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Abstract

The traditional tracking approach of forming detections and then associating these detections

together is known to perform poorly at low signal-to-noise ratios (SNR). Track-before-detect

(TBD) approaches, where the sensor data is used directly as opposed to forming detections,

has been shown to perform better than traditional approaches at low SNRs.

One recently introduced TBD algorithm is the Quanta Tracking Algorithm that is formed

by applying maximum likelihood estimation to the histogram probabilistic multi-target

tracker (HPMHT). Quanta has shown promising performance for low SNR scenarios, but

the body of literature is small and the evaluations that have been done so far do not con-

sider several practical aspects of using the algorithm in real applications and are difficult

to compare to other algorithms due to the SNR definitions used. This paper seeks to ad-

dress these deficiencies in the literature. A re-derivation of Quanta that corrects some issues

present in the original derivation while also integrating extensions from the HPMHT liter-

ature will also be presented. These extensions are shown to make Quanta able to correct

for errors in the assumed size targets as well as improve estimating the SNR of fluctuating

targets.
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Chapter 1

Introduction

1.1 The Tracking Problem and Common Approaches

The field of tracking is concerned with estimating the properties of targets given a set of

sensor data. The properties to estimate for a given application are generally some subset

of position, velocity, and shape. This information is used to understand a situation so that

appropriate action can be taken. For example, in autonomous vehicles, one application of

tracking algorithms would be to understand the positions of other vehicles on the road to

ensure that a collision does not occur. Tracking algorithms have been applied to the data

from numerous sensor types across an incredible variety of applications.

Traditional approaches to tracking operate on point detections that are formed by apply-

ing a threshold to sensor data. For example, an infrared camera returns an image where each

pixel holds a value based on the temperature of the environment in the direction that cor-

responds to that pixel. A point detection can be formed at each pixel whose value is higher

than a threshold. A tracking algorithm can be applied to these detections over a series of

images to form tracks that likely correspond to targets. The tracking problem is non-trivial

because of two factors. The first is the presence of random fluctuations in the sensor data

referred to as noise. The second is so-called background clutter that is due to non-targets
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in the environment. For the infrared camera application, an example of background clutter

could be the sun, which would generate a high value in every pixel the sun falls on. Noise

and background clutter combine to create high values in sensor data that can be mistaken

for targets. Tracking algorithms are rigorous approaches to determining the properties (and

sometimes the number) of targets in the scene while minimizing error by accounting for noise

and background clutter.

There are many traditional tracking approaches that operate on point detections. These

approaches first attempt to associate the detections from successive sets of sensor data to-

gether. Common data association algorithms include Global Nearest Neighbor (Konstanti-

nova et al., 2003), Probabilistic Data Association (Bar-Shalom et al., 2009), Multiple Hypoth-

esis Tracking (Blackman, 2004), and Probabilistic Multiple Hypothesis Tracking (PMHT).

State estimation approaches such as Kalman Filtering (Welch and Bishop, 2006) are then

applied to these successive detections to estimate the properties of the target.

Other tracking algorithms take the sensor data itself as input, rather than point detections

derived from it. These are referred to as Track-Before-Detect (TBD) algorithms. Examples

include the particle filter, the Viterbi algorithm, and the Histogram Probabilistic Multi-

Hypothesis Tracker (HPMHT) (Davey et al., 2008).

1.2 The Benefits and Cost of Track-Before-Detect

Traditional tracking approaches that operate on point detections are effective when the

signal to noise ratio (SNR) for targets is sufficiently high. TBD algorithms are generally

applied when the target SNR is low enough that traditional approaches are not effective.

Operating directly on the sensor data stops target information from being lost, which is

especially critical in low SNR scenarios (Davey and Rutten, 2007). Unfortunately, this

improved tracking performance generally comes with very high computational costs that

can preclude TBD algorithms from being applied in real applications (Davey and Rutten,
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2007), (Davey et al., 2008).

For applying TBD in practical applications, the Histogram Probabilistic Multi-Hypothesis

Tracker (HPMHT) was shown in (Davey and Rutten, 2007) and (Davey et al., 2008) to have

significant potential due to its comparable tracking performance with other TBD methods

while having a radically lower computational cost. This potential inspired the authors to

investigate the algorithm further.

1.3 The State of the Art and Limitations

HPMHT was introduced in (Streit and Lane, 2000) and is generally formulated sequentially.

The algorithm uses a model with a known number of Gaussian targets within the sensor

plane and a known clutter model. The basic formulation further assumes that the shape

of the targets (that is, the covariance matrix that describes their point spread function) is

constant and known. Since its introduction, a considerable body of research has built up

around HPMHT.

HPMHT was applied to a practical tracking application for radar data in (Davey, 2010).

The paper presented a detector-driven track management strategy for HPMHT that yielded

a tracker that did not require prior knowledge of the number of targets within the sensor

plane. An approach for extending HPMHT to non-Gaussian targets was also discussed.

Modeling the target spread covariance matrices as random matrices (RM) was done in

(Wieneke and Davey, 2014) to relieve the assumption of constant and known target shapes.

The target covariance matrices are estimated in a similar process to estimating the mean

target position. Applying RM to HPMHT was shown to improve tracking peformance in the

presence of initialization errors in the target spread covariance matrices.

Part of the measurement model of HPMHT is that the source of each count in the image

is a draw from a multinomial distribution. The number of components in the distribution

is equal to the number of targets plus the number of components used to model the clutter
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(which can be as low as one). The normalized mixing proportion for each component in the

distribution is one of the parameters estimated by the algorithm. These mixing proportions

are assumed to be deterministic and either constant or time varying. This model does

not account for targets with fluctuating amplitude. An alternative model was presented in

(Gaetjens et al., 2017) where the number of shots produced by each component is modeled

by a Poisson distribution. This model allows allows a time-correlated estimate of the target

SNR to be extracted that was shown to be much less susceptible to fluctuation than with

the multinomial model. The result is a target SNR estimate that is much more useful for

track management purposes.

The random matrix covariance model from (Wieneke and Davey, 2014) and the Poisson

measurement model from (Gaetjens et al., 2017) were combined in (Davey et al., 2014). Some

clutter components were assigned Gaussian models and had their parameters estimated

by HPMHT alongside the targets. Combining these extensions expands HPMHT to be

applicable to scenarios where a clutter model with fluctuating, moving, and shape-variant

Gaussian components and known uniform components is suitable. In (Wieneke and Davey,

2014), RM-Poisson-HPMHT was shown to greatly reduce the number of false tracks created

for an airborne imagery application compared to HPMHT with a uniform clutter model.

In (Davey, 2015), Davey presented an approach for approximating HPMHT that decou-

pled the targets in the estimation process while simultaneously significantly reducing the

computational cost of estimation for each target. The result was a radically lowered compu-

tation and memory cost that was independent of the size of the sensor plane. The decoupling

also resulted in an algorithm that was much more amenable to parallel computing.

Maximum-likelihood estimation (MLE) was combined with HPMHT to form ML-HPMHT

in (Willett et al., 2013). ML-HPMHT is a batch estimator that assumes targets have a

straight trajectory across the batch (though any parameterizable trajectory could be used

with a re-derivation). The estimation process ends up being similar to core HPMHT. The

presented formulation lacks the many extensions that were integrated into HPMHT to deal

4



M.A.Sc. Thesis – J. Gilmour McMaster University – Electrical Engineering

with its limitations. Thus, Quanta assumes that the spread of the targets is a known constant

and uses the same multinomial mixing model that was previously discussed. Nonetheless,

the results in (Willett et al., 2013) and (Dunham et al., 2019) demonstrate that the tracking

performance of Quanta for very low SNR targets is promising. Unfortunately, the body of

literature for Quanta is small and the evaluations that have been done so far do not con-

sider several practical aspects of using the algorithm in real applications and are difficult to

compare to other algorithms due to the SNR definitions used. Furthermore, the presented

ML-HPMHT derivation has significant missing information and what is there has errors.

