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Abstract

Minimal free resolutions are an important notion in algebraic geometry and commu-
tative algebra. The minimal free resolution of a subvariety in projective spaces provides
geometric properties of the subvariety. However, if the ambient space is the product of
projective spaces, the minimal free resolution can be too long. On the other hand, virtual
resolutions of a subvariety of products of projective spaces can be shorter and they still
provide information about the subvariety. In this thesis, we investigate sets of points in
P1 × P1 with generic Hilbert function and in particular, points in a sufficiently general
positions. We find an explicit virtual resolution of ideals of a sufficiently general set of
points in P1 × P1. Our proof depends upon computing some values of the mutigraded
Castelnuovo-Mumford regularity and using a result of Berkesch, Erman and Smith. We
also generalize one of the Berkesch, Erman and Smith’s result in a special case.
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CHAPTER 1

Introduction

Many invariants in algebraic geometry and commutative algebra may be defined in
terms of free resolutions. A free resolution is an exact sequence of free modules. Let R
be a Noetherian ring. For every R-module M , one can construct a free resolution of free
R-modules Fi which fit into an exact sequence

F : · · · → F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M → 0,

as follows: define F0 to be the free R-module whose basis elements are mapped to a set
of generators of M . Then, we define F1 to be the free R-module whose basis elements are
mapped to generators of the kernel of the map F0 → M . We define each Fi, for i > 1 to
be the free R-module whose basis elements are mapped to the generators of the kernel of
the map ϕi−1 : Fi−1 → Fi−2.

IfM is a graded module over a graded ring, e.g. the polynomial ring S = k[x0, x1, . . . , xn]
over n+1 variables, then we can define a graded version of a free resolution. Hilbert proved
that every finitely generated S-module has a finite graded free resolution of length at most
n + 1. Among graded free resolutions, the minimal free resolutions are those for which
the map ϕl : Fl → Fl−1, takes the standard basis of Fl to a minimal generating set of ker
(ϕ`−1) for all `, ` ≥ 0 The condition of minimality is important since without minimality,
resolutions are not unique (up to isomorphism).

Minimal free resolutions give us some information of a subvariety in a projective
space. As an example, we can compute the Hilbert function of a variety which is used for
computing the dimension and the degree of the variety. However, when the ambient space
is a product of projective spaces, minimal free resolutions over the coordinate ring can be
too long. However, virtual resolutions, as first defined in [BES20] by Berkesch, Erman
and Smith, can be much shorter and they still give us some of the geometric properties.

The definition of a virtual resolution is new and there is still much to learn about them.
Here are some of the works on virtual resolutions. Berkesch, Erman, and Smith [BES20]
constructed virtual resolutions. They proved that the set of virtual resolutions of a module
determines its multigraded Castelnuovo–Mumford regularity. They also showed how to
extract a virtual resolution from a minimal free resolution. Loper [Lop19] identified two
algebraic conditions that characterize when a chain complex is virtual. Kennedy [Ken20]
also gave an algebraic condition on a complex to guarantee it is a virtual resolution. In
[GLLM21], Gao, Li, Loper and Mattoo investigated which sets of points have a virtual
resolution that is a Koszul complex on a regular sequence. They provided conditions on
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Chapter 1. Introduction 2

sets of points in P1 × P1, some of which guarantee the points have this property, and
some of which guarantee the points do not have this property. A Macaulay2 package
was released by Almousa, Bruce, Loper, and Sayrafi in [ABLS20]. They introduced
the VirtualResolutions package that has tools to construct, display, and study virtual
resolutions for products of projective spaces. The package also has tools for generating
curves in P1×P2, providing sources of interesting virtual resolutions. Recently, Berkesch,
Klein, Loper, and Yang [BKLY20] continued the research program on the notion of a
virtually Cohen–Macaulay property started by Berkesch, Erman, and Smith in [BES20] in
two related ways. Firstly, when X is a product of projective spaces, they described a large
new class of virtually Cohen–Macaulay Stanley–Reisner rings. Secondly, for an arbitrary
smooth projective toric variety X, they developed homological tools for assessing the
virtual Cohen–Macaulay property. They also used these tools to establish relationships
among the arithmetically, geometrically, and virtually Cohen–Macaulay properties.

Let Pn = Pn1 × · · · × Pnr be the product of projective spaces, where the ni’s are
positive integers. Let S = k[xij : 1 ≤ i ≤ r, 0 ≤ j ≤ ni] be the coordinate ring of Pn and,
B =

⋂r
i=1〈xi,0, xi,1, . . . , xi,ni

〉 be its irrelevant ideal. Berkesch, Erman, and Smith proved
the following proposition:

Proposition 1.1. [BES20, Proposition 1.2.] Every finitely-generated Zr-graded B-
saturated S-module has a virtual resolution of length at most |n| := n1 + n2 + · · ·+ nr =
dimPn.

Therefore, by Proposition 1.1, every finitely generated Z-graded (x0, x1, · · · , xn)-saturated
S-module where S = k[x0, x1, · · · , xn] has a virtual resolution of length at most n =
dimPn. The Hilbert Syzygy Theorem also asserts the existence of a finite free resolution.

Theorem 1.2. (Hilbert Syzygy Theorem) Let S = k[x0, x1, · · · , xn]. Then every
finitely generated S-module has a finite free resolution of length at most n+ 1.

Hence, Proposition 1.1 generalizes this result.

Let X to be a set of points in P1 × P1, and let IX be its defining ideal in S =
k[x0, x1, y0, y1]. Proposition 1.1, implies the existence of virtual resolutions of length at
most two for IX . In this thesis we find an explicit virtual resolution of length two for the
ideal of finitely many points in sufficiently general position in P1 × P1. Specifically, we
prove the following theorem which is one of the main results of our thesis.

Theorem 1.3. (Theorem 4.7) Let X be a set of sufficiently general points in P1×P1.
Then IX has a virtual resolution of length two. In particular, if s is even, then a virtual
resolution is

0→ S(−s,−1)2 →
S(−s/2,−1)2

⊕
S(−s, 0)

→ S.



Chapter 1. Introduction 3

and, if s is odd,

0→ S(−s,−1)2 →

S
(
− s−1

2
,−1

)
⊕

S
(
− s+1

2
,−1

)
⊕

S(−s, 0)

→ S.

is a virtual resolution of IX .

The structure of the thesis is as follows.

We start Chapter 2 with the definitions of graded rings and graded modules. These
results are needed to define minimal free resolutions in Section 2.2. Virtual resolutions
are defined geometrically by Berkesch, Erman, and Smith in [BES20], but there is an
algebraic reformulation of the geometric definition proved by Kennedy in [Ken20]. We
will use this as our definition for virtual resolutions. In Section 2.3 we also introduce the
concept of multigraded Castelnuovo-Mumford regularity defined in [MS04]. We need the
notion of multigraded regularity for one of the main theorems in [BES20] that is the key
result in the proof of Theorem 4.7. Lastly, we will introduce a few concepts from algebraic
geometry. Most of the content of Chapter 2 can be found in [CLO05] and [Eis95].

We begin Chapter 3 by defining the biprojective space P1 × P1. We continue by
focusing on the properties of a finite set of points in P1×P1. Some of the main results of
Chapter 3 are from [GMR92] and [GMR96]. At the end of Chapter 3, we explain what
it means to have a set of points in sufficiently general position.

In Chapter 4, we start with an example to explain our strategy in proving our main
theorem, Theorem 4.7. Then we provide a series of lemmas we need to prove our main
theorem.

Finally, in Chapter 5, we state three conjectures, with supporting examples. The
motivation behind these conjectures is that in [BES20, Theorem 4.1], Berkesch, Erman
and Smith prove the existence of a virtual resolution for an ideal of a set of points. In
these conjectures we try to find the virtual resolutions explicitly.

One of our conjectures is the following.

Conjecture 1.4. Let X be a set of s points in P1 × P1 that has generic Hilbert
function and let IX ⊂ S = k[x0, x1, y0, y1] be its defining ideal. Let B(a,0) = 〈x0, x1〉a.
The smallest value of a where the minimal free resolution of S/(IX ∩ B(a,0)) is a virtual
resolution of S/IX has the following properties.

(1) a ≤ s− 1.
(2) If a yields such a virtual resolution of S/IX , then a+ 1 does as well.
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Moreover, if a is the smallest value where the minimal free resolution of S/(IX ∩ B(a,0))
is a virtual resolution of S/IX , then this virtual resolution will be of the form

0→ S(−1,−s)s →
S(−s, 0)
⊕

S(−s+ 1,−1)s
→ S,

and for i > 0, the virtual resolution corresponding to (a+ i, 0) is:

0→
S(−s− i, 0)i−1

⊕
S(−s− i,−1)s

→
S(−s− i+ 1, 0)i

⊕
S(−s− i+ 1,−1)s

→ S.

The idea of the conjecture above is based on the following theorem by Berkesch,
Erman and Smith [BES20, Theorem 4.1]. In this theorem they prove the existence of an
a = (a, 0) such that the minimal free resolution of S/(IX ∩ B(a,0)) is a virtual resolution
of S/IX . For the conjecture above we checked more than 20 different configurations of
sets of points in P1 × P1 and found the least a for each configuration.

Theorem 1.5. [BES20, Theorem 4.1] If Z ⊂ Pn is a zero-dimensional scheme and I
is the corresponding B-saturated S-ideal, then there exists an a ∈ Nr with ar = 0 such that
the minimal free resolution of S/(I ∩ Ba) has length equal |n| = dimPn. Moreover, any
a ∈ Nr with ar = 0 and other entries sufficiently positive yields such a virtual resolution
of S/I.

In Chapter 5, we give a partial answer to the conjecture above. Ee show that for
a ≥ s − 1 the minimal free resolution of S/(IX ∩ B(a,0)) is a virtual resolution of S/IX .
We prove the following proposition.

Proposition 1.6. Let X be a set of s points in P1 × P1 that has generic Hilbert
function and let IX ⊂ S = k[x0, x1, y0, y1] be its corresponding B-saturated defining ideal.
If a = s− 1, then, the minimal free resolution of S/(IX ∩B(a,0)) is a virtual resolution for
S/IX . Moreover, for every number t ∈ N, where t > s− 1, the minimal free resolution of
S/(IX ∩B(t,0)) is also a virtual resolution.



CHAPTER 2

Background and Preliminaries on Resolutions

Let S = k[x0, x1, . . . , xn] be the polynomial ring in n+1 variables over an algebraically
closed field k. In order to study the homogeneous ideals I = I(V ) of projective varieties
V , we study their free resolutions. In this chapter we shall recall the background on the
minimal free resolutions and virtual resolutions of I. An important fact is that these
resolutions have an extra structure coming from grading on the ring S. Much of the
content of this section can be found in [CLO05] and [Eis95].

1. Graded Modules

In this section we collect together all the results we will need about graded modules.
We start with the definition of a graded ring.

Definition 2.1. A graded ring is a ring R together with a direct sum decomposition

R =
⊕
i≥0

Ri,

as abelian groups, such that

RiRj ⊆ Ri+j for all i, j ≥ 0.

Thus R0, is a subring of R, and each Rn is an R0-module.

A homogeneous element of R is an element of one of the groups Ri, and a homogeneous
ideal of R is an ideal generated by homogeneous elements. If f ∈ R, there is a unique
expression for f of the form

f =
∑
i

fi with fi ∈ Ri.

The fi are called the homogeneous components of f . One can enlarge these definitions to
allow components of negative degrees. In that case we shall sometimes call the result a
Z-graded ring. More generally, one can construct a ring graded by any semigroup with
identity. We will discuss such a case in Chapter 3.

Example 2.2. The polynomial ring S = k[x0, . . . , xn] is a graded ring, where Si is the
set of all homogeneous polynomials of degree i. Now, each Si is a S0-module, and since
S0 = k, each Si is a k-vector space.

In the following definition we define graded modules over graded rings.
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Chapter 2. Background and Preliminaries on Resolutions 6

Definition 2.3. If R =
⊕

i≥0Ri is a graded ring, then a graded module over R is an
R-module M with a decomposition

M =
⊕
i∈Z

Mi,

as abelian groups, such that RiMj ⊂Mi+j for all i ≥ 0 and j ∈ Z.

It is easy to see from the definition that each Mi is a module over the subring R0.

Example 2.4. Let Rm = R ⊕ R ⊕ · · · ⊕ R (m times) for m ≥ 1. Then Rm is a
graded R-module. The modules Rm are called free R-modules. There is a standard basis
of Rm given by the set of coordinate vectors e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . ,
em := (0, . . . , 0, 1).

Definition 2.5. Given a graded R-module M , we define the twisted module M(n),
with n ∈ Z, as the same R-module, but with the shifted grading

M(n)k = Mn+k.

Example 2.6. The R-module R(d), by Definition 2.5 is a twisted module with grading
R(d)k = Rd+k for all k ∈ Z. The modules (Rm)(d) = R(d)m are called shifted or twisted
graded free modules over R. The standard basis vectors ei from Example 2.4 still form a
module basis for R(d)m, but they are now defined to be homogeneous elements of degree
−d in the grading, since R(d)−d = R0. More generally, we can consider graded free
R-modules of the form

R(d1)⊕ · · · ⊕R(dm)

for any integers d1, . . . , dm, where the basis vector ei is homogeneous of degree −di for
each i.

A graded module is said to be finitely generated if the underlying module is finitely
generated. The generators may be taken to be homogeneous [Bou, page 367]. If M is a
finitely generated graded S-module, for each t ∈ Z, the degree t homogeneous part Mt

is a finite dimensional vector space over k. This leads naturally to the definition of the
Hilbert function [CLO05, page 280].

