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Abstract

Detection of multiple-lane markings (lane-line) on road surfaces is an essential aspect

of autonomous vehicles. Although several approaches have been proposed to detect

lanes, detecting multiple lane-lines consistently, particularly across a stream of video

frames and under varying lighting conditions is still a challenging problem. Since the

road’s markings are designed to be smooth and parallel, lane-line sampled features

tend to be spatially and temporally correlated inside and between frames. In this

thesis, we develop novel methods to model these spatial and temporal dependencies

in the form of the target tracking problem. In fact, instead of resorting to the conven-

tional method of processing each frame to detect lanes only in the space domain, we

treat the overall problem as a Multiple Extended Target Tracking (METT) problem.

In the first step, we modeled lane-lines as multiple “independent” extended targets

and developed a spline mathematical model for the shape of the targets. We showed

that expanding the estimations across the time domain could improve the result of

estimation. We identify a set of control points for each spline, which will track over

time. To overcome the clutter problem, we developed an integrated probabilistic data

association filter (IPDAF) as our basis, and formulated a METT algorithm to track

multiple splines corresponding to each lane-line.

In the second part of our work, we investigated the coupling between multiple
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extended targets. We considered the non-parametric case and modeled target de-

pendency using the Multi-Output Gaussian Process. We showed that considering

dependency between extended targets could improve shape estimation results. We

exploit the dependency between extended targets by proposing a novel recursive ap-

proach called the Multi-Output Spatio-Temporal Gaussian Process Kalman Filter

(MO-STGP-KF). We used MO-STGP-KF to estimate and track multiple dependent

lane markings that are possibly degraded or obscured by traffic. Our method tested

for tracking multiple lane-lines but can be employed to track multiple dependent star

convex rigid-shape targets by using the measurement model in the radial space.

In the third section, we developed a Spatio-Temporal Joint Probabilistic Data

Association Filter (ST-JPDAF). In multiple extended target tracking problems with

clutter, sometimes extended targets share measurements: for example, in lane-line

detection, when two-lane markings pass or merge together. In single-point target

tracking, this problem can be solved using the famous Joint Probabilistic Data Associ-

ation (JPDA) filter. In the single-point case, even when measurements are dependent,

we can stack them in the coupled form of JPDA. In this last chapter, we expanded

JPDA for tracking multiple dependent extended targets using an approach called

ST-JPDAF. We managed dependency of measurements in space (inside a frame) and

time (between frames) using different kernel functions, which can be learned using

the training data. This extension can be used to track the shape and dynamic of

dependent extended targets within clutter when targets share measurements.

The performance of the proposed methods in all three chapters are quantified on

real data scenarios and their results are compared against well-known model-based,

semi-supervised, and fully-supervised methods. The proposed methods offer very
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promising results.
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Chapter 1

Introduction

1.1 Lane Detection and Tracking: A Brief Review

Unlike common object detection tasks that only require an approximate bounding

region (rectangle), lane detection programs require precise prediction of curves. In

the Lane Detection application, after feature extraction, we generally cluster and fit

measurements to a model to estimate degraded parts and parts that are not visible.

Many studies have focused on detecting lane-lines using parametric straight line,

polynomial, or spline curve models. The first are parametric in the sense that the

parameters of the system need to be defined in the program design stage. To estimate

the position of the lane markings in the current time, some of the methods only use the

last frame, while some use the stream of previous frames. In this thesis, we especially

focus on algorithms that both use the spatial and temporal domain together and use

the stream of frames.
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1.1.1 Traditional Lane Detection Algorithms

Most traditional methods of lane-line estimation only use the current frame to predict

the position of lane-lines. In fact, in these methods, we consider all information

limited to the single last frame, methods that are sometimes called spatial methods.

The procedure of a spatial method usually starts with feature extraction, clustering

features and finally filling in the missing parts using a mathematical model ([51, 66,

3, 68, 78, 93, 19]).

For feature extraction, most of these approaches predominantly rely on informa-

tion such as color, color cues, and edge-specific details. Color cues exploit the color

contrast information between the lane markings and roads. However, the conditions

have to be favorable for the differences, in contrast, to be realized by algorithms. Con-

ditions such as illumination, backlights, shadows, night lights, and weather conditions,

such as rain and snow, can significantly affect the performance of color cue-based al-

gorithms. Although some preprocessing can improve detection ([66]), consistently

differentiating lane boundaries from other artifacts, such as shadows and vehicles, is

a challenge. Inverse Perspective Mapping (IPM) is one preprocessing approach that

helps lane detection methods to distinguish lane boundaries from other artifacts in

the science. The central idea behind IPM is to remove the perspective distortion of

lines that are parallel in the real world ([15, 3, 10]). The main limitation is that

the transformation is very sensitive to obstacles on the road, such as vehicles, and to

terrain conditions ([63]).

Some works use line segments, the result of Hough transforms, or line segment

detection (LSD) to decrease the dimension of measurements as an alternative to using
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pixels as measurements. Because most of the road lane is designed to be parallel, cor-

responding extracted line segments should pass through a vanishing point in camera

perspective. This property can be exploited to eliminate and filter out line segments

that do not constitute lanes ([89, 50, 85]).

RANdom SAmple Consensus (RANSAC) or other parametric regression models

have also been used for clustering features ([3] [64]). In Parametric methods the

number of parameters stay fixed with respect to the size of the data, in non-parametric

models, the number of parameters grows with the number of data points and can make

the better estimation.

With recent improvements in the performance of CPUs and GPUs, fully super-

vised methods like Convolutional Neural Network (CNN) and deep learning have also

been introduced for the detection and classification of lane markings in real time.

In lane-line tracking, the lack of distinctive features tends to make the algorithms

confused by other objects with similar local appearance. In some works, NN is used

to remove clutter. For example, the CPN network can be used to detect road sur-

faces, and the Region of Interest (ROI) and You-Only-Look-Once (YOLO) network

can detect and remove cars or other patterns on the road ([60]). Many approaches

have been introduced to overcome the problem of the lack of distinctive features in

lane markings. In [68], Spatial Convolutional NN (SCNN) is used to extract spatial

correlation between rows and columns. These relationships help in cases of semantic

objects that have dependent parts, like lane markings. Another method that can be

used is a two-step learning approach. For example, [86] use a real-time network called

“Lanenet” that is based on a two-stage Deep NN for lane detection. One network

is used to detect lane marking edges, while the other is for semantic purposes like
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grouping and clustering lane markings. Due to the variety of situations on roads,

training a network for lane detection is a substantial, time-consuming process. Most

of the time, a network that works well with one data set does not work as well with

others.

The viability of most of these approaches is dependent on the preprocessing of

images. As such, the robustness of these approaches varies depending on a number

of conditions, and the quality of results is subject to the techniques applied to the

preprocessing stage.

In this thesis, working within the spatial domain to detect the features belonging

to each target, we introduced two Bayesian clustering methods to group features

belonging to each lane line. In the first method, we used the line-segments result of

the Hough Transform and apply the Maximum A Posterior estimator to use prior

information, the curvature of lanes, to cluster line segments belonging to lane-lines.

In two subsequent works, we take advantage of dependency and the addition of more

semantic to measurements, introducing a kernel-based joint probability association

couple filter, K-JPADACF, to group pixel features belonging to each lane-line.

1.1.2 Extended Target Models for Lane Tracking

The second category of lane detection methods uses the temporal domain in addition

to spatial information. It would be possible to use previous information as a prior

using Bayesian recursive techniques and then use a tracking algorithm like a Kalman

filter to expand estimations to the time domain. A number of approaches have been

proposed in the literature for tracking a single lane or multiple lanes, such as ([54, 4,

92, 94, 46, 85, 19]).
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In most of these cases, the traditional parametric methods like line, polynomial,

or spline fitting have been used as a measurement model combined with a dynamic

motion model like constant velocity or random walk for scattering points (extends). In

these cases, the parameters of the shape typically need to be defined at the program

design stage (parametric); they are highly sensitive to prior information and not

flexible for modeling dependency. Since the lanes are parallel and the road’s shape

is designed to be smooth enough for safe driving, extracted features of lane markings

tend to be spatially and temporally correlated together between frames. Since the

shape of lane-lines change over time, it is possible to track the change of the lane-lines

using Extended Target (ET) models.

Extended Target Tracking (ETT) is the process of estimating both the evolution

of the shape of the target and the kinematic, using a sequence of noisy measure-

ments ([34]). Sometimes it is considered similar to Group Target Tracking (GTT),

when states of closely grouped single-point targets moving with similar dynamics are

estimated.

Extended Target Tracking is used in many modern applications, including robot

navigation, tracking of people and cars, chemical and biological reaction estimation,

epidemics, and pollution ([76]). ETT is also considered an integral part of many

Advanced Driver Assistance Systems (ADAS) and autonomous or self-driving cars in

urban traffic ([52]).

Extended Target Tracking is sometimes called Multiple Detection Target Tracking

(MDTT). MDTT requires nonlinear estimation methods that can address clutter and

data association ([6], [36]). Typical extended targets can model simple shapes like

circles, ellipsoids, or rectangles ([48], [33]). The Random Matrices (RM) technique
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was the first Bayesian method for tracking extended targets ([48]). The formula-

tion of the RM technique assumes that the extended target is ellipsoidal. However,

in some practical applications, this assumption doesn’t hold. To describe and esti-

mate the non-ellipsoidal shape of an extended target, several techniques, such as the

multi-ellipsoid RM model ([53]) and the random hyper-surface model ([9]) have been

proposed.

B-spline curves models have also drawn some attention in recent years in the field

of ET tracking and have shown promising results in modeling the extent of ET objects

([43, 45, 24]).

A Gaussian process (GP) is another excellent non-parametric Bayesian modeling

method that has been used recently to track extended targets ([82, 35, 90, 1]). In

GP, the process noise is considered Gaussian, and the ET object shape is assumed to

be star-convex; these can be represented with the help of a radial basis function by

means of the GP approach.

In real-time applications, the kernel-based GP regression is not feasible because

it is a batch process and needs the inversion of a covariance matrix with cubic com-

plexity with respect to the number of inputs. In this case, a recursive GP regression

model can be used ([75]). In [82], GP was used for the first time to model extended

targets, by applying a recursive GP regression called GP-KF to estimate the shape

and kinematics of extended targets in linear time. The evolution of the shape was

considered to be Markovian with a forgetting factor for the temporal dynamic, similar

to the Huber method ([41]).

In tracking extended targets when the shape of the object is changing over time,

the spatial part of the object is correlated in both the space and the time domains. In

6
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this case, considering the evolving shape only in the spacial domain will compromise

performance. In [1], STGP was used for the first time to track extended targets, using

a variant called STGP-KF. They used the idea proposed in [74], in which the power

spectral density function of the STGP covariance function was factorized in order to

find the transfer function. [1] used this idea to track rigid objects in radial space.

To exploit the correlation between outputs, we can model the interference of tar-

gets using the Multi-output Gaussian Process (MOGP) method ([14]). In MOGP,

one single input (an index point) has a set of correlated outputs. [2] demonstrate

that the overall covariance function could be parameterized as a combination of the

output similarity’s matrix and the input’s spacial kernel. In fact, instead of viewing

each output separately, this model corresponds to a scenario where only one Gaussian

process exists, and each task simply shares this latent process with various weights

plus additive white noise ([72]).

1.2 Theme and Objectives of Dissertation

The chapters in this dissertation are focused on new lane tracking algorithms using

extended target tracking methods under challenging conditions. The general focus of

the the thesis is as follows:

1. Developing a Bayesian clustering algorithm, based on a maximum a posteriori

(MAP) estimator, to cluster line segments into different groups

2. Developing a new METT model based on the IPDA filter and augmented with

an intensity feature for tracking Catmull splines

3. Introducing a new Kernel-based Joint Probabilistic Data Association Coupled

7



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

Filter (K-JPDACF) to cluster dependent features belonging to lane-lines in

linear time.

4. Implementing a dependency model based on MOGP for training lane-lines and

initializing the filter

5. Introducing a new recursive MO-STGP-KF for tracking multiple dependent

extended targets

6. Introducing a ST-JPDA filter to track independent or dependent multiple ex-

tended targets that share measurements with each other

1.3 Publications

This thesis is the result of my five years of research, summarized in three publications:

1. Expanding Lane Detection Methods into the Time Domain Using an IPDA

Filter with Intensity Feature

Behzad Akbari, Jeyarajan Thiyagalingamy, and Thia Kirubarajan

Submitted in MDPI sensors journal

2. Lane Tracking Using Dependent Extended Target Models and Multi-Output

Spatio-temporal Gaussian Processes

Behzad Akbari and Thia Kirubarajan

To be submitted in IEEE Transaction journal

3. A Spatio-Temporal Joint Probabilistic Data Association Filter (ST-JPDAF) for

Tracking Extended Targets

8
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Behzad Akbari and Thia Kirubarajan

To be submitted in MDPI sensors journal

1.3.1 First Paper

In the first paper, we propose a tracking algorithm for multiple lane-lines across a

stream of frames. Instead of resorting to the conventional method of processing each

frame to detect lanes in the space domain alone, we treat the overall problem as a

Multi Extended Target Tracking (METT) problem, across both the space and the

time domains. We use the intensity of lane-lines as an augmented feature to correctly

cluster multiple lane-lines. By representing these lane-lines as splines, we then identify

a set of control points. These become states of our extended target, which need to

be tracked over time across a stream of frames.

By representing an integrated probabilistic data association filter (IPDAF) as our

basis, we formulate a METT algorithm to track multiple splines corresponding to

each lane-line.

1.3.2 Second Paper

In the second paper, we propose a novel approach called the Multi-Output Spatio-

Temporal Gaussian Process Kalman Filter (MO-STGP-KF) for estimating and track-

ing multiple correlated lane markings that are possibly degraded or covered with

traffic. For feature extraction and clustering of lane markings, we propose a new

Kernel-based Joint Probabilistic Data Association Coupled Filter (K-JPDACF) to

cluster multiple lane-lines with linear computational complexity. For training and

initialization of the filter, a model based on MOGP is proposed.
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1.3.3 Third Paper

In the last paper, we develop a Spatio-Temporal Joint Probabilistic Data Associa-

tion Filter (ST-JPDAF). We manage dependency of measurements in space (inside a

frame) and time (between frames) using different kernel functions. The kernel func-

tions are learned using the training data. This method can be used to track the shape

and dynamic of non-parametric dependent extended targets with share measurements

in clutter.

1.3.4 Relationship Between Three Algorithms

These three papers are different approaches for tracking multiple extended targets

implemented in the lane marking detection application where:

1. Targets are independent with spline shape (parametric model), and the clutter

exist(first paper).

2. Targets are continuous functions (non parametric model) , clutter exist and the

shape or dynamic of targets can be dependent (second paper).

3. Targets are continuous functions (non parametric), shape or dynamic can be

dependent, clutter exist and they can share measurements (third paper).
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Chapter 2

Expanding Lane Detection

Methods into Time Domain Using

IPDA Filter with Intensity Feature

2.1 Introduction

Advanced Driving Assistance Systems (ADAS) are no longer an optional luxury com-

ponent in modern vehicles ([12]). Instead, they are becoming a core component in

modern vehicles, especially with the migration toward autonomous vehicles. ADAS

covers a number of varying functionalities, such as lane departure warning (LDW),

lane keep assist (LKA), lane change merge (LCM), adaptive cruise control (ACC),

collision detection and avoidance (CD), and night vision and blind-spot detection, to

mention a few ([44, 87, 28, 12, 78, 23, 11, 27, 73, 15, 21, 58]). The overall function-

ality of the ADAS is underpinned by a machine vision component, whose ability to

understand the surroundings, particularly the ability to extract a group of related
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lane markings (lane-line) and markings in roads, decides the overall performance of

the ADAS. With ADAS becoming a core component, it is essential that potential

errors arising out of the machine vision component be as low as possible. However,

correctly and consistently extracting the lane markings, at all times and across a

range of weather conditions, is not trivial. In addition to this, varying lane marking

standards, obscure lane markings, splitting and merging of lanes, and the shadows of

vehicles and objects exacerbate this problem even more ([46, 57, 91, 54]). We show

several such examples in Figure 2.1.

Figure 2.1: Example cases where extracting lane markings is challenging (adopted
from [3]).
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Road markings can be extracted using image-based sensors like monocular or

stereo vision cameras or using LIDAR sensors. Among these, the use of monocular

cameras is a cost-effective approach, albeit carrying the disadvantage of lacking depth

information. Stereo vision cameras can, however, make it possible to infer the depth

information and hence reconstruct three-dimensional scenarios for improved func-

tionality, such as collision detection ([87]). LIDAR sensors exploit the fact that road

markings are painted using retro-reflective paints. These extracted markings can then

be used to extract the lane markings. However, like stereo vision cameras, LIDAR

sensors are far more expensive than monocular cameras. As such, seeking a trade-off

between performance, reliability, and cost is essential. Treating cost-effectiveness as

the primary objective, we assume that the lane detection is performed on images

obtained from a monocular camera system.

The literature on lane detection and tracking is considerable, with a variety of

techniques that cover various application domains, including LDW, LKA, LCM, and

CD. Some of these perform lane marking detection (for example [22, 32]) and track

them, while the rest perform only the detection (for example [58, 28, 66]). In par-

ticular, we focus on techniques that rely solely on images or videos obtained from

monocular vision cameras for lane marking detection followed by tracking. For in-

stance, vision-based lane detection has been used for LDW in [46, 10, 28, 15, 21].

These approaches predominantly rely on information such as color, color cues, and

edge-specific details. Color cues exploit the color contrast information between the

lane markings and roads. However, the conditions have to be favorable for the dif-

ferences, in contrast, to be realized by algorithms. Conditions such as illumination,

back lights, shadows, night lights, and weather conditions such as rain and snow
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can affect the performance of color cue-based algorithms significantly. One approach

to overcome these limitations is to use the Hough transform along with color cues

([51]). However, the Hough transform works well when the potential candidate lines

are straight and visible enough. Although some preprocessing can improve detec-

tion ([66]), consistently differentiating lane boundaries from other artifacts, such as

shadows and vehicles, is a challenge.

Inverse Perspective Mapping (IPM) is another approach to determine the lane

boundaries in LDW systems. The central idea behind IPM is to remove the perspec-

tive distortion of lines that are parallel in the real world ([15, 3, 10]). To do this,

images are transformed from a camera view to a bird’s eye view using camera parame-

ters. During the transformation, the aspect ratios are retained, so that gaps or widths

between lane boundaries are transformed appropriately. As such, the lane boundaries

are still detectable in the transformed space. However, there are several downsides to

this approach. Primarily, IPM is often used with fixed camera calibration parameters,

and this may not always be optimal owing to the surface conditions ([88]). Although

these issues can reasonably be overcome by resorting to various techniques, such as

calibration and adequate compute power systems ([88, 55, 71]), the main limitation

is that the transformation is very sensitive to obstacles on the road, such as vehicles,

and to terrain conditions ([63]).

