
EFFICIENT MOBILE SENSING FOR

LARGE-SCALE SPATIAL DATA ACQUISITION

EFFICIENT MOBILE SENSING FOR LARGE-SCALE SPATIAL

DATA ACQUISITION

BY

YONGYONG WEI, M.Sc.

a thesis

submitted to the department of Computing and Software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Yongyong Wei, February 2021

All Rights Reserved

Doctor of Philosophy (2021) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Efficient Mobile Sensing for Large-Scale Spatial Data Ac-

quisition

AUTHOR: Yongyong Wei

M.Sc. (Computer Science),

University of Chinese Academy of Sciences, Beijing,

China

SUPERVISOR: Dr. Rong Zheng

NUMBER OF PAGES: xxv, 153

ii

Lay Abstract

A variety of applications such as environmental monitoring require to collect large-

scale spatial data like air quality, temperature and humidity. However, it usually

incurs dramatic costs like time to obtain those data, which is impeding the deploy-

ment of those applications. To reduce the data collection efforts, we consider two

mobile sensing schemes, i.e, mobile robotic sensing and mobile crowdsourcing. For

the former scheme, we investigate how to plan paths for mobile robots given limited

travel budgets. For the latter scheme, we design a crowdsourcing platform and study

user behavior through a real word data collection campaign. The proposed solutions

in this thesis can benefit large-scale spatial data collection tasks.

iii

Abstract

Large-scale spatial data such as air quality of a city, biomass content in a lake, Wi-Fi

Received Signal Strengths (RSS, also referred as fingerprints) in indoor spaces often

play vital roles to applications like indoor localization. However, it is extremely labor-

intensive and time-consuming to collect those data manually. In this thesis, the main

goal is to develop efficient means for large-scale spatial data collection.

Robotic technologies nowadays offer an opportunity on mobile sensing, where data

are collected by a robot traveling in target areas. However, since robots usually have

a limited travel budget depending on battery capacity, one important problem is to

schedule a data collection path to best utilize the budget. Inspired by existing litera-

ture, we consider to collect data along informative paths. The process to search the

most informative path given a limited budget is known as the informative path plan-

ning (IPP) problem, which is NP-hard. Thus, we propose two heuristic approaches,

namely a greedy algorithm and a genetic algorithm. Experiments on Wi-Fi RSS based

localization show that data collected along informative paths tend to achieve lower

errors than that are opportunistically collected.

In practice, the budget of a mobile robot can vary due to insufficient charging or

battery degradation. Although it is possible to apply the same path planning algo-

rithm repetitively whenever the budget changes, it is more efficient and desirable to

iv

avoid solving the problem from scratch. This can be possible since informative paths

for the same area share common characteristics. Based on this intuition, we propose

and design a reinforcement learning based IPP solution, which is able to predict in-

formative paths given any budget. In addition, it is common to have multiple robots

to conduct sensing tasks cooperatively. Therefore, we also investigate the multi-robot

IPP problem and present two solutions based on multi-agent reinforcement learning.

Mobile crowdsourcing (MCS) offers another opportunity to lowering the cost of

data collection. In MCS, data are collected by individual contributors, which is able

to accumulate a large amount of data when there are sufficient participants. As an

example, we consider the collection of a specific type of spatial data, namely Wi-Fi

RSS, for indoor localization purpose. The process to collect RSS is also known as

site survey in the localization community. Though MCS based site survey has been

suggested a decade ago [80], so far, there has not been any published large-scale fin-

gerprint MCS campaign. The main issue is that it depends on user’s participation,

and users may be reluctant to make a contribution. To investigate user behavior in

a real-world site survey, we design an indoor fingerprint MCS system and organize

a data collection campaign in the McMaster University campus for five months. Al-

though we focus on Wi-Fi fingerprints, the design choices and campaign experience

are beneficial to the MCS of other types of spatial data as well.

The contribution of this thesis is two-fold. For applications where robots are avail-

able for large-scale spatial sensing, efficient path planning solutions are investigated

so as to maximize data utility. Meanwhile, for MCS based data acquisition, our real-

world campaign experience and user behavior study reveal essential design factors

that need to be considered and aspects for further improvements.

v

To my family

vi

Acknowledgements

First, I would like to express my sincere gratitude to my supervisor Dr. Rong Zheng,

who gave me tremendous support and guidance during my PhD study. I believe I

am fortunate to have the opportunity to join the Wireless System Research Group

(WiSeR) led by her. Dr. Zheng is knowledgeable and smart. Whenever I met

challenges and got stuck in my research, she could always give me some valuable

suggestions and encourage me to think and dig deeper. Besides research skills, Dr.

Zheng also creates opportunities to enhance presentation and writing skills for WiSeR

members. I learned a lot through the weekly meetings, the presentations in WiSeR

group seminars and will never forget the careful and insightful feedback she gave to

me when revising my papers.

Second, I would like to thank my supervisory committee members Dr. Fei Chiang

and Dr. Hassan Ashtiani. I am grateful for their insightful suggestions and comments

during my supervisory meetings. Dr. Chiang’s feedback on the crowdsourcing project

is valuable for me to enhance and present it. Dr. Ashtiani is an expert in machine

learning and his constructive suggestions inspired me a lot on the path planning and

reinforcement learning project. I would also like to all the folks in the WiSeR group.

The group activities of boating, bowling and hiking are excellent stress relievers with

lots of fun.

vii

Last but not least, I want to thank my family. In particular, my wife has stood by

me in the past four years. Without her unconditional supports and encouragements,

this dissertation is not possible. I appreciate all she has done so I can focus on my

research. I would also like to thank my son, for his laughter that makes my life

brighter.

viii

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Notation, Definitions, and Abbreviations xxiii

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 Mobile Robotic Sensing . 3

1.1.2 Mobile Crowdsourcing . 5

1.2 Contributions . 6

1.3 Organization . 9

2 Preliminaries and Related Work 10

2.1 Gaussian Processes . 10

2.2 Informative Path Planning . 13

2.3 Reinforcement Learning . 15

2.4 Mobile Crowdsourcing . 17

ix

2.5 Indoor Localization . 19

3 Informative Path Planning with Budget Constraints 22

3.1 Problem Formulation . 22

3.1.1 General Path Planning with a Limited Budget 23

3.1.2 Informative Path Planning . 24

3.1.3 NP-hardness of IPP . 27

3.2 Informative Path Planning Algorithms 28

3.2.1 Greedy Algorithm . 29

3.2.2 Genetic Algorithm . 30

3.2.2.1 Encoding and Fitness Function 32

3.2.2.2 Initializing Population 32

3.2.2.3 Selection and Crossover 34

3.2.2.4 Mutation . 34

3.3 Performance Evaluation . 35

3.3.1 Implementation . 36

3.3.2 Evaluation Methodology . 37

3.3.2.1 Experimental Design 37

3.3.2.2 Performance Metrics 39

3.3.2.3 Fingerprint Collection 40

3.3.3 Results . 42

3.3.3.1 Choice of GA parameters 42

3.3.3.2 Relation between MI and Localization Errors 44

3.3.3.3 Performance . 46

3.3.4 Discussion . 48

x

3.4 Conclusion . 49

4 Learning based Path Planning for Flexible Budgets 50

4.1 Sequential Decision Making Problems 51

4.2 IPP Solution with RL . 52

4.2.1 Solution Overview . 53

4.2.2 State Encoding . 54

4.2.3 Action Selection . 55

4.2.4 Environment and Reward Mechanism 57

4.2.5 Reinforcement Learning Methods 57

4.2.5.1 Q-learning . 58

4.2.5.2 Policy Gradient . 58

4.2.5.3 Actor-Critic . 59

4.2.6 Model Training and Path Inference 60

4.2.6.1 Model Training . 60

4.2.6.2 Path Inference . 60

4.3 Experimental Evaluation . 62

4.3.1 Graph Setting and Implementation 64

4.3.2 Comparison with Unconstrained Action Selection 64

4.3.3 Convergence using Different RL methods 66

4.3.4 Path Inference Performance 68

4.3.4.1 Impact of Snapshots 68

4.3.4.2 Impact of Training Budgets 69

4.3.5 Comparison with Other IPP solutions 70

4.4 Discussion . 74

xi

4.5 Conclusion . 74

5 Multi-robot Cooperative Path Planning 76

5.1 Related Work . 76

5.2 Problem Formulation . 80

5.3 RL Strategies to MIPP . 83

5.3.1 MMDP for MIPP . 83

5.3.2 States and Action Selection 84

5.3.3 Team Reward . 86

5.3.4 Learning Schemes . 86

5.3.4.1 Joint Action Learning 87

5.3.4.2 Independent Q-learning 87

5.3.4.3 Sequential Rollout 88

5.3.5 Path Planning . 90

5.4 Performance Evaluation . 91

5.4.1 Implementation and Environment Setup 91

5.4.2 Training and Convergence . 92

5.4.3 Path Planning Performance 94

5.4.3.1 Homogeneous Budgets 95

5.4.3.2 Heterogeneous Budgets 96

5.4.4 Computation Efficiency . 98

5.5 Conclusion . 99

6 Data Collection through Mobile Crowdsourcing 101

6.1 System and Campaign Design . 104

xii

6.1.1 Design Considerations . 104

6.1.2 System Overview . 104

6.1.3 User Interface . 107

6.1.4 Contribution Assessment . 108

6.1.5 Heatmap . 109

6.2 The Site Survey Campaign . 110

6.2.1 Campaign Scenario . 111

6.2.2 Incentive Mechanisms and Recruitment Strategies 111

6.2.2.1 Active Recruitment with Teaching 112

6.2.2.2 Passive Recruitment by Posters 112

6.2.2.3 Recruitment Results 113

6.3 Data Statistics and Analysis . 115

6.3.1 Scores Attained . 115

6.3.2 Fingerprint Characteristics . 116

6.3.3 Data Collection Behaviors . 119

6.3.3.1 Group based on Score Range 120

6.3.3.2 Groups with Teaching and without Teaching 122

6.3.4 Feedback from Participants 123

6.3.4.1 Interview . 123

6.3.4.2 Questionnaire . 124

6.4 Localization Experiments . 125

6.4.1 Data Quality . 126

6.4.2 Test Data Collection . 128

6.4.3 Localization Method . 129

xiii

6.4.4 Localization Performance . 130

6.5 Limitations and Lessons Learned . 132

6.6 Conclusion . 133

7 Concluding Remarks 134

7.1 Conclusion . 134

7.2 Future Work . 135

xiv

List of Figures

1.1 Main Contributions and Highlights 7

3.1 An example of the transformation from an OP graph G to an IPP

graph G′, where the starting node is a and terminating node is b. In

the transformation, two dummy nodes with zero reward and cost, s

and t are added. 27

3.2 An example of mutation. (a) shows a path [0,1,2,3] and vertices 1

and 2 are the selected mutation positions. The two vertices do not

have a common adjacent vertex. However, the connection can be built

through 1’s adjacent vertex 5 and 2’s adjacent vertex 6 as shown in (b). 35

3.3 Illustration of graph transformation for ERO. The original graph is a

4 by 4 grid graph. The gold stars represent the edge nodes. 37

3.4 Experimental Design . 38

3.5 Test areas and the robot for fingerprint collection. 40

xv

3.6 The graph generated from Area One. The X and Y axis represent the

size of the area in meters. This area is discretized and represented

as a grid graph. The purple lines show the robot’s trajectories. The

squares represent the pilot data locations, and the stars represent the

test locations. Based on this grid graph, the red trajectory shows an

example path with a budget of 40 meters, and each red dot represents

a RSS sample location from the fitted GP (refer to Section 3.3.2.1). . 41

3.7 The graph generated from Area Two. Similar to Fig. 3.6, the squares

represent the assumed pilot data locations, the stars represent the lo-

cations for localization error evaluation and the purple lines show the

rover’s trajectories. 42

3.8 The utility of the GA with different population size and the corre-

sponding run time. In this experiment, tournament size is set to ten

and 90% offspring are mutated. 43

3.9 Relation between utility and localization error in the two areas. In

Area One, the Pearson correlation coefficients for budget 30, 40 and

50 are -0.12, -0.28 and -0.43, respectively. In Area Two, the Pearson

correlation coefficients for budget 100, 120 and 140 are -0.51, -0.56 and

-0.56, respectively. 45

3.10 Comparison of different algorithms in Area One under different budget

constraints. The brute force approach failed to give the result in 72

hours when the budget is 50. 46

3.11 Comparison of different algorithms in Area Two under different budget

constraints. 47

xvi

4.1 Sequential Decision Process for IPP 51

4.2 Solution overview with Reinforcement Learning. 53

4.3 Input encoding for the states. 55

4.4 Uncertainty heat-map of Area One. The size of the whole area is

approximately 12m * 13m. The X and Y axes show the dimensions

in meters, and the color represents the uncertainty (entropy) of the

predicted signals by fitting a GP with the pilot data. The grid graph

has 26 vertices and are indexed with integers. 63

4.5 Uncertainty heat-map of Area Two. This area is a “T” shape corridor,

with 25m in height and 64m in length. The graph has 61 vertices as

shown by the green circles. 63

4.6 Average reward per episode with Q-learning in the graph from Area

One. The start and terminal vertices are set to 0, so the path forms a

tour. Experiments are run for different budgets (maximum distance)

with ε-greedy policy with ε = 0.9 initially and decay to ε = 0.1 at

the 50th epoch. Each epoch means learning for 50 episodes, and the

Y axis shows the average reward. (a) shows the unconstrained action

selection scheme and (b) shows the constrained action selection with

shortest path. 65

4.7 Average reward per episode with Q-learning in the graph from Area

Two. The parameter settings are similar with Fig.4.6. 65

4.8 Average reward per episode during training with different RL methods. 66

xvii

4.9 Rewards of paths inferred using the snapshots. The snapshots are

captured every 1000 episode. For Area One, the path specification is

given as vs = 0, vt = 0, B = 30, and for Area Two, it is vs = 0, vt =

0, B = 100. 68

4.10 Rewards of paths generated through the models trained with different

B in Area One. The X-axis represent the specific B during inference,

and vs, vt are set to 0 for a tour case. B in (a) is [30.5, 31.5, ..., 50.5],

and B in (b) is [30, 31, ..., 50]. 69

4.11 Rewards of paths generated through the models trained with different

B in Area Two. The X-axis represent the specific B during inference,

and vs, vt are set to 0 for a tour case. B in (a) is [100.5, 101.5, ...,

140.5], and B in (b) is [100, 101, ..., 140]. 69

4.12 Path reward comparison using different algorithms for Area One. The

start vertex vs is set to 0. For (a) vt is set to 0 for the tour case, while

for (b) vt is set to 26 as a non-tour case. 70

4.13 Path reward comparison with different algorithms for Area Two. The

start vertex vs is set to 0. For (a) vt is set to 0 for the tour case, while

for (b) vt is set to 60 as a non-tour case. 71

4.14 Approximate run time of different algorithms for the graph of Area

One and Two on iMac (4GHz, Intel Core i7). 72

xviii

4.15 The actual Q-value is discontinuous with respect to budget. In this

simple example, the graph makes a triangle. When vs = v1 and vt = v3,

the minimal budget required from vs to vt is is 3. The best path (v1 →

v3) and corresponding reward will not change until budget increases to

9 (v1 → v2 → v3). 75

5.1 A simple 1-step MIPP example. The green ’*’ sign represents the

location that has been previously sensed, the orange bold ’+’ shape

denotes charging stations. Suppose each edge has unit length (1), if

vs = [1, 1] (vertex index) and b = [1, 1] (budgets), then the optimal

paths for the two robots are P1 = [1, 0] and P2 = [1, 2], or P1 = [1, 2]

and P2 = [1, 0] due to the existence of previously sensed locations. On

the other hand, if vs = [0, 2], the only solution is P = [[0, 1], [2, 1]] due

to the budget and charging station constraints. 82

5.2 State encoding and three learning schemes 84

5.3 Average reward per episode during training for Area One, with different

setting of charging stations and number of robots. (a) and (b): 2

robots, (c) and (d): 3 robots. 92

5.4 Average reward per episode during training for Area Two. (a) and (b):

3 robots, (c) and (d): 4 robots. 93

5.5 Path planning performance in Area One for homogeneous robots. The

X-axis shows the budget for each robot for a single experiment. (a)

and (b): 2 robot team, (c) and (d): 3 robot team. In (b), the initial

locations vs = [7, 19], in (d), vs = [7, 7, 19]. 96

xix

5.6 Path planning performance in Area Two for homogeneous robots. (a)

and (b): 3 robot team, (c) and (d): 4 robot team. In both (a) and (b),

the initial locations vs = [48, 6, 53], in (c), vs = [48, 6, 53, 48], in (d),

vs = [48, 6, 53, 57]. 97

5.7 Path planning performance in Area One for 3 heterogeneous robots.

One robot has a fixed budget b = 30, and X-axis shows budgets for the

other two robots. In (b), the initial locations vs = [7, 19, 7]. 98

5.8 Path planning performance in Area Two for 4 heterogeneous robots.

Two robots have a fixed budget of 50, and X-axis shows the budgets of

the remaining two robots. In (a), the initial locations vs = [48, 6, 53, 48]

and (b), the initial locations vs = [48, 6, 53, 57]. 99

5.9 Approximate run time of different solutions for the two areas on a

desktop (16GB memory, Intel Core i7). 100

6.1 Main modules in the crowdsourcing platform 105

6.2 Main user interfaces of IFCS. 107

6.3 Heatmap and data submission interface 110

6.4 A poster attached to a bulletin board 113

6.5 Participant number and department distribution. 114

6.6 Scores attained by participants . 115

6.7 Locations of received Wi-Fi scans during walking from three devices.

Red lines represent paths, and red dots represent locations of scans

(inferred from the timestamps and step counts). Blue dots represent

point-based collection. 117

6.8 The number of fingerprints overtime and distribution among participants.118

xx

6.9 Device (Model and Android API) distribution and the respective num-

ber of fingerprints . 119

6.10 Fingerprint distribution by building 119

6.11 Reasons for failing to get the reward 126

xxi

List of Tables

3.1 Information of collected data in the two areas 42

3.2 GA parameter setting . 44

3.3 Run time of brute force for Area One 48

5.1 Summary of MARL solutions for MMDP Tasks 80

6.1 Parameter Settings . 111

6.2 Summary of Fingerprint Characteristics 120

6.3 Participant Behavior Summary Grouped by Score Range. 121

6.4 User Behavior Grouped by Teaching or without Teaching. 122

6.5 Data Validity Inspection Result . 128

6.6 Training and Test Data Information 128

6.7 Localization Error (Meter). 131

xxii

Notation, Definitions, and

Abbreviations

Abbreviations

GP Gaussian Process

GPS Global Positionning System

IPS Indoor Positionnining System

RSS Received Signal Strength

AP Access Point

FP Fingerprint

MCS Mobile Crowdsourcing

POI Point of Interest

IMU Inertial Measurment Unit

IPP Informative Path Planning

xxiii

MIPP Multi-robot Informative Path Planning

MI Mutual Information

RG Recursive Greedy algorithm

GA Genetic Algorithm

TSP Travelling Salesman Problem

RL Reinforcment Learning

MDP Markov Decision Process

MMDP Multi-agent Markov Decision Process

RL Reinforcement Learning

MARL Multi-agent Reinforcement Learning

MAS Multi-agent System

OP Orienteering Problem

MBCR Marginal Benefit-Cost Ratio

STSP Steiner Travelling Salesman Problem

RO Random Orienteering

ERO Edge based Random Orienteering

SLAM Simultanenous Localization and Mapping

RNN Recurrent Neural Network

xxiv

LCP Least Cost Path

JAL Joint Action Learning

IQL Independent Q-learning

xxv

Chapter 1

Introduction

1.1 Motivation and Background

A variety of applications rely on the acquisition of large-scale spatial data such as air

quality or humidity in urban areas. To collect these data, researchers have proposed

to deploy Wireless Sensor Networks (WSNs) in the target areas, where the data are

collected by the sensors and transmitted to a centralized server. Although WSNs

are ideal for long-term and real-time environmental monitoring, due to their huge

infrastructure costs and setup overhead, they are not suitable for applications that

only need to collect data infrequently or on demand. One such example is Wi-

Fi based indoor localization [5]. Given a wireless access point (AP), the received

signal strengths at a fixed location tend to follow a stable distribution if there are no

environmental changes like moving pedestrians or new obstacles. In [48], the authors

observe that the distribution of the RSS is often left-skewed Gaussian. Therefore,

Wi-Fi RSS has been widely investigated as location dependent features (which is also

known as Wi-Fi fingerprints) to train localization models. In general, the Wi-Fi RSS

1

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

data only need to be collected infrequently when there are environmental changes or

infrastructure changes like some APs are removed.

However, the lack of low-cost data collection strategies has been impeding relevant

applications. For instance, Wi-Fi based localization has been proposed for around

two decades, but until now there are no well known successful commercial fingerprint-

based localization solutions. According to a rough estimation in [64], it takes around

three hours to measure the signal strengths at the corridor of a 69m×54m floor, even

with only one scan at each predefined location.

In general, spatial data in close proximity are highly correlated. Nearby sites

tend to yield similar measurements. This relationship can be usually modeled by

Gaussian Processes (GPs) with appropriate hyper-parameters. Measurements at sites

that are not observed can be predicted through the GP models. Therefore, it is not

necessary to collect the data exhaustively, but only data from a representative set of

locations are required. As a result, data collection efforts can be reduced if we only

consider a subset of locations. Inspired by the sensor placement optimization work

in [57], we aim to collect data at locations that are informative. The ultimate goal

is that given the measurements at those selected locations, the uncertainty of the

prediction is minimized. This can be achieved by optimizing the mutual information

(MI) between the variables at observed and un-observed locations. The criteria of

MI has been widely used by researchers and practitioners when considering where to

collect spatial data [8].

Another aspect that is helpful in reducing data collection efforts is how to collect

the data. With the advancement of technologies, two opportunities arise. First,

nowadays, there are many off-the-shelf low-cost mobile robotic platforms available

2

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

like autonomous vehicles, drones, and rovers [20]. These technologies make it possible

to automate the data collection process by mobile robots, which can directly save

human efforts. Second, many smartphones are equipped with a variety of sensors.

Thus, another opportunity is to involve individual participants in data collection

campaigns, which is known as mobile crowdsourcing. In this scenario, a data collection

task is divided among the crowd, which can indirectly address the labor-intensive

issue. Although a single participant may only spend limited efforts and contribute a

small amount of data, the eventual result will be promising when there are plenty of

participants.

In this thesis, both two types of data collection strategies are investigated.

1.1.1 Mobile Robotic Sensing

In mobile robotic sensing, we leverage existing hardware design, navigation and local-

ization technologies from commercial-of-the-shelf platforms and open-source libraries.

We mainly focus on planning informative paths for the mobile robots since they are

battery powered and have limited travel budgets. When they are moving along the

planned paths, two types of data will be collected: environmental measurements and

their locations. The obtained data can be utilized to build GP models to characterize

the spatial data distribution of target environments.

In order to find informative paths(called Informative Path Planning, or IPP), we

first define a graph based on the topology of the target area. This can be achieved

by using points of interests as vertices, and an edge exists if two vertices are directly

reachable. In the case of an open area, a simple grid graph can be constructed.

Compared with optimizing paths directly in a continuous physical space, one major

3

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

advantage of graph-based path planning is that paths are confined to vertices and

edges on the graph. This makes it easy to rule out obstacles. In essence, the op-

timization goal is to decide which subset of vertices to visit and in which order to

visit them. A related problem is the Orienteering Problem [103] (OP), where each

vertex is associated with a reward. In OP, given a start and terminal vertex, one

needs to search a path to collect the most reward with a limited travel budget. The

main difference between IPP and OP is the definition of rewards. In IPP, rewards

are obtained when a robot moves along edges, and they are not additive.

In this thesis, we first consider the IPP problem when the budget is known and

fixed. We prove that IPP is NP-hard by reducing an instance of OP to an instance of

IPP within polynomial time. Therefore, we propose several heuristic based approaches

so as to achieve acceptable trade-offs between computation complexity and optimality.

However, in practice, budget variations are common due to different battery capac-

ities, charging statuses or timing requirements. Although it is feasible to repetitively

apply the same algorithm to IPP with fixed budget when budgets change, it is more

efficient and desirable to avoid searching from scratch. Intuitively, given the same

target area, informative paths with different budgets may share common character-

istics. For instances, re-visiting vertices that have been visited tends to achieve less

reward, while visiting new vertices tends to yield more reward. A novel reinforcement

learning based path planning solution is proposed that can predict informative paths

for different budgets.

Lastly, having multi-robots conducting large-scale spatial data acquisition coop-

eratively can reduce task completion time dramatically. Thus, another important

4

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

problem we investigate is multi-robot cooperatively path planning. The major chal-

lenge in extending the single-agent reinforcement learning based path planning solu-

tion to the multi-robot scenario is that the action space is exponential with respect

to the number of robots. To address this issue, we develop a credit assignment based

solution and a sequential roll-out based solution.

1.1.2 Mobile Crowdsourcing

Mobile crowdsourcing is another popular data acquisition strategy in recent years

due to explosive smartphone adaptions. Through mobile crowdsourcing, the burden

of data collection is transferred from service providers to individuals. One major

challenge is how to incentivize participants to participate in data collection campaigns.

In the area of indoor localization, researchers have proposed various crowdsourcing

based indoor localization solutions. Some works focus on how to use the crowdsourced

data to build localization models, and others emulate crowdsourcing by a small num-

ber of controlled volunteers(e.g., often from the researcher’s lab). Due to operational

challenges and costs such as platform development and participants recruitment, no

prior real-world crowdsourcing based site survey campaign has been published in

literature.

To investigate potential problems that may arise in crowdsourcing based data

acquisition and study how participants will react, it is necessary to organize a crowd-

sourcing campaign in the real-world. For this purpose, we need to develop a finger-

print crowdsourcing platform, an incentive mechanism, a recruitment management

method and ways to impart necessary knowledge to users so they can perform tasks

in the campaign. In this thesis, we present an end-to-end design and analysis of such

5

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

a real world campaign. Although the campaign aims to collect Wi-Fi fingerprints,

the proposed methodologies are applicable in collecting other types of spatial data in

indoor environments.

