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Lay Abstract

Managing forest pests requires an understanding of their life cycle and the ability to predict when

life events will occur. It is also important to know whether insects from different parts of the country

will develop in the same way. Many models have been created to capture the relationship between

temperature and development; this study aims to implement one of these models in a Bayesian

framework to get a clearer picture of uncertainty around parameter estimates and predictions. The

model was fitted to data from the larval stages of several spruce budworm colonies, each collected

from a different location across Canada. These colonies were reared in laboratory conditions, under

constant temperature regimes. Estimates of insect development were compared across colonies and

across developmental stages.
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Abstract

The management of destructive forest pests such as the spruce budworm relies on accurate modelling

of their development. Predicting the timing of specific events in the life cycle is crucial for pest

control tactics and for modelling the landscape-scale dispersal of the insect. This thesis implements a

Bayesian hierarchical thermal response model for the larval stages of the spruce budworm. The model

was fitted to data collected from a laboratory rearing experiment on wild spruce budworm colonies

collected from locations across Canada and on a fully lab-reared colony. The results were compared

across developmental stages and geographic origins. The Bayesian model was implemented with

the non-linear, temperature-dependent development rate curve outlined in Schoolfield et al. (1981)

and the framework in Régnière et al. (2012) for individual variation and interval censored data.

Posterior samples were obtained and a quadratic relationship was observed between developmental

stage and an intercept parameter of the development curve. A second model was fitted to the data

incorporating this structure. Distributions of development rate estimates at each rearing temperature

were obtained from each posterior sample and it was observed that the lab-reared colony developed

more quickly than the wild colonies. In future work, the posterior samples can be used to generate

simulated populations for prediction, with uncertainty fully propagated throughout.
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Chapter 1

Introduction

1.1 Background

The eastern spruce budworm, Choristoneura fumiferana, is an insect species native to North America.

During periodic outbreaks, its populations have caused extensive damage to Canadian forests by

defoliation, especially of white spruce and balsam fir trees. The management of such forest pests

relies on an understanding of the pest’s life cycle and the factors that affect it (Candau et al., 2019).

For some pest management tactics, such as the spraying of insecticide, it is crucial to time application

accurately in order to target the proper development stage. An illustration of the spruce budworm’s

life cycle is shown in Figure 1.1. The spruce budworm is univoltine, producing offspring once per

year. The insect’s larval stages are referred to as instars. Upon emergence from eggs, the first instar

larvae disperse and form hibernacula in which they spend the duration of the winter and moult

into second instar larvae. Second instar larvae emerge from these hibernacula in the early spring,

at which point they begin to feed on old needles and other nutrition that is available prior to new

bud growth. In the third to sixth larval instars, larvae feed on new bud growth; these larval stages

are delineated by the shedding of head capsules. The synchrony of these larval stages with new bud

growth is crucial for survival; understanding the timing of each phenomenon is necessary in order

to predict the impact of climate change on the species’ behaviour. The subsequent pupal stage is

typically reached mid-summer, and moths emerge several days later. Spruce budworm moths have

been shown to disperse across great distances, both by flying and being carried by prevailing winds.

Understanding the timing of adult emergence is important for modelling the species’ landscape-scale

1
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Figure 1.1: Life cycle of the spruce budworm

dispersal. Development rate models form the basis for an accurate understanding of the phenology

of the spruce budworm and other insects. While very accurate for certain regions, current predictive

tools such as BioSIM (Régnière et al., 2014), do not take the geographic variation of the species into

account.

1.2 Review of Literature

1.2.1 Modelling Insect Development

Temperature is the most important factor in the growth and development of insects and other

poikilotherms (Uvarov et al., 1931; Régnière and Powell, 2013). Other factors such as photoperiod,

humidity and diet play a role in development, but temperature has the strongest impact and its

physiological effect is well understood. Most models of insect development are based on temperature

dependence (Damos and Savopoulou-Soultani, 2012). The idea of development summation is common

to most temperature-dependent development models. That is, the developmental age a of the subject

can be determined by the equation

a =

∫ t

0

r(Tt′) dt
′ (1.1)

where r(Tt) represents development rate at temperature T occurring at time t. This model structure

presumes that r is an “instantaneous” development rate; that is, an abrupt shift in temperature

immediately changes an organism’s development rate. This assumption, while extremely common in

the literature, has faced criticism, as insects may develop at different rates in fluctuating conditions
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than at constant temperatures (Worner, 1992). In nature, insects experience a wide range of fluctu-

ating temperatures. However, due to the constraints involved in observing insect development in a

laboratory setting, much of the data used to fit development rate models comes from insects reared

under constant temperature regimes. This likely causes bias in the results of fitted development rate

models. Using laboratory data to fit these models also implicitly assumes that organisms exhibit the

same behaviour under experimental conditions as they do in the wild (Tanigoshi and Logan, 1979).

Degree-Day Models

According to de Candolle’s law of total effective temperature, poikilotherms require an accumulation

of thermal units up to a species-specific threshold to complete a developmental event; the threshold

can vary genetically or geographically (Damos and Savopoulou-Soultani, 2012). This is expressed by

the equation

k = D(T − Tb)

where k is the thermal threshold, D is the duration of growth, T is the temperature experienced,

and Tb is a threshold temperature below which development stops. The units of the parameter

k are degree-days: accumulated temperature (degrees) above a temperature threshold. A simple

transformation of this equation gives what is referred to as the “degree-day” model

r(T ) =
1

D
=


1
k (T − Tb) if T > Tb

0 otherwise

in which development rate 1/D is represented as a linear function of temperature T . Estimates of

the slope and intercept can be obtained using linear regression, and the underlying parameters Tb

and k can be inferred.

Degree-day models rely on the assumption of a linear relationship between development and

temperature. Davidson (1944) describes the development rate curve for the eggs of Drosophila

melanogaster as “S-shaped”, indicating departures from linearity at both low and high tempera-

tures. Ikemoto and Takai (2000) acknowledge that degree-days are best used on data in an optimal

temperature range, and propose a modified degree-day model wherein part of the model fitting in-

volves finding upper and lower bounds for this optimal range. The typical optimal temperature

range excludes many of the temperatures that are often experienced in nature. Thus, in order to
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accurately represent development outside an optimal range, nonlinear models should be considered.

Nonlinear Models

The development summation principle described above is the same for nonlinear models, but the

development rate function r is no longer simply a linear function of temperature; it can be made

to have a more complex or flexible functional form. Many different nonlinear development rate

functions have been proposed. These models typically fall into one of two classes: statistical or

biophysical. Statistical models are created to mimic the desired behaviour of the development curve

by engineering the development rate formula to have certain geometric features, while biophysical

models are mechanistic representations of a physiological process (Rebaudo and Rabhi, 2018). While

one of the main benefits of statistical models is graphical convenience, their parameters may also

have biological interpretations.

An early non-linear statistical phenology model was the sigmoidal response proposed by Davidson

(1944), based on the same response function Van’t Hoff 1884 and Arrhenius 1915, developed for

modelling chemical reactions. In fitting this curve Davidson (1944) omitted observations above a

temperature threshold where the development began to slow, since the sigmoidal curve is not suited

to capture such behaviour. Stinner et al. (1974) proposed a sigmoid curve reflected at the optimal

temperature to capture the decreasing development rate at high temperatures, imposing symmetry

in the response curve. Other development rate curves with the same feature are the catenary model

(Janisch, 1932) and the truncated Gaussian model (Taylor, 1981). While providing an improvement

in goodness of fit to the original sigmoidal model, symmetrical models still fail to fit thermal response

data well. This issue led to the development of asymmetric, unimodal response curves (Régnière and

Powell, 2013).

One such model, developed by Logan et al. (1976), combined the exponentially increasing shape

of the observations below the optimal temperature with a quickly decreasing function representing a

sharp decline in development until a lethal temperature is reached where zero development occurs.

These two phases were combined by matching asymptotes. Unlike many that came before it, this

model contains parameters with some biological interpretation. This is a positive feature for under-

standing the model parameters themselves, making it more intuitive to compare fits across stages

or populations. Interpretable parameters are also useful for model fitting; optimization is helped by

good starting parameter values and scientists with prior knowledge about insect behaviour are likely



Masters Thesis - K. Studens; McMaster University - Statistics 5

able to provide reasonable estimates. Hilbert and Logan (1983) used the same matched asymptote

method as Logan et al. (1976), replacing the original exponential curve of Phase I with Holling’s

Type III sigmoid equation (Holling, 1965). The alternative sigmoid curve was proposed as an im-

provement over the original Phase I shape, which only approaches zero asymptotically. Hilbert and

Logan (1983) argued that the development curve should feature a lower temperature threshold, in

addition to the upper temperature threshold that exists in the model. Lactin et al. (1995) modified

the Logan et al. (1976) model, by adding an intercept term and removing an amplitude parameter

they claimed was redundant. Brière et al. (1999) proposed a new model with fewer parameters, all

with biological interpretability. However, they showed that the original Logan et al. (1976) model

provides a better fit to the data than the model with fewer parameters.

