
Infectious Disease Modelling 6 (2021) 75e90
Contents lists available at ScienceDirect
Infectious Disease Modelling

journal homepage: www.keaipubl ishing.com/idm
COVID-19: Analytics of contagion on inhomogeneous random
social networks

T.R. Hurd
Mathematics & Statistics, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
a r t i c l e i n f o

Article history:
Received 21 September 2020
Received in revised form 1 November 2020
Accepted 2 November 2020
Available online 12 November 2020
Handling editor: Dr. J Wu

MSC:
05C80
91B74
91G40
91G50

Keywords:
Social network
Infectious disease model
Complex systems
Agent based model
Cascade model
Poisson random graphs
E-mail address: hurdt@mcmaster.ca.
Peer review under responsibility of KeAi Comm

https://doi.org/10.1016/j.idm.2020.11.001
2468-0427/© 2020 The Authors. Production and hos
CC BY-NC-ND license (http://creativecommons.org/l
a b s t r a c t

Motivated by the need for robust models of the Covid-19 epidemic that adequately reflect
the extreme heterogeneity of humans and society, this paper presents a novel framework
that treats a population of N individuals as an inhomogeneous random social network
(IRSN). The nodes of the network represent individuals of different types and the edges
represent significant social relationships. An epidemic is pictured as a contagion process
that develops day by day, triggered by a seed infection introduced into the population on
day 0. Individuals’ social behaviour and health status are assumed to vary randomly within
each type, with probability distributions that vary with their type. A formulation and
analysis is given for a SEIR (susceptible-exposed-infective-removed) network contagion
model, considered as an agent based model, which focusses on the number of people of
each type in each compartment each day. The main result is an analytical formula valid in
the large N limit for the stochastic state of the system on day t in terms of the initial
conditions. The formula involves only one-dimensional integration. The model can be
implemented numerically for any number of types by a deterministic algorithm that
efficiently incorporates the discrete Fourier transform. While the paper focusses on
fundamental properties rather than far ranging applications, a concluding discussion ad-
dresses a number of domains, notably public awareness, infectious disease research and
public health policy, where the IRSN framework may provide unique insights.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heterogeneity proliferates in human society at every level, and new types of mathematical modelling are needed to
understand how these many layers of heterogeneity interweave and influence people’s lives. The COVID-19 pandemic is a
singularly far reaching and catastrophic event, and it will continue to negatively impact humanity for a long time to come.
Layers of heterogeneity are especially relevant to a deep understanding of an infectious disease like COVID. Viral transmission
may be through aerosols, droplets and fomites; the viral load may get absorbed by and do damage to a variety of tissues
within the body; people’s immune systems function in diverse ways. The virus itself may evolve into different forms. People
are tremendously varied in their habits, their friendships, their living arrangements, their range of movements. These
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multifarious factors are all important to consider, and somewill prove to be themost significant factors in determining where
the disease will have its gravest damage, and the best actions to take to ameliorate this damage.

Network science has arisen in recent decades as the most helpful conceptual framework for handling potentially over-
whelming complexity. Networks can provide the architecture and structure for agent based modelling of contagion, leading
to the massive computer simulations such as those of Ferguson and Ghani (2020) that have been used to develop a
comprehensive picture of how such a disease may progress. As we shall show in this paper, network science can also provide
shortcuts to dramatically speed up such computations, allowing us to quickly explore a vast array of alternative scenarios of
the disease.

This paper provides a novel network framework for society, called inhomogeneous random social networks (IRSNs) and then
models the propagation of an infectious disease like COVID-19 in such a society. It can be interpreted as an agent based
contagion model, with the useful feature that an analytical shortcut is available for large-scale simulations of the disease
dynamics. The framework starts with a so-called inhomogeneous random graph (IRG), henceforth called the social graph,
whose nodes represent people classified into a finite number of types, interconnected by edges representing their random
social contacts. The people in this social network are providedwith random immunity buffers that measure their resistance to
the disease and social contact links are labelled by randomweights called exposures that quantify the viral load transmitted
by infected individuals to their social contacts. Then, when a seed infection is introduced randomly into the population of
susceptible individuals, a sequence of contagion shocks will develop that will be modelled as iterations of a cascade mapping
or cascade mechanism.

The main contributions of this paper are:

1. Introduction of the inhomogeneous random social network (IRSN) framework that provides a flexible and scalable archi-
tecture for describing a heterogeneous society of size N with complex community structure. Individuals are classified by
arbitrary types with random characteristics within each type.

2. To develop infection cascade models for such networks based on a threshold mechanism for transmission. This trans-
mission mechanism can incorporate arbitrary dose-response functions, replacing over-simple transmission assumptions
typically used in epidemic models.

3. To develop large N asymptotics for SEIR infection cascades in IRSNmodels, leading to Theorem 3 that provides explicit and
efficiently computable recursive probabilistic formulas for the daily update of the state of the disease within the
population.

4. To show how the contagion analytics can be used to provide large scale investigations into potential policy interventions
that one might invoke to mitigate or suppress the progress of the contagion.

5. Overall, to provide a purely analytical toolkit for networks with potentially thousands of different types of individuals, that
can run on a laptop. The network framework is capable of providing much faster results, with a similar degree of accuracy,
than is possible with large-scale agent based epidemic models sometimes used for informing health policy.

Studying the spread of infectious diseases using the tools of network science has a substantial literature, reviewed for
example in Keeling and Eames (2005) and Danon et al. (2011). The book by Newman (2010) provides a broad overview of
networks in all areas of science, including applications to epidemic modelling, while Pellis et al. (2015) explores current
challenges in network epidemic models. Of particular interest is the review of epidemic processes in complex networks by
Pastor-Satorras et al. (2015): Many ingredients of the framework developed here can be traced to references described there.
In particular, we see there that our model has its roots in the network cascade model of Watts (2002), generalized to allow for
random edge weights as in Hurd and Gleeson (2013).

The IRSN model is presented here in a form exactly equivalent to a simple agent based model. This equivalence provides
important motivation and justification of the underlying assumptions, and gives a vivid intuitive picture for interpreting the
IRSN model. An important example of the intuition gained is a form of selection bias inherent in agent based models, and real
epidemics, that we call susceptibility bias. Susceptibility bias, akin to Darwinian evolution, is the effect that less resistant
individuals tend to be infected earlier, leaving remaining susceptibles who tend to be more resistant than the original
population. We will find that accounting for susceptibility bias presents a mathematical difficulty that our framework can
partially, but not fully, solve. In general, the IRSN framework lies between agent based models of the type developed by
Ferguson and Ghani (2020) and the literature on compartment ordinary differential equation models (ODEs) stemming from
the pioneering work of Kermack et al. (1927). Full exploration of the conceptual links between these three distinct modelling
frameworks is a promising avenue to deeper understanding of real world epidemics.