Definition 2.7. If M is a finitely generated graded S-module, then the Hilbert func-
tion HM(t) is defined by

HM(t) := dimkMt.

Example 2.8. The most basic example of a graded module is S = k[x0, x1, . . . , xn]
considered as a (free) module over itself. Since St is the vector space of homogeneous
polynomials of deg t in n+ 1 variables, we have

HS(t) = dimk St =

(
t+ n

n

)
.
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If we adopt the convention that
(
b
a

)
= 0 if a > b, then the above formula holds for all t.

Similarly, the Hilbert function of the twisted module S(d) is given by

HS(d)(t) = dimk S(d)t =

(
t+ d+ n

n

)
, for all t ∈ Z.

If M and N are two R-modules, then we can define an R-module homomorphism
between them as follows.

Definition 2.9. An R-module homomorphism between two R-modules M and N
is an R-linear map between M and N . That is, a map ϕ : M → N is an R-module
homomorphism if for all a ∈ R and all f, g ∈M , we have

ϕ(af + g) = aϕ(f) + ϕ(g).

Now, let M and N be two graded R-modules. We define a graded R-module homo-
morphism between them as follows.

Definition 2.10. Let M , N be graded R-modules. A homomorphism of R-modules
ϕ : M → N is said to a graded R-module homomorphism of degree d if ϕ(Mt) ⊂ Nt+d for
all t ∈ Z.

Example 2.11. Suppose that M is a graded R-module generated by homogeneous
elements f1, . . . , fm of degrees d1, . . . , dm. Then we can define a graded homomorphism

ϕ : R(−d1)⊕ · · · ⊕R(−dm)→M

by defining ϕ(ei) = fi for all 1 ≤ i ≤ m. Note that ϕ is onto because f1, f2, . . . , fm gener-
ates M . Also, since ei has degree di, it follows that ϕ is a graded R-module homomorphism
of degree zero.

Another example of a graded homomorphism is given by an m × p matrix A, all of
whose nonzero entries are homogeneous polynomials of degree d in the ring R. Then A
defines a graded homomorphism ϕ of degree d by matrix multiplication, i.e.,

ϕ : Rp → Rm

f 7→ Af.

We can also consider A as defining a graded homomorphism of degree zero from the shifted
module R(−d)p to Rm. Similarly, if the entries of the jth column are all homogeneous
polynomials of degree dj, but the degree varies with the column, then A defines a graded
homomorphism of degree zero

R(−d1)⊕ · · · ⊕R(−dp)→ Rm

Still more generally, a graded homomorphism of degree zero

R(−d1)⊕ · · · ⊕R(−dp)→ R(−c1)⊕ · · · ⊕R(−cm)

is defined by an m× p matrix A where the i, jth entry aij ∈ R is homogeneous of degree
dj − ci for all i, j. We will call a matrix A satisfying this condition for some collection dj
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of column degrees, and some collection ci of row degrees, a graded matrix over R. Graded
matrices appear in free resolutions of graded modules over R. We give an example after
defining free resolutions (see Example 2.23).

We now give the definition of a regular sequence.

Definition 2.12. If I ⊆ S = k[x0, x1, y0, y1] is a bihomogeneous ideal, then a sequence
F1, . . . , Fr of elements is a regular sequence modulo I if and only if

1) 〈I, F1, F2, . . . , Fr〉 ⊂ 〈x0, x1, y0, y1〉
2) F1 is not a zero-divisor in S/I,
3) Fi is not a zerodividor in S/〈I, F1, . . . , Fi−1〉.

In the following theorem, we see that the union of the associated primes of an R-
module M consists of 0 and the set of zero-divisors on M (See [Eis95, Theorem 3.1]).

Theorem 2.13. Let R be a Noetherian ring and let M be a finitely generated nonzero
R-module. The union of the associated primes of M consists of 0 and the set of zero-
divisors on M .

We can find the associated primes of a decomposable ideal from its minimal primary
decomposition as follows (see [AM69, Proposition 4.7]).

Proposition 2.14. Let I be a decomposable ideal, let I =
⋂n
i=1 qi be a minimal pri-

mary decomposition, and let
√
qi = pi. Then

n⋃
i=1

pi = {x ∈ R : (I : x) 6= I}

In particular, if the zero ideal is decomposable, the set D of zero-divisors of R is the union
of the prime ideals belonging to 0.

2. Basic Algebraic Geometry Terminology

We start with the definition of projective spaces of dimension n over an algebraically
closed field k.

Definition 2.15. The n-dimensional projective space over the field k, denoted Pn,
is the set of equivalence classes of ∼ on kn+1 \ {(0, 0, . . . , 0)}, where ∼ is defined on the
nonzero points of kn+1 by setting (x0, x1, . . . , xn) ∼ (x′0, x

′
1, . . . , x

′
n) if there is a nonzero

element λ ∈ k such that (x0, x1, . . . , xn) = λ(x′0, x
′
1, . . . , x

′
n). Thus, as a space we have

Pn := (kn+1 \ {(0, 0, . . . , 0)})/ ∼

Each nonzero (n + 1)-tuple (x0, x1, . . . , xn) ∈ kn+1 defines a point P in Pn, and we say
that [x0 : x1 : · · · : xn] are the homogeneous coordinates of P .

We define the projective algebraic set associated to a homogeneous ideal I.
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Definition 2.16. Given any homogeneous ideal I of S = k[x0, x1, · · · , xn], we define
the projective algebraic set Z(I) associated to I to be

Z(I) = {[a0 : · · · : an] ∈ Pn | f(a0, . . . , an) = 0 for all homogeneous f ∈ I}.

In the following definition we define projective varieties.

Definition 2.17. A projective variety V ⊆ Pn is defined as

V = V(f1, f2, . . . , fs) = {[a0 : a1 : · · · : an] ∈ Pn : fi(a0, a1, · · · , an) = 0 for all 1 ≤ i ≤ s},

where fi ∈ S = k[x0, x1, . . . , xn]. The homogeneous coordinate ring of V is defined to be
the quotient ring

k[V ] = S/I(V ),

where I(V ) = 〈f1, f2, . . . , fs〉.

The next theorem gives the projective ideal-variety correspondence [CLO15, Theorem
10, page 384].

Theorem 2.18. Let B = 〈x0, x1, . . . , xn〉 ⊆ S = k[x0, x1, . . . , xn] be the irrelevant
ideal. There is a bijective correspondence

{ non-empty subvarieties of Pn} ⇐⇒ { homogeneous radical ideals not equal to B}.

3. Minimal Free Resolutions

In this section our goal is to define a minimal free resolution of an R-module M .
First, we define free resolutions. We then define minimal free resolutions by adding some
conditions on free resolutions.

Definition 2.19. Let M be an R-module. A projective resolution of M is a complex

F : · · · → F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M → 0

of projective R-modules such that F has no homology, i.e., Imϕi =kerϕi−1, except at F0.

A free resolution is a projective resolution where all the projective modules are free
modules.

Definition 2.20. Let M be an R-module. A free resolution of M is an exact sequence
of the form

F : · · · → F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→M → 0

where for all i, Fi ∼= Rri is a free R-module for some positive integer ri. If there is an l
such that Fl+1 = Fl+2 = · · · = 0, but Fl 6= 0, then we shall say that F is a finite resolution
of length l.

We define the ith syzygy module of an R-module M as follows [Pee11, Page 38].
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Definition 2.21. The kernel of the map ϕi−1 : Fi−1 → Fi−2 is called the ith syzygy
module of M and denoted by SyzRi (M). We can see that SyzRi (SyzRj (M))=SyzRi+j(M).

If R is a graded ring and M is a graded R-module we define graded free resolutions
to be as follows.

Definition 2.22. A free resolution F is a graded free resolution if R is a graded
ring, M is a graded R-module, the Fi are graded free R-modules, and the maps are
homogeneous maps of degree 0.

In the following example, we give the graded free resolution of the ideal for the degree
two Veronese surface.

Example 2.23. The degree two Veronese surface V ⊂ P5 is the image of the mapping
given in homogeneous coordinates by

ϕ : P2 → P5

[x0 : x1 : x2] 7→ [x20 : x21 : x22 : x0x1 : x0x2 : x1x2].

The homogeneous ideal I(V ) ⊂ k[x0, x1, . . . , x5] is:

I(V ) = 〈x0x3 − x21, x0x4 − x1x2, x0x5 − x22, x1x4 − x2x3, x1x5 − x2x4, x3x5 − x24〉.
Using Macaulay2 [GS], we find that there exists a graded free resolution for R/I(V ) of
the form

0→ R(−4)3
ϕ3−→ R(−3)8

ϕ2−→ R(−2)6
ϕ1−→ R→ R/I(V )→ 0.

where

ϕ1 =
(
x0x3 − x21 x0x4 − x1x2 x0x5 − x22 x1x4 − x2x3 x1x5 − x2x4 x3x5 − x24

)
,

ϕ2 =



−x2 0 x4 0 x5 0 0 0
x1 −x2 −x3 x4 −x4 x5 0 0
0 x1 0 −x3 0 −x4 0 0
−x0 0 x1 x2 0 0 −x4 x5

0 −x0 0 0 x1 x2 x3 −x4
0 0 0 x0 −x0 0 −x1 x2

 ,

and,

ϕ3 =



−x4 −x5 0
x3 x4 0
−x2 0 −x5
x1 0 x4
0 −x2 x4
0 x1 −x3
x0 0 x2
0 −x0 x1


.
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The next theorem states that every finitely generated graded S-module has a graded
resolution of finite length [Eis95, Theorem 1.13].

Theorem 2.24. (Hilbert Syzygy Theorem) Let S = k[x0, x1, . . . , xn] be the polynomial
ring in n+ 1 variables. Then every finitely generated graded S-module has a finite graded
free resolution of length ≤ n+ 1.

We define a minimal free resolution as follows.

Definition 2.25. Suppose that

· · · → Fl
ϕl−→ Fl−1 → · · · → F0 →M → 0

is a graded free resolution of M . Then the resolution is minimal if for every l ≥ 1, the
nonzero entries of the graded matrix of ϕl have positive degree.

Example 2.26. By looking at the maps in Example 2.23 we can see that all the
nonzero entries have positive degrees. Thus, the free resolution in Example 2.23 is mini-
mal.

Definition 2.27. Two graded resolutions · · · → F0
ϕ0−→ M → 0 and · · · → G0

ψ0−→
M → 0 are isomorphic if there are graded isomorphisms αl : Fl → Gl of degree zero for
all ` ≥ 0 such that ψ0 ◦ α0 = ϕ0 and, for every l ≥ 1, the diagram

Fl Fl−1

Gl Gl−1

ϕl

αl αl−1

ψl

commutes, meaning αl−1 ◦ ϕl = ψl ◦ αl.

The following theorem states that a finitely generated module M has a unique minimal
resolution up to isomorphism (see [CLO05, Theorem 3.13]).

Theorem 2.28. Any two minimal resolutions of M are isomorphic in the sense of
Definition 2.27.

4. Virtual Resolutions

A virtual resolution was defined by Berkesch, Erman, and Smith in [BES20, Definition
1.1] as follows.

Definition 2.29. A free complex F : · · · → F2 → F1 → F0 of Pic(X)-graded S-
modules is called a virtual resolution of a Pic(X)-graded S-module M if the corresponding

complex F̃ of vector bundles on X is a locally-free resolution of the sheaf M̃ .

There is an equivalent algebraic condition for a complex F to be a virtual resolution
proved by Kennedy in [Ken20, Theorem 4.9], and we will use this formulation instead of
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Definition 2.29 above. Therefore, we will not give the precise definitions of all the terms
used in Definition 2.29. But first, to state the algebraic conditions, we need to define the
irrelevant ideal, saturation, homology modules and local cohomology modules.

Let Pn := Pn1×Pn2×· · ·×Pnr denote the product of projective spaces with dimension
vector n := (n1, n2, . . . , nr) ∈ Nr+ over a field k. Let S := k[xi,j : 1 ≤ i ≤ r, 0 ≤ j ≤ ni] be
the coordinate ring of Pn. If e1, e2, · · · , er is the standard basis of Zr, then the polynomial
ring S has the Zr-grading induced by deg(xi,j) := ei.

We define the irrelevant ideal of Pn as follows.

Definition 2.30. Let S := k[xi,j : 1 ≤ i ≤ r, 0 ≤ j ≤ ni] be a polynomial ring. The
irrelevant ideal of S is defined by

B :=
r⋂
i=1

〈xi,0, xi,1, . . . , xi,ni
〉.

We define the B-saturation of an ideal as follows:

Definition 2.31. Let B be the irrelevant ideal in S := k[xi,j : 1 ≤ i ≤ r, 0 ≤ j ≤ ni].
We define the B-saturation ideal of an ideal I ⊂ S to be

(I : B∞) = {f ∈ S | fBn ⊂ I for some n ∈ N}

If I = (I : B∞), we say I is B-saturated.

Example 2.32. Let S = k[x0, x1, y0, y1, y2] be a polynomial ring associated to P1×P2

and let B = 〈x0, x1〉 ∩ 〈y0, y1, y2〉 be its irrelevant ideal. Let

I = 〈y1 − 43y2, y0 − 28y2, 18x0y2 − x1y2, 34776x30 − 3516x20x1 + 106x0x
2
1 − x31〉.

