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Lay Abstract  

Ecosystem stress is caused by natural or anthropogenic factors and results 

degradation of ecosystems. I investigated the spatial and temporal dynamics of ecosystem 

stress on aquatic and terrestrial ecosystems using Remote Sensing and Geographic 

Information Systems techniques. I mapped Phragmites australis, a notorious invasive 

grass, in wetlands to aid the Phragmites management programs. My research shows that 

images collected in late summer or fall provide high Phragmites mapping accuracy. 

Furthermore, I successfully mapped small, low-density Phragmites stands in the early 

stages of invasions. I also investigated the pre-and post-fire vegetation dynamics in the 

boreal forests of Alberta. I show that the species composition and water features influence 

the burn severity. The human influence on these ecosystems alters the natural post-fire 

vegetation recovery processes. Overall, my thesis advances the use of novel remote-

sensing techniques to investigate the ecosystem stress factors on wetland and boreal 

ecosystems in Canada. 
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Abstract  

Ecosystems respond to stress factors that may have a natural or anthropogenic 

origin. Natural stress factors include flood, wildfire, drought, insect infestations, etc. and 

anthropogenic stress factors include pollution, land cover changes, and the introduction of 

alien invasive species. These stressors can degrade ecosystems and result in biodiversity 

loss and lowered resilience. In this thesis, I investigate the spatial and temporal dynamics 

of ecosystem stress caused by natural and anthropogenic factors in both aquatic and 

terrestrial ecosystems. The large study areas and long-term changes in my research have 

mandated the use of Remote Sensing (RS) and Geographic Information Systems (GIS) 

techniques in ways that have not been previously considered in ecological studies. In the 

first two chapters, I developed new approaches to monitor Phragmites australis, one of 

the most aggressive alien plant species that has invaded wetland ecosystems throughout 

N. America, as well as roadside ditches where management is costly and logistically 

challenging. I have developed innovative methods to accurately map invasive Phragmites 

under two conditions: 1) when plant biomass and densities are high so that managers can 

evaluate the effectiveness of treatment methods and 2) when plant biomass and densities 

are small and sparse so that these stands can be quantified and eradicated. I found that 

freely available, low to moderate resolution satellite imagery (Landsat 7/8 and Sentinel 

2), acquired in late July or early August, can be used to produce highly accurate maps of 

dense Phragmites populations. I also found that commercial satellite imagery 

(WorldView 2/3) can be used to map Phragmites in the early stages of invasion and when 
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plants have regenerated following herbicide treatment. In the latter half of my thesis, I 

examined how pre-fire canopy species composition and forest health influence the 

response of boreal forests to wildfires in Alberta, Canada. Forest fires occur naturally in 

boreal forests and usually affect very large spatial extents that remove accumulated fire 

fuel from the system. Following these outbreaks, the forests will regenerate and 

eventually become restored to their initial state. Climate-change induced droughts and 

flooding may change the frequency and location of these forest fires. To quantify the burn 

severity of each fire, I used Landsat images to calculate the differenced Normalized Burn 

Ratio (dNBR); then combined dNBR for all affected areas to develop the Standardized 

Burn Impact Score (SBIS), which quantifies the average impact of each fire based on the 

size of the burned area and the mean burn severity per pixel. In general, pre-fire 

dominance of coniferous species (jack pine and spruce) led to higher SBIS values while 

pre-fire dominance of broad-leaved species (aspen, birch, and poplar) led to lower values.  

Mean burn severity and SBIS values increased significantly when fire outbreaks occurred 

at a distance of 1 km or greater from water features (e.g. lakes, rivers, streams, wetlands).  

I also investigated the post-fire recovery process using indices of vegetation health and 

accounting for the effect of distance from the water features with respect to different 

levels of human activity. My results show that the post-fire recovery patterns are altered 

due to human activities and can affect the long-term fire regimes in boreal forests of 

northern Alberta.  Overall, my thesis has advanced the use of novel remote-sensing 

techniques to study ecosystem stress factors on wetland and boreal ecosystems in Canada.  
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Chapter 1. Introduction 

1.1.  Ecosystem health and stress  

A healthy ecosystem can be defined as a stable and sustainable system that is 

maintaining its organization autonomously through time and is resilient to stress 

(glossary) (Costanza, 1992; Lu et al., 2015; Rapport et al., 2001; Rapport, Costanza, & 

McMichael, 1998). Ecosystems go through stress periodically. Various studies have 

attempted to define ecosystem stress (Kolasa & Pickett, 1992; Rapport et al., 1985; 

Ulanowicz, 1996). According to Rapport et al., (1985), ecosystem stress is defined as “an 

external force or factor, or stimulus that causes changes in the ecosystem, or causes the 

ecosystem to respond, or entrains ecosystemic dysfunctions that may exhibit symptoms” 

(Glossary). The response of an ecosystem to stress could be determined through 

comparison to the normal state (O’Neill & Reichle, 1979). Rapport et al., (1985) 

classifies ecosystem stressors into five categories; 1) harvesting of renewable resources, 

2) pollution of water, air, or land, 3) land-use changes caused by human activity, 4) 

introduction of exotic plant or animal species, and 5) extreme natural events such as 

volcanic eruptions, earthquakes, and climatic shifts. Tracking the ecosystem response to 

these stressors are often challenging and requires frequent ecosystem monitoring and 

assessment through ecosystem health indicators. These ecosystem responses could be 

tracked through various factors such as changes in nutrient cycling, primary productivity, 

species diversity, decline or the shift of species composition, and the changes in the size 
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distribution of species (Allan et al., 2013; Kolasa & Pickett, 1992; Likens et al., 1978; 

Rapport et al., 1985; Regier & Hartman, 1973). 

Periodic disturbances are natural in nearly all types of ecosystems and the 

common examples are flood, drought, fire, and insect infestation (Vogl, 1980, Glossary). 

Depending on the severity of the stressor and the pre-disturbance health status and 

resilience, ecosystem recovery is determined. In a healthy ecosystem, post-disturbance 

recovery is generally faster (Odum, 2014). In some cases, these natural stress factors are 

not necessarily destructive but help the regeneration and nutrient recycling within the 

system. In contrast to natural stressors, anthropogenic stressors are often devastating 

(Rapport & Whitford, 1999). Ecosystems cannot adapt to human-induced stressors such 

as land cover changes, the introduction of exotic species, and overharvesting, and this 

results in further degradation of the ecosystem and often fail to recover back to its 

original state (Rapport & Whitford, 1999). Furthermore, anthropogenic activity enhances 

and increases the frequency of natural disturbances such as wildfire and flood, through 

processes such as human-induced climate change and disrupt the natural disturbance-

recovery patterns. 

1.2.  Geographic Information Systems (GIS) and Remote Sensing (RS) 

Bonham-Carter, (1994) defines GIS as “a computer system for managing spatial 

data”. GIS is (Bonham-Carter, 1994). These systems aid in combining different types of 

spatial data layers such as aerial or satellite images, topographic data, and climatic data 

and producing meaningful outputs, and support decision making. GIS has broad 

applications in many fields including environmental analysis such as hazard analysis and 
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prediction, site selection, resource exploration, and ecosystem monitoring (Bonham-

Carter, 1994; Downey, 2006). 

RS has many definitions, yet could be simply introduced as “gathering of 

information at a distance” (Campbell, 2002). In a broader sense, Gupta, (2017), defines 

RS as “the technology of acquiring data through a device which is located at a distance 

from the object, and analysis of the data for interpreting the physical attributes of the 

object”. RS technology is mainly developed through the analysis and interpretation of 

satellite or aerial images. In the past five decades, this technology has drastically 

developed with broad applications in many disciplines such as resource exploitation, 

mapping and monitoring the earth's environment on both local and global scales, 

atmospheric and climatic sciences, and many other (Gupta, 2017; Thenkabail, 2016). 

Assessment of ecosystem health and response to stressors is challenging, 

especially when larger spatial extends are affected and with altered temporal patterns as a 

response to stressors with a direct or indirect anthropogenic origin. Conventional field 

assessments are often valuable in characterizing the ecosystem disturbances accurately. 

However, GIS- and RS-based methods provide the advantage of assessing the stress 

factors as well as the ecosystem responses in larger spatial and temporal scales, hence can 

give a more comprehensive idea on long-term stress dynamics (Gouveia et al., 2009; 

Zarco‐Tejada et al., 2002; Zhang et al., 2010). These techniques could be used to both 

regular monitoring of ecological health indices such as species richness, ecosystem 

productivity, and vigor, and ecosystem resilience (Glossary) and evaluate the changes 

following natural or human-induced disturbances (Kerr & Ostrovsky, 2003). RS data can 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

4 

 

also be effectively used to identify the human interactions with the physical environment 

through various mapping and modeling approaches (Hurtt et al., 2001). Despite the broad 

applicability of RS and GIS in ecological research, effective and reliable methods need to 

be developed on a case by case basis to address the issues such as scale, data availability, 

and uncertainties in retrieving health indicators due to the complexity and uniqueness of 

ecological problem assessment (Li et al., 2014). 

1.3.  Invasive Phragmites australis 

Phragmites australis (Cav.) Trin. ex Steud. subspecies australis (common reed; 

hereafter Phragmites) is a perennial grass and one of the worst plant invaders in wetlands 

of North America (Packer et al., 2017). It is a cosmopolitan species that grows in 

wetlands, lakeshores, estuaries, and roadside ditches (DeVries et al., 2020; McNabb & 

Batterson, 1991). Other than the introduced, invasive lineage, two other lineages of 

Phragmites are identified in North America; native P. australis subsp. Americanus and P. 

australis subsp. berlandieri (Kettenring et al., 2012). The introduced, invasive haplotype 

is of European origin and has been distributed through the temperate parts of North 

America since the early 1800s (Saltonstall, 2002; Saltonstall & Meyerson, 2016). 

Furthermore, hybridization between the introduced and native North American lineages 

has been also confirmed (Saltonstall & Meyerson, 2016). The invasive Phragmites 

haplotype has aggressively colonized through North American east coast, the gulf coast, 

the Great Lakes region, and southwestern U.S. (Chambers et al., 1999; Meyerson et al., 

2010; Saltonstall, 2002). 
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Invasive Phragmites is a robust grass with a broader level of salinity tolerance that 

can successfully grow in a range of ecosystems including fresh, brackish, and saltwater 

marshes, riverbanks as well as roadside ditches (Brisson et al., 2010; Meyerson et al., 

2000; Saltonstall, 2002; Tewksbury et al., 2002). Phragmites reproduce both sexually 

through wind-pollinated seeds and asexually through underground rhizomes (Markle & 

Chow‐Fraser, 2018; Meyerson et al., 2000; Packer et al., 2017). Seed dispersal could 

occur through both wind and water while vegetative propagation could occur through the 

dispersal of fragments of rhizomes by water currents, animals, or construction equipment 

(Tewksbury et al., 2002). Once established, Phragmites form dense monocultures through 

an extensive below-ground rhizome system with roots growing up to 4 m below surface 

and shoots growing 3 to 4 m above ground height with over 70 stem shoots (Gilbert et al., 

2014; Packer et al., 2017). 

Rapid invasion of Phragmites has caused many negative environmental impacts 

such as alterations of resource utilization, trophic structure modifications, changes in 

disturbance regimes, reduce light at the marsh surface soil and air temperatures, inhibition 

of the germination of other plant species, slow decomposition of organic matter and many 

other (D’antonio & Dudley, 1995; Mack, 1996; Marks et al., 1994; Meyerson et al., 

2000). Due to high biomass production and litter accumulation, Phragmites increase the 

marsh elevation to a greater extent than other marsh species, hydrological flow is 

modified and may lead to loss of first-order streams (Lathrop et al., 2003; Meyerson et 

al., 2000). Invasions could also lead to rapid changes in wetland plant communities where 

mixed plant communities could turn into tall, Phragmites mono stands (Meyerson et al., 
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2009). Unlike vegetation communities, Phragmites have both negative and positive 

effects on fauna that utilize the invaded habitats. Approximately fifty bird species were 

recorded to use Phragmites stands in North America and Phragmites provide protective 

cover to species such as muskrat, wading birds, and some duck species during summer 

(Berthold et al., 1993; Lynch et al., 1947; Parsons, 2003). On the other hand, Phragmites 

have detrimental effects on fish communities due to habitat alterations (Able & Hagan, 

2000). According to Markle & Chow‐Fraser, (2018), Phragmites reduce the effective 

habitat for the at-risk turtle species.  

Due to strong establishment, effective Phragmites treatment requires multiple 

different, repeated treatments (Gilbert, 2015). In Ontario, Phragmites management is 

mainly conducted through chemical treatment using glyphosate or imazapyr (Avers et al., 

2007; Gilbert, 2015). Mechanical control measures include various approaches such as 

cutting, drowning, smothering, excavating, and burning (Gilbert et al., 2014). Phragmites 

eradication after being well-established takes an enormous amount of effort, time, and 

cost. Controlling Phragmites at earlier stages of invasions could significantly reduce the 

efforts and is relatively more effective (Ontario Ministry of Natural Resources, 2011). For 

effective treatment, identification of well-established, young, and mixed stands of 

Phragmites in the affected areas is equally essential. RS-based approaches provide the 

best means to map Phragmites over large spatial extents including the areas that are 

physically inaccessible. 
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1.4.  Boreal forests and wildfires 

Boreal forests are the northernmost forests of the world and encompass 

approximately 30% of the worlds’ forested areas (Gauthier et al., 2015). Boreal forests 

are bordered to the south by arid steppe, prairie, or semi-desert ecosystems and to the 

north by subarctic woodlands with patchy treeless and stunted forested stands (Apps et 

al., 1993). These regions are characterized by short summers and long, extreme winters. 

Boreal forests are dominated by coniferous species with occasional deciduous stands. 

Other than the forested regions, these ecosystems contain a large number of wetlands and 

many water bodies such as lakes and rivers (Mery et al., 2010). 

Wildfires are the most common, large-scale, natural disturbance in these 

ecosystems and are an essential part of boreal forest dynamics (Terrier et al., 2013). They 

increase the landscape-level productivity, shape the structure, and composition, and 

renew the boreal stands (Terrier et al., 2013). Wildfire recurrence interval in these forests 

is approximately 29 to 300 years, and this is strongly affected by factors such as climate 

and anthropogenic activity (Fastie & Mann, 1993; Kasischke et al., 1995, 2000). The 

intensity of fires (Glossary) is determined by the fire interval as this determines the level 

of fuel loading and the local weather and regional climate and also may be affected by the 

fuel type, topography, and characteristics of previous disturbances (Weber & Flannigan, 

1997).   

The wildfire activity in the boreal region has drastically increased in the past few 

decades as a result of global climate change (Flannigan et al., 2005; Peng et al., 2011). 

Increased global temperatures have increased the drought frequency, and created extreme 
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fire-weather (Glossary) days and thereby extend the fire season (Flannigan et al., 2009). 

This further increases the number of ignitions as well as the longer burning leading to 

larger fire outbreaks (Wang et al., 2017). In Canada, 35% of the wildfires have resulted 

from lightning, yet accounts for 85% of the total area burned (Weber & Flannigan, 1997). 

According to Wang et al., (2017), a warm, moist atmosphere may lead to more lightening 

and Wotton et al., (2010) suggest an increase in the ignition from about 75% to 140% by 

the end of the century. Kirschbaum & Fischlin, (1996) predicts an increase of temperature 

in 1900 to 2050 in order of 1-2 °C in summer and 1-3 °C in winter, approximately 20% 

change in precipitation, and drier summer soils with 2-8 mm less water. Therefore, North 

American fire regimes are expected to increase dramatically due to global climate change. 

The changes in fire regimes (Glossary) may alter the post-fire recovery 

trajectories. The size of fire determines the patchiness of the landscape and affects the 

propagules dispersal into the burned areas for the forest regeneration (Weber & 

Flannigan, 1997). Furthermore, the alterations of fire regimes may lead to widespread 

conversion of vegetation types such as conifer dominant to deciduous dominant forests or 

eventual shift to prairie grasslands (Johnstone et al., 2010; Mbogga et al., 2010; Rehfeldt 

et al., 2012; Stralberg et al., 2018). On the other hand, increased fire activity may require 

more sophisticated fire management strategies. Fire suppression costs are usually high 

and the fires could be disastrous if they are to occur in remotely populated areas and 

reduce the harvestable forested areas (Terrier et al., 2013). To overcome the possible 

challenges of fire management in the future, a better understanding of the underlying 

causes of wildfires as the post-fire vegetation successional dynamics are essential. To get 
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a more generalized idea of these dynamic processes, wildfire activity needs to be studied 

in large spatial extend through long periods. 

1.5.  Thesis Objectives 

Environmental stress and ecosystem response assessment and monitoring require 

collaboration between both RS specialists and ecologists. My thesis aims to bridge the 

spheres of knowledge by using RS and GIS techniques to understand and manage 

ecosystem stress and responses. The overall objective of my thesis is to develop RS- and 

GIS-based methodologies to understand and manage ecosystem stress on larger spatial 

and temporal scales. I investigate two major ecosystem stress factors of anthropogenic 

and natural origin, that have become serious concerns in two different Canadian 

ecosystems. The first half of my thesis focuses on developing RS-based techniques to 

optimize accurate mapping of one of the worst invasive plant species of North America, 

Phragmites australis, as an ecosystem stress factor with anthropogenic origin affecting 

aquatic ecosystems. The second half of my thesis investigates the factors that affect the 

wildfires and post-fire recovery of boreal forests in Alberta as a natural stress factor on 

terrestrial ecosystems. 

In Chapter 2, we use time series of freely available, moderate resolution satellite 

data to map the distribution of mature Phragmites stands in Lake Erie Wetlands. Here, we 

investigate the phenological stage of Phragmites which produce the most unique 

reflectance signal to accurately identify the invaded areas using RS images.  

In Chapter 3, we investigate the use of commercially available high-resolution 

multispectral and freely available moderate resolution satellite imagery to detect smaller 
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Phragmites patches in wetlands, since studies have shown that treatment of small clumps 

has the highest efficacy. Here, we investigate the usage of subpixel image classification 

techniques to identify young, less dense Phragmites patches at the early stages of 

invasion. 

 In Chapter 4, we investigate the factors that affect the burn severity in boreal 

forests of Alberta and provide a simple cost-effective approach to quantify burn impact 

using freely available satellite data over long periods and larger spatial scales. Here, we 

evaluate the effect of the distribution of canopy species, the number of burned days and 

the proximity to water features on burn severity. 

In Chapter 5, we study the post-fire recovery rates and patterns following the same 

wildfire outbreaks investigated in Chapter 4. Here, we evaluate the influence of 

anthropogenic activity (proximity to human settlements and density of seismic lines) on 

the post-fire recovery process using RS-based vegetation indices and species-level 

recovery, and proximity to water features.  

The thesis consists of one appendix. Here we used high-resolution satellite 

imagery to map small patches of Phragmites on roadsides and wetlands using a similar 

mapping approaches developed in Chapter 3 of this thesis. The appendix is presented in 

the format of an internal report of the Ministry of Transportation of Ontario. 
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2.1.  Abstract 

Phragmites australis (Cav.) Trin. ex Steudel subspecies australis is one of the 

worst plant invaders in wetlands of North America. Remote sensing is the most cost-

effective method to track its spread given its widespread distribution and rapid 

colonization rate.  We hypothesize that the morphological and/or physiological features 

associated with different phenological states of Phragmites can influence their reflectance 

signal and thus affect mapping accuracies. We tested this hypothesis by comparing 

classification accuracies of cloud-free images acquired by Landsat 7, Landsat 8, and 

Sentinel 2 at roughly monthly intervals over a calendar year for two wetlands in southern 

Ontario. We used the Support Vector Machines classification and employed field 

observations and image acquired from unmanned aerial vehicle (8 cm) to perform 

accuracy assessments.  The highest Phragmites producer’s, user’s, and overall accuracy 

(96.00%, 91.11%, and 88.56% respectively) were provided by images acquired in late 

summer and fall period. During this period, green, Near Infrared, and Short-Wave 

Infrared bands generated more unique reflectance signals for Phragmites. Both 

Normalized Difference Vegetation Index and Normalized Difference Water Index 

showed significant difference between Phragmites and the most confused classes (cattail; 

Typha latifolia L., and meadow marsh) during the late summer and fall period. Since 

meadow marsh separated out best from Phragmites and cattail in the February image, we 

used it to mask the meadow marsh in the July image to reduce confusion. The unique 

reflectance signal of Phragmites in late summer and fall is likely due to prolonged 
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greenness of Phragmites when compared to other wetland vegetation, large, distinct 

inflorescence, and the water content of Phragmites during this period. 

Key Words: Phragmites, Wetlands, multispectral images, SVM classification 

2.2.  Introduction  

Phragmites australis subsp. Australis (Cav.) Trin. ex Steudel (the common reed) 

is a perennial grass that grows in aquatic, semi-aquatic, and terrestrial habitats throughout 

the world. Saltonstall (2002) identified 27 genetically distinct groups (haplotypes) 

worldwide, of which 11 have been found in North America. Over the past 2 decades, the 

European haplotype M began to make rapid incursions into Canada and the U.S., 

especially into coastal wetlands of the Laurentian Great Lakes (Wilcox et al. 2003; 

Tulbure et al. 2007; Wilcox 2012; Bourgeau-Chavez et al. 2015), and along highway 

corridors (Saltonstall 2002; Lelong et al. 2007). This haplotype exhibits invasive 

characteristics, including its ability to aggressively colonize exposed mud flats sexually 

(through seeds), and then expand asexually (through rhizomes) to form dense 

monocultures that inhibit biodiversity of other plants and wildlife (Meyerson et al. 2000; 

Markle and Chow-Fraser 2018). Its rapid spread has been attributed to it being a superior 

competitor against other emergent vegetation (Rickey and Anderson 2004; Uddin et al. 

2014) and to being more tolerant of disturbances (e.g. road maintenance and changes in 

hydrologic regimes) and stress (e.g. increased salinity due to road de-icing salts) 

(McNabb and Batterson 1991; Marks et al. 1994; Chambers et al. 1999; Saltonstall 2002).  
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Due to its competitive traits against native wetland vegetation, the invasive 

haplotype (henceforth referred to as invasive Phragmites) has successfully invaded many 

wetlands in south western Ontario and have become the dominant species since the late 

1990s. Despite the destructive nature of this invader, very little control of invasive 

Phragmites occurred in the province of Ontario until a pilot project in 2007 involving 

Roundup Ultrá (Gilbert 2015). Glyphosate, the active compound in Roundup Ultra2 had 

already been found to be effective in controlling the growth of invasive Phragmites in 

several jurisdictions within the USA (Gilbert 2015).  Other than chemical control, 

mechanical control and prescribed burning is also being used currently for Phragmites 

management.  To track the rapid rate of colonization and to assess the effectiveness of 

control strategies implemented, frequent monitoring and mapping of wetland vegetation 

has become an essential aspect of sustainable marsh management (Adam et al. 2010). 

Traditional floristic mapping requires extensive field work, collection of 

taxonomic information, ancillary data analysis, and visual estimation of percentage cover 

of each species, which are costly and labor intensive (Lyon and McCarthy 1995). Due to 

these limitations, traditional mapping programs have been limited to studies at the site 

level.  For mapping wetland at the regional level, more cost-effective remote sensing 

techniques can be used because they require comparatively less but more strategic field 

surveys, and less time required for mapping protocols.  An additional benefit is that 

remotely sensed imagery is acquired repeatedly and provide archived data, which can be 

easily incorporated into a Geographic Information System (GIS) for further analyses and 

to study the spatial dynamics of plant assemblages (Ozesmi and Bauer 2002).  Such 
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approaches have been used successfully to map invasive plant species in marshes, where 

the absence of tree cover gives the sensor an unblocked view of the target species (Laba 

et al. 2008; Hestir et al. 2008; Bourgeau-Chavez et al. 2015). 

Mapping individual species in marshes have several challenges. First, 

meteorological conditions can lead to lower accuracy because the specular reflectance of 

sunlight by the water surface often mixes with the signature of other land-cover classes 

(Bostater et al. 2004; Morel and Bélanger 2006). Water depth, presence of suspended and 

dissolved materials in the water column, and flow conditions can also affect reflectance 

by water, which would eventually affect land-cover classification (Hestir et al. 2008). 

Previous researchers have dealt with these water-related challenges by using different 

empirical criteria, image correction with field spectrometer measurements, and adjusting 

image acquisition time in case of air borne data (Bostater et al. 2004; Morel and Bélanger 

2006). Other than the physical conditions, biological heterogeneity may also affect 

mapping accuracy of wetland vegetation. 

Differences in phenological stage (i.e. timing of flowering, senescence, and 

changes in leaf and canopy structure) can also influence the reflectance signatures of co-

occurring species (Hestir et al. 2008).  Since most of the wetland species share similar 

habitats and are adapted to the same environmental conditions, they share similar 

morphological features such as leaf arrangement and canopy architecture that are difficult 

to distinguish visually.  By identifying the phenological stages of the target species that 

help them stand out from co-occurring species, however, it should be possible to improve 

mapping accuracy. According to Zhang et al. (2003), four transition dates define the key 
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phenological phases of a species: 1) green-up (date of onset of photosynthetic activity), 2) 

maturity (date when green leaf area is maximum), 3) senescence (rate at which greenness 

decreases), and 4) dormancy (date at which photosynthetic rate approaches zero). At 

regional and larger scales, variations in the composition of the community, micro- and 

regional climate regimes, soils, land management and plant-related features can lead to 

multiple modes of growth and senescence within a single annual cycle (Zhang et al. 

2003). Therefore, use of appropriate type of remotely sensed imagery collected in the 

most spectrally distinguishable phenological state, data pre- and post-processing 

techniques, and the classification algorithms may all affect the outcome. 

Successful mapping of wetlands at the species level has typically required data 

with high spatial and spectral resolution (Everitt et al. 1995, 1996, 2001; Fuller 2005).  

Some sensors that have been used previously used include airborne hyperspectral sensors 

such as AVIRIS (Airborne Visible InfraRed Imaging Spectrometer; 224 bands) (Williams 

and Hunt Jr 2002), CASI (Compact Airborne Spectrographic Imager; 288 bands) 

(Schmidt and Skidmore 2001), HyMap (Hydrological Modeling and Analysis 

Platform;126 bands) (Zhang and Xie 2013), and PROBE-1 (128 bands) (Lopez et al. 

2004) and high resolution multispectral satellite imagery such as IKONOS (Fuller 2005; 

Flores et al. 2006) and QuickBird (Laba et al. 2008). Their relatively high cost and 

limited spatial cover (in the case of airborne data), however, make them unsuitable for 

frequent large-scale mapping that is required to track invasive Phragmites with high 

growth rates. By comparison, imagery with moderate spatial and spectral resolution (10 to 

100 m spatial resolution and <100 bands) have been commonly used for community-level 
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mapping and have not been used for species-level mapping except when they occur as 

monocultures (Dewey et al. 1991; Sohn and McCoy 1997; Zhang et al. 2003). Some of 

the moderate-resolution data used for species identification include Landsat TM 

(Thematic Mapper; 7 bands) and ETM+ (Enhanced Thematic Mapper Plus; 8 bands) 

(Peterson 2005; Resasco et al. 2007; Huang and Asner 2009), SPOT (Satellite Pour 

l’Observation de la Terre; 4 bands) (Rasolofoharinoro et al 1998), and ASTER (Advances 

in Spaceborne Thermal Emission and Reflection Radiometer; 14 bands) (Gao and Liu 

2008) and MODIS (Moderate-resolution Imaging Spectroradiometer; 36 bands) (Zhang et 

al. 2003).  

Despite its moderate spatial resolution (i.e. 30 m), Landsat data had been used by 

many researchers around the globe for species-level mapping. These images are 

particularly useful because the imagery are free, available every 16 days, provide 

extensive coverage, and date back to 1984 (Peterson 2005; Resasco et al. 2007). 

Moreover, Sentinel 2, a relatively new sensor (with 10, 20, and 60 m spatial resolution) 

launched in 2015, has been used for the classification of crop and tree species, 

development of vegetation indices, Leaf Areas Index (LAI), and biophysical variables 

analysis etc. To date, however, it has not yet been used extensively in phenological 

studies (Delegido et al. 2011; Frampton et al. 2013; Hill 2013; Immitzer et al. 2016).  

Besides selection of data, classification accuracy will depend on proper selection 

of the classification algorithm. Support Vector Machines (SVM) classification is a 

supervised, non-parametric, statistical learning technique developed by Vapnic in 1979 

(Vapnik and Kotz 1982). As this method does not assume data normality distribution, it 
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usually performs better than many popular classifiers such as the maximum likelihood 

classification (Dalponte et al. 2008; Rupasinghe et al. 2018). The SVM performs better in 

terms of classification accuracy, computational time, and stability to parameter setting 

when compared with radial basis function neural networks and K-nearest neighbor 

classification methods (Melgani and Bruzzone 2004; Pal and Mather 2005). Moreover, 

this method can produce high classification accuracy using a relatively small training data 

set (Dalponte et al. 2008; Zheng et al. 2015). Consequently, over the past decade, SVM 

classification has gained popularity in the remote sensing community (Mountrakis et al. 

2011). Many past investigators have successfully used the SVM classification in forest 

and crop classification, species-level mapping in wetlands, and in developing vegetation 

indices for different data sources such as hyperspectral (Gualtieri and Cromp 1999), 

LiDAR (Dalponte et al. 2008), and multispectral data including Landsat TM (Huang et al. 

2008; Zheng et al. 2015) and Sentinel 2 (Stratoulias et al. 2015).  