Section 2 of the paper introduces the essential structure of IRSNs and defines the SEIR infection cascade mechanism that
characterizes the daily propagation of the disease on such networks. This section also explores the equivalent agent based
model, and its heuristic properties. Section 3 explores the large N analytical properties of the IRSNmodel, leading to Theorem
3 that characterizes the infection cascade mapping on the first day. This result is extended to successive days by an additional
mixing assumption, providing a recursive characterization of the daily infection cascademapping in theN¼∞ limit. Section 4
provides the ingredients for a numerical implementation of the SEIR cascade mapping that uses the discrete Fourier trans-
form. It is shown that the flop count for computing a daily update is O(M2 �Ndft) whereM is the number of types and Ndft is
the number of lattice points in each one-dimensional integration. This is efficient enough that complex specifications of IRSN
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models can be explored quickly on a laptop. Section 5 addresses the issue of calibrating IRSN models to real health and social
data. In Section 6, we explore a simple illustration showing how the method can be used to understand potential policy
interventions to protect the residents of a seniors’ residential centre while a pandemic rages in the community outside.
Finally, a concluding discussion addresses how this novel modelling framework can lead to improved understanding of
epidemics by practitioners in several different domains.

Notation:

1. For a positive integer N, [N] denotes the set {1, 2, …, N}.
2. For a random variable X, its cumulative distribution function (CDF), probability density function (PDF) and characteristic

function (CF) will be denoted FX, rX¼ FX0, and f̂ X respectively. Note that f̂ X ¼ FðrXÞwhereF denotes the Fourier transform:

½Fðf Þ�ðkÞ ¼
Z∞
�∞

eikx f ðxÞ dx ; k2R:
We also make use of the function F̂XdFðFXÞ.

3. For any event A, 1(A) denotes the indicator random variable, taking values in {0, 1}.
4. Landau’s “big O00 notation f(N) ¼ O(Na) for some a2R is used for a sequence f(N), N¼ 1, 2,…to mean that f(N)N�a is bounded

as N / ∞.
5. The L2 Hermitian inner product of two complex valued functions f(x), g(x) on a domain D is defined to be Cf ; gDL2ðDÞ ¼R

D f
̄
ðxÞ gðxÞ dx. The L2 norm of a function f(x) on a domain D is defined to be kf kL2ðDÞ ¼ 〈f ; f 〉1=2L2ðDÞ.
2. SEIR model on IRSNs

This section provides the core modelling assumptions of the network epidemic framework, in the classic susceptible-
exposed-infected-recovered setting (see Anderson and May (1992)) in which individuals progress through the stages of the
disease, moving from compartment to compartment:

susceptible S/exposed E/infective I/removed R:
The social network describes a population of individuals as nodes of a graph, whose undirected edges represent the ex-
istence of a significant social connection. Our network setting for the spread of an infectious disease has the following
structure.

1. The population is classified into a finite disjoint collection of “types” that represent people’s important attributes, such as
age, gender, living arrangement, profession, country and location.

2. Individuals within a type have random attributes drawn from type-dependent probability distributions.
3. The network of social contacts, initially random, is taken to be constant during the epidemic. This implies in particular that

aging effects such as births and deaths are ignored.
4. The outbreak is monitored in discrete time, with a period Dt assumed for convenience to be one day. At the start of the

outbreak on day 0, most of the population is susceptible (S), but a small number of individuals are exposed (E) or infective
(I).

5. Each day infective individuals pass on a random viral dose to their infective contacts, a random subset of their social
contacts.

6. A susceptible individual’s state of health at the beginning of each day is represented by a random immunity buffer. During
the day, they experience an accumulation of random viral doses through their infective contacts, and if the total viral load
exceeds their buffer they become exposed, meaning infected but not yet infectious, and are moved into compartment E.

7. Each day certain individuals move from E to I, meaning they become infectious. Others move from I to removed (R)
meaning that they either die or recover and are no longer infectious. Removed individuals are assumed to have permanent
immunity.

This framework is a kind of agent based model (ABM) that focusses solely on the occurrence of infective contacts, simpler
than ABMs that also simulate the movements of individuals. Note that for each agent, their actual infection event is modelled
as a threshold event that occurs if the total viral load received in a period of time Dt¼ 1 day throughmultiple contacts exceeds
their natural immunity.
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The populationwith its social structure will be represented at any moment as an inhomogeneous random social network,
or IRSN. An IRSN is the specification of a multidimensional random variable that captures two levels of structure. The primary
level, called the social graph, is an undirected random graph with N nodes labelled by a type classification, where each un-
directed edge represents the existence of a significant social connection, such as a family, collegial or friend relationship. The
secondary layer specifies the infective contacts, mutual exposures and health of people. Inhomogeneity in the IRSNmodel arises
through classifying people by a finite number of types that can account for a wide range of attributes.

It is important to note that the IRSNwill be assumed to change over time in a prescribed fashion: the primary level remains
constant, while the secondary layer varies stochastically each daily time step. The primary level is fixed because the cali-
bration of the social graph is assumed to be based on studies such as Mossong et al. (2008) and Prem et al. (2017) that studied
contact data gathered over many years prior to the outbreak. On the other hand, the secondary layer changes to reflect the
stochastic nature of the pandemic on a daily scale.

2.1. Social graph

The social graph is modelled as an undirected inhomogeneous random graph (IRG), generalizing Erd€os-Renyi random
graphs, in which edges are drawn independently between unordered pairs of nodes, not with equal likelihood but with
likelihood that depends on their types. This class of random graph has its origins in Chung and Lu (2002) and has been studied
in generality in Bollob�as et al. (2007) and the textbook by van der Hofstad (2016).

Assumption 1. [Social Graph] The primary layer of an IRSN, namely the social graph IRGðP; k; NÞ, is an inhomogeneous
random graph with N nodes labelled by v2 [N]. It can be defined by two collections T ;A of random variables: Tv for v2 [N]
and Avw for (v, w) 2 [N] � [N].

1. Each node v2 [N], representing a person, has type Tv drawn independently with probability PðTÞ from a finite list of types
[M] of cardinality M � 1. Note that

P
T2½M�PðTÞ ¼ 1.

2. Each undirected edge (v,w)2 [N]� [N] corresponds to a non-zero entry of the symmetric random adjacency matrix A. For
each pair (v,w), Avw¼ Awv is the indicator forw to be (significantly) socially connected to v. Conditioned on the collection of
all types {Tv}, the collection of edge indicators {Avw} is an independent family of Bernoulli random variables with
probabilities

P½Avw ¼1rTv ¼ T ; Tw ¼ T 0� ¼ ðN � 1Þ�1kðT ; T 0Þ1ðvswÞ : (1)
It is an important observation that the sequence of IRGðP; k;NÞ with the same P; k and varying size N have uniform
probabilistic characteristics that tend to a central limit as N/∞. In particular, the probability mapping kernel k, the symmetric
matrix that determines the likelihood that two people v, w of the given types have a social connection, is divided by N � 1 to
ensure this uniformity and sparseness of the graph for large N. For consistency we require that N � 1 � maxT,T0k(T, T0).
2.2. Infective contacts, Viral Exposures and Immunity Buffers

The relevant health attributes of all people are summarized by an independent collection of multivariate randomvariables,
conditioned on the social graph.