By using Macaulay2, we calculate the B-saturation of I to be

(I : B∞) = 〈y1 − 43y2, y0 − 28y2, 18x0 − x1〉

Example 2.33. Let S = k[x0, x1, y0, y1] be a polynomial ring associated to P1 × P1

and let B = 〈x0, x1〉 ∩ 〈y0, y1〉 be its irrelevant ideal. Let I = 〈2275y20 − 100y0y1 +
y21, 2275x1y0− 1944x0y1− 11x1y1, 6825x0y0− 267x0y1 + 2x1y1, 2916x20− 117x0x1 +x21〉. By
using Macaulay2, we can see that I = (I : B∞), which means that, I is B-saturated.

We define the homology modules of a complex as follows.

Definition 2.34. A complex of R-modules F

F : · · · → Fi+1
ϕi+1−−→ Fi

ϕi−→ Fi−1 → · · · ,

is a sequence of modules Fi and maps Fi
ϕi−→ Fi−1 such that the compositions Fi+1

ϕi+1−−→
Fi

ϕi−→ Fi−1 are all zero. The homology of this complex at Fi is the module

Hi(F) = kerϕi/imϕi+1.

Now, we define the B-power torsion module of M as follows:
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Definition 2.35. For an S-module M , we define the B-power torsion module of M
to be

ΓB(M) := {m ∈M | Btm = 0 for some t ∈ N},
i.e., the set of all elements annihilated by some power of B.

It is easy to check that ΓB(M) is a submodule of M .

The following theorem gives the algebraic condition for a complex to be a virtual
resolution [Ken20, Theorem 4.9].

Theorem 2.36. Let M be a finitely generated S-module and let

F := · · · → F2 → F1 → F0

be a complex of free S-modules satisfying:

(1) For each i > 0 there is some power t such that BtHi(F) = 0, and
(2) H0(F)/ΓB(H0(F)) ∼= M/ΓB(M).

Then F is a virtual resolution of M .

The following proposition [BES20, Proposition 1.2] shows the existence of a virtual
resolution for a finitely generated Zr-graded B-saturated S-module.

Proposition 2.37. Every finitely generated Zr-graded B-saturated S-module has a
virtual resolution of length at most |n| := n1 + n2 + · · ·+ nr = dimPn.

Theorem 2.45 below will give us a way to get a virtual resolution from the minimal free
resolution of a module ([BES20, Theorem 1.3]). To state it, we first need to define the
multigraded Castelnuovo-Mumford regularity, which is a generalization of Castelnuovo-
Mumford regularity. This definition was first introduced by Maclagan-Smith in [MS04].

We start with the definition of Castelnuovo-Mumford regularity. The Castelnuovo-
Mumford regularity, or simply the regularity of an ideal in S, is an important measure of
how complicated the ideal is. Regularity is actually a property of a complex, defined as
follows [Eis05].

Definition 2.38. Let S = k[x0, x1, . . . , xr] and let

F : · · · → Fi → Fi−1 → · · ·
be a graded complex of free S-modules, with Fi =

∑
j S(−ai,j). The Castelnuovo-

Mumford regularity of F is the supremum of the numbers ai,j − i.

For a finitely generated graded S-module M ,the regularity of M is defined to be the
regularity of a minimal graded free resolution of M . We will write reg M for this number.
If X ⊂ Pr is a projective variety and IX is its associated ideal, then reg IX is called the
regularity of X, denoted reg X.

Example 2.39. Let M be a free S-module. Then the regularity of M is the supremum
of the degrees of a set of homogeneous minimal generators of M .
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Notation 2.40. Let p = (p1, . . . , pk). We denote by p+ Nk the set

{(a1, . . . , ak) | a1 ≥ p1, . . . , ak ≥ pk}

Definition 2.41. Let i ∈ Z and set

Nk[i] :=
⋃

(
i

|i|
p+ Nk) ⊆ Zk

where the union is over all p ∈ Nk whose coordinates sum to |i|.

Example 2.42. Let i = −1. Then Nk[i] = Nk[−1] =
⋃

(−p + Nk) ⊆ Zk, where the

union is over all p ∈ Nk whose coordinates sum to 1. Thus,

{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}
are all the possible values for p.

We defined ΓI(M) for an ideal I in S in Definition 2.35. We now define the ith local
cohomology as follows. From this definition, H0

I (M) = ΓI(M).

Definition 2.43. Let I be an ideal in S. we define

H i
I(M) ∼= lim

n→∞
ExtiS(S/In,M).

Since we will not use this definition directly, we will not give precise definition of the
terms used in Definition 2.43.

For a finitely generated Nk-graded S-module M , the multigraded regularity of M ,
which is a subset of Zk, is defined as follows.

Definition 2.44. Let M be a finitely generated Nk-graded S-module. If m ∈ Zk,
we say that M is a m-regular if H i

B(M)p = 0 for all p ∈ m + Nk[1 − i] for all i > 0.

The multigraded regularity of M , denoted regB(M), is the set of all m for which M is
m-regular.

The next theorem gives us a way to get a virtual resolution from the minimal free
resolution of a module ([BES20, Theorem 1.3]).

Theorem 2.45. Let M be a finitely generated Zr-graded B-saturated S-module that
is d-regular. If G is the free subcomplex of a minimal free resolution of M consisting of
all summands generated in degree at most d+ n, then G is a virtual resolution of M .

By this theorem, if IX is the defining ideal of a set of points in P1 × P1 which is
d-regular, and F is its minimal free resolution, then S(−i,−j) appears in the resolution
if (i, j) ≤ d+ (1, 1).



CHAPTER 3

Points in P1 × P1

In this chapter we define the biprojective space P1 × P1. Then, we explain algebraic
properties of the defining ideal IX of a set of points X in P1×P1. In Section 2 we provide
some results we need about multigraded regularity for points in P1 × P1. Much of the
content of this section can be found in [GVT15].

1. Generic Points in P1 × P1

We start by defining the biprojective space P1 × P1.

Definition 3.1. The biprojective space P1 × P1 is defined as the set of equivalence
classes of (k2 \ {(0, 0)})× (k2 \ {(0, 0)}) with respect to the relation ∼, where

(a1, a2)× (b1, b2) ∼ (a′1, a
′
2)× (b′1, b

′
2)

if (a1, a2) = (λ1a
′
1, λ1a

′
2) and (b1, b2) = (λ2b

′
1, λ2b

′
2) for some nonzero λ1, λ2 ∈ k.

If (a1, a2) × (b1, b2) ∈ (k2 \ {(0, 0)}) × (k2 \ {(0, 0)}), then the equivalence class of
(a1, a2) × (b1, b2) is called a point in P1 × P1, denoted [a1 : a2] × [b1 : b2]. It follows that
[a0 : a1], respectively [b0 : b1], is a point of P1.

Let S = k[x0, x1, y0, y1] be the coordinate ring of P1×P1 and let B = 〈x0, x1〉∩〈y0, y1〉
be its irrelevant ideal. Then the polynomial ring S has the N2-grading induced by

(3.1) deg(x0) = deg(x1) = (1, 0) and deg(y0) = deg(y1) = (0, 1).

Remark 3.2. Let S = k[x0, x1, y0, y1] and let N = {0, 1, . . . }. Then S equipped with
the grading in Equation 3.1 is an N2-graded (bigraded) ring, where S =

⊕
(i,j)∈N2 Si,j, and

Si,j is the finite dimensional vector space over k that is spanned by all monomials of the

form xα0
0 x

α1
1 y

β0
0 y

β1
1 , where α0 + α1 = i and β0 + β1 = j. Thus it can be seen that

dimk Si,j =

(
i+ 1

i

)(
j + 1

j

)
= (i+ 1)(j + 1).

Compare this to the example for graded rings, given in Example 2.8.

We say that an element F ∈ S is bihomogeneous if F ∈ Si,j for some (i, j) ∈ N2. If
F is bihomogeneous, we say its degree is deg(F ) = (i, j). Any polynomial F ∈ S can
be written uniquely as F = F1 + · · · + Ft where each Fi is bihomogeneous. We call the
Fi’s the bihomogeneous terms of F . Suppose that I = (F1, . . . , Fr) ⊆ S is an ideal. If
each Fi is bihomogeneous, then we say that I is a bihomogeneous ideal. Just as in the

15
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standard graded case, it can be shown that I is a bihomogeneous ideal if and only if for
every F ∈ I, all of the bihomogeneous terms of F also belong to I.

We now define the bigraded modules over the bigraded ring S.

Definition 3.3. An S-module M is a bigraded S-module if it has a direct sum de-
composition

M =
⊕

(i,j)∈Z2

Mi,j

with the property that Si,jMk,l ⊆Mi+k,j+l for all (i, j), (k, l) ∈ Z2.

If I is a bihomogeneous ideal of S, then I and S/I are both examples of bigraded
S-modules.

Notation 3.4. Let � denote the natural partial order on the elements of Z2 defined
by (a, b) � (c, d) in Z2 if and only if a ≤ c and b ≤ d.

Example 3.5. Another example of a bigraded module is the polynomial ring S but
with a shifted grading. Specifically, let (a, b) ∈ Z2. Then S(−a,−b) is the polynomial
ring with a shifted bigrading: the (i, j)-th graded piece of S(−a,−b) is defined to be

S(−a,−b)i,j := Si−a,j−b.

Note that Si,j = 0 if (0, 0) � (i, j).

Since Si,j = 0 if (0, 0) � (i, j), we can also consider S as an N2-graded ring.

The next lemma shows that if we have a nonzero ith syzygy of a degree d, we must
have at least two (i− 1)th syzygies of degrees less than d. In Chapter 4, we will use the
following lemma and Theorem 2.45 to prove our main result.

Lemma 3.6. Let I be a bigraded ideal in S = k[x0, x1, y0, y1]. If S(−a,−b) appears
in the ith step of the minimal free resolution of I, then there exist S(−a1,−b1) and
S(−a2,−b2) in the (i − 1)st step of the minimal free resolution, where, (a1, b1) ≺ (a, b)
and (a2, b2) ≺ (a, b).

Note that a1 = a or b1 = b is allowed, but not both.

Proof. Let
F : · · · → F2

ϕ2−→ F1
ϕ1−→ F0

ϕ0−→ I → 0

be the minimal free resolution for I. As we stated before, Syz(SyzSj−1(I))=SyzSj (I) for

all j > 1. Let SyzSi (I) = 〈g1, . . . , gt〉 be a system of homogeneous generators. Let
f = (f1, . . . , ft) ∈ SyzSi+1(I) be an element in Fi. So, by the definition we have the relation
f1g1 + f2g2 + · · ·+ ftgt = 0. In particular, t ≥ 2, i.e., there are at least two generators of
SyzSi (I). Suppose that deg(f) = (a, b). We have ϕi(f) ∈Imϕi =kerϕi−1, since we have an
exact sequence. Hence, ϕi(f) ∈SyzSi (I). Therefore, there exists a1, . . . , at ∈ S such that
ϕi(f) = a1g1 + . . . + atgt. Moreover, gi ∈ Fi−1 and f ∈ Fi and since F is a minimal free
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resolution, for every j ≥ 1, the nonzero entries of the graded matrix of ϕj have positive
degree. Hence, there should exist at least two nonzero generators gk and gl with degree
less than the degree of f . �

As we stated earlier, a point P ∈ P1 × P1 has the form P = A× B where A,B ∈ P1.
Given a point P = A×B, its associated bihomogeneous ideal is given by

IP = {F ∈ S | F (P ) = 0} ⊂ S = k[x0, x1, y0, y1].

The following theorem gives some properties about IP . The proof of the theorem can
be found in [GVT15, Theorem 3.1].

Theorem 3.7. Let IP be the bihomogeneous ideal in the bigraded ring S = k[x0, x1, y0, y1]
associated with a point P ∈ P1 × P1. Then

(1) IP is a prime ideal of S.
(2) IP = 〈H, V 〉 where deg(H) = (1, 0) and deg(V ) = (0, 1).
(3) Let X = {P1, . . . , Ps} ⊂ P1×P1 be a set of s distinct points and suppose that IPi

is the ideal associated with the point Pi. Then IX = IP1 ∩ IP2 ∩ · · · ∩ IPs.

The following corollary is contained in the proof [GVT15, Theorem 3.1].

Corollary 3.8. Let P = A×B ∈ P1×P1. If A = [a0 : a1] ∈ P1 and B = [b0 : b1] ∈ P1,
then IP = 〈a1x0 − a0x1, b1y0 − b0y1〉.

Example 3.9. Let X = {[1 : 2]× [3 : 4], [1 : 3]× [1 : 4]}. Then

I1 = I[1:2]×[3:4] = 〈x1 − 2x0, 4y0 − 3y1〉,

I2 = I[1:3]×[1:4] = 〈x1 − 3x0, y1 − 4y0〉,
and, by the previous theorem IX = I1 ∩ I2. Therefore
IX = 〈16y20−16y0y1 +3y21, 4x1y0−12x0y1 +3x1y1, 4x0y0−7x0y1 +2x1y1, 6x

2
0−5x0x1 +x21〉.

We now introduce a way to present sets of points in P1×P1. On P1×P1 there exist two
families of lines {HC} and {VC}, each parametrized by C ∈ P1, with the property that if
A 6= B ∈ P1, then HA∩HB = ∅ and VA∩VB = ∅, and for all A,B ∈ P1, HA∩VB = A×B
is a point on P1 × P1. We can thus view P1 × P1 as a grid with horizontal and vertical
rulings. A point P = [a0 : a1] × [b0 : b1] ∈ P1 × P1 can be viewed as the intersection of
the horizontal ruling defined by the degree (1, 0) line H = a1x0 − a0x1 and the vertical
ruling defined by the degree (0, 1) line V = b1y0 − b0y1 (see [GVT15, Page 22]).

Let S = k[x0, x1, y0, y1] and let I be a bihomogeneous ideal of S. We define the Hilbert
function for the bigraded module S/I as follows.

