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Abstract

Network segmentation and layered protection are critical strategies used in building and

designing secure networks. Although they are recommended by security practitioners and

agencies, they are defined vaguely and lack precise formal treatment. Implementing these

strategies might be achievable for a small network with few resources; however, it is nearly

an impossible task for a large network with a large number of resources and complex policies.

The challenge is even harder for dynamic networks, where resources frequently join and leave

the network. This case requires an adaptive approach for maintaining the implementation

of these strategies.

In this thesis, we provide a formalism for the strategies of layered protection and network

segmentation. The formalism is based on Product Family Algebra (PFA) and guarded

commands. We use this formalism to assess whether a network satisfies these strategies.

Furthermore, we articulate two implementation schemes for the layered protection strategy.

Moreover, based on the introduced formalism, we propose two algorithms for structuring and

configuring robust and secure networks. We then extend the formalism and the algorithms

to handle networks with several entry points, where each entry point is intended to give

access to a certain subnetwork. We employ the algorithms for the dynamic configuration

and governance of Software Defined Networks (SDN). In addition to SDN data and control

planes, we propose a plane in charge of the configuration and governance of SDN data planes.

We call it the Dynamic Configuration and Governance (DCG) plane and it is intended to

iv



give agility to dynamic networks. Moreover, we propose and assess three architectures

that use the DCG plane. The assessment results identify an architecture that is suitable

for dynamic networks and another for networks that are more stable regarding changes to

policy and network topology.

The formalism presented in this thesis provides an automatic and adaptive approach for

the segmentation and configuration of networks. It takes into consideration the security

requirements of local resources as well as the global security situation. It constitutes a

foundational framework for automated security solutions applicable to computer networks

that use any type of connecting technology or topology.
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Chapter 1

Introduction

Network systems consist of many interconnected resources. Access to each resource is reg-

ulated according to an access control policy. A network security system needs to guarantee

the overall network protection as well as individual resource protection. Moreover, it also

needs to guarantee the consistency of policies enforced at the different access control points

in the network. Furthermore, security design principles and best practices need to be fol-

lowed when structuring and configuring networks such as least privileges and separation of

concerns to ensure secure design structures. With the growth of network systems in scal-

ability and complexity, it becomes a challenge to adhere to the design principles and best

practices to preserve the security of resources. Therefore, a formal and automated approach

is needed to tackle network governance.

This chapter presents the context of the problem and motivates the need for a network

governance formalism that deals with securing networks through access control policies.

Precisely, Section 1.1 gives an overview of computer security and computer networks. Af-

terward, it discusses network access control systems and their role in network security.

Then, it presents security design principles and strategies to be followed in designing secure

networks. Section 1.2 motivates the need for a mathematical formalism that deals with

policies as related families. Section 1.3 states the research problem, objectives, and the

1
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methodology that we take to achieve the objectives. Section 1.4 summarizes the contribu-

tions of this thesis. Section 1.5 lists the related publications. Finally, Section 1.6 outlines

the structure of the remainder of the thesis.

1.1 General Background

The focus of this thesis is securing network resources. This section gives a general overview

of the topics of computer security and computer networks and their relation.

1.1.1 Computer Security

The main pillars of computer security are confidentiality, integrity, and availability [Bis02].

Confidentiality refers to the protection of resources and information from unauthorized ac-

cess or disclosure. The need for protection arose from the use of computers and technology

in all areas of life including sensitive ones such as health care, military, government, and

economy. The initial work of computer security started in the military to enforce the princi-

ple of “need to know” which restricts access to resources and information to only those who

need it. Access control systems and security mechanisms such as cryptography and resource

hiding support confidentiality. Integrity is the trustworthiness and correctness of data. It is

the guarantee that data has not been modified in an unauthorized way. Integrity includes

data integrity which is the trustworthiness of the content of data and origin integrity which

is the trustworthiness of the source of data or what is known as authentication. Integrity

mechanisms have two classes: prevention and detection. Prevention mechanisms aim to

preserve the integrity of data by denying unauthorized access to change data or change

the data in an unauthorized way. An access control system prevents integrity violation by

blocking unauthorized access to data and resources. Detection mechanisms aim to report

any violation of data integrity. Availability is the ability to use resources or access informa-

tion when needed and that it is not denied for authorized users. An access control system
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needs to guarantee resource availability.

We highlight the following elements of security: authentication, access control or autho-

rization, and nonrepudiation. Authentication asserts establishing a relation between a user

and an identity; it is the process of identifying users. Access control or authorization is the

management of access to resources and information such that unauthorized users are denied

access and only authorized users are allowed. Nonrepudiation is the prevention from denial

of participating in an action or transaction either as a receiver or originator [Ben06].

When discussing security, it is important to specify what is secure and non-secure [Bis02].

A security policy is a statement of what is allowed and what is not allowed. More precisely,

a security policy is defined as “a statement that partitions the states of the system into a set

of authorized, or secure, states and a set of unauthorized, or non-secure, states” [Bis02]. For

example, an access control security policy for a resource might be to block access requests

coming from the internet. A security policy might refer to multiple meanings based on the

context [GR95]. It could mean the high-level statement to ensure the overall security of the

organization’s data and resources. It also could refer to the low-level rules that implement

the organization’s security policy. A policy can be represented mathematically as a list of

secure and non-secure states. The actual enforcer of a policy whether it is a tool, method,

or procedure is called a security mechanism.

A threat is the potential of security violation [Bis02]. The violation does not need to happen

to be called a threat. The actual occurrence of violation is called an attack. Threats can be

external or internal. One of the internal threats is employees who have access to information

they do not need [GR95]. A threat, which is the potential of attack, needs to be guarded

against. Confidentiality, integrity, and availability aim to guard systems against threats.

Security mechanisms when enforcing security policies use three strategies: prevention, de-

tection, and recovery [Bis02]. These strategies might be used separately or in combination.

Prevention is the blocking or failing of an attack. For example, denying a certain source
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access to a resource is a prevention mechanism to enforce confidentiality. Detection mech-

anisms assume that attacks will happen and attempt to discover an attack underway or a

completed attack and report it. Such mechanisms typically monitor multiple aspects of the

system to indicate if an attack is underway or has happened. Recovery is the repair of the

damage caused by an attack.

Therefore, computer security [GR95] is the protection provided for an information system to

preserve its confidentiality, integrity, and availability. It starts with threat assessment then

countering them using policies and mechanisms that use prevention, detection, or recovery

to maintain the security of the system.

Access Control

Access control is the protection of information and resources from unauthorized users, and at

the same time, ensuring their availability for authorized users [SD01]. It is motivated by the

need to limit access to resources and information to authorized users only [Ben06]. Access

control systems are an essential tool to guard against security threats. They enforce policies

to protect organizations’ valuable assets from unauthorized access. Therefore, preserving

the confidentiality and integrity of computer systems. When the enforced policies are well

specified and implemented, they make a shield that allows only authorized users. By limiting

the access to allowed users only, access control systems ensure the availability of information

for authorized users.

Access control systems implement the organization’s security policy written in a high-level

language into security mechanisms that enforce access control policies. We refer to these

security mechanisms as access control points. An access control point allows subjects to

access the resources they are authorized to and denies unauthorized users.

Access control is based on identifying users (authentication) using trusted methods and

establishing an identity trust. The goal of this is to base access control decisions on a secure

foundation. An access control policy is a statement that specifies subjects that have access
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to objects and the type of access that is permitted [GR95]. An access control policy contains

an error if it allows unauthorized access or denies an authorized access [JGT+11]. A safe

access control policy and mechanism should prevent unauthorized users from gaining access

directly or indirectly to resources [Ben06].

An access control system decides on whether to permit a user to access a resource for the

type of access requested based on multiple conditions that can be used in combination.

These conditions could include user identity, role, location such as network address, time,

transaction such as giving an employee access limited to achieving a transaction or mission

and denying it afterward, and service constraints such as limiting the number of allowed

users to access a server at the same time [GR95].

1.1.2 Computer Networks

A computer network [TW10] is a collection of independent computer resources connected

using the same technology. Resources are connected if they can exchange information. The

connection medium can be any kind of wired or wireless technologies.

Networks are built based on layers stacked over each other [TW10]. Networks can differ in

the details of their layers. However, each layer is built to offer services to the layer above it

while hiding implementation details in what is known as “information hiding”.

A protocol is an agreement by which two corresponding layers on different machines com-

municate. In practice, layers on different machines do not communicate directly, each layer

actually passes the information to the layer below it until the information reaches the phys-

ical layer where the communication takes place. Interfaces are used to define the services

and functionalities offered by a layer for the layer above it, similar to function headers in

programming languages.

Building networks in a layered fashion gives flexibility for replacing or updating layers as

long as they offer the same services and have the same interface. Moreover, it allows for

expansion by adding new layers. This is similar to hierarchical architecture in software

5



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

engineering.