1.2 Contributions

The main components of the thesis are summarized in Fig. 1.1. Two mobile sensing

schemes, namely, mobile robotic sensing and mobile crowdsourcing are investigated

for spatial data acquisition.

For robotic sensing, we focus on planning informative paths for robots given bud-

get constraints. The problem is shown to be NP-hard and two heuristics based al-

gorithms are proposed, namely, a Greedy algorithm and a Genetic Algorithm (GA).

The Greedy algorithm picks the next way-point to visit based on the ratio of marginal

reward and marginal cost. In GA, we customize chromosomes, selection and muta-

tion operations to solve the IPP problem. As an application example, we conducted

experiments for Wi-Fi fingerprint collection. Results show that the Greedy algorithm

has the shortest run time, but suffers from poor performance in utility or localization

accuracy. In contrast, GA has good performance consistently in all scenarios though

at the expense of higher computation complexity than the Greedy approach. The

baseline algorithms by extending known algorithms for OP suffer from either high

computation complexity for large areas, sub-optimal performance, or both.

To further improve path planning efficiency when budgets vary, we propose a gen-

eral reinforcement learning framework for IPP based on recurrent neural networks

(RNN). Specifically, we model the path planning problem as a sequential decision

process, and present a state encoding scheme and a reward function design. A novel

6

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Figure 1.1: Main Contributions and Highlights

action selection method is proposed to accommodate path specifications and im-

prove learning efficiency. With reinforcement learning, we can learn the structural

characteristics of informative paths and maximize the total future reward, which is

equivalent to the utility of a path. Using the learned RL model, informative paths

can be predicted given any input budget. It improves path planning efficiency dra-

matically compared with repetitively applying the same IPP algorithm when budgets

change.

7

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

To address the multi-robot path planning problem, we develop two reinforcement

learning based cooperative strategies: independent learning through credit assignment

and sequential rollout based learning. Both strategies are highly scalable with respect

to the number of robots. Experiment results show that in most cases, the RL based

solutions achieve superior or similar performance as a baseline GA-based solution but

at only a fraction of running time during inference. Furthermore, when the budgets

and initial positions of the robots change, the pre-trained policies can be applied

directly.

Lastly, we study the mobile crowdsourcing based sensing scheme. To investigate

real-world user response, we launch a large-scale data collection campaign. Specifi-

cally, we design and implement a Fingerprint Crowdsourcing System (IFCS). To pro-

mote better coverage of target areas, we propose a metric based on the informativeness

of participants’ collected data to evaluate their contributions. From September 2019

to January 2020, a data collection campaign were conducted in the McMaster Uni-

versity campus. In total, 97 participants signed up for the campaign and 66 of them

uploaded fingerprint data. Over 1400 fingerprints had been collected from 24 build-

ings and 58 floors at the cost of $200. To the best of our knowledge, this work is the

first to investigate participant recruitment and behavior analysis for an MCS-based

data collection. The results show that an effective incentive and recruitment strategy

is essential for a successful campaign. Furthermore, we also find that an appropriate

way to teach the participants how to perform the task is also vital since they may

not have prior knowledge, although this has not been studied in existing literature.

8

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

1.3 Organization

This thesis is organized into the following seven chapters.

• Chapter 1: An overview of the motivation and key research questions is pre-

sented, followed by a brief introduction of the main components and contribu-

tions.

• Chapter 2: Preliminaries and related work of this dissertation are introduced,

including Gaussian Processes, indoor localization, informative path planning,

reinforcement learning and mobile crowdsourcing.

• Chapter 3: In this chapter, the informative path planning problem is formu-

lated and two heuristics-based solutions are presented. Experiments show that

site survey along informative paths could reduce localization errors given the

same budget.

• Chapter 4: In this chapter, a reinforcement learning framework for IPP is

presented, which can be applied to predict informative paths when budgets

change.

• Chapter 5: The problem of multi-robot cooperative path planning is formu-

lated. An independent Q-learning approach based on multi-agent credit assign-

ment and a sequential roll out approach are presented and evaluated.

• Chapter 6: In this chapter, a real-world crowdsourcing campaign is presented.

We discuss in details on the platform design, user recruitment and behavior

analysis, and localization experiments.

• Chapter 7: Conclusions and future work are discussed in this chapter.

9

Chapter 2

Preliminaries and Related Work

In this chapter, we first introduce some preliminary knowledge about Gaussian Pro-

cesses (GPs). GPs are utilized for two purposes in this thesis, namely, building local-

ization models and calculation of informativeness. We then introduce related work on

informative path planning, reinforcement learning, mobile crowdsourcing and indoor

localization.

2.1 Gaussian Processes

A GP is a collection of random variables, any finite number of which follow a joint

Gaussian distribution [87]. Specifically, a GP is defined by a mean function m(x) and

a covariance (also know as kernel) function k(xp,xq). Let f is a function drawn from

this GP, for any finite subset of variables x1, ...,xn, the respective function values

10

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

f(x1), ..., f(xn) have a joint multivariate Gaussian distribution,

N



m(x1)

...

m(xn)

,

k(x1,x1) ... k(x1,xn)

...
. . .

...

k(xn,x1) ... k(xn,xn)


 . (2.1.1)

The mean function m can be any valid function. The covariance (kernel) matrix K

is generated by the covariance function and is positive semidefinite. One frequently

adopted covariance function is the exponential kernel function

k(xp,xq) = σ2
fexp(−

||xp − xq||
l

), (2.1.2)

where σ2
f is the maximum covariance between variables and l is the length scale

term that controls the smoothness. GPs model distributions over functions instead

of variables, and they are widely used in modeling spatial processes.

Gaussian Process Regression is a frequently utilized non-parametric regression

method. Let a training dataset be D = {(x1, y1), (x2, y2), ..., (xn, yn)}. For notation

simplicity, the training data could also be represented using feature matrix X and the

corresponding measurement vector y. Suppose the measurements contain a Gaussian

noise term ε, and ε ∼ N (0, σ2
n). Let f is a function drawn from a GP prior, the i-th

measurement is then given by

yi = f(xi) + εi. (2.1.3)

11

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

The noise term can also be merged into the covariance function,

cov(yp, yq) = k(xp,xq) + σ2
nδpq, (2.1.4)

where δpq = 1 if p = q and zero otherwise.

GP based regression is a widely used non-parametric regression method. Let X∗

denotes a feature matrix, and the corresponding unobserved values be y∗. Under the

GP assumption, given the training data D, we have

 y

y∗

 ∼ N

m(X)

m(X∗)

 ,
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)


 , (2.1.5)

where m(X) and m(X∗) are the mean value vector for the training and unobserved

data respectively. K(X,X) denotes the covariance matrix evaluated for all pairs of

training locations, and similarly for K(X,X∗) and K(X∗, X∗). By the property of

conditional multivariate Gaussian distributions, we have

y∗|X,y, X∗ ∼ N (µ∗,Σ∗), (2.1.6)

where

µ∗ = m(X∗) +K(X∗, X)(K(X,X) + σ2
nI)−1(y −m(X)), (2.1.7)

and

Σ∗ = K(X∗, X∗)−K(X∗, X)(K(X,X) + σ2
nI)−1K(X,X∗). (2.1.8)

Also noting that y ∼ N (m(X), K(X,X) + σ2
nI), we can obtain the log marginal

12

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

likelihood,

log p(y|X) =− 1

2
(y −m(X))T (K(X,X) + σ2

nI)−1(y −m(X))

− 1

2
log|K(X,X) + σ2

nI| −
n

2
log2π.

(2.1.9)

By maximizing this log marginal likelihood term, the hyper-parameters of the covari-

ance function and the noise variance could be estimated accordingly.

In this thesis, we assume the kernel of the underlying GP of the environmental

phenomenon is isotropic [56], i.e, given all the hyper-parameters Θ of the kernel,

the covariance of two random variables only depends on their distances, formally,

k(xp,xq) = kΘ(||xp − xq||). This is a special case of the so-called stationary kernel

where the covariance depends on the difference between two inputs, i.e, k(xp,xq) =

kΘ(xp − xq). For stationary kernels, they are invariant to translations in the input

space, and for isotropic kernels they are invariant to all rigid motions [87].

2.2 Informative Path Planning

The goal of IPP is to plan a path such that the utility (informativeness) of data

collected along the path is maximized. The informativeness can be measured by

mutual information (MI). In [36], static sensors are deployed for spatial monitoring,

and the authors use MI as the metric for optimal sensor location selection . In [93],

similarly MI is adopted as the metric to search informative paths for mobile robots.

One major challenge of IPP is that the problem is NP-hard [108]. Thus, it is

difficult to achieve optimality and efficiency at the same time for a large scale problem.

A few existing solutions to IPP rely on the Recursive Greedy (RG) algorithm [15]. The

13

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

basic idea is to exhaustively consider all possible combinations of intermediate vertices

and budgets, and then apply the algorithm recursively on the smaller sub-problems.

IPP solutions based on RG can be found in [8, 93]. Specifically, [8] also considers

rewards from edges besides vertices. To reduce the high computation complexity

of RG, [93] proposes the use of spatial decomposition to create a coarse graph by

grouping vertices into cells. The algorithm is then applied on the cell-based coarse

graph. Unfortunately, planning paths based on a surrogate coarse graph may not give

the optimal solution for the original IPP problem.

Evolutionary strategies have also been investigated for IPP. The authors in [70]

model the path planning process as a control policy and proposed a heuristic strat-

egy by incrementally constructing a policy tree. In [41, 84], the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) is utilized to optimize paths in a contin-

uous space. To reduce the search space, paths are constrained using control points

and constructed with splines. After path planning, in the robot deployment stage,

re-planning and adaptive sampling are also considered so as to focus on regions of

interests. The basic idea is to omit locations where the predicted observation values

(based on GP) are below a certain threshold.

Some works make further assumptions that each vertex can be visited only once,

and rewards can be obtained only at the vertices. Under such assumptions, IPP can

be decomposed to two steps: subset (vertices) selection and path construction. Once

the set of vertices are determined, a traveling salesman problem (TSP) solver can be

utilized to construct a path with the minimum cost. In [4], a randomized algorithm

is presented, where vertices are randomly added or removed repetitively to track the

best subset. Similarly, in [69], way-points are added incrementally and a TSP solver

14

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

is utilized to generate paths. However, in practical IPP scenarios, the aforementioned

assumptions do not hold, since i) vertices could be visited multiple times, particularly

when the graph is not complete; ii) rewards can be obtained when an agent moves

along the edges with sensors recording the spatial data.

Due to the NP-hardness, existing solutions suffer from sub-optimal performance

or incur a high computation complexity. In addition, when budgets change, even

with the same start and terminal locations, the path planning process needs to be

executed from scratch, which further degrades efficiency.

2.3 Reinforcement Learning

Under the framework of RL [47, 96], an agent interacts with the environment. The

process can be formulated by a Markov Decision Process (MDP) < S,A, T ,R >,

where

• S is a finite set of states;

• A is a finite set of actions;

• T is a state transition function1 defined as T : S ×A −→ S;

• R is a reward function defined as R : S × A −→ R, where R is a real value

reward signal.

To solve the MDP with RL, a policy π is required for decision making. The policy

can be deterministic or stochastic. A deterministic policy is defined as π(s) : S −→ A,

i.e., given the state, the policy outputs the action to take for the following step.

1In this thesis we consider deterministic transitions.

15

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

At each time step t, the environment is at a state st ∈ S. The agent makes a

decision by taking an action at = π(st) ∈ A. It then receives an immediate reward

signal rt and the state moves to st+1 ∈ S. The goal of RL is to find a policy π such

that the total future reward

Rt = rt + γrt+1 + ...+ γT−trT (2.3.1)

is maximized, where γ ∈ [0, 1] is a discount factor that controls the weight of future

reward and T is the last action time.

There are two main types of approaches towards RL, namely value-based and

policy-based approaches. Representative algorithms in the two categories are Q-

learning and policy gradient, respectively. Q-learning aims to learn a function map-

ping between state-actions and q-values. Once the Q-function is learned, the corre-

sponding policy can be induced. On the other hand, policy gradient formalizes and

learns the policy directly through gradient ascent. Researchers have also combined

value-based and the policy-based approaches, and proposed the actor-critic [54] meth-

ods. A critic (value-based) is trained to evaluate the actions selected by the actor

(policy-based). In many cases, actor-critic methods have better convergence com-

pared with policy gradient methods such as the reinforce algorithm.

In recent years, with the advancement of deep neural networks [61], deep rein-

forcement learning [65] emerged as an effective RL paradigm, and it has been applied

in a variety of applications such as games, robotics and traffic signal control. In par-

ticular, two works [6, 52] attempt to apply RL in combinatorial optimization. In [6],

the authors focus on the TSP and utilize a pointer network to predict the distribution

16

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

of vertex permutations. Parameters of the network are optimized using policy gra-

dient with negative tour lengths as reward signals. In [52], a Q-learning approach is

presented. Graph embedding techniques are leveraged for graph representation, and

the solution is evaluated through Minimum Vertex Cover, Maximum Cut and TSP.

2.4 Mobile Crowdsourcing

In a mobile crowdsourcing system, participants are responsible to consciously meet

application requests by deciding when, what, where, and how to perform required

tasks. They contribute data and take an active part in the task allocation and as-

signment process, which are usually managed by a central authority with different

methodologies. In some applications, a teaching phase is needed where users first

acquire the required technical skills to accomplish a specific task. For instance, col-

lecting Wi-Fi fingerprints properly may be difficult to inexperienced users, leading to

inaccurate and erroneous data gathered.

To be effective, an MCS campaign requires a significant contribution from users,

who sustain costs in terms of time and battery spent in the sensing process [12].

The required effort is particularly relevant in participatory systems, where users may

be reluctant to contribute and thus incentive mechanisms are crucial to motivate

them. Main categories of incentive mechanisms include entertainment, service, and

money [46, 117]. Entertainment approaches incentivize people by turning tasks into

games, while service-oriented ones reward with services offered by the platform in ex-

change for contributions. Lastly, monetary incentives provide participants payments

for their contributions [68, 109].

Many studies have been conducted in using MCS to solve problems in our daily

17

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

lives. Liu et al. in [66] presented Third-Eye, which is an MCS system for air quality

monitoring. Mobile phones with cameras are utilized to take outdoor photos, which

are further used to estimate the air quality with computer vision techniques. In [118],

the authors proposed a vehicular MCS system for pothole profiling. The system relies

on the built-in inertial sensors of vehicle-carried phones to estimate the locations,

lengths and depths of potholes. The result is sent to drivers and the road maintenance

sector. CrowdX [17] is proposed to enhance the automatic construction of indoor floor

plans with crowdsourced traces. TrailSense [53] can automatically infer whether trail

segments are risky for hiking by analyzing sensor data from hikers’ smartphones.

Acer et al. [1] argued that urban-scale MCS could leverage the daily routines of

mobile workforces that roam around an urban area. Wang et al. [104] developed the

CrossCheck symptom prediction system, which is used to monitor patients’ trajectory

of psychiatric symptoms. In [16], the authors presented TurnsMap, which is an MCS

system for classifying protected/unprotected left turns using IMU sensor data from

on-board mobile devices in a moving car.

For Wi-Fi based indoor localization, researchers have also proposed crowdsensing

based site survey. Both opportunistic sensing and participatory sensing approaches

have been investigated. Very few work with limited scales has been done to conduct

indoor fingerprint site survey campaign using MCS. Park et al. developed a system

called OIL [80], which populates a Wi-Fi RSS fingerprint database with user provided

fingerprints over time. A Voronoi diagram-based method was developed for conveying

localization uncertainty and increasing coverage. The authors also incorporated a

clustering-based method that automatically discards erroneous user inputs through

outlier detection in the signal space. The evaluation was carried out in a single

18

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

building with nine floors. 19 people were invited to participate and were provided

with tablets by the researchers. After 9 days, the average localization reached 5.3 m

in the building.

UJIIndoorLoc [99] and [67] are two crowdsourced fingerprint datasets. These

datasets provide opportunities to investigate localization algorithms using the crowd-

sourced fingerprints. Specifically, [67] is a benchmark dataset for “crowdsourced”

fingerprints. The dataset is collected by eight volunteers with 21 Android devices.

The devices were used by different persons so as to mimic a crowdsourced data gath-

ering scenario. Strictly speaking, it does not reflect many characteristics of real-world

MCS campaigns, because user behaviors are highly unpredictable in terms of when,

how and where data are collected.

MCS based survey puts a burden on participants, and it can be challenging to

recruit sufficient participants. Further, as analyzed in [82], the characteristics of

crowdsourced fingerprints can degrade localization performance. For instance, be-

cause devices used in site survey are probably different from the devices to be local-

ized, a problem called device heterogeneity [81] can arise. Moreover, location labels

may be incorrect due to mistakes of the participants. As a result, despite extensive

research together with various proposed solutions, Wi-Fi fingerprint MCS is still not

widely adopted for site survey.

2.5 Indoor Localization

Although the Global Positioning System (GPS) achieved a great success in the last

decade and lots of applications are built on top of GPS, in indoor spaces, there are

still no mature localization solutions. Existing indoor localization approaches can be

19

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

broadly divided into two categories, namely infrastructure-based and infrastructure-

free approaches. Specifically, solutions in the first category need dedicated hardware

such as anchor nodes [106] to help determine target locations. On the other hand,

infrastructure-free solutions use existing infrastructure and require no extra hardware.

Among infrastructure-free approaches, Wi-Fi RSS based indoor localization is attrac-

tive due to the wide availability of Wi-Fi Access Points (APs) in indoor environments

and has been extensively investigated.

There are generally two stages in RSS-based localization solutions, namely the off-

line (site survey) stage and the on-line localization stage [29]. In the off-line stage,

Wi-Fi RSS measurements are collected at different pre-defined reference locations.

This stage is very time-consuming, especially for large buildings or indoor areas. To

shorten the site survey process, a few works proposed to use path-based data collec-

tions [22, 64]. The basic idea is for users to collect data using a mobile device while

walking along a path with known start and terminal locations. Location labels of RSS

measurements could then be inferred by the device’s built-in Inertial Measurement

Unit (IMU) sensors and the associated timestamps.

Once site surveys are done, data collected can be used to build a fingerprint

database or machine learning models for localization. A large number of models or

algorithms have been proposed for the on-line location inference stage, such as k-

nearest neighbor [5, 92], [24, 100], SVM [10, 28], neural network [74] and fingerprint

gradient [112]. In [114], the authors combined vision and Wi-Fi fingerprints and

achieved sub-meter localization accuracy.

GPs have also been utilized to build localization models. The first work on GP

20

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

based localization is GPPS [90]. In GPPS, a GP regression model is trained indi-

vidually for each AP with its respective calibration dataset. In the inference stage,

given the input signals, the target location is estimated to be the position that has

the maximum probability to generate the signals. When training the GP models,

a linear function is adopted as the mean function. Specifically, the AP location is

estimated to be the center of three locations with the strongest signal strengths. For

each calibration point, the mean value depends on the distance to the AP. Ferris et

al. [27] extend GPPS. They combine GP with a Bayesian filter for location estimation

to build on a mixed graph / free space representation of indoor environments. The

method is shown to work both for Wi-Fi and GSM localization.

21

Chapter 3

Informative Path Planning with

Budget Constraints

In this chapter, we formally introduce the concept of informative path planning for

mobile robotic sensing. Two algorithms are presented to plan informative paths

given a known budget constraint. Experiments are designed to validate the proposed

solutions.

3.1 Problem Formulation

The IPP problem operates on a graph. In practice, the graph can be created depend-

ing on the topology of the target area. Next, we first define the general path planning

problem and then extend it to IPP.

22

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.1.1 General Path Planning with a Limited Budget

We formalize a path planning problem on a graph with a tuple 〈G, vs, vt, f(P), B〉.

Specifically,

• G = (V , E) is a graph, with V and E representing the set of vertices and edges,

respectively. Each v ∈ V is associated with a physical location x. Note that we

consider the target area to be 2D shaped, and thus x represents a 2D coordinate.

For each e ∈ E , there is a cost c(e) (e.g., the length of the edge) for travelling

along the edge.

• vs ∈ V is the start location, and vt ∈ V is the expected terminal location. These

locations could be the depot of the robot or charging stations.

• P = [vs, ..., vk, ..., vt] denotes a valid path1, and f(P) represents the corre-

sponding utility (or reward) of the path. In this thesis, we will use the terms of

“utility” and “reward” interchangeably.

• B represents the budget available for the path. We emphasize two scenarios: i)

B is known and fixed; ii) B can be variable, e.g., when the robot is not fully

charged. Almost all existing path planning algorithms assume the budget is

fixed. When the budget changes, a natural solution is to re-run the algorithm

with the updated budget. In this chapter we assume the budget is fixed, and

later chapters we will discuss solutions to avoid searching from scratch when

budgets change.

1In graph theory, a path is defined as a sequence of vertices and edges without repeated vertices
or edges. To be consistent with existing IPP literature, we allow repetition of vertices on a path,
the equivalent of a walk in graph theory.

23

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

The cost of a path P is the sum of edge cost along the path,

c(P) =

|P|−1∑
i=1

c(P [i],P [i+ 1]), (3.1.1)

where P [i] is the i-th vertex in P and (P [i],P [i + 1]) represents the corresponding

edge. The objective of path planning is to find the optimal path that satisfies

P∗ = arg max
P∈Ψ

f(P) s.t. c(P) ≤ B, (3.1.2)

where Ψ is the set of all paths in G from vs to vt.

One classic instance of the general path planning problem is the OP [30, 37, 103].

In OP, each vertex is associated with a reward. Given a budget, the goal is to find a

subset of vertices to visit so as to maximize the total collected reward, defined as the

sum of rewards from individual vertices.

3.1.2 Informative Path Planning

IPP is special case of the general path planning problem, where the reward function

reflects the informativeness of the data collected along paths. Next, we present the

details of f(P) for IPP based on GPs and MI.

Assume that the data to be collected are modeled by a GP. Thus, for each v ∈ V

at a physical location x , the corresponding measurement yv (e.g., temperature or

humidity) is associated with a Gaussian distributed random variable, and all the

variables yV at locations of V follow a joint multivariate Gaussian distribution. For

simplicity, we also denote the multivariate Gaussian distribution with N (m(XV),ΣV),

where XV is a matrix of the locations of V , and ΣV is the covariance matrix generated

24

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

through a covariance (kernel) function.

The differential entropy (also referred to as continuous entropy) of yV is

H(yV) =
1

2
ln |ΣV |+

n

2
(1 + ln(2π)), (3.1.3)

where n is the number of rows in the matrix.

Given a path P = [vs, ..., vk, ..., vt], suppose data will be collected by an agent

along the path every d-meter interval (depending on the robot’s travel speed and

sample frequency). The sample locations can be easily calculated using the coordi-

nates of the vertices. We denote all the sample locations as XS and the corresponding

measurements as yS . According to the properties of GPs introduced in Chapter 2.1,

the posterior distribution of yV given yS is N (µ′,Σ′), with

µ′ = m(XV) +K(XV , XS)(K(XS , XS) + σ2
nI)−1(yS −m(XS)), (3.1.4)

Σ′ = K(XV , XV)−K(XV , XS)(K(XS , XS) + σ2
nI)−1K(XS , XV). (3.1.5)

Here σn represents the noise variance of the underlying GP, and K(XV , XS) is

the kernel matrix generated by k(·, ·) with pair-wise entries in XV and XS . The

conditional differential entropy of yV given the observations yS is

H(yV |yS) =
1

2
ln |Σ′|+ n

2
(1 + ln(2π)). (3.1.6)

The MI based reward of the path P can then be calculated by

f(P) = MI(yV ; yS) = H(yV)−H(yV |yS). (3.1.7)

25

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Note that since differential entropy only depends on the kernel matrix (i.e, the

kernel function and P), rewards can be calculated analytically without travelling along

the actual path and taking real measurements. That is why informative paths can be

planned in advance.

However, the kernel function k(·, ·) usually has some hyperparameters that need

to be estimated. In some application scenarios, such as wireless sensor networks with

mobile elements [3], the hyperparameters can be learned using measurements from

the existing static sensors. In cases where no prior studies are available like in [8,

15, 36], a round of pilot data collection is conducted for hyperparameter estimation.

Given a small set of pilot data (XD,yD) collected in advance at locations XD with

measurements yD, the reward can then be calculated with

fD(P) = MI(yV ; yS ∪ yD) = H(yV)−H(yV |yS ∪ yD). (3.1.8)

Note that although in our problem formulation we assume the environment is in

2D, it is straightforward to extend the formulation to 3D environments. In a 3D

environment, each vertex in the graph is associated with a 3D coordinate. The GP

can be extended accordingly by assuming the locations of observations are in 3D, and

the entropy or mutual information are still determined by the covariance matrices.

Examples of applying GPs in a 3D environment can be found in [41].

Given the input of IPP as < G, vs, vt, f(P), B >, one naive approach is to enu-

merate all the valid paths from vs to vt and choose the path with the highest f(P).

However, brute force search is not computationally feasible for large problem instances

because the IPP problem is NP-hard, which will be proven in the next section.

26

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

a

r(a)

b

r(b)
cab

a

a′

s

b

b′ t

r(a) r(b)

cab

cab

Figure 3.1: An example of the transformation from an OP graph G to an IPP graph
G′, where the starting node is a and terminating node is b. In the transformation,
two dummy nodes with zero reward and cost, s and t are added.

3.1.3 NP-hardness of IPP

IPP can be shown to be NP-hard by reducing an instance of OP to an instance of

IPP within polynomial time. OP is defined on a graph G = (V,E), with a vertex

reward function r(v) and an edge cost function c(e). The start and terminal vertices

are vs and vt, and the travel cost is limited by B. The following steps show how to

reduce an instance of OP to an instance of IPP2:

• A graph G′ = (V ′, E ′) is constructed for IPP. Initially, V ′ = V , and then for

v ∈ V , a shadow vertex v′ is created by making a copy of v.

• To construct E ′ in G′, for eab ∈ E in OP, we connect (a, a′), (a′, b), (b, b′), (b′, a)

as directed edges.

• In G′, we assign the reward associated with each edge (v, v′) as r(v) in OP, and

all other edges have zero rewards. Furthermore, the cost of (v, v′) is set to be

0, and all other edges have the same cost as in OP.