Definition 1. 1. The infective contact indicator pair between w and v is a pair of Bernoulli variables (zvw, zwv). zvwAvw ¼ 1
means that the social relationship between v and w leads to a close infective contact on a given day, such
that when v is infectious a viral dose will be transmitted to w.

2. The potential viral exposure pair between w and v is a pair (Uvw, Uwv) of positive values: Uvw represents the viral load
transmitted from v to w should v, w have a single infective contact, and if v is infective.

3. The immunity buffer Dv of node v is a non-negative value that represents the resistance of that person to the virus.
Assumption 2. [Infective Contacts, Viral Exposures and Immunity Buffers] The secondary layer of an IRSN, the collection of
infective contacts, potential exposures and immunity buffers zvw, Uvw, Dv are non-negative random variables that are chosen
to be independent of {Avw}, conditioned on {Tv}.

1. For each edge (v, w), (zvw, zwv) is a bivariate Bernoulli random variable. Conditioned on Tv ¼ T, Tw ¼ T0, zvw ¼ 1 with
probability z(T, T0).

2. For each edge (v,w), (Uvw,Uwv) is a bivariate randomvariable. Conditioned on Tv¼ T, Tw¼ T0,Uvw has a continuousmarginal
density rU(xrT, T0) supported on Rþ and associated distribution functions FUð,jT ;T 0Þ; f̂Uð,jT;T 0Þ; F̂Uð,jT;T 0Þ.
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3. For each individual v, Dv conditioned on Tv ¼ T2 [M] has a continuous density rD(x|T)¼ F0D(x|T) supported on Rþ. Thus the
cumulative distribution function (CDF) is

FDðxjTÞdPðDv � xrTÞ¼
Zx
0

rDðyjTÞdy ;cx2½0;∞Þ∪f∞g: (2)
We also record the characteristic function (CF) f̂ Dð ,jTÞ¼ FðrDð,jTÞÞ and F̂Dð ,jTÞ ¼ FðFDð,jTÞÞ.
In summary, an IRSN of finite size N representing the population of N individuals amounts to a collection of random

variables {T, A, z, U, D} satisfying Assumptions 1 and 2.
2.3. Infection transmission and the epidemic trigger

Infection transmission is a stochastic process that we idealize here as proceeding in discrete time with a period taken for
convenience to be one day. This time scale can be thought to correspond to the length of time a transmitted viral load remains
active within the body. The most important factors in determining the probability that a susceptible individual becomes
infected in a day are the total viral load they accumulate during that day and their immunity buffer. We adopt a threshold
infection assumption, as described for example in Pastor-Satorras et al. (2015)[Ch X].

We assume that the random social graph determined by {T, A} is chosen at time t ¼ 0 and remains fixed for the duration of
the contagion process. On the other hand, {z,U, D} form a conditionally IID sequence of multivariate randomvariables that are
drawn daily. Thus, only the secondary layer of the IRSN changes over time.

Consider a typical day starting at time t; t2Zþ, at which time the compartments S,E,I,R are assumed to be a union over
T 2 [M] of disjoint random subsets S(t|T), E(t|T), I(t|T), R(t|T) of the node set [N]. The initial compartments, and the possible
compartment changes each day are determined by the following rules:

Assumption 3. [Initial Trigger and Transmission]

1. The epidemic trigger at the beginning of day t¼ 0 randomly assigns each type T individual to one of the compartments S, E,
I, R independently with probabilities s(0|T) ¼ 1 � e(0|T) � i(0|T), e(0|T), i(0|T), r(0|T) ¼ 0. This determines the initial
compartments S(0)¼ [N]y (E(0) ∪ I(0)), E(0), I(0), R(0)¼∅; these compartments are partitioned by types: S(0)¼ ∪TS(0|T),
etc.

2. Each day t � 0, a new collection {z(t), U(t), D(t)} of random variables are sampled satisfying Assumption 2.
3. For each successive day t � 0, the transmissions from S to E, E to I and I to R are determined by the following SEIR

transmission assumptions:
(a) Each v 2 S(t|T) will be exposed and moved to E(t þ 1|T) if

X
w

1ðw2 IðtÞÞzðtÞwvAwvU
ðtÞ
wv � DðtÞ

v : (3)
(b) Each v 2 E(t|T) becomes infectious and moves to I(t þ 1|T) independently with probability b(T) 2 [0, 1].
(c) Each v2 I(t|T) is removed to R(tþ 1|T) independently with probability g(T)¼ gd(T)þ gr(T)2 [0, 1], where gb, gr are the

probabilities of death and recovery respectively.

Note that from the above assumptions, z(T0, T) represents the conditional probability on a given day that w and v have an
infective contact, given that they have a social contact and w 2 I(t|T0), v 2 S(t|T); these are entries of an M � M possibly non-
symmetric matrix.

As will be discussed in detail in Section 3.4, the threshold infection assumption captured in (3) can be directly interpreted
as a dose-response model as reviewed in Haas (2015).

2.4. IRSN agent based simulation

Assumptions 1,2,3 for an infection contagion cascade of Tmax days duration on a finite social network of N people can be
realized by the following algorithm for the IRSN-ABM, a simple agent based model.
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Step 0 Initialize the primary level randomvariables Tv, Avw according to Assumptions 1. Set t¼ 0 and assign each node v2 [N]
independently to one of the compartments S(0), E(0), I(0), R(0) according to the initial probabilities s(0|Tv), e(0|Tv), i(0|
Tv), r(0|Tv) as in Assumption 3.

Step 1 While t < Tmax:

(a) Update the secondary random variables: For each w 2 I(t) and v 2 S(t), generate zðtÞwv; U

ðtÞ
wv; D

ðtÞ
v , according to

Assumptions 2.
(b) Exposure: For v 2 S(t), if

P
w2IðtÞz

ðtÞ
wvAwvU

ðtÞ
wv � DðtÞ

v , move v to E(t þ 1), otherwise keep v 2 S(t þ 1).
(c) For v 2 E(t), independently move v to I(t þ 1) with probability b(Tv), otherwise keep v 2 E(t þ 1).
(d) For v 2 I(t), independently move v to R(t þ 1) with probability g(Tv), otherwise keep v 2 I(t þ 1).
(e) Increment t ¼ t þ 1 and repeat Step 1.
Each simulation of themodel leads to the collection of random compartments S(t|T), E(t|T), I(t|T), R(t|T) with fractional sizes

sðtjTÞ¼N�1jSðtjTÞj; eðtjTÞ¼N�1jEðtjTÞj; iðtjTÞ¼N�1jIðtjTÞj; rðtjTÞ¼N�1jRðtjTÞj

for days t ¼ 0, 1, …, Tmax and types T 2 [M].

Remark 1. The above specification for the IRSN-ABM is one of many natural possibilities. In particular, choosing to freeze the
social graph to remain constant, while making the secondary layer change unpredictably every day is a strong immunological
assumption that is open to debate. For example, one might propose an alternative assumption that the secondary layer
exhibits serial correlation, or more strongly, remains constant day by day.

