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Abstract

In survival analysis or time-to-event analysis, one of the primary goals of analysis is

to predict the occurrence of an event of interest for subjects within the study. Even

though survival analysis methods were originally developed and used in medical re-

search, those methods are also commonly used nowadays in other areas as well, such

as in predicting the default of a loan and in estimating of the failure of a system.

To include covariates in the analysis, the most widely used models are the propor-

tional hazard model developed by Cox (1972) and the accelerated failure time model

developed by Buckley and James (1979). The proportional hazard (PH) model as-

sumes subjects from different groups have their hazard functions proportionally, while

the accelerated failure time (AFT) model assumes the effect of covariates is to accel-

erate or decelerate the occurrence of event of interest.

In some survival analyses, not all subjects in the study will experience the event. Such

a group of individuals is referred to ‘cured’ group. To analyze a data set with a cured

fraction, Boag (1948) and Berkson and Gage (1952) discussed a mixture cure model.

Since then, the cure model and associated inferential methods have been widely stud-

ied in the literature. It has also been recognized that subjects in the study are often

correlated within clusters or groups; for example, patients in a hospital would have

similar conditions and environment. For this reason, Vaupel et al. (1979) proposed
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a frailty model to model the correlation among subjects within clusters and conse-

quently the presence of heterogeneity in the data set. Hougaard (1989), McGilchrist

and Aisbett (1991), and Klein (1992) all subsequently developed parametric frailty

models. Balakrishnan and Peng (2006) proposed a Generalized Gamma frailty model,

which includes many common frailty models, and discussed model fitting and model

selection based on it.

To combine the key components and distinct features of the mixture cure model

and the frailty model, a mixture cure frailty model is discussed here for modelling

correlated survival data when not all the subjects under study would experience

the occurrence of the event of interest. Longini and Halloran (1996) and Price and

Manatunga (2001) developed several parametric survival models and employed the

Likelihood Ratio Test (LRT) to perform a model discrimination among cure, frailty

and mixture cure frailty models.

In this thesis, we first describe the components of a mixture cure frailty model, wherein

the flexibility of the frailty distributions and lifetime survival functions are discussed.

Both proportional hazard and accelerated failure time models are considered for the

distribution of lifetimes of susceptible (or non-cured) individuals. Correlated ran-

dom effect is modelled by using a Generalized Gamma frailty term, and an EM-like

algorithm is developed for the estimation of model parameters. Some Monte Carlo

simulation studies and real-life data sets are used to illustrate the models as well as

the associated inferential methods.
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Chapter 1

Introduction

1.1 Basic Concepts in Survival Analysis

Time-to-event is of interest in many different fields; for example, whether a patient

dies from a disease or gets cured due to a treatment and whether an operating sys-

tem will fail. In general, statistical techniques for analyzing time-to-event data are

referred to as survival analyses. A time-to-event variable in health applications cor-

respond to the time until a participant in the clinical study has an event of interest,

such as heart attack, cancer remission, death and so on.

The most direct way of analyzing the event time is to consider the lifetime as con-

tinuous response and use methods such as linear regression and logistic regression.

However, it is common to have some lifetime data to be missing. For example, in

many medical experiment studies, the clinical trials terminate before the event occurs

for some individuals or some patients drop off from a study and researchers cannot

follow up. An individual with unknown status of occurrence is said to be a censored

individual, and the corresponding time is called censored time. It is not the event

3



Ph.D. Thesis - Mu He McMaster - Mathematics & Statistics

occurrence time, and the only information we know is that the event occurrence time

is greater than the censored time. There are many kinds of censoring discussed in

survival analysis; for example, in Type I censoring, the study is designed to end after

n years, but censored subjects do not all have the same censoring time due to reason

specified before, while in Type II censoring, a study ends when there is a pre-specified

number of occurrence events. Regardless of the type of censoring, we assume here

that the censoring is non-informative about the event. For such data, we develop a

survival model to fit. For this purpose, suppose T denotes the response variable and

T > 0. Then, the survival function is given by

S(t) = Pr(T > t) = 1− F (t), t > 0. (1.1)

The survival function gives the probability that a subject will survive past time t.

The hazard function h(t) is the instantaneous failure rate given by

h(t) = lim
∆t→0

Pr(t < T ≤ t+ ∆t)

∆t
=
f(t)

S(t)
, t > 0. (1.2)

and the cumulative hazard, describing the accumulated risk up to time t is given by

H(t) =

∫ t

0

h(s)ds. (1.3)
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The relationships between S(t), H(t) and h(t) are as follows:

h(t) = −
d log

(
S(t)

)
dt

,

H(t) = − log(S(t)),

S(t) = exp(−H(t)).

(1.4)

To model survival data with censored times properly, we denote Wi as the response

for the ith subject, Ci as the censoring time for the ith subject and δi as the event

censoring indicator given by

δi =


1, Wi ≤ Ci

0, Wi > Ci.

(1.5)

Then, the observed response is simply Ti = min(Ti, Ci).

To estimate the survival function, we could consider three different ways by assuming

a parametric model, non-parametric model or semi-parametric model.

1.1.1 Parametric Survival Function

The most direct way to estimate the survival function is to assume a parametric form,

such as Exponential, Weibull, Gamma and Log-normal distributions. In theory, the

survival function is smooth based on the parametric setting. In practice, we may

observe events on a discrete time scale, such as days, weeks, etc, in which case some

discrete parametric choices may become necessary.
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1.1.2 Non-parametric Survival Function

Instead of the parametric model which assumes the functional form to be known, we

can consider the true survival distribution to be unknown. In this case, it will be

preferable to model the data with some non-parametric method. The most popular

one is the Kaplan-Meier estimator proposed by Kaplan and Meier (1958). Let t1 <

t2 < · · · < tk denote the unique event times, di denote the number of failures at time

ti, and ri be the number of patients at risk just before time ti. Then, the Kaplan-Meier

estimator of the survival function S(t) is given by

Ŝ(t) =
∏
ti<t

ri − di
ri

. (1.6)

The corresponding cumulative hazard function is

Ĥ(t) = − log
(
Ŝ(t)

)
. (1.7)

The variance of the Kaplan-Meier estimator is estimated by Greenwood’s formula:

σ̂2(t) = Ŝ(t)2
∑
ti<t

di
ri(ri − di)

. (1.8)

When there is no censoring, this formula reduces to the standard binomial variance

estimator.

As no distributional assumptions are made, one important use of the estimator in

(1.6) is to check graphically the fit of parametric models. Instead, Nelson (1969)

and Nelson (1972) introduced a non-parametric estimator of the cumulative hazard

function. The so-called Nelson-Aalen estimator is a non-parametric estimator that
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can be used to estimate the cumulative hazard function for censored survival data.

It is given by

Ĥ(t) =
∏
ti<t

di
ri
. (1.9)

The variance of the Nelson-Aalen estimator can be estimated as

σ̂2(t) =
∑
ti<t

di(ri − di)
r2
i (ri − 1)

. (1.10)

Breslow (1972) has described more the use of Nelson-Aalen estimator in survival

analysis in great detail. A treatment of these two estimators from the point of view

of counting processes can be found in Andersen et al. (1993).

1.1.3 Semi-parametric Survival Function

The most popular semi-parametric model is the Cox proportional hazard model (PH).

The baseline survival (or hazard) function is not specified in a Cox model. The Cox

PH model, developed by Cox (1972) and Cox and Oakes (1984), is usually written in

terms of the hazard function as

h(t) = h0(t) exp(β′X), (1.11)

where β is the regression parameter vectors for the covariates X. This model gives an

expression for the hazard at time t for an individual with a given set of explanatory

variables X. The hazard at time t is the product of an unspecified baseline hazard

function h0(t) and a parametric explanatory variable part exp(β′X). Such a model is

called a semi-parametric model because even if the regression parameters are known,

7
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the distribution of the outcome remains unknown. There are many other examples

of semi-parametric models in the literature; these are discussed briefly in the next

section.

1.2 Literature Review

1.2.1 Mixture Cure Model

In survival analysis, it is common to assume that all individuals will eventually expe-

rience the event of interest as long as the follow-up period is long enough. However,

in some cancer clinical studies, a substantial proportion of subjects may get cured

by the treatment they undergo and never experience the event of interest. The pro-

portion of the cured patients is of primary interest while analyzing such data, but it

cannot be estimated with a usual survival model, thus resulting the need for suitable

models for this purpose. To model data with a proportion of cured patients, cure rate

model was introduced by Boag (1948) and Berkson and Gage (1952). Let T denote

the failure time and Spop(t) be the survival function of T . Then, the mixture cure

model can be expressed as

Spop(t) = p0 + (1− p0)Ss(t), (1.12)

where p0 is cure rate and Ss(t) is the survival function of the susceptible patients.

This model can be fitted by using the maximum likelihood method. A detailed dis-

cussion of this approach can be found in Maller and Zhou (1996). Laska and Meisner

(1993) proposed a non-parametric generalized maximum likelihood estimation method
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for the mixture cure model.

Equation (1.12) can also be expanded to include covariate effects. Let x and z de-

note some covariates that may affect the cure rate and the latency distribution. Such

model can then be rewritten as

Spop(t|x, z) = p0(z) +
(
1− p0(z)

)
Ss(t|x), (1.13)

where p0(z) is the probability of a patient being cured depending on z, and Ss(t|x) is

the survival function of the failure time distribution of susceptible patients depending

on x.

Several authors have considered a parametric approach to Equation (1.13) by assum-

ing a parametric distribution for the latency distribution and effects of x only on the

scale of the latency distribution, including Farewell (1982), Yamaguchi (1992) and

Peng et al. (1998). Semiparametric approaches to the model are also available to

reduce the dependence of the model on a parametric assumption.

The most popular one is the semi-parametric Cox proportional hazards (PH) mixture

cure model given by

Spop(t|x, z) = p0(z) +
(
1− p0(z)

)(
S0(t)

)exp(βx)
, (1.14)

where S0(t) is an unspecified baseline survival function. Several estimation methods

have been discussed in the literature; for example, Kuk and Chen (1992) proposed

a marginal likelihood method, using a Monte Carlo approximation for estimating

the semi-parametric model. Peng and Dear (2000) and Sy and Taylor (2000) later

discussed the proportional hazards cure model using a semi-parametric EM algorithm.
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Other generalized mixture cure models have also been discussed in the literature. Lu

and Ying (2004) proposed a general class of transformation cure models in which the

linear transformation model is used for failure times of susceptible subjects. Besides

the mixture model, Fine and Gray (1999) introduced the idea of competing risk

to the cure fraction. Balakrishnan and Pal (2014), Balakrishnan and Pal (2016),

Pal and Balakrishnan (2017) and Balakrishnan et al. (2017) summarized parametric

competing risk models using the COM-Poisson distribution.

Another popular model associated with the cure model in survival analysis is the

accelerated failure time (AFT) mixture model given by

log(t) = exp(β′x) + ε,

Spop(ε|x, z) = p0(z) +
(
1− p0(z)

)
S(ε).

(1.15)

In standard survival data analysis when there is no cure fraction, the accelerated fail-

ure time model, introduced by Kalbfleisch and Prentice (1973) and Cox and Oakes

(1984), is another useful alternative to the proportional hazards model. The ac-

celerated failure time model has a direct physical interpretation (Reid (1994)) and

has been widely discussed in the literature. Different from the proportional hazard

mixture cure model, the accelerated failure time mixture cure model utilizes the ac-

celerated failure time model for the latency component. There are few studies of the

semi-parametric accelerated failure time mixture cure model in the literature due to

the complexity of the associated estimation. Li and Taylor (2002) considered the M-

estimator for estimating the unknown parameters in the semi-parametric accelerated

failure time mixture cure model. However, results from their method may depend

on the form of the M-estimator and the resulting method of finding the estimates
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is computationally quite intensive. Zhang and Peng (2007b) developed a modified

Gehan-type weighted log-rank estimation for parameter estimation later to improve

the estimation method. However, the theoretical properties of these two estimates

have not been studied yet. As these methods do not maximize the observed likelihood

function, the estimators are not efficient and the bootstrap methods are used to obtain

the estimated variance. To compensate for the lack of efficiency, Zeng and Lin (2007)

incorporated a kernel estimation method and obtained an efficient estimator for the

AFT model. Based on this work, Lu (2010) proposed a kernel-based non-parametric

maximum likelihood estimation method for the accelerated failure time mixture cure

model. Some more recent works have discussed the competing risk scenario, such as

Choi et al. (2018), who has considered a bivariate competing risk for the mixture cure

accelerated failure time model.

1.2.2 Frailty Model

The frailty model is another popular model used while analyzing clustered failure time

data, wherein the frailty term is used to capture an association within each cluster.

Due to the involvement of a random effect term in the hazard function, the frailty

model is also known as the random effect model. The frailty model was first discussed

by Vaupel et al. (1979), who modeled the correlation of clusters through a random

effect PH model. Since then, Hougaard (1989), McGilchrist and Aisbett (1991) and

Klein (1992) have modelled the frailty based on positive stable, Log-normal and

Gamma distributions respectively. Balakrishnan and Peng (2006) discussed in detail

the estimation method for the Generalized Gamma frailty model based on Monte

11
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Carlo approach. In general, the frailty model can be written as

Spop(t|x) = exp
(
− yH0(t)

)
= Ly

(
H0(t)

)
, (1.16)

where Ly(.) is the Laplace transform of y.