Network architecture is the set of layers and protocols. Figure 1.1 shows a network architec-

ture model presented in [TW10]. This model combines the Open Systems Interconnection

(OSI) reference model and TCP/IP reference model. It has five layers starting, bottom-up,

with physical layer, link layer (i.e., data layer), network layer (i.e., internet layer), transport

layer, and application layer. The physical layer is the layer right above the physical trans-

mission medium and the concern of this layer is transmitting bits as signals along different

transmission mediums. The link layer is concerned with sending reliable messages with

limited lengths that appear to be free of transmission errors to the network layer. It does

this by breaking data into frames and transmitting them. The corresponding layer on the

receiver machine confirms the receipt of frames by sending an acknowledgment frame. The

network layer is concerned with the details of sending packets between distance machines.

This includes routing and finding paths to send packets from source to destination. The

packet format protocol Internet Protocol (IP) is defined at this layer. The transport layer

is concerned with increasing the reliability of the network layer and allowing machines to

create communication. Transmission Control Protocol (TCP) is a protocol defined at this

layer. TCP segments bytes into messages and pass them to the lower layer. It is a reliable

connection-oriented protocol that takes the task of delivering a stream of bytes without

errors and in sequence. On the receiver machine, the opposite layer sorts the received mes-

sages into an output of a stream byte. The User Datagram Protocol (UDP) is the second

protocol defined at this layer. It is unreliable, connectionless, and used by applications not

requiring the sequencing of TCP. Finally, the application layer defines multiple high-level

protocols needed by the user. For example, HyperText Transfer Protocol (HTTP) the pro-

tocol used for browsing web pages, File Transfer Program (FTP), Simple Mail Transfer

Protocol (SMTP), and Domain Name System (DNS) are defined in this layer.

The initial use of computer networks was for academic purposes with no concerns for secu-

rity [TW10]. Nowadays, the use of computer networks has expanded to be involved in many
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Figure 1.1: Network architecture reference model

critical fields ranging from personal affairs to governmental levels which include health care,

banking, military, and more. Moreover, networks have grown in size from small networks

to large networks including the internet. And from stationary terminals to mobile devices,

home appliances, and health monitoring systems hooked to networks. Therefore, with the

connectivity and scalability of networks and their involvement in critical fields, network

security became a legitimate concern.

Security breaches in computer networks cover a wide range including but not limited to

disclosure or modification of confidential information, unauthorized access to resources,

damaging assets, identity theft, and denial of responsibility. Although most attacks are

intentional for various motives, they can be unintentional such as disclosure of information

by careless employees. Moreover, the focus of most security systems is the protection from

outside threats, however, the reality is that most attacks are an insider job.

Network security mechanisms work on all layers of the network. On the physical layer, there

are security measures to ensure the protection of the physical assets. Moreover, encryption

mechanisms work on the data link layer. IP Security (IPsec) and firewalls work on the

network layer. Authentication and nonrepudiation are dealt with on the application layer.

Network Access Control

Network access control is a very important aspect of network security. Its main concern is

regulating access to resources in a network environment according to access control policy,

which is a part of the overall security policy.

7



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

Connecting an organization’s network to the internet is beneficial for the business, however,

it brings security risks and threats [TW10]. The direction of the traffic in these threats

includes outgoing traffic such as disclosed information leaving the organization’s internal

network to unauthorized parties. It also includes incoming harmful traffic, such as viruses,

worms, or an attack on resources and assets. Therefore, there is a need to protect network

resources from certain incoming and outgoing traffic. One way of protection is using IPsec

by which a communication tunnel between two sites is protected, however, it does not

protect resources from unauthorized access. Firewalls acting as access control points are

used to achieve this goal.

Firewalls

Packet filtering firewalls, act as security checkpoints, inspect all traffic coming in or going

out from networks. They allow or drop packets based on criteria or policies specified as sets

of rules. These rules specify the conditions for which packets are allowed or dropped. The

conditions are usually based on information in the packet header which can be source IP

address, source port, destination IP address, destination port, or protocol. Port numbers

are used to specify the services requested. For example, SMTP use TCP port 25 and HTTP

uses TCP port 80. An organization that wishes to block Telnet services would deny traffic

for TCP port 23. Stateful firewalls keep track of the state of connections. So, when a

connection is established, the firewall does not need to check the packet filter rules for every

packet exchanged that belongs to that connection. Therefore, improving connectivity and

firewall performance. Application-level firewalls peak into the content of packets and go

beyond checking packet headers. This enables firewalls to block traffic not only based on

the attributes of packet headers but also on the application used. The topic of firewall

technology will be explored in depth in Chapter 2.

An access control system consists of two components: access control policies and access

control points. An access control policy can refer to the high-level policy or the low-level
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rules derived from the high-level policy. An access control point is the security mechanism

that enforces these policies and rules. For example, a high-level rule can be to block the email

service for a certain resource, which then translates to a low-level firewall rule that blocks

TCP connections on port 25. The rule gets enforced by the packet-filtering functionality

of the firewall. One of the issues related to access control is the translation of high-level

policy specification to low-level rules. It needs to be ensured that the low-level rules actually

implement the high-level policy and that they are consistent and free of conflicts.

Firewalls and access control points deal with two levels of protection [CB94]: host-based and

network levels. Host-based access control is concerned with the protection of a single host

using its security mechanisms such as a local software firewall. This is an essential step in

securing resources; however, it is not sufficient for many factors related to limited resource

capabilities. Network-level access control is concerned with the protection of a cluster of

resources. Network firewalls can be deployed at the entry point of the network and internally

at multiple locations protecting subnetworks with sensitive resources. Internal firewalls can

be used to implement a layered defense which is a manifestation of the principle of separation

of concerns [Ben06].

Traditionally, firewalls are implemented at the entry point of networks with no control of

internal traffic. This approach is not sufficient to protect network resources because it

assumes every host in the internal network is trusted and therefore does not provide any

protection from internal attacks. Moreover, an external attack that succeeds in passing the

security at the entry point will gain free lateral movement within the network. Another issue

is that firewalls cannot inspect encrypted packets. For these reasons, distributed firewalls

were proposed. In the initial proposal [Bel99], the high-level policy is distributed on each

resource. However, this solution was not sufficient because it relies only on host-based

security and therefore it allows illegitimate traffic to go inside the network without any line

of defense except the host firewall.
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Challenges of Dynamic Networks

Modern networks and related technologies such as Big data, Internet of Things (IoT),

Software Defined Networking (SDN), and Network Function Virtualization (NFV) have

experienced exponential growth in the last few years and expected to grow further in the

future. However, security challenges are some of the factors that limit the growth of such

technologies. These challenges are the result of the nature of the vulnerabilities of the

environment. One of the characteristics of such an environment is its dynamism. Resources

in these networks join and leave the network frequently. Moreover, the size and scale of

these networks are growing dramatically. To mitigate against the changing security threats

and the dynamic nature of the environment, security solutions need to be adaptive [KG19].

The static security solutions of traditional networks are not sufficient to provide security for

such a changing and evolving environment. Therefore, the focus of research efforts should

be on adaptive security as suggested in [KG19].

A network access control system potentially consists of hundreds or thousands of access

control points. The correct configuration and placements of these devices play a key role

in the effectiveness of the system. In practice, network administrators design networks and

configure devices following security design principles and best practices. This approach is

prone to design errors and misconfiguration, especially for a large network. Moreover, it

does not address the scalability and dynamicity aspects of modern networks.

Network Design

Some of the security design principles that should be adhered to when designing and con-

figuring networks include least privileges and separation of concerns [SS94, CB94, Ben06,

Sta07, Sta09, Pet01]. The principle of least privileges requires that the granted access for

users to information and resources is limited to the ones that are necessary to perform their
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job or task. The principle of separation of concerns/privileges/duties requires that for cer-

tain important tasks, no single user is allowed to perform all their subtasks and that access

to resources should be based on the satisfaction for more than one condition. Two strategies

that are recommended to achieve the above principles: layered defense and segmentation.

Layered defense (i.e., layered protection) requires having multiple lines of defenses such

that if one layer or line fails the other ones will not. Segmentation states that resources

of similar security requirements should be located together in one cluster protected by a

firewall. Therefore, sensitive resources are placed together and provided maximum security,

and on the other hand, resources with loose security requirements are placed together. De-

militarized Zone (DMZ) is an example of applying segmentation. In the literature, these

strategies are described and discussed intuitively without any formalism.

In this work, we aim at articulating a formalism for network governance. The formalism in-

cludes a mathematical framework that captures the network policies as a family of related

security policies, a formal definition and implementation schemes for layered protection,

and formally defining segmentation and an algorithm to achieve robust network design.