Susceptibility bias refers to a type of selection bias, akin to Darwinian evolution, that in a heterogeneous populationwhere
individuals have slowly varying innate characteristics, the less resistant individuals tend to succumb to the disease earlier
than more resistant individuals, and consequently the susceptible population becomes more resilient over time. Random
variables such as the social graph that remain constant lead to susceptibility bias, while making random characteristics
serially independent reduces susceptibility bias. The IRSN-ABMwill have some susceptibility bias arising from the constancy
of the social graph because highly connected individuals of a given type will tend to receive more infectious shocks than less
connected individuals of the same type.

3. Analytical asymptotics of the IRSN model

The IRSN framework just introduced specifies the joint distributions of the randomvariables {T, A, z, U, D} and the random
compartments S(0), E(0), I(0), R(0), thereby providing a compact stochastic representation of the state of a network of N
individuals at themoment an outbreak is triggered. The same distributional data defines a sequence of randomnetworkswith
varying N.

The main objective is to study the dependence on t of the size of the random compartments S(t|T), E(t|T), I(t|T), R(t|T). It is
important that we consider relationships between finite N networks and the asymptotic limit N/∞. To this end, for each N
we define the fractional expected sizes to be

sðNÞðtjTÞ d
1
N
EðNÞ½

X
v2½N�

1ðv2SðtjTÞÞ� (4)

ðNÞ 1 ðNÞ X

e ðtjTÞ d

N
E ½

v2½N�
1ðv2EðtjTÞÞ� (5)

ðNÞ 1 ðNÞ X

i ðtjTÞ d

N
E ½

v2½N�
1ðv2IðtjTÞÞ� (6)

ðNÞ 1 ðNÞ X

r ðtjTÞ d

N
E ½

v2½N�
1ðv2RðtjTÞÞ�: (7)
By permutation symmetry, sðNÞðtjTÞ¼ PðNÞð12SðtjTÞÞ etc. Throughout the remainder of the paper, the quantities s(t|T), e(t|
T), i(t|T), r(t|T) without superscript (N) denote the large N limiting values.

The most important result of the paper will be N/∞ asymptotic recursion formulas mapping the quantities s(t|T), e(t|T),
i(t|T), r(t|T) from day t to t þ 1 for t � 0, subject to specified initial conditions for t ¼ 0. This system of equations is a discrete
dynamical system on a simplex defined by relations PðTÞ ¼ sðtjTÞþeðtjTÞ þ iðtjTÞþrðtjTÞ for each T 2 [M], lying within the
hypercube [0,1]4M. The mapping generating this dynamics will be called the infection cascade mapping.
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3.1. Degree distribution of the social graph

The distribution of the number of social contacts of nodes in IRGs, in other words their social degree distribution, has a
natural Poissonmixture structure in the largeN limit. By permutation symmetry, one only needs to consider individual 1 with
arbitrary type T1 ¼ T, whose social degree is defined as d1 ¼

PN
w¼2Aw1, a sum of conditionally IID Bernoulli random variables.

Since eikAw1 ¼ 1þ Aw1ðeik � 1Þ, each term has the identical conditional characteristic function (CF)

EðNÞ½eikAw1 rT1 ¼ T� ¼
X

T 02½M�
PðT 0Þ

�
1þ ðN � 1Þ�1kðT 0; TÞðeik �1Þ

�
: (8)
The conditional CF of d1 is the N � 1 power of this function, and can be written

EðNÞ½eikd1 rT � ¼
�
1þ 1

N � 1

X
T 0

PðT 0ÞkðT 0; TÞðeik � 1Þ þ OðN�2Þ
�N�1

; (9)

to display its asymptotic structure as N / ∞.

Proposition 1. The characteristic function of the social degree dv of an individual v, conditioned on its type T 2 [M], is 2p-
periodic on R and has the N / ∞ limiting behaviour:

f̂
ðNÞ

ðkrTÞ ¼ f̂ ðkrTÞ
�
1þ OðN�1Þ

�
; (10)

f̂ ðkrTÞ d exp
h
lðTÞðeik � 1Þ

i
; (11)

where l(T) ¼
P

T0l(T0, T) with lðT 0;TÞdPðT 0ÞkðT 0;TÞ. Here, convergence of the logarithm of (10) is in L2([0, 2p]).

Proof of Proposition 1. The proof is immediate by applying the following Lemma 2 to the logarithm of (9), with N � 1 ¼ y�1

and gðk;yÞ ¼
P

T 02½M�PðT 0Þ
h
kðT 0; TÞðeik �1Þ

i
.▪

Lemma 2. Let I be any hyperinterval in Rd and y
̄
>0. Suppose gðx; yÞ : I � ½0; y

̄
�/C is a bivariate function such that

gð,; yÞ; vygð,; yÞ; v2ygð,; yÞ are pointwise bounded and in L2(I) for each value y2½0;y
̄
�. Then

lim
y/0

����1y logð1þ ygðx; yÞÞ � gðx;0Þ
����
L2
¼OðyÞ:

Proof of Lemma 2. Under the assumptions, one can showdirectly that f(x, y)d log(1þ yg(x, y))� yg(x, 0) satisfies limy/0f(x,
y) ¼ limy/0vyf(x, y) ¼ 0 and hence by Taylor’s remainder theorem

f ðx; yÞ ¼
Zy
0

ðy� vÞv2yf ðx; vÞdv:

One can also show that v2y f ðx; vÞ is in L2(I) for each value v2½0; y
̄
� provided y

̄
>0 is small enough. Then, by Fubini’s Theorem,

for y2½0;y
̄
�

klogð1þ ygðx; yÞÞ � gðx;0Þk2 �
�Zy

0

ðy� vÞdv
�2

max
v2½0;g�

���v2yf�x; v����2 � My4

for some constant M, from which the result follows.▪

Proposition 1 tells us that for different values of T, the conditional social degree converges in distribution to a Poisson
random variable with mean parameter l(T) ¼

P
T0l(T, T0). Now, recall that a finite mixture of a collection of probability dis-

tribution functions is the probability distribution formed by a convex combination. Thus the asymptotic unconditional social
degree distribution of any individual is a finite mixture with characteristic function:
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f̂ ðkÞ ¼
X

T2½M�
PðTÞf̂ ðkrTÞ : (12)
Each mixture component has a Poisson distribution with Poisson parameters l(T) and the mixing variable is the
individual-type T with mixing weight PðTÞ.

