sources.
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Appendix A

Supplementary Material –

Performance Bounds on Passive

Indoor Positioning using Visible

Light

This appendix is related to the research work described in Chapter 3 and was sub-

mitted as supplementary material for the following journal.

• [88] K. Majeed and S. Hranilovic, “Performance Bounds on Passive Indoor

Positioning Using Visible Light,” in Journal of Lightwave Technology, vol. 38,

no. 8, pp. 2190-2200, 15 April 15, 2020, doi: 10.1109/JLT.2020.2966365.

This appendix contains detailed derivation of the entries in Fisher information

matrix that are required to calculate analytical expression of the Cramér-Rao lower

bound. The appendix is reproduced in the following with minor modifications in
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order to follow the thesis format.

A.1 Introduction

This supplement to our submission [88] contains additional details on the partial

derivatives derived in the computation of the Cramér-Rao lower bound (CRLB) for

indoor passive positioning systems, shown in Section 3.4. The same notation is em-

ployed in this supplement as is defined in the main submission. The definitions of

important variables, model and its parameters are stated here again for easy reference.

The positions of source si and receiver rj are represented by vectors x
(s)
i =

[xsi ysi zsi ]
T and x

(r)
j =

[
xrj yrj zrj

]T
respectively. Let xo = [xo yo zo]

T represent

center position of top surface of the object. The OIR model from Section 3.3.2 is

given by

h̃sirj (t,xo) = ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo) uσa,ε

(
t− tsirj (xo)

)
(A.1.1)

The amplitude ηsirj (xo), time delay tsirj (xo) from center of object’s top surface, and

decay rate τsirj (xo) are defined as

ηsirj (xo) = (βPs)
(m+ 1) ρoArjAo,eff

2π
×

(zsi − zo)
m+1(zrj − zo)2∥∥∥xo − x

(s)
i

∥∥∥m+3

2

∥∥∥x(r)
j − xo

∥∥∥4

2

, (A.1.2)

tsirj (xo) =

∥∥∥xo − x
(s)
i

∥∥∥
2

c
+

∥∥∥x(r)
j − xo

∥∥∥
2

c
, (A.1.3)
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and

τsirj (xo) =
1

2
×
(

(t(a1)
sirj

(xo)− tsirj (xo))
2

+ (t(a2)
sirj

(xo)− tsirj (xo))
2

+(t(a3)
sirj

(xo)− tsirj (xo))
2

+ (t(a4)
sirj

(xo)− tsirj (xo))
2
) 1

2
(A.1.4)

respectively.

A.2 Definition of delays for τsirj (xo)

In order to compute τsirj (xo), the time delays from each of the corners of the top

surface of the object, So, are needed, as shown in Figure 2 of the paper. The time

delays from corners a1, a2, a3, and a4 of So are given explicitly in (A.2.1), (A.2.2),

(A.2.3), and (A.2.4) respectively.

t(a1)
sirj

(xo) =

√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

c

+

√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2

c
(A.2.1)

t(a2)
sirj

(xo) =

√
((xo + ∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

c

+

√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2

c
(A.2.2)
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t(a3)
sirj

(xo) =

√
((xo + ∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

c

+

√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2

c
(A.2.3)

t(a4)
sirj

(xo) =

√
((xo −∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

c

+

√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2

c
(A.2.4)

A.3 Fisher information matrix entries

In order to compute the CRLB, the entries of the Fisher information matrix (FIM)

are required as shown in (15). The partial derivatives of h̃sirj (t,xo) with respect

to xo,k, k = 1, 2, 3, are expanded in (A.3.1), (A.3.2), and (A.3.3) respectively where

xo = [xo, yo, zo]
T .

∂h̃sirj (t,xo)

∂xo
= −ηsirj (xo)

∂

∂xo

{
tsirj (xo)

}
e
−

(t−tsirj (xo))
τsirj (xo) δσa,ε

(
t− tsirj (xo)

)
+

∂

∂xo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

uσa,ε
(
t− tsirj (xo)

) (A.3.1)

∂h̃sirj (t,xo)

∂yo
= −ηsirj (xo)

∂

∂yo

{
tsirj (xo)

}
e
−

(t−tsirj (xo))
τsirj (xo) δσa,ε

(
t− tsirj (xo)

)
+

∂

∂yo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

uσa,ε
(
t− tsirj (xo)

