
A CYCLE-ACCURATE SIMULATION

INFRASTRUCTURE FOR CACHE-COHERENT

INTERCONNECT ARCHITECTURES

A CYCLE-ACCURATE SIMULATION INFRASTRUCTURE FOR

CACHE-COHERENT INTERCONNECT ARCHITECTURES

BY

SALAH HESSIEN, MASc.

a thesis

submitted to the department of Electrical & Computer Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Salah Hessien, April 2021

All Rights Reserved

Master of Applied Science (2021) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: A Cycle-Accurate Simulation Infrastructure for Cache-

Coherent Interconnect Architectures

AUTHOR: Salah Hessien

MASc. (Electrical & Computer Engineering),

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Mohamed Hassan

NUMBER OF PAGES: xvii, 136

ii

Abstract

Maintaining exponential growth in performance of computing systems is no longer de-

rived by the advancement in technological metrics such as clock speed and transistor

scaling due to the saturation of Moore’s law. Therefore, architectural innovations are

a crucial solution in order to maintain this growth. However, these innovations highly

demand for comprehensive simulation tools since they provide an infrastructure for

evaluating and prototyping new design ideas. Thus, this thesis introduces CacheSim,

an efficient, extensible, and cycle-accurate simulator for cache-coherent interconnect

architecture. CacheSim enables researchers and computer architects to build recon-

figurable simulation infrastructure for multi-core processor chips with a high degree

of flexibility of controlling system’s configuration parameters such as cache organi-

zation, coherence protocol models, and interconnect bus architecture as well as bus

arbitration policies. The primary motivation behind developing CacheSim is to use

it for architectural explorations, study new design ideas, and evaluate existing ones.

Throughout this thesis, we make the following contributions. First, unlike existing

state-of-art simulators, we develop a complete cache coherence solution for multi-level

cache hierarchy memory systems that support modern interconnecting multi-core bus

architectures. Second, CacheSim provides these capabilities to the end-user not only

iii

without the need to modify the source code, but also with a high degree of config-

uribility to control the simulator behaviour through a well-defined input interface.

Third, We use this tool to design a novel predictable and coherent bus architecture

that provides a considerably tighter latency bound compared to the state-of-art pre-

dictable coherent solutions. Finally, we thoroughly validate the simulator features

using directed and continuous regression testing plan and code coverage to ensure

the functional correctness of the simulator. We release CacheSim as an open-source

for the research community to extend and use. We expect CacheSim to significantly

accelerate the design and testing of novel research ideas in cache coherency and pre-

dictable interconnect architectures used in real-time systems.

iv

To my wife, Maha Sayed, for her endless love and sacrifices.

&

My beloved parents for their support and encouragement.

v

Acknowledgements

First and foremost, all praise is due to Allah alone (God), the almighty, who has

granted me countless blessings, knowledge, and power to accomplish this thesis.

I would like to thank my supervisor Prof. Mohamed Hassan for his role as a

great advisor and all the support he gave me during my study journey. Indeed, his

guidance, encouragement, and patient were crucial to my academic success. I could

easily say that I am very proud to be a member of his Fanous research group and

really appreciate the support and freedom he gave me from day one to explore a topic

that I can employ my passion and capabilities in.

I am also thankful to McMaster School of Graduate Studies (SGS) for funding my

master’s studies.

Finally, I would like to thank my beloved family for all the support and encour-

agement they gave me during my study, especially my wife, Maha Sayed, for all the

tremendous effort and sacrifices she gives to me. I am not exaggerating when I say

this thesis would not exist without your encouragement to me. To my parents for

supporting my decision to move into a different country, and for their love, encour-

agement, and prays of day and night make me able to get such success and honor.

vi

Contents

Abstract iii

Acknowledgements vi

Notation and Abbreviations xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 4

1.3 Thesis Structure . 7

2 Background 8

2.1 CMPs System Model . 9

2.2 The Cache . 9

2.2.1 Definitions . 10

2.2.1.1 Different types of misses 10

2.2.2 Cache Organization . 11

2.2.2.1 Direct-mapped cache 11

2.2.2.2 N-way set associative cache 12

vii

2.2.3 Cache Replacement algorithms 13

2.2.4 Victim Cache . 15

2.2.5 Inclusive vs. Exclusive Caches 16

2.3 Cache Coherence . 16

2.3.1 Cache Coherence Protocols . 19

2.3.1.1 Transient States . 19

2.3.1.2 Coherence Transactions 20

2.3.1.3 Cache-To-Cache Data Transfer 21

2.3.1.4 Snooping vs. Directory 21

2.3.1.5 MSI Snooping-Based Protocol 21

2.4 Interconnection Network . 25

2.4.1 Scheduling schemes . 26

2.4.2 Commodity Performance-Oriented Arbitration 27

2.4.3 Traditional Real-Time Arbitration 28

2.4.4 Coherent Shared-Data Aware Predictable Arbitration 29

2.5 Off-chip DRAM . 30

3 Related Work 32

3.1 Simulation Mode . 34

3.2 Cache Coherence Protocols Support 34

3.3 Cache Configurability . 36

3.4 CMPs Architectures Support . 36

3.4.1 Multi-threaded Workloads . 36

3.4.2 Multi-level cache hierarchy . 37

3.5 Interconnect and Bus Arbitration . 38

viii

3.6 Performance Driven Simulators . 39

4 CacheSim Framework 41

4.1 CacheSim High-Level Architecture 42

4.2 CacheSim Functional Hardware Blocks 44

4.2.1 CacheSim Top-Level Node . 45

4.2.2 MCoreSimProject Class . 47

4.2.3 CacheSim test case configuration file 50

4.2.4 MCoreSimProjectXml parser 52

4.2.5 CpuCoreGen Class . 53

4.2.6 Private Cache Controller . 55

4.2.7 Shared Cache Controller . 57

4.2.8 Cache Coherence Protocol FSM 60

4.2.9 Generic Cache Memory . 71

4.2.10 Bus Arbiters . 72

5 PISCOT 75

5.1 Motivation . 76

5.2 Proposed solution . 77

5.2.1 Illustrative Example . 80

5.2.2 Satisfying Coherence Predictability Invariants 82

5.3 Analytical Worst-Case Latency . 86

5.3.1 Direct Cache-to-Cache Communication 89

5.3.2 Total Task’s Worst-Case Memory Latency 90

5.3.2.1 Using total number of requests 91

ix

5.3.2.2 Distinction between private and shared data 91

5.3.3 Replacement of Dirty Cache Lines 92

5.3.3.1 Total number of writes 92

5.3.3.2 Distinction between private and shared data 93

6 Evaluation and Validation 94

6.1 General Information . 94

6.1.1 Objectives . 95

6.1.2 Properties of a Correct Solution 95

6.1.3 Automated Testing and Verification Tools 96

6.1.4 Benchmarks . 97

6.1.5 CacheSim Evaluation Setup 97

6.2 Tests for Functional Requirements . 101

6.2.1 Cache Coherence Protocols . 101

6.2.2 Interconnection Network . 104

6.2.2.1 PISCOT Bus Arbitration 104

6.2.2.2 Conventional MSI Bus Arbitration 107

6.2.2.3 PMSI Bus Arbitration 110

6.2.3 Cache Replacement Policies 113

6.2.4 Victim Cache and Fixed DRAM Latency 114

6.2.4.1 Standalone DRAM Latency Impact 115

6.2.4.2 Impact of DRAM latency in the present of cache re-

placement . 117

6.3 Tests for Nonfunctional Requirements 119

6.3.1 Configurability . 119

x

6.3.2 Producability . 119

6.3.3 Performance . 120

7 Conclusion 122

7.1 Future Work . 123

A Your Appendix 124

A.1 Benchmarks . 124

A.2 CacheSim Module Hierarchy . 125

A.3 CacheSim Code Coverage Analysis 125

xi

List of Figures

1.1 Multicore processor chip baseline system model 3

2.1 Direct-mapped cache . 12

2.2 Set associative cache . 13

2.3 Victim cache organization . 15

2.4 Multi-core cache coherence issue . 18

2.5 MSI coherence protocol FSM . 22

2.6 Interconnect bus architectures . 26

2.7 Traditional TDM arbitration with no shared data. 29

2.8 TDM-based coherence approach [1]. Initially, C1 owns A in the M state. 29

4.1 CacheSim high-level architecture and major blocks 42

4.2 CacheSim class diagram representing the main functional blocks . . . 45

4.3 PrivCacheCtrl queues structure . 56

4.4 SharedCacheCtrl queues structure . 58

4.5 Interconnect bus system model . 73

5.1 PISCOT architecture. 77

xii

5.2 An illustrative example for the operation of PISCOT. Latency compo-

nents are for the getM(A) request from C2. At different time instances:

the bottom of the figure shows the state of the private core’s cache line

(left side), shared memory state (marked in red), and the Service

Queue contents on the right side. 79

6.1 CacheSim system context for verification 98

6.2 CacheSim testing framework . 100

6.3 Execution time for the synthetic workloads (FCFS, IO) 102

6.4 Breakdown of Synthetic workloads memory requests (FCFS, IO) . . . 102

6.5 Average latency of the Synthetic workloads (FCFS, IO) 103

6.6 Execution time for the EEMBC workloads (FCFS, IO) 103

6.7 Average latency of the EEMBC workloads (FCFS, IO) 104

6.8 PISCOT per-request worst-case latency for EEMBC suite. 105

6.9 PISCOT execution time for EEMBC suite. 106

6.10 PISCOT total observed and analytical memory latency for Splash-3

benchmarks. Values in y-axis are in log scale. 107

6.11 PISCOT Execution time comparison to conventional MSI protocol with

FCFS split-transaction bus. 108

6.12 PISCOT Average latency comparison to conventional MSI protocol with

FCFS split-transaction bus. 108

6.13 PISCOT versus FCFS split-transaction bus WCL with different number

of pending core requests (MSI, No-C2C, L2-Lat = 50 Cycles). 109

6.14 PISCOT versus FCFS split-transaction bus WCL with different number

of pending core requests (MSI, C2C, L2-Lat = 50 Cycles). 109

xiii

6.15 WCL of PISCOT versus FCFS split-transaction bus with different num-

ber of L2 cache response latency. (MSI, No-C2C, Npend = 1). 110

6.16 Execution time for PISCOT and FCFS split-transaction bus with dif-

ferent L2 bus latencies. (MSI, No-C2C, Npend = 1). 110

6.17 Per-request worst-case latency for SPLASH-3 suite. 111

6.18 Per-request worst-case latency for the EEMBC suite. 112

6.19 Execution time slowdown compared to conventional MSI protocol with

split-transaction bus. 112

6.20 L2 cache miss percentage for the synthetic benchmarks (MESI, PISCOT).114

6.21 L2 cache miss percentage for the synthetic benchmarks (MESI, FCFS). 114

6.22 Execution time for the synthetic benchmarks (MESI, PISCOT). . . . 115

6.23 Execution time for the synthetic benchmarks (MESI, FCFS). 115

6.24 Standalone DRAM latency impact on the Execution Time. 116

6.25 Standalone DRAM latency impact on the execution time for EEMBC

benchmark and L2 bus latency = 50 cycles. (MESI, FCFS). 116

6.26 Standalone DRAM latency impact on the execution time for EEMBC

benchmark and L2 bus latency = 25 cycles. (MESI, FCFS). 117

6.27 Execution time with different DRAM latency, Npend = 8, L2 bus la-

tency = 25 and 50 cycles. 118

6.28 Execution time with different DRAM latency 119

6.29 CacheSim XML configuration file format. 120

6.30 CacheSim run-time in minutes for EEMBC benchmarks. 121

A.1 CacheSim module hierarchy . 126

A.2 CacheSim code coverage analysis . 126

xiv

List of Tables

2.1 Common cache controller coherence transactions 20

2.2 MSI snooping protocol state table at cache controller side 23

2.3 MSI snooping protocol state table at LLC controller side 25

2.4 Bus arbitration existing approaches. 27

3.1 Cache simulators features comparison 33

4.1 MESI snooping protocol state table at cache controller side 62

4.2 MESI snooping protocol state table at LLC controller side 64

4.3 MOESI snooping protocol state table at cache controller side 65

4.4 MOESI snooping protocol state table at LLC controller side 67

6.1 Test case default configuration parameters 98

A.1 Synthetic benchmarks description . 124

xv

Notation and Abbreviations

Notation

-

Abbreviations

AvgL Average latency

CMP Chip Multiprocessors

EEMBC Embedded Microprocessor Benchmark Consortium

ET Execution time

C2C Cache-to-Cache transfer

FSM Finite state machine

ILP Instruction-level parallelism

IO In-order execution

IoT Internet-of-things

xvi

LLC Last Level Cache

MSI Modify-Shared-Invalid protocol

OOO Out-of-order execution

RR Round robin

rua Request under analysis

TLP Thread-level parallelism

WCL Worst-Case latency

VnV Verification and Validation

MG Module Guide

xvii

Chapter 1

Introduction

The end of Moore’s law should enable a new cusp of another Golden Age in Com-

puter Architecture that encouraging computer scientists to invent new architectures

to improve cost, performance, and security demands of modern embedded systems

applications. This thesis will introduce potential solutions addressing some of these

challenges.

1.1 Motivation

Semiconductor technology scaling has resulted in performance improvements of mi-

croprocessors over the past decades. The advancement of semiconductor manufac-

turing process has led to increasing both the frequency at which the processors run

and the transistor’s integration density. The increasing transistor bounty has led

to innovations in microprocessors architecture design. Many of these innovations

are meant to increase the amount of parallelism of instruction processors. For in-

stance, the early advancement of microprocessor architectures relied on innovations

1

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

like RISC, instruction-level parallelism (ILP), pipelined out-of-order execution cores,

superscalar, and multilevel caches plus speculation to improve performance. Although

the aforementioned architecture changes have boosted the performance of micropro-

cessors beyond technology scaling, they can no longer deliver the high-performance

demands of modern real-time embedded system applications such as those deployed

in automotive, avionics, and Internet-of-things (IoT) [2, 3]. Therefore, mainstream

chip-makers have turned their attention to thread-level parallelism (TLP) by design-

ing chips with multi-cores known as Chip Multiprocessors (CMP) to keep track of

the high-performance demand. Nonetheless, multi-core architectures bring their own

challenges. One of the biggest challenges is the interference among various cores in

the system while competing to access shared hardware resources such as memory

buses, shared caches, and off-chip memories [4]. This interference results in system

predictability issues and prevents the system analyzability since the execution time

of a task on one core now depends on the run-time behavior of tasks running on

other cores. Furthermore, cache coherence is another fundamental issue in multi-core

platforms, as many of today’s CMPs designs employ hierarchies of caches to miti-

gate latency and bandwidth gap between processor and memory speed. For instance,

standard memory system designs assume each core has its own private L1 cache and

a shared L2 cache among all or multiple cores as shown in Figure 1.1. Consequently,

this can lead to incoherent sharing of data while processors access different versions of

the same data present in their private cache. CMPs usually implement cache coher-

ence protocols to resolve the coherency issue, which adds another level of complexity

to the system.

2

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

C0

Cache
controller

Interconnection network

LLC
Controller

last-level
Cache
(LLC)

Cn

Cache
controller

DRAM
controller

Loads/
StoresLoaded

values

Issued coherence
requests & responses

Received coherence
requests & responses

Core
Side

Network
Side

Received coherence
requests

Issued coherence
responses

Victim
Cache

off-chip
DRAM

L1 Cache
L1 Cache

Loads/
Stores

Loaded
values

Figure 1.1: Multicore processor chip baseline system model

Moreover, maintaining exponential growth in technological metrics such as in-

creasing clock rates and transistor counts became very challenging now. For instance,

the newest Intel fabrication plant target for 10 nm technology node chip manufactur-

ing was considerably delayed, delivered in 2019, five years after the previous gener-

ation technology of chips with 14 nm feature [5]. So, it becomes obvious now that

we are on the cusp of a new Golden Age of computer architecture to track the high-

performance demand of modern applications [6, 7]. Thus, in order to support these

architecture innovations, computer system architects require accurate, extensible, and

easy-to-use simulators to explore and prototype ideas.

In light of these challenges, this thesis focuses on 1) building an accurate and easy-

to-use simulation tool that support simulating CMP environment with reasonably

detailed microarchitecture modeling for cache hierarchy, coherence protocols, on-chip

3

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

interconnect, and off-chip DRAM. The primary motivation behind developing this

tool would be to use it for architectural explorations, studying new design ideas, and

evaluating existing ones. 2) Then, we will use this tool to investigate the predictability

and cache coherent memory access problems as those are now first-order design issues

at the chip level in multi-core systems [1, 8, 9]. 3) Finally, we will show a practical

use-case of the simulator where it can be used to develop a novel predictable and

coherent memory access solution that provides considerably tighter latency bound

compared to the existing state-of-the-art solutions [8].

1.2 Thesis Contributions

This thesis proposes CacheSim [10], an efficient, extensible, and cycle-accurate simu-

lator for cache-coherent interconnect architectures. CacheSim is implemented in C++

using object-oriented programming concept with a high degree of configurablility to

facilitate design space exploration of predictability and cache coherent memory issues

raised in multi-core systems. The primary contributions of this simulator work are

as follows:

� Modularity: CacheSim is based on modules and layers approach. Each mod-

ule is coded in such a way that it can be constructed independently, and the

encapsulated data is accessed through a well-defined interface. In this manner,

changes to a particular block’s behavior do not impact the other blocks in the

system.

� Expansibility: CacheSim exploits the benefits of inheritance and polymor-

phism by providing virtual function interfaces, which minimize the amount of

4

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

code required to extend the functionality of each block.

� Configurability: CacheSim allows a high degree of configurability of system

parameters such as configuration for number of cores, cache memory hierarchy,

replacement policies, cache coherence protocols, bus arbitration policies, and

DRAM configuration. These system specification parameters are grouped into

a single XML document that allows the simulator to be fully configurable in

advance by the user.

� Reproducibility: In order to investigate and study the impacts of different pa-

rameters’ changes, it is crucial to allow reproducibility in simulations. CacheSim

implements automated scripts that enable the system designer to regenerate any

experiment setup based on a specific test-case configuration file for a specific

workload.

� Integrability: CacheSim accepts trace-based benchmarks as an input. Be-

sides, it also has an internal fixed DRAM latency model such that it can be

run in standalone mode. This mode of operation is devised to improve simu-

lation speed while focusing on evaluating the performance of new architectures

with benchmarks by leveraging microarchitecture modeling details to improve

simulation speed while maintaining reasonable functional correctness and per-

formance accuracy. On the other hand, CacheSim employs a generalized inter-

face that can be accessed by external memory simulators such as McSim [11] to

send memory requests and employs an abstract DRAM interface for the DRAM

device model so that the framework is not tied to any specific memory device

type. It also provides an easy way to connect to gem5 [12] in order to run full

5

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

system simulation.

� Cache memory hierarchy: CacheSim supports flexible cache organization at

both L1 and L2 caches in terms of cache size, cache block size, associativity

order, and replacement policy. A detailed discussion of supported features is

covered in Chapter 4.

� Memory Coherence: Unlike existing state-of-the-art simulators [13, 14, 15,

16], CacheSim supports detailed cache coherence protocols for atomic, pipelined,

or split-transaction buses. In CacheSim, we chose to implement coherence pro-

tocols that are commonly used in modern commodity multi-core architectures

such as MSI, MESI, and MOESI [17, 18]. However, the modular nature of the

simulator allows the user to plugin different protocols easily.

� Interconnect arbitration: Various arbiters are used to arbitrates coherence

and data response messages generated by cache controller instances over the

shared interconnect network. CacheSim supports both high-performance ar-

biters that favor system performance over other metrics such as fairness and pre-

dictability (e.g. First-Come-First-Serve (FCFS) [19, 20] and split-transaction [21,

22]), and predictable arbiters such as Time-division multiplexing (TDM) [23]

and predictable MSI (PMSI) [1]. Moreover, CacheSim enables Cache-to-Cache

data transfer feature between processing cores.

� Latency Checkpointing: CacheSim data logger module keeps track of all

memory requests initiated by processors and records various performance met-

rics such as cache hit/miss metrics and latency components of each request at

6

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

different checkpoints in the system. These metrics are potentially useful to sup-

port in order to verify and evaluate the performance new developed algorithms.

We then used CacheSim to explore the design space for improving predictability

of accesses to shared data on multi-core systems. In this work, we propose PISCOT:

a predictable and coherent bus architecture that (i) provides a considerably tighter

latency bound compared to the state-of-the-art predictable coherent solutions (4×

tighter bounds in a quad-core system) [1, 24, 25]. (ii) It does so with a negligible

performance loss compared to conventional high-performance architecture coherence

delays (less than 4% for SPLASH-3 benchmarks). This improves average performance

by up to 5× (2.8× on average) compared to its predictable coherence counterpart.

Finally, (iii) it achieves that without requiring any modifications to conventional

coherence protocols [8].

1.3 Thesis Structure

The remaining of this thesis is organized as follows: Chapter 2 presents a background

material for understanding this thesis. Chapter 3 discusses existing cache simulators

and compares our solution against them. Chapter 4 describes the architecture de-

sign of CacheSim and the detailed implementation of the simulated hardware blocks.

Then Chapter 5 proposes PISCOT, a predictable and coherent bus architecture that

substantially reduces coherence delays while improving overall system performance.

Chapter 6 evaluates and validates CacheSim features. Finally, Chapter 7 concludes

the work and provides some guidelines for future research.

7

Chapter 2

Background

This chapter presents background materials about multi-core system architecture in-

cluding caches, cache coherence, shared bus architectures, and off-chip DRAM. We

start in Section 2.1 by presenting the system model that we consider through the

thesis for multi-core systems. Section 2.2 explains what is a cache, how it is orga-

nized, and which parameters contribute to the cache’s storage requirements. We also

discuss details related to cache line replacement algorithms and victim caches. In Sec-

tion 2.3, we define cache coherence invariants require to maintain data coherency on

shared cache architectures and presents the big picture of cache coherence protocols

including our table-driven methodology for presenting protocols with both stable and

transient coherence states. Section 2.4 discusses shared bus architectures and differ-

ent scheduling techniques used for arbitrating coherence and data response messages

generated by CPU cores and shared memory controller over the shared bus. Finally,

in Section 2.5 we give a brief overview of the off-chip DRAM and how to model its

latency.

8

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2.1 CMPs System Model

Figure 1.1 shows an example of a single multi-core processor chip and off-chip DRAM.

The multi-core processor chips consist of multi single-threaded cores, and each core

has its own private L1 cache and cache controller unit. Cache controller implements

coherence protocol and acting as an interface between the processor core and shared

interconnection network. The chip also includes a last-level cache (LLC) that is shared

among all cores. Similar to the cache controller, the LLC controller maintains data

coherency at the LLC cache. LLC controller is connected to off-chip DRAM through

the DRAM controller and used to initiate memory requests whenever a core requests

data that does not exist in the LLC or Victim cache. The Victim cache is used to

hold L2 cache evicted cache lines.

2.2 The Cache

On-chip cache memories are used to overcome memory wall [26] problem. Memory

system designers employ hierarchies of caches to mitigate the latency and bandwidth

gap between processor and off-chip memory. Caches tend to be 10 to 100 times faster

than off-chip DRAM [27], and they work perfectly to knock down the memory wall

when the running applications exhibit temporal locality (i.e. they tend to reuse the

same data close in time) or spatial locality (i.e. applications tend to use data that

are located close to each other in memory). The cache memory is the first checkpoint

the cache controller utilizes to decide if the CPU request is a hit in the cache or not.

If the requested block state is valid and the tag bits stored in the cache match the

tag in the original request, then it is a hit. Otherwise, it is a miss, and the controller

9

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

needs to redirect the request to the next cache level or the off-chip DRAM if the miss

occurred at the LLC level.

2.2.1 Definitions

A Cache line is the smallest amount of data that can be transferred between the upper

level memory and the cache, usually represented in multiples of the machine words.

Increasing cache line size explore the advantage of the spatial locality. Whenever the

data requested by the processor is located in the cache, it is called a hit. Otherwise,

it is a miss. The mapping is the techniques used to assign one upper level memory

block to one cache line. There are two different policies govern the write operation

to the cache. 1) Write-through: Whenever, a processor wants to write to a certain

cache line, it update the value in both the cache and the main memory. The benefit

of write-through to the main memory is to simplify the data coherency management

at the expense of increasing the memory request traffic on the shared interconnect

network. 2) Write-back : the data is written only into the cache in the write-back

method. Then, the data is written back to the main memory only when the line is

removed from the cache or another core request it. Write-back is the most commonly

used technique to manage the write operation to the cache as it avoid useless back

writings to the main memory. 3) Miss penalty : the time required to load the missing

block from the next memory hierarchy level.