3.2. The first infection cascade step

The most important quantity on day 1 is the exposure probability EP(1|T) for a type T individual v that is susceptible on day
0 to become exposed on day 1. For a finite network of size N, by permutation symmetry, we can take v ¼ 1 and the required
conditional probability can be expressed as EPðNÞð1jTÞdPðNÞð12Eð1jTÞj12Sð0jTÞÞ. By our assumptions, in particular (3), this
is

EPðNÞð1jTÞ¼PðNÞðDð0Þ
1 �V ð0Þ

1 j12 Sð0jTÞÞ¼PðNÞðDð0Þ
1 �V ð0Þ

1 jT1 ¼ TÞ (13)

where V ð0Þ
1 , the total viral load received by 1, is the sum of viral shocks from ws1 to 1
V ð0Þ
1 ¼

P
ws1

V ð0Þ
w1 ;

V ð0Þ
w1 ¼

P
T 02½M�

Aw12
ð0Þ
w11ðw2Ið0jT 0ÞÞUð0Þ

w1:
(14)
As studied in Hurd and Gleeson (2013), threshold probabilities such as (13) are efficiently computable via characteristic
functions. Assuming that X, Yare independent non-negative randomvariables such that X has a density rX(x) and the CDF FYof
Y is continuous, and letting these functions have Fourier transforms f̂ XdFðrXÞ; F̂YdFðFY Þ, then by the Parseval Identity

P½Y �X� ¼
Z∞
0

rXðxÞFY ðxÞdx ¼ 1
2p

Z∞
�∞

F̂YðkÞf̂ Xð�kÞ dk : (15)

ð0Þ
Note that conditioned on T1 ¼ T, the shocks Vw1 for all ws1 are independent and identically distributed (IID). SinceP
T 0Aw1z

ð0Þ
w11ðw2Ið0jT 0ÞÞ is a Bernoulli random variable that is independent of Uð0Þ

w1,

exp

"
ik
X
T 0

Aw12
ð0Þ
w11

�
w2 I

�
0
			T 0��Uð0Þ

w1

#
¼1þ

X
T 0

Aw12
ð0Þ
w11

�
w2 i

�
0
			T 0���eikUð0Þ

w1 �1
�
;

and hence for any ws1 the characteristic function of the shock V ð0Þ
w1 conditioned on the type T1 ¼ T is given for finite N by
EðNÞ½eikV
ð0Þ
w1 rT� ¼ 1 þ

X
T 0

EðNÞ½Aw1z
ð0Þ
w11ðw2Ið0jT 0ÞÞrT1 ¼ T� EðNÞ½eikU

ð0Þ
w1 � 1rT1 ¼ T; Tw ¼ T 0�

¼ 1þ
X
T 0

kðT 0; TÞzðT 0; TÞið0jT 0Þ
N � 1

ðf̂UðkrT 0; TÞ � 1Þ : (16)

ð0Þ
By the independence of viral shocks, the total viral load V1 has CF

EðNÞ½eikV
ð0Þ
1 rT � ¼

�
1þ

X
T 0

kðT 0; TÞzðT 0; TÞið0jT 0Þ
N � 1

ðf̂UðkrT 0; TÞ � 1Þ
�N�1

: (17)
The desired large N approximation is uniform in k2R, and follows by the argument proving Proposition 1:

EðNÞ½eikV
ð0Þ
1 rT � ¼ f̂

ð0Þ
V ðkrTÞð1þ OðN�1ÞÞ; (18)

^ð0Þ 
X 0 0 0 ^ 0
�

f V ðkrTÞ d exp
T 0

kðT ; TÞzðT ; TÞið0jT ÞðfUðkrT ; TÞ � 1Þ (19)

(N)
The expected fractional number of type T newly exposed individuals will be EP (1|T)s(0|T). By combining (13) and (15)
with X ¼ V ð0Þ

1 and Y ¼ Dð0Þ
1 , and applying the dominated convergence theorem, we have
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limN/∞EPðNÞð1jTÞ ¼ 1
2p

Z∞
�∞

F̂DðkjTÞ f̂
ð0Þ
V ð�kjTÞ dk:
The expected fractional number of type T exposed individuals that become infective will be b(T)e(0|T) and expected
fractional number of type T infective individuals that are removedwill be g(T)i(0|T). Putting these pieces together, one obtains
the main result.

Theorem 3. Consider the sequence of IRSNs for all N, satisfying all the assumptions in Section 2. Then for each N, the fractional
expected compartment sizes on day 1 are

sðNÞð1jTÞ ¼ ð1� EPðNÞð1jTÞÞsð0jTÞ (20)

eðNÞð1jTÞ ¼ ð1� bðTÞÞeð0jTÞ þ EPðNÞð1jTÞsð0jTÞ (21)
iðNÞð1jTÞ ¼ ð1� gðTÞÞið0jTÞ þ bðTÞeð0jTÞ (22)
rðNÞð1jTÞ ¼ rð0jTÞ þ gðTÞið0jTÞ: (23)
The type T exposure probability on day 1 is uniformly approximated as N / ∞:

EPðNÞð1jTÞ ¼ EPð1jTÞÞð1þ OðN�1ÞÞ; (24)

Z∞

EPð1jTÞ ¼ 1

2p
�∞

F̂DðkjTÞ f̂
ð0Þ
V ð�kjTÞ dk; (25)

^ ^ð0Þ ð0Þ
where FD ¼ FðFDÞ is given by (2) and f V ¼ FðrV Þ is given by

f̂
ð0Þ
V ðkrTÞdexp

�X
T 0

kðT 0; TÞzðT 0; TÞið0jT 0Þðf̂UðkrT 0; TÞ�1Þ
�
: (26)
3.3. The mixed infection cascade mapping

As discussed in Section 2.4, the IRSNmodel exhibits susceptibility bias. Due to the constancy over time of the social graph,
highly connected individuals tend to be infected earlier than less connected individuals, and hence the average connectivity of
susceptibles decreases over time. This implies that the assumptions underlying Theorem 3 do not hold for the infection
cascademapping on subsequent days t > 0. Indeed, we have not been able to generalize Theorem 3 to cope with susceptibility
bias for t > 0.

Instead, we propose to depart from the IRSN model of Section 2.3 by introducing an additional randomization called
mixing that eliminates the susceptibility bias and ensures that Theorem 3 holds for t > 0. The required form of conditional
independence is achieved by introducing for each t > 0 a random reassignment of the labels S, E, I, R for each type T, consistent
with the total fractions of nodes in each subcompartment. Specifically, for each t � 0 we replace Step 1(e) of the IRSN agent
based simulation of Section 2.4 by the following:

Step 1’(e): Reassign each node v 2 [N] independently to one of the compartments S(t þ 1), E(t þ 1), I(t þ 1), R(t þ 1)
according to the probabilities s(t þ 1|Tv), e(t þ 1|Tv), i(t þ 1|Tv), r(t þ 1|Tv). Increment t ¼ t þ 1 and repeat Step 1.

Since the proposed mixing is inconsistent with any true agent based model, we call this a pseudo-agent based model, the
IRSN P-ABM. Under model specifications where susceptibility bias of the ABM is small, the large N limit of the P-ABM will
closely mimic the corresponding ABM. Under the IRSN P-ABM, the form given by Theorem 3 continues to apply for subse-
quent time steps, and we are justified in proposing the following mapping as a consistent network model for infectious
disease spread.