Previous studies have demonstrated that the moderate resolution multispectral 

images could be used to map invasive species that form large monocultures however, the 

reflectance signal of these invasive species are often very similar to the native species that 

share the same ecosystem. This may lead to low classification accuracy for both invasive 

and native species. Therefore, it is important to identify the vegetation categories that 

have similar reflectance signatures as the invasive species to develop more accurate 

classification protocols. Moreover, the effect of biological heterogeneity highly varies 

depending on the site conditions and the species composition of the study area. In this 

study, we address these issues and focus mainly on the effect of different phenological 
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states on mapping accuracy of selected Lake Erie wetlands, with special emphasis on 

invasive Phragmites. We evaluated the use of SVM classification to map large 

monocultures of Phragmites in two Lake Erie wetlands using Landsat 7, 8, and Sentinel 2 

imagery. To minimize omission errors associated with classification of mixed pixels 

(Phragmites and similar land cover classes) when moderate resolution imagery are used 

for species level classification, and as limited spectral bands are available in multispectral 

imagery, we have analyzed the time series images collected over different months of the 

calendar year to determine the best time in the Phragmites growth cycle or the best 

phenological state when the plant will produce a reflectance signature that will be most 

unique when compared with co-occurring vegetation. For future applications with other 

image sources, we have also identified the bands that contributed most to distinguishing 

among Phragmites and other similar vegetation classes. In summary, this novel 

Phragmites mapping approach; 1. Will provide cost-effective method to identify 

Phragmites invaded wetlands using freely available, moderate-resolution satellite images 

for large-scale monitoring and treatment effectiveness monitoring programs, 2. Will 

provide the wetland management community with an accurate, cost-effective method to 

track changes in the distribution of invasive Phragmites at a regional scale, and 3. 

Support future research to accurately map Phragmites with other sensors which provide 

important spectral information and to collect images during the best period of the year 

and plan field work accordingly. 
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2.3.  Methods 

2.3.1.  Study sites 

We conducted the study in two Lake Erie wetlands, Big Creek National Wild Life 

Area (BCNWA) (49° 59’ N 80° 46’ W) and Rondeau Bay Marsh (RBM) (42° 17′ N 81° 

52′ W) (Fig. 2.1).  BCNWA is located on the North shore of Lake Erie, 3 km from the 

southwest Port Rowan and at the head of the Long Point Bay on Lake Erie, in the 

Regional Municipality of Haldimand-Norfolk county (Ashley and Robinson 1996; 

Environment and Climate Change Canada 2011). It is a 771-ha complex consisting of two 

sub-units, Big Creek unit (615 ha) and the Hahn Marsh Unit (156 Ha). Our study focused 

on the Big Creek unit, which is managed by the Environment and Climate Change 

Canada. Wetlands at this site is dominated by Bluejoint Grass (Calamagrostis 

canadensis (Michx.) P. Beauv.), cattails (Typha latifolia L.), and sedges (Ashley and 

Robinson 1996). The invasive species in this site includes Phragmites, European frog-bit 

(Hydrocharis morsus-ranae L.) and European Black Alder (Alnus glutinosa (L.) Gaertn.) 

(Environment and Climate Change Canada 2011).  

RBM is a shallow coastal wetland, also on the northern shore of the central basin 

of the Lake Erie, approximately 100 km southeast of Windsor ON, Canada and Detroit, 

MI, USA (Meloche and Murphy 2006; Glass et al. 2012). It was established in 1894 and 

was Ontario’s second protected provincial park. It covers an area of 3257 ha and mainly 

consists of forests, sandy peninsula, and marsh. Forested land in RBM is characterized by 

rare Carolinian tree species, where it is the largest remaining representation of Carolinian 

forests in Canada and is a primeval or wilderness remnant of the vegetation of early 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Rondeau_Provincial_Park&params=42_17_N_81_52_W_type:landmark_dim:6km
https://tools.wmflabs.org/geohack/geohack.php?pagename=Rondeau_Provincial_Park&params=42_17_N_81_52_W_type:landmark_dim:6km
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Ontario (Mann and Nelson 1980; McLaughlin 1993). Approximately 40% of the rare, 

threatened or endangered species in Canada are Carolinian and are present in RBM.  

We used the BCNWA site for development of our classification protocols as this 

site had not been treated during the study period and there were no significant changes in 

Phragmites cover over the period studied. We used the RBM site for comparison of 

results obtained from the BCNWA site to evaluate the validity of our methods. We did 

not use this site for initial methods evaluation because the site had been treated for 

invasive Phragmites during the study period, and this limited the amount of time when 

our ground reference data were valid. 

2.3.2.  Ground reference data  

As the ground reference for BCNWA, we used manually digitized land-cover 

maps that were created with field data collected from two previous studies (Marcaccio et 

al. 2016; Markle and Chow-Fraser 2018). One study was focused on habitat use by 

Blanding’s turtles (Emys blandingii (Holbrook, 1838)) and included vegetation surveys 

conducted between 14 July and 14 August 2014. In this study, 176 quadrats (2 m × 2 m) 

were used to identify the vegetation data (Markle and Chow‐Fraser 2018), which included 

aquatic marsh, cattail marsh, meadow marsh, mixed organic marsh, open water, invasive 

Phragmites, treated invasive Phragmites, upland, and other land-cover types (eg: swamp, 

thicket). Marcaccio et al. (2016) have created vegetation maps using imagery collected 

with a fixed-wing Unmanned Aerial Vehicle (UAV; Sensefly eBee Canon ELPH 110 HS, 

4 cm spatial resolution for red, green and blue bands) on 4 September 2015 during clear-

sky conditions based on the field surveys conducted by Markle and Chow-Fraser 2018).  
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As ground reference for the RBM site, we used manually digitized orthophotos 

(South West Ontario Orthophotography Project; SWOOP; 20 cm spatial resolution for 

red, green and blue bands) collected in 2010 and 2015 that has been used in same study 

by Markle and Chow-Fraser (2018).  Field data from a vegetation survey conducted in 

summer 2011 and 2013 were used to create manually digitized maps for 20 land cover 

classes, including bulrush organic shallow marsh, campground, cattail organic shallow 

marsh, fen, floating leaved shallow marsh, meadow marsh, mixed forest, mixed shallow 

aquatic marsh, mixed woodlands, open beach, open field, open water, organic thicket 

swamp, invasive Phragmites, residential, road, rolled invasive Phragmites, shrub beach, 

shrubs, and trail. (Markle and Chow-Fraser 2018).  Other than the field data, we also used 

locations of where invasive Phragmites had been treated between 2009 and 2014 (Gibert 

2015) as ground reference. 

For the current study, we used eleven land cover classes for the BCNWA 

(Agriculture, beach, cattail organic shallow marsh, constructed, floating vegetation, 

meadow marsh, open water, Phragmites, shallow marsh, and trees/shrubs) and eight 

classes for RBM (cattail organic shallow marsh, mixed forest, open beach, open water, 

organic thicket swamp, Phragmites, residential, and shrub beach). 

2.3.3.  Image data 

Multispectral satellite data from Landsat 7, Landsat 8 and Sentinel 2 were used in 

this study (Table 2.1). Landsat is the longest continuous record of satellite observations 

owned by United States Geological Survey (USGS) and National Aeronautics and Space 

Administration (NASA). The Landsat mission consists of eight satellites, and currently 
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both Landsat 7 and 8 are active. Landsat 7 was launched in 1999 and Landsat 8 was 

launched in 2013. Sentinel 2 is a satellite owned by the European Space Agency (ESA), 

designed for studies based on terrestrial observations. It consists of two satellites, 

Sentinel-2A (launched in 2015) and Sentinel-2B (launched in 2017).   

We downloaded all cloud-free images corresponding to the year when respective 

vegetation surveys had been conducted; when no cloud-free images for particular months 

were available that year, we sought image data acquired immediately prior to or following 

the survey year. We assumed that the changes in cover of Phragmites between two 

consecutive years are relatively small.  For the both BCNWA and RBM sites, we used a 

total of fourteen Landsat 7, fourteen Landsat 8, and twelve Sentinel 2 images. We used 

ENVI 5.5 (Harris Geospatial 2018) to radiometrically and atmospherically (ENVI 

FLAASH atmospheric correction) correct images to obtain the surface reflectance from 

the digital numbers. For the Sentinel 2 images, six bands which had 20-m spatial 

resolution (Table 2.1) were resampled to 10 m and pre-processed separately. We then 

stacked the resampled bands with 10 m bands for the post-processing. We used 

reflectance images for all image classifications. 

2.3.4.  Image classification and phenological analysis 

We used SVM classification to classify the time-series reflectance images of 

Landsat 7 and 8 and Sentinel 2 for BCWNA site for selected bands (Table 2.1). Using 

ArcGIS 10.5, we first generated random points within the manually digitized land cover 

maps from UAV and orthophotos using the vegetation survey data for both study sites 

separately (10 points per land cover class, located at the center of the polygons to avoid 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

33 

 

mixed pixels at the edges; Fig. 2.1).  We then used the random points to manually create 

Regions Of Interest (ROI) in ENVI 5.5, capturing 5 or more pixels per location 

(depending on the area occupied by the land-cover type under consideration) and used 

these as ground reference for image classification. We added more points for some 

classes during the classification process after evaluating the Jefferies-Matusita 

separability to increase the separability of classes with poor separability prior to the 

image classification. We conducted the image classification for both sites using the 

classes mentioned under the section 2.2. For accuracy assessment, we used a separate set 

of non-overlapping random points to create a minimum of 10 ROI's (Fig. 2.1), consisting 

of one to ten image pixels each, per vegetation class and information about the vegetation 

types collected in the field. We identified the months with highest classification accuracy 

in terms of overall accuracy and Phragmites user’s and producer’s accuracy. 

We used the same set of ROIs used for the classification to analyze the Jefferies-

Matusita separability of Phragmites with the other land-cover classes for the time series 

images. Jefferies-Matusita separability is a quantitative evaluation of spectral separability 

and it indicates how well the selected ROI pairs are statistically separate for images 

collected in different phenological stages. Separability values were plotted with Microsoft 

Excel 2016.  Based on the separability values, we identified classes that were most 

confused with Phragmites.  

Furthermore, we stacked the Landsat 8 images collected in each season (March to 

June: spring, June to September: summer, September to December: Fall, and December to 

March: winter) and repeated the SVM classification using the bands from all the images 
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per season combined as input. Here, we expect to combine fine spectral changes of 

species throughout the season to improve the classification and to minimize the effect 

from the changing water levels through each season.  We also performed a Principal 

Component Analysis (PCA) on the stacked images and repeated the classification on all 

PCA bands. We used Minitab 18 to perform a two-way ANOVA followed by Tukey’s 

test to determine significant differences across seasons and across satellites after pooling 

the results from single months, seasons combined, and a PCA of the pooled data as there 

were no significant difference across the groupings. 

To identify what plant feature, greenness or the plant water status (i.e. Plant 

function) is responsible for Phragmites mapping accuracy we calculated the Normalized 

Difference Vegetation index (NDVI) and Normalized Difference Water Index (NDWI) 

for monthly Landsat 8 images in the time series. Moreover, to identify which spectral 

bands contributed most to Phragmites separability, we evaluated the reflectance changes 

of each band for Landsat 8 for the time series images. We generated 30 random points per 

vegetation class in ArcGIS (10.5), extracted the reflectance values for all the bands (Table 

2.1), and calculated NDVI and NDWI per point. We calculated the mean values for 

reflectance, NDVI, and NDWI per vegetation class throughout the year, plotted the 

changes, and determined the time at which NDVI and NDWI were most different 

between Phragmites and the confused vegetation classes. We used One-way ANOVA and 

Tukey’s test in Minitab 18 to identify significantly contributing bands and indices for 

Phragmites mapping accuracy. We also excluded one band at a time for Landsat 8 image 
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that provided the highest classification accuracy and repeated the SVM classification to 

identify the bands that contributed most to the Phragmites spectral signature. 

To compare the results from BCNWA site, we repeated the image classification, 

the separability analysis, and conducted the analysis to determine the bands that 

contributed most to the indices in the RBM site. We did not perform the multi-temporal 

image classification for this site as RBM had been treated for invasive Phragmites during 

the study period. A summary of the methods used in this study is documented in Fig. 2.2. 

2.3.5.  Reduction of mapping confusion between Phragmites and meadow marsh 

mapping 

Based on results from the “Image classification and phenological analysis”, we 

identified that the meadow marsh was the most confused class with Phragmites and that 

the highest separability between classes occurred in February.  We also found the highest 

accuracy for Phragmites and other land-cover classes to be in July.  Therefore, we created 

a mask for meadow marsh based on the Landsat 8 images acquired in February, applied 

the mask to the July images and repeated the SVM classification without the meadow 

marsh ROIs. For this image classification, we used the bands listed in Table 2.1. We used 

the same ground reference information, and protocols for image classification and 

accuracy assessment as described under “Image classification and phenological analysis”. 

We have also calculated the overlap area between Phrgmites and meadow marsh with 

comparison to manually digitized vegetation maps for February, July, and February-July 

combined maps using ArcGIS. 

https://link.springer.com/article/10.1007/s11273-019-09675-2#Sec6
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2.4.  Results 

2.4.1.  Image classification and phenological analysis 

The overall accuracy was the highest in late summer and early fall (July to 

October), tapering at both ends of the calendar year. We observed similar trends for all 

three sensors examined (Tables 2.2, 2.3 and 2.4; Fig. 2.3).  Both the user’s and producer’s 

accuracies of Phragmites followed the same trend, peaking in late summer and early fall.  

When the three sensors were compared, Sentinel 2 provided the highest Phragmites 

user’s and producer’s accuracy, while Landsat 8 provided the highest overall accuracy 

and Landsat 7 provided the lowest accuracy in all cases.  The classification for BCNWA 

resulted in higher accuracy for both Landsat 8 and Sentinel 2. When these results were 

compared with those for the RBM site, we observed a similar trend in classification 

accuracy with respect to the three sensors but a higher accuracy for Landsat 7. 

The most confused classes with invasive Phragmites were meadow marsh and the 

cattail organic shallow marsh.  Separability of Phragmites with all other landcover classes 

were greatest in July, except when it was compared with meadow marsh; for the meadow 

marsh, the highest separability with the two other classes was observed in February (Fig. 

2.4).  As demonstrated in the error matrices, most of the commission error for Phragmites 

was attributed to confusion with cattail and meadow marsh (Tables 2.5, 2.6 and 2.7). 

Other than for Phragmites, we also observed some confusion between agricultural lands 

and trees/shrubs, cattail and meadow marsh, and open water and shallow marsh (Tables 

2.5, 2.6, and 2.7). When compared with the RBM site, cattail organic shallow marsh was 

the most confused class with Phragmites. We excluded meadow marsh from the RBM 
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site because meadow marsh occupied very little area and Landsat and Sentinel 2 spatial 

resolution did not capture this class accurately. 

Classification of single images (single month) did not produce accuracies that 

differed significantly from classification of multiple images from different months that 

were combined into a single image (combined seasonal) or classification of pooled 

images after a PCA was run (PCA seasonal; Fig. 2.5). We did not observe a significant 

difference with respect to overall or Phagmites user’s and producer’s accuracies among 

the single month, combined seasonal or PCA seasonal treatments. Therefore, we pooled 

the data for three groupings and conducted statistical analysis to identify the seasons with 

highest classification accuracies. Our results indicated that summer and fall had 

homogeneous means when compared to the spring and winter. When considering the 

sensors, Sentinel 2 had the highest accuracy while Landsat 7 had lowest for overall and 

Phragmites user’s accuracy. There were, however, no significant differences in the 

Phragmites producer’s accuracy between sensors (Fig. 2.6). 

Since cattail and meadow marsh were most confused with Phragmites, we 

examined how respectively reflectance, NDVI and NDWI values changed over the time 

series for these three classes. Visually, coastal aerosols, blue, green, red, and SWIR2 

(ShortWave InfraRed) bands associated with the three classes showed no difference in 

reflectance. The NIR (Near InfraRed) reflectance was higher for Phragmites than for 

cattail in July and August while reflectance for meadow marsh in February was greater 

than those for Phragmites and cattails. The SWIR1 reflectance for meadow marsh was 

slightly higher than that for Phragmites in August (Fig.2.7). One-way ANOVA followed 
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by Tukey’s test shows that the greatest number of significant p-values were recorded for 

green, NIR, and both SWIR bands when compared to the other bands. These results were 

consistent with the highest mapping accuracy of invasive Phragmites (i.e. the month 

associated with the greatest number of significant p-values) being recorded in July, 

August, and September in terms of separability between invasive Phragmites and cattail, 

whereas the highest mapping accuracy in regard to separability between invasive 

Phragmites and meadow marsh was recorded in February (Table 2.8).  

Except for one band on a single occasion, accuracies associated with the image 

classification provided a similar trend. Exclusion of green, NIR, and SWIR1 bands 

resulted in greater than 2% reduction in overall and Phragmites user’s accuracies; 

however, Phragmites producer’s accuracy remained constant through all bands and 

single-band exclusions (Table 2.9). Overall, these results suggest that the green, NIR, and 

SWIR reflectance of Phragmites contributed most to the unique reflectance signature that 

resulted in higher classification accuracy, especially with respect to cattail when 

compared to the other spectral bands. The results also confirmed that the highest 

Phragmites mapping accuracy could be obtained in the late summer and early fall period. 

When these results were compared with the RBM site, the green, NIR, and SWIR2 bands 

provided the greatest number of significant p-values. Images acquired in August also 

provided the most significant p-values. Results of image classification with band 

exclusions for the RBM site did not show the same trend noted for the BCNWA site. 

There was more than 2% accuracy reduction for overall, Phragmites user’s and 

producer’s accuracy when the green band was excluded. Exclusion of NIR band only 
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reduced Phragmites producer’s accuracy while exclusion of SWIR2 band reduced both 

producer’s and user’s accuracy. 

Next, we compared the NDVI and NDWI values of Phragmites, cattail and 

meadow marsh for the time series images (Fig 2.8 and Table 2.10).  The NDVI scores 

associated with August and September were significantly different from those of other 

months while NDWI scores associated with July, August and September were 

significantly different.  The meadow marsh class was significantly different from 

Phragmites with respect to NDVI and NDWI scores in the February image.  These results 

suggested that both greenness and plant water use efficiency may affect the spectral 

signature of invasive Phragmites. There were no clear patterns associated with RBM for 

NDVI and NDWI scores, but we observed the most significant p-values in June, August, 

September, and October.   

2.4.2.  Reduction of mapping confusion between Phragmites and meadow marsh 

mapping 

When classified images of February and July were compared visually, we 

observed a higher Phragmites commission error in July (11.11%), compared with that in 

February (9.52%; Fig. 2.9; Tables 2.2, 2.3 and 2.4). There was also a 35 ha overlap 

between the mapped and actual meadow marsh in February compared with only a 30 ha 

overlap in July. Furthermore, only 13 ha of meadow marsh was mapped as false 

Phragmites in February while 26 ha was mapped in July.  When we combined the 

meadow marsh mapped in February with the July image, we found that the overall 

accuracy was reduced to 85.4% (kappa coefficient = 0.83) in the combined image; 
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however, both Phragmites user’s and producer’s accuracies were increased to 92.3 % and 

96.0%, respectively.  By combining images collected in these two months, the overlap 

between the mapped and actual meadow marsh was increased to 39 ha, while the 

commission error for meadow marsh was reduced to 15 ha.    

2.5.  Discussion 

In this paper, we developed a novel approach to map Phragmites using freely 

available multispectral imagery by identifying the best phenological period during which 

the plants produced their most distinguishable signature compared to background land-

cover classes (especially cattails and meadow marsh). Variation in surface reflectance of 

marsh vegetation associated with phenological changes over the year were captured in 

remotely sensed imagery (Zhang et al. 2003; Tuanmu et al. 2010).  We were able to 

monitor these phenological changes in our wetlands using satellite data with moderate 

spatial resolution that included Landsat 7, 8 and Sentinel 2.  Classified images of all three 

satellite platforms resulted in maps of Phragmites of acceptable accuracy (>80% average 

accuracy of overall and Phragmites user’s and producer’s accuracy) when classifications 

were performed on images acquired in late summer or fall. Of all three satellites, the 

accuracy of classified Landsat 7 images was lowest, in part because of data gaps; Landsat 

8 provided the highest overall accuracy while Sentinel 2 provided highest Phragmites 

user’s and producer’s accuracy.  

The data source, classification algorithm, and use of timely ground reference data 

can all affect the accuracy of image classification, especially for fine-scale species 

mapping.  Ensuring that ground reference collection and image acquisition are completed 
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in the same year is probably most important, especially when complex vegetation features 

such as wetlands are considered. We obtained lower classification accuracy overall for 

RBM than for BCNWA using either Landsat 8 or Sentinel 2, partly because of 

mismatched timing between field surveys (all collected in 2011) and image acquisition 

(2014 for Landsat 8 and 2016 for Sentinel 2 images, respectively).  Landsat 7 images, on 

the other hand, provided higher classification accuracy because the satellite images had 

been acquired in 2009, 2010 and 2011, closer to the time of field surveys.  Another reason 

for the poorer accuracies for Landsat 8 and Sentinel 2 was because a control program had 

been implemented in the fall of 2011, and many of the Phragmites stands that were 

present in the 2011 field surveys had been eradicated and were no longer present in the 

2014 and 2016 images. We tried to improve accuracy in two ways, first by manually 

delineating Phragmites stands in a 2015 SWOOP image to provide more appropriate 

ground reference data for the 2014 and 2016 satellite images and secondly, by accounting 

for treatment locations. Due to the inconsistency of image and field reference data 

collection time, however, we can only use the RBM site to apply methodology developed 

for the BCNWA site, and we believe that the mismatch of field reference and image dates 

for RBM did not materially affect conclusions drawn from the BCNWA data.  

Marcaccio and Chow-Fraser (2016) found various degrees of accuracies when 

they compared four mapping options and data sources for mapping BCNWA. In the first 

option, Ontario Ministry of Natural Resources and Forestry (OMNRF) classified Landsat 

data using an NDVI-based hierarchical image object-based decision tree (Young et al. 

2011).  The data sources were Landsat 5 and 7 images acquired in summer 1993, 1999, 
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and 2010; Marcaccio and Chow-Fraser obtained an overall accuracy of 57%, with 

associated Phragmites producer’s and user’s accuracy of 56% and 77% respectively for 

this option.  This is lower than our results where the overall accuracy was 75 and 86% for 

Landsat 7, 71% and 88% for Landsat 8, and >80% Phragmites accuracy for most of the 

cases with the SVM classification.  This is likely because the OMNRF study did not 

include any ground reference in their classification whereas here we used a number of 

ground reference points for both classification and accuracy assessment.   

The second option in Marcaccio and Chow-Fraser’s study involved use of 

PALSAR (Phased Array type L-band Synthetic Aperture Radar; Bourgeau-Chavez et al. 

2015). In this approach, all landcover within a 10-km buffer of the Great Lakes shoreline 

was mapped, including several classes of emergent vegetation, particularly Phragmites.  

Landsat 7 data collected in spring, summer and fall from 2008 to 2011 had been used to 

delineate landscape features; the authors used random forests isodata and the maximum 

likelihood classification methods, as well as field reference data for both classification 

and accuracy assessment. When this approach was applied to BCNWA, Marcaccio and 

Chow-Fraser (2016) obtained 77% overall accuracy, and Phragmites producer’s and 

user’s accuracies of 86% and 77%, respectively. This compares favorably with the 77% 

that we obtained for producer’s and user’s accuracy in this study.  Although radar data 

appear to be advantageous for mapping Phragmites and the PALSAR data are now freely 

available, we will not be able to use these image data for mapping updates because the 

mission ended in 2011.  
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Marcaccio and Chow-Fraser (2018) have used the image object-oriented 

classification method for SWOOP images collected in spring 2006, 2010, and 2015 to 

map Phragmites along major highways of southern and central Ontario. When this 

approach was applied to mapping BCNWA, the overall classification accuracy was 62%, 

while the producer’s accuracy was 90% and the user’s accuracy was 58%. Although the 

20-cm spatial resolution has obvious advantages, the SWOOP images are only available 

every 5 years.  Marcaccio et al. (2016) also used UAV data (spatial resolution of 8 cm) to 

manually delineate land cover types based on extensive field surveys of the BCNWA.  

This method provided the highest user’s and producer’s accuracy of 100% while the 

overall accuracy was 87%. The method was highly accurate but also the most labor 

intensive.  

Stratoulias et al. (2015) developed a simulation of the bands of Sentinel 2 based 

on the satellite’s response function and airborne hyperspectral data collected from the 

sensor AISA for lakeshore mapping at Lake Balaton, Hungary. They also used the SVM 

classification and have reported that Sentinel 2 can perform satisfactorily in classifying 

wetland ecosystems, including Phragmites. They suggested, however, that the 

Phragmites mapping accuracy could be reduced if higher inter-class spectral variability 

were present. They first predicted the strong capability of Sentinel 2 imagery for fine-

habitat monitoring for species such as Phragmites. Our study has confirmed this 

prediction and showed that Sentinel 2 imagery can be used to map wetlands with 

relatively high accuracies for both Phragmites and other land classes.  
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All previous Phragmites mapping techniques have demonstrated various pros and 

cons in terms of data sources and availability, mapping technique, and accuracy. Our 

method is advantageous over these published mapping options because we use freely 

available data within relatively short time intervals, with sensors that are still available 

(and will be for the foreseeable future).  Moreover, mapping accuracy has been high, both 

with respect to overall accuracy as well as for Phragmites alone.  The one limitation of 

this approach is the low spatial resolution, which limits the accuracy of mapping small 

stands of Phragmites or mixed assemblages of Phragmites with other emergent or 

meadow taxa.  Our method also requires a large number of ground reference locations, 

collected in the same year when the image is acquired. This approach relies on 

availability of cloud-free images and can be an insurmountable problem as we discovered 

for RBM, when we could not find any cloud-free images in 2011. Nevertheless, the 

relatively high accuracy, zero cost of data acquisition and continuous availability of 

images, we believe our novel approach is best suited to tracking changes in distribution of 

Phragmites when monitoring for effectiveness of treatment programs. 

The reflectance signature of a plant depends on many factors (Knipling 1970.) 

Reflectance in the visible region is mainly affected by the types of plant pigments 

(primarily chlorophyll) and their concentration, and some effect by carotenoids, 

xanthophylls, and anthocyanin. Leaf internal structure, specifically the cellular 

arrangement and layers, cell wall cellulose structures, and air cavities can affect the 

reflectance in the NIR region (Wilstxtter and Stoll 1918; Mestre 1935; Sinclair 1968).  

Reflectance in the SWIR region is strongly influenced by the water content in plant 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

45 

 

tissues, especially in wavelengths 1.45 μm and 1.94 μm (Fabre et al. 2011). Besides 

properties of a single leaf, other factors that can affect the plant’s reflectance signature 

includes features such as leaf orientation, shadows, illumination angle, leaf density, and 

the size of leaves and the non-foliage background features such as soil (for the terrestrial 

species) or water (for the wetland species) (Knipling 1970).  Hence, species with similar 

morphology and anatomy may share various degrees of similarity in reflectance 

signatures.   

Both cattail and meadow marsh are highly confused with Phragmites in our 

classification approach. All three classes occupy similar habitats where the plants are 

partially submerged. Hence the background reflectance has the same effect on them and 

result in somewhat similar signals.  For example, cattail and Phragmites both share 

similar morphological traits, being tall, unbranched shoots that form dense monospecific 

stands and have approximately similar leaf arrangement (Bellavance and Brisson 2010). 

Hence both species produced very similar reflectance signatures that caused confusion in 

image classification. There were differences, however, in how the two species senesced; 

cattail started yellowing by the end of July while Phragmites remained green until early 

September. Moreover, Phragmites produced its unique, and large inflorescence by the 

end of summer and throughout the fall. Hence Phragmites and cattail exhibited highest 

separability during late summer to fall, and this led to increased mapping accuracy.  The 

NDVI time-series analysis mirrored this since both classes had a similar pattern 

throughout the year except in July to September, when they had highest divergence. We 

obtained significant separation between cattail and Phramites in June to September using 
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NDWI values and this indicates that plant-water features may also play a role in 

discriminating between these two classes. 

The meadow marsh produced a relatively complicated signature, that reflected the 

assemblage of different plant species, including various grasses, sedges, emergent shrubs, 

and upland plant species (Wilcox n.d.). Furthermore, the meadow marsh community 

undergoes occasional flooding, and this leads to even more variability in their reflectance 

signals throughout the year. Therefore, the meadow marsh signal is confused not only 

with Phragmites, but also with other wetland landcover classes such as cattail and 

shallow marsh. In February, however, the meadow marsh tends to be completely covered 

by snow while the taller Phragmites and cattail stalks are only partially covered in snow. 

This difference in February can be used to increase the separability among these three 

classes. Although separability between Phragmites and meadow marsh was higher during 

the winter, the reflectance signal of meadow marsh still overlapped with that of other 

snow-cover features such as shallow marsh, beach, and frozen shallow water. Hence the 

overall accuracy was low.  Additionally, the degree of separability between Phragmites 

and meadow marsh during the winter may depend on the amount of snow accumulation.  

There was a significant difference in NDVI between Phragmites and meadow marsh from 

February to July and significant NDWI difference from July to September. With respect 

to invasive Phragmites and meadow marsh, however, there was no clear pattern in NDVI 

and NDWI, and hence these may not help to separate these classes to improve mapping 

accuracy. 
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Many studies have explored the use of combined images collected in different 

seasons and have reported improved classification accuracy (Oetter et al. 2001; 

Guerschman et al. 2003; Tottrup 2004; Lu and Weng 2007). Use of multi-temporal 

images in classification not only incorporates fine phenological changes in the spectral 

data, but also helps to exclude the effect of the sun’s angle and to provide a unique 

spectral response pattern (Tottrup 2004). We expected that use of multitemporal images 

for wetland classification may be useful in overcoming the effect of varying water levels 

within each season; however, we did not observe any evidence that overall classification 

accuracy would increase significantly by combining multiple images. According to 

Tottrup (2004) the acquisitions should not be too close in time as there are no clear 

changes in phenology and the sun’s angle within a single season. Our results may have 

been different if we had combined multiple images for the same seasons; however, we did 

not explore this as our main objective was to determine the phenological states of 

Phragmites that produced the most unique reflectance signature for mapping. Finally, we 

should point out that use of a PCA to reduce the effect of redundant data did not yield a 

significant increase in accuracy as expected. 