These deficiencies in the literature are what we seek to expand upon with this paper.

Note that ML-HPMHT was later rebranded by the authors as the Quanta tracking algo-

rithm. For the sake of consistency, we will thus refer to ML-HPMHT as Quanta for most of

the remainder of this paper.

A more complete summary of the HPMHT literature can be found in (Davey and Gaet-

jens, 2018).

1.4 Objectives

This paper will provide two main contributions. The first contribution is to add to the

existing analysis of the basic Quanta algorithm by evaluating the algorithms estimation per-

formance when common track initialization approaches are used while also analyzing the

iterations required for Quanta to reach convergence. Both of these aspects will be analyzed

in a way that is as generally applicable as possible in an attempt to aid those evaluating

Quanta for use in real applications. In line with that goal, this analysis will use a more

common SNR definition than that applied in the Quanta literature to help with comparing

the algorithm to other methods. The second contribution is integrating two of the extensions

developed for HPMHT into Quanta. The extensions chosen were the deterministic Gaussian
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appearance estimation first presented in (Streit and Lane, 2000) and the Poisson measure-

ment model presented in (Gaetjens et al., 2017). Integrating these extensions provides the

opportunity to re-derive the algorithm more verbosely than what was presented in (Willett

et al., 2013) and (hopefully) without error. A final minor contribution of this paper is to

discuss implementation considerations for applying Quanta to real applications.

1.4.1 Contributions

1. An evaluation of the convergence performance of Quanta using common initialization

strategies for multiple target SNRs and initial errors

2. Extend Quanta by integrating a Poisson measurement model and deterministic Gaus-

sian appearance estimation. In doing so, a complete and error-free derivation of Quanta

will be provided that will help to fill in the gaps left in the original derivation of Quanta.

• This contribution will be published as the following paper:

Gilmour J., Heidarpour M., Kirubarajan T. (2021). Extending the Quanta Track-

ing Algorithm

3. A discussion of implementation considerations for applying Quanta to real applications
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Chapter 2

Background

2.1 Expectation Maximization (EM)

The proceeding discussion of Expectation Maximization is based on the explanations from

(Borman, 2004) and (Blume, 2002).

The probability density that relates how likely receiving a measurement vector w is given

a model with parameters Θ is written as

p(w|Θ) (2.1.1)

For a given measurement vector w, the parameters Θ that maximize 2.1.1 is the maximum

likelihood estimate of Θ. That is, it is the estimate of Θ that is most likely to have resulted

in the given measurement vector. 2.1.1 where w is fixed and Θ is to be maximized with

respect to is often referred to as the likelihood function for the problem and is written as

L(Θ) = p(w|Θ) (2.1.2)

There may be additional variables in the model required to maximize with respect to Θ that

we do not observe. These so-called hidden variables may be introduced because they make
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estimating Θ tractable. We will denote the hidden variables as Z and one realization of

them as z.

Expectation Maximization is an iterative algorithm for maximizing with respect to Θ

while taking into account the hidden variables Z. The algorithm is summarized by the

equation

Θn+1 = arg max
Θ

EZ|X,Θn (ln p(w, z|Θ)) (2.1.3)

where Θn represents the current estimate for parameters Θ and Θn+1 is the new estimate

formed by maximizing the so-called auxiliary function Ez|w,Θn (ln p(w, z|Θ)) with respect

to Θ. Note how maximizing p(w, z|Θ) with respect to Θ requires knowledge of both the

observation w and the hidden variables z. Thus, p(w, z|Θ) is referred to as the complete

data likelihood. Furthermore, we see that the expectation is with respect to the probability

density function of the hidden variables, p(z|w,Θn), which (for a fixed w) is equivalent to the

likelihood function for Θn with respect to the hidden variables. We term this the missing data

likelihood. Thus, 2.1.3 is the expectation of the logarithm of the complete data likelihood

with respect to the missing data likelihood.

The EM algorithm is thus summarized as first setting initial values for the parameters

Θ0 and then performing the following iteration until convergence:

1. Expectation step: Form the auxiliary function by taking the conditional expectation of

the log-likelihood of the complete data likelihood p(w, z|Θ) with respect to the missing

data likelihood p(z|w,Θn)

2. Maximization step: Maximize the auxiliary function with respect to Θ

The key reason why the EM algorithm works (the mathematical machinery for which is

beyond the scope of this paper) is that the likelihood for the parameters Θ is non-decreasing

with each iteration. Non-rigorously, when the auxiliary function converges via application

of the EM algorithm, the Θ likelihood is at a local maximum.

8



M.A.Sc. Thesis – J. Gilmour McMaster University – Electrical Engineering

2.2 Histogram Probabilistic Multi-Hypothesis Tracker

(HPMHT)

The proceeding discussion of HPMHT is largely based on the explanations from (Davey and

Gaetjens, 2018).

Imagine a sensor that produces two-dimensional images as data. The images are divided

into a uniform grid of pixels that have integer values. Each component of the scene (be it

clutter or a target) produce energy that is incident on the sensor. This energy is produces

point measurements on the continuous space of the sensor plane, similar to photons hitting

the lens of a camera. The sensor counts the point measurements from all scene components

that fall into the two-dimensional space that corresponds to each pixel. This count is assigned

to the pixel in the output image. In this sense, the output image can be viewed as a two-

dimensional histogram that counts the number of point measurements that fell into the

corresponding area of the sensor plane. It is important to understand that the sensor did

not retain the locations of the point measurements within the pixels, nor any information

about which scene component produced which point measurements.

The previous description is the model for the image that HPMHT uses. HPMHT is

an EM algorithm and so it is clear from the description that two pieces of the missing

information are the components from which each point measurement originated Kt and the

exact location of those point measurements within the pixel Yt.

We require a model to describe how the measurements produced by each component

are distributed throughout the sensor plane. In the basic formulation of HPMHT, clutter

measurements are uniformly distributed and target measurements are Gaussian distributed

with a constant covariance. That is, the shape and size of the targets is constant.

The measurement model of basic HPMHT is that each point measurement has a probabil-

ity of originating from each component m that is equal to that components mixing proportion

πm,t. Thus, we have
∑M

m=1 πm,t = 1. Intuitively, πm,t describes the portion of the total image

9
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counts (or more generally, the total image energy) that component m is expected to produce.

HPMHT estimates the mixing proportions for all components and the target positions

Xt for all targets given initial values for these parameters and an image. Defining Πt as the

set of mixing proportions for time t and Nt as the set of pixel counts in frame t (the image,

essentially), we can then state using the notation from the previous EM section that:

• w = Nt

• Θ = Xt,Σt, Nt

• z = Kt, Yt

Denoting the current estimate for parameters with a circumflex (Ex: â), the resulting

EM auxiliary function is

Q(Xt,Πt|X̂t, Π̂) =
∑
Kt

∫
log [pcomp(Xt, Kt, Yt, Nt|Σt,Πt)] pmiss(Kt, Yt|Nt, X̂t, Σ̂t, Π̂)dYt

(2.2.1)

The complete likelihood is conditional on Πt and Σt because the former is treated as an

unknown constant and the later is a known constant. They are not modeled as random

variables.

The approach to maximizing this auxiliary function with respect to Θ will be well illus-

trated in the derivation to come and so we will not dwell on the details here. The one key

point that we will note is that the value of the Gaussian model for the target is that the

maximization for the Gaussian parameters can be implemented as a Kalman filter update

and thus is quite simple and intuitive.

Note that this description is for the sequential version of HPMHT. For the version based

on a batch of frames, the Gaussian parameter update can be implemented as a Kalman

smoother.