The formalism is based on Product Family Algebra (PFA) [HKM11a, HKM06] where each

of the resource policies is considered as a program specified using a formal policy modeling

language. The mathematical framework is used to formalize the concepts of layered pro-

tection and segmentation. We also show the applicability of these approaches to modern

networks by applying it to SDN.

1.2 Motivation

The strategies of layered protection and segmentation are effective in designing secure net-

work architectures and mitigate security threats [Goo12, Cen15, Col09]. The existed discus-

sion on these strategies is limited to best practices and guidelines with no formal approaches.

The implementation of these strategies is left to the judgment of system administrators.
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This approach is error-prone and hard to implement, especially for large networks. More-

over, the research studies that tackle these strategies are limited as will be explored in detail

in Chapter 2. Therefore, there is a lack of formalism to define and achieve these strategies

in network environments.

As discussed above, the goal of network access control is to prevent activities that could

threaten the network’s security. It does this by denying access of unauthorized users and

limiting the access of authorized users to the needed resources [SS94, DFSJ07]. For a net-

work security system to be effective, the network design has to adhere to the strategies

mentioned above. Moreover, the security system needs to be adaptive to cope with changes

in resource policies, resource availability, threats, or any other factor. These changes are dy-

namic in nature and thus require a quick and dynamic response, which is usually performed

manually by system administrators. As networks consist of interconnected resources, a

software product family approach [CN02, KD06, PBvdL05] is needed to model resource

and global policies and to deal with changes in topology and policies. This ensures that

changes in one dimension or a resource are reflected in the overall policies and topology of

the network.

1.3 Problem Statement, Objectives, and Methodology

1.3.1 Problem Statement

To fill the research gap, this thesis aims to provide a formalism to address the network

governance strategies of layered protection and segmentation. The basis of this formalism

is Product Family Algebra (PFA) [HKM11a] and the concepts of feature modeling and

software product line engineering. Moreover, we need to explore the question of transferring

the formal results into real networks, such as Software Defined Network (SDN).
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1.3.2 Objectives and Methodology

To achieve the goals of my research, the carried-out activities are mapped to several objec-

tives described below.

Objective 1: A product family model to specify and analyze access control

policies within a network system

The first objective is to adopt the commonly used mathematical formalism of guarded

commands to specify access control policies. We model related access control policies as a

product family. To achieve this, we give an interpretation to the PFA operators in terms of

the mathematical model of guarded commands. Currently, PFA provides an abstract view

of features used in a family of products. We aim at providing a model for the features of a

family in terms of access control policies.

Objective 2: Articulating a formalism related to configuring access control

points

The second objective is to formalize the concept of layered protection into the Defense

in Depth (DD) strategy. Moreover, we aim at articulating implementation schemes to

configure access control points according to the formalism of DD strategy. We also aim at

formalizing a stricter form of DD. Moreover, we aim at implementing a prototype for an

automated solution for managing and enforcing access control policies in a network applying

the defense in depth strategy. The implementation uses a broker architecture where the

management of policies is done centrally at the broker and the enforcement distributed at

the access control points.

13



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

Objective 3: Articulating a formalism for network design and structure

The third objective is to articulate a formalism that allows us to design secure networks.

Based on the results of Objects 1 and 2, we plan to propose formal definitions of network

segmentation strategy and robust and secure network structure. Then, we seek to articulate

a formal algorithm to systematically achieve a robust and secure network structure.

Objective 4: Usage of the obtained results in Software defined Networks

(SDN)

The fourth objective is to build different architectures for implementing the segmentation

algorithm proposed in Objective 3 into an SDN environment. We aim to assess the archi-

tectures and draw a conclusion on the most suitable architecture.

1.4 Contributions

Through the fulfillment of the objectives presented in Section 1.3, the research contributions

are as follows:

1. A mathematical model for network policies that use a family approach enabling us to

reason on large networks.

2. A formalism for the layered protection as DD strategy. Moreover, the thesis proposes

multiple schemes for implementing the DD strategy to configure network devices. The

strategy and schemes can be used to assess network configurations and for network

audits. Furthermore, the thesis gives a formal definition for Strict Defense in Depth

(SDD) which is a stricter form of DD strategy, and a set of results on when it is not

possible to achieve SDD in a network. The SDD is later used to place segments when

designing networks. The obtained results guide network designers to achieve a robust

and secure network design.
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3. An approach to include several security concerns into a weight function that assigns

weight value for resource access control policies. The function takes into account secu-

rity requirements that need to be taken into account to be used for the segmentation

of network resources.

4. Formally define what is a segment and network segmentation based on the weight

of commonality of policies. This leads to the formal definition of robust and secure

network based on the network segmentation and SDD defined above.

5. Two algorithms to achieve robust and secure network architecture. One is exponen-

tial and the second is polynomial. The polynomial algorithm is obtained through

collaboration with other researchers as indicated in [MAK21].

6. Implementing the algorithms into SDN to form a new plane that is specialized in

structuring data plane topology. Moreover, the new plane is adaptive such that it

restructures the data plane dynamically in response to changes in policies or resource

availability. We have proposed three different architectures for the implementation

and the assessment of the three architectures to reach a conclusion on which architec-

ture is the most suitable.

1.5 Related Publications

This section lists the publications related to the research presented in this thesis.

1.5.1 Journal Articles

• [MAK21] N. Mhaskar, M. Alabbad, and R. Khedri. A Formal Approach to Network

Segmentation. Computers & Security, page 102162, 2021.
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1.5.2 Conference Papers

• [KJA17] R. Khedri, O. Jones, and M. Alabbad. Defense in Depth Formulation and

Usage in Dynamic Access Control. In M. Maffei and M. Ryan, editors, Principles

of Security and Trust: 6th International Conference, POST 2017, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 253–274, Berlin, Heidelberg,

2017. Springer Berlin Heidelberg.

• [AK21] M. Alabbad and R. Khedri. Configuration and governance of dynamic secure

SDN. In The 12th International Conference on Ambient Systems, Networks and Tech-

nologies (ANT 2021), Procedia Computer Science series, pages 1–8, Warsaw, Poland,

March 23 – 26 2021. Elsevier Science.

1.5.3 Technical Reports

• [KMA19] R. Khedri, N. Mhaskar, and M. Alabbad. On the Segmentation of Networks.

Technical Report CAS-19-01-RK, McMaster University, Hamilton, ON, Canada, March

2019.

1.6 Thesis Structure

The remaining chapters of this thesis are organized as follows:

Chapter 2 surveys the literature related to the network design strategies of layered pro-

tection and segmentation. Since our approach is based on access control perspective, the

chapter presents access control and the research topics s related to it. Moreover, we are

interested in implementing the strategies in SDN, therefore, this chapter introduces SDN

and research approaches that implement firewalls in SDN.
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Chapter 3 introduces the needed mathematical fundamentals including PFA, guarded

commands, and tabular expressions.

Chapter 4 proposes a model for specifying network resource policies. It also discusses a

family approach using this model and different usages of the model.

Chapter 5 gives formal definitions of DD and SDD. It also presents different schemes for

achieving DD in a network and results related to SDD that helps to articulate a formal

algorithm for segmentation in Chapter 6.

Chapter 6 presents a formal approach to tackle the notion of segmentation and robust

network, then proposes a systematic algorithm to achieve a robust network. The algorithm

considers the case when we have a network with a single entry point.

Chapter 7 extends the algorithm proposed for segmenting networks with a single entry

point to segment networks with multiple entry points.

Chapter 8 presents three different architectures for implementing the segmentation algo-

rithm presented in Chapter 6 in an SDN environment. Moreover, it presents an assessment

to determine the most suitable architecture for an SDN network.

Chapter 9 concludes the thesis and points for future work.
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Chapter 2

Literature Survey

The strategies of layered protection and segmentation are used to design secure network

structures. This thesis formalizes these two strategies from an access control policy per-

spective. More precisely, layered protection is the first tackled strategy. Then, the results

obtained from the first strategy are used to tackle the network segmentation strategy. More-

over, the results are implemented on SDN environment to show their applicability for real

modern networks.

This chapter presents a literature survey related to access control, layered protection and

segmentation strategies, and firewalls within SDN. Specifically, Section 2.1 gives an intro-

duction to access control, its paradigms, and its models. Section 2.2 presents the layered

protection strategy and related research. Section 2.3 presents the segmentation strategy and

related research. Section 2.4 presents research studies attempting to apply the concept of

product family into security and access control domain. Section 2.5 reviews other research

topics related to access control. Finally, Section 2.6 presents the SDN and related research.
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2.1 Access Control

In Chapter 1, we have introduced the concept of access control and established the im-

portance of access control systems to preserve the security aspects of network resources:

confidentiality, integrity, and availability. Access control systems control every access at-

tempt and ensure that only authorized users are allowed while unauthorized users are de-

nied [SS94, SD01]. It is important to differentiate the concepts of access control policy,

access control model, and access control point [SD01, HFK06]. The access control policy

is the high-level security policy that the access control system regulates traffic according

to. The access control model is the formal representation of the policy which allows to

prove properties on the policy. The access control point is the security mechanism that

enforces the policy. These concepts separate multiple levels of abstraction. Specifically, the

separation between the requirement in the high-level policy, the actual enforcement in the

access control point, and the model level which closes the gap between the requirement and

implementation. An access control point should be secured to be altered only by authorized

personnel and using trusted channels. Moreover, the access control point should regulate

every access attempt with no exceptions. Access control policies in reality are complex and

their requirements come from different organizational perspectives such as laws, organiza-

tional regulations, and best practices. A policy must capture all these perspectives in a

single consistent policy. This particular issue makes a family approach suitable for access

control policies.