2.2.1.1 Different types of misses

A miss occurs when the data requested by the core does not exist in the cache: it

must be then fetched from the upper-level cache or main memory. There are four

10

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

types of misses:

� Compulsory misses: It is also known as cold start misses. Theses misses

occur when the data is referenced for the first time. Therefore, data must be

brought from upper level memory into the cache.

� Capacity misses: These misses occur when the application working set ex-

ceeds the cache size, so cache need to evicts blocks (i.e. do replacement).

� Conflict miss: These misses result from the mapping as we discussed in the

section above.

� Coherence misses: Theses misses occur in multi-core environment, the cache

coherence protocol may invalidate a line as we will discuss in Section 2.3.1.

2.2.2 Cache Organization

There are two methods used to map the date between upper level caches or main

memory and lower level caches as presented below.

2.2.2.1 Direct-mapped cache

Figure 2.1a illustrates the direct-mapped mapping of 128 Bytes cache, where each

line is composed of 4 words (i.e. 16 Bytes). The direct-mapped cache is the simplest

approach where each main memory address maps to exactly one cache line. The

mapping is done by dividing the physical address into three fields as shown in Fig-

ure 2.1b: 1) Byte Offset: is the first b bits (where b = log2(block size)), these bits

are used to select a specific word from the read cache line. 2) Cache Line Index: is

the next s bits (where s = log2(number of lines)), these bits are used to fetch cache

11

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Blk 0

Blk 1

0

16

64

PHY Addr

Memory

Blk 2

Blk 3

32

Blk 4

Blk 5

Blk 6

Blk 7

80

96

128

112

48

Blk 8

Blk 9

Blk 10

Blk 11

Blk 12

Blk 13

Blk 14

Blk 15

144

160

224

176

240

208

192

B0 or B8

B1 or B9

B2 or B10

B3 or B11

B4 or B12

B5 or B13

B6 or B14

B7 or B15

TagInfo bits

Cache Lines

(a) Mapping

Tag Index Offset

31 s+b b

TagInfo bits

Lines

==

select byte

Hit

To CPU

Valid-bit

PHY Addr

(b) Address decoding

Figure 2.1: Direct-mapped cache

line information stored in the cache. 3) Tag: is the remaining (32− s− b) bits of the

PHY-address.

Direct mapping is a simple strategy but inefficient to deal with conflict miss sit-

uation when two memory requests are mapped to the same location in the cache. In

this case, direct mapping triggers evictions and may significantly increase the miss

rate if this conflict happens frequently. Therefore, it increases the miss penalty. A

means to mitigate this issue is to allow a memory line to be mapped onto different

cache lines. This solution is presented in the next section.

2.2.2.2 N-way set associative cache

A set associative cache permits data to be mapped into different locations inside the

cache based on the associativity order. In set associative mapping, the cache is split

into sets where each set is composed of N ways. The cache scheme for 2-way set

associative cache is drawn on Figure 2.2, where a set is represented as the union of

the red rectangles. The CPU memory request is first mapped to a set using direct

map method, then it mapped on any of the N ways, thereby giving the possibility to

12

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Blk 0

Blk 1

0

16

64

PHY Addr

Memory

Blk 2

Blk 3

32

Blk 4

Blk 5

Blk 6

Blk 7

80

96

128

112

48

Blk 8

Blk 9

Blk 10

Blk 11

Blk 12

Blk 13

Blk 14

Blk 15

144

160

224

176

240

208

192

B0

B8

B1

B9

B2

B10

B3

B11

TagInfo bits

Cache

Set 0

Set 3

Figure 2.2: Set associative cache

decrease the number of conflict misses. Compared to directed-mapped caches, fully

associative caches are expensive to implement because 1) there is no index field in

the address anymore, the entire address must be used as the tag, increasing the total

cache overhead. 2) Data could be anywhere in the cache, so we must check the tag of

every cache block, therefore adding a lot of comparators. Cache associativity order is

a trade-off between performance (i.e. low conflict misses) and hardware complexity.

2.2.3 Cache Replacement algorithms

We have seen in the previous section that different upper level memory lines are

mapped to the same cache line. Thus, when a set of cache lines is full, an eviction

event is triggered among the cache lines of this set, which is the set of an N-way set

associative cache. The role of the replacement algorithm is to select the evicted cache

line as optimally as possible. Through this section, we briefly explain the replacement

13

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

policies supported by CacheSim.

� Random (RAND): The replacement policy selects a candidate cache line for

eviction randomly. This algorithm is easy to implement as linear feedback shift

register.

� Least Recently Used (LRU): The LRU algorithm evicts the least recently

used line. The idea behind is to keep the data recently used which should be

used soon (i.e. exploit temporal locality principle). This algorithm requires

to keep track of when each cache line was used. It is thus very expensive to

implement for large cache with great number of ways.

� Most Recently Used (MRU): In contrast to LRU, this algorithm discards

the most recently cache line first. This algorithm is useful in situations where

the older cache line is more likely to be accessed in the future.

� First-In-First-Out (FIFO): Using this algorithm, the cache behaves in the

same way as a FIFO queue. It removes block in the order they were brought

in the cache, thereby taken advantage of the locality principle in a simple way.

FIFO yield a miss ratio 12− 20% higher than LRU in average [28].

� Last-In-First-Out (LIFO): The cache behaves in the same way as a stack

when the LIFO is deployed. The cache evicts the block added most recently

first without any consideration to how often or how many times it was accessed

in the past.

� Least Frequently Used (LFU): This algorithm keeps track of the frequency

of accesses of the cache lines and replaces the LFU one. The drawback of this

14

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

method is that lines which have been accessed very frequently and that will not

be needed in the future tend to remain in the cache. Usually an aging policy

like LRU is preferred to use in this scenario to avoid cache pollution.

LLC or Main
Memory

L1 Cache

Victim FA
Cache

CPU

Evicted
DataSwap

Address

Figure 2.3: Victim cache organization

2.2.4 Victim Cache

CacheSim supports victim cache architecture that was proposed by Norman P.Jouppi

[29] to reduce the conflict misses of the direct-mapped cache without affecting its fast

access time. Victim Cache is a fully associative cache, whose size is typically 4

to 16 cache lines, locating between the L1 cache and the next level of memory as

shown in Figure 2.3. The data evicted from the L1 cache is placed into the victim

cache. Victim Cache implements a FIFO replacement strategy. Upon data access,

the following chain of events occurs: 1) The L1 cache is checked first; if it is a hit

in the L1 cache, the block is fetched from the cache and returned to the CPU. 2)

If it is a miss in the L1 cache but a hit in the victim cache, then the block in the

victim cache is promoted to the L1 cache, and the L1 cache missed line is placed in

the victim cache. 3) If the request is a miss in both the L1 cache and victim cache,

15

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

then the requested block is fetched from the next memory level and placed into the

L1 cache, and the L1 missed cache line is moved to the victim cache. We also can

deploy the same concept of victim cache at the higher caches levels to reduce the

amount of conflict misses at a low cost since the victim cache is very small compared

to the cache size.

2.2.5 Inclusive vs. Exclusive Caches

The data in multi-level caches can be organized in various ways depending on whether

the content of one cache level is present in the other cache levels. If the lower-level

cache contents are a subset of the higher-level cache, then the lower-level cache is

said to inclusive of the higher-level one. On the other hand, multi-level exclusion

is the other extreme where the data that is present in the lower-level cache cannot

be present in the higher-level cache. Non-inclusion caches lie in between the two.

A block can be presented in both the L1 and L2 cache or one of them. CacheSim

supports inclusion cache as it is the most commonly implemented policy in CMPs

today. For instance, IBM Power4 CMP and Intel Xeons scalable processors. inclusive

coherence protocol is simpler to implement than the other two protocols. However,

the main drawback is that multi-level inclusion does not effectively exploit the total

available cache capacity at the second cache level.

2.3 Cache Coherence

The possibility of incoherence arises only when there are multiple actors with access

to caches and memory. In modern systems, these actors are processor cores, DMA

16

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

engines, and external IO devices. Figure 2.4 shows once instance of data incoherent

on the shared cache line A in a dual-core system. 1○ initially, the L2 cache has A

with a value of 5. 2○ Core C0 performs a read on A; hence, it obtains a local copy

of A in its private L1 cache. 3○ Then, C0 performs a write operation that updates

this local copy to 8. 4○ Whem C1 reads A, the L2 cache responds with the stale

value of A, 5. This is because C0 did not update the L2 cache with the new value

of A. Therefore, when a cache block resides in multiple caches, and one of the cores

modified its private cached version it must ensure that the values in the caches of

other cores are updated to prevent outdated values from being used. To accomplish

this, cache coherence protocols are used to resolve data coherence issue.

A coherence protocols avoid data incoherence by deploying a set of rules to ensure

that cores access the correct version of data at all times. These rules are known as

coherence invariants [30] and are defined as follow:

• Single-Writer, Multiple-Read (SWMR) Invariant. For any memory location x,

at any given time t, there exists only a single actor that may write to x (and

can also read it) or some number of cores that may only read x.

• Data-Value Invariant. The value of the memory location at the start of an

epoch is the same as the value of the memory location at the end of its last

read–write epoch.

The cache controller is the hardware component that implements the coherence

protocol. General-purpose processors deploy different variants of coherence protocols,

as we will discuss in Section 2.3.1. The vast majority of these protocols called ”In-

validate protocols”, which are designed explicitly to maintain coherence invariants.

17

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

A=5

Rd(A)=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

C0

L1 Cache

Interconnect

L2 Cache

C1

L1 Cache

A=5

A=8

Wr(A)=8

A=8 A=5

Rd(A)=5

1 2

3 4

Figure 2.4: Multi-core cache coherence issue

For instance, if a core wants to read a memory location, it sends coherence messages

to the other cores to obtain the current value of the memory location and to ensure

that no other cores have cached copies of the same memory address in a read-write

state. These coherence messages end any active read-write epoch and begin a read-

only epoch. Moreover, if a core wants to write to a memory location, it sends another

coherence messages to the other cores to obtain the current value of this memory

address and to ensure that no other cores have cached version in read-only or read-

write states. These coherence messages end any active read-write or read-only epoch

18

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

and begin a new read-write epoch. Epoch’s different permissions are encoded in the

coherence state of the deployed protocol and stored in the cache tag for every block.

2.3.1 Cache Coherence Protocols

The cache coherence protocol enforces the coherence invariants through state ma-

chines at each cache controller and by exchanging coherence messages between con-

trollers. Many coherence protocols use a subset of the classic five stable states

{M,O,E, S, I} introduced by Sweazey and Smith [31]. The most fundamental three

states {M,S, I} represent the minimum set that enables multiple cores to simultane-

ously hold a cache line in read-only (state Shared), or to denote that a single core

holds a cache line in read-write (state Modified) and the other cores hold it in an

invalid state (state Invalid). State Owner and Exclusive are used to implement

coherence protocol optimizations. For example, state O achieves two benefits: 1) It

allows the protocol satisfies a read request by accessing the cache of another processor

core (the owner core) instead of accessing slower DRAM. 2) It eliminates the poten-

tially unnecessary write-back to the next level cache or DRAM. Adding the exclusive

E state enables the cache controller to upgrade the unshared cache line from shared

S to modified M state saliently without the need for issuing coherence messages on

the bus. The E state can thus eliminate half of the coherence transactions in this

common scenario.

2.3.1.1 Transient States

The transition between stable states do not usually happen atomically, they are usu-

ally interrupted by other requests from other cores as request to the memory bus from

19

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

different cores are allowed to interleave (i.e. there can be multiple pending requests

at the same time) to increase system performance as we will discuss in Section 2.4.

Thus, a cache line usually moves to one or multiple transient state(s) in its journey

from one stable state to another. In this thesis, we encode these states using a nota-

tion XY Z , which denotes that a cache line moves from stable state X to stable state

Y, and the transition will not complete until an event of type Z occurs. The waiting

event could be either a data or coherence message or both.

2.3.1.2 Coherence Transactions

A set of messages initiated by cache controller when Load/Store miss occurs in the

private cache. Most protocols have a similar set of transactions. Table 2.1 lists a

set of typical coherence transactions and the purpose of each transaction. We use

the preface ”Own” and ”Other” to distinguish coherence transactions issued by a

given cache controller versus those issued by other cache controllers. For example,

OwnGetS() means that the cache controller receives a coherence transaction that was

originally initiated by itself.

Table 2.1: Common cache controller coherence transactions

Transaction Goal of Requestor

GetS() obtain a cache line in Shared (read-only) state

GetM() obtain a cache line in Modified (read-write) state

Upg() upgrade a cache line from read-only to read-write state

PutM() evict a cache line in Modified state

20

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2.3.1.3 Cache-To-Cache Data Transfer

Cache-to-Cache (C2C) intervention optimization allows the cache controller to receive

data from another cache controller if the later one owns it in either M, O, or state

rather than receiving it from the higher-level memory. This intervention is faster than

retrieving the cache line from higher-level cache. Moreover, cache-to-cache commu-

nication architectures reduce the congestion on the shared interconnect network.

2.3.1.4 Snooping vs. Directory

There are two main classes of coherence protocols: snooping and directory. In

snooping-bases protocols, memory requests initiated by the cache controller are broad-

casted via a shared bus to all other cores on the bus. Snooping protocols rely on the

interconnection network to deliver the broadcast messages consistently to all cores.

On the other hand, in directory-based protocols, memory requests are transmitted

over an arbitrary point-to-point network to a centralized directory node. The choice

between snooping and directory protocols is a trade-off between scalability and com-

plexity. Directory cache coherence protocols offer promising scalability but higher

complexity for more processor cores compared to the snooping protocols that rely

on broadcast. In this thesis, we consider the implementation of the snooping-based

protocols only and leave the directory-based one for future work.

2.3.1.5 MSI Snooping-Based Protocol

Figure 2.5 delineates the complete state machine of the Modified-Shared-Invalid (MSI)

protocol. The diagram includes all transient states and control actions that need to

be taken by the cache controller. As with all MSI protocols, cores may perform loads

21

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

operation (i.e. hit) in states S and M , while stores hit only in state M. On load and

store misses, the cache controller issues coherence transactions by sending GetS() and

GetM() requests, respectively. The transient states ISd, IMd, SMd, ISdI, IMdS,

and IMdSI indicate that the request message has been sent, but the data response

has not yet been received. On the other hand, states ISad, IMad, SMad indicate that

the cache controller is waiting for both to observe its coherence message and data

response. Moreover, if the controller receives the requested data before observing its

coherence message, it has to move to either ISa, IMa, or SMa state and wait for its

message to appear on the bus. This is necessary since these broadcasted messages

are the contract between all cores guaranteeing that they all observe changes to cache

lines in the same order; otherwise, data inconsistencies will exist among cores.

M

I

S

adIM

aIM

dIM S

dIM I

dSM I

aI I

aM I

adSM

dSM

aSM

L
oa

d
 /

is
su

e
G

et
S

*

/

Own-
GetS

/

Other -
GetS

Other-
GetM

/

O
w

n
-D

at
a

/
H

it/

**

O
w

n
-D

at
a

/
H

it

/

O
w

n
-G

et
S

/
H

it

/

O
w

n
-D

at
a

**

Store /
issue GetM

O
w

n
-G

et
M

Own-Data /
Hit

/

Own-Data / Hit
/

Other-
GetM

O
th

er
-G

et
M

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

O
w

n
D

at
a

/
H

it

an
d

 S
en

d
D

at
a

St
or

e
/

is
su

e
G

et
M

Own-Data
/

Own-GetM /
Hit

/

O
w

n
D

at
a

/
H

it

an
d

 S
en

d
D

at
a

Own-Data
/

Own-GetM /
Hit

/

O
th

er
-G

et
M

 Other-GetS

O
th

er
-G

et
M

/

O
th

er
-G

et
M

 o
r

R
ep

la
ce

m
en

t

/

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

Other-
GetM

O
w

n
-D

at
a

/
H

it

an
d

 S
en

d
D

at
a

/

O
w

n
-D

at
a

/
H

it
an

d
 S

en
d

D
at

a
/

Other-
GetS

**
*

Other-GetS

Replacement /
issue PutM

/

O
w

n
-P

u
tM

 /

Se
n

d
D

at
a

Other-
GetMorS /
SendData

Own-
PutM

/

Other-GetS /
SendData

/

OtherGetM /
SendData

/

*

Load / Hit Or
Other-GetS

/

Load / Hit Or
Other-GetS

Load / Hit

Other-
GetM

Load 0r
Store / Hit

/

/

**

**

L
oa

d
 /

 H
it

O
r

O
th

er
-G

et
S

**

L
oa

d
 0

r
St

or
e

/
H

it

dIS I dIS adIS

aIS

dIM

dSM S

d
IM SI

d
SM SI

* = Other-GetM, Other-GetS, or Other-PutM. ** = Other-GetM or Other-GetS.

Figure 2.5: MSI coherence protocol FSM

22

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

We could specify coherence protocol specifications in tabular format, which is

the approach that we will use to describe the state machines of other complicated

coherence protocols in Chapter 4 instead of using state diagram. Tables 2.2 and 2.3

illustrate the specification of the cache controller at the private and shared memory

sides, respectively. We express state machine transitions according to input events in

the format ”action/next state”, and we may omit the ”next state” if the next state is

the same as the current state. If the state transition requires the controller to perform

a specific action, we use ”issue” or ”SendData” to specify the controller actions.

We also denote impossible or invalid transitions using ”X”, and it is important to

implement such error-checking assertions in the state machines to detect these fault

transitions when they occur. For instance, a cache controller should never receive a

data message for a cache line that it has not requested (i.e., a block in I state). ”-”

indicates no action needs to be taken by the controller.

Table 2.2: MSI snooping protocol state table at cache controller side

State Core Event Bus Event

L
o
a
d

S
to

re

R
e
p
la
c
e

O
w
n
G
e
tS

O
w
n
G
e
tM

O
w
n
P
u
tM

O
th

e
rG

e
tS

O
th

e
rG

e
tM

O
th

e
rP

u
tM

O
w
n

d
a
ta

re
sp

o
n
se

I issue

GetS/

ISad

issue

GetM/

IMad

X X X X - - - X

ISad stall stall stall -/ ISd X X - - - -/ISa

ISd stall stall stall X X X - -/ISdI - Hit/S

ISa stall stall stall Hit/S X X - - X X

ISdI stall stall stall X X X - - - Hit/I

IMad stall stall stall X -/

IMd

X - - - -/IMa

IMd stall stall stall X X X -/

IMdS

-/

IMdI

- Hit/M

23

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

IMa stall stall stall X Hit/

M

X - - - X

IMdI stall stall stall X X X - - - Hit

SendData

/I

IMdS stall stall stall X X X - -/

IMdSI

- Hit

SendData

/S

IMdSI stall stall stall X X X - - - Hit

SendData

/I

S Hit issue

GetM/

SMad

-/I X X X - -/I - X

SMad Hit stall stall X -/

SMd

X − -/ IMad - -/ SMa

SMd Hit stall stall X X X -/

SMdS

-/

SMdI

- Hit/ M

SMa Hit stall stall X Hit/

M

X - -/ IMa X X

SMdI Hit stall stall X X X - - - Hit

SendData

/I

SMdS Hit stall stall X X X - -/

SMdSI

- Hit

SendData

/S

SMdSI Hit stall stall X X X - - - Hit

SendData

/I

M Hit Hit issue

PutM/

MIa

X X X Send

Data/

S

Send

Data /

I

- X

MIa Hit Hit stall X X Send

Data/

I

Send

Data/

IIa

Send

Data /

IIa

- X

IIa stall stall stall X X -/I - - - X

24

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Table 2.3: MSI snooping protocol state table at LLC controller side

State Bus Event

GetS GetM OwnerPutM OtherPutM Data

IorS SendData SendData,

SetOwner/ M

X - X

M ClearOwner/

MdIorS

SetOwner / C2C ?

- : MdM

ClearOwner/

MdIorS

- StoreData/

IorSa

MdIorS stall stall stall - StoreData/

IorS

MdM stall stall stall - StoreData/ M

IorSa ClearOwner/

IorS

SetOwner/ M ClearOwner/

IorS

- X

2.4 Interconnection Network

The complexity of the coherence protocols heavily relies on the interconnect network

architecture. For instance, the proposed baseline MSI coherence protocol introduced

in Figure 2.5 assumes interconnecting cores with a split-transaction bus. Indeed, a

significant optimization can be done to simplify the design of the protocol when atomic

buses are deployed at the interconnect network. However, atomic buses degrade

performance considerably as shown in Figure 2.6 - 1○. Interconnecting cores with an

atomic bus prevents all other cores from utilizing the bus until the core that granted

access to the request bus receives its data on the response bus. Consequently, most

modern systems implement non-atomic buses for improved performance. Figure 2.6 -

2○ illustrates the operation of a pipelined, non-atomic bus. The key advantage is not

having to wait for the data response before a subsequent request can be serialized on

the request bus, and thus the bus can achieve much higher bandwidth compared to

the atomic bus. Figure 2.6 - 3○ shows the operation of the split-transaction bus. The

25

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

main difference between the pipelined and split-transaction buses is that pipelined bus

provides data responses in the same order as the requests, while the split-transaction

bus can provide responses in an order different from the request bus.

REQ 1

RESP 1

REQ 2

RESP 2

REQ 3

RESP 3

REQ 1

RESP 1

REQ 2

RESP 2

REQ 3

RESP 3

REQ 1

RESP 2

REQ 2

RESP 3

REQ 3

RESP 1

1

2

3

Figure 2.6: Interconnect bus architectures

Compared to a pipelined bus, the advantage of the split-transaction bus is that

a low latency response does not have to wait for a long latency response to a prior

request. For instance, if REQ 1 is for a cache line that is a miss in LLC cache, then

the block has to be fetched from the off-chip DRAM, at the same time REQ 2 is for

a cache line owned by LLC, then forcing RESP 2 to wait for RESP 1, as a pipeline

bus would require, incurs a performance penalty.

2.4.1 Scheduling schemes

Bus arbiters decide which processing core would become the current master of the

bus. A variety of scheduling schemes has been proposed by researchers for both

performance-oriented and real-time platforms. Table 2.4 classifies these arbiters into

three main categories, and we discuss them in details in the following subsections.

26

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Table 2.4: Bus arbitration existing approaches.

Approaches Arbiter Shared Data Support Coherence Protocol Predictability Examples
COTS High 33 33 7 FCFS [19, 20],

platforms performance split-transaction [21, 22, 32, 33],
baseline priority-based [20, 34]

Traditional Predictable 7(not data-aware) 7 33 TDM: [35, 36, 23], RR: [37],
Real-Time by-design Harmonic RR (HRR): [38],
Arbitration weighted RR: [39]
Data-Aware builds on 33 3(requires coherence modifications) 3(with significant latency bounds) PMSI [1], CARP [25],
Arbitration traditional arbitration HourGlass [40], PENDULUM [24]

2.4.2 Commodity Performance-Oriented Arbitration

Arbitration among different requests in COTS platforms is usually realized using a

high-performance arbiter that favors system performance over other metrics such as

fairness and predictability. Such arbiter prioritizes requests based on their arrival time

(age-based priority), where older requests are serviced before younger ones. A com-

mon example of such arbiter is the First-Come First-Serve (FCFS) scheme [19, 20].

Such arbitration is not predictable since it provides no latency guarantees upon access-

ing the shared memory. This is because one core can have a request that is pending

(theoretically) forever, while other cores are saturating the queues. In addition to age-

based arbitration, some COTS platforms also deploy another level of fixed-priority

arbitration to give higher-priority for requests from a certain processor. This also en-

tails no guarantees are granted to lower-priority requests. A final observation about

COTS arbiters is that for cache coherent systems, the bus is usually implemented as

a split-transaction interconnect to increase system performance by concurrently han-

dling both coherent requests (messages) and data responses [30, 21, 22, 32, 33]. For

instance, the ARM Corelink CCI550 dictates separate channels for snooping requests

and their corresponding responses [32]. Similarly, the Intel’s QPI designates different

virtual channels to data and coherence messages [33].

27

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2.4.3 Traditional Real-Time Arbitration

In multi-core real-time systems, access to the shared memory (e.g. the Last-Level

Cache (LLC)) is managed through a predictable arbiter such as (TDM) [35, 36, 23],

and Round Robin (RR) [37]. Considering the TDM arbitration example depicted

in Figure 2.7, a request suffers a maximum latency of one TDM period before it is

granted access to the bus. For a system with N cores, this is N · S cycles, where S

is the slot width in cycles. This occurs when the requesting core just misses its own

slot. We denote a core as Cx, where x is the core index. The GetM(B) from C2

in Figure 2.7 is an example of such a request, where it arrives to the private cache

controller at timestamp t. Assuming that C2 just missed its own slot, it waits until

t+ 150 to gain access to the bus. Since the system in Figure 2.7 has three cores, this

is equivalent to a one TDM period of 3 slots assuming that the slot width allows for

only one memory transfer (one request) and is 50 cycles. Once granted access to the

bus, the request conducts its memory transfer consuming an extra slot (50 cycles)

and finishes at t+ 200.