A biophysical model featuring both a linear relationship between temperature and development

in an optimal intermediate temperature range and a non-linear dampening of development at both

high and low temperatures was proposed by Sharpe and DeMichele (1977). This model was based

on work by Johnson and Lewin (1946) and Hultin (1955), who introduced models incorporating high

and low temperature inhibition of development, respectively. Sharpe and DeMichele (1977) is based

upon the assumption that an organism’s development relies on a single control enzyme which can

exist in one of three reversible states: an active state in which development occurs, and low and

high temperature states in which no development occurs. It is also assumed that development is

proportional to the concentration of enzymes in each state. Each parameter in this model represents

a feature of the theorized chemical mechanism of development, giving them each interpretability.

Schoolfield et al. (1981) claim that Sharpe and DeMichele (1977) is unsuitable for nonlinear

regression, due to high correlation between the parameter estimators. Based on Hultin (1955), the

new formulation improves the model’s suitability for regression by re-defining three of the parameters

in terms of more biologically and geometrically interpretable values. One of the parameters of this

model formulation is the rate of development at a specific temperature within the optimal range.

Ikemoto (2005) proposed a generalization to the Schoolfield et al. (1981) model which includes this

reference temperature as a parameter.

1.2.2 Modelling Individual Variability

The models described in the section above all represent a population mean response, with no fo-

cus on individual variation in development rates. For utility in population dynamics modelling,



Masters Thesis - K. Studens; McMaster University - Statistics 6

a phenology model should account for this variability across individuals. Two distinct categories

of models used for variability are cohort-based and individual-based models. Cohort models are

mainly based on observations of the overall distribution of a population across development stages,

while individual-based models require repeated observations of development for each individual in

a population (Chuine and Régnière, 2017). These individual observations can be summarized into

population level observations, but the converse is not true. If samples are taken in the wild rather

than in a laboratory setting, individual-level data and mortality data are nearly impossible to ob-

tain. For these reasons many of the variability models that have been developed fall into the cohort

category, despite the advantages of the individual-based approach (DeAngelis, 2018).

Some of the earliest models of individual variation treat hatch, larval stage progression and death

stochastically, as states through which the population progresses. In Read and Ashford (1968), the

proposed model deals with growth and survival simultaneously. The time X spent in stage Si is

represented as the minimum of the time taken to reach stage Si+1 and the time in stage Si until

death. Survival is modelled as a Poisson process, while the times in stage can follow any distribution

with suitable support and assumptions. They proposed an Erlangian distribution, which is a Gamma

distribution with integer shape parameter, while Kempton (1979) proposed a normal or inverse

Gaussian distribution. There has also been work done using life-tables to model the number of

individuals entering a stage (Dempster, 1961; Southwood and Jepson, 1962). Bellows Jr. and Birley

(1981) built upon this model, including population density at each stage with individual development

time following a positively skewed distribution.

The models described in the section thus far place distributional assumptions on development

time, but do not provide any mechanistic representation of development. In contrast, Sharpe et al.

(1977) use an assumption of normally distributed enzyme concentration to extend to a model with

normally distributed instantaneous development rate. Overall development rate is represented as

the constant development rate per unit of control enzyme, multiplied by the normally distributed

concentration of enzymes. The formula for the former value comes from the biophysical model

described by Sharpe and DeMichele (1977). Transforming the normal distribution for rates into

times gives a positively skewed distribution of times, in accordance with observed data. The mean

development rate was fitted using nonlinear regression, and the standard deviation was calculated

from observed development rates.
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1.2.3 Applications to the Spruce Budworm

Nonlinear Mean Model

Weber et al. (1999) fitted the model in Taylor (1981) to data from insects reared under laboratory

conditions at constant temperatures. The insects were collected from several locations in Canada

while the budworm populations were in outbreak, as far north as the Northwest Territories, and

the model was fitted to each population separately and compared. Model parameters differed across

populations from different locations, and large individual variation within populations was observed.

A notable difference in this work from others like it is that development was not broken up by

stage, but rather was measured from the beginning of the third larval stage all the way to pupation.

Nonlinear least squares was used for parameter estimation.

Degree-Day Cohort Model

Dennis et al. (1986) proposed an extension of Osawa et al. (1983), a stochastic model of balsam

fir bud phenology, to fit spruce budworm data observed in the wild. Osawa et al. (1983) assumed

that development level (or “age”) follows a normal distribution, with mean equal to the number of

accumulated degree days and with variance proportional to the mean. Dennis et al. (1986) used a

logistic distribution, since it can be similar in shape and the cumulative distribution function (CDF)

has an analytic form. The model parameters include development thresholds for each stage and a

variance multiplier. Development thresholds are the estimated ages in degree-days at which moults

take place. Since it is difficult to determine the actual age of an insect in the field, the model

only requires an observation of the developmental stage. The observations of age thresholds are

therefore interval censored, so the probability that a randomly selected larva resides in a given stage

is the difference of two normal CDFs. The parameters are estimated using maximum likelihood;

the authors caution that multiple starting values should be used due to the potential complexity

of the likelihood surface. Lysyk (1989) fits this model to several sets of spruce budworm data.

The optimal lower threshold for calculating degree days was estimated by fitting the model for a

range of threshold values, suggesting 8 degrees Celsius as the temperature that provided the best

fit. This temperature threshold is different from that determined by Weber et al. (1999), and is

also different from thresholds used in models in the following sections (Stedinger et al., 1985; Hudes

and Shoemaker, 1988; Régnière, 1987). In Weber et al. (1999), the lower temperature threshold is a
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model parameter, but the others estimate them either graphically or based on goodness-of-fit of the

model parameters.

Nonlinear Cohort Models

Stedinger et al. (1985) also extend Osawa et al. (1983), using a cubic polynomial of degree days and

incorporating inter-site variation instead of using only untransformed degree days. The mean model

is a linear regression equation with an intercept term, a binary variable for tree type, a Julian date

variable and the cubic polynomial of degree days. To account for variation in populations across

sites, they use a Dirichlet model for the joint distribution of the proportions of the population in each

stage for each site. Maximum likelihood estimates for each parameter were found using an iterative

search technique, and the observed Fisher Information was used to estimate the standard errors of

the parameters. Based on the likelihood ratio statistic, the model that included a cubic polynomial

of degree days provided a better fit to the data than a linear function of degree days.

Hudes and Shoemaker (1988) proposed a generalized version of this model, using the logistic

distribution proposed by Dennis et al. (1986) and allowing the mean model to be an arbitrary

function of temperature. They ultimately used a regression equation similar to Stedinger et al.

(1985) with the cubic polynomial of accumulated degree-days, a calendar date variable and a tree

type variable and adding an indicator variable for geographic location.

Nonlinear Individual-Based Models

Régnière (1987) proposed a model with two components: one for the population median and another

for individual variation around the median. The population median component uses the development

rate model from Logan et al. (1976), with some slightly modified parameters. This median model is

fitted separately for each stage of development. Individual variation is incorporated with a stage- and

individual-specific multiplier of the mean development rate. The proposed CDF of this multiplier is a

two-parameter logistic equation with median one. The median development component is fitted using

the reciprocal of the observed times to moult, while the variation component is fitted to the ratio of

each individual’s development rate to the population median. The median and individual variation

components of the model are fitted separately using nonlinear least squares and the components

are both independent across development stages. This is stricter than the model in Hudes and

Shoemaker (1988) who note that their model formulation allows for any correlation structure for



Masters Thesis - K. Studens; McMaster University - Statistics 9

individual development across stages (Hudes, 1982). Since this model is individual-based, it requires

sustained observations of the same individuals for the duration of their development.

An extension of this model is proposed in Régnière et al. (2012), wherein the mean and variation

components of the model are combined in a likelihood framework. The common thread connect-

ing the two models is the calculation of an individual’s age; it is based on the same multiplier

of the population median temperature-dependent development rate. A lognormal distribution is

proposed to represent individual variation around the mean. The likelihood framework also accom-

modates censored observations and the estimation of parameters from population means rather than

individual-level data, although more accurate estimates are obtained from individual-level data. The

framework can also accommodate any development rate function; they include an example in which

they fit the Schoolfield et al. (1981) model using their framework. A multiplicative population-

level random effect is also included to account for differences across populations reared at different

constant temperatures.