2.1.1 Access Control Paradigms

Access control paradigms are differentiated by who has the authority to specify access

control policies. Below we present Discretionary Access Control (DAC) and Mandatory

Access Control (MAC).

Access in DAC [SS94, SD01, HFK06] is regulated based on the identity of the user. It gives
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subjects (i.e., users) the right to grant and revoke access to objects (i.e., resources) they

own. Moreover, users can delegate permissions they have to other users. Granting and

revoking permissions are managed by certain rules. In this paradigm, the emphasis is on

information sharing which makes it suitable for commercial and business scenarios.

The access management in MAC [SS94, SD01, HFK06] is enforced by a central authority

which is often the administrator of the system. Owners of resources do not have control

over access to their resources. MAC paradigm is related to multi-level security models. In

multi-level security models, users and objects are classified into different classifications. Bell-

Lapadula [BLP76] and Biba [Bib75] are examples of mandatory multi-level security models.

This paradigm is a military-based where the confidentiality and integrity of information and

resources are the main concerns.

2.1.2 Access Control Models

Access Control Matrix

Access control matrix is a model or framework for describing DAC proposed by Lamp-

son [Lam74] for protecting resources in operating systems, which was later formalized by

Harrison et al. [HRU76]. An access control matrix model has a set of subjects, a set of

objects, and a set of permissions. The authorization is represented as a matrix where the

matrix rows are labeled by subject names and its columns by object names. Each cell con-

tains a set of allowed access permissions. There are two implementations of access control

matrix: Access Control List (ACL) and capability lists. In a capability list, resources and

permissions of a subject are assigned to the subject. A capability list comes in a form of a

table of pairs containing the resources and subject’s permissions. A capability list can be

compared to a ticketing system [TS06]. In this case, it is important to protect tickets from

modification by the subject. On the other hand, in ACL, a list is attached to the resource.

The list contains subjects that have access to the resource and their permissions.
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Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) [FK92, SCFY96, SFK00, FSG+01] is a non-discretionary

access control model where the administrator is responsible for enforcing the policies. In

RBAC, the access control decisions are based on the roles of the users rather than on their

identities. A user will obtain the allowed permissions by playing a role, in which case

this user will inherit all the permissions associated with that role. Because roles within

organizations are relatively persistent compared to users who switch positions within the

organization or leave the organization, RBAC reduces the complexity, cost, and errors in

policies establishment and maintenance. By limiting roles assignment to only the needed

permissions, RBAC supports the principles of least privileges and separation of concerns.

Attribute Based Access Control (ABAC)

Attribute Based Access Control (ABAC) [HFK+14, HKFV15] grants or denies access of

users to resources based on some attributes of the user, selected attributes of the objects, and

environment conditions. Using ABAC an administrator can create rules without specifying

a relation between a specific user and a specific resource. In this model, a user is assigned a

set of subject attributes upon joining the organization. A resource is assigned a set of object

attributes upon joining the system. An administrator creates a rule based on subject and

object attributes. Upon an access request, an access control point matches the attribute

values in the request against the policy it has to reach a decision. To change an access

decision, all that is needed is changing attributes without changing the rules which gives a

dynamic access control management and limits the maintenance of rules.

In addition to the above access control models, others found in the literature including the

Chinese wall policy [BN89], Risk-Adaptive Access Control (RAdAC) [CRK+07], Policy-

Based Access Control (PBAC) [ZJXsLx09], Organization Access Control (ORBAC) [KBB+03],
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Administrative RBAC (ARBAC) [SBM99], Temporal RBAC (TRBAC) [BBF01], Task-

Based Authorization Controls (TBAC) [TS98], Team-Based Access Control (TMAC) [Tho97],

and Virtualized RBAC (VRBAC) [LLT+13].

The formalism presented in the thesis is a generalized formalism and therefore can be used

to reason on any of the models presented above. However, our focus in the examples and

implementation is on the firewall policies domain.

2.1.3 Firewalls

Firewalls are the first line of defense in network security. Due to this fact, we use firewall

policies in the examples given in the thesis. In the following, we give an overview on firewalls.

Firewalls are hardware or software artefacts that control traffic between networks with dif-

ferent security level requirements based on a predefined security policy [VE05, SH09, Zal10].

Every packet passing through a firewall is inspected and checked. Then it is either allowed

to pass or rejected based on the firewall policy. A firewall policy is an ordered rule list,

or an ACL, that is a translation of the organization’s high-level policy. Therefore, writing

firewall policies that reflect the organization’s needs is critical in protecting resources. Fire-

wall rules and network policies are domain (i.e., mechanism) specific access control policies.

Firewalls are access control points enforcing the policy. The firewall rules define the actions

to be taken for traffic matching their conditions. The firewall checks the rules sequentially

and applies the first matching one.

Figure 2.1 shows an example of a firewall policy written in the language of iptables1 [Rus02,

np18]. Firewalls have two basic actions to either allow or drop traffic. However, in iptables

firewalls have other actions such as LOG, ACCEPT, REJECT, or DROP. The action LOG does

nothing to the traffic and records it in the Syslog file. The action ACCEPT allows traffic to

pass. The action DROP blocks the traffic. The action REJECT blocks the traffic and sends

an error message to the requester to acknowledge the receipt of the request and save the

1iptables is a command-line utility program used to configure Linux firewall
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requester from reattempting a request.

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 80 −j ACCEPT

4 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 25 −j ACCEPT

5 −A INPUT −s 192 . 168 . 1 . 0/24 −j ACCEPT

6 −A INPUT −s 192 . 168 . 2 . 0/24 −j ACCEPT

7 −A INPUT −s 192 . 168 . 3 . 0/24 −j ACCEPT

8 −A INPUT −s 192 . 168 . 4 . 0/24 −j ACCEPT

9 −A INPUT −j DROP

Figure 2.1: Web server policy

As mentioned above, firewalls execute rules in a sequential manner, which results in a

decrease in firewall performance. This is especially true if the matching rule is at the bottom

of the rule list. The work in [AS14] enhances the performance of the firewalls by improving

the order of the rule list. Another proposal is the use of parallel firewalls [WLWF15] which

results in an improved performance especially if the rule domains are disjoint.

As discussed in Chapter 1, there are different types of firewalls [TS06, SH09]. Packet-

filtering firewalls make the decision to pass or deny a packet based on its attribute values

in the packet header. They inspect every incoming and outgoing packet and check it to the

policy. Stateful firewalls keep track of the state of the connection and therefore not checking

the policy for each packet. On the other hand, application-level firewalls check the content

of packets.

Firewalls could be deployed at the organization’s network gate or entry point. Although this

approach provides some protection, it does not provide any protection from internal attacks

or monitor internal traffic. Bellovin [Bel99] propose the initial idea of distributed firewalls

where the centrally defined policy is distributed to hosts such that each host protects itself

rather than a single firewall protecting the gate of the network. The common practice

nowadays is that firewalls are deployed at the gate and different places in the network to
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provide extra layers of protection.

2.2 Layered Protection

One of the security strategies that should be adhered to in an access control system is layered

protection or layered defense which is also known as Defense-in-Depth [Pet01, FH06, Sta07,

Sta09, Col09, U.S16]. The DD strategy asserts to implement layers of defenses such that

if one layer is compromised the others will not. This makes it difficult for an attacker to

succeed in gaining access to sensitive resources by the need to pass through multiple access

control points. Although it is a recommended strategy [Goo12], there is no formal approach

to implement it in the literature. We present here some work related to this topic.

In an early work, Smith and Bhattacharya [SB97] propose the use of a chain of firewalls or

what is called a cascade of firewalls to enhance security and trust. Rubel et al. [RIHP05]

present an attempt to construct a single specification from which the policies of the differ-

ent mechanisms can be derived in a defense in depth system. The work of Lippmann et

al. [LIS+06] analyzes firewall rules and generates attack graphs to produce recommendations

to restore defense in depth. Huang et al. [HKH+05] present a technique using data min-

ing to collect data from scattered Intrusion Detection Systems (IDS)/Intrusion Prevention

Systems (IPS) and updates other IDS/IPS systems to restore DD in a network. Thames et

al. [TAK08] present a proactive approach to couple distributed intrusion detection sys-

tems with an active response and distributed firewalls to secure networks. Mavroeidakos et

al. [MMV16] define a multilayered security architecture based on defense in depth for ap-

plications in the cloud.