) (A.3.2)
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∂h̃sirj (t,xo)

∂zo
= −ηsirj (xo)

∂

∂zo

{
tsirj (xo)

}
e
−

(t−tsirj (xo))
τsirj (xo) δσa,ε

(
t− tsirj (xo)

)
+

∂

∂zo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)

uσa,ε
(
t− tsirj (xo)

) (A.3.3)

A.3.1 Partial derivatives with respect to xo

The partial derivative of first term of (A.3.1) with respect to xo is given in (A.3.4)

and the second term can be expanded using the product rule of derivatives as shown

in (A.3.5). The partial derivative
∂τsirj (xo)

∂xo
can be expanded as shown in (A.3.6). The

partial derivative with respect to xo of time delay from the corners a1, a2, a3, and a4

are derived in (A.3.7), (A.3.8), (A.3.9), and (A.3.10) respectively.

∂

∂xo

{
tsirj (xo)

}
=

 xo − xsi
c
∥∥∥xo − x

(s)
i

∥∥∥
2

−
xrj − xo

c
∥∥∥x(r)

j − xo

∥∥∥
2

 (A.3.4)

∂

∂xo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)


= ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

τsirj (xo)
∂tsirj (xo)

∂xo
−
(
tsirj (xo)− t

) ∂τsirj (xo)

∂xo(
τsirj (xo)

)2


+ ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

 4
(
xrj − xo

)∥∥∥x(r)
j − xo

∥∥∥2

2

− (m+ 3) (xo − xsi)∥∥∥xo − x
(s)
i

∥∥∥2

2

 (A.3.5)
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∂τsirj (xo)

∂xo
=

1

4τsirj (xo)

×

{(
t(a1)
sirj

(xo)− tsirj (xo)
)(∂t(a1)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a2)
sirj

(xo)− tsirj (xo)
)(∂t(a2)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a3)
sirj

(xo)− tsirj (xo)
)(∂t(a3)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)

+
(
t(a4)
sirj

(xo)− tsirj (xo)
)(∂t(a4)

sirj (xo)

∂xo
−
∂tsirj (xo)

∂xo

)}
(A.3.6)

∂t
(a1)
sirj (xo)

∂xo
=

c−1 ((xo −∆x)− xsi)√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
xrj − (xo −∆x)

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.7)

∂t
(a2)
sirj (xo)

∂xo
=

c−1 ((xo + ∆x)− xsi)√
((xo + ∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
xrj − (xo + ∆x)

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.8)

∂t
(a3)
sirj (xo)

∂xo
=

c−1 ((xo + ∆x)− xsi)√
((xo + ∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
xrj − (xo + ∆x)

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.9)
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∂t
(a4)
sirj (xo)

∂xo
=

c−1 ((xo −∆x)− xsi)√
((xo −∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
xrj − (xo −∆x)

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.10)

A.3.2 Partial derivatives with respect to yo

Similarly, (A.3.11) gives the partial derivative of the first term of (A.3.2) with respect

to yo and (A.3.12) gives the expansion of the second term. The partial derivative

∂τsirj ,m(xo)

∂yo
is given in (A.3.13) while the partial derivatives with respect to yo of the

time delay from the corners is given in in (A.3.14), (A.3.15), (A.3.16), and (A.3.17).

∂

∂yo

{
tsirj (xo)

}
=

 yo − ysi
c
∥∥∥xo − x

(s)
i

∥∥∥
2

−
yrj − yo

c
∥∥∥x(r)

j − xo

∥∥∥
2

 (A.3.11)

∂

∂yo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)


= ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

τsirj (xo)
∂tsirj (xo)

∂yo
−
(
tsirj (xo)− t

) ∂τsirj (xo)

∂yo(
τsirj (xo)

)2


+ ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

 4
(
yrj − yo

)∥∥∥x(r)
j − xo

∥∥∥2

2

− (m+ 3) (yo − ysi)∥∥∥xo − x
(s)
i

∥∥∥2

2

 (A.3.12)
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∂τsirj (xo)

∂yo
=

1

4τsirj (xo)

×

{(
t(a1)
sirj

(xo)− tsirj (xo)
)(∂t(a1)

sirj (xo)

∂yo
−
∂tsirj (xo)

∂yo

)

+
(
t(a2)
sirj

(xo)− tsirj (xo)
)(∂t(a2)

sirj (xo)