Identification and clustering of lane boundaries is a fundamental requirement for

any lane-line detection algorithm, and the proposed approach is no exception. Many

papers have been published to date on clustering and grouping features in lane-

line detection. Most of these were based on the Hough transform, RANdom SAmple

Consensus (RANSAC), or other parametric regression models ([3], [64]). In real-world
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situations, where clutter exists and lanes-lines are merging or splinting, clustering

becomes more challenging.

If we define a road lane as a pair of parallel lane-lines, corresponding extracted

line segments should pass through a vanishing point. This property can be exploited

to eliminate and filter out the line segments that do not constitute lanes ([89, 50, 85]).

A number of approaches have been proposed in the literature for tracking a single

lane, such as ([54, 4, 92, 94, 46, 85, 19]). In [54] color, gradient, and line clustering

information are used to improve the extraction of lane markings. In [4], multilevel im-

age processing and a tracking framework are proposed for a monocular camera-based

system. As such, it heavily relies on preprocessing of frames. Our approach also uses

splines, but our tracking approach is significantly different from the one in [4]. In

[92] and [94], techniques for personalized lane-change manoeuvring are discussed.

They use driver-specific behaviors, collected as part of the system, to improve the

results. Although this can improve the results, such approaches are difficult to imple-

ment practically. Unlike common object detection tasks that only require bounding

boxes, lane detection requires precise prediction of curves, so after detection of lane

markings, we need clustering and fitting to find lane-lines. In [19], lane tracking

is simplified by forming a mid-line of a single lane using B-splines. Although this

approach may be useful over a short distance, conditions such as diverging lanes or

missing lane markings will render the approach susceptible to bad approximations of

mid-lines. This can easily lead to suboptimal results.

The viability of most of these approaches is underpinned by preprocessing of

images. As such, the robustness of the approaches varies depending on a number of

conditions, and thus the quality of the results is subject to preprocessing techniques.
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In [26], an approach for lane boundary detection based on Random Finite Sets and

PHD filter is proposed as a multitarget tracking problem.

One viable approach to lane detection is to model the lanes as functions and ap-

ply curve-fitting on points detected by the edge detection algorithms ([93]). This

approach, in comparison to the techniques outlined above, is less susceptible to vary-

ing conditions such as shadows. However, modeling complex lane features such as

diverging or merging lanes as functions is a complex process.

Fully supervised methods like Convolutional Neural Network (CNN) and deep

learning have also been used recently for detection and classification of lane mark-

ings. In lane-line tracking, the lack of distinctive features tends to make the algorithms

confused by other objects with similar local appearance. In some works, NN is used

to remove clutter. For example, a CPN network can be used to detect road surfaces

and a Region of Interest (ROI) and YOLO network to detect and remove other pat-

terns on the road or cars ([60]). Many approaches have been introduced to overcome

the problem of the lack of distinctive features for lane markings. In [68], Spatial

Convolutional NN (SCNN) is used to extract spatial correlation between rows and

columns. These relationships help with semantic objects that have dependent parts,

like lane markings. The other method that can be used is to have two steps for learn-

ing. In [86], a real-time network called “Lanenet” that is based on a two-stage Deep

NN for lane detection is employed. One network detects lane marking edges,while

the other is for semantic purposes, like grouping and clustering lane markings. Due

to the variety of situations on the roads, training a network for lane detection is a

substantial, time-consuming process. Most of the time, the network that works well

with one data set does not work with others.
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In this paper, we propose a novel method for lane detection in which the overall

problem is treated as a METT problem. Our method also can be augmented to other

lane detection methods to add the time domain and predict the position of the lane

when there are not enough observations in a single frame. To this end, we first model

each lane-line as a spline, defined by a finite set of control points or stats. By treating

these splines (and thus the control points) as an extended target whose motions are

defined during frame transitions, we develop a multitarget tracking problem with an

appropriate motion model. Although we rely on some preprocessing algorithms to

identify and extract lane markings and line segments, the overarching approach for

continuous detection of lanes across a number of frames is significantly different from

those found in the literature.

We utilize the probabilistic Hough transformation ([47]) to perform an initial ex-

traction of lane markings. This is then followed by a series of algorithms before

treating the lane-lines as extended targets. The first algorithm in the pipeline per-

forms an initial clustering and grouping of line segments, then outputs the Hough

transform into different clusters. We then devise a multitarget tracking algorithm

based on a motion model that assumes that the transitions of splines across frames

take place at a constant rate. In doing this, we make the following key contributions:

1. we develop a Bayesian clustering algorithm, based on a maximum a posteriori

(MAP) estimator ([6]), to group different line segments into different groups;

and

2. we develop a METT model based on the IPDA filter augmented with an inten-

sity feature.

The remainder of this paper is organized as follows: In Section 3.2 we provide
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a background into a number of aspects that this work builds upon, including the

Catmull-Rom Spline, MAP estimator, and IPDA filter. In Section 2.3, we formulate

the overall problem and discuss our approach for solving each of the subproblems.

This is followed by Section 2.4, where we discuss a set of preprocessing steps on the

input images prior to using our framework of methods. The process of selecting and

estimating control points to describe the splines, and two of our key algorithms for

this purpose are discussed in Section 2.5. We then describe the techniques employed

to track the splines using the IPDA filter in Section 2.6. The results of our evaluations

are then presented in Section 4.4 and we discuss conclusions in Section 4.5.

2.2 Background

2.2.1 Catmull-Rom Spline

A curve C in space Rn can be piece-wise defined by a set of polynomials, which are

often referred to as splines ([84]). The splines are defined using a set of fixed points

(known as control points), P = {p0, . . . , pm}, which also lie in the same space as C.

The specialty of the Catmull-Rom spline ([20, 49, 17]) is that the control points lie

on the spline itself and for each polynomial m = 4. In other words, the Catmull-Rom

spline requires four control points in each section to describe any curve. Given that

we extract only the lane markings (and not the surroundings), when mapping lanes

to splines, it is essential to have the control points on the curves themselves. As such,

the Catmull-Rom spline is an ideal choice here.

The Catmull-Rom spline is part of the cubic interpolating spline family ([84]),

where the gradient or tangent at each point of the spline is calculated using the
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Figure 2.2: Catmull spline between two control points p1 and p2.

previous and next points on the spline. Let pk be the k-th point on the spline. The

Catmull-Rom splines have uniform parameter spacing between two consecutive points,

and this spacing is assumed to be t. The geometry matrix for a single Catmull-Rom

segment s, such as one shown in Figure 2.2, can be expressed as

p(s) = TXP, (2.2.1)

where

T =

[
1, t, t2, t3

]

X =



0 1 0 0

−λ 0 λ 0

2λ (λ− 3) (3− 2λ) −λ

−λ (2− λ) (λ− 2) λ


and
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P =



pk−2

pk−1

pk

pk+1.


The parameter λ denotes the tension of the spline, determining the sharpness of the

bends of the spline at the interpolated control points, with λ = 1 giving full freedom

for very sharp bends to λ = 0, which offers no bends at all. In most cases, it is not

unusual to set λ = 0.5.

2.2.2 Maximum a Posteriori (MAP) Estimator

Maximum a Posteriori (MAP) estimation ([6]) is a form of a approximate posterior

inference model, where the aim is to estimate some parameter θ in the setting of a

posteriori distribution p(θ|z), and a prior probability distribution p(θ), where z is the

observation or measurement.

More specifically, the problem is such that there is a need to derive a single

estimate of an unknown parameter θ that maximizes the posteriori probability dis-

tribution, i.e.,

θ̂MAP = arg max
θ

p(θ|z). (2.2.2)

With Bayes’ rule, this can be expressed as

θ̂MAP = arg max
θ

p(z|θ)p(θ), (2.2.3)
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where θ̂MAP is the estimated value of the parameter θ. The likelihood distribution

p(z|θ) is often derived from the observed data. It is possible to repeatedly apply

the MAP estimator to estimate more than one parameter. In our case, we use the

MAP estimator to group all the line segments belonging to a single lane-line, and to

estimate the best control points that would best fit the spline. This will be discussed

in detail in the next section.

2.2.3 IPDA Filter

The principle behind the IPDA filter ([62]) is to integrate the track initiation and

data association operations into a single algorithm. This is achieved by treating track

existence as a probabilistic event. In a situation where the number of targets, the

number of measurements, and the locations of the targets are unknown, as discussed

in Section 3.2, tracks are initialized during each time step, relying on the received set

of measurements. Such a process inevitably initiates a number of false tracks along

with the true tracks. Although these false tracks may be terminated over a number

of time steps, differentiating between true and false tracks requires a track quality

measure. This is achieved by modeling the existence of the target being followed by

track τ using a discrete random variable ετk(j). With this, the event ετk(j) = 1 denotes

the existence of the target τ (the event that track τ is true), while the event ετk(j) = 0

denotes the absence of the target τ (the event that track τ is false), at time step k

using the measurement j.

Let mk and Zk be the number of detections or measurements and the total sets

of measurements at time step k, respectively. Let Zk = ZkZ
k−1 be the set of sets of

measurements up to and including time step k. Each track τ at time k is described
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by three components: state estimate, an error covariance of the state estimate, and

a probability that the track is indeed the result of the target trajectory estimation.

Furthermore, let PD and PG be the probabilities of detection, denoting the presence of

a measurement whenever the target exists and probability that a measurement falling

within the gating region, respectively. With these, the conditional probabilities that

the measurement j at time step k originated from a target being tracked by track τ ,

provided that the track exists, are expressed as

βjk,0 =
(1− PDPG)

Cj=0

(2.2.4)

βj
k,zk

=
Ljej

Cj=1,...,mk

, (2.2.5)

where

C = (1− PDPG) +

mk∑
j=1

Ljej

and updated value equal to the conditional mean of

x̂(k|k) = E(x(k)|zk)

=

mk∑
j=0

x̂j(k|k)βj(k). (2.2.6)
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2.3 Problem Formulation and Our Approach

2.3.1 Problem Formulation

Given the background and context from Sections 4.1 and 3.2, the overall problem of

lane identification across a sequence of frames can be reformulated as follows:

1. Finding pseudo measurements (control points): For a set of lane markings on

frame k, cluster line segments and identify a set of control points that would

uniquely describe each of the lane markings; and

2. METT: By considering control points in each of the lane-lines as pseudo mea-

surements, the METT algorithm helps with the extraction and identification of

lane markings on the frames yet to be seen.

To facilitate the process of deriving an overall approach and suitable algorithms,

we use i as the index for the control points i ∈ 0, 1, . . . , N , j as the lane index, and k

as the frame index. For instance, the parameter xi,j,k denotes the i-th control point

for the j-th lane on the k-th frame. The notations used in this manuscript are given

in Table 3.1.

2.3.2 Our Approach

To address the overall problem outlined in Section 2.3.1, we decompose the problem

into a number of sub-problems, each of which handles a specific aspect of the overall

lane detection problem across frames. The overall agenda is to form an automated

processing pipeline, where each stage of the pipeline is underpinned by one or more

algorithms. This processing pipeline is shown in Figure 2.3.
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Table 2.1: Symbols adopted in this manuscript.

Symbol Description
xi,k,j Single control point in the line segment j
ψs(j) Line segment j in the section s
Zk,j Pseudo measurements or control points for a spline
R Covariance of the measurement noise
Q Covariance of the process noise
τ Track index
F State transition matrix
H Measurement matrix
PG Gating probability
ek,j Event on the jth spline at the kth frame
Ψk,s Validated set of measurements for section s

Each of these stages is discussed in the following sections.

2.4 Preprocessing

The key aspects of the preprocessing stage include edge detection, probabilistic Hough

transform, and extraction of ROI. We also use noise filtering before each of these stages

to minimize the impact of noise amplification in the process.

2.4.1 Edge Detection

Essentially, edge detection in images is based on the convolution of a predetermined

kernel with an image ([31]). In our case, each frame forms an image. However, this

basic approach for edge detection, which is a gradient finding exercise, picks up the

gradients of the noise along with the lane markings. Although basic noise filtering,

such as averaging or median filtering, can minimize these effects, they do not guard

the edge detection against these artifacts. For this reason, we used the Canny edge
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Figure 2.3: The automated processing pipeline of our approach.

detection ([31]), which incorporates Gaussian filtering as a precursor to the gradient

calculation step. More specifically, we used two 3 × 3 kernels, namely, a Gaussian

kernel H and an edge detection kernel K. For each input frame Fin, we calculated

the output frame Fout, as

Fout = K ∗ (H ∗ F ′in), (2.4.1)

where F ′in denotes the noise filtered version of Fin, and the ∗ operator denotes the

convolution operation. We have also prefixed the values of H (by fixing the variance).
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2.4.2 Probabilistic Hough Transform

Considering each curve as a limited number of line segments, let us decrease the

dimension of inputs by using line segment measurements instead of pixels. Many

methods have been used to detect line segments in an image; one of these, the Hough

transform, is a fast voting algorithm for this purpose. Given a straight line y = mx+c,

it has an equivalent polar representation ρ = x cos(θ) + y sin(θ), where ρ and θ

represent the normal distance of the line from the origin, and the angle that normal

subtends with the x axis, respectively. With this, a point (xi, yi) in Cartesian space

(for i = 1 . . .M) becomes a sinusoid in the polar (θ, ρ) space. In the (θ, ρ) space,

sinusoids that intersect at any single point (θi, ρi) represent the same straight line

in the Cartesian space defined by the properties (θi, ρi). That is, two points in the

image plane that belong to the same line can determine a point (ρi, θi) in the polar

space, given by the intersection of two sinusoids.

We illustrate this in Figure 2.4. The number of sinusoids that pass through a point

in the transformed space represents the weight of the line. Easier implementation of

this is due to [25], where the (θ, ρ) space is discretized into a set of grid points

and represented as an accumulator matrix, whose entries represent the number of

intersections at that point. The entries are updated as each point is mapped to the

transformed space and when intersections are found. This matrix is then exhaustively

searched for a maximum (and other decreasing maxima) to find straight lines. As

such, the original Hough transformation process is very computationally intensive.

In our case, we adopted the probabilistic version of the Hough transform ([29]),

where only a subset of the edge points m < M are selected through the random

sampling process, particularly when updating the accumulator matrix. With this
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approach, we reduce the amount of computation without considering all possible

measurements.

Figure 2.4: Transformation of a preprocessed image to the Hough space.

2.4.3 Extraction of Regions of Interest

Although the probabilistic Hough transform can filter out unnecessary edges and

lead to straight lines, the extracted straight lines do not have to represent only the

lanes. In fact, the extracted straight lines can be anything, including lanes, edges

of the vehicles, lampposts, and buildings. An easier approach to filter out irrelevant

components is to use the vanishing points. Each pair of lines ia a lane should have a

vanishing point.

Vanishing points can be extracted by embedding a new process after the proba-

bilistic Hough transform process outlined above. Sinusoids that pass through all of

the maxima points in Hough space should correspond to the vanishing point in the

image plane. In particular, we extract vanishing points for each partition of the im-

age. We then use these vanishing points to eliminate irrelevant straight line segments

in the image and to form regions of interest. In addition to this, the area outside the
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vanishing line has no information that can aid lane boundary tracking and can be

removed.

In Figure 2.5, we show the outputs of different stages of the preprocessing.

(a) (b) (c) (d) (e)

Figure 2.5: An example of preprocessing of image frames. (a) Raw image of the
frame; (b) After edge and color segmentation; (c) Noise filtering and thinning; (d)
Probabilistic Hough transform result; (e) Extracting VPs and regions of interest.

2.5 Identification of Pseudo Measurements or Con-

trol Points

2.5.1 Frame Partitioning and Measurement Likelihood

Once the preprocessing is over, the next stage of the pipeline extracts the pseudo

measurements. Although we intend to identify a set of control points to model the

lane-lines, the process is much simpler if the splines are small in size and straight

in shape. However, the extracted lane markings are seldom straight. One approach

to address this issue is to partition each frame into n horizontal tiles, each with an

experimentally determined height, so the lanes on each partition are near straight.

Figure 2.6 shows the same image partitioned in two different ways: for two different

values of n (namely, n = 3 and n = 4), and different partition heights.
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(a) Partitioning for n = 3

(b) Partitioning for n = 4

Figure 2.6: Two different examples of partitioning outputs (right) for the same
input image (left). (a) n = 3 and h1 = 1

7
H, h2 = 2

7
H and h3 = 4

7
H; (b) n = 4 and

h1 = 1
11
H, h2 = 2

11
H, h3 = 3

11
H, and h4 = 5

11
H.

However, considering the perspective characteristics of the camera and the dis-

tance of lanes from the camera, it is beneficial to have the heights of the partitions in

increasing order toward the bottom of the frame. We experimentally determined that

the extracted information is maximized for n = 3, such that h1 = 1
7
H, h2 = 2

7
H, and

h3 = 4
7
H, where H is the overall height of the region of interest (ROI). We use this

configuration with the values of n and hi (i = 1, 2, 3) throughout the study conducted

in this paper.

2.5.2 Intensity and Likelihood Ratio of a Line Segment

For each of the partitions, we extract the line segments. However, the extraction

process, akin to the edge in most detection techniques, produces a number of broken,
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small, non-continuous, and irrelevant line segments. As such, one of the key challenges

following the extraction process is to distinguish the lane markings from background

noise and clutter. To render a more robust and high-fidelity approach toward clutter

and noise management, we augment the extractions with underlying intensity values.

More specifically, we define the number of edge points that lie in an extended line

segment s (s = 1, . . . , n) as the intensity. The intensity can be extended to pseudo-

measurements belonging to a curve. The intensity of an expanded line segment is

represented as a likelihood ratio, which is defined below.

Let p0(fj) be the probability density function (PDF) of the noise only, and p1(fj)

be the target-originated line segment detections before thresholding. Furthermore,

let D0 and D1 be the scale parameters for false alarms and clutter, and target, respec-

tively. These scale parameters are dependent on the minimum number of points used

in the Hough transform. The noise only and target-originated measurement density

functions are

p0(fj) =
fj
D2

0

e

(−f2j
2D2

0

)
(2.5.1)

p1(fj) =
fj
D2

1

e

(−f2j
2D2

1

)
, (2.5.2)

where fj ≥ 0 is the intensity of the candidate measurements j. Furthermore, let

γ = γdet be the threshold to declare a detection. The probabilities of detection (PD)

and false alarm (PFA) can be computed as follows:
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PD =

∫ ∞
γ

p1(fj)dfj

= e
−γ2

2D2
1 (2.5.3)

PFA =

∫ ∞
γ

p0(fj)dfj

= e
−γ2

2D2
0 (2.5.4)

Although the probability of detection, PD, can be increased by lowering γ, it will

increase PFA. Hence the choice of γ cannot be arbitrary. With these, the correspond-

ing probability density functions after thresholding become

pγ0(fj) =
1

PFA
p0(fj)

=
fj

PFAD2
0

e
(
−f2j
2D2

0
)

(2.5.5)

pγ1(fj) =
1

PD
p1(fj)

=
fj

PDD2
1

e
(
−f2j
2D2

1
)
. (2.5.6)

where pγ0(fj) and pγ1(fj) are the probability density functions of the validated mea-

surement ψj (for j = 1, . . . ,m) that are due to noise only and originate from the

target, respectively.