Definition 3.10. Let I be a bihomogeneous ideal of S = k[x0, x1, y0, y1]. The Hilbert
function of S/I is the numerical function HS/I : N2 → N defined by

HS/I(i, j) := dimk(S/I)i,j = dimk Si,j − dimk Ii,j.
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Notation 3.11. When S/I is a bigraded ring, we write the output of the Hilbert
function of S/I as an infinite matrix where the initial row and column are indexed with
0.

Notation 3.12. Let X be a set of points in P1×P1 and let IX be its ideal. We denote
the Hilbert function of S/IX by HX .

The following definition (see [GVT15, Lemma 3.25]) distinguishes certain sets of
points in P1 × P1 by values of its Hilbert function.

Definition 3.13. Let X be a finite set of s points in P1 × P1 with Hilbert function
HX . If

HX(i, j) = min{(i+ 1)(j + 1), s} for all (i, j) ∈ N2

then the Hilbert function is called maximal. A set of s points in P1 × P1 is said to have
generic Hilbert function if its Hilbert function is maximal.

We motivate this terminology in the following example.

Example 3.14. Let X be the set of points given in the following diagram

H[2:7]

H[2:5]

H[1:3]

H[1:2]

V[2:3] V[3:5]V[3:7]V[4:11]t t
t

t
t

i.e., X = {[1 : 2] × [2 : 3], [1 : 2] × [3 : 7], [1 : 3] × [3 : 7], [2 : 5] × [2 : 3], [2 : 7] × [4 : 11]}.
By using Macaulay2 for computing the Hilbert function of IX , we can see that this is an
example of a set of points that does not have a generic Hilbert function.

HX =



1 2 3 4 4
2 4 5 5 5
3 5 5 5 5 . . .
4 5 5 5 5
4 5 5 5 5

...


.

However in the following example, the points in the set Y have a generic Hilbert func-
tion.

Let Y be the set of points given in the following diagram
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H[2:7]

H[2:5]

H[1:3]

H[1:2]

V[2:3] V[3:5]V[3:7]V[4:11]t
t

t
t

i.e., Y = {[1 : 2]× [3 : 5], [1 : 3]× [3 : 7], [2 : 5]× [2 : 3], [2 : 7]× [4 : 11]}. Notice that all
points in Y lie on distinct horizontal and vertical lines.

Example 3.15. Let X be a set of four points that have a generic Hilbert function.
Then its Hilbert matrix is

HX =



1 2 3 4 4
2 4 4 4 4
3 4 4 4 4 . . .
4 4 4 4 4
4 4 4 4 4

...


.

If Y is a set of seven points in P1 × P1 that have a generic Hilbert function. Then its
Hilbert function is

HY =



1 2 3 4 5 6 7 7
2 4 6 7 7 7 7 7
3 6 7 7 7 7 7 7
4 7 7 7 7 7 7 7 . . .
5 7 7 7 7 7 7 7
6 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7

...


.

Let X ⊂ P1×P1 be a set of points. Then the first difference and the second difference
functions of HX can be computed from the Hilbert function. As we will see, in some cases
HX will give us information about the resolution of X.

Definition 3.16. Let H : N2 → N be a function. The first difference function of H,
denoted ∆H, is the function ∆H : N2 → N defined by

∆H(i, j) := H(i, j)−H(i− 1, j)−H(i, j − 1) +H(i− 1, j − 1)

where H(i, j) = 0 if (i, j) � (0, 0).
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Example 3.17. Continuing Example 3.15, the first difference matrix for HX is

∆HX =



1 1 1 1 0
1 1 −1 −1 0
1 −1 0 0 0 . . .
1 −1 0 0 0
0 0 0 0 0

...


,

and the first difference matrix for HY is

∆HY =



1 1 1 1 1 1 1 0
1 1 1 0 −1 −1 −1 0
1 1 −1 −1 0 0 0 0
1 0 −1 0 0 0 0 0 . . .
1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

...


.

Definition 3.18. Let H : N2 → N be a function. Let ∆HX = (ci,j) be the first
difference function. We define the second difference function to be ∆2H = ∆H(i, j) −
∆H(i− 1, j)−∆H(i, j − 1) + ∆H(i− 1, j − 1).

Example 3.19. Continuing Example 3.17, the second difference matrix for HX is:

∆2HX =



1 0 0 0 −1 0
0 0 −2 0 2 0
0 −2 3 0 −1 0 . . .
0 0 0 0 0 0
−1 2 −1 0 0 0
0 0 0 0 0 0

...


.
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and the second difference matrix for HY is

∆2HY =



1 0 0 0 0 0 0 −1 0
0 0 0 −1 −1 0 0 2 0
0 0 −2 1 2 0 0 −1 0
0 −1 1 1 −1 0 0 0 0 . . .
0 −1 2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

...


.

In order to derive some results about the resolution of IX , we recall some results from
homological algebra. The depth of a module S/I is an important invariant that is defined
as follows.

Definition 3.20. The depth of S/I, denoted depth(S/I), is the length of the maxi-
mum regular sequence modulo I.

The projective dimension of an S-module M is defined as follows.

Definition 3.21. The projective dimension of an S-module M , denoted proj-dim(M),
is the length of the minimal free resolution of M .

This means that if M admits a finite projective resolution, the minimal length among
all finite projective resolutions of M is the projective dimension. If M does not admit
a finite projective resolution, then by convention the projective dimension is said to be
infinite. The projective dimension can be thought of as a measure of how far M is from
being a free module, since finitely generated modules with projective dimension 0 are free.
We note that over S = k[x0, x1, · · · , xn] every finitely generated graded projective module
is free. This explains why the length of a minimal free resolution is called the projective
dimension [MS13, page 553].

Next, we will define the notion of a height of a prime ideal of S/I for a bihomegenous
ideal I, and the Krull dimension of S/I.

Definition 3.22. If I ⊆ S is a bihomogeneous ideal, then the height of a prime ideal
P in S/I, denoted htS/I(P ), is the largest integer t such that there exist prime ideals Pi
of S/I for 0 ≤ i ≤ t such that P0 ( P1 ( · · · ( Pt−1 ( Pt = P . For any ideal I of S, the
Krull dimension of S/I, denoted K-dim(S/I), is

K- dim(S/I) := sup{htS/I(P ) | P a prime ideal of S/I}.

Example 3.23. The Krull dimension of S where S = k[x0, x1, y0, y1], is the number
of variables, which is four. To prove this, we know

(x0, x1, y0, y1) ⊃ (x0, x1, y0) ⊃ (x0, x1) ⊃ (x0) ⊃ (0).
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is a sequence of prime ideals in S. By [Eis95, Theorem A], we can see there is no longer
sequence of prime ideals for S. So, K-dim(S) = 4.

The following is a special case of Auslander-Buchsbaum Formula [Eis95, Theorem
19.9].

Theorem 3.24. Let I be a bihomogeneous ideal in the ring S = k[x0, x1, y0, y1]. Then

proj-dim(S/I) + depth(S/I) = K-dim(S) = 4.

Given a finitely generated module M , we define the minimal number of generators of
the module M , often denoted by µ(M), to be the smallest number of elements in any
generating set of M . We call a sets of generators unshortenable if it has no proper subset
that generates M . Unshortenable sets of generators are minimal, and any set of generators
contains an unshortenable set [CLO15, Section 5.4].

Now, let X be a set of points in P1 × P1 with associated ideal IX . The bigraded
minimal free resolution of IX has either length two or three (see [GMR92, page 268]).
We will see in Proposition 3.26 [GMR92, Proposition 3.3] that the bigraded minimal free
resolution of IX has the form

0→
p⊕
i=1

S(−a3i,−a′3i) ↪→
n⊕
i=1

S(−a2i,−a′2i)→
m⊕
i=1

S(−a1i,−a′1i) � IX → 0,

where the morphisms are of bidegree (0, 0). With the notation of the resolution above,
we set the following:

(3.2) αhk := #{(a1i, a′1i) = (h, k)},

which gives us number of minimal generators of I of degree (h, k), and

(3.3) βhk := #{(a2i, a′2i) = (h, k)},

that is the number of summands of the form S(−h,−k) that appears in the first step of
the minimal free resolution of I, and

(3.4) γhk := #{(a3i, a′3i) = (h, k)},

which is the number of summands of the form S(−h,−k) that appears in the second step
of the minimal free resolution of I.

Example 3.25. Let X be the following sets of points in P1 × P1

H[2:7]

H[2:5]

H[1:3]

H[1:2]

V[2:3] V[3:5]V[3:7]V[4:11]t
t

t
t
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Thus, IX = I[1:2]×[3:5] ∩ I[1:3]×[3:7] ∩ I[2:5]×[2:3] ∩ I[2:7]×[4:1]. By using Macaulay2 we get the
minimal free resolution

0→
S(−4,−2)
⊕

S(−2,−4)
→

S(−4,−1)2

⊕
S(−2,−2)3

⊕
S(−1,−4)2

→

S(−4, 0)
⊕

S(−2,−1)2

⊕
S(−1,−2)2

⊕
S(0,−4)

→ IX → 0.

Thus, α21 = 2, α12 = 2, α04 = 1, α40 = 1, β22 = 3, β14 = 2, β41 = 2, γ24 = 1, and γ42 = 1.
Also, αij = βij = γij = 0 for all other i, j.

Let X be a set of points in P1×P1 with HX = (mij), ∆HX = (cij) and ∆2HX = (dij).
The following proposition gives us some information about the resolutions of points on
P1 × P1 [GMR92, Proposition 3.3].

Proposition 3.26. Let X be a set of points in P1 × P1 and let

0→
p⊕
i=1

S(−a3i,−a′3i) ↪→
n⊕
i=1

S(−a2i,−a′2i)→
m⊕
i=1

S(−a1i,−a′1i) � IX → 0

be the minimal free resolution of IX . Then we have:

(i) n+ 1 = m+ p;
(ii) the following relations between the given resolution of IX and the functions HX =

(mij), ∆HX = (cij) and ∆2HX = (dij) hold:
a) mrs = (r + 1)(s+ 1)−

∑
h≤r k≤s(r + 1− h)(s+ 1− k)(αhk − βhk + γhk),

b) crs =
∑

h≤r k≤s(αhk − βhk + γhk),
c) d00 = 1,
d) for every (r, s) � (0, 0) drs = −αrs + βrs − γrs.

Example 3.27. In Example 3.25 it can be seen that n = 7,m = 6, and, p = 2, and we
have n + 1 = 8 = m + p. Also, from Examples 3.15, 3.17, and 3.19, we have the Hilbert
function, the first difference function and the second difference function. By looking at
the second difference function

∆2HX =



1 0 0 0 −1
0 0 −2 0 2
0 −2 3 0 −1 . . .
0 0 0 0 0
−1 2 −1 0 0

...


.

we see that for example, 3 = d22 = −α22 + β22 − γ22 = 0 + 3− 0 = 3.
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The following theorem gives us some information about the minimal generators of IX .
It is a special case of [GMR96, Theorem 4.3].

Theorem 3.28. For each integer s ≥ 1, there exists a dense open-subset U of (P1×P1)s
such that for every (P1, . . . , Ps) ∈ U , the set of points X = {P1, . . . , Ps} has the generic
Hilbert function and the number αij of minimal generators of the homogeneous saturated
ideal IX of X can be read in the second difference function in the following way: for any
degree (i, j) such that

dij < 0 and dis > 0 for some s > j or
dij < 0 and drj > 0 for some r > i

we have αij = −dij. Furthermore, these numbers give all the minimal generators of
IX .

Definition 3.29. A set of s points X = {P1, . . . , Ps} in P1 × P1 is in sufficiently
general position if (P1, . . . , Ps) belongs to the open set of the above theorem.

Example 3.30. Let X be the following sets of points in P1 × P1

H[2:5]

H[1:3]

H[1:2]

V[2:3] V[3:5]V[3:7]t
t

t

i.e., X = {[1 : 2]× [3 : 5], [1 : 3]× [3 : 7], [2 : 5]× [2 : 3]}. Then its Hilbert function is

HX =


1 2 3 3
2 3 3 3
3 3 3 3 . . .
3 3 3 3

...

 ,

the first difference function for HX is

∆HX =


1 1 1 0
1 0 −1 0
1 −1 0 0 . . .
0 0 0 0

...

 ,
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and its second difference function is

∆2HX =


1 0 0 −1
0 −1 −1 2
0 −1 2 −1 . . .
−1 2 −1 0

...

 .
For instance, we can see from function ∆2HX = (dij) that, d03 = −1 < 0 and d13 =

2 > 0. Hence by Theorem 3.28, α03 = −d03 = 1. Also α12 = −d12 = 1 and α11 = −d11 =
1.Moreover, α21 = −d21 = 1 and α03 = −d03 = 1. We could also see this from the fact
that ∆2HX = (dij) is symmetric. Therefore, the zeroth step of the minimal free resolution
of X will be

S(−3, 0)⊕ S(−2,−1)⊕ S(−1,−2)⊕ S(−1,−1)⊕ S(0,−3).

We saw that if X is a set of s points in P1 × P1 with generic Hilbert function, the
structure of IX , the defining ideal of X has interesting properties. One of them is given
in the following proposition (See [HVT04, Proposition 2.3]).

Proposition 3.31. Let IX be the defining ideal of s points X ⊆ P1× P1 with generic
Hilbert function. If t = (t1, t2) ∈ N2 is such that t1+t2 ≥ s, and t2 > 0, then (IX , y0)t = St

2. Multigraded Regularity for Points in P1 × P1

We stated the definition of multigraded Castelnuovo-Mumford regularity in Definition
2.44. In this section we collect together all the results we need about this multigraded
Castelnuovo-Mumford regularity of sets of points in P1 × P1 to prove our main theorem
in Chapter 4.