As an aside, attentive readers may have noticed in the introduction that PMHT was clas-

sified as a traditional tracking algorithm while HPMHT was classified as a TBD algorithm.

10
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Given the information in this section, we can now clarify that HPMHT is simply the data

association approach defined by PMHT applied directly to image data (Davey and Gaetjens,

2018). Because the input for HPMHT is the image data instead of point detections (as with

PMHT), HPMHT is classified as a TBD algorithm.

2.3 Quanta

The reference used to write this section was the chapter on Quanta from (Davey and Gaetjens,

2018).

HPMHT treats the evolution of the target positions as a random process driven by noise.

The kinematic evolution can alternatively be modeled as deterministic where a parameterized

curve is estimated using an initial curve and the data. Such a model within the HPMHT

framework defines a batch algorithm that amounts to a curve fitting problem on synthetic

point measurements. The simplest parameterized curve is a straight line, which can be fully

specified for a track by its beginning and end points in the batch.

What has been described here is the Quanta (ML-HPMHT) algorithm introduced by

Willet in (Willett et al., 2013). Quanta combines a linear deterministic kinematic evolution

model with HPMHT image association. As opposed to the sequential HPMHT discussed in

section 2.2, Quanta operates on a batch of frames and thus would normally be implemented

as a sliding window.

Define X, Σ, Π, K, and N as the corresponding variables from section 2.2 but for the

entire batch of frames. The auxiliary function for Quanta then takes the form

Q(X,Π|X̂, Σ̂, Π̂) =
∑
K

∫
log{pcomp(Y,N,K|X,Σ,Π)}pmiss(Y,K|N, X̂, Σ̂, Π̂)dY (2.3.1)

Note how the complete data likelihood is conditioned on the set of target positions X. This

difference compared to equation 2.2.1 is due to the deterministic kinematic evolution model

that Quanta uses.

11



Chapter 3

Estimation Performance of the Basic

Quanta Tracking Algorithm

3.1 The Need for Further Analysis

There has been limited publications on Quanta since the algorithms introduction in (Willett

et al., 2013). These publications answered some initial questions but have left holes that

make it difficult to determine whether Quanta is suitable for a particular application or not.

We will begin by describing some holes in the existing literature and then proceed with

experiments that attempt to fill them in.

The work thus far uses valid but HPMHT-specific SNR measures that are not understood

by those not already familiar with HPMHT theory. Using unique and algorithm specific

measures of SNR makes it difficult to compare Quanta against other algorithms for a use

case based on looking at the results from the literature. In aim of addressing this, the

proceeding analysis uses peak SNR to define the target intensity.

Furthermore, we find that the existing analysis (while thorough from a tracking perspec-

tive) does not consider the practical aspects of initializing tracks on sensor frames of large

sizes such as high-resolution cameras. In line with wanting to make a suitability analysis

12
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for a use case easier, we attempt to analyze the algorithms estimation performance under

reasonable initialization schemes that are based on traditional one and two-point detector

driven approaches, similar to what was applied to HPMHT in (Davey, 2010).

The final aspect that the analysis will cover is the iterations required to reach conver-

gence, which is important given the practical limitations of computation for many tracking

applications, especially given that Quanta is a batch algorithm and thus carries a higher

computational cost to each iteration. We will also touch on some failure cases for Quanta.

3.2 One-point Initialization

With one-point initialization, the track position at every frame in the batch would be assigned

the position given by one detection from a detector. For a perfectly accurate detector and a

target that is moving, only the batch position from the frame that the detection originated

from will be correct. Following the linear motion assumption of Quanta, each subsequent or

previous frame from the detection frame will have the target further away from the detection

position and thus the given initialization for those frames. Recall that under Quanta, the

track parameters are driven to the truth via an algorithmic force produced by the overlap

of the true target Gaussian and the track Gaussian. Given the effect of noise, there will

clearly be a level of overlap between the Gaussians for the non-detection frames that stops

the algorithm from being able to force the track positions for those non-detection frames to

the truth. Furthermore, in those cases where the algorithm can converge to the truth, the

algorithm will take more iterations to do so as the relative distance apart of the Gaussians

is increased. We seek to perform a convergence analysis of Quanta when using one-point

initialization under various SNRs. In doing so, we will note cases where the algorithm stopped

being able to consistently converge. That is, the limits of the algorithms convergence.

To generalize the analysis to various target sizes, we normalize the distances between the

true subsequent target positions in the batch by the target standard deviation. We refer to

13
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this quantity as the “position error to standard deviation ratio” or “position error ratio”.

The scenario used in the analysis is as follows. The image plane is 200 by 200 pixels.

The batch size is 11 frames, with the true target position for frame 6 (the middle frame)

in the center of the image plane. Given a position error to standard deviation ratio for a

particular test, this is multiplied by the target spread standard deviation to get how much

the true target positions should be offset from each other in subsequent frames. The resulting

trajectory is linear and is longer end-to-end the larger the given ratio is.

The initial track positions for all frames were set equal to the center of the image plane,

simulating a perfectly accurate single frame detector. The spread standard deviation of the

target for both the X and Y dimension was set to 3.

Convergence was consistently defined as when the endpoints of the track were within a

small threshold to the true endpoints.

Figure 3.1 and Figure 3.2 illustrate the results of the experiments. Note that the plots

illustrate essentially the same thing, they just focus on either the SNR or position error to

standard deviation ratio respectively by displaying it on the x axis. Note that all data points

represent averages of 10 runs. Figure 3.1 shows that the number of iterations required to

reach convergence decreases exponentially with the peak SNR of the target. A key obser-

vation is that even for targets with high SNR (for a TBD context), the algorithm requires

a large number of iterations to reach convergence. For example, we see that for a position

error ratio of 1 between frames and an SNR of 15, Quanta required nearly 300 iterations to

reach convergence. For the same error ratio at a peak SNR of 6, Quanta required around 800

iterations to reach convergence. Given the significant computational cost of each iteration

with Quantas batch-driven strategy, such a large number of iterations could make Quanta

impractical for use-cases with limited computational resources. This is especially true if the

scenarios have multiple targets because:

• The computational cost of a single iteration grows considerably with the number of

targets
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• The method for estimating the number of tracks that was presented in (Willett et al.,

2013) requires essentially running Quanta multiple times

The computational cost may still be acceptable if the position error ratio is low. This is

equivalent to the ratio of the target velocity and size being low for the application. Alter-

natively, as we will see, using two-point initialization instead of one-point initialization may

considerably lower the number of iterations required.

The final note we will make about this experiment is some failure cases that were found.

Observe in Figure 3.2 that the final datapoint for the peak SNR 6, 10, and 15 curves are

at a ratio of 1.8, 2.0, and 2.2, respectively. These were just below the largest ratios for the

given SNRs for which we found Quanta was able to consistently converge to the solution.

That is, above these ratios, the algorithm was often not converging.

15



M.A.Sc. Thesis – J. Gilmour McMaster University – Electrical Engineering

Figure 3.1: Relationship between target peak SNR and iterations to convergence for
one-point initialization
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Figure 3.2: Relationship between the initial position error ratio and iterations to
convergence for one-point initialization
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3.3 Two-point Initialization

The two-point initialization case is more complicated to test than the one-point initialization

case. We would like to still use one error ratio to define the test because that allows for

a more direct comparison against the one-point initialization tests. However, two-point

initialization is equivalent to defining the two endpoints of the batch. An approach must

be decided for applying the single error ratio to specifying these two endpoints which still

captures the various ways that errors in a two-point initialization could present themselves.