However, the frailty model based on the semi-parametric accelerated failure time

model has attracted less attention than the one based on the proportional hazards

model due to its computational difficulties. The model can be written as

log(t) = exp(βx) + ε,

Spop(ε|x, z) = Ly(H0

(
ε)
)
.

(1.17)

The marginal approach is one of the most common methods for analyzing clustered

data in the AFT model, as in Jin et al. (2006a) and Jin et al. (2006b). However,

most non-parametric or semi-parametric models make use of EM algorithm due to

the unspecified hazard function. Pan (2001) proposed the AFT frailty model by using

a Gamma frailty on the error term and developed an EM-like algorithm for estimation

of parameters in the AFT frailty model. This estimation procedure was improved by

Zhang and Peng (2007a) through the M-estimator, and Xu and Zhang (2010) using

rank estimation methods. However, none of these estimation methods are efficient.

Liu et al. (2013) developed a non-parametric efficient maximum likelihood estimation

method for the AFT frailty model, which is more efficient than the Gehan-type rank

estimator in most cases.
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1.2.3 Mixture Cure Rate Frailty Model

Little attention has been paid to the combination of cure model and frailty model

due to its complex structure. The cure frailty model combines the advantages of the

cure model and of the frailty model to deal with dependent curable survival data.

Most of the work on cure frailty model uses a two-component mixture of the cured

and uncured populations, commonly called a mixture cure frailty model, given by

Spop(t|x, z) = p0(z) +
(
1− p0(z)

)
Ss(t|x), (1.18)

where the term Ss(t|x) is the survival function for the susceptible group from the

usual frailty model.

The most basic cure frailty model assumes that the cure proportion and the frailty

are independent and using a parametric distribution for the frailty part, such as the

Gamma frailty model in Longini and Halloran (1996).

The cure frailty models are also applied to survival data among correlated individ-

uals. Chatterjee and Shih (2001) proposed cure frailty models with shared frailty

and assuming the cure part and frailty part to be dependent. Wienke et al. (2003)

and Wienke et al. (2006) later extended the independent model using the correlated

Gamma frailty and correlated Log-normal frailty models to enrich the family.

Other than the proposal of different models, general estimation procedures have also

been discussed by Chatterjee and Shih (2001), Wienke et al. (2003) and Wienke et al.

(2006). To overcome the computational complexity in the cure frailty model, Peng

and Zhang (2008a) considered each susceptible individual as an individual cluster and

introduced a combination of logistic regression estimation and Gehan-type weighted

13
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log-rank estimation for the cure frailty model.

In addition to the marginal likelihood methods and EM-like algorithm in the liter-

ature, Bayesian approach has also been implemented by some researchers, including

Yin (2005) and Diao and Yin (2012).

Peng and Zhang (2008b) discussed conditions under which the cure frailty model is

identifiable, and also showed that the model is identifiable when constructed using

the mixture cure model and containing covariates in both the cure fraction and frailty

distribution.

Instead of the usual mixture cure model without frailty term, AFT model can be

considered as well. The mixture cure frailty AFT model has not been discussed due

to its complex structure and computational difficulties. In this thesis, we discuss the

mixture cure frailty AFT model and the associated estimation. The model setting

for the AFT part follows Pan (2001)’s work, who developed the EM algorithm based

on the error term. The mixture cure frailty AFT model can be written as

log(t) = exp(β′x) + ε,

h(ε|Yij = yij) = yijh0(ε),

Spop(ε|x, z) = p0(z) +
(
1− p0(z)

)
S(ε).

(1.19)

It should be mentioned that the frailty term yi or yij depends on whether it is a shared

frailty or an individual random effect. Given Y , the conditional hazard function h(.)

follows the PH frailty model.

Note that we have standard mixture cure AFT model with yij ≡ 1. The estimation

can be done directly through maximum likelihood if the baseline hazard function is

specified. However, the baseline hazard function is usually unknown and a EM-like
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algorithm can then be applied.

1.3 Frailty Distribution

For the frailty term in the frailty model, we usually assume some common paramet-

ric distribution such as Gamma distribution, Log-normal distribution, Generalized

Gamma distribution, and so on. We present details of Gamma distribution and Gen-

eralized Gamma distribution which are made use of in the latter chapters.

1.3.1 Gamma Distribution

Suppose f(y) corresponds to a Gamma distribution with parameter p. Then,

f(y|p) =
ppyp−1e−py

Γ(p)
, (1.20)

where E(y) = 1, which is required for the purpose of identifiability.

1.3.2 Generalized Gamma Distribution

Suppose g(y) corresponds to a Generalized Gamma distribution. Then,

g(y|q, σ, λ) =


|q|(q−2)q

−2
(λy)q

−2(q/σ) exp[−q−2(λy)q/σ]/[Γ(q−2)σy], q 6= 0,

(
√

2πσy)−1 exp{−[log(λy)]2/(2σ2)}, q = 0,

(1.21)
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where -∞ < q <∞ and σ > 0 are shape parameters and λ > 0 is the scale parameter.

The mean of the Generalized Gamma distribution in (1.21) is

Γ(q−2 + σ
q
)

Γ(q−2)(q−2)σ/qλ
(1.22)

and exists only when q > − 1
σ
; when the mean equals one, we have

λ =
Γ(q−2 + σ

q
)

Γ(q−2)(q−2)σ/q
. (1.23)

Then, the corresponding the variance is

Γ(q−2 + 2σ
q
)Γ(q−2)

Γ2(q−2 + σ
q
)

− 1. (1.24)

The Generalized Gamma distribution includes many well known distributions as spe-

cial cases. For example, it reduces to the Weibull distribution when q = 1, the

Log-normal distribution when q = 0, the Gamma distribution when q/σ = 1, and the

positive stable distribution with index 1
2

when q−2 = 1
2

and σ/q = −1. It possesses

considerable flexibility to capture the characteristics in a distribution that might have

been missed by using these particular frailty distributions.

The Generalized Gamma frailty model can be represented as a transformation to the

Gamma frailty model. From the work of Balakrishnan and Peng (2006), if Z denotes

the frailty in the Gamma frailty model with p.d.f.

f(z|p) =
ppzp−1e−pz

Γ(p)
, (1.25)
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then

Y =
1

λ
Zσ
√
p, (1.26)

where Y is the Generalized Gamma frailty model with q = 1√
p

and λ in (1.23).

Thus, the frailty term in Equation (1.25) can be written as a random effect term as

h(tij|yi) = h0(tij) exp(β′xij + wi), (1.27)

where

wi = log yi (1.28)

can be written as

wi = − log(λ) +
σ

q
log zi, (1.29)

with the zi being a realisation of Z. Therefore, σ
q

can be considered as a coefficient

of log zi and varies independently in the Generalized Gamma frailty model.

The limiting property and the estimation methods of the Generalized Gamma dis-

tribution as a frailty distribution has also been discussed in the literature; See also

Prentice (1977), Lawless (1980), Johnson et al. (1994) and Balakrishnan and Peng

(2006).

For simplification, we can also use the alternative form of the Generalized Gamma

distribution, given by Stacy (1962) as follows:

f(yi|a, d, p) =
p
ad
yd−1
i exp(−(yi

a
)p)

Γ(d
p
)

, (1.30)
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and the moment generating function of Generalized Gamma is given by

Myi(u) =
∞∑
r=0

(ua)r

r!

{
Γ(d+r

p
)

Γ(d
p
)

}
, (1.31)

where the link with the original form is that with E(yi) = 1:

d = (
q−2q

σ
) =

1

qσ
< 1,

p =
q

σ
,

a =
(q2)σ/q

λ
=

Γ(q−2)

Γ(q−2 + σ/q)
.

(1.32)

1.4 Bone marrow transplant data

Kersey et al. (1987) first introduced the bone marrow transplant data from a clinical

trial study. This study was designed to compare the treatment effect of autologous

(AL, treatment 0) and allogeneic (AG, treatment 1) marrow transplantation for the

disease acute lymphoblastic leukemia. There were 91 participants in the study and

followed up to 1845 days. 46 of the participants received allogeneic marrow transplant

while the others were in the autologous treatment group. The time to a recurrence of

leukemia or the censoring time was subsequently recorded in days. The Kaplan-Meier

curves for these data are presented in Figure 1.1.
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Figure 1.1: Bone marrow transplant data: Kaplan-Meier estimates of the survival

curves for the autologous and allogeneic groups

There were correspondingly 28.26% and 20% patients who were censored in the

allogeneic and autologous treatment groups. Meanwhile, the survival curves show

limiting survival probabilities of 26.34% and 19.44% for allogeneic and autologous

groups respectively. The leveling-off in Figure 1.1 might be caused by long-term

censored times, which could potentially be either cured patients or patients dropping-

off from the study for some other reasons.

This data set has been extensively studied in the literature. Maller and Zhou (1996)

analyzed these data with exponential mixture cure model. Based on their results, it is

known that the exponential mixture cure model fits the AG group satisfactorily, but

performed poorly in fitting the AL group. They also provided evidence of existence of

the cure fractions in the AG group using the likelihood-ratio test (LRT). Peng et al.
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(2001) fitted the data with Weibull, Gamma and Log-normal mixture cure models,

and also tested the goodness-of-fit of each model through LRT by using the more

general distribution, namely the Generalized Gamma distribution. The Generalized

Gamma distribution contains Weibull, Gamma and Log-normal distributions all as

special cases, as discussed in the last section. They observed that the Log-normal

fitted the AL group better. Price and Manatunga (2001) extended the mixture cure

model to mixture cure frailty model to incorporate heterogeneity between patients,

possibly caused by other biological phenomena. Focusing their study on the AL group,

they compared the homogeneous model, mixture cure model, Gamma frailty model,

inverse Gaussian frailty model, mixture cure Gamma frailty model, mixture cure

inverse Gaussian frailty model and mixture cure compound Poisson frailty model, with

baseline distribution being Weibull. They concluded that the mixture cure Gamma

frailty model provides a better fit for these data. They also proved the existence of

heterogeneity using LRT. Further, Zhang and Peng (2007b) fitted the data set with a

semi-parametric mixture cure AFT model with a new estimation method. Peng and

Zhang (2008a) fitted a semi-parametric mixture cure Gamma frailty model using EM

algorithm and multiple imputation estimation methods; their results are consistent

with those of Price and Manatunga (2001). However, due to the inefficiency in the

estimation method, such a semi-parametric model is usually not suitable in model

discrimination analysis.
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1.5 Likelihood Inference

Let O = {tij, δij, xij, i = 1, 2, . . . , n} denote the observed data, where tij is the ob-

served time, δij is the censoring indicator, and xij are the covariates. Under the

assumption of the cure rate, the cure fraction can be written as

p0(b) =
1

1 + exp(b′X)
, (1.33)

where b = (b0, b1, ..., bp) is a vector of unknown parameters. We also define β as a

vector of unknown parameters in the Cox PH setting in the frailty model, and thus

Θ = {b, β,H0(t)}. In the mixture cure frailty model, apart from the frailty latent

variable yij, we define the censoring indicator Iij, i = 1, . . . , n, j = 1, . . . , `i, as

Iij =


0 if the subject is cured,

1 if the subject is not cured.

(1.34)

We develop a EM-type algorithm since usually the EM Algorithm’s base is a model

with discrete latent value.

At each iteration in the M step, we introduce {Q(Iij, yij) :
∑
Q(Iij, yij) = 1, Q(Iij, yij) >
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0} to satisfy Jensen’s inequality. Then, the corresponding log-likelihood is derived as

n∑
i=1

`i∑
j=1

log(p(O|Θ)) =
n∑
i=1

`i∑
j=1

log

(∑
yij

[ ∑
I={0,1}

p(O, Iij, yij|Θ)

])

=
n∑
i=1

`i∑
j=1

log

(∑
yij

[ ∑
I={0,1}

Q(Iij, yij)
p(O, Iij, yij|Θ)

Q(Iij, yij)

])

=
n∑
i=1

`i∑
j=1

log

(
EIij ,yij∼Q

(
p(O, Iij, yij|Θ)

Q(Iij, yij)

))

≥
n∑
i=1

`i∑
j=1

EIij ,yij∼Q

(
log

(
p(O, Iij, yij|Θ)

Q(Iij, yij)

))

=
n∑
i=1

`i∑
j=1

∫ ∞
0

[ ∑
I={0,1}

Q(Iij, yij) log

(
p(O, Iij, yij|Θ)

Q(Iij, yij)

)]
dyij

(1.35)

To further satisfy the lower-bound tightly, we have

Q(Iij, yij) =
p(O, Iij, yij|Θ)∑

Iij ,yij
p(O, Iij, yij|Θ)

= p(Iij, yij|O,Θ).

(1.36)

In the above, the yij are assumed to follow a specific distribution. Then, after using

the expected values in the E-step, we repeat the M-step until convergence to the

desired level of accuracy.

1.6 Simulation Study

To assess the performance of the cure frailty model and the associated estimation

method, a Monte Carlo simulation study is performed. For comparative purpose, the

Gamma and Log-normal frailty models are fitted to simulated data and the baseline
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hazard function is taken as the Weibull distribution.