1.2.4 Parameter Estimation

All of the mean-rate nonlinear models described above are fitted using nonlinear least squares regres-

sion, many citing the iterative technique shown in Marquardt (1963). Often simplifications to models

were proposed in order to ease the computational burden of estimating parameters, such as the model

in Schoolfield et al. (1981). While many of the models incorporating individual variation were also

fitted using nonlinear least squares, some authors used maximum likelihood to estimate parameters.

Bayesian methods have successfully been used to fit phenology models for plants (Ashcroft et al.,

2016; Fu et al., 2012; Iizumi et al., 2009; Thorsen and Höglind, 2010), microorganisms (Corkrey

et al., 2012) and ectotherms (Feng et al., 2020).

1.3 Research Objective

The objective of this project is to implement a Bayesian hierarchical model for the individual-based,

temperature-dependent development rates of the spruce budworm, and to compare the resulting

parameter estimates across development stages and the colonies’ geographic origins.



Chapter 2

Methods

2.1 Data Collection

The data for this project comes from a spruce budworm (Choristoneura fumiferana) rearing exper-

iment described in Wardlaw et al. (unpublished manuscript). Samples of diapausing larvae were

collected as described in Candau et al. (2019) from several locations across Canada: Inuvik, NWT;

High Level, AB; Timmins, ON; Manic-5 weather station, QC; and Balmoral, NB (Figure 2.2). The

sampling was performed in accordance with the methods in Perrault et al. (2021). Data was also

collected from a colony obtained from the Insect Productions Services insectarium at the Great Lakes

Forestry Centre in Sault Ste. Marie, ON; this colony had been reared under laboratory conditions

for many generations. Upon emergence from diapause, individuals were collected and placed in in-

dividual containers containing artificial diet created to mimic the nutrition that the insects would

consume in the wild. The development of each insect was observed daily; a moult was reported once

a larva had shed its head capsule. In order to observe development as a function of temperature,

each colony was divided into seven sub-populations. Each sub-population was reared at a different

constant temperature, at seven evenly spaced temperatures from 5− 35◦C. Since larval development

of Canadian spruce budworm populations occurs mostly in the spring and summer, the “optimal”

temperature range was determined to be 15− 25◦C. Due to the potential for high mortality rates at

temperatures outside an optimal range, an extra rearing step was taken for populations at extreme

temperatures. For each stage, the times to moult at the extreme temperatures were estimated using

BioSIM (Régnière et al., 2014). The insects were held at those temperatures for half this time, and

10
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Figure 2.1: Sample sizes at each treatment level
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then moved to 20◦C for the remainder of each stage. Each level of the rearing experiment contained

250 individuals, resulting in a total of 10,500 individuals. Since the main objective of the project was

to observe development rates in the larval instar stages, survival was not considered in the modelling

process. Thus, the data used to fit the model consisted only of individuals who survived the full

rearing process from the first larval instar to pupation; the counts of surviving individuals at each

treatment level are displayed in Figure 2.1. The overwintering stage was also outside the scope of

this project. Only the first new generation from the wild populations was used to fit the data, to

control for any generational effect of laboratory rearing.

2.2 Model Implementation

There are several ways to implement Bayesian hierarchical models in R. Commonly-used packages

for this purpose are JAGS, WinBUGS, Nimble, Stan and TMB. Due to its computational efficiency,

Hamiltonian Monte Carlo (HMC) was preferred over Gibbs Sampling. For this reason, TMB and

Stan were preferred over the other solvers. The model was written in TMB; the R package tmbstan

(Monnahan and Kristensen, 2018) was used to apply Stan’s No-U-Turn Sampler (NUTS), a variant

of HMC, to the model.
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Figure 2.2: Collection sites of wild spruce budworm populations across Canada

2.2.1 Hamiltonian Monte Carlo

HMC is a Markov Chain Monte Carlo (MCMC) algorithm that simulates the trajectory of a particle

moving under Hamiltonian dynamics to explore a desired target distribution. Using an auxiliary

random variable to represent momentum, the algorithm uses the gradient of the target surface along

with the momentum in each dimension to explore the surface and to propose new sample points.

In the traditional HMC algorithm, a number of leapfrog steps L and a step size ε are specified in

advance. Each simulated trajectory runs for L discrete steps along the surface for time ε, and the final

point is either accepted or rejected using a Metropolis acceptance criteria. The No-U-Turn Sampler

(NUTS) (Hoffman and Gelman, 2014) is an extension of the HMC algorithm that automatically

optimizes step size and dynamically adjusts the number of leapfrog iterations required for a sample.

Instead of specifying the number of steps L in advance, the algorithm runs until it detects that the

trajectory is moving back towards the point of origin.

2.2.2 Diagnostics

Ideally, these solvers return posterior samples that are as close to independent as possible, with

enough samples that they are sufficiently representative of the full distribution. While convergence

to the true posterior distribution cannot be fully confirmed, there are diagnostics that can be used

to assess convergence and thus to inform the user whether their samples are to be trusted. The

three main numerical diagnostics in Stan are the Gelman-Rubin statistic (R̂), the effective sample
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size (ESS), and the number of divergent transitions in the sample.

Introduced by Gelman et al. (1992), R̂ is a measurement of how well distinct MCMC chains have

mixed, and thus whether the sampler has achieved adequate convergence. The statistic is based on

the ratio of the between-chain variance to the within-chain variance. The estimator is written as

R̂ =

√
N−1
N W + 1

NB

W

where N is the chain length, W is the within-chain variance and B is the between-chain variance. If

the between-chain variance is large in comparison to the within-chain variance, the chains have not

mixed adequately. Though this diagnostic is widely used, it was shown by Vehtari et al. (2021) to be

seriously flawed. They propose using the same statistic, but applied to the rank-normalized values

of the posterior draws. Using ranks instead of raw values ensures that the statistic can still diagnose

biases in posterior samples with infinite variance. They also recommend calculating the R̂ statistic

for the absolute deviations from the across-chain median of the rank-normalized values. If one chain

is not properly exploring the tails of the posterior distribution, its variance will be smaller than

that of the other chains. While the R̂ statistic taken on the untransformed posterior draws would

not detect this difference, transforming the values into folded deviations from the median makes the

mean of that chain smaller than the rest, thus enabling the diagnostic to detect non-convergence.

Vehtari et al. (2021) propose taking the maximum of the two R̂ statistics described (rank-normalized

and absolute deviations from median), and recommend accepting the samples only if the value is

smaller than 1.01.

Vehtari et al. (2021) propose a similar transformation to calculate the ESS. For estimation of a

parameter mean, the posterior sample contains as much information as an independent sample that

is the size of the ESS. The ESS is a function of the autocorrelations in the Markov chains. It is

written as

Neff =
N

1 + 2
∑∞
t=1 ρt

where N is the chain length and ρt is the autocorrelation at lag t. By rank-normalizing the posterior

sample, the normality assumptions of both statistics are satisfied; they are also invariant to monotone

transformations. The traditional ESS used is referred to as the “bulk-ESS”, as it is only representative

of the effective sample size for the bulk, or mean, of the distribution. This means that a separate

statistic must be calculated to evaluate the ESS in the tails of the distribution. For this calculation,
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the quantiles of interest from the posterior distribution are calculated using the empirical CDF. The

posterior samples are transformed using an indicator function, and the ESS is calculated on the

resulting sample. Vehtari et al. (2021) define the “tail-ESS” as the minimum ESS of the 5th and

95th quantiles of the posterior sample. The overall ESS is the minimum of the tail-ESS and the

bulk-ESS.

Divergent transitions occur when a particle’s estimated trajectory is determined to have departed

significantly from its true trajectory; this is determined by the total energy in the system. The energy

of the system is a sum of potential and kinetic energy; the former is a function of the particle’s

position, and the latter is a function of its momentum. Since total energy should be conserved

throughout the system, a transition is deemed divergent when the energy calculated from the end

of the simulated trajectory deviates significantly from the energy at the beginning of the trajectory.