The approach that was decided on was to use the position error ratio to define how far

the initialization batch endpoints would be from the true batch endpoints. This defines a

circle around each true endpoint that the initialization endpoint could lie on. The value

assigned for the iterations to convergence for that position error ratio (and peak SNR) is

then the average iterations to convergence when the initialization points along the circles

were independently randomly selected. This is what is presented in Figures 3.3 and 3.4. The

image plane was 200 by 200 pixels and the true target positions across the 11 frame batch

went from position (60.5, 60.5) to (140.5, 140.5)

As expected, we see that the iterations to convergence still decreases exponentially with

increasing peak SNR. However, we see from Figure 3.4 that the iterations to convergence

increases logarithmically as the position error ratio was increased for a given peak SNR.

We can see a similar seemingly logarithmic increase in iterations for the one-point case at

low position error ratios before the iterations begin to rise exponentially as the limits of the

algorithms ability to converge to the truth is reached. It is expected that we would see a

similar trend as the limits of convergence were approached if higher initial position errors

were tested for the two-point case.

In general, the iterations required for convergence in the two-point initialization case are

radically lower than in the one-point case. We see that the iterations to convergence at the

highest tested position error ratio of 2.2 being lower for two-point initialization than the

iterations to convergence for the lowest tested ratio of 0.4 for one-point initialization. The
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required iterations under two-point initialization appear significantly more practical and may

allow the algorithm to be applied even to applications with limited computational resources,

especially if the target velocity is low enough to result in lower position error ratios than

those tested here.

Figure 3.3: Relationship between target peak SNR and iterations to convergence for
two-point initialization

This radical improvement in convergence speed is reasonable given how Quanta works.

Even in the higher position error ratio cases for two-point initialization, the initial position

for each frame is much closer to the true position than in the one-point case. There is simply

less error in the initialization that must be corrected by iterating. This is especially true for

the cases where the initialization ends up crossing the true trajectory, usually resulting in

multiple frames initially being very close to the truth.
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Figure 3.4: Relationship between the initial position error ratio and iterations to
convergence for two-point initialization

3.4 Implementation Considerations

Applying Quanta to real applications may require minimizing the computational cost of the

algorithm. The results for one-point initialization presented here and the possibility for two-

point initializations of lower quality than what was tested here encourages us to consider how

to minimize the computational cost of each iteration and applying the algorithm as a whole.

Here we will briefly discuss strategies based on the literature and our own observations, but

leave exploring the improvements for future work.
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3.4.1 Single Chip Processing

In (Davey, 2015), Davey presented an approach for approximating HPMHT that decoupled

the targets in the estimation process while simultaneously significantly reducing the compu-

tational cost of estimation for each target. The result was a radically lowered computation

and memory cost that was independent of the size of the sensor plane. The decoupling also

resulted in an algorithm that was much more amenable to parallel computing. This is espe-

cially attractive given the increasing availability of chips with parallel processing capabilities

that are applicable to a wide range of systems and applications. It is expected that applying

these approximations to Quanta would result in similar benefits.

The approximations presented in (Davey, 2015) for HPMHT are, briefly, as follows. Com-

putation for each target is done only over a sub-image around the target, rather than the full

frame. This makes computation independent of the size of the sensor plane and the compu-

tational benefits of not having to perform integrals over the entire sensor plane are obvious.

For estimating the parameters for a given target, the initial parameters for all other targets

are used. This decouples the estimation for each target and makes the algorithm amenable

to parallel computation.

The decoupling can be applied to Quanta exactly as with HPMHT. However, estimation

over a sub-image is more complicated given the batch nature of Quanta. The simplest

approach would be to extract a sub-image for each frame for each target. The targets to

consider in the overall estimation process would be any that effect those sub-images based on

the parameters for those targets from the previous batch. Setting the sub-image size would

be an application specific (and potentially dynamically changing) parameter that would be

important for this single-chip Quanta to perform well.

3.4.2 Breaking the Tracking Problem Down

As previously referred to, the method for estimating the number of tracks that was presented

in (Willett et al., 2013) requires running Quanta multiple times. The approach is based
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around the minimum description length (MDL) that, to put it simply, assigns a score to a

model based on a balance of how simple the model is and how well it describes the data

(Grünwald, 2004). Estimating the number of tracks is described as follows:

1. Compute the MDL for a model with 0 targets, MDL0

2. Compute the MDL using the Quanta-estimated parameters, assuming 1 target, MDL1

3. If MDL1 > MDL0, compute the MDL using the Quanta-estimated parameters, assum-

ing 2 targets

4. If MDL2 > MDL1, compute the MDL using the Quanta-estimated parameters, assum-

ing 3 targets

5. ...and so on, until MDLn < MDLn−1. Accept that there is n − 1 targets with the

parameters estimated by Quanta

In a real application with a large sensor plane, this strategy would work if Quanta, when

told to assume a target exists, was guaranteed to find that target (if it exists) regardless of

how far off the initialization is. Unfortunately Quanta has reasonable limits to the distance

over which it can converge, as we have touched on in this chapter. Consider a case where

a detector has been used on a batch of frames where there is two targets present and we

are at step 3 in the process above. We select one of the detections to initialize the second

track at, but we unfortunately do not select the one that corresponds to the other target.

If we run Quanta and get some erroneous final parameters for the track that was initialized

on noise and then compute the MDL for these parameters, we should get MDL2 < MDL1,

even though this is not correct. To reach the truth, after reaching step 3, you would instead

have to run Quanta over and over again with the second track getting initialized at the

different detections until you either get a parameter set that yields MDL2 > MDL1 (and

thus you have hopefully found the second targets parameters) or you find for every detection
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that MDL2 < MDL1. The result is a ridiculous combinatorial problem that is entirely

impractical.

An alternative is to break the problem down. Similarly to with Single Chip Processing,

we can associate detections and tracks together to form sub-groups that are as small as

possible while respecting the characteristics of targets for the application. A large set of

sub-problems would be formed with much smaller combinatorial complexity than the overall

target number estimation problem. These sub-problems could be dealt with independently,

which when combined with the single chip processing approach described previously would

help transform Quanta into an algorithm that is well suited to parallelization.
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Chapter 4

Extending the Quanta Tracking

Algorithm

We seek to re-derive the Quanta Algorithm in detail and (hopefully) without error while

integrating the deterministic Gaussian appearance estimation first presented in (Streit and

Lane, 2000) and the Poisson measurement model presented in (Gaetjens et al., 2017). The

presented derivation does not make the assumption of a single uniform clutter distribution.

It also integrates modeling of shots from “unobserved pixels”, which stops the target state

estimate from being biased when the target is near the edge of the sensor plane. This bias

was thoroughly discussed in (Davey and Gaetjens, 2018). The original development of the

unobserved pixels approach was given in (Streit and Lane, 2000).

4.1 Extensions

4.1.1 Poisson measurement model

The estimated SNR of a target can be used as a part of track maintenance decisions. However,

the mixing proportions estimated by HPMHT are only suitable for estimating the SNR of

targets with a constant SNR or an SNR that is independent frame-to-frame (depending
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on the corresponding mixing proportion model that is used). In (Gaetjens et al., 2017), the

mixing proportion measurement model of HPMHT was replaced with a Poisson measurement

model that essentially models the target energy as the total number of image shots associated

with the target rather than as a proportion of the total image energy. This decouples the

energy estimates for the tracks and allows for dynamics to be imposed on the individual

track energy estimates.

Imposing dynamics on the track energy estimates was shown to make the resulting SNR

estimate much more robust to fluctuation in the target energy. Thus far, Quanta has only

been presented with the mixing proportion model from HPMHT. We will re-derive Quanta

using a Poisson measurement model to realize the robustness to fluctuation in the target

energy demonstrated by the change in (Gaetjens et al., 2017).