Mixed Infection Cascade Mapping: Consider the limit N ¼ ∞ of the sequence of IRSN P-ABMs for all N, satisfying all the
assumptions in Section 2.4, with the modified Step 1’(e) just discussed. Then on day t � 1,

1. The type T exposure probability is
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EPðtjTÞ ¼ 1
2p

Z∞
�∞

F̂DðkjTÞ f̂
ðt�1Þ
V ð�kjTÞ dk ; (27)
2. The transmitted viral shock has PDF r
ðt�1Þ
V ð ,jTÞ¼ F�1ðf̂

ðt�1Þ
V ð,jTÞÞ with

f̂
ðt�1Þ
V ðkrTÞ ¼ exp

�X
T 0

kðT 0; TÞzðT 0; TÞiðt�1jT 0Þðf̂UðkrT 0; TÞ�1Þ
�

(28)
3. The fractional expected compartment sizes are

sðtjTÞ ¼ ð1� EPðtjTÞsðt � 1jTÞ (29)

eðtjTÞ ¼ ð1� bðTÞÞeðt � 1jTÞ þ EPðtjTÞsðt � 1jTÞ (30)
iðtjTÞ ¼ ð1� gðTÞÞiðt � 1jTÞ þ bðTÞeðt � 1jTÞ (31)
rðtjTÞ ¼ rðt � 1jTÞ þ gðTÞiðt � 1jTÞ: (32)
3.4. Dose-response model of transmission

To obtain a more specific threshold model of transmission, leading to a better understanding of the immune buffers and
exposures, this section develops the idea of dose-response, as discussed in e.g. Haas (2015), as a model of viral transmission. In
a simple dose-response model for airborne disease transmission, each viral dose transmitted from an infective to a sus-
ceptible host is assumed to be carried by a very large number U of airborne particles, thought of as either aerosol or droplet.
These particles settle on tissues within the host, where each is assumed to have an independent identical small chance a to
cause the host to become exposed. The probability that exposure occurs is therefore

Pexposure ¼
XN
n¼1

BinðN;a;nÞ � 1� e�aU (33)

where Bin(N, a, ,) denotes the values of a binomial distribution, and the approximation is the Demoivre-Laplace limit
theorem.

There are many reasons why (33) is oversimple, and it is common to replace it by a more general dose-response
relationship

Pexposure ¼ FðUÞ (34)

for an increasing function with F(0) ¼ 0, F(∞) ¼ 1.
We can view this general dose-response as a threshold model. The parameter a¼ aT, or the specific function F¼ F(,|T) can

be assumed to depend strongly on the host’s type T. We should also assume thatU is random, depending on all of the infecting
individuals and the host’s type. If we assume a type T susceptible’s buffer Dv is distributed with CDF F(,|T) and is independent
of the total exposure Uwhich is given as a random sum of infectious exposures

PK
k¼1Uwkv then, conditioned on the exposures

Uwkv, the probability of v being exposed will be

EPðtjT;UÞ ¼ Fð
XK
k¼1

UwkvjTÞ ¼ P½Dv �
XK
k¼1

UwkvjT ;Uwkv� : (35)
consistent with (13). Taking an expectation over U leads to the probability of v being exposed after day t, conditioned on
v 2 S(t � 1|T). This will be EPðtjTÞÞsðt�1jTÞ where
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EPðtjTÞ ¼ P½Dv �
X

w2½N�
Awvz

ðt�1Þ
wv 1ðw2Iðt � 1ÞÞUðt�1Þ

wv jv2Sðt � 1jTÞ� (36)

¼ E
�
Fð

X
A zðt�1Þ1ðw2Iðt � 1ÞÞUðt�1ÞÞjT ¼ T

i
:

w2½N�
wv wv wv v (37)
For the simplest dose-response (33), these expectations factorize, and with the help of Lemma 2 one finds

EPðtjTÞ ¼ 1�
Y

wsv
E
h
1þ Awvz

ðt�1Þ
wv

X
T 0

1ðw2Iðt � 1jT 0Þðe�aTU
ðt�1Þ
wv � 1ÞjTv ¼ T

i
(38)

¼ 1� ½1þ
X
T 0

kðT 0; TÞ
N � 1

zðT 0; TÞiðt � 1jT 0ÞE½e�aTU
ðt�1Þ
wv � 1jTv ¼ T; Tw ¼ T 0��

N�1

(39)

e 1� exp½�
X
T 0

tðT 0; TÞkðT 0; TÞzðT 0; TÞiðt � 1jT 0Þ�: (40)

Here tðT 0; TÞdE½1�e�aTU
ðt�1Þ
wv jTv ¼ T ; Tw ¼ T 0� ¼ 1�f̂UðiaT jT; T 0Þ is the probability that v becomes exposed from a single viral

dose from a type T0 infective.
When (29) and (40) are combined, we obtain

sðtjTÞ ¼ exp½�
X
T 0

tðT 0; TÞkðT 0; TÞzðT 0; TÞiðt�1jT 0Þ�sðt�1jTÞ : (41)
This can be recognized as the solution of the vector-valued ordinary differential equation at the heart of multi-type
compartment epidemic models:

sðtjTÞ
dt

¼ �
X
T 0

aðT; T 0ÞiðtjT 0ÞsðtjTÞ (42)

with the continuous functions i(t|T0) replaced by the piece-wise constant approximations i(PtR|T0), and the transmission
parameter given by a(T, T0) ¼ dt�1t(T0, T)k(T0, T)z(T0, T). Thus, combining (40) with the steps leading to Theorem 2 provides a
direct derivation of the classic SEIR ODE model from a particular specification of a more fundamental agent based contagion
model.

4. Discrete Fourier Transform implementation

The core of the numerical implementation of themixed infection cascademappingwill be to approximate the integral (27)
for EP(t|T) using the Discrete Fourier Transform (DFT). The DFT works most effectively on a grid of nonnegative integers we
denote by [Ndft]d{0, 1, 2,…, Ndft � 1} whose log-size log 2(Ndft) is an integer chosen to compromise between precision and
computational efficiency. All immunity buffers will be taken to have integer values on [Ndft] that represent multiples of a unit
of viral dose. The exposures will have values on a smaller grid {0,1, 2,…, omegamax�1}. To avoid the aliasing problem familiar
in applications of the DFT, we assume Ndft is sufficiently large compared to omegamax so that
Pð

P
w2½N�=1Aw1z

ðtÞ
w1U

ðtÞ
w11ðw2Ið0ÞÞ� NdftÞ is a negligible probability when node 1 has any possible type T1.