The appearance of divergent transitions indicates that there are areas of the posterior distribution

that the solver cannot explore properly, often due to high curvature. Sometimes this is due to an

overly large step; if there is high curvature, a large step size can send the particle off of a ridge on the

target surface. In this case, decreasing the step size via an acceptance probability hyperparameter

can help the solver to explore those regions more carefully. However, divergent transitions can

also indicate issues with model implementation. In hierarchical models, a phenomenon known as

Neal’s Funnel (Neal, 2003) can occur when the joint density of the two variables in the hierarchy is

“squeezed” by the lower parameter. For instance, if the variance of a normally distributed parameter

is itself a parameter, small values of the variance parameter can lead to very concentrated values

of the draws from the higher-level distribution. This can create a steep surface in the parameter

space, potentially giving rise to divergent transitions. A solution to this issue is to de-centralize

the hierarchical variables in the model; that is, sample each parameter separately from a simpler

distribution with fixed parameters, and transform the variables after they are sampled to obtain

the values required for the model. In the previously stated example, the higher-level variable could

be sampled from a standard Normal distribution, multiplied by the sampled lower-level standard

deviation parameter and added to the desired mean. This effectively flattens the surface of the

target distribution, making it easier to explore (Stan Development Team, 2020).
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2.3 Model Development

The implementation of the model is based on the likelihood framework presented in Régnière et al.

(2012). This framework is, in turn, based upon a series of papers from Régnière, culminating in the

nonlinear, individual-based development rate model in Régnière (1987).

2.3.1 Original Two-Component Development Rate Model

The spruce budworm development model used in BioSIM (Régnière et al., 2014) is outlined in

Régnière (1987). This individual-level model has two components: one for the population median

and another for individual variation around the median. In the model, the developmental “age” of

an individual i in stage j is represented as

aij = δij

∫ t

0

r(Tt′) dt
′ (2.1)

where rj(Tt) represents the median instantaneous development rate at the temperature T experi-

enced at time t, and δij is a multiplier for an individual’s development rate from the median of

individuals in stage j. An individual’s age in a given development stage is the proportion of the

stage it has completed; 0 at the beginning of the stage and 1 at the end. The units of the devel-

opment rate are therefore time−1. Taking the sum of the instantaneous development rates at the

temperatures experienced by an individual, weighted by the amount of time the individual spends

at each temperature, gives its developmental age.

The nonlinear equation in Logan et al. (1976) with simplified parameters is used to represent the

median development rate

rj(Tt) =


β1
[

1
1+eβ2−β3τ

− e(τ−1)/β4
]

if Tb ≤ T ≤ Tm, where τ = T−Tb
Tm−Tb

0 otherwise

(2.2)

where Tb is the lower temperature threshold, and Tm is the upper threshold. Individual variation

around the median is represented by the random variable δij . In the model framework, the variable

δij can be assigned any distribution. In Régnière (1987), the cumulative distribution function used

to model individual variation is
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Fδ(d) = [(2q − 1)ek(1−d) + 1]−1/q (2.3)

where q and k are shape and scale parameters. Setting Fδ(d) to 0.5 and solving for δ shows that

the median of δ is one, which ensures that the median development rate of the population can be

accurately represented by r.

There are a few significant assumptions underlying this model. The first is that the effect of tem-

perature on development rate is strictly additive. That is, an insect’s development rate at a given

temperature is independent of the temperatures previously experienced. This is likely an oversim-

plification of reality, but weakening this assumption is difficult when dealing with strictly constant

temperature data. A variable temperature regime is required to detect differences in instantaneous

development rates caused by previous temperatures experienced. Nevertheless, nonlinear rate sum-

mation is more flexible than degree day modelling; it relaxes the assumption that the relationship

between development and temperature is linear.

Another assumption in this model is that an individual’s variation from the population’s me-

dian development rate is independent across development stages. Since the median development

and individual variability components are fit separately over stages, there is nothing connecting an

individual’s variation multiplier δ from one stage to the next. Furthermore, implicit in this model

formulation is the fact that within a stage, an individual’s development at a given temperature is

proportional to its development at any other temperature. That is, if individual i in stage j has

multiplier δij = 1.5, then that individual is expected to develop at a rate 1.5 times faster than the

population median at any temperature.

The reality of measuring development rates at extreme temperatures under a constant tem-

perature regime necessitates another assumption under the constraints of this model. Due to the

temperature spiking method used to obtain this data, there is an issue of non-identifiability that

arises in estimating development rates. Namely, an individual spends a fraction of each life stage in

the extreme temperature at which inference is to be made, and the other fraction at a temperature

that is more suitable for development. Since the only value observed is total time in stage, the true

proportions of development in each temperature are not observed and must instead be imputed.

Régnière (1987) provides a simple fix for this problem. He suggests using the estimate of the

median development rate at the optimal temperature as the imputed value to estimate the devel-



Masters Thesis - K. Studens; McMaster University - Statistics 17

opment rate at the extreme temperature. Since a stage is considered complete when an individual

reaches age 1, the following equation represents the breakdown of development occurring in a stage:

1 = rete + roto (2.4)

Here, re is the development rate at the extreme temperature (the value of interest), ro is the devel-

opment rate at the optimal temperature (the imputed value), and te and to represent the days spent

at extreme and optimal temperatures, respectively. Rearranging this gives

re =
1 − roto

te
(2.5)

The value of re can be estimated by plugging in a suitable estimate for ro. In this case, it is necessary

to assume that the population of individuals reared at the extreme temperature have the same mean

development rate at the optimal temperature as the population that was fully reared at the optimal

temperature. This is not likely to be exactly true, but the estimate ro is the best estimate of true

value of the extreme temperature population’s median development rate at the optimal temperature.

In Régnière (1987), the two model components are fitted separately using nonlinear least squares

regression. Each of these fits is performed for each stage independently. The mean model for a given

stage is fitted to the reciprocal values of the observed times in the stage. If there are unbalanced

observations across different temperature treatments, the regression can be weighted by the number of

individuals in each treatment. The variability component of the model for a given stage is fitted using

the ratio of the observed development rates to the median development rate in a treatment. These

ratios are pooled across temperature treatments, and the parameters of the cumulative distribution

function of δ are estimated using the empirical quantiles of the ratios.

Estimating Development Rates from Transfer Treatment Observations

The method used in Régnière (1987) to impute re relies on the assumption that each individual com-

pletes the same proportion ro of the stage per day at the optimal temperature. However, according

to previous model assumptions, ro for a given individual should be proportional to re for the same

individual. If Equation 2.5 is re-written for individual i where r∗e and r∗o are the population median
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development rates at the extreme and optimal temperatures, it becomes

1 = δi(r
∗
ete,i + r∗oto,i) (2.6)

Thus, a better estimate of re requires the imputation of δi as well as ro.

A more suitable estimate for r∗e can be obtained using the method of moments. If we assume that

the sample mean of δi is a suitable estimate for its expected value, Equation 2.6 can be rearranged

as

δi =
1

r∗ete,i + r∗oto,i
(2.7)

and so

E(δ) ≈ 1

N

N∑
i=1

1

r∗ete,i + r∗oto,i
(2.8)

where N is the number of insects in the extreme treatment and r∗o is estimated from Régnière’s

suggested method. The parameters of Fδ are universal for a given stage, so their estimates are

pooled across all of the populations reared at optimal temperatures. Estimates of those parameters

can lead to a reasonable estimate of E(δ), so solving Equation 2.8 for r∗e gives an estimate of the

development rate at the extreme temperature.

2.3.2 Likelihood Framework

In Régnière et al. (2012), the multiplicative structure for individual variation described in the section

above is used to obtain a likelihood framework that can be used in conjunction with any development

rate model and distribution of individual variation. Since observations occur at discrete intervals,

the exact time a moult occurs is unknown; all observations are interval censored. Given a vector of

model parameters θ and an observed moult at time t, the likelihood of the observation is

L(θ; t) = P (t− ∆t < X < t) (2.9)

where X is a random variable representing the time the moult actually took place and ∆t is the

time since the previous observation. The distribution of X can be derived from Equation 2.1. For
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an individual reared under a constant regime at temperature T , this equation can be re-written as

1 = δr(T,θ)X (2.10)

since the age of an individual at the completion of a stage is 1. Rearranging gives X = 1
δr(T,θ) , and

thus the probability can be written as

L(θ; t) = P

(
t− ∆t <

1

δr(T,θ)
< t

)
= P

(
1

r(T,θ)t
< δ <

1

r(T,θ)(t− ∆t)

)
(2.11)

Since the distribution of δ is known, 2.11 can be expressed as

L(θ; t) = Fδ

(
1

r(T,θ)(t− ∆t)

)
− Fδ

(
1

r(T,θ)t

)
(2.12)

This likelihood holds for any development rate function r(T ) and any distribution of δ, Fδ.