The big limitation of this analysis is that it only applies if cores do not share

data. In the example in Figure 2.7, all the cores request to access different cache

lines. Consequently, the shared memory is able to respond with the correct data in

the request’s same slot. Unfortunately, this does not apply if cores are allowed to

share data. It has been shown by [1] that shared data can lead to unpredictable

behavior even when deploying a predictable arbitration such as TDM.

28

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

GetM(C)
Rx(C)

GetM(A)
Rx(A)

GetM(B)
Rx(B)G

et
M
(A
)

G
et
M
(B
)

GetM(C)

50t � 100t � 150t � 200t �t
ArbL AccL

xt -

C0 C2 C1

C0 C1 C2

Figure 2.7: Traditional TDM arbitration with no shared data.

GetM(A)GetM(A) GetM(A) WB(A) Rx(A) WB(A) Rx(A) WB(A) Rx(A)

GetM(A) GetM(A) GetM(A)

x 50t � 100t � 150t � 200t � 350t � 500t � 650t � 800t � 950t � 1050t� 1100t�t

ArbL CohL AccL

t -

C1C2C0

C0

C1

C2

Figure 2.8: TDM-based coherence approach [1]. Initially, C1 owns A in the M state.

2.4.4 Coherent Shared-Data Aware Predictable Arbitration

To guarantee predictability while allowing coherent sharing of data, several recent

arbitration solutions have been proposed [1, 24, 25, 9]. All these solutions assume

a variant of the TDM arbitration scheme and propose coherence protocol as well as

architectural changes to support predictability. Despite showing that coherence can

lead to significant performance improvements in data-sharing real-time systems, they

incur significant WCL bounds. To illustrate this drawback, Figure 2.8 delineates the

TDM behavior for the same system in Figure 2.7 but with assuming that cores can

share data, and hence, they issue requests to the same cache line, A. The example

follows the protocol guidelines from PMSI [1].

It is clear from Figure 2.8 the significant added latency due to the coherence

interference on the shared data. The request under analysis (GetM(A) from C2)

in this case has to wait for every other core to receive the data of cache line A,

conduct the store operation, and then write it back to the shared memory. Since

the slot width of the TDM allows for only one memory transfer, and every core gets

29

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

one slot per TDM period, every core now requires two TDM periods to conduct the

aforementioned operation. As a result, C2’s GetM(A) request waits until timestamp

t+ 1050 in Figure 2.8 before it can start receiving its requested data. Formally, for a

system with N cores and a TDM arbitration with shared data, a request has to wait

for up to (2 ·N2 + 2 ·N) ·S before it can start transferring its requested data [1]. The

other existing solutions while supporting systems with mixed criticalities [24, 25], this

comes at the expense of incurring even larger WCL than PMSI if all cores have the

same criticality. The DISCO solution in [9] improves the WCL bounds by requiring

a special handling of writes compared to reads.

It is worth noting that in Figure 2.8 it might seem that there are many idle

slots, and thus, this large latency can be completely avoided using a work-conserving

schedule. However, this is not true since there can be requests from other cores in

the system that utilize these slots. They are not shown in Figure 2.8 for simplicity.

For example, C0 receives its requested data at timestamp t+ 400. Thus, it can issue

another request afterwards in its coming slots. Clearly, in an out-of-order architecture,

more pending memory requests can also co-exist in the system.

2.5 Off-chip DRAM

Dynamic Random Access Memory (DRAM) is a three-dimensional array of memory

cells consisting of multiple banks, and each bank consists of several rows and columns.

A DRAM module consists of one or more ranks such that each rank consists of multiple

banks. Multi-rank DRAM is used to form a wide interface to increase the amount of

data that can be transferred in one access; this is known as the memory granularity.

DRAM accesses are controlled by the memory controller (MC) that arbitrates among

30

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

different requestors. MC also generates memory access commands and translates

the request’s physical address into channel, rank, bank, row, and column addresses.

There are four main types of commands generated by MC: RAS, CAS, PRE, and

REF. The RAS commands use the row address to index a particular row in a bank

and place the data into the row buffer. The row buffer is a temporary buffer that

holds the open row data for further reads and writes operations. The CAS command

reads or writes a specific portion of data in the row buffer. The pre-charge command

PRE is used to write back the row buffer into the memory cells. DRAM cells must be

refreshed periodically in order to retain the stored values. MC uses REF commands

to reference the DRAM. The performance of the main memory subsystem is highly

dependant on the arbitration scheme deployed at the MC and on the DRAM device

technology [11]. Several existing DRAM device models can be used to model the

complex internal behaviour of the DRAM device depending on the required accuracy

and simulation speed. For example, a simple fixed-latency [41] or non-cycle accurate

models [42] can be used for fast DRAM simulation, while more sophisticated device

simulators such are Ramulator [43] can be used when the model accuracy is the

primary concern.

31

Chapter 3

Related Work

We use a survey of cache simulators published by Brais et. al [44] in 2020 to com-

pare CacheSim against a subset of these simulators. The survey provides a detailed

discussion on 28 CPU cache simulators, including popular or recent simulators. We

compare our proposed solution against a subset of 14 simulators given in Table 3.1,

the other remaining simulators either have similar characteristics or were commer-

cialized. In the following sections, we compare these simulators in five major design

characteristics: 1) Support for functional and timing simulation. 2) Support for cache

coherence protocols. 3) Support for different cache configurations such as cache size,

cache block size, associativity, and replacement algorithms. 4) CMPs architecture

support in terms of the configurable number of processing cores and cache hierarchy

levels, shared memory hierarchy. 5) Interconnect and bus arbitration.

32

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Table 3.1: Cache simulators features comparison

Simulator Design feature

PS CO Ncore Cohr RP BW Arb IE Nlvl Mo Sc

gem5 [12] 3 3 3 P 3 3 Hp 3 3 FT FS/A

Cachegrind [13] 3 3 F 7 3 7 7 F F Fn C

Dinero IV [14] 3 3 F 7 3 7 7 F 3 Fn C

CASPER [15] 3 3 3 7 3 7 7 F 3 Fn C

CMP$im [45] 3 3 3 ? 3 ? ? 3 3 Fn C

drcachesim [46] 3 3 3 7 3 7 7 F F Fn C

MARSSx86 [47] 3 3 3 ST F 3 Hp F 3 FT FS

McSimA+ [48] 3 3 3 ST F 3 Hp 3 3 FT FS/A

MacSim [16] 3 3 3 ST F 3 3 3 3 FT FS/A

vCSIMx86 [49] 3 3 3 ST 3 7 7 3 3 Fn C

SMPCache [50] 3 3 3 3 3 3 3 F 3 Fn C

Multi2Sim [51] 3 3 3 ST 3 3 3 F 3 FT FS/A

ZSim [52] 3 3 3 ST 3 F F F 3 FT FS/A

Sniper [53] 3 3 3 ST 3 3 Hp F 3 FT FS/A

CacheSim 3 3 3 3 3 3 3 F F FT C

Notes 1) PS = private and shared caches, CO = cache organization includ-

ing cache size, cache block size, and associativity, Ncore = number of

processing cores, Cohr = cache coherence, RP = replacement policy,

BW = bus bandwidth, Arb = bus arbitration, IE = inclusive v/s

exclusive caches. Nlvl = number of cache levels, Mo = simulation

mode, Sc = scope.

2) 3= configurable to some extend, F = fixed and simple, 7= not

simulated or considered, ? = unknown, Fn = functional only, FT =

functional and timing, Hp = high-performance arbiters C = cache

simulator, FS/A = full system or application, ST = stable states

only, P = stable states and partial support for transient states.

33

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

3.1 Simulation Mode

Cache simulators can support functional and/or timing simulations. Functional sim-

ulators do not have a notion of time. They only used to perform statistical evaluation

by counting the frequency of interesting events such as cache hit and miss rates. On

the other hand, timing simulators simulate CPU datapath, memory hierarchy, on-

chip interconnect, DRAM and controllers cycle-by-cycle. Therefore, they need to be

cycle-accurate. Unlike functional simulators, timing simulators are beneficial to eval-

uate predictability-performance trade-offs of the developed algorithms. According to

Table 3.1, all cache-only simulators can run functional simulation only. For instance,

Cachegrind [13], Dinero IV [14], CASPER [15] and vCSIMx86 [49]. However, our

solution supports both functional and timing simulation. Full system (FS) or appli-

cation simulators such as MacSim [16], gem5 [54], and Sniper [53] also support both

functional and timing simulations.

3.2 Cache Coherence Protocols Support

Existing solutions offer limited coherency support. According to Table 3.1, we classify

existing simulators into three categories. 1) Simulators do not support cache coher-

ence protocols in their design such as Cachegrind [13], Dinero IV [14], CASPER [15],

and drcachesim [46]. These simulators can not be used to run multi-core simulations

with shared data among different processing cores, as they will produce incorrect func-

tional and timing results due to the lack of cache coherence protocols implementation.

2) Simulators implement only the stable states of coherence protocols (majority of the

simulators) such as gem5 [54] classical cache model, MARSSx86 [47], MacSim [16],

34

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

McSimA+ [48], vCSIMx86 [49], Sniper [53], Multi2Sim [51], and ZSim [52]. These

simulators assume atomic transactions at the interconnect network; therefore, they

ignore the implementation of the transient states of coherence protocols. However,

atomic buses degrade performance considerably, as we discussed in Section 2.4. In-

terconnecting cores with an atomic bus prevents all other cores from utilizing the bus

until the core that granted access to the request bus receives its data on the response

bus. Consequently, most modern systems implement non-atomic buses to improve

performance. Moreover, this restriction hinders the design space exploration of bus

arbitration schemes as well. 3) Simulators support stable states and partially support

transient states such as gem5 Ruby version. gem5 version 20.0+ [54] includes two

cache systems models: the classic caches and Ruby caches. The classic caches have

single hard-coded hierarchical MOESI coherence protocols (supports stable states

only). The Ruby caches enable a configurable cache system model. However, it

requires the user to define coherence protocols specification using a domain-specific

language called specification language for implementing cache coherence (SLICC).

The designer first needs to learn this new coding language and then write the full

coherence protocols specification using SLICC. Thus, it consumes significant devel-

opment time. In addition, it is not a pluggable solution, as the user also needs

to modify the interconnect definitions to consider the new protocol modifications.

SMPCache [50] claims that they support cache coherence in their implementation.

However, we could not verify if they only support partial or full coherency model

as this tool is not available as open-source. Clearly, there is a potential need to

have a light-weight simulation tool with detailed and configurable cache coherency

models to enable researchers to explore new designs for multi-core architectures with

35

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

shared data, which is where our simulator work steps in. CacheSim supports holis-

tic coherency models, including the implementation of all stable and transient states

to support modern interconnecting multi-core bus architectures such as non-atomic

pipelined and split transaction buses. Implementing the full coherence protocol spec-

ifications allows the user to decouple the development of coherence protocol from the

interconnect and arbiter design, making the simulator easy to use and expansible as

the user can now change the bus architecture or bus arbiter design without the need

to modify the coherence protocol itself.

3.3 Cache Configurability

According to Table 3.1, all simulators, including our solution, support configurable

cache parameters such as cache size, cache block size, and associativity. Also, many

simulators such as gem5, Cachegrind [13], and Dinero IV [14] allow different configu-

rations for the replacement policy. Other simulators, such as MacSim [16], use a fixed

replacement policy (LRU, in this case).

3.4 CMPs Architectures Support

3.4.1 Multi-threaded Workloads

An essential aspect of a simulator is to support multi-threaded workloads as many of

today’s modern embedded system applications rely on TLP to improve performance.

Dinero IV and Cachegrind can run only single-threaded workloads. Usually, two ap-

proaches can be used to support multi-thread execution. 1) Full system simulators

36

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

(FS), such as gem5 [12] and MARSSx86 [47], rely on the underlying OS to sched-

ule threads and map them into different processing cores. 2) Trace-based simulators

including CASPER [15] and vCSIMx86 [49] use benchmarks for multi-thread appli-

cations as an input to support TLP simulations. A full system simulation approach

is beneficial for design space exploration that requires heavy I/O activities or exten-

sive OS kernel function support. However, these simulators are relatively slower than

trace-driven simulators [48]. Moreover, involving OS and its underlying running soft-

ware stack make it challenging to isolate the impact of architecture changes from the

interaction between hardware and software. Therefore, FS simulators are not the best

choice compared to the trace-based class if the research targets only architectural as-

pects. Thus, we consider the trace-based approach as the primary mode of operation

in our simulator. The primary motivation behind developing CacheSim is to use it

for architectural change explorations, study new design ideas, and evaluate existing

ones. We have no intention to position our simulator as a FS simulator. Nevertheless,

CacheSim is designed in an extensible and integrable way through generic interfaces

such that it can be integrated easily with any full-system simulator to support FS

simulations if needed.

3.4.2 Multi-level cache hierarchy

Current CMPs employ a complex cache hierarchy to mitigates latency and bandwidth

gap between processors and memory speed. Consequently, it is vital to support multi-

level cache hierarchy with both private and shared caches. Some simulators such as

CMP$im [45], McSimA+ [48], and zSim [52] support a configurable cache hierarchy,

while others (e.g. Cachegrind [13] and drcachesim [46]) support a fixed hierarchy of

37

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

private L1 cache and a shared L2 cache among all cores. This architecture is the

most common hierarchy deployed in CMPs design more than a decade ago and still

common for low-power processors. CacheSim supports the common hierarchy (fixed

hierarchy, in this case).

3.5 Interconnect and Bus Arbitration

We have covered most of the current work related to interconnect and bus arbiters

in the background chapter in Section 2.4.1. Hence, we focus here on the simulators’

flexibility of bus arbitration and interconnect model. Similar to the cache coherence

observations that we made in Section 3.2, many of the existing simulators do not sup-

port flexible arbitration policies at the interconnect network. 1) cache-only simulators

completely ignore the interconnect and bus arbitration implementation since they do

not support cycle-accurate models for CPU datapath, memory hierarchy, and on-chip

interconnections and their primary focus on reporting statistical metrics such as cache

hit/miss rates. 2) Full system and application simulators either support a fixed arbi-

tration policy such as Zsim or support only high-performance arbiters such as gem5

and MARSSx86. On the other hand, CacheSim supports both high-performance and

real-time arbitration policies.

38

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

3.6 Performance Driven Simulators

The majority of architectural-level full-system and cache-only simulators are software-

based solutions. Other techniques deploy hardware-accelerated architecture to sim-

ulate multi-core cache coherence in a high-speed way. Approaches using FPGA ac-

celerators are shown to provide higher simulation speed compared to the existing

software-based solutions. For instance, the hardware-accelerated solution proposed

in [55] uses FPGA to implement a cache simulator that runs on 100 MHz clock fre-

quency and consumes about 570,000 logic elements to model a multi-core system

with four processing cores. This system achieves up to 2× speedup when compar-

ing with the Dinero IV software-based simulator. Hardware-accelerated solution also

provides more accurate and efficient replication of the original hardware components

compared to the software-based solution. For instance, FGPA accelerators describe

hardware components using hardware description languages (HDLs) such as Verilog

or VHDL; these languages can model hardware at the register transfer level (RTL)

and provide low-level details of the combinational and sequential hardware elements,

data-path, and computational data widths. Moreover, hardware accelerators rely

on SoC synthesis and placement and routing (PnR) tools to run timing, area, and

power analysis of the developed hardware. These tools provide accurate information

about the timing specifications of subsystem components such as digital logic and

wire delay, clock tree, and interconnect routing. Besides, they provide an accurate

estimate for the hardware area and power consumption compared to software-based

solutions. Although the hardware-accelerated approach achieves accurate and better

performance compared to the software-based technique, it comes at the cost of sig-

nificantly reducing the system configurability. Moreover, these solutions take a long

39

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

design cycle compared to software-based techniques, as they require high-level archi-

tectural modeling skills and consume significant amount of time during verification

and feature extensions.

40

Chapter 4

CacheSim Framework

CacheSim is a cycle-based detailed cache-coherent interconnect simulator designed

to supports holistic coherency models for modern interconnecting multi-core bus ar-

chitectures. Decomposing a system into modules is a commonly accepted approach

to developing software. CacheSim advocates a decomposition based on the principle

of information hiding [56]. This principle supports design for change, because the

”secrets” that each module hides represent likely future changes, especially during

initial development as the solution space is explored. Therefore, design for change

is valuable to consider when developing software. CacheSim is written in C++ us-

ing object-oriented programming concepts to support a modular, expansible, config-

urable, and integrable implementation of the simulator. Throughout this chapter,

we introduce the high-level architecture of the CacheSim in Section 4.1. Then, we

discuss the detailed implementation of simulated hardware components in Section 4.2

including the uses hierarchy between modules. We defer the evaluation and validation

discussion of CacheSim to Chapter 6.

41

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

RB DB

R
E

Q
M

a
p

p
in

g

R
EQ

 M
u

x

MemReq
Gen

L1
 C

ac
h

e
 C

o
n

tr
o

lle
r

Cmd/Resp
Queue 0

Cmd/Resp
Queue 1

Cmd/Resp
Queue N-1

R
e

q
-B

u
s

A
rb

it
er

R
e

s-
B

u
s

A
rb

it
e

r

L1 cache
Pending
Buffer

CPU Interface
Buffers

LL
C

Co
nt

ro
lle

r

L2 cache

D
R

A
M

 M
u

x

Victim
Cache

Writeback
Buffer

Internal
DRAMCtrl

Latency
Check-Points

Core 0
TraceFile

Si
m

ul
at

io
n

 E
n

gi
n

e

XML
Config File

Req

Core 0
LatencyFile

Requestor
0

Requestor
1

Requestor
N-1

MCsim DRAM
Simulator

D
R

A
M

 D
e

vi
ce

Requestor
0

Requestor
1

Requestor
N-1

CPU-Sim
Interconnect

Network

SharedCacheCtrl

CacheSim
PrivCacheCtrl

Figure 4.1: CacheSim high-level architecture and major blocks

4.1 CacheSim High-Level Architecture

Figure 4.1 depicts the high-level architecture of CacheSim. CacheSim is decomposed

into seven subsystems. 1) CacheSim is the main constituent of the simulator which

responsible for creating instances of the various classes based on the user configura-

tion. The simulator accepts two types of inputs from the user, i) high-level configura-

tion parameters such as benchmarks trace files path, output results path, and other

debug configurations are given using command-line arguments. ii) test-case specific

parameters such as configurations for each subsystem component are provided in a

format of XML document. We advocate this technique to allow a high degree of

configurability of the running experiments. Besides, to allow reproducibility in sim-

ulation, which is a key feature for architectural change explorations and study new

design ideas. Moreover, CacheSim provides a generalized I/O interface to facilitate

integrability with external simulators such as CPU model simulator (e.g. gem5 [12])

and/or DRAM memory system simulator (e.g. MCsim [11] and Ramulator [43]) to

support full system simulations. 2) CpuCoreGen supports trace-based simulation

mode. This mode allows running multi-thread simulation through benchmarks trace

files given as an input to the simulator. CpuCoreGen sends memory requests and

42

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

receives data acknowledgments from its corresponding cache controller subsystem

through a set of CPU interface buffers. The benefit of including those buffers is to

support asynchronous operation between subsystems and also to facilitate modularity

and OOO operations. 3) PrivCacheCtrl is the main constituent of the L1 cache

system of each processing core, which includes i) cache controller that implements

top-level controller of L1 cache in addition to cache coherence protocol. ii) cache

memory device, including implementation for all replacement policies discussed in

Section 2.2.3, iii) pending write-back buffer, which is used to save pending write-back

messages that need to be sent on the interconnect. iv) a set of bus interface buffers to

facilitate asynchronous operation between cache controller and interconnect network.

4) Interconnect network considers the implementation of the interconnect includ-

ing both unified and split bus architectures in addition to bus arbitration policies

that are discussed in Section 2.4.1 as well as the proposed PISCOT solution that is

presented in Chapter 5. Interconnect network connects both the L1 cache system

of each processing core and shared L2 cache systems through the bus interconnect.

Again, the communication between these components is facilitated through a well-

defined interface to support modularity and design for change principle. 5) Similar

to PrivCacheCtrl system, SharedCacheCtrl implements i) top-level controller of

L2 cache and the cache coherence protocol at shared memory, ii) L2 cache memory

device in addition to replacement algorithms, iii) pending write-back buffer which

holds shared cache controller write-back messages. iv) a set of bus interface buffers

to facilitate asynchronous operation between modules. SharedCacheCtrl has another

interface with the DRAMCtrl system, and the interface is implemented using a set of

43

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

FIFOs as well. However, it is not shown in Figure 4.1 for simplicity. It is worth men-

tioning that both L1 cache memory and L2 cache memory systems are implemented

using an abstract class to allow code reusability. We have decided to implement the

victim cache at the L2 cache system. However, it can be instantiated inside the L1

cache system easily if required. 6) DRAMCtrl supports fixed DRAM latency model

approach that is discussed in Section 2.5. This module aims to allow for DRAM sim-

ulation without the need to interface CacheSim with an external DRAM simulator.

However, as discussed, the simulator provides a clear interface that easily allows it to

be extended with any DRAM simulator. 7) Latency Check-points module serves

as a data logger, which keeps track of all memory requests generated in the system

and records various performance metrics such as cache hit and miss rates and latency

components at different points in the system. These metrics will be considered when

we validate the simulator features in Chapter 6.

4.2 CacheSim Functional Hardware Blocks

Throughout this section, we discuss the detailed implementation of CacheSim’s hard-

ware blocks and their interactions according to the class diagram in Figure 4.2. We use

the filled diamond shape to represent the composition relationship between modules,

hollow triangle shape to represent inheritance, and solid triangle shape to represent

association relationship. For the sake of readability, we use the small boxes as con-

nectors to the original class names.

44

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

CacheSimCacheSim

-xml::McoreSimProjectXml
-project::McoreSimProject
-BMsPath : string
-SimConfigFile: string

-CommanLine::Parse()
-Time::SetResolution()
-Simulator::Run()
-Simulator::Destory()

McoreSimProjectXmlMcoreSimProjectXml

-m_privCaches::list<CacheXml>
-m_sharedCache::CacheXml
-m_L1BusCnfg::L1BusCnfgXml
...

+LoadFromXml()
+GetPrivCaches()
+GetSharedCache()
+GetL1BusCnfg()
+GetBMsPath()
...

CpuCoreGenCpuCoreGen

-m_cpuCycle
-m_bmFileName
-m_cpuReq: ReqMsg
-m_cpuResp: RespMsg

-ProcessTxRxMsg()
+ init()
+step()

PrivCacheCtrlPrivCacheCtrl

-m_dt : double
-m_cache :: GenericCache
-m_cpuPendingFIFO :: GenericFIFO<T>
-m_PendingWbFIFO :: GenericQueue <T>
-m_cohProtocol::Ptr<SNOOPINGPrivCohProtocol>
...

-DoWriteBack()
-SetMaxPendingReq(int maxPendReq)
-SetProtocolType(CohProtType type)
-CacheCtrlMain()
+init()
+step()
...

SharedCacheCtrlSharedCacheCtrl

-m_dt : double
-m_PndWBFIFO :: GenericFIFO
-m_cache :: GenericCache
-m_victimCache :: GenericCache
-bmsPath : string

-DoWriteBack()
-SendDRAMReq()
-CohrProtFSMProc()
-VictimCacheLineEvict()
-CacheCtrlMain()
+step()
+init()
...

BusArbiterBusArbiter

+m_dt
-m_reqBusArb : string
-m_respBusArb : string
-m_reqBusCycle : uint64_t
-m_respBusCycle : uint64_t
-m_busArch : string

-InsertOnBus()
-CheckPendingMsg()
+ReqStep()
+RespStep()
+init()
+start()
...

CacheMemDeviceCacheMemDevice

-m_cache :: GenericCacheFrmt*
-m_nways : uint32_t
-m_nsets : uint32_t
-m_replcPolc :: ReplcType
+CacheLineInfo : struct
...

-InitializeCacheStates()
-SetCacheSize()
-SetCacheBlkSize()
-SetMappingType()
-SetReplcPolicy()
-WriteCacheLine()
-ReadCacheLine()
-CpuAddrMap()
-GetCacheLineInfo()
-GetReplcLine()
...