2.6.  Conclusions 

We accurately mapped large Phragmites patches in wetlands using Landsat and 

Sentinel 2 images acquired in late summer through fall, in combination with the SVM 

classification method. To achieve high classification accuracy, our protocol requires a 

large number of ground reference locations to be established. Our results indicate that the 

green, NIR, and SWIR bands are most useful in development of the unique Phragmites 
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reflectance signal during this period. We believe that the prolonged greenness of 

Phragmites when compared to other wetland vegetation, large, distinct inflorescence, and 

the water content of Phragmites during this period helps to produce the unique 

reflectance signature. Also, the prolonged greenness of Phragmites when compared to 

other classes help in the mapping process.  Cattail and meadow marsh were the most 

confused classes with Phragmites, likely because all three landcover classes occupy 

similar habitats and have similar morphological features.  

Although Phragmites best separated out from cattails and other classes in July to 

September, meadow marsh separated out best in February. Therefore, we recommend the 

use of February (snow covered) images in combination with summer time images to 

reduce the confusion among these three classes. This may be more useful when maps are 

produced for management purposes when the primary goal is to accurately map invaded 

areas.  Use of multitemporal images for each season did not increase classification 

accuracy.  

Overall, our study explored the use of freely available satellite data for mapping 

invasive Phragmites, which has become a serious management issue. Despite the 

moderate spatial resolution, images acquired in the correct phenological state can increase 

classification accuracy. Our novel approach provides a cost-effective and accurate 

Phragmites mapping method for different types of wetland ecosystems, when Phragmites 

needs to be frequently monitored and managed across large spatial extents. 
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Table 2.1 Comparison of spectral bands of Landsat7, Landsat 8 and Sentinel 2.   NIR=Near Infrared; SWIR=Short Wave 

InfraRed (bands used in the study are in bold) 

 

 

Spectral Band 

Landsat 7 Landsat 8 Sentinel 2 

Wavelength 

(µm) 

Spatial 

resolution (m) 

Wavelength 

(µm) 

Spatial 

resolution (m) 

Wavelength 

(µm) 

Spatial 

resolution (m) 

       
Coastal aerosols --- --- 0.433-0.453 30 0.443 60 

Blue 0.45-0.52 30 0.450-0.515 30 0.490 10 

Green 0.52-0.60 30 0.525-0.600 30 0.560 10 

Red 0.63-0.69 30 0.630-0.680 30 0.665 10 

Vegetation Red Edge --- --- --- --- 0.705 20 

Vegetation Red Edge --- --- --- --- 0.740 20 

Vegetation Red Edge --- --- --- --- 0.783 20 

NIR 0.77-0.90 30 0.845-0.885 30 0.842 10 

Narrow NIR --- --- --- --- 0.865 20 

Water vapor --- --- --- --- 0.945 60 

Cirrus --- --- 1.360-1.390 30 --- --- 

SWIR-Cirrus --- --- --- --- 1.375 60 

SWIR1 1.55-1.75 30 1.560-1.660 30 1.610 20 

SWIR2 2.90-2.35 30 2.100-2.300 30 2.190 20 

Long Wavelength Infrared --- --- 10.30-11.30 100 --- --- 

Thermal 10.40-12.50 60*(30) --- --- --- --- 
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Long Wavelength Infrared --- --- 11.50-12.50 100 --- --- 

Panchromatic 0.52-0.90 15 0.500-0.680 15 --- --- 
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Table 2.2 Monthly changes in mapping accuracy (%) for the two study sites using Landsat 7 (Note: Producer’s and User’s 

accuracy pertain to invasive Phragmites.  Overall accuracy pertains to all classified classes.  The month with highest overall 

accuracy is bolded). 

 Big Creek  Rondeau Bay  

Date Producer’s User’s Overall Average  Date Producer’s User’s Overall Average 

2014 Feb 15 58.00 63.04 62.93 61.32  2009 Mar 13 60.00 79.00 80.21 73.07 

2015 Mar 23 88.00 42.31 62.59 64.30  2010 May 03 70.00 80.00 83.03 77.687 

2014 Apr 24 84.00 37.50 64.99 62.16  2011 Jun 07 53.33 72.73 80.26 68.77 

2015 Jul 13 66.00 44.00 73.86 61.29  2010 Jul 06 90.00 81.82 85.96 85.93 

2015 Jul 29 82.00 52.56 76.43 70.33  2009 Aug 04 76.67 79.31 81.14 79.04 

2014 Aug 21 84.00 53.41 74.82 70.74  2010 Nov 11 53.33 76.19 79.83 69.78 

2015 Sep 15 78.00 62.03 72.69 70.90       

2015 Nov 02 74.33 66.67 62.49 67.83       
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Table 2.3 Monthly changes in mapping accuracy (%) for the two study sites using Landsat 8  (Note: Producer’s and User’s 

accuracy pertain to invasive Phragmites.  Overall accuracy pertains to all classified classes.  The month with highest overall 

accuracy is bolded). 

Big Creek 
 

 Rondeau Bay 
 

Date Producer’s User’s Overall Average  Date Producer’s User’s Overall Average 

2015 Feb 27 76.00 90.48 66.13 77.54  2014 Jan 14 81.25 70.27 65.78 72.43 

2014 May 31 84.00 52.81 74.60 70.47  2014 Feb 15 84.38 58.70 63.12 68.73 

2014 Jun 03 86.00 51.19 74.83 70.67  2014 Mar 03 68.75 59.46 65.40 64.54 

2015 Jul 21 96.00 88.89 88.56 91.15  2014 Jun 04 53.13 54.84 71.48 59.82 

2014 Aug 19 92.00 79.31 79.63 83.65  2014 Aug 10 79.59 73.58 75.00 76.06 

2014 Sep 04 93.55 72.73 78.94 81.74  2014 Sep 27 81.25 48.15 67.68 65.69 

2014 Nov 20 94.00 54.65 76.43 75.03  2014 Oct 10 71.00 61.54 71.62 68.05 
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Table 2.4 Monthly changes in mapping accuracy (%) for the two study sites using Sentinel 2 (Note: Producer’s and User’s 

accuracy pertain to invasive Phragmites.  Overall accuracy pertains to all classified classes.  The months with highest overall 

accuracy is bolded). 

Big Creek   Rondeau Bay  

Date Producer’s User’s Overall Average  Date Producer’s User’s Overall Average 

2016 Apr 27 87.69 63.10 81.71 77.50  2016 Apr 27 77.10 62.43 69.89 69.81 

2016 May 28 62.56 40.53 73.23 58.77  2016 May 28 84.55 55.03 72.89 70.82 

2016 Jul 06 93.85 84.33 82.82 87.00  2016 Jun 29 80.56 56.68 74.61 70.62 

2016 Jul 27 95.35 91.11 84.00 90.15  2016 Jul 06 82.66 77.61 79.65 79.97 

2016 Sep 26 92.82 87.44 86.11 88.79  2016 Dec 10 72.98 60.74 72.83 68.85 

2016 Oct 15 87.18 72.34 82.88 80.80       

2016 Dec 10 89.23 79.82 85.94 85.00       
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Table 2.5 Error Matrix for Landsat 7 (2015 July 29) for the Big Creek (number of pixels) 
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 C
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Agriculture 67 0 0 0 0 0 0 0 0 0 67 

Beach 1 14 0 1 0 0 1 0 0 0 17 

Cattail 0 4 108 1 2 2 3 2 0 0 122 

Constructed 1 3 0 26 0 0 0 0 0 0 30 

Floating 0 0 0 0 9 0 0 0 0 0 9 

Meadow marsh 0 2 0 0 0 3 0 1 1 0 7 

Open water 0 0 0 0 0 0 44 0 10 0 54 

Phragmites 0 1 6 0 0 19 0 41 3 8 78 

Shallow marsh 1 0 7 0 4 7 0 0 13 1 33 

Trees/shrubs 4 0 0 0 1 0 0 6 0 9 20 

Total 74 24 121 28 16 31 48 50 27 18 437 

Number of correctly classified pixels for each land cover class are given in bold text 
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Table 2.6 Error Matrix for Landsat 8 (2015 July 21) for the Big Creek (number of pixels) 
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Beach 0 19 1 1 0 0 0 0 0 0 21 

Cattail 0 0 120 0 0 8 1 2 0 0 131 

Constructed 0 1 0 27 0 0 0 0 0 0 28 

Floating 0 0 0 0 10 0 0 0 0 0 10 

Meadow marsh 0 2 0 0 0 13 0 0 0 0 15 

Open water 0 0 0 0 2 0 43 0 4 0 49 

Phragmites 0 2 0 0 0 2 2 48 0 0 54 

Shallow marsh 0 0 0 0 4 4 2 0 19 0 29 

Trees/shrubs 4 0 0 0 0 4 0 0 4 18 30 

Total 74 24 121 28 16 31 48 50 27 18 437 

Number of correctly classified pixels for each land cover class are given in bold text 
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Table 2.7 Error Matrix for Sentinel 2 (2016 July 26) for the Big Creek (number of pixels) 

 

Reference data 
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Agriculture 167 0 0 0 0 1 0 0 0 0 168 

Beach 0 78 0 8 0 0 0 0 0 0 86 

Cattail 0 0 347 0 0 15 0 12 8 0 382 

Constructed 0 5 0 112 0 0 0 0 0 0 117 

Floating 0 0 1 0 28 0 0 0 0 0 29 

Meadow marsh 0 0 71 0 0 97 0 0 0 0 168 

Open water 4 0 0 1 0 0 197 0 37 0 239 

Phragmites 0 0 16 0 0 4 0 246 1 3 270 

Shallow marsh 0 0 1 0 12 2 16 0 48 8 87 

Trees/shrubs 13 0 0 0 0 1 0 0 0 19 33 

Total 184 83 436 121 40 120 213 258 94 30 1579 

Number of correctly classified pixels for each land cover class are given in bold text 
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Table 2.8 P-Values for selection of most contributing bands for the Phragmites signature using one-way ANOVA and Tukey’s 

test (Note: statistically significant values are given in bold text; P-C is Phragmites and Cattail organic shallow marsh 

comparison and P-M is Phragmites and meadow marsh comparison). 

BCNWA Number of 

significant p-

values 

Band Classes Feb May Jun Jul Aug Sep Nov 

Coastal 

aerosols 

P-C 0.076 0.021 0.579 0.100 0.060 0.051 0.189 1 

P-M 0.000 0.821 0.200 0.120 0.240 0.089 0.010 2 

Blue P-C 0.067 0.240 0.984 0.200 0.074 0.001 0.052 1 

P-M 0.000 0.996 0.882 1.000 0.989 0.004 0.056 2 

Green P-C 0.073 0.040 0.631 0.002 0.041 0.000 0.082 4 

P-M 0.000 0.634 0.114 0.102 0.142 0.377 0.003 2 

Red P-C 0.053 0.127 0.815 0.004 0.009 0.098 0.074 2 

P-M 0.000 0.445 0.044 0.994 0.113 0.012 0.057 2 

NIR P-C 0.006 0.963 0.621 0.000 0.000 0.000 0.500 4 

P-M 0.000 0.239 0.191 0.022 0.022 0.248 0.138 3 

SWIR 1 P-C 0.081 0.378 0.97 0.000 0.000 0.003 0.47 3 

P-M 0.048 0.831 0.915 0.788 0.994 0.134 0.398 1 

SWIR 2 P-C 0.000 0.214 0.638 0.000 0.000 0.003 0.219 4 
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P-M 0.000 0.985 0.998 0.000 0.239 0.134 0.166 2 

Number of 

significant 

p-values 

P-C 2 2 0 5 5 5 0  

P-M 7 0 1 2 1 1 2  

RBM  

 Classes Jan Feb Mar Jun Aug Sep  Oct  

Coastal 

aerosols 

P-C 0.124 0.172 0.398 0.331 0.109 0.435 0.655 0 

Blue P-C 0.384 0.154 0.383 0.377 0.377 0.748 0.225 0 

Green P-C 0.325 0.174 0.406 0.850 0.007 0.137 0.582 1 

Red P-C 0.290 0.173 0.413 0.653 0.687 0.236 0.013 1 

NIR P-C 0.159 0.167 0.462 0.447 0.021 0.003 0.045 3 

SWIR 1 P-C 0.058 0.077 0.056 0.630 0.001 0.128 0.476 1 

SWIR 2 P-C 0.061 0.120 0.100 0.560 0.103 0.698 0.287 0 

Number of 

significant 

p-values 

P-C 0 0 0 0 3 1 2 
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Table 2.9 Accuracy (%) values for Landsat 8 July images when one band is excluded at a time (Note: Producer’s and User’s 

accuracy pertain to invasive Phragmites.  Overall accuracy pertains to all classified classes.  Bands that reduce the accuracy 

more than 2% when excluded is bolded.) 

Image 
BCNWA   RBM  

Overall  Producer’s  User’s  Average  Overall  Producer’s  User’s  Average 

With 7 

bands 

88.56 96.00 92.31 92.29  75.00 79.59 73.58 76.06 

Without 

band 1 

87.64 96.00 90.56 91.40  74.58 79.51 72.55 75.55 

Without 

band 2 

88.10 96.00 90.57 91.56  75.00 77.55 72.70 75.08 

Without 

band 3 

86.27 96.00 88.71 90.33  72.46 73.47 71.26 72.40 

Without 

band 4 

88.10 96.00 90.57 91.56  74.15 79.59 73.58 75.78 

Without 

band 5 

85.58 96.00 85.71 89.10  74.15 77.55 71.70 74.47 

Without 

band 6 

86.19 96.00 85.12 89.10  73.30 71.43 70.00 71.58 
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Without 

band 7 

88.10 96.00 90.57 91.56  75.00 79.51 72.41 75.85 

 Difference of accuracy from classification accuracy of all 7 bands 

Without 

band 1 

0.92 0.00 1.75 0.89  0.42 0.08 1.03 0.51 

Without 

band 2 

0.46 0.00 1.74 0.73  0.00 2.04 0.88 0.98 

Without 

band 3 

2.29 0.00 3.60 1.96  2.54 6.12 2.32 3.66 

Without 

band 4 

0.46 0.00 1.74 0.73  0.85 0.00 0.00 0.28 

Without 

band 5 

2.98 0.00 6.6 3.19  0.85 2.04 1.88 1.59 

Without 

band 6 

2.37 0.00 7.19 3.19  1.70 8.16 3.58 4.48 

Without 

band 7 

0.46 0.00 1.74 0.73  0.00 0.08 1.17 0.21 
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Table 2.10 P-Values for monthly changes of NDVI and NDWI of Phragmites, cattail organic shallow marsh, and meadow 

marsh using one-way ANOVA and Tukey’s test (Note: statistically significant values are given in bold text; P-C is Phragmites 

and Cattail organic shallow marsh comparison and P-M is Phragmites and meadow marsh comparison). 

BCNWA Number of 

significant 

p-values 
Band Classes Feb May Jun Jul Aug Sep Nov 

NDVI P-C 0.060 0.550 0.304 0.140 0.003 0.002 0.003 3 

P-M 0.000 0.000 0.000 0.992 0.079 0.048 0.306 4 

NDWI P-C 0.078 0.254 0.010 0.000 0.017 0.000 0.181 4 

P-M 0.000 0.087 0.422 0.000 0.000 0.000 0.730 4 

Number of 

significant 

p-values 

PC 0 0 1 1 2 2 1  

P-M 2 1 1 1 1 2 0  

RBM  

  Classes Jan Feb Mar Jun Aug Sep Oct  

NDVI P-C 0.914 0.706 0.727 0.045 0.720 0.029 0.030 3 

NDWI P-C 0.169 0.862 0.959 0.136 0.000 0.058 0.053 1 

Number of 

significant 

p-values 

P-C 0 0 0 1 1 1 1  
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Fig. 2.1 Location of study sites and test and training locations used for classification 
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Fig. 2.2 Flow chart of the methods used in the study 
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Fig. 2.3 Classified maps with SVM classification for Big Creek and Roundeau Bay, Lake 

Erie 
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Fig. 2.4 Monthly changes in Jeffries-Matusita Separability of Phragmites in Big Creek 

wetland for (a) Landsat 7 (c) Landsat 8 and (e) Sentinel 2 data; For RBM (b) Landsat 7 

(d) Landsat 8 and (f) Sentinel 2 data 
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Fig. 2.5 Comparison of Overall, Producer’s and User’s accuracies for automated 

classifications of three different satellite images of Big Creek Wetland.  Accuracies are 

sorted by three different methods.  Month refers to a single month for a season.  Solid line 

indicates 85% accuracy whereas the dotted line refers to 90% accuracy 
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Fig. 2.6 Results of ANOVA comparing Phragmites user’s, producer’s and overall 

accuracies across a) four seasons and b) satellite sensors. Similar letters join statistically 

homogeneous means in each panel as indicated by a Tukey’s comparison of multiple 

means 
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Fig. 2.7 Monthly changes in reflectance of (a) Phragmites, cattail organic shallow marsh 

and meadow marsh for BCNWA site and (b) Phragmites and cattail for RBM site for the 

7 bands of Landsat 8 
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Fig. 2.8 Monthly changes in (a) NDVI and (b) NDWI for BCNWA and (c) NDVI and (d) 

NDWI for RBM for Phragmites, cattail organic shallow marsh and meadow marsh 
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Fig. 2.9 Landsat 8 images for mapping meadow marsh (a) using only July image and (b) 

using July image after masking meadow marsh with February image 
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Chapter 3. Mapping Phragmites cover using WorldView 2/3 and Sentinel 2 images at 

Lake Erie Wetlands, Canada 
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3.1.  Abstract 

 Phragmites australis (Cav.) Trin. ex Steudel subspecies australis is an aggressive 

plant invader in North American wetlands. Remote sensing provides cost-effective 

methods to track its spread given its widespread distribution. We classified Phragmites in 

three Lake Erie wetlands (two in Long Point Wetland Complex (LP) and one in Rondeau 

Bay Marsh (RBM)), using commercial, high-resolution (WorldView2/3: WV2 for RBM, 

WV3 for LP) and free, moderate-resolution (Sentinel 2; S2) satellite images.  For image 

classification, we used Mixture-Tuned Match Filtering (MTMF) and then either 

Maximum Likelihood (ML) or Support Vector Machines (SVM) classification methods. 

Using WV2/3 images with ML classification, we obtained higher overall accuracy for 

both LP sites (93.1%) compared with the RBM site (86.4%); both Phragmites users’ and 

producers’ accuracies were also higher for LP (89.3% and 92.7%, respectively) compared 

with RBM (84.3% and 88.4%, respectively). S2 images with SVM classification provided 

similar overall accuracies for LP (74.7%) and for the RBM (74.3%); Phragmites users’ 

and producers’ accuracies for LP were 85.3% and 76.3%, and for the RBM, 69.1% and 

79.2%, respectively.  Using WV2/3, we could quantify small patches (percentage cover 

≥20%; shoots ≥1 m tall; stem counts >25) with accuracy > 80%, whereas parallel effort 

with S2 images only accurately quantified high density (>60% cover), mature shoots 

(>1m tall; Stem counts >100). By simultaneously mapping young or sparsely distributed 

Phragmites shoots and dense mature stands accurately, we show our approach can be 

used for routine mapping and regular updating purposes, especially for post-treatment 

effectiveness monitoring. 
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Key Words: MTMF, Phragmites, WorldView 2 and WorldView 3, Sentinel 2, wetlands, 

invasive species 

3.2.  Introduction 

Phragmites australis (the common reed; hereafter Phragmites) is a taxonomically 

diverse perennial grass, with 27 genetically distinct groups throughout the world, 11 of 

which are found in North America. One of the European haplotypes, M, is an aggressive 

invader in coastal wetlands and roadway corridors and have been growing at the expense 

of native vegetation in many coastal marshes of the lower Great Lakes (Saltonstall 2002). 

This haplotype exhibits invasive characteristics, including its ability to aggressively 

colonize exposed mud flats sexually (through seeds), and then expand asexually (through 

rhizomes) to form dense monocultures that inhibit biodiversity of other plants and 

wildlife (Meyerson et al. 2000; Markle and Chow‐Fraser 2018). Its rapid spread has been 

attributed to it being a superior competitor against other emergent vegetation (Meyerson 

et al. 2000; Uddin et al. 2014) and to being more tolerant of disturbances (e.g. road 

maintenance and changes in hydrologic regimes) and environmental stressors (e.g. 

increased salinity due to road de-icing salts) (McNabb and Batterson 1991; Marks et al. 

1994; Chambers et al. 1999; Brisson et al. 2010; Taddeo and Blois 2012; Rodríguez and 

Brisson 2015).  Once established, this aggressive invader has been known to reduce 

wetland plant diversity and alter vegetation structure (Ailstock et al. 2001; Mal and 

Narine 2004; Lambert et al. 2010; Gilbert et al. 2014), habitat for wetland fauna 

(Weinstein and Balletto 1999; Bolton and Brooks 2010; Gilbert et al. 2014; Cook et al. 

2018; Markle and Chow‐Fraser 2018), and modify hydrology and soil properties 
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(Chambers et al. 1999; Bolton and Brooks 2010), thus having an overall negative impact 

on ecosystem functions. 

Optimal conditions for the growth of Phragmites are provided by water bodies 

with seasonal fluctuations of 30 cm (Deegan et al. 2007). New shoots of Phragmites arise 

in the spring and may grow up to 3-4 m tall during the summer, producing large 

inflorescences giving rise to thousands of seeds towards the late summer and early fall 

(Burgess and Evans 1989; Gilbert et al. 2014; Gagnon Lupien et al. 2015). According to 

(Albert et al. 2015), both seeds and vegetative propagation contribute to the new 

Phragmites establishment; however, 84% of the newly established Phragmites stands are 

formed through seed germination. Lathrop et al., (2003) have reported three patterns of 

Phragmites growth in brackish tidal marshes at eastern USA: i) colonization or new 

growth, ii) linear clonal growth along an axis, and iii) circular clonal patches (non-

directional) with random spread. New Phragmites stands are characterized by low-density 

short shoots with a few small leaves. Phragmites grown in deep water also produce lower 

number of shoots and shorter rhizomes, thus limiting its vegetative expansion (Weisner 

and Strand 1996; Vretare et al. 2001). Linear Phragmites stands are mostly observed 

along the roadside in linear wetland corridors and along shores of water ways, while 

circular growths are mostly observed in wetlands with ideal growth conditions.  

The distinctive growth patterns of Phragmites make them well suited to remote 

sensing approaches. A number of methods have been developed to map dense Phragmites 

with higher accuracy (i.e. >80%), involving satellite images of moderate 30-m Landsat 

and 10-m and 20-m Sentinel 2 (Rupasinghe & Chow-Fraser, 2019),  and emergent 
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vegetation with 10-m and 20-m SPOT; 4-m IKONOS (Rutchey and Vilchek 1999; 

Sawaya et al. 2003; Phillips et al. 2005).  Other methods are available that employ more 

expensive high resolution hyperspectral images acquired by commercial sensors such as 

AVIRIS, CASI, HyMap, and PROBE-1 (Schmidt and Skidmore 2001; Bachmann et al. 

2002; Williams and Hunt Jr 2002; Lopez et al. 2004), that could be used for mapping 

low-density stands. For mapping invasive species, multispectral images have advantages 

over hyperspectral images because of their overall lower cost (some available at no cost 

or reduced cost), higher spatial coverage, and shorter durations between acquisitions that 

facilitate repeated mapping of the entire wetland for assessing treatment efficacy at the 

ecosystem scale. The main disadvantage, however, is that multispectral images produce 

lower accuracy compared with hyperspectral images, especially at early stages of 

invasion when plant densities are low (Adam et al. 2010).    

Selection of hyperspectral or multispectral images and choosing the best 

classification algorithm is essential for accurate species-level mapping.  Campbell, (2002) 

described two categories of classification algorithms that can be used in supervised 

classification methods:  i) distance based or hard classifiers and ii) unmixing based or soft 

classifiers. In hard classifiers, the distance from a known reflectance value is used to 

determine the match between an unknown pixel. Maximum Likelihood classification 

(ML), Spectral Angle Mapper (SAM), and Minimum Distance classification are some of 

the examples for hard classifiers and they act as ‘first look’ tools to identify the presence 

of target species in the study area (Campbell 2002). The soft classifiers such as Linear 

Spectral Unmixing (LSU), Mixture Tuned Match Filtering (MTMF), and Bayesian 
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Probability use relative abundance of land cover classes within a pixel. In these 

techniques, mixed pixels that contain several landcover classes are decomposed into its 

original constituents, to develop a set of output images rather than a single classified 

image as in hard classifiers (Lass et al., 2005; Williams & Hunt Jr, 2004; Williams & 

Hunt Jr, 2002).  

Despite the expansion of Phragmites in many Lake Ontario and Erie coastal 

marshes in the late 1990s (Wilcox et al. 2003), control programs were not implemented in 

Ontario until 2007 (Bourgeau-Chavez et al. 2015; Gilbert 2015). Non-chemical control 

methods such as cutting, drowning, smothering, covering, excavating, plowing, grazing, 

and burning have been tested in Ontario with varying success (Gilbert et al. 2014). In 

some instances, mechanical control cannot be implemented in natural ecosystems when 

the invaded area is large and inaccessible by either boat or road. In these instances, aerial 

application of either glyphosate or imazapyr has been used (Avers et al. 2007; Derr 2008; 

Gilbert et al. 2014; Gilbert 2015). Although glyphosate had been used widely within the 

United States to control the growth of invasive Phragmites (Gilbert 2015), its use in 

Ontario has been prohibited except by Emergency Use Registration, which requires first, 

an accurate map of Phragmites in the wetland to spray only the target area during aerial 

herbicide application and to avoid spraying on native vegetation and secondly, an 

accurate monitoring program to quantify the efficacy of the treatment program since 

complete removal of Phragmites in an area requires repeated applications over several 

years (Gilbert et al. 2014; Rupasinghe et al. 2017). 
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To meet treatment protocols such as Ontario’s Emergency Use Registration 

requirements, managers must obtain high mapping accuracies for both the expansive 

mature stands of Phragmites (i.e. untreated) as well as the small, young, sparsely 

distributed shoots (i.e. when they regenerate following treatment). Such mapping would 

require a remote-sensing approach that is cost-effective, repeatable, and produce results 

that maximize both producers’ (mapping accuracy on the map makers’ or the producers’ 

perspective, complements the level of omission error or the false negatives) and users’ 

(mapping accuracy on the map users’ perspective, complements the level of commission 

error or the false positives) accuracies, since both false negatives and false positives are 

unacceptable at high levels. In this study, we compare classification accuracies associated 

with two multispectral products (commercially available, high resolution WorldView 

2/WorldView3 (WV 2/3) and the freely available, moderate resolution Sentinel 2 (S2) 

images) using sub-pixel image classification methods to determine the relative usefulness 

of these image products for mapping the distribution of Phragmites in three Lake Erie 

marshes that had been colonized since the late 1990s (Wilcox et al. 2003).  At the time of 

image acquisition, the patterns of Phragmites distribution varied across the three sites. 

One wetland had low-density stands of young shoots a year following herbicide 

treatment, whereas another had large, dense mature Phragmites stands that had not yet 

been chemically treated, and a third had a mixture of both chemically treated and 

untreated areas. Our goal is to experiment with sub-pixel techniques used previously, 

mostly with hyperspectral images, and apply them to multispectral images to obtain 

accuracies > 80% for all Phragmites density classes across the three Lake Erie wetlands. 
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3.3.  Methods 

3.3.1.  Study sites 

Two of the three Lake Erie wetlands, Big Creek National Wildlife Area 

(BCNWA; 42°35’N 80°27’W) and Crown Marsh (CM; 42°35’N 80°24’W) occur in Long 

Point (LP) Wetland Complex, which is internationally recognized as an UNESCO World 

Biosphere Reserve and under the Ramsar Convention as an internationally important 

wetland (Ministry of Natural Resources and Forestry 2019) (Fig. 3.1). BCNWA covers an 

area of 771 ha and consist of the Big Creek unit (615 ha) and the Hahn Marsh Unit (156 

ha). It is federally owned and managed by the Environment and Climate Change Canada. 

CM is about 2 km East to the BCNWA and covers approximately 708.2 ha. It is owned 

by the Province of Ontario and is normally accessible to the public throughout the year. 

These wetlands are characterised by emergent aquatic vegetation, mainly Cattail (Typha 

sp.), Phragmites, and Bulrushes (Juncus sp.) (Long Point Crown Marsh Rehabilitation 

Steering Committee 2007) and meadow marsh dominated by Calamagrostis canadensis 

(Yuckin and Rooney 2019). The third wetland, Rondeau Bay Marsh (RBM; 42°17’N 

81°52’W), is managed by the province of Ontario, and is located further west on the north 

shore of Lake Erie, covering an area of 1800 ha (Fig. 3.1).  RBM is characterized by 

Carolinian forests, sandy peninsula, and marsh (Mann and Nelson 1980). The drier parts 

of the marsh are dominated by Cephalanthus occidentalis, Salix, and Cornus spp. Other 

than Phragmites, the emergent plants included monocultures of Typha latifolia, T. 

angustifolia, T. x glauca and Zizania aquatica and the marshes with deeper standing 
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water was dominated by aquatic species of Cyperaceae, Nuphar advena, and Nymphaea 

odorata (Finkelstein and Davis 2006). 