If X is a set of points with generic Hilbert function in P1 × P1, we can compute
regB(X) from HX(i) by the following theorem. This theorem is a special case of [MS04,
Proposition 6.7].

Theorem 3.32. Let X be a set of points in Pn1 × · · · × Pnk with generic Hilbert
function. Then i ∈ regB(X) if and only if HX(i) = |X|.

Specially, if X is a set of points in P1× P1 that has the generic Hilbert function, then
we have:

Corollary 3.33. Let X be a set of s points in P1 × P1 that has the generic Hilbert
function. Then (s− 1, 0) ∈ regB(X).

Proof. When X is a set of s points in P1×P1 that have the generic Hilbert function,
by Definition 3.13 its Hilbert function is maximal. Thus by Theorem 3.32

regB(X) = {(i, j)| dimk Si,j ≥ s}.
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Since

dimk Ss−1,0 =

(
s− 1 + 1

1

)(
1 + 0

1

)
= s ≥ s,

by Remark 3.2, we conclude that (s− 1, 0) ∈ regB(X). �

Corollary 3.34. Let X be a set of s points in P1 × P1 with the generic Hilbert
function and let IX be its ideal. Then for any d = (i, j) � (s− 1, 0), IX is d-regular.

Proof. From Corollary 3.33, (s− 1, 0) ∈ regB(X). Notice that if H(i, j) = |X|, then
for any d � (i, j), H(d) = |X| (see [GVT15, Theorem 3.27]. Hence by Theorem 3.32 for
any d = (i, j) � (s− 1, 0), IX is d-regular. �



CHAPTER 4

Virtual Resolutions of Points in P1 × P1

The main result of this chapter, Theorem 4.7, finds an explicit virtual resolution of
length two for a set of s points in sufficiently general position in P1 × P1. In [BES20],
Berkesch, Erman and Smith only proved the existence of a virtual resolution of length
n for a set of points in a multi-projective space, where n is the dimension of the space.
However, in this chapter we find such virtual resolutions explicitly, for certain sets of
points in P1 × P1.

We start with an example of four points with the generic Hilbert function in P1 × P1,
and find a virtual resolution for it. This example also illustrates how we prove the main
theorem.

Example 4.1. In Examples 3.15, 3.17 and 3.19, we found the Hilbert function, first
difference function, and second difference function for a set of four points with generic
Hilbert function. By Proposition 3.26, the resolution must be of the form:

0→
p⊕
i=1

S(−a3i,−a′3i)→
n⊕
i=1

S(−a2i,−a′2i)→
m⊕
i=1

S(−a1i,−a′1i)→ IX → 0

Our strategy is to compute some of the constants aij and a′ij in the resolution and
then use Theorem 2.45 to find a virtual resolution of length two. We follow the same
notation as introduced in Equations 3.2, 3.3 and 3.4 in Section 3.1. In particular, αij
denotes the number of minimal generators of IX of degree (i, j). By looking at the second
difference function for X, ∆2HX = (dij), in Example 3.19, we see that d40 = d04 = −1,
and, d41 = d14 = 2. So, by Theorem 3.28, α40 = α04 = 1. By the same argument,
α12 = α21 = 2, and since there are no other entries dij of ∆2HX = (dij) that satisfies the
conditions of Theorem 3.28, the generators are only of degrees (4, 0), (0, 4), (1, 2), and,
(2, 1). So the resolution will be of the form

0→
p⊕
i=1

S(−a3i,−a′3i)→
n⊕
i=1

S(−a2i,−a′2i)→

S(−2,−1)2

⊕
S(−1,−2)2

⊕
S(−4, 0)
⊕

S(0,−4)

→ IX → 0.

27
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Let βij and γij be the number of syzygies of degree (i, j) and the number of second
syzygies of degree (i, j), respectively. In Lemma 3.6, we proved that if we have an sth
syzygy of degree (i, j), then there exist at least two (s−1)th syzygies with degrees strictly
less than (i, j). So, βij = 0 for (i, j) less than or equal to the degrees of the generators.
Moreover, α40 = α04 = 1 and αi0 = α0i = 0 for i 6= 4, so, βi0 is zero by Lemma 3.6. Since
α12 = α21 = 2, there may exist syzygies of degrees (3, 1), (1, 3), (4, 1), and (1, 4). From
the second difference matrix, we have 0 = d13, and as we stated earlier, α13 = 0. So, by
Proposition 3.26(ii) part (d), we have 0 = d13 = 0+β13−γ13. So, β13 = γ13. However,there
are no syzygies of degrees less than (1, 3), therefore, by Lemma 3.6, γ13 = 0. Hence by
Lemma 3.26(ii) part (d), β13 = 0. Thus, since there are no βij 6= 0, for (i, j) ≺ (1, 4), by
Lemma 3.6, γ14 = 0.

Since all the functions HX , ∆HX and ∆2HX are symmetric, γ41 is also 0. This proves
that there are no second syzygies of degrees (i, 1) or (1, j) for i, j ≤ 4. Moreover, since
d14 = 2 = −α14 + β14 − γ14, and α14 = γ14 = 0 by Theorem 3.28, we conclude β14 = 2,
and by symmetry, β41 = 2.

Since X is a set of 4 points that has generic Hilbert function, by Corollary 3.33, IX is
d-regular for d = (3, 0). Since n = (1, 1), then by Theorem 2.45, the free subcomplex of a
minimal free resolution of IX consisting of all the summands generated in degree at most
(3, 0) + (1, 1) = (4, 1) is a virtual resolution of IX . However, since we proved γij = 0 for
all (i, j) � (4, 1), the virtual resolution is of length two.

In particular,

0→ S(−4,−1)2 →
S(−2,−1)2

⊕
S(−4, 0)

→ S,

is a virtual resolution.

The example above shows how to use the Theorem 2.45 and Corollary 3.33 to find a
virtual resolution of length two for a sufficiently general set of points.

Now we consider a more general case. Let X ⊆ P1 × P1 be a set of s points
that is in sufficiently general position. Then X has the generic Hilbert function, i.e.,
HX(i, j) = min{(i + 1)(j + 1), s}. Let HX = (mij), ∆HX = (cij), and ∆2HX = (dij) be
the Hilbert function, the first difference function, and the second difference function, re-
spectively. As we saw in Theorem 3.28 and Proposition 3.26, the dij’s give us information
about αij, βij, and, γij.

The next lemma finds αi0, βi0, and, γi0 by computing the di0. We need this lemma in
order to find virtual resolutions for a set of points in P1 × P1.



Chapter 4. Virtual Resolutions of Points in P1 × P1 29

Lemma 4.2. Let X ⊆ P1 × P1 be a set of s points in sufficiently general position, and
let IX be its defining ideal. Then for all 0 ≤ i ≤ s we have

αi0 =

{
1 if i = s

0 otherwise
and βi0 = γi0 = 0

Proof. By the definition of the first and the second difference functions we get the
following relations:

cij = mij +m(i−1)(j−1) −m(i−1)j −mi(j−1), and dij = cij + c(i−1)(j−1) − c(i−1)j − ci(j−1).
From these relations we get

di0 = ci0 + c(i−1)(0−1) − c(i−1)0 − ci(0−1) = ci0 − c(i−1)0,

since c(i−1)(−1) and ci(−1) are zero. However,

ci0 = mi0 +m(i−1)(0−1) −m(i−1)0 −mi(0−1) = mi0 −m(i−1)0,

since m(i−1)(−1) and mi(−1) are zero. Therefore, we have

di0 = mi0 − 2m(i−1)0 +m(i−2)0.

The same procedure will give a relation for di1. We have the following expressions

(4.1) di0 = mi0 − 2m(i−1)0 +m(i−2)0 and di1 = mi1 − 2m(i−1)1 +m(i−2)1 − 2di0.

Moreover, since X has a generic Hilbert function, mij = HX(i, j) = min{(i+1)(j+1), s}.
From Equation 4.1 and the fact that mij = HX(i, j) = min{(i+ 1)(j + 1), s} we get

di0 =


1 if i = 1

−1 if i = s

0 otherwise.

We see that ds0 = −1, and ds1 = 2, so by Theorem 3.28, ds0 = −αs0 = −1, and αi0 = 0
for all i < s. Also, by Proposition 3.26 (ii), di0 = −αi0 + βi0 − γi0, so βi0 = γi0 for all i.
Since αi0 = 0 for i < s, by Lemma 3.6, βi0 = 0 for all i, so γi0 = 0 for all 0 ≤ i ≤ s.

Therefore, for all 0 ≤ i ≤ s,

αi0 =

{
1 if i = s

0 otherwise
and βi0 = γi0 = 0

�

In order to find the nonzero values of di1 for all i, we will check two cases. First, we
assume that s is even.
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Lemma 4.3. Let X ⊆ P1×P1 be a set of s points in sufficiently general position, where
s is even, and let IX be its defining ideal. Then for all 0 ≤ i ≤ s we have

αi1 =

{
2 if i = s

2

0 otherwise
, βi1 =

{
2 if i = s

0 otherwise
, and γi1 = 0.

Proof. Because HX(i, j) = min{(i+ 1)(j + 1), s} we have

HX(i, 1) = mi1 =

{
2(i+ 1) if i < s

2
− 1

s if i ≥ s
2
− 1.

So, by 4.1 we get,

di1 =


−2 if i = s

2

2 if i = s

0 otherwise.

We see that d s
2
1 = −2 < 0 and ds1 = 2 > 0. So by Theorem 3.28, d s

2
1 = −2 = −α s

2
1, and

for i 6= s
2
, αi1 = 0. So, by Lemma 3.6, we can conclude that βi1 = 0 for i ≤ s

2
. (Notice

that by Lemma 4.2, αi0 = 0 for i ≤ s
2
).

By Proposition 3.26 (ii), we have di1 = −αi1 +βi1−γi1. For i < s
2
, di1 = αi1 = βi1 = 0,

so γi1 = 0. For i = s
2
, di1 = −αi1 = −2 and βi1 = 0 so γi1 = 0. For i = s

2
+1, di1 = αi1 = 0.

Therefore, by Proposition 3.26 (ii), we have βi1 = γi1. However, βj1 = βj0 = 0 for all
j ≤ i, i.e., there are no first syzygies of degree less than (i, 1). Hence, γi1 = 0. If we
continue this process, we see that for i < s, βi1 = γi1 = 0. For i = s, αi1 = 0, so by
Proposition 3.26 (ii), 2 = di1 = βi1 − γi1. However, βj1 = βj0 = 0 for j < i, so there are
no syzygies of degree less than (i, 1). Hence γi1 = 0 and βi1 = 2. Therefore,

αi1 =

{
2, if i = s

2

0, otherwise
, βi1 =

{
2, if i = s

0, otherwise
, and γi1 = 0 for all 0 ≤ i ≤ s.

�

In the next lemma, we prove a similar result for the case s is odd.

Lemma 4.4. Let X ⊆ P1×P1 be a set of s points in sufficiently general position, where
s is odd, and let IX be its defining ideal. Then for all 0 ≤ i ≤ s we have

αi1 =

{
1 if i = s−1

2
or i = s+1

2

0 otherwise
, βi1 =

{
2 if i = s

0 otherwise
, and γi1 = 0.
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Proof. In this case

(4.2) mi1 =

{
2(i+ 1), if i < (s−1)

2

s, if i ≥ (s−1)
2
.

By 4.1 we get,

(4.3) di1 =


−1, if i = s−1

2
or i = s+1

2

2, if i = s

0, otherwise.

We see that di1 = −1 < 0 for i = s−1
2

and i = s+1
2

, and ds1 = 2 > 0 so by Theorem 3.28,
d s−1

2
1 = −1 = −α s−1

2
1, d s+1

2
1 = −1 = −α s+1

2
1, and αi1 = 0 for other values of i. By

Lemma 3.6, there are no syzygies of degrees (i, 1), for i ≤ s−1
2

. So, βi1 = 0 for i ≤ s−1
2

.

Moreover, by Lemma 3.6, γi1 = 0 for i ≤ s+1
2

. By Proposition 3.26 (ii) we have, d s+1
2

1 =

−α s+1
2

1 + β s+1
2

1− γ s+1
2

1. Also, we know d s+1
2

1 = α s+1
2

1 = −1 and γ s+1
2

1 = 0. So, β s+1
2

1 = 0.

So far, we know βi1 = γi1 = 0 for i ≤ s+1
2

. By Lemma 3.6, γ s+3
2

1 = 0. By Proposition 3.26

(ii), di1 = −αi1 + βi1 − γi1, and by the fact that di1 = αi1 = γi1 = 0, we get βi1 = 0. If
we continue this process, we see that for i < s, βi1 = γi1 = 0. For i = s, αi1 = 0, so by
Proposition 3.26 (ii), di1 = βi1 − γi1. However, βj1 = βj0 = 0 for j < i, so by Lemma 3.6,
there are no first syzygies of degree less than (i, 1). Hence γi1 = 0 and βi1 = 2. Therefore,
for all 0 ≤ i ≤ s,

αi1 =

{
1, if i = s−1

2
or i = s+1

2

0, otherwise
, βi1 =

{
2, if i = s

0, otherwise
, and γi1 = 0

�

By the results from Lemma 4.3 and 4.4 we have the following corollary.

Corollary 4.5. Let X ⊆ P1×P1 be a set of s points in sufficiently general position,
and let IX be its defining ideal. Let γij be the number of summands of the form S(−i,−j)
that appears in the second step of the minimal free resolution of IX . Then, for (i, j) �
(s, 1), we have γij = 0.