IFCohProtocolIFCohProtocol

-CohrProtType: enum class
+SNOOPPrivCohrProc()
+SNOOPSharedCohrProc()
...

MSIMSI PMSIPMSIMOSIMOSIMESIMESI

FIFOFIFO

MRUMRU

LRULRU

LIFOLIFO

TDMTDM

FCFSFCFS

PISCOTPISCOT

RRRR

RANDRAND

MFUMFU

LFULFU

DRAMCtrlDRAMCtrl

-m_dt: double
-DRAMLatModel : string
-OutStandReqs : int
-RdLatency : int
-WrLatency : int

+ProcDRAMReq()
+SendDRAMResp()
+start()
+step()

MCoreSimProjectMCoreSimProject

-m_projectXmlCnfg::McoreSimProjectXml
-m_cpuFIFO::list<T>
-m_busIfFIFO::list<T>
-m_drambusIfFIFO<T>
-m_cpuCoreGen::list<CpuCoreGen>
-m_CacheCtrl::list<PrivCacheCtrl>
-m_SharedCacheCtrl::Ptr<SharedCacheCtrl>
-m_dramCtrl::Ptr<DRAMCtrl>
-m_busArbiter::Ptr<BusArbiter>
-m_latLogger::Ptr<LatencyLogger>

+start()
+step()
-Simulator::Schedule()
-Simulator::Stop()

CpuFIFOCpuFIFOBusIfFIFOBusIfFIFODRAMIfFIFODRAMIfFIFO

MemoryTemplateMemoryTemplate

+GenericFIFO <T>
+GenericDeque<T>

+SetDepth()
+InsertElement(T msg)
+PopElement()
+T GetFrontElement()
+sFull()
+IsEmpty()

MemoryTemplate

M
co
re
Si
m
Pr
oj
ec
t

Figure 4.2: CacheSim class diagram representing the main functional blocks

4.2.1 CacheSim Top-Level Node

CacheSim is the top-level node of the simulator hierarchy. It creates a configurable

infrastructure of the multi-core system environment based on the test-case configu-

ration parameters provided in the input XML document. In Code 4.1, we present

CacheSim main function. CacheSim first resolves user’s command-line configurations

45

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

using CommandLine class, next it acquires the test-case specific configuration param-

eters from the XML document with the aid of MCoreSimProjectXml class, then it

instantiates the MCoreSimProject class to construct the different system components

that have been discussed in Section 4.1. CacheSim utilizes two external classes from

ns-3 [57] library. i) ns3::Time which manages the virtual time in real world units.

For instance, CacheSim uses this class to specify simulation time resolution m dt. ii)

ns3::Simulator which controls the scheduling of simulation events spawn by differ-

ent system components. Finally, CacheSim calls Start() method to start simulation

engines. Start() is an external method that is implemented inside MCoreSimProject

class and illustrated in Code 4.3.

1 NS_LOG_COMPONENT_DEFINE ("CacheSim");

2 int main (int argc , char *argv [])

3 {

4 // simulator output Latency trace Files

5 string LatTracePath = "LatTracePath";

6 // simulator input files

7 string SimConfigFile = "test_cfg.xml"; // testcase cnfg file

8 string BMsPath = "BMs/tests/"; // BMs Path

9 bool LogGenEn = true; // enable log file dump

10 // command line parser

11 CommandLine cmd;

12 // adding a call to sim configurable parameters

13 cmd.AddValue("CfgFile", "simulator cfg file", SimConfigFile);

14 cmd.AddValue("BMsPath", "BMs file(s) path", BMsPath);

15 cmd.AddValue("LogGenEn", "enable flag for log files", LogGenEn);

16 // parse user commands

17 cmd.Parse (argc , argv);

46

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

18 // read Xml Configuration File

19 TiXmlDocument doc(SimConfigFile.c_str ());

20 MCoreSimProjectXml xml;

21 xml.LoadFromXml (doc);

22 xml.SetBMsPath (BMsPath);

23 xml.SetLatTracePath (LatTracePath);

24 // setup simulation environment

25 MCoreSimProject project (xml);

26 // set simulation clock resolution to 1 ns

27 Time:: SetResolution (Time::NS); // MS , US , PS

28 // lunch simulator

29 project.Start ();

30 Simulator ::Run();

31 // clean up once done

32 Simulator :: Destroy ();

33 return 0;

34 }

Code 4.1: CacheSim main function

4.2.2 MCoreSimProject Class

As mentioned before, MCoreSimProject class creates a configurable simulation infras-

tructure based on the input configuration. MCoreSimProject instantiates all system

components and controls their internal behaviour using a group of Set() and Get()

function calls. Code 4.2 shows an example of constructing CpuCoreGen, CpuIf-

FIFO, and PrivCacheCtrl subsystems based on input XML configurations. These

subsystems are created using m cpuCoreGen, m cpuFIFO, and m cpuCacheCtrl ob-

jects, respectively. MCoreSimProject access system configuration parameters using

47

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

m projectXmlCfg object of type MCoreSimProjectXml that is passed to it during the

instantiation. MCoreSimProject class knows how many processing cores and their

cache controller configurations by accessing xmlPrivCaches configuration list from

MCoreSimProjectXml class using GetPrivCaches() method. MCoreSimProject in-

stantiates the remaining system components such as SharedCacheCtrl, Interconnect

network, DRAMCtrl, and LatencyLogger using the same concept. Those components

are accessible through m busArbiter, m dramCtrl, and m latLogger objects. respec-

tively. Clearly, this design approach augments CacheSim with a generalized template

for building simulation hierarchy, leading to improved configurability and extensibil-

ity.

1 MCoreSimProject :: MCoreSimProject(MCoreSimProjectXml projectXmlCfg) {

2 // Set project xml cnfg

3 m_projectXmlCfg = projectXmlCfg;

4 // Get all cpu configurations from xml

5 list <CacheXml > xmlPrivCaches = projectXmlCfg.GetPrivCaches ();

6 // iterate over each core

7 for (list <CacheXml >:: iterator it = xmlPrivateCaches.begin ();

8 it != xmlPrivateCaches.end ();it++) {

9 CacheXml PrivateCacheXml = *it;

10 // instantiate cpu interface FIFO

11 Ptr <CpuFIFO > newCpuFIFO = CreateObject <CpuFIFO > ();

12 m_cpuFIFO.push_back (newCpuFIFO);

13 // instantiate trace -based core model

14 Ptr <CpuCoreGen > newCpu = CreateObject <CpuCoreGen > (newCpuFIFO);

15 m_cpuCoreGen.push_back (newCpu);

16 // instantiate cache ctrl Bus IF FIFOs

17 Ptr <BusIfFIFO > newBusIfFIFO = CreateObject <BusIfFIFO > ();

48

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

18 // instantiate cache ctrl

19 double ctrlClkPeriod = PrivateCacheXml.GetCtrlClkNanoSec ();

20 Ptr <PrivCacheCtrl > newCacheCtrl = CreateObject <PrivCacheCtrl >

21 (newBusIfFIFO , newCpuFIFO);

22 m_cpuCacheCtrl.push_back(newCacheCtrl);

23 // pass config params using set methods

24 ...

25 }

26 // instantiate other system components such as

27 // SharedMemCtrl , DRAMCtrl , BusArbiter , ..., etc.

Code 4.2: CacheSim’s configurable simulation infrastructure

Once simulation infrastructure is created and all instances are wired together,

then MCoreSimProject::Start() method is used to initialize the internal states of

the hardware blocks. This is done by invoking init() function call of each subsys-

tem as shown in Code 4.3. In addition, MCoreSimProject::Start() uses Schedule()

method from ns3::Simulator class to register a callback attached with step() func-

tion every m dt second.

1 // start simulation engines

2 void MCoreSimProject :: Start() {

3 for(list <Ptr <CpuCoreGen > >::iterator it = m_cpuCoreGens.begin ();

4 it != m_cpuCoreGens.end (); it++) {

5 (*it)->init (); // start cpuGen init function

6 }

7 for(list <Ptr <PrivCacheCtrl > >::iterator it = m_CacheCtrl.begin ();

8 it != m_CacheCtrl.end (); it++) {

9 (*it)->init (); // start PrivCacheCtrl init function

10 }

49

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

11 for(list <Ptr <LatLogger > >::iterator it = m_latLogger.begin ();

12 it != m_latLogger.end (); it++) {

13 (*it)->init (); // start latency logger init function

14 }

15 m_SharedCacheCtrl ->init (); // start SharedCacheCtrl

16 m_dramCtrl ->init (); // start DRAMCtrl

17 m_busArbiter ->init (); // start BusArbiter

18 // schedule CacheSim step() callback

19 Simulator :: Schedule(Seconds (0.0) , &Step , this);

20 Simulator ::Stop(MilliSeconds(m_totalTimeInSeconds));

21 }

Code 4.3: Initialize internal states and run simulation

4.2.3 CacheSim test case configuration file

CacheSim accepts test case configurations parameters in XML document format. In

code 4.4, we show an example of a test case configuration file for quad-core system

running at 1 GHz with out-of-order pipeline (NPendReq = 8), 16 kB direct-mapped L1

per-core private cache, and a 1 MB 8-ways set-associative L2 shared cache across all

cores. The XML document is formatted in such a way to support 1) the expansibility

feature of the simulator. For instance, the configuration parameters for the processing

cores subsystem are grouped together into a list of data structure privateCaches that

can be expanded or shrunk based on the requirement of the running experiments. A

user can utilize the same configuration file to run a dual-core simulation by just

modifying this list to accommodate the configuration for two cores instead of four

and set nCores parameter value to 2. 2) a high degree of configurability for the

50

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

system parameters. For example, a user can specify different configurations for cache

organization, interconnect architecture, or replacement policy by just changing the

configuration in the XML document without the need to modify the source code.

3) building an automation framework for unit and continuous regression testing as

discussed in Chapter 6.

1 <CacheSim

2 nCores="4"

3 CohProtocol="MOESI"

4 ... >

5 <!--L1 bus configuration params -->

6 <InterConnect >

7 <L1BusCnfg

8 BusArch="split"

9 BusArb="PISCOT"

10 ReqBusLat="4"

11 ... >

12 <privateCaches >

13 <privateCache <!-- core 0 and Privcachectrl cnfg params -->

14 NPendReq="8"

15 ReplcPolc= "RANDOM"

16 cacheSize="16384"

17 mapping="DirectMap"

18 ...>

19 </privateCache >

20 <!-- Other cores configuration params -->

21 ...

22 <sharedCaches >

23 <sharedCache <!--L2 cache configuration params -->

51

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

24 ReplcPolc= "LRU"

25 cacheSize="1048576"

26 nways="8"

27 ... >

28 </sharedCache >

29 </sharedCaches >

30 <DRAMCnfg <!--DRAMCtrl configuration params -->

31 MEMMODLE="FIXEDLat"

32 MEMLATENCY="250"

33 ...>

34 </DRAMCnfg >

35 </CacheSim >

Code 4.4: Test case input configuration file

4.2.4 MCoreSimProjectXml parser

This class converts the user data given in the input XML documents into various

data structures using LoadFromXml() function. The simulation parameters for L1

cache for each processing core are stored into a list of CacheXml. L1BusCnfgXml class

contains the interconnect and bus arbitration configuration parameters. Similarly,

other data structures that are not shown in Code 4.5 is used to store the remaining

system configuration parameters. MCoreSimProjectXml also provides a set of Get()

methods to allow MCoreSimProject class to acquire these configurations.

1 class MCoreSimProjectXml {

2 private:

3 int m_totalTimeInSeconds;

4 int m_runTillSimEnd;

52

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5 int m_busClkNanoSec;

6 int m_nCores;

7 // more code

8 public:

9 // load input configurations from XML doc

10 void LoadFromXml (TiXmlHandle root)}

11 // return L1 cache configuration params

12 list <CacheXml > GetPrivCaches ();

13 // return shared cache configuration params

14 CacheXml GetSharedCache ();

15 // return interconnect configuration params

16 L1BusCnfgXml GetL1BusCnfg ();

17 // return BMs files path

18 string GetBMsPath ();

19 // more methods

20 ...

21 };

Code 4.5: XML parsing class

4.2.5 CpuCoreGen Class

CpuCoreGen class reads memory requests from input trace files, process the trace infor-

mation, and issue memory requests at the specified time-stamp using ProcessTxRxBuf()

method. In case of full system simulation mode, this function processes the mem-

ory request from an external input interface instead of reading it from the trace file.

However, this feature is not implemented and is left for future work. The memory

request is sent to the cache controller subsystem using transmitter m txFIFO queue.

ProcessTxRxBuf() calls InsertElement(T msg) method from m cpuFIFO->m txFIFO

53

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

to insert the message. Similarly, CpuCoreGen uses m cpuFIFO->m rxFIFO queue to

receive data acknowledgment from the cache controller. Code 4.6 shows a sample

of CpuCoreGen interface. The init() method is accessible by the upper layer (i.e.

MCoreSimProject) to initialize the module and schedule Step() callback every clock

cycle. Step() is used to invoke ProcessTxRxBuf to process CPU memory requests.

1 class CpuCoreGen {

2 private:

3 int m_coreId; // cpu core id

4 double m_dt; // cpu clk period

5 std:: ifstream m_bmTrace; // benchmark file stream

6 Ptr <CpuFIFO > m_cpuFIFO; // a pointer to cpu I/F FIFO

7 // process memory requests

8 void ProcessTxRxBuf ();

9 public:

10 // initialize core generator

11 void init ();

12 // callback to run ProcessTxRxBuf every cycle ,

13 static void Step(Ptr <CpuCoreGen > cpuCoreGen);

14 // other methods

15 ...

16 };

17 // step function

18 void CpuCoreGen ::Step(Ptr <CpuCoreGen > cpuCoreGen) {

19 cpuCoreGen ->ProcessTxRxBuf ();

20 }

Code 4.6: CpuCoreGen class interface

54

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

4.2.6 Private Cache Controller

PrivCacheCtrl class implements private cache controller hardware logic of each

CPU core (i.e. PrivCacheCtrl in Figure 4.1). Code 4.7 depicts PrivCacheCtrl

class interface. We use Figure 4.3 to show queues structure and connection flow

inside PrivCacheCtrl class. PrivCacheCtrl has two interfaces with the top-level

module (i.e. MCoreSimProject in this case). 1) m cpuFIFO to communicate with

the CpuCoreGen module. 2) m busIfFIFO to communicate with the interconnect

BusArbiter. Besides, it has access to the L1 cache memory device which is imple-

mented using GenericCache class. PrivCacheCtrl instantiates two internal buffers,

m cpuPendingFIFO and m PendingWbFIFO, to keep track of the outstanding CPU

memory requests and pending write-back data responses, respectively. The cache

controller’s main objectives are to i) serve incoming CPU memory requests by check-

ing it first in its private L1 cache and issue coherence transactions on the bus if

the requests are misses in the cache. ii) monitor the received coherence messages

on interconnect to maintain the data coherency across its L1 cache. iii) do a write-

back of their owned cache lines when other cores request them. PrivCacheCtrl

first invokes m cohProtocol micro-controller module to determine the control ac-

tions that need to be taken to achieve these objectives. Then, it uses the top-level

controller CacheCtrlMain() methods to execute these actions. m cohProtocol peri-

odically monitors both the CPU interface FIFOs (i.e. m cpuFIFO) and interconnect

interface FIFOs (i.e. m busIfFIFO) to decide the list of required actions using cache

coherence protocol FSM and other control logic. PrivCacheCtrl is controlled by

the top-level through a set of Get() methods. For instance, MCoreSimProject uses

SetProtocolType() to configuration the coherence protocol type. MCoreSimProject

55

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

also invokes init() at the beginning of the simulation to initialize the controller in-

ternals, including the cache memory and FSM initial states. The init() also calls

Step() to schedule callback events for CacheCtrlMain().

PrivCacheCtrl

Rx-Path

MCoreSimProject

Rx-Path

m_cpuPending
FIFO

m_PendingWb
FIFO

CPU
Req

m_busIfFIFO

Tx-Path CPU
Ack

m_cpuFIFO

Write-back
Tx-Path

Cache miss

m_cache

Figure 4.3: PrivCacheCtrl queues structure

1 class PrivCacheCtrl : public ns3:: Object {

2 private:

3 Ptr <CpuFIFO > m_cpuFIFO; // pointer to cpu I/F FIFOs

4 Ptr <BusIfFIFO > m_busIfFIFO; // pointer to bus I/F FIFOs

5 Ptr <GenericCache > m_cache; // pointer to cache memory

6 // internal buffers

7 Ptr <GenericFIFO <PendingMsg >> m_cpuPendingFIFO;

8 GenericQueue <BusIfFIFO ::BusReqMsg > m_PendingWbFIFO;

9 // pointer to cache coherence ctrl

10 Ptr <ns3:: SNOOPPrivCohProtocol > m_cohProtocol;

11 // process write back msgs

12 bool DoWriteBack (uint64_t addr , uint16_t wbCoreId ,

13 uint64_t msgId , bool dualTrans);

14 // cachectrl main function

56

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

15 void CacheCtrlMain ();

16 public:

17 // set maximum number of pending cpu requests

18 void SetMaxPendingReq (int maxPendingReq);

19 // set coherence protocol type

20 void SetProtocolType (CohProtType ptype);

21 // initialization function

22 void init ();

23 // callback to run CacheCtrlMain ()

24 static void Step(Ptr <PrivCacheCtrl > privCacheCtrl);

25 // other methods

26 ...

27 };

Code 4.7: PrivCacheCtrl class interface

4.2.7 Shared Cache Controller

SharedCacheCtrl class works similar to PrivCacheCtrl. Code 4.8 shows a simpli-

fied interface of the SharedCacheCtrl class. We use Figure 4.4 to illustrate queues

structure and connection flow inside SharedCacheCtrl class. The class has two exter-

nal interfaces with the top-level.i) m busIfFIFO represents L1 interconnect interface

that is used for receiving memory requests from the private cache controllers. ii)

m dramBusIfFIFO represents DRAM interface that is used for sending and receiv-

ing request to the DRAM controller. SharedCacheCtrl has access to three internal

memory components: Shared L2 cache memory (i.e. m cache), victim cache (i.e.

m victimCache), and write-back (i.e. m PndWBFIFO) buffer. SharedCacheCtrl uses

57

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

DoWriteBack() methods to send messages on the L1 interconnect bus. These mes-

sages can be either data or coherence messages such as invalidation or exclusive

response. CacheCtrlMain() is the main control function which is responsible for ob-

serving incoming messages on the external interfaces (DRAM and L1 bus interfaces),

runs coherence protocol FSM using CohProtFSMProc() method, and decides what

actions need to be taken. These actions can be either one or multiple decisions such

as sending data or coherence message to the requestor on the L1 bus, sending mem-

ory request to DRAM controller using SendDRAMReq(), or evicting a specific cache

line from victim cache using VictimCacheLineEvict(). Similar to PrivCacheCtrl,

the init() and Step() methods are used by the top-level module to initialize and

schedule callback events. respectively.

SharedCacheCtrl

Rx-Path

MCoreSimProject

Rx-Path

m_PndWB
FIFO

DRAM
Resp

m_busIfFIFO

Tx-Path DRAM
Req

m_dramBus
FIFO

Write-back
Tx-Path

SendData

m_cache

m_victim
Cache

Figure 4.4: SharedCacheCtrl queues structure

1 class SharedCacheCtrl : public ns3:: Object {

2 private:

3 // send data type

4 enum SendDataType {

58

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5 DataOnly = 0,

6 ExclOnly ,

7 DataPlsExcl ,

8 CoreInv

9 };

10 // external interfaces

11 Ptr <BusIfFIFO > m_busIfFIFO; // bus I/F FIFOs

12 Ptr <DRAMIfFIFO > m_dramBusIfFIFO; // DRAM I/F FIFOs

13 // internal memories

14 GenericFIFO <BusIfFIFO ::BusReqMsg > m_PndWBFIFO; // wb buffer

15 Ptr <GenericCache > m_cache; // L2 cache memory

16 Ptr <VictimCache > m_victimCache; // victim cache

17 // process write -back messages

18 bool DoWriteBack (uint64_t cl_idx , uint16_t wbCoreId ,

19 uint64_t msgId , SendDataType type);

20 // controller main function

21 void CacheCtrlMain ();

22 // sharedctrl coherence FSM

23 void CohProtFSMProc (SNOOPSharedEventType eventType ,

24 SNOOPSharedOwnerState owner , int state);

25 // send DRAMReq

26 bool SendDRAMReq (uint64_t msgId , uint64_t addr ,

27 DRAMIfFIFO :: DRAM_REQ type);

28 // victim cache eviction

29 void VictimCacheLineEvict (uint32_t victimWayIdx);

30 // other methods

31 ...

32 public:

33 // initialization function

59

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

34 void init ();

35 // callback function

36 static void Step(Ptr <SharedCacheCtrl > sharedCacheCtrl);

37 // other methods

38 ...

Code 4.8: SharedCacheCtrl class interface

4.2.8 Cache Coherence Protocol FSM

Cache coherence protocol is used to maintain coherence of the shared data stored

in the private cache hierarchies of the multi-core system. Unlike existing state-of-

the-art simulators [13, 14, 15, 16], CacheSim supports detailed coherence models

including both stable and transient states to support an independent operation of

the underlying interconnect network. Our coherency models also consider the cache

inclusivity feature, as it is intertwined with the protocol operation. To the best of our

knowledge, existing coherence models either completely ignore the implementation of

the coherence transient states assuming that the underlying interconnect is atomic or

implementing partial transient states that alter the modularity of the interconnect.

Private cache coherence protocols are implemented using finite state machines (FSM)

which can be defined formally as a tuple (P,Σ, T,Q,E,C), where:

– P ∈ State<T> is the present state

– T : P × Σ→ P is the transition function

– Σ ∈ SNOOPPrivEventList is the finite set of input

– Q ∈ State<T> is the next state

60

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

– E ∈ SNOOPPrivCtrlAction is the event output

– C ∈ SNOOPPrivCohTrans is the condition output

The state definition (i.e. P , and Q) and transition function T are protocol depen-

dant, while Σ, E, and C are almost common among all snooping coherence protocols.

Σ represents the input event to the coherence protocol, which can be generated by

the processor or interconnect as discussed before. E is the list of actions the cache

controller needs to perform. Finally, C is the coherence transaction to be sent on

the bus as discussed in Subsection 2.3.1.2. Table 4.1 shows how state transition Q,

event output E, and C are computed based on the input values P , and Σ for MESI

coherence protocol which can be represented as follow:

– transition: Q := T : P × Σ→ State<T>

– output: out := Q,Caction, Ctr where

Caction := (E : P × Σ→ SNOOPPrivCtrlAction),

Ctr := (C : P × Σ→ SNOOPPrivCohTrans)

The same analysis can be used to model the coherence protocol at the shared cache

controller side using state transition Table 4.2 for MESI. Compared to MSI protocol

that we discussed in Section 2.3.1.5, MESI introduces few extra states to the protocol

to optimize the performance of the read-modify-write scenario. The protocol intro-

duces a stable exclusive state E to enable the cache controller to upgrade cache line

permission from read-only to read-write without the need to issue GetM() transac-

tion on the bus. The cache controller does this upgrade only if there are no other

sharers to the requested cache line. Therefore, E state is introduced to communicate

61

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

this information to the controller. Whenever the cache controller issues GetS() trans-

action to acquire read-only permission for a certain cache line, the shared memory

controller checks the line’s state in its L2 cache. If it has the line in I state, then

the controller responds with exclusive notification to the requestor core as shown in

Table 4.1 Own Excl(). Once the cache controller observes this message, it updates

the line state from ISd to IEd, then moves to E once it receives the date response.

The transient states IEdS, IEdSI, and IEdI are introduced to support non-atomic

bus architectures as discussed in Section 2.4. The E state is considered an ownership

state in our simulator. Therefore, the transient EIa state is introduced to handle

block replacements in state E.

Invalidate() coherence message is also a new modification that is added to sup-

port cache inclusivity feature when the shared cache controller decides to evict a

cache line from its L2 cache. Upon receiving the invalidation message, the private

cache controllers need to invalidate their cached versions, and only the owner should

write-back the data to L2 cache. The transient states EorMIa and IEorMd are

added to support the write-back operation for pending data response cache lines.