3.3.2.  Remote Sensing data 

WV, which is operated by DigitalGlobe, is a fourth-generation, optical and 

commercial earth-observation satellite series, with the highest spatial resolution (30 cm 

for WV3 and 40 cm for WV2) of all existing optical satellites available for research 

(Kurihara et al. 2018).  WV3 has revisit frequency less than 1 day at 40°N latitude and 4.5 

days at 20° off-nadir or less while for WV2, revisit frequency is 1.1 days and 3.7 days at 

20° off-nadir (Satellite Image Corporation 2017a).  A cloud-free WV3 image was 

acquired on 4th July 2018 for BCNWA and CM sites and WV2 image was acquired on 5th 

September 2018 for RBM site. WV3 images consist of one panchromatic band (445-808 

nm spectral resolution and 30 cm spatial resolution) and eight multispectral bands (1.2 m 

spatial resolution), including the coastal blue (397-454 m), blue (445-517 nm), green 

(507-586 nm), yellow (580-629 nm), red (626-696 nm), red edge (698-749 nm), Near 

InfraRed 1 (NIR 1; 765-899 nm) and NIR 2 (857-1039 nm) bands. For the WV2 images, 

the panchromatic band is 40 cm spatial resolution  (464-801 nm) with 8 multispectral 

bands (1.8 m spatial resolution); coastal blue (401-453 m), blue (447-508 nm), green 

(511-581 nm), yellow (588-629 nm), red (629-689 nm), red edge (704-744 nm), NIR 1 

(772-890 nm) and NIR 2 (862-954 nm) (Nikolakopoulos and Oikonomidis 2015). 

S2 is a satellite owned by the European Space Agency (ESA), designed for studies 

based on terrestrial observations. It consists of two satellites, Sentinel-2A (launched in 

2015) and Sentinel-2B (launched in 2017). S2 provide revisit time of 5 days at the equator 
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(European Space Agency 2020).  The images for BCNWA and CM sites were acquired 

on 6th July 2018 and for RBM site on 28th August 2018. S2 images consist of four 10-m 

resolution bands (Blue; 490 nm, Green; 560 nm, Red; 665nm, and NIR; 842 nm), six 20-

m resolution bands (Vegetation red edge; 705 nm, 74 nm, 783 nm, Narrow NIR; 865 nm, 

Short Wave InfraRed 1 (SWIR 1); 1610 nm, SWIR 2; 2190 nm), and three 60-m 

resolution bands (Coastal aerosols; 443 nm, Water vapor; 945 nm, and SWIR Cirrus; 

1375 nm). 

3.3.3.  Ground truth data 

We conducted field sampling in the summers of 2018 and 2019 at the BCNWA 

and CM to record locations of Phragmites as ground truth data. In the field, we 

established 1.5 × 1.5 m quadrats in the Phragmites patches and visually recorded 

percentage cover of Phragmites. Then we cut all the standing Phragmites stems within 

the quadrat and weighed them using a Xcalibur Spring Scale. Stand height of Phragmites 

was estimated by cutting down the tallest shoot at its base, laying it on the ground, and 

measuring them with a tape measure (to the nearest cm). We recorded the coordinates of 

the quadrats using Garmin eTrex handheld GPS (Garmin and subsidiaries). In total for 

both years, we collected Phragmites information from 58 quadrats in BCNWA and 89 

quadrats in CM. In addition to field sampling, we used high-resolution image 

interpretation to identify land-cover classes on inaccessible areas. We used the sensefly 

eBee (Parrot, Cheseaux-Lausanne, Switzerland (SenseFly 2020b), equipped with the 

Parrot Sequoia+ camera (SenseFly 2020) to acquire Unmanned Aerial Vehicle (UAV; 13 

cm resolution) images in July 2019. We used this high-resolution UAV image and the 
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pansharpened WV3 image (30 cm spatial resolution; same image used in image 

classification) to collect ground reference for land-cover classes for both classification 

and accuracy assessment for areas with limited access. We identified these classes 

through both knowledge in the field and visual comparison of manually digitized UAV 

image acquired in late summer 2015 (Marcaccio et al. 2016). In addition, we also used 15 

Phragmites treatment locations corresponding to a spraying program conducted between 

September to October in 2018 by Nature Conservancy Canada (NCC) to validate the 

image classification. 

Field data used as ground reference for RBM were collected by Angoh et al., (841 

quadrats; unpublished data) as part of their study to examine the effect of Phragmites on 

turtle habitats. They used 2×2 m quadrats and counted the number of dead and live 

Phragmites stems and Cattail stems within the quadrat and recorded the dominant species 

and landcover types within the quadrat.  Of these 841 quadrats, 313 contained 

Phragmites. In addition to the field data, we used locations from manual interpretation of 

pansharpened WV2 image (40 cm spatial resolution, same image used for the image 

classification) and obtained 10 locations where Phragmites had been treated in 2018 (data 

provided by Ontario Parks).  

3.3.4.  Remote sensing data processing 

We conducted all image pre-processing and processing with the software ENVI 

5.5 (L3Harris Geospatial 2020). We performed radiometric correction and atmospheric 

correction (ENVI FLAASH correction) to obtain surface reflectance values for both 

WV2/3 and S2 images. Reflectance values were rescaled from 0 to 1 after FLAASH 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

92 

 

correction. For S2 images, we separately preprocessed the 20-m resolution bands, 

resampled them to 10-m resolution and stacked them with the preprocessed 10-m bands 

prior to image analysis. 

We performed sub-pixel image classification using spectral mixture analysis to 

detect Phragmites. In the spectral mixture analysis, it is assumed that the mixed pixel 

spectrum is a linear combination of the spectral signatures of the component classes of the 

pixel (Adams et al. 1985). Mixture Tuned Match Filtering (MTMF) is a method used in 

spectral mixture analysis which performs partial spectral unmixing (Boardman et al. 

1995). In this technique, only the pure spectral signature (endmember) of the target 

landcover class needs to be defined. The image is then filtered for the defined endmember 

spectrum and the unknown background spectra are supressed (Boardman 1998; 

Boardman and Kruse 2011; Brelsford and Shepherd 2013). The three steps in MTMF 

includes:  i) Minimum Noise Fraction (MNF) transformation to minimize and decorrelate 

noise,  ii) Match Filtering (MF) to estimate the abundance of the target class, and iii) 

Mixture Tuning (MT) to separate false positives from the MF step (Boardman 1998; 

Boardman and Kruse 2011). The MTMF produces two outputs at the end of the analysis, 

the MF score image, and the infeasibility image. The MF score represents the relative 

abundance of the target class within a pixel. It ranges from 0 to 1 where a score of 1 

represents a perfect match between the endmember and the sub-pixel abundance or 100% 

of the target class within the pixel. The infeasibility scores are in noise sigma units and 

provide the feasibility of the MF results (Harris Geospatial Solutions, Inc 2020).  
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First, we performed Minimum Noise Fraction (MNF) transformation for both pre-

processed WV2/3 and S2 images to reduce image dimensionality. After the MNF 

transformation, we performed the MTMF followed by image classification. We evaluated 

the eigen value plots and the classification results with various combinations of MNF 

bands and based on these results, chose the first four or five bands for further analysis 

(additional MNF bands added unwanted noise to the classification). For the MTMF, we 

extracted spectral endmembers using the field observations. Again, we repeated the 

classification with Phragmites endmember alone and with different combinations of 

endmembers of the other classes and checked for accuracy. Then we selected the 

endmember combination that provided the highest classification accuracy. 

After the MTMF transformation, we classified the images using both Maximum 

Likelihood (ML) and Support Vector Machines (SVM) classification methods. We 

applied 5×5 majority filter for all classes except for Phragmites and then compared the 

results. For image classification and endmember extraction, we used Phragmites locations 

collected in the field in addition to locations obtained from the image interpretation (73 

locations for the LP and 38 locations for the RBM); we used all Phragmites quadrat data 

collected in the field and the Phragmites treatment locations for accuracy assessment (162 

locations for the LP and 323 locations for the RBM). Therefore, there was no overlap 

between classification and accuracy assessment locations. 

After image classification, we imported landcover maps that provided the highest 

mapping accuracy into ArcMap 10.4.1 and evaluated the mapping accuracy of 

Phragmites cover, stem count, height, and weight using the quadrat data collected during 
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field work. To enable analyses, we divided percentage cover data into five equal intervals 

(i.e. 20% increments). Height information were sorted into four categories (<1m, 1-2m, 2-

3m, and >3 m) as were weight data (0-2kg, 2-4kg, 4-6kg, and >6 kg). Although we 

performed image classification of BCNWA and CM together (i.e. a single image was 

acquired for both sites), we calculated percent cover and analyzed the height and weight 

data separately for the two sites. For the RBM site, we sorted the live stem counts per 

quadrat into six categories (0, 1-25, 25-50, 50-75, 75-100, and >100), before calculating 

mapping accuracies. 

We used Fragstats 4.2 to extract patch area, Largest Patch Index (LPI), and radius 

of gyration of each patch for the three sites separately using the maps with highest 

classification accuracy. We analysed the data using the JMP 15 software and created plots 

in MS Excel and in JMP. 

3.4.  Results  

3.4.1.  Phragmites and wetland land cover mapping 

After analyzing different endmember combinations, we obtained the highest 

classification accuracy with the combination that included Phragmites, trees/shrubs 

(mixed forest for RBM site), and open land. Accuracy obtained for this combination was 

higher than that for the Phragmites endmember alone. Therefore, we used this 

combination of classes for the rest of the study (i.e. all combinations of sites and sensors).  

For the BCNWA and CM sites, we classified the image into eight land cover 

classes; Phragmites, Cattail organic shallow marsh, mixed organic shallow marsh, 

trees/shrubs, open land, open water, submerged shallow aquatic shallow marsh, and 
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floating vegetation (Fig. 3.2).  We classified the RBM site also into eight classes: 

Phragmites, Cattail organic shallow marsh, floating vegetation, meadow marsh, mixed 

forest, open land, open water, and organic thicket swamp (Fig. 3.3). The overall, user’s 

and producer’s accuracies were higher for WV2/3 than for S2, regardless of classification 

method (Table 3.1). For WV2/3 images only, ML classification produced higher 

classification accuracy than did SVM. The SVM classification resulted in high 

commission error of Phragmites for both LP and RBM sites (Table 3.1; Fig. 3.2 and 3.3). 

By comparison, SVM produced higher accuracy than did ML classification for S2 

images. Based on these results, we used the ML classification for the WV2/3 images and 

SVM classification for the S2 images in Phragmites cover, stem count, height, and weight 

analysis. 

3.4.2.  Phragmites percentage cover and stem count analysis 

The MF score of Phragmites increased with percentage cover and stem count (Fig. 

3.4 and 3.5); however, whereas significant positive regressions between MF score and 

percentage cover were found for all WV2/3 images, only the S2 image for BC was 

associated with a significant regression. Classification of S2 images were generally 

associated with comparatively low accuracies (Table 3.1), with no significant positive 

correlation between MF scores and percentage cover or stem counts (Fig. 3.4 and 3.5). 

Despite the statistical significance, the regression coefficient between the MF score and 

percentage cover of Phragmites was relatively low (Fig. 3.4). This is due to the spectral 

similarities between Phragmites and other vegetation classes. We observed lower MF 

scores for some locations with 100% Phragmites cover (as reported in the field) because 
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the actual image pixels could be mixed with different reflectance signals such as shadows 

cast by Phragmites itself or by adjacent taller vegetation, non-leaf reflectance from large 

inflorescences, dried leaves and stalks, glare from open water etc. We observed a similar 

trend with the stem count data for the RBM site, in which the regression coefficient 

between MF score and the live stem count of Phragmites was very low (Fig. 3.5). The 

dead stems in majority of the quadrats at the RBM site and other reflectance signals 

associated with non-Phragmites vegetation may explain the low range of MF scores.   

Although accuracies for the five density categories varied for the two LP sites, 

some generalizations can be made. First, regardless of the site, we obtained higher 

accuracies with the WV3 image (Fig. 3.6 a and c) than with the S2 image (Fig. 3.6 b and 

d).  Secondly, in all cases, the lowest density category (<20% cover) failed to meet the 

threshold accuracy of 80% (Fig. 3.6).  For BCNWA, four of the remaining density 

categories achieved acceptable accuracies with the WV3 image compared with three with 

the S2 image (Fig. 3.6a vs Fig. 3.6c). Inaccurate classifications for the highest density 

(80-100% cover) were caused by confusion between Phragmites and Cattail and in a few 

cases, between a patch of high-density Phragmites and trees/shrubs. For CM, acceptable 

accuracies were only achieved with the WV3 image in the two highest density categories, 

whereas all accuracies were < 80% with the S2 image (Fig. 3.6b vs 3.6d). 

For the RBM site, we had stem counts instead of percentage cover data. The WV2 

image yielded >80% accuracies for quadrats with greater than 25 Phragmites stems (Fig. 

3.7). An accuracy of 93.3% was obtained for quadrats with over 100 live Phragmites 

stems, and 53.4% for the lowest category with fewer than 25 live stems. For quadrats 
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containing non-living Phragmites stems, we obtained an accuracy of 50.0%. For S2 

images, accuracy for the highest count category (>100 live stem) was only 73.3% (4 of 15 

quadrats had been misclassified), and accuracies for all other categories were lower than 

65%. 

We observed a significant positive correlation between percentage cover of 

Phragmites and live stem weight and height for both BCNWA (r=0.58 and r=0.71 

respectively) and CM (r=0.84 and r=0.79 respectively) sites. Therefore, we analysed the 

classification accuracy of Phragmites sorted by weight and height. With the WV3 images, 

we found >80% accuracy for all height categories over 1 m. We obtained accuracy of 

75.0% for plants <1 m tall at the BCNWA site (Fig. 3.8a). By contrast, the highest 

accuracy (86.7%) for the S2 image was obtained for the 1-2 m category, while plants 

shorter than 1m, taller than 3m, and between 2-3 m were associated with much lower 

accuracies of 62.5%, 71.4% and 82.1%, respectively (Fig. 3.8b).  We did not have any 

quadrat data over 3 m height category for the CM site. We obtained 100% accuracy for 

the height category of 2-3 m and very low accuracy for 0-1 m height category (7.7%; Fig. 

3.8e). We obtained a similar trend with the S2 images, where highest accuracy was 

obtained for the intermediate category (2-3 m; 85.7%), and lowest accuracy was obtained 

for quadrats with plant heights <1 m (7.7%; Fig. 3.8f). Based on the results, accuracy for 

both WV3 and S2 images generally improved with increasing plant height. 

We also compared accuracies between WV3 and S2 for classifying Phragmites 

weights in the two LP sites.  For BCNWA, accuracies for all four weight categories met 

the target of 80% when WV3 image was used (Fig. 3.8c), whereas only two categories 
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met this target when the S2 image was used (Fig. 3.8d).  For CM, accuracies for only 

three of the weight categories were >80% when WV3 image was used (Fig. 3.8g), 

whereas none of the categories had acceptable accuracies when the S2 image was used 

(Fig. 3.8h). Therefore, in general, accuracies were much better for the WV3 than the S2 

image.  

3.4.3.  Phragmites patch characteristics 

We studied the patch characteristics using the maps produced using the WV2/3 

images as it provided the highest mapping accuracy. The patch sizes of Phragmites in this 

study ranged from very small (2 m2) to extremely large (40 ha) patches. The two largest 

patches were found in RBM (40.33 ha) and in BCNWA (26.89 ha).  By far, however, the 

majority (>80% of the 58081 patches) of these Phragmites patches were < 100 m2 at the 

BCNWA site.  In comparison, 70% of 17889 Phragmites stands in CM and 50% of the 

50191 stands in RBM had an area < 100 m2. The radius of gyration, which is a measure of 

the spatial extent of a habitat patch (defined as a mean distance between each cell in the 

patch and the patch’s centroid) differed significantly among the three sites.  RBM, with 

the greatest total area occupied by Phragmites, also had the highest radius of gyration 

(Fig. 3.9a and 3.9b). The calculated geometric mean patch size of Phragmites in both LP 

wetlands was < 5 m2 while that in RBM was more than double (>10 m2; Figure 3.9c). 

When we compared the LPI for the three sites, CM, BCNWA, and RBM sites have 0.8%, 

2.2%, and 2.5% respectively. Overall, these results indicate that the RBM site had 

comparatively larger Phragmites patches, and fewer small-sized stands compared with 

the LP sites. 
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3.5.  Discussion 

Our study is the first to use subpixel image classification using MTMF with 

multispectral satellite images to map Phragmites, and we have been able to achieve up to 

90% accuracy across landscapes containing patches that range from very large size of 40 

ha to very small sparse stands of 2 m2.  We achieved higher classification accuracy by 

using spectral endmembers that were defined for trees/shrubs and open land in addition to 

Phragmites instead of Phragmites endmember alone.  We focused on developing simple, 

cost-effective methods that could be used in sites with a range of patch sizes and 

distributions so that the protocol can be repeated across many different wetlands by 

environmental agencies. Our goal was to obtain accurate maps of both low density or 

young Phragmites stands as well as expansive, large stands so that the same protocol can 

be used for initial assessment as well as effectiveness monitoring.  We found that the best 

combination at no-cost involves the use of S2 images and SVM classification while the 

best combination with highest mapping accuracy involves the commercially available 

WV2/3 images and use of ML classification.   

In all respects, classification of WV2/3 images produced higher overall and 

Phragmites accuracies than did classification of S2 images.  This difference in 

performance is directly related to the higher spatial resolution of WV2/3 (1.8 m and 1.2 

m) compared with S2 (10 m and 20 m) which results in higher spectral mixing in the 

latter.  When we compared the two sites, RBM had slightly lower accuracy than did LP 

sites, and this difference also may have been due to slightly lower spatial resolution of 

WV2 compared with WV3. Spectral resolution may also have affected the results since 
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we used 8 bands of WV2/3 (from 400 – 1040 nm wavelength) compared with 10 bands of 

S2 (from 490 – 2190 nm wavelength).   Although S2 images have a greater number of 

bands covering a larger wavelength region, the spatial resolution appeared to have 

considerably reduced the accuracy of image classification. 

We observed some classification confusion of Phragmites with Cattail, open 

water, and trees/shrubs.  In our study sites, Cattail is most similar to Phragmites in terms 

of being tall, unbranched, and forming dense monospecific stands, with somewhat similar 

leaf arrangement when compared to other vegetation classes.  Given that they have 

similar habitat requirements, they are often found in mixed stands, and these 

morphological similarities may have resulted in similar reflectance signals that resulted in 

classification confusions between Phragmites and Cattail (Rupasinghe and Chow-Fraser 

2019).  Initially, we included meadow marsh in our classification for the LP sites as this is 

an important wetland category, but this increased Phragmites omission error. Meadow 

marsh at LP sites consisted of mixed plant species such as grasses, sedges, emergent 

shrubs, and upland plant species and can be highly confused with Phragmites when 

mapped with satellite images (Rupasinghe and Chow-Fraser 2019). The meadow marsh 

class was mostly confused with young and lower density Phragmites patches due to 

spectral similarities. Therefore, we excluded meadow marsh from the final classification 

of the LP sites because our main target was to improve Phragmites producers’ and users’ 

accuracies. Due to this modification, vegetation in the meadow marsh habitat was 

incorrectly classified as Cattail or mixed organic shallow marsh, but only infrequently as 

young, low density Phragmites. As our intention was to map low density Phragmites as 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

101 

 

accurately as possible for management purposes, missing meadow marsh was not 

considered a significant problem. This confusion, however, was not observed at the RBM 

site mainly because the Phragmites stands at RBM are large and dense and therefore not 

easily confused with spectral characteristics of meadow marsh. 

We also observed misclassifications between Phragmites and trees/shrubs in some 

locations.  This occurred in some extremely dense Phragmites patches.  Confusion of 

Phragmites with open water occurred in areas where Phragmites was beginning to 

colonize in shallow water and had low plant density. Spectral reflectance of sunlight by 

water can also interfere with the signal produced by Phragmites and lead to 

misclassifications. Finally, we were able to improve the accuracy of the classification by 

removing or masking out ecologically irrelevant classes such as built-up areas, roads, and 

agricultural fields. This is because the bright signals of these classes often interfered with 

vegetation classes, especially when the glare from water caused misclassifications and 

reduced the overall accuracy.  

We were relatively successful in classifying Phragmites stands according to height 

and weight. When Phragmites stands are dense, they produced purer reflectance signals 

that were not mixed with those of other classes.  Mature Phragmites can grow up to 3-4 m 

high and reach densities of 200 live and 300 dry stands per square meter under optimal 

conditions (Hara et al. 1993; Poulin et al. 2010). Optimal conditions for Phragmites are 

freshwater bodies with seasonal fluctuations of 30 cm (Deegan et al. 2007) and all our 

study sites provide these ideal conditions for Phragmites colonization. According to Hara 

et al., (1993), Phragmites does not increase shoot diameter, and increase in shoot weight 
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is parallel to increase in shoot height.  At younger stages, Phragmites shoots use 

carbohydrates from the rhizomes, accumulated during the previous growing season. 

Therefore, younger shoots are smaller and have fewer number of small leaves (Hara et al. 

1993). Furthermore, density and height of Phragmites stands could also be affected by 

environmental conditions such as water level fluctuations. We obtained acceptable 

accuracy for even the lowest height and weight category with the WV3 images. Our study 

confirms that WV2/3 could be effectively used for mapping even young or smaller 

Phragmites stands; however, S2 could only be used to map older, denser, or larger 

Phragmites stands with less spectral mixing. 

Timing of image acquisition and plant phenology are important considerations in 

Phragmites mapping (Rupasinghe and Chow-Fraser 2019).  Phragmites produce the most 

unique, detectable signal that can be separated from other vegetation classes (especially 

Cattail and meadow marsh) during the peak summer period. The distinct inflorescence, 

the unique green color due to the high chlorophyll concentration, the leaf arrangement, 

and the high water-use efficiency of Phragmites during this period all could be combined 

to produce this unique spectral signature. Use of images collected in late summer is also 

beneficial as the Phragmites treatment is usually conducted in September to October and 

this provides most up-to-date map. Use of Short-Wave IR bands may also improve the 

classification accuracy (Rupasinghe and Chow-Fraser 2019). One obvious limitation of 

WV2/3 is the potentially high cost of acquiring images to map large invasion areas.  

We have shown that besides differences in resolution of satellite images, we can 

attribute some of the variation in mapping accuracies among the three sites to differences 
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in treatment history along with amount of field data, and the timing of image acquisition. 

Since the entire CM had been treated in the fall of 2017 and the image was acquired in 

July the following year, there were no mature stands but many small stands that had either 

escaped treatment or had recently regenerated. Therefore, there was interference from 

water reflectance in many inundated areas that were absent in the other two sites. By 

comparison, mature stands in the diked area of BCNWA could be mapped accurately 

because they were large and dense and had not yet been treated at the time of image 

acquisition. We had relatively few RBM data to train and validate the classification of 

small sparse stands of common reed, whereas such data had been specifically collected in 

CM and BCWNA, and this may also explain differences in mapping accuracies. 

According to Rupasinghe and Chow-Fraser (2019), images acquired in July and early 

August was best for minimizing confusion between Phragmites and Typha and were 

associated with highest accuracies for Phragmites. Therefore, all else being equal, the 

July image for LP could explain the better performance than the September image for 

RBM. 

3.6.  Conclusion 

Tracking Phragmites distribution, determining the borders of the patches, and 

estimating the extent of invaded area are common objectives of invasive plant 

management programs. The conventional approach is to map the distribution using field 

surveys, which are extremely labour intensive, and which may produce results that are 

biased against smaller and mixed Phragmites stands depending on the thoroughness of 

the observer. Mapping approaches with remote sensing technology can overcome these 
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challenges by providing comprehensive coverage of both small and large study areas, 

even if they are difficult to access by boat or by road.  Accurate distribution of relatively 

small Phragmites stands are difficult to obtain, but they are very valuable to managers 

because both mechanical and chemical treatment are most effective when populations are 

small and sparsely distributed.  Using commercially purchased high-resolution satellite 

images, we were able to map younger, less dense, or smaller Phragmites stands as well as 

the mature, dense, and larger Phragmites stands with overall accuracy greater than 80%. 

By comparison, satellite images from S2 that are available at no cost could be used to 

accurately map large, high density Phragmites stands, but this approach is only useful 

when general estimation of Phragmites cover is required over large spatial extents. The 

mapping accuracy is dependent on the Phragmites patch characteristics, other wetland 

plant species, and the site conditions. We recommend masking out ecologically irrelevant 

or adjacent land-cover classes (e.g. agricultural lands, roads, and buildings) to reduce 

classification errors and computational time. Use of spectral unmixing of WV2/3 is a 

promising method for detection of Phragmites in wetlands, especially for detecting new 

Phragmites growth in treated areas and for routine mapping and regular updating 

purposes. 
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Table 3.1 Overall, Phragmites users’ and producers’ accuracy for different combinations of WV2/3 and S2 images and SVM 

and ML classification methods.  

Site Classification Accuracy 

WV3 S 2 

SVM ML SVM ML 

BCNWA and 

CM 

Overall Accuracy % 69.75 93.08 74.68 72.15 

Kappa 0.6162 0.9062 0.6832 0.6467 

Phragmites producers’ 

Accuracy % 95.07 92.72 76.32 79.82 

Phragmites Users’ 

accuracy % 41.77 89.29 85.29 79.13 

 

WV2 S2 

SVM ML SVM ML 

RBM Overall Accuracy % 75.77 86.37 74.25 70.86 

Kappa 0.6869 0.8220 0.6927 0.6503 

Phragmites producers’ 

Accuracy % 95.14 88.43 79.17 48.57 

Phragmites Users’ 

accuracy % 61.94 84.29 69.09 70.15 
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Fig 3.1 Map of the study sites located in the north shore of Lake Erie 
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Fig 3.2 Classified images of BCNWA and CM sites with (a) WV3 images-ML 

classification, (b) WV3 images -SVM classification, (c) S2 images-ML classification (d) 

S2 images-SVM classification 
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Fig 3.3 Classified images of RBM site with (a) WV2 images-ML classification (b) S2 

images-ML classification (c) WV2 images-SVM classification (d) S2 images-SVM 

classification 
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Fig 3.4 Linear regression plots of MF scores versus Phragmites percent cover associated 

with WV3 images for (a) BCNWA and (b) CM sites; corresponding regression plots 

associated with S2 images for (c) BCNWA and (d) CM sites 
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Fig 3.5 Linear regression plots of MF scores versus Phragmites stem counts obtained 

with (a) WV2 and (b) S2 images for the RBM site 
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Fig 3.6 Comparison of mapping accuracies for Phragmites in five density categories for 

BCNWA (solid bars) and CM (stippled bars) using ML classification with WV3 (top 

panels) and S2 images (bottom panels) 
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Fig 3.7 Mapping accuracies of live Phragmites in six stem count categories for the RBM 

site using (a) WV2 image-ML classification and (b) S2 image-SVM classification 
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Fig 3.8 Mapping accuracies of height and weight of Phragmites for BCNWA (solid bars) 

and CM (stippled bars) using WV3 (all left panels) and S2 (all right panels). (Note: no 

data for >3 m height category in CM site) 
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Fig 3.9 Comparison of (a) mean Radius of Gyration, (b) mean total area occupied by 

Phragmites and (c) geometric mean size of Phragmites stands in the three wetlands in this 

study.  Data were calculated from classification of WV2/3 images with the ML 

classification 
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Chapter 4. Relating pre-fire canopy species and proximity to water features to burn 

severity of boreal wildfires in northern Alberta, Canada 
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4.1.  Abstract 

Increased global temperature, drought, and extreme weather have increased the 

frequency and intensity of wildfires in Canadian Boreal forests. We examined how burn 

severity was related to canopy species composition and proximity to water in six large 

boreal forest stands across northern Alberta (two in the Bistcho Lake region, three in 

Wood Buffalo National park, and one in the Richardson backcountry) and a smaller stand 

close to the town of Slave Lake (204 - 5217 km2). We used Landsat 5, 7, and 8 satellite 

images that included two phenological stages (spring, summer, or fall), followed by 

Support Vector Machines (SVM) classification to map the distribution of pre-fire canopy 

species.  To quantify the burn severity of each fire, we used the Landsat images to 

calculate the differenced Normalized Burn Ratio (dNBR); we then combined dNBR for 

all affected areas to develop the Standardized Burn Impact Score (SBIS), that quantifies 

the average impact of each fire based on the size of the burned area and the mean burn 

severity per pixel. In general, pre-fire dominance of coniferous species (jack pine and 

spruce) led to higher SBIS values while pre-fire dominance of broad-leaved species 

(aspen, birch, and poplar) led to lower values.  Mean burn severity and SBIS values 

increased when fire outbreaks occurred at a distance of 1 km or greater from water 

features (e.g. lakes, rivers, streams, wetlands).  By integrating burn impact over very large 

temporal and spatial scales, we have confirmed the general influence of pre-fire canopy 

species on burn severity, and the ameliorating effect of water features on fire behavior at 

the landscape level. 

Keywords: Boreal forests, Remote sensing, Wildfire, canopy species mapping, Landsat 
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Highlights 

• Pre-fire species composition and distance to water features affect burn severity. 

• Deciduous species reduce the wildfire potential while coniferous species enhance.  

• Water features reduce wildfire potential and burn impact. 

• Remote sensing provides useful methods to study wildfire behavior in large areas. 

4.2.  Introduction 

Boreal forests are wilderness areas in northern circumpolar regions,  where 

freezing temperatures occur for 6 to 8 months of the year (Mery et al., 2010). This biome 

encompasses ~30% of the global forested area and occurs in the northernmost regions of 

Canada, Russia, and the United States (Gauthier et al., 2015).  They contain more surface 

freshwater than any other biome in the world (Mery et al., 2010).  They store 

approximately 66% of the world’s carbon in the soil, peat, and permafrost deposits and 

therefore, play a major role in global carbon cycling (Kasischke et al., 1995; Pan et al., 

2011). They are also involved in global climate regulation through energy and water 

exchange (Steffen et al., 2015). Boreal forests also provide great societal value by 

supporting fishing, hunting, leisure or spiritual pursuits, and economic opportunities to 

many rural communities as well as indigenous people throughout the world (Gauthier et 

al., 2015). 