4.1.2 Constant spread estimation

In the original HPMHT paper (Streit and Lane, 2000), Streit developed estimation of the

spread (Gaussian covariance) of the target in the sensor plane. Estimating the spread allows

the algorithm to inherently handle applications where the targets change in size (such as

with a camera when the target comes closer or farther) and be robust to poor assumptions

of the target spread. (Wieneke and Davey, 2014) demonstrated that HPMHT tracking

performance can be significantly improved by applying spread estimation in the presence

of spread initialization error. Unfortunately, the paper that introduced Quanta (Willett

et al., 2013) assumed that the target had a constant known spread. To realize the previously

described benefits, Quanta will be re-derived under the assumption of an unknown but

constant spread estimate.

Theoretically, targets could vary in size fast enough over the course of the batch that a

single spread estimate still cannot accurately describe the evolution of the target state. To

deal with these cases, Quanta could be re-derived under a Random-Matrix model for the

spread that allows evolution over time. This was developed for HPMHT in (Wieneke and
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Davey, 2014). We do not present this derivation here, but it should not be difficult given

the proceeding derivation and the content of (Wieneke and Davey, 2014).

4.2 Derivation

The deterministic kinematic evolution model of Quanta is given by

xmt = (1− φ)xmbegin + φxmend (4.2.1)

where φ falls in the range [0 1]. xmbegin is the position of component m at the beginning of

the batch. xmend is the position of component m at the end of the batch.

4.2.1 Expectation step

As with the basic HPMHT developed in (Streit and Lane, 2000), Quanta is an expectation-

maximization (EM) algorithm. As with any EM algorithm, the auxiliary function must be

formulated. The variables that define the complete and missing data are

Variable Definition

X Track states

Σ Track spread matrices

Y Exact point measurement locations

Λ̃ Quantized Poisson mixing rates

N Number of shots in each pixel m

Nk Number of shots in each cell attributed to each component m

K Measurement sources

Due to the deterministic state and spread model employed by Quanta, neitherX nor Σ are

random variables. The form of the complete data likelihood is thus pcomp(Y, Λ̃, N,K|X,Σ).

Following Gaetjens et al. in (Gaetjens et al., 2017), we can replace N with Nk in the complete

data likelihood to write pcomp(Y, Λ̃, N
k, K|X,Σ).
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The missing data for this problem is the exact measurement locations Y and measurement

sources K. The missing data likelihood is thus obtained as pmiss(Y,K|X̂, Σ̂, ˆ̃Λ, N), where X̂,

Σ̂, ˆ̃Λ represents estimates from the previous iteration. The EM auxiliary function can then

be written as

Q(X,Σ, Λ̃|X̂, Σ̂, ˆ̃Λ) = EY,K [log{pcomp(Y, Λ̃, Nk, K|X,Σ)}]

=
∑
K

∫
Y

log{pcomp(Y, Λ̃, Nk, K|X,Σ)}pmiss(Y,K|X̂, Σ̂, ˆ̃Λ, N)dY

(4.2.2)

The complete data likelihood can be simplified as

pcomp(Y, Λ̃, N
k, K|X,Σ) = p(Λ̃)p(Nk, K|X,Σ, Λ̃)p(Y |X,Σ, K) (4.2.3)

Due to the dynamics imposed on the Poisson mixing terms, a first-order Markov model

is applied to the quantized Λ̃ (Gaetjens et al., 2017).

p(Λ̃) =
M∏
m=0

[
p(λ̃m0 )

T∏
t=1

p(λ̃mt |λ̃mt−1)

]
(4.2.4)

The deterministic model for X and Σ means that they have no associated prior.

Per results from (Gaetjens et al., 2017), the shot and measurement source density can be

written as

p(Nk, K|X,Σ, Λ̃) =
T∏
t=1

1

exp{λ̃t}

I∏
i=1

 1

nit!

ni
t∏

r=1

λ̃t
Kir

t hi(x
Kir

t
t ,Σ

Kir
t

t )

 (4.2.5)

where λ̃t is the quantized Poisson rate parameter of the total number of shots ||Nt||. Nt =

{nit}Ii=1 is a quantized vector where each element represents the number of shots from the

corresponding pixel. Kir
t specifies the component index of the rth shot in the ith cell at time

t. Thus, λ̃t
Kir

t , x
Kir

t
t , Σ

Kir
t

t refer to the quantized Poisson intensity rate parameter, state, and
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spread for the component with index Kir
t . If h(τ |xmt ,Σm

t ) is the point spread function (PSF)

for component m at time t, then the probability of a shot due to the mth component falling

into the ith cell is given by hi(xmt ,Σ
m
t ) =

∫
Bi
h(τ |xmt ,Σm

t )dτ .

Per (Davey and Gaetjens, 2018), the measurement likelihood can be written as

p(Y |X,Σ, K) =
T∏
t=1

I∏
i=1

ni
t∏

r=1

hK
ir
t (yi,rt |x

Kir
t

t ,Σ
Kir

t
t )

hi(x
Kir

t
t ,Σ

Kir
t

t )
(4.2.6)

We can then write the complete data likelihood as

pcomp(Y, Λ̃, N
k, K|X,Σ) = p(Λ̃)

T∏
t=1

1

exp{λ̃t}

I∏
i=1

 1

nit!

ni
t∏

r=1

λ̃t
Kir

t hK
ir
t

(
yi,rt |x

Kir
t

t ,Σ
Kir

t
t

)
(4.2.7)

Applying the logarithm,

log{pcomp(Y, Λ̃, Nk, K|X,Σ)} = log{p(Λ̃)} −
T∑
t=1

λ̃t +
T∑
t=1

I∑
i=1

log

{
1

nit!

}
+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
λ̃t
Kir

t

}
+

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
hK

ir
t

(
yi,rt |x

Kir
t

t ,Σ
Kir

t
t

)}
(4.2.8)

The first three terms in (4.2.8) do not involve the missing data and thus are their own

expectations. Defining ˆ̃λmt and x̂mt as the estimated quantized Poisson mixing term and state

from the previous iteration, it was shown in (Gaetjens et al., 2017) that the expectation of

the fourth term is

∑
K

∫
Y

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
λ̃t
Kir

t

}
pmiss(Y,K|X̂, Σ̂, ˆ̃Λ, N)dY =

T∑
t=1

I∑
i=1

M∑
m=0

nitµ
im
t log{λ̃mt }

(4.2.9)

where

µimt =
ˆ̃λmt h

i(x̂mt , Σ̂
m
t )

f it
(4.2.10)
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and

f it =
M∑
m=1

ˆ̃λmt h
i(x̂mt , Σ̂

m
t ) (4.2.11)

We now collect the Poisson assignment prior terms together, which later can be maximized

individually.

QΛ̃ =
T∑
t=1

I∑
i=1

M∑
m=0

nitµ
im
t log{λ̃mt } −

T∑
t=1

λ̃t + log{p(Λ̃)} (4.2.12)

The expectation for the last term in (4.2.8) was shown in (Davey and Gaetjens, 2018) to be

equal to

∑
K

∫
Y

T∑
t=1

I∑
i=1

ni
t∑

r=1

log
{
hK

ir
t

(
yi,rt |x

Kir
t

t ,Σ
Kir

t
t

)}
pmiss(Y,K|X̂, Σ̂, ˆ̃Λ, N)dY

=
T∑
t=1

I∑
i=1

M∑
m=0

nitµ
im
t

hi(x̂mt , Σ̂
m
t )

∫
W i

log{h(y|xmt ,Σm
t )}h(y|x̂mt , Σ̂m

t )dY

(4.2.13)

where W i notates the region of the ith pixel. Denoting ξimt = nitµ
im
t and ||ξmt || =

∑I
i=1 ξ

im
t ,

(4.2.13) was shown to simplify for a single component to (Davey and Gaetjens, 2018)

−1

2

T∑
t=1

||ξmt || log{|Σm
t |} −

1

2

T∑
t=1

I∑
i=1

ξimt

hi(x̂mt , Σ̂
m
t )