The formalism given in Chapter 5 provides a formal presentation of layered protection that

can be used to verify the implementation of layered protection in networks. Moreover,

we propose two implementation schemes that can be used to generate policies for network

access control points satisfying the layered protection.
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2.3 Network Segmentation

Network Segmentation is a security measure to protect resources [Sta07, Sta09, FH06,

Ram02, U.S16]. It partitions the network into segments or zones such that traffic going

from one zone to another is monitored and controlled by an access control point or a firewall

which makes gaining access to valuable resources a challenging task. By partitioning the

network resources into segments of different security levels and restricting movements, the

principle of least privilege is applied such that users are given access to only the segments

necessary to perform their tasks and limit their access to other segments. It is a protection

measure against insider attacks. Moreover, proper network segmentation helps in creating

an effective layered defense or DD [U.S16].

Segmentation is also referred to in the literature as compartmentalization, pertaining, aggre-

gation, slicing, or zoning. Although network segmentation is a suggested practice [Goo12,

Nat13, Cen15], there is no formal approach on how to achieve it. Several research studies

have been tackling this issue such as [DZLL14, WŞPS19, WŞŞP+17, WŞW+16, JSBZ15].

Segmentation is closely related to security mechanism placement. For example, Smith

and Bhattacharya in [SB97], besides the proposal of firewalls cascade, propose a firewall

placement heuristic to decide the best placement for firewalls that offer maximum protection

with minimal cost. Moreover, Rahman and Al-Shaer [RAS13, AS14] provide a framework

for security configuration and placement of security devices within the network.

Clark et al. [CMV00] present compartmentalization as a way to secure data. Du et al. [DZLL14]

propose an algorithm based on network segmentation to secure wireless sensor networks

(WSN). And Jeuk et al. [JSBZ15] propose a network segmentation architecture in the

cloud.

Wagner et al. [WŞW+16] present an approach to select the best network segmentation

based on heuristic search. In [WŞW+17] they present a method of evaluating defense

mitigations such as network segmentation and their impact on security and organizational
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mission. In [WŞŞP+17] they propose a low-cost alternative method to evaluate network

segments for security risks. And in [WŞPS19] a method is presented to generate network

segmentations suited for security and performance, evaluate them, then suggest the most

appropriate ones.

Network slicing (e.g., [CSL+20, NGM16]), for the purpose of isolating resources, decomposes

a network based on one of several possible criteria such as shared resources, storage, security

requirements, or bandwidth. Hence, segmentation is a form of slicing based on security

requirements and access policies. It uses access control policies to specify the rules to

access services/resources within each network segment. These rules are grounded in security

requirements. As far as we know, there is an absence of literature on the segmentation of

networks with multiple entry points. However, several results on network slicing exist, that

could potentially help with the segmentation of networks with multiple entry points (e.g.,

[NGM16]). In [MDS+17], the authors states that flexible network design is needed for

next generation networks. For example, dynamic networks often require flexibility in their

designs. The authors of [MDS+17] argue that flexible design offers the possibility to cope

with a diverse set of requirements. In the case of segmentation as a form of slicing, it helps

cope with security access requirements.

he studies mentioned above fall into two categories. The first category is related to segment-

ing network resources using heuristic approaches from the perspective of certain security

measures (e.g., risk assessment measures). The second category is related to hardening

the security of existing networks. None of these studies use a formal approach to achieve

network segmentation. Their approaches lack the ability to automate the derivation of

the best solution for network segmentation and prove its correctness. The formalism pre-

sented in this thesis defines segmentation formally from the perspective of access control

policies. Moreover, it proposes a formal and systematic approach to achieve it. More on

this discussion in Section 6.3.3.
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2.4 Product Family

In the literature, we find research studies that try to apply the concept of product family

into security and access control systems. These research studies include [PGF+15, KKLS14,

DSE12, LFP11, HPF16].

Pinto et al. [PGF+15] use dynamic software product lines (DSPLs) in wireless sensor net-

works (WSNs) setting to enable the modeling of variability and dynamic self-adaption.

First, a feature model is used to model the whole system for all possible products or devices

including their security policies. A product for a given device is a single configuration of

the model. The model allows for variabilities that can change at run time, and the system

will be able to adapt to such changes. The configuration of a given device changes or gets

reconfigured accordingly. To reconfigure a security policy at run-time, the new policy is

compared to the old one, and based on the difference self-adoption steps are generated.

Each device has a monitoring component that monitors the environment and triggers the

self-adaption process.

Kim et al. [KKLS14] use a family approach to generate a hybrid model of RBAC and MAC.

In their approach, RBAC and MAC are defined in term of features. RBAC and MAC

are modelled as feature models. Each model is configured for a given application. The

configured RBAC and MAC models are composed into a single hybrid configuration for the

application.

Horcas et al. [HPF16] use a family approach to model functional quality attributes (FQAs)

such as security. An FQA is modeled separately from the application in a feature model fol-

lowing a software product line (SPL) approach with its concerns as features. Concerns have

requirements (e.g., mandatory or optional) and dependencies. Multiple configurations are

generated from the model. An aspect-oriented approach is used to insert the configuration

into the application model.

Derakhshanmanesh et al. [Der15, DSE12] propose a model-centric approach for dynamic
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access control systems based on the concepts from dynamic software product lines [HHPS08]

and adaptive software [ST09]. In [DSE12], the authors apply the approach on physical access

control where RBAC is the policy model. In the approach, a manufacturer has a variant of

cyber-physical access control systems presented in a feature model. A customer selects the

desired features for their product along with an access control policy. A product is shipped

with an adaption strategy that is implemented to the whole product line so it can react

during operation. Adaption rules can adjust the product in foreseen events during runtime

automatically. At some point, an event occurs which enforces a new requirement. If the

new requirement was foreseen in the product line, the adaption strategy could introduce

new features that were not selected in the initial product or change the access control

policy. The access control system architecture follows a layered architecture of four layers.

The first layer is the access control core functionality layer which contains the product’s

artifacts with core functionality (e.g., granting or denying access as well as reading data

from chips) and driver software. Second, the middleware layer has two interpreters one for

the access control model and the other for the configuration model. The third layer is the

runtime model layer which has the access control model (e.g., has access control policy),

configuration model which has product line features, and state variable which represents

sensed value. Finally, the adaption management layer has the adaption strategy to change

rules and features. Moreover, rules can be changed manually by the administrator through

this layer.

The studies presented above use a family approach in a top-down fashion, where a feature

model for the whole system is specified and the policy of a certain device is a single configu-

ration derived from the model or a specific product of the family. On the other hand, in this

thesis, we use a family approach in a bottom-up fashion, where we use the resource policies

to abstract the whole network and generate policies for internal access control points.
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2.5 Access Control Research Topics

Distributed Environment Challenges

A network or a distributed system [TS06, TW10] consists of a collection of autonomous

machines that require an advanced access control method. Moreover, enforcing an access

control policy in such an environment is a challenge by itself. In this section, we discuss

access control in a distributed environment and the research related to this area.

In a distributed environment, users request access to resources. Controlling access to re-

sources is all about protecting those resources from unauthorized access. Protection is

enforced by an access control point that stores policies and enforces them as well. There-

fore, it is important to assume that the access control point is protected against compromise

or unauthorized access.

Implementing access control in distributed systems can be done either using a centralized

authority with a single or multiple access control points, distribution of policies to access

control points or a hybrid approach of both where the management is centralized while

the enforcement is distributed [HFK06]. An example of the first approach is the use of

a perimeter firewall at the network’s gateway to protect the distributed resources from

external access. An example for the second approach is the use of distributed firewalls

where each is assigned it is policy separately with no central authority over them. An

example of the third approach is using distributed firewalls where there is a centralized unit

managing those points and making sure policies are consistent and up to date.

Delessy et al. [DFLPW07] surveyed access control models for distributed systems. These

models include high-level policy-based access control such as RBAC and ABAC and low-

level implementation languages such as ACL and capability list. Dekker et al. [DCE08]

present a formal model for a distributed RBAC. In the model, the policy is distributed

among different reference monitors for the different subsystems. Any change or update in

the policy is reflected to the affected reference monitors. Abadi et al. [ABLP93] present a

29



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

calculus model for delegating authority in access control systems in a distributed environ-

ment.

Virtual Machines (VMs) are software implementation of machines that run like isolated

physical machines [RAAS14]. The virtualization technology is a software layer on top of

the physical layer that allows for running multiple VMs with possibly different operating

systems on the same hardware. Virtualization allows for servers’ consolidation which helps

in reducing operation and administration costs. VMs are gaining popularity and have been

adopted by many organizations because of what they provide of flexibility to users and

administrators. However, these benefits come with security risks and threats, one of which

is managing access control.