Boreal forests usually have low plant diversity with dominant gymnosperms such 

as white and black spruce, jack pine, balsam and douglas fir, and tamarack and varying 

proportions of angiosperms such as trembling aspen, balsam poplar, and white birch 

(Alberta Forest service, 1985; Mery et al., 2010; Shorohova et al., 2011). The canopy 
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species are capable of reaching a minimum height of 5 m with a canopy cover of 10% 

(Gauthier et al., 2015). These forests are adapted to short, hot growing seasons, and long 

winters with extreme weather conditions (Matsuura, 2010). Furthermore, these forests are 

characterized by various disturbances including wildfire, insect infestations, and 

windthrow hazards, which are essential processes that maintain the structure and diversity 

of boreal forests (Gauthier et al., 2015). 

Wildfire is considered the most widespread disturbances in boreal forests that 

shape their structure, composition, and function, as well as influence rates and processes 

of ecological succession and encroachment (Lentile et al., 2006).  Major factors that 

affect fire activity include availability and type of fuel, ignition agents, topography, and 

human activities, and climate conditions (Johnson et al., 2001; Schoennagel et al., 2004).  

Flannigan et al. (2005) suggested that climate change can increase the area burned, the 

length of the fire season, the intensity as well as the severity of the fire; they predicted 

that the amount of burned area in Canada may increase by 74 to 118% by the end of the 

century. Given the importance of boreal forests, there is an urgent need to understand how 

specific factors contribute to the frequency and severity of wildfires and to monitor how 

boreal forests are responding to adverse effects of climate change (Chu & Guo, 2014).  

Severity and impact of wildfire in remote locations are determined by a number of 

pre-fire conditions such as the distribution of pre-fire canopy species, local topography,  

fire weather, and fuel load and structure (Boucher et al., 2017; Krawchuk et al., 2016; 

Lydersen et al., 2017; Whitman et al., 2018).  These factors are challenging to study 

because they require examination of multiple fire outbreaks occurring over large temporal 
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and spatial scales that preclude the use of field studies.  Even if logistical challenges can 

be overcome, severe fires can completely remove all traces of vegetation present before 

the fire.  Therefore, remote sensing provides the best and most cost-effective means to 

understand fire behavior and pre-fire conditions over larger spatial scales (Akther and 

Hassan, 2011; Hall et al., 2008; Whitman et al., 2018).  

Multispectral remote sensing is widely used to map burn severity in North 

America (Barrett et al., 2011; Hall et al., 2008; Murphy et al., 2008; Whitman et al., 

2018). Differenced Normalized Burn Ratio (dNBR) (Key and Benson, 2005),  Relativized 

dNBR (RdNBR) (Miller and Thode, 2007), and  Relativized Burn Ratio (RBR) (Parks et 

al., 2014) are some of the common indices used to map burn severity.  Besides mapping 

burn severity, remote sensing has also been used to map post-fire changes in landcover 

and vegetation recovery processes following fire outbreaks (Cumming 2001; Hammill 

and Bradstock 2006; Hall et al. 2008; Chu and Guo 2014; Chu et al. 2016; Fernández-

García et al. 2018).  By comparison, the use of remote sensing to examine pre-fire 

conditions is attempted less, especially for fires occurring in remote areas where there are 

no ground truth data prior to the fire. 

Wildfires in boreal forests of northern Alberta have been large and frequent in 

recent decades (Stocks et al., 2002), and a warming climate has been implicated as an 

important driver (Flannigan et al., 2009).  Other variables such as the pre-fire composition 

of canopy species and proximity to water features (e.g. rivers, streams, lakes, wetlands) 

may influence burn severity at the stand level that could be important for managing 

wildlife habitat and for understanding fire behavior.  Given that human activities 
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generally resulted in a decrease in wildfire activity between 1980 and 2010 in Alberta’s 

boreal forests (Robinne et al. 2016), studies should differentiate between remote wildfires 

and those located near human settlements.   

The primary objective of this study was to use remote sensing to quantify the effects of 

pre-fire canopy species composition and proximity of water features on burn severity of multiple 

fire outbreaks occurring in boreal forests of northern Alberta.  To minimize the variation in pre-

fire conditions, we included fire events that occurred over an 11-y period between 2004 and 2015, 

and for which the minimum pre-fire period exceeded two decades.  To ensure our results have 

wide applicability, we chose four major areas in northern Alberta that experience a range of 

human activities from minimal disturbance in a large national park to a forest stand located near a 

small town. To allow comparison of wildfire activity for each outbreak, we created an index, the 

Standardized Burn Index Score (SBIS) that quantifies the average impact of each fire based on the 

size of the burned area and the mean burn severity per pixel.  Overall, our goal was to provide a 

simple, cost-effective technique to quantify burn impact and fire behavior to investigate changes 

in fire regimes over large spatial and temporal scales. 

4.3.  Methods 

4.3.1.  Study sites 

Our largest site is Wood Buffalo National Park (WB), Canada’s largest National 

Park, and also one of the largest in the world (Lat 58.943 Lon -112.788; Fig. 4.1; Parks 

Canada 2020).  The Park covers 44, 807 km2 area in total and is characterized by large, 

undisturbed grass and sedge meadows, wetlands and prairie, and boreal forests (UNESCO 

World Heritage Center, 2020). This park is very remote and is subject to minimal 

anthropogenic stress, except for flow regulation, water withdrawal, industrial discharge, 
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and effects of climate change, which originate from outside the park (UNESCO World 

Heritage Center, 2020).  The Richardson (RC) Wildland Provincial Park is located 150 

km southeast of WB National Park (Lat 57.999 Lon -111.141; Fig. 4.1), and is part of the 

largest sand dune complex in Canada, with paleo-parabolic dunes and riparian areas along 

the Athabasca River, and boreal forests (Alberta Parks 2018).  Bistcho Lake (BL) is 

located in northwestern Alberta (Lat 59.672, Lon -119.143; Fig. 4.1), and is characterized 

by wetlands, including Sphagnum peat bogs, channel fens, and large tracts of mixed wood 

boreal forests (Alberta Wilderness Association 2020). Other than wildfires, this area has 

been disturbed by clear-cut logging and extensive petroleum and natural gas exploration 

for many years.  Whereas only 22% of the Richardson area is disturbed by human 

activities, 61% of the Bitscho Lake area is anthropogenically disturbed with linear 

features (Canadian Parks and Wilderness Society Northern Alberta, 2016).  The last study 

site is the Lesser Slave Lake region (LSL), located in the central part of Alberta, about 

250 km northwest of the city of Edmonton (1.43 million as of 2019). The LSL fire 

occurred close to the Town of Slave Lake, near oil, gas, and forestry operations.  In 

addition to the forest fire, 56 properties in the outskirts and one-third of the town were 

destroyed by this fire (Botey and Kulig, 2014). 

In total, we studied seven fire outbreaks: two at BL, three in WB national park, 

one each in the RC and LSL region.  All fire outbreaks occurred after 2004, during the 

summer months. The burned areas varied from 204 to 5217 km2.  There were multiple 

fire-years in BL (2004 and 2012) and WB (2007, 2012, and 2015 in WB) whereas both 

RC and LSL were single fire outbreaks that occurred in 2011 (Table 4.1).  
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4.3.2.  Image data 

We used Landsat 5, 7, and 8 multispectral images for burn-severity calculation 

and species mapping. Landsat is owned by the United States Geological Survey (USGS) 

and the National Aeronautics and Space Administration (NASA) and is the longest earth 

observing satellite series. Landsat 5 operated from March 1984 to January 2013. For this 

study, we used six bands of Landsat 5 Thematic Mapper (TM): blue (0.45-0.52 μm), 

green (0.52-0.60 μm), red (0.63-0.69 μm), two Near-Infrared (NIR) bands (0.76-0.90 and 

0.76-0.90 μm), and Mid-Infrared (2.08-2.35 μm) (USGS, 2016a). Landsat 7 was launched 

in April 1999 and is still functioning. We used seven bands of Landsat 7: blue (0.45-0.52 

μm), green (0.52-0.60 μm), red (0.63-0.69 μm), two NIR (0.77-0.90 and 1.55-1.75 μm), 

and Mid-Infrared (2.08-2.35 μm) (USGS, 2016b). Landsat 8 is the newest satellite of the 

series which was launched in February 2013. We used seven bands of Landsat 8 

Operations Land Imager (OLI): coastal aerosols (0.43-0.45 μm), blue (0.45-0.51 μm), 

green (0.53-0.59 μm), red (0.64-0.67 μm), NIR (0.85-0.88 μm), and two Shortwave 

Infrared (SWIR) bands (1.57-1.65 and 2.11-2.29 μm). All images have a 30-m spatial 

resolution.  

We downloaded summertime cloud-free images, or those with minimum cloud 

cover from Earth Explorer to map burn severity (Table 4.2).  Whenever possible, we 

selected images acquired in late July and early August; however, if cloud-free images 

were unavailable during the preferred time, we used images as early as June and as late as 

September. For species mapping, we downloaded additional images either acquired in 

spring or fall (further explained in section 2.4). For the Landsat 7 images, we used an 
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additional image acquired as close as possible in date to the first image to fill data gaps 

caused by a sensor-borne error.  We used ENVI 5.5 (Harris Geospatial Solutions) to 

preprocess and process reflectance values in our images.  We performed radiometric 

correction and atmospheric correction (ENVI FLAASH) and masked clouds, shadows 

cast by clouds, and thick haze in the images. 

4.3.3.  Mapping burn severity 

We calculated the differenced Normalized Burn Ratio (dNBR; equations 4.1 and 

4.2) to map burn severity (Key and Benson, 2005) using the preprocessed Landsat images 

collected before and after the fire outbreak (Table 4.1). 

𝑁𝐵𝑅 =
(𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)
 [4.1] 

𝑁𝐵𝑅 = 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 [4.2] 

 

Where NIR and SWIR are the corresponding image bands and the 𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 and 

𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 are the corresponding NBR calculated for images acquired before and after 

the fire event. The dNBR values were imported into ArcMap 10.4.1 and these were 

classified into burn-severity classes according to guidelines in Table 4.3. We used the 

shapefiles of the burn footprint available from the National Wildfire Database 

(NFDB)(Natural Resources Canada, 2017) to determine the size and the borders of the 

burned area for each fire outbreak. 
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4.3.4.  Mapping canopy species distribution 

4.3.4.1.  Ground reference data 

To map the distribution of canopy species before the fire event, we used ground 

reference data from Phase 3 of the forest inventory monochrome maps created by Alberta 

Township Systems (ATS) (Alberta Government, 2019). In total, three forest inventories 

were conducted in Alberta; Phase 1 included most of the publicly owned forested lands, 

while Phase 2 covered lands with commercial timber commitments. Phase 3 is the most 

recent inventory that was initiated in 1970 and was completed in 1984. It covered both 

forests on publicly owned lands as well as areas of active timber harvesting (Alberta 

Forest service, 1985) and included greater detail on canopy species. Data for these maps 

were derived from aerial photographs and were combined with field data that documented 

stand volumes and growth estimations. Photointerpretation was conducted manually 

(minimum stand size of 2 ha) and included species composition (based on ground 

surveys), crown density, height, date of stand origin, site index class, and coniferous 

commercialism class (Alberta Forest service, 1985). 

We first digitized the species locations from the monochrome maps using ArcGIS. 

For this step, we used locations that had been affected by fire outbreaks as well as the 

unaffected areas between 1985 to 2017. We avoided using mixed-species locations, and 

only used locations corresponding to a single species. The forest inventory data did not 

cover the northernmost part of Alberta entirely, therefore we only had ground reference 

partially for WB and BL burned areas. In that case, we used more species locations from 

neighboring regions as ground references and used them in image classification and 
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validation. We used 70% of the digitized ground-truth locations for image classification 

and saved the remaining 30% for accuracy assessment.  

4.3.4.2.  Image classification 

The Landsat images collected in two seasons, either spring and summer, fall and 

summer, or spring and fall, were stacked together as one image prior to image 

classification (see Table 4.4).  We followed the methods developed by Liu et al. (2002) 

and used the Support Vector Machines (SVM) in ENVI 5.5 to classify images.   Using 

this procedure, we produced classified images beginning in 1985 until each fire outbreak 

in our study. We combined the dominant deciduous species (aspen, birch, and poplar) into 

one class because our classification was unable to accurately discriminate among these 

species.  We were also unable to discriminate between white and black spruce and 

combined them into a single class to improve classification accuracy.  Our final 

classification scheme included three taxon classes and two non-vegetated classes:  

deciduous (aspen, birch, or poplar), spruce (black or white), jack pine, water, and 

unvegetated area. After obtaining a satisfactory level of classification accuracy for 1985, 

we used the same Regions Of Interest (ROIs) to classify the images collected before the 

fire outbreak, and for every year we carefully checked the ROIs and excluded them if 

they were located within clouds, shadows of clouds, clear cuts, or areas that appeared to 

have been disturbed.  Given that our study sites had minimal human disturbance, we 

assumed that the forest canopy species composition in the ground reference locations did 

not change between 1985/1986 up to the fire year unless there was a visible physical 
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disturbance.  After the image classification, we applied a 3 by 3 majority filter to smooth 

out the classified images. 

4.3.5.  Standardized Burn Impact Score (SBIS) 

We developed SBIS to characterize the impact of each fire outbreak using the 

equation below. 

𝑆𝐵𝐼𝑆 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑁𝐵𝑅 𝑝𝑒𝑟 𝑘𝑚2  ×  𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑏𝑢𝑟𝑛𝑒𝑑 (𝑘𝑚2) [4.3] 

For each fire outbreak, we extracted dNBR values for all the pixels within the 

burned area and calculated the average dNBR values to be used in the equation. We 

calculated the total burned area using the burned area shapefiles downloaded from 

Natural Resources Canada (2017). We calculated this score for each of the 21 fire 

outbreaks within the study locations. 

4.3.6.  Pre-fire species composition data analysis 

Following the image classification, we conducted the further analysis in ArcMap 

10.4.1. We clipped the classified maps with the fire footprint (Natural Resources Canada, 

2017) and intersected it with the reclassified dNBR maps to combine pre-fire canopy 

species distribution with the burn severity levels (section 2.3). Then we calculated the 

area of each taxon class and used these area values for further statistical analysis.  

Then we extracted the species composition within 21 smaller fire events 

regardless of the burn severity category and analyzed the relationship between species 

composition and dNBR and SBIS using regression analysis. We conducted all analyses 

with Microsoft (MS) Excel, Minitab 19, or JMP 15 software.  
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4.3.7.  Burn severity and impact in relation to proximity to water features 

We extracted the water features from classified maps (section 2.4.2) and modified 

these visually to minimize the classification errors using ArcGIS to investigate the effect 

of water features such as rivers, lakes, and ponds on the burn severity. We created 

multiple ring buffers around water features at 50, 100, 150, 200, 250, 500, 1000, 1500, 

and 2000 m intervals. Then we extracted the dNBR values within each of the buffers for 

21 smaller fire outbreaks. We calculated average dNBR and SBIS for all fire events and 

regressed these values against proximity to water features.  

4.4.  Results 

4.4.1.  Burn severity and Impact 

Burn severity and areal extent of the fire for the seven site-events varied greatly 

(Fig. 4.2).  The RC fire in 2011 was the largest, burning a total area of 4942.0 km2 

according to our assessment using dNBR for the affected area (5217 km2) recorded by the 

NFDB.  This was followed by the WB fire in 2015, which burned a total of 2871.06 km2; 

the entire affected area recorded by the NFDB was burned (Figures 4.2 a and b).  

Although the LSL fire was the smallest, with only 154.01 km2 burned out of the recorded 

area of 203.63 km2 (Figure 4.2b), it had a disproportionately large area with high burn 

severity (45.24%; Fig. 4.2c). The BL 2004 fire had the second-largest percentage area of 

high burn severity, given the total burned area reported in the NFDB (37.38%; Figure 

4.2c).  The WB 2007 fire burned with the lowest severity, with only 0.32% of the total 

area associated with high burn severity while 54.58% was associated with low burn 

severity (Fig. 4.2c).  Overall, most locations experienced moderate-high and high severity 
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burns except for the WB 2007 and 2012 fires, which had low and moderate-low severity 

fires in the majority of the burned area. When the total affected area recorded by the 

NFDB is considered, LSL and WB 2007 site-events had more unburned than burned areas 

according to our approach of burn mapping using dNBR. When average dNBR for the 

site-events are considered, WB 2007 fire had the lowest dNBR value (0.073), followed by 

the LSL fire (0.157).  By contrast, the highest average dNBR was for the BL 2004 fire 

(0.643). However, when the total affected area is combined with the dNBR through SBIS, 

the least burn impact was on the LSL fire (35,496.03), followed by the WB 2007 fire 

(58,856.68). The highest burn impact was for the RC fire (2,029,980.823). 

4.4.2.  Burn severity and pre-fire species distribution 

In majority of cases, we obtained greater than 75% overall accuracy and for 

canopy species alone (Table 4.5). The use of two seasons’ images improved mapping 

accuracy by about 20% over than when single images were used; however, since there 

were a limited number of cloud-free images over two seasons in the same year, we could 

not create a continuous time series of species maps from 1985 to the year of the fire 

outbreak.  

In all cases, coniferous species dominated the pre-fire canopy, occupying more 

than half of the area.  RC was the largest burned area (5217.36 km2), which had a pre-fire 

composition consisting of >80% jack pine (Fig. 4.2b and 4.3).  Areas with low burn 

severity coincided with areas occupied by the deciduous taxa, accounting for <6% cover 

and pre-fire unvegetated areas (Fig. 4.3 and 4.4).  By contrast, the pre-fire canopy in 

burned areas at WB during 2007, 2012, and 2015 were dominated by spruce (73, 58%, 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

139 

 

and 57% respectively).  The WB fires consisted of multiple fire outbreaks, two in 2007, 

seven in 2012, and six in 2015 (Table 4.1).  The pre-fire species in the BL area was also 

dominated by spruce, which occupied 54% and 76% of the burned areas in 2004 and 

2012, respectively (Fig. 4.3 and 4.4); the higher coniferous cover in the latter year may 

reflect the higher area burned in 2012 (1706 km2) compared with that in 2004 (1308 km2) 

(Fig. 4.2b).  The smallest fire in this study occurred near Lesser Slave Lake (LSL), where 

spruce occupied 59% of the pre-fire canopy (Fig. 4.2b and 4.3).  

In general, the burn severity categories appeared to be dependent on the pre-fire 

species distribution; in areas dominated by aspen, birch, or poplar, burn severity 

categories remained low or moderate-low, whereas in areas dominated either by spruce or 

jack pine, burn severity levels reached high or moderate-high categories (Fig. 4.4). We 

also pooled all sites to statistically test the relationship between burn severity and species 

distribution of the forest canopy (Fig. 4.5).  There was a significant negative relationship 

when burn severity was regressed against the percentage cover of deciduous taxa in the 

pre-fire forest stands (Fig. 4.5a; Table 4.6).  In contrast, we found a significant positive 

relationship when burn severity was regressed against the percentage cover of spruce in 

the pre-fire forest stands (Fig. 4.5b; Table 4.6). 

We found a significant positive correlation between burn duration and total burned 

area (r=0.62; p=0.003).  When average dNBR values were regressed against burn 

duration, percent cover of deciduous, and percent cover of coniferous species, we did not 

find any significant relationship (Fig. 4.6 a, b, and c, respectively).  By contrast, we found 
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a significant non-linear relationship between SBIS and burn duration, coniferous species, 

and the areal cover of deciduous species (Fig. 4.6 d, e, and f, respectively).   

4.4.3.  Burn severity and impact in relation to proximity to water features 

We observed a strong logarithmic relationship between average dNBR and the 

distance from water features (R2=0.76, Fig 4.7a). dNBR increased sharply from 0 to 

150m, reaching a plateau at l km away from water features. When individual fire 

outbreaks were considered, we found significant relationships for 13 of the 21 fire 

outbreaks; regression analysis for six of the WB and two of the BL fire outbreaks, 

however, did not result in any significant relationship.  

As we did not observe a change in dNBR after a distance of 1 km, we investigated 

the relationship between SBIS value and the effect of water features within 1 km of fire 

outbreaks. We obtained a highly significant linear relationship (R2=0.9686) between 

average SBIS for all fire outbreaks and their distance to water features (Fig. 4.7b). When 

individual fire outbreaks were considered, we obtained highly significant (R2>0.95) 

relationships between SBIS and distance to water features for all 21 fires regardless of 

burn severity. 

4.5.  Discussion 

Wildfires are the main stand-renewing disturbance in boreal forests (Parisien et 

al., 2005). Fire regimes are variable over both space and time. To understand these 

dynamic systems, quantification of fire magnitude in terms of both burn severity and 

impact is essential. Acquiring burn severity data is often challenging in remote regions of 

northern Alberta due to limited access and the high cost of surveying.  This becomes even 
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more challenging when investigating historical fire outbreaks since the affected areas 

have been in recovery for many years or even decades. Remote sensing can overcome 

these challenges and maybe the only viable option in the Canadian boreal region 

(Boucher et al., 2017; Hall et al., 2008; San-Miguel et al., 2016; Soverel et al., 2010; 

Whitman et al., 2018).   

In this study, we used dNBR, a widely used index of burn severity developed by 

(Key and Benson, 2005). This index was first developed in 1996 following a wildfire at 

Glacial National Park, the USA in 1994.  More recently, the Composite Burn Index (CBI) 

was developed to field validate the burn severity index (Key and Benson, 2005).  Since 

then, dNBR has been widely investigated, used with various satellite sensors (eg: 

Landsat, AVIRIS, MODIS), and calibrated with field measurements (Chuvieco et al., 

2006; Cocke et al., 2005; Keeley, 2009; Kokaly et al., 2007), making it the index of 

choice for mapping burn severity throughout North America (Hall et al., 2008; Loboda et 

al., 2007; San-Miguel et al., 2016; Soverel et al., 2010).  For this study, the burn severity 

categories derived through dNBR corresponded well with the degree of vegetation 

changes in affected areas investigated using Normalized Difference Vegetation Index 

(NDVI) and Leaf Area Index (LAI) (Rupasinghe and Chow-Fraser, unpublished data).    

Despite the high accuracy and widespread use of dNBR, the index only gives a 

measure of burn severity of an image pixel. Therefore, the results are presented in a 

format of a map or graph.  By calculating the average dNBR value for all pixels in the 

burned area, we were able to integrate the impact of a particular fire outbreak into a 

standardized score, the Standardized Burn Index Score (SBIS), which is simple to 
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calculate and use. We were able to use this index to rank the severity of fire outbreaks, 

regardless of their size, and to relate SBIS values to pre-fire conditions to produce a 

generalized understanding of how the type of pre-fire canopy species contribute to burn 

severity. 

Fire season in Alberta usually starts in early April and ends in late September and 

most of the fires occur in the northern region (Tymstra et al., 2005). All the fire outbreaks 

we investigated occurred in this time window. Majority of the fire events we investigated 

experienced moderate-high to high severity fires.  The WB and RC fires, however, were 

exceptions, with moderate or low burn severity in most of the affected areas.  The forests 

in the footprint of the WB 2007 and RC 2011 fires had experienced partial burns in the 

early 1950s and 1980s, respectively (Alberta wildfire, 2020). These earlier fires may have 

reduced fuel accumulation and prevented high burn intensity in the more recent fires.  

Similarly, the 2012 outbreak in WB was not due to a single large fire but seven smaller 

fire outbreaks with less severe burns, likely because the area had been surrounded by 

many historical fires and the meanders of the Peace river had acted as natural fire barriers.  

Although we did not investigate it, these anomalies may also have been due to site-to-site 

variation in weather conditions (precipitation and temperature).  

It is also important to consider the influence of anthropogenic disturbances (e.g. 

oil explorations, human settlements) as well as fire management.  Among the fire events 

studied within regions, WB was the least affected by anthropogenic activity, and this was 

followed by the RC fire. These two regions are in protected areas and have minimal to no 

impact from oil and gas exploration and human development. The BL area, however, is 
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severely affected by both gas and oil exploration as well as logging, with a very high 

density of seismic lines.  Of the four regions, the LSL fire was the most affected by 

anthropogenic activity and fire management. This fire outbreak was the smallest, and in 

fact, about 25% of the affected area recorded by the NFDB was not mapped as being 

burned by dNBR, although there was high burn severity, probably due to the higher 

amount of accumulated fuel in the forest.   

The LSL fire was anomalous to the other three regions, likely because of its 

proximity to the town of Slave Lake.  Despite the high burn severity, if we considered 

both the area burned and mean severity together, the LSL fire exerted the least impact 

overall. According to Robinne et al., (2016), human activities are expected to reduce fire 

activity close to human settlements.  Human involvement in fire suppression and 

management makes natural fire behavior more complex to understand and for which to 

predict future trajectories (Robinne et al., 2016; Thompson and Calkin, 2011). The burned 

area at the LSL area is also characterized by a high density of seismic lines. Although the 

effect of oil and gas exploration and seismic lines on wildfire activity is still unclear, 

many specialists expect them to have a non-negligible effect as these lines are grass-

dominated areas and can act as ‘flashy’ fuels where fire can spread rapidly (Robinne et 

al., 2016). Nevertheless, the influence of human involvement and oil and gas exploration, 

especially the seismic lines on the wildfire activity should be studied further (Krawchuk 

et al., 2009). 

In this study, we found the pre-fire composition of canopy species in forests to 

have a significant effect on burn severity. Cumming (2001) also used Alberta Phase 3 
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inventory (Alberta Forest service, 1985) to investigate the relationship between the forest 

type and wildfire in northeastern Alberta. They used Volronoi polygonization as 

approximate digitization of the forest stand boundaries followed by statistical and 

modeling approaches. In the current study, we used remote-sensing image classification 

followed by GIS-based analysis to achieve the same objective. The use of multitemporal 

images from the Landsat satellite alone with the automated image classification 

approaches considerably reduced the need for time-consuming digitizing as well as 

person-related errors. Furthermore, we were able to obtain a good level of accuracy for 

overall and target species mapping. Despite differences in methods used, Cumming 

(2001) reported similar results to ours, where deciduous stands burnt at a lower rate while 

black spruce stands burned at the highest rate.  

According to literature, aspen stands usually do not sustain crown fires because 

fires reaching the crown tend to drop to the ground and burn as surface fire, thereby 

making them act as natural barriers to fires (Cumming, 2001; DeByle and Winokur, 1985; 

Jones and DeByle, 1985).  Trembling aspen, balsam poplar, and white birch, the most 

common deciduous stands in boreal forest stands of northern Alberta, have physiological 

and morphological characteristics (e.g.: high crown base height, high leaf and stem 

moisture content, smooth bark) that make them ineffective in spreading wildfires (Alberta 

Government, 2012). Coniferous species such as spruce and pines, on the other hand, have 

characteristics that can help spread wildfires; they occur in high density, accumulate 

needles on the forest floor as fuel, and have rough, loose bark, low-lying branches, and 

high rates of dead branches that help convey the fire up to the crown (Alberta 
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Government, 2012; Thompson et al., 2017).  Therefore, forest stands with a higher 

proportion of deciduous species prior to the fire will sustain less severe burns. 

Boreal forests consist of many freshwater reserves and approximately 25% of the 

boreal forest cover in western Canada is characterized by wetlands (Mery et al., 2010; 

Tarnocai et al., 2011; Thompson et al., 2017). Several studies have investigated the effect 

of wetland cover and fuel loading levels in wetlands and have reported negative 

relationships with wildfire susceptibility and severity (Johnston et al., 2015; Schneider et 

al., 2016; Thompson et al., 2017; Whitman et al., 2018). According to Thompson et al., 

(2017), the fuel in wetlands may show site-level differences in fuel moisture, phenology, 

and access to groundwater and may contribute to burning if profound droughts occur. 

Johnston et al., (2015) reported that the potential of high-frequency fire in graminoid-

dominant wetlands is only possible in about 80 years after a significant fire outbreak. 

Despite these documented findings, the effect of water features on the spread of fire and 

burn severity is still poorly understood. Our results suggest that regardless of land cover 

(e.g. wetland or forested), water features up to 1 km distance from vegetation can protect 

and/or ameliorate fire damage. Therefore, water features and wetland communities in the 

boreal region play an important role in controlling the spread of severe fires, especially 

under the increased frequency of wildfires due to global climate change. 

When relating the pre-fire species composition with the burn severity, we did not 

observe any relationship with the commonly used index, dNBR. However, SBIS captured 

the relationship with pre-fire species composition as well as the duration of the fire, 

indicating that the combination of the burned extent and burn severity are important for 
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understanding fire behavior. Furthermore, we obtained a stronger relationship between 

distance from water features and SBIS than for dNBR. This indicates that the burn impact 

provides a better measure of the importance of water features in fire behavior than that of 

burn severity.  We, therefore, recommend using SBIS over dNBR when describing the 

relationship between burn impact and pre-fire conditions. 

4.6.  Conclusion 

Changes in fire regimes due to global climate change in the boreal region has both 

social and ecological ramifications. Understanding pre-fire conditions that lead to severe 

fires may help us forecast future wildfire trajectories. To make a more generalized 

understanding of fire regime changes, wildfires need to be investigated over large spatial 

scales and over longer time spans.  We used remote-sensing techniques to study pre-fire 

conditions on burn severity and burn impact using 21 fire outbreaks in four boreal forest 

regions in northern Alberta.  To map the pre-fire distribution of canopy species in the 

burned areas, we successfully employed remote sensing approaches with multitemporal 

Landsat images. We created the SBIS by combining dNBR (commonly used index of 

burn severity) and total burned area of different fire outbreaks and used them to 

understand the relationships between pre-fire conditions and burn impact. Our results 

confirm that areas dominated by conifers lead to more severe fires while those occupied 

by deciduous species can reduce burn severity.  We have demonstrated a cost-effective 

means to map species distribution in remote forested areas that may help forest managers 

to develop more up-to-date forest maps. Our study also shows the importance of water 
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features in the boreal region in reducing or inhibiting the spread of wildfires, regardless of 

the type of nearby ecosystems or plant communities.  
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Table 4.1 Start and end dates and burn duration of different fire outbreaks in this study. 