The performance of the proposed mixture cure frailty model and mixture cure frailty

model with AFT hazard, along with the precision of the estimates, are evaluated

through simulation. Different settings in the simulation study are used for the pur-

pose of investigating the effects of sample size, cure rate, and censoring proportion.

The results from the simulation study, including parameter estimates, standard errors,

bias, mean square errors, root mean square errors and 95% coverage probabilities, for

the parameters are all determined. The asymptotic normality property of the MLEs

can be used to construct confidence intervals for the model parameters of interest.

Different set-ups have been considered in each simulation study. The number of

replications depend on the computational intensity and the complexity of the corre-

sponding models. For each set-up, suppose the estimate of β is β̂i based on the i-th

simulated sample, i = 1, ...n. Then, the parameter estimates, standard errors, mean

square errors are determined as follows:

m(β̂) =

∑
β̂i
n

sd(β̂) =

√∑(
β̂i −m(β̂)

)2

n− 1
MSE(β̂) =

∑
(β̂i − β)2

n
(1.37)

We also considered the coverage probability using the following three steps:

1. Simulate n samples of size ns from the population;

2. Compute the 95% confidence interval based each sample;

3. Compute the proportion of samples for which the (known) population parameter

is contained within the confidence interval. Then, that proportion is an estimate

of the empirical coverage probability for the CI.
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However, mostly in this thesis, the calculation of standard errors of the parameter

estimates is done based on bootstrap, then the coverage probability is not easy to

determine based on the simulated data sets due to the computational intensity in-

volved. Therefore, we only evaluate the bootstrap variances under a few settings in

the simulation study due to the limit in computational time.

For some of the simulations involving MCMC approximation, the convergence is not

achieved sometimes, and in such cases we stop at the 30th iteration as suggested by

Cai et al. (2012).

Lastly, for the sake of computational efficiency, the Shared Hierarchical Academic

Research Computing Network (SHARC net) was made use of in for all the simulation

work in this thesis.

1.7 Model Discrimination

Model discrimination is used to assess the relative performance between Generalized

Gamma mixture frailty AFT model in Chapter 4, as we apply a kernel-smoothed

profile likelihood method. The method is similar to the partial likelihood method, but

the estimates can be obtained by maximization through Newton-Raphson algorithm.

However, as mentioned before, the estimates considered in Chapter 2 and Chapter 3

are not efficient, and so the model discrimination based on them is not suitable.

Samples were generated from several true models and fitted with some candidate

models. The fitted results can be compared by information-based criteria such as

Akaike information criterion (AIC) and Bayesian information criterion (BIC), which

are given by

AIC = −2ˆ̀+ 2p, BIC = −2ˆ̀+ p log(n), (1.38)
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where ˆ̀ is the log-likelihood value computed at the MLEs, p is the number of pa-

rameters and n is the sample size. Models with the smallest AIC or BIC are chosen

for each sample and the percentages of each candidate model selected can then be

calculated.

The Likelihood Ratio Test (LRT) is useful in the case of nested models, and so it

could be used in the mixture cure Generalized Gamma frailty model as it contains

the mixture Gamma cure frailty model as a special case.

The LRT statistic is given by

Λ = −2(ˆ̀
0 − ˆ̀), (1.39)

where ˆ̀
0 and ˆ̀are the maximized log-likelihood values for the reduced model and the

full model, respectively.

Under some suitable regularity conditions, the asymptotic distribution of the LRT

statistic follows a χ2 distribution under the null hypothesis with degrees of freedom

dffull − dfreduced, where dffull and dfreduced are the numbers of parameters in the re-

duced model and the full model, respectively.

Furthermore, the boundary condition of LRT has been discussed by Maller and Zhou

(1996). They proposed that the large sample distribution of −2 log( ˆ̀
0 − ˆ̀) is a 50

- 50 mixture of a chi-square random variable with 1 degree of freedom and a point

mass at 0. This boundary condition can be applied when testing the existence of cure

proportion as H0.
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1.8 Scope of the thesis

In Chapter 2, we study the mixture cure frailty model with Generalized Gamma

distribution for the frailty term. We employ a Breslow-type estimator for the baseline

hazard function H0(t), motivated by the work of Breslow (1972), Peng (2003) and

Peng and Zhang (2008a). We then fit a mixture cure frailty model with Gamma,

Log-normal and Weibull distributions for comparison, as these are special cases in

the Generalized Gamma distribution. A simulation and real-life data study are then

performed to examine the estimation methods using EM-type algorithm. In Chapter

3, a mixture cure AFT frailty model is considered. The survival function follows a

proportional hazard frailty distribution as discussed in the preceding sections, while

the frailty term is assumed to have a Gamma distribution. The EM algorithm is

implemented due to the involvement of the latency variables I and Y . In the M-step,

a Gehan-type weighed function is introduced and made use of in maximizing the

Q function. As the baseline distribution is not specified, we employ a Breslow-type

estimator and update the baseline distribution in each iteration. Both simulation and

real-life data studies show that the developed estimates are accurate. In Chapter 4,

to further generalize the mixture cure AFT frailty model, we assume the frailty term

to follow Generalized Gamma distribution. To find an efficient estimator, the normal

kernel smoothed methods suggested by Zeng and Lin (2007) are then applied. This

model provides greater flexibility in general for modelling correlated survival data

when not all the subjects under study would experience the occurrence of the event

of interest. Some concluding remarks are finally presented in Chapter 5, wherein

some further research problems of interest are also mentioned.
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Chapter 2

Likelihood Inference for

Semiparametric Mixture Cure

Generalized-Gamma Frailty Model

2.1 Basic Model

Let O = {tij, δij, xij, i = 1, 2, . . . , n} denote the observed data, where tij is the ob-

served time, δij is the censoring indicator, and xij are the covariates. With the

assumption of the cure rate, the conditional population survival function can be ob-

tained, when the latency distribution is given, as follows:

Sp(t) = p0 + (1− p0)Ss(t), (2.1)

where Ss(t) is the susceptible group’s survival function with a random effect term yi

or yij. It is easy to incorporate the frailty term into the latency distribution to deal
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with the unobserved information as

Sp(t) = p0 + (1− p0)Ly(H0(t)), (2.2)

where Ly(t) is the Laplace transform of the frailty variable yi. However, in this

case, when we consider the Generalized Gamma distribution as the frailty term, the

Laplace transform would involve an infinite sum and might pose some problem with

convergence. For this reason, we use a Monte Carlo approximation instead.

The cure proportion is modelled by the logistic link function of the form

p0 =
1

1 + exp(b′Xij)
, (2.3)

where b = (b0, b1, ..., bp) is a vector of the unknown parameters. As in the proportional

hazard model, we assume φ(x) = exp(βx), where β is a vector of unknown parameters.

The corresponding hazard function and survival function for the susceptible group

are as follows:

hi(tij) = yih0(tij) exp(β′xij), Si(tij) = exp(−yi exp(β′xij)H0(tij)), (2.4)

where the frailty term yi is assumed to follow the generalized gamma distribution

with mean 1. It is not feasible to maximize the observed likelihood function directly

if H0(t) is unknown, and so we apply the EM Algorithm for the estimation problem.
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2.2 Estimation Procedure

As estimation procedure is discussed here for the semi-parametric mixture cure frailty

PH model. As we have two latent variables I and Y , the EM algorithm is considered

to estimate the unknown parameters β, b, θ and H0 in the considered model. Given

the values of the frailty term yi and indicator Ii, the conditional likelihood function

can be expressed as

Lc(Θ|O, y, I) =
n∏
i=1

`i∏
j=1

p
1−Iij
0 (1− p0)Iij

{
exp(−yi exp(β′xij)H0(tij))

× [yi exp(β′xij)h0(tij)]
δij
}Iijg(yi),

(2.5)

where Ii is an indicator function with Ii = 0 if the patient is non-susceptible or cured

and 1 otherwise.

Let us denote the model parameter by Θ={b, β,H0(.)}. Then, the corresponding

complete log-likelihood function can be obtained as

`c(Θ) = lc1(b) + lc2(β,H0(t)) + lc3(q, σ), (2.6)

where

`c1 =
n∑
i=1

`i∑
j=1

(1− Iij)(− log(1 + exp(b′Xij))) + Iij(log(exp(b′Xij))− log(1 + exp(b′Xij)))

=
n∑
i=1

`i∑
j=1

Iij log(exp(b′Xij))− log(1 + exp(b′Xij)),

(2.7)

`c2 =
n∑
i=1

`i∑
j=1

Iij
(
− yi exp(β′xij)H0(tij) + δij(log(yi) + β′xij + log(h0(tij)))

)
, (2.8)
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`c3 =
n∑
i=1

`i∑
j=1

(
log(q) +

1

qσ
log
(
Γ
(
q−2 +

σ

q

))
+ (

1

qσ
− 1) log(yi)−

(
Γ(q−2 + σ

q
)

Γ(q−2)
yi

)q/σ)
.

(2.9)

E-step:

The E-step computes the conditional expectation of the complete log-likelihood with

respect to the latent variable I and yi, given the current estimate. The corresponding

Q function, based on the given information (Θ(m), O) at the mth iteration, is

Q1 =
n∑
i=1

`i∑
j=1

E(Iij) log(exp(b′Xij))− log(1 + exp(b′Xij)), (2.10)

Q2 =
n∑
i=1

`i∑
j=1

−E(yiIij) exp(β′xij)H0(tij) +
n∑
i=1

`i∑
j=1

δij(β
′xij + log(h0(tij))), (2.11)

Q3 =
n∑
i=1

li∑
j=1

(
log(q) +

1

qσ
log
(
Γ
(
q−2 +

σ

q

))
+
(
δij +

1

qσ
− 1
)
E(log(yi))

− (
Γ(q−2 + σ

q
)

Γ(q−2)
)q/σE

(
y
q/σ
i

))
,

(2.12)

where

πij = E(Iij|Θ(m), O) = δij + (1− δij)
(1− p0)× Lyi

(
exp(β′xij)H0(t)

)
p0 + (1− p0)× Lyi

(
exp(β′xij)H0(t)

) ,
aij = E(yiIij|Θ(m), O) = E(yi|Iij = 1,Θ(m), O)× πij,

bij = E(log(yi)|Θ(m), O)

= E(log(yi)|Iij = 1,Θ(m), O)× πij + E(log(yi)|Iij = 0,Θ(m), O)× (1− πij),

cij = E(y
q/σ
i |Θ(m), O) = E(y

q/σ
i |Iij = 1,Θ(m), O)× πij + E(y

q/σ
i |Iij = 0,Θ(m), O)× (1− πij),

(2.13)
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with E(Iijδij) = δij and Lyi(.) being the Laplace transform of the Generalized Gamma

distribution. We performed a Markov chain Monte Carlo (MCMC) approximation in

calculating the value, given the parameter in each step.

Obtaining the above conditional expectations of yi, log(yi) and (yi)
q/σ are not straight

forward. The conditional distribution of yi, given the information at mth iteration,

is proportional to

g(yi|Iij,Θ(m), O) ∝ y
1/qσ+

∑`i
j=1 δij−1

i exp(−
`i∑
j=1

Iijyi exp
(
β′xij)H0(tij)− q−2(λyi)

q/σ
)
,

(2.14)

which is not a common distribution. So, we can only solve the problem by considering

each subject as one cluster, which replaces yi by yij. Note that when σ = q, g(yi) is

a Gamma distribution Γ( 1
q2
, 1
q2

), which is the special that has been studied by Peng

and Zhang (2008a).

The expectations in the E-step need to be calculated numerically by using the integra-

tion approximation methods such as Markov Chain Monte Carlo (MCMC) methods.

Similar work has been performed by Balakrishnan and Peng (2006) and Chen et al.

(2013) using ‘MCMC’ package in software R. The idea is to sample posterior distribu-

tions from yij to calculate the above expectations. The procedure is discussed briefly

below.

Metropolis Hasting Procedure:

Step 1 For each chain, initialize y(0), given Θ, I and O.

Step 2 For iteration i = 1, 2, ..., generate a random proposal y∗ near y(i−1) by a jumping

distribution Gt(y
∗).
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Step 3 Calculate the ratio:

r =
f(y∗|Θ, I,O)/Gt(y

∗)

f(y(i−1)|Θ, I,O)/Gt(y(i−1))
(2.15)

Step 4 Accept the proposal yi as y∗ if the ratio is larger than 1 or a uniform(0,1)

random variable.

Step 5 Iterate Steps 2, 3 and 4 until the expected values in the E-step converge to the

desired level of accuracy.

The acceptance ratio is kept between 0.2 and 0.25 as suggested by Gelman et al.

(1996).

M-Step:

The M-Step consists of maximizing Equation (2.10), (2.11) and (2.12), to update the

parameters b , β and H0(t).

As Q2 contains an unspecified cumulative hazard baseline function H0(t), we develop

a semi-parametric baseline, motivated by Peng and Dear (2000) and Sy and Taylor

(2000). This method is based on the estimation method developed by Breslow (1972),

and for this reason is called a Breslow-type estimator.