• Two dummy vertices with zero edge cost and zero reward, s and t are added to

accommodate the corresponding start and terminal vertices in OP.

2We deem the undirected graph G as a bidirected graph.

27

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Fig. 3.1 shows an example transformation for a simple graph. It can be observed

that in the converted graph G′, for every original node v, the surrounding vertices

are shadow vertices. Similarly, for every shadow vertex v′, the surrounding vertices

are original vertices. This forces the solution to be a sequence of vertices alternating

between v and v′. With such a transformation, it is easy to show that the solution in

G for OP is optimal if and only if the corresponding solution in G′ for IPP is optimal.

Let the optimal IPP solution be [a, a′, b, b′, ..., k, k′] (dummy vertices s and t are

omitted, a and k are the start and terminal vertices) in G′, then the corresponding

optimal OP solution in G is [a, b, ..., k]. If the optimal solution for OP is different

from this path, e.g., [a, x, ..., k] with a larger reward, we can always construct a

better path [a, a′, x, x′, ..., k, k′] in G′, which leads to a contradiction with the fact

that [a, a′, b, b′, ..., k, k′] is the optimal IPP solution. Conversely, for any optimal OP

solution in G, we can similarly construct the optimal IPP solution in G′. Since the

reduction can be constructed in polynomial time and OP is NP-hard [51], IPP is also

NP-hard.

3.2 Informative Path Planning Algorithms

Due to the NP-hardness, we resort to heuristic algorithms to solve the problem.

Specifically, we first present a Greedy algorithm based on the Steiner TSP solver, and

then we introduce GA to solve IPP.

28

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.2.1 Greedy Algorithm

Greedy algorithms are known to achieve constant approximation ratios [36] for some

submodular optimization problems, such as observation selection constrained by car-

dinality and budget [55]. The IPP problem, on the other hand, is more challenging

since its budget constraints are defined on a graph with path length. The RG al-

gorithm in [15] is a pseudo-polynomial algorithm with a logarithmic approximation

ratio. However, it has a long run time, even for small graphs. In this section, we de-

velop a simple greedy algorithm with low computation complexity which adds vertices

incrementally. It cannot achieve a constant approximation ratio since it is subjected

to a constraint on the path length [55].

The first step is to define the greedy criteria. Suppose the current path planned

is P , and let V(P) be the vertices in P . For each candidate vertex vc that is not

contained in the current path, the shortest path to traverse V(P) ∪ {vc} is denoted

by Pc. The marginal benefit-cost ratio (MBCR) of extending the current path to

vc is defined as MBCR(P , vc) = fD(Pc)−fD(P)
PathLength(Pc)−PathLength(P)

. The greedy algorithm

then selects the vertex that has the highest MBCR among all remaining vertices. In

computing both the utility and the cost of adding an extra vertex, an instance of the

Steiner TSP (STSP) from source vs to terminal vt is solved.

The Greedy algorithm is outlined in Algorithm 1. The complexity is mainly

determined by the Steiner TSP algorithm. For instance, if the algorithm has a com-

plexity of O(n2 ∗ 2n) (due to a dynamic programming based TSP algorithm), the

complexity of the Greedy algorithm is O(B
emin
∗ n3 ∗ 2n), where B is the budget, emin

is the minimum edge length and n represents the number of vertices in the graph.

29

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

It is easy to construct an example where Greedy performs arbitrarily bad. How-

ever, through evaluation, we see that under certain budgets, Greedy can achieve

competitive results.

Algorithm 1: Greedy Algorithm

Input : the problem Graph G and the budget B
the start and terminal vertices vs and vt
the pilot data set D

Output: the vertex order of the returned path
1 P = ShortestPath(vs, vt)
2 while PathLength(P) <= B do
3 foreach vc ∈ V ∧ vc 6∈ V(P) do
4 Pc = SteinerTSP (V(P) ∪ {vc})
5 MBCR(P , vc) = fD(Pc)−fD(P)

PathLength(Pc)−PathLength(P)

6 end
7 vbest = arg max(MBCR(P , vc))
8 Pbest = SteinerTSP (V(P) ∪ {vbest})
9 if PathLength(Pbest) <= B then

10 P = Pbest
11 else
12 break
13 end

14 end
15 return P

3.2.2 Genetic Algorithm

Genetic algorithm is a powerful and efficient evolutionary algorithm which can be

utilized to solve both numerical and combinatorial optimization problems. The main

idea is to imitate the process of biological natural selection. Though there are no

guarantees that GA will find the global optimal solution, its solution is likely to be

close to the global optimum [71]. The mutation mechanism can protect the algorithm

from being stuck in a local optimum by diversifying the population.

30

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

In GA, a chromosome is utilized to encode a feasible solution to a specific opti-

mization problem. A pool of chromosomes is maintained, which is also known as the

population. For each chromosome, a corresponding fitness score is calculated by a

fitness function. The initial population is usually randomly generated. After that, an

evolutionary process starts iterating. In each iteration, four steps are involved:

• Selection: Individuals (also known as parents) from the population are selected

based on their fitness scores.

• Crossover: The selected parents reproduce new offspring by a crossover process.

• Mutation: Some of the offspring are selected for mutation to increase the diver-

sity of the population.

• Update: The population is updated by merging the offspring and parents.

After a number of iterations, the chromosome with the highest fitness score is selected

as the final solution.

A large body of literature [34, 59, 85] can be found using GA to solve the TSP prob-

lem. Specifically, [59] summarized the attempts to solve TSP with different crossover

and mutation operators. GA has also been investigated to tackle the orienteering

problem [50, 83, 98]. However, in [50, 98], the proposed GA operators require the

graph to be complete. The case where the input is an incomplete graph is considered

in [50] and vertex revisit is allowed. However, only the first visit receives rewards,

which is not the case in IPP.

Next we discuss the details of adapting the GA framework to solve the IPP prob-

lem.

31

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.2.2.1 Encoding and Fitness Function

Since the final solution to IPP is a list of ordered vertices from vs to vt, a path-

based representation is a natural choice. Specifically, each chromosome represents a

solution in the form of P = [vs, vi, ..., vj, vt]. For each pair of consecutive vertices

in the ordered list, there must be an edge connecting them. The fitness function is

chosen to be equal to the utility function fD as discussed in Section 3.1. As such, the

fitness score of P represents how much uncertainty can be reduced by sampling along

the path P . This is directly linked to the optimization objective.

3.2.2.2 Initializing Population

When using GA to solve TSP on a fully connected graph, the population can be

initialized with random permutations of all the vertices since each vertex is visited only

once and the solution is a tour without start and terminal locations. However, when

initializing the population for IPP, three constraints must be satisfied. Specifically, i)

the start and end vertices are specified; ii) the budget limitation is satisfied; and iii)

each vertex is allowed to be visited multiple times.

Algorithm 2 describes the procedure to initialize the population. Starting from

vs, an adjacent vertex to the current vertex is randomly selected and appended until

half of the budget is used. The terminal vertex vt is then connected by the shortest

path. If there is still remaining budget, vertices are sampled and inserted. If the

generated chromosome by such a scheme exceeds the budget limit, the chromosome

is dropped and the procedure restarts.

32

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Algorithm 2: GA Population Initialization

Input : the problem Graph G and the budget B
the start and terminal vertices vs and vt
the population size popsize

Output: the initial population
1 poppool = [];
2 while sizeof(poppool) < popsize do
3 seq = [vs]
4 do
5 vlast = last vertex in seq
6 vadj = sample a vertex from vlast’s neighbors
7 append vadj to seq
8 if length(seq + vadj) > 0.5 ∗B then
9 delete vadj from seq

10 break

11 while length(seq) < 0.5 ∗B;
12 vmid = last vertex in seq
13 seq2 = shortestpath(vmid, vt)
14 do
15 v = sample a vertex from V − (seq ∪ seq2)
16 insert v into seq2
17 /*Note the insertion location is the position which will cause the

minimum budget increase. If there is no direct edges between two
vertices, shortest path is utilized*/

18 if length(seq2) > 0.5 ∗B then
19 delete v from seq2
20 break

21 while length(seq2) < 0.5 ∗B;
22 chromosome = seq + seq2[1 :]
23 add chromosome to poppool

24 end
25 return poppool

33

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.2.2.3 Selection and Crossover

Selection simulates the idea of “Survival of the fittest”. Typical selection methods

include Roulette Wheel Selection, Rank Selection and Tournament Selection [95]. We

adopt the popular tournament scheme to select parents. During each tournament, k

individuals are randomly selected and the winner (the one with the highest fitness

score) is picked as one parent.

Crossover takes place between two selected parents. A single point crossover sim-

ilar to [50, 83] is utilized to generate offspring. Specifically, common vertices (except

for the start and terminal vertices) in the two parents are identified and one com-

mon vertex is randomly picked as the crossover point. Segments are then exchanged

around the common vertex. For instance, suppose two parents [vs, v1, v2, v5, v7, v8, vt]

and [vs, v3, v4, v5, v6, v9, vt] are selected, and v5 is the common vertex. After crossover,

two offspring [vs, v3, v4, v5, v7, v8, vt] and [vs, v1, v2, v5, v6, v9, vt] are created. Further-

more, only the offspring that do not exceed the budget limit can survive. If there are

no common vertices, no offspring are generated.

3.2.2.4 Mutation

A mutation mechanism is designed to promote the diversity of the population. From

an optimization perspective, it enables the algorithm to escape from a local optimum.

Various mutation operators (insertion, exchange, displacement, inversion) are devel-

oped for TSP problems when the graph is complete. When a graph is not complete,

most of these operators are not feasible. Therefore, we propose a local extension

mutation operator. Specifically, for a chromosome (a path) P , we randomly select

two intermediate adjacent vertices vi, vj as the mutation locations. The simplest case

34

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

is when vi and vj have a common adjacent vertex vk. In this case, vk can be directly

inserted between vi and vj. When vi and vj do not share any common adjacent vertex,

we create a connection through their own adjacent vertices as shown in Fig. 3.2.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) before mutation

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) after mutation

Figure 3.2: An example of mutation. (a) shows a path [0,1,2,3] and vertices 1 and 2
are the selected mutation positions. The two vertices do not have a common
adjacent vertex. However, the connection can be built through 1’s adjacent vertex 5
and 2’s adjacent vertex 6 as shown in (b).

3.3 Performance Evaluation

In this section, we conduct experiments to compare the performance of different

IPP algorithms. Specifically, we consider the collection of Wi-Fi RSS for indoor

localization. The approach can be readily extended to include other types of spatial

data.

Next, we introduce the implementation details. Then we describe the evaluation

methodology and present the experimental results.

35

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.3.1 Implementation

All algorithms are implemented in Python 2.7 and are executed on a MacBook (Intel

Core i7, 16GB RAM3). We use GPy [33] to train and optimize GP models. Graphs

are created and represented by NetworkX [39].

In addition to the Greedy algorithm and GA, we have extended the RG algorithm

in [15] and RO in [4] for IPP. The details are as follows.

Recursive Greedy Algorithm We implemented QP-RG as outlined in [15]. The

main modification is that when evaluating fD(P), we take samples along the edges

instead of only considering the vertices. The recursion depth parameter I is set to

two. We have tried to increase this parameter to three, but find that the algorithm

failed to terminate in hours since the complexity is exponential with respect to I.

Similar execution time can be found in [8] even for a graph of 16 vertices.

Edge based Random Orienteering (ERO) We extended RO [4] to handle edge-

based rewards. The edge nodes are added or deleted randomly. Fig. 3.3 gives an

example of such a transformation. Furthermore, a Steiner TSP solver is used to

plan a path among the selected edge nodes, since the resulting graph is incomplete.

Our Steiner TSP solver is implemented based on the Concorde TSP solver [21] by

calculating the shortest path between every pair of vertices [63].

3We will also use brute force approach to search for the optimal path, which is run on Compute
Canada due to the extremely long run time.

36

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(a) the original graph

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(b) represent edges as nodes

Figure 3.3: Illustration of graph transformation for ERO. The original graph is a 4
by 4 grid graph. The gold stars represent the edge nodes.

3.3.2 Evaluation Methodology

3.3.2.1 Experimental Design

To evaluate different path planning strategies fairly, it is important to subject them

to comparable data. However, due to the time varying nature of Wi-Fi signals, even

collecting RSS along the same trajectory multiple times would result in different data.

Another consideration is that, during actual data collection using a robot, its speed

may vary due to the presence of people in target areas. To mitigate these two issues,

we propose an efficient method to evaluate utility and localization errors.

Fig. 3.4 illustrates the three main stages in the experimental design, namely,

Exhaustive Fingerprint Collection, Path Planning with Algorithms and Localization

Performance Test. Specifically,

i) Exhaustive Fingerprint Collection The purpose of this step is to exhaustively

collect raw fingerprints in each test area densely and use them to fit a GP regression

37

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Test Area Test
Locations

Raw RSS

GP

Test
RSS

Hyper
Prameters

IPP
Algor ithms

GP

Samples
Along Paths

Paths

Training
RSS

GP Localization

Localization
Per formance

Runtime

Utility

Graph

Exhaustive
Collection

Pilot RSS

Stage 1Stage 2

Stage 3

Figure 3.4: Experimental Design

model separately for each access point (AP) in that area. The set of GP models are

denoted byM. Later in the Localization Performance Test stage, training fingerprints

are sampled from these models. With the densely sampled training data, it is expected

that the predicted values can be close to the true values. Additionally, in this stage,

another independent set of fingerprints is collected as the test RSS set.

ii) Path Planning For experimental purposes, we take a small subset of the col-

lected fingerprints as pilot data to estimate the hyperparameters of the GPs. The

hyperparameters are needed to determine the utility function. Test areas are then

discretized into graphs and paths are generated by different algorithms. In the exper-

iments, vs is set to be identical to vt, since we expect the robot to return to the start

location after finishing fingerprint collection. The sample interval along the selected

38

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

paths is set to 0.5m. In Fig. 3.6, the red trajectory gives an example path with evenly

sampled locations of the RSS. It is possible to sample more frequently, but doing so

implies a lower moving speed.

iii) Localization Performance Test Once the paths are planned, fingerprints can

be generated by the fitted GP models M at sampled locations as illustrated in the

red trajectory in Fig. 3.6. These generated fingerprints are used as training data, and

localization performance can then be evaluated using the test RSS collected in the

first stage.

With such a design, during the localization performance test stage, since the

fingerprints are generated by the same models, the only factor that may affect the

collected fingerprints is the chosen path. Thus, the two afore-mentioned problems are

eliminated.

3.3.2.2 Performance Metrics

We consider utility, run time and the localization errors as performance metrics.

Utility and run time are directly returned from the path planning algorithms.

To evaluate localization errors, we adopt the approach in [64]. Specifically, after

paths are planned, fingerprints are sampled from the GP models M along the paths

and utilized as training data. The test area is discretized into a set of uniformly

distributed reference locations. For each AP, a GP regression model is fitted based

on the training data and used to predict the fingerprint distributions at those reference

locations. In the inference stage, given the fingerprints collected at a test location, the

target location is predicted to be one of the reference locations that has the maximum

probability to generate the fingerprints. Since the test fingerprints are collected by

39

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

the robot with known locations, localization error can be computed as the distance

between the predicted and ground truth locations.

3.3.2.3 Fingerprint Collection

Two areas were selected for fingerprint collection and experiments in two buildings.

The first is approximately 12m wide and 15m long. The second is a corridor and it is

63m long. Fig. 3.5 shows the two areas and the robot used for fingerprint collection.

Fig. 3.6 and Fig. 3.7 show the graphs generated from the two areas, respectively. In

evaluating localization errors, test locations are selected roughly uniformly across the

test areas, as shown by the stars in the figures. Table 3.1 summarizes the settings

of the data collection. We assume a small set of pilot data are known in advance as

in [8, 36].

(a) Area One (b) Area Two (c) The Robot

Figure 3.5: Test areas and the robot for fingerprint collection.

A Wi-Fi interface card is installed on the robot to collect raw fingerprints. The

robot is a moving platform equipped with a Velodyne Lidar allowing it to perform

Simultaneous Localization And Mapping (SLAM), and it is manually driven to cover

the available area. Simultaneously Wi-Fi RSS measurements are recorded and labeled

with the locations where they were collected, as determined by the robot’s SLAM

algorithm. Location errors of the robot from the SLAM algorithm are around 15cm,

40

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

0 1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26
RobotPos
TestPos
PilotPos

Figure 3.6: The graph generated from Area One. The X and Y axis represent the
size of the area in meters. This area is discretized and represented as a grid graph.
The purple lines show the robot’s trajectories. The squares represent the pilot data
locations, and the stars represent the test locations. Based on this grid graph, the
red trajectory shows an example path with a budget of 40 meters, and each red dot
represents a RSS sample location from the fitted GP (refer to Section 3.3.2.1).

depending on the number of distinct features present in the test areas.

Compared with collecting data by a human holding a smart-phone, the use of a

robot has three advantages. Firstly, a human body can block the WLAN radio signal

and cause a significant decay [23]. Secondly, the moving speed of the robot can be

controlled more precisely. Lastly, location labeling errors are quite small with the

help of SLAM. In contrast, when data are collected by a user holding a smart-phone,

the location labels are either estimated manually or generated by leveraging a step

counter [64], which are less accurate.

Since the utility (MI) of a path only depends on the hyperparameters estimated

from the pilot data. During the path planning stage, given the hyperparameters,

41

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

0 10 20 30 40 50 60
0

5

10

15

20

25

0 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

RobotPos
TestPos
PilotPos

Figure 3.7: The graph generated from Area Two. Similar to Fig. 3.6, the squares
represent the assumed pilot data locations, the stars represent the locations for
localization error evaluation and the purple lines show the rover’s trajectories.

Table 3.1: Information of collected data in the two areas

Area One Area Two
of APs observed 11 18
of RSS collected 29115 199590
of Vertices in the graph 27 61
of Pilot Locations 20 30
of Test Locations 58 131
Localization Error (m, all RSS) 3.8 2.06

the run time and utility of IPP algorithms are independent of actual fingerprint

measurements along the paths.

3.3.3 Results

3.3.3.1 Choice of GA parameters

GA has some parameters that need to be configured, including the population size

pop size, the tournament size tn, the percentage of offspring that needs mutation

mu percent and the number of generations to iterate g num. Here, we focus on the

population size and the number of generations since the run time of GA is mainly

determined by these two parameters. We run GA with different pop size on the

graph derived from Area One for ten generations. Fig. 3.8 shows the best fitness

42

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

during each generation and the run time of different population sizes. As can be seen

from the figure, a larger population size is more likely to achieve a higher utility,

especially during the early generations. On the other hand, the run time increases

as the population size becomes larger. A larger population pool implies that genetic

operators such as cross over and mutation need to consider more individuals, and

thus lead to a higher computation cost. In the experiments, we consider population

sizes 100 and 200, and found that they experimentally strike a good trade-off between

utility and run time. The parameters of GA for all experiments are listed in Table 3.2.

0 1 2 3 4 5 6 7 8 9
Generations

20

22

24

26

28

B
es

t F
itn

es
s

(M
I)

pop_size=50
pop_size=100
pop_size=150
pop_size=200
pop_size=250

50 100 150 200 250
Population Size

5

10

15

20

25

R
un

tim
e(

s)

Figure 3.8: The utility of the GA with different population size and the
corresponding run time. In this experiment, tournament size is set to ten and 90%
offspring are mutated.

43

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 3.2: GA parameter setting

Parameter Value
population size 100 and 200
tournament size 10
offspring mutation percentage 90%
total generations 5

3.3.3.2 Relation between MI and Localization Errors

The premise of IPP is that the data collected along paths with higher utility will

lead to models with lower localization errors. To validate this assumption, we con-

duct experiments to investigate the relation between utility and localization errors.

Specifically, we randomly sample a number of paths with different fitness scores from

the GA’s population in different generations, and then sample fingerprints along the

paths fromM. Localization models are trained and localization errors are evaluated

on the test locations.

Fig. 3.9 illustrates the utility and the corresponding localization error at the two

areas under different budgets. It can be seen that the localization performance in Area

One tends to be better than that in Area Two. In both areas we observe that when

the utility increases, the localization error tends to decrease, although it is not always

true. This is because localization errors also depend on actual RSS measurements

and the number of available access points, which are not modeled in the path utility.

Intuitively, for two locations to be distinguishable, the distributions of fingerprints

should have distinctive means and little overlap. Consider an extreme example when

the distributions of Wi-Fi RSS are the same everywhere. In this case, location errors

are unbounded despite the fact that more samples always increase the MI of paths.

However, in practical scenarios, as illustrated in Fig. 3.9, MI is an effective metric for

44

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

planning paths to collect informative fingerprints.

In addition, it can be seen in Fig. 3.9 that at higher utilities (with more measure-

ments or longer paths), the improvements in localization errors become saturated.

This is expected due to the high variance of fingerprints and can be analyzed through

Cramer-Rao bounds [14].

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Path Mutual Information [Area One]

4.0

4.5

5.0

5.5

Lo
ca

liz
at

io
n

E
rr

or
 (m

)

Budget:30
Budget:40
Budget:50

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Path Mutual Information [Area Two]

2.5

3.0

3.5

Lo
ca

liz
at

io
n

E
rr

or
 (m

) Budget:100
Budget:120
Budget:140

Figure 3.9: Relation between utility and localization error in the two areas. In Area
One, the Pearson correlation coefficients for budget 30, 40 and 50 are -0.12, -0.28
and -0.43, respectively. In Area Two, the Pearson correlation coefficients for budget
100, 120 and 140 are -0.51, -0.56 and -0.56, respectively.

45

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

3.3.3.3 Performance

We only managed to run QP-RG in Area One, while in Area Two the algorithm failed

to return after two hours due to a larger graph size and budget. As a result, we do

not run RG on large graphs. For ERO and GA, since they are randomized algorithms

and each run may give different results, we run five rounds under each budget and

take the average. Fig. 3.10 and Fig. 3.11 show the results in Area One and Area Two,

respectively.

In order to find the path with the optimal utility, we also implemented a brute

force approach by enumerating all the paths constrained by the start vertex, terminal

vertex and budget. The brute force approach is executed for at most 72 hours for

each task. In Area One, the brute force approach successfully finds the optimal path

within 72 hours when the budget is set to 30, 35, 40 and 45.

30 35 40 45 50
Budget (m)

15

20

25

30

M
ut

ua
l I

nf
or

m
at

io
n

Brute Force
RG
Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(a) Utility

30 35 40 45 50
Budget (m)

100

101

102

103

R
un

tim
e

(s
) RG

Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(b) Runtime

30 35 40 45 50
Budget (m)

3

4

5

6

7

8

Lo
ca

liz
at

io
n

E
rr

or
 (m

) Brute Force
RG
Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(c) Localization Error

Figure 3.10: Comparison of different algorithms in Area One under different budget
constraints. The brute force approach failed to give the result in 72 hours when the
budget is 50.

Utility Fig. 3.10(a) and Fig. 3.11(a) give the utility achieved by different path

planning algorithms in the two areas. We first notice that Greedy sometimes can

achieve a high utility, and sometimes cannot. For example, in Area One, the utility

obtained by Greedy stays the same when the budget increases from 30 to 40, and

46

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

100 110 120 130 140
Budget (m)

15

20

25

30

M
ut

ua
l I

nf
or

m
at

io
n

Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(a) Utility

100 110 120 130 140
Budget (m)

0

10

20

30

40

50

R
un

tim
e

(s
)

Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(b) Runtime

100 110 120 130 140
Budget (m)

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ca

liz
at

io
n

E
rr

or
 (m

) Greedy
ERO
GA(pop_size:100)
GA(pop_size:200)

(c) Localization Error

Figure 3.11: Comparison of different algorithms in Area Two under different budget
constraints.

similar patterns can be found in Area Two. In contrast, the utility attained by other

algorithms grow monotonically with budgets in Area One. In Area Two, the utility

of ERO tends to fluctuate. Since ERO is extended from RO [4], it is not stable,

particularly when the budget is insufficient. Most candidate solutions are likely to

exceed the budget constraints when nodes are randomly added or deleted. GA shows

a promising performance in both two areas, and in Area One its utility is quite close

to RG and the brute force approach.

Runtime The run time of RG increases from 527.3 seconds to 2124.7 seconds when

the budget increases from 30 to 50 in Area One. It is quite sensitive to the budget

since the approach exhaustively searches the intermediate vertices and budget splits.

In Area One, Greedy is quite fast finishing in less than 2 seconds, and ERO has a

faster run time than GA. However, since both Greedy and ERO invoke a Steiner TSP

solver, when the size of the graph increases, their run time increases significantly. As

can be seen from Fig.3.11, the run time of ERO increases to 40 seconds in Area Two

since the corresponding graph has 61 vertices (27 vertices in Area One). The run time

of GA is mainly determined by the population size and the number of generations as

shown in Fig. 3.8. The run time of the brute force approach is listed in Table 3.3.

47

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

When the budget rises, the run time increases dramatically, and thus for the budget

of 50 it failed to return the result within three days.

Table 3.3: Run time of brute force for Area One

Budget Runtime (s)
30 111.1
35 1365.7
40 37708.5
45 133456.5

Localization Errors From Fig. 3.9, we observe that the localization error generally

decreases when the budget increases. In most cases we see GA has smaller localization

errors because it achieves higher utility compared to other schemes. As previously

discussed in Section 3.3.3.2, there is generally a negative correlation between utility

and location errors, though there are exceptions due to variability of WiFi signals in

space.

3.3.4 Discussion

IPP is an NP-hard problem, and there are no benchmark instances with known op-

timal solutions. It is challenging to find the optimal solution, particularly on a large

graph with a sufficient budget, since the potential solution space is extremely large.

We show that GA is flexible and well suited for solving IPP, since GA can be config-

ured to adapt to different problem scales. Increasing population size and the number

of generations promise a solution with more utility, but lead to a longer time. The

run time of Greedy and ERO increases significantly when the graph size increases

due to the TSP solvers.

48

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Another advantage of GA is that it can be easily parallelized. A primary time

consuming operation of IPP is to evaluate fD(P). In evaluating fD(P), calculation of

the conditional entropy of the vertex locations based on the sample locations, involves

a matrix inversion operation. GA maintains a population and for each individual

fD(P) needs to be evaluated. This task can be parallelized with multi-threading. In

our experiments, we did not use parallelization to improve the speed.