The following lemma proves the existence of a virtual resolution of length two for a
set of points in P1 × P1 with generic Hilbert function.

Lemma 4.6. Let X ⊆ P1×P1 be a set of s points with generic Hilbert function. Then
IX a virtual resolution of length two.

Proof. Notice that by Corollary 3.33, if X ⊆ P1×P1 is a set of s points with generic
Hilbert function, then (s−1, 0) ∈ regB(X). Also, by Corollary 3.33, as (s−1, 0) ∈ regB(X),
then for any d = (i, j) � (s− 1, 0), IX is d-regular. Since IX is d-regular for d = (s− 1, 0)
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and n = (1, 1), then by Theorem 2.45 the free subcomplex of a minimal free resolution
of IX consisting of all summands generated in degree at most (s − 1, 0) + n = (s, 1) is
a virtual resolution of IX . However, since we proved γij = 0 for all (i, j) � (s, 1), the
virtual resolution obtained by keeping all summands generated in degrees at most (s, 1)
and removing the rest, has length two. �

Now we have all the materials to find virtual resolutions of a set of points.

Theorem 4.7. Let X be a set of sufficiently general points in P1 × P1. Then IX has
a virtual resolution of length two. In particular, if s is even, then a virtual resolution is

0→ S(−s,−1)2 →
S(−s/2,−1)2

⊕
S(−s, 0)

→ S.

and, if s is odd,

0→ S(−s,−1)2 →

S
(
− s−1

2
,−1

)
⊕

S
(
− s+1

2
,−1

)
⊕

S(−s, 0)

→ S.

is a virtual resolution of IX .

Proof. We check two cases.

(i) s is odd:
In this case by Lemma 4.4 we have

αi1 =

{
1, if i = s−1

2
or i = s+1

2

0, otherwise
, βi1 =

{
2, if i = s

0, otherwise
, and γi1 = 0 for 0 ≤ i ≤ s.

By Lemma 4.6, if we trim the minimal free resolution of IX to get the free subcomplex
consisting of all summands generated in degree at most (s, 1) we get a virtual resolution
of IX of length two.

So, the resolution will be

0→ S(−s,−1)2 →

S
(
− s−1

2
,−1

)
⊕

S
(
− s+1

2
,−1

)
⊕

S(−s, 0)

→ S.

(ii) s is even:
In this case, by Lemma 4.3 we have

αi1 =

{
2 if i = s

2

0 otherwise
, βi1 =

{
2 if i = s

0 otherwise
, and γi1 = 0.
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Again, by Lemma 4.6 the free subcomplex consisting of all summands generated in degree
at most (s, 1) is a virtual resolution of IX of length two. So the resolution will be

0→ S(−s,−1)2 →
S(−s/2,−1)2

⊕
S(−s, 0)

→ S.

�

In the next theorem we will find virtual resolutions of a set of points by finding the
positive components of the second difference matrix. We identify other vectors (i, j) such
that when we trim the resolution by keeping all terms with (a, b) ≤ (i, j) + (1, 1) and
removing the rest, we get a virtual resolution.

Theorem 4.8. Let X ⊆ P1 × P1 be a set of s points, and let ∆2HX = (dij) be the
second difference function for Hilbert function of X. If dij > 0 and (i, j) 6= (0, 0), then
IX is (i, j)-regular.

Proof. For every i > 0, degX = i · qi + ri with 0 ≤ ri < i, then

di−1j =



ri − i for j = qi

−ri for j = qi + 1

2(i− 1− ri−1) for j = qi−1

2ri−1 for j = qi−1 + 1

ri−2 − (i− 2) for j = qi−2

−ri−2 for j = qi−2 + 1

0 otherwise

.

(See [GMR94, Page 201]). So, the only positive entries happen when di−1qi−1
= 2(i −

1− ri−1) or di−1(qi−1+1) = 2ri−1.

However,

((i−1)+1)(qi−1+1) = (i−1)qi−1+(i−1)+qi−1+1 > (i−1)qi−1+ri−1+qi−1+1 = s+qi−1+1 > s,

and

((i− 1) + 1)((qi−1 + 1) + 1) = (i− 1)qi−1 + 2(i− 1) + qi−1 + 2

where

(i−1)qi−1+2(i−1)+qi−1+2 > (i−1)qi−1+ri−1+(i−1)+qi−1+2 = s+(i−1)+qi−1+2 > s (∗)

As we stated before, if S = k[x0, x1, y0, y1], and S =
⊕

(i,j)∈N2 Si,j, then,

dimk Si,j =

(
i+ 1

1

)(
j + 1

1

)
.

Moreover, by the definition of multigraded regularity, if X is a set of s points with generic
Hilbert function,

regB(X) = {(i, j)| dimk Si,j ≥ s}.
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By (∗), d1 = (i− 1, qi−1), and d2 = (i− 1, qi−1 + 1) are in regB(X). �

Corollary 4.9. Let X ⊆ P1 × P1 be a set of s points, and let ∆2HX = (dij) be
the second difference function for Hilbert function of X. Let G be the free subcomplex of
a minimal free resolution of IX consisting of all summands generated in degree at most
(i, qi−1 + 1), where s = i · qi + ri and di−1qi−1

= 2(i − 1 − ri−1). Then G is a virtual
resolution of IX .

Proof. As we proved in Theorem 4.8, d1 = (i − 1, qi−1) is in regB(X). By Theo-
rem 2.45, the subcomplex of minimal free resolution of IX consisting of all the summands
generated in degree at most d1 + (1, 1) is a virtual resolution of IX . �



CHAPTER 5

Future Directions

In this chapter we discuss three conjectures. All of the conjectures are related to the
following theorem of Berkesch, Erman and Smith [BES20, Theorem 4.1]. Let Pn :=
Pn1 × Pn2 × · · · × Pnr be the product of projective spaces with dimension vector n :=
(n1, n2, . . . , nr) ∈ Nr over a field k. Let S := k[xi,j : 1 ≤ i ≤ r, 0 ≤ j ≤ ni] be the
coordinate ring of Pn and let B :=

⋂r
i=1〈xi,0, xi,1, . . . , xi,ni

〉 be its irrelevant ideal. For
a ∈ Nr, we define Ba to be

Ba :=
r⋂
i=1

〈xi,0, xi,1, . . . , xi,ni
〉ai .

Theorem 5.1. [BES20, Theorem 4.1] If Z ⊂ Pn is a zero-dimensional scheme and I
is the corresponding B-saturated S-ideal, then there exists an a ∈ Nr with ar = 0 such that
the minimal free resolution of S/(I ∩Ba) has length equal to |n| = dimPn. Moreover, any
a ∈ Nr with ar = 0 and other entries sufficiently positive yields such a virtual resolution
of S/I.

The theorem above only proves the existence of a. However, in the following conjecture
we try to find a explicitly and this will give us an infinite number of virtual resolutions
for a set of s points in P1 × P1 that has the generic Hilbert function.

Conjecture 5.2. Let X be a set of s points in P1 × P1 that has generic Hilbert
function and let IX ⊂ S = k[x0, x1, y0, y1] be its corresponding B-saturated defining ideal.
(1) The smallest value of a ∈ N where the minimal free resolution of S/(IX ∩B(a,0)) is a
virtual resolution of S/IX is a = s− 1. (2) For every number t ∈ N, where t > s− 1, the
minimal free resolution of S/(IX ∩B(t,0)) is also a virtual resolution of S/IX .

Moreover, if a ∈ N is the smallest value where the minimal free resolution of S/(IX ∩
B(a,0)) is a virtual resolution of S/IX , then this virtual resolution will be of the form

0→ S(−s,−1)s →
S(−s, 0)
⊕

S(−s+ 1,−1)s
→ S,

and for i > 0, the virtual resolution corresponding to (a+ i, 0) is:

0→
S(−s− i, 0)i−1

⊕
S(−s− i,−1)s

→
S(−s− i+ 1, 0)i

⊕
S(−s− i+ 1,−1)s

→ S.

35
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Below, we show that for a ≥ s− 1 the minimal free resolution of S/(IX ∩ B(a,0)) is a
virtual resolution of S/IX . This gives a partial answer to Conjecture 5.2.

Proposition 5.3. Let X be a set of s points in P1 × P1 that has generic Hilbert
function and let IX ⊂ S = k[x0, x1, y0, y1] be its corresponding B-saturated defining ideal.
If a = s− 1, then, the minimal free resolution of S/(IX ∩B(a,0)) is a virtual resolution for
S/IX . Moreover, for every number t ∈ N, where t > s− 1, the minimal free resolution of
S/(IX ∩B(t,0)) is also a virtual resolution.

Proof. Let X = {P1, . . . , Ps} be a set of s points. Without loss of generality, we can
assume that each Pi = [1 : Ai]× [1 : Bi], and therefore IPi

= 〈Aix0 − x1, Biy0 − y1〉.
First, we prove that the depth of S/IX∩B(a,0) is 2 for a ≥ s−1. Then by the Auslander-

Buchsbaum Formula, Theorem 3.24, we can see that proj-dim(S/IX ∩B(a,0)) = 2.

Claim 1: The depth of S/IX ∩B(a,0) for a = s− 1, is 2.

Proof: To see that the depth is 2, we need to show that the maximal length of a
regular sequence is 2. We begin by showing that there exists a regular sequence of length
2 . More precisely, we claim, {y0, x0 + y1} is a regular sequence for IX ∩B(s−1,0).

By Definition 2.12, to prove that {y0, x0 + y1} is a regular sequence for IX ∩ B(s−1,0),
we need to show the following:

(1) 〈IX ∩B(s−1,0), y0, x0 + y1〉 ⊂ 〈x0, x1, y0, y1〉,
(2) y0 is a non-zero-divisor in S/IX ∩B(s−1,0),
(3) x0 + y1 is a non-zero-divisor in S/〈IX ∩B(s−1,0), y0〉.

We can see that (1) is true since IX ∩ B(s−1,0) is a bihomogeneous ideal with generators
of degrees at least (s− 1, 0).

In order to show that y0 is a non-zero-divisor in S/〈IX ∩ B(s−1,0)〉, we use Theorem
2.13 and Proposition 2.14. From these results it follows that we only need to show that
y0 is not in the Ass(IX ∩B(s−1,0)).

We first compute Ass(IX ∩B(s−1,0)). Let S = k[x0, x1, y0, y1], and let IX ∩B(s−1,0) be
as above. The primary decomposition of IX ∩B(s−1,0) is

IX ∩B(s−1,0) = (
s⋂
i=1

IPi
) ∩B(s−1,0),

since each IPi
is a prime ideal and therefore a primary ideal. Moreover, B(s−1,0) is also a

primary ideal. To see this, we need to prove that for every f, g ∈ S, where fg ∈ B(s−1,0),
either f ∈ B(s−1,0) or gm ∈ B(s−1,0) for some integer m > 0. Since g is a polynomial,
we can write g as a sum of monomials, g = g1 + g2 + · · · + gr. We have two cases, i)
deg(gi) � (1, 0) for all 1 ≤ i ≤ r. ii) There exists some j, where deg(gj) = (0, b) for some
integer b. If case (i) happens, then deg(g)s−1 � (s − 1, 0). Therefore, gs−1 ∈ B(s−1,0).
If case (ii) happens, then deg(f) must be at least (s − 1, 0), since deg(fg) � (s − 1, 0).
Therefore, f ∈ B(s−1,0). Hence B(s−1,0) is a primary ideal.
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Therefore, we have

Ass (IX ∩B(s−1,0)) = {IP1 , . . . , IPs , 〈x0, x1〉},

since B(s−1,0) = 〈x0, x1〉s−1, therefore
√
B(s−1,0) = 〈x0, x1〉.

From Theorem 2.13, we can see that y0 is not in the union of the associated primes of
IX ∩ B(s−1,0), since we took each Pi to be in the form [1 : Ai] × [1 : Bi] and hence each
IPi

is 〈Aix0 − x1, Biy0 − y1〉 . Therefore, y0 is a non-zero-divisor in S/IX ∩B(s−1,0). This
proves (2).

We now prove (3). To do this, we again find associated primes, this time of 〈IX ∩
B(s−1,0), y0〉. We assumed that Pi = [1 : Ai]× [1 : Bi] and IPi

= 〈Aix0 − x1, Biy0 − y1〉 for
each i. We claim that

Claim 2:

(5.1) 〈IX ∩B(s−1,0), y0〉 = (
s⋂
i=1

〈y0, y1, Aix0 − x1〉) ∩ 〈B(s−1,0), y0〉.

is a primary decomposition for 〈IX ∩B(s−1,0), y0〉.
Proof: We will show that

(5.2) (
s⋂
i=1

〈y0, y1, Aix0 − x1〉) ∩ 〈B(s−1,0), y0〉 = 〈y0, y1,
s∏
i=1

(Aix0 − x1)〉 ∩ 〈B(s−1,0), y0〉,

(5.3)

〈y0, y1,
s∏
i=1

(Aix0−x1)〉∩〈B(s−1,0), y0〉 = 〈y0, y1xs−10 , y1x
s−2
0 x1, . . . , y1x0x

s−2
1 , y1x

s−1
1 ,

s∏
i=1

(Aix0−x1)〉,

and,

(5.4) 〈IX ∩B(s−1,0), y0〉 = 〈y0, y1xs−10 , y1x
s−2
0 x1, . . . , y1x0x

s−2
1 , y1x

s−1
1 ,

s∏
i=1

(Aix0 − x1)〉.