Let τ1 < · · · < τk be the distinct uncensored failure times. Dj is the set of dj, which

represents the uncensored failures at τj. Let Rj be the individual at risk set at time

τj, that is, the set of individuals alive and uncensored prior to τj. Let Ej be the set of

censored observations in [τj, τj+1). Denote h0(τj) = αj if τj−1 < t < τj, j = 1, . . . , k,

and τ0 = 0.
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We obtain Q2 in Equation (2.11) as

Q2 = log

[ k∏
j=1

( ∏
i∈Dj

αj exp(β′x) exp
(
−

∑
i∈Dj∪Ej

aij exp(β′x)

j∑
m=1

αm(τm − τm−1)
))]

.

(2.16)

Given the current estimate of β(m), the baseline cumulative hazard function Ĥ0
(m)

(t)

can be obtained by maximizing Q2 with respect to αj. Thus, a Breslow-type or

Nelson-Aalon type estimator can be obtained as

Ĥ
(m)
0 (tij) =

∑
ti<t

dtij∑
j∈R(tij)

aij exp(β′xij)
, (2.17)

where aij is the expectation term in Equation (2.13), dtij denotes the number of

uncensored individuals at time tij, and R(tij) is the risk set at time tij.

Correspondingly, the survival function can be obtained at the mth iteration as

Ŝ
(m)
0 (tij) = exp

(
−
∑
ti<t

dtij∑
j∈R(tij)

aij exp(β′xij)

)
. (2.18)

As suggested by Peng and Zhang (2008a), maximizing Equation (2.10) with respect

to b can be calculated through standard logistic regression.

Meanwhile, to maximize Equation (2.11) with respect to β and H0() can be performed

using the standard PH model with covariates log(aij) with the fixed coefficient 1. Both

maximization process can be carried out with package ’smcure’ by Cai et al. (2012)

in software R. Lastly, as the process of maximizing Q3 function is to update the

parameters σ and q in each iteration, the Newton-Raphson algorithm can be applied

to maximize Equation (2.12) with the cumulative hazard function H0(t) following the

Breslow-type estimator.
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Estimation Procedure:

Step 1 Given the initial values b(0), β(0), σ(0) and q(0) for the cure frailty model, Ĥ0(tij)

can be estimated correspondingly;

Step 2 E-Step: Sample yi from the posterior distribution and compute the correspond-

ing expectations in the Q function;

Step 3 M-Step: Estimate b(m), β(m), σ(m), q(m) by maximizing the Q function and

update the estimation of Ĥ0(tij);

Step 4 Iterate Steps 2 and 3 until b, β, σ and q converge to the desired level of accuracy.

Remarks: Based on personal discussion with the authors and open source code in

’smcure’ package in R, the convergence condition is defined as setting a threshold

value K for parameters of interest, where

∑
Θ

(Θ(m+1) −Θ(m))
2 ≤ K, (2.19)

where Θ is the set of parameters, then we stopped the iteration.

In addition, Sy and Taylor (2000) and Peng (2003) discussed the tail of the survival

functions and pointed out that the zero tail constraint for the baseline survival func-

tion can improve the estimation. Hence, we set Ŝ0(t) = 0 for t greater than the

maximum failure time.

Furthermore, the EM algorithm usually does not produce the standard errors of the

estimated parameters. In particular in the mixture cure frailty model, it is difficult to

find the information matrix corresponding to the Q functions. The complexity of the

second derivatives leads to computational issues. Therefore, we propose bootstrap
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method for estimating the standard errors of the estimates of b and β in the real data

analysis, which is the commonly used variance estimation method in mixture cure

frailty model.

2.3 Simulation Study

The purpose of the simulation study is to evaluate the estimation performance of the

mixture cure generalized gamma frailty model. Here, we take our simulation in order

to demonstrate the process of simulation study. We generate 1000 data sets with

sample size N = 200 from a mixture cure gamma frailty model. One covariate is

considered, which is the binary variable x taking on 0 (control) or 1 (treatment). We

assume that x influences the cure rate with b0 = 2 and b1 = −1. Correspondingly,

the cure fraction is 12% in the control group and 27% in the treatment group. The

correlated covariates β = log(2) is influenced by x. The baseline survival function

distribution is generated from the standard Log-normal distribution. The frailty is

generated by Gamma distribution or Log-normal distribution with variance 0.5. The

censoring time is generated from the uniform distribution to obtain a fraction of ap-

proximately 25% for the combined groups.

For a detailed simulation study, we change the setting to test the performance with

various sample size, frailty variance and censoring proportions, respectively. The de-

tails of the settings used in the study are as Table 2.1.
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Sample size b0 b1 Variance Censoring proportion β

1 100 2 -1 0.5 0.25 log(2)

2 100 2 -1 0.5 0.5 log(2)

3 100 2 -1 1 0.25 log(2)

4 100 2 -1 1 0.5 log(2)

5 100 2 -1 1.5 0.25 log(2)

6 100 2 -1 1.5 0.5 log(2)

7 200 2 -1 0.5 0.25 log(2)

8 200 2 -1 0.5 0.5 log(2)

9 200 2 -1 1 0.25 log(2)

10 200 2 -1 1 0.5 log(2)

11 200 2 -1 1.5 0.25 log(2)

12 200 2 -1 1.5 0.5 log(2)

Table 2.1: Simulation Settings.

The simulation procedure can be stated as follows:

1. Generate N = ni × `i frailty values from the frailty distribution yij;

2. Assign each simulated individual to treatment group and control group with

probability 0.5, and generate covariates x from normal distribution correspond-

ingly;

3. Based on the survival function, we have the frailty term yij substituted into the

equation

S(t|y) = exp
(
− yijH0(t) exp(β′X)

)
. (2.20)
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Therefore, the cumulative distribution function can be given as

F (t|y) = 1− exp
(
− yijH0(t) exp(β′X)

)
, (2.21)

which is assumed to follow a uniform distribution (0,1). So, we can generate

U ∼ Uniform(0,1) and set U = F (t|y);

4. Find the cumulative hazard function

H0(.) = − log(1− uij)
yij exp(β′X)

; (2.22)

5. Find the inverse of the true baseline function, for standard log-normal as

tij = exp
(
Φ−1(1− exp(−H0(.)))

)
(2.23)

6. Generate the censoring time C from Uniform distribution. Compare tij and cij

and determine δij for each subject, so that we can adjust the censoring rate to

satisfy our requirements.
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Variance True Frailty Censoring proportion Parameters Bias MSE(σ2
boot) Coverage Probability

0.5 Gamma 25 σ̂2
f -0.021 0.038(0.041) 0.947

b̂0 0.122 0.257(0.291) 0.958

b̂1 -0.087 0.189(0.141) 0.943

β̂1 0.013 0.016 (0.022) 0.934

Log-normal 25 σ̂2
f 0.028 0.014 (0.021) 0.959

b̂0 0.158 0.202 (0.196) 0.963

b̂1 -0.089 0.161 (0.154) 0.954

β̂1 0.022 0.011 (0.014) 0.935

Gamma 50 σ̂2
f -0.036 0.052

b̂0 0.201 0.358

b̂1 0.125 0.338

β̂1 -0.045 0.129

Log-normal 50 σ̂2
f -0.077 0.101

b̂0 0.146 0.346

b̂1 -0.152 0.104

β̂1 -0.048 0.067

Table 2.2: Simulation results with sample size 200 and true variance σ2
f = 0.5
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Variance True Frailty Censoring proportion Parameters Bias MSE

Gamma 25 σ̂2 0.060 0.048

b̂0 0.125 0.096

b̂1 -0.175 0.133

β̂1 0.012 0.032

Log-normal 25 σ̂2 -0.064 0.018

b̂0 0.098 0.178

b̂1 -0.121 0.292

β̂1 0.016 0.041

Gamma 50 σ̂2 -0.087 0.066

b̂0 0.207 0.271

b̂1 -0.184 0.149

β̂1 0.022 0.014

Log-normal 50 σ̂2 0.089 0.079

b̂0 0.185 0.167

b̂1 -0.162 0.256

β̂1 0.025 0.019

Table 2.3: Simulation results with sample size 200 and true variance σ2
f = 1
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Variance True Frailty Censoring proportion Parameters Bias MSE

1.5 Gamma 25 σ̂2 0.081 0.111

b̂0 -0.023 0.092

b̂1 0.120 0.273

β̂1 0.052 0.092

Log-normal 25 σ̂2 -0.064 0.198

b̂0 -0.224 0.315

b̂1 -0.119 0.173

β̂1 0.063 0.165

Gamma 50 σ̂2 0.097 0.099

b̂0 0.184 0.245

b̂1 0.152 0.121

β̂1 0.041 0.059

Log-normal 50 σ̂2 0.039 0.052

b̂0 0.121 0.182

b̂1 0.145 0.173

β̂1 0.077 0.097

Table 2.4: Simulation results with sample size 200 and true variance σ2
f = 1.5
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Variance True Frailty Censoring proportion Parameters Bias MSE

0.5 Gamma 25 σ̂2
f 0.045 0.073

b̂0 -0.208 0.173

b̂1 -0.107 0.098

β̂1 0.031 0.042

Log-normal 25 σ̂2
f 0.039 0.025

b̂0 0.109 0.144

b̂1 0.104 0.125

β̂1 0.031 0.040

Gamma 50 σ̂2
f -0.033 0.029

b̂0 -0.104 0.123

b̂1 0.106 0.128

β̂1 -0.024 0.094

Log-normal 50 σ̂2
f -0.057 0.077

b̂0 -0.203 0.106

b̂1 0.122 0.222

β̂1 -0.033 0.074

Table 2.5: Simulation results with sample size 100 and true variance σ2
f = 0.5
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Variance True Frailty Censoring proportion Parameters Bias MSE

1 Gamma 25 σ̂2 -0.042 0.056

b̂0 0.165 0.183

b̂1 0.126 0.128

β̂1 0.044 0.028

Log-normal 25 σ̂2 -0.056 0.017

b̂0 0.086 0.079

b̂1 0.163 0.111

β̂1 -0.076 0.062

Gamma 50 σ̂2 0.029 0.040

b̂0 0.109 0.137

b̂1 0.137 0.184

β̂1 0.067 0.081

Log-normal 50 σ̂2 -0.045 0.039

b̂0 0.124 0.146

b̂1 0.192 0.204

β̂1 0.103 0.130

Table 2.6: Simulation results with sample size 100 and true variance σ2
f = 1
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Variance True Frailty Censoring proportion Parameters Bias MSE

1.5 Gamma 25 σ̂2 0.108 0.135

b̂0 0.125 0.096

b̂1 -0.175 0.133

β̂1 0.012 0.032

Log-normal 25 σ̂2 0.154 0.118

b̂0 -0.079 0.128

b̂1 0.081 0.109

β̂1 0.076 0.051

Gamma 50 σ̂2 0.097 0.126

b̂0 -0.106 0.120

b̂1 0.176 0.163

β̂1 -0.041 0.052

Log-normal 50 σ̂2 0.112 0.104

b̂0 -0.162 0.198

b̂1 0.125 0.181

β̂1 0.038 0.049

Table 2.7: Simulation results with sample size 100 and true variance σ2
f = 1.5
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In Tables 2.2-2.7, we have presented the results of simulation study from which we

observe that the estimation is satisfactory; the bootstrap is applied for estimating

the variances of the parameter estimates obtained from the EM algorithm. To check

the performance of the bootstrap variance estimator, we computed the estimated

variances from 500 bootstrap samples for the Case 7 and the mean of estimated

variances is shown in Table 2.2. We observe from this table that the MSE and the

bootstrap variance estimates are quite close, which reveals that the bootstrap variance

estimator can be trusted. Meanwhile, as the censoring proportion increases, the bias

and MSE of the cure coefficient b increase, which means that higher censoring rate

will reduce the accuracy of the cure rate estimation. The frailty variance estimation is

stable regardless the true baseline. The proportional hazard coefficient β estimation

remains stable in all simulation cases. In most cases, the coverage probabilities are

quite close to the nominal level. Moreover, larger sample size and smaller censoring

rate lead to more accurate estimates. The change of frailty variance does not have a

clear effect on the accuracy or precision of the parameter estimates. In conclusion,

the simulation results show that the EM algorithm provides satisfactory results.

2.4 Application to Bone Marrow Transplant Data

Price and Manatunga (2001) considered bone marrow transplant study for the leukaemia

patients. Leukaemia patients received either an allogeneic transplant or an autologous

transplant. The maximum followed up time is 1845 days and the time to recurrence

or censoring is recorded. The details of the data set have been described earlier in

Section 1.4.

To test our model and compare our model with some common mixture cure frailty
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models, we fit the bone marrow transplant data set and Table 2.8 shows the obtained

results. As the log-likelihood is calculated separately from the Q functions and may

not maximize the log-likelihood, they are just listed for illustration. When we com-

pare the frailty variance estimated, the Generalized Gamma frailty shows the greatest

value, which indicates that the single parameter distributions, such as Gamma, Log-

normal and Weibull distributions usually have less flexibility and underestimate the

frailty variance. This result is consistent with Peng and Zhang (2008a) and Chen

et al. (2013).
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Gamma Log-normal Weibull GG

Estimate Var Estimate Var Estimate Var Estimate Var

β̂1 0.6266 0.1637 0.6523 0.1932 0.6341 0.1856 0.6293 0.1724

b0 1.0817 0.1222 1.0276 0.1788 1.0572 0.2082 1.0750 0.2422

b1 0.4355 0.2805 0.4236 0.4021 0.4327 0.3398 0.4739 0.3663

σ 0.9187 0.2895

q 0.7498 0.3781

θ̂ 1.5832 0.3741

σ̂2
f 0.6316 0.6738 0.7607 0.8547

` -196.615 -197.28 -196.89 -194.514

Table 2.8: Estimation results using the mixture cure PH Generalized Gamma frailty

model for bone marrow transplant data

Note: The estimated variances(Var) are from the bootstrap method using 500

repeated samples. The estimated frailty variance (σ̂2
f ) denotes the variance

calculated based on the estimation.