3.4 Conclusion

In this chapter, we formulated the IPP problem to plan paths for spatial data col-

lection. We proposed a Greedy algorithm and a Genetic Algorithm to plan paths

in a graph. Experiments on Wi-Fi fingerprint collection were conducted to compare

the performance of these algorithms. Localization results showed that paths with a

higher utility are more likely to achieve lower localization errors.

49

Chapter 4

Learning based Path Planning for

Flexible Budgets

In the previous chapter, we presented two IPP algorithms to maximize data utility

when the budget of a robot is known and fixed. In this chapter, we focus on cases when

budgets are flexible and not fixed. For instance, when robots are not fully charged,

their battery performance degrade, new robots introduced, or there are task deadlines.

These cases will lead to different budgets. One possible but inefficient solution is to

repetitively apply the same algorithms whenever a budget change occurs.

A more efficient and desirable solution is to avoid searching from scratch given a

changed budget. Since the topology of the target area usually does not change, paths

of similar budgets may have common characteristics. This implies that a learning

based path planning solution can be possible. Based on this insight, we define the

informative path planning problem as a sequential decision making process and de-

velop a reinforcement learning IPP framework, which is able to predict informative

paths efficiently when budget changes.

50

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

v2

v5

v3

v6

v8

v4
v10

v7

v11

v9

v1

Start Vertex

v12

Terminal Vertex

Available Actions:
{ v3,v4,v8,v10}

Partial Path: [v1, v3 , v7]

Current Position

Figure 4.1: Sequential Decision Process for IPP

4.1 Sequential Decision Making Problems

It is straightforward to model IPP as a sequential decision problem. Specifically,

suppose an agent is exploring informative paths in G from vs to vt, with a budget B.

As shown in Fig. 4.1, we denote the vertices that have been traversed by the agent

up to the k-th step as the partial path P̄k. Initially, P̄1 = [vs] since the agent is at

the start location. In subsequent steps, the agent decides which vertices to travel to,

and the candidates are the adjacent vertices of the last vertex in P̄k, i.e., the current

location. Once the the next vertex is selected, the agent moves there and obtains

an immediate step reward signal. This decision process repeats until the budget is

exhausted or the agent successfully reaches vt. Each round of path exploration is

known as an episode.

Formally, the decision process can be described by a Markov Decision Process

(MDP) [102] < S,A, T ,R >, where

• S is a finite set of states, which includes information such as the partial path

P̄ and budget status.

• A is a finite set of actions which is equivalent to V . However, for each step,

51

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

only a limited subset of actions (adjacent vertices) are available.

• T is the state transition function1 defined as T : S × A −→ S. The main effect

of state transition here is that the partial path extends by one vertex.

• R is the reward function defined as R : S × A −→ R, where R is a real value

representing the reward perceived. The reward signal encourages the agent to

explore more informative paths, which will be discussed later.

To solve the MDP with RL, we define a decision making policy as π(s) : S −→ A.

At each time step t, the agent takes an action at = π(st) ∈ A and perceives a reward

rt. The objective is to find a policy π such that the total future reward

Rt = rt + γrt+1 + ...+ γT−trT (4.1.1)

is maximized, where γ ∈ [0, 1] is a discount factor about the priority of step reward

and T is the last action time.

4.2 IPP Solution with RL

In this section, we present a reinforcement learning based IPP solution. The problem

is still formulated on a graph as in Section 3.1 from Chapter 3. However, we focus on

cases where budgets are unknown in advance. In other words, given an IPP formu-

lation of a five-tuple 〈G, vs, vt, f(P), B〉, B could vary. We propose a reinforcement

learning framework to learn a model which could predict informative paths given any

budgets. As a result, compared with naive solutions which apply the path planning

1In this work we consider deterministic transitions.

52

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Target Area with Pilot Data

Graph
GP hyper-parameter

Optimization

Path reward function: f (P)

Agent

v2 v...v1 vk

Partial Path

B vtvs

RNN (LSTM)

State Encoding
Policy Gradient

Actor Critic

Q-learning

Reward Calculation

reward

Q
-v

al
ue

s
Lo

gi
ts

S
-v

al
ue

Lo
gi

ts

Experience Buffer

Action
Selection

v

Extend Partial Path with v

Vertex Connectivity Masks

State Transition
Tuple

Model Update

Episode Records

Model Update

Episode Records

Model Update

Gradient

Figure 4.2: Solution overview with Reinforcement Learning.

algorithms from scratch, the RL based path planning solutions can improve efficiency

significantly.

4.2.1 Solution Overview

Fig. 6.1 shows the overall architecture of the solution. One unique characteristic of

IPP is that the reward of taking an action (visiting a vertex) depends on all the

previous actions. For instance, re-visiting a vertex that has been visited before is

supposed to gain less reward than visiting a new vertex. Thus, we incorporate the

partial path into state encoding and utilize a recurrent neural network (RNN) in the

architecture. To filter out vertices that are not adjacent to the current position vk at

each step, a connectivity mask vector m1 is added before the final output. Specifically,

53

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

m1 has a length of |V| and is defined as

m1[i] =

 0 vi ∈ adj(vk)

−∞ else
, (4.2.1)

where adj(vk) = {v ∈ V : (vk, v) ∈ E} represents the adjacent vertices of vk. Due

to m1, the Q-values (for Q-learning) or probabilities (in the policy network) of the

non-adjacent vertices are negligible by the policy.

Depending on how to interpret the output from the network, different kinds of

RL methods can be applied, such as Q-learning, policy gradient and actor-critic.

The respective models can be trained accordingly using state transition tuples. To

ensure the agent can reach vt within the budget, a novel action selection mechanism

is designed, which may differ depending on the RL method adopted. The reward of

the selected action can be calculated using f(P). Next, we give a detailed description

of the key components.

4.2.2 State Encoding

Fig. 4.3 illustrates the state encoding scheme based on the trajectory of the agent. A

state 〈P̄k = [v1, v2, ..., vk], vs, vt, B〉 is encoded as a 5× k matrix that can be fed into

a RNN. For each vertex vi ∈ P̄k, the corresponding RNN cell is (xi, yi, xt, yt, bk)
T ,

where (xi, yi) represents the agent’s location, (xt, yt) represents the expected terminal

location, and

bk = B −
k∑
i=2

c(vi−1, vi) (4.2.2)

54

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

v1 v2 vk....

Partial Path

x1

y1

xt

yt

b1

x2

y2

xt

yt

b2

x...

y...

xt

yt

b..

xk

yk

xt

yt

bk

x1

y1

x2

y2

x...

y...

xk

yk

Locations

RNN Input
Encoding

B

vs

vt

equals

Figure 4.3: Input encoding for the states.

is the remaining budget. Since vs equals to v1 in P̄ , it is not encoded separately like

vt.

4.2.3 Action Selection

One naive action selection strategy is to select the next action vertex from the adjacent

vertices without any constraint, until the budget is exhausted. However, it cannot

guarantee that the agent will reach vt. In RL, one may signal a penalty reward when

the agent fails to reach vt, and expect the agent to gain the knowledge of valid paths

through reward signals. However, this simple solution will lead to a large number of

invalid paths that do not terminate at vt and thus wastage computation resources.

Next, we present our constrained action selection strategy that effectively reduces the

search space.

First, given P̄k = [v1, v2, ..., vk], we define available actions as

A(P̄k) = adj(vk) = {v ∈ V : (vk, v) ∈ E}. (4.2.3)

55

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

AmongA(P̄k), we further determine valid actions that have chances to reach vt within

B as

A′(P̄k) = {v ∈ A(P̄k) : c(vk, v) + LCP(v, vt) ≤ bk}, (4.2.4)

where LCP(v, vt) denotes the cost of the Least Cost Path from v to vt and can be

solved using the Dijkstra algorithm. It can be easily seen that if the agent selects an

action from A′(P̄) for every single step, it will reach vt eventually within the budget

constraint.

The action selection module needs to be customized for the specific RL method

adopted. We consider two types, namely off-policy learning and on-policy learning.

For off-policy learning such as Q-learning, actions are usually selected with the ε-

greedy policy. The output from the RNN can be interpreted as Q-values, denoted by

vector QV . Actions can then be selected as

a(P̄k) =

 random v ∈ A′(P̄k) with probability ε

arg maxv∈A′(P̄k)QV [v] with probability 1− ε
. (4.2.5)

For on-policy learning such as policy gradient, the output of the neural network

can be generally interpreted as the probability distribution among actions, and actions

are sampled from this distribution. To incorporate the extra constraint information

into the distribution directly, we interpret the output from the RNN as the logits

vector, which is the output tensor without applying the softmax operator, and define

another mask vector as

m2[i] =

 0 vi ∈ A′(P̄k)

−∞ else
. (4.2.6)

56

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

As such, the final distribution of actions can be computed as

π(a | P̄k) = softmax(logits + m2) (4.2.7)

and actions can be sampled from this distribution. Invalid vertices would not be

selected due to their zero probability resulted from negative infinity.

4.2.4 Environment and Reward Mechanism

An environment for RL is designed based on the graph. For each action, the agent

receives an immediate reward signal and extends the partial path to the next vertex.

The reward of taking an action a ∈ A′(P̄k) is calculated as

r(P̄k, a) = f([P̄k, a])− f(P̄k). (4.2.8)

Therefore, the reward in each single step from a path P adds up to the total reward

of the path since

r(P) = f(P) =

|P|−1∑
k=1

r(P̄k, a). (4.2.9)

This is exactly the optimization goal, i.e., to maximize the informativeness of the

path. Finally, if the action equals to vt, the environment transits to the terminal

state; otherwise, the agent can repeat the step to extend the partial path.

4.2.5 Reinforcement Learning Methods

The proposed architecture supports a variety of RL methods such as Q-learning [75],

policy gradient [97] and actor-critic [35], with minor adaptations. Readers interested

57

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

in RL can consult [96] for more information. For completeness, we provide the basic

steps of training typical RL models for IPP.

4.2.5.1 Q-learning

For Q-learning, the RNN is interpreted as representing a function Qθ : S × A −→ R,

with Qθ(s, a) being the total discounted future reward by taking action a from state

s. The policy given Qθ can then be induced as π(s) = arg maxaQθ(s, a).

At each time step t, let the state transition tuple be 〈st, at, rt, st+1〉, namely, upon

taking action at from state st, the agent gets a reward rt and transits to st+1. With

the transition tuples generated from each episode, the network can be optimized in

an iterative way by minimizing the temporal difference using a loss function defined

as

`(θ) =
(
Qθ(st, at)− (rt + γ max

a
Qθ(st+1, a))

)2

. (4.2.10)

To stabilise the training process, advanced techniques have been proposed in recent

years like DDQN [101], Prioritized Experience Replay [89], which can be adopted

directly in the solution.

4.2.5.2 Policy Gradient

Q-learning models the Q-values to guide decision making indirectly, while policy

gradient directly models the action probability. Let the probability distribution of

actions given the states be πθ(a | s), and we denote one episode of length T as

τ = (s1, a1, r1, ..., sT , aT , rT). The expected total reward is

J(θ) = Eτ∼πθ(τ)[r(τ)] = Eτ∼πθ(τ)[
T∑
t=1

rt], (4.2.11)

58

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

where πθ(τ) = p(s1)
∏T

t=1 πθ(at | st) is the probability of τ given πθ. For episode τ ,

the gradient of J(θ) is then given by

∇θJ(θ) = Eτ∼πθ(τ)[(
T∑
t=1

∇θlogπθ(at | st))(
T∑
t=1

rt)]. (4.2.12)

The reinforce algorithm [96] is a policy gradient approach that uses (4.2.12) to

update the model. Usually, policy gradient methods update the model when a whole

episode is finished. Note that in implementation, the output from the RNN is not the

probability, but the logits, since the final probability of actions needs to incorporate

another mask vector as discussed in Section 4.2.3.

4.2.5.3 Actor-Critic

One disadvantage of policy gradient method is that policy estimators suffer from a

high variance [113], and one has to wait until the end of an episode to update the

model. Actor-critic methods address this problem by approximating the gradient

with

∇θJ(θ) ≈
T∑
t=1

∇θlogπθ(at | st)A(st, at), (4.2.13)

where A(st, at) is the critic used to assess the utility of the action. One typical option

is the advantage actor-critic (A2C) [76],

A(st, at) = rt + Vφ(st+1)− Vφ(st), (4.2.14)

where Vφ is another neural network to estimate the state value and can be trained by

minimizing the temporal difference of (rt + Vφ(st+1)− Vφ(st))
2. The original network

is called the actor network. The state value (S-value) network only depends on the

59

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

state, and does not need the vertex connectivity mask as shown in Fig. 6.1. Both

networks share the RNN component for better efficiency.

4.2.6 Model Training and Path Inference

4.2.6.1 Model Training

Although the exact budget B is unknown in advance, we assume it falls in a range

depending on the target system. The basic idea is to train a model using different

budgets such that it could make predictions for unseen budgets. To differentiate from

the case when B is fixed, we denote a set of possible budgets sampled from the range

as B, which will be used as training budgets.

The model training procedure is described by Algorithm 5. In each episode, a

specific budget B is randomly sampled from B and used for training. Meanwhile, for

every E episodes, a snapshot of the model is captured and stored in a snapshot set

M, which is the final output of the training procedure. Note that Algorithm 5 only

outlines the general steps involved and updates the model after each episode. For

Q-learning or actor-critic training, models can be updated step-wise. Other details

such as training a value-network for actor-critic are omitted.

4.2.6.2 Path Inference

In the model training stage, a collection of snapshots of the model are captured. Since

the model is trained based on the transition tuples from different budgets, different

snapshots can have different inference performance with regard to a specific budget.

In addition, it is known that RL models can be unstable and may not converge to the

optimal policy when neural networks are used to approximate the value functions or

60

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Algorithm 3: Model Training Procedure

Input : 〈G, vs, vt, f(P),B〉, snapshot period E
Output: model snapshot set M

1 choose and instantiate a RL model M
2 initialize M = {}
3 for episode e = 1, 2, ... do
4 randomly sample B ∈ B
5 initialize P̄ = [vs]
6 episode records = {}
7 for step t = 1, 2, ..., T do
8 selection action at with (4.2.5) or (4.2.7)
9 execute at and calculate reward rt with (4.2.8)

10 add 〈P̄ , at, rt, [P̄ , at]〉 to episode records
11 P̄ = [P̄ , at]
12 end
13 encode the states with episode records, vt, B
14 /*refer to section 4.2.2*/
15 calculate the loss of the specific RL model M
16 update M with gradient descent
17 if e mod E = 0 then
18 take a snapshot of M and add it into M
19 end
20 return M

61

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

policies. Thus, we store multiple snapshots of the model during training.

In the path inference stage, given the specific budget B, all the snapshots M

are loaded and |M| paths are generated greedily using these snapshots. The path

with the maximum reward is the final output path. The path planning procedure

is outlined in Algorithm 6. Since the models are trained with different budgets, at

inference time, the same models can be utilized given different budgets.

Algorithm 4: Path Inference Procedure

Input : vs, vt, B, model snapshot set M
Output: best path P∗

1 initialize a path set PM = {}
2 for M ∈M do
3 create an environment with vs, vt, B
4 initialize P̄ = [vs]
5 for step t = 1, 2, ..., T do
6 select at by the max Q-value (or probability)
7 execute action at and get reward rt
8 if episode terminates then
9 add P̄ to PM

10 else
11 P̄ = [P̄ , at]
12 end

13 end
14 return P∗ = arg maxP∈PM f(P)

4.3 Experimental Evaluation

In this section, we first evaluate the impacts of constrained action selection in learning

efficiency and inspect the convergence of different algorithms. We then investigate

the impact of training budgets and different RL methods. Finally, we compare the

performance of the proposed algorithms with other IPP algorithms in terms of utility

62

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

2.5 5.0 7.5 10.0 12.5 15.0

0

2

4

6

8

10

12

0 1

2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26

2.5

3.0

3.5

4.0

4.5

5.0

Figure 4.4: Uncertainty heat-map of Area One. The size of the whole area is
approximately 12m * 13m. The X and Y axes show the dimensions in meters, and
the color represents the uncertainty (entropy) of the predicted signals by fitting a
GP with the pilot data. The grid graph has 26 vertices and are indexed with
integers.

0 10 20 30 40 50 60
0

5

10

15

20

25

0 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

3.5

4.0

4.5

5.0

5.5

Figure 4.5: Uncertainty heat-map of Area Two. This area is a “T” shape corridor,
with 25m in height and 64m in length. The graph has 61 vertices as shown by the
green circles.

and path planning efficiency.

63

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

4.3.1 Graph Setting and Implementation

We use the same two areas as in the previous chapter for evaluation purposes. The

uncertainty heat-map of Wi-Fi signals in the two areas are illustrated in Fig.4.4 and

Fig.4.5, respectively.

The RL environment is implemented in Python, which tracks all the necessary in-

formation for state encoding and reward calculation, such as partial paths, remaining

budgets and graph structures. To accelerate computation, the shortest paths between

all pairs of vertices are calculated and stored in advance, since the agent needs access

to the shortest paths at each step to filter out invalid actions. The APIs of the envi-

ronment are similar to those in the OpenAI Gym2, a reinforcement learning toolkit

with a variety of environments.

The neural network is implemented in PyTorch, where each RNN cell is an LSTM

unit. We adopted a one-direction one-layer RNN structure, with a hidden size of 128.

After the last RNN cell, a linear layer is used to produce the final output. During

training, the learning rate is set to 0.0001, and gradient clipping is used to avoid

gradient explosion [116]. Reward discount factor γ is set to 0.9, and a snapshot of

the model is taken every 1000 episodes.

4.3.2 Comparison with Unconstrained Action Selection

In addition to the proposed constrained action selection, an alternative simple action

selection scheme is implemented that considers all adjacent vertices as potential next

way-points as mentioned in Section 4.2.3.

We trained a double Q-learning model [101] with prioritized experience replay [89]

2https://gym.openai.com

64

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

using the two action selection schemes. In this experiment, we fix the training budget

at a specific value to compare the convergence property. Fig. 4.6 and Fig. 4.7 show the

average episode reward over the learning process in Area One and Two, respectively.

0 20 40 60 80 100
Epochs

10

15

20

25

R
ew

ar
d

(M
I)

budget:30
budget:35
budget:40
budget:45
budget:50

(a) unconstrained action selection

0 20 40 60 80 100
Epochs

15

20

25

30

R
ew

ar
d

(M
I)

budget:30
budget:35
budget:40
budget:45
budget:50

(b) constrained action selection

Figure 4.6: Average reward per episode with Q-learning in the graph from Area
One. The start and terminal vertices are set to 0, so the path forms a tour.
Experiments are run for different budgets (maximum distance) with ε-greedy policy
with ε = 0.9 initially and decay to ε = 0.1 at the 50th epoch. Each epoch means
learning for 50 episodes, and the Y axis shows the average reward. (a) shows the
unconstrained action selection scheme and (b) shows the constrained action
selection with shortest path.

0 20 40 60 80 100
Epochs

12

14

16

18

20

22

R
ew

ar
d

(M
I)

budget:100
budget:110
budget:120
budget:130
budget:140

(a) unconstrained action selection

0 25 50 75 100
Epochs

15.0

17.5

20.0

22.5

25.0

27.5

R
ew

ar
d

(M
I)

budget:100
budget:110
budget:120
budget:130
budget:140

(b) constrained action selection

Figure 4.7: Average reward per episode with Q-learning in the graph from Area
Two. The parameter settings are similar with Fig.4.6.

Similar to [75], each epoch is defined as 50 episodes of learning, and 100 epochs

are run for each budget setting. It can be seen clearly that the constrained action

65

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

selection strategy achieves higher rewards (MI) and higher efficiency. During the

initial episodes of the unconstrained action selection scheme, the rewards are low

since most generated paths are invalid, i.e, failing to terminate at vt. Thus, the agent

will receive a penalty reward signal at the last step. The difference is more significant

in Area Two since the graph size is larger than that of Area One. In a larger graph,

blind searches have a smaller probability to construct a valid path. As can be seen

from Fig.4.7, under some budget setting (e.g., 100, 110, 140) the unconstrained action

selection strategy fails to improve in terms of average rewards. In comparison, the

constrained action selection strategy shows promising results, with the average reward

improving gradually until convergence under different budgets.

4.3.3 Convergence using Different RL methods

0 100 200 300 400
Epochs

18

20

22

24

26

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learing

(a) Area One

0 250 500 750 1000
Epochs

17.5

20.0

22.5

25.0

27.5

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learing

(b) Area Two

Figure 4.8: Average reward per episode during training with different RL methods.

Next we inspect the convergence property of different RL methods. Specifically, we

evaluate Q-learning, the reinforce algorithm and the advantage actor-critic algorithm.

In this experiment, the budget B is not known in advance. The models are trained

using a budget set B as described in Algorithm 5. For Area One, B is set to be the

sequence of [30.5, 31.5, ..., 50.5] and for Area Two it is set to be the sequence of [100.5,

66

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

101.5, ..., 140.5]. The goal is to demonstrate that the model is capable of making

predictions using the trained model for a specific budget during inference. Since the

number of vertices in the first graph is smaller than that of the second graph, the

number of epochs trained for the two graphs are 400 and 1000, respectively.

In addition, in later experiments, we will consider two types of paths, namely

• tour, the agent is required to return to its start location after data collection,

i.e., vs = vt,

• non-tour, the terminal location is different from the start location, i.e., vs 6= vt.

For illustration purposes, for each episode, vs in Area One is set to vertex 0, and vt

is chosen from vertices [0, 26] in instances of tour and non-tour cases. Thus, in the

path planning stage, the model can be used to infer paths given the corresponding vs

and vt. Similarly, vs in Area Two is set to vertex 0 and vt is chosen from vertices [0,

60].

Fig. 4.8 shows the average reward per episode for different RL methods. In Q-

learning, episodes are generated using the ε-greed policy (4.2.5) with ε start at 0.9

and decay to 0.1 gradually; in the other two methods, episodes are generated from

the policy network directly (4.2.7). In both areas, it can be seen that A2C has a

faster convergence speed. In Area One, the reinforce algorithm shows a similar trend

to Q-learning, and A2C performs slightly better after convergence. In Area Two,

the reinforce algorithm has a competitive performance compared with A2C after

convergence, and both methods outperform Q-learning.

67

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

4.3.4 Path Inference Performance

Next we show the performance when the models are utilized for path inference with

Algorithm 6. We first show the impact of the number of snapshot and then the effect

of training budget selection.

4.3.4.1 Impact of Snapshots

5 10 15
Training Episodes/1000

17

18

19

20

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learning

(a) Area One

0 10 20 30 40 50
Training Episodes/1000

20

21

22

23

24

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learning

(b) Area Two

Figure 4.9: Rewards of paths inferred using the snapshots. The snapshots are
captured every 1000 episode. For Area One, the path specification is given as
vs = 0, vt = 0, B = 30, and for Area Two, it is vs = 0, vt = 0, B = 100.

Snapshots captured during training are used to infer paths in the inference stage.

Fig. 4.9 shows the final rewards for two budgets in the two areas with different RL

methods. For Q-learning and the reinforce algorithm, it can be seen that different

snapshots have different inference performances. Since the probability of a path is

πθ(τ) = p(s1)
∏T

t=1 πθ(at | st), even a minor change on the neural network parameters

may affect the inferred path significantly. In contrast, we observed that snapshots

from A2C are more stable and consistent than those from Q-learning or the reinforce

algorithm.

68

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

4.3.4.2 Impact of Training Budgets

30 35 40 45 50
Budget (m)

20

22

24

26

28

30
R

ew
ar

d
(M

I)
A2C
Reinforce
Q-learning

(a) budget set one

30 35 40 45 50
Budget (m)

20

22

24

26

28

30

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learning

(b) budget set two

Figure 4.10: Rewards of paths generated through the models trained with different B
in Area One. The X-axis represent the specific B during inference, and vs, vt are set
to 0 for a tour case. B in (a) is [30.5, 31.5, ..., 50.5], and B in (b) is [30, 31, ..., 50].

100 110 120 130 140
Budget (m)

24

25

26

27

28

29

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learning

(a) budget set one

100 110 120 130 140
Budget (m)

24

25

26

27

28

R
ew

ar
d

(M
I)

A2C
Reinforce
Q-learning

(b) budget set two

Figure 4.11: Rewards of paths generated through the models trained with different
B in Area Two. The X-axis represent the specific B during inference, and vs, vt are
set to 0 for a tour case. B in (a) is [100.5, 101.5, ..., 140.5], and B in (b) is [100, 101,
..., 140].

Recall that in Section 4.3.3 we trained models with a set of budgets B that are

uniformly sampled from a range since the exact budget B is not known. Intuitively,

the selection of B could affect the inference performance given a specific budget B.

We select another set of training budgets to train different models. These models

are used to infer paths and the results are compared with those from the first set of

69

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

training budgets. Fig. 4.10 and Fig. 4.11 show the rewards obtained in Area One and

Two, respectively. It can be seen that Q-learning and A2C have a similar performance

and are less sensitive to the training budgets, while the reinforce algorithm is more

sensitive, particularly in Area Two. This could be attributed to that the reinforce

algorithm has a high variance in gradients.

4.3.5 Comparison with Other IPP solutions

30 35 40 45 50
Budget (m)

20

25

30

R
ew

ar
d

(M
I)

RL
Brute Force
RG
Greedy
GA

(a) tour

30 35 40 45 50
Budget (m)

20.0

22.5

25.0

27.5

30.0

R
ew

ar
d

(M
I)

RL
Brute Force
RG
Greedy
GA

(b) non-tour

Figure 4.12: Path reward comparison using different algorithms for Area One. The
start vertex vs is set to 0. For (a) vt is set to 0 for the tour case, while for (b) vt is
set to 26 as a non-tour case.