If we prove Equation 5.2, 5.3, and, 5.4, then we have shown that Equation 5.1 is indeed
the primary decomposition of 〈IX ∩B(s−1,0), y0〉, as we proved each ideal is primary.

First we prove that

(5.5)
s⋂
i=1

〈y0, y1, Aix0 − x1〉 = 〈y0, y1,
s∏
i=1

(Aix0 − x1)〉.

To prove RHS ⊆ LHS, we can see that y0 and y1 are in
⋂s
i=1〈y0, y1, Aix0−x1〉. To show

that
∏s

i=1(Aix0− x1) ∈
⋂s
i=1〈y0, y1, Aix0− x1〉, notice that for each i,

∏s
i=1(Aix0− x1) =

(Aix0− x1)
∏

j 6=i(Ajx0− x1). Therefore, for each i,
∏s

i=1(Aix0− x1) ∈ 〈y0, y1, Aix0− x1〉.
Hence RHS ⊆ LHS as desired.

For the other inclusion, let f ∈
⋂s
i=1〈y0, y1, Aix0 − x1〉. Therefore, for each i, we

can write f = y0r1i + y1r2i + (Aix0 − x1)r3i, where rri is a polynomial in x0 and x1.
Notice that f ∈ 〈y0, y1, Aix0 − x1〉 for all i. Let j and k be fixed integers between 1
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and s. f = y0r1j + y1r2j + (Aix0 − x1)r3j ∈ 〈y0, y1, Akx0 − x1〉. Therefore Akx0 − x1
divides r3j. If we do the same process for all i between 1 and s, we see that f can be
written as f = y0r1 + y1r2 + (Aix0 − x1)r3 where for each i, Aix0 − x1 divides r3. Hence
f ∈ 〈y0, y1,

∏s
i=1(Aix0 − x1)〉. This completes the proof of Equation 5.2.

We now prove Equation 5.3. To simplify our notation, we define

J1 := 〈y0, y1,
s∏
i=1

Aix0 − x1〉 ∩ 〈B(s−1,0), y0〉,

and,

J2 := 〈y0, y1xs−10 , y1x
s−2
0 x1, . . . , y1x0x

s−2
1 , y1x

s−1
1 ,

s∏
i=1

(Aix0 − x1)〉.

We first show J1 ⊆ J2. Let f ∈ J1. Therefore, we have f ∈ 〈y0, y1,
∏s

i=1(Aix0 − x1)〉
and f ∈ 〈B(s−1,0), y0〉. From f ∈ 〈y0, y1,

∏s
i=1Aix0 − x1〉, we have f = r1y0 + r2y1 +

r3
∏s

i=1(Aix0 − x1). Since f ∈ 〈B(s−1,0), y0〉, we know r1y0 + r2y1 + r3
∏s

i=1(Aix0 − x1) ∈
〈B(s−1,0), y0〉. Notice that deg

∏s
i=1(Aix0 − x1) = (s, 0), so

∏s
i=1(Aix0 − x1) = (s, 0) ∈

B(s−1,0) and hence r3
∏s

i=1(Aix0−x1) ∈ B(s−1,0). Hence r2y1 ∈ 〈B(s−1,0), y0〉. We can write
r2 = t1y0 + t2, where t2 is a polynomial in x0, x1, and y1. Since, r2y1 = t1y0y1 + t2y1 ∈
B(s−1,0), and t2 is a polynomial in x0, x1, and y1, we have deg(t2) � (s − 1, 0). Hence,
r2 ∈ 〈B(s−1,0), y0〉. Therefore, f ∈ J2, and J1 ⊆ J2 as desired.

Now, let f ∈ J2. So, we can write

f = t1y0 + t2y1x
s−1
0 + t3y1x

s−2
0 x1 + · · ·+ tsy1x0x

s−2
1 + ts+1y1x

s−1
1 + ts+2

s∏
i=1

(Aix0 − x1),

for ti ∈ S, 1 ≤ i ≤ s+2. We can see that f ∈ 〈y0, y1,
∏s

i=1(Aix0−x1)〉 and f ∈ 〈B(s−1,0), y0〉
and hence f ∈ J1. Thus, J1 = J2.

Now we prove Equation 5.4.

First, we show that 〈IX ∩ B(s−1,0), y0〉 ⊆ J2. To see this, let f ∈ 〈IX ∩ B(s−1,0), y0〉.
Therefore, f = r1y0+r2g where g ∈ IX∩B(s−1,0). If g ∈ IX∩B(s−1,0), we have two cases, (i)
deg g = (a, 0), where a ≥ s (ii) deg g � (s− 1, 1). If deg g = (a, 0) for a ≥ s, we can write
g = r3

∏s
i=1(Aix0−x1) where deg r3 = (a−s, 0).Therefore, f = r1y0+r2r3

∏s
i=1(Aix0−x1)

which is clearly in J2. If deg g � (s−1, 1), we can write g as finite sum
∑

j cjx
a0
0 x

a1
1 y

b0
0 y

b1
1 ,

where (a0 + a1, b0 + b1) = deg g and cj ∈ k. Therefore, a0 + a1 ≥ s − 1 and b0 + b1 ≥ 1
which concludes that f ∈ J2.

We now prove that J2 ⊆ 〈IX ∩B(s−1,0), y0〉.
We can see that y0 and

∏s
i=1(Aix0−x1) are in 〈IX ∩B(s−1,0), y0〉. Therefore it suffices

to prove that each monomial y1x
i
0x

s−1−i
1 for 0 ≤ i ≤ s− 1 is in 〈IX ∩B(s−1,0), y0〉. We can

prove this by Proposition 3.31 as follows. If we let t = (s−1, 1), then from the Proposition
3.31, we can see that (IX , y0)t = St. Notice that (IX ∩B(s−1,0), y0)t = (IX , y0)t. Therefore,
all the monomials y1x

i
0x

s−1−i
1 are in 〈IX ∩B(s−1,0), y0〉. This proves Equation 5.4.
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To prove that this is indeed a primary decomposition, we first prove that each 〈y0, y1, Aix0−
x1〉 is a prime ideal.

To see this, let f, g ∈ S. We can write f = f1(Aix0 − x1) + f2y0 + f3y1 + f4 and
g = g1(Aix0 − x1) + g2y0 + g3y1 + g4, where f4 and g4 are polynomials in x0 and x1.
We now prove that if fg ∈ 〈y0, y1, Aix0 − x1〉, then either f ∈ 〈y0, y1, Aix0 − x1〉 or
g ∈ 〈y0, y1, Aix0 − x1〉. If fg ∈ 〈y0, y1, Aix0 − x1〉, since f4 and g4 are polynomials purely
in x0 and x1, it must follow that f4g4 ∈ 〈y0, y1, Aix0−x1〉. So, Aix0−x1 divides f4g4. We
can conclude that either Aix0−x1 | f4 or Aix0−x1 | g4, and therefore f ∈ 〈y0, y1, Aix0−x1〉
or g ∈ 〈y0, y1, Aix0 − x1〉. Since every prime ideal is primary, each 〈y0, y1, Aix0 − x1〉 is
primary.

We now prove that 〈B(s−1,0), y0〉 is a primary ideal. Let f, g ∈ S where fg ∈
〈B(s−1,0), y0〉. We can write f = f1y0 +f2 and g = g1y0 +g2 where f2 and g2 are polynomi-
als in x0, x1, and y1. Since fg ∈ 〈B(s−1,0), y0〉 and f1g1y

2
0 + f1g2y0 + f2g1y0 ∈ 〈B(s−1,0), y0〉,

it must follow f2g2 ∈ B(s−1,0), and since B(s−1,0) is a primary ideal, we have either
f2 ∈ B(s−1,0) or gm2 ∈ B(s−1,0) for some m. Therefore, either f ∈ 〈B(s−1,0), y0〉, or
gm ∈ 〈B(s−1,0), y0〉. This proves Equation 5.1 is a primary decomposition.

Next, we need to find the associated primes of 〈IX ∩ B(s−1,0), y0〉. To do this, by
Theroem 2.14, we only need to find the radical of the ideals in the primary decomposition
of 〈IX ∩ B(s−1,0), y0〉. Since 〈y0, y1, Aix0 − x1〉 is a prime ideal for all i, we only need to

find
√
〈B(s−1,0), y0〉.

We claim that
√
〈B(s−1,0), y0〉 = 〈y0, x0, x1〉. Notice that 〈B(s−1,0), y0〉 = B(s−1,0)+〈y0〉.

We also have
√
〈B(s−1,0), y0〉 =

√√
B(s−1,0) +

√
〈y0〉. To see this, notice that 〈B(s−1,0), y0〉 =

B(s−1,0) + 〈y0〉. Moreover, we have B(s−1,0) + 〈y0〉 ⊆
√√

B(s−1,0) +
√
〈y0〉. Therefore√

B(s−1,0) + 〈y0〉 ⊆
√√

B(s−1,0) +
√
〈y0〉. For the other inclusion, let f ∈

√√
B(s−1,0) +

√
〈y0〉.

Then fm ∈
√
B(s−1,0) +

√
〈y0〉 for some integer m > 0. This means that fm = g+h where

gl ∈ B(s−1,0) and hn ∈ 〈y0〉 for some integers l, n > 0. Then fm(l+n) = (fm)l+n ∈
B(s−1,0) + 〈y0〉, therefore f ∈

√
B(s−1,0) + 〈y0〉. This proves that

√
〈B(s−1,0), y0〉 =√√

B(s−1,0) +
√
〈y0〉.

However,
√
B(s−1,0) = 〈x0, x1〉 and

√
〈y0〉 = 〈y0〉. Therefore

√√
B(s−1,0) +

√
〈y0〉 =√

〈x0, x1〉+ 〈y0〉 =
√
〈x0, x1, y0〉. Since 〈x0, x1, y0〉 is a prime ideal,

√
〈x0, x1, y0〉 =

〈x0, x1, y0〉. So,
√
〈B(s−1,0), y0〉 = 〈x0, x1, y0〉, as desired. This proves Claim 2.

By the above discussion we can conclude that

Ass (IX ∩B(s−1,0), y0〉) = {〈y0, y1, A1x0 − x1〉, . . . , 〈y0, y1, Asx0 − x1〉, 〈y0, x0, x1〉}

and we can also see that x0 + y1 is not contained in Ass (IX ∩ B(s−1,0), y0〉). Therefore,
by Theorem 2.13, it is a non-zero-divisor in IX ∩ 〈B(s−1,0), y0〉.
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We have proved that S/IX ∩ B(s−1,0) has a regular sequence of length 2. This proves
that the depth of IX ∩ B(s−1,0) is at least 2. However, the depth of IX ∩ B(s−1,0) cannot
be more than 2. This follows from the fact that depth S/IX ∩ B(s−1,0) ≤ K- dimS/IX ∩
B(s−1,0). Moreover, K- dimS/IX ∩ B(s−1,0) ≤ K- dimS/IX . Since K- dimS/IX = 2 (see
[GVT15, Lemma 4.2] for the proof), we conclude that depth S/IX ∩ B(s−1,0) = 2. This
completes the proof of Claim 1.

In fact, we can also prove that S/IX ∩ B(a,0) has a regular sequence of length 2 for
a ≥ s. In order to prove this, we follow the same strategy. We show that y0, x0 + y1 is
a regular sequence for S/IX ∩ B(a,0) for a ≥ s. Again, we need to show the following for
a ≥ s:

1) 〈IX ∩B(a,0), y0, x0 + y1〉 ⊂ 〈x0, x1, y0, y1〉,
2) y0 is a non-zero-divisor in S/IX ∩B(a,0), and
3) x0 + y1 is a non-zero-divisor in S/〈IX ∩B(a,0), y0〉.

We can see that (1) is true. In order to show that y0 is a non-zero-divisor in S/〈IX∩B(a,0)〉,
we show that y0 is not in the union of the associated primes of IX ∩ B(a,0). The primary
decomposition of IX ∩B(a,0) is

IX ∩B(a,0) = (
s⋂
i=1

IPi
) ∩B(a,0).

Therefore, we have

Ass (IX ∩B(a,0)) = {IP1 , . . . , IPs , 〈x0, x1〉}.

We can see that y0 is not in the union of the associated primes of IX ∩B(a,0). Therefore,
y0 is a non-zero-divisor in S/IX ∩B(a,0). This proves (2).

To prove (3), again, we find Ass (IX ∩B(a,0), y0〉).
Claim 3: The primary decomposition of 〈IX ∩B(a,0), y0〉 is

(5.6) 〈IX ∩B(a,0), y0〉 = (
s⋂
i=1

〈y0, y1, Aix0 − x1〉) ∩ 〈B(a,0), y0〉.

Proof: First, we show that

〈IX ∩B(a,0), y0〉 = (
s⋂
i=1

〈y0, y1, Aix0 − x1〉) ∩ 〈B(a,0), y0〉.

To prove this, we prove that

(5.7) (
s⋂
i=1

〈y0, y1, Aix0 − x1〉) ∩ 〈B(a,0), y0〉 = 〈y0, y1,
s∏
i=1

(Aix0 − x1)〉 ∩ 〈B(a,0), y0〉,
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and
(5.8)

〈y0, y1,
s∏
i=1

(Aix0−x1)〉∩〈B(a,0), y0〉 = 〈y0, y1xa0, y1xa−10 x1, . . . , y1x0x
a−1
1 , y1x

a
1,

s∏
i=1

(Aix0−x1)〉.

We proved Equation 5.7 in the proof when a = s− 1. We now prove Equation 5.8.