Table 4.1: MESI snooping protocol state table at cache controller side

State Core Event Bus Event

L
o
a
d

S
to

r
e

R
e
p
la
c
e

O
w
n
G
e
tS

O
w
n
G
e
tM

O
w
n
P
u
tM

O
th

e
r
G
e
tS

O
th

e
r
G
e
tM

O
th

e
r
P
u
tM

O
w
n

d
a
ta

r
e
sp

o
n
se

In
v
a
li
d
a
te

O
w
n

E
x
c
l

I issue

GetS/

ISad

issue

GetM/

IMad

X X X X - - - X - X

ISad stall stall stall -/ISd X X - - - -/ISa - X

ISd stall stall stall X X X - -/

ISdI

- Hit/S -/ ISdI -/

IEd

62

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

IEd stall stall stall X X X IEdS -/

IEdI

- Hit/E issue

PutM/

IEorMdI

X

IEdS stall stall stall X X X - -/

IEdSI

- Hit

SendData

/S

-/

IEdSI

X

IEdSI stall stall stall X X X - - - Hit

SendData

/I

- X

IEdI stall stall stall X X X - - - Hit

SendData

/I

- X

ISa stall stall stall Hit/S X X - - X X X X

ISdI stall stall stall X X X - - - Hit/I - X

IEa stall stall stall Hit/E X X - - X X X X

IMad stall stall stall X -/IMd X - - - -/IMa - X

IMd stall stall stall X X X -/

IMdS

-/

IMdI

- Hit/M issue

PutM/

IEorMdI

X

IMa stall stall stall X Hit/M X - - - X X X

IMdI stall stall stall X X X - - - Hit

SendData

/I

- X

IMdS stall stall stall X X X - -/

IMdSI

- Hit

SendData

/S

-/

IMdSI

X

IMdSI stall stall stall X X X - - - Hit

SendData

/I

- X

S Hit issue

GetM/

SMad

-/I X X X - -/I - X -/I X

SMad Hit stall stall X -

/SMd

X - -/

IMad

- -/SMa -/IMad X

SMd Hit stall stall X X X -/

SMdS

-/

SMdI

- Hit/ M issue

PutM/

IEorMdI

X

SMa Hit stall stall X Hit/M X - -

/IMa

X X X X

SMdI Hit stall stall X X X - - - Hit

SendData

/I

- X

63

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

SMdS Hit stall stall X X X - -/

SMdSI

- Hit

SendData

/S

-/

SMdSI

X

SMdSI Hit stall stall X X X - - - Hit

SendData

/I

- X

E Hit Hit/

M

issue

PutM/

EIa

X X X Send

Data/

S

Send

Data

/ I

- X issue

PutM/

EorMIa

X

M Hit Hit issue

PutM/

MIa

X X X Send

Data/

S

Send

Data

/ I

- X issue

PutM/

EorMIa

X

MIa Hit Hit stall X X Send

Data/

I

Send

Data/

IIa

Send

Data

/ IIa

- X -/

EorMIa

X

EIa Hit stall stall X X Send

Data/

I

Send

Data/

IIa

Send

Data

/ IIa

- X -/

EorMIa

X

IIa stall stall stall X X -/I - - - X - X

EorMIa stall stall stall X X Send

Data/

I

- - X X X X

IEorMd stall stall stall X X - - - X Hit

Send

Data/I

X X

Table 4.2: MESI snooping protocol state table at LLC controller side

State Bus Event Ctrl Event

GetS GetM Owner

PutM

Other

PutM

Data Replc DRAM

Req

I SendExecData,

SetOwner/

EorM

SendData,

SetOwner/

EorM

X - X - DRAMd

S SendData SendData,

SetOwner/

EorM

X - X issue Inv

/ I

DRAMd

EorM ClearOwner/

EorMdS

SetOwner /

C2C ? - :

EorMdEorM

ClearOwner/

EorMdI

- StoreData/

EorMa

issue Inv

/ EorMdI

DRAMd

EorMdS stall stall X - StoreData/

S

stall DRAMd

64

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

EorMdEorM stall stall stall - StoreData/

EorM

stall DRAMd

EorMdI SendExecResp

/ -

- X - StoreData/

I

stall DRAMd

EorMa clearOwner/

S

SetOwner/

EorM

ClearOwner/

I

- X X DRAMd

DRAMd stall stall X X I X stall

In addition to MSI and MESI, CacheSim also supports MOESI coherence protocol

where Tables 4.3 and 4.4 illustrate coherence protocol FSM at the private cache

controller and shared cache controller, respectively. As discussed in Section 2.3.1,

MOSEI introduced O state to optimize the performance of the multi-core systems that

support cache-to-cache (C2C) data transfer where it eliminates the unnecessary write-

back to the shared memory. Similar to EIa state, the OIa handles the replacement of

cache line in O state. The transient OMa state handles upgrades from O to M state.

The transient states IEdO, IMdO, and SMdO are introduced to support non-atomic

bus architectures. Moreover, OdI and OMaI states are added to support pending

invalidations.

Table 4.3: MOESI snooping protocol state table at cache controller side

State Core Event Bus Event

L
o
a
d

S
to

r
e

R
e
p
la
c
e

O
w
n
G
e
tS

O
w
n
G
e
tM

O
w
n
P
u
tM

O
th

e
r
G
e
tS

O
th

e
r
G
e
tM

O
th

e
r
P
u
tM

O
w
n

d
a
ta

r
e
sp

o
n
se

In
v
a
li
d
a
te

O
w
n

E
x
c
l

I issue

GetS/

ISad

issue

GetM/

IMad

X X X X - - - X - X

ISad stall stall stall -/ISd X X - - - -/ISa - X

ISd stall stall stall X X X - -/

ISdI

- Hit/S -/ ISdI -/

IEd

IEd stall stall stall X X X -/

IEdO

-/

IEdI

- Hit/E issue

PutM/

IEorMdI

X

65

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

IEdO stall stall stall X X X - -/

IEdI

- Hit

SendData

/ O

issue

PutM/

OdI

X

IEdI stall stall stall X X X - - - Hit

SendData

/I

- X

ISa stall stall stall Hit/S X X - - X X X X

ISdI stall stall stall X X X - - - Hit/I - X

IEa stall stall stall Hit/E X X - - X X X X

IMad stall stall stall X -/IMd X - - - -/IMa - X

IMd stall stall stall X X X -/

IMdO

-/

IMdI

- Hit/M issue

PutM/

IEorMdI

X

IMa stall stall stall X Hit/M X - - - X X X

IMdI stall stall stall X X X - - - Hit

SendData

/I

- X

IMdO stall stall stall X X X - -/

IMdI

- Hit

SendData

/O

issue

PutM/

OdI

X

S Hit issue

GetM/

SMad

-/I X X X - -/I - X -/ I X

SMad Hit stall stall X -

/SMd

X - -/

IMad

- -/SMa -/IMad X

SMd Hit stall stall X X X -/

SMdO

-/

SMdI

- Hit/ M issue

PutM/

IEorMdI

X

SMa Hit stall stall X Hit/M X - -

/IMa

X X X X

SMdI Hit stall stall X X X - - - Hit

SendData

/I

- X

SMdO Hit stall stall X X X - -/

SMdI

- Hit

SendData

/O

issue

PutM/

OdI

X

E Hit Hit/

M

issue

PutM/

EIa

X X X Send

Data/

O

Send

Data

/ I

- X issue

PutM/

EorMIa

X

O Hit issue

GetM/

OMa

issue

PutM/

OIa

X X X Send

Data

Send

Data

/ I

- X issue

PutM/

EorMIa

X

66

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

OMa Hit stall stall X Hit/M X Send

Data

Send

Data/

IMad

- X issue

PutM/

OMaI

X

M Hit Hit issue

PutM/

MIa

X X X Send

Data/

O

Send

Data

/ I

- X issue

PutM/

EorMIa

X

MIa Hit Hit stall X X Send

Data/

I

Send

Data/

OIa

Send

Data

/ IIa

- X -/

EorMIa

X

OIa Hit Hit stall X X Send

Data/

I

Send

Data

Send

Data

/ IIa

- X -/

EorMIa

X

EIa Hit stall stall X X Send

Data/

I

Send

Data/

OIa

Send

Data

/ IIa

- X -/

EorMIa

X

IIa stall stall stall X X -/I - - - X - X

EorMIa stall stall stall X X Send

Data/

I

- - X X X X

IEorMd stall stall stall X X - - - X Hit

Send

Data/I

X X

OdI stall stall stall X X - - - X Hit

Send

Data/I

X X

OMaI stall stall stall X Hit

Send

Data/I

X - - X X X X

Table 4.4: MOESI snooping protocol state table at LLC controller side

State Bus Event Ctrl Event

GetS GetM Owner

PutM

Other

PutM

Data Replc DRAM

Req

I SendExecData,

SetOwner/

EorM

SendData,

SetOwner/

EorM

X - X - DRAMd

S SendData SendData,

SetOwner/

EorM

X - X issue Inv

/ I

DRAMd

EorM O - ClearOwner/

EorMdI

- StoreData/

EorMa

issue Inv

/ EorMdI

DRAMd

67

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

O - SetOwner/

EorM

OdS - Oa issue Inv

/ OdS

DRAMd

OdS stall stall X - StoreData/

S

stall DRAMd

EorMdI SendExecResp

/ -

stall X - StoreData/

I

stall DRAMd

EorMa X X ClearOwner/

I

X X X DRAMd

Oa X X ClearOwner/

S

X X X DRAMd

DRAMd stall stall X X I X stall

In order to provide an extensible implementation for cache coherence protocols,

CacheSim models these protocols as a virtual interface to give users the flexibility

to implement and integrate new protocols into the simulator with minimal effort.

Code 4.9 shows the definition of IFCohProtocol class which includes the definition

of private and shared cache coherence state machines using SNOOPPrivCohrProc()

and SNOOPSharedCohrProc() methods. These virtual functions are type-casted dy-

namically based on the coherence protocol type CohProtType provided in the XML

document as shown in Code 4.10.

1 class IFCohProtocol {

2 public:

3 // private cache coherence FSM processing

4 virtual void SNOOPPrivCohrProc (

5 SNOOPPrivEventType eventType ,

6 SNOOPPrivEventList eventList ,

7 int &cacheState ,

8 SNOOPPrivCohTrans &trans2Issue ,

9 SNOOPPrivCtrlAction &ctrlAction ,

10 bool cache2Cache

11) {}

68

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

12 // shared cache coherence FSM processing

13 virtual void SNOOPSharedCohrProc (

14 SNOOPSharedEventType eventType ,

15 SNOOPSharedEventList eventList ,

16 int &cacheState ,

17 SNOOPSharedOwnerState &ownerState ,

18 SNOOPSharedCtrlAction &ctrlAction ,

19 bool cache2Cache ,

20){}

21 // other methods

22 ...

23 };

Code 4.9: IFCohProtocol class interface

1 // Coherence FSM function call

2 void SNOOPPrivCohProtocol :: CohProtocolFSMProcessing () {

3 // Check protocol type

4 IFCohProtocol *ptr;

5 switch (m_pType) {

6 case CohProtType :: SNOOP_PMSI:

7 ptr = new PMSI; break;

8 case CohProtType :: SNOOP_MSI:

9 ptr = new MSI; break;

10 case CohProtType :: SNOOP_MESI:

11 ptr = new MESI; break;

12 case CohProtType :: SNOOP_MOESI:

13 ptr = new MOESI; break;

14 default:

15 std::cout << "unknown snooping protocol type" << std::endl;

69

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

16 exit (0);

17 }

18 // dynamic binding

19 ptr ->SNOOPPrivCohrProc (

20 m_processEvent , m_eventList , m_currEventNextState ,

21 m_currEventTrans2Issue , m_ctrlAction , m_cache2Cache

22);

23 delete ptr;

24 }

Code 4.10: Coherence protocol dynamic binding

The actual implementations of the underlying coherence protocols are coded into

separate classes. Each class implements a single protocol to support the design for

change principle discussed in the introduction section (i.e. one secret per module).

Code 4.11 shows MSI class which includes state definition and coherence protocol

FSM implementation.

1 class MSI : public ns3::Object , public ns3:: IFCohProtocol {

2 public:

3 // MSI protocol states encoding (Private Cache Side)

4 enum class SNOOP_MSIPrivCacheState {

5 I = CohProtType ::SNOOP_MSI ,

6 IS_ad ,

7 IS_d ,

8 IS_a ,

9 IS_d_I ,

10 IM_ad ,

11 // other states

12 ...

70

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

13 };

14 // MSI protocol states encoding (Memory Controller Side)

15 enum class SNOOP_MSISharedCacheState {

16 IorS = CohProtType ::SNOOP_MSI ,

17 M,

18 M_d_M ,

19 M_d_IorS ,

20 IorSorM_a ,

21 DRAM_d

22 };

23 // coherence protocol FSM implementations

24 void MSI:: SNOOPPrivCohrProc (...);

25 void MSI:: SNOOPSharedCohrProc (...);

26 // other methods

27 ...

28 };

Code 4.11: MSI class interface

4.2.9 Generic Cache Memory

To support a broad range of cache configurations, CacheSim has a general interface to

model cache memory based on the input configurations. GenericCache class allocates

memory to store cached data, provides methods to load, store, and replace data from

a specific cache line inside this memory. The mapping between data stored in a

certain cache-level and data stored in the upper-level is defined based on the input

configuration parameters. WriteCacheLine() and ReadCacheLine() functions are

used to read/write data into the cache memory. CpuAddrMap() function is used

71

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

to map physical memory request to cache line/set index. GetReplacementLine()

function is responsible to replace old cache blocks with the new one according to a

certain policy. CacheSim implements all replacement algorithms that we discussed in

Subsection 2.2.3.

4.2.10 Bus Arbiters

BusArbiter class arbitrates coherence and data response messages generated by Priv-

CacheCtrl and SharedCacheCtrl instances over the shared interconnect bus. We as-

sume a system model like the one illustrated in Figure 4.5 where the interconnect

is modeled as two split bi-directional buses that operate independently. The re-

quest bus is responsible for broadcasting coherence transactions (CohrTrans), while

the data response bus is used to carry over the data response (DataResp) mes-

sages. BusArbiter class implements two methods ReqStep() and RespStep() that

work independently to arbitrate these messages on the interconnect. The request

and response bus latencies, in addition to the deployed arbitration schemes, are

fully configurable by the top-level module. CacheSim supports both predictable

and high-performance arbiters that we discussed in Section 2.4.1 and Chapter 5.

Code 4.12 depicts BusArbiter class interface. BusArbiter has access to all cache

controller’s bus interface buffers (i.e. m busIfFIFO and m sharedCacheBusIfFIFO)

in addition to the interconnect FIFOs m interConnectFIFO. The top-level module

(i.e. MCoreSimProject) sets a reference to these buffers during the construction of

the busArbiter such that it can read and write them. The request and response

arbiters use SendMemCohrMsg() and SendData(), respectively, to send the data on

the bus. MCoreSimProject uses a set of Get() functions to configure busArbiter

72

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

parameters. For instance, SetBusArchitecture() is used to set the bus architecture.

CacheSim supports both unified and split architectures. SetBusArbitration sets the

arbitration schemes used by ReqStep() and RespStep(). MCoreSimProject also in-

vokes init() at the beginning of the simulation in order to initialize the arbiter and

schedule callback events for ReqStep() and RespStep() using Step() method.

R
eq

ue
st

 B
u

sA
rb

it
er

m_busIfFIFO
DataResp

R
es

po
ns

e
B

us
A

rb
it

er

Rx-Path

Tx-Path

Rx-Path

Tx-Path

Tx-Path

Rx-Path

Tx-Path

Rx-Path

Rx-Path

Tx-Path

Rx-Path

Tx-Path

Tx-Path

Rx-Path

Tx-Path

Rx-PathR
eq

u
es

t B
u

s

R
es

po
ns

e
B

us

PrivCacheCtrl

SharedCacheCtrl

m_busIfFIFO
CohrTrans

Figure 4.5: Interconnect bus system model

1 class BusArbiter : public ns3:: Object {

2 private:

3 uint16_t m_reqlatency; // requst bus latency

73

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

4 uint16_t m_resplatency; // response bus latency

5 // a list of PrivCachCtrl bus interface buffers

6 std::list <ns3::Ptr <ns3::BusIfFIFO > > m_busIfFIFO;

7 // a pointer to SharedCachCtrl bus IF buffers

8 ns3::Ptr <ns3::BusIfFIFO > m_sharedCacheBusIfFIFO;

9 // a pointer to Interconnect FIFOs

10 ns3::Ptr <ns3:: InterConnectFIFO > m_interConnectFIFO;

11 // send data response message on the bus

12 void SendData (BusIfFIFO :: BusRespMsg msg , AGENT agent);

13 // send coherence messages on the bus

14 void SendMemCohrMsg (BusIfFIFO :: BusReqMsg msg , bool BroadCast);

15 // other methods

16 ...

17 public:

18 void init (); // initialize function

19 // callback function to schedule request arbiter

20 static void ReqStep(Ptr <BusArbiter > busArbiter);

21 // callback function to schedule response arbiter

22 static void RespStep(Ptr <BusArbiter > busArbiter);

23 // scheduling bus events every dt

24 static void Step(Ptr <BusArbiter > busArbiter);

25 // set bus architecture

26 void SetBusArchitecture (string bus_arch);

27 // set arbitration policy

28 void SetBusArbitration (string bus_arb);

29 // other methods

30 ...

31 };

Code 4.12: BusArbiter class interface

74

Chapter 5

PISCOT

We now show the effectiveness of CacheSim by utilizing it to prototype a new coherent

interconnect solution that allows for coherent sharing of data in multi-core real-time

systems without requiring any changes to the coherence protocols while notoriously

reducing the worst-case latency upon accessing the cache hierarchy. We start our dis-

cussion in Section 5.1 by the case study we made in Section 2.4.1 about the existing

predictable cache-coherent solution and show the limitation of these solutions. Then

motivated by this discussion, we propose PISCOT, a predictable and coherent bus

architecture that substantially reduces coherence delays, while improving overall sys-

tem performance (Section 5.2). In Section 5.3, we conduct a detailed timing analysis

for the latency suffered by any memory request under PISCOT. The analysis provides

an analytical bound that guarantees the system predictability. The derived bounds

are 4× tighter than the state-of-art predictable coherent buses [1, 24, 25]. Finally,

we use our simulator to evaluate PISCOT with both the representative SPLASH-3

benchmarks as well as synthetic benchmarks. The results in Subsection 6.2.2.3 show

that compared with existing solutions, PISCOT achieves up to 5× better performance

75

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

(2.8× on average), while increasing memory bandwidth utilization by 12× on average

across the SPLASH-3 benchmarks.

5.1 Motivation

Two key observations we make in Section 2.4.1 about the existing predictable cache-

coherent TDM-based solutions. First, their previously highlighted large WCLs are

mainly because they inherit the scheduling paradigm of traditional real-time arbiters

(such as TDM in this case but the argument applies to other arbiters such as RR). This

paradigm when applied to systems with shared data, it couples two different types

of communication into the same bus arbitration. Namely, it couples both coherence

messages and data transfers and schedules them using the same bus arbitration, which

is inherited from traditional non-data-sharing TDM schedules. This in addition to

the fact that the TDM slot has to accommodate for at least one memory transfer to

be efficient to service ready memory requests, leading to the excessively large memory

delays when introducing data sharing. Second, they impose certain modifications to

the coherence protocol to enable predictability. As previously discussed, modifications

to coherence protocols are highly costly in terms of verification and are thus incon-

ceivable to adopt by industry. Based on these observations, PISCOT targets to enable

data sharing in real-time systems, while significantly reducing the associated coher-

ence delays by decoupling the two different communication types. This is achieved

by using a split-bus architecture, where requests (through coherence messages) and

responses (i.e. data transfers) are issued in different buses and are managed using

different arbitration mechanisms. In addition, PISCOT does not impose any changes

to existing coherence protocols; therefore, disburden system designers from the need

76

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

TDM Arbiter

FCFS Arbiter

L1$0C

L1$
1C

L1$
NC

S
ha

re
d

M
em

or
y

Response Bus

Request Bus

Service Queue

Figure 5.1: PISCOT architecture.

to re-verify the coherence protocol.

5.2 Proposed solution

In this section, we detail the architectural details of PISCOT, which Figure 5.1 delin-

eates its high-level modules. Compared to the solutions discussed in Section 2.4.1 and

highlighted in Table 2.4, PISCOT makes multiple architecture decisions to take into

account predictability by design, while maintaining a high average-case performance.

• PISCOT’s architecture migrates from the traditional arbitration schemes considered

by the community (such as TDM and RR) to a split-transaction bus interconnect

that connects private caches and the shared memory as Rule 1 explains.

Rule 1 PISCOT implements a split-transaction bus through deploying two buses:

a Request Bus and a Response Bus. The Request Bus is responsible for broad-

casting the coherence messages initiating memory requests, while the Response Bus

transfers data as a response to these requests.

77

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

• Aiming at performance, the Request Bus and the Response Bus operate in par-

allel. On the other hand, to simplify system analysis and maintain predictability,

both buses communicate through only one module: the Service Queue. Requests

broadcasted on the Request Bus are buffered into the Service Queue until they

are selected by the Response Bus’s arbiter.

• Unlike conventional solutions that use high-performance arbiters at the expense

of predictability (e.g. FCFS), the Request Bus in PISCOT is managed using a

TDM arbiter to predictably manage interference among different cores (Rule 2).

To increase system performance, a work-conserving TDM is deployed, where at any

slot, if the dedicated core does not have a ready request, the arbiter picks the next

core with a pending request instead of leaving the slot idle as in traditional non

work-conserving TDM.

Rule 2 PISCOT manages the Request Bus using a work-conserving TDM arbiter.

• The Response Bus’s arbiter implements a First-Come First-Serve (FCFS) sched-

uler, and thus, serves requests based on their arrival time on the Service Queue

(Rule 3). The oldest request will be at the head of the queue, and therefore, is

serviced first by the FCFS response arbiter. Once selected by the FCFS arbiter,

the requested data is transferred on the Response Bus to the requesting core’s pri-

vate cache, the request message is removed from the Service Queue, then the core

proceeds with its load/store operation indicating that the request is successfully

finished.

Rule 3 PISCOT manages the Response Bus using a FCFS arbiter.

78

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

: adA IM

()GetM A

:A M

:A I

:A M

:A M

()GetM A

()GetM A

:A M : dA IM

()GetM A

:A M

()GetM A

: adA IM : adA IM : adA IM
0

1

: ()

: ()

C Rx A

C WB A

:A M : dA IM I

1

0

0

1

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

:A M : dA IM

()GetM A

: adA IM

:A I : dA IM

: dA IM I

: dA IM I

: dA IM

:A M : dA IM I

: dA IM I

: dA IM

:A IorS

2

1

1

0

0

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

: dA IM I

: dA IM

:A I :A IorS

2

1

1

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

: dA IM

:A I

:A I

:A IorS

2 : ()C Rx A

:A I

:A I

:A M

:A M

GetM(A)GetM(A) GetM(A)GetM(A) GetM(A)

GetM(A)

4t �t
ReqBusL RespBusL

PutM(A) PutM(A) PutM(A)

6t � 8t � 12t � 16t �

8t � 58t � 108t � 158t � 208t � 258t� 308t�

t 6t � 8t � 12t � 16t � 58t � 158t � 258t� 308t�

AccL

()WB A
ShM

()WB A

ShM
()Tx A

ShM
()Tx A

ShM
()WB A
ShM

()Tx A

ShM

xt -

xt -

: adA IM

2

1

1

0

0

1

: ()

: ()

: ()

: ()

: ()

: ()

C Rx A

C WB A

C Rx A

C WB A

C Rx A

C WB A

C0 C2 C1

C1 C0 C0 C1 C1 C2

:A I

ReqBus

RespBus

C0

C1

C2

Figure 5.2: An illustrative example for the operation of PISCOT. Latency
components are for the getM(A) request from C2. At different time instances: the

bottom of the figure shows the state of the private core’s cache line (left side), shared
memory state (marked in red), and the Service Queue contents on the right side.

• PISCOT supports out-of-order execution and allows cores to have multiple outstand-

ing requests. Nonetheless, according to Rule 4, those requests from a certain core

would remain in its local buffer and will not be picked by the TDM arbiter if the

core already has one request in-service (i.e. queued in the Service Queue). The

rationale for this is to limit the coherence interference among cores such that a

request from any core can suffer interference due to a maximum of only one request

from each other core, which leads to tightening worst-case latencies and minimiz-

ing interference from other cores compared to the conventional MSI protocol with

FCFS split-transaction bus as we detail in the latency analysis in Section 5.3.

Rule 4 PISCOT supports OOO architectures by allowing cores to issue multiple

outstanding requests. However, to limit coherence interference, it only services at

most one request from any given core at a time.

79

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5.2.1 Illustrative Example

To better explain the operation of PISCOT, we use the same example from Section 2.4.1

for a system with three cores: C0 — C2 and delineates PISCOT’s behavior in Fig-

ure 5.2. The example focuses on a single cache line A, which is assumed to be

initially owned by C1. At timestamp t − x, a store request to A from C0 misses

in its private cache (it was originally in I state). As a result, a GetM(A) message is

placed in its cache controller’s local buffer waiting for C0’s slot on the request bus.