In this section, we compare the rewards achieved through reinforcement learning

with those from other IPP algorithms. As shown from the previous experiments, the

three reinforcement learning methods have their own characteristics, and there is no

single best method for all budgets during inference. Thus, we combine the three RL

methods and select the best path inferred among the three methods for a problem

instance. Specifically, as can be seen from Fig. 4.9, many snapshots have the same

result and thus only a subset of those snapshots are needed. We take snapshots

from each RL method every 5000 episode and merge them together. Thus, for Area

70

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

100 110 120 130 140
Budget (m)

17.5

20.0

22.5

25.0

27.5

30.0

R
ew

ar
d

(M
I)

RL
RG
Greedy
GA

(a) tour

100 110 120 130 140
Budget (m)

26

28

30

32

34

R
ew

ar
d

(M
I)

RL
RG
Greedy
GA

(b) non-tour

Figure 4.13: Path reward comparison with different algorithms for Area Two. The
start vertex vs is set to 0. For (a) vt is set to 0 for the tour case, while for (b) vt is
set to 60 as a non-tour case.

One, the total number of snapshots is 3 × 4 = 12 since there are 20000 episodes

trained. Similarly, in Area Two, the total number of snapshots is 30. Given a path

specification, the final path is the one with the maximum reward among the paths

generated using these snapshots.

We compare the RL based path planning solution with a Brute Force tree search

method, the Recursive Greedy algorithm, the Greedy algorithm and the GA from

the previous chapter. For GA, the population size is set to 100. The number of

generations for Area One and Two, are 50 and 100, respectively. Due to randomness,

we run five rounds of experiments independently and take the average for each budget

setting.

For each area, we consider both the tour case (vs = vt) and a non-tour case

(vs 6= vt). For each different path specification (vs, vt and B), all the other solutions

are executed from scratch. In contrast, in the proposed RL based solution, only

the path inference procedure (Algorithm 6) is executed using the snapshots captured

during training (Section 4.2.6.1).

It can be seen from Fig. 4.12 that RL achieves the best performance compared

71

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

with all the other algorithms. When the budget is under 40 meters, the brute force

approach managed to return the optimal path with the maximum reward. Thus, the

paths found by RL is also optimal, since they coincide with those from the brute force

search (note it is overlapped in the figure). The rewards obtained by GA and RG

increase monotonically with budgets, while the rewards from the greedy algorithm

sometimes remain unchanged even when the budgets increase.

The graph from Area Two contains 61 vertices, with budgets larger than that in

Area One, which leads to exponential increase in search space. Fig. 4.13 shows the

results from RL, RG, GA and the greedy approach. In the tour case, RL outperforms

the other algorithms in four out of the five budget settings. However, in the non-tour

case in Fig.4.13 b, the greedy approach achieves better performance than other solu-

tions when budget is less than 130. Meanwhile, the RG shows a limited performance

under this scenario.

Overall, RL achieved the best performance in 15 cases out of 20 test cases. For

path planning, besides the optimality, another important aspect is computation effi-

ciency, which is demonstrated next.

30 35 40 45 50
Budget (m)

10 2

10 1

100

101

102

103

R
un

tim
e

(s
)

RG
GA
RL
Greedy

(a) Area One

100 110 120 130 140
Budget (m)

101

102

103

104

R
un

tim
e

(s
)

RG
GA
RL
Greedy

(b) Area Two

Figure 4.14: Approximate run time of different algorithms for the graph of Area
One and Two on iMac (4GHz, Intel Core i7).

72

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Next we compare the computational efficiency of different path planning methods.

RG suffers from a high computation complexity with O((2nB)I · Tf) [15], where n is

the number of vertices and Tf is the maximum time to evaluate the reward function

on a given set of vertices, and I is the recursion depth. In our experiments, I is set to

two in both cases. A larger recursion depth will increase the run time dramatically.

The Greedy algorithm relies on the TSP solver to generate paths, and the complexity

can be expressed as O(Bn ∗ t(n)), where t(n) is the complexity of the adopted TSP

solver. GA is an evolutionary algorithm, and the complexity is dominated by the

defined number of generations and population size.

For RL, we mainly focus on the inference time, since training can be done offline

before path planning. The inference complexity using the snapshots of models is

O(T ∗ |M|), where |M| is the number of snapshots used and T is the number of steps

in an episode.

The path planning time on an iMac desktop computer (4GHz Intel Core i7, 16

GB RAM, without GPU) is shown in Fig. 5.9. In both areas, RG takes much more

time than other solutions. GA takes approximately 20 and 100 seconds in the two

areas, respectively. Both the greedy algorithm and the RL solution are quite efficient

(within seconds). In Area One, the greedy algorithm is faster, while in Area Two the

run time is similar. This is because the greedy algorithm involves a TSP solver with

a worst case exponential complexity while the complexity of RL is linear with respect

to T or |M|.

73

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

4.4 Discussion

We observe that in the smaller graph in Section 4.3, RL works well for both the tour

and non-tour cases. While in the larger graph for the non-tour case, the performance

degrades under some budget settings. In this section, we discuss three possible reasons

when the RL based IPP fails to achieve the best performance.

The first reason is that the RNN is difficult to train with gradient descent when

the sequence is longer, and may not converge to the global optimal policy. Thus, the

path generated according to the policy network can be suboptimal.

Secondly, since the models are trained using a set of estimated budgets, the result-

ing model is expected to have different inference performance for a specific budget. It

would be challenging to train a model that works best under all different conditions.

Thirdly, the underlying true path reward function is actually a discontinuous

function [91] with respect to the budget. Depending on the graph and edge lengths,

the budget needs to increase to a certain level so that the optimal path can change.

Fig. 4.15 illustrates a simple example. An RNN can be used to represent continuous

functions. When using them to approximate a step-wise function, the results may

differ from the ground truth. This may lead to inaccurate Q-values.

4.5 Conclusion

In this chapter, we presented a RL framework for IPP. To address the unique chal-

lenges posed by path constraints, a novel action selection module is designed with

the assistance of the shortest paths. Compared with the unconstrained action se-

lection strategy, it has a better efficiency and optimality. Under the framework, we

74

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

v1

v2

v3

3

45

vs vt

Reward

R

Budget

3 9

Figure 4.15: The actual Q-value is discontinuous with respect to budget. In this
simple example, the graph makes a triangle. When vs = v1 and vt = v3, the minimal
budget required from vs to vt is is 3. The best path (v1 → v3) and corresponding
reward will not change until budget increases to 9 (v1 → v2 → v3).

implemented Q-learning, actor-critic and the reinforce algorithm, and compared with

other IPP algorithms. The RL based solution achieves better path utility in most

cases with less running time.

75

Chapter 5

Multi-robot Cooperative Path

Planning

In the previous chapter, we presented a reinforcement learning framework that is

able to learn the characteristics of informative paths. Given any budget in a pre-

defined range, the RL model can generate paths efficiently. In recent years, with

the technology advancement and availability of low-cost mobile robotic platforms like

unmanned aerial vehicle, it is attractive to use multiple robots for data collection. In

this chapter, we discuss solutions to extend the RL based path planning framework

to generate informative paths for multiple cooperative robots.

5.1 Related Work

One important research topic in RL is multi-agent reinforcement learning (MARL). In

MARL, the formulations differ for different task settings [11], e.g., whether agents can

communicate with team members, whether agents can perceive the complete global

76

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

state, whether agents are decentralized, and whether the agents are cooperative or

competitive. MARL problems are generally more challenging than single-agent RL

and remain as an active research area in machine learning and robotics communities.

The most relevant MARL scenario to our work is the case of multi-agent fully

cooperative learning, where all the agents perceive the same global state and deter-

mine their own actions. These actions form a joint-action, and after being executed,

a team reward signal can be received by all agents. The task goal is to optimize

the long-term team reward cooperatively. This type of multi-agent system (MAS) is

formulated as a multi-agent Markov Decision Process (MMDP) [9]. In game theory,

it is also called a fully cooperative stochastic game (or also called Markov game) [86].

One key challenge of MARL is that the size of joint action space increases expo-

nentially with the number of agents. To reduce the search space and make learning

and decision making scalable with respect to the number of agents, one solution is to

use independent learners [107], where each agent learns based on individual reward

signals.

With independent learners (or players), from a game-theoretic point of view, the

concepts of equilibrium are utilized to define solutions [73]. The most commonly used

solution concept is Nash equilibrium [43]. In a Nash equilibrium, each agent’s policy

is the best response to the other agents’ policies. Thus, no agent can improve its gain

by unilaterally deviating from its equilibrium policy. A markov game can have more

than one Nash equilibrium. The ultimate goal of fully cooperative MARL is to search

the optimal Nash equilibrium such that the corresponding team gain is maximized.

There are two categories of independent learning schemes in literature. The first

category is to reshape the reward perceived by each agent, which is also known as the

77

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

multi-agent credit assignment [77]. In this case, each agent learns its own policy using

the assigned reward. It is non-trivial to find an optimal credit assignment strategy.

Intuitively, if the reward an agent receives is not commensurable to its efforts (e.g.,

costs), the agent may be discouraged from cooperation, or may become a freeloader.

One well known credit assignment mechanism is difference-rewards, where each agent

is rewarded for the marginal team utility after she joins the team. As such, each

agent is awarded for her own contribution and the effect of other agents (i.e., noise)

is removed [2]. Some works [77] have shown empirically that difference-rewards based

credit assignment outperforms that based on equal reward split. One thing to notice

about difference-rewards is that it changes the game from a fully-cooperative game

to a general-sum game [44] since each agent has different reward assigned, and a

potential risk is that it may not be able to find the optimal solution for the team.

The second category of approach is to let all the agents directly learn with the

same team reward. There has been little theoretical analysis of the properties inde-

pendent reinforcement learning in multi-agent settings. In [9], the authors conjecture

that straightforward Q-learning will lead to Nash equilibrium strategies, although

the equilibrium may not be optimal. However, the conjecture has not been formally

proved so far.

In [60] the authors present a distributed Q-learning algorithm for deterministic

MMDPs. They first propose to learn the optimistic Q-values, which is the maximal

possible Q-value of an action when the other team players select the best response

actions. However, even if each agent picks the best action with respect to the Q-values,

the formed joint action may not be the optimal due to mis-coordination issue. To

address this problem, they propose to memorize the best action with another table,

78

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

which can be seem as a coordination strategy based on social rules [9]. Although

it was proved theoretically that the proposed method can find optimal policies in

deterministic environments, the method can be only applied to tabular Q-learning

since it needs to remember exact the best action seen so far given a specific state.

For large state spaces where functional approximation (e.g., deep neural network) is

required for state representation, it is non-trivial to extend the idea.

In [105], the authors propose Optimal Adaptive Learning, which was proved to

converge to the optimal Nash equilibrium with probability one in any stochastic

game. However, the computation complexity of the solution is too high since it needs

to construct and solve a virtual game for each single state. Thus, it is not applicable

in most real world stochastic games.

A few solutions to MARL consider heuristic strategies to encourage exploration.

Specifically, Frequency Maximum Q-value (FMQ) is proposed in [49]. In FMQ, when

an agent is exploring its action space, besides its predicted Q-values, it counts how

frequently an action produces its maximum corresponding reward, which is similar

to the optimistic projection in the distributed Q-learning in [60]. In [72], the authors

proposed Hysteretic Q-learning, where the Q-functions are updated through two dif-

ferent learning rates. When the temporal difference is positive, a larger learning rate

is adopted; a smaller learning rate is adopted when the temporal difference is nega-

tive. The distributed Q-learning in [60] can be seem as a special case of Hysteretic

Q-learning when the smaller learning rate is 0. Another optimistic learning approach

is the lenient learning introduced in [79]. The basic idea is to use a temperature to

control leniency. Initially, the learners are lenient to forgive or ignore sub-optimal

actions by teammates that lead to low rewards. Gradually, the degree of leniency is

79

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

decayed and agents transit from optimistic to average reward learners.

Table 5.1: Summary of MARL solutions for MMDP Tasks

Algorithm Basic Idea Theoretic Conver-
gence

Independent Q-
learning [19]

Directly apply conventional Q-
learning.

Nash equilibrium
(conjecture)

Distributed
Q-Learning [60]

Learn optimistic projection, combined
with rule based coordination.

Optimal policy

COIN [110] Decompose the team reward for each
independent learner.

No

OAL [105] Create and solve virtual game for each
step.

Optimal policy

FMQ heuris-
tics [49]

Modify the exploration strategy. No

Hysteretic Q-
learning [72]

Use two different learning rates. No

LDQN [79] Use a temperature to control leniency. No

Table. 5.1 summarizes representative solutions for MMDP tasks. Most of them do

not have theoretic convergence guarantees. Although the approach in [105] and [60]

are provably converge, their applications are limited due to unrealistic problem setup

or simplified assumptions. In this thesis, to solve the MIPP problem, we present two

solutions. One is based on the credit assignment approach. In the other solution,

we leverage the unique spatial-temporal characteristics of MIPP and convert it to a

single agent reinforcement learning.

5.2 Problem Formulation

Like the single-robot path planning problem, we formulate the MIPP problem with

a five-tuple 〈G, C,vs,b, fD(P)〉. Specifically,

80

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

• G = (V , E) is a graph representing the layout and reachability of the target

area.

• C ⊆ V denotes the set of charging locations or depots. We assume that each

charging location or depot has sufficient capacity to serve all robots in the

system. Depots with limited capacity will be considered in our future work.

• vs is a vector that denotes the start locations of the team of robots on G. The

start location of robot i satisfies vis ∈ C, i.e, it is initially located at one of the

depots. Let N = |vs| be the number of robots.

• b is a vector of dimension N denoting the available travel budgets for the robots.

• fD(P) is a function to evaluate the utility of a path set P = ∪ni=1Pi traversed

by the team of robots. Here, the subscript D represents historically collected

sensing data, such as pilot data used to estimate the hyper-parameters of the

GP. Like the single robot case, the utility of paths is defined as

fD(P) = MI(yV ; yP ∪ yD) = H(yV)−H(yV | yP ∪ yD) (5.2.1)

The optimization goal of the MIPP is thus:

maximize fD(P),

s.t. C(Pi) ≤ bi and Pi[−1] ∈ C, (5.2.2)

∀i ∈ {1, ..., N},

where C(Pi) is the cost of path Pi, and Pi[−1] is the last vertex of the path. For each

81

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Figure 5.1: A simple 1-step MIPP example. The green ’*’ sign represents the
location that has been previously sensed, the orange bold ’+’ shape denotes
charging stations. Suppose each edge has unit length (1), if vs = [1, 1] (vertex
index) and b = [1, 1] (budgets), then the optimal paths for the two robots are
P1 = [1, 0] and P2 = [1, 2], or P1 = [1, 2] and P2 = [1, 0] due to the existence of
previously sensed locations. On the other hand, if vs = [0, 2], the only solution is
P = [[0, 1], [2, 1]] due to the budget and charging station constraints.

robot, it needs to return to one of the depots within its budget constraint. The initial

locations and budgets of the robots may be the same or different. Clearly, MIPP is

NP-hard since it is equivalent to IPP with identical start and terminal locations when

N = 1 and |C| = 1.

Fig. 5.1 shows a toy example of MIPP with 2 robots. In this example, each robot

has a budget of one unit. The costs of all edges are one. In this case, MIPP can

be viewed as a 2-agent matrix game. By varying the start locations or the locations

of the pilot data (indicated by the green star), the game may have one or multiple

equilibria, which can be found manually. Even for such a simple scenario, designing

an MARL strategy that converges to the optimal equilibrium is non-trivial for a

repeated version of the game. As the number of the robots and budgets increase, for

larger graphs, the search space becomes prohibitively vast for any manual solution to

be feasible.

82

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

5.3 RL Strategies to MIPP

Due to the NP-hardness of MIPP, one needs to devise heuristic solutions that can

be computed in polynomial time. Conventional heuristic approaches such as GA re-

quire re-execution of their procedures whenever any parameter in 〈G, C,vs,b, fD(P)〉

changes since the corresponding problem instance is different. The advantage of an

RL-based solution, on the other hand, lies in its ability to generalize to problem

instances with different parameter settings with a single round of training.

Next, we first formalize MIPP from the prospective of Multi-agent Markov Deci-

sion Processes (MMDPs), and then discuss the proposed state encoding and reward

function. Lastly, we present three different RL policies.

5.3.1 MMDP for MIPP

A multi-agent Markov Decision Process [9] is defined using a five-tuple 〈S, α, {Ai}i∈α, P r, R〉,

where

• S and α are finite sets of states and agents, and the states can be perceived by

all agents,

• Ai is the set of actions available to agent i,

• Pr : S ×A1 × · · ·AN → [0, 1] is the state transition probability,

• R : S ×A1 × · · ·AN → R is a reward function.

At any stage, each agent selects an action and executes it. The actions from all

agents form a joint action. Accordingly, the environment makes a state transition

and provides a reward signal. An MMDP is also known as a stochastic game with

83

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Figure 5.2: State encoding and three learning schemes

identical interests (or a fully cooperative game) in game theory [86], where each player

tries to maximize the same total pay-off.

In MIPP, each agent represents a data collection robot. Initially, agent i is at its

start location vis with an initial budget bi. The available actions are the neighboring

vertices that agents can move to given remaining budgets. Execution of the joint

action results in a single team reward. However, unlike the definition in [9], in MIPP,

the state transitions are deterministic, i.e, given the current state and a joint action,

the next state is unique. The goal of the agents is to plan paths that maximizes

cumulative discounted team rewards. All agents can observe the same global state.

The state transition and the reward function are not known a priori, and need to be

learned through RL.

5.3.2 States and Action Selection

We denote the state transition tuple at step t as 〈st,ut, Rt, st+1〉, where ut = [u1
t , ..., u

N
t]

is the joint action, and Rt is the team reward. The state of robot i is encoded as

84

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

(xit, y
i
t, b

i
t), which consists of its coordinates in the target area and its remaining bud-

get. Thus, the state of all agents at time t is given by st = {(xit, yit, bit)Ni=1}. The

remaining budget bit is updated as

bit = bit−1 − c(vit−1, v
i
t), (5.3.1)

where c(vit−1, v
i
t) is the cost incurred by traversing the previous edge (vit−1, v

i
t), and

bi0 = bi is the initial budget. Here, vit = (xit, y
i
t) is the nodal position of agent i as

the result of action uit. Since historical actions (past paths) affect the current reward,

we adopt a Recurrent Neural Network based on GRU [18] to encode the historical

information as hidden states.

The available actions at t to agent i are the neighboring vertices of its current

location. Since agents have different budgets, some may terminate earlier than others.

To handle this situation, we include a dummy action to the action space, which is

available when an agent arrives at a charging station and has insufficient budget to

visit other locations. When all the agents arrive at charging stations, one training

episode terminates. Furthermore, since an agent must reach one of the charging

stations, we further prune the available actions of an agent as follows. Let the current

position of agent i be vit. With respect charging station cj ∈ C, its valid actions are

given by

Ait(vit, cj) = {v ∈ Nbr(vit) : c(vit, v) + LCP(v, cj) ≤ bit}, (5.3.2)

where Nbr represents adjacent vertices, and LCP denotes the cost of the Least Cost

Path from v to vt that can be computed using the Dijkstra algorithm. Thus, the valid

85

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

action set for agent i at vit is,

Ait(vit) =

|C|⋃
j=1

Ait(vit, cj). (5.3.3)

In the implementation, we define a mask vector based on (5.3.3) and add it to

the Q-values to remove invalid actions, so that agents are guaranteed to reach some

charging stations within budget constraints.

5.3.3 Team Reward

The team reward Rt is calculated as the reduction in the uncertainty of yV due to

the incremental data collected by all robots at step t. Recall that uncertainty only

depends on sensing locations under the GP assumption, which can be determined

from the sampling frequency and the moving speed of robots. Formally,

Rt = H(yV | yPt−1 ∪ yD)−H(yV | yPt ∪ yD), (5.3.4)

where yPt−1 and yPt are the sensor data collected by the robot team through the

previous and current steps, respectively. Clearly,
∑

tRt = fD(P) is exactly the opti-

mization goal. As a result, the team of robots are incentivized to explore informative

paths through the reward signal.

5.3.4 Learning Schemes

To make the learned policy generalizable to different start locations and initial budgets

for all agents, during the training stage, we treat vs and b as variables. For each

86

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

training episode, we randomly sample the start location of each robot from the set

C. Similarly, the budget of each robot is sampled uniformly from [Bmin, Bmax]. Next,

we present three types of training schemes based on Q-learning.

5.3.4.1 Joint Action Learning

Joint Action Learning (JAL) treats the MMDP as a single agent MDP, and encodes

a joint action as a single action. For instance, in a two-agent system, a pair of action

(u1, u2) can be encoded as a joint action index u1 · (1 + |V|) + u2 (note the existence

of the dummy action). Conversely, any joint action index can be mapped to a pair

of actions. The reward signal can be thus seen as the reward to the encoded single

action. By doing so, existing single-agent Q-learning algorithm like DQN [75] can be

applied. We call this approach DQN-JAL. The main disadvantage of JAL is that it

can only handle small problem sizes with limited number of agents and a small action

set.

5.3.4.2 Independent Q-learning

One way to reduce the action space of the MMDP is by assigning credits to agents

based on their respective actions and the team reward in each step, and training the

agents separately. Formally, a credit assignment strategy is defined as a function η :

S×A×R→ RN that maps {st,ut, Rt} to [r1
t , ..., r

N
t]. We consider two different forms

of η(st,ut, Rt) for MIPP. The first approach is to split reward Rt equally among robots

regardless of their actions with the exception of robots who have terminated and will

receive zero awards. The second approach is based on difference rewards [77, 110],

which consider the marginal contribution of each agent. In particular, rit can be

87

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

calculated as

rit = H(yV | yP−it ∪D)−H(yV | y∪Nj=1P
j
t ∪D

), (5.3.5)

where P−it denotes the set of paths from teammates, excluding the path from agent

i. Since
∑N

i=1 r
i
t 6= Rt, we further normalize rit with Rt∑N

i=1 r
i
t

to obtain the final reward.

Based on the outcome of credit assignment, the training procedure of independent

learning is outlined by Algorithm 5. We adopt Q-learning as the RL algorithm for

good sample efficiency. The optimization goal is to minimize the temporal-difference

(TD) error of the Q-function network,

LTD(st, u
i
t, r

i
t, st+1;θi) = (Qi(st, u

i
t;θi)− yitarget)

2, (5.3.6)

where yitarget = rit + γmax
uit+1

Qi(st+1, u
i
t+1;θ−

i). For every C episodes, we save the model

parameters θ (the set of parameters for all agents). We call this approach IQL-

EqualSplit or IQL-DiffRewards depending on the credit assignment approach

used.

5.3.4.3 Sequential Rollout

In MIPP, intuitively, agents can maximize team rewards by spatially spreading out

in the target area. Their actions can be performed in an asynchronous manner. For

example, given two paths, collecting data using two robots concurrently achieves the

same utility as running one robot after the other sequentially along the paths since

utility only depends on the locations of data collection (though the completion time is

different). However, unlike sequential allocation [93] that treats robots independently,

when planning the path of the first robot, one should be cognizant of the initial

88

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Algorithm 5: IQL based on Credit Assignment

Input : 〈G, C, fD(P), Bmin, Bmax〉, model save cycle C
Output: model parameter set Θ

1 initialize replay memory M
2 initialize θ randomly and set θ− = θ
3 for episode e = 1, 2, ... do
4 set vs and b by sampling from C and [Bmin, Bmax]
5 get initial global state s0

6 for step t = 1, 2, ..., T do
7 for agent i = 1, 2, ..., N do
8 with probability ε select a random action uit from Ait(vit)
9 otherwise select uit = arg maxuit Qi(s, u

i
t)

10 end
11 take action ut and calculate Rt

12 store transition (st,ut, Rt, st+1) to M
13 sample a batch of (sj,uj, Rj, sj+1) from M
14 calculate the credit assignment [r1

j , ..., r
N
j]

15 update θi by minimizing the loss LTD(sj, u
i
j, r

i
j, sj+1;θi) for each agent

16 end
17 set θ− = θ with some period K
18 if e mod C = 0 then
19 save parameter θ to Θ

20 end
21 return Θ

89

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

locations and budgets of the remaining robots. Motivated by this key insight, we

propose a new cooperative mechanism called sequential rollout by converting the

MMDP to a single-agent decision process. We fix the order of the robots. At each

time step t, the agent makes decision for one robot, and all the other robots take the

dummy action, i.e, they stay at the same location. When the current robot arrives

at a charging station and is out of budget, the agent switches to the next robot on

the list.

In sequential rollout, the full state includes the status of all robots to predict the

total discounted future reward. However, the one-step reward only comes from the

active robot and its action. The main training procedure is similar to Alg. 5 except

that there is only a single agent, and no credit assignment is needed. This approach

does not suffer from the problem of exponential growth of the joint action space with

respect to the number of robots. One potential disadvantage is that the time step

horizon is increased from T steps to NT steps. In other words, it trades spatial

with time. This may make the prediction of the total future reward less accurate

compared with a shorter horizon. We call this approach SEQ-Rollout-DQN with

DQN being the learning algorithm.

5.3.5 Path Planning

Once the model has been trained, it can be utilized for path planning. Given any vs

and b, a greedy policy with respect the Q-values can be used to select actions. Note

that except for JAL-DQN, the next action of a robot only takes O(|V|) time.

To mitigate local optimality, we execute the path planning algorithm multiple

times with different model parameters output by Algorithm 6, and select the path set

90

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

with the maximum reward. The path planning procedure is outlined in Algorithm 6

for independent learning. For sequential rollout, paths are generated one by one

sequentially.

Algorithm 6: Path Planning Procedure (with IQL)

Input : Θ,vs,b
Output: best path P∗

1 initialize a candidate path set PΘ = {}
2 for θ ∈ Θ do
3 get initial global state s0

4 for step t = 1, 2, ..., T do
5 for agent i = 1, 2, ..., N do
6 select uit = arg maxuit Qi(s, u

i
t) based on θ

7 end
8 take action ut
9 end

10 add the generated path to P
11 end
12 return P∗ = arg maxP∈PΘ

fD(P)

5.4 Performance Evaluation

In this section, we compare the performance of different strategies for MIPP. For

evaluation, we consider the task of path planning as introduced in Chapter 4, but

with multiple robots. The same two areas are evaluated.

5.4.1 Implementation and Environment Setup

During training, the neural networks in DQN are implemented using PyTorch 1.