Note: The log-likelihood ` presented is not the maximized log-likelihood, and so the

our estimation methods carried out can not be proved to be efficient, they are just

presented for reference.

According to the estimation results, choosing the Gamma, Log-normal, Weibull and

Generalized Gamma distributions as frailty do not influence the cure rate signifi-

cantly. Correspondingly, the cure fractions for allogeneic group are 25.3%, 26.4%,

25.8% and 25.4%, compared to 27% obtained directly from the Kaplan-Meier curve

in Figure 1.1. Furthermore, the cure fractions for autologous group are 18.0%, 19.0%,
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18.4% and 17.5%, respectively. The results are consistent with the work by Peng and

Zhang (2008a). The results indicate that the cure frailty model tends to give a lower

estimate of the cure proportion compared to the mixture cure model without frailty

assumption, and if the frailty model is more flexible (with more parameters), the cure

proportion tends to be smaller. This model helps reveal the heterogeneity in the BMT

data and also as stated by Balakrishnan and Peng (2006), Generalized Gamma distri-

bution has considerable flexibility to capture the characteristics in a distribution that

might have been missed by the use of any of its special cases. This motivates us to use

it as the frailty distribution to model the frailty term. For the purpose of comparing

the nested models, we can employ the Likelihood Ratio Test (LRT). If we perform the

LRT accordingly, we can find the test statistic as −2 log( ˆ̀
0− ˆ̀) = (4.202, 5.532, 4.752)

accordingly. All the test statistic are greater than 3.8414 at significance level 5%,

which indicates the Generalized Gamma distribution is a satisfactory choice as frailty

distribution.
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Chapter 3

Estimation of the Mixture Cure

Accelerated Failure Time Model

with Gamma Frailty

3.1 Basic Model

Let T ∗i be the failure time of the ith subject. Then, the observed time from the subject

is denoted by Ti=min(T ∗i , Ci), where Ci is a censoring time. The censoring indicator

δi = 1 if Ti
∗ = Ti and 0 otherwise and the censoring is assumed to be non-informative.

Also, Xi is a vector of covariates for the i-th individual.

Based on the given information, the accelerated failure time (AFT) model for failure

time is given by

log(Ti) = β′xi + εi, (3.1)
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where β is the coefficient of interest and ε are independent random errors. Assuming

each object is a cluster with single element, that is for every cluster we have only

one individual, we can propose the Mixture cure AFT model with a frailty term.

Following Zhang and Peng (2007a), the hazard function of εi can be written as

h(εi|Yi = yi) = yih0(εi), (3.2)

where h0(ε) is an arbitrary baseline hazard function and yi is an independent random

term for each subject. Here, if we do not include covariate effects, this would be a

special case of the general frailty model considered by Kalbfleisch and Prentice (1973).

The most common and convenient choice of frailty is the Gamma frailty with mean

1 and variance 1/θ:

f(yi) = θθyi
θ−1 exp(−yiθ)/Γ(θ), yi > 0, θ > 0 (3.3)

The advantage of the gamma distribution as a frailty model is that the distribution

in the E-step of the EM algorithm, will still remain as gamma distribution. This

expression for the expectations of interest, which makes the E-Step easier.

Furthermore, to accommodate the mixture cure model, we define a cure fraction for

some subjects using the incidence component:

p0 =
1

1 + exp(b′x)
, (3.4)

where b is a vector of unknown parameters of interest modelling the cure fraction.

The conditional survival function of T , given that the patient is not cured, is S(εi).
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For the sake of convenience, let us denote the observed information O = {ti, δi, xi} for

the ith individual, i = 1, ..., n. Then, the complete likelihood function can be written

as
n∏
i=1

(p0)1−Ii × {(1− p0)h(εi)
δiS(εi)}Ii × f(yi), (3.5)

where Ii is an indicator function with Ii = 0 if the patient is non-susceptible or cured

and 1 otherwise.

3.2 Estimation Procedure

An estimation procedure is discussed here for the semi-parametric mixture cure frailty

AFT model. As we have two latent variables I and Y , the EM algorithm is considered

to estimate the unknown parameters β, b, θ and H0 in the proposed model. Given

the values of the frailty term yi and indicator Ii, the conditional likelihood function

can be expressed as

`c(β, σ, q) ∝
n∏
i=1

(p0)1−Ii(1− p0)Ii ×
n∏
i=1

(
h0

(
εi
))Iiδi

yi
Iiδi exp

(
− IiyiH0(εi)

)
×

n∏
i=1

θθyi
θ−1 exp(−yiθ)/Γ(θ).

(3.6)

The logarithm of the three complete likelihood functions can be given as:

`c1(b0, b1) =
n∑
i=1

(1− Ii) log(p0) + Ii log(1− p0),

`c2(β,H0(t)) =
n∑
i=1

δi log
(
h0(εi)

)
− IiyiH0(εi),

`c3(θ) =
n∑
i=1

[θ log(θ)− log(Γ(θ))− yiθ + (δi + θ − 1) log(yi)],

(3.7)
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where δiIi = δi always holds.

E-step:

The E-step calculates the conditional expectation of the complete log-likelihood cor-

responding to the latent variables Ii and yi, given the current estimated parameters,

denoted by Θ(m) = {b(m)
0 , b

(m)
1 , H

(m)
0 (t)} and the observed data O. In this case, we

find

πi = E(Ii|Θ(m)) = δi + (1− δi)
(1− p0)Lyi(H

(m)
0 (εi))

p0 + (1− p0)× Lyi(H
(m)
0

(
εi
)
)
, (3.8)

ai = E(yi|Θ(m)) = E(yi|I = 1,Θ(m))× πi + E(yi|I = 0,Θ(m))× (1− πi), (3.9)

bi = E(yiIi|Θ(m)) = E(yiIi|I = 1,Θ(m))× πi, (3.10)

ci = E(log(yi)|Θ(m)) = E(log(yi)|I = 1,Θ(m))× πi + E(log(yi)|I = 0,Θ(m))× (1− πi),

(3.11)

where Lyi(t) = (1 + θ−1t)−θ is the Laplace transform of the gamma random variable.

However, some expectation terms involve yi in the E-step, and are therefore not very

straightforward to calculate. To find the expectation with respect to the conditional

distribution of the frailty term yi, we observe that the conditional distribution of yi

is proportional to

exp(yi(IiH0(εi) + θ))yi
δi+θ−1; (3.12)
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thus, we have

yi|(Ii = 0) ∼ Gamma(δi + θ, θ−1), (3.13)

yi|(Ii = 1) ∼ Gamma
(
δi + θ,

1

θ +H0(εi)

)
. (3.14)

This indicates that for the E-step, given the current estimate of Θ(m), the conditional

expectations are

ai =
δi + θ

θ +H0(εi)
πi +

δ + θ

θ
(1− πi), (3.15)

bi =
δi + θ

θ +H0(εi)
πi, (3.16)

ci =
(
φ(δi + θ)− log(θ +H0(εi)

)
πi + (φ(δi + θ)− log(θ))(1− πi), (3.17)

where φ(.) is the digamma function. Substituting them into the complete log-likelihood

function, the conditional expectations of the three complete log-likelihood functions

in the E-Step are given by Q-functions as

Q1(b0, b1) =
n∑
i=1

(1− πi) log(p0) + πi log(1− p0),

Q2(β,H0(t)) =
n∑
i=1

δi log
(
h0(εi)

)
− biH0(εi),

Q3(θ) =
n∑
i=1

[θ log(θ)− log(Γ(θ))− aiθ + ci(δi + θ − 1)].

(3.18)

M-Step:

The M-Step is to maximize Q1, Q2 and Q3 with respect to the unknown parameters

b, β and H0().

52



Ph.D. Thesis - Mu He McMaster - Mathematics & Statistics

For finding H0(.), Zhang and Peng (2007b) and Zhang and Peng (2009) introduced

a method for the estimation of β. As we take a εi
∗ as an error term with unknown

distribution following the usual AFT model

εi
∗ = log(Ti)− βx,

Zhang and Peng (2007b) stated that the form of Q2 can be turned into a standard

semi-parametric AFT mixture (except for bi). This enables us to estimate β based

on the methods for the semi-parametric AFT model.

Following the methods of Wei (1992) and Pan (2001), we use a rank estimation

method. If we take derivative of the logarithm of the partial likelihood function Q2

for the model with respect to β and extend to include a general (predictable) weight

function under suitable assumptions, the function of β is obtained as

Ψ(β, k(.)) =
n∑
i=1

δik(ε∗i )

(
xi −

∑n
j=1 xjb

(m)
i I(ε∗j ≥ ε∗i )∑n

j=1 b
(m)
i I(ε∗j ≥ ε∗i )

)
, (3.19)

where I(.) is the indicator function and k(.) is a general (predictable) weight function.

Fygenson and Ritov (1994) proved that when the Gehan weight function k(u) =∑n
j=1 I(ε∗j ≥ u)b

(m)
i /n is used, the estimating equation is monotone (without the

constant term bi
(m)).

Under the Gehan-type weight function, Ψ(β, k(.)) in (3.19) becomes a monotone

function of β, and gets simplified as

Ψ(β, k(.)) =
n∑
i=1

n∑
j=1

n−1δib
(m)
i (xi − xj)I(ε∗i < ε∗j). (3.20)

53



Ph.D. Thesis - Mu He McMaster - Mathematics & Statistics

Therefore, if there is a solution to Ψ(β, k(.)) = 0, it will be unique and consistent.

Moreover, another advantage of using the Gehan-type weight function, suggested by

Zhang and Peng (2007b), is that it can be considered as the gradient of a convex

function

LG(β) =
n∑
i=1

n∑
j=1

n−1δib
(m)
i |ε∗i − ε∗j |I(ε∗i < ε∗j). (3.21)

As LG(β) is convex, finding the root of Ψ(β, k(.)) = 0 is the same as minimizing

LG(β), which can be carried out by using the linear programming method.

Hence, a Breslow-type baseline estimator can be obtained and updated as

Ŝ0(ti) = exp(−
∑
ti<t

dti∑
j∈R(ti)

b
(m)
i

), (3.22)

where b
(m)
i is the expectation term in Equation (3.16), dti denotes the number of

uncensored times at time ti, and R(ti) is the risk set at time ti.

Estimation Procedure:

Step 1 Given the initial values of b(0), β(0) and θ(0) from the cure frailty model, Ĥ0(ti)

can be estimated correspondingly;

Step 2 E-Step: Calculate the corresponding expectations and substitute the expecta-

tions in the Q function;

Step 3 M-Step: Estimate b(m), β(m) and θ(m) by maximizing the Q function and update

the estimation of Ĥ0(tij);

Step 4 Iterate Steps 2 and 3 until b, β and θ converge to the desired level of accuracy.
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Remarks: Based on personal discussion with the authors and open source code in

’smcure’ package in R, the convergence condition is defined as setting a threshold

value K for the sum of squared error of parameters of interest, where

∑
Θ

(Θ(m+1) −Θ(m))
2 ≤ K, (3.23)

where Θ is the set of parameters.

3.3 Simulation Study

As mentioned by Zhang and Peng (2009), the choice of the latency distribution func-

tion could introduce non-identifiability of the survival model Spop and consequently

affect the estimate of the cure fraction. For the purpose of testing the identifiablil-

ity and the estimation performance of the semi-parametric mixture cure AFT frailty

model, a simulation study is carried out in this section.

Here, we take our simulation settings in order to demonstrate the process of simula-

tion study. For example, in one simulation study, we generate 1000 data sets from

the model specified. In each data set, we assume that a single covariate x, has effects

on both the incidence and the latency component of the cure model and that there

are 50% of patients with x = 0 (control group) and 50% of patients with x = 1 (treat-

ment group). The effect of x on the incidence is through b0 = 2 and b1 = −1. Then,

the corresponding cure rates will be 11.9% and 26.9% respectively, in the control and

treatment groups. The effect of x on the latency is through β1 = log(2).

The baseline survival function distribution is assumed to be standard Log-normal
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distribution for simplicity. The frailty is generated by Gamma or Log-normal distri-

butions with variance 0.5. The censoring time is generated from the uniform distri-

bution to obtain a censoring fraction of 25%. The method of simulating the data is

similar to what has been discussed in Section 2.3.

To carry out a detailed simulation study, we consider different simulation settings to

test the performance with various sample sizes, frailty variance and censoring propor-

tions. The details of the settings are presented in Table 3.1.

Sample size b0 b1 Variance Censoring proportion β

1 100 2 -1 0.5 0.25 log(2)

2 100 2 -1 0.5 0.5 log(2)

3 100 2 -1 1 0.25 log(2)

4 100 2 -1 1 0.5 log(2)

5 100 2 -1 2 0.25 log(2)

6 100 2 -1 2 0.5 log(2)

7 200 2 -1 0.5 0.25 log(2)

8 200 2 -1 0.5 0.5 log(2)

9 200 2 -1 1 0.25 log(2)

10 200 2 -1 1 0.5 log(2)

11 200 2 -1 2 0.25 log(2)

12 200 2 -1 2 0.5 log(2)

Table 3.1: Simulation Settings.