Considering (2.5.5)–(2.5.6), the line segment intensity likelihood ratio ej, which is

the likelihood ratio of measurement (line segments) ψj with intensity of fj edge pixels

originating from the target rather than clutter, can be defined as
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ej(k) =
pγ1(fj)

pγ0(fj)

=
PFAD

2
0

PDD2
1

e
f2j

(
D2
1−D

2
0

2D2
0D

2
1

)
. (2.5.7)

2.5.3 Bayesian Clustering and Pseudo Measurements

Let Zτ
k,j be the control points for track τ and lane-line j in frame k. More specifically,

Zτ
k,j = [xτ1,j,k, x

τ
2,j,k, x

τ
3,j,k, x

τ
4,j,k]. (2.5.8)

Furthermore, let ψks (j) denote the line segment in section s, at time step k, for

lane j. Each such measurement has a position and the intensity as a likelihood ratio,

ej(k).

Although we expect the pseudo-measurements to almost model the lane-line, in

reality, a number of factors make this a challenging process. Some examples include

missed detection, the non-deterministic nature of the preprocessing, and noisy mea-

surements due to clutter. Therefore, it is essential to model these imperfections as

part of the process.

To simplify analysis and derivation, we assume that measurements that originate

from targets at a particular sampling instant are received by the sensor only once,

with the probability of detection PD. The measurement equation can be written as
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follows:

ψ(j) = x+ w(j), (2.5.9)

where j = 1, . . . ,m shows the number of validated measurements, w(j) is the mea-

surement noise, and x = [x1, x2]> is the latent value that we are aiming to estimate

in the presence of measurement noise.

We also assume that measurement noise is independent and zero-mean Gaussian

distributed, with covariance R. In our case, various preprocessing stages, such as

thinning and the Hough transform, contribute toward R. Thus, w(j) ∼ N (0, R),

where

R =

σ2
11 0

0 σ2
12

 . (2.5.10)

Because of the condition of the road and perspective effect of the camera lens

for values of σ2
11 and σ2

12, we would expect more deviation in the bottom part that

is closer to the camera than the top, and we also assume measurements ψ to be

normally distributed around x with covariance R while prior probabilities p(x) are

normally distributed around the predicted measurement x̄ with a covariance Q. Thus

ψ ∼ N (x,R) and p(x) ∼ N (x̄, Q), where

Q =

σ2
01 0

0 σ2
02

 . (2.5.11)

Again, similar to R, the perspective effect of the camera influences the values of

σ2
01 and σ2

02, skewing them toward the bottom part of the frame. Furthermore, the
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covariance Q is often linked to the curvature κ of the road. Assuming the maximum

standard curvature of highways as a constant parameter, the posterior measurement

density would be

p(x|Ψ)
∆
=

1

c
(p(Ψ|x)p(x)), (2.5.12)

where Ψ is a set for validated measurements. Since the measurement and prior

noises are assumed to be Gaussian, for a single measurement, (e.g., m = 1), ψ(1) = ψ1

can be expressed as:

p(x|ψ1)
∆
=

1

c
(p(ψ1|x)p(x))

=
1

c
N (ψ1;x,R)N (x; x̄, Q)

=
1

c
N (x; ξ(ψ1),R), (2.5.13)

where

ξ(ψ1) =
Q

R +Q
x̄+

R

R +Q
ψ1

and

R =
RQ

R +Q
.

For a Gaussian distribution, the mean is the optimal maximization value x̂. Hence,

x̂ = x̄+
R

R +Q
(ψ1 − x̄). (2.5.14)

34



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

For m > 1, the optimal maximized value can be derived using the total probability

and combined residuals, as follows:

x̂ = x̄+
R

R +Q

m∑
j=1

βj(ψ(j)− x̄), (2.5.15)

where βj is association probability, which we define as

βj =


Ljej

1−PDPG+
∑mk
j=1 Ljej

,∀j = 1, . . . ,mk

1−PDPG
1−PDPG+

∑mk
j=1 Ljej

, j = 0,

(2.5.16)

where PD and PG are probabilities of detection and gating, respectively, mk is the

number of validated detections at time k, ej is the intensity of the extended line

segments as a likelihood ratio, and Lj is the probability density function for the

correct measurement without the intensity feature (see Appendix A for derivations).

The intensity feature is defined as

Lj =
1

PG
N (ψj, x̄, S),

where S = R +Q and x̄ is the prior information.

Ideally, each partition will have a sufficient number of full measurements ψk(j) so

that a spline can be fitted over those measurements. However, in reality, this is seldom

the case. The associated challenges are dealt with using an algorithm that estimates

the control points based on the available set of measurements. In particular, we use

this Bayesian approach to find the optimal control points. These aspects are handled

by two algorithms, Algorithm 1 and Algorithm 2, which are outlined and discussed
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in detailed below.

Algorithm 1 Control Points Estimator

1: . Input: κ,N,Ψ
2: . Output: A
3: . Section variables : Pi, Ri, Si,Ψi

4: . κ : Vector of curvature
5: . Ψi : Sets of all extracted lines in partition i
6: . N : Number of partitions
7: . Pi : Prior noise covariance
8: . Ri : Measurement noise covariance
9: . Si : Set of partitions indexes eliminating i

10: for i=1; i<N; i++ do
11: for l ∈ Ψi do
12: for Si ∈ {1..N} − {i} do
13: Initialize(PSi

, RSi
)

14: x̄Si,l ←Predict(κ, l)
15: x̂Si,l ←Update(x̄l, ψSi , RSi , PSi)

16: end for
17: A←

[
A x̂l]

]
18: end for
19: A=RemoveSimilarCurves(A)
20: end for

Algorithm 1 handles each partition separately, but by extending the line segments

into the next partition wherever needed. For a given partition s, it estimates the

control points for each line, xi,s, using the curvature κ. Then the overall set of lines

L is used to estimate the control points for that partition using the MAP estimator

(see Algorithm 2). These control points are accumulated into A as a list.

Algorithm 2 combines both the data association and the posteriori PDF to adjust

the estimated control points. In particular, it uses the IPDA-specific target-to-track

association probabilities (covering both the track existence and non-existence) β0 and

βj for finding the control points based on candidate control points x̄ and measurements

Ψ. More specifically,
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Algorithm 2 Bayesian Update

1: . Inputs: x̄, ψ,R, P
2: . Output: x̂
3: . Section variables : P,R
4: . x̄ : Priors
5: . ψ : Measurements
6: . P : Prior noise covariance
7: . R : Measurement noise covariance
8: ψvalidated ← gate(x̄, ψ,R, P)
9: m← |ψvalidated|

10: for j=0; j<m; j++ do
11: rj ← ψ(j)− x̄

12: β0 ← (1−PDPG)
C

13: βj ← Ljej
C

14: end for
15: x̂ = x̄+ R

R+Q

∑m
j=1 βjrj

x̂ = argmax
x

p(x|Ψ)

= argmax
x

[p(Ψ|x)p(x)] (2.5.17)

We show a sample outcome of these algorithms in Figure 2.7. We first show two

end-point measurements (ψ1
1, ψ

1
2) and (ψ2

1, ψ
2
2) (Figure 2.7a). These points are then

corrected using the above algorithms to output corrected control points x̂1
1 and x̂1

2

(Figure 2.7b).

2.6 Multilane Tracking Using IPDA

2.6.1 Preliminaries

As stated above, we assume that control points are moving at constant velocity, and

thus our dynamic model is a constant velocity model. With this, our state vector for
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(a) (b)

Figure 2.7: An example of pseudo-measurement detection and clustering line
segments. (a) Control point estimation based on measurements; (b)

Pseudo-measurements or the result of clustering.

tracking τ in frame k becomes

xτk =



xτ1,k

xτ2,k

xτ3,k

xτ4,k

ẋτ1,k

ẋτ2,k

ẋτ3,k

ẋτ4,k


=

xτk

ẋτk

 (2.6.1)
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and the intensity feature f augmented (pseudo) measurement vector Zτ,f
k,j is

Zτ,f
k =



xτ1,k

xτ2,k

xτ3,k

xτ4,k

f τk


=

xτk

f τk

 (2.6.2)

With these, the state evolution and measurement updates for frame (time) index k

become

xτk = Fxτk−1 +Gντk−1 + Guτk−1 (2.6.3)

and

Zτ,f
k = Hxτk + ωτk , (2.6.4)

where F , G, and H are state transition, control input, and observation matrices,

respectively, and ν and ω are measurement and process noises, respectively. In our
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case, we preset F and G to

F =



1 0 0 0 ∆t 0 0 0

0 1 0 0 0 ∆t 0 0

0 0 1 0 0 0 ∆t 0

0 0 0 1 0 0 0 ∆t

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(2.6.5)

G =



∆t2

2
0 0 0

0 ∆t2

2
0 0

0 0 ∆t2

2
0

0 0 0 ∆t2

2

∆t 0 0 0

0 ∆t 0 0

0 0 ∆t 0

0 0 0 ∆t



(2.6.6)

To minimize the variability of the outcomes of the lane extraction process, or

its dependencies on the highly variable surrounding contexts, the selection process

of the control points has to be adaptive enough to account for context information.

For instance, when comparing the lane extraction process on roads with varying

terrain conditions. as opposed to highways, it is desirable for the process noise to

be more amenable to high variance on the spatial distribution of control points.
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One approach to bringing adaptiveness into this process is to introduce adaptive

process and measurement noises. Furthermore, due to partitioning of frames and the

perspective effects of the camera, control points on the bottom of most partitions are

closer to the camera than the control points on the top-most partition of a frame. For

this reason, despite the constant velocity model, the rates of the spatial variations of

control points are different. Considering different noise variance associated with the

acceleration of control points will address this issue. As such, the diagonal form of

the process noise νk can be expressed as

q =



ẍτ1,k 0 0 0

0 ẍτ2,k 0 0

0 0 ẍτ3,k 0

0 0 0 ẍτ4,k


, (2.6.7)

where ẍτi,k for (i = 1, 2, 3, 4) is the maximum acceleration of each control point. The

process noise covariance Q can be expressed as

Q = GqGT , (2.6.8)

41



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

where

diag0(Q) =



ẍ1
∆t4

4

ẍ2
∆t4

4

ẍ3
∆t4

4

ẍ4
∆t4

4

ẍ1∆t2

ẍ2∆t2

ẍ3∆t2

ẍ4∆t2



T

(2.6.9)

diag−4(Q) =



ẍ1
∆t3

2

ẍ2
∆t3

2

ẍ3
∆t3

2

ẍ4
∆t3

2



T

(2.6.10)

and

diag+4(Q) =



ẍ1
∆t3

2

ẍ2
∆t3

2

ẍ3
∆t3

2

ẍ4
∆t3

2


, (2.6.11)

where diagi(Q) is the i-th sub-diagonal of Q, with i = 0 denoting the main diago-

nal, and −i and +i denoting i-th sub-diagonals below and above the main diagonal,
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respectively. Similarly, the measurement noise covariance R is

R =



σ2
1x 0 0 0

0 σ2
2x 0 0

0 0 σ2
3x 0

0 0 0 σ2
4x


. (2.6.12)

2.6.2 Multilane Tracking Using IPDAF

As stated in Section 3.2, an IPDA filter offers augmented information about track

maintenance apart from state estimation of tracks. Instead of assuming the existence

of targets as a hard-wired probability, the IPDA filter offers the choice to incorporate

the track quality measure into the tracking process.

In the context of the PDA algorithm, for each validated measurement, the associa-

tion probability (for each track) is calculated. To this end, the association probability

βτi (k) accounts for the probability of associating a measurement i to track τk, feature

intensity of f τi (k), and the likelihood ratio of associating a line with a feature mea-

surement eτi (k). These probabilistic pieces of information are used to associate new

measurements to the targets. Given a linear dynamic model and an IPDAF based on

[8], the state and measurement equations become

x̂(k|k) = E[x(k)|Zk] =

mk∑
i=0

x̂i(k|k)βi(k), (2.6.13)

where x̂i(k|k) is the updated state, conditioned on the event that the i-th validated

measurement is correct, and βi(k) is the probability of associating a measurement i

with a feature value of fi(k) to track k. The association probability for a set of mk
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gated or validated measurements with features fi(k) can be expressed as

βτi (k) = P{εi(k)|Zτ
k , f

τ (k),mk}, (2.6.14)

where εi(k) is the event described in Appendix A. In our case, we assume that each

detected lane boundary measurement i has a feature of intensity fi(k). With reference

to (A.0.13), the feature likelihood ei(k) can incorporated into the PDA algorithm as

follows ( [56]):

βi(k) = P{εi(k)|Zk,mk}

=


Li(k)ei(k)

1−PDPG+
∑m(k)
i=1 Lj(k)ei(k)

,∀i 6= 0

1−PDPG
1−PDPG+

∑m(k)
i=1 Lj(k)ei(k)

, i = 0,

(2.6.15)

where i = {0, 1, . . . ,m(k)}.

The overall IPDAF algorithm here embodies a traditional PDAF algorithm with

special initialization and termination steps. This is outlined in Algorithm 4. The

algorithm assumes a composite data type that is capable of capturing the evolution

of the states over a period of time. As such, we use the dot notation to extract these

properties. For instance, in our algorithm we use Γ as a variable that has all the

information of all the tracks being considered in the problem. Various properties,

such as track type and track ID (a unique identifier for each track), are extracted

using the stated dot notation. Furthermore, the algorithm assumes the presence of

the following auxiliary functions:

• getTrackType(): which returns the type of the track i, as temporary, retired,
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Algorithm 3 IPDATracker.

1: . Inputs: Γ,Ψ
2: . Output: Γ(Updated)
3: . Section Variables : Λ, α, αT ,Ω
4: . x̄ : Priors
5: . Ψ : Measurements
6: . Γ : Composite data structure for tracks
7: . Λ : A copy of Γ
8: . Ω : A set containing associated tracks
9: . α : A temporary variable

10: . αT : A temporary set of tracks
11: Λ = Γ.T racks
12: Ω← ∅
13: if Λ.size() > 0 then
14: for i=0; i<size(Γ); i++ do
15: x̂ik|k−1 ← Eqn (2.6.18)

16: P i
k|k−1 ← Eqn (2.6.19)

17: W i
k ← Eqn (2.6.27)

18: ẑk|k−1 ← Eqn (2.6.20)
19: Sk ← Eqn (2.6.21)
20: V (k, γ)← Eqn (2.6.23)
21: if V.size() > 0 then
22: for j = 0 to V.size() do
23: Li

k ← Eqn (2.6.24)
24: eik ← Eqn (2.6.25)
25: end for
26: βi

k ← Eqn (2.6.15)
27: x̂ik|k ← Eqn (2.6.26)

28: P i
k|k ← Eqn (2.6.28)

29: else
30: Λi.xk ← x̂ik
31: Λi.Pk ← P i

k

32: Ω← Ω ∪ 0
33: α← getTrackType(Ω,Λi)
34: Λi.ID ← getTrackID(α,Λi)
35: Λi.type← α
36: end if
37: Λi.xk ← x̂ik|k
38: Λi.Pk ← P i

k|k
39: Ω← Ω ∪ 1
40: α← getTrackType(Ω,Λi)
41: Λi.ID ← getTrackID(α,Λi)
42: Λi.type← α
43: end for
44: Γ.NonAsscociated← Ψ− Ω //
45: αT ← mergeTracks(Λ)
46: Γ.T racks← cleanTracks(αT )
47: else
48: Γ.NonAsscociated← Ψ
49: end if
50: return Γ
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or active;

• getTrackID(): which returns the unique identifier for the track;

• mergeTracks(): which fuses the supplied set of tracks; and

• cleanTracks(): removes dead tracks from the list.

The underlying aspects of multilane tracking follow the principles of multitarget

tracking as in [8], and are discussed in the following subsections.

Track Initialization

The track initialization process (for each track) can rely on one or two seed points.

In the one-point initialization method, position can be initialized from a single obser-

vation with a zero velocity vector. Due to [61],

diag(P (0|0))T =



σ2
1x

σ2
2x

σ2
3x

σ2
4x

(Vmax
2

)2

(Vmax
2

)2

(Vmax
2

)2

(Vmax
2

)2



(2.6.16)
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and

x̂(0|0)T =



x1z

x2z

x3z

x4z

0

0

0

0



(2.6.17)

This initialization allows the standard gating to be used during the following time

step.

Measurement Prediction

For each track, the state vector, the measurements, and the state covariance matrices

are predicted ahead as in the standard Kalman filtering. i.e.,

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.6.18)

Pk|k−1 = Fk−1Pk−1|k−1F
′
k−1 +Qk−1 (2.6.19)

ẑk|k−1 = Hkx̂k|k−1 (2.6.20)

Sk = HkPk|k−1H
′
k +Rk (2.6.21)
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with the assumption of Gaussian posterior for p(x) as

p[xk−1|Zk−1] = N (xk−1; x̂k−1|k−1, Pk−1|k−1). (2.6.22)

Measurement Gating

For each track, a validation gate is set up around the predicted measurement to

select the candidate measurements for the data association. The size of the validation

gate is correlated to the innovation covariance and the measurement noise. As per

(2.6.22), at most one of the validated measurements can be assigned to the target.

The measurements outside the gate are assumed to be false alarms or measurements

belonging to other targets. The validation region is the elliptical shape as follows:

V (k, γ) = {z : [z − ẑk|k−1]′S−1
k [z − ẑk|k−1] ≤ γ}, (2.6.23)

where nz is the dimension of the measurement vector representing the degrees of

freedom, and γ is the gating threshold. Here, the gating threshold γ is a chi-square

distribution, parameterized by the probability of gating PG, and by the degrees of

freedom nz [6].

Data Association

An incoming measurement at time index k, zi(k) with feature fi(k) is associated to

track τ , based on the association probability given by 2.6.15:
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βi(k) =


Li(k)ei(k)

1−PDPG+
∑m(k)
i=1 Lj(k)ei(k)

,∀i 6= 0

1−PDPG
1−PDPG+

∑m(k)
i=1 Lj(k)ei(k)

, i = 0

Here, there are two likelihood ratios of interest: Li(k) and ei(k). The former is the

likelihood ratio of the incoming measurement zi(k). This is defined as

Li(k) =
N [zi(k); ẑ(k|k − 1), S(k)]PD

λ
, (2.6.24)

where λ is the uniform density of the location of false measurements. The second

parameter of interest, ei(k), is the likelihood ratio of measurement zτi with feature f τi

of the track τ . This is defined as

ei(k) =
pτ1(fi)

pτ0(fi)
. (2.6.25)

Both of these measurements, zi(k) and zτi , are expected to originate from the target

and not from the clutter.