∫
W i

(xmt − y)T (Σm
t )−1(xmt − y)h(y|x̂mt , Σ̂m

t )dY

(4.2.14)

Define the equivalent measurement for the mth component to be

ỹmt =
1

||ξmt ||

I∑
i=1

ξimt

hi(x̂mt , Σ̂
m
t )
ỹmit (4.2.15)

where

ỹmit =

∫
W i

yh(y|x̂mt , Σ̂m
t )dY (4.2.16)

As shown in (Davey and Gaetjens, 2018), we can then expand and manipulate the second
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term in (4.2.14) such that (4.2.14) can be written as

−1

2

T∑
t=1

{
||ξmt || log{|Σm

t |}+ ||ξmt ||(xmt − ỹmt )T (Σm
t )−1(xmt − ỹmt ) + trace

[
Z̃m
t (Σm

t )−1
]}

(4.2.17)

where

Z̃m
t =

I∑
i=1

ξimt Z̃mi
t =

I∑
i=1

ξimt

hi(x̂mt , Σ̂
m
t )

∫
W i

(y − ỹmt )T (Σm
t )−1(y − ỹmt )h(y|x̂mt , Σ̂m

t )dY (4.2.18)

From (Davey and Gaetjens, 2018) and (Wieneke and Davey, 2014), we can now write the

full state and spread component of the auxiliary function for the mth component as

QmX,Σ = −1

2

T∑
t=1

{
||ξmt || log{|Σm

t |}+ ||ξmt ||(xmt − ỹmt )T (Σm
t )−1(xmt − ỹmt ) + trace

[
Z̃m
t (Σm

t )−1
]}

(4.2.19)

Unobserved pixels

We will now develop modeling of unobserved pixels into Quanta. Note that the statement

of the EM iteration of the basic Quanta algorithm in (Davey and Gaetjens, 2018) accounts

for unobserved pixels, but a derivation is only given in the context of sequential HPMHT.

We take the authors approach to provide a derivation for Quanta.

Denote the number of unobserved pixels as IU and the set of shot counts from unobserved

pixels as NU . The set of shot counts due to each component in unobserved pixels is then

NkU . The statement of the auxiliary function is now

Q(X,Σ, Λ̃|X̂, Σ̂, ˆ̃Λ) = EY,K,NU [log{pcomp(Y, Λ̃, Nk, NkU , K|X,Σ)}]

=
∑
NU

∑
K

∫
Y

log{pcomp(Y, Λ̃, Nk, NkU , K|X,Σ)}pmiss(Y,K,NU |X̂, Σ̂, ˆ̃Λ, N)dY

(4.2.20)
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The missing data can be split such that

pmiss(Y,K,N
U |X̂, Σ̂, ˆ̃Λ, N) = p(Y,K|X̂, Σ̂, ˆ̃Λ, N,NU)p(NU |X̂, Σ̂, ˆ̃Λ, N) (4.2.21)

We treat the Poisson assignment prior mixing terms first. The later two terms in (4.2.12)

are independent of the shot counts and thus are their own expectation with respect to NU .

∑
NU

QΛ̃p(N
U |X̂, Σ̂, ˆ̃Λ, N) = log{p(Λ̃)}−

T∑
t=1

λ̃t+
∑
NU

T∑
t=1

I+IU∑
i=1

M∑
m=0

nitµ
im
t log{λ̃mt }p(NU |X̂, Σ̂, ˆ̃Λ, N)

(4.2.22)

The last term in (4.2.22) can be split into two an observable component over 1 ≤ i ≤ I and

an unobservable component over I < i ≤ I + IU . The observable component is independent

of the counts of the shot counts for unobserved pixels and thus is its own expectation with

respect to NU . Meanwhile, for the unobservable component, the summand only depends on

the shot count for that particular unobserved pixel and thus is independent of the others.

These observations allow us to write

∑
NU

T∑
t=1

I+IU∑
i=1

M∑
m=0

nitµ
im
t log{λ̃mt }p(NU |X̂, Σ̂, ˆ̃Λ, N)

=
T∑
t=1

I∑
i=1

M∑
m=0

nitµ
im
t log{λ̃mt }+

T∑
t=1

I+IU∑
i=I+1

M∑
m=0

µimt log{λ̃mt }
∞∑
ni
t=0

nitp(n
i
t|X̂, Σ̂,

ˆ̃Λ, N)

(4.2.23)

The expectation of nit in the second line of (4.2.23) was shown in (Davey and Gaetjens, 2018)

to equal
∞∑
ni
t=0

nitp(n
i
t|X̂, Σ̂,

ˆ̃Λ, N) =
f it∑I
j=1 f

j
t

(nt + 1) (4.2.24)

The expected measurement count n̄it can then be defined as

n̄it =


nit, 1 ≤ i ≤ I

f it∑I
j=1 f

j
t

(nt + 1), I < i ≤ I + IU
(4.2.25)
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We can then write the Poisson assignment prior component of the auxiliary function with

unobserved pixels as

QΛ̃ = log{p(Λ̃)} −
T∑
t=1

λ̃t +
T∑
t=1

I+IU∑
i=1

M∑
m=0

n̄itµ
im
t log{λ̃mt } (4.2.26)

We see that including unobserved pixels as missing information amounted to the same form

as (4.2.12) but with the addition of terms that use the expected measurement count for the

unobserved pixels.

Noting that (4.2.13) is the only term that forms QmX,Σ that involves nit and following

similar mechanics as for (4.2.12), it is easy to see that the only necessary modification to

account of unobserved pixels in (4.2.19) is to use the expected number of measurements in

the calculation of ξimt and to change the sum over I for the calculation of ||ξmt ||, ỹmt (equation

(4.2.15)), and Z̃m
t (equation (4.2.18)) to be from 1 < i < I + IU .

ξimt = n̄itµ
im
t (4.2.27)

||ξmt || =
I+IU∑
i=1

ξimt (4.2.28)

ỹmt =
1

||ξmt ||

I+IU∑
i=1

ξimt

hi(x̂mt , Σ̂
m
t )
ỹmit (4.2.29)

Z̃m
t =

I+IU∑
i=1

ξimt Z̃mi
t =

I+IU∑
i=1

ξimt

hi(x̂mt , Σ̂
m
t )

∫
W i

(y− ỹmt )T (Σm
t )−1(y− ỹmt )h(y|x̂mt , Σ̂m

t )dY (4.2.30)

Again we see that the form of the equations remains the same. This is important for

maximization of these auxiliary functions because the approaches used are unchanged.
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Limit of the Quantization

The final step of the derivation of the auxiliary function is to take the limit of the quantization

to zero. This allows sensor streams that have continuous pixel values, such as radar, to use

the given algorithm. We do not have to consider the significance of the prior being affected

by the limit as was necessary in (Streit and Lane, 2000) because the target state is not

modeled as a random variable in the Quanta algorithm. The data dependence on the prior

that is applied in (Streit and Lane, 2000) to fix this problem is also not necessary to apply

to the Poisson mixing rate prior because they are already quantized (Gaetjens et al., 2017).

Denote zit as the continuous count for the ith pixel and the quantization level to be c.

The expected quantized pixel count is then n̄it = floor
(
zit
c

)
(Davey and Gaetjens, 2018). By

taking the limit of the quantization for n̄it to zero we get

lim
c→0

cn̄it =


zit, 1 ≤ i ≤ I

f it∑I
j=1 f

j
t

zit, I < i ≤ I + IU
(4.2.31)

From (Gaetjens et al., 2017), taking the quantization limit to zero causes the quantized

Poisson mixing rates λ̃mt to be replaced with continuous equivalents λmt . Given that and the

result from (4.2.31), we see that several equations must be modified.