Thus we assume that the PDF and CDF rX, FX of any continuous random variable X can be replaced by dimension Ndft
probability vectors with components rX(x), FX(x), x 2 [Ndft]. The characteristic function f̂ X is then replaced by the DFT of rX,
f̂ XdFðrXÞ, defined for each k 2 [Ndft] by

f̂ XðkÞ ¼
X

x2½Ndft�
e2pikx=NdftrXðxÞ

Ndft
The DFT is an invertible linear operator (in fact an isometry under the Euclidean metric) on C ; the inverse DFT
rX ¼ F�1ðf̂ XÞ is given by

rXðxÞ ¼ Ndft�1
X

k2½Ndft�
e�2pikx=Ndft f̂ XðkÞ:
Given two independent positive random variables X, Y with values in [Ndft], one then has the identities
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PðX� YÞ ¼
X

y2½Ndft�
FY ðyÞ rXðyÞ ¼

1
Ndft

X
k2½Ndft�

F̂Y ðkÞf̂ Xð�kÞ

where F̂Y ¼ FðFY Þ.
Based on these identities, with the grid [Ndft] set in this way, we can implement the mixed infection cascade mapping

given by equations (29)-(32) of Section 3.3 with equations (27) and (28) replaced by

EPðtjTÞ ¼ 1
Ndft

X
k2½Ndft�

F̂DðkjTÞf̂
ðt�1Þ
V ð�kjTÞ (43)

^ðt�1Þ X 0 0
f V ðkjTÞ ¼ exp½
T 02½M�

Rðk; T ; T Þiðt � 1jT Þ� (44)

Rðk; T ; T 0Þ ¼ kðT; T 0ÞzðT 0; TÞðf̂ ðkjT; T 0Þ � 1Þ : (45)
U
One sees that for a single day t, the computational complexity of the algorithm is dominated by (44) which amounts to
O(Ndft � M2) flops for the complex matrix-vector multiplication, followed by Ndft � M complex exponentiations. Memory
usage is dominated by storing the constant matrix R with Ndft � M2 components. Since Ndft ¼ 210 is a typical value, there is
clearly no difficulty in computing the general model with several thousand types on an ordinary laptop.

5. Calibrating IRSNs

This section addresses implementation of the infection cascade model on IRSNs, and its generalizations, for a real world
network of N̂ individuals. The central issue is to construct a sequence of IRSNs of size N increasing to infinity, that is sta-
tistically consistent with the real world network when N ¼ N̂. Then the statistical model for N ¼ ∞ can be subjected to
epidemic triggers with any initial infection probabilities, and the resultant infection cascade analytics developed in Section 3
will yield the chronology of the epidemic, and measures of the resilience of the real world network.

The type of network data available to policymakers varies widely from one health jurisdiction to another. Herewe imagine
a minimal dataset for N̂ ¼

P
T2½M�N̂T individuals classified intoM types labelled by T2 [M], where N̂T denotes the number of

individuals of type T. Individual types, and the population sizes N̂T , will be assumed not to change over the data sampling
period. As a first estimation step, we choose the empirical type distribution:

P̂ðTÞ ¼ N̂T

N̂
:

Typically, this vector is determined by census data.

5.1. Social contact matrix

Next suppose for illustration that the interconnectivity, exposures and health statistics of the real network have been
observed for an extended period prior to the epidemic. In particular, social connectivity has been observed, and edges having
the meaning of a “significant social contact” are drawn between any ordered pair (v, w) of individuals if the average daily
contact time of individual w to individual v exceeds a specified threshold.

Let the social contact matrix Ê ¼ ðÊT ;T 0 ÞT ;T 02½M� represent the expected total daily number of significant T toT0 social contacts
in the given population. Such matrices have been studied in great depth, for many countries and communities, and are
available in public databases such as Prem et al. (2017). Following the discussion of Section (3.1), the average number of T0

contacts per type T individual, ÊT ;T 0=N̂T , is matched to the conditional mean l̂ðT 0; TÞdP̂ðT 0Þk̂ðT 0; TÞ to identify the empirical
connection kernel

k̂ðT; T 0Þ ¼
ÊT;T 0 ðN̂ � 1Þ

N̂T N̂T 0
: (46)
Theoretically, social contact matrices can be constructed as a very large sum over settings s2S that represent the different
places people meet, see Mistry et al. (2020). Each setting s is assumed to involve a finite number of people, with an equal
likelihood z(s) 2 [0, 1] of a contact between any pair. Let 4ðsÞ ¼ ð4ðsÞ

T ; ÞT2½M�2ZM
þ denote the column vector counting the

number of individuals of each type in the setting s. The construction then amounts to representing the matrix Ê by the
weighted sum
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Ê ¼
X
s2S

zðsÞð4ðsÞ*4ðsÞu � diagð4ðsÞÞÞ (47)

whose T, T0 component is

ÊTT 0 ¼
X
s2S

zðsÞð4ðsÞðTÞ4ðsÞðT 0Þ � 4ðsÞðTÞdTT 0 Þ

where dTT0 denotes the Kronecker delta. Note that * in (47) represents an outer-product of vectors, that in general yields a
rectangular matrix. This sum over settings can be disaggregated into different types of settings, such as school, hospital and
workplace, leading to contact matrices within subcommunities.

5.2. Buffers and exposures

Recall from the previous section that exposures are assumed to take values on the integer grid {0, 1, 2, …, omegamax} for
some moderately large integer omegamax, where 1 represents a choice of a unit dose. It should be supposed that Ue is
observed for a certain random sample of directed T / T0 edges e. It is then reasonable to infer empirical distributions rU(,, T,
T0) from a parametric family of discrete distributions on {0, 1, 2, …, omegamax} that match the sample means and variances
m̂UðT ; T 0Þ; ŝ2UðT ; T 0Þ. In a similar way, m̂DðTÞ; ŝ2DðTÞ can be estimated from a random sample of observed values of the buffer
variable for type T nodes.

Gamma distributions onRþ, parametrized by the shape parameter k > 0 and scale parameter q > 0, form a particularly nice
family suitable for theoretical studies of the IRSN framework. Of particular interest are the exponential distributions with
k ¼ 1, due to their “memoriless” property. When D is exponential, the dose-response curve leads to the assumed serial in-
dependence of infection arising from successive viral doses. As shown in Section 3.4, this specification leads to an approx-
imate solution of an SEIR compartment ODE model. Thus when D is exponential, the IRSN model should closely mirror
properties of the ODE model. Heuristics seem to suggest however that the true dose-response function, i.e. the CDF of D, is
better taken to be “S”-shapedwith k > 1. There is little literature on the statistics of transmitted viral doses fromwhich to infer
properties of the exposures U, although COVID-19 pharyngal swab test studies such as Jones et al. (2020) provide some
insight. Interestingly, that study suggests that COVID-19 viral loads measured for individuals that tested positive may to be
very fat-tailed. For our present exploratory purposes, gamma distributions may reasonably be used for both D and U.

5.3. Intercompartmental parameters

Under Assumption 3, the latency period of a type T individual (the period between exposure and infectiousness) is a
geometrically distributed random time with expected value (b(T))�1. Similarly, the duration of the infectious period is
geometrically distributed with expected value (g(T))�1. Properties of these random variables, in particular the expected
durations, are typically well-studied for different diseases. Straightforward extensions of the IRSN model involving multiple
copies of compartments E, I, exactly as implemented in compartment ODE models, can accommodate more realistic random
durations.

5.4. Infective contact parameters

Finally, one needs to identify the fractions z(,, ,) of social contacts that are close infective contacts. First note that these
fractions can be directly targeted by health policy, and will therefore be manipulated and changed dramatically during the
pandemic. Since the fraction z(T, T0) applies where the type T individual is infectious and the type T0 individual is susceptible,
lowering this parameter by restricting type T behaviour will directly reduce the exposure of type T0 individuals.
Table 1
Benchmark Parameters: Note that kðT 0; TÞPðTÞ is the expected daily number of social contacts of a type T0 individual to type T individuals.