State Update

The state, gain, and covariance update equations of the PDAF are
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x̂(k|k) = x̂(k|k − 1) +W (k)V(k) (2.6.26)

W (k) = P (k|k − 1)H(k)′S(k)−1 (2.6.27)

P (k|k) = β0(k)P (k|k − 1) +

(1− β0(k))P c(k|k) + P̃ (k), (2.6.28)

where W (k) is the Kalman gain, and V(k) is the combined innovation defined by

V(k) =

m(k)∑
i=1

βi(k)Vi(k), (2.6.29)

where mk is the number of measurements inside the gating region, and β0(k) is the

probability of all measurements being incorrect at time index k. With no informa-

tion on which of the mk measurements are correct or incorrect, the correct updated

covariance can be expressed as

P c(k|k) = P (k|k − 1)−W (k)S(k)W (k)′ (2.6.30)

P̃ (k) = W (k)
{m(k)∑
i=1

βi(k)νi(k)νi(k)′ − ν(k)ν(k)′
}
W (k)′. (2.6.31)

Track Management

During the course of tracking, several tracks are maintained in parallel, and their

states are continuously updated upon receiving measurements. A track can be in

three different states: tentative, confirmed, and terminated. The potential state

transitions of tracks are illustrated in Figure 2.8.
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Tentative

Terminated
Confirmed

New track

Figure 2.8: Track management state diagram.

During the initialization phase, every unassociated measurement will form a ten-

tative track. However, upon following detections or measurements and gating oper-

ations, the tracks will begin to form and their status will be updated as confirmed.

However, if no further measurements to track associations are possible—a possibility

where no detections are observed from the target responsible for the track—the cor-

responding track is terminated. In the case where PD < 1, it is essential to check the

quality of measurement-to-track association before engaging in a track status update.

One of the approaches for assessing the quality of measurement-to-track association is

the goodness of fitting. The goodness of fitting, often represented by the log-likelihood

function of the track, can be expressed as a recursive function as follows ( [6]):

λ(k) = λ(k − 1) + V(k)′S(k)−1V(k), (2.6.32)

where V(k) is the innovation matrix, and S(k) is the covariance of the innovation

matrix V(k). The last term in (2.6.32) has a chi-square density with nz degrees of
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freedom, where nz is the dimensionality of the measurement vector. As the innova-

tions are independent, the log-likelihood function at time k is chi-squared distributed

with knz degrees of freedom. This is actually a measure of the goodness of fit to the

assumed target model. Thus, the test function for keeping (or terminating) a track

can be expressed as

λk ≤ λkmax (2.6.33)

λkmax = X2
knz(1− α). (2.6.34)

This threshold follows from the chi-square for knz degrees of freedom, where the

tail probability α is the probability that a true track will be rejected. In our case,

this threshold is around 0.01.

However, the actual state transitions are performed through more rigorous checks.

In our case, we maintain a number of (hidden) measurement and association counters

for each track. These counters are used to assess how active the measurement-track

association is. For instance, a track with a tentative state will be promoted to a

confirmed state only if a proportion rt→c of the recent measurements are associated

together with the track in question; otherwise it is terminated. Similarly, a track’s

confirmed state will be retained only if a certain proportion rc→c of the last set of

measurements are associated with the track; otherwise it is terminated. In the case

of PD < 1, a track is kept alive if it satisfies the following two requirements:

• There have been m detections out of the last n sampling times; and

• The measurement-to-track fit is acceptable.
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It is worth noting that traffic conditions vary throughout the day, and hence the

speed of the vehicles. This poses a challenge in that not much variation is observed

in slow-moving conditions between frames while the sampling is active. This requires

either adaptive sampling or adaptive ratios of rt→c and rc→c. However, we do not use

these techniques in our case. Note that in using IPDA to track multiple lanes, we

make the implicit assumption that the lanes do not intersect.

2.7 Experiments and Evaluations

The proposed algorithms were implemented using the OpenCV library and C++ on a

system with Intel i7 CPU, clocked at 2.9 GHz with 16 GB RAM. We evaluate our

method with two group of algorithms, model-based and supervised methods.

2.7.1 Comparison with Model-Based Algorithms

In this section we test the precision of our estimation compared to two methods from

( [3]) and ( [42]). The algorithms were tested using the Caltech Lane dataset ( [3]).

Caltech Lane dataset is a standard real data benchmark in the lane detection appli-

cations. The dataset has four video clips taken at different times of the day around

the urban areas of Pasadena in California. Each of these video clips has a resolution

of 640× 480 pixels, and includes various lighting and illumination conditions, writing

along with lane markings (Clip#1), sun glint and different pavement types (Clip#2),

shadows and crosswalks (Clip#3), and congested settings (Clip#4). As such, they

are sufficiently representative of various challenging conditions in tracking lane mark-

ings. In total, 1, 224 frames and 4, 399 lane boundaries were processed. The details
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of these video clips are given in Table 2.2.

Table 2.2: Caltech dataset used in the evaluation

Clip Clip No. of. No. of. Lane
ID Name Frames Boundaries

1 cordoval1 250 975
2 cordoval2 406 1,131
3 washington1 336 1,329
4 washington2 232 964

During the evaluation, we computed the true and false positive rates (TPR and

FPR, respectively), where the TPR is the ratio of the number of detected lane bound-

aries to the number of target lane boundaries and the FPR is the ratio of the number

of false positives to the number of target lane boundaries. The frames were processed

at the rate of seven frames per second, similar to that of other methods in the liter-

ature ( [3], [42]). In addition to TPR and FPR metrics, we also included another

metric, false positives per frame (FP/Frame or FPF), which is an average of false

positives across all frames. It would be equally valid to consider the true positives

per frame rate. We compare the performance of the proposed algorithm using the

three metrics, TPR, FPR, and FP/Frame, against two competitive methods, those

of [3] and [42]. The results are shown in Table 2.3 and Figure 2.9.

Noting that higher TPR, lower FPR, and lower FP/Frame values are desirable, we

highlight the best (boldface) and second best (underlined) results in Table 2.3, and

the overall results in Figure 2.9. To ease the analysis, we also present the performance

difference between the proposed and the two concerned algorithms in Figure 2.10. We

show the differences so that the benefits can be assessed directly. That is, a positive

difference means that the proposed algorithm outperforms a given algorithm. This is
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Table 2.3: Comparison of Our Approach with Other Lane Detection Algorithms

Method in [3] Method in [42] Proposed
TPR FPR FP/Frame TPR FPR FPF/Frame TPR FPR FP/Frame

Clip#1 0.823 0.099 0.384 0.892 0.125 0.488 0.899 0.093 0.405
Clip#2 0.839 0.224 0.672 0.865 0.209 0.628 0.870 0.166 0.535
Clip#3 0.934 0.148 0.542 0.850 0.111 0.408 0.937 0.107 0.455
Clip#4 0.890 0.102 0.418 0.898 0.063 0.259 0.974 0.099 0.424

Overall 0.871 0.148 0.529 0.874 0.131 0.469 0.920 0.116 0.454

true both for TPR and FPR metrics.

A number of observations can be made about this performance comparison.

• The TPR performance of the proposed algorithm is consistently higher than

those of the other two algorithms throughout all video clips. The performance

of the proposed algorithm over Clip#3 is significantly higher than that of the

method in [42];

• The FPR performance of the proposed algorithm is better than that of the

method in [3] in all cases;

• The FPR performance of the proposed algorithm performs better than that of

the method in [42] except in Clip#4. One potential reason for the suboptimal

performance for this clip can be attributed to the difficulties in association in

congested settings; and

• The FP/Frame performance is mixed across the cases.

Overall, the proposed approach outperforms the other two methods across all

cases. The overall performance differences are 5% 2%, and 2% 1for TPR, FPR, and

1For measurement standard deviation about 1.2, confidence level %95 and precision 0.05 and 3
control points for each pseudo measurement overall 4399 lane markings test is statistically signifi-
cance
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(a) TPR Performance (b) FPR Performance

(c) FPF Performance

Figure 2.9: Performance of different lane detection algorithms.

FPF cases, respectively, when compared against the second best version, the method

in [42]. To ensure the operation, we manually analyzed the datasets to label all

visible and invisible lane markings as target lane markings.

2.7.2 Comparison with Fully Supervised Methods

Fully supervised methods have recently been used for detecting lane markings in

the environments with the presence of clutter as well. Pan and his team (2017)

used the Spatial Convolutional NN (SCNN) to extract spatial correlation between
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(a) Difference in TPR Performance. (b) Difference in FPR Performance.

(c) Difference in FPF Performance.

Figure 2.10: Performance difference of the proposed algorithm across three metrics.

rows and columns. This structure enables message passing between pixels across

the rows and columns in a layer. These relationships help with learning semantic

objects with dependency between parts ([68]). They evaluated their method using the

CULane and TuSimple datasets ([68], [18]), achieving outstanding results detecting

the lane markings with clutter, especially when the lane-lines are straight. They

used probability maps (probmaps) of lane markings derived from SCNN, and after

verification, filled them with a cubic spline, which made the final prediction. The

SCNN is effective when the lanes are straight and there are suficient feature cues,

but in a situation with a lack of distinctive features, it misses clustering and yields
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incorrect detection, as shown in Figure 3.10. This occurs mostly with curved, merging,

or splitting lane-lines, when the symmetric structure is missed. In contrast, in our

proposed method, Bayesian clustering of line segments combined with an IPDA filter

enable the use of the stream of frames to make a proper prediction. Notice that our

method can be attached to any supervised lane detection algorithm to remove false

alarms and add more semantics to its result, using the time domain information.

We evaluated our method with the SCNN method ( [68]) on the TuSimple dataset

([81]), using the method’s trained model weights. The TuSimple dataset has about

7,000 one-second-long video clips of 20 frames each. Pan and his team prepared the

ground truth result for the last frame (Frame 20), including height (h-sample) and

width values corresponding to lane-lines.

The TuSimple dataset includes most challenging situations, from curves and shad-

ows to splitting and merging highway lanes. We tested our algorithm against the

SCNN algorithm on simple straight and curved lane-lines only. We tested on five

different videos overall, using 100 frames each for straight and curved lanes 2. Our

methods yielded significant improvements over the SCNN method in accuracy, false

positive, and false negative rates in both curved and straight situations. We used the

same accuracy formula as the TuSimple benchmark, which is:

accuracy =

∑
clip Cclip∑
clip Sclip

, (2.7.1)

where Cclip is the number of correct points in the last frame of the clip, and Sclip is

the number of requested points in the last frame of the clip. If the difference between

the width of ground truth and prediction is less than a threshold, the predicted point

2For measurement standard deviation about 1.2, confidence level %95 and precision 0.05 and 45
degree of freedom, overall 200 frames and 600 lane markings test is statistically significance
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is a correct one. We evaluated the values of all heights in h-sample.

Figure 2.11: Result of the SCNN algorithm in curved and straight situations.

Based on the formula above, we also computed the rate of a false positive and

false negative for the test results. False positive means the lane is predicted but

not matched with any lane in ground truth. False negative means the lane is in the

ground-truth but not matched with any lane in the prediction.

FP =
Fpred

Npred

FN =
Mpred

Ngt

, (2.7.2)
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where Fpred is the number of incorrectly predicted lanes, Npred is the number of all

predicted lanes. Mpred is the number of missed ground truth lanes in the predictions,

and Ngt is the number of all ground truth lanes.

We also compared our running time with the SCNN algorithm on a normal CPU.

In [68], running time with normal CPU is reported as about 5.6 frames per second,

but the algorithm run time on our computer (Intel i7 CPU, clocked at 2.9 GHz with

16 GB RAM) was substantially lower, 0.71 frames per second. The results are shown

in Table 4.1.

Table 2.4: Comparison of Proposed Approach with SCNN Fully Supervised Method

SCNN Method in [68] Proposed
FPR FNR Accuracy Frame/s FPR FNR Accuracy Frame/s

Straight Highway#1 0.166 0.250 0.855 0.71 0.160 0.250 0.880 6.5
Curvy Highway#2 0.479 0.416 0.825 0.72 0.166 0.250 0.861 6.5

Overall 0.375 0.361 0.836 0.71 0.160 0.250 0.869 6.5

2.8 Conclusions

In this paper, we proposed a novel approach for multilane detection with expanding

estimation into the time domain using an IPDA filter. By using the intensity feature

in conjunction with the Hough transform, we first formulated an algorithm to cluster

and group multiple line segments belonging to each lane-line. By using these lane-lines

as an extended target (spline), we then identified a set of control points, which then

were tracked on every frame. This multitarget tracking-based approach outperformed

other model-based and fully supervised state-of-the-art results in the literature using

a realistic dataset. In particular, for two other model-based methods, the proposed

60



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

approach was able to offer as much as 5%, 2%, and 2% improvements on the true

positive, false positive, and false positives per frame rates, respectively, compared to

the second-best approach. Furthermore, for one of the newest fully supervised lane

detection methods (SCNN), our method has about 30%, 50%, and 3% improvements

in overall on the false positive, false negative, and accuracy, respectively, when applied

to both curved and straight roads. For normal CPU and without GPU, the frame

rates for our algorithm were significantly lower at 6.5 Hz, compared to SCNN, which

was 0.71 Hz. We believe that our algorithm frame rate can be even further enhanced

by accelerating the algorithms using appropriate embedded platforms.
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Chapter 3

Lane Tracking Using Dependent

Extended Target Models and

Multi-Output Spatiotemporal

Gaussian Processes

3.1 Introduction

Extended Target Tracking (ETT) is the process of estimating both the shape of a

target and the evolving kinematic states using a sequence of noisy measurements

([34]). It is sometimes considered similar to Group Target Tracking (GTT), when

states of closely grouped single-point targets moving with similar dynamics are es-

timated. Extended target tracking is using in many modern applications, including
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robot navigation, tracking of people and cars, chemical and biological reaction es-

timation, disease epidemics, and pollution evolution ([76]). It is also considered an

integral part of many Advanced Driver Assistance Systems (ADAS) and autonomous

or self-driving cars in urban traffic ([52]). New advanced sensors can give information

about the shape of objects in addition to their kinematics. The process of tracking

targets with these multiple detected measurements is known as Multiple Detection

Target Tracking (MDTT). MDTT requires nonlinear estimation methods that possi-

bly deal with clutter and data association ([6]; [36]). Typical extended targets can be

modeled with simple shapes like circles, ellipsoids, or rectangles ([48]; [33]). Random

Matrices (RM) was the first Bayesian method for tracking extended targets ([48]).

The formulation of the RM technique assumes that the extended target is ellipsoidal.

However, in some practical applications, this assumption doesn’t hold. To describe

and estimate the non-ellipsoidal shape of an extended target, several techniques, such

as the multi-ellipsoid RM model ([53]) and random hyper-surface model ([9]) have

been proposed.

A Gaussian process (GP) is another excellent nonparametric Bayesian modeling

method that has been used recently for tracking extended targets ([82];[35]; [90];

[1]). A GP is a distribution over an unknown and nonlinear function in a continuous

domain. The observed values of these functions can be used to predict the values at

unobserved points. The kernel approach for GP regression was introduced in [69].

The best characteristic of the kernel-based approach is the the ability to encode the

prior assumption of the process into a kernel function.

In real-time applications, the kernel-based GP regression is not feasible because it

is a batch process and needs inversion of a covariance matrix with cubic complexity
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with respect to the number of inputs. In this case, a recursive GP regression model

can be used ([75]). In [82], GP was used for the first time to model extended targets.

A recursive GP regression called GP-KF was used to estimate the shape and kine-

matics of extended targets in linear time. The evolution of the shape was considered

Markovian with a forgetting factor for the temporal dynamic, similar to the Huber

method in 2014 ([41]).

Since the characteristics of GP are summarized in its covariance function, it is

possible to model the evolution of the covariance function using a state-space model

representation. This is done by augmenting the states with a sufficient number of

time derivatives; further, a smoother needs to be used in addition to a filter. In [38] it

is shown that for many stationary temporal kernels, there exists a state-space model

that can achieve the exact same results as a GP regression. Sarkka and colleagues

introduced the recursive Spatio-Temporal Gaussian Process (STGP), solvable with

an infinite dimension Bayesian filter ([77]). STGP can model correlation in space and

time. In tracking extended targets when the shape of the object is changing in time,

the spatial part of the object is correlated in both the space and the time domains. In

this case, considering the evolving shape only in the spatial domain will compromise

performance. In [1], STGP was used for the first time to track extended targets, using

a technique called STGP-KF that uses the idea in [74] to factorize the power spectral

density function of the STGP covariance function to find the transfer function. This

technique was used to track rigid objects in radial space.

In this paper we exploit the correlation between outputs to model the interfering of

targets with the Multi-output Gaussian Process (MOGP) method ([14]). In MOGP,

one single input (index point) has a set of correlated outputs. [2] demonstrated that
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the overall covariance function could be parameterized as a combination of an output

similarity’s matrix and the input spatial kernel. In fact, instead of viewing each

output separately, this model corresponds to a scenario where only one Gaussian

process exists, and each task simply shares this latent process with various weights

plus additive white noise ([72]).

In lane detection, the subject of this paper, many studies have used extended

target models ([59]). Most of the proposed methods perform their task in two steps:

clustering and grouping lane features and then modeling and tracking lane lines. The

feature extraction step has primarily been accomplished through use of the Hough

transform, Line Segment Detection (LSD), RANdom SAmple Consensus (RANSAC),

and other parametric regression models ([3]; [64]). For the modeling, polynomial or

spline model fitting is typically used as a measurement model combined with a simple

random walk dynamic model for extends. These models are parametric, highly sen-

sitive to prior information, and not flexible for modeling dependency. Since the lanes

are parallel and the road’s shape is designed to be smooth enough for safe driving,

extracted features of lane markings tend to be spatially and temporally correlated

together between frames. In [83] GP was used to cluster the lane marking features

using 3D LIDAR and to model the shape of the road. They used GP regression to

predict hyperparameters for the road curvature model and a naive technique of max-

imum a posterior estimation to predict the new parameters using prior information

and incoming data.

Fully supervised methods like Neural Network (NN), Convolutional NN, and Deep

NN have also been used recently for detection and classification of extended targets.