This probability framework can also accommodate extreme temperature transfer data. In the

transfer treatments, individuals begin each stage at the extreme temperature for a pre-determined

amount of time, and are transferred to a more optimal temperature for the remainder of the stage.

Thus, Equation 2.10 becomes

1 = δ [r(To,θ)X + r(Te,θ)te] (2.13)

where Te and To represent the extreme and optimal treatment temperatures respectively, and te is

the time spent at the extreme temperature. Equation 2.12 then becomes

L(θ; to, te) = Fδ

(
1

ter(Te,θ) + (to − ∆t)r(To,θ)

)
− Fδj

(
1

ter(Te,θ) + tor(To,θ)

)
(2.14)

where to is the observed time spent at the optimal temperature. In some instances, the moult occurs

during the extreme temperature period. In this case, the strictly constant temperature formulation

can be used.

A lognormal distribution for δ is proposed, since it is typically positively skewed, it ensures δ > 0,

and its multiplicative inverse is also lognormal with parameters of the same magnitude. This means

that there should be no difference between modelling rate and modelling time. Régnière et al. (2012)

also include a multiplicative, normal random effect υ to account for lack of fit between the theoretical

development rate and the treatment population mean. While this model formulation maintains many
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of the assumptions of the model in Régnière (1987), it provides a more elegant method for dealing

with temperature transfers, and it can be parameterized using maximum likelihood estimation.

2.3.3 Development Rate Model

The Schoolfield et al. (1981) model was chosen for the Bayesian implementation of the Régnière et al.

(2012) likelihood framework. The development rate equation in this model is

r(TK) =
ρ25

TK
298exp

[
HA
R

(
1

298 − 1
TK

)]
1 + exp

[
HL
R

(
1
TL

− 1
TK

)]
+ exp

[
HH
R

(
1
TH

− 1
TK

)] (2.15)

where R = 1.987kcal · K−1 · mol−1 is the universal gas constant and TK is the input temperature

in degrees Kelvin. All temperatures in this model are represented in degrees Kelvin. The formula

represents the enzyme-catalyzed reaction governing growth rate. It is based on the assumption

that these rate-controlling enzymes can either be active, or inactive due to low temperature or

high temperature inactivation; it is assumed that these states are reversible. The reciprocal of the

denominator represents the fraction of enzymes in the active state.

The parameters as described as follows:

ρ25 : development rate at 25◦C (298 K, estimated as an optimal development temperature)

TL : temperature at which the enzyme population is half active and half low-temperature inactive

TH : temperature at which the enzyme population is half active and half high-temperature inactive

HL : change in enthalpy associated with low-temperature enzyme inactivation (cal mol−1)

HH : change in enthalpy associated with high temperature enzyme inactivation (cal mol−1)

HA : enthalpy of activation of the reaction catalyzed by the enzyme (cal mol−1)

The enthalpy of activation is analogous the energy required for a reaction to take place; the larger

this value, the slower the reaction. Depending on its sign, change in enthalpy represents either a

gain or loss of energy in a system. The choice of the reference temperature of 298K (or 25◦C) was

carried forward from Schoolfield et al. (1981); enzyme inactivation due to extreme temperatures is

expected to be minimal at this reference temperature.

This model provides some important advantages over other options, specifically within a Bayesian
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framework. The first is the absence of temperature thresholds; while many of the development mod-

els in the literature include temperature thresholds, there is little evidence that they are crucial to

modelling development (Chuine and Régnière, 2017). While there is evidence of increased mortality

at extreme temperatures, mortality can be seen as a separate process from development. Under

the structure of the Régnière et al. (2012) model, individuals vary around a single population mean

development rate curve. Since the temperature thresholds are features of this mean curve, each

individual would be assumed to have the same threshold. A fully continuous development rate

curve that approaches zero asymptotically at the extreme temperatures provides more flexibility,

since development can effectively drop to zero for certain individuals while allowing others to con-

tinue development. Discontinuity is another disadvantage of certain implementations of temperature

thresholds, especially when dealing with gradient-based solvers such as Stan. Not only does it make

the surface non-differentiable in certain areas, but the log-likelihood becomes unstable. For instance,

if a sampled lower temperature threshold is greater than a point where development occurs, the

log-likelihood becomes negative infinity. This makes it difficult to specify a prior for these threshold

parameters.

The other advantage of the Schoolfield et al. (1981) model is the interpretability of the parameters.

Most parameters are rates and temperatures, for which estimates of central tendency and spread

are intuitive. The enthalpy parameters, HL, HA and HH , are not easily estimated but Sharpe and

DeMichele (1977) provide estimates with starting values based on averages over more than 50 enzyme-

substrate systems. The scale of the prior distributions can be estimated based on the magnitude

of the values. Graphical interpretations of these parameters are also explored in Schoolfield et al.

(1981); they can be used to approximate the slopes of three different sections of the curve when

plotting the reciprocal of temperature in degrees Kelvin on the x-axis and the log development rate

on the y-axis, as depicted in Figure 2.2. On a plot of temperature and development rate, they control

the slope of the curve at the points TL, 298 K and TH .

2.4 Hierarchical Model

The remaining model parameters represent individual variation around the mean development curve,

a random effect representing for lack-of-fit between the theoretical development rate response and

the treatment mean, and a variance parameter for the random effect. Each temperature treatment
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Figure 2.3: Graphical interpretations of HL, HA and HH , from Schoolfield et al. 1981

in the dataset is modelled as a separate treatment, since each of those subpopulations are reared

separately. Therefore, each level of the random effect for the deviation of the treatment mean from

the estimated development rate represents a different rearing temperature.

These remaining model parameters are defined as:

σε : standard deviation of the random variable ε = log(δ)

υ : multiplicative lack-of-fit between theoretical response and treatment mean (random effect)

συ : standard deviation of υ

The full log-likelihood function of the parameter set θ for one population level (i.e. one stage of

one colony) is

ll(θ) =
∑
j

{
log
[
fυ(υj)

]
+
∑
i

log

[
Fδ

(
1

υj
[
teijr(Tej ,θ) + (toij − ∆tij)r(Toj ,θ)

])

− Fδ

(
1

υj
[
teijr(Tej ,θ) + toijr(Toj ,θ)

])]} (2.16)

where fυ is the normal density function with mean 1 and variance σ2
υ, and Fδ is the log-normal

cumulative distribution function where the normal random variable ε = log(δ) has mean − 1
2σ

2
ε and

variance σ2
ε . The latter distribution implies that δ is log-normally distributed with mean 1. The
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rate equation r is represented by Equation 2.15. The i and j subscripts represent individuals and

treatments, respectively. In this model, the treatments correspond to different rearing temperatures.

The value ∆tij represents the amount of time between the each observed moult and the previous

observation.

2.4.1 Additional Structure

Upon examining the posterior samples for each population level, it was evident that there was a

strong quadratic relationship between stage and ρ25. To fit this structure, the ρ25 parameter was

replaced by a quadratic function of the discrete development stage. Using stages as integer values

provides a simplified discrete approximation to where the population actually lands in the life cycle.

This discrete approximation could eventually be replaced by a continuous proxy for life cycle progress,

such as insect weight. To model the quadratic structure, the coordinates of the vertex and the ratio,

φ, of the development rate at the vertex to the development rate at the final development stage were

used as parameters in the quadratic equation. In vertex form, the equation for ρ25 is

ρ25 = a(s− xv)
2 + yv (2.17)

where s is stage (s = 0 for L2, s = 1 for L3, etc.), xv and yv are the vertex coordinates, and a is an

amplitude parameter. Letting φ be the ratio mentioned above, the curve should pass through the

point (4, φyv), so

φyv = a(xv − 4)2 + yv (2.18)

Solving for a gives

a =
yv

(xv − 4)2
(φ− 1) (2.19)

and thus the quadratic representation of ρ25 is

q(s) =
yv

(xv − 4)2
(φ− 1)(s− xv)

2 + yv (2.20)

To add flexibility to this structure, a multiplicative lack-of-fit parameter was included as a random
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effect. Where ρ25 appeared in the original model, it is replaced by

ρ25 = q(s)eα (2.21)

where α ∼ N(µ = −σ2
α

2 , σ = σα) to ensure that E(eα) = 1.

The remaining model parameters are treated as independent across stages, maintaining the flex-

ibility for each parameter that is attained by running each level separately, while combining the

stages through the quadratic function for the ρ25 parameter.