(Note: LSL, RC, WB, and BL stand for the slave lake, Richardson, wood buffalo, and 

bistcho lake respectively) 

Fire event Start date End date Burn duration (d) 

WB 2007 2007-05-29 2007-07-13 45 

  2007-05-29 2007-08-01 64 

WB 2012 2012-05-26 2012-09-28 125 

 
2012-06-08 2012-08-08 61 

 
2012-07-09 2012-07-28 19 

 
2012-07-10 2012-07-16 6 

 
2012-07-10 2012-08-22 43 

 
2012-07-13 2012-08-22 40 

WB 2015 2015-06-06 2015-07-12 36 

 
2015-06-26 2015-09-12 78 

 
2015-06-24 2015-09-12 80 

 
2015-05-28 2015-10-01 126 

 
2015-06-18 2015-08-11 54 

 
2015-06-05 2015-07-05 30 

LSL 2011 2011-05-04 2011-05-17 13 

RC 2011 2011-05-14 2011-07-06 53 

BL 2004 2004-07-15 2004-08-10 26 

 
2004-07-22 2004-08-16 25 

  2004-07-12 2004-09-26 76 

BL2012 2012-06-22 2012-10-07 107 

  2012-08-12 2012-09-23 42 
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Table 4.2 Year and location of fires in the study, and satellite images used in associated 

burn severity analyses.  L5, L7, and L8 refer to Landsat 5, Landsat 7, and Landsat 8, 

respectively. (Note: LSL, RC, WB, and BL stand for the slave lake, Richardson, wood 

buffalo, and bistcho lake respectively) 

Year 

of fire 

 

Location of fire 

Image used before the fire Image used after the fire 

Date acquired Sensor Date acquired Sensor 

2011 LSL 2010/06/19 L7 2011/08/09 L7 

  2010/07/21 L7 2011/08/25 L7 

2011 RC 2010/07/23 L7 2011/09/04 L5 

  2010/08/24 L7   

2007 WB 2006/09/04 L5 2008/06/21 L5 

2012 WB 2011/09/10 L7 2013/08/06 L8 

2015 WB 2014/09/10 L8 2015/09/29 L8 

2004 BL 2003/08/30 L5 2005/08/12 L5 

  2003/09/01 L5   

2012 BL 2011/09/14 L5 2013/07/10 L8 

    2013/09/03 L8 
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Table 4.3 Burn Severity categories according to U.S. Geological Survey FireMon 

program (Key and Benson, 2005). 

 

dNBR value 

 

Burn Severity Category 

< -0.25 High post-fire regrowth 

-0.25 to -0.1 Low post-fire regrowth 

-0.1 to 0.1 Unburned 

0.1 to 0.22 Low burn severity 

0.22 to 0.44 Low-moderate burn severity 

0.44 to 0.66 Moderate-high burn severity 

>0.66 High burn severity 
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Table 4.4 Satellite images used for tree species mapping before and after fires at LSL 

(2011), RC (2011), WB (2007, 2012, 2015), and BL (2004, 2012).  L5, L7, and L8 refer 

to Landsat 5, Landsat 7, and Landsat 8, respectively. 

 

Fire 

 

Focal year 

First season image Second season image 

Date acquired Sensor Date acquired Sensor 

LSL 1986 1986/06/02 L5 1986/08/28 L5 

2010 2010/06/20 L5 2010/09/24 L5 

RC 1985 1985/07/03 L5 1985/08/18 &  

1985/09/28 

L5 

L5 

 2010 2010/07/22 & 

2010/07/24 

L5 

L5 

2010/10/03 L5 

WB 1985 1985/07/17 & 

1985/07/31 

L5 

L5 

1985/09/10 L5 

 1997 1997/06/23 L5 1997/08/26 L5 

 1998 1998/06/10 L5 1998/08/26 L5 

BL 1985 1985/06/02 L5 1985/08/21 L5 

 2002 2002/06/09 L7 2002/09/13 L7 

 2006 2006/06/12 L5 2006/08/31 L5 

 2008 2008/05/16 L5 2008/07/03 L5 
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Table 4.5 Overall and canopy species mapping accuracy of time series species maps for 

2011 LSL, the 2011 RC, the 2007, 2012, and 2015 WB, and the 2004, and 2012 BL fires. 

Fire 
Focal 

year 

All Classes Canopy species 

Overall 

accuracy (%) 
Kappa 

Overall 

accuracy (%) 
Kappa 

LSL 1986 82.13 0.75 79.38 0.67 

2010 80.92 0.74 80.44 0.61 

RC  1985 92.65 0.88 91.66 0.72 

2010 88.20 0.80 85.21 0.73 

WB  1985 90.09 0.87 83.75 0.66 

1997 66.05 0.55 65.76 0.57 

1998 82.47 0.76 77.22 0.59 

BL 1985 88.89 0.76 89.81 0.67 

2002 79.53 0.68 84.60 0.55 

2006 79.38 0.66 83.98 0.69 

2008 77.75 0.64 78.02 0.60 
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Table 4.6 Summary statistics for linear regression analyses relating % total area burned to 

burn severity category for the four sites and when data from all sites were pooled.  

Regression equations were determined separately for coniferous and deciduous species. 

(The significant values are indicated with *). 

Location Species 
Regression 

coefficient 
R-square P-value 

LSL Spruce 16.014 0.93* 0.0001* 

 Aspen, birch, or Poplar -14.384 0.93* <0.0001* 

RC Jack pine 6.192 0.78* 0.1146 

 Aspen, birch, or Poplar -5.102 0.78* 0.1196 

WB Spruce 7.694 0.29 0.0007* 

 Aspen, birch, or Poplar -6.066 0.21 0.0045* 

BL Spruce 8.521 0.33 0.0014* 

Aspen, birch, or Poplar -8.841 0.39 0.0003* 

All Sites Spruce or Pine +8.795 0.31 <0.0001* 

 Aspen, birch, or Poplar -7.913 0.30 <0.0001* 
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Figure 4.1 Location of study sites in this study.   
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Figure 4.2 Comparison of burn severity of the study sites (a) burn severity maps of fire events based on dNBR values, (b) areas 

burned at different burn severity levels determined from dNBR, and (c) percent area burned at each burn severity level. (Base map:  

ESRI topographic base map). 
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Figure 4.3 Time series maps showing the distribution of tree species within the wildfire footprints before fire events in this study. 
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Figure 4.4 Percentage change in landcover classes for four burn-severity categories corresponding to the Bitscho Lake (BL), 

Lower Slave Lake (LSL), Richardson (RC), and Wood Buffalo (WB) fires 
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Figure 4.5 Distribution of burn severity (Burn codes: 1-Low, 2-Moderate-low, 3-

Moderate-high, 4-High severity) vs percentage area occupied by a) deciduous and b) 

coniferous canopy taxa at forest stands in this study. 
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Figure 4.6 Linear regression of burn severity (dNBR) against (a) burn duration, (b) 

percent area of deciduous species, and (c) percent area of coniferous species; non-linear 

regression of burn impact score (SBIS) against (d) burn duration, (e) area of deciduous 

species, and (f) area of coniferous species. 
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Figure 4.7 Regression analysis of (a) dNBR and (b) SBIS of fire outbreaks against 

proximity to water features  
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Chapter 5. Effect of anthropogenic impact on post-fire vegetation recovery of 

Alberta's boreal forests using time-series Landsat data 
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5.1.  Abstract 

Wildfires are the dominant stand-renewing disturbance factor in Canadian boreal 

forests and play an important role in altering forest succession, biogeochemical cycling, 

and carbon sequestration. Natural fires spread unevenly through the landscape, but 

human-made structures and activity can influence these natural patterns. Here, we use 

remote sensing and GIS techniques to investigate the post-fire recovery of seven wildfires 

in Alberta, that are influenced by human activity to varying degrees. The 2011 fire close 

to Lesser Slave Lake (LSL) was most influenced by human activities, the 2004 and 2012 

fires in the Bistcho Lake region (BL) were exposed to moderate impact, while the 2011 

fire in the Richardson (RC) backcountry, and three in Wood Buffalo National park (WB; 

2007, 2012, 2015) were exposed to the least amount of human impact.  We used 

differenced Normalized Burn Ratio (dNBR) to map the burn severity of the selected fire 

outbreaks, and then used available time-series images to calculate indices of vegetation 

greenness (Normalized Difference Vegetation Index; NDVI), area of vertical leaf layers 

(Leaf Area Index; LAI), and mapped canopy species distribution using images collected 

in two seasons to determine canopy species recovery rates. The LSL fire had the fastest 

recovery rate according to both vegetation indices; we also found that spruce thinning 

occurred in areas that experienced low burn severity after the fire. Areas that experienced 

low burn severity recovered faster than areas that experienced high burn severity, and 

recovery was faster for coniferous than for deciduous species. Such differences in 

recovery rates, however, were more evident with fire outbreaks of moderate and low 

human impact than with fire outbreaks with high human impact. We also observed an 
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ameliorating effect on the recovery and burn severity of the areas closer to the water 

features, however, this effect was not evident in the human impacted sites.  Future models 

of wildfire behavior should account for possible deviations from the natural post-fire 

recovery processes whenever human activities are involved.  

5.2.  Introduction 

Wildfires are the most common disturbance in boreal forests, shaping the forest 

structure and species composition, forming landscape patterns, and controlling energy 

flow and biogeochemical cycles (Goldammer & Furyaev, 1996). The Forest disturbance 

and recovery process are considered as a primary mechanism in the regulation of the 

carbon cycle (Cao et al., 2011). Increased global temperatures, however, have increased 

fire activity in Canada since about 1970 (Gillett et al., 2004). Many studies suggest that 

the increased temperatures will likely increase fire activity in the 21st century, increasing 

both the frequency of fires and total area burned (Flannigan et al., 2009; Girardin & 

Mudelsee, 2008; Yang et al., 2011). According to Hansen et al., (2013), 3.6% of biome-

level boreal forests were lost between 2000 and 2012, with the largest losses in Canada 

(5.6% of Canadian boreal forests), and the majority of these due to wildfires (FAO, 

2015). The ecological effects of wildfires in boreal fires are highly variable and are 

difficult to predict (Chu & Guo, 2014). Wildfires are influenced by many natural factors 

such as fire regimes, vegetation cover, permafrost conditions, topography, soil, properties, 

and climate (Chu & Guo, 2014; de Groot et al., 2013). 

The pressure from large-scale human activity is increasing in the boreal forests in 

western Canada due to natural resource exploitation and urbanization (Government of 
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Canada, 2009; Robinne et al., 2016). This increasing human activity has also altered the 

wildfire activity through various processes such as higher ignition density in areas with 

higher human activity, landscape fragmentation, and fire suppression and management 

(Gralewicz et al., 2012; Stocks et al., 2002). The province of Alberta is especially 

affected by the oil and gas industry and timber extraction. According to Robinne et al., 

(2016), the influence of anthropogenic influence shows a diversity of responses in 

wildfire activity rather than the generally accepted decrease with a higher level of human 

activity.  Despite the acknowledged complexity and importance of anthropogenic activity 

on ecological processes related to wildfire, this has remained a poorly understood issue 

(Chen et al., 2014; Mann et al., 2016; Robinne et al., 2016). 

The northernmost boreal forests in Canada are mostly unmanaged and have not 

been properly surveyed (Gillis et al., 2005; Wulder et al., 2004). These forests are 

generally low in production value and distant from human settlements or activity. 

Logging is also minimal in these regions and therefore, wildfires are the key stand-

renewing disturbance in these regions. Furthermore, no fire suppression or management is 

carried out in these remote, forested regions (Magnussen & Wulder, 2012). Southern 

regions in comparison are regularly surveyed for strategic planning for forest 

management and harvesting and therefore are more disturbed by human activity 

(Magnussen & Wulder, 2012). Therefore, the boreal forests of the province of Alberta 

experience a variety of human influence and as a result, the impact and response to 

wildfire may also vary depending on their location. 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

174 

 

Global climate change and human activity not only affect wildfire frequency and 

severity but also affect the post-fire recovery process. Forest succession following fire 

outbreaks is an important process that determines the biophysical, biological, and 

biochemical characteristics of the forested ecosystems (Liu et al., 2008). These 

successional characteristics and recovery rates may vary depending on many factors such 

as size and severity of the fire, climatic conditions, fire intervals, species characteristics, 

and pre-and post-fire forest conditions (Furyaev et al., 2001). According to Johnstone et 

al., (2004), tree recruitment in North American boreal forests occurs within 3 to 10 years 

from the fire outbreak, and observations of the first five years of recovery could be used 

to predict the recovery trajectories for another two or three decades following the fire. 

The successional process may lead to similar forest composition as before the fire; 

however, it may also lead to ecosystem shifts depending on the extent of disturbance and 

post-fire recovery trajectories. An example of these ecological effects is the potential shift 

of conifer dominant boreal forests into deciduous forests as a result of more frequent high 

severity fires during the last two decades (Barrett et al., 2011). Furthermore, the species 

composition and the structure of boreal forests are also influenced by the drainage (Serbin 

et al., 2013); increased global temperatures have increased the drying of forested 

vegetation (Mbogga et al., 2010), making soil water availability an important factor in the 

forest recovery process. To better understand shifts in fire regimes and successional 

dynamics, the underlying causes, impacts, and long-term ecosystem conditions (e.g. 

forest structure, composition, and health status) need to be studied at relatively large 

spatial and temporal scales (Food and Agriculture Organization (FAO), 2010).  
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Changing patterns of wildfire disturbance as well as recovery processes need to be 

studied at regional scales that are only feasible with Remote Sensing (RS) approaches. 

Burned landscapes display obvious physical and spectral changes such as canopy 

consumption, ground charring, and soil color alterations, that could be easily detected 

through RS-based techniques (White et al., 1996). RS techniques have been developed 

since the mid-1980s to assess and manage wildfires (Lentile et al., 2006). These 

techniques allow the assessment of different temporal phases of wildfires including the 

ecosystem response before, during, and after the fire (Lentile et al., 2006). Previous 

studies have used RS-based indices, as well as statistical or modeling approaches to map 

burn severity and to investigate post-fire recovery processes.  These studies have used RS 

data such as optical images, Synthetic Aperture Radar (SAR), and Light Detection and 

Ranging (LiDAR) (Chu & Guo, 2014; Cuevas‐González et al., 2009; Hislop et al., 2018; 

Samiappan et al., 2019; Serbin et al., 2013; Tanase et al., 2011). Among these, optical 

satellite data from sensors such as Landsat and MODIS (Cleugh et al., 2007) are 

especially useful, as these are available at no cost and cover a long period, making them 

useful for long-term monitoring purposes. 

This study was conducted specifically to address the paucity of information on 

how human activities affect post-fire recovery processes in the boreal forests of Canada. 

We chose fire outbreaks in four regions of northern Alberta that vary with respect to the 

influence of human activities, ranging from a fire that was started by arson in the town of 

Slave Lake to several wildfires that occurred in remote parts of Wood Buffalo National 

Park.  We tested for the effect of human activities on the post-fire recovery process while 
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accounting for potential influences of proximity to water features (wetlands, lakes, 

streams), given that this factor had a significant effect on burn severity (Rupasinghe and 

Chow-Fraser, 2021; CH 3). We investigated the post-fire recovery process using time-

series Landsat images to calculate indices of vegetation greenness and area of vertical leaf 

layers and to determine canopy species recovery rates.  Our results will fill an important 

knowledge gap to inform managers how human involvement may alter natural post-fire 

recovery processes in Alberta's boreal forests. 

5.3.  Methods  

5.3.1.  Study sites  

Fire outbreaks in this study occurred in four regions of northern Alberta (Fig. 5.1, 

Table 5.1).  The 2011 Slave Lake fire was started by arson and burned an area of 202.25 

km2 in the Municipal District of Lesser Slave Lake (LSL; Flat Top Complex Wildfire 

Review Committee, 2012).  Being subjected to the highest level of fire management, it is 

the smallest fire in this study and also the most human-influenced, affecting hundreds of 

homes near the town Slave Lake as well as the adjacent forested areas.  This area is also 

affected by the oil and gas industry and has a high density of seismic lines.  Two wildfires 

that occurred close to the Bistcho Lake region in 2004 and 2012 (BL2004 and BL2012) 

were located in remote areas of northern Alberta.  The affected areas were relatively large 

(1371.53 km2 for the fire in 2004 and 2142. 94 km2 for the fire in 2012), with no fire 

management.  This area experienced moderate human influence related to the oil and gas 

exploration and the associated high-density seismic lines. The 2011 Richardson fire (RC) 

occurred in northeastern Alberta close to Lake Athabasca and is the largest fire outbreak 
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(5217 km2) in this study. Only a very small area in the southernmost region of the burned 

area was affected by seismic lines, while the remaining burned area was not influenced by 

human activities.  We examined three additional fire outbreaks in Wood Buffalo National 

Park that occurred in 2007, 2012, and 2015 (WB 2007, WB 2012, and WB 2015) and that 

were located about 150 km northeast of the RC fire. This region was not influenced by 

any anthropogenic activity.  Based on these site descriptions, we considered the RC and 

WB fires to have the lowest human impact, the LSL to have the highest human impact, 

and the BL fires to have an intermediate level of impact (Table 5.1). 

5.3.2.  Image data 

We used cloud-free time-series Landsat 5, 7, and 8 multispectral images collected 

before and after years following each fire outbreak until 2018 to investigate the burn 

severity levels and post-fire recovery process (Table 5.2). We gave priority to peak 

summer month images (ie. July and August); however, when no cloud-free images were 

available, we extended our image search up to late May until late September.  When 

required, we used an additional image collected close to the desired date to fill image 

gaps caused by the known error of the Landsat 7 sensor.  After downloading the images, 

we performed radiometric correction and FLAASH atmospheric correction using ENVI 

5.5 (Harris Geospatial Solutions). We adjusted the pixel values of the FLAASH product 

to range from 0 to 1. We used reflectance images for all RS-based analyses. Furthermore, 

we masked the clouds, cloud shades, the thick haze that had not been removed by 

atmospheric correction, and data gaps of some Landsat 7 images when no cloud-free 
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images close to the desired date were available, or when data gaps were not fully covered 

by a second image.   

5.3.3.  Mapping burn severity 

We identified the affected area using a shapefile downloaded from the National 

Wildfire Database (NFDB) (Natural Resources Canada, 2017). Then we used differenced 

Normalized burn ratio (dNBR) to map the burn severity of all fire outbreaks (Key & 

Benson, 2005). We classified the dNBR images into burn severity levels following the 

categories defined by the United States Geological Survey FireMon Program (Key & 

Benson, 2005) using ArcMap 10.4.1. We created 30 random points for each of the four 

burn severity categories (low, moderate to low, moderate to high, and high burn severity) 

for all seven fire outbreaks separately to be used in post-fire recovery analysis.  

5.3.4.  Post-fire recovery using vegetation indices 

We calculated the Normalized difference Vegetation Index (NDVI) and Leaf Area 

Index (LAI) using the pre-built functions in ENVI 5.5 for the time series, reflectance 

images. NDVI gives a measure of vegetation greenness as an indicator of vegetation 

health (Rouse et al., 1974) while LAI gives a measure of the area of vertical leaf layers 

per unit area, hence a direct measure of the recovery of canopy species (Watson, 1947; 

Zheng & Moskal, 2009). We calculated NDVI and LAI using time-series Landsat images 

collected each year before and following the fire outbreak. Then we exported the images 

to ArcGIS and used the random points that were generated for each burn severity 

category (described in the previous section) to extract the indices values of all time-series 

images. Here, we carefully observed the data points for each of the time-series images 
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and excluded any points that fell within the masked areas. For further data analysis, we 

combined the data for two severity categories; "low" and "moderate-low" severity were 

combined together as the "low severity" category while "moderate-high" and "high" 

severity were combined as the "high severity" category.  After extracting the index 

values, we used Eq. 5.1 to calculate the recovery:  

% 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 =
𝑝𝑜𝑠𝑡 − 𝑓𝑖𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒

𝑃𝑟𝑒 − 𝑓𝑖𝑟𝑒 𝑖𝑛𝑑𝑒𝑥 𝑣𝑎𝑙𝑢𝑒
 × 100 [Eq. 5.1] 

5.3.5.  Post-fire recovery of canopy species 

We used multi-temporal Landsat images collected in two seasons (spring and 

summer, fall and summer, or spring and fall; Table 5.3; Liu et al., 2002), and applied the 

Support Vector Machines (SVM) classification to map the canopy species distribution. 

We used manually digitized canopy species locations from Phase 3 of the forest inventory 

monochrome maps from Alberta Township Systems (ATS) (Alberta Government, 2019) 

as a ground reference for the species mapping. These maps were completed in 1984 

(Alberta Forest service, 1985) and therefore we used images collected in 1985 or 1986 

(depending on the availability of cloud-free images, no cloud-free images were available 

for 1984) to create an initial species map for each study site. Then we created time-series 

species maps until 2018 using the same ground reference locations used for 1985/6 and 

we assumed that the ground reference data did not change over time unless a visual 

disturbance occurred in each location.  The three categories of canopy species were 

"deciduous species" (aspen, birch or poplar), "jack pine", and "spruce" (black or white), 

and two additional categories were "non-vegetated" areas and "water". We obtained 

ground reference for the two non-vegetation categories through manual interpretation of 
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the images. We carefully observed every ground reference location and eliminated 

locations that visually appeared to be disturbed or located on the masked areas for each 

image in the time series. The time series, however, was not continuous due to lack of 

cloud-free images for two seasons in majority of the years in the time series. We used 

70% of the ground reference locations for image classification and the rest of the 

locations for accuracy assessment.  

Using ArcMap, we overlayed time series species maps on the burn severity maps 

and extracted the pre-and post-fire species distribution data for each burn-severity 

category. Then we calculated the species recovery rates using Eq 5.2. 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 =

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑣𝑒𝑟 𝑠𝑖𝑛𝑐𝑒 
𝑡ℎ𝑒 𝑓𝑖𝑟𝑒 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 𝑠𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑓𝑖𝑟𝑒
 

[Eq. 5.2] 

Therefore, the species recovery rate was calculated as the percentage increase in 

area per year. Here, we did not have species maps soon after the fire for any of the studied 

fire outbreaks due to lack of cloud-free images. Therefore, we assumed zero canopy cover 

soon after the fire when we calculated the species recovery rates. We calculated recovery 

rates separately for four burn-severity categories (low, moderate-low, moderate-high, and 

high) for the deciduous species, jack pine, and spruce. For further data analysis, we 

combined all fire outbreaks except for the LSL fire, which was most influenced by human 

activities. 

5.3.6.  Post-fire recovery rates with distance to water features 

We evaluated the effect of proximity to water features on the post-fire recovery 

process by creating buffer zones around water features such as wetlands, ponds, and 
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rivers (derived from maps explained in the previous section) at distances of 50, 100, 150, 

200, 250, 500, 1000, 1500, and 2000 m. Then we collected the NDVI values at 30 

randomly chosen locations for each burn-severity category in each buffer zone as a proxy 

for vegetation recovery. Similar to image classification, we repeated the data extraction 

for each of the time-series images and carefully avoided collecting data points located on 

masked areas. We further extracted the area values of each burn-severity class within 

each buffer zone using the dNBR image that was created to evaluate the burn severity.  

For data analysis, we combined the ‘low’ and ‘moderate-low’ severity categories as well 

as the ‘moderate-high’ and 'high' severity categories into 'low' and 'high', respectively.  

We conducted the data analysis separately for the three human impact levels assuming 

LSL to be associated with the highest human impact, BL2004 and BL 2012 to have a 

moderate impact, and RC and WB2007, WB2012, and WB2015 to have the lowest 

human impact.  

5.4.  Results 

5.4.1.  Post-fire recovery using vegetation indices 

Regardless of the degree of anthropogenic impact, both NDVI and LAI scores 

gradually increased following the fire outbreak (Fig. 5.2).  In all cases, however, the LAI 

scores recovered faster than did NDVI scores.  Areas that experienced lower burn severity 

also recovered faster when compared with areas that experienced higher burn severity in 

all fire outbreaks.  Overall, however, we observed an erratic recovery pattern in all study 

fire events regardless of the level of human impact, much of which can be explained by 

differences in image acquisition dates (Table 5.2).  
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In terms of NDVI scores, the four sites associated with the least human impact 

(WB2007, WB2012, WB2015, and RC) recovered slower than did sites associated with 

moderate and high human impact (Fig. 5.2a). This was despite the fact that the WB2007 

had the lowest burn severity among all study fire outbreaks (average dNBR of 0.073), 

with only 0.32% of the burned area experiencing high burn severity.  The other sites in 

this group (RC and WB2012) had moderate burn severity levels (average dNBR of 0.350 

and 0.375 respectively) and only a small proportion of the burned area had a high-severity 

burn (7.69% and 14.11% respectively). The WB2015 fire experienced higher burn 

severity (average dNBR of 0.604) with 44.72% of the area experiencing high burn 

severity. Overall, NDVI scores for high severity burns did not reach pre-fire levels (i.e. 

100% recovery) even after eleven years following the fire, and their recovery rates lagged 

behind those of low-severity burns.  By contrast, the LAI scores recovered at a faster rate, 

with mean values in areas of low-severity burn reaching pre-fire levels after two years, 

while those in areas of high-severity burn recovering to 100% of pre-burn values within 

three years. The recovery rate of LAI scores in areas of high severity caught up with those 

in areas of low-severity burn after 10 years of the fire outbreak.  

The two fire outbreaks associated with a moderate level of human impact 

experienced relatively high burn severity (37.4% and 28.2% high-severity burn in 

BL2004 and BL2012, respectively; and average dNBR of 0.643 and 0.315, respectively).  

Both NDVI and LAI scores recovered rapidly (Fig. 5.2b), and there appeared to be less 

separation between low- and high-severity recovery rates after 6 years, when compared to 

the low human impact fires (Fig. 5.2a).  NDVI scores in areas with low-severity burn 
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reached 100% of pre-fire values within six years, while those in areas with high-severity 

burn eventually reached pre-fire values within eight years.  The recovery rate of the high-

severity burn never caught up with those of the low-severity burn throughout the study 

period.  By comparison, the recovery of LAI scores in the area of high-severity exceeded 

the rate of the low-severity burn after only six years following the fire. Similar to earlier 

observations, LAI scores also recovered faster than NDVI scores; in areas with a low-

severity burn, recovery was 100% of the pre-fire level after only two years, while the 

recovery in areas of high-severity burn took more than four years. 

LSL, which had the highest impact on human activity, had an average dNBR 

value of 0.16, with a relatively large area of 49.62 km2 that remained unburned within the 

affected area. Despite its small size, the fire experienced high burn severity in almost half 

of the burned area (45.24%).  Nevertheless, we observed faster recovery in LSL 

compared with the moderate and low-impact sites (Fig. 5.2c).  The NDVI score reached 

its initial greenness (i.e., 100% mean recovery) in approximately 5 years, while the LAI 

score recovered to the pre-fire level within a year.  The recovery rate of NDVI of the 

high-severity burn areas eventually matched that of the low-severity burn area within two 

years, while that for LAI took approximately four years.  The LAI score increased to 

150% of the pre-fire value within seven years after the fire outbreak. 

5.4.2.  Post-fire recovery of canopy species 

We obtained relatively good accuracies for the overall and individual species 

mapping using two-season images, with over 75% accuracy for the majority of the years 

(Table 5.4). We were unable to create continuous time-series maps of canopy species 
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distribution because of the lack of cloud-free images for two seasons in each year 

following 1985 (Fig. 5.3).  Prior to the fire events, the dominant canopy species in the 

LSL and BL forests were spruce and deciduous taxa including aspen, poplar, or birch.  By 

contrast, the RC forest was dominated by jack pine and a smaller amount of deciduous 

taxa, and relatively little spruce.  The WB forests were dominated by spruce with a 

smaller percentage cover of deciduous taxa.  In all cases, the fire removed a substantial 

amount of the forest cover, revealing large contiguous unvegetated areas in the years 

immediately following the fires.  There was a gradual increase in forest cover in all cases 

except LSL, which showed a more rapid and erratic recovery pattern.   

To fully understand the species recovery process, we had to also consider the 

spatial variability of burn severity as well as the canopy species.  We, therefore, sorted the 

data according to the four categories of burn severity (i.e. low, moderate-low, moderate-

high, and high) and then determined the proportion of canopy species in each year 

following each fire outbreak.  In all cases, we observed that the proportion of unvegetated 

area increased as we progressed from the low burn-severity to high burn-severity 

category; the data for LSL was particularly illustrative of this with 100% of the vegetation 

cover removed in the high-severity area, compared with almost 50% of the vegetation 

remaining in the low-severity area (Fig. 5.4).  For fires that occurred before 2012, we had 

six or more years of post-fire recovery information.  The proportion and species of trees 

that grew back in the footprint of the BL2004, RC2011, and WB007 fires resembled the 

pre-fire conditions, whereas the post-fire proportion for the LSL fire had changed to one 

dominated by deciduous taxa with a very small proportion of spruce and jack pine.    This 
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figure also clearly shows the slow recovery rate of the BL2004 fire in all burn-severity 

categories, especially when compared to LSL and WB2007. 

We combined the low and moderate human impact sites to compare against the 

high human impact site (Fig. 5.5). For the combined outbreaks, we observed the inverse 

relationship between burn severity and recovery rate noted earlier (Fig. 5.5a). The LSL 

site, however, showed an opposite trend where the highest overall species recovery was 

observed in areas that experienced high-severity burn (Fig. 5.5b).  When recovery rates of 

different species were compared, spruce had the highest recovery rate for WB and BL fire 

outbreaks, and jack pine had the highest recovery rate in the RC fire (Fig. 5.5c). In all 

cases, the highest recovery rate was observed for areas that experienced low burn 

severity. The LSL site in contrast had a higher recovery rate of deciduous species 

compared to spruce and jack pine (Fig. 5.5d). Furthermore, a higher recovery rate was 

observed for areas that had high-severity burn.   