Resident T ¼ 1 Worker T ¼ 2 Outsider T ¼ 3

g(T) 0.09 0.09 0.09
b(T) 0.3 0.3 0.3
z(T) 0.20 0.20 0.20
PðTÞ 0.01 0.005 0.985
kð1;TÞPðTÞ 4 5 0
kð2;TÞPðTÞ 10 5 4
kð3;TÞPðTÞ 0 0.0203 20
mU(1, T) 7 7 7
mU(2, T) 4 4 4
mU(3, T) 6 6 6
mD(T) 20 30 30
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Fig. 1. Fractional contagion size by type and compartment in the Senior’s Residential Centre Model of Section 6. Top Left: Benchmark strategy; top right: Strategy
A; bottom left: Strategy B; bottom right: both Strategies A and B.
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Noting that there is little fundamental theory that informs the choices of buffer and exposure distributions, and because
the z parameters are the direct target of policy interventions, a practical approach is to select benchmark values ẑðT ; T 0Þ as the
last step of calibration, to obtain a strong match for the contagion dynamics in the earliest stages of the pandemic. Thus, for
example, the observed effective R-naught value, R0, should be used to calibrate the benchmark values of ẑðT ; T 0Þ. For later
stages of an epidemic, the value of the z parameters can be adjusted to account for proposed and actual changes in policy.
6. Illustrative example: seniors’ residential centre

The purpose of this example is to provide an easy-to-visualize context for the IRSN framework, namely the setting of a
seniors residence with 100 residents (type T ¼ 1), 50 trained staff workers (type T ¼ 2) within a town of total population
N0 ¼ 10000. We also consider the same IRSN specification scaled up by an integer multiplier N ¼ jN0.

In anticipation of an oncoming contagion, the workers have been trained to high standards of hygiene and care and the
residents (who are elderly but healthy) have been instructed in social-distancing and hygiene. The townspeople (“outsiders”,
with type T ¼ 3) on the other hand have only average ability to social distance, and so the contagion hits the town before the
centre. The goal of this example is to investigate the vulnerability of the residential centre to internal contagion starting in the
outside town.

The benchmark network parameters are given in Table 1, together with numerical implementation parameters
omegamax ¼ 60, Ndft ¼ 256. The buffers D and exposures U are all taken to be Gamma-distributed with shape parameter
k ¼ 3, and means m and standard deviations m=

ffiffiffi
3

p
that depend on type.

The upper left plot of Fig. 1 shows the daily exposed, infective and removed fractions for the three types, in the benchmark
SEIRmodel without further policy interventions, plotted from the day that the number of exposed outsiders exceeds 1% of the
population. We see that the contagion starts in the outside community, but rapidly invades the centre, resulting in similar
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infection rates, with a time delay. One can interpret the result as overlapping sub-epidemics: the first hits the outside
community, while a second and third hit the residenceworkers and residents about 16 and 22 days later, respectively. One can
see that the strategy failed for two reasons: first, the contagion was allowed to gain a foothold in the centre and infect a
resident; second, the hygiene within the centre was not adequate to contain the resulting seed infection.

What further policy improvements implemented by themanagement might lead to a better result? The remaining plots in
Fig. 1 show the results for several combinations of policy interventions. Strategy A is to improve internal hygiene by quar-
antining all residents and dramatically reducing contacts between workers: l(1, 1) changes from 4 to 0.5 and l(2, 2) changes
from 5 to 1. Strategy B is to dramatically reduce the connectivity between the centre and the outside: l(2, 3) changes from 4 to
0.5. We observe Strategy A manages to reduce the contagion to about 10% of the residents, but allows a continual reintro-
duction of infection from outside. Strategy B fails outright: reducing the connections to outsiders simply delays the onset of
contagionwithin the centre by about 30 days. However, the combination of both strategies A and B led to a success in keeping
97% of the residents healthy.

These policy interventions target the social connectivity in the network through social distancing and quarantine. Another
important channel would be to reduce the mean viral exposures entering in the exposure PDFs, by measures such as
encouraging more cleanliness and the use of masks. Yet another channel is to improve individual immunity buffers by
vaccination or other health improvements.

Large N networks typically exhibit “resilient” states that are intrinsically resistant to contagion and “susceptible” states
that amplify any introduced infection. Moreover they can be made to transition discontinuously from a resilient state to a
susceptible state by varying a key parameter, such as the infective contact parameter z that measures the degree of social
distancing in the network. Fig. 2 shows the long-time values of the removed fractions, as functions of z. One sees the
remarkable transition from resilient to susceptible at a critical value z* ~ 0.106. This single graph shows clearly the general
principle that any contagion can be prevented at the outset by sufficiently strong restrictions on social interactions.

7. Discussion

The primary intention of this paper is to set out the fundamental assumptions and their consequences, for a novel network
approach to epidemic modelling in very heterogeneous settings. To keep focussed on this aim, many potential examples and
avenues of inquiry have not been explored here. Instead, let us end this paper by discussing briefly how the novel features of
the IRSN framework can be used in different fields to improve our understanding of COVID-19.

1. To inform health policy: Awide variety of scenarios such as the spread of disease between communities can be explored
within this framework. Once the IRSN model has been fully specified and calibrated to a real world setting, the analytical
algorithm is straightforward to run. Since the IRSN starts with very different assumptions to standard tools such as the
compartment ODE models, the exercise of implementing the IRSN forces policy makers to think in a different way about
epidemics. This kind of modelling exercise will lead to more robust and reliable decisions that depend less on specific
underlying assumptions.

2. To informhealth research: The IRSN framework can be extended to encompass a broad set of characteristics that describe
the immunology of COVID, the behaviour of human society and the effect of public health policy. Many details of the
disease, particularly those connected with the threshold picture of viral transmission, are still inadequately understood.
The IRSN can be used by researchers to study which gaps in data and knowledge may be leading to the greatest un-
certainties in projections. This will suggest where scarce research funding should be best deployed.
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3. To inform network science: The large N analytical shortcut used in this paper is well known in network science, but has
not yet been used in disease modelling. The meaning, accuracy and limitations of this shortcut will be of interest to other
network modellers. A particularly interesting subtlety worthy of further research is to better understand the selection
biases inherent in cascade dynamics on stochastic networks. As well, the IRSN setting, being very analogous to the
Inhomogeneous Random Financial Networks introduced in Hurd (2019), should be deployable in many other network
applications. Modellers will observe that computational complexity is determined by the parameters Ndft, M, and it is of
interest to explore the tradeoffs when allocating computational resources to a complex modelling problem at hand.

4. As a teaching tool: Being easy to run on MATLAB or Python, the IRSN framework can be used in higher education as a
learning and visualization tool that focusses on mathematical modelling assumptions for epidemics and their conse-
quences. More broadly, these tools may be helpful in fostering public awareness of the most important societal issues,
notably the effectiveness of targeted social distancing, that successful COVID health policy must address.
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