To add inference, NN could be combined with other Bayesian modeling approaches.
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In [80] Convolutional NN (CNN) has been used for the classification of tracked object

results of GP-KF [82]. In some applications like lane tracking, the lack of distinc-

tive features tends to make the algorithms confused by other objects with a similar

local appearance. NN works perfectly for detecting objects with enough distinctive

features. For example, Convolutional Patch Network (CPN) can be used for detect-

ing road surfaces and Region Of Interest (ROI) and You-Only-Look-Once (YOLO)

networks for detecting and removing other patterns on the road or cars ([60]). Many

approaches have been introduced to take advantage of dependency in NN and over-

come the problem of lack of distinctive features for lane markings. In [68] a Spatial

Convolutional NN (SCNN) was used to extract spatial correlation between rows and

columns. These relationships help with semantic objects that have dependent parts,

like lane markings. The other approach that can be used for this purpose is a two-step

learning method. In [86] a real-time network called “Lanenet,” based on a two-stage

Deep NN for lane detection, was employed. One network detected lane marking edges

and the other grouped and localized lane markings. Note that in this paper we call

a group of lane markings a “lane-line.” To have a proper output of fully supervised

learning, we need thousands of training data points, especially in challenging scenarios

with clutter, because simple shapes like lanes can be mistaken for targets.

In this work, we propose a novel kernel-based estimation approach based on a

joint probabilistic data association coupled filter called K-JPDACF that is used for

clustering and feature extraction. The K-JPDACF is a semi-supervised version of

JPDACF with a trained kernel prior and coregionalization matrix. The result of

K-JPDACF is a set of extracted features and clustered measurements.
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After the features belonging to each lane line are clustered, a novel recursive ap-

proach based on MOGP and STGP is proposed for estimating and fitting lane mark-

ings. We model dependency between lane markings in each frame and then between

frames with separable spatial and temporal kernels. Our method is an extension of

the method introduced in [1] to track multiple dependent extended targets in real

time. This procedure, called the Multi-output Spatio-Temporal Gaussian Process

Kalman Filter (MO-STGP-KF), is Bayesian and non-parametric, and requires a very

low amount of training data.

The contributions of this work include:

1. Introducing a Kernel-based Joint Probabilistic Data Association Coupled Filter

(K-JPDACF) for clustering features belonging to lane-lines in linear time.

2. Introducing a dependency model based on MOGP for training lane-lines and

initializing the filter.

3. Introducing recursive MO-STGP-KF for tracking dependent multiple extended

targets and implementing it for tracking multiple lane lines.

The remainder of this paper is organized as follows: In Section 3.2 we provide

background on a number of aspects that this work builds upon, including GP and

MOGP regression and Recursive STGP. In Section 3.4, we formulate the overall prob-

lem, and in section 3.5, we discuss our approach for solving each of the subproblems.

The results of our evaluations are then presented in Section 4.4 and we discuss con-

clusions in Section 4.5.
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Table 3.1: Symbols used in this manuscript.

Symbol Description
zk Measurements at time step k, zk = {ui, zi}Mi=1

u Index points or input vector corresponding to measurements
xk state vector corresponding to GP function f(u, k)
wi Process Gaussian noise with variance Q
vi Measurement Gaussian noise for single measurement with variance R
K(u,u′) Covariance matrix
κ(ui, uj) Covariance function or kernel function
k Discrete time step
Q Covariance of the process noise
F Discrete state transition matrix of Extend
H Measurement matrix

3.2 Background

3.2.1 A Review of Gaussian Process

A GP is a collection of random variables for which any finite subsets have a joint

Gaussian distribution ([69]). It can be described as a generalization of Gaussian

distribution over function space. A GP can be fully described by its mean µ(u) and

covariance matrix K(u,u′). The covariance of a GP can be implemented through

a kernel function. A kernel function is a positive-definite function κ(ui, uj) that

demonstrates the connection of two latent outputs f(u), f(u′) based on their index

points u, u′ ([69]). The parameters of the mean and the covariance kernel are called

hyperparameters. The optimal values of the hyperparameters can be determined by

maximizing the likelihood of the GP on a given set of training data. This process is

called learning. Unknown complicated nonlinear functions can be learned with a GP.

In most of the application µ(u) can be a zero matrix. A rigid or nonrigid irregular

extended target that maps a constant index points (u) to spacial output function f(u)
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can be modeled by a GP. A GP is defined as:

f(u) ∼ GP(µ(u), K(u,u′)), (3.2.1)

µ(u) = E[f(u)], K(u,u′) = E[(f(u)− µ(u))(f(u′)− µ(u′))>], (3.2.2)

where u = [u1, u2, ...., uN ] represents the key-points or inputs of the function f(.),

which identifies the latent output. According to the GP assumptions, the function

values at a finite number of index points are normally distributed,


f(u1)

...

f(uN)

 ∼ N (µ,K), (3.2.3)

where mean and covariance matrix without considering noise are:

µ(u) =


µ(u1)

...

µ(uN)

 , K(u,u′) =


κ(u1, u

′
1) ... κ(u1, u

′
N)

...
. . . ...

κ(uN , u
′
1) ... κ(uN , u

′
N)

 (3.2.4)

Gaussian Process Regression: The distribution of a nonlinear function can be

estimated with the Gaussian Process Regression (GPR). We can use GPR to estimate

the unobserved parts of the object using a kernel function prior and observed parts,

as shown in Fig. 3.1.

Suppose we have a set of noisy observation zi of the unknown latent function f(.),
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Figure 3.1: Effect of prior kernel in GP regression. (A) Squared exponential kernel;
(B) Second degree polynomial kernel; (C) Matern32.

described with measurement model:

zi = f(ui) + vi, v ∼ N (0, R), (3.2.5)

where vi is a zero-mean Gaussian random variable with variance R. Our goal is

to estimate the function values evaluated at some arbitrary inputs with consid-

ering observations zi. In tracking applications, the latent function vector f f =

[f(uf1), ...., f(uf
Nf )]

> can be considered a state of the object for corresponding in-

dex points uf = [uf1 , ...., u
f
Nf ]
>. The model is learned by using measurements z =

[z1, ....zM ]> and the corresponding index points u = [u1, ...., uM ]>. Using 3.2.3 and

3.2.5, the joint distribution of the measurements and the function values stay at a

normal distribution, as:

z

f

 ∼ N(0,

K(u,u) + IM ⊗R K(u,uf )

K(uf ,u) K(uf ,uf )

), (3.2.6a)
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where ⊗ is the Kronecker product ([40]) and:

K(u,uf ) =


κ(u1, u

f
1) .... κ(u1, u

f
Nf )

...
. . . ...

κ(uN , u
f
1) ... κ(uN , u

f
Nf )

 . (3.2.6b)

From the joint distribution equation 3.2.6a, the conditional distribution p(f |z) can

be computed similarly to [69]:

p(f |z) ∼ N (Az, P ), (3.2.7a)

where:

A = K(uf ,u)[K(u,u) + IM ⊗R]−1, (3.2.7b)

P = K(uf ,uf )−K(uf ,u)[K(u,u) + IM ⊗R]−1K(u,uf ) (3.2.7c)

The normal GPR is a batch process and computing the inverse matrix [K(u,u) +

IM⊗R]−1 is a bottleneck with an order of O(N3) complexity. Using Cholesky decom-

position of a matrix to find the inverse would be faster and numerically more stable

([40]).

3.2.2 Multi-Output Gaussian Process (MOGP)

If we have multiple outputs corresponding to one index point, the dimension of the

output expands from 1-dimensional space into D-dimensional space, where for a given

index input point ui, the output becomes a vector f̄(ui) = [f1(ui), f2(ui), ...., fD(ui)]
>

of size D. Here fd(ui) denotes the d-th latent output for index point ui.
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If latent outputs are correlated, then a Linear Model of Coregionalization (LMC)

can be applied. In LMC, the d-th output of any input u is expressed as a linear

combination of Q independent of latent process Uq(u). For each output we can write

([2]):

fd(u) =
Q∑
q=1

ad,qUq(u), (3.2.8)

where each Uq(u) represents an underlying latent process with different and inde-

pendent GP priors. Here each latent function arises from a unique and independent

latent GP. From equation 3.2.8, a computing covariance function between coupled

outputs f̄(u) = [f1(u), ..., fD(u)]> can be expressed as:

cov(̄f(u), f̄(u′)) =
Q∑
q=1

aqa
>
q E{U(u)U(u′)>} −

Q∑
q=1

aqa
>
q E{U(u)}E{U(u′)>} (3.2.9)

cov(̄f(u), f̄(u′)) =
Q∑
q=1

aqa
>
q cov(Uq(u), Uq(u)) (3.2.10)

where aq = [aq,1, ..aq,D]. After substituting we have:

cov(̄f(u), f̄(u′)) =
Q∑
q=1

Bqκq(u, u
′), (3.2.11)

where the Bq = aqa
>
q with size of D×D is a positive definite (rank=1) matrix called

a coregionalization matrix for D outputs, and κq(u, u
′) is the covariance function of

the underlying process. The kernel in Eq. (3.2.11) is a mixture of Q different kernels

and is sometimes called the Sum Of Separable (SOS) kernels ([2]). The SoS kernel

corresponds to an assumption that outputs are from a mixture of Q latent processes
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([72]). Considering all the index points u and using the Kronecker product, we can

write the covariance matrix as:

K(̄f(u), f̄(u)) =
Q∑
q=1

Bq ⊗K(u,u). (3.2.12)

A special case of LMC is when Q = 1, which means that all targets share the

same prior kernel. This simplest case is called the Intrinsic Coregionalization Model

(ICM) with a covariance matrix as follows:

K(̄f , f̄ ′) = B ⊗K(u,u′) (3.2.13)

Fig. 3.2 shows the regression using ICM for two correlated outputs.

Figure 3.2: MOGPR can predict the part of A that is not observed, using the visible
parts in B.

In isotopic cases, when the outputs share the same inputs, we can stack outputs

and compute the non-zero off-diagonal covariance matrix as Eq. 3.2.13. Expanding

the kernel on the coregionalization matrix creates a prediction process that is similar
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to a normal GP regression.



f1

f2
...

fD


∼ N

(


0

0

...

0


,


K(f1, f1) . . . K(f1, fD)

...
. . .

K(fD, f1) . . . K(fD, fD)


)
, (3.2.14)

Learning Process: For the stacked training data {ud, zd}Dd=1 finding the hyper-

parameters (θ) is similar to a normal GP, only we need to add extra parameters for

the coregionalization matrix B. The approach normally taken is to minimize the

log-likelihood of marginal likelihood via optimization techniques such as maximizing

marginal likelihood or the gradient descent method ([69]; [16]).

3.2.3 Spatio Temporal Gaussian Process (STGP)

One type of GP that can model the evolution of a process in both space and time is

called STGP. Since the information about the shape of the target in GP is summarized

in a covariance function, we can use STGP to model the evolution of the covariance

function and the shape of the target ([1]).

In fact, an STGP is a stochastic process model for systems evolving in both space

and time, specified by:

f(u, t) ∼ ST GP(µ(u, t), κ(u, u′; t, t′)), (3.2.15)

zi = Hif(ui, ti) + vi, (3.2.16)
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where ui is the spacial index points or inputs, t is the time, and µ(u, t) and κ(u, u′; t, t′)

represent the mean and the covariance function of the STGP model, respectively.

The STGP regression is similar to the normal GP explained in Eqs. 3.2.7 by when

the temporal information is augmented in the covariance function. Using normal

GP needs regression in both domains; the time complexity of determining an STGP

regression on a model with T time steps and N input points will be O(N3T 3).

Recursive STGP

In many real-time applications, cubic time complexity is a problem. GP regression

can be represented as a state space model, as shown in Eq. (4.2.1). To use linear

methods and the Markov property to solve this differential equation we can augment

the states with a sufficient number of time derivatives, as shown in Eq. (4.2.2) ([74]).

an
dnf(t)

dtn
+ ....+ a1

df(t)

dt
+ a0f(t) = w(t) (3.2.17)

df(t) = Af(t) + Lw(t), (3.2.18)

where f = [f, df/dt, .....ds−1f/dts−1]> and w(t) is a Wiener process.

Bayesian Kalman Filtering is a linear way to solve this group of the differential

equation (4.2.2). However, filtering only provides the forward-time posteriors of the

process: to get the full posterior a linear smoother must be used.

[74] has shown that, by considering some constraints in the kernel function, a

covariance function can be modeled by an inverse Fourier transform of the power

spectral density of the temporal kernel. They have shown that the corresponding
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state-space model could make the exact solution as a kernel base GP using a recur-

sive filter combined with a linear Rauch-Tung-Strieble (RTS) Smoother. To simplify

the result, the covariance kernel was considered separable, because the correlation

structure obeys different dependencies through space and time.

κ(u, u′; t, t′) = κu(u, u
′)κt(t, t

′), (3.2.19)

where κu(u, u
′) and κt(t, t

′) are the spatial and temporal covariance functions, re-

spectively. To model the evolution of the covariance using a state-space model, the

following conditions are necessary:

1. The temporal covariance kernel needs to be stationary.

κt(t, t
′) = κt(t− t′)

2. Power Spectral Density (PSD) of the process or covariance function is or is

approximated to a rational form.

S(wu, wt) = F [κ(u, u′; t, t′)] = constant for wt
polynomial in w2

t
,

where S(.) represents the PSD of the process, wu and wt represent the Fourier

frequency in the u and t domains, respectively, and F [.] denotes the Fourier

transform.

3. The order of the temporal PSD is a multiple of 2.

S(wu, wt) = qtS(wu)

S(w2
t )

, where qt denotes the spectral density of the white noise

process driving the temporal dynamics.

4. The spectral factorization of PSD gives a stable transfer function:

S(wu, wt) = G(iwt)S(wu)G(−iwt),
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where G(iwt) and G(−iwt) represent the unstable and the stable transfer func-

tion components, respectively, and iwt represents the complex Fourier frequency.

As a result, the corresponding GP covariance matrices are also separable ([1]).

Because the transfer function G(iwt) does not contain the variable wu at all, the

feedback operator At will actually be just an ordinary matrix and the only spatial

coupling will come from the spectral density of wt(u, t). Under the above condi-

tions, the temporal stochastic process can be equivalently represented by an infinite

dimensional dynamic system, given below ([74]):

∂f(u, t)

∂t
= Atf(u, t) + Ltwt(u, t) (3.2.20)

At =



0 1

. . . . . .

0 1

−a0 ... −as−2 as−2


, Lt =



0

...

0

1


, (3.2.21)

where f(u, t) = [f, ∂f/∂t, .....∂f s−1/∂ts−1]> is a state at time t. The function f(u, t)

consists of the function and a suitable number of its time derivatives, At is the con-

tinuous state transition with a matrix form, and Lt represents the noise effect and

wt(u, t) is a zero mean continuous time white noise process.

This model is now an infinite-dimensional Markovian type of model that allows

for linear time inference solvable with a Bayesian filter and smoother. In most appli-

cations, measurements arrive at discrete times. A finite collection of discrete spatial

points of interest u = {ui}Ni=1 in Hilbert space is used so an evolving model for extent
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of the target can be written as a discrete form:

f(u, tk) = Fkf(u, tk−1) + Lkwk(u) (3.2.22)

wk ∼ N (0,Qk(u,u
′;Ts)), (3.2.23)

zk = Hkf(u, tk) + vk (3.2.24)

vk ∼ N (0, R) (3.2.25)

The corresponding states would be a finite matrix (a multi-output model for input

tk) and the dynamics are uncoupled.

f(tk) = [[f(u1, tk), ḟ(u1, tk), ...], [f(u2, tk), ḟ(u2, tk), ....], [f(uNf , tk), ḟ(uNf , tk), ...]]
>

(3.2.26)

To drive the process we can expand temporal model matrices using the Kronecker

product. The discrete transition matrix, Fk = I ⊗ eATs , Ts = tk − tk−1 , Lk and

Qk(u,u
′;Ts), which is the separable process noise covariance matrix for N index

points with a spatial structure.

Q(u,u′;Ts) = K(u,u′)[IN ⊗ Q̃(Ts)], (3.2.27)

Q̃(Ts) =

∫ Ts

0

F(Ts − τ)LqtL
>F(Ts − τ)>dτ (3.2.28)
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This integral can be solved using matrix fraction decomposition ([74]). If the model

(and the corresponding covariance function) is stationary, the SDE has a stationary

state f∞ ∼ N (0, P∞). The stationary state corresponds to the state that the model

stabilizes to infinity. It can be represented by the stationary covariance of f(t) that

is the solution to:

dP∞
dt

= FP∞ + P∞F> + LqtL
> = 0. (3.2.29)

The stationary state is invariant to the choice of input location and describes the

state the process defaults to. Therefore, for stationary models the initial (prior) state

is given by the stationary state covariance, P0 = P∞. Provided that P∞ exists and

is known, the following relation is a computationally lightweight way to solve the

integral (3.2.28) and obtain the process noise covariance:

Qk = P∞ − FkP∞Fk
>. (3.2.30)

The initial covariance in this case is the Kronecker product of a spatial covariance

matrix with elements of κ(ui, uj) and temporal initialized covariance, P0 = K ⊗P0,t.

This model allows a sequential inference using a multi-variant recursive Bayesian filter

and smoother with computation order of O(N3T ), where N is the state dimension

and T is time.

3.2.4 Infinite Kalman Filtering and Smoothing

Solving the infinite dimension stochastic dynamic, Eq. (3.2.20) needs an infinite

dimension Kalman filtering and smoothing process. In discrete cases for a finite
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collection of spatial points of interest, we can estimate the states as a multivariate

Kalman filter with states xk = f(u, tk), using Eq. (3.2.26), and covariance of process

noise expands on the kernel matrix P = K ⊗Qt. The recursion using the GP priors,

which is encoded into the power spectral density of covariance function, results in the

filter matrices. The state prediction and update are similar to a normal Kalman filter

([77]):

The prediction step is:

xk+1|k = Fkxk|k (3.2.31a)

Pk+1|k = FkPkF
>
k + Qk (3.2.31b)

The update step is:

vk = zk −Hkxk+1|k (3.2.32a)

Sk = HkPk+1|kH
>
k + Rk (3.2.32b)

Kk = Pk+1|kH
>
k S−1

k (3.2.32c)

xk+1|k+1 = xk+1|k +Kkvk (3.2.32d)

Pk+1|k+1 = Pk+1|k −KkSkK
>
k (3.2.32e)

Fixed Lag RTS Smoother: In state estimation, smoothing is defined as a process
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where the current measurements are used to improve estimates of past states. In fact,

smoothing estimates backwards posterior density. The general case of smoothing that

can be used in real-time applications is called a fixed lag smoother. It smooths the

trajectory for an interval of s states.

Fixed interval smoothing requires a backward iteration after the (forward) filter-

ing. The results of filtering, xk|k,xk+1|k,Pk|k,Pk+1|k k = k, k − 1, ..., k − s, need to

be stored to use in backward iteration.