The line state changes in the private cache from I to IMad waiting for its message to

appear on the bus. The same situation occurs for C2 at timestamp t. At t+ 4, C0 is

granted a slot by the TDM arbiter and its request is issued on the Request Bus. The

coherence message is assumed to consume two cycles to be broadcasted. Accordingly,

C0 observes its OwnGetM(A) on the bus and move to IMd while waiting for data. On

the other hand, once C1 observes C0’s GetM(A) (OtherGetM(A)) and since C1 is the

owner of A, it responds with placing the updated data in its local buffer to be written

back to the shared memory (timestamp t + 6) and moves to I state. In addition,

two actions are pushed into the Service Queue as a result of C0’s request. This is

because C1 has to write back its updated A first to the shared memory and then

the shared memory will send the data to C0; these are indicated in Figure 5.2 in the

Service Queue as C1:WB(A) and C0:Rx(A), respectively.

Simultaneously at t + 8, a GetM(A) request from C1 arrives and is issued on the

Request Bus immediately since it is C1’s slot. Similar to what happened during C0’s

slot, C1 moves to the IMd state and two actions are pushed into the Service Queue:

C0:WB(A) and C1:Rx(A). The reason for this is that C0 should obtain its requested

data first, according to the FCFS schedule, conduct its store operation, and write

80

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

back the updated data to the shared memory before C1 can proceed with its GetM(A)

request. For the same reason, C0 moves to the IMdI state. This is indicated at

timestamp t + 12. Now, C2 is finally granted access to the Request Bus and issues

its request. Similar events to those during C1’s slot occur with the difference that

C1 is the owner responsible to write-back A before the shared memory sends it to

C2 according to the FCFS order. For the Response Bus, it services requests in the

Service Queue in order of their arrival as previously explained. Assuming that one

data transfer requires 50 cycles, it finishes the data transfer of C1’s WB(A) to shared

memory at t + 58. C0’s Rx(A) from shared memory at t + 108, performs its store

operation and places the new data in its local buffer and moves to I state. C0’s

WB(A) to shared memory finishes at t + 158. C1’s Rx(A) from shared memory at

t + 208, performs its store operation and places the new data in its local buffer and

moves to I state. C1’s WB(A) to shared memory finishes at t + 258, and finally C2

receives A from shared memory at t+ 308.

Comparing this with the behavior of PMSI adopting the traditional TDM bus in

Figure 2.8, it shows the clear advantage of PISCOT that reduces the total latency of

the same sequence of memory requests by 792 cycles (from t+ 1100 to t+ 308). More

detailed comparisons on the effect of both WCL as well as average performance are

introduced in the evaluation Chapter 6.

81

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5.2.2 Satisfying Coherence Predictability Invariants

Coherence protocols can generally lead to unpredictable behaviors if not carefully

managed. In addition, previous works have shown that combining conventional coher-

ence protocols with traditional predictable arbiters also breaks system’s predictabil-

ity [1]. Since we claim that PISCOT indeed achieves predictability by utilizing conven-

tional coherence while deploying the proposed split-transaction predictable arbiter,

we believe it is necessary to elaborate more on how PISCOT achieves this predictabil-

ity. Authors of [1] introduced 6 invariants that they stated that they must be satisfied

to ensure predictability in the existence of coherence. We now show how PISCOT, un-

like PMSI [1], is satisfying those invariants without the need to modify the coherence

protocol. This discussion also illustrates the novel operation of PISCOT compared

to traditional predictable arbiters such as TDM when tasks can share data. For

inclusiveness, we state each invariant and then prove how PISCOT satisfies it. We

prove each case by contradiction starting with a hypothesis that PISCOT breaks such

invariant and then show that this contradicts PISCOT’s operation explained at the

beginning of this section.

Invariant 1 A predictable bus arbiter must manage coherence messages on the bus

such that each core may issue a coherence request on the bus if and only if it is granted

an access slot to the bus.

Lemma 1 PISCOT satisfies Invariant 1.

Proof: The proof is trivial since allowing a core to send a request without being

granted access by the arbiter contradicts with PISCOT’s TDM arbiter at the Request

Bus.

82

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Invariant 2 The shared memory services requests to the same line in the order of

their arrival to the shared memory.

Lemma 2 PISCOT satisfies Invariants 2.

Proof: Let Reqi and Reqj be two requests to the same cache line such that Reqi

arrived to the shared memory first. Assume that the shared memory serviced Reqj

before Reqi such that Invariant 2 is broken. (1)

Now considering PISCOT’s operation, Reqi will arrive to the shared memory first only

if it is broadcasted on the Request Bus first. Hence, Reqi arriving at the shared

memory first indicates that it has been queued into the Service Queue ahead of

Reqj. Now, according to the Response Bus’s FCFS, Reqi must be serviced before

Reqj. (2)

(1) and (2) contradicts, which completes the proof.

Invariant 3 A core responds to coherence requests in the order of their arrival to

that core.

Lemma 3 PISCOT satisfies Invariant 3.

Proof: Let Reqi(A) and Reqj(B) be two requests to cache lines A and B respectively

that are owned by Core Ck such that Ck observes Reqi(A) first. To break Invariant 3,

PISCOT has to service Reqj(B) before Reqi(A). (1)

Now, according to PISCOT’s operation, a core responds to a request for a cache line

that it owns by placing the data immediately in its local buffer. Additionally, a WB

action is queued into the Service Queue along with its initiating coherence message

of the request itself during the same Request Bus’s TDM slot. For instance, at time

83

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

t + 8 in Figure 5.2, C0’s GetM(A) message resulted in pushing two actions to the

Service Queue: 1) C1 has to write back A (WB(A)) first and only afterwards 2)

C2 can receive its requested data (RX(A)) from shared memory. Since Ck observes

Reqi(A) first, it mandates under PISCOT that Reqi(A) was issued in the Request Bus

before Reqj(B). Additionally, since requests are queued in the Service Queue based

on their appearance timestamp on the Request Bus, it mandates that Reqi(A) and

its corresponding WB(A) are queued in the Service Queue ahead of Reqi(B) and its

WB(B). Finally, according to the Response Bus’s FCFS policy, Reqi(A) will get its

data before Reqi(B). (2)

(1) and (2) contradicts, which completes the proof.

Invariant 4 A write request from a core that is a hit to a non-modified line in its

private cache has to wait for the arbiter to grant this core an access to the bus.

Lemma 4 PISCOT satisfies Invariant 4.

Proof: Let Reqi(A) be a write request from core Ck to line A that Ck has in the

S state in its private cache. To break Invariant 4, PISCOT shall allow Reqi(A) to

hit in the private cache and execute the operation silently without waiting for any

permission from the bus arbiter. (1)

According to PISCOT’s coherence protocol inherited from conventional MSI (Fig-

ure 2.5), A store to a cache line in S state has to issue a getM() coherence message

and wait in the SMad state. Afterwards, this message is only issued on the bus once

its core is granted access according to the Request Bus’s TDM schedule. (2)

(1) and (2) contradicts, which completes the proof.

84

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Invariant 5 A write request from a core that is a hit to a non-modified line, A, in

its private cache has to wait until all waiting cores that previously requested A get an

access to A.

Lemma 5 PISCOT satisfies Invariant 5.

Proof: Let cache line A to be initially in the S state in core Cj’s private cache. Let

also Reqi(A) be a read request from core Ci to cache line A that is broadcasted on

the bus at time t1. Then, assume that Cj at time t1 + δ (where δ > 0) has a store

request Reqj(A) to A. To break Invariant 5, assume that Reqj(A) is serviced before

Reqi(A). (1)

However, from Lemma 4, it follows that Reqj(A) has to wait for Cj’s TDM slot on

the Request Bus to broadcast a GetM(A) message on the bus before it can proceed

with its store operation. Assume that this happens at time t2. Since Reqj(A) arrived

at t+ δ, it follows that t2 ≥ t1 + δ. As a result and from Lemma 2, Reqi(A) request

is serviced before Reqj(A) since t2 > t1. (2)

(1) and (2) contradicts, which completes the proof.

Invariant 6 Each core has to deploy a predictable arbitration between its own gen-

erated requests and its responses to requests from other cores.

Lemma 6 PISCOT satisfies Invariant 6.

Proof: Assume a system with N cores C0 to CN such that one core Ci, 0 ≤ i ≤ N , has

a request to service from the memory, say Reqi, while all the other N − 1 cores keep

issuing requests to cache lines that are modified (owned) by Ci. To break Invariant 6,

Ci keeps servicing these requests and is not granted a guaranteed time at all where

85

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

it can finish its Reqi request. (1)

Now, we discuss how PISCOT schedules these requests. First, each core can only issue

requests during its dedicated TDM slot (Lemma 1). Second, an owner core responds

to requests from another core immediately during this other core slot and not its

own slot (Lemma 3). Accordingly, for our dictated scenario, Reqi has a guaranteed

time slot to be issued on the Request Bus. Finally, since the Response Bus services

requests in their order on the Service Queue, Reqi is guaranteed to finish its data

transfer once all requests in front of it in the Service Queue finish their transfers.

Now, it remains to show that the number of these requests is bounded. According

to the operation described at the beginning of this section, PISCOT only allows a

maximum of one request from any core at any time in the Service Queue. As a

result, Reqi cannot have more than N−1 requests ahead of it Service Queue, which

guarantees it a bound on the time it can be serviced (Section 5.3 provides a detailed

latency analysis to derive these bounds). (2)

For now, (2) clearly contradicts (1), which completes the proof.

5.3 Analytical Worst-Case Latency

We derive the WCL suffered by any single request to the cache hierarchy that is

managed by PISCOT. In doing so, we will use Figure 5.2, where the GetM(A) from

C2 is the request under analysis or rua. As previously explained, the system in

Figure 5.2 has three cores. As the figure illustrates, upon the arrival of the rua at

timestamp t, there is a pending request from C0 to the same cache line A, which is

initially owned by C1 in the M state. Generally, from its arrival to the private cache

controller buffer until it completely receives the requested data, a request suffers from

86

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

three different latency components. Namely, it suffers from latency due to arbitration

on the request bus, denoted as ReqBusL, latency due to arbitration on the response

bus, denoted as ResBusL, and finally the latency needed to transfer its data from

the memory denoted as AccL. The AccL depends on the time required to access the

shared memory and transfer one cache line to the requesting core’s private cache.

Now, we derive the worst-case latency of each of the other two components.

Lemma 7 Worst-Case Request-Bus Latency (ReqBusLWC). For a system

with N cores, a request has to wait for a maximum of ReqBusLWC cycles as calculated

in Equation 5.3.1 before it is granted access to the request bus, where SReq is the TDM

slot width of the request bus in cycles.

ReqBusLWC = N · SReq (5.3.1)

Proof: Recall that the request bus is managed using a TDM arbiter. In the worst

case, the rua arrives such that its core has just missed its own slot. Since we have

N cores and each core is allocated one TDM slot of width SReq, the rua has to wait

for N · SReq cycles before its corresponding core gets another slot. In Figure 5.2,

SReq = 4 cycles and N = 3; thus, the GetM(A) from C2 waits until t + 12 to gain

access to the bus.

Lemma 8 Worst-Case Response-Bus Latency (ResBusLWC). For a system

with N cores, a request has to wait for a maximum of ResBusLWC cycles from its

arrival time to the Service Queue before it can start receiving its requested data.

87

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

ResBusLWC is calculated by Equation 5.3.2, where SRes is the time required to con-

duct one memory transfer on the response bus.

ResBusLWC = (2 ·N − 1) · SRes (5.3.2)

Proof: Recall that the Response Bus services requests that arrive to the Service

Queue from the Request Bus in a FCFS fashion. In addition, PISCOT allows each core

to have at most one request in the Service Queue at any given time. Accordingly, the

rua waits in worst-case for a request from every other core to get serviced. Moreover,

in worst-case, each request can require two memory transfers. This is because each

request can be modified by another core and hence requires a write-back before the

shared memory can send the updated data to the requesting core. Since we have

N − 1 other cores, this consumes a total of (N − 1) · 2 ·SRes. Finally, the rua itself in

worst-case requires a write-back before it can start transferring its own data, which

consumes an additional SRes. This leads to ResBusLWC = (N − 1) · 2 · SRes + SRes

or (2 · N − 1) · SRes. In Figure 5.2, where SRes = 50 cycles, the GetM(A) from C2

incurs a ResBusL from t+ 8 to t+ 258, which is 250 cycles.

Lemma 9 Total Request Worst-Case Latency (TotLWC). For a system with

N cores, the maximum total latency that a request can encounter from its arrival time

to its private cache controller before it can start receiving its requested data can be

calculated as:

TotLWC = N · (SReq + 2SRes) (5.3.3)

Proof: Since TotLWC = ReqBusLWC + RespBusLWC + accL, the proof directly

follows from Lemmas 7 and 8, and the fact that accL = SRes per definition.

88

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5.3.1 Direct Cache-to-Cache Communication

In this case, only one response slot is needed for any request as Lemma 10 proves.

Therefore, the total request WCL for such architecture reduces to the value in Lemma 11.

Lemma 10 Worst-Case Response-Bus Latency with Cache-to-Cache Sup-

port (ResBusLWC
C2C). For a system with N cores that supports direct communication

among cores’ private caches, the maximum latency a request can suffer from its ar-

rival time to the global response queue before it can start receiving its requested data

can be calculated as in Equation 5.3.4, where SRes is the time required to conduct a

memory transfer on the response bus.

ResBusLWC
C2C = (N − 1) · SRes (5.3.4)

Proof: The proof directly follows from the proof of Lemma 8, with the exception

that only one response slot is required per core instead of two as follows. For any

request, there are three possibilities. 1) A core requests to read from or write to a

cache line that is up-to-date at the shared memory. In this case, the shared memory

transfers this line to the requesting core. 2) A core requests to write to a line that is

modified by another core. Thus, the owner core has to send this line to the requesting

core. Since the latter is going to update the line, the shared memory does not need

to receive the line at the moment. 3) A core requests to read from a line that is

modified by another core. In this case, the owner has to send this line to both the

requesting core and the shared memory. However, since the architecture supports

cache-to-cache communication, the data can be sent to both at the same slot. This

proves that under all these possibilities, only one response slot is needed instead of

89

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

two compared to Lemma 8. In conclusion, the ResBusLWC
C2C = (N − 1) · SRes.

Lemma 11 Total Request Worst-Case Latency with Cache-to-Cache Sup-

port (TotLWC
C2C). For a system with N cores that supports direct communication

among cores’ private caches, the maximum total latency that a request can encounter

from its arrival time to its private cache controller before it can start receiving its

requested data can be calculated as:

TotLWC = N · (SReq + SRes) (5.3.5)

Proof: The proof directly follows from summing the latency components in Lemmas 7

and 10, and the AccL.

5.3.2 Total Task’s Worst-Case Memory Latency

The latencies derived so far are concerned with a single memory request. However, to

derive the total task’s WCET, the total memory latency, WCML, has to be obtained

and then added to the worst-case computation time, WCCT , such that:

WCET = WCCT +WCML (5.3.6)

Let WCLReq to be the per-request WCL to differentiate it from the total WCML,

where WCLReq is either the TotLWC in Lemma 9 if no cache-to-cache is supported,

or the TotLWC
C2C in Lemma 11 otherwise. We now show different approaches to utilize

this WCLReq to derive WCML.

90

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

5.3.2.1 Using total number of requests

The first approach directly obtains WCML through Equation 5.3.7, where NReq is

the worst-case total number of issued memory requests by the task. NReq can be

obtained by statically analyzing the task in isolation [39].

WCML = NReq ×WCLReq (5.3.7)

5.3.2.2 Distinction between private and shared data

Although the bound provided in Equation 5.3.7 is safe, it is rather pessimistic. This

is because it assumes that all requests are misses, while in reality some of the requests

will hit in the private caches and thus suffer a much less latency than WCLReq. One

challenge in data-sharing systems is that whether a task access to shared data hits or

misses in the private cache depends on the access pattern of competing tasks, entailing

that no reasoning can be made about whether this access hits or misses in the private

cache by statically analyzing the task in isolation. Even worse, since shared cache

lines can conflict with private lines in the core’s private cache and hence evict each

other, no analysis can be applied to access to private data as well. In this case,

Equation 5.3.7 applies. In contrast, if private and shared data are isolated from each

other; for instance, by mapping them to different cache sets, tighter memory latency

bounds can be obtained for requests to the private data. Assuming this isolation, a

task’s hit ratio to the private data obtained from analyzing the task in isolation still

holds upon interference from co-running other tasks. As a result, in such system,

we can obtain the WCML as in Equation 5.3.8, where NReqpriv is the number of

requests to private data, among them NReqprivhit are hits in the private cache, and

91

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

NReqprivmiss are misses. Lhit is the hit latency of the private cache and NReqshrd is the

number of requests to shared data. Since Lhit << WCLreq (Lhit is one or two cycles

in modern architectures), the WCML bound in Equation 5.3.8 is generally tighter

than that of Equation 5.3.7. The actual values depend on the ratio of requests to

private and shared data, and hence, is application dependent.

WCML = NReqprivhit × Lhit + (NReqprivmiss +NReqshrd)×WCLReq (5.3.8)

5.3.3 Replacement of Dirty Cache Lines

The analysis in Lemmas 7 — 11 assumes that when a request misses in the private

cache, it is sent directly to the bus arbiter to fetch the requested data. However, it is

possible that the requested cache line is mapped to an entry that already has a valid

data of another cache line. This is called a cache conflict. In this case, the previous

cache line is to be evicted from the private cache and the requested cache line is to

be fetched to the same entry. If the evicted cache line has modified data, it has to

be written first to the shared memory; otherwise, this data is going to be lost. This

adds an extra latency of one memory transfer (or SRes) for each miss request in the

worst case. In other words, this adds N × SRes to the latencies in Lemmas 9 and 11.

However, assuming that every request is going to an eviction to a modified line is

overly pessimistic and a tighter bound can be obtained as follows.

5.3.3.1 Total number of writes

Since the additional latency component is caused only upon evicting a dirty cache

line, the total number of these replacements is bounded by the total number of write

92

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

requests of the task, WReq. Accordingly, the effect of the replacement is better to

be considered at the task level by updating Equation 5.3.7 to:

WCML = NReq ×WCLReq +WReq × SRes (5.3.9)

5.3.3.2 Distinction between private and shared data

Moreover, if the isolation between private and shared data discussed in Section 5.3.2.2

is adopted, the delay effects of replacement can be further reduced. This is because

the number of replacements happening withing private data can also be obtained

from analyzing the task using existing static analysis tools. Therefore, integrating

the effect of replacements in Equation 5.3.8 leads to the WCML in Equation 5.3.10,

where NReplpriv is the worst-case number of dirty cache line replacements within

private data, WReqshrd is the worst-case number of write requests to shared data.

WCML = NReqprivhit × Lhit +NReplpriv × SRes

+ (NReqprivmiss +NReqshrd)×WCLReq +WReqshrd × SRes

(5.3.10)

93

Chapter 6

Evaluation and Validation

This Chapter provides details of the Verification and Validation (VnV) process used

to verify CacheSim. The verification plan is closely tied to the simulator specification

and contains a description of what features need to be exercised and the techniques

to be used to verify our implementation.

6.1 General Information

The following sections provide more detail about the Verification and Validation plan

of the CacheSim software that allows the user to test the correctness of the imple-

mented code. The implementation verification process involves identifying test cases

targeting a specific function of the design (i.e. directed test case) and describing a

specific set of stimulus to apply to the design. Sometimes, the test case can be self-

checking and looks for specific symptoms of failures (i.e. assertion-based tests) in the

output stream observed from the design.

94

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

6.1.1 Objectives

The objective is to verify the CacheSim thoroughly against the design specification

defined in Chapter 4 and make sure there are no functional bugs in addition to

conducting detailed experiments to evaluate and explore the performance of different

implemented algorithms. While doing this, there should be a way of measuring the

completeness of verification. First, code coverage tools provide a first level measure

on the verification completeness. The data collected during code coverage has no

knowledge of the functionality of the design but provides information on the execution

of the code line by line. By guaranteeing that every line of the CacheSim is executed

at least once during simulations, a certain level of confidence can be achieved and

code coverage tools can help achieve that. Second, directed and regression tests are

used for functional coverage to ensure that stimulus vectors exercise all features in

the CacheSim. Finally, we will use validation metrics defined in Section 6.1.2 to verify

the simulator results.

6.1.2 Properties of a Correct Solution

We will use the following metrics to validate the simulator results.

1. For PISCOT proposed solution, we compare the performance metrics generated

by the simulator such as 1) request and response bus latencies. 2) latency

penalty due to L1 cache replacement. 3) observed worst-case latency, average-

case performance, and total execution time against the theoretical static analysis

that we introduced in Section 5.3 and made sure that all latency components

observed by the simulator are within their analytical bound.

95

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2. For existing solutions, journal articles that explore the latency analysis is used

as a reference. For instance, [1] and [8]. By conducting the same experiments in

the evaluation section, CacheSim should produce the same results as reported

in those experiments.

3. Cache Coherence Protocols need to pass the implemented finite state machine

(FSM) assertions to make sure that all possible state transitions are occurred

correctly under the correct input stimulus without violating any of the require-

ments specified in the state table of coherence protocols in Section 4.2.8.

6.1.3 Automated Testing and Verification Tools

CacheSim core modules are written in C++ using object-oriented programming con-

cepts. The simulator integrates some of ns-3 [57] network simulator libraries such as

ns-3 event scheduler layer that keeps track of all events that are scheduled to execute

at a specified simulation time. However, it is important to note that while ns3 is

event-based (which is more suitable for networking), our simulator is cycle-accurate.

CacheSim relies on TinyXml [58] library to acquire and resolve simulation configura-

tion parameters from the input XML document. Gcov [59] tool is used to perform

code coverage. A detailed summary of the coverage analysis results can be found in

Appendix A.3. Bash scripting framework is used for running unit tests in continuous

integration and reporting results of the tests (e.g. number of tests failed, runtime

duration, etc.). The whole process can be done through GitLab by defining the set of

tests to run whenever a new revision is submitted into the project repository. Finally,

Waf [60] tools is used for configuration, compiling, and build our simulator.

96

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

6.1.4 Benchmarks

There are three sets of benchmarks used in this thesis: 1) We craft 16 synthetic

workloads to stress the behavior of the evaluated features. Some of the synthetic

workload resemble the maximum data sharing among cores (all lines are shared)

with different read/write ratio, while others explore different patterns of temporal

and spatial locality of the access data. For more details about these benchmark,

one can refer to Appendix A.1. 2) Besides, we use EEMBC benchmarks suite. it is

an industry-standard benchmarks for the software used in autonomous driving, mo-

bile imaging, the Internet of Things (IoT), and mobile devices application developed

by [61] to verify CacheSim. 3) We also consider SPLASH-3 [62] benchmark suite of

multi-threaded applications to run multi-core simulations with data sharing. Due to

GitHub storage limitation, we only uploaded the synthetics and EEMBC benchmark

suites to CacheSim project repository [10]. However, the entire benchmarks suites

can be downloaded from our research group’s GitLab repository [63].

6.1.5 CacheSim Evaluation Setup

The system context used for evaluation is shown in Figure 6.1. CacheSim is configured

to simulate a single-chip multiprocessor consists of multi single-thread processing

cores with configurable cache organizations. The default simulator parameters are

chosen to emulate the behavior of quad-core system running at 2.5 GHz with out-of-

order pipelines, 8 kB direct-mapped L1 per-core private cache, and a 4 MB 8-ways

set-associative L2 shared cache across all cores. Both L1 and LLC have a cache line

size of 64 bytes. It is important to note that this configuration is only used as a

baseline. We study the effect of each of these configuration parameters in details in

97

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

the experiments discussed in Section 6.2. Therefore, to increase the readability of this

section, the following configuration values in Table 6.1 should be used as the default

configuration in all the subsequent tests unless they are explicitly overwritten.