Hirano et al. [HOKY07] present an approach to enforce an access control policy based on

user identity in distributed virtual machines using secure Virtual Machine Monitor (VMM).

An important component of secure VMM is MAC system. It consists of a policy decision

point, policy enforcement point, and policy management to update and validate distributed

policies. A security policy is distributed by a central policy server. The access control is

based on virtual machine ID and user ID. Authentication and authorization are done on

the VMM layer rather than the guest operating system using a user ID card.

Later, in [HSE+08] Hirano et al. present an architecture to enforce RBAC access control

policy in distributed systems. It enforces the policy on distributed virtual machines using

VMM. The ID management framework employs ID card system to authenticate and au-

thorize users in VMM layer. A user is assigned a public key certificate (PKC) as an ID.

User’s roles are expressed as an attribute certificate (AC). The relationship between PKC

and AC indicates the role assignment, both PKC and AC are stored in a user’s ID card.

Authentication is done based on certificate authority’s PKC stored in the VMM layer. After

that, authorization of a user is done by verifying its AC based on attributed authority’s

PKC in the VMM. Relationship between AC and PKC makes VMM decide the role of a

user.
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In addition to the above, access control policies in distributed virtual machines can be

enforced using firewalls, thin-client system, or using VMM technology [HSE+08]. Another

mechanism is to use a virtual firewall in the host’s virtual machine monitor. Moreover,

enabling the firewall of each guest machine is another mechanism. The dynamic nature of

virtual machines requires the virtual firewall to be dynamic, flexible and having the ability

to configure itself at run time according to the state of the machines [ZLKM11].

Usually, computer networks are distributed. In our work, the overall security policy is dis-

tributed to the resources and multiple access control points. Each of these entities enforces

their local access control policy and there is a centralized unit that manages the overall

policies of these points. We deal with this aspect from a family-based perspective. The

distributed nature of the access control policies that we adopt can be observed in the SDN

implementation and the prototype presented in Chapter 8 and Appendix B, respectively.

Testing Access Control Systems

One of the issues tackled in the literature of access control is generating test cases to test

the implemented policy. Testing is tackled in [HXCL12, Brü12, BBKW10, BBW15] and

more.

Hwang et al. [HXCL12] present an approach for firewall policies test generation.

In [Brü12, BBKW10, BBW15], Brucker et al. present a model for access control policies

called Unified Policy Framework (UPF). The main goal of UPF is to be used for generating

test cases. It is based on the interactive theorem prover Isabelle/HOL. UPF is a generic

model that brings a lot of advantages. On the other hand, this comes with the challenge

of bringing together different concepts from different domains and the need to be flexible.

Security policies are usually dynamic such that their decision depends on the state of the

system. Therefore, they model policies, system state, and state transition rather than only

decisions.

UPF is based on four principles. First, it represents a policy as a decision function that
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grant or deny access. Second, no conflicts are possible within a policy because a resolution

strategy is applied when combining the rules of a policy. Third, the decision can be one of

three values: allow, deny, or undefined. Fourth, the output is a decision accompanied with

additional information. In UPF, a policy is modeled as a partial function that maps an

input to a decision. The authors in [BBKW11] present a case study of applying a Model-

based Testing (MBT) approach to generate test cases to the National Programme for IT

(NPfIT) which is a large-scale project for the IT infrastructure for the National Health

Service (NHS) in England. The challenges in modeling such a real-life application included

the following: The access control rules for patient information are complex and represent

conflicting issues such as confidentiality, usability, function, and legal constraints. Moreover,

the security requirement abides by laws, ethical issues, official guidelines which are prone

to changes that need to be reflected in the distributed system.

The formalism presented in this thesis is not specifically for test case generation. However,

the implementation schemes presented in Section 5.1.2 for DD strategy can be used to

generate the policies that should be enforced at an access control point and derive test

cases from it.

Access Control Analysis

One of the problems that weaken an access control system and is addressed by analysis is

conflicting or inconsistent policies. A conflict happens when two policies or rules cannot

be satisfied at the same time. These conflicts can be at a high-level model, at the rules

enforced at a single access control point (firewall), or between the rules of distributed access

control points (firewalls). There is a lot of research tackling the challenge of classifying and

finding these conflicts.

For finding errors in a high-level access control model, Lupu and Sloman [LS97, LS99]

present an approach to find and resolve conflicts in a distributed system modeled with RBAC.

There are two types of policies: authorization and obligation. Authorization policies specify
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what privileges a user is permitted or denied performing while obligation policies specify

what a user must or must not do to an object. Conflicts happen between allow and deny

authorization policies, between deny authorization and obligation policies. conflicts are re-

solved by enforcing an execution order or precedence. Moreover, Jayaraman et al. [JGT+11]

used an abstraction-refinement and bound model checking technique to find errors in AR-

BAC policies. In the beginning, the abstraction is extracted from policies then model

checking is used to verify the abstracted policy against a set of security properties. Shu et

al. [cSYA09] present an approach to find conflicts in ABAC policies in a distributed envi-

ronment. It is used to find statically conflicting policies rather than evaluation at run time.

The approach uses two techniques of rule reduction and binary search to find conflicts. The

first is used to reduce rules into compact semantically equivalent rules while the second is

used then to find conflicts.

On the other side, there is rich literature on the conflicts of a single firewall (e.g., [ASH03,

YCM+06, BCL12, CSFM07, Cha13, HAK12, KH13, SSB14, VSB+15]). Moreover, there is

literature on the conflicts between distributed firewalls (e.g., [ASH04, YCM+06, ASHBH05,

Cha13, HNVC13, JS09, LS15, VSB+15, WCLC06]). There is also research that tackles

finding firewall conflicts in the cloud [Mei15] and SDN [MCD15].

The presented tools above for conflict discovery and resolving are a simplified version of

the real-world firewall rules. This is what motivated the work of Diekmann et al. [DHC15,

DMHC16] to write a translator from real-world iptables to a simplified model that can be

used in such tools. The translator is proven in Isabelle/HOL theorem prover.

Recall that a firewall policy is a list of ordered rules that are executed sequentially. Two

rules of a firewall are said to be conflicted if they match the same traffic but have different

actions. Moreover, conflicts happen between policies of different firewalls in a distributed

environment. policies of two firewalls on the same path are conflicted if they have different

actions for the same traffic.

In [ASH04], Al-Shaer and Hamed present a classification for the conflicts that can exist in a
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single or between distributed firewalls. In a single firewall, the conflicts that may exist are

shadowing, correlation, generalization, and redundancy. Shadowing is the conflict when

the traffic of a lower rule is blocked completely by a proceeding rule with a different action.

A shadowed rule is not reachable and never gets executed. Correlation is the conflict when

two rules are correlated. Correlated rules are two rules that their domains intersect but not

completely (i.e., they are not a subset nor a superset of each other) and they have different

actions. Generalization is the conflict when the traffic of a rule is partially blocked by a

proceeding rule with a different action. In this conflict, the lower rule’s domain is a superset

of the upper rule’s domain. Redundancy is the conflict when we have a redundant rule.

A rule is redundant if its domain is a subset of another rule’s domain and having the same

action. Such that removing the redundant rule will not result in any change in the policy’s

behavior.

Between distributed firewalls, the following conflicts can happen. Shadowing happens

when an upper firewall blocks traffic accepted by a lower firewall. Spuriousness conflicts

happen when an upper firewall accepts traffic denied by a lower firewall. Redundancy

happens when a lower firewall denies traffic already blocked by an upper firewall. Finally,

correlation which happen when we have two correlated rules one in the upper firewall and

the other in the lower firewall.

Yuan et al. [YCM+06] have the same set of conflicts in a single firewall. Shadowing and

redundancy are regarded as errors while generalization and correlation as warnings. In

distributed firewalls, the only conflict considered an error is shadowing. Redundant accept

rules are necessary to reach resources. Moreover, redundant deny rules are not necessary

but it is not an error since they provide multiple layers of defense which is a good practice to

improve security. Another conflict is introduced which is the cross-path inconsistencies

which happens if there are multiple paths to a resource each has a different action for the

same traffic.

Al-Shaer and Hamed [ASH04, AS14] present an algorithm to detect firewall conflicts in a
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single firewall and distributed firewalls. Yuan et al. [YCM+06] present a toolkit for firewall

modeling and analysis (FIREMAN). The tool uses static analysis techniques to find conflicts

in firewall policies. Capretta et al. [CSFM07] present an algorithm to find conflicts between

rules in a single firewall. Coq proof assistant is used to discover conflicts.

The formalism presented in this thesis guarantees the absence of conflicts in a single policy

due to the integrability of the commands. Moreover, it guarantees the absence of conflicts

between the distributed access control points. More discussion on this topic is presented in

Section 4.3.