RMSProp [7] is utilized as the optimizer for parameter estimation with a learning

1https://pytorch.org

91

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

rate of 0.0001 for all the learning schemes. The minibatch size is set to 32 for each

training iteration. The size of experience buffer is 5000. The discounter factor γ for

long-term returns is set to 0.99. Different settings are considered, including different

numbers of robots, charging stations and budgets. In each setting, we train 10000

episodes on the graph of Area One, and 20000 episodes on the graph of Area Two.

5.4.2 Training and Convergence

0 2000 4000 6000 8000 10000
Training Episode

20

21

22

23

24

R
ew

ar
d

DQN-JAL
IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(a) 1 charging station (7)

0 2000 4000 6000 8000 10000
Training Episode

20

21

22

23

24

25

R
ew

ar
d

DQN-JAL
IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(b) 2 charging stations (7, 19)

0 2000 4000 6000 8000 10000
Training Episode

24

26

28

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(c) 1 charging stations (7)

0 2000 4000 6000 8000 10000
Training Episode

26

28

30

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(d) 2 charging stations (7, 19)

Figure 5.3: Average reward per episode during training for Area One, with different
setting of charging stations and number of robots. (a) and (b): 2 robots, (c) and
(d): 3 robots.

In the first area, policies are trained for the cases of 2 or 3 robots. In each case,

1 or 2 charging stations are included. In the second area, due its elongated shape,

more robots (3 – 4), and charging stations (3 – 4) are deployed in the field. Robots

92

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

0 5000 10000 15000 20000
Training Episode

21

22

23

24

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(a) 3 charging stations (48, 6, 53)

0 5000 10000 15000 20000
Training Episode

23

24

25

26

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(b) 4 charging stations (48, 6, 53,
57)

0 5000 10000 15000 20000
Training Episode

23

24

25

26

27

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(c) 3 charging stations (48, 6, 53)

0 5000 10000 15000 20000
Training Episode

25

26

27

28

29

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
IQL-EqualSplit

(d) 4 charging stations (48, 6, 53,
57)

Figure 5.4: Average reward per episode during training for Area Two. (a) and (b):
3 robots, (c) and (d): 4 robots.

in the first and the second areas have budget ranging from 15 to 30 units and 30 to

50 units, respectively. The cost of a single edge in the first and the second areas are

2.5 units and 2 units, respectively. During training, budgets are sampled from these

ranges for all robots as shown in Alg. 5.

Fig. 5.3 shows the average reward during training per episode for robots in Area

One. When there are only 2 robots, we also evaluated DQN-JAL, which has a joint

action space of size 28 × 28 = 784. Due to its poor scalability, as the graph size

grows (in Area Two) or the number of robots increases, it is no longer computa-

tionaly feasible to run DQN-JAL. From the figure, we see that in the first area,

93

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

IQL-DiffRewards and SEQ-Rollout-DQN have a comparable performance,

and are both better than IQL-EqualSplit. In addition, DQN-JAL converges

slowly and reaches similar rewards as IQL-DiffRewards and SEQ-Rollout-

DQN after 10,000 episodes of training.

Fig. 5.4 shows the rewards during the training process with 3 and 4 robots in

Area Two. Similar to the first Area, it can be observed that IQL-EqualSplit has

inferior performance overall, and IQL-DiffRewards achieves the best result among

all three schemes. Moreover, the performance of SEQ-Rollout-DQN degrades as

more robots are available. As discussion previously in Section 5.3, sequential rollout

has a longer time horizon since the total number of steps increases linearly with the

total budget of the robots. In contrast, with independent learning, all robots are

trained concurrently.

Finally, the search space grows when the number of robots or the number of

charging stations increases. For instance, when there is only one charging station,

the paths of all the robots form a tour. Adding an extra charging station means that

robots have more available paths to explore since they do not have to return to where

they started. In both two areas, rewards at convergence time increase with more

robots or charging stations as expected.

5.4.3 Path Planning Performance

To evaluate the informativeness of the predicted paths of the proposed schemes, we

also implement a non-learning sequential allocation method inspired by [94], which

plans paths one after another independently using a single-robot IPP algorithm. We

94

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

adopt GA as the single-robot IPP algorithm. In GA, paths are encoded as chromo-

somes, cross over and mutation operators are designed to increase the diversity of the

population. The best path among the final evolution generation is chosen as the out-

put. Due to the existence of multiple charging stations, the GA needs to be adapted

to handle situations that robots can terminate at any of the charging stations. We

refer to this approach as SEQ-Alloc-GA in subsequent comparisons. In the exper-

iments, the population size is set to 100 and 50 generations are evolved. Note that

SEQ-Alloc-GA needs to be re-executed each time the budgets of robots or their

initial positions change.

For RL based solutions, we select policies trained by IQL-DiffRewards and

SEQ-Rollout-DQN in path planning, since they have fast and better convergence

as seen in the previous section. Next, we present the results of two scenarios, namely,

homogeneous budgets and heterogeneous budgets among the robots. In the first

scenario, all robots have the same budget, while in the second case, at least one robot

has a different budget from the rest.

5.4.3.1 Homogeneous Budgets

Fig. 5.5 shows the rewards of different path planning schemes in Area One. In the

experiments, we vary the budgets, the number of robots and charging stations. It

can be seen that the RL-based path planning methods achieve similar rewards as

SEQ-Alloc-GA. As the budgets increase or the number of robots increases, high

reward can be achieved by all schemes. Introduction of more charging stations also

improve the rewards as more feasible paths are available to all robots.

Similar observations can be made for Area Two as shown in Fig. 5.6 for 3 and 4

95

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

15 20 25 30
Budget

20

25

30

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(a) 1 charging station (7)

15 20 25 30
Budget

20.0

22.5

25.0

27.5

30.0

32.5

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(b) 2 charging stations (7, 19)

15 20 25 30
Budget

25

30

35

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(c) 1 charging station (7)

15 20 25 30
Budget

25.0

27.5

30.0

32.5

35.0

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(d) 2 charging stations (7, 19)

Figure 5.5: Path planning performance in Area One for homogeneous robots. The
X-axis shows the budget for each robot for a single experiment. (a) and (b): 2 robot
team, (c) and (d): 3 robot team. In (b), the initial locations vs = [7, 19], in (d),
vs = [7, 7, 19].

robots. All methods have competitive performance.

5.4.3.2 Heterogeneous Budgets

Fig. 5.7 and Fig. 5.8 show the results of planning robots with heterogeneous budgets

in Area One and Area Two, respectively. In this scenario, SEQ-Alloc-GA has

inferior performance than the RL-based solutions in most cases. This is because SEQ-

Alloc-GA is a greedy solution. It can only make use of the current robot’s budget

information, and plan the robots independently. When the robots have different

budgets, the order which robot is planned first matters. To understand this, consider

96

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

30 35 40 45 50
Budget

22

24

26

28

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(a) 3 charging stations (48, 6, 53)

30 35 40 45 50
Budget

26

28

30

32

34

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(b) 4 charging stations (48, 6, 53,
57)

30 35 40 45 50
Budget

24

26

28

30

32

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(c) 3 charging stations (48, 6, 53)

30 35 40 45 50
Budget

26

28

30

32

34

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(d) 4 charging stations (48, 6, 53,
57)

Figure 5.6: Path planning performance in Area Two for homogeneous robots. (a)
and (b): 3 robot team, (c) and (d): 4 robot team. In both (a) and (b), the initial
locations vs = [48, 6, 53], in (c), vs = [48, 6, 53, 48], in (d), vs = [48, 6, 53, 57].

the case of two robots, one with a large budget and one with a small budget. To

maximize the total reward, it is desirable to plan the robot with the smaller budget

first as the other robot has more flexibility to maneuver to regions with higher rewards

given the decision of the first robot. The RL-based schemes, by design, take into

account of the (future) decisions of all robots in updating Q-functions and thus are

agnostic to the orders.

Lastly, it can be observed from Fig. 5.7 and Fig. 5.8 that with the exception of

SEQ-Alloc-GA, all schemes achieve higher rewards with more average budgets and

more charging stations in both areas. IQL-DiffRewards has the best performance

97

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

15 20 25
Budget

28

30

32

34

36

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(a) 1 charging station (7) nodes

15 20 25
Budget

30

32

34

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(b) 2 charging stations (7, 19)

Figure 5.7: Path planning performance in Area One for 3 heterogeneous robots.
One robot has a fixed budget b = 30, and X-axis shows budgets for the other two
robots. In (b), the initial locations vs = [7, 19, 7].

in most cases.

5.4.4 Computation Efficiency

In addition to the total rewards, an important evaluation metrics is the computation

time. Without runtime limitation, one can even adopt brute force search to find paths

with the highest rewards. For GA, one can infinitely increase the population size or

the number of evolution generations to approach global optimal.

For RL-based MIPP schemes, we focus on the computation time of path planning

(or inference), since the policies are trained beforehand without the knowledge of

specific budgets or initial locations of robots. The computation complexity of IQL-

DiffRewards and SEQ-Rollout-DQN is both O(N |V|Bmax|Θ|), where Bmax is

the maximum budget of the robots and |Θ| is the size of the model parameter sets.

The complexity of JAL-DQN is O(|V|NBmax|Θ|).

Fig. 5.9 shows the path planning run time of different approaches on a desktop PC

with Intel Core i7 and 16GB memory for the two target areas. It can be seen that both

98

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

30 35 40 45
Budget

30

31

32

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(a) 3 charging stations (48, 6, 53)

30 35 40 45
Budget

30

31

32

33

34

35

R
ew

ar
d

IQL-DiffRewards
SEQ-Rollout-DQN
SEQ-Alloc-GA

(b) 4 charging stations (48, 6, 53,
57)

Figure 5.8: Path planning performance in Area Two for 4 heterogeneous robots.
Two robots have a fixed budget of 50, and X-axis shows the budgets of the
remaining two robots. In (a), the initial locations vs = [48, 6, 53, 48] and (b), the
initial locations vs = [48, 6, 53, 57].

RL-based path planning solutions are efficient, and can finish within seconds even in

the worst case. Since in each time step, IQL-DiffRewards needs to compute the

action of each agent, it is slightly slower than SEQ-Rollout-DQN. We error on

the optimistic side to run GA for only 50 generations though it is far from reaching

the optimal solution. Even so, SEQ-Alloc-GA takes much longer time than the

RL-based solutions.

5.5 Conclusion

In this chapter, we formulated cooperative spatial sensing among multiple robots as

a MMDP problem and developed efficient RL-based solutions. We devised two solu-

tions, namely, individual learning based on credit assignment and sequential rollout

based reinforcement learning. With both schemes, the learned policy is utilized to

plan paths and achieve higher or similar rewards compared with baseline solutions in

most cases, but with less run time.

99

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

15 20 25 30
Budget

100

101

102

R
un

tim
e(
s) IQL-DiffRewards

SEQ-Rollout-DQN
SEQ-Alloc-GA

(a) Area One, 2 robots

30 35 40 45 50
Budget

101

102

R
un

tim
e(
s) IQL-DiffRewards

SEQ-Rollout-DQN
SEQ-Alloc-GA

(b) Area Two, 3 robots

Figure 5.9: Approximate run time of different solutions for the two areas on a
desktop (16GB memory, Intel Core i7).

100

Chapter 6

Data Collection through Mobile

Crowdsourcing

In the previous chapters, we investigated the path planning problems for mobile

robotic sensing so as to maximize data utility given limited budgets. Besides robotic

sensing, another popular data acquisition approach emerged in recent years is mobile

crowdsourcing (MCS). Extensive research has been done for MCS-based data collec-

tion [13]. However, it remains challenging to deploy such approaches in practice.

As an example, MCS-based Wi-Fi fingerprint site survey was first proposed more

than a decade ago [80], but until now no successful deployment is known due to

a number of challenges. First, an MCS campaign requires contributions from par-

ticipants, but individuals may be reluctant to participate and contribute data for

various reasons (e.g., privacy concerns , extra efforts required, additional costs or en-

ergy expenditure). Consequently, a campaign organizer needs to motivate the crowd

to participate and gather data. The second challenge is how to impart the necessary

knowledge to the crowd so they can conduct site surveys successfully. Although site

101

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

survey may seem easy and trivial to experts, laymen may find it complicated to figure

out where and how to collect data without prior knowledge. Lastly, it is difficult to

guarantee the quality of crowdsourced data, which may be inaccurate due to inex-

perienced users or low-quality sensors. To an organizer, low-quality data leads to

erroneous data analysis. To participants, sensing and delivering inaccurate data are

wasteful in terms of battery and time.

Due to these challenges, conducting effective MCS-based site surveys for location

fingerprints remains an open problem. Existing works only address a subset of the

challenges. For instance, [80] investigated when to prompt users to provide inputs

and how to detect erroneous crowdsourced data. [62] developed mechanisms to bind

fingerprints to locations when no maps are available. [111] focuses on how to use

crowdsourced data, and only involves a few volunteers to simulate an MCS scenario

and get cowdsourced data in its evaluation. None of these works considered practical

issues such as participant recruitment and incentive mechanisms. We believe these

challenges are primarily social-psychological, since it involves human nature and be-

havior characteristics. Thus, the main motivation of this study is to investigate human

responses to MCS-based site survey through a real-world campaign.

In this chapter, we present a user behavior study through a real world MCS cam-

paign on Wi-Fi fingerprints. We tackle all aforementioned challenges, from platform

design to participant recruitment and analysis of localization performance. Our main

contribution can be summarized as follows.

• An indoor fingerprint MCS platform. We design and implement an Indoor

Fingerprint Crowdsourcing System (IFCS), which harnesses the crowd for fin-

gerprint site survey.

102

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

• A novel metric to assess participant contributions. To promote better coverage

of target areas, we propose a metric based on the informativeness of participants’

collected data.

• A large-scale real-world data collection campaign 1. From September 2019 to

January 2020, a data collection campaign had been conducted in the McMaster

University campus for five months. In total, 97 participants signed up for the

campaign and 66 of them uploaded fingerprint data. Over 1400 fingerprints had

been collected from 24 buildings and 58 floors at the cost of $200.

• Participant recruitment and behavior analysis. To the best of our knowledge,

this work is the first to investigate participant recruitment and behavior analysis

for an MCS-based site survey.

• Data quality control and inspection method. Data collected by the crowd may

suffer from poor quality such as inaccurate labels due to intentional or unin-

tentional mistakes. We present a few methods to validate crowdsourced data

before they are used for localization model training. Assessed using test data

collected from three different devices, the resulting localization model achieves

an average localization error of 9.6 meters, which is comparable to the result

in [67].

Although the goal of the campaign is to collect Wi-Fi fingerprint data, the designed

platform and proposed solutions are applicable to other similar types of spatial data.

1The data collection campaign and the follow-up survey have been approved by the research
ethics board of McMaster University.

103

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

6.1 System and Campaign Design

In this section, we present the system and campaign design. First, we discuss the

main design considerations. Then, we present a system overview followed by details

of main components.

6.1.1 Design Considerations

Although several studies have proposed to use MCS for fingerprint site survey, it is

challenging to put the idea into practice. To successfully operate an MCS campaign

for site survey in the real-world, we need to carefully design campaign strategies along

several aspects:

• user recruitment : MCS relies on participants and they may be reluctant to

carry out a data collection task. As a result, it can be challenging to find a

sufficient number of participants.

• teaching phase: How to impart necessary knowledge to participants is another

non-trivial concern, since they may not know how to make contributions but a

long-learning session is likely to discourage people from participating.

• participant contribution: A fair contribution assessment method is needed. It

is desirable that the measure is independent of a participant’s device type, and

should encourage him to explore more un-surveyed areas.

6.1.2 System Overview

The implementation of IFCS adopts a client-server architecture. Fig. 6.1 illustrates

the main modules on the client and server sides. The client side is an Android App

104

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Server Side

Mobile Side
(Android)

Registration/Login

Data Collection/Upload

Data Storage

Heatmap Management

Score Calculation

Leaderboard

Help/Tutorial

Localization

Figure 6.1: Main modules in the crowdsourcing platform

(SDK version 26) that we published in Google Play Store2. The main component

of the user interface (UI) is a map, which is customized with the Mapbox Studio3.

Specifically, location features such as rooms and stairs are extracted from vectorized

indoor floor plans and then stacked on a base map layer of building contours and

pathways from OpenStreetMap4.

On the client side, detailed help information and tutorials are provided inside the

App. Specifically, two options for data collection are provided to the user. The first

option is point-based collection, in which a participant travels to selected locations

and collects respective fingerprints at these locations. In the second option, called

path-based collection, a participant specifies a path by marking the start and terminal

2https://play.google.com
3https://www.mapbox.com/
4https://www.openstreetmap.org/

105

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

positions on the map inside the App5, and then walks along the path. During the

walk, Wi-Fi scanning is performed in background. Location labels of Wi-Fi scans are

inferred during the post-processing stage by leveraging the path information [64].

When a participant indicates the completion of the data collection process (e.g.,

finishing scanning at one location in the point-based method or arrival at a terminal

location in the path-based approach), all the data (e.g., Wi-Fi signals, IMU sensors,

location labels, device information, and timestamps) are packed into a single package

using Protocol Buffers6 and uploaded to the server. Once data are delivered, the par-

ticipant receives an immediate feedback containing the scores she obtained for this

submission. There may be cases when data fail to be uploaded due to Wi-Fi discon-

nection. To reduce user intervention, these data will be uploaded automatically in the

background when connection is established again. Participants can also check their

total scores and their rankings in the “Leaderboard” page as shown in Fig.6.2 b. As

previously explained, the leaderboard provides a gamified incentive for contributing

data, as the students would be in a game competing with one another.

The server side was developed with Django7. Received data are organized by

buildings and floors. For each Building/Floor (referred as B/F in later descriptions),

the server tracks the locations that have been surveyed. A heatmap is generated

to indicate which areas have not been surveyed and thus promise more scores. The

score module evaluates users’ contribution, which can be used to redeem monetary

compensation.

5The location labels are recorded in the GPS format.
6https://developers.google.com/protocol-buffers
7https://www.djangoproject.com

106

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

6.1.3 User Interface

(a) MAP (b) Leaderboard

Figure 6.2: Main user interfaces of IFCS.

After registration, when a participant logs in for the first time, the user interface

shows a few tutorial pages. As soon as participants get familiar with the procedure,

they can start collecting data. To make the user interface easy to understand, an-

notation is also provided for each UI element with a question mark. Fig.6.2 a shows

the main user interface for data contribution. Cellular network or GPS is used as

a coarse-grained localization method to determine the participant’s current building

automatically. Manual building selection can be used when the automatic selection

fails. Additionally, participants can choose the floor levels they are on. Indoor floor

107

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

detection itself is a challenging and non-trivial task [25, 38, 45]. Thus, we let partici-

pants decide the floor levels. At the final data submission stage, a dialog will appear

to confirm the floor selection (Fig. 6.3 b).

With the above design, we expect that the learning curve is shortened so that

participants (especially those without any prior knowledge of site survey) can figure

out the data collection procedure by themselves. Unlike many MCS systems proposed

in literature, IFCS does not perform task assignment [31]. Participants do not have

to accept pre-defined tasks and finish them. Instead, they are free to choose anywhere

and anytime to collect data and accumulate scores.

6.1.4 Contribution Assessment

To assess a participant’s contribution, we propose a scoring method based on the

informativeness of the paths or locations of data collection. Specifically, we model

the spatial distribution of Wi-Fi signals by a Gaussian Process (GP) [58]. For a given

B/F, we first divide the space into grids. Each grid point, denoted by its physical

2D coordinate x = (x1, x2), serves as a reference point. Let the set of grid points be

V = {x(i)}pi=1, where p is the number of grid points. Equivalently, we represent the

grid points using a p×2 matrix XV . Denote the corresponding Wi-Fi signal strengths

at these points by random variables yV .

Now suppose that a participant collects data at a set of locations XS . For point-

based collections, XS only contains one location, i.e, the location where she stands.

For path-based collections, we set XS to be the locations where step events8 occur

along the paths. Typical step frequency is from 1Hz to 2Hz for healthy adults.

8A step event is defined as the beginning of the swing phase in a stride cycle for either foot.

108

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Compared to using locations where Wi-Fi scans are actually obtained during the

walk, which is highly device and environment dependent, doing so is more indicative

of participants’ efforts. We have implemented a peak detection based step counter

and combine that with map information to infer locations of step events. Let the

“observations” at XS be yS . For each data submission, we calculate the score by the

decrement in the entropy of yV as the result of yS . Formally,

F (yS) = β[H(yV)−H(yV |yS)] =
β

2
(ln|ΣV | − ln|Σ′V |), (6.1.1)

where β is a scaling factor that can be used to balance the scores for path-based and

point-based options.

The score determined by (6.1.1) only depends on the scaling factor, the kernel

parameters, past and current survey locations. Actual RSS values or device charac-

teristics do not affect the assessment of contributions. A participant can accumulate

more scores if she collects data in under-explored areas. Staying at the same area or

places that have been extensively covered by others is discouraged. Compared with

simple metrics such as the number of scans or the time spent by users, (6.1.1) is

by design not only a fairer metric to participants but also beneficial to improve the

coverage of the campaign. The latter aspect is supported to some extent by the user

study we conduct in Section 6.3.

6.1.5 Heatmap

To illustrate areas that have been surveyed and to incentivize participants to collect

data from under-explored areas, a heatmap layer is stacked on floor maps. Specifically,

for each grid point v ∈ V , the predictive variance of RSS values at the location can be

109

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

(a) Heatmap (b) Submission and feedback

Figure 6.3: Heatmap and data submission interface

calculated by (3.1.5) with XV replaced by xv. The heatmap layer is then generated

using these variances. Areas with a deep red color indicate that they have not been

surveyed before. The effect is shown in Fig. 6.3 a.

6.2 The Site Survey Campaign

This section describes the campaign. First, we explain the deployment of the proposed

MCS system, and then we discuss in detail the incentives we adopted to stimulate

students’ contribution and recruitment strategies.

110

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

6.2.1 Campaign Scenario

The campaign was launched in the McMaster University Campus. Before the final

release, internal tests and a small-scale user study were conducted to fine-tune param-

eters and design choices. Table 6.1 summarizes the parameters used in the scoring

function. Under such settings, the estimated time to reach a score of 30 (the threshold

Table 6.1: Parameter Settings

Parameter Description Value

grid interval distance between grid points 2.0 (meter)
σ2
f maximum variance of the GP 50.0
α length scale of the GP 20.0
σ2
n noise variance of the GP 10.0
β1 scaling factor of scores (point-based) 1.0
β2 scaling factor of scores (path-based) 3.0

to redeem reward) is roughly between 15 and 30 minutes including the registration

process. The resulting area covered approximately equals to the corridors of one floor

in a mid-sized building on our campus if the path-based option is adopted. Other fac-

tors that can affect the time cost or score accumulation include the collection method

and whether the participant is familiar with the area. Participants may spend some

time to localize themselves on the map if they are not familiar with the buildings they

are at. We observed in internal testings that path-based data collections generally

accumulate scores faster than point-based collections.

6.2.2 Incentive Mechanisms and Recruitment Strategies

Extensive research has been conducted on the incentive mechanisms for MCS sys-

tems [46, 117]. During the campaign, we utilize monetary rewards and a reputation

111

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

system based on the leader board in the App, which can also be seen as an entertain-

ment incentive. Any participant who reaches a score no less than 30 can redeem a

$10 gift card. Next, we introduce two recruitment strategies.

6.2.2.1 Active Recruitment with Teaching

Starting from September 2019, we actively recruited volunteers in the university by

setting up booths during the welcome week and through personal connections. For

those who expressed interests and requested further information, we demonstrated

in person the data collection procedure using a smartphone and provided tips such

as where to collect data and the difference between the path-based and point-based

options. This group of participants did not need to go through the tutorial or figure

out the process by themselves. From September 2019 to the first week of December

2019, in total, we have reached out to 42 participants in the university, and 17 of

them have signed up.

Active recruitment with teaching is advantageous in that there is almost no learn-

ing cost to participants. Additionally, face-to-face interaction allowed better under-

standings of their interests and willingness. However, for such a strategy, it was

time-consuming to demonstrate and teach each potential participant details of the

campaign.

6.2.2.2 Passive Recruitment by Posters

Another recruitment strategy is through posters, which were posted to public bulletin

boards inside buildings across the campus. An example is shown in Fig. 6.4. A would-

be participant simply scans the QR code on the poster, which directs them to the App

112

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Figure 6.4: A poster attached to a bulletin board

in Google Play. Passive recruitment has the potential to reach out to more people.

However, the drawback is obvious. Participants need to spend time learning the data

collection process on their own with the help of the in-app tutorial. Although we tried

our best to lower the learning curve, it may still require some efforts to understand

the purpose of the campaign and the proper procedure. This can be discouraging,

especially for those without sufficient motivation and interest who may quit after

registration.

6.2.2.3 Recruitment Results

From September 2019 to the end of January 2020, 97 participants signed up in total

(including the 17 participants who agreed to participate and had been taught by us

in person).

113

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

2019-09 2019-10 2019-11 2019-12 2020-01
0

25

50

75

Nu
m

be
r o

f U
se

r

Engineering Science
Health Sciences

Humanities
Commerce

Social Sciences
Arts & Science

0

20

40

60

Nu
m

be
r o

f U
se

r

Figure 6.5: Participant number and department distribution.

Fig. 6.5 shows the total number of registrations over time. Most participants reg-

istered in October and November, 2019. In December, there were fewer registrations

since it is time for final exams and participants do not have much extra time. Start-

ing from January, 2020, new registrations were obtained, though the number was

smaller. Part of the reason is that in the beginning of the new semester, posters were

removed by the university, and thus information about the campaign is difficult to

find. Meanwhile, as shown in Fig. 6.5 , majority of participants are from the Faculty

of Engineering or the Faculty of Science.

114

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

6.3 Data Statistics and Analysis

In this section, we analyze the crowdsourced data from the campaign by the end of

Jan. 2020. We first present the characteristics of user scores and fingerprints. Then

we discuss data collection behaviors and feedback from participants.