C1
Private

Data cache

Cache
controller

Interconnection network

LLC
controller

last-level
Cache
(LLC)

Cn
Private

Data cache

Cache
controller

DRAM Ctrl

User User

CacheSim

Benchmark trace file
and testcase config

file
Latency trace files

Victim
Cache

Main Memory

Figure 6.1: CacheSim system context for verification

Table 6.1: Test case default configuration parameters

Parameter Value

Simulation Step Size (∆) 1 ns

Tclk 100 ns

Ncores 4

Cache Block Size 64 B

L1 CacheSize 8 kB

L1 associativity 1

L1 NSets 128

L2 CacheSize 4 MB

L2 associativity 8

98

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

L2 Nsets 8192

L2 interconnect Request Latency 4 cycles

L2 interconnect Response Latency 50 cycles

Core Pending Reqs 1

Coherence Protocol MESI

ReqBusArb FCFS

RespBusArb FCFS

Replcpolicy LRU

DRAM Latency 200 cycles

DRAM Outstanding Reqs 16

Perfect LLC Enable True

LLC Cold Start Enable False

C2C Transfer Enable True

Figure 6.2 illustrates the testing framework used to automate the verification pro-

cess of the simulator. We use waf [60] tool to 1) configure the simulation mode of

CacheSim. Currently, CacheSim supports three modes of operation as follows: i)

Experimental mode is the fastest simulation mode where all debug messages and

coverage report features are disabled. This mode is used during architectural ex-

plorations once the developed feature is stable, and the main focus is on evaluating

developed algorithms’ performance. ii) Debug mode allows the user to dump the

internal states of the simulator every clock cycle. For example, dump the internal

states of cache coherence protocols and handshaking signals between processor con-

trollers and upper-level controllers (i.e. shared memory controllers). iii) Coverage

mode provides information on the execution of the code line by line in terms of line

99

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

and function coverage. This mode is important to make sure that all design features

are stimulated and verify the coherence protocol’s correctness by ensuring that all

fault state transitions are not covered in the generated coverage reports. 2) Waf tool

is also used to compile, generate the executable file, and run the simulator with the

desired test case. The test cases run automation is done using bash scripts. These

scripts allow the user to either run a single test case with a specific configuration file

(sanity test) or run continuous regression with pre-defined benchmarks and a set of

experiments configuration files. For more information, a user may refer to the project

repository [10]. Finally, the latency files generated from the simulator are passed

through a python script for parsing and further analysis.

CacheSim
Results Analysis
(python script)

Benchmark
Name and Path

Test case Config File
(XML format)

Latency
CSV Files

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

PI
SC

O
T

PI
SC

O
T-

C2
C

barnes cholesky fft fmm lu_non_contig ocean radiosity radix raytrace volrend water_nsquared water_spatial

[c
yc

 in
 M

ill
io

ns
]

RespL ReplcL ReqL HitsL

Te
st

C
as

e
 P

o
o

l

Test environment

Coverage
reports

DebugFiles

CacheSim Testing Framework

Figure 6.2: CacheSim testing framework

100

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

6.2 Tests for Functional Requirements

This section describes the test cases that will be used to ensure the correctness of the

simulator features. This section is divided into different testing scopes. These are:

� Cache Coherence Protocols testing.

� Interconnection Network testing.

� Cache Replacement Policies testing.

� Victim Cache and Fixed DRAM Latency testing.

6.2.1 Cache Coherence Protocols

This testing suite verifies the Cache Coherence Protocols supported by the simulator

for both C2C and No-C2C architectures. Figure 6.3 depicts the execution time for

the synthetic benchmarks. From this result, one can distinguish different groups of

efficiency among the coherence protocols: MESI and MOESI are the best candidates

for implementation when the running applications explore spatial and temporal lo-

cality of the access data as shown in the first four benchmarks. For instance, in

read-modify-write benchmarks (RWStrideNoIntrf and RWStride32Rand), MESI and

MOESI are 48% and 42% faster than MSI protocol. On the other hand, MSI shows

higher performance at 50% and 63% for R75andL1Miss and R85RandL1Miss bench-

marks compared to MESI and MOESI.

At first glance, it could be surprising that MSI outperforms MESI and MOESI.

It is simply due to the absence of access locality in these benchmarks and the read

percentage is higher than the write one. Therefore, in case of MESI and MOESI,

101

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

0

2

4

6

8

10

12

14

16

18

20

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

RWStride16 RWStride16NoIntrf RWStride8Rand RWStride32Rand R75RandL1Miss R85RandL1Miss R75RandWrap R40RandWrap

ET
 [

C
yc

 in
 M

ill
io

n
s]

MSI MESI MOESI

Figure 6.3: Execution time for the synthetic workloads (FCFS, IO)

0

100

200

300

400

500

600

700

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

RWStride16 RWStride16NoIntrf RWStride8Rand RWStride32Rand R75RandL1Miss R85RandL1Miss R75RandWrap R40RandWrap

Th
o
u
sa
n
d
s

MemReqs L2-Reqs L1-Replc

Figure 6.4: Breakdown of Synthetic workloads memory requests (FCFS, IO)

a core cannot invalidate a cache line in ”E” or ”O” silently without write-back the

data to the L2 cache when another core request to modify it. To further investigate

the behaviour of MESI and MOESI protocols compared to the conventional MSI

protocol when the application has no data locality, Figure 6.4 plots the observed L1

replacement count and the total number of memory requests to L2 for the synthetic

benchmarks. As the figure illustrates, MESI and MOESI show huge replacement

numbers for R75RandL1Miss and R85RandL1Miss compared to conventional MSI

protocol. This confirms the same observation that we made in Figure 6.3. To further

102

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

study the performance behaviour of the coherence protocols, we show the average-

case memory latency for the synthetic benchmarks in Figure 6.5. Figure 6.5 confirms

the same behaviour observed in the execution time in Figure 6.3.

0

50

100

150

200

250

300

350

400

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

RWStride16 RWStride16NoIntrf RWStride8Rand RWStride32Rand R75RandL1Miss R85RandL1Miss R75RandWrap R40RandWrap

A
vg

L
[C

yc
]

MSI MESI MOESI

Figure 6.5: Average latency of the Synthetic workloads (FCFS, IO)

We also tested the cache coherence protocols for EEMBC benchmarks. Figures

6.6 and 6.7 depicts the execution time and average-case memory latency for EEMBC

benchmarks, respectively. Across all benchmarks, C2C architecture achieves up to

25% on average better performance than No-C2C architecture. The Intuition be-

hind such behaviour is that for No-C2C architecture, the data always needs to come

from the shared memory to the requested core which increases the congestion at the

interconnect network.

2

2.5

3

3.5

4

4.5

5

5.5

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

MSI MESI MOESI

Figure 6.6: Execution time for the EEMBC workloads (FCFS, IO)

103

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

20

25

30

35

40

45

50

55

60

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

A
vg

L
[C

yc
]

MSI MESI MOESI

Figure 6.7: Average latency of the EEMBC workloads (FCFS, IO)

6.2.2 Interconnection Network

In this set of experiments, we verify the three arbitration polices implemented at the

interconnect network. PISCOT bus arbitration introduced in Chapter 5, conventional

MSI bus arbitration (Subsection 2.4.2), and PMSI bus arbitration (Subsection 2.4.4).

6.2.2.1 PISCOT Bus Arbitration

As explained in Chapter 5, the request and the response buses are split and operate

independently in PISCOT. The former uses work-conserving TDM arbitration amongst

cores while the latter services the responses in FCFS fashion. In order to verify

PISCOT, we run multiple experiments with different numbers of pending requests

(Npend) a core can issue to cover both in-order and out-of-order execution modes. In

addition, we test PISCOT for C2C and No-C2C architectures. Figures 6.8 depicts the

WCL for any request to the cache hierarchy for both EEMBC benchmarks. The figure

shows both the analytical WCL bounds (T bars) and the observed (experimental)

WCL (colored solid bars). From this figure, we make the following observations. 1)

All observed WC latencies under PISCOT operation are lower than its corresponding

analytical bounds derived in Section 5.3, which confirms the predictability of PISCOT.

104

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2) WCL of PISCOT is insensitive to the variation of the number pending request a core

can issue. The intuition behind such behaviour is that PISCOT allows cores to issue

multiple outstanding requests. However, it only services at most one request from any

given core at a time. The rationale for this is to limit the coherence interference among

cores such that a request from any core can suffer interference due to a maximum of

only one request from each other core.

Figure 6.9 depicts the overall execution time for EEMBC benchmarks. From this

experiment, we make the following observation. Although PISCOT limits the number

of requests issued on the bus from a given core to one request at a time, increasing

the number of pending requests still improves performance (reduce execution time).

Recall that PISCOT doesn’t limit the number of outstanding requests a core can issue

to its private cache controller. Therefore, it still allows for private cache hits while

waiting for data response for the missed request to come from L2 cache.

0

50

100

150

200

250

300

350

400

450

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

a2time01-trace aifirf01-trace basefp01-trace cacheb01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

W
C

L
[C

yc
]

Npend = 1 Npend = 4 Npend = 8 Npend = 16

Figure 6.8: PISCOT per-request worst-case latency for EEMBC suite.

Figure 6.10 shows both the analytical bound for the total WCL derived by Equa-

tion 5.3.7 (T bars) and the observed total latencies (colored solid bars). In this case

study we are interested in calculating the total memory WCL suffered by the total

105

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

Npnd = 1 Npnd = 4 Npnd = 8 Npnd = 16

Figure 6.9: PISCOT execution time for EEMBC suite.

number of memory requests generated by a core during a period of time t. Further-

more, the observed one is decomposed to its sub-components: a) the request bus

arbitration latency, b) the response bus memory transfer latency, c) the hit latency

in the core’s private cache, and d) the write-backs latency due to replacement. From

Figure 6.10, we conclude the following observations. 1) The response bus latency

component dominates the total WCL for all applications. For instance, the total

observed response latency reach up to 8× (barnes and volrend) and 4.3× on average

larger than the replacement latency. This emphasises the conclusion we made in Sec-

tion 5.3.3 that the effect of the eviction delays should be considered at the task-level

and not the request-level. 2) Since SPLASH-3 applications exhibit a reduced ratio

of writes compared to reads, they do not stress the difference between No-C2C and

C2C architecture in the observed response bus latency. Therefore, to further show

this effect, we execute synthetic experiments using the synthetic benchmarks that are

used to generate WCL in Figure 6.8 except that we change the percentage of the

CPU memory write request to 50% of total memory requests. The results show that

with C2C communication, PISCOT achieves up to 1.74× (1.56× on average) higher

bandwidth compared to No-C2C scheme.

106

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C No C2C C2C

barnes cholesky fft fmm lu_non_contig ocean radiosity radix raytrace volrend water_nsquared water_spatial

[c
yc

 in
 M

ill
io

n
s]

RespL ReplcL ReqL HitsL

Figure 6.10: PISCOT total observed and analytical memory latency for Splash-3
benchmarks. Values in y-axis are in log scale.

6.2.2.2 Conventional MSI Bus Arbitration

Conventional MSI is a commodity performance-oriented arbitration policy that is used

in COTS platforms that favour system performance over other metrics such as fairness

and predictability. Such arbiter prioritizes requests based on their arrival time. In

Figures 6.11 and 6.12, we compare Conventional MSI performance against PISCOT for

EEMBC workloads. Figures 6.11 clearly illustrate the benefits of conventional MSI.

Conventional MSI outperforms PISCOT for all benchmarks: it achieves up to 13%

on average better performance than PISCOT for No C2C architecture. Figure 6.12

confirms the same behaviour observed in the execution time in Figures 6.11. For some

benchmarks; namely a2time01-trace and aifirf01-trace, MSI achieves up to 37% and

24% less latency than PISCOT.

On the other hand, conventional MSI is not predictable since it provides no latency

guarantees upon accessing the shared memory. This is because one core can have a

request that is pending (theoretically) forever, while other cores are saturating the

queues. Figures 6.13 and 6.14 highlight this behaviour. As shown from this result,

MSI’s WCL changes considerably when the number of pending requests a core can

107

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

2

2.5

3

3.5

4

4.5

5

5.5

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

C2C No C2C

Figure 6.11: PISCOT Execution time comparison to conventional MSI protocol with
FCFS split-transaction bus.

20
25
30
35
40
45
50
55
60
65

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

A
vg

L
[C

yc
]

C2C No C2C

Figure 6.12: PISCOT Average latency comparison to conventional MSI protocol with
FCFS split-transaction bus.

issue increase. For instance, for a2time01-trace benchmark, MSI’s WCL increased by

2× (for No C2C setup) and 3× (for C2C setups) when the number of core’s pending

requests changes from 1 to 16. Contrarily, PISCOT achieves predictable latency bound

across all benchmarks. It achieves up to 5× on average tighter bound compared to

conventional MSI.

In Figure 6.15, we study the impact on WCL upon increasing the L2 cache data

response latency for both conventional MSI and PISCOT. In this case study, we fix

the number of pending requests a core can issue to 1 and sweep the L2 cache response

108

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

0

500

1000

1500

2000

2500

3000

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

W
C

L
[C

yc
]

Npend = 1 Npend = 4 Npend = 8 Npend = 16

Figure 6.13: PISCOT versus FCFS split-transaction bus WCL with different number
of pending core requests (MSI, No-C2C, L2-Lat = 50 Cycles).

0

200

400

600

800

1000

1200

1400

1600

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

W
C

L
[C

yc
]

Npend = 1 Npend = 4 Npend = 8 Npend = 16

Figure 6.14: PISCOT versus FCFS split-transaction bus WCL with different number
of pending core requests (MSI, C2C, L2-Lat = 50 Cycles).

latency from 25 to 100 cycles. Each running core also executes the EEMBC workload

with No C2C architecture setup. Observations. 1) Clearly, increasing the L2 cache

latency increase the WCL for both MSI and PISCOT with the same ratio. For instance,

increasing L2 cache latency from 25 to 100 cycles results in 3× increase in WCL on

average in both conventional MSI and PISCOT. 2) The latency bound in PISCOT is

much tighter than conventional MSI. PISCOT achieves up to 5× on average tighter

bound compared to conventional MSI in all experiments. Figure 6.16 shows the

impact of increasing the L2 cache response latency on the overall execution time of

the running application. Again, the result is consistent with the observation that we

made in Figure 6.15.

109

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

0

500

1000

1500

2000

2500

3000

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace aifirf01-trace basefp01-trace cacheb01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

W
C

L
[C

yc
]

L2-Lat = 25 L2-Lat = 50 L2-Lat = 75 L2-Lat = 100

Figure 6.15: WCL of PISCOT versus FCFS split-transaction bus with different
number of L2 cache response latency. (MSI, No-C2C, Npend = 1).

0

2

4

6

8

10

12

FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT FCFS PISCOT

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

L2-Lat = 25 L2-Lat = 50 L2-Lat = 75 L2-Lat = 100

Figure 6.16: Execution time for PISCOT and FCFS split-transaction bus with
different L2 bus latencies. (MSI, No-C2C, Npend = 1).

6.2.2.3 PMSI Bus Arbitration

Figures 6.17 and 6.18 depict the WCL for any request to the cache hierarchy for both

SPLASH-3 benchmarks and the EEMBC workloads, respectively. The figures show

both the analytical WCL bounds (T bars) and the observed (experimental) WCL

(colored solid bars). We compare the WCL of the two PMSI schemes (where PMSI-

WrkConsv is the one using work conserving TDM, while PMSI-NonWrkConsv is the

one using non work conserving TDM with PISCOT and conventional MSI (FCFS) ap-

proaches. From this experiment, we make the following observations. 1) For PISCOT

and PMSI, all the observed WC latencies are always within the analytical worst-case

latency bounds. 2) PISCOT shows up to 4.9× improvement in the analytical WCL

110

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

compared to PMSI. The analytical WCL of PMSI is 2050 cycles compared to 416 cycles

in PISCOT. 3) Compared to PMSI, the observed WCLs in PISCOT achieve up to 2.74×

tighter bounds on average across benchmarks. 4) PMSI incurs a large gap between

experimental and analytical WCLs. In the SPLASH-3 benchmarks (Figure 6.17),

this gap ranges from 70% (barnes and ocean) and reaches up to 3.4× (cholesky and

radix). This is because PMSI’s analytical WCL assumes a pathological worst-case sce-

nario that is hard to construct in real applications. Even with EEMBC experiments

(Figure 6.18), the gap is more than 45% for most benchmarks. On the other hand,

PISCOT achieves a tighter bound for the derived WCL. PISCOT achieves this tightness

by enforcing FCFS arbitration policy on the response bus.

0

500

1000

1500

2000

2500

W
C

L
[C

yc
]

PMSI - WrkConsv PISCOT FCFS

Figure 6.17: Per-request worst-case latency for SPLASH-3 suite.

Figure 6.19 shows the slowdown of PISCOT and PMSI-WrkConsv compared to the

conventional MSI with split-transaction FCFS bus.

PMSI’s slowdown is 2× on average (and up to 4.3×) across all benchmarks. This is

due to the coupling of coherence and data transfer on the same TDM bus as explained

in Section 5.2 in addition to the enforced protocol changes. Authors of [1] compared

PMSI with an MSI+conventional TDM arbiter, for which they reported that PMSI

111

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

0

500

1000

1500

2000

2500

W
C

L
[C

yc
]

PMSI-WrkConsv PMSI-NonWrkConsv PISCOT FCFS

Figure 6.18: Per-request worst-case latency for the EEMBC suite.

showed only a 45% slowdown. Recall here we consider MSI+split-transaction bus.

These results combined emphasise our observation that the split-bus architecture

can significantly increase performance compared to the traditionally considered bus

architectures by the real-time community. On the other hand, Figure 6.19 shows that

PISCOT achieves comparable results with slowdown in the range of 1%–4%. This is

clearly a negligible cost for achieving timing predictability with tight latency bounds.

0

1

2

3

4

5

6

Sl
o

w
d

o
w

n

FCFS PISCOT PMSI - WrkConsv

Figure 6.19: Execution time slowdown compared to conventional MSI protocol with
split-transaction bus.

112

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

6.2.3 Cache Replacement Policies

This set of experiments studies and validates the different replacement algorithms that

are implemented at L1 and L2 caches. CacheSim supports different replacement poli-

cies: FIFO, LIFO, LRU, MRU, LFU, MFU, and RAND. These policies are explained

in details in Section 2.2.3. We observe that SPLASH-3 and EEMBC benchmarks

lead to hit ratio over 99% at L2 cache. For this reason, we craft our own synthetic

benchmarks in order to obtain larger cache miss ratio at L2 cache and therefore, show

the relative performance of the different replacement algorithms. Please refer to Ap-

pendix A.1 for more details about these benchmarks. The results of these synthetic

benchmarks’ simulations are given in Figures 6.20 and 6.22, both experiments have

the same configuration except that Figure 6.20 deploys PISCOT arbitration at the in-

terconnect network while Figure 6.21 deploys conventional MSI (FCFS) arbitration.

From these results, one can distinguish different groups of efficiency among the re-

placement policies: LRU and LFU, MRU and MFU, FIFO and LIFO, and RAND.

LRU and LFU group appear as the best candidates for implementation. Across all

benchmarks, LRU and LFU achieve the lowest miss rate up 9% on average compared

to (27% MFU, 32% MRU). Also FIFO and LIFO achieve comparable performance,

around 11% miss rate on average across all benchmarks. RAND replacement suffers

only 3% performance loss compared to LRU on average.

Figures 6.22 and 6.23 depict the effect of different replacement policies on the

total execution time for PISCOT and conventional MSI arbiters, respectively. From

these results we make the following observations. 1) As expected, conventional MSI

outperform PISCOT in all benchmarks, this confirm the results we got in Figures 6.11

and 6.16. 2) Again, LRU and LFU group outperform all other replacement policies.

113

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

0%

10%

20%

30%

40%

50%

60%

70%

80%

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8

L2
 C

ac
h

e
 M

is
s

P
e

rc
e

n
ta

ge
FIFO LFU LIFO LRU MFU MRU RAND

Figure 6.20: L2 cache miss percentage for the synthetic benchmarks (MESI,
PISCOT).

0%

10%

20%

30%

40%

50%

60%

70%

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8

L2
 C

ac
h

e
 M

is
s

P
e

rc
e

n
ta

ge

FIFO LFU LIFO LRU MFU MRU RAND

Figure 6.21: L2 cache miss percentage for the synthetic benchmarks (MESI, FCFS).

This confirms the same observation we made in Figure 6.20 and 6.21.

6.2.4 Victim Cache and Fixed DRAM Latency

This set of experiments studies verifies the Victim Cache and Fixed DRAM Latency

module of CacheSim. The goal is to add a third hierarchy level to the multicore

simulation environment (i.e. DRAM memory) and study the performance in the

present of L2 cache replacements. In these experiments, we explore the performance

impact of different access latency cycles for L2 cache and DRAM module, and different

configurations for the number of pending core requests. Section 6.2.4.1 evaluates

configuration with perfect L2 cache (with no replacements occurs at L2 cache), while

114

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

10

20

30

40

50

60

70

80

90

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8

ET
 [

C
yc

 in
 M

ill
io

n
s]

FIFO LFU LIFO LRU MFU MRU RAND

Figure 6.22: Execution time for the synthetic benchmarks (MESI, PISCOT).

10

20

30

40

50

60

70

80

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8

ET
 [

C
yc

 in
 M

ill
io

n
s]

FIFO LFU LIFO LRU MFU MRU RAND

Figure 6.23: Execution time for the synthetic benchmarks (MESI, FCFS).

Section 6.2.4.2 evaluates the performance of the synthetic benchmarks in the presence

of DRAM and L2 cache replacements.

6.2.4.1 Standalone DRAM Latency Impact

Methodology. We study the impact of increasing the DRAM latency on the perfor-

mance of the running application. In this experiment, we want to show the standalone

effect of increasing the DRAM latency. Therefore, we consider the EEMBC work-

loads as their L2’s hit rate equal 100% in order to isolate the contribution of cache

replacement. Then, we initialize L2 cache in the cold start mode (i.e. initially, all

cache lines are invalids in L2 cache) and sweep the DRAM latency from 0 to 400

cycles. Figure 6.24 shows the overall execution time for different L2 cache response

115

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

3

3.5

4

4.5

5

5.5

6

6.5

7

0 50 100 150 200 250 300 350 400

ET
 [

cy
c

in
 M

ill
io

n
s]

DRAM Latency [Cyc]

Npend = 1 - L2-Lat = 25 Npend = 1 - L2-Lat = 50

Npend = 8 - L2-Lat = 25 Npend = 8 - L2-Lat = 50

Figure 6.24: Standalone DRAM latency impact on the Execution Time.

latency (L2-lat) for both in-order (Npend = 1) and out-of-order (Npend = 8) cores.

Observations. Clearly, increasing the DRAM latency, the increasing rate in the exe-

cution time is higher in in-order cores (Npend = 1) than that of the out-of-order ones

(Npend = 8). Moreover, increasing the L2 cache latency degrades the performance

linearly, this finding is consistent with the result we got in Figure 6.16. Figures 6.25

and 6.26 shows the DRAM latency effect on the execution time across all EEMBC

benchmarks for both 25 cycles and 50 cycles L2 cache response latency configuration.

The results resemble the same observations that we made in Figure 6.24 above.

1

2

3

4

5

6

7

8

IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

DRAM-Lat = 0 DRAM-Lat = 100 DRAM-Lat = 200 DRAM-Lat = 300 DRAM-Lat = 400

Figure 6.25: Standalone DRAM latency impact on the execution time for EEMBC
benchmark and L2 bus latency = 50 cycles. (MESI, FCFS).

116

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO

a2time01-trace aifirf01-trace basefp01-trace empty-trace iirflt01-trace pntrch01-trace rspeed01-trace ttsprk01-trace

ET
 [

C
yc

 in
 M

ill
io

n
s]

DRAM-Lat = 0 DRAM-Lat = 100 DRAM-Lat = 200 DRAM-Lat = 300 DRAM-Lat = 400

Figure 6.26: Standalone DRAM latency impact on the execution time for EEMBC
benchmark and L2 bus latency = 25 cycles. (MESI, FCFS).

6.2.4.2 Impact of DRAM latency in the present of cache replacement

In this subsection, we uses the synthetic workloads to evaluate the multi-threaded

workloads performance in the presents of DRAM and L2 cache replacement. In this

experiment, we used LRU replacement policy and FCFS split bus arbiter. As per the

results we obtained in Figure 6.21, LRU L2 miss rate varying between 9% to 29%

across these benchmarks.