2.4.2 Choice of Priors

Original Model

Most of the priors specified for the model are centred at the values published in Régnière et al.

(2012). The priors are defined as follows:

ρ25 ∼ Beta(α = 8, β = 8)

TL ∼ Normal(µ = 283.9, σ = 2)

TH ∼ Normal(µ = 306.2, σ = 2)

HL ∼ Normal(µ = −59, 700, σ = 1, 000)

HA ∼ Normal(µ = 11, 400, σ = 5, 000)

HH ∼ Normal(µ = 100, 000, σ = 20, 000)

log(σε) ∼ Normal(µ = −0.75, σ = 0.075)

log(συ) ∼ Normal(µ = −2.5, σ = 0.1)

υ ∼ Normal(µ = 1, σ = συ)

In the scaled, de-centralized model implementation, certain priors are altered for ease of compu-

tation. The affected priors are as follows:
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HL · 0.001 ∼ Normal(µ = −5.97, σ = 0.1)

HA · 0.001 ∼ Normal(µ = 1.14, σ = 0.5)

HH · 0.001 ∼ Normal(µ = 10, σ = 2)

η ∼ Normal(µ = 0, σ = 1)

υ = ησυ + 1

Since ρ25 represents a development rate and completion of a stage is not expected to take less than

one day, the [0, 1] support of the beta distribution makes it an appropriate prior for this variable. The

variances of the temperature parameters were determined based on the typical spread of temperature

values experienced by the spruce budworm, while the spread of the enthalpy parameters was based

simply upon the magnitude of the published parameter values. The signs of these parameters are

known; HA and HH should be positive while HL should be negative. The chosen standard deviation

makes sign changes for these priors rare. Since the variance parameters must be positive, the priors

were set for the log-transformations of these variables to ensure that they had the proper support.

The σε parameter represents the deviation of individuals from the mean development rate curve, while

συ represents the deviation of a treatment mean from the expected mean. Variance of individuals

around the mean is expected to be larger than that of treatments around the expected value. Since

the objective function contains the log-transformed difference of evaluations of the normal CDF with

standard deviation σε, a small variance can lead to minute values of the difference and thus values

of the objective function that are inflated in magnitude. These values can cause issues with for the

solver, as the gradient of the likelihood surface can become too steep; suggesting larger values of this

variance parameter mitigates this issue. The objective function to be minimized by the solver is the

negative of the sum of the log likelihood and the log density of the prior draws.

Structured Model

The prior distributions on the parameters in the structured model remain the same as in the original

model, with the exception of the ρ25 parameter, and the addition of extra parameters. The ρ25

parameter is replaced by the three parameters in the quadratic equation, and the random effect and
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its standard deviation are also added as parameters. They are specified as follows:

xv ∼ Normal(µ = 2, σ = 0.1)

yv ∼ Beta(α = 5, β = 6)

φ ∼ Beta(α = 5, β = 5)

log(σα) ∼ Normal(µ = −2, σ = 0.1)

α ∼ Normal(µ = −σ
2
α

2
, σ = σα)

and for the de-centralized implementation,

log(σα) ∼ Normal(µ = −2, σ = 0.1)

ψ ∼ Normal(µ = 0, σ = 1)

α = ψσα − σ2
α

2

Since the L4 (s = 2) development stage is known to be the shortest, the prior for xv was centred

there. The initial prior on xv was wider, with a standard deviation of one, but this led to samples

with infinite log likelihoods. The width of the prior was decreased iteratively until the solver returned

acceptable samples. Similar to the prior for ρ25 in the unstructured model, the support for yv should

also be in [0,1], so a Beta prior was chosen. Since it is meant to represent a fraction of yv, a Beta

prior was also chosen for φ.

2.4.3 Input Data

For each observation in a given stage and colony, the solver takes as input: extreme treatment

temperature, optimal treatment temperature, observed time in extreme treatment, observed time in

optimal treatment, previous observed time, number of observations and block index. The previous

observed time is a value calculated from the other observations, under the assumption that the ob-

servation period is one day. For observations from optimal treatment temperatures, it is calculated

by subtracting one day from the observed time in optimal treatment. For these observations, the

observed time in extreme treatment is zero. For observations from extreme treatment temperatures,



Masters Thesis - K. Studens; McMaster University - Statistics 27

there are two cases. The first is the typical case, where the moult occurs after the time at extreme

temperature, during the time at optimal temperature. In this case the previous observed time is the

time at optimal temperature, minus one day. The second case is that a moult occurs during the time

at extreme temperature, before spending any time at optimal temperature. These observations are

treated like observations for individuals in optimal temperature treatments. The optimal tempera-

ture entry is set to the extreme temperature value and extreme temperature entry is set to zero. The

previous observed time is recorded as the observed time in treatment, minus one day. Due to the

impossibility of an instantaneous moult, previous observed time values equal to zero are increased

to 0.1, both for numerical convenience and realism.



Chapter 3

Results

3.1 Diagnostics

The model was run separately for each combination of stage and colony. Four chains were run for

each level, with each chain running for 10,000 iterations including a 500-iteration warmup period.

For each run, the maximum R̂, minimum ESS and number of divergent transitions were calculated

and returned. The values of the first two diagnostics for each of the levels were within acceptable

ranges, with all values of R̂ less than 1.01 and all values of the ESS greater than 10,000.

3.1.1 Divergent Transitions and σε

After decreasing the solver’s step size and de-centralizing the model’s hierarchical parameters, the

solver returned one divergent transition when fitting the model to the L4 stage of the laboratory-

reared colony. A possible reason for this divergent transition is the difference of CDFs taken in the

objective function, which is included to represent the interval censoring in the data. The distribution

in question is that of the log-transformed multipliers representing individual variability. For an

individual with very slow development relative to the population mean, the difference is taken in

the lower tail of the CDF. The further into the tail the point lies, the flatter the CDF is at that

point. Thus, the difference in the CDF evaluated at that point and a point nearby can be arbitrarily

close to zero. As the log-likelihood is a function of the log of this difference, extreme points can

cause its magnitude to increase dramatically. This suggests that the variance parameter of the log-

transformed individual variability could be the source of divergent transitions, which can occur when

28
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such steep features appear on the likelihood surface.
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Figure 3.1: Calculation of likelihood for a point from the lab-reared colony at 25◦C, for which stage
L4 took 7 days. Light blue ribbon represents range of estimates over 100 samples from the prior and
dark blue line represents median at each value of σε.

Figure 3.1 illustrates how σε can affect the likelihood of extreme observations. Increasing σε

should have the effect of pulling every observation out of the tails, into the bulk of the distribution.

The marginal effect of σε on the objective function decreases dramatically as σε increases. Thus, a

potential solution for the issue of divergent transitions in this model is to tighten the prior of log(σε)

around a larger value. Setting the prior to log(σε) ∼ N(−0.7, 0.075) eliminated divergent transitions

for the problematic population, and did not cause any issues when fitting the model to the rest of

the populations.

3.2 Posterior Predictive Checks

Figure 3.2 shows estimates from the model fits for each colony and stage with data overlaid. The black

points represent development rate estimates from the observed data. For non-transfer-treatment

data, the development rates are estimated by subtracting 0.5 days from the observed number of

days to moult, and taking the reciprocal. The subtraction is a rough adjustment for using interval

censored data. For the transfer treatment data, the estimates are obtained using the method of

moments as described at the end of Section 2.3.1, with negative development rate estimates set to

zero. For extreme temperature treatments, the input values for days at optimal temperature are

also adjusted by subtracting 0.5 days. Since these observations of development rate are estimated,
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some discrepancies between these values and the model estimates can be expected. The dark blue

lines in the figure represent the median development rate estimates from the posterior sample at

each temperature. The transparent dark blue ribbons around these lines represent the interquartile

range of estimates and the 5th-95th quantile intervals of the estimates.

The estimated development rate values at each of the rearing temperatures were transformed by

the υ random effect multipliers, and interpolation splines were used to connect the points. This was

done using the interpSpline function in R’s splines package (R Core Team, 2020). These inter-

polation splines were used as an alternative to the estimated curves themselves to better represent

the fit of the curves to the data. If the υ parameter is left out of the plotting completely, the graphic

does not accurately represent the model fit, since the measured lack of fit to the data is not taken

into account.