56



Ph.D. Thesis - Mu He McMaster - Mathematics & Statistics

Table 3.2: Simulation results with sample size 200 with true frailty distribution as

Gamma

.

θ Censoring proportion Parameters Bias MSE

0.5 25 σ2
f -0.032 0.036

b̂0 0.098 0.262

b̂1 0.074 0.323

β̂1 -0.052 0.042

0.5 50 σ2
f -0.019 0.018

b̂0 0.411 0.382

b̂1 -0.304 0.550

β̂1 -0.038 0.132

1 25 σ2
f -0.011 0.006

b̂0 0.207 0.271

b̂1 -0.184 0.149

β̂1 0.083 0.135

1 50 σ2
f 0.023 0.013

b̂0 0.337 0.549

b̂1 -0.218 0.472

β̂1 0.128 0.119

2 25 σ2
f -0.098 0.041

b̂0 0.087 0.131

b̂1 -0.062 0.176

β̂1 0.044 0.032

2 50 σ2
f 0.027 0.009

b̂0 0.189 0.421

b̂1 -0.114 0.556

β̂1 0.094 0.203
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Table 3.3: Simulation results with sample size 100 with true frailty distribution as

Gamma

.

θ Censoring proportion Parameters Bias MSE (σ2
f ) Coverage Probability

0.5 25 σ2
f -0.022 0.029(0.023) 0.953

b̂0 0.189 0.331(0.363) 0.951

b̂1 -0.158 0.314(0.321) 0.948

β̂1 -0.013 0.074 (0.081) 0.937

0.5 50 σ2
f 0.014 0.013(0.019) 0.941

b̂0 0.310 0.291(0.308) 0.957

b̂1 -0.207 0.498(0.449) 0.938

β̂1 0.028 0.068(0.079) 0.934

1 25 σ2
f 0.018 0.023

b̂0 0.210 0.258

b̂1 -0.108 0.289

β̂1 0.015 0.052

1 50 σ2
f 0.005 0.014

b̂0 0.256 0.499

b̂1 -0.161 0.517

β̂1 0.036 0.089

2 25 σ2
f -0.004 0.018

b̂0 0.093 0.244

b̂1 -0.188 0.355

β̂1 0.023 0.044

2 50 σ2
f -0.024 0.031

b̂0 0.362 0.402

b̂1 -0.144 0.488

β̂1 0.044 0.101
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.

Table 3.4: Simulation results with sample size 200 with true frailty distribution as

Log-normal

.

θ Censoring proportion Parameters Bias MSE

0.5 25 σ2
f 0.013 0.012

b̂0 0.162 0.305

b̂1 -0.063 0.321

β̂1 -0.035 0.098

0.5 50 σ2
f 0.021 0.016

b̂0 0.283 0.271

b̂1 -0.148 0.379

β̂1 0.059 0.144

1 25 σ2
f -0.008 0.019

b̂0 0.166 0.239

b̂1 -0.084 0.208

β̂1 -0.029 0.073

1 50 σ2
f -0.019 0.029

b̂0 0.268 0.316

b̂1 -0.121 0.493

β̂1 0.031 0.116

2 25 σ2
f 0.016 0.023

b̂0 0.198 0.285

b̂1 -0.139 0.317

β̂1 -0.033 0.178

2 50 σ2
f -0.025 0.036

b̂0 0.256 0.391

b̂1 -0.169 0.512

β̂1 0.086 0.160

59



Ph.D. Thesis - Mu He McMaster - Mathematics & Statistics

.

Table 3.5: Simulation results with sample size 100 with true frailty distribution as

Log-normal

.

θ Censoring proportion Parameters Bias MSE

0.5 25 σ2
f 0.029 0.019

b̂0 0.191 0.362

b̂1 -0.079 0.435

β̂1 0.067 0.132

0.5 50 σ2
f 0.023 0.026

b̂0 0.340 0.468

b̂1 -0.190 0.523

β̂1 0.082 0.093

1 25 σ2
f -0.025 0.032

b̂0 0.172 0.262

b̂1 -0.143 0.370

β̂1 -0.061 0.059

1 50 σ2
f 0.021 0.025

b̂0 0.258 0.389

b̂1 -0.233 0.467

β̂1 0.077 0.088

2 25 σ2
f 0.033 0.028

b̂0 0.261 0.321

b̂1 -0.157 0.240

β̂1 -0.099 0.140

2 50 σ2
f 0.048 0.037

b̂0 0.229 0.461

b̂1 -0.199 0.394

β̂1 0.105 0.217
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Tables 3.2 - 3.5 present the results of the simulation study. The Bias and MSE are

calculated for the estimates of all the parameters. Based on the simulation results, we

observe that, the MSEs of b0 and b1 increase greatly when the censoring rate increases

from 25% to 50%. Meanwhile, the performance of the variance and the proportional

hazard coefficient β estimation is satisfactory in all cases, regardless of the changes

in the true variances and the true frailty distribution.

Here, as also done in Section 2.3, we implemented a 500 bootstrap simulations for

estimating the variance of the estimates for Cases 1 and 2. As the MSE, estimated

variance and the bootstrap variance are all close in general, we can conclude that

the bootstrap variance is quite reliable as mentioned by Peng and Zhang (2008a). In

most cases, the CPs are quite close to the nominal level. In summary, larger sample

size and less censoring results in accurate estimates. The change of frailty variance

does not have a clear effect on the accuracy or precision of the parameter estimates.

3.4 Application to Bone Marrow Transplant Data

As an application of the studied model, we consider the bone marrow transplant

study for leukaemia patients. This data set, first studied by Kersey et al. (1987), was

described earlier in Chapter 1.

In this data set, patients with leukaemia received either an allogeneic transplant or

an autologous transplant. There were 46 patients in the allogeneic treatment group

and the other patients in the autologous treatment group. They were followed up to

maximum 1845 days, and time to recurrence or censoring is recorded. Among them,

33 patients experienced a recurrence of leukaemia in the allogeneic treatment and 35

patients experienced a recurrence in the autologous treatment group.
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Based on the plots of Kaplan-Meier survival functions in Figure 1.1, we observe

that the two treatment groups are not quite proportional to each other, and so the

assumption of AFT model may be more appropriate in this situation. It also shows

that both curves level off at a value substantially greater than 0 after one or two years

of follow-up, which means that some of the patients will not experience a recurrence

after the treatments and should be considered as cured subjects.

Zhang and Peng (2007b) analyzed these data using a semi-parametric mixture cure

AFT model and pointed out that the PH model studied in the literature is not

appropriate since the proportional hazard assumption is not satisfied for this data

set. Also, Peng and Zhang (2008a) suggested using a semi-parametric mixture cure

frailty model for the purpose of accounting for the lack of proportionality.

Based on the cumulative hazard functions in Figure 3.1, we can confirm that the AFT

model is more appropriate for this data set.
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Figure 3.1: Bone marrow transplant data: Cumulative Hazard Functions

Therefore, we apply the semi-parametric mixture cure AFT frailty model for the data.

We fit the data with the semi-parametric AFT mixture cure model using the method

described in the previous sections. The standard errors of the parameter estimates

are obtained based on 500 bootstrap samples.
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Bias Var

β̂1 -0.359 0.080

b̂0 1.021 0.118

b̂1 0.456 0.268

θ̂ 1.287 0.507

σ̂2
f 0.777

Table 3.6: Estimated parameters from the mixture cure AFT Gamma frailty model

for bone marrow transplant data

.

The estimate of β1 is -0.359 and the corresponding standard error is
√

0.080 = 0.282,

yielding the p-value as 0.1015. This is consistent with the conclusion of Zhang and

Peng (2007b) that we can state that we do not see a significant difference in the occur-

rence of the bone marrow engraftment between the patients treated with autologous

bone marrow transplant and allogeneic bone marrow transplant if they are not cured.

The corresponding frailty variance is 0.777, which is greater than the estimated value

in the mixture cure Gamma frailty distribution and less than the estimated value

in the mixture cure Generalized Gamma frailty distribution. This may indicate an

underestimate of frailty variance due to the lack of flexibility in the model.

The cure fraction for the allogeneic group is 1/(1 + exp(1.021)) = 0.2648, and it is

close to 26.28% reported by Zhang and Peng (2007a)’s result, both of which are close

to 27%, observed directly from the Kaplan-Meier survival curve in Figure 1.1. The

cure fraction for the autologous group is 1/(1 + exp(1.021 + 0.456)) = 0.1859. Fur-

thermore, based on the estimation results, we conclude that the mixture cure AFT

frailty model also helps in identifying the heterogeneity in the BMT data.
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Chapter 4

Mixture Cure Model with

Accelerated Failure time and

Flexible Random Effects

4.1 Basic Model

Let T ∗ij be the failure time of the jth subject in the ith cluster, and Xij be a vector

of covariates, for i = 1, ..., n and j = 1, ..., `i. The observed time from the subject is

denoted by Tij=min(T ∗ij, Cij), where Cij is a censoring time. The censoring indicator

δij = 1 if Tij
∗ = Tij and 0 otherwise, and the censoring is assumed to be non-

informative.

Based on the information O = {Tij, δij, Xij}, the AFT model for dependent failure
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times can be specified by

Tij = exp(β′Xij)Vij,

h(Vij|yij) = yijh0(Vij),

h(tij|Xij, yij) = yij exp(−β′Xij)h0(tij exp(−β′Xij)),

S(tij|Xij, yij) = S0(tij exp(−β′Xij))
yij .

(4.1)

This is an alternative representation for the one presented in Chapter 3. For the sake

of simplicity, we will use Tij instead of log(Tij). Both representations are modelling

the same mixture cure frailty structure.

Next, let us define a cure fraction using the incidence component

p0 =
1

1 + exp(b′x)
. (4.2)

Using the cure fraction p0, the complete likelihood function can be written as

n∏
i=1

`i∏
j=1

(p0)1−Iij × {(1− p0)h(tij|Xij, yij)
δijS(tij|Xij, yij)}Iijf(yij), (4.3)

where Ii is an indicator function with Ii = 0 if the patient is non-susceptible or cured

and 1 otherwise.

For the frailty term, we assume the Gamma form representation of the Generalized

Gamma distribution in Balakrishnan and Peng (2006), expressed as

f(z; p) =
ppzp−1e−pz

Γ(p)
, z > 0, p > 0, (4.4)
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with

Y =
1

λ
Zσ
√
p, (4.5)

where Y is the Generalized Gamma variable with q = 1√
p
. The details of the trans-

formation can be found in Section 1.3.

4.2 Estimation Procedure

Using the simplified notation, the complete likelihood function can be written as

`c(β, σ, q) ∝
n∏
i=1

`i∏
j=1

(p0)1−Iij(1− p0)Iij

× exp(−Iijδijβ′Xij)h0
Iijδij(tij exp(−β′Xij))

(
zij

σ/q

λ

)Iijδij
exp

(
− Iij

zij
σ/q

λ
H0(tij exp(−β′Xij))

)
× (q−2)q

−2
zij

q−2−1 exp(−q−2zij)

Γ(q−2)
.

(4.6)

The logarithm of the complete likelihood functions can then be expressed as

` = `c1(b0, b1) + `c2(σ, q) + `c3(β, σ, q), (4.7)
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where

`c1(b0, b1) =
n∑
i=1

`i∑
j=1

(1− Iij) log(p0) + Iij log(1− p0),

`c2(σ, q) =
n∑
i=1

( `i∑
j=1

Iijδij

(
σ

q
log(zij)− log(λ)

)
+ q−2 log(q−2) + (q−2 − 1) log(zij)− q−2zij − log(Γ(q−2))

)
,

`c3(β, σ, q) =
n∑
i=1

`i∑
j=1

−δijIijβ + δijIij log(h0(tij exp(−βXij)))− Iij
zij

σ/q

λ
H0(tij exp(−β′Xij)),

(4.8)

where the frailty variable Zij is a random effect and Iij is a latent indicator variable.

We cannot maximize the log-likelihood function directly, and so we adopt the EM

algorithm. The steps in the iteration are specified as follows:

E-Step

In the E-step, we calculate the conditional Q functions given by

Qc1(b0, b1) =
n∑
i=1

`i∑
j=1

(1− E(Iij)) log(p0) + E(Iij) log(1− p0),

Qc2(σ, q) =
n∑
i=1

( `i∑
j=1

δij

(
σ

q
E(log(zij))− log(λ)

)
+ q−2 log(q−2) + (q−2 − 1)E(log(zij))− q−2E(zij)− log(Γ(q−2))

)
,

Qc3(β, σ, q) =
n∑
i=1

`i∑
j=1

−δijβ + δij log(h0(tij exp(−βXij)))− E

(
Iij
zij

σ/q

λ

)
H0(tij exp(−β′Xij)),

(4.9)
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where the conditional expectations of the unknown variables Zij and Iij are given by

πij = E(Iij) = δij + (1− δij)
(1− p0)× Lyi

(
H0(t exp(−β′xij))

)
p0 + (1− p0)× Lyi

(
H0(t exp(−β′xij))

) ,
aij = E(Iij

zij
σ/q

λ
) = E(

zij
σ/q

λ
|Iij = 1)× πij,

bij = E(zij)|Θ(m), O) = E(zij|Iij = 1,Θ(m), O)× πij + E(zij|Iij = 0,Θ(m), O)× (1− πij),

cij = E(log(zij))|Θ(m), O) = E(log(zij)|Iij = 1)× πij + E(log(zij)|Iij = 0)× (1− πij).
(4.10)

As the conditional distribution of Z does not have a closed form, but we can find the

conditional density of Zij(Θ, O) as

∝ zij
σ/qδij+q

−2−1 exp
(
− zij

σ/q

λ
IiH0(tij exp(−β′Xij))− q−2zij

)
. (4.11)

We use the MCMC method to find the expected values in Equation (4.10). This step

is similar to the approach in Chapter 2.