Figure 6.27 shows the overall execution time of the synthetic benchmarks for

in-order and out-of-order cores at different DRAM latencies and L2 cache response

latencies. From this result, we make the following observations. 1) Clearly, out-of-

order execution (Npend = 8) improves performance significantly compared to in-order

cores. For instance, in DRAM-Lat = 400 cycles and L2-Lat = 25 cycles configura-

tions, out-of-order cores achieves up to 2.86 × (Stride512Bytes0Cycle) improvement

compared to in-order cores. 2) Notably, increasing DRAM latency degrades perfor-

mance significantly in case of in-order cores for the benchmarks with higher L2 miss

rates (i.e. Random0Cycle, Random0CycleW, and Stride512Bytes0Cycle), while in-

terestingly for out-of-order cores, the execution time remains almost constant across

117

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

the same benchmarks. 3) Increasing L2 cache response latency has the same ef-

fect on performance (reducing the execution time) of the running applications for

both in-order and out-of-order cores. In Figure 6.28, we run one instance of the

Stride512Bytes0Cycle workload that has 25% L2 miss rate, and sweep the DRAM

latency from 0 to 400 cycles. Then, we repeat the same experiment for in-order

and out-of-order cores at different L2 cache response latency numbers. As the figure

illustrates, 1) when L2 latency is small enough (i.e 25 cycles case), the impact of

increasing the DRAM latency on the performance happens immediately, Once the

DRAM latency exceeds 50 cycles, the performance starts degrading linearly. On the

other hand, for larger L2 response latency (i.e. 50 cycles), the performance is domi-

nated by the L2 response itself until the DRAM latency reach a certain limit (above

150 cycles in this case), then the effect of the DRAM latency starts contributing to

the performance degradation. 2) The out-of-order configuration is useful when L2

miss ratio is high, in this case increasing the CPU instruction pipeline hides the effect

of the DRAM latency on the overall application execution time.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50 25 50

IO OOO IO OOO IO OOO IO OOO IO OOO IO OOO

Random0Cycle Random0CycleW Stride512Bytes0Cycle Stride64Bytes0CycleWrap Stride64Bytes0CycleWrapW Stride64Random

ET
 [

C
yc

 in
 M

ill
io

n
s]

DRAM-Lat = 0 DRAM-Lat = 100 DRAM-Lat = 200 DRAM-Lat = 300 DRAM-Lat = 400

Figure 6.27: Execution time with different DRAM latency, Npend = 8, L2 bus
latency = 25 and 50 cycles.

118

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300 350 400

ET
 [

C
yc

 in
 M

ill
io

n
s]

DRAM Latency [Cyc]

Npend = 1 - L2-Lat = 25 Npend = 1 - L2-Lat = 50

Npend = 8 - L2-Lat = 25 Npend = 8 - L2-Lat = 50

Figure 6.28: Execution time with different DRAM latency

6.3 Tests for Nonfunctional Requirements

6.3.1 Configurability

CacheSim allows a high degree of configurability of cache memory configuration in

terms of the number of levels, cache organization, and replacement policy. Besides, it

supports flexible cache coherence models and bus arbitration policies. These system

specification parameters are grouped into a single XML document (Figure 6.29) that

allows the simulator to be fully configurable in advance by the user.

6.3.2 Producability

Reproducibility of experiments is very important in order to study the impacts of

different parameters’ changes. Therefore, CacheSim is designed for producibility. All

experiments we run in this evaluation can be regenerated by running a simple bash

script that takes the test case category and benchmark name as an input, and then it

lunches CacheSim to run the simulation. A user may consult CacheSim wiki-page [10]

119

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Figure 6.29: CacheSim XML configuration file format.

for more information.

6.3.3 Performance

The performance of CacheSim is evaluated on Intel(R) Core(TM) i7-9700 CPU clocked

at 3.00 GHz with 8 GB system memory. CacheSim run-time depends on the workloads

trace file size, number of processing cores, cache size, clock resolution, and simulation

120

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

mode of operation. Figure 6.30 compares the performance of CacheSim versus the

state-of-art gem5 full-system simulator for the EEMBC benchmarks suite. We run

both CacheSim and gem5 trace-based simulation for quad-core systems with PMSI

bus arbiter. The simulation step size of CacheSim is configured to 1 ns. Figure 6.30

shows that CacheSim with code coverage disabled achieves closer performance com-

pared to gem5 simulator. On the other hand, changing the simulation mode from

experimental to code coverage analysis increases the run-time of the simulation by

4× on average across all benchmarks.

0
2
4
6
8

10
12
14
16

R
u

n
-t

im
e

 [
m

in
]

gem5 CacheSim CacheSim-Cov

Figure 6.30: CacheSim run-time in minutes for EEMBC benchmarks.

121

Chapter 7

Conclusion

This thesis focuses on building a comprehensive, cycle accurate simulation tool for

cache-coherent multi-core architectures to help researchers and computer architects

explore the design space challenges of multi-core processing chips. We introduced

CacheSim, an open-source cycle-accurate simulation tool for cache-coherent inter-

connect architecture. We demonstrated the CacheSim’s advantage in efficiency and

extensibility, as well as its holistic support for cache coherency models and mod-

ern bus-based interconnects for multi-core architectures. We also used CacheSim

to explore the design space of improving shared memory access predictability and

developed PISCOT, a predictable and coherent bus architecture that provides a con-

siderably tighter latency bound compared to the existing solutions. We hope that

CacheSim would facilitate innovation in multi-level cache memory design in an era

when technological performance is undergoing rapid saturation.

122

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

7.1 Future Work

In terms of future work, we will continue extending the simulator’s capabilities to

support configurable multi-level cache hierarchy. Currently, we support the common

architecture deployed in real-time systems with two-level cache hierarchy where the

L1 cache level is private per each processing core, and the L2 cache level is shared

among all core. However, the high-performance platforms support up to three cache

hierarchy levels, so we will improve this feature by making the number of cache levels

a configurable parameter. We will also add cache exclusivity, directory-based coher-

ence protocols, and network-on-chip (NoC) interconnects features into the simulator.

Finally, full-system simulation experiments will be added to test CacheSim with ex-

ternal CPU simulator tools such as gem5 [12] and external DRAM device simulators

such as Ramulator [43].

123

Appendix A

Your Appendix

A.1 Benchmarks

As seen before, we used 16 synthetic benchmarks to stress the verification of the co-

herence protocols and replacement algorithms. The descriptions of these benchmarks

are listed in Table A.1

Table A.1: Synthetic benchmarks description

Benchmark Description

RWStride16 Sequential read-modify-write memory accesses with stride

offset equals 16 Bytes.

RWStride16NoIntrf Sequential read-modify-write memory accesses with stride

offset equals 16 Bytes, and no shared data between cores

RWStride8Rand Random read-modify-write memory accesses with stride off-

set equals 8 Bytes.

RWStride32Rand Random read-modify-write memory accesses with stride off-

set equals 32 Bytes.

R75RandL1Miss Random memory accesses with read percentage equals 75%

and all requests are miss in L1 Cache.

124

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

R85RandL1Miss Random memory accesses with read percentage equals 85%

and all requests are miss in L1 Cache.

R75RandWrap Random memory accesses with read percentage equals 75%

and address wrapping every 1024 KBytes.

R40RandWrap Random memory accesses with read percentage equals 40%

and address wrapping every 1024 KBytes.

Synth1 - Synth8 Random memory accesses with different L2 cache miss rates

and patterns.

A.2 CacheSim Module Hierarchy

Decomposing a system into modules is a commonly accepted approach to developing

software. We advocate CacheSim decomposition based on the principle of information

hiding [56]. This principle supports design for change, because the “secrets” that each

module hides represent likely future changes. Design for change is valuable in SC,

where modifications are frequent, especially during initial development as the solution

space is explored. Figure A.1 illustrates the use relation between the modules. It can

be seen that the graph is a directed acyclic graph (DAG). Each level of the hierarchy

offers a testable and usable subset of the system, and modules in the higher level of

the hierarchy are essentially simpler because they use modules from the lower levels.

A.3 CacheSim Code Coverage Analysis

We use Gcov [59] to run code coverage analysis. Figure A.2 shows an example of the

generated code coverage for some of the directed test-cases that we use throughout this

thesis. As shown, most developed modules achieve a reasonable coverage percentage

125

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Control Module

(M11)

Cache Memory

Module (M4)

Private Cache

Controller Module

(M5)

Interconnection

network Module

(M8)

CPU core Generator

Module (M3)

Memory Controller

Module (M6)

Cache Coherence

Protocol Module

(M7)

Output Format

Module (M10)

Latency

checkpointing

Module (M9)

XML Parsing

Module (M13)

Hardware Hiding

Module (M1)

Input Parameters

Module (M2)

NS-3 Schedule

Module (M14)

Coherence Protocol

Type Module (M12)

Figure A.1: CacheSim module hierarchy

except for the coherence protocols modules. The reason for this low coverage is that

not all coherence protocol state transitions are valid as indicated by the coherence

protocol state transition Tables 2.2, 4.1, and 4.3. Besides, we added many assertion

statements to detect invalid inputs and controller decisions. These assertions will

never be executed under correct operation, and we could not waive these conditions

because the free coverage tool does not provide this feature.

Figure A.2: CacheSim code coverage analysis

126

Bibliography

[1] M. Hassan, A. M. Kaushik, and H. Patel. Predictable cache coherence for multi-

core real-time systems. In IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS), 2017.

[2] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. System

level performance analysis for real-time automotive multicore and network archi-

tectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2009.

[3] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures

in avionics. In Ninth European Dependable Computing Conference, 2012.

[4] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto

Fröhlich, and Rodolfo Pellizzoni. A survey on cache management mechanisms

for real-time embedded systems. ACM Computing Surveys (CSUR), 48(2):32,

2015.

[5] Intel Corporation. Intel acknowledges it was too aggressive with its

10nm plans, 2019. URL https://www.extremetech.com/computing/

295159-intel-acknowledges-its-long-10nm-delay-caused-by-being-too-aggressive.

127

https://www.extremetech.com/computing/295159-intel-acknowledges-its-long-10nm-delay-caused-by-being-too-aggressive
https://www.extremetech.com/computing/295159-intel-acknowledges-its-long-10nm-delay-caused-by-being-too-aggressive

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[6] M. Cornea. New technologies for improved computing. In 2019 IEEE 26th

Symposium on Computer Arithmetic (ARITH), pages 96–96, 2019. doi: 10.

1109/ARITH.2019.00024.

[7] A new golden age for computer architecture: Domain-specific hardware/software

co-design, enhanced security, open instruction sets, and agile chip development.

In 2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-

tecture (ISCA), pages 27–29, 2018. doi: 10.1109/ISCA.2018.00011.

[8] S. Hessien and M. Hassan. The best of all worlds: Improving predictability at

the performance of conventional coherence with no protocol modifications. In

2020 IEEE Real-Time Systems Symposium (RTSS), pages 218–230, 2020. doi:

10.1109/RTSS49844.2020.00029.

[9] Mohamed Hassan. Discriminative coherence: Balancing performance and latency

bounds in data-sharing multi-core real-time systems. In Euromicro Conference

on Real-Time Systems (ECRTS), pages 1–22, 2020.

[10] Salah Hessien. Cachesim: A cycle-accurate simulation infrastructure for cache-

coherent interconnect architectures. https://gitlab.com/FanosLab/cachesim,

2021.

[11] R. Mirosanlou, D. Guo, M. Hassan, and R. Pellizzoni. Mcsim: An extensible

dram memory controller simulator. IEEE Computer Architecture Letters, 19(2):

105–109, 2020. doi: 10.1109/LCA.2020.3008288.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,

128

https://gitlab.com/FanosLab/cachesim

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

Ali Saidi, Arkaprava Basu, Joel Hestness, et al. The gem5 simulator. ACM

SIGARCH Comput. Archit. News, 2011.

[13] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. PLDI ’07, page 89–100, New York, NY, USA,

2007. Association for Computing Machinery. ISBN 9781595936332. doi: 10.

1145/1250734.1250746. URL https://doi.org/10.1145/1250734.1250746.

[14] Jan Edler. Dinero iv trace-driven uniprocessor cache simulator. retrieved from.

URL http://www.cs.wisc.edu/∼markhill/DineroIV/.

[15] R. Iyer. On modeling and analyzing cache hierarchies using casper. In 11th

IEEE/ACM International Symposium on Modeling, Analysis and Simulation of

Computer Telecommunications Systems, 2003. MASCOTS 2003., pages 182–187,

2003. doi: 10.1109/MASCOT.2003.1240655.

[16] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun

Lim, and Tri Pho. Macsim: A cpu-gpu heterogeneous simulation framework user

guide., 2012.

[17] D. Hackenberg, D. Molka, and W. E. Nagel. Comparing cache architectures

and coherency protocols on x86-64 multicore smp systems. In 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009.

[18] Michael E Thomadakis. The architecture of the Nehalem processor and Nehalem-

EP SMP platforms. Resource, 3, 2011.

[19] Manpreet S Khaira. Fast first-come first served arbitration method, November 12

1996. US Patent 5,574,867.

129

https://doi.org/10.1145/1250734.1250746
http://www.cs.wisc.edu/∼markhill/DineroIV/

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[20] WL Bain Jr and SR Ahuja. Performance analysis of high-speed digital buses

for multiprocessing systems. In Proceedings of the 8th annual symposium on

Computer Architecture, pages 107–133, 1981.

[21] Michael A Fischer. Fair arbitration technique for a split transaction bus in a

multiprocessor computer system, November 15 1988. US Patent 4,785,394.

[22] Ashok Singhal, Bjorn Liencres, Jeff Price, Frederick M Cerauskis, David Bro-

niarczyk, Gerald Cheung, Erik Hagersten, and Nalini Agarwal. Implementing

snooping on a split-transaction computer system bus, November 2 1999. US

Patent 5,978,874.

[23] Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. Shed-

ding the shackles of time-division multiplexing. In IEEE Real-Time Systems

Symposium (RTSS), 2018.

[24] Nivedita Sritharan, Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Pa-

tel. Enabling predictable, simultaneous and coherent data sharing in mixed

criticality systems. 2019.

[25] Anirudh M. Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp:

A data communication mechanism for multi-core mixed-criticality systems. In

IEEE Real-Time Systems Symposium (RTSS), 2019.

[26] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the

obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995. ISSN 0163-

5964. doi: 10.1145/216585.216588. URL https://doi.org/10.1145/216585.

216588.

130

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[27] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel. Approximation-

aware multi-level cells stt-ram cache architecture. In 2015 International Confer-

ence on Compilers, Architecture and Synthesis for Embedded Systems (CASES),

pages 79–88, 2015. doi: 10.1109/CASES.2015.7324548.

[28] James E. Smith and James R. Goodman. A study of instruction cache orga-

nizations and replacement policies. In Proceedings of the 10th Annual Inter-

national Symposium on Computer Architecture, ISCA ’83, page 132–137, New

York, NY, USA, 1983. Association for Computing Machinery. ISBN 0897911016.

doi: 10.1145/800046.801648. URL https://doi.org/10.1145/800046.801648.

[29] N. P. Jouppi. Improving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers. In [1990] Proceedings. The

17th Annual International Symposium on Computer Architecture, pages 364–373,

1990. doi: 10.1109/ISCA.1990.134547.

[30] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consis-

tency and cache coherence. Synthesis Lectures on Computer Architecture, 2011.

[31] Paul Sweazey and Alan Jay Smith. A class of compatible cache consistency

protocols and their support by the ieee futurebus, 2011.

[32] ARM. ARM CoreLink CCI-550 Cache Coherent Interconnect, Technical

Reference Manual, 2015. URL https://static.docs.arm.com/100282/0001/

corelink_cci550_cache_coherent_interconnect_technical_reference_

manual_100282_0001_01_en.pdf.

131

https://doi.org/10.1145/800046.801648
https://static.docs.arm.com/100282/0001/corelink_cci550_cache_coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf
https://static.docs.arm.com/100282/0001/corelink_cci550_cache_coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf
https://static.docs.arm.com/100282/0001/corelink_cci550_cache_coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[33] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. In-

tel® quickpath interconnect architectural features supporting scalable system

architectures. In 2010 18th IEEE Symposium on High Performance Intercon-

nects, pages 1–6. IEEE, 2010.

[34] Francesco Poletti, Davide Bertozzi, Luca Benini, and Alessandro Bogliolo. Per-

formance analysis of arbitration policies for soc communication architectures.

Design Automation for Embedded Systems, 8(2-3):189–210, 2003.

[35] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik

Roychoudhury. Bus-aware multicore wcet analysis through tdma offset bounds.

In 2011 23rd Euromicro Conference on Real-Time Systems, pages 3–12. IEEE,

2011.

[36] B. Cilku, B. Frömel, and P. Puschner. A dual-layer bus arbiter for mixed-

criticality systems with hypervisors. In IEEE International Conference on In-

dustrial Informatics (INDIN), 2014.

[37] Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and

Mateo Valero. Hardware support for wcet analysis of hard real-time multicore

systems. ACM SIGARCH Computer Architecture News, 37(3):57–68, 2009.

[38] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. Optimizing tunable wcet with shared

resource allocation and arbitration in hard real-time multicore systems. In 2011

IEEE 32nd Real-Time Systems Symposium, pages 227–238. IEEE, 2011.

[39] M. Hassan and H. Patel. Criticality- and requirement-aware bus arbitration for

132

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

multi-core mixed criticality systems. In IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), 2016.

[40] N. Sritharan, A. M. Kaushik, M. Hassan, and H. Patel. Hourglass: Predictable

time-based cache coherence protocol for dual-critical multi-core systems. 2017.

[41] Sadagopan Srinivasan, Li Zhao, Brinda Ganesh, Bruce Jacob, Mike Espig, and

Ravi Iyer. Cmp memory modeling: How much does accuracy matter?

[42] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi. Simulating dram

controllers for future system architecture exploration. In 2014 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS),

pages 201–210, 2014. doi: 10.1109/ISPASS.2014.6844484.

[43] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible

dram simulator. 15(1):45–49, January 2016. ISSN 1556-6056. doi: 10.1109/LCA.

2015.2414456. URL https://doi.org/10.1109/LCA.2015.2414456.

[44] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. A survey of cache

simulators. ACM Comput. Surv., 53(1), February 2020. ISSN 0360-0300. doi:

10.1145/3372393. URL https://doi.org/10.1145/3372393.

[45] Aamer Jaleel, Robert S. Cohn, Chi keung Luk, and Bruce Jacob. Cmp$im: A

pin-based on-the-fly multi-core cache simulator.

[46] Derek Bruening and Saman Amarasinghe. Efficient, transparent, and compre-

hensive runtime code manipulation. ph.d. dissertation. massachusetts institute

of technology, department of electrical engineering and computer science., 2004.

URL http://www.cs.wisc.edu/∼markhill/DineroIV/.

133

https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1145/3372393
http://www.cs.wisc.edu/∼markhill/DineroIV/

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[47] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss: A full

system simulator for multicore x86 cpus. In Proceedings of the 48th Design

Automation Conference, DAC ’11, page 1050–1055, New York, NY, USA, 2011.

Association for Computing Machinery. ISBN 9781450306362. doi: 10.1145/

2024724.2024954. URL https://doi.org/10.1145/2024724.2024954.

[48] J. H. Ahn, S. Li, S. O, and N. P. Jouppi. Mcsima+: A manycore simulator

with application-level+ simulation and detailed microarchitecture modeling. In

2013 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 74–85, 2013. doi: 10.1109/ISPASS.2013.6557148.

[49] Hui Kang and Jennifer L Wong. vcsimx86: a cache simulation framework for

x86 virtualization hosts. stony brook university., 2013.

[50] Raul Martin Miguel A Vega-Rodriguez and Francisco A Zarallo Gallardo. Sim-

ulator for cache memory systems on symmetric multiprocessors., 2006. URL

http://arco.unex.es/smpcache/.

[51] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2sim: A simulation framework for cpu-gpu computing. PACT ’12, page

335–344, New York, NY, USA, 2012. Association for Computing Machinery.

ISBN 9781450311823. doi: 10.1145/2370816.2370865. URL https://doi.org/

10.1145/2370816.2370865.

[52] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microar-

chitectural simulation of thousand-core systems. In Proceedings of the 40th

Annual International Symposium on Computer Architecture, ISCA ’13, page

475–486, New York, NY, USA, 2013. Association for Computing Machinery.

134

https://doi.org/10.1145/2024724.2024954
http://arco.unex.es/smpcache/
https://doi.org/10.1145/2370816.2370865
https://doi.org/10.1145/2370816.2370865

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

ISBN 9781450320795. doi: 10.1145/2485922.2485963. URL https://doi.org/

10.1145/2485922.2485963.

[53] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the level of

abstraction for scalable and accurate parallel multi-core simulation. In SC ’11:

Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–12, 2011. doi: 10.1145/2063384.

2063454.

[54] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, et al.

The gem5 simulator: Version 20.0+, 2020. URL https://arxiv.org/abs/2007.

03152.

[55] Shih-Hao Hung, Yi-Mo Ho, Chih-Wei Yeh, Cheng-Yueh Liu, and Chen-Pang

Lee. Hardware-accelerated cache simulation for multicore by fpga. In Proceed-

ings of the 2018 Conference on Research in Adaptive and Convergent Systems,

RACS ’18, page 231–236, New York, NY, USA, 2018. Association for Com-

puting Machinery. ISBN 9781450358859. doi: 10.1145/3264746.3264766. URL

https://doi.org/10.1145/3264746.3264766.

[56] David L. Parnas. On the criteria to be used in decomposing systems into modules.

Comm. ACM, 15(2):1053–1058, December 1972.

[57] The ns-3 simulator. URL https://www.nsnam.org.

[58] Tinyxml parsing library. URL https://sourceforge.net/projects/tinyxml.

[59] Gcovr code coverage analysis tool. URL https://gcovr.com/en/stable/

guide.html.

135

https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/3264746.3264766
https://www.nsnam.org
https://sourceforge.net/projects/tinyxml
https://gcovr.com/en/stable/guide.html
https://gcovr.com/en/stable/guide.html

M.A.Sc. Thesis – S. Hessien McMaster – Computer Architecture

[60] Waf build automation tool. URL https://waf.io/apidocs/tools.html.

[61] Jason Poovey et al. Characterization of the EEMBC benchmark suite. North

Carolina State University, 2007.

[62] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3:

A properly synchronized benchmark suite for contemporary research. In IEEE

International Symposium on Performance Analysis of Systems and Software (IS-

PASS), 2016.

[63] Benchmark suites used for cachesim verification. https://gitlab.com/

FanosLab/piscot/-/tree/master/BMs.

136

https://waf.io/apidocs/tools.html
https://gitlab.com/FanosLab/piscot/-/tree/master/BMs
https://gitlab.com/FanosLab/piscot/-/tree/master/BMs

	Abstract
	Acknowledgements
	Notation and Abbreviations
	Introduction
	Motivation
	Thesis Contributions
	Thesis Structure

	Background
	CMPs System Model
	The Cache
	Definitions
	Different types of misses

	Cache Organization
	Direct-mapped cache
	N-way set associative cache

	Cache Replacement algorithms
	Victim Cache
	Inclusive vs. Exclusive Caches

	Cache Coherence
	Cache Coherence Protocols
	Transient States
	Coherence Transactions
	Cache-To-Cache Data Transfer
	Snooping vs. Directory
	MSI Snooping-Based Protocol

	Interconnection Network
	Scheduling schemes
	Commodity Performance-Oriented Arbitration
	Traditional Real-Time Arbitration
	Coherent Shared-Data Aware Predictable Arbitration

	Off-chip DRAM

	Related Work
	Simulation Mode
	Cache Coherence Protocols Support
	Cache Configurability
	CMPs Architectures Support
	Multi-threaded Workloads
	Multi-level cache hierarchy

	Interconnect and Bus Arbitration
	Performance Driven Simulators

	CacheSim Framework
	CacheSim High-Level Architecture
	CacheSim Functional Hardware Blocks
	CacheSim Top-Level Node
	MCoreSimProject Class
	CacheSim test case configuration file
	MCoreSimProjectXml parser
	CpuCoreGen Class
	Private Cache Controller
	Shared Cache Controller
	Cache Coherence Protocol FSM
	Generic Cache Memory
	Bus Arbiters

	PISCOT
	Motivation
	Proposed solution
	Illustrative Example
	Satisfying Coherence Predictability Invariants

	Analytical Worst-Case Latency
	Direct Cache-to-Cache Communication
	Total Task's Worst-Case Memory Latency
	Using total number of requests
	Distinction between private and shared data

	Replacement of Dirty Cache Lines
	Total number of writes
	Distinction between private and shared data

	Evaluation and Validation
	General Information
	Objectives
	Properties of a Correct Solution
	Automated Testing and Verification Tools
	Benchmarks
	CacheSim Evaluation Setup

	Tests for Functional Requirements
	Cache Coherence Protocols
	Interconnection Network
	PISCOT Bus Arbitration
	Conventional MSI Bus Arbitration
	PMSI Bus Arbitration

	Cache Replacement Policies
	Victim Cache and Fixed DRAM Latency
	Standalone DRAM Latency Impact
	Impact of DRAM latency in the present of cache replacement

	Tests for Nonfunctional Requirements
	Configurability
	Producability
	Performance

	Conclusion
	Future Work

	Your Appendix
	Benchmarks
	 CacheSim Module Hierarchy
	CacheSim Code Coverage Analysis