In fixed interval smoothing, when the smoothing depth, (s) is fixed, the smoother

gain Gk, the smoothed state x̃k, and the state error covariance P̃k are recursively

estimated using the Rauch-Tung-Strieble (RTS) recursion ([70]; [6]):

Gk = Pk|kF
>(Pk+1|k)−1 (3.2.33a)

x̃k|N = xk|k + Gk[x̃k+1|N − xk+1|k] (3.2.33b)

P̃k|N = Pk|k + Gk[P̃k+1|N −Pk+1|k]G
>
k (3.2.33c)

The smoother is initialized at the current time step k as x̃k|N = xk|k and P̃k|N =

Pk|k. The result of smoothing function f(.) at time k is summarized in the mean and

covariance x̃k|N and P̃k|N, conditioned to the measurements z1, z2, ....zN.
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3.3 Measurement Preparation and Lane-Line Clus-

tering Using K-JPDACF

Preparation of measurements in ETT primarily involves extracting and grouping

features that belong to each target. In this work on lane-line detection, we used edge

and color features, similar to ([65]; [37]). Finding the ROI and removing the other

objects from the scene is crucial. In some papers, supervised methods like the Neural

Network or Cascade Classifier ([30]) is used to detect roads and cars and handle clutter

([60]). To eliminate the perspective effects of the camera, normal Inverse Perspective

Mapping (IPM) / Birds Eye View is used ([67]; [3]). This transformation makes the

dependency of lane-lines easier to model; otherwise, a more complex coregionalization

model needs to be used. Fig. 3.3 shows the steps for preprocessing the frame before

clustering.

Figure 3.3: Preprocessing of images, including (B) IPM transformation and (C)
edge-color extraction and sectioning.

In grouping and clustering the features, we introduced a novel kernel-based es-

timation approach using a joint probabilistic data association coupled filter called

K-JPDACF. The idea behind K-JPDACF is based on the fact that Bayesian filters
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like KF can be modeled with GP models ([74]). As we know, a characteristic of GP

is its ability to be summarized in a kernel function. The parameters of the kernel

function can be trained from a limited amount of trained data. Because JPDACF is

a Bayesian filter, it can be considered to be kernel-based, which allows us to model

the motion model and dependency of tracks using trained data (see section 3.4.1).

In fact, the K-JPDACF is a semi-supervised version of JPDACF ([8]) with a dy-

namic and dependency model learnable from the trained data. A recursive JPDACF

is similar to the Probabilistic Data Association Filter (PDAF), itself a statistical

approach to the problem of measurement to target assignment in target tracking al-

gorithms. In cases when clutter or miss-detection are not present, the most likely

measurements to a target can be chosen using a Nearest Neighbor method. Unlike

the Nearest Neighbor, which makes a hard decision, the PDAF makes a soft deci-

sion when estimating an expected value, which is the minimum mean square error

(MMSE) estimate ([6]). The PDAF is designed to track a single target or multi-

ple targets that are not interfering or sharing measurements. In contrast, the Joint

Probabilistic Data Association Filter (JPDAF) can handle multiple targets that may

share measurements. In the JPDAF we assumed that the target states and thus the

target-originated measurements are independent. On the other hand, for the depen-

dent targets, a statistical dependence of their estimation can be taken into account

by calculating the state cross-covariances. The resulting algorithm is called the Joint

Probabilistic Data Association Coupled Filter (JPDACF) ([7]; [8]; [79]; [13]). The

motion model in JPDACF is a parametric prior information that must be considered

precisely. More details about the proposed K-JPDACF can be found in chapter 4.2.
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In this paper, we introduce K-JPDACF after adding track management to esti-

mate the cross-covariance of each track; it is used to cluster measurements belonging

to each lane-line. Filter parameters and matrices come from the factorization of power

spectral density of a trained kernel function and coregionalization matrix B, similar

to section 3.5. Note that the K-JPDACF can be used to modeling lane branch and

merge situations as well, when targets share similar measurements. The result of K-

JPDACF is a set of tracks including states, covariance, and validated measurements.

Each cluster considers the overall validated measurements for each track.

Polynomial, Wiener velocity ([6]) or squared exponential ([69]) kernels can be used

to model lane markings. The state-space representation for these kernels is similar to

that in [74].

The clustering procedure starts by sectioning measurements according to their

horizontal positions (Zk), as shown in Fig. 3.3 part (C). The purpose of sectioning is

to decrease the number of clustering steps in real-time applications. The section sizes

depend on the desired precision and height of the image. We can initialize tracks

based on prior information and the first horizontal group of measurements. In each

step, we use K-JPDACF to estimate marginal posterior density, mean, and covariance

to identify the most likely measurements belonging to each track.

For track management, a method identical to the one used in [62] is implemented.

The dynamic model for the coupled targets is as follows:

x̄k+1 = F̄kx̄k + w̄k, w̄k ∼ N (0, Q̄k), (3.3.1)
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z̄k =


FAk False alarm

H̄kx̄k + v̄k, v̄k ∼ N (0, R̄k) Otherwise,

(3.3.2)

where the coupled vectors/matrices with D number of targets at time k and core-

gionalization matrix BD are as follows:

x̄k =

[
x1
k, x

2
k, ..., x

D
k

]>
, P̄k = BD ⊗ Pk (3.3.3)

F̄k = ID ⊗ Fk, Q̄k = BD ⊗Qk H̄k = ID ⊗Hk R̄k = ID ⊗Rk (3.3.4)

As can be seen in the algorithm (4), the procedure starts by receiving measurements

sequentially from each section. In the case when no track exists, we create new tracks

with the first measurements, using the One-Point initialization method ([5]). Similar

to the procedure in [62], if still some non-associated measurements exist after the

update step, we group them as potential new tracks. The result of our algorithm is

that all tracks and their associated measurements satisfy the minimum thresholds.

Details and functions of the algorithm are explained in section 4.2. In Fig. 3.4, we can

see the result of the algorithm for estimating covariance and finding measurements

belonging to each lane-line.
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Algorithm 4 Clustering using K-JPDACF.

1: . Inputs: Z, κ(.), B
2: . Output: Γ = {(Γt.x,Γt.P,Γt.zt)}Dt=0

3: Γ = { } # Initialize tracks
4: for k in range(Sections) do
5: zk ← getMeasInSection(Z, k)
6: if Γ.size > 0 then
7: F̄ , H̄, x̄, P̄ , Q̄c ← MakeVectorMatrixes (Γk, κ(.), B)

8: ˆ̄x, ˆ̄P, ˆ̄z ← Predict (F̄ , H̄, x̄, P̄ , Q̄c)

9: V̄ z← ValidatedMeasurements (ˆ̄x, ˆ̄P, ˆ̄z, zk)

10: Γk ← K-PDA-Update (ˆ̄x, ˆ̄P, V̄ z)
11: NonAssMeas← {z− V̄ z}
12: Γ← AddNewTracks ({Γ}, NonAssMeas)
13: else
14: Γ← AddNewTracks ({Γ}, z)
15: end if
16: end for
17: return Γ

3.4 Problem Formulation for MO-STGP-KF

Common multiple lane detection algorithms based on line or curve detection lack

flexibility in urban traffic when a part of a lane-line is missing. In this situation,

we can still predict the unobserved parts of one lane-line using a dependency with

other visible lane-lines. In this section, we will show how the dependency of lane

markings can be modeled using the MOGP framework and coregionalization matrix.

Our approach uses a combined variation of models represented in [1] and [82] for

multiple outputs.

3.4.1 Extended Target Model

In our application, extended targets are defined as dependent straight or curved lines

that are modeled with a GP framework. The GP framework of extended targets

includes a limited number of index points uf and the latent function f(uf ). We
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Figure 3.4: Use of the covariance prediction of tracks to cluster the measurements
belonging to each lane-line.

use the MOGP framework and ICM model of coregionalization to model dependency

between targets. We stack all the latent functions and consider them a single state

vector. We also change the notation of latent function f(uf ) to x to be more similar to

state-space model representation. The dynamics of extent are designed as separable

kernels, which satisfy conditions described in section 3.2.3.

κ(u, u′; t, t′) = κu(u, u
′)κt(t, t

′), (3.4.1)

where κ(u, u′; t, t′) represents the spatio-temporal covariance kernel, κu(u, u
′) rep-

resents the spatial covariance kernel, and κt(t, t
′) represents the temporal covariance

kernel. A polynomial or RBF ([69]) covariance kernel can be used to model κu(u, u
′).

For the temporal covariance kernel κt(t, t
′), we primarily use the Whittle-Matern
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Figure 3.5: MOGP model for three lane-lines.

kernel ([74]). The proposed model is converted to a transfer function form and sub-

sequently to an equivalent state space representation using steps given in subsection

3.2.3. The evolution of stacked extended targets states is modeled as follows:

x̄k+1 = F̄kx̄k + w̄k (3.4.2)

w̄k ∼ N (0, Q̄k), (3.4.3)

x̄k =



f1(uf )

f2(uf )

...

fD(uf )


(3.4.4)

where x̄k is stacked latent outputs in which each corresponds to N distinct index

points uf = {uf1 , u
f
2 , ...u

f
N}. The stacked version of the state transition matrix is
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denoted by F̄k, and w̄k is a zero-mean white Gaussian noise with covariance Q̄k for

stacked states. Note that all coordinates are in Cartesian space with a single global

origin, the same as Fig. 4.1. The cardinality and value of index points are related

to the precision and shape of the extended target. For lane markings, input indexes

would be N distinct points uniformly distributed across the ROI height. In Fig.

4.1 the model is represented for three lane-lines. Overall, the MOGP model can be

represented as follows:

f̄(uf ) ∼MOGP(µ̄(uf ), K̄(u,u′)), (3.4.5)

where µ̄ and K̄ are mean and kernel matrices for the stacked states. Under the Gaus-

sian assumption of Q̄k, the propagated distribution of the state in Eq. (4.3.2) remains

Gaussian. We train the model similarly to a normal GP, minimizing log marginal

likelihood of measurements ([83]). The training results include the kernel parameters

and coregionalization matrix. We assume that the first frame includes enough infor-

mation for optimizing hyperparameters; otherwise we can use more frames or prior

information coming from offline training.

3.4.2 Measurement Model

The result of the lane-line clustering is a set of measurements or scattering points

D belonging to the D lane-line, z̄ = [z1, z2, ....zD]>. Usually, the cardinality and

position of the measurements are both unknown and time varying. In fact, the index

points of measurements ū = [u1,u2, ...uD]> are not isotopic. In addition, in some

applications the measurement origin uncertainty (i.e., missed detection and clutter)

must be taken into account. In section (3.3) we used the K-JPDACF algorithm for
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clustering; this algorithm will remove some outliers in a naive way. Considering the

ICM model for coregionalization (see section 3.2.2) given a set of N distinct input

indexes uf = [uf1 , u
f
2 , ...u

f
N ]> for states, we want to estimate the D set of outputs

or states, x̄ = [f1(uf ), f2(uf ), ..., fD(uf )]>, corresponding to these D sets of noisy

measurements z̄. the measurement model is given by:

z̄k(ūk) = H̄f
k(ūk)x̄k + vk, vk ∼ N (0,Rf

k), (3.4.6)

where H̄f
k(ūk) is a measurement transition matrix and vk is zero mean Gaussian mea-

surement noise. In order to use the same prediction model as a normal GP regression

we need to stack clustered measurements vertically into z̄. For simplification, we add

another dimension to the input index ū, which represents the cluster ID. For example,

for cluster number d the index points are ud = [[ud1, d], [ud2, d], ...., [udNd , d]]>, and the

result of stacking is as follows:

ū =



u1

u2

...

uD


=



u1
1 1

...
...

u1
N1

1

... ...

uD1 D

...
...

uDND D



(3.4.7a)
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f̄ =



f1(u1)

f2(u2)

...

fD(uD)


(3.4.7b)

Figure 3.6: MOGP model for lane markings; uf and fd(u
f ) are input indexes and

corresponding output.

The measurement likelihood is given for the D set of measurements according to

the joint distribution probability density of GP.

p(z̄k |̄f) ∼ N (z̄k; H̄
f
k(ūk )̄f , R̄

f (ūk)) (3.4.8)

Measurement transition matrix H̄f
k and measurement covariance R̄f will derive

from Eqs. (3.5.13) and (3.5.14) in the next section. Based on the extended target

model and the measurement model discussed above, we can predict unobserved re-

sponse values fd(u
f ) at index points uf using not only measurements belonging to

that target but all observed measurements (see Fig. 3.6. The objective then is to

simultaneously estimate the state kinematics of lane markings from the total mea-

surements set in the stream of frames.
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Figure 3.7: Geproneral pipeline.

3.5 Recursive MO-STGP-KF

Because most ETT applications require real-time processing, the estimation of the

state-space model and measurement likelihood derived above need to be done recur-

sively. A real-time recursive filter equivalent to a full GP regression has also been

proposed in [82], [1], and [39]. In this section, we will show how we can change re-

cursive STGP-KF for a single extended target, introduced in [1], to track multiple

dependent extended targets. The basic framework for this is shown in Fig. 3.7. The

main contributions of MO-STGP-KF address two aspects of the technique. First,

it expands the recursive STGP-KF for tracking multiple extended targets. Second,
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it implements dependency between targets, incorporating it into the process noise

covariance. Similar to the STGP-KF, we consider separable kernels for the temporal

and spatial parts of the model.

To find the state-space model, we first factorize the power spectrum density of the

temporal covariance function. Most of the GP priors can be represented with a simple

and convenient form of the linear and time-invariant State-Space Differential Equation

(SDE) ([74]). Given a model of the form (4.3.2), and a recursive Kalman filter and

smoother (see section 3.2.4), we make a linear estimation of state and covariance at

each time step. A fixed lag smoother can be enrolled in real-time cases. Similar

to flowchart 3.7, the overall recursive MO-STGP regression can be reformulated as

follows:

1. Use the temporal kernel and priors to predict the extended targets’ states and

covariances.

2. Use the spatial kernel to compute measurement likelihood and predicted mea-

surements.

3. Update the state and covariance with new observations, using Kalman filtering.

4. Estimate the full posterior, using the fixed lagged RTS smoother.

Temporal Covariance Kernel: Most temporal covariance functions either have an

exact linear time-invariant state-space representation or can be approximated with

such a model ([77]). In our application, we used the Matérn covariance function for

the temporal part. The general form of Matérn is given as:

κt(τ) = σ2
t

21−ν

Γ(ν)
(

√
2ν

l
τ)νκν(

√
2ν

l
τ), (3.5.1)
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where σ2
t is a magnitude scale hyperparameter, l is the characteristic length-scale,

and ν is a smoothness parameter. The modified Bessel function of the second kind is

denoted by κν(.). For this class, the corresponding process is s-times differentiable if

ν > s ([74]). For example, if ν = 1/2, the covariance function would be the same as

the normal exponential with the following continuous dynamic information:

κt(τ)1/2 = σ2exp(−τ
l
) (3.5.2)

At = −1

l
, Lt = 1, P∞ = P0 = σ2, Qc = 2σ2/l, (3.5.3)

where 1
l
≥ 0 will determine the speed of the dynamics, which in some papers is called

a ‘’forgotten factor” ([82]). In this work, we considered ν = 3/2, with a continuous

and once differentiable process. In this case, the covariance function is simplified to:

κt(τ)3/2 = σ2(1 +

√
3τ

l
)exp(−

√
3τ

l
) (3.5.4)

The continuous system matrix and the noise effect vector of the corresponding

state-space model are derived as follows:

At =

 0 1

−λ2 −2λ

 , Lt =

0

1

 , P∞ = P0 =

σ2 0

0 λ2σ2

 , (3.5.5)

where λ =
√

3τ
l

and the spectral density of the Gaussian white noise process w(t) is

Qc = 4λ3σ2. The measurement model matrix is H = [1 0]. The state of each target
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can be defined as:

fi = [[f(u1)k, ḟ(u1)k], ...., [f(uD)k, ḟ(uD)k]] (3.5.6)

Recall that the dynamics still stay uncoupled in the temporal domain: we just

need to expand dimension across the state dimension and number of targets D. In a

discrete case, Hk = Ht, Lk = Lt, Fk = eAtTs , so we have:

F̄k = ID ⊗ IN ⊗ Fk L̄k = ID ⊗ IN ⊗ Lt H̄k = ID ⊗ IN ⊗Ht (3.5.7)

Subscript t denotes the temporal continuous model matrices in Eq. (4.3.7). The

spectral density and the initialized state covariance have spatial structure.

Q̄k = K̄⊗ (P∞ − FkP∞F>k ), P̄0 = K̄⊗P0,t (3.5.8)

In cases where outputs are correlated and considering a GP prior over the latent

function f(u), as we saw in section 3.2.2, the coupling can be defined with coregion-

alization matrix B. In the ICM case, the covariance matrix for stacked data is as

follows ([2]):

K̄(u,u′) = B ⊗K(u,u′), (3.5.9)

where B is a positive semidefinite rank-one coregionalization matrix that specifies the

inter-output similarities, and K(u,u′) is a covariance matrix of the underlying pro-

cess. In this paper the two individual inputs (u, u′) spatial kernel can be a polynomial
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or Radial Basis Function (RBF) kernel.

κ(u, u′)pol = (σ2 + u.u′)p, κ(u, u′)RBF = σ2 exp

(
− 1

2

(u− u′)2

`2

)
(3.5.10)

The parameters of the coregionalization matrix include vector W , which is the

same size as the output and constant ξ.

B = WW> + diag(ξ) (3.5.11)

The Kronecker product of B ⊗K can be written as:

K̄(̄f , f̄ ′) =


B11K(u1,u1

′) .... B1DK(uD,uD
′)

...
. . . ...

BD1K(u1,u1
′) ... BDDK(uD,uD

′)

 (3.5.12)

The covariance of the joint Gaussian process over z̄ is not a diagonal matrix,

because of the dependency of the outputs. In fact, the observations of one target can

affect the predictions for another target.

Using a stacked version of last states and covariance and transition matrices in

Eq. (4.3.9), we can predict state and covariance similar to a normal Kalman filter

in section 3.2.4. For the prediction of measurements, we project the states into

measurement space using measurement likelihood (3.4.8) with a GP framework. We

just need to expand the kernel matrix on the coregionalization matrix B.

H̄f
k(ūk) = (B ⊗K(uk,u

f ))[B ⊗K(uf ,uf )]−1, (3.5.13)
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R̄f (ūk) = (B⊗K(uk,uk))+IM⊗R−(B⊗K(uk,u
f ))[B⊗K(uf ,uf )]−1(B⊗K(uf ,uk))

(3.5.14)

Predicted measurements are:

z̄k−1|k = H̄f
k(ūk )̄f + vk, vk ∼ N (0,Rf

k) (3.5.15)

The Kalman filter update part is similar to a normal Kalman filter in section 3.2.4.

3.6 Experiments and Evaluations

We compared the results of our estimation with two main groups of lane detection

algorithms: model-based Bayesian ETT and fully supervised learning methods.