Policy Specification Languages

Defining a high-level specification language has the advantage of being easier to analyze

than a low-level language. Low-level rules are derived from these specifications.

Zhang et al. [ZASJ+07, AS14] present a high-level firewall configuration policy language

(FLIP). In the language, the firewall policies are defined at a high level using a user interface

called policy designator. The high-level rules are then translated to firewall rules and

distributed to appropriate firewalls. The language guarantees the absence of conflicts by

performing checks.

The eXtensible Access Control Markup Language (XACML) [Ris13] is an informal policy

modeling language based on XML for control over the internet. The model defines a policy

language along with a process model on how policies should be evaluated to reach a decision

for a request. The focus of this model is to combine different policies together which explains

the number of combing algorithms it has. XACML mainly is an ABAC model which can

be used to model RBAC as well.

The formalism presented in the thesis is a general formalism. It can be used to reason on

policies specified in any of the above-mentioned high-level specification languages. More-

over, the use of a family approach allows us to abstract the distributed policies in the

network as a family of resource policies enforced at the entry point of the network. The
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topic of network abstraction is discussed in Section 4.3.

Generating Low-level Rules from High-level Policies

One of the topics tackled in the literature is the generation or translation from high-level

policies to low-level rules to be implemented at the different access control points. This

process is also referred to as policy refinement. It has been tacked by studies such as [Hin99,

BLMR04, BLR+05, BCV04, CT08, RSC+06, CLL+09, CLL+10].

Adao et al. [AFGL16] present an algorithm that takes security goals and generate the actual

configurations of distributed firewalls. Hinrichs [Hin99] described a technique for translation

from high-level policy to low-level specific access control point Cisco devices.

The formalism of this thesis is not concerned about generating low-level policies from high-

level policies, however, it is general to reason on both. Moreover, in this thesis, starting

from the policies of the resources, we generate the policies of the internal access control

points up to the entry point of the network.

Conformance of Low-level Rules to High-level Policy

One of the challenges in an access control system is validating that the low-level rules

enforced by the access control points actually reflect the high-level policy of the organiza-

tion [YCM+06].

Youssef and Bouhoula [YB10] present a formal method approach based on inference sys-

tems to check the conformance of distributed firewall rules to the global security policy.

Moreover, the procedure checks for conflicts between the policies of the distributed fire-

walls. Tongaonkar et al. [TIS07] generate high-level policies from low-level firewall policies.

This makes policies understandable, and easy to resolve errors and improve the rules set.

Hachana et al. [HCC+13] present a mining technique to generate RBAC policies from ex-

isting firewall rules. The goal is that it is easier to manage RBAC than to manage firewall
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rules. Montanari et al. [MCL+13] present a system for monitoring and validating compli-

ance of low-level implemented policies to high-level security policies in network systems. It

works by decomposing policies and delegates the validation to multiple machines to avoid

single point failure and attacks.

The network abstraction discussed in Section 4.3 can be used to validate the overall policy

of the network such as what traffic is denied or allowed by all resources in the network.

Policy Composition

Policies governing access to resources come from different sources and stakeholders covering

laws, best practices, and organizational requirements. These policies are specified inde-

pendently and need to be enforced as one policy at the resource while maintaining their

independence. For example, the overall organizational policy needs to be combined with

departmental policy. Moreover, resources can be subject to shared or collaborated projects

between organizations with their requirements, and therefore their policies need to be com-

posed to the implemented policy at the resource. To carry out the needs of both parties

of information availability as well as confidentiality and integrity [SD01, WJ03]. There is

a rich literature tacking this issue such as [BdS00, JSSS01, BDS02, WJ03, BDS04, PW05,

ZB07, RLB+09, NF18].

Bonatti et al. [BdS00, BDS02] present an algebraic framework for access control policies.

The goal for the framework is the composition of policies. Their work is motivated by the

need for composing policies that are stated independently to generate a single implementa-

tion while maintaining the independence of the original policies. Prior to their work, policy

specifications were thought of as a single monolithic and complete specifications. Moreover,

one of the goals of their work is to allow policies that are not complete at specification time

and the incomplete part will be provided at execution time.

The algebra is defined over ground or atomic terms of subjects, objects, and actions. Policies

are sets of ground terms specifying the permitted actions. The algebra defines constraints
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and inference rules. Constraints are used to restrict policies to special conditions on the

subject, object, action, or combination of those. For example, an organization can define

constraints to extract the part of a policy that is concerning a certain department. Infer-

ence rules are used to update terms when inference rules are satisfied and can be used, for

example, to delegate authority. In the algebra, different composing operators are defined

such as addition (union), conjunction (intersection), subtraction, closure, scoping restric-

tion, overriding, and template. Addition is the union of basic terms. Conjunction is the

intersection of policies. Subtraction removes ground terms from the first policy that are

in the second policy. They argue it is advantageous to use subtraction than to allow for

negative authorizations. Closure closes a policy using a set of inference or derivation rules.

Scoping restriction uses a set of constraints to restricts a policy. Overriding replaces part

of policy P1 with parts of policy P2 and P3 is used to specify the parts to be replaced.

Template is used to define partial policies that to be completed.

There are two strategies to evaluate policy specifications one is to generate implementations

or ground terms before execution while the other is to evaluate requests at run-time. The

first one requires pre calculations and the second is more expensive at run-time. A third

approach which is supported by Bonatti et al. work is to generate ground terms for the

complete part of the policy and leave the unknown or dynamic part to be evaluated at

run-time.

Wijesekera et al. [WJ03] present a propositional policy algebra for the manipulation and

composition of access control policies at a high level. Policies are modeled as nondetermin-

istic relations or transformations of permission sets to subjects. Permission sets are pairs of

object and permission. permissions are signed to indicate an allowed or denied permissions.

Operations on policies are regarded as relational or set theory operators. They defined pol-

icy operators such as conjunction (intersection), disjunction (union), difference, negation,

sequencing, closure under rules, provisioning, and scoping. Operators come in two flavors,

internal and external. For example, internal union merge permission sets creating larger
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sets with all possible combinations while external union just add sets together. The focus of

such frameworks is that policies are a composition of other policies, however, we go further

to use this fact to solve network security issues and define and proof properties.

In case of conflicts in a policy, that is; a policy that gives a positive and negative autho-

rization for the same domain, max and min operators are used to select the positive or

negative authorizations, respectively. And in the case of under specified policies, oCom and

cCom operators complete the unspecified part of the policies by allowing all access that is

not explicitly denied or denying access that is not explicitly allowed, respectively.

In [ZB07], Zhao and Bellovin propose a policy algebra framework to model security policies

in a hybrid firewall environment. The policies are defined as a set of rules and operations

are defined in the policy and the rules levels (external and internal). The operations are

addition, conjunction, subtraction, and summation which is a list of additions. Each policy

is associated with cost and risk functions and they have the concept of policy delegation

where a resource can delegate the enforcement of its policy or part of it to other resources

which in turn reduce cost and increase risk values. Moreover, they used this model on

firewall rules. To transfer the sequential firewall rules to an unordered list they used a

decorrelation algorithm [HSP00]. And instantiate the internal operations to the firewall

rules. They assert that their algebra does not prevent conflicts, it only reveals them. The

work extended to the integration of Ponder2 policies in [ZLB08].

Rao et al. [RLB+09] present an algebra for the integration of XACML policies. In this

model, a policy is a triple of three values: a set of the allowed request, a set of the denied

requests, and a set of not applicable requests. A number of operators are defined including

addition which allows the union of what the policies allow and denies what is denied by either

policy one but not allowed by the other one, intersection, negation, and domain projection.

They also present derived operators such as effect projection, subtraction, and precedence

(i.e., sequential composition). They also show that the algebra expresses XACML policies

and show its completeness.
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Sabri and Hiary [SH16] present an algebraic model based on information algebra to specify

and analyze policies. In the model, a policy is specified as an allowed privilege given to

a user on an object (i.e., resource). Two ways are presented to combine policies: union

and intersection. They differentiate between an elementary and composite policy. They

specify enforcing predefined constraints and comparing policies. The model is later extended

to RBAC policies [Sab18].

Recently, Neville and Foley [NF18] present a firewall algebra for constructing and reasoning

about conflict-free firewall policies. The algebra is based on refinement define operators

such as sequential composition, union, and intersection. It is used on iptables firewall rules.

In the algebra, a filter condition is a tuple (s, sport, d, dport, p) represent the sources IP,

source port, destination IP, destination port, and protocol, respectively. A firewall policy

is a tuple (A,D) where A are the allowed conditions and D are the denied conditions. A

and D are disjoint and implicit default action is defined for the complement of the union

of A and D. A policy P refines a policy Q if everything denied by Q is also denied by

P and everything that is allowed by P is allowed by Q. The policy with the refinement

forms a poset. Policy intersection is the policy that denies any condition denied by either

P or Q and allows what they both allow, and therefore is the greatest lower bound w.r.t.

refinement. Policy union is the policy that allows anything allowed by P or Q and denies

what they both deny, therefore is the least upper bound w.r.t. refinement. They also define

sequential composition based on these operators.