We used linear regression to further study the relationship between post-fire 

species recovery rate and the area of burned canopy. Deciduous species recovery rate had 

a negative trend with the burned canopy area (R2=0.185, p=0.022). In contrast, the 

recovery of jack pine was positively related to the burned area (R2=0.345, p=0.001). We 

also analyzed the relationship between spruce and the pre-fire aerial cover of deciduous 

species and observed a positive trend (R2=0.373, p=0.0006). Similarly, we observed a 

positive relationship between the areal cover of jack pine before the fire and the recovery 

rate of jack pine following the fire (R2=0.449, p=<0.0001).  
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5.4.3.  Post-fire recovery rates with distance to water features 

In wildfire outbreaks that experienced only low human impact, we found that 

areas closer to water features had a more rapid rate of NDVI recovery compared to areas 

further away from water features, regardless of burn severity (Fig. 5.6a).  In areas 

influenced by moderate and high human impact, however, we did not find any 

ameliorating effect of water features on the recovery of forests based on NDVI scores 

(Fig. 5.6b and c).   We further examined the effect of distance to water features on the 

area of different burn severity levels by grouping data according to the three levels of 

human impact. For low-impact sites, we found a direct relationship between burn severity 

and distance to water features up to 2 km away (Fig. 5.7a).  This relationship was not as 

evident for the areas with moderate human impact, where burn severity had been overall 

much higher than that in low-impact sites (Fig 5.7b).  In the high-impact sites, however, 

the ameliorating effect of water features was only evident up to 500 m distance from the 

burned area, and beyond that distance, there was an apparent inverse relationship (Fig. 

5.7c).  Another striking result was that overall, the high-impact site had 

disproportionately more areas that were either unburnt or only experienced low burn 

severity compared with moderate- and low-impact sites. 

5.5.  Discussion 

Quantifying post-fire health recovery is a prerequisite to measuring forests’ 

resilience to a major disturbance event.  The study of the post-fire recovery process in 

boreal forests is challenging because it requires examination that extends over large 

spatial scales and long-time frames.  RS techniques and approaches are the appropriate 
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tools to understand the post-fire recovery processes in Canadian boreal forests (Chu & 

Guo, 2014; Jones et al., 2013; Peckham et al., 2008).  In this paper, we have developed an 

RS strategy to compare sites across a large region to elucidate the effects of human 

activities on the post-fire recovery patterns of four boreal forest regions in Alberta.  

Despite being the smallest fire, the LSL fire incurred the greatest economic loss of 

$700 million, because it affected the town of Slave Lake (Chowdhury & Hassan, 2013; 

Flat Top Complex Wildfire Review Committee, 2012).  This area is fire-prone, with a 

history of fires in 2008, 2001, 1998, and 1968; however, the footprint of these previous 

fires did not overlap with that of the 2011 fire (Flat Top Complex Wildfire Review 

Committee, 2012).  The impact of human activities included a high degree of fire 

management to prevent loss of lives and property and to minimize fire damage in the 

forest (Flat Top Complex Wildfire Review Committee, 2012), as well as a high density of 

seismic lines within the affected area that are known to take a much longer time to 

recover from disturbances (e.g. Dabros et al., 2017; Robinne et al., 2016).  We will 

explore the effects of these human activities separately and show how they may 

artificially influence the pattern of recovery that is very different from the natural patterns 

exhibited by sites experiencing low human impact. 

The LSL fire was different from the other fires in a number of ways. First, the 

recovery rate of the LSL fire (as indicated by NDVI and LAI) was comparatively faster 

than those in regions with moderate or low human impact. Secondly, it affected a much 

smaller area compared to other fires, and thirdly, a higher proportion of the affected area 

had remained unburned or had only experienced low-severity burns.  All these factors 
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helped to quicken the overall recovery process.  Whereas the other fires showed a direct 

relationship between time to full recovery and burn severity, the recovery rate of the LSL 

fire in areas experiencing high-severity burn actually recovered faster than those in areas 

with a low-severity burn.  The more rapid recovery of the deciduous canopy species 

compared with the coniferous species also contradicted the observations seen for the other 

six fire outbreaks.  We attribute both of these anomalous trends to the accelerated fuel 

management recommended by the Flat Top Complex Wildfire Review Committee (2012) 

and the subsequent shift in priority to thinning and converting coniferous stands, 

especially the black spruce stands, to deciduous species to minimize future wildfire risk in 

the LSL region.  This explains our observed post-fire disappearance of spruce in areas 

that had remained unburned and those areas experiencing low burn severity, and 

inadvertently obliterated any differential between recovery rates of areas with low-

severity and high-severity burns.  Therefore, actions were taken by people both with 

respect to fire suppression during the fire and conifer thinning to minimize the risk of 

future wildfires after the fire resulted in anomalous fire-recovery patterns. 

Boreal forests cover approximately 60% of the province of Alberta but most of the 

forested areas are disturbed and fragmented by industrial forestry and harvesting, 

agriculture, transportation, and communication corridors, as well as the oil and gas 

industry (Dabros et al., 2017). Seismic lines are used in these wilderness areas to identify 

and map geological structures that contain oil and gas prior to drilling  (Dabros et al., 

2017; Stern et al., 2018). These seismic lines are long, narrow clearings (5-10 m wide) 

that have been associated with very slow recovery rates lasting over decades (Dabros et 
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al., 2017).  When wind-driven wildfires in Alberta occur during the springtime, dry grass 

from the previous year could act as ‘flashy’ fuels to quickly spread the fire over the large 

network of seismic lines  (Flat Top Complex Wildfire Review Committee, 2012; Robinne 

et al., 2016). The BL region is characterized by the highest density of seismic lines in 

Alberta (Stern et al., 2018). This region is also affected by commercial logging.  

Nevertheless, no fire management occurs in these forests as it is located in very remote 

parts of northwestern Alberta. The high density of seismic lines may explain why both 

BL fires experienced proportionately more high-severity burns than either the RC or WB 

fires that were associated with low human impact.  In addition, regions that experienced 

higher severity fires recovered at comparatively lower rates than regions that experienced 

low severity fires, reflecting the lack of firefighting strategies that characterized the LSL 

fire.  

Wood Buffalo National Park is Canada’s largest National Park and is 

characterized by meadows, wetlands and prairies, and boreal forest stands (Parks Canada, 

2020; UNESCO World Heritage Center, 2020). This region has minimal human influence 

and no fire management of any kind. Similarly, Richardson Wildland Provincial Park is 

characterized by wetlands, peat bogs, and mixed-wood boreal forests and has minimal 

human influence. Therefore, we considered both WB and RC to be low human impact 

sites. It is important to note that footprints of historic fires occurred in close proximity to 

these fire outbreaks or overlapped partially with both of the affected areas.  Despite these 

similarities between sites, WB is spruce-dominated while RC is jack pine-dominated.  

The WB2007 fire burned with the lowest burn severity, while the WB2015 fire had the 
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highest burn severity; the RC2011 and WB2012 fires burned at similar levels of severity 

that were intermediate. Differences in burn-severity levels may have been a result of 

weather variations between years. In general, the NDVI and LAI index scores indicated a 

slower recovery rate compared with sites experiencing moderate and high human impact. 

Chen et al., (2014) also reported that coniferous species under artificial regeneration can 

grow significantly faster than artificial promotion recovery and natural regeneration in 

China.  We also suggest that under natural conditions, recovery rates following wildfires 

proceed more slowly than when areas are influenced by human activities, and that these 

differ according to burn-severity levels.  The advantage of the slower recovery rates 

means that fuel accumulation rates are slower, and therefore durations between fire 

recurrence are longer.  

Johnstone et al., (2004) reported that the majority of tree establishment following 

wildfires in 36 permanent boreal forest plots occurred within three to seven years, with a 

decrease in aspen and pine density after ten years.  We had data for 14 years of post-fire 

recovery for BL2004, 11 years for WB2007, and less than 10 years for all other sites. The 

BL fires followed a similar trend described by Johnstone et al., (2004), with both NDVI 

and LAI scores peaking at about nine years, but for the WB2007 fire, health levels did not 

peak even after the eleventh year of recovery. In the majority of cases, however, we 

observed a 100% mean recovery between two to six years following the fire outbreak. In 

all cases, we observed higher recovery rates with LAI scores than with NDVI.  Past 

studies appear to have favored the use of NDVI in vegetation monitoring (Chu & Guo, 

2014; Goetz et al., 2006; Serbin et al., 2013) over the use of LAI (Boer et al., 2008; Chen 
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et al., 2014; Chu & Guo, 2014).  NDVI provides a measure of vegetation greenness, 

rather than a change in vegetation biomass and may reach its maximum before the 

ecosystem is fully recovered to its original state prior to the fire (Tanase et al., 2011; 

Wang et al., 2005). Therefore, the use of NDVI could be limited to the first decade of 

post-fire recovery depending on the location (Tanase et al., 2011). LAI on the other hand 

provides the ratio of leaf area per unit surface area on the ground (Zheng & Moskal, 

2009) and could be related to processes such as photosynthesis, evapotranspiration, and 

carbon fluxes.  

Mapping canopy species in fire-impacted and remote boreal forests can be 

difficult because of the lack of ground reference and the high cost of high-resolution 

images to cover a large spatial extent in a study such as ours. We opted to use Landsat 

images that are cost-free, available throughout the year for dates going back to the 1980s; 

however, the post-fire images that we obtained in the more recent decade yielded 

comparatively low accuracies. This is because of fewer ground reference points since we 

had to exclude locations in the burned areas for post-fire image classification. Accuracies 

for images with partial cloud cover were also lower because we had to reduce some of the 

ground reference locations.  

There have been relatively few studies on the influence of water features on the 

post-fire recovery process, even though several recent studies have investigated the 

influence of wetlands on wildfire susceptibility and severity (Johnston et al., 2015; 

Thompson et al., 2017; Whitman et al., 2018). We observed slightly higher post-fire 

recovery rates and higher proportions of low severity or unburned areas closer to water 
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features than in areas further away from water, but this was only evident in the two 

regions with low human impact.  This relationship was not evident or very weak for the 

regions with moderate or high human impact.  Water features can provide refugia from 

the fire or help in the recovery process due to the higher water tables  (Thompson et al., 

2017). Although proximity to water features appears to influence the recovery process, 

our results suggest that fire management practices and the occurrence of seismic lines can 

and do interfere with any potential ameliorating effect. 

5.6.  Conclusions 

Fire activity in the boreal forests of western Canada has drastically increased 

during the last few decades as a result of global climate change. These fires not only 

impact the wilderness regions but also influence human settlements and cause tremendous 

economic losses. On the other hand, human activity influences both natural wildfire 

occurrences as well as the post-fire recovery processes. Despite the level of human 

influence on these natural processes, the effect of anthropogenic activity on the post-fire 

recovery process in the boreal region is poorly understood. In this study, we investigated 

the post-fire recovery processes in the boreal forests of Alberta using RS-based 

techniques for locations with varying levels of human impact.  The fire outbreak 

associated with the highest level of human impact (including fire management and high 

density of seismic lines) recovered fastest and suffered least from the ecological impacts 

of fire.   Fire outbreaks with minimum human impact (too remote for fire management 

and no construction of seismic lines) were associated with the slowest recovery rate, 

while those experiencing moderate levels of human impact (high density of seismic lines 
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but no fire management) had intermediate rates of recovery.  We used a simple two-

season mapping approach to determine the pre-and post-fire canopy species distribution 

using Landsat images. These mapping approaches were consistent with patterns of natural 

canopy species recovery as well as effects of wildfire management strategies. We also 

documented ameliorating effects of water features on burn severity but found that human 

activities interfered with this relationship.  We have developed a standardized RS strategy 

to compare sites across a large fire-prone region to generalize the influence of 

anthropogenic activities on both fire behavior and post-fire recovery patterns in Alberta's 

boreal forests. 
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Table 5.1 Duration and number of fires, total affected areas, and level of human impact 

associated with each fire event in this study.  

Fire event Fire Season 
Number of fire 

outbreaks 

Total affected area 

(km2) 

Level of human 

impact 

LSL 2011 
2011-05-04 to  

2011-05-17 
1 202.25 High 

BL 2004 
2004-07-12 to  

2004-09-26 
3 1371.50 Moderate 

BL2012 
2012-06-22 to 

2012-09-23 
2 2142.60 Moderate 

RC 2011 
2011-05-14 to 

2011-07-06 
1 5217.00 Low 

WB 2007 
2007-05-29 to 

2007-08-01 
2 1702.00 Low 

WB 2012 
2012-05-26 to 

2012-09-28 
7 1372.10 Low 

WB 2015 
2015-05/28 to 

2015-10-01 
6 2937.4 Low 
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Table 5.2 Landsat images used for the time series data analysis (Note: L5, L7, and L8 stands for Landsat 5, Landsat 7, and 

Landsat 8) 

Period 
Image dates and sensors 

LSL BL2004 BL2012 RC WB2007 WB2012 WB2015 

Before 2010/06/09 

L7 

2010/07/21 

L7 

2003/08/30 

L5 

2003/09/01 

L5 

2011/09/14 

L5 

2010/07/23 

L7 

2010/08/24 

L7 

2006/09/04 

L5 

2009/08/11 

L5 

2014/05/14 

L8 

2014/06/13 

L8 

During 2011/08/09 

L7 

2011/08/25 

L7 

2004/09/26 

L5 

2012/05/28 

L7 

2012/08/07 

L7 

2011/09/04 

L5 

2007/06/03 

L5 

2007/07/21 

L5 

2010/06/12 

L7 

2010/06/19 

L7 

2015/09/29 

L8 

Post 1 2012/08/11 

L7 

2012/08/20 

L7 

2005/08/12 

L5 

2013/07/10 

L7 

2012/06/26 

L7 

2012/07/28 

L7 

2008/08/08 

L5 

2011/09/10 

L7 

2016/09/06 

L8 

2016/08/23 

L8 

Post 2 2013/08/06 

L8 

2006/08/31 

L5 

2014/06/26 

L7 

2013/08/17 

L8 

2013/08/31 

L8 

2009/08/11 

L5 

2012/08/27 

L7 

2017/08/01 

L8 

Post 3 2014/07/01 

L8 

2007/08/18 

L5 

2015/05/20 

L8 

2014/08/04 

L8 

2010/06/12 

L7 

2010/06/19 

L7 

2013/06/03 

L8 

2018/07/27 

L8 
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Post 4 2015/08/12 

L8 

2008/07/03 

L5 

2016/05/22 

L8 

2015/08/30 

L8 

2011/09/10 

L7 

2014/05/14 

L8 

2014/06/13 

L8 

- 

Post 5 2016/08/30L8 2009/08/15 

L5 

2017/08/29 

L8 

2016/08/09 

L8 

2016/08/23 

L8 

2012/08/27 

L7 

2015/09/29 

L8 

- 

Post 6 2017/07/25 

L7 

2010/05/29 

L5 

2018/05/21 

L8 

2017/08/28 

L8 

2013/06/03 

L8 

2016/09/06 

L8 

2016/08/23 

L8 

- 

Post 7 2018/07/28 

L8 

2011/09/14 

L5 

- 2018/07/05 

L8 

2014/05/14 

L8 

2014/06/13 

L8 

2017/08/01 

L8 

- 

Post 8 - 2012/05/28 

L7 

2012/08/07 

L7 

- - 2015/09/29 

L8 

2018/07/27 

L8 

- 

Post 9 - 2013/07/10 

L7 

- - 2016/09/06 

L8 

2016/08/23 

L8 

- - 

Post 10 - 2014/06/26 

L7 

- - 2017/08/01 

L8 

- - 
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Post 11 - 2015/05/20 

L8 

- - 2018/07/27 

L8 

- - 

Post 12 - 2016/05/22 

L8 

- - - - - 

Post 13 - 2017/08/29 

L8 

- - - - - 

Post 14 - 2018/05/21 

L8 

- - - - - 
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Table 5.3 Satellite images used for tree species mapping before and after the LSL, RC, 

WB 2007, 2012, and 2015, and the BL 2004 and 2012. (Note: L5, L7, and L8 refer to 

Landsat 5, Landsat 7, and Landsat 8, respectively). 

Fire Year 
First season image Second season image 

Date Sensor Date Sensor 

LSL Fire 

1986 1986/06/02 L5 1986/08/28 L5 

2010 2010/06/20 L5 2010/09/24 L5 

2011 2011/07/25 L5 2011/09/27 L5 

2013 2013/06/28 L8 2013/08/31 L8 

2015 2015/05/17 L8 2015/08/12 L8 

2016 2016/06/20 L8 2016/08/30 L8 

2017 2017/05/29 L8 2017/07/25 L8 

RC Fire 

1985 1985/07/03 L5 
1985/08/18 

1985/09/28 

L5 

L5 

2010 
2010/07/22 

2010/07/24 

L5 

L5 
2010/10/03 L5 

2015 2015/08/30 L8 2015/10/01 L8 

2017 2017/06/25 L8 2017/08/26 L8 

WB Fires 

1985 
1985/07/17 

1985/07/31 

L5 

L5 
1985/09/10 L5 

1997 1997/06/23 L5 1997/08/26 L5 

1998 1998/06/10 L5 1998/08/26 L5 

2017 2017/08/01 L8 2017/09/18 L8 

BL Fires 

1985 1985/06/02 L5 1985/08/21 L5 

2002 2002/06/09 L7 2002/09/13 L7 

2006 2006/06/12 L5 2006/08/31 L5 

2008 2008/05/16 L5 2008/07/03 L5 
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2016 
2016/05/22 

2016/06/07 

L8 

L8 
2016/07/18 L8 
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Table 5.4 Overall and canopy species mapping accuracy of time series species maps for 

LSL, RC, WB 2007, 2012, and 2015, and the BL 2004 and 2012 fires. 

Fire Focal year 

All Classes Canopy species 

Overall 

accuracy 

(%) 

Kappa 

Overall 

accuracy 

(%) 

Kappa 

LSL 

1986 82.13 0.75 79.38 0.57 

2010 80.92 0.74 80.44 0.61 

2011 81.93 0.75 77.74 0.54 

2013 78.51 0.71 78.47 0.57 

2015 82.22 0.76 75.74 0.48 

2016 79.28 0.72 73.65 0.47 

2017 80.68 0.74 73.99 0.47 

RC 

1985 92.65 0.88 91.66 0.72 

2010 88.20 0.80 85.21 0.73 

2015 68.20 0.55 72.62 0.47 

2017 65.41 0.51 75.48 0.43 

WB 

1985 90.09 0.87 83.75 0.66 

1997 66.05 0.55 65.76 0.57 

1998 82.47 0.76 77.22 0.51 

2017 80.26 0.73 76.19 0.49 

BL 

1985 88.89 0.76 89.81 0.67 

2002 79.53 0.68 84.60 0.55 

2006 79.38 0.66 83.98 0.69 

2008 77.75 0.64 78.02 0.60 

2016 88.25 0.83 80.54 0.61 

 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

209 

 

 

Fig 5.1 Location of fire events in four regions of Alberta's boreal forests in this study (Base map: ESRI topographic maps). 
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Fig 5.2 Mean percent recovery using NDVI (top panel) and LAI (bottom panel) for (a) low, (b) moderate, and (c) high levels of 

human impact.  Lines join means ( SE) calculated for each year where applicable. 
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Fig 5.3 Time-series maps of canopy species distributed in areas affected by the seven fire outbreaks in this study. 
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Fig 5.4 Change in percentage cover of canopy species over time in each of the seven fire outbreaks in this study, after sorting the data 

by the degree of burn severity (i.e. low, moderate-low, moderate-high, and high severity).



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

213 

 

 

Fig 5.5 Recovery rate of canopy species for different levels of burn severity when all 

canopy species were considered within (a) moderate and low human-impacted sites and 

(b) only high human-impacted site.  The recovery rate of canopy species for the same 

information plotted in (a) and (b) but shown separately for the dominant coniferous and 

deciduous taxa in (c) moderate and low human-impacted sites and (d) high human-

impacted site. 
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Fig 5.6 Mean percent recovery of pre-burn NDVI scores as a function of distance from water features for low burn-severity 

level (top panel) and high burn-severity level (bottom panel) for regions experiencing (a) low, (b) moderate, and (c) high 

human impact.  (Note: categories 1 to 9 on the X-axis corresponds to 50, 100, 150, 200, 250, 500, 1000, 1500, and 200 m 

buffer zones from water features, respectively) 
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Fig 5.7 Percent area of unburned, low, and high burn-severity levels sorted by distance 

from water features for (a) low, (b) moderate, and (c) high human impact levels (Note: 

categories of 1 to 9 on the X-axis corresponds to 50, 100, 150, 200, 250, 500, 1000, 1500, 

and 200 m buffer zones from water features, respectively).  
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Chapter 6. Conclusions and Recommendations 

6.1.  Summary 

Ecosystems are affected by different stress factors of both natural and 

anthropogenic origin. In the past few decades, not only the stress factors of anthropogenic 

origin have increased, but also the stress factors of natural origin have enhanced due to 

human activity. The overall objective of my thesis was to develop novel GIS- and RS-

based methodologies to understand and manage a stress factor of anthropogenic origin in 

wetland ecosystems and a stress factor of natural origin on the terrestrial ecosystems. 

Chapters 2 and 3 investigated the mapping strategies to identify invasive Phragmites on 

Lake Erie Wetlands for effective management. Chapters 4 and 5 evaluated the pre-and 

post-fire effects of wildfires on the boreal forests of Alberta. 

In Chapter 2, we investigated the phenological stage of Phragmites that produce 

the most unique spectral signature using a time series of freely available moderate 

resolution Landsat and Sentinel 2 images using two highly invaded Lake Erie wetlands. 

We identified late summer and fall to be the best period to map Phragmites using RS-

based classification approaches as Phragmites produced the most unique signature during 

this time of the year. Green, NIR, and SWIR reflectance of Phragmites differed from the 

two most confused vegetation classes with Phragmites, cattail and meadow marsh, during 

this time of the year. Meadow marsh produced a more different signature than Phragmites 

in the winter months, but there was more confusion with other vegetation classes and 

therefore, the overall mapping accuracy was reduced. We were able to obtain better 

mapping accuracy when meadow marsh mapped in winter was combined with maps of 
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other classes produced using images acquired in summer months. We further extended 

the findings of this research to investigate the Phragmites treatment effectiveness, to 

identify Phragmites distribution in inland wetlands and roadsides of Norfolk county, and 

to map Phragmites distribution in roadside ditches of major highways using 

multitemporal Sentinel 2 images successfully in three separate projects that are not a part 

of this thesis. Overall, our study shows that moderate resolution images could be 

effectively used to map large Phragmites stands if the images are collected at right time 

with the right bands. 

In Chapter 3, we further investigated the Phragmites mapping approaches to map 

small, less dense Phragmites stands in the same Lake Erie wetland. Here, we used 

commercially available, high-resolution WV2/3 images and freely available, moderate 

resolution Sentinel 2 images to map Phragmites using sub-pixel image classification 

techniques. With WV2/3 images, we were able to map both large and relatively small, 

less density Phragmites stands with accuracy levels above 80%. However, Sentinel 2 

images only gave an acceptable level of accuracy for the large, Phragmites mono stands. 

We used the mapping protocols developed during this study to map the Phragmites 

distribution in the Long Point wetlands complex and aided the treatment programs in the 

summer of 2020 and treatment planning of summer 2021. We also used the maps 

produced in this study to aid habitat identification of at-risk turtle species (Angoh et al. 

Unpublished data). 

In Chapter 4, we investigated how canopy species distribution and proximity to 

water features affect the burn severity of wildfires in Alberta using novel mapping 
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approaches developed using time-series Landsat images. We were able to successfully 

map the distribution of deciduous species (aspen, birch, or poplar), spruce (black or 

white), and jack pine using Landsat images collected in two seasons with a good level of 

accuracy. Our results suggest that the coniferous species lead to high burn severity while 

deciduous species lead to low burn severity. We also created a novel score, SBIS, by 

combining the average dNBR of a fire outbreak and the total area burned. This index 

helps to easily compare the burn impact of different fire outbreaks and it showed a better 

correlation with pre-fire canopy species distribution. We also found that the water 

features such as lakes, rivers, and ponds can reduce the burn impact up to 1 km distance 

from them. Overall, this study shows that the pre-fire canopy species distribution and 

distance to water features can influence the burn severity levels and the burn impact and 

aids to understand the behavior of fire over large spatial scales. 

In Chapter 5 we evaluated the post-fire recovery of the same fire events that we 

studied in Chapter 4. Here, we specifically looked at the influence of human impact 

(proximity to human settlements and density of seismic lines) on the post-fire recovery 

process in three impact levels: high (fire management and seismic lines), moderate (only 

seismic lines, no fire management), and low (no fire management or seismic lines) using 

two RS-based indices and species recovery rates. We also explored the influence of water 

features on the post-fire recovery process. Our results show that the fire outbreak with 

high human impact recovered faster than the sites with moderate and low human impact 

and had the least burn impact. The sites that had a low human impact had the slowest 

recovery and the sites with moderate human influence had a moderate level of recovery 
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rates. Our species level recovery analysis reflected the fire management practices in the 

site with the highest human influence to prevent possible future fire outbreaks. This 

analysis also showed the natural recovery process in the moderate and low human impact 

sites where recovery rates of coniferous species were faster than the deciduous species. 

Our study also shows an ameliorating effect of water features such as lakes and rivers in 

the sites that had low human influence, but human activities may interfere with this effect. 

Overall, this study provides a new insight to understand how human interference can 

affect the natural post-fire recovery process in the boreal forests of Alberta. 

6.2.  Recommendations 

Based on the findings of this thesis, we propose several recommendations in 

mapping and managing Phragmites in affected areas and on documenting and managing 

wildfires in western Canada. 

1. For effective Phragmites mapping strategies, I recommend using images acquired 

in late summer or fall periods, regardless of the sensor used. Also, I recommend 

using SWIR bands if available in the sensor used, because our study shows that 

the SWIR signal differs from the signal of the confused vegetation classes, most 

probably as a result of water use efficiency of Phragmites during this time of the 

year. 

2. If the wetland classes other than Phragmites are of interest, I recommend using 

images collected in winter, preferably February or March (snow-covered images) 

to map meadow marsh and then combine it with the maps produced using the 
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images acquired in summer/fall periods. This will improve the mapping accuracy 

of both Phragmites and meadow marsh as well as the other wetland vegetation. 

3.  I also recommend using the optimum level of ground reference to aid the 

classification process, regardless of the classification method being used. I 

observed a significant improvement in classification accuracy levels when the 

number of ground reference points is increased. However, the accuracy levels 

went down after a certain threshold with the addition of further points. Therefore, 

I recommend repeated classification and accuracy assessment as well as spectral 

separability analysis with varying amounts of ground reference points to identify 

the optimum level of ground reference to produce the most accurate maps. 

4. I also recommend masking out the ecologically irrelevant land cover classes such 

as roads, agricultural lands, and build-up areas to avoid unwanted 

misclassifications within the area of interest. Mapping wetland vegetation could 

be challenging due to spectrally similar yet, ecologically different vegetation 

communities. Also, the high level of reflectance from water interferes with the 

vegetation signal and leads to misclassifications. This is especially problematic 

when locations with bright water reflectance are present and that often confuses 

with the bright signal from the buildings, most possibly the glass or highly 

reflective surfaces. Removal of the irrelevant, neighboring classes can improve the 

classification accuracies of these confused vegetation classes and reduce the 

image processing time. 
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5. I recommend using SBIS over dNBR when comparing different fire outbreaks and 

describing different pre-fire conditions. This novel score combined the burn 

severity with the area that is being burnt and therefore gives a more generalized 

idea about the impact of the fire outbreak. 

6. The canopy species mapping approach we used in this study is relatively simple to 

use yet effective. Furthermore, we were able to map the canopy species at their 

regrowth after fire using the ground reference from the neighboring, unaffected 

regions. Therefore, I recommend using this mapping approach to map forested 

regions in remote parts of western Canada using the ground reference from the 

areas that are being surveyed. 

7. Human activities such as fire management and oil and gas exploration affect the 

natural fire regimes and recovery processes. The human factor in understanding 

wildfires in boreal forests is becoming increasingly important due to enhanced 

human activity in these forested regions. Therefore, I recommend considering the 

influence of human activity in developing models to predict the future of fire 

regimes and recovery trajectories.  

6.3.  Future Work 

Upon completion of this thesis, I have identified several new research projects to 

be conducted in the future. These new research projects involve both repeated use of the 

methodologies developed in this thesis and developing new RS-based methodologies to 

understand ecological questions that are important in managing ecosystem health and 

stress. 
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1. Global climate change has affected the wetland ecosystems and their species 

communities. According to Eller et al., (2017), Phragmites show high phenotypic 

plasticity and can well respond to climate change. The Phragmites mapping 

protocols developed with free satellite data in my second chapter could be used to 

map the Phragmites distribution in wetland ecosystems over the past two decades 

to investigate its growth patterns and rates in relation to changing climate 

conditions. This would aid the prediction of future Phragmites invasion 

trajectories and develop effective management strategies. 

2. Climate change mediated surface water level fluctuations have caused serious 

ecological impacts in the Great Lakes ecosystems (Gronewold et al., 2013). In 

addition to climate change-related water level changes, Phragmites invasions also 

alter the hydrological regimes in the invaded Great Lakes wetlands (Lathrop et al., 

2003; Meyerson et al., 2000) and may result in devastating effects on the native 

vegetation communities and may alter the habitats of wetland fauna. Fine-scale 

Phragmites mapping protocols with WV2/3 images developed in chapter 3 could 

be used to understand these hydrological and vegetation community shifts in 

relation to global climate change. Furthermore, the mapping approaches we 

developed could be used in other high-resolution images from Unmanned Aerial 

Vehicles (UAV) or hyperspectral images to investigate the effect of Phragmites 

invasions on hydrological alterations within the wetland ecosystems. 