3.6.1 Compare to Other Recursive ETT and Batch Models

The estimates of the proposed method are compared with two recursive methods,

the GP-KF ([82]) and STGP-KF ([1]), and two batch methods, GP-Regression and

MOGP-Regression, over 100 Monte Carlo runs in three scenarios, for the real exper-

iments. Traditional GP-KF and STGP-KF methods are designed for tracking closed

nonrigid extended targets, so for tracking lane markings we changed their measure-

ment model from polar to Cartesian, similar to section 4.3.2. The GP-KF dynamic

model uses a ‘’forgotten factor” model with α = 0.01, whereas STGP-KF uses a dy-

namic model result of power spectrum density factorization of the temporal kernel.

In our method, we used a similar dynamic as STGP-KF, considering dependency in
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the spatial kernel (see section 3.5). Note that in our algorithm and in STGP-KF we

used only the filter and not the smoother.

For all the algorithms, we used the same kernels. For the spatial kernel, we

used polynomial, and for the temporal kernel, we used Matern 3/2 with constant

parameters, σ = 3 and l = 10. The ICM model of coregionalization was considered

for coupling in our approach. Parameters σ, l, B were trained similarly to typical

GP optimization methods. In this part, we only used the first frame for training.

For feature extraction and clustering, the K-JPDACF method was enrolled for all

algorithms similarly (see section (3.3). Three different road shapes and situations,

numbering a total of K = 100 1 frames are selected from the Caltech data set ([3]).

We evaluated performance, confidence of detection (volume of covariance region),

and complexity by comparing our estimates to the true data. The performance eval-

uation parameters are the positional root mean square errors (RMSE) of the state

vector, defined as follows:

RMSEf
k,x =

√√√√ 1

N

N∑
j=1

(xj − x̂j)2, (3.6.1)

where RMSEf
k,x represents the RMSE of the extend at time step k, x represents the

true, x̂ represents the estimated value, and N is the number of scattering points.

If RMSEf
k,x is represented by vector b and those of our estimates by c, then the

corresponding percentage improvement d and the mean percentage improvement dµ

1For measurement standard deviation about 1.2, confidence level %95 and precision 0.05 the
100 number of Monte Carlo run for two lane markings in each frame and 96 degree of freedom is
statistically significance
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are given below. Note that K is the number of frames.

d =
b− c
b

, dµ =
d

K
× 100 (3.6.2)

Figure 3.8: Comparing algorithms for 3 different scenarios in the sequential times.

Results: The RMSE values and the percentage improvement from 100 Monte

Carlo runs for the three scenarios is given in Tables II and III. These number of run

can be enough to obtain a confidence region for the performance assuming that its

distribution is, in view of the central limit theorem, approximately normal.
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The tables show that the performance of the STGP-KF and GP-KF is improved

in all three cases using the multi-output structure. However, in S1 and S2 cases, when

a false alarm is not an issue, the performance of our algorithm is slightly less than

the batch GP regression and MOGP regression. In the case where false alarms exist

(S3), the proposed algorithm is about 51 percent more accurate than corresponding

batch regressions (GP, MOGP). Most of our improvement can be seen in the curved

situation or where false alarms exist. Also, the volume of covariance of confidence

value for our proposed algorithm is reasonably lower than other algorithms. Note that

for straight lane markings GP-KF worked slightly better in both precision and the

confidence region. Fig. 3.8 shows the snapshots of tracking of a two-lane line, for the

three scenarios at the selected time steps. It can be observed that both the GP-KF

and STGP-KF shape estimates are less accurate as compared to MO-STGP-KF.

Table 3.2: Shape Models.

Lane-line situation Description

S1 Straight lane
S2 Curved line to the left
S3 Very curvy to right with false alarm

Table 3.3: RMSE Values for All Algorithms, (Pixels).

GP MOGP GP-KF[82] STGP-KF[1] MOSTGP-KF

S1 3.46 3.16 3.19 4.25 3.47
S2 4.86 5.18 25.01 20.54 9.49
S3 38.02 36.44 19.40 26.56 18.26

Overall 15.45 14.93 15.86 17.12 10.41
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Table 3.4: Confidence Values for All Algorithms, (Pixels).

GP MOGP GP-KF ([82]) STGP-KF ([1]) MOSTGP-KF

S1 226 293 137 1101 195
S2 304 433 384 2171 384
S3 1467 1838 445 1697 400

Overall 666 855 322 1657 326

Table 3.5: Percentage Improvement Compared to GP-KF and STGP-KF.

GP-KF ([82]) STGP-KF ([1])

S1 -0.08 0.18
S2 0.62 0.53
S3 0.05 0.31

Overall 0.34 0.39

3.6.2 Compare with Fully Supervised Methods

Fully supervised methods have also recently been used for detecting lane markings in

environments with clutter. In [68], the Spatial Convolutional NN (SCNN) has been

used to detect lane-lines and extract spatial correlation between rows and columns.

This structure enables message passing between pixels across rows and columns in a

layer. These relationships help with learning semantic objects with dependency be-

tween parts. [68] evaluated their method running on CULane and TuSimple datasets

([68], [18]). They achieved a great result detecting the lane markings in clutter, espe-

cially when the lane-lines were straight. They used probability maps (probmaps) of

lane markings resulting from SCNN, and after verification, filled them with a cubic

spline, which made the final prediction. The SCNN works well when the lanes are

straight with enough feature cues, but in situations with a lack of distinctive features,

miss clustering and wrong detection can be observed (see Fig. 3.10). This happens

mostly at curved lane-lines when the symmetric structure has been missed. In our
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proposed method, the combination of Bayesian K-JPDACF clustering of lane-lines

with MO-STGP-KF will use the correlation of lane markings and the stream of frames

to make a proper prediction. Note that MO-STGP-KF can be attached to any su-

pervised lane detection algorithm to remove false alarms and add more semantics to

the result using time domain information.

We evaluated our method with the SCNN method described in [68], using the

TuSimple dataset ([81]), particularly their trained model weights. The TuSimple

dataset has about 7,000 one-second-long video clips of 20 frames each. The ground-

truth result has been prepared for the last frame (Frame 20), including height (h-

sample) and width values corresponding to lane-lines (see Fig. 3.9).

Figure 3.9: A sample of TuSimple ground truth format.

The TuSimple dataset covers most of the challenging situations, including curves,

shadows, and splitting and merging on highways. We tested our algorithm against

the SCNN algorithm in simple straight and curved lane-lines only. We tested on five

different videos overall: 100 frames for straight and 100 frames for curved lanes 2.

2For measurement standard deviation about 1.2, confidence level %95 and precision 0.05 and 96
degree of freedom, overall 200 frames and 600 lane markings test is statistically significance
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We saw 1.33,36 and 20 percent improvement in the accuracy, false positive rates,

and negative rates in the curved and straight situation when we used our methods,

compared to the SCNN method. We used the same accuracy formula as the TuSimple

benchmark, which is:

accuracy =

∑
clip Cclip∑
clip Sclip

, (3.6.3)

where Cclip is the number of correct points in the last frame of the clip, and Sclip is

the number of requested points in the last frame of the clip. If the difference between

the width of ground truth and prediction is less than a threshold, the predicted point

is a correct one. We will evaluate the values of all heights in h-sample.

Based on the formula above, we also computed the rate of a false positive and

false negative for the test results. False positive means the lane is predicted but

not matched with any lane in ground truth. False negative means the lane is in the

ground truth but not matched with any lane in the prediction.

FP =
Fpred
Npred

FN =
Mpred

Ngt

, (3.6.4)

where Fpred is the number of wrongly predicted lanes, Npred is the number of all

predicted lanes. Mpred is the number of missed ground truth lanes in the predictions,

and Ngt is the number of all ground truth lanes.

We also compared our running time with the SCNN algorithm on a normal CPU.

Our algorithm run-time in our computer (Intel i7 CPU, clocked at 2.9 GHz with

16 GB RAM) for that scenario was 4.8 times faster than the SCNN presented in [68].
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Figure 3.10: Result of SCNN algorithm in curved and straight situations.

The results are shown in Table 4.1.

3.7 Conclusions

In this work, we proposed a new approach for tracking multiple dependent targets

recursively using an MO-STGP framework. The proposed method uses MOGP to

model the coupling of extended targets and simultaneously estimate the states. To

associate measurements and remove clutter, we proposed a kernel-based JPDACF
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Table 3.6: Comparison of Our Approach with the SCNN Fully Supervised Method.

SCNN Method in [68] Proposed Method
FPR FNR Accuracy Frame/s FPR FNR Accuracy Frame/s

Straight Highway#1 0.13 0.13 0.911 0.71 0.183 0.183 0.895 3.84
Curved Highway#2 0.366 0.266 0.886 0.72 0.13 0.13 0.901 5.02

Overall 0.250 0.199 0.899 0.71 0.158 0.158 0.911 4.13

algorithm for clustering measurements belonging to each target. For recursive in-

ference, we developed recursive MO-STGP-KF to handle spatial dependency in the

state-space model formulation. We implemented our method for the lane detection

problem of detecting degraded lane markings in a traffic situation. The performance

and capabilities of the algorithm are demonstrated through real data experiments.

The result shows significant improvements in the estimation of unobserved lane mark-

ings compared to recently published semi-supervised or supervised methods.
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Chapter 4

Spatio-Temporal Joint

Probabilistic Data Association

(ST-JPDA) For Extended Target

Tracking

4.1 Introduction

One of the main assumptions in ordinary target tracking problems is that each target

can generate at most one measurement per scan. Thus we call these problems single

point target tracking problems. With the recent developments in high-resolution

sensors, tracking the shape of the target in addition to its kinematics is attracting

attention in ground, water, and air surveillance applications. The process of tracking

the shape and kinematics of an object simultaneously is called Extended Object
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Tracking (EOT). Nowadays, EOT has become an essential part of many autonomous

systems and self-driving cars. The main focus of these technologies is currently the

improvement of robustness and safety. Various types of sensors, such as camera, radar,

and LiDAR (light detection and ranging), are being employed to fuse information for

detecting and tracking roads and obstacles covered with different types of clutter. The

focus of EOT has been mostly on measurement models, shape estimation, and data

association. A typical approach to an EOT problem is to estimate the kinematics of

the center of the object (CoO) and model the extent as a parametric or nonparametric

function that is unknown and nonlinear, using a sequence of noisy measurements.

In [82] a Gaussian process (GP) was used for the first time to model the extent

of the target. A GP is a distribution over an unknown and nonlinear function, in the

continuous domain. The observed values of these functions (measurements) can be

used to predict the values at unobserved points. Since the GP is a batch process and

cannot be used in real-time applications, [82] have propose a recursive version of GP,

where the change in the shape is modeled using a forgetting factor model. To com-

bine evolving the shape with a kernel-based GP platform, [1] introduced the recursive

Spatio Temporal Gaussian Process (STGP), in which they considered separable co-

variance functions for spatial and temporal dependency. They used a factorization

of the power spectral density function of the covariance function to track the extent

evolving in the temporal and spatial domain. They used the idea of converting a

covariance function to a state-space model solvable with a smoother ([74]).

In the case where multiple targets are in the scene, associating the proper mea-

surements to the target in clutter (data association) is an issue. The Probabilistic

Data Association (PDA) technique is a robust method in a situation with clutter; it
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employs a weighted sum of the latest set of measurements to update the state. When

clutter and miss-detections do not exist, the most likely measurements to a target

can be chosen using a Nearest Neighbor method. Unlike the Nearest Neighbor, which

makes a hard decision, the PDAF makes a soft decision when estimating an expected

value, which is the minimum mean square error (MMSE) estimate ([6]; [5]).

Using the PDAF for extended targets through the use of GP was introduced in [92].

They used a GP measurement and the random walk dynamic state model to estimate

the scattering point evolution of a single target. Generally, PDAF is designed to track

a single target or multiple targets that are not interfering or sharing measurements.

In contrast, the Joint Probabilistic Data Association Filter (JPDAF) can handle

multiple targets that may share measurements. In the JPDAF, we assumed that

the target states and thus the target-originated measurements are independent. For

the dependent targets, a statistical dependence of their estimation can be taken into

account by calculating the state cross-covariances. The resulting algorithm is called

the Joint Probabilistic Data Association Coupled Filter (JPDACF) ([7]; [8]; [79];

[13]). A motion model in the traditional JPDACF is parametric and needs to be

considered precisely at the design stage.

We used the idea explained in [1] by adding a new joint probabilistic data associa-

tion measurement model instead of the GP measurement model. This idea enables us

to track the shape of multiple spatiotemporal extended targets in a clutter situation

where targets share measurements. We used ST-JPDA to track lane-lines, especially

in merging or splitting situations.
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4.1.1 Contributions

We make the following key contributions:

1. We combine clustering and regression of multiple extended targets in linear

time, using the K-JPDACF augmented with an RTS smoother.

2. We introduce a new algorithm for tracking multiple interfering extended targets

using the ST-JPDA in the clutter.

3. We model dependency between extended targets using the ST-JPDA coupled

version.

4. We use ST-JPDA practically to track lane-lines in merging or splitting situa-

tions.

4.2 The Gaussian Process vs JPDA

JPDAF and JPDACF have been used for tracking multiple independent or dependent

single-point targets when targets interfere with each other. In chapter 3.2.3, we saw

that with a sufficient number of time derivatives, kernel-based GP regression can be

represented as a state-space model ([74]) (see Eq. (4.2.1).

an
dnf(t)

dtn
+ ....+ a1

df(t)

dt
+ a0f(t) = w(t) (4.2.1)

df(t) = Af(t) + Lw(t), (4.2.2)

where f = [f, df/dt, .....ds−1f/dts−1]> and w(t) is a Wiener process.
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Like the Bayesian Kalman Filter, JPDAF can be considered to be a linear ap-

proach to solving this group of differential equations (4.2.2) when clutter is present.

However, filtering only provides the forward-time posteriors of the process: to get the

full posterior, one needs to use a linear smoother. In fact, the state-space model equa-

tion (4.2.2) could make the exact solution a kernel-based GP or a recursive JPDAF

filter combined with a linear Rauch-Tung-Strieble (RTS) smoother. So we can use K-

JPDACF not just for clustering interfering targets in the spatial domain, but also to

make pseudo measurements. In fact, adding a smoother to the result of K-JPDACF

will make a solution similar to a GP regression.

4.2.1 K-JPDACF for Clustering Extended Targets

The general recursive algorithm for clustering with K-JPDACF uses the following

steps:

1. Make stacked vectors/matrices : For D number of targets in time-step k, stacked

states, covariance, and filter matrices are as follows:

x̄k =

[
x1
k, x

2
k, ..., x

D
k

]>
, P̄k = BD ⊗ Pk (4.2.3)

F̄k = ID ⊗ Fk, Q̄k = BD ⊗Qk R̄k = ID ⊗Rk, (4.2.4)

where BD is a coregionalization matrix that shows target dependency. In inde-

pendent situations, BD = ID. Note that in the case when D is unknown, the

integrated version of JPDAF or IJPDAF is employed ([62]).
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2. Prediction: We use the prior information coming from the spatial kernel func-

tion (F̄k, H̄k, Q̄k) and last estimates (ˆ̄xk|k, P̄k|k) to predict the new states and

covariance, similar to a normal KF prediction (Eq. (4.2.5), and results are

(ˆ̄xk+1|k, P̄k+1|k). Note that predicted covariance is the cross-covariance with off-

diagonal blocks.

x̄k+1|k = F̄kx̄k|k (4.2.5a)

P̄k+1|k = F̄kP̄kF̄
>
k + Q̄k (4.2.5b)

3. Measurement validation: Measurement validation first needs to be performed

for each target separately. Let Sdk denote the nz × nz sub-block diagonal of S̄k

for a single predicted measurement ẑdk . The measurement zjk can be validated if

and only if :

[zjk − ẑ
d
k ][S

d
k ]−1[zjk − ẑ

d
k ]
> < γ, (4.2.6)

where γ is an appropriate threshold.

4. Computing the joint probabilities : The conditional probability for a joint asso-

ciation event in JPDACF is as follows:

P{Ak+1|Zk+1} =
1

c
p[zk|Ak,mk, Z

k−1]P{Ak+1|Zk,mk}, (4.2.7)
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where we have:

P{Ak+1|Zk,mk} = P{Ak+1|δA, φA,mk}P{δA, φA|mk}

= (Amkmk−φ)−1
∏
t

(P t
D)δt(1− P t

D)1−δt µF,φ
P{mk}

=
φ!

mk+1!
µF,φ

∏
t

(P t
D)δt(1− P t

D)1−δt , (4.2.8)

where φ is the number of false measurements in the event A, (Amkmk−φ) is an

arrange of mk over (mk − φ) measurements, PD is the probability of detection,

µF,φ is prior pmf of the clutter model, and the binary variable δt is the the detec-

tion indicator for target t (equal to one if target t is assumed detected in event

A). The states of the target are dependent and the conditional measurement

likelihood in this case cannot be reduced to the marginal form:

p[zk|Ak,mk, Z
k−1] = V −φftj1,tj2,..[zj,k, j : τj = 1] (4.2.9)

where volume V and ftj1,tj2,.. is the joint pdf of the measurements of the targets

under consideration, and tj1 is the target to which zj1,k is associated in event

A. τj is the target association indicator for measurement j in event Ak+1 and c

is the normalization constant.

5. Update: For coupled filtering, the joint probabilities are not reduced to the

marginal association probabilities. Instead, these joint probabilities are used

directly in a coupled filter as follows:

ˆ̄xk+1|k+1 = ˆ̄xk+1|k + Ḡk+1v̄k+1, (4.2.10)
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where

v̄k+1 =
∑
A

P{Ak+1|Zk+1}v̄A,k+1, (4.2.11)

v̄A,k+1 = [z̄k+1,A − ˆ̄zk+1|k], (4.2.12)

z̄k+1,A =

[
zk+1
j1,A, z

k+1
j2,A, ..., z

k+1
jD,A

]>
(4.2.13)

and jt,A is the index for the measurement associated with target t in event A at

time k + 1. The conditional measurement matrix HA(k) in this case needs to

take care of the cases where some of the targets are not detected.

H̄A(k) = Diag[δ1
A, δ

2
A, ...., δ

D
A ]⊗H(k), (4.2.14)

where [δ1
A, δ

2
A, ...., δ

D
A ]> is a target detection indicator vector. The filter gain in

(4.2.11) is computed by inverting the covariance of residual S̄k = H̄k+1P̄k+1|kH̄
>
k+1+

R̄k+1:

Ḡk+1 = P̄k+1|kH̄
>
k+1[H̄k+1P̄k+1|kH̄

>
k+1 + R̄k+1]−1 (4.2.15)

The predicted stacked measurement vector is:

ˆ̄zk+1|k = H̄k+1 ˆ̄xk+1|k, (4.2.16)
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Having all the matrices above, the state covariance update is as follows:

P̄k+1|k+1 = β0,k+1P̄k+1|k + [1− β0,k+1]P̄ Ck+1|k+1 + ˜̄Pk (4.2.17)

With probability β0,k+1
∆
= P{A0|Zk}, none of the measurements is correct, in

which case there is no update of the state estimate. With probability 1−β0,k+1,

the correct measurement is available, and the updated covariance is P̄ Ck+1|k+1.