M-Step

In the M-Step, our goal is to maximize the conditional log-likelihood and update the

unknown parameters. Because we did not specify the baseline hazard function, it is

hard to evaluate the value of Q3 in Equation (4.9).

As in Equation (3.18), we can employ a Breslow-type estimator and find an efficient

estimate correspondingly. But, motivated by Zeng and Lin (2007) and Chen et al.

(2013), we want to introduce an efficient estimator and study the MLE of the model

parameters. Then, we can compare different frailty models corresponding to the

special cases of Generalized Gamma frailty distribution. For this purpose, we adopt

a piecewise constant hazard function, and then follow Zeng and Lin (2007)’s idea
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to find a kernel smoothed baseline. First, we partition the real line containing all

exp(−β′Xij) into Jn equally spaced intervals, 0 ≡ t0 < t1 < · · · < tJn ≡M , where M

represents the upper bound for exp(−β′Xij) over all possible β’s in a bounded set.

Then, we assume a piecewise constant baseline hazard function in each interval as

h(t) =
Jn∑
k=1

dkI(t ∈ [tk−1, tk)),

H(t) =
Jn∑
k=1

dk(t− tk)I(t ∈ [tk−1, tk)) +
M

Jn

Jn∑
k=1

dkI(t ≥ tk),

(4.12)

where I(.) is the indicator function. After partitioning the baseline, we can introduce

it into the Q3 function as

Qc3 =
n∑
i=1

`i∑
j=1

−δijβ +
Jn∑
k=1

log(dk)
n∑
i=1

`i∑
j=1

δijI
(

exp(−βXij)tij ∈ [tk−1, tk)
)

− E

(
Iij
zij

σ/q

λ

) Jn∑
k=1

dk

( n∑
i=1

`i∑
j=1

(exp(β′Xij)t− tk)I
(

exp(−βXij)tij ∈ [tk−1, tk)
)

+
M

Jn

Jn∑
k=1

I(exp(−βXij)t ≥ tk)

)
.

(4.13)

Upon differentiating Q3 with respect to dk and letting it equal to 0, we can estimate

the baseline as follows:

dk =

∑n
i=1

∑`i
j=1 δijI

(
exp(−βXij)tij ∈ [tk−1, tk)

)
E(Iij

zijσ/q

λ
)

(∑n
i=1

∑`i
j=1(exp(β′Xij)t− tk)I

(
exp(−βXij)tij ∈ [tk−1, tk)

)
+ M

Jn

∑Jn
k=1 I(exp(−βXij)t ≥ tk)

) .
(4.14)

The pertinent details of the maximazation and smoothing process are presented in the

Appendix for Chapter 4. Finally, we get the expected value of log-likelihood function
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Q3 as follows:

Q3 =
n∑
i=1

`i∑
j=1

[
δij log

(
1

n`ian

n∑
k=1

ni∑
l=1

δklK(
rkl − rij
an

)

)]

−
n∑
i=1

`i∑
j=1

δij log

[
1

n`i

n∑
k=1

ni∑
l=1

∫ rkl−rij
an

−∞
E(Iij

zij
σ/q

λ
)K(s)ds

]
,

(4.15)

where rij = log(tij)−β′Xij and K(S) is the kernel function and an is the bandwidth.

Thus, the complete log-likelihood function can be approximated using the kernel

smoothed function.

The details of kernel function and bandwidth selection can be found in Zeng and

Lin (2007). We will also discuss briefly in the next section. The cumulative hazard

function can be updated in each iteration as

Ĥ0(t) =

∫ t

0

h0(s)ds =

∫ log(t)

−∞

1
n`ian

∑n
k=1

∑`i
l=1 δklK( rkl−s

an
)

1
n`i

∑n
k=1

∑`i
l=1

∫ rkl−s
an

−∞ E(Iij
zijσ/q

λ
)K(u)du

ds. (4.16)

Finally, the estimated survival function can be obtained as exp(−Ĥ0(t)).

Estimation Procedure:

Step 1 Given the initial values of b(0), β(0), σ(0) and q(0) for the cure frailty model,

Ĥ0(tij) can be estimated correspondingly;

Step 2 E-Step: Calculate the corresponding expectations in the Q function;

Step 3 M-Step: Estimate b(m), β(m), σ(m), q(m) by maximizing the Q function and

update the estimation of Ĥ0(tij) using Newton-Raphson algorithm;

Step 4 Iterate Steps 2 and 3 until b, β, σ and q converge to the desired level of accuracy.
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4.3 Simulation Study

The purpose of our simulation study is to evaluate the performance of the proposed

estimation method. We generate 1000 simulated data sets with sizes 100 and 200.

Then, we generate baseline distribution as a standard log-normal distribution. The

frailty term is generated with mean 1 and variance 0.5 or 1 from Gamma, Weibull

and Log-normal distributions. Finally, a singe covariate x is generated by randomly

assigning the subjects into two groups with probability 0.5.

The effect of x on the incidence is b0 = 2 and b1 = −1 for the cure fraction. Therefore,

the corresponding cure rate will be 11.9% and 26.9% respectively, in the control and

treatment group. The effect of x on the latency is β1 = log(1.5). The censoring time

is generated from the uniform distribution to obtain a fraction of 25% or 50%.

The method of simulating the data is similar to that discussed in Section 2.3.

From the discussion on the optimal choice of the kernel function and the bandwidth

by Zeng and Lin (2007), we use a standard normal distribution as the kernel density

and the bandwidth σkn
−1/5, where σk is the sample standard deviation of log(T ).

As stated above, to evaluate the performance of the model and estimation methods,

we use various sample size, frailty variance and censoring proportions, and these are

listed in Tables 4.1 and 4.2.

Based on Tables 4.3 - 4.6, we observe that the estimation method works well. As the

censoring proportion increases, the cure coefficient b0 and b1 tend to have greater bias

and MSE, and this is similar to situation in Section 3.4. The frailty variance θ̂2
f and

the covariate’s coefficient β are not influenced much by the true frailty model, which

indicates that the Generalized Gamma distribution is a good frailty assumption to

model random effects. In most cases, the CPs are quite close to the nominal level. In
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summary, larger sample size and less censoring rate lead to more accurate estimates,

and that the change in frailty variance does not have a clear effect on the accuracy

or precision of the parameter estimates.

Sample size b0 b1 Variance Censoring proportion β True frailty

1 100 2 -1 0.5 0.25 log(1.5) Gamma

2 100 2 -1 0.5 0.5 log(1.5) Gamma

3 100 2 -1 1 0.25 log(1.5) Gamma

4 100 2 -1 1 0.5 log(1.5) Gamma

5 100 2 -1 0.5 0.25 log(1.5) Weibull

6 100 2 -1 0.5 0.5 log(1.5) Weibull

7 100 2 -1 1 0.25 log(1.5) Weibull

8 100 2 -1 1 0.5 log(1.5) Weibull

9 100 2 -1 0.5 0.25 log(1.5) Log-normal

10 100 2 -1 0.5 0.5 log(1.5) Log-normal

11 100 2 -1 1 0.25 log(1.5) Log-normal

12 100 2 -1 1 0.5 log(1.5) Log-normal

Table 4.1: Simulation Setting
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Sample size b0 b1 Variance Censoring proportion β True frailty

1 200 2 -1 0.5 0.25 log(1.5) Gamma

2 200 2 -1 0.5 0.5 log(1.5) Gamma

3 200 2 -1 1 0.25 log(1.5) Gamma

4 200 2 -1 1 0.5 log(1.5) Gamma

5 200 2 -1 0.5 0.25 log(1.5) Weibull

6 200 2 -1 0.5 0.5 log(1.5) Weibull

7 200 2 -1 1 0.25 log(1.5) Weibull

8 200 2 -1 1 0.5 log(1.5) Weibull

9 200 2 -1 0.5 0.25 log(1.5) Log-normal

10 200 2 -1 0.5 0.5 log(1.5) Log-normal

11 200 2 -1 1 0.25 log(1.5) Log-normal

12 200 2 -1 1 0.5 log(1.5) Log-normal

Table 4.2: Simulation Setting
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Table 4.3: Simulation results with sample size 200 and true variance σ2
f = 0.5

True Frailty Censoring proportion Parameters Bias MSE Coverage Probability

Gamma 25 σ̂2
f 0.017 0.091 0.951

b̂0 0.115 0.215 0.942

b̂1 0.096 0.224 0.957

β̂1 -0.029 0.033 0.952

Log-normal σ̂2
f 0.037 0.061 0.952

b̂0 0.092 0.204 0.961

b̂1 0.202 0.406 0.946

β̂1 -0.026 0.025 0.958

Weibull σ̂2
f 0.048 0.114 0.960

b̂0 0.071 0.177 0.946

b̂1 0.074 0.307 0.951

β̂1 -0.033 0.046 0.949

Gamma 50 σ̂2
f 0.026 0.066

b̂0 0.310 0.399

b̂1 0.103 0.299

β̂1 -0.028 0.043

Log-normal σ̂2
f -0.032 0.081

b̂0 0.333 0.391

b̂1 0.192 0.295

β̂1 -0.041 0.055

Weibull σ̂2
f 0.048 0.092

b̂0 0.401 0.502

b̂1 0.183 0.309

β̂1 -0.045 0.062
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Table 4.4: Simulation results with sample size 100 and true variance σ2
f = 0.5

True Frailty Censoring proportion Parameters Bias MSE

Gamma 25 σ̂2
f 0.045 0.096

b̂0 0.084 0.136

b̂1 0.056 0.291

β̂1 -0.032 0.046

Log-normal σ̂2
f 0.068 0.086

b̂0 0.051 0.119

b̂1 0.141 0.266

β̂1 -0.025 0.055

Weibull σ̂2
f -0.039 0.112

b̂0 0.130 0.165

b̂1 0.063 0.179

β̂1 0.011 0.052

Gamma 50 σ̂2
f 0.028 0.081

b̂0 0.362 0.403

b̂1 0.201 0.454

β̂1 -0.018 0.039

Log-normal σ̂2
f 0.014 0.065

b̂0 0.184 0.235

b̂1 0.125 0.338

β̂1 0.013 0.030

Weibull σ̂2
f -0.016 0.108

b̂0 0.329 0.396

b̂1 0.099 0.421

β̂1 -0.047 0.057
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Table 4.5: Simulation results with sample size 200 and true variance σ2
f = 1

True Frailty Censoring proportion Parameters Bias MSE

Gamma 25 σ̂2
f 0.021 0.119

b̂0 0.129 0.204

b̂1 0.197 0.332

β̂1 -0.022 0.041

Log-normal σ̂2
f 0.027 0.127

b̂0 0.102 0.153

b̂1 -0.178 0.329

β̂1 -0.031 0.034

Weibull σ̂2
f 0.038 0.138

b̂0 0.112 0.163

b̂1 0.106 0.357

β̂1 -0.028 0.037

Gamma 50 σ̂2
f -0.018 0.182

b̂0 0.266 0.304

b̂1 0.172 0.282

β̂1 0.020 0.035

Log-normal σ̂2
f 0.045 0.124

b̂0 0.339 0.347

b̂1 0.169 0.406

β̂1 -0.036 0.056

Weibull σ̂2
f 0.098 0.093

b̂0 0.313 0.371

b̂1 0.114 0.367

β̂1 -0.025 0.042
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Table 4.6: Simulation results with sample size 100 and true variance σ2
f = 1

True Frailty Censoring proportion Parameters Bias MSE

Gamma 25 σ̂2
f 0.055 0.104

b̂0 0.143 0.252

b̂1 -0.031 0.177

β̂1 -0.039 0.036

Log-normal σ̂2
f 0.098 0.108

b̂0 0.072 0.116

b̂1 0.050 0.291

β̂1 -0.031 0.056

Weibull σ̂2
f -0.033 0.071

b̂0 0.095 0.129

b̂1 -0.026 0.322

β̂1 0.015 0.023

Gamma 50 σ̂2
f 0.050 0.127

b̂0 0.246 0.301

b̂1 0.207 0.336

β̂1 -0.035 0.041

Log-normal σ̂2
f -0.016 0.142

b̂0 0.121 0.223

b̂1 0.228 0.375

β̂1 -0.033 0.049

Weibull σ̂2
f -0.039 0.119

b̂0 0.312 0.352

b̂1 0.101 0.343

β̂1 -0.036 0.066
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4.4 Model Selection and Discrimination

Model discrimination is carried out in this section to examine further the performance

of the developed model and the estimation method. Based on the simulation setting

described in the last section, the four mixture cure AFT frailty models with Gamma,

Log-normal, Weibull and Generalized Gamma distribution are fitted to each data set.