ξimt = z̄itµ
im
t (4.2.32)

µimt =
λ̂mt h

i(x̂mt , Σ̂
m
t )

f it
(4.2.33)

f it =
M∑
m=1

λ̂mt h
i(x̂mt , Σ̂

m
t ) (4.2.34)

where z̄it is the expected continuous count for the ith pixel.
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The form of (4.2.19) is unchanged by the limit. The Poisson mixing rate auxiliary

becomes

QΛ = log{p(Λ)} −
T∑
t=1

λt +
T∑
t=1

I+IU∑
i=1

M∑
m=0

z̄itµ
im
t log{λmt } (4.2.35)

4.2.2 Maximization steps

Mixing rates Λ

The maximization for the mixing rates, target states, and target spreads can be treated

separately. First we will look to maximizing equation 4.2.35 with respect to Λ. The procedure

is unchanged from (Gaetjens et al., 2017) and is repeated here. The conjugate prior for the

Poisson distribution is the gamma distribution(Gaetjens et al., 2017). Define the gamma

shape parameter for component m as αm and the rate parameter as βm. The previous,

predicted, and updated shape parameter estimate is then denoted as αmt−1|t−1, αmt|t−1, αmt|t

respectively. Similar definitions are made for βm. Per (Gaetjens et al., 2017), applying the

gamma conjugate prior to (4.2.4) yields the posterior distribution for λt as

p(λmt |Nm
t ) ∝ gamma(λmt ;αmt|t−1 + ||Nm

t ||, βmt|t−1 + 1) (4.2.36)

||Nm
t || is the total number of measurements associated with component m and can be esti-

mated as (Gaetjens et al., 2017)

||Nm
t || ≈

I∑
i=1

µimt z
i
t (4.2.37)

The prediction and update equations for the gamma parameters are given by Granström in

(Granström and Orguner, 2012) as

αmt|t−1 = exp

{
−δt
η

}
αmt−1|t−1 βmt|t−1 = exp

{
−δt
η

}
βmt−1|t−1 (4.2.38)

αmt|t = αmt|t−1 + ||Nm
t || βmt|t = βmt|t−1 + 1
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where δt is the duration between time scans and η determines the weight of the previous

parameter estimate. η is referred to as the forget factor. We can then estimate λmt as the

mode of the gamma distribution

λmt =
αmt|t − 1

βmt|t
(4.2.39)

Deterministic Gaussian Appearance

Following (Davey and Gaetjens, 2018) for maximizing (4.2.14) with respect to Σt
m, we can

apply several derivative identities of matrices to find that the estimate for a batch constant

Σm is given by

Σm =

(
T∑
t=1

||ξmt ||

)−1 T∑
t=1

I∑
i=1

ξimt Σ̃mi
t (4.2.40)

where the cell-level measurement covariance matrix Σ̃mi
t is given by

Σ̃mi
t =

1

hi(x̂mt , Σ̂
m
t )

∫
W i

j

(xmt − y)(xmt − y)Th(y|x̂mt , Σ̂m
t )dY (4.2.41)

Target state estimate X

The maximization of X under Quanta is significantly different than base HPMHT due to

the deterministic target model. Σ is treated as a constant. The terms that do not involve

X in (4.2.19) will not appear in the derivative and so we do not need to consider them here.

The relevant part of (4.2.19) for each component is the term

T∑
t=1

||ξmt ||(xmt − ỹmt )T (Σm
t )−1(xmt − ỹmt ) (4.2.42)

For simplicity, we continue the maximization of (4.2.42) under the assumption of a diagonal

covariance matrix. This assumption is unnecessary and the general state estimation case

is discussed in (Davey and Gaetjens, 2018). Combining the spread estimation with a state

estimation that allows for a non-diagonal covariance matrix would yield an implementation

that is well suited to dealing with non-symmetric targets that can rotate or otherwise deform
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in the sensor plane.

A diagonal covariance matrix allows us to maximize (4.2.42) with respect to each dimen-

sion j = {1, ..., D} separately. Denoting the variance of the jth dimension for component m

as σm
2

tj , (4.2.42) can be rewritten as

T∑
t=1

||ξmt ||
σm

2

tj

(xmt (j)− ỹmt (j))2 (4.2.43)

Recalling (4.2.1), we now maximize (4.2.43) by taking the derivative with respect to xmbegin(j)

and xmend(j) and setting the results equal to 0.

dQx
dxmbegin(j)

=
T∑
t=1

||ξmt ||
σm

2

tj

(xmt (j)− ỹmt (j))(1− φ) = 0

dQx
dxmend(j)

=
T∑
t=1

||ξmt ||
σm

2

tj

(xmt (j)− ỹmt (j))φ = 0

(4.2.44)

Subbing (4.2.1) into both parts of (4.2.44) and some simple manipulations produces the

system


T∑
t=1

||ξmt ||
σtj

 (1− φt)2 (1− φt)φt

(1− φt)φt φ2
t



xmbegin(j)

xmend(j)

 =
T∑
t=1

||ξmt ||ỹmt (j)

σtj

1− φt

φt

 (4.2.45)

(4.2.45) must be solved for each dimension. A pseudo-inverse approach can be used to

find a solution (Davey and Gaetjens, 2018).

Summary of EM algorithm steps

A summary of the steps for the Quanta algorithm with both extensions is given in Algorithm

1. The steps for the original Quanta algorithm are given in Section 10 of (Davey and Gaetjens,

2018).
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Algorithm 1 Quanta MTT - Poisson Mixing Rates and Unknown Deterministic Spread

Inputs: T frames. Initial values for x̂mt , λ̂mt , and the Poisson hyperpa-
rameters for each target at each frame. Initial values for Σ̂m for each tar-
get.

1: Compute hi(xmt ,Σ
m
t ) at all I for each target m

2: For all T , I and M compute f it (x
m
t ,Σ

m
t ) (equation (4.2.34)) µimt (equation (4.2.33)), ξimt

(equation (4.2.32)), ỹmit (equation (4.2.16)), and Σ̃mi
t (equation (4.2.41))

3: For all T and M compute ymt (equation (4.2.29))
Update Poisson mixing rates for each target at each timestep:

4: Estimate the number of measurements ||Nm
t || by (4.2.37)

5: Predict and update gamma parameters by (4.2.38)
6: Compute the new λmt by (4.2.39)

Update state estimate for each target:
7: Solve the system (4.2.45) using a pseudo-inverse for each dimension

Update spread estimate for each target:
8: Compute the new Σm by (4.2.40)
9: if Not converged then
10: Set x̂mt , λ̂mt , Σ̂m to the new estimates
11: Return to step 1
12: else
13: Break
14: end if
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4.3 Results

The extensions integrated into Quanta attempt to augment the algorithm in different ways

and so they are analyzed separately.

4.3.1 Poisson mixing rates

We follow a similar experimental setup to that from (Gaetjens et al., 2017) to demonstrate

that the benefits seen in HPMHT are also realized in Quanta by integrating the Poisson

measurement model. The primary benefit of the Poisson model is the robustness of the SNR

estimate to fluctuating target amplitudes. To simulate a fluctuating target, the instantaneous

target amplitude is sampled as a random variable that follows a Swerling I model

At = −A ln (ut) (4.3.1)

where A is the mean and ut is a uniformly distributed random variable. The amplitude of

the target is defined as the intensity of the pixel at the center of the targets Gaussian spread.

The peak SNR for the target is computed in dB according to

SNRpeak,dB = 20 log10A (4.3.2)

The amplitude used to compute the peak SNR must be computed from the mixing parameters

estimated by Quanta for both the Poisson and normalized mixing case. This can be done

by first forming an estimate of the total number of shots associated with the target. In the

Poisson mixing case, the total shot estimate is the same as the estimated Poisson parameter.

In the normalized mixing case, the total shot estimate is equal to the estimated mixing

proportion multiplied by the total shots in the image.