6.3.1 Scores Attained

Figure 6.6: Scores attained by participants

Fig. 6.6 shows the score attained by participants by Jan. 26, 2020. Recall that

the monetary reward can be redeemed with scores exceeding 30. In the figure, an

obvious cut-off point can be seen at the score of 30. In total, 20 participants reached

the threshold. Among them, around half stopped making further contributions after

reaching the threshold. However, the other half continued to collect more data even

though they were already eligible for the reward. Particularly, the top participant has

been making persistent and significant contributions. On the other hand, around 30

participants had scores below threshold. 31 registered participants failed to submit

115

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

any data.

Overall, participants who have been taught achieve higher scores. Among the 20

participants that reached the threshold score, 16 of them were from active recruitment

with teaching. Interestingly, the first place and the third place were participants

recruited through posters, although most participants in this group had low scores.

6.3.2 Fingerprint Characteristics

With a slight abuse of notation, we use a vector y = (y1, y2, ..., yM) to represent a

Wi-Fi fingerprint, where M is the total number of APs and yi is the RSS readings

of the ith AP. The corresponding location label is x. For point-based collections, if

there are multiple scans, the RSS readings are averaged. Therefore, each point-based

collection only corresponds to one single fingerprint. For path-based collections, since

participants are moving, we define that each Wi-Fi scan corresponds to a fingerprint.

Theoretically, the arrival time of signals within a single scan is different9. However,

we observed that the difference is quite small (less than half a second) and can be

neglected. Thus, it is reasonable to construct a fingerprint from the respective RSS

readings, and its location tag is inferred using the average arrival timestamp. On the

other hand, we notice that the time interval between two consecutive scan varies a

lot among different devices.

Fig. 6.7 shows the traces from three devices from three participants. From all

fingerprints obtained, we find that Samsung smartphones with an Android API Level

under 28 are good options for site survey. They have a higher scan frequency resulting

in a denser distribution of fingerprints. On the other hand, in Android 9 (Android

9https://developer.android.com/guide/topics/connectivity/wifi-scan

116

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

(a) Samsung, SM-A520W,
Android API Level 26

(b) OnePlus, A6000,
Android API Level 28

(c) Huawei Honor,
JSN-L23, Android API
Level 27

Figure 6.7: Locations of received Wi-Fi scans during walking from three devices.
Red lines represent paths, and red dots represent locations of scans (inferred from
the timestamps and step counts). Blue dots represent point-based collection.

API Level 28), due to the throttling of Wi-Fi scans, only four scans are permitted

every two minutes for each foreground app. This leads to a sparse distribution of

fingerprints along paths. As shown in Fig. 6.7b, there are even paths without any

scan.

Fig. 6.8 depicts the accumulation of fingerprints over time and distribution among

participants. The general trend is similar to that of the registration as shown in

Fig. 6.5. By the end of January 2020, a total of 1400 fingerprints have been up-

loaded. Specifically, actively recruited participants contributed 820 fingerprints, and

the remaining 584 fingerprints were collected by others. Note that the distribution is

different from that of user scores, since the number of fingerprints depends on both

the device used and the collection method. There are two participants with a limited

number of fingerprints (less than 10), although they attained larger scores. They both

have phones with Android 9 (HUAWEI EML-L09; HONOR BKL-AL00). Although

the number of scans is constrained by the mobile operating system, the scores are

calculated based on the informativeness of the paths as discussed in Section 6.1.4. On

117

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

2019-09 2019-10 2019-11 2019-12 2020-01
Date

0

1000

FP
 n

um

0 10 20 30 40 50
Participant-ID

0

50

100

150

FP
 n

um

Teaching
No Teaching

Figure 6.8: The number of fingerprints overtime and distribution among
participants.

the other hand, participants (e.g., User 48) with more fingerprints are not guaranteed

with higher scores.

Fig. 6.9 illustrates the percentage of devices and collected fingerprints categorized

by vendors and API Levels. We observe that Huawei is the dominate vendor followed

by Samsung. On the other hand, around 3/4 of the devices run Android 9 (API Level

28). In contrast, the number of fingerprints from Android 9 devices is less than half

of the total fingerprints, which is again due to the throttling of Android 9. Fig. 6.10

118

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

(a) Number of different models and the
respective fingerprints

(b) Android API Level distribution and
the respective fingerprints

Figure 6.9: Device (Model and Android API) distribution and the respective
number of fingerprints

Faculty of Engineering

Faculty of Science

Figure 6.10: Fingerprint distribution by building

shows the fingerprint distribution by buildings. Most of the fingerprints are collected

at the 7 buildings from the Faculty of Engineering or Science.

Finally, all fingerprint statistics are listed in Table 6.2.

6.3.3 Data Collection Behaviors

To investigate the reasons why many participants achieved low scores and made lim-

ited contributions, we conduct a detailed analysis on participants’ data collection

behavior based on upload records.

119

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 6.2: Summary of Fingerprint Characteristics

Description Value

Total number of scans 4856
Total number of fingerprints 1404
Total scan time 13.16 (hour)
Total number of buildings/floors 24/58
Total number of point-based collection rounds 228
Total number of path-based collection rounds 187 (8.6 KM)

6.3.3.1 Group based on Score Range

Firstly, we divide the participants into three groups according their scores. Partic-

ipants in the first group achieve Low scores greater than 0 but less than 10 (those

with no submission record have been excluded). Analyzing the behavior of this group

helps us understand why they did not succeed in the campaign. In the study, this

group of participants constitute more than half of all participants. If more in this

group could be better engaged, more data would’ve been collected.

The second group is the Borderline group, with a score between 30 to 35. It is

reasonable to hypothesize that this group of participants only care about monetary

rewards. They did not continue or only do so shortly after meeting the threshold for

rewards. The last group is the High score group with scores greater than 45. We have

reasons to believe that they have other motivations besides monetary rewards.

Behavior characteristics of the three groups are listed in Table 6.3. Path-based

data collections are more efficient since each data submission usually contains more

informative information and thus yields higher scores. Another way to earn higher

scores is to explore different buildings or floors especially ones that are under-covered.

120

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 6.3: Participant Behavior Summary Grouped by Score Range.

Low Borderline High

of participants 30 9 6
of paths / # of points 16/70 (0.23) 58/34 (1.70) 72/47 (1.53)
AVG # of submissions 2.77 10.22 19.83
AVG score/submission 0.80 2.80 2.95
AVG # of B/F explored 1.32 3.77 7.16
AVG # of active days 1.13 1.77 3.8
AVG # of active hours 1.3 2.44 5.8
Tr2fs < 1h 28 (93.3%) 7 (77.7%) 6 (100%)
1h <= Tr2fs < 1d 0 1 (11.1%) 0
1d <= Tr2fs < 7d 1 (3.3%) 0 0
Tr2fs >= 7d 1 (3.3%) 1 (11.1%) 0
Taspan < 1h 26 (86.6%) 3 (33.3%) 2 (33%)
1h <= Taspan < 1d 2 (6.6%) 2 (22.2%) 0
1d <= Taspan < 7d 0 2 (22.2%) 1(16%)
Taspan >= 7d 2(6.6%) 2(22.2%) 3(50%)

Both in the Borderline group and the High group, the path-based option is the dom-

inate approach utilized. Each submission (regardless of the collection options) gains

around 3 scores. The High (Borderline) group members explored 7.16 (3.77) build-

ings or floors on average . In contrast, participants in the Low group mainly use the

point-based option, majority of whom stayed in one floor of one building. This leads

to a limited average score (0.80) per submission. One possible reason is that this

group of participants are not aware of the different options of data collection and the

scoring mechanism because, for instance, they did not take the time to go through

the in-app tutorial. Slow score accumulation may discourage such participants from

further contributing to the campaign.

We further analyzed the temporal characteristics of data collection. Specifically,

we define active days (or hours) as the number of days (or hours) that have data

121

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 6.4: User Behavior Grouped by Teaching or without Teaching.

without Teaching with Teaching

of participants 37 17
ofpaths / # of points 68/180 (0.37) 119/48 (2.47)
AVG # of submissions 6.7 9.82
AVG score/submission 1.27 3.54
AVG # of B/F explored 2.5 3.4
AVG # of active days 1.75 1.64
AVG # of active days hours 2.5 2.29
Tr2fs < 1h 34 (91.8%) 15 (88.2%)
1h <= Tr2fs < 1d 1 (2.7%) 1 (5.8%)
1d <= Tr2fs < 7d 1 (2.7%) 0
Tr2fs >= 7d 1 (2.7%) 1 (5.8%)
Taspan < 1h 26 (70.2%) 11 (64.7%)
1h <= Taspan < 1d 3 (8.1%) 2 (11.7%)
1d <= Taspan < 7d 1 (2.7%) 2 (11.7%)
Taspan >= 7d 7(18.9%) 2(11.7%)

collection activity. We denote the time from registration to the first submission as

Tr2fs, and the time time-span from the first submission to the last submission as Taspan

(Table 6.3). 86.6% of participants in the Low group spent less than one hour in the

campaign, although 89.4% of them tried collection immediately after registration. In

contrast, the High group are more engaged spending on average 5.8 active hours and

3.8 active days.

6.3.3.2 Groups with Teaching and without Teaching

Another perspective is to group the participants based on whether they were taught in

person or not, and the results are shown in Table 6.4. Participants in the group with

teaching mostly adopted the path-based option and explored more buildings/floors

with an average score of 3.54 for each submission. In contrast, only a small fraction

122

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

of participants in the group without teaching used the path-based option with a per-

submission score at 1.27 on average. This indicates that the group without teaching

may not understand how to earn scores fast.

In the group without teaching, 91.8% of the participants made the first submission

within an hour after registration, and the percentage with an activity time span less

than one hour is 70.2%. The corresponding percentages in the teaching group are

88.2% and 64.7%, respectively. This indicates that the group without teaching were

more likely to give up in the first hour.

Overall, the group of participants with teaching perform better in the campaign.

It is known that face-to-face interactions and teaching promote commitments [26].

Except for one participant in this group, all other participants reached the threshold

of monetary reward. However, the first and third places are participants without

teaching. The number of covered buildings/floors and active hours for the two par-

ticipants are (12,11) and (8,10), respectively.

6.3.4 Feedback from Participants

To further investigate the reasons behind participant behaviors, particularly among

those passively recruited, we conducted a survey at the end of the campaign. Specifi-

cally, we sent an online questionnaire to all participants in this group and conducted

a face-to-face interview with the first and third placed participants.

6.3.4.1 Interview

The 1st and 3rd placed participants are both recruited by posters. They expressed

that financial reward was an important motivating factor for them to sign up for the

123

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

campaign. The 1st place participant also mentioned curiosity and fun. In terms of UI

design of the App, both of them agreed that it was easy to understand and they knew

where to collect data for more scores. Another commonality is that neither of them

spent much time to collect data purposefully. Instead, they collected data when they

got nothing to do and needed to kill time, for example, when waiting for someone or

during class breaks.

After reaching the threshold for monetary reward, they both continued to make

further contributions. The 3rd placed participant hoped to get more financial reward,

while the 1st placed participant mentioned that he felt that contributing to the cam-

paign is a good use of his spare time which would otherwise be wasted. Monetary

reward was not the only motivation to him. Another difference is that the 3rd place

participant only adopted the point-based option and hardly utilized the path-based

option, while the 1st place participant utilized both options, although it took him

some time to figure out the path-based option.

6.3.4.2 Questionnaire

In total, 15 passively recruited participants responded to the online questionnaire.

The purpose of the questionnaire is three-fold, i) to evaluate the relevant knowledge

learned by themselves, ii) when and where data collection takes place, iii) the reasons

why participants failed to reach the reward threshold.

Firstly, we asked whether participants were comfortable to grant location and stor-

age permissions to the App. 2/3 of them responded positively. Overall, the majority

of participants claimed that they understood the purpose of the campaign (73%) and

the tutorial was easy to follow (86%), although most of them (73%) mentioned that it

124

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

took some time to figure out the difference between the point-based and path-based

options. However, only 60% of the participants claimed they knew where to get data

to achieve high scores.

Most participants (66%) indicated that they perform data collection at locations

coinciding with their daily activities (e.g., classes or meals). 26% of the participants

chose locations based on the heatmap in the App. 11 participants agreed that $10

for 30 scores was reasonable, while 1 participant thought $10 was too little and 3

participants complained 30 scores were too time-consuming to attain.

Lastly, there are various reasons why participants fail to reach the reward threshold

as shown in Fig. 6.11. The primary reason is that too few scores were obtained per

submission. The secondary reason is that some participants were too busy. According

to the feedback, increasing the per-submission score (or decreasing the threshold of

monetary reward) may better motivate participation. However, doing so will pose a

heavier financial burden to the MCS organizers. How to design incentive mechanisms

for indoor data collection with better participant engagement and lower costs remains

to be an important research topic.

6.4 Localization Experiments

In this section, we investigate localization performance utilizing the crowdsourced

fingerprints. We first inspect data quality, and then present the localization method

and performance analysis.

125

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Figure 6.11: Reasons for failing to get the reward

6.4.1 Data Quality

When conducting MCS campaigns, it is crucial to ensure a certain level of data

quality (or data validity) [32, 88]. The crowd can contribute inaccurate data or

even provide falsified data on purpose. For instance, in [115], location frauds were

detected during a crowdsourcing game. Incentive mechanisms themselves can be a

double-edged sword as participants may cheat to get rewards fast. We call such

kind of data errors intentional errors. Otherwise, errors that are unintentional if

participants make mistakes accidentally.

We consider the following four types of data errors.

• Location labels outside buildings : location labels marked on the map are ex-

pected to be inside specific buildings. This type of errors can be unintentional

or intentional, and can be detected using building perimeters (e.g., the start

and terminal locations must be inside the perimeters).

126

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

• Location frauds : malicious participants may pretend that they are on campus

though they are not. To detect such behaviors, we check if each data item

contains campus specific AP SSIDs. Furthermore, other location services (GPS,

Cellular network) are utilized to estimate the coarse locations of the participants

using the App.

• Abnormal walking patterns : we advise participants to walk in a steady pace in

the path-based collection. IMU sensors in smartphones are utilized to identify

participants with abnormal walking patterns. Specifically, we implement a step

counter, and calculate the average step length from the distance traveled and

the step counted. According to [42], men walk at approximately 1.15 m/s and

have mean step lengths of 0.66 m. Women walk at approximately 1.08 m/s and

have mean step lengths of 0.57 m. Since the step length and walking speed

change with gender, height and walking patterns, we loosly restrict step lengths

between 0.3 m to 0.8 m, with a walking speed between 0.5 m/s to 1.6 m/s.

Estimated values beyond this range are considered outliers.

• Motion during point-based collections : In the point-based option, participants

are expected to remain at the same location. Similarly, we use data from IMU

sensors to detect if they are moving. If three step events are detected during

the collection period, the participant is classified as non-stationary.

We post-process uploaded data and detect these types of errors to ensure data

validity. Table 6.5 shows the validation results. Among the total number of sub-

missions, 16 submissions (3.8%) were wrongly labeled. No location fraud cases were

detected. The number of abnormal path-based submissions and the number of point-

based submissions with movements are 39 and 38, respectively. Furthermore, the

127

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 6.5: Data Validity Inspection Result

error type # submission w/o teaching: teaching

labels outside buildings 16 (3.8%) 9:7
location fraud 0 -
abnormal walking 39 (20.8 %) 25:14
movements 38 (16.6%) 37:1

Table 6.6: Training and Test Data Information

B/F training data (# FP, # AP) # test locations

1 (78, 125) 6
2 (34, 106) 10
3 (40, 110) 10
4 (47, 235) 9
5 (55, 263) 10
6 (144, 144) 8
7 (75, 115) 7

results also show that the group of participants with teaching made fewer mistakes.

6.4.2 Test Data Collection

Seven floors from five buildings were evaluated. Test data were collected using the

point-based option by one of our developers. No professional measurement devices

were employed. To be close to the ground truth, we chose test locations near land-

marks such as elevators, stairs, starts (or turns) of corridors, room boundaries, etc.

Such locations can be accurately labeled on the map in general. Three mobile phones

were utilized for testing, namely “Mate 10”, “MI4 LTE” and “Honor 8X”. The train-

ing data size and the number of test locations in each floor is summarized in Table 6.6.

At each test location, only one Wi-Fi scan is captured by each test device and used

in testing.

128

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

6.4.3 Localization Method

We adopt the Gaussian Process (GP) regression based localization algorithm in [64].

Specifically, RSS readings from each AP are processed separately, and are fitted using

GP regression models. Following the notations in Section 6.1, let the RSS measure-

ments at locations XS be yS . Hyperparameters of the GP of an AP are optimized by

maximizing the log-likelihood

log p(yS |XS) = −1

2
(yS −m(XS))T (K(XS , XS) + σ2

nI)−1

(yS −m(XS))− 1

2
log|K(XS , XS) + σ2

nI| −
n

2
log2π. (6.4.1)

The posterior RSS distribution at each reference point v ∈ V is N (µ′v, σ
′2
v) and can

be obtained from (3.1.4) and (3.1.5) (by replacing V with a single point v). Given

a test fingerprint observation o = (o1, o2, ..., oM), a straightforward solution is to

search V and select the point that has the maximum probability to generate o as the

predicted location.

However, due to likely mismatch [81] between the devices to be localized and ones

used during site survey, localization performance can be degraded. To compensate for

the RSS differences due to different antenna gains, we perform location estimation

and device calibration simultaneously. Specifically, assume that the expected RSS

distribution from an AP at v ∈ V follows a Gaussian distribution N (µ∗v, σ
∗2
v), where

µ∗v, σ
∗2
v are the unknown mean and variance. Under the assumption that the pair-wise

antenna gains of two different devices can be modeled by a linear transformation [81],

an RSS measurement y from a site survey device can be mapped to that of a test

129

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

device using

y∗ = a× y + b, (6.4.2)

where y∗ is the transformed RSS, a and b are the coefficient and bias to be estimated,

respectively. Then we have

µ∗v = a× µ′v + b, (6.4.3)

σ∗2v = a2 × σ′2v . (6.4.4)

Given o, the parameters a, b and location v can be estimated jointly as

v = argmax
v∈V,a,b

log
M∏
j=1

p∗(oj|v, a, b), (6.4.5)

where p∗(oj) is the respective probability density of the jth AP.

To solve (6.4.5), for each v ∈ V , we maximize log
∏M

j=1 p(oj|a, b) with respect to

a, b. We constrain a ∈ [0.8, 1.2] and b ∈ [−20, 20] dBm since Wi-Fi devices need

to pass compliance tests and thus their gains are expected not to deviate too much.

The final predicted location is chosen to be the reference point with the maximum

log-likelihood satisfying the constraints.

6.4.4 Localization Performance

The localization performance is summarized in Table 6.7. It can be seen that the

localization performance varies with specific buildings/floors and test devices. The

overall average localization error is around 9.6 m. The performance is comparable

to the state-of-the-art results using a crowdsourced Wi-Fi fingerprint dataset in [67].

130

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Table 6.7: Localization Error (Meter).

B/F MI4LTE Mate 10 Honor 8X

Average 80%ile Average 80%ile Average 80%ile
1 6.04 10.40 8.52 15.40 4.97 5.80
2 16.27 27.49 12.78 14.97 11.86 23.81
3 11.55 16.79 6.41 9.00 6.45 8.30
4 9.3 12.73 8.06 10.99 11.92 15.86
5 8.08 11.27 11.8 14.79 7.03 10.00
6 10.94 18.22 5.44 9.05 6.98 10.09
7 12.40 16.87 15.39 25.56 8.05 12.49

All 10.96 16.73 9.6 11.99 8.32 12.25

The dataset in [67] was collected by eight volunteers (21 devices) point-by-point in a

controlled manner, and no data quality issues were reported. In contrast, our data

collection is done in the “wild” with more device heterogeneity.

With crowdsourced Wi-Fi fingerprints, many factors could affect the localization

performance. We summarize the main reasons as follows.

• Imbalanced data distribution. Unlike controlled site surveys where locations are

planned ahead, survey locations from the crowd are unlikely to be uniform.

Although by design we encourage participants to collect fingerprints in a dis-

tributed manner spatially using the scoring mechanism and the heatmap, many

areas remain under-explored. Among areas that have been surveyed, the density

of fingerprints also varies a lot.

• Labeling accuracy. Location labels in point-based collections are provided by

participants by marking on the map directly. Errors may occur if participants

make mistakes. For the path-based option, in addition to errors in the start

and terminal locations of paths, accuracy of location labels is also affected by

131

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

variations in walking patterns.

• Device heterogeneity. The devices used for contributing data in the campaign

and for localization belong to the participants and are heterogeneous. Conse-

quently, they may have different antenna characteristics.

• Other environmental factors. The dimensions (relative to fingerprint densities)

and structural complexity of the buildings, the number of available Wi-Fi APs

can contribute to localization accuracy as well. Furthermore, Wi-Fi signals are

noisy and time varying, and may differ with different phone orientations and

presence of other pedestrians nearby, etc.

6.5 Limitations and Lessons Learned

During the data collection campaign, one major limitation comes from the throttling

of Wi-Fi scans in Android 9. When the platform was under development, Android 9

was not yet the prevalent OS among Android devices. By May 2019, only 10% of the

total Android devices was running Android 9. However, our statistics (Figure 6.9)

show that the percentage was higher among participants on our campus. As a result,

though Android 9 participants spent comparable amount of time as the participants

using other Android versions, they contributed much fewer fingerprints. If throttling

were not in place, the total number of fingerprints would have been much higher.

This limitation has been rectified in Android 10, in which users are given the option

to turn the throttling off.

Most participants signed up for the campaign because of the monetary reward,

although many of them did not reach the threshold necessary for the reward at the

132

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

end. In particular, it happened for those passively recruited participants without

teaching. From the analysis of user survey in Section 6.3.4, the reason is twofold.

First, the reward was not high enough to stimulate a consistent contribution from

some participants. Second, the learning curve to use the App deters some users from

contributing. In this case, an interactive tutorial can be helpful.

Another limitation of the current study is that due to limited budgets, each par-

ticipant is limited to a fixed reward (e.g., a $10 gift card). Further contributions

beyond the threshold of 30 scores are not rewarded. This has a negative impact on

participants’ willingness for continuing involvements as evident from Fig. 6.6 that

many participants stopped right around attaining the threshold scores.

6.6 Conclusion

In this chapter, we presented IFCS, an MCS participatory system for indoor location

fingerprint collection. We proposed to evaluate participants’ contributions through a

scoring mechanism based on their informativeness. Unlike existing works, we focused

on participant recruitment and behavior analysis. Localization models trained using

the crowdsourced fingerprints can achieve a performance comparable to state-of-the-

art results. The experience and problems revealed during the campaign are beneficial

to the development of spatial data crowdsourcing.

133

Chapter 7

Concluding Remarks

7.1 Conclusion

In this thesis, in order to improve the efficiency of spatial data collection, we consid-

ered two mobile sensing based solutions, namely mobile robotic sensing and mobile

crowdsourcing.

For mobile robotic sensing, we formulated the IPP problem to plan data collection

paths. We proposed a Greedy algorithm and a Genetic Algorithm based on a graph.

Experiments on Wi-Fi fingerprints collection showed that paths with a higher utility

are more likely to achieve lower localization errors, which demonstrated that IPP is

an effective solution for planning site survey paths.

In addition, when budgets change in the same target area, we presented a RL

framework for informative path planning. To address the unique challenges posed by

path constraints, a novel action selection mechanism is designed with the assistance

of the shortest paths. Under the framework, we implemented Q-learning, actor-critic

and the reinforce algorithm, and compared with other state-of-the-art non-learning

134

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

based algorithms. The RL based solutions achieve better path utility in most cases,

and is much more efficient since they only need to run the inference process using the

pre-trained model.

We also investigated the multi-robot cooperative path planning problem based

on reinforcement learning. Specifically, we devised two solutions, namely, individual

learning based on credit assignment and sequential rollout. With both schemes,

the learned policy is utilized to plan paths and achieves higher or similar rewards

compared with the baseline solutions. More importantly, the RL-based solutions can

handle different parameter settings during inference without retraining.

Finally, to study user behavior of crowdsourcing based data collection, we designed

IFCS and launched a real-world campaign. We proposed to evaluate participants’

contributions through a scoring mechanism based on informativeness. Unlike existing

works, we focused on participant recruitment and behavior analysis. Two recruitment

strategies were adopted and evaluated. We demonstrated both the feasibility and the

practicality to build an MCS-based indoor localization system through a real-world

campaign.

7.2 Future Work

In this section, we outline several future research directions. Specifically, we dis-

cuss further work on mobile robotic sensing, and then highlight aspects that can be

enhanced for crowdsourcing-based data acquisition.

First, for the RL based path planning, one promising direction is to investigate

alternative state encoding schemes. Currently, states s in the RL formulations in

Chapter 4 encapsulate all the historical information through an RNN. One potential

135

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

drawback is that the performance of the model may degrade when the number of

time steps grows large. One possible solution to this problem is to encode states

using information only in the current step and leverage graph neural networks in the

representation.

Second, in our problem formulation, a path is represented as a sequence of vertices

in a graph. This is applicable in applications (e.g., collecting air quality data in a

city) with pre-existing graph structures as such road networks in a target area. In

other applications (e.g., detecting biomass contained in lakes), the target areas are

often open spaces, in which robots can travel in any direction. Although constructing

a grid graph is still feasible, it is desirable to plan paths directly in the continuous 2D

or 3D space. Thus, another research direction is to consider RL based path planning

in continuous action space. A robot needs to learn which direction to move and how

far to move in each decision step, as well as how to avoid obstacles.

Third, in our current work, actual measurements do not affect path utility. In

practice, actual measurements can be crucial to specific applications. For instance,

in indoor localization, the actual measurements (Wi-Fi RSS) are used to differenti-

ate locations. Collecting data along informative paths based on MI alone does not

guarantee constructing models with smaller localization errors. Thus, one may need

to adjust or re-plan paths as an on-going process based on collected data, known as

adaptive sampling [41]. In the future, we are interested in investigating how to collect

data adaptively using robots so as to reduce localization errors.

136

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

Lastly, MCS based data collection requires further investigation on effective in-

centive mechanisms to recruit and retain more participants. According to our experi-

ences, a better UI design such that participants can easily learn how to make a contri-

bution can also improve the campaign outputs. Another challenge in MCS-based data

acquisition is to evaluate the effectiveness of a proposed solution. Simulation results

are generally not convincing since human behaviors cannot be accurately modeled.