Let F =
∏s

i=1(Aix0 − x1). We show that

〈y0, y1, F 〉 ∩ 〈B(a,0), y0〉 =

〈y0, y1xa0, y1xa−10 x1, . . . , y1x0x
a−1
1 , y1x

a
1, Fx

a−s
0 , Fxa−s−10 x1, . . . , Fx0x

a−s−1
1 , Fxa−s1 〉.

For simplicity, we let

J3 = 〈y0, y1xa0, y1xa−10 x1, . . . , y1x0x
a−1
1 , y1x

a
1, Fx

a−s
0 , Fxa−s−10 x1, . . . , Fx0x

a−s−1
1 , Fxa−s1 〉.

To prove this, first let f ∈ 〈y0, y1, F 〉 ∩ 〈B(a,0), y0〉. Therefore, we have f ∈ 〈y0, y1, F 〉
and f ∈ 〈B(a,0), y0〉. From f ∈ 〈y0, y1, F 〉, we have f = r1y0 + r2y1 + r3F where r2 and
r3 are polynomials in x0, x1and y1. We also have f ∈ 〈B(a,0), y0〉, and since B(a,0) is a
monomial ideal, it concludes r2, r3F ∈ B(a,0), which means that r2 can be written as a
finite sum,

∑
tjx

a−mj

0 x
mj

1 , where tj ∈ S. Also, since r3F ∈ B(a,0) and degF = (s, 0),
deg r3 � (a− s, 0). So, f ∈ J3.

Now, let f ∈ J3. So, we can write

f = t1y0+t2y1x
a
0+t3y1x

a−1
0 x1+· · ·+ta+1y1x0x

a−1
1 +ta+2y1x

a
1+ta+3Fx

a−s
0 +ta+4Fx

a−s−1
0 x1+

· · ·+ t2a−s+2Fx0x
a−s−1
1 + t2a−s+3Fx

a−s
1 .

It is easy to see f ∈ 〈y0, y1, F 〉 and f ∈ 〈B(s−1,0), y0〉 and hence f ∈ 〈y0, y1, F 〉 ∩
〈B(s−1,0), y0〉.

Now we prove

〈IX ∩B(a,0), y0〉 = J3.

First, we show that

〈IX ∩B(a,0), y0〉 ⊆ J3

To see this, let f ∈ 〈IX ∩ B(a,0), y0〉. Therefore, f = r1y0 + r2g where g ∈ IX ∩ B(a,0). If
g ∈ IX ∩ B(a,0), we have two cases, (i) deg g = (p, 0), where p ≥ a (ii) deg g � (a, 1). If
case (i) happens, since g ∈ IX , then g = rF for some r ∈ S and hence, f ∈ J3. If case (ii)
happens, then g = r1y0 + r2y1 where deg ri � (a, 0), and therefore, f ∈ J3.

We now prove that

J3 ⊆ 〈IX ∩B(a,0), y0〉

To see this, it is easy to see y0 and Fxa−s−i0 xi1 for 0 ≤ i ≤ a−s are in 〈IX∩B(a,0), y0〉. We
now prove that each monomial y1x

i
0x

a−i
1 is in 〈IX ∩B(a,0), y0〉. By Proposition 3.31, if we

let t = (a, 1), then we can see that (IX , y0)t = St. Notice that (IX ∩B(a,0), y0)t = (IX , y0)t.
Therefore, all the monomials y1x

i
0x

a−i
1 are in 〈IX ∩ B(a,0), y0〉. This proves Equation 5.6.

We have seen in the proof of the case a = s − 1 that the ideals in RHS of Equation
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5.6 are primary ideals. Therefore, Equation 5.6 is indeed the primary decomposition of
〈IX ∩B(a,0), y0〉 . Hence,

Ass (IX ∩B(a,0), y0〉) = {〈y0, y1, A1x0 − x1〉, . . . , 〈y0, y1, Asx0 − x1〉, 〈y0, x0, x1〉}.

We can see that x0 + y1 is not in

Ass (IX ∩B(a,0), y0〉) = {〈y0, y1, A1x0 − x1〉, . . . , 〈y0, y1, Asx0 − x1〉, 〈y0, x0, x1〉}.

Therefore, it is a non-zero-divisor in 〈IX ∩B(a,0), y0〉.
We proved that S/IX ∩ B(a,0) has a regular sequence of length at least 2 and since

depth S/IX ∩B(a,0) ≤ K- dimS/IX ∩B(a,0) ≤ 2, depth S/IX ∩B(a,0) = 2.

�

In the following example we find the minimal free resolution of S/(IX ∩ B(a,0)) for
different values of a by using Macaulay2.

Example 5.4. Let

X = {[1 : 0]× [1 : 2], [2 : 1]× [2 : 3], [3 : 2]× [3 : 4], [4 : 3]× [4 : 5], [5 : 4]× [5 : 6]}

be a set of 5 points in P1 × P1 with the generic Hilbert function. If a = 0, and a = (0, 0),

0→

S(−3,−3)
⊕

S(−5,−2)
⊕

S(−2,−5)

→

S(−3,−2)2

⊕
S(−2,−3)2

⊕
S(−5,−1)2

⊕
S(−1,−5)2

→

S(−2,−1)
⊕

S(−1,−2)
⊕

S(−3,−1)
⊕

S(−1,−3)
⊕

S(−5, 0)
⊕

S(0,−5)

→ S → S/IX → 0.

If a = 1, and a = (1, 0),

0→
S(−3,−3)
⊕

S(−5,−2)
→

S(−3,−2)2

⊕
S(−2,−3)2

⊕
S(−5,−1)2

→

S(−2,−1)
⊕

S(−1,−2)
⊕

S(−3,−1)
⊕

S(−1,−3)
⊕

S(−5, 0)

→ S → S/(IX ∩B(1,0))→ 0.
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If a = 2, and a = (2, 0),

0→ S(−5,−2)→
S(−3,−2)3

⊕
S(−5,−1)2

→

S(−2,−1)
⊕

S(−3,−1)
⊕

S(−2,−2)2

⊕
S(−5, 0)

→ S → S/(IX ∩B(2,0))→ 0.

If a = 3, and a = (3, 0),

0→ S(−5,−2)→

S(−4,−1)
⊕

S(−5,−1)2

⊕
S(−4,−2)2

→

S(−3,−1)3

⊕
S(−3,−2)
⊕

S(−5, 0)

→ S → S/(IX ∩B(3,0))→ 0.

If a = 4, and a = (4, 0),

0→ S(−5,−1)5 →
S(−5, 0)
⊕

S(−4,−1)5
→ S → S/(IX ∩B(4,0))→ 0.

If a = 5, and a = (5, 0),

0→ S(−6,−1)5 →
S(−5, 0)
⊕

S(−5,−1)5
→ S → S/(IX ∩B(5,0))→ 0.

If a = 6, and a = (6, 0),

0→
S(−7,−1)5

⊕
S(−7, 0)

→
S(−6, 0)2

⊕
S(−6,−1)5

→ S → S/(IX ∩B(6,0))→ 0.

If a = 7, and a = (7, 0),

0→
S(−8,−1)5

⊕
S(−8, 0)2

→
S(−7, 0)3

⊕
S(−7,−1)5

→ S → S/(IX ∩B(7,0))→ 0.

As we can see in the example above, the least a that yields a virtual resolution is
a = 4 = 5− 1.

Our next conjecture is about virtual resolutions of a finite set of points in P1×P1×P1.
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Let πi : P1×P1×P1 → P1 be the natural projection morphism onto the ith coordinate.
Let X be a set of points in P1× P1× P1. We denote |πi(X)| to be the number of distinct
ith coordinates that appear in X.

Conjecture 5.5. Let X be a set of s points in P1×P1×P1 where |π1(X)| = |π2(X)| =
s. Let IX ⊂ S = k[x0, x1, y0, y1, z0, z1] be its defining ideal. If the minimal free resolution
of S/(IX ∩ Ba) where a = (a1, a2, 0) is a virtual resolution of S/IX of length 3, then
a′ = (a1 + 1, a2, 0), and, a′′ = (a1, a2 + 1, 0) is also a virtual resolution of S/IX of length
3.

Example 5.6. Let X = {[1 : 45] × [1 : 7] × [1 : 9], [1 : 21] × [1 : 25] × [1 : 32], [1 :
48]× [1 : 20]× [1 : 31], [1 : 2]× [1 : 13]× [1 : 32], [1 : 44]× [1 : 1]× [1 : 12]} and let IPi

be
the defining ideal of Pi, for i = 1, 2, . . . , 5

IP1 = 〈45x0 − x1, 7y0 − y1, 9z0 − z1〉

IP2 = 〈21x0 − x1, 25y0 − y1, 32z0 − z1〉

IP3 = 〈48x0 − x1, 20y0 − y1, 31z0 − z1〉

IP4 = 〈2x0 − x1, 13y0 − y1, 32z0 − z1〉

IP5 = 〈44x0 − x1, y0 − y1, 12z0 − z1〉

The following diagram shows all (a1, a2) ∈ N2 for (a1, a2) � (5, 4), such that S/(IX ∩
B(a1,a2,0)) gives us a virtual resolution of S/IX .

0 1 2 3 4 5
0

1

2

3

4

5

a1

a
2

Let π1 : P1 × P2 → P1 be the natural projection morphism onto the first coordinate.
Let X be a set of points in P1 × P2. We denote |π1(X)| to be the number of distinct first
coordinates that appear in X.
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Conjecture 5.7. Let X be a set of s points in P1 × P2 where |π1(X)| = s. Let
IX ⊂ S = k[x0, x1, y0, y1, y2] be its defining ideal. Then smallest value of a where the
minimal free resolution of S/(IX ∩B(a,0)) is a virtual resolution of S/IX has the following
properties:

(1) The virtual resolution is of the form

0→ Ss → Sm → Sn → S

(2) a = s− 1
(3) m = 3s

Example 5.8. Let X = {[43 : 4 : 40]× [1 : 1], [30 : 5 : 24]× [1 : 38], [22 : 14 : 49]× [1 :
7], [1 : 4 : 13] × [1 : 14], [23 : 10 : 15] × [1 : 26]} and IPi

be the defining ideal of Pi, for
i = 1, 2, . . . , 5 where

IP1 = 〈−4y0 + 43y1,−40y0 + 43y2, x0 − x1〉
IP2 = 〈−5y0 + 30y1,−24y0 + 30y2, 38x0 − x1〉
IP3 = 〈−16y0 + 22y1,−49y0 + 22y2, 7x0 − x1〉
IP4 = 〈−4y0 + y1,−13y0 + y2, 14x0 − x1〉

IP5 = 〈−10y0 + 23y1,−15y0 + 23y2, 26x0 − x1〉

By using Macaulay2 we get the following virtual resolution of length 3, where a = 4:

0→ S5 → S15 → S5 → S

In order to get the conjectures above, we checked more than 20 different configurations
of sets of points for each case, until we found the right condition to have the properties
explained in the conjectures.

Lastly, we hope that the ideas presented in this thesis will help to find the answers of
these conjectures.



Bibliography

[ABLS20] Ayah Almousa, Juliette Bruce, Michael C. Loper, and Mahrud Sayrafi. The virtual resolutions

package for Macaulay2. The Journal of Software for Algebra and Geometry, 10:51–60, 2020. 2

[AM69] Michael Francis Atiyah and I. G. MacDonald. Introduction to commutative algebra. Addison-

Wesley-Longman, 1969. 8

[BES20] Christine Berkesch, Daniel Erman, and Gregory G. Smith. Virtual resolutions for a product

of projective spaces. Algebraic Geometry, 7:460–481, 2020. 1, 2, 3, 4, 11, 13, 14, 27, 35

[BKLY20] Christine Berkesch, Patricia Klein, Michael C. Loper, and Jay Yang. Homological and com-

binatorial aspects of virtually Cohen–Macaulay sheaves, 2020. 2

Preprint https://arxiv.org/abs/2012.14047

[Bou] Nicolas Bourbaki. Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). Translated

from the French, Reprint of the 1989 English translation. Springer-Verlag, Berlin 6

[CLO05] David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry, volume 185 of

Graduate Texts in Mathematics. Springer, New York, second edition, 2005. 3, 5, 6, 11

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms. Undergrad-

uate Texts in Mathematics. Springer, Cham, fourth edition, 2015. 9, 22

[Eis95] David Eisenbud. Commutative algebra With a view toward algebraic geometry, volume 150 of

Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. 3, 5, 8, 11, 22

[Eis05] David Eisenbud. The geometry of syzygies, volume 229 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 2005. 13

[GLLM21] Jiyang Gao, Yutong Li, Michael C. Loper, and Amal Mattoo. Virtual complete intersections

in P1 × P1. J. Pure Appl. Algebra, 225(1):106473, 15, 2021. 1

[GMR92] S. Giuffrida, R. Maggioni, and A. Ragusa. On the postulation of 0-dimensional subschemes on

a smooth quadric. Pacific J. Math., 155(2):251–282, 1992. Zero-dimensional schemes (Ravello,

1992), pages 191-204, de Gruyter, Berlin 3, 22, 23

[GMR94] S. Giuffrida, R. Maggioni, and A. Ragusa. Resolutions of 0-dimensional subschemes of a

smooth quadric, 1994. 33

[GMR96] S. Giuffrida, R. Maggioni, and A. Ragusa. Resolutions of generic points lying on a smooth

quadric. Manuscripta Math., 91(4):421–444, 1996. 3, 24

[GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in

algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/. 10

[GVT15] Elena Guardo and Adam Van Tuyl. Arithmetically Cohen-Macaulay sets of points in P1×P1.

SpringerBriefs in Mathematics. Springer, Cham, 2015. 15, 17, 18, 26, 40
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