The innermost light blue ribbons represent the 2.5th and 97.5th quantiles from the distribution of

individual variation around the median development rate estimates (the dark blue line). The lighter

shades of the light blue ribbons are analogous to the dark blue ribbons, representing the 25th-75th

and 5th-95th quantiles of the posterior sample. Using each posterior sample’s respective value of σε,

the quantiles of the distribution of individual variation were calculated and multiplied by each value

of the spline to obtain the upper and lower boundaries of each ribbon. We would expect most of the

points to fall within the outermost light blue ribbons and that the dark blue ribbons pass through

the centres of the point clusters at each temperature.

For the majority of levels most points lie within the outermost intervals, and most curves pass

through the centres of the observed values. However, there are many instances where the median

development rate curves and ribbons miss the data points completely. For instance, the L2 estimates

for the Northwest Territories, Québec and Ontario colonies dip below all of the observations at 30

and 35◦C. This also occurs for many populations at the 5◦C observations. In the New Brunswick

fits, the estimated observed development at 35◦C is consistently zero, but the model estimates never

reach those observations.

The thickness of the dark blue intervals show that the estimated development rates in the L2 stage

are more variable than the estimates in the other stages. The non-extreme temperature estimates

(15-25◦C) show very little variability, but the estimates at both low and high extremes appear to

be quite variable. For most other stages, there is little variability in development rate estimates

across the full rearing temperature spectrum. Since most of the discrepancies occur at the transfer
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Figure 3.2: Posterior predictive checks. Dark blue lines represent median development rate estimates,
shades of dark blue ribbons represent interquartile range and 5th-95th quantiles. Light blue ribbons
represent 2.5th and 97.5th quantiles of distribution of individual variation, with shades representing
median, 25th-75th quantiles and 5th-90th quantiles of posterior sample. Black points represent
development rate estimates from actual observations.
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Figure 3.3: Comparison of simulations from posterior generative model to observations. Violins
represent densities of simulated observations, while points represent actual observations.
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temperatures, they could be partially due to the estimation procedure for development rates from

the observed data.

To compensate for any discrepancies resulting from this type of estimation, sample datasets

were randomly generated from the posterior distribution and interval censored as though they were

observed in the laboratory following the experimental protocol, and development rates were estimated

from these values as they were for the observed data. At each level, 1,000 samples were taken from

the posterior distributions and 100 data points were randomly generated from each sample at each

temperature. Violin plots represent the distribution of values in a group by plotting a symmetric

version of the kernel density estimate for the points within a group. The violins in Figure 3.3

represent the densities of these simulated datasets, and the dark blue points show the estimated

rates from the actual observations. The densities tend to capture the points well; the lack of fit

in the L2 stage for Québec, Northwest Territories and Ontario is less pronounced and for many

levels the extreme-temperature observations are captured just as well as those from more optimal

temperatures.

A major discrepancy that is still visible is that of the New Brunswick 35◦C observations and their

estimates. For each development stage, the estimated development at 35◦C for the New Brunswick

colony is zero, but the model does not reflect that until the L6 stage. The other visible discrepancy

is in the 5◦C observations in the lab-reared colony. Similar to the New Brunswick 35◦ observations,

the observed estimates are zero but the model tends higher.

Most observations fall within reasonable ranges of the violins, but in certain areas the observed

values lie consistently in the tails. This occurrence is most visible in the 30 and 35◦C violins of

the Northwest Territories colony, and the 35◦C violins of the New Brunswick and Alberta colonies,

which indicates that there may still be some unexplained lack of fit in the model.

3.2.1 Influence of συ Prior

Values of υ that are far from one indicate a large discrepancy between the estimated development

rate curve and the observed mean development rate. A large value of the variance parameter for υ,

συ, could therefore lead to worse fits of the development rate curve parameters to the data, since

values of υ would be free to vary widely. That is, if the lack-of-fit is allowed to be large, there is less

of a penalty for parameters whose corresponding development rate curve produces estimates that

are far from the data. To assess to assess the effect of the συ parameter, the model was fit to the L2
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stage of the New Brunswick colony at four different fixed values.
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Figure 3.4: Comparison of posterior predictive plots for four fixed values of συ

Figure 3.4 shows the posterior predictive plots associated with each of these fixed values, untrans-

formed by the estimates of the lack-of-fit parameter υ. While Figure 3.2 displays splines connecting

transformed estimates at each treatment temperature, Figure 3.4 displays the estimated develop-

ment rate curves across the span of temperatures. If the initial hypothesis were correct, the smaller

values of συ would bring the bulk of posterior curves closer to the observations at each temperature.

However, Figure 3.4 shows that this is not the case; in fact, the fit with large συ comes closest

to the point at 35◦C. This indicates that the discrepancy in the fit for this population is actually

likely due to either overly restrictive priors on the development rate parameters, or to an unsuitable

development rate curve. Larger values of συ bring central estimates closer to the observations, but

also increase the variance of the development rate estimates across the posterior sample.

3.3 Comparison Across Stages

Since the life stages of individuals from a given colony are likely correlated, sharing information across

stages would be a good feature of a fully realized development model. Not only does this make use
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of more data in the model fitting, it could also reduce the total effective number of parameters used

to fit all of the data for a given colony.
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Figure 3.5: Comparison of marginal posterior distributions of ρ25 across stages for each colony

Box plots for each variable were generated to show any functional relationship across stages.

While most parameters showed no distinguishable structure across development stages, the ρ25 pa-

rameter showed a strong quadratic relationship with stage (Figure 3.5). This makes sense intuitively,

since ρ25 is effectively an amplitude parameter for development rate; it represents the pattern in the

durations of each stage.

3.3.1 Structured Model

The structured model described in Chapter 2 was fitted for each colony separately. The posterior

samples for each colony show no clear evidence of non-convergence, and the effective samples sizes

are sufficiently large. Divergent transitions appeared in some of these model runs, but increasing the

prior of σε as in the independent model runs eliminated them.

Figure 3.6 compares the posterior distributions of the independent and structured model runs for

the Ontario colony. In the pairs plot of the structured model, the ρ25 parameter samples have been
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(a) Independent Runs

(b) Structured Model

Figure 3.6: Posterior samples for the Ontario colony from (a) independent model and (b) stage-
structured model runs

estimated from the samples of xv, yv and φ. The marginal densities across stages are fairly consistent

between the two model runs, but it is evident that the correlation structure of the ρ25 parameter

is different. The correlation between ρ25 and HA switches signs for each stage and decreases in
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magnitude, while the correlation between ρ25 and TL becomes more pronounced and the correlation

between ρ25 and TH effectively vanishes.
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Figure 3.7: Comparison of marginal posterior distributions of ρ25 from unstructured model and each
stage from the structured model

Figure 3.7 shows the fitted values of ρ25 from the structured model compared to the fitted values

of ρ25 for the model where each level is run independently. The estimates of this parameter are

systematically smaller than those from the independent runs. This is also reflected in Figure 3.8,

a comparison of the mean estimates across all posterior samples of the structured model and the

independent runs for each level. The cause of this discrepancy in the structured results is unclear;

there is no evidence of non-convergence in the posterior samples, and the multiplicative random

effect α should allow the estimates of ρ25 to be effectively equal for the two model types. Figure 3.8

shows the large differences in development rate estimates between the two model types in most levels

of the model, especially at high temperatures in the L2 stage. The two model types appear the most

similar in the L6 stage.
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Figure 3.8: Comparison of development rate estimates at all observed temperatures between struc-
tured and unstructured models. Solid lines represent mean estimates at each observed temperature
fitted with splines, while the ribbons represent the 2.5th and 97.5th percentiles of the distribution of
individual variation around the mean estimates. Black points represent development rate estimates
from actual observations.
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3.4 Comparison Across Colonies

The behaviour of the models fitted to different colonies can be studied by comparing both the

posterior distributions of the parameters and the distributions of the estimated development rates

at different temperatures of interest.

3.4.1 Parameter Estimates

Figure 3.9 shows the marginal posterior samples from the unstructured model for each parameter.