P̄ Ck+1|k+1 = P̄k+1|k − ḠkS̄kḠ
>
k (4.2.18)

However, since it is not known which of the m(k) validated measurements is

correct, the term ˜̄Pk, which is positive semidefinite, increases the covariance of

the updated state. The spread of the innovations term is:

˜̄Pk
∆
= Ḡk+1[

∑
A

P{Ak+1|Zk+1}v̄A,k+1v̄
>
A,k+1 − v̄k+1v̄

>
k+1]Ḡ>k+1 (4.2.19)

4.2.2 Fixed Lag RTS Smoother

In state estimation, smoothing is a process where current measurements are used to

improve estimates of past states. In fact, smoothing estimates backwards posterior

density. The general case of smoothing that can be used in real-time applications

is called a fixed lag smoother. A fixed lag smoother smoothes the trajectory for an

interval of s states. Fixed interval smoothing requires a backward iteration after the

(forward) filtering is complete. When the targets are coupled, the results of filtering

are in the stacked form, x̄k|k, x̄k+1|k, P̄k|k, P̄k+1|k k = k, k − 1, ..., k − s, and need to
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be stored for use in the backward iteration. In fixed interval smoothing, when the

smoothing depth (s) is fixed, the smoother gains Ḡk, the smoothed state ˜̄xk, and

the state error covariance ˜̄Pk are recursively estimated using the Rauch-Tung-Strieble

(RTS) recursion ([70]; [6]):

Ḡk = P̄k|kF̄
>(P̄k+1|k)−1 (4.2.20a)

˜̄xk|N = x̄k|k + Ḡk[˜̄xk+1|N − x̄k+1|k] (4.2.20b)

˜̄Pk|N = P̄k|k + Ḡk[
˜̄Pk+1|N − P̄k+1|k]Ḡ

>
k (4.2.20c)

The smoother is initialized at the current time step k as ˜̄xk|N = x̄k|k and ˜̄Pk|N =

P̄k|k. The result of smoothing function f(.) at time k is summarized in the mean and

covariance ˜̄xk|N and ˜̄Pk|N, conditioned to the measurements z1, z2, ....zN.

4.3 Problem Formulation

In this section, the extended target model and the measurement model are briefly

reviewed.

4.3.1 Extended Target Model

In our application, extended targets are defined as continuous functions. To simplify

the design, we considered targets to be functions in Cartesian space with a global

origin that is the bottom left part of the frame. In radial space, when input indexes
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are angles, these curved functions could transfer to the 2D star-convex objects ([82]).

To implement independent and dependent targets in a similar framework, we stack all

the latent functions and consider them a single state vector. We change the notation

of latent function f(uf ) to x to be more similar to state-space model representation.

The dynamics of extent are designed as separable kernels, which satisfy the conditions

Figure 4.1: Extended target model for (A) merging and (B) splitting for two targets.

described in chapter 3.2.3.

κ(u, u′; t, t′) = κu(u, u
′)κt(t, t

′) (4.3.1)

The evolution of stacked extended target states is modeled as follows:

x̄k+1 = F̄kx̄k + w̄k (4.3.2)

w̄k ∼ N (0, Q̄k), (4.3.3)
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x̄k =



f1(uf )

f2(uf )

...

fD(uf )


(4.3.4)

where x̄k is stacked latent outputs that each corresponds to N distinct index points

uf = {uf1 , u
f
2 , ...u

f
N}. F̄k is stacked version of the state transition matrix and w̄k is

a zero-mean white Gaussian noise with covariance Q̄k for stacked states. cardinality

and value of index points are related to the precision and shape of the extended target.

Under the Gaussian assumption of Q̄k, the propagated distribution of the state in

Eq. (4.3.2) remains Gaussian.

We train the model similar to a normal GP, minimizing the log marginal likeli-

hood of measurements ([83]). The training results include the kernel parameters and

coregionalization matrix. Note that in cases where extended targets are independent,

the coregionalization matrix is an identity matrix.

Temporal Covariance Kernel: In our application, we used the Matérn covariance

function for the temporal part. The general form of Matérn is given as:

κt(τ) = σ2
t

21−ν

Γ(ν)
(

√
2ν

l
τ)νκν(

√
2ν

l
τ), (4.3.5)

where σ2
t is a magnitude scale hyperparameter, l is the characteristic length-scale, and

ν is a smoothness parameter. κν(.) denotes the modified Bessel function of the second

kind. For this class, the corresponding process is s-times differentiable if ν > s, [74].

We considered ν = 3/2, with a continuous and once differentiable process. In this
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case, the covariance function is simplified to:

κt(τ)3/2 = σ2(1 +

√
3τ

l
)exp(−

√
3τ

l
) (4.3.6)

The continuous system matrix and the noise effect vector of the corresponding

state-space model are derived as follows:

At =

 0 1

−λ2 −2λ

 , Lt =

0

1

 , P∞ = P0 =

σ2 0

0 λ2σ2

 , (4.3.7)

where λ =
√

3τ
l

and the spectral density of the Gaussian white noise process w(t) is

Qc = 4λ3σ2. The measurement model matrix is H = [1 0]. The state of each target

can be defined as:

fi = [[f(u1)k, ḟ(u1)k], ...., [f(uD)k, ḟ(uD)k]] (4.3.8)

In a discrete case, Hk = Ht, Lk = Lt, Fk = eAtTs so we have:

F̄k = ID ⊗ IN ⊗ Fk L̄k = ID ⊗ IN ⊗ Lt H̄k = ID ⊗ IN ⊗Ht (4.3.9)

Subscript t denotes the temporal continuous model matrices in Eq. (4.3.7). The

spectral density and the initialized state covariance have spatial structure.

Q̄k = K̄⊗ (P∞ − FkP∞F>k ), P̄0 = K̄⊗P0,t (4.3.10)

In the case where outputs are dependent, the coupling can be defined with core-

gionalization matrix B. In the ICM case, the covariance matrix for stacked data is
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as follows ([2]):

K̄(u,u′) = B ⊗K(u,u′), (4.3.11)

where B is a positive semidefinite rank-one coregionalization matrix that specifies the

inter-output similarities. K(u,u′) is a covariance matrix of the underlying process.

The parameters of the coregionalization matrix include vector W , which is the same

size as the output and constant ξ .

B = WW> + diag(ξ) (4.3.12)

The Kronecker product of B ⊗K can be written as :

K̄(̄f , f̄ ′) =


B11K(u1,u1

′) .... B1DK(uD,uD
′)

...
. . . ...

BD1K(u1,u1
′) ... BDDK(uD,uD

′)

 (4.3.13)

When the B matrix is not identity, the covariance of the joint Gaussian process

over z̄ is not a diagonal matrix, because of the dependency of the outputs. In fact,

the observations of one target can affect the predictions for another target.

4.3.2 Measurement Model

The cardinality and position of the measurements are usually both unknown and

time-varying. Furthermore, measurement origin uncertainty (i.e., missed detection

and clutter) must be taken into account. In fact, index points of measurements,

ū = [u1,u2, ...uD]> are not isotopic.

Based of the K-JPDACF discussed in section 4.2.1, given a set of N distinct input

119



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

indexes uf = [uf1 , u
f
2 , ...u

f
N ]> for the model, we want to estimate a D unknown set

of outputs or states, x̄ = [f1(uf ), f2(uf ), ..., fD(uf )]> corresponding to M noisy mea-

surements z. The pseudo measurements are the result of K-JPDACF after applying

the RTS smoother. Note that z is not clustered. For the application of lane-line

tracking, the spatial kernel for two individual inputs (u, u′) can be a polynomial or

Radial Basis Function (RBF) kernel.

κ(u, u′)pol = (σ2 + u.u′)p, κ(u, u′)RBF = σ2 exp

(
− 1

2

(u− u′)2

`2

)
(4.3.14)

The parameters of the K-JPDACF filter come from the power spectral density of the

spatial kernel function.

4.3.3 ST-JPDAF for Tracking Extended Targets

Similar to flowchart 4.2, the overall recursive MO-STGP regression can be reformu-

lated as follows:

1. Use the temporal kernel and priors to predict the extended targets’ states and

covariances.

2. Use the spatial kernel and K-JPDACF to compute measurement likelihood and

predicted measurements.

3. Update the state and covariance with new observations using Kalman filtering.

Using a stacked version of last states and covariance and transition matrices in

Eq. (4.3.9), we can predict state and covariance similar to a normal Kalman filter,
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Figure 4.2: General pipeline for tracking ET using ST-JPDAF.

discussed in section 3.2.4.

4.4 Experiments and Evaluations

In multiple lane-line tracking applications we compared our algorithm with a fully

supervised lane detection method recently published in [68]. In [68], the Spatial

Convolutional NN (SCNN) was used to detect lane-lines and extract spatial corre-

lation between rows and columns. The proposed method was run on the CULane

and TuSimple datasets for evaluation ([68]; [18]). This method achieved good results

detecting lane markings in the presence of clutter, especially when the lane-lines are

121



Ph.D. Thesis – B. Akbari McMaster University – Computer Engineering

straight. The approach uses probability maps (probmaps) of lane markings resulting

from SCNN, and after verification, fills the maps with a cubic spline, which makes

the final prediction. The SCNN works well when the lanes are straight with enough

feature cues, but in situations with a lack of distinctive features, it produces miss clus-

tering and incorrect detection (see Fig, 4.3). This occurs most frequently at curved

lane-lines, splitting, and merging when the symmetric structure missed.

We evaluated our method against the SCNN method proposed in [68] on the

TuSimple dataset ([81]) using their trained model weights. The TuSimple dataset

has about 7,000 one-second-long video clips of 20 frames each. They prepared the

ground-truth result for the last frame (Frame 20), including height (h-sample) and

width values corresponding to lane-lines.

The TuSimple dataset covers most of the challenging situations on highways:

curves, shadows, splitting, and merging. We tested our algorithm against the SCNN

algorithm in merging and splitting videos only. We tested on 5 different videos,

amounting to a total of 100 frames 1. Our method yielded 20, 36, and 20 percent im-

provement in accuracy, false positive, and false negative rates, respectively, in merging

and splitting situations over the SCNN method. We used the same accuracy formula

as the TuSimple benchmark:

accuracy =

∑
clip Cclip∑
clip Sclip

, (4.4.1)

where Cclip is the number of correct points in the last frame of the clip, and Sclip is

the number of requested points in the last frame of the clip. If the difference between

1For measurement standard deviation about 1.2, confidence level %95 and precision 0.05 and 96
degree of freedom for each lane marking, overall 100 frames and 300 lane markings test is statistically
significance
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the width of ground truth and prediction is less than a threshold, the predicted point

is a correct one. We further evaluate the values of all heights in the h-sample.

Figure 4.3: Result of SCNN algorithm in curved and straight situations.

Based on the formula above, we will also compute the rate of a false positive

and false negative for the test results. False positive means the lane is predicted but

not matched with any lane in ground truth. False negative means the lane is in the

ground truth but not matched with any lane in the prediction.

FP =
Fpred

Npred
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FN =
Mpred

Ngt

, (4.4.2)

where Fpred is the number of wrongly predicted lanes, Npred is the number of all

predicted lanes. Mpred is the number of missed ground-truth lanes in the predictions,

and Ngt is the number of all ground-truth lanes.

We also compared our running time with the SCNN algorithm on a normal CPU.

Our algorithm’s run-time in our computer (with an Intel i7 CPU, clocked at 2.9 GHz

with 16 GB RAM) for that scenario was five times faster than that of SCNN, as

presented in [68]. The results are shown in Table 4.1.

Table 4.1: Comparison of Our Approach with SCNN Fully Supervised Method

SCNN Method in [68] Proposed Method
FPR FNR Accuracy Frame/s FPR FNR Accuracy Frame/s

Merging and Splitting 0.35 0.266 0.877 0.71 0.183 0.183 0.895 5

4.5 Conclusions

In this work, we introduced ST-JPDAF for tracking multiple extended targets. We

introduced a kernel-based JPDAF augmented with an RTS smoother and used it as

a measurement model. We managed dependency of measurements in space (inside a

frame) and time (between frames) using different kernel functions. To address target

dependency, the coupled version of ST-JPDAF was introduced. The kernel functions

can be learned using the training data. This extension can be used to track the

shape and dynamics of start-convex nonparametric dependent extended targets in

the presence of clutter when targets share measurements in linear time.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the tracking of multiple independent or dependent ETs in the presence

of clutter has been studied. In general, the tracking multiple objects is categorized into

two main parts, namely, clustering features into pseudo-measurements and tracking

pseudo-measurements in the temporal domain. We developed new Bayesian clustering

methods based on MAP and KJPDACF to cluster line and point shape features in

the spatial domain. In the time domain, we developed new tracking methods based

on PDAF, JPDAF and MO-STGP-KF to associate, track and manage multiple ETs.

We also implemented our algorithms for lane detection and presented the results in

three different papers.

In the first work, we expanded estimations into the time domain using the IPDA

filter. By using the intensity feature in conjunction with the Hough transform, we first

formulated an algorithm for clustering and grouping multiple line segments belonging

to each lane-line. By using these lane-lines as an extended target (spline), we identified
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a set of control points, which were then tracked on every frame.

In the second work, we proposed a new approach for tracking multiple depen-

dent targets recursively using the MO-STGP framework. The proposed method uses

MOGP to model the coupling of extended targets, simultaneously estimating the

states. To associate measurements and remove clutter, we proposed a kernel-based

JPDACF algorithm to cluster measurements belonging to each target. For recur-

sive inference, we developed the recursive MO-STGP-KF technique to handle spatial

dependency during the formulation of the state-space model. We implemented our

method for lane detection problems to detect degraded lane markings in a high-traffic

situation.

In the last work, we expanded JPDA to track multiple dependent extended tar-

gets, developing a Spatio-Temporal Joint Probabilistic Data Association Filter (ST-

JPDAF). We managed dependency of measurements in space (inside a frame) and

time (between frames) using different kernel functions, which can be learned using

the trained data. This extension can be used to track the shape and dynamics of

nonparametric dependent extended targets in the presence of clutter when targets

share measurements. Considering with last two approaches ST-JPDAF can cover

all challenges, dealing with clutter, dependency and interfering in linear time with

approximately similar precision as batched MO-STGP.

The performance and capabilities of each of these methods were demonstrated

through experiments using real data. The results show significant improvements in

the estimation of unobserved lane markings compared to recently published semi-

supervised or supervised methods.
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5.2 Future Work

METT is still considered an open problem and further research is needed to address

the remaining challenges and make the algorithms more efficient and more accurate.

Lane-line tracking requires precise shape estimation because of the road safety impli-

cations. To improve computational efficiency parallel and GPU computing techniques

have to be utilized. Thus, the following are some potential areas for future research:

1. Expanding the measurement model for MO-STGP-KF from a continues-function

to 2D or 3D space to track rigid and nonrigid objects. This will improve the

general applicability of our work.

2. Combining fully supervised methods with ETT models. The objective here is

to reduce false alarms.

3. Using Deep Gaussian Processes (DGP) in METT problems. The objective

is to take advantage of parallel and GPU computing techniques to improve

computational efficiency.

4. Going beyond the Gaussian models (e.g., Student’s-t Processes) to track multi-

ple non-Gaussian objects with sharp angles. In this case, the Student’s-t Process

can be used instead of GP. This can improve the tracking of highly nonlinear

lane markings.

.
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Appendix A

Association Probability for Lane

Measurements

Assuming there are m detections at time k, when finding the association probability

βj between a measurement and a target (lane j), the overall event ε(j) comprises two

mutually exclusive events: either ε(j) is such that the measurement ψ(j) is from the

target, for j = 1, . . . ,m, or all measurements are false.

Here, the association set {βj} is defined as the probability of the events {εj} given

all the measurements Ψ, βj = p{εj|Ψ}. This appendix demonstrates how βj is related

to the feature likelihood ratio of the measurement ej.

Let the set of validated measurements at time k be denoted as Ψk = {ψk(j)}, for

i = 1, . . . ,mk. In general, the following criteria must be satisfied:

(ψ − x̄)′(R +Q)−1(ψ − x̄) ≤ γ, (A.0.1)

where the γ is chi-square distributed with nz degrees of freedom. The association
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probability of βj for a set of gated measurements can then be stated as βj = p{εj|Ψ,mk}.

Using Bayes’ rule, this can be expressed as

βj =
1

c1

p{Ψ|εj,mk}p{εj|mk}. (A.0.2)

Assuming that the false measurements are uniformly distributed within the vali-

dation region, and asumming the correct measurement location to be Gaussian with

mean x̄ and covariance of S = R+Q, the probability density function for the correct

measurement without the intensity feature is

Lj = p{Ψ|εj,mk} = P−1
G N (ψjx̄, S), (A.0.3)

where PG is the gating probability. Since the intensities are independent of loca-

tion within the validation region, the probability density function of a single correct

measurement, including the intensity feature, can be expressed as the product of the

intensity likelihood ratio with Lj as follows:

p{ψ|εj,mk} = P τ
1 (fj)Lj (A.0.4)

and for incorrect measurements

p{ψ|εj,mk} = P τ
0 (fj)V

−1, (A.0.5)

where V is the volume of the validation region. Thus, for the all measurements, the
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probability density function is

p[Ψ|εj,mk] = P τ
1 (fj)[

m∏
j=1

pτ0(fj)]V
−m+1ej (A.0.6)

for j = 1, . . . ,mk and

p[Ψ|εj,mk] = V −m[
m∏
j=1

pτ0(fj)] (A.0.7)

for j = 0.

Using a non-parametric model considering

p[εj|mk, x] = PDPGm
−1 (A.0.8)

for j = 1, . . . ,mk and

p[εj|mk, x] = 1− PDPG (A.0.9)

for j = 0, the association probability βj can be expressed as

βj = P τ
1 (fj)[

m∏
j=1

pτ0(fj)]V
−m+1ejPDPGm

−1
k (A.0.10)

for j = 1, . . . ,mk and

β0 = V −m[
m∏
j=1

pτ0(fj)](1− PDPG) (A.0.11)

for j = 0.
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Since the set of events {εj} are mutually exclusive and exhaustive,

β0 +

mk∑
j=1

βj = 1. (A.0.12)

With some simplification, the overall results can be stated as

βj = p{εj|ψj,mk}

=



Liei
1−PDPG+

∑mk
j=1 Ljej

,∧j 6= 0

1−PDPG
1−PDPG+

∑mk
j=1 Ljej

∧ j = 0

.

(A.0.13)
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