Given the estimated total target shots, the target amplitude can be computed as the

product of the estimated total target shots with the probability mass of the pixel that the
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targets center is in. The later value is equivalent to the integral of the Gaussian distribution

defined by the targets position and spread over the pixel that the targets center is in.

Before we can analyze the performance of Quanta with Poisson mixing rates, an impor-

tant, but not entirely obvious aspect of what determines its performance must be discussed.

Recall that the computation of the Poisson parameters for a timestep involves a previous

estimate for the Poisson parameters. For Quanta, these are usually the estimated parame-

ters from the previous algorithm iteration. However, this is not true for the oldest frame in

the batch, since its prior is outside of the batch and thus is not affected by the estimation

process. However incorrect the equivalent amplitude for these parameters is with respect to

the true amplitude mean will have an effect on the performance of the algorithm. To analyze

these effects, the equivalent amplitude for the prior frame for the oldest frame will be set to

either 2 or 4 less than the truth, as noted on the proceeding figures. The initial equivalent

amplitude for all frames in the batch will be set equal to the true fluctuating amplitude At.

Figure 4.1 shows the average peak SNR estimate at each frame for a 40 frame batch for

a prior equivalent amplitude error of -2. Both the Poisson and basic Quanta algorithm are

shown to underestimate the true peak SNR of the target. However, basic Quanta under-

estimates the peak SNR significantly more and its estimate is clearly inconsistent, unlike

Quanta with the Poisson mixing rates. Figure 4.2 shows the -4 prior equivalent amplitude

error case. Here we see that on average the Poisson Quanta estimate is slightly worse or

the same on average. There are three factors to consider in light of this result. The first is

that in light of the variance analysis to follow, it would still almost certainly be preferable to

use the estimate from Poisson Quanta. The second is that we can see the SNR estimate for

Poisson Quanta continued to increase as the batch progressed. Given that batch algorithms

like Quanta are generally applied as sliding windows, we can expect that this larger error

due to the lower quality initialization will disappear over a series of batches. The third is to

consider that a forget factor of 7 was used to generate the data for these figures. This high

forget factor causes a high degree of smoothing over time, which stops the algorithm from
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being able to correct for the initial error over the course of the batch. Figure 4.3 shows the

same tests where the forget factor has been reduced to two. The lower forget factor allowed

the SNR estimate to converge to a steady state that is even closer to the truth than was

seen in 4.1 and is a clear improvement over the estimate from Basic Quanta.

Figure 4.1: Average estimated peak SNR across a batch for a -2 prior equivalent amplitude
error. 100 samples were used to form the average and the forget factor was set to 7.

Figure 4.4 shows the variance of the SNR estimate across all frames and all tests for

each forget factor value. We see that the variance of the peak SNR estimate decreases

exponentially as the forget factor is increased. This makes sense, given that previous Poisson

parameter estimates are weighed more heavily in the current estimate as the forget factor is

increased. That is, increasing the forget factor causes the estimate to be smoothed more over

time. As we can see, this helps to eliminate much of the error introduced by the Swerling
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Figure 4.2: Average estimated peak SNR across a batch for a -4 prior equivalent amplitude
error. 100 samples were used to form the average and the forget factor was set to 7

amplitude model. Note that the variance in the estimate for the basic Quanta algorithm in

the -2 and -4 error case was 630 and 708 respectively. These results show that using the

Poisson mixing model with a forget factor as low as 1 can reduce the variance in the SNR

estimate by more than an order of magnitude. Using the mixing parameters to estimate the

SNR of the target should thus be significantly more reliable and practical when the target

amplitude can fluctuate if the Poisson mixing model is used.

4.3.2 Constant spread estimation

The goal with the experiments for the Constant spread estimation was to evaluate the per-

formance of the estimation across a range of peak SNRs and spreads, which is not something
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Figure 4.3: Average estimated peak SNR across a batch for a -4 prior equivalent amplitude
error and a forget factor of 2. 100 samples were used to form the average

that has been done even in the HPMHT context to the best knowledge of the authors.

Figure 4.5 shows the results for an experiment that analyzed the average spread estima-

tion error in terms of the standard deviation. Peak SNRs from approximately 0.8 to 17 were

analyzed. Tracks were initialized at the true location in each frame in an attempt to purely

analyze the capabilities of the spread estimation. The averages were formed by averaging the

results across the batch of 40 frames and across 20 separate test executions. The algorithm

was allowed to iterate 100 times, which was more than sufficient to achieve convergence

given that the initial track positions were perfect. The true spread standard deviation was

set to 4 for the X dimension and 6 for the Y dimension. The spread standard deviation for

the tracks was initialized to half of the truth. That is, 2 for the X dimension and 3 for the
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Figure 4.4: The effect of varying the Poisson forget factor on the SNR estimate variance

Y dimension. We see a mostly linear relationship between the Peak SNR and the spread

estimation error for each dimension. The error in the Y dimension is consistently around

1.5 times higher than the X dimension which follows from the linear relationship given that

the true standard deviation for the Y dimension is 1.5 times that of the X dimension. The

results demonstrate that even for very low SNRs of 0.8, the spread estimation was still able

to significantly improve upon the initialization on average, reducing the error by about one

third. However, we see that even in the higher SNR cases, the estimation was not able to

eliminate the error.

Figure 4.6 attempts to more generally analyze how the error in the estimation varies as

both the target peak SNR and spread standard deviation are varied by analyzing the relative

error in the estimation brought about for a given set of target parameters. Relative error
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Figure 4.5: Relationship between target peak SNR and target spread standard deviation
estimation error

was computed for the true σtrue and estimated σestimated spread standard deviations as

Relative Error = 100 · |σtrue − σestimated|
σtrue

(4.3.3)

For simplicity, the true X and Y dimension spread standard deviation were set to the same

value for this experiment.

There are several interesting pieces of information that can be gleaned from Figure 4.6:

• The relative error in the spread estimation increases gradually as the SNR is varied

• For a given SNR, the relative error appears consistent for standard deviations of > 2
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Figure 4.6: Relationship between target spread standard deviation and the relative error in
the spread estimate

• Going from a standard deviation of 2 to 1 sees a marginal decrease in spread estimation

performance, whereas below that the performance appears to drop off rapidly

The dropoff in performance that we see makes sense because the target size is approaching

the sensor resolution. At that point, especially with noise, there is little information from

which the true spread of the target can be estimated from. This is in contrast to targets with

larger spread standard deviations, where the true size of the target is often plainly visible

even to the naked eye, given that the SNR is sufficient.
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Chapter 5

Conclusion

5.1 Analysis of Basic Quanta

The estimation performance of the basic Quanta algorithm was evaluated for one and two-

point initialization for track positions. This evaluation took the form of a convergence

analysis across various SNRs and target sizes via application of a generalized error defini-

tion. The iterations required to reach convergence in the one-point initialization case was

found to likely be impractical for real application except potentially for scenarios where the

targets have low velocity. The convergence was found to be radically faster with two-point

initialization for the same parameters. The reasons for the faster convergence when applying

two-point initialization were discussed. Implementation considerations aimed at minimizing

the computational cost of Quanta for use in real applications were discussed.

5.2 Extending Quanta

The Poisson measurement model and deterministic spread estimation extensions were inte-

grated into Quanta via a re-derivation of the algorithm. The Poisson measurement model

extension was successful in significantly improving the quality and usability of the target

SNR estimates that can be extracted from the parameters estimated by Quanta. The error
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in the spread estimation was analyzed for a variety of relevant SNR values and was shown to

consistently break down in performance as the target size approached the sensor resolution.

5.3 Future Work

Future work will focus on developing a tracking framework around Quanta and applying this

framework to real data. This work will explore creating a computationally efficient tracking

framework by applying the parallelism exposed by the implementation strategies discussed

in Section 3.4. The comparative performance of CPU and GPU implementations of the

framework will be explored.
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