To make evaluation results statistically significant, multiple rounds of real world ex-

periments need to be carefully designed with controlled groups. Further research on

experimental designs for MCS are warranted.

137

Bibliography

[1] Acer, U. G., Broeck, M. v. d., Forlivesi, C., Heller, F., and Kawsar, F. (2019).

Scaling crowdsourcing with mobile workforce: A case study with belgian postal

service. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 3(2).

[2] Agogino, A. and Turner, K. (2005). Multi-agent reward analysis for learning

in noisy domains. In Proceedings of the fourth international joint conference on

Autonomous agents and multiagent systems, pages 81–88.

[3] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). Wireless

sensor networks: a survey. Computer networks, 38(4), 393–422.

[4] Arora, S. and Scherer, S. (2017). Randomized algorithm for informative path

planning with budget constraints. In Robotics and Automation (ICRA), 2017 IEEE

International Conference on, pages 4997–5004. IEEE.

[5] Bahl, P. and Padmanabhan, V. N. (2000). RADAR: An in-building RF-based

User Location and Tracking System. In INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE, volume 2, pages 775–784. Ieee.

138

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[6] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neu-

ral combinatorial optimization with reinforcement learning. arXiv preprint

arXiv:1611.09940.

[7] Bengio, Y. and CA, M. (2015). Rmsprop and equilibrated adaptive learning rates

for nonconvex optimization. corr abs/1502.04390.

[8] Binney, J., Krause, A., and Sukhatme, G. S. (2010). Informative Path Planning

for An Autonomous Underwater Vehicle. In 2010 IEEE International Conference

on Robotics and Automation. IEEE.

[9] Boutilier, C. (1996). Planning, learning and coordination in multiagent decision

processes. In Proceedings of the 6th conference on Theoretical aspects of rationality

and knowledge, pages 195–210.

[10] Brunato, M. and Battiti, R. (2005). Statistical learning theory for location

fingerprinting in wireless LANs. Computer Networks, 47(6), 825–845.

[11] Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey

of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 38(2), 156–172.

[12] Capponi, A., Fiandrino, C., Kliazovich, D., Bouvry, P., and Giordano, S. (2017).

A cost-effective distributed framework for data collection in cloud-based mobile

crowd sensing architectures. IEEE Transactions on Sustainable Computing, 2(1),

3–16.

139

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[13] Capponi, A., Fiandrino, C., Kantarci, B., Foschini, L., Kliazovich, D., and Bou-

vry, P. (2019). A survey on mobile crowdsensing systems: Challenges, solutions,

and opportunities. IEEE Communications Surveys & Tutorials, 21(3), 2419–2465.

[14] Catovic, A. and Sahinoglu, Z. (2004). The Cramer-Rao Bounds of Hybrid

TOA/RSS and TDOA/RSS Location Estimation Schemes. IEEE Communications

Letters, 8(10), 626–628.

[15] Chekuri, C. and Pal, M. (2005). A Recursive Greedy Algorithm for Walks in

Directed Graphs. In Foundations of Computer Science, 2005. FOCS 2005. 46th

Annual IEEE Symposium on, pages 245–253. IEEE.

[16] Chen, D. and Shin, K. G. (2019). Turnsmap: Enhancing driving safety at inter-

sections with mobile crowdsensing and deep learning. Proc. ACM Interact. Mob.

Wearable Ubiquitous Technol., 3(3).

[17] Chen, H., Li, F., Hei, X., and Wang, Y. (2018). Crowdx: Enhancing auto-

matic construction of indoor floorplan with opportunistic encounters. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 2(4).

[18] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evalu-

ation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555.

[19] Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. AAAI/IAAI, 1998(746-752), 2.

[20] Cook, G. and Zhang, F. (2020). Mobile Robots: Navigation, Control and Sensing,

Surface Robots and AUVs. John Wiley & Sons.

140

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[21] Cook, W. (since 2015). Concorde TSP solver. http://www.math.uwaterloo.

ca/tsp/concorde/.

[22] Cooke, M., Wei, Y., Hao, Y., and Zheng, R. (2018). Ilos: a data collection tool

and open datasets for fingerprint-based indoor localization. In Proceedings of the

First Workshop on Data Acquisition To Analysis, pages 15–16.

[23] Della Rosa, F., Pelosi, M., and Nurmi, J. (2012). Human-induced Effects on

RSS Ranging Measurements for Cooperative Positioning. International Journal of

Navigation and Observation, 2012.

[24] Fang, Y., Deng, Z., Xue, C., Jiao, J., Zeng, H., Zheng, R., and Lu, S. (2015).

Application of an Improved K Nearest Neighbor Algorithm in WiFi Indoor Po-

sitioning. In China Satellite Navigation Conference (CSNC) 2015 Proceedings:

Volume III, pages 517–524. Springer.

[25] Fazl-Ersi, E. and Tsotsos, J. K. (2009). Region classification for robust floor

detection in indoor environments. In International Conference Image Analysis and

Recognition, pages 717–726. Springer.

[26] Feng, W., Yan, Z., Zhang, H., Zeng, K., Xiao, Y., and Hou, Y. T. (2017). A

survey on security, privacy, and trust in mobile crowdsourcing. IEEE Internet of

Things Journal, 5(4), 2971–2992.

[27] Ferris, B., Hähnel, D., and Fox, D. (2006). Gaussian processes for signal strength-

based location estimation. In Robotics: Science and Systems II, August 16-19,

2006. University of Pennsylvania, Philadelphia, Pennsylvania, USA.

141

http://www.math.uwaterloo.ca/tsp/concorde/
http://www.math.uwaterloo.ca/tsp/concorde/

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[28] Figuera, C., Rojo-Álvarez, J. L., Wilby, M., Mora-Jiménez, I., and Caamaño,

A. J. (2012). Advanced support vector machines for 802.11 indoor location. Signal

Processing, 92(9), 2126–2136.

[29] Gentile, C., Alsindi, N., Raulefs, R., and Teolis, C. (2012). Geolocation Tech-

niques: Principles and Applications. Springer Science & Business Media.

[30] Golden, B. L., Levy, L., and Vohra, R. (1987). The orienteering problem. Naval

Research Logistics (NRL), 34(3), 307–318.

[31] Gong, W., Zhang, B., and Li, C. (2018). Task assignment in mobile crowdsensing:

Present and future directions. IEEE network, 32(4), 100–107.

[32] Gong, X. and Shroff, N. (2018). Incentivizing truthful data quality for quality-

aware mobile data crowdsourcing. In Proceedings of the Eighteenth ACM Interna-

tional Symposium on Mobile Ad Hoc Networking and Computing, pages 161–170.

[33] GPy (since 2012). GPy: A Gaussian process framework in python. http://

github.com/SheffieldML/GPy.

[34] Grefenstette, J., Gopal, R., Rosmaita, B., and Van Gucht, D. (1985). Genetic

Algorithms for the Traveling Salesman Problem. In Proceedings of the first Inter-

national Conference on Genetic Algorithms and their Applications, pages 160–168.

[35] Grondman, I., Busoniu, L., Lopes, G. A., and Babuska, R. (2012). A survey of

actor-critic reinforcement learning: Standard and natural policy gradients. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-

views), 42(6), 1291–1307.

142

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[36] Guestrin, C., Krause, A., and Singh, A. P. (2005). Near-optimal sensor place-

ments in gaussian processes. In Proceedings of the 22nd international conference

on Machine learning, pages 265–272. ACM.

[37] Gunawan, A., Lau, H. C., and Vansteenwegen, P. (2016). Orienteering problem:

A survey of recent variants, solution approaches and applications. European Journal

of Operational Research, 255(2), 315–332.

[38] Gupta, P., Bharadwaj, S., Ramakrishnan, S., and Balakrishnan, J. (2014). Ro-

bust floor determination for indoor positioning. In 2014 Twentieth National Con-

ference on Communications (NCC), pages 1–6. IEEE.

[39] Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring Network Structure,

Dynamics, and Function using NetworkX. In Proceedings of the 7th Python in

Science Conference (SciPy2008), pages 11–15.

[40] Heinonen, M., Mannerström, H., Rousu, J., Kaski, S., and Lähdesmäki, H.

(2016). Non-stationary gaussian process regression with hamiltonian monte carlo.

In Artificial Intelligence and Statistics, pages 732–740. PMLR.

[41] Hitz, G., Galceran, E., Garneau, M.-È., Pomerleau, F., and Siegwart, R. (2017).

Adaptive continuous-space informative path planning for online environmental

monitoring. Journal of Field Robotics, 34(8), 1427–1449.

[42] Hollman, J. H., McDade, E. M., and Petersen, R. C. (2011). Normative spa-

tiotemporal gait parameters in older adults. Gait & posture, 34(1), 111–118.

[43] Holt, C. A. and Roth, A. E. (2004). The nash equilibrium: A perspective.

Proceedings of the National Academy of Sciences, 101(12), 3999–4002.

143

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[44] Hu, J. and Wellman, M. P. (2003). Nash q-learning for general-sum stochastic

games. Journal of machine learning research, 4(Nov), 1039–1069.

[45] Ichikari, R., Ruiz, L. C. M., Kourogi, M., Kurata, T., Kitagawa, T., and Yoshii,

S. (2015). Indoor floor-level detection by collectively decomposing factors of at-

mospheric pressure. In 2015 International Conference on Indoor Positioning and

Indoor Navigation (IPIN), pages 1–11. IEEE.

[46] Jaimes, L. G., Vergara-Laurens, I. J., and Raij, A. (2015). A survey of incentive

techniques for mobile crowd sensing. IEEE Internet of Things Journal, 2(5), 370–

380.

[47] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement

learning: A survey. Journal of artificial intelligence research, 4, 237–285.

[48] Kaemarungsi, K. and Krishnamurthy, P. (2004). Properties of Indoor Received

Signal Strength for WLAN Location Fingerprinting. In Mobile and Ubiquitous

Systems: Networking and Services, 2004. MOBIQUITOUS 2004. The First Annual

International Conference on, pages 14–23. IEEE.

[49] Kapetanakis, S. and Kudenko, D. (2002). Reinforcement learning of coordination

in cooperative multi-agent systems. AAAI/IAAI, 2002, 326–331.

[50] Karbowska-Chilinska, J., Koszelew, J., Ostrowski, K., and Zabielski, P. (2012).

Genetic Algorithm Solving Orienteering Problem in Large Networks. In KES, pages

28–38.

[51] Keller, C. P. (1989). Algorithms to solve the orienteering problem: A comparison.

European Journal of Operational Research, 41(2), 224–231.

144

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[52] Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combi-

natorial optimization algorithms over graphs. In Advances in Neural Information

Processing Systems, pages 6348–6358.

[53] Kim, K., Zabihi, H., Kim, H., and Lee, U. (2017). Trailsense: A crowdsensing

system for detecting risky mountain trail segments with walking pattern analysis.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3).

[54] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances

in neural information processing systems, pages 1008–1014.

[55] Krause, A. and Guestrin, C. (2007a). Near-optimal observation selection using

submodular functions. In AAAI, volume 7, pages 1650–1654.

[56] Krause, A. and Guestrin, C. (2007b). Nonmyopic active learning of gaussian

processes: an exploration-exploitation approach. In Proceedings of the 24th inter-

national conference on Machine learning, pages 449–456.

[57] Krause, A., Singh, A., and Guestrin, C. (2008). Near-optimal sensor placements

in gaussian processes: Theory, efficient algorithms and empirical studies. Journal

of Machine Learning Research, 9(Feb), 235–284.

[58] Kumar, S., Hegde, R. M., and Trigoni, N. (2016). Gaussian process regression

for fingerprinting based localization. Ad Hoc Networks, 51, 1–10.

[59] Larranaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., and Dizdarevic, S.

(1999). Genetic Algorithms for the Travelling Salesman Problem: A review of

Pepresentations and Operators. Artificial Intelligence Review, 13(2), 129–170.

145

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[60] Lauer, M. and Riedmiller, M. (2000). An algorithm for distributed reinforcement

learning in cooperative multi-agent systems. In In Proceedings of the Seventeenth

International Conference on Machine Learning. Citeseer.

[61] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553),

436–444.

[62] Ledlie, J., Park, J.-g., Curtis, D., Cavalcante, A., Camara, L., Costa, A., and

Vieira, R. (2012). Molé: a scalable, user-generated WiFi positioning engine. Jour-

nal of Location Based Services, 6(2), 55–80.

[63] Letchford, A. N., Nasiri, S. D., and Theis, D. O. (2013). Compact formulations

of the steiner traveling salesman problem and related problems. European Journal

of Operational Research, 228(1), 83–92.

[64] Li, C., Xu, Q., Gong, Z., and Zheng, R. (2017). Turf: Fast data collection for

fingerprint-based indoor localization. In 2017 International Conference on Indoor

Positioning and Indoor Navigation (IPIN), pages 1–8. IEEE.

[65] Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274.

[66] Liu, L., Liu, W., Zheng, Y., Ma, H., and Zhang, C. (2018). Third-eye: A

mobilephone-enabled crowdsensing system for air quality monitoring. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 2(1).

[67] Lohan, E. S., Torres-Sospedra, J., Leppäkoski, H., Richter, P., Peng, Z., and

Huerta, J. (2017). Wi-fi crowdsourced fingerprinting dataset for indoor positioning.

Data, 2(4), 32.

146

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[68] Luo, T., Kanhere, S. S., Huang, J., Das, S. K., and Wu, F. (2017). Sustainable

incentives for mobile crowdsensing: Auctions, lotteries, and trust and reputation

systems. IEEE Communications Magazine, 55(3), 68–74.

[69] Ma, K.-C., Liu, L., and Sukhatme, G. S. (2017). Informative planning and online

learning with sparse gaussian processes. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 4292–4298. IEEE.

[70] MacDonald, R. A. and Smith, S. L. (2019). Active sensing for motion planning in

uncertain environments via mutual information policies. The International Journal

of Robotics Research, 38(2-3), 146–161.

[71] Mardle, S., Pascoe, S., et al. (1999). An Overview of Genetic Algorithms for the

Solution of Optimisation Problems. Computers in Higher Education Economics

Review, 13(1), 16–20.

[72] Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2007). Hysteretic q-learning:

an algorithm for decentralized reinforcement learning in cooperative multi-agent

teams. In 2007 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 64–69. IEEE.

[73] Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2012). Independent rein-

forcement learners in cooperative markov games: a survey regarding coordination

problems.

[74] Mehmood, H., Tripathi, N. K., and Tipdecho, T. (2010). Indoor Positioning

System Using Artificial Neural Network. Journal of Computer science, 6(10), 1219.

147

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[75] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602.

[76] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,

D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement

learning. In International conference on machine learning, pages 1928–1937.

[77] Nguyen, D. T., Kumar, A., and Lau, H. C. (2018). Credit assignment for col-

lective multiagent rl with global rewards. In Advances in Neural Information Pro-

cessing Systems, pages 8102–8113.

[78] Ouyang, R., Low, K. H., Chen, J., and Jaillet, P. (2014). Multi-robot active

sensing of non-stationary gaussian process-based environmental phenomena.

[79] Palmer, G., Tuyls, K., Bloembergen, D., and Savani, R. (2017). Lenient multi-

agent deep reinforcement learning. arXiv preprint arXiv:1707.04402.

[80] Park, J.-g., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., Teller, S.,

and Ledlie, J. (2010). Growing an Organic Indoor Location System. In Proceedings

of the 8th international conference on Mobile systems, applications, and services,

pages 271–284. ACM.

[81] Park, J.-g., Curtis, D., Teller, S., and Ledlie, J. (2011). Implications of device

diversity for organic localization. In 2011 Proceedings IEEE INFOCOM, pages

3182–3190. IEEE.

[82] Peng, Z., Richter, P., Leppäkoski, H., and Lohan, E. S. (2017). Analysis of

148

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

crowdsensed wifi fingerprints for indoor localization. In 2017 21st Conference of

Open Innovations Association (FRUCT), pages 268–277. IEEE.

[83] Piwońska, A. (2010). Genetic Algorithm Finds Routes in Travelling Salesman

Problem with Profits. Zeszyty Naukowe Politechniki Bia lostockiej. Informatyka, 5,

51–65.

[84] Popović, M., Vidal-Calleja, T., Hitz, G., Chung, J. J., Sa, I., Siegwart, R., and

Nieto, J. (2020). An informative path planning framework for uav-based terrain

monitoring. Autonomous Robots, pages 1–23.

[85] Potvin, J.-Y. (1996). Genetic Algorithms for the Traveling Salesman Problem.

Annals of Operations Research, 63(3), 337–370.

[86] Raghaven, T., Ferguson, T. S., Parthasarathy, T., and Vrieze, O. (2012). Stochas-

tic games and related topics: In honor of professor LS Shapley, volume 7. Springer

Science & Business Media.

[87] Rasmussen, C. E. and Williams, C. K. (2006). Gaussian process for machine

learning. MIT press.

[88] Restuccia, F., Ghosh, N., Bhattacharjee, S., Das, S. K., and Melodia, T. (2017).

Quality of information in mobile crowdsensing: Survey and research challenges.

ACM Transactions on Sensor Networks (TOSN), 13(4), 1–43.

[89] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience

replay. arXiv preprint arXiv:1511.05952.

[90] Schwaighofer, A., Grigoras, M., Tresp, V., and Hoffmann, C. (2004). Gpps: A

149

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

gaussian process positioning system for cellular networks. In Advances in Neural

Information Processing Systems, pages 579–586.

[91] Shibusawa, S. and Shibuya, T. (2016). Reinforcement learning in the environ-

ment where optimal action value function is partly discontinuous. In 2016 55th

Annual Conference of the Society of Instrument and Control Engineers of Japan

(SICE), pages 1545–1550. IEEE.

[92] Shin, B., Lee, J. H., Lee, T., and Kim, H. S. (2012). Enhanced Weighted K-

nearest Neighbor Algorithm for Indoor Wi-Fi Positioning Systems. In Computing

Technology and Information Management (ICCM), 2012 8th International Confer-

ence on, volume 2, pages 574–577. IEEE.

[93] Singh, A., Krause, A., Guestrin, C., Kaiser, W. J., and Batalin, M. A. (2007).

Efficient Planning of Informative Paths for Multiple Robots. In IJCAI, volume 7,

pages 2204–2211.

[94] Singh, A., Krause, A., Guestrin, C., and Kaiser, W. J. (2009). Efficient informa-

tive sensing using multiple robots. Journal of Artificial Intelligence Research, 34,

707–755.

[95] Sivaraj, R. and Ravichandran, T. (2011). A Review of Selection Methods in

Genetic Algorithm. International journal of engineering science and technology,

3(5), 3792–3797.

[96] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT press.

150

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[97] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Pol-

icy gradient methods for reinforcement learning with function approximation. In

Advances in neural information processing systems, pages 1057–1063.

[98] Tasgetiren, M. F. and Smith, A. E. (2000). A Genetic Algorithm for the Ori-

enteering Problem. In Evolutionary Computation, 2000. Proceedings of the 2000

Congress on, volume 2, pages 910–915. IEEE.

[99] Torres-Sospedra, J., Montoliu, R., Mart́ınez-Usó, A., Avariento, J. P., Arnau,

T. J., Benedito-Bordonau, M., and Huerta, J. (2014). Ujiindoorloc: A new multi-

building and multi-floor database for wlan fingerprint-based indoor localization

problems. In 2014 international conference on indoor positioning and indoor nav-

igation (IPIN), pages 261–270. IEEE.

[100] Torteeka, P. and Chundi, X. (2014). Indoor Positioning based on Wi-Fi Finger-

print Technique using Fuzzy K-nearest Neighbor. In Applied Sciences and Tech-

nology (IBCAST), 2014 11th International Bhurban Conference on, pages 461–465.

IEEE.

[101] Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning

with double q-learning. In Thirtieth AAAI Conference on Artificial Intelligence.

[102] Van Otterlo, M. and Wiering, M. (2012). Reinforcement learning and markov

decision processes. In Reinforcement Learning, pages 3–42. Springer.

[103] Vansteenwegen, P., Souffriau, W., and Van Oudheusden, D. (2011). The ori-

enteering problem: A survey. European Journal of Operational Research, 209(1),

1–10.

151

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[104] Wang, R., Wang, W., Aung, M. S. H., Ben-Zeev, D., Brian, R., Campbell,

A. T., Choudhury, T., Hauser, M., Kane, J., Scherer, E. A., and et al. (2017a).

Predicting symptom trajectories of schizophrenia using mobile sensing. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 1(3).

[105] Wang, X. and Sandholm, T. (2002). Reinforcement learning to play an optimal

nash equilibrium in team markov games. Advances in neural information processing

systems, 15, 1603–1610.

[106] Wang, Y.-T., Li, J., Zheng, R., and Zhao, D. (2017b). ARABIS: an Asyn-

chronous Acoustic Indoor Positioning System for Mobile Devices. arXiv preprint

arXiv:1705.07511.

[107] Wei, E. and Luke, S. (2016). Lenient learning in independent-learner stochastic

cooperative games. The Journal of Machine Learning Research, 17(1), 2914–2955.

[108] Wei, Y., Frincu, C., and Zheng, R. (2020). Informative path planning for

location fingerprint collection. IEEE Trans. Netw. Sci. Eng., 7(3), 1633–1644.

[109] Wen, Y., Shi, J., Zhang, Q., Tian, X., Huang, Z., Yu, H., Cheng, Y., and Shen,

X. (2014). Quality-driven auction-based incentive mechanism for mobile crowd

sensing. IEEE Transactions on Vehicular Technology, 64(9), 4203–4214.

[110] Wolpert, D. H. and Tumer, K. (2002). Optimal payoff functions for members of

collectives. In Modeling complexity in economic and social systems, pages 355–369.

World Scientific.

[111] Wu, C., Yang, Z., and Liu, Y. (2014). Smartphones based crowdsourcing for

indoor localization. IEEE Transactions on Mobile Computing, 14(2), 444–457.

152

Ph.D. Thesis – Y. Wei McMaster University – Computer Science

[112] Wu, C., Xu, J., Yang, Z., Lane, N. D., and Yin, Z. (2017). Gain without pain:

Accurate wifi-based localization using fingerprint spatial gradient. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 1(2).

[113] Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M., Kakade, S.,

Mordatch, I., and Abbeel, P. (2018). Variance reduction for policy gradient with

action-dependent factorized baselines. arXiv preprint arXiv:1803.07246.

[114] Xu, J., Chen, H., Qian, K., Dong, E., Sun, M., Wu, C., Zhang, L., and Yang, Z.

(2019). Ivr: Integrated vision and radio localization with zero human effort. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol., 3(3).

[115] Xu, Q. and Zheng, R. (2016). Mobibee: a mobile treasure hunt game for

location-dependent fingerprint collection. In Proceedings of the 2016 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pages

1472–1477.

[116] Zhang, J., He, T., Sra, S., and Jadbabaie, A. (2019). Why gradient clip-

ping accelerates training: A theoretical justification for adaptivity. arXiv preprint

arXiv:1905.11881.

[117] Zhang, X., Yang, Z., Sun, W., Liu, Y., Tang, S., Xing, K., and Mao, X. (2015).

Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys &

Tutorials, 18(1), 54–67.

[118] Zhong, W., Suo, Q., Ma, F., Hou, Y., Gupta, A., Qiao, C., and Su, L. (2019).

A reliability-aware vehicular crowdsensing system for pothole profiling. Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., 3(4).

153

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Introduction
	Motivation and Background
	Mobile Robotic Sensing
	Mobile Crowdsourcing

	Contributions
	Organization

	Preliminaries and Related Work
	Gaussian Processes
	Informative Path Planning
	Reinforcement Learning
	Mobile Crowdsourcing
	Indoor Localization

	Informative Path Planning with Budget Constraints
	Problem Formulation
	General Path Planning with a Limited Budget
	Informative Path Planning
	NP-hardness of IPP

	Informative Path Planning Algorithms
	Greedy Algorithm
	Genetic Algorithm
	Encoding and Fitness Function
	Initializing Population
	Selection and Crossover
	Mutation

	Performance Evaluation
	Implementation
	Evaluation Methodology
	Experimental Design
	Performance Metrics
	Fingerprint Collection

	Results
	Choice of GA parameters
	Relation between MI and Localization Errors
	Performance

	Discussion

	Conclusion

	Learning based Path Planning for Flexible Budgets
	Sequential Decision Making Problems
	IPP Solution with RL
	Solution Overview
	State Encoding
	Action Selection
	Environment and Reward Mechanism
	Reinforcement Learning Methods
	Q-learning
	Policy Gradient
	Actor-Critic

	Model Training and Path Inference
	Model Training
	Path Inference

	Experimental Evaluation
	Graph Setting and Implementation
	Comparison with Unconstrained Action Selection
	Convergence using Different RL methods
	Path Inference Performance
	Impact of Snapshots
	Impact of Training Budgets

	Comparison with Other IPP solutions

	Discussion
	Conclusion

	Multi-robot Cooperative Path Planning
	Related Work
	Problem Formulation
	RL Strategies to MIPP
	MMDP for MIPP
	States and Action Selection
	Team Reward
	Learning Schemes
	Joint Action Learning
	Independent Q-learning
	Sequential Rollout

	Path Planning

	Performance Evaluation
	Implementation and Environment Setup
	Training and Convergence
	Path Planning Performance
	Homogeneous Budgets
	Heterogeneous Budgets

	Computation Efficiency

	Conclusion

	Data Collection through Mobile Crowdsourcing
	System and Campaign Design
	Design Considerations
	System Overview
	User Interface
	Contribution Assessment
	Heatmap

	The Site Survey Campaign
	Campaign Scenario
	Incentive Mechanisms and Recruitment Strategies
	Active Recruitment with Teaching
	Passive Recruitment by Posters
	Recruitment Results

	Data Statistics and Analysis
	Scores Attained
	Fingerprint Characteristics
	Data Collection Behaviors
	Group based on Score Range
	Groups with Teaching and without Teaching

	Feedback from Participants
	Interview
	Questionnaire

	Localization Experiments
	Data Quality
	Test Data Collection
	Localization Method
	Localization Performance

	Limitations and Lessons Learned
	Conclusion

	Concluding Remarks
	Conclusion
	Future Work