3. The distribution of native Phragmites haplotype in Ontario is poorly understood. 

The rapid spread of the invasive haplotype may over-compete the native 
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haplotype and may displace it from its original habitats. Therefore, mapping the 

distribution of the native Phragmites haplotype is essential for conservation 

purposes. RS-based mapping protocols need to be developed to distinguish 

between the native and invasive Phragmites haplotypes and the distribution of the 

native haplotype needs to be mapped and documented. 

4. Phragmites is treated in affected wetlands annually using both chemical and 

mechanical methods (Gilbert, 2015). The image classification methods developed 

in this thesis could be used to study the treatment effectiveness in the invaded 

wetlands using RS-based change detection techniques. These methods also could 

be used to compare the effectiveness of different treatment methods. 

5. The effect of seismic lines on the boreal vegetation communities and wildfire is 

poorly understood (Robinne et al., 2016). The species mapping protocols and the 

RS-based approaches we developed to understand the pre-and post-fire conditions 

could be used to understand the effect of seismic lines in detail on wildfire impact 

and post-fire health recovery trajectories. 

6. The RS-based techniques we used for Alberta could be used to study the fire 

outbreaks in different geographical and ecological settings to investigate the 

repeatability of our methods as well as to understand the ecological importance 

and influence of wildfires in these settings. Parry sound 33 fire that occurred in 

the summer of 2018 in Ontario is one such example. This fire affected forested 

and wetlands ecosystems of northeastern Georgian bay (Markle et al., 2020), and 
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it is a good case study to investigate the effect of wetlands and water features on 

the fire severity levels as well as the post-fire recovery processes. 

7. Wildfire activity in western Canada is highly influenced by climatic variations. 

Linking the climate variables such as annual temperature and precipitation to the 

fire distribution and post-fire recovery patterns we investigated in this study may 

provide a better understanding of the changing fire dynamics and influence of 

human activity on fire regimes. 
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Chapter 7/Appendix A: Use of World View 3 (WV 3) satellite imagery for early 

detection of invasive Phragmites australis in roadway corridors in Ontario 
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7.1. Abstract 

We tested the suitability of high-resolution (80 cm) multi-spectral satellite data 

from World View 3 (WV 3) to detect small patches of invasive Phragmites within 20-m 

buffer of the centre-line of the road.  We used ENVI 5.5 to classify the image into seven 

classes: roads, trees, Phragmites, roadsides, ground, grass, and agriculture. We applied 

the Mixture-Tuned Match Filtering (MTMF) procedure to the image, which is a spectral 

unmixing method in which the target features could be separated out from the other 

background features in mixed pixels. The highest confusion with Phragmites were with 

grasses and agricultural lands. Accuracy of the Phragmites classification was higher for 

the MTMF image (81.6% producer’s and 75.6% user’s accuracy) than for the reflectance 

image (73.7% producer’s and 71.4% user’s accuracy), while overall accuracy was 84.4% 

and 74.6%, for the MTMF and the reflectance image, respectively. We conclude that WV 

3 can be used in early-detection programs, as long as the procedure is applied to a 

relatively small area in wetlands (maximum 100 ha) or roadsides (4-km segment) to 

increase accuracy and publishing requirements necessary to achieve the best possible 

product. 

Keywords: Invasive Phragmites, early detection, road maintenance, remote sensing 

7.2. Executive Summary 

Phragmites australis (the common reed) is a taxonomically diverse perennial 

grass, with 27 genetically distinct groups throughout the world, 11 of which are found in 

North America. One of the European haplotypes, M, is an aggressive invader in coastal 
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wetlands and roadway corridors and have been growing at the expense of native 

vegetation in many coastal marshes of the lower Great Lakes. This invasive Phragmites 

has also been invading the roadway corridors in southwestern Ontario over the past 

decade. Currently, no provincial agencies include an early-detection program as part of 

their overall control strategy to manage invasive Phragmites in wetlands or roadways. An 

early-detection program would be beneficial since efficacy of herbicide treatment is 

known to be better when Phragmites patches are small and sparse than when they are 

large and dense.  

Some recent studies have explored the use of high-resolution multispectral 

satellite data such as IKONOS, QuickBird, WorldView 2 and 3 (WV 3) for species-level 

mapping. Although these multispectral data have relatively low spectral resolution, the 

images have higher temporal resolution and the image availability is higher. Hence these 

data are very useful in largescale Phragmites mapping and monitoring. In this paper, we 

tested the suitability of high-resolution (80 cm) multi-spectral satellite data from World 

View 3 (WV 3) to detect small patches of invasive Phragmites in wetlands and roadside 

corridors. These results should inform MTO of the feasibility of using WV 3 in early 

detection programs.   

We selected Norfolk County for this study because it is situated on the north shore 

of Lake Erie, where there are several small towns connected by approximately 4,100 kms 

of roads, of which 83% are in rural areas. There are also several large coastal wetland 

complexes including the Big Creek National Wildlife Area (BCNWA), where we have 

ground-truth data of invasive Phragmites from an ancillary study. Big Creek wetland is 
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located west of Hwy 59 at the base of Long Point Bay on Lake Erie, in the  municipality 

of Norfolk County.  

WV 3, which is operated by DigitalGlobe, is a fourth-generation, optical and 

commercial earth-observation satellite, with the highest spatial resolution (30 cm 

panchromatic and 1.24 m multispectral) of all existing optical satellites available for 

research. A cloud-free WV 3 image was acquired in 07th July 2016. The image covered an 

area of 437 km2, which includes Big Creek Marsh and other parts of the Long Point 

watershed.  The training data for image classification and accuracy assessment of 

invasive Phragmites in the BCWNA were manually digitized from an image (8-cm 

resolution) acquired with an Unmanned Aerial Vehicle (UAV; Sensefly eBee) in late 

summer 2015. We selected a sample area of 1 × 1 km2 within the wetland that contained 

large Phragmites patches as well as many of the most common wetland classes. We also 

selected a 4-km stretch of arterial 2 lane road (Hwy 59) that included six spraying 

locations to test the usefulness of WV 3 for mapping Phragmites in roadsides. These 

relatively smaller areas were chosen to increase our classification accuracy.  

Image pre-processing and processing was conducted with the software ENVI 5.5 

(Harris Geospatial). Radiometric correction and atmospheric correction (ENVI QUAC 

correction) were performed for the image data to obtain surface reflectance values. 

Minimum Noise Fraction (MNF) transformation was performed for the pre-processed 

WV 3 image to reduce image dimensionality. Then Mixture-Tuned Match Filtering 

(MTMF) was applied to the image. MTMF is a partial un-mixing algorithm for the mixed 

pixels so that the relative fraction of the reflectance of the target feature can be separated 
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out from the background. MTMF reduces the image classification errors (especially 

omission errors) when detecting Phragmites and makes it possible to detect smaller, less 

dense patches. After MTMF transformation, we classified the image using maximum 

likelihood classification. The reflectance image was also classified with the maximum 

likelihood classification and was compared against the classification with MTMF 

transformation. For roadsides, we created a 20-m buffer around the center-line of the road 

to avoid having to classify complex features in the image such as built-up areas. Ground-

truthing data were obtained as described above. Random points that were not used as 

training data for the classification were used for the accuracy assessment. 

Using ENVI 5.5, we classified the wetland image into seven classes: Cattail 

Organic Shallow Marsh, Floating Leaved Sallow Aquatic Marsh, Meadow Marsh, Mixed 

Organic Shallow Marsh, Open water, invasive Phragmites, and roads with overall 

accuracy of 87.4% for the MTMF image and 89.8% for the reflectance image. We also 

classified the road image into seven classes: roads, trees, Phragmites, roadsides, ground, 

grass, and agriculture. The highest confusion with Phragmites were with grasses and 

agricultural lands. Accuracy of the Phragmites classification was higher for the MTMF 

image (81.6% producer’s and 75.6% user’s accuracy) than for the reflectance image 

(73.7% producer’s and 71.4% user’s accuracy), while overall accuracy was 84.4% and 

74.6%, for the MTMF and the reflectance image, respectively.  

One challenge we experienced with WV 3 was the considerable time and skill 

required to pre-process the image initially. After determining the exact mapping protocol, 

however, the processing time was significantly reduced; nevertheless, some knowledge 
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and expertise in remote sensing and ecology would still be required for anyone 

considering using our approach. Furthermore, we emphasize that ground-truth data 

collected at the appropriate time is essential for accurate estimation of Phragmites in both 

wetlands and roadsides. We conclude that WV 3 can be used in early-detection programs, 

as long as the procedure is applied to a relatively small area in wetlands (maximum 100 

ha) or roadsides (4-km segment) to increase accuracy.  

7.3. Introduction 

Phragmites australis (Cav.) Trin. ex Steudel (the common reed) is a perennial 

grass that grows in aquatic, semi-aquatic, and terrestrial habitats throughout the world. 

Saltonstall (2002) identified 27 genetically distinct groups (haplotypes) worldwide, of 

which 11 have been found in North America. Over the past 2 decades, the European 

haplotype M began to make rapid incursions into Canada and the U.S., especially into 

coastal wetlands of the Laurentian Great Lakes (Wilcox et al. 2003; Tulbure et al. 2007; 

Wilcox 2012; Bourgeau-Chavez et al. 2015), and along highway corridors (Saltonstall 

2002; Lelong et al. 2007). This haplotype exhibits invasive characteristics, including its 

ability to aggressively colonize exposed mud flats sexually (through seeds), and then 

expand asexually (through rhizomes) to form dense monocultures that inhibit biodiversity 

of other plants and wildlife (Meyerson et al. 2000a; Markle and Chow-Fraser 2018). Its 

rapid spread has been attributed to it being a superior competitor against other emergent 

vegetation (Rickey and Anderson 2004; Uddin et al. 2014) and to being more tolerant of 

disturbances (e.g. road maintenance and changes in hydrologic regimes) and stress (e.g. 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

232 

 

increased salinity due to road de-icing salts) (McNabb & Batterson,1991; Marks et 

al.,1994; Chambers et al. 1999; Saltonstall 2002). 

Roadsides provide suitable conditions for invasive Phragmites to establish. Most 

roadsides are bordered by drainage ditches that form a linear network of ‘wetlands’ 

(Jodoin et al. 2008). Over the past 50 years, Phragmites has expanded in these roadside 

ditches in both Canada and the U.S. (Meyerson et al. 2000b). Studies have documented a 

dramatic expansion of invasive Phragmites throughout Quebec following the construction 

of a road network (Jodoin et al. 2008; Brisson et al. 2010). Even though these ditches can 

facilitate the spread of Phragmites into nearby ecosystems, only a few studies have been 

conducted to investigate how infested roadways influence the invasion pattern of 

Phragmites in adjacent wetlands (Richburg et al. 2001; Maheu-Giroux & de Blois 2007). 

A big challenge to those trying to study the effects of roadside Phragmites 

invasions on ecosystems is lack of an efficient method to map Phragmites accurately in 

the narrow linear wetlands along road sides or highway medians. In past studies, 

investigators relied on visual surveys while driving on roads to map Phragmites 

distributions (Lelong et al. 2007; Jodoin et al. 2008). Such an approach necessarily limits 

the geographic coverage of the study area. Remote sensing is the most appropriate 

approach to use for mapping Phragmites along roadsides, especially for areas that are 

difficult to survey safely (Davranche et al. 2009), such as sides and medians of busy 

highways and roads. Since herbicide treatments are more effective when Phragmites 

stands are small, it would be beneficial to have an early detection system that could 

identify and eradicate new patches in a timely manner before they can spread and become 
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dense. Fortunately, a number of remote sensing options are now available both for routine 

monitoring and for early detection purposes. 

Airborne sensors such as AVIRIS, CASI, HyMap, and PROBE-1 have been used 

successfully in species level mapping (Schmidt and Skidmore, 2001). These approaches 

are however limited by the relatively small geographic coverage, and the low temporal 

resolution of image acquisition. Some recent studies have explored the use of high-

resolution multispectral satellite data such as IKONOS, QuickBird, WorldView 2 and 3 

(WV 3) for species-level mapping (Adam et al. 2010; Li et al. 2015; Mustafa & Habeeb, 

2014). Although these multispectral data have lower spectral resolution, the images have 

higher temporal resolution and the image availability is higher. Hence these data are very 

useful in large-scale Phragmites mapping and monitoring.  

7.4. Objectives 

The goal of this study is to test the feasibility of using WV 3 satellite data to 

detect young, less dense and small Phragmites patches occurring in both wetland 

complexes and along roadsides of Norfolk County.   

7.5. Methodology 

7.5.1. Study sites  

We selected Norfolk County for this study because it is situated on the north shore 

of Lake Erie, where there are several small towns and numerous recreational destinations 

(Niewójt, 2007) as well as several large coastal wetland complexes including the Big 

Creek National Wildlife Area  (BCNWA), where we have ground-truth data of invasive 
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Phragmites from an ancillary study (Marcaccio et al. 2016). Approximately 4,100 km of 

roads currently exist in Norfolk County, of which 83% percent are in rural areas (“Asset-

Management-Plan-Roads.pdf,” n.d.).  Big Creek wetland is located west of Hwy 59 at the 

base of Long Point Bay on Lake Erie, in the municipality of Norfolk county (Ashley & 

Robinson 1996). In 1982, the Long Point wetlands were declared to be "Wetlands of 

International Importance” and was designated a “World Biosphere Reserve” by the Man 

and the Biosphere Program of UNESCO.  

7.5.2. Remote sensing data 

WV 3, which is operated by DigitalGlobe, is a fourth-generation, optical and 

commercial earth-observation satellite, with the highest spatial resolution (30 cm 

panchromatic) of all existing optical satellites available for research. A cloud-free WV 3 

image was acquired in 07th July 2016. The image covers an area of 437 km2, which 

includes Big Creek Marsh and other parts of the Long Point watershed (Figure 7.1). The 

image consists of one panchromatic band (445-808 nm spectral resolution and 30 cm 

spatial resolution) and eight multispectral bands (80 cm spatial resolution), including the 

coastal blue (397-454 m), blue (445-517 nm), green (507-586 nm), yellow (580-629 nm), 

red (626-696 nm), red edge (698-749 nm), Near InfraRed 1 (NIR 1; 765-899 nm) 

and NIR 2 (857-1039 nm) bands. The range of available spectral bands and high spatial 

resolution makes WV 3  suitable for a wide range of applications including vegetation 

monitoring, coastal monitoring, mineral exploration and species-level mapping (Kruse & 

Perry, 2013; Wang, Zhang, Lin, & Fang, 2015). 
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7.5.3. Ground Truth Data 

The training data for image classification and accuracy assessment of invasive 

Phragmites in the BCWNA were manually digitized from an image (8-cm resolution) 

acquired with an Unmanned Aerial Vehicle (UAV; Sensefly eBee) in late summer 2015 

(Marcaccio et al. 2016). We selected a sample area of 1 × 1 km2 within the wetland that 

contained large Phragmites patches as well as many of the most common wetland classes. 

We selected a 4-km stretch of arterial 2 lane road (Hwy 59) that included six spraying 

locations to test the usefulness of WV 3 for mapping Phragmites in roadsides. (Figure 

7.1). These relatively smaller areas were chosen to increase our classification accuracy. 

Training data for image classification and accuracy assessment of invasive Phragmites in 

roadsides of Norfolk County were geographic coordinates corresponding to Phragmites 

stands that had been sprayed during the summer of 2017 (E. Clelland, Nature 

Conservancy Canada, unpub. data). We also consulted Google street View to determine 

accuracy of Phragmites being classified on these roads. 

7.5.4. Remote sensing processing 

Image pre-processing and processing was conducted with the software ENVI 5.5 

(Harris Geospatial). Radiometric correction and atmospheric correction (ENVI QUAC 

correction) were performed for the image data to obtain surface reflectance values. 

Minimum Noise Fraction (MNF) transformation was performed for the pre-processed 

WV 3 image to reduce image dimensionality. Then Mixture-Tuned Match Filtering 

(MTMF) was applied to the image. MTMF is a partial un-mixing algorithm for the mixed 

pixels so that the relative fraction of the reflectance of the target feature can be separated 
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out from the background. This technique produces two images that represent percent 

target feature abundance and a measure of feasibility without prior knowledge of the 

reflectance of the background features (Lass et al., 2005; Parker Williams & Hunt 

Jr.2004). MTMF reduces the image classification errors (especially omission errors) when 

detecting Phragmites and makes it possible to detect smaller, less dense patches. The 

endmembers for the MTMF classification were extracted from the reflectance image. 

After MTMF transformation, we classified the image using maximum likelihood 

classification using a separate set of ground truth data. The reflectance image was also 

classified with the maximum likelihood classification and was compared against the 

classification with MTMF transformation. For roadsides, we created a 20-m buffer 

around the centerline of the road to avoid having to classify complex features in the 

image such as built-up areas. Ground-truth data were obtained as described above. For the 

accuracy assessment, we used a set of randomly generated points for locations that were 

not used as training data for the classification. 

7.6. Results and Discussion 

7.6.1. Early detection of Phragmites in wetlands 

We classified features in both the reflectance and MTMF transformed images into 

seven classes (Table 7.1). Overall accuracy of the reflectance image reached 89.75% and 

that of the MTMF image was slightly lower at 87.39%. 

Both overall accuracy and that for Phragmites alone were slightly lower for the 

MTMF transformed image. Manual digitization of the UAV image only captured the 

dense, large, and distinct Phragmites patches but not the smaller less dense patches that 
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are important for early detection purposes. The MTMF transformation, however, detected 

smaller, less dense, presumably younger Phragmites patches (Figure 7.2 b and c). Most of 

the smaller Phragmites stands detected by the MTMF transformation occurred in areas 

classified as meadow marsh by the reflectance image and the manual digitization. These 

findings indicate that Phragmites is likely invading areas initially covered by meadow 

marsh and cattail. 

7.6.2. Early detection of Phragmites in roadsides 

We classified features in the image of the roadside buffer into seven classes 

(Table 7.2). Classification of the reflectance image gave an overall accuracy of 74.6% 

while that of the MTMF image yielded a higher accuracy of 84.4%. Highest confusion 

with Phragmites were with grasses and agricultural lands. Unlike wetlands, however, 

accuracy of roadsides was higher for the MTMF than for the reflectance image.  Since 

MTMF reduces the confusion between agricultural lands and Phragmites, we obtained 

higher overall accuracy and Phragmites accuracy for the MTMF image than with the 

reflectance image (Table 7.2). In a preliminary study, we used a buffer size of 50 m, and 

obtained a much lower classification accuracy compared to the 20-m buffer we used in 

this study. Therefore, we recommend using the smallest buffer size possible for the road 

type of interest, to avoid having to classify additional features such as buildings and 

paved areas.  

Despite the relatively high commission error, five of the six sprayed locations in 

the selected area had Phragmites detected by both the reflectance and MTMF image. 

Since the spray locations were centroids with no details on the length of the Phragmites 
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patch that had been sprayed or which side of the road had been sprayed, we consulted 

Google Street View to obtain ancillary information to confirm the presence of 

Phragmites. Since the Google Street View image had been collected in August 2013, 

three years prior to acquisition of the WV 3 image, and four years prior to the herbicide 

spraying, we were not surprised to see relatively low cover of Phragmites on this road 

segment in the Google Street View. Only three of the sprayed locations in 2017 actually 

showed Phragmites in 2013. We examined all locations where Phragmites were 

eventually sprayed in 2017 and noted that they were either roadside ditches or small 

ponds that could easily be colonized by Phragmites (Figure 7.4). Some locations had 

cattail, and some had short grass species and shrubs, making them good candidates to be 

invaded by Phragmites after three growing seasons. There were, however, two sprayed 

locations that did not show any signs of invasion in 2013 (e.g. Figure 7.4 c and d). This 

shows that Phragmites can invade suitable habitats relatively quickly. Without more 

updated field truth, we will not be able to obtain a more valid accuracy assessment. It 

goes without saying that better results could have been obtained if the timing of image 

acquisition and field truth had been synchronized. 

We were able to use an automated classification protocol in ENVI 5.5 to 

accurately map very small, sparsely growing patches of Phragmites in wetlands and 

roadsides in a WV 3 satellite image of Norfolk County. Timing of image acquisition and 

plant phenology play a major role in Phragmites mapping (Rupasinghe and Chow-Fraser, 

unpub. data).  Phragmites produced the most unique, detectable signal that separated it 

from other vegetation classes (especially cattail and meadow marsh) during the peak 



Ph.D. Thesis – Prabha A. Rupasinghe                                              McMaster University - Biology 

239 

 

summer period. We believe that the distinct inflorescence, the unique green color due to 

the high chlorophyll concentration, the leaf arrangement, and the high water-use 

efficiency of the plant during this period all combine to produce this unique spectral 

signature. We observed more confusion between Phragmites and agricultural lands, 

especially corn fields when mapping during fall or spring using pixel-based classification 

methods; however, object-based classification may improve the classification accuracy if 

fall or spring-time images are used. Several studies reported higher accuracy if images 

acquired in different months or from different sensors are combined to detect individual 

species (Hill et al. 2010; Li et al. 2014; Li et al. 2015). Use of Short-Wave IR bands may 

also improve the classification accuracy. One obvious limitation of WV 3 is the high cost 

of the images—which makes it less attractive for mapping large invasion areas. 

Therefore, use of WV 3 images are feasible for early-detection purposes, and other free or 

low-cost satellite images should be used to map large infested areas. 

Airborne, hyperspectral images had been successfully used in species-level 

mapping in previous studies (Schmidt & Skidmore, 2001). The high spectral resolution of 

these data provides sufficient details for vegetation mapping, especially for the smaller 

weed and grass species. However, these data often have limited coverage and are not 

convenient for frequent monitoring purposes. Soft classification algorithms such as 

Linear Spectral Unmixing (LSU), MTMF, and Bayesian Probability have been used 

successfully to detect invasive weed species with hyperspectral imagery (Williams & 

Hunt Jr 2004; Shafii et al. 2004; Lass et al. 2005). These algorithms separate out defined 

signatures (endmembers) from the background in the mixed pixels. These mixed 
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reflectance values often produce high omission errors of the target features. Commission 

errors may also arise if spectrally similar classes occur in the same image. MTMF helps 

to distinguish smaller, less dense Phragmites patches from these mixed pixels and can 

help to reduce commission error due to occurrence of similar classes such as when corn 

and Phragmites in roadsides occur in the same pixel. Therefore, use of spectral unmixing 

of WV 3 is a promising method for early detection of Phragmites in both wetlands and 

roadways. 

One challenge we experienced with WV 3 was the considerable time and skill 

required to pre-process the image initially. After determining the exact mapping protocol, 

however, the processing time was significantly reduced (see Table 7.3); nevertheless, 

some knowledge and expertise in remote sensing and ecology would still be required for 

anyone considering using our approach. Furthermore, we emphasize that ground-truth 

data and the images collected at the summer time where Phragmites stand out from the 

other wetland classes is essential for accurate estimation of Phragmites in both wetlands 

and roadsides. 

7.7. Conclusions and Recommendations 

Our study shows that the high-resolution multispectral satellite data from WV 3 

could be successfully used for early detection. Sub-pixel classification is capable of 

detecting less dense, smaller Phragmites patches in both wetlands and roadsides and 

reduces the omission error. Moreover, this method resulted in less confusion between 

Phragmites and agricultural lands and built-up areas.  Therefore, commission error is also 

reduced for Phragmites detection in roadsides.  
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We recommend using relatively small areas for both wetlands and roadsides. 

Specifically, we recommend using a smaller buffer size as possible around roads (e.g. 20-

m for two-lane) to avoid confusion with complex land-cover classes such as built-up 

areas. Furthermore, we recommend using as many ground-truth points as possible to 

increase accuracy. Object-based classification and use of combination of images collected 

in different months may also increase overall accuracy. 
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Table 7.1 Summary of classification accuracies for wetlands in the BCWNA.  Data for 

Phragmites have been bolded for emphasis. 

Class 

Reflectance image MTMF image 

Producer’s 

accuracy 

(%) 

User’s 

Accuracy 

(%) 

Producer’s 

accuracy 

(%) 

User’s 

Accuracy 

(%) 

Cattail Organic Shallow Marsh 98.99 81.59 99.71 73.38 

Meadow Marsh 72.60 97.21 62.82 100.00 

Mixed Organic Shallow Marsh 91.73 54.96 89.93 56.56 

Open Water 100 100.00 100.00 99.53 

Phragmites 80.21 99.62 77.32 95.66 

Roads 100.00 100.00 100.00 100.00 

Floating Leaved Shallow 

Aquatic Marsh 
100.00 96.68 99.47 99.21 
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Table 7.2 Summary of classification accuracies for roadsides using WV 3. Data for 

Phragmites are bolded for emphasis. 

Class 

Reflectance image MTMF image 

Producer’s 

accuracy (%) 

User’s 

Accuracy (%) 

Producer’s 

accuracy (%) 

User’s 

Accuracy (%) 

Roads 100.00 100.00 100 100 

Trees 100.00 57.44 97.00 79.89 

Phragmites 73.73 71.43 81.57 75.64 

Road side 95.45 75.00 100 95.65 

Ground 96.09 96.09 99.29 88.36 

Grass 73.60 82.09 71.85 85.50 

Agriculture 39.89 84.03 80.87 86.82 
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Table 7.3 Overall utility of WV 3 for early detection of Phragmites per km2 

Parameter Details 

Cost of imagery (Panchromatic 

+ 8 band multispectral) 

$ 23 CAD with minimum area of 25 km2 (with 

academic discount) 

Time for preprocessing ~ 2 months initially and ~1 hour afterwards 

Time for image classification ~ 1.5 month initially and ~5 hours afterwards 

Image availability 

Temporal resolution is 4.5 days (clear image 

availability depends on the weather conditions and the 

cloud cover) 

Training data for image 

classification 

At least 5 random locations for each class included in 

classification. More training locations would provide 

higher accuracy. 

Ground truth for accuracy 

assessment 

At least 5 random locations for each class included in 

classification. More training locations would provide 

higher accuracy. 

Software 

Require specific remote sensing software such as 

ENVI, PCI Geomatica, ERDAS IMAGINE etc. that 

may cost >5000 CAD 
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Figure 7.1 Footprint of the WV 3 image used in this study showing Big Creek Wetland 

(bottom right inset) and the road segment (top right inset) that was classified. 
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Figure 7.2 Different views of a segment of the WV3 image of Big Creek National 

Wildlife Area showing (a) the unclassified true color image in which Phragmites appears 

as distinct blue-green spherical units (b) Phragmites detected through MTMF image, (c) 

Phragmites classified in red in the MTMF image. The legend for classification only refers 

to (b) and (c). 
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Figure 7.3 (a) True color WV3 image showing region of interest that was classified (b) 

one road segment and 20-m buffer used in the classification (c) classified image for the 

MTMF image pertaining to (b).  The legend only pertains to (c). 
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Figure 7.4 WV3 images of road segments acquired in July 2016  overlain with classified 

Phragmites stands (pink polygons) in the 20-m buffer (left panels) shown with 

corresponding Google Street View taken in August 2013 at each of these locations (right 

panels). The red circle indicates locations on the road where herbicide spraying had taken 

place during July 2017. (a) and (b): Sprayed location where Phragmites was confirmed in 

the 2013 Street View;  (c) and (d): Sprayed location where Phragmites had not been 

detected in 2013 Street;  (e) and (f): Location of classified Phragmites patches in 2016 
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that showed presence of Phragmites in the corresponding 2013 Google Street View; and 

(g) and (h): Location of classified Phragmites patches that did not show Phragmites in 

corresponding Street View, but that had suitable habitat for invasion of Phragmites after 

three seasons. 
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Glossary 

Term Definition Reference 

Burn severity Degree to which a site has been altered or disrupted by 

fire; loosely, a product of fire intensity and residence 

time 

(NWCG, 

2005) 

Ecosystem 

disturbance 

A cause: a physical force, agent, or process, either 

abiotic or biotic, causing a perturbation (which includes 

stress) in an ecological component or system; relative to 

a specified reference state and system; defined by 

specific characteristic 

(Rykiel, 1985) 

Ecosystem 

health 

A comprehensive, multi-scale, dynamic, hierarchical 

measure of system resilience, organization, and vigor 

(Costanza & 

Mageau, 

1999) 

Ecosystem 

productivity 

The rate of whole-ecosystem biomass production (Fridley, 

2001) 

Ecosystem 

stress 

an external force or factor, or stimulus that causes 

changes in the ecosystem, or causes the ecosystem to 

respond, or entrains ecosystemic dysfunctions that may 

exhibit symptoms 

(Rapport et 

al., 1985) 

Fire intensity Rate of spread of the fire edge multiplied by the amount 

of fuel consumed by flaming combustion and the heat 

yield of the fuel 

(Byram, 1959) 

Fire regime The features of historic, natural fires that have been 

typical for a particular ecosystem or set of ecosystems 

(Pyne et al., 

1996) 
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Fire weather Weather conditions that influence fire ignition, behavior 

and suppression 

(National Park 

Service | 

USDA Forest 

Service, n.d.) 

GIS A computer system for managing spatial data and is 

capable of capturing, input, manipulate, transform, 

visualize, combine, query, analyze, model, and output 

spatial data 

(Bonham-

Carter, 1994) 

Healthy 

ecosystem 

A healthy ecosystem is one that is sustainable, it has the 

ability to maintain its structure (organization) and 

function (vigor) over time in the face of external stress 

(resilience). 

(Costanza & 

Mageau, 

1999) 

Organization  the number and diversity of interactions between the 

components of the system 

(Costanza, 

2012) 

Resilience An ecosystem’s ability to maintain its structure and 

pattern of behavior in the presence of stress 

(Holling, 

1973) 

RS The technology of acquiring data through a device 

which is located at a distance from the object, and 

analysis of the data for interpreting the physical 

attributes of the object 

(Gupta, 2017) 

Species 

richness 

The number of species within a defined region (Moore, 2013) 

Vigor A measure of an ecosystem’s activity, metabolism or 

primary productivity 

(Costanza, 

2012) 
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