∂yo
−
∂tsirj (xo)

∂yo

)

+
(
t(a3)
sirj

(xo)− tsirj (xo)
)(∂t(a3)

sirj (xo)

∂yo
−
∂tsirj (xo)

∂yo

)

+
(
t(a4)
sirj

(xo)− tsirj (xo)
)(∂t(a4)

sirj (xo)

∂yo
−
∂tsirj (xo)

∂yo

)}
(A.3.13)

∂t
(a1)
sirj (xo)

∂yo
=

c−1 ((yo + ∆y)− ysi)√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
yrj − (yo + ∆y)

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.14)

∂t
(a2)
sirj (xo)

∂yo
=

c−1 ((yo + ∆y)− ysi)√
((xo + ∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
yrj − (yo + ∆y)

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.15)

∂t
(a3)
sirj (xo)

∂yo
=

c−1 ((yo −∆y)− ysi)√
((xo + ∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
yrj − (yo −∆y)

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.16)
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∂t
(a4)
sirj (xo)

∂yo
=

c−1 ((yo −∆y)− ysi)√
((xo −∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
yrj − (yo −∆y)

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.17)

A.3.3 Partial derivatives with respect to zo

Equation (A.3.18) gives the partial derivative of the first term of (A.3.3) with respect

to zo. The second term of (A.3.3) is expanded in (A.3.19). The partial derivative

∂τsirj ,m(xo)

∂zo
is expanded in (A.3.20) while the partial derivatives with respect to zo for

times delays from the corners of So are given in (A.3.21), (A.3.22), (A.3.23), and

(A.3.24) respectively.

∂

∂zo

{
tsirj (xo)

}
=

 zo − zsi
c
∥∥∥xo − x

(s)
i

∥∥∥
2

−
zrj − zo

c
∥∥∥x(r)

j − xo

∥∥∥
2

 (A.3.18)

∂

∂zo

ηsirj (xo) e
−

(t−tsirj (xo))
τsirj (xo)


= ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

τsirj (xo)
∂tsirj (xo)

∂zo
−
(
tsirj (xo)− t

) ∂τsirj (xo)

∂zo(
τsirj (xo)

)2


+ηsirj (xo) e

−
(t−tsirj (xo))
τsirj (xo)

− 2

zrj − zo
− (m+ 1)

zsi − zo
+

4
(
zrj − zo

)∥∥∥x(r)
j − xo

∥∥∥2

2

− (m+ 3) (zo − zsi)∥∥∥xo − x
(s)
i

∥∥∥2

2


(A.3.19)
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∂τsirj (xo)

∂zo
=

1

4τsirj (xo)

×

{(
t(a1)
sirj

(xo)− tsirj (xo)
)(∂t(a1)

sirj (xo)

∂zo
−
∂tsirj (xo)

∂zo

)

+
(
t(a2)
sirj

(xo)− tsirj (xo)
)(∂t(a2)

sirj (xo)

∂zo
−
∂tsirj (xo)

∂zo

)

+
(
t(a3)
sirj

(xo)− tsirj (xo)
)(∂t(a3)

sirj (xo)

∂zo
−
∂tsirj (xo)

∂zo

)

+
(
t(a4)
sirj

(xo)− tsirj (xo)
)(∂t(a4)

sirj (xo)

∂zo
−
∂tsirj (xo)

∂zo

)}
(A.3.20)

∂t
(a1)
sirj (xo)

∂zo
=

c−1 (zo − zsi)√
((xo −∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
zrj − zo

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.21)

∂t
(a2)
sirj (xo)

∂zo
=

c−1 (zo − zsi)√
((xo + ∆x)− xsi)

2 + ((yo + ∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
zrj − zo

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo + ∆y)

)2
+
(
zrj − zo

)2
(A.3.22)

∂t
(a3)
sirj (xo)

∂zo
=

c−1 (zo − zsi)√
((xo + ∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
zrj − zo

)√(
xrj − (xo + ∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.23)
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∂t
(a4)
sirj (xo)

∂zo
=

c−1 (zo − zsi)√
((xo −∆x)− xsi)

2 + ((yo −∆y)− ysi)
2 + (zo − zsi)

2

−
c−1
(
zrj − zo

)√(
xrj − (xo −∆x)

)2
+
(
yrj − (yo −∆y)

)2
+
(
zrj − zo

)2
(A.3.24)
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