True model
Fitted Model

Gamma Log-normal Weibull Generalized Gamma

Gamma 0.29 0.25 0.18 0.21

Log-normal 0.22 0.29 0.20 0.29

Weibull 0.26 0.27 0.23 0.24

Table 4.7: Selection rates based on Akaike information criterion (Sample size 100,

frailty variance 1 and censoring rate 0.25)

True model
Fitted Model

Gamma Log-normal Weibull Generalized Gamma

Gamma 0.35 0.21 0.13 0.31

Log-normal 0.26 0.30 0.15 0.29

Weibull 0.25 0.20 0.24 0.31

Table 4.8: Selection rates based on Akaike information criterion (Sample size 200,

frailty variance 1 and censoring rate 0.25)

Tables 4.7 and 4.8 present the selection rates of models based on the Akaike informa-

tion criterion. The selection rates of the correct models increase as the sample size
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increases. The Generalized Gamma frailty distribution performs better in most cases

when the sample size is large enough.

4.5 Application to Bone Marrow Transplant Data

As an application of the proposed model, we fit the bone marrow transplant study

for leukaemia patients with the mixture cure AFT frailty model.

Price and Manatunga (2001) considered this bone marrow transplant study for the

leukaemia patients. Leukaemia patients received either an allogeneic transplant or an

autologous transplant. The maximum followed up time is 1845 days and the time to

recurrence or censoring is recorded. The details of the data set have been described

earlier in Section 1.4.
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Gamma Log-normal Weibull GG

Estimate Var Estimate Var Estimate Var Estimate Var

β̂1 -0.356 0.288 -0.361 0.271 -0.392 0.446 -0.362 0.303

b0 1.008 0.341 1.018 0.334 0.989 0.330 1.009 0.320

b1 0.448 0.497 0.447 0.488 0.416 0.539 0.423 0.481

σ 1.187 0.467

q 0.982 0.294

θ̂ 1.623 0.440

σ̂2
f 0.616 0.668 0.626 0.814

` -199.02 -195.27 -197.39 -191.87

AIC 406.04 398.54 402.78 393.74

Table 4.9: Estimated parameters from the mixture cure AFT Generalized Gamma

frailty model for bone marrow transplant data

Note: The estimated variances (Var) are from the bootstrap method based on 500

bootstrap samples. The estimated frailty variance (σ̂2
f ) denotes the variance

calculated from the estimates.

Table 4.7 displays the estimation results of the fits of the bone marrow transplant data

set. As done by Price and Manatunga (2001), we consider a nested model and are

interested in testing the presence of immune fraction. This requires the comparison of

the mixture cure AFT frailty model and the AFT frailty model by Chen et al. (2013).

For this purpose, we can employ the Likelihood Ratio Test (LRT). Furthermore, since

the parameter is at the boundary of the parameter space, we need to consider the

boundary condition of LRT, as discussed in Maller and Zhou (1996). They suggested
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the large sample distribution of −2 log( ˆ̀
0 − ˆ̀) as a 50 - 50 mixture of a chi-square

random variable with 1 degree of freedom and a point mass at 0.

Then, to formally test the presence of immunes in the data set, the null hypothesis

H0: p0 = 0 is tested. The 95th percentile of the distribution of −2 log(Λ) is given by

1
2

+ 1
2
P (χ2 ≤ χ2∗) = 0.95. Based on χ2-table, the critical value is χ2∗ =2.71. Because

−2 log( ˆ̀
0 − ˆ̀) = −2 log(−180.03− 191.87) = 23.68 > 2.71, the null hypothesis is not

supported at the 5% significance level. So, we can conclude that there exists strong

evidence of a cured proportion.

Further, the cure proportions for the allogeneic transplant group are 1/(1+exp(1.0085)) =

0.2673, 1/(1 + exp(1.0183)) = 0.2654, 1/(1 + exp(1.0.9894)) = 0.2710 and 1/(1 +

exp(1.0094)) = 0.2671, respectively. On the other hand, the cure proportions for

the autologous transplant group are 1/(1 + exp(1.0085 + 0.4476)) = 0.1891, 1/(1 +

exp(1.0183 + 0.4465)) = 0.1877, 1/(1 + exp(0.9894 + 0.4161)) = 0.1969 and 1/(1 +

exp(1.0094 + 0.423)) = 0.1928. These results are consistent with those of Peng and

Zhang (2008a) and Zhang and Peng (2007a).
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Chapter 5

Concluding Remarks

5.1 Conclusions

In clinical studies, survival data do not often follow the assumption of proportional

hazards. One of the common approaches in such situations is to employ the frailty

model with proportion hazard (PH) assumption or to employ the accelerated failure

time (AFT) model to fit the hazard. One potential issue is that commonly used frailty

distributions, such as Gamma, Log-normal, Weibull and Inverse-Gaussian distribu-

tions, are not flexible enough to capture the heterogeneity among individual subjects

or groups. Moreover, the mixture cure accelerated time model with frailty term has

not been discussed in the literature. For these reason, we have introduced the mixture

cure Generalized Gamma frailty models under proportional hazard and accelerated

failure time assumptions.

In Chapter 2, with the aim of proposing a general mixture cure frailty model that

can describe the random effects among individuals in a flexible way, we have intro-

duced a mixture cure Generalized Gamma frailty model. Due to the complexity in
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the structure of the model and in not specifying the underling baseline distribution,

we propose an EM-type algorithm to develop semi-parametric inference for the model

parameters. Moreover, the expectations in the E-step do not have a closed form and

so Markov chain Monte Carlo (MCMC) approach is needed. As we optimize not by

maximizing the log-likelihood function directly, the Fisher information can not be

obtained and so bootstrap variance estimation is performed. This is also the variance

estimation approach suggested in the literature. The model and estimation procedure

provide satisfactory results in both simulation study and real-life data analysis. Based

on the results obtained, we observe that the common frailty distributions usually un-

derestimate the frailty variance, and so a more flexible frailty distribution model will

be very useful.

In Chapter 3, for the purpose of establishing a mixture cure frailty model with an

accelerated failure time model, we introduce a mixture cure AFT Gamma frailty

model. Due to the convenience of Gamma distribution as a frailty model, we can find

a closed-form expression for the conditional frailty variable. This simplifies the estima-

tion procedure significantly. The semi-parametric approach implements a Gehan-type

weight function resulting in a monotone function of parameters, and so the required

computation can be carried out through linear programming methods. The proposed

model is fitted to the bone marrow transplant data which demonstrates that the mix-

ture cure accelerated failure time frailty model is a suitable alternative to the usual

mixture cure frailty model.

In Chapter 4, motivated by the work of Zeng and Lin (2007) and to improve the

estimation methods developed in Chapters 2 and 3, we employ the normal kernel

smoothing methods to develop an efficient estimation method. As in the case of the
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usual proportional hazard model, EM algorithm is needed for estimation and the

MCMC approach is utilized. By assuming infinite partitions of the time interval,

we can find estimates of the Q function by a kernel density with certain bandwidth.

Thus, in the M-step, the Newton-Raphson method can be applied, and we can thus

find an efficient estimator. Then, we perform model discrimination based on Akaike

information criterion and Likelihood Ratio Test (LRT) for the purpose of comparing

various mixture cure AFT frailty models and for testing the necessity of the cure

assumption, respectively. The results show that the Generalized Gamma distribution

performs better than the common frailty distributions used and the cure fraction is

always significant under the accelerated failure time assumption.

5.2 Possible Future Directions

In the present work, we have assumed the cure probability and the random effect

of individual subjects to be independent of each other. This is only for the purpose

of simplifying the computation of effort; so, some further correlation analysis can be

performed for the mixture cure frailty model to relax this assumption made.

Also, limited by the structure of the mixture cure frailty itself, it is not possible to

consider frailty shared by subjects from the same cluster. There may be some other

ways to introduce a similar structure to propose a mixture cure clustered frailty

model.

In this work, we have developed efficient estimation of the use of a kernel smoothed

function. There are other ways to produce estimators with good properties, such

as Box-cox transformation, multiple imputation, numerical quadrature and Bayesian

analysis. Some estimation methods along these lines may be used to develop for the
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mixture cure AFT frailty model.
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Chapter 6

Appendix

6.1 Results for Special Cased of Generalized Gamma

Distribution

As specified in (1.21), when the parameter q → 0, the generalized gamma distribution

will tends to the Log-normal distribution. When we can set k = q−2 and z = log(λw)
σ

,

the limiting density function can be obtained as:

lim
q→0

g(w|q, σ, λ) = |q|(q−2)q
−2

(λw)q
−2(q/σ) exp

(
− q−2(λw)q/σ

/
Γ(q−2σw). (6.1)

If we rearrange the above expression, the density is given by

lim
k→∞

g(w|k) =
kk−1/2

Γ(k)
exp(

(√
kz − k exp(z/

√
k)

)
)

1

σw

= exp

[(
k − 1

2

)
log(k)− log Γ(k)

]
exp

(√
kz − kez/

√
k

)
1

σw
.

(6.2)
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Based on the property of Log-Gamma function described by Prentice (1977) and

Lawless (1980), the function can be expressed as

log(Γ(k)) = (k − 1

2
) log(k)− k +

1

2
log(2π) +

1

12
+O(k−3),

(k − 1

2
) log(k)− log(Γ(k)) = k − 1

2
log(2π)− 1

12
+O(k−3).

(6.3)

Thus, as k →∞, the limiting density function is given by

lim
k→∞

g(w|k) = exp

(
k − 1

2
log(2π)− 1

12k

)
exp

(√
kz − kez/

√
k

)
1

σw

= exp

(
k − 1

2
log(2π)− 1

12k
+
√
kz − kez/

√
k

)
=

1√
2π

exp

(
k(1− ez/

√
k) +

√
kz − 1

12k

)
=

1√
2πσw

exp

(
− z2

2

)
=

1√
2πσw

exp

(
− log(λw)

2σ2

)
.

(6.4)

This is consistent with the result in Equation (1.21); See also Balakrishnan and Peng

(2006) and Chen et al. (2013).
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6.2 Details of smoothing Q3 in Chapter 4

Based on Zeng and Lin (2007) and Chen et al. (2013), the kernel smoothed approxi-

mation of Q3 can be calculated as follows.

Suppose that n × ` = N . When N → ∞, Jn → ∞, and Jn
N
⇒ 0, according to the

Donsker theorem, we can obtain the following limits:

1

N

n∑
i=1

∑̀
j=1

δijβ
′Xij → E(δβ′X),

1

N

n∑
i=1

∑̀
j=1

δijI(e−β
′Xtij ∈ [tk−1, tk))→ P (δ = 1, e−β

′Xt ∈ [tk−1, tk)),

1

N

n∑
i=1

∑̀
j=1

δijI(e−β
′Xtij ∈ [tk−1, tk))→

dP (δ = 1, e−β
′Xt ≤ s)

ds
.

(6.1)

Definition: If for every ε > 0, there exist constants Cε and nε such that P (|Xn| ≤

Cεan) > 1− ε for every n ≥ nε, then we say Xn is Op(an).

Here, we can apply the multiple central limit theorem in Van Der Vaart and Wellner

(1996), and employ the maximization within a limit as follows:

max

∣∣∣∣ 1

N

n∑
i=1

∑̀
j=1

E

(
Iij
zij

σ/q

λ

)
(tije

−β′Xij − tk)I(tk−1 ≤ tije
−β′Xij ≤ tk)

− E

(
E

(
Iij
zij

σ/q

λ

)
(tije

−β′Xij − tk)I(e−β
′Xt ∈ [tk−1, tk))

)∣∣∣∣ = Op

(
1√
N

)
.

(6.2)

In other words, Q3 is bounded, up to an exceptional event of arbitrarily small (but

fixed) positive probability.
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Furthermore, the maximization can be simplified as

max

∣∣∣∣ 1

N

n∑
i=1

`u∑
j=1

E

(
Iij
zij

σ/q

λ

)
I(tije

−β′Xij ≥ tk)−E

[
E

(
Iij
zij

σ/q

λ

)
I(te−β

′Xij ≥ tk)

]∣∣∣∣ = Op

( 1√
N

)
.

(6.3)

According to the assumption that Jn
N
→ 0, the equation will converge uniformly in β

and tk.

Finally, upon choosing a kernel function K(.) with bandwidth an, under suitable

regularity conditions, Q3 can be obtained as

Q3 =
n∑
i=1

`i∑
j=1

[
δij log

(
1

n`ian

n∑
k=1

ni∑
l=1

δklK(
rkl − rij
an

)

)

− δij log
( 1

n`i

n∑
k=1

ni∑
l=1

∫ rkl−rij
an

−∞
E(Iij

zij
σ/q

λ
)K(s)ds

)]
,

(6.4)

where

rij = log(tij)− β′Xij, (6.5)

K(S) is the kernel function and an is the bandwidth. Thus, the complete log-

likelihood function can be approximated by using the kernel smoothed function. De-

tails of the proof and the asymptotic property can be found in Zeng and Lin (2007).
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