The quadratic shape of the ρ25 parameter is immediately visible across stages. The value of ρ25

for the lab-reared colony is consistently larger, or at the upper end, of the values of this parameter

across the rest of the colonies. As previously mentioned, this parameter represents the amplitude

of the development rate curve; this indicates that the insects from this colony tend to develop

more quickly than the rest. This phenomenon could be explained by the colony’s genetic history

of being reared under similar conditions. The lab-reared colony is also consistently on the upper

end of the TH parameter estimates. This parameter represents the temperature at which half of

the control enzymes have been deactivated due to high temperature denaturation, so large values of

this parameter indicate tolerance to higher temperatures. The colonies in the box plots are sorted

according from highest to lowest latitude of geographic origin; this gradient is most pronounced

in the TH parameter, specifically in the L2, L5 and L6 stages. The order of tolerance to high

temperatures is flipped from L2 to L5; Ontario has minimal high-temperature tolerance in L2 and

the more northern colonies increase by latitude, while the reverse is true in the L5 stage. In the

L6 stage, tolerance to high temperatures decreases with increasing latitude. This behaviour makes

sense, since we would expect colonies from higher latitudes to have less high-temperature exposure,

especially during the L6 stage which typically occurs mid summer. The values of HL and HH , which

are proportional to the slopes of the development rate curve at TL and TH respectively, are relatively

consistent across colonies. On the other hand the HA parameter, which has the same interpretation

for 25◦C, varies widely across colonies and within colonies across stages. The Alberta colony has

more individual variation in development rates than other colonies, as reflected in the σε parameter.

This colony also has consistently low values of TL, indicating a tolerance to low temperatures. The

parameter estimates are, unexpectedly, consistently lower than those for the Northwest Territories

population. Another anomaly in the TL parameter is the sudden downward spike in the estimates
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for the lab-reared population in the L5 stage. In the lack-of-fit parameter συ, the estimates are

relatively consistent across province and stage until stage L6, where they increase sharply for the

Northwest Territories, Québec and New Brunswick colonies.

3.4.2 Development Rate Estimates

Figure 3.10 shows violins representing the distributions of central development time estimates for

each posterior draw across colonies and stages; estimates were obtained at each temperature for each

posterior draw. The estimates for the lab-reared population are consistently large relative to the

estimates for the other colonies, as was anticipated by the estimates of ρ25 for that colony. This

discrepancy is especially visible in the L3 development stage, in which the decrease in development

rates due to high temperatures is significantly slower for this colony than for the rest.

Across all colonies, the development rate estimates at the 30 and 35◦C rearing temperatures

have much higher variability than the rest of the parameters, especially in the first three stages of

development; in the L2 stage, the distributions of estimates for certain colonies span the height of

the development curve. The difference between the Northwest Territories colony and the others is

most obvious in the high temperature estimates for stages L4-L6; the estimated development rates

decrease more rapidly in the Northwest Territories colony, indicating that the insects from that

colony are more negatively affected by high temperatures in late stages.
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Figure 3.9: Comparison of marginal posterior distributions of each parameter from unstructured
model across colonies and stages
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Figure 3.10: Comparison of distribution of central development rate estimates at each rearing tem-
perature across colonies and stages.



Chapter 4

Discussion

4.1 Convergence

The Bayesian hierarchical model was fitted successfully to every level of the dataset, with no obvious

lack of convergence. Divergent transitions in the initial round of posterior sampling revealed regions of

high curvature in the target distribution, despite the de-centralization of the hierarchical parameters

of the model. The cause of this curvature was attributed to interval censored data; this was dealt

with by shifting the prior distribution of the variance parameter for the distribution of individual

variation to concentrate around larger values.

Altering the prior on that variable superficially fixed the issue at hand, but required an iterative,

trial and error approach to do so. A more effective and more principled way to handle this issue

of curvature would be to parameterize the model in a way that would prevent it altogether. A

possibility would be to implement a prior with thicker tails on the problematic variance parameter,

such as a Student-t prior, thereby increasing the distance between the two evaluations of the CDF for

points far from the bulk of the distribution. Another solution, which would have major implications

on data collection, would be to rely on an observation of growth such as weight or size rather than an

observation of whether or not a life event occurred. This would eliminate the interval censoring, thus

eliminating the cause of the problematic target surface. While this would add significant time and

resource requirements to the data collection process, there are other reasons why such continuous

measurements provide advantages over the discrete observations of times to moult (Section 4.3).

43
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4.2 Model Fits

The model fits most levels of the data quite well. There was some difficulty for observations with

estimated development rates close to zero but most points fell within the range of the simulated data

points from the generative model (Figure 3.3). Some observations, especially at the high extremes of

rearing temperature, landed in the tails of the simulated densities, indicating some lack of fit at those

temperatures. Reasons for this lack of fit could be overly restrictive priors on some of the parameters

of the development curve, limiting its flexibility, or an unsuitability of the selected development rate

curve to fit the data. The generalization of the same development curve as presented in Ikemoto

(2005) could be worth investigating, as the curve in its current form is restricted in the reference

temperature for the amplitude parameter, ρ25. While this temperature is said in Schoolfield et al.

(1981) to be constant within a given species, the wide geographic variation in the spruce budworm

and the differences in fits across colonies suggest that this parameter could also vary across colonies.

Fitting a Bayesian hierarchical model to the individual-level data is beneficial for prediction

purposes. It provides a built-in generative model for simulating the population response to different

climate regimes, propagating uncertainty throughout. The posterior samples also provide credible

intervals for parameter values and for any function of the parameter values. The limitation of using

these fits to predict the behaviour of insect populations in the wild is that they assume that the

response of insects in the wild mimics the response of insects reared in laboratory conditions, under

constant temperature regimes. This bias can be evaluated by comparing the estimates from the

model fits to observations of wild populations. This type of validation would be advisable before

accepting long term predictions based on the fits from these models. Future work to be done also

includes rearing insects under a variety of fluctuating temperature regimes to assess their effect on

insect development.

As shown in Figure 2.1, some treatment levels had very small sample sizes compared to others.

Specifically, the 15◦C treatment level showed high mortality across most colonies, and the Alberta

colony contained far fewer samples than any other colony. In Bayesian models, smaller sample sizes

result in larger influence of prior distributions. For this reason, the estimates from the Alberta colony

may tend closer to the prior distributions than the estimates for the rest of the colonies. Future

work includes modelling individuals’ survival across development stages, and fitting a model using

the right censored datasets containing every individual.
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4.3 Comparison Across Stages

The independent model runs revealed a strong quadratic structure in the amplitude parameter of

the development rate curve across stages in each colony. This led to the implementation of a model

incorporating this quadratic structure across stages; the other parameters were allowed to vary

independently across stages, but the ρ25 parameter was represented by a quadratic function of the

discrete developmental stage. A random effect multiplier was included to allow for stage-specific

deviation from the quadratic curve. Fitting this model resulted in different estimates than the

independent runs; the estimates of ρ25 were systematically smaller in the structured model, and the

correlation structure of the posterior was changed.

A limitation of the implementation of the structured model is that stages are treated as discrete,

evenly spaced, ordinal values. This representation is an oversimplification of the way development

stages actually occur. An individual is determined to have completed a stage upon moulting, and

the moults themselves are marked when individuals shed their head capsules. It is possible that

these occurrences are more closely related to the individuals’ sizes than to an abrupt shift in their

physiology causing a change in their response to temperature. It is likely that there is a gradual

shift in the response over time, as an individual grows. The quadratic structure observed in the

amplitude of development rate curves indicates that there is some continuum in the thermal response

of individuals as they grow, so continuous observations of development such as size or weight over

time could be mapped to this structure to produce a more sophisticated model of thermal response

across development.

Another component that could be added to stage-structured model is a notion of correlation

across stages for individuals. The current formulation of the model operates under the assumption

that individuals’ development relative to the population mean is independent across stages, but this

assumption has never been validated. Estimates of correlation parameters from a model with this

structure would contain such information. This structure would take full advantage of the individual-

based data, and would provide information that could not be ascertained from cohort-based data

collection.
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4.4 Comparison Across Colonies

Comparing the estimates from the unstructured model across colonies revealed that the lab-reared

colony produced development rate estimates that consistently stood out from the rest. The estimates

indicate that insects from this colony tend to develop more quickly than those from wild populations.

This suggests that estimating development rates from colonies that are not adapted for outdoor

conditions such as fluctuating or extreme temperatures and natural diet can result in bias.

Comparing estimates also revealed differences in the fits of development rate curves across

colonies. The full implications of these differences cannot be assessed only by comparing param-

eter estimates; rather, a more thorough investigation such as predictive simulations should be done

to further examine the differences in thermal response. An example of such a predictive simulation

would be to generate populations from the posterior distributions for every colony and simulate the

populations’ development over historical temperature observations. The resulting distributions of

the proportions of populations in each stage over time could then be compared across colonies to

assess how different colonies would fare under similar weather conditions. Future work also includes

mapping development rate parameters to spruce budworm subpopulations, as determined by their

genomic structure.



Bibliography

Ashcroft, M., Casanova-Katny, A., Mengersen, K., Rosenstiel, T., Turnbull, J., Wasley, J., Water-
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