Golnabi et al. [GMKA06] present an approach to generate firewall rules by analyzing firewall

log files using data mining. Garg et al. [GJD11] present an algorithm that checks the log

for compliance with high-level policies.

The algebraic approaches presented above are limited to modeling and analyzing policies.

They do not adopt a family approach to model policies.
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Adaption to Resource Change, Policy Update, or Threats

As noted, resources and policies are changing continuously which requires access control

systems to accommodate and react to these changes. Many research attempts have been

made to tackle this issue.

Burns et al. [BCG+01] pointed out the need for an automated solution to reconfigure access

control points in response to network changes to uphold a security policy. Moreover, they

present a project is to tackle this issue. In [BCL11], Bailey et al. present a self-adaptive

framework for distributed RBAC/ABAC policies. The framework depends on loop feedback

that monitors the actions performed by users to analyze their behavior. Based on the

analysis, it is decided if policies need to be updated.

The formalism presented in this thesis is intended to structure and configure networks either

traditional or dynamic. In Chapter 8, we incorporated an algorithm derived using our

formalism into an SDN environment as an adaptive component responsible for preserving

the secure structure and configuration of networks.

2.6 Software Defined Networks (SDN)

In networking, a plane is an integral component of the telecommunication architecture.

There are three components, the data plane, the control plane, and the management plane.

Each plane has its functionality. The data plane is responsible for handling packets and

performing actions of them. The control plane is responsible for deciding the actions to be

taken by the data plane. The management plane is where the configuration and monitoring

of the network devices happens.

In traditional networks, the control plane and data plane are combined in the same network

device. Therefore, network administrators configure each device separately. This approach

makes traditional networks hard to setup, maintain and manage. Moreover, traditional

networks cannot cope with the demands of modern networks such as dynamic changes and
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scalability. SDN separates or decouples the control plane from the data plane. The control

or the management is centralized and has a global view of the network. Data plane devices

(e.g., switches) are basically dummy forwarding devices. They forward traffic based on

rules specified remotely. The rules could be coming from applications and are triggered by

information extracted from traffic or traffic events [SKBJ20].

SDN architecture consists of three planes: application, control, and data planes [SH17,

SKBJ20] as shown in Figure 2.2. Each plane has its own specific functionality. An SDN

network has at least a single controller at the control plane, a northbound application

programming interface (API) between the control plane and the application plane, and a

southbound interface between the control and data planes.

Application PlaneApplication Plane

Control PlaneControl Plane

Data PlaneData Plane

SwitchSwitch

Controller

Southbound API

Northbound API

HostServer
Switch

ApplicationApplicationApplication

Figure 2.2: SDN architecture

Data plane has network devices (e.g., switches) that forward packets without taking de-

cisions on their own, and they communicate with the controller using southbound APIs

(e.g., OpenFlow protocol). Each OpenFlow enabled switch has a flow table. Each entry
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in the flow table has matching fields, an action, and counters. The matching fields can

be any of the packet header attributes such as source mac address, source IP, destination

mac address, destination IP, destination port, protocol, etc. A flow table entry can execute

many actions including forward packet on a specific port, forward packet to controller, or

drop. Flow table entries have priority to specify the order of the evaluation. An entry with

high priority gets evaluated first, and an entry with low priority is evaluated later. The

development of SDN architecture allowed for the introduction of software switches. The

most used of which is open vSwitch [PPK+].

The southbound API is the interface between control plane and data plane network devices.

OpenFlow is the most accepted and used southbound API. There are multiple OpenFlow

messages send from the data plane devices to the controller including packet-in, switch

features reply, flow remove, etc. And the OpenFlow messages from the controller to data

plane switches include packet-out and add flow.

SDN control plane runs the network operating system (NOS) which has a global view of

the network and configures network devices based on policies and commands defined by

applications [ANYG15, KMNH19, SKBJ20]. It also abstracts low-level/data plane net-

work for application plane. There are two types of controller architectures: centralized

and distributed. The centralized controller architecture has a single controller responsible

for managing data plane devices. Examples of centralized controllers are Ryu [KFAS14],

POX [ASM], and floodlight [flo]. SDN distributed controller architecture has multiple con-

trollers with interfaces between them. ONOS [BGH+14] adopts an architecture that dis-

tributes the controller. For further information on SDN controllers, we refer the reader

to [ZKS+19].

2.6.1 Stateful Data Plane

In the original proposal of SDN, data plane switches are stateless. Stateful processing

is performed by the controller. For stateful communications, switches forward packets to
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the controller which results in controller overhead and increased latency. Stateful data

plane approaches are proposed to allow switches to handle state processing locally without

the need to forward traffic to the controller and therefore improve the overall network

performance [DCA+17, SKBJ20].

OpenState [BBCC14] is a stateful data plane abstraction extending OpenFlow that allows

stateful processing at the data plane. The motivation behind OpenState is that some simple

operations can be done based on the switch knowledge and can be delegated to the switches,

therefore allowing the controller to focus on global network decisions. The controller is still

informed of the delegated operations and in control of the switches. As shown in Figure 2.3,

each data plane switch consists of two tables: a state table and an eXtensible Finite State

Machine (XFSM) table. Communication states are stored and tracked by the state table.

The actions to be taken by the switch for a packet and updating the state table is handled

by the XFSM table. The XFSM table is the tabular representation of the Mealy Machine

transition function.

Key extractor
(lookup-scope)

Packet
Sate lookup (Action + Next state)

lookup

key
Packet headers 

+ State
Packet headers 

+ Actions

Key extractor
(update-scope)

Packet headers 
+ Next state

key

state
...

action
…..

... …..

XFSM Table

headers
...
...

Next-state
…..
…..

Matching fields Actions
state

...
action
…..

... …..

XFSM Table

headers
...
...

Next-state
…..
…..

Matching fields Actions

Flow key
...

No match

state
…..

default
... …..

State Table
Flow key

...

No match

state
…..

default
... …..

State Table

Figure 2.3: OpenState packet flow [BBCC14]

There are other approaches (e.g., Flow-level State Transitions (FAST) [MBG+14], Stateful

Data Plane Architecture (SDPA) [SBC+17]) that use more than two tables. We refer the

reader to [DCA+17] for other approaches for building a stateful data plane.
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2.6.2 SDN Architecture

In the literature, there is an emphasis in the research on the whole SDN architecture (e.g.,

[SSJP17, CYY16]) and control plane structure (e.g., [BGH+14, HSM12]). While there is a

large literature dealing with the controller placement at the control plane, the authors of

[KMNH19] indicate a shortage of research work on the placement of resources and switches

at the data plane. One of the topics discussed in regards to SDN data plane structure is

data plane flexibility [KMNH19] which can refer to many issues including the adding and

removing of resources (i.e., changing the topology). The issue of micro-segmentation and

slicing is also one of the topics discussed in data plane structure [MHS+16]. As far as we

know there are no clear approaches in the literature that guides us in placing the resources

at the data plane.

2.6.3 Dynamic SDN

The nature of resources in modern networks is dynamic such that resources join and leave

the network at any time. This is related to the topic of SDN data plane flexibility discussed

above. Moreover, we find rich literature on SDN fault tolerance [YBÖE17]. Faults in SDN

can be at the three places: data plane, control plane, and application plane. Failures in

the data plane consist of link failure or switch failure, failures in the control plane can

be controller failure or controller-switch link failure. Fault tolerance approaches in SDN

are merely remedies for unexpected failures in the network. In our approach, we cover

unexpected failures as well as changes that are done intentionally that affect the network

topology. Moreover, fault-tolerant solutions both protection and restoration approaches

focus on finding alternative paths rather than dynamically rearranging the network topology.

We also find that many approach dynamic networks by focusing on routing and load-

balancing in the control plane [SHBS19, WLGX16] and data plane [dSSdLPDF19]. It

means that what is dynamic is the way to handle a packet. However, we are considering
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a dynamic topology of the network: Resources get added and removed and the structure

of the networks changes by changing the locations of the switches and their policies. The

dynamism that we are considering is related to the network topology.

We find in [BDGPM20, KLG14] that SDN paradigm is mostly deployed to static data centers

topology. The application of SDN into dynamic networks such as spontaneous Wireless

Mesh Network (WMN) [BDGPM20] and Mobile Adhoc Network (MANET) [BK17, KLG14,

YQR17] is recently emerging. In [BDGPM20], a middleware at every node is proposed for

providing better management of WMN networks as well as for allowing the network to be

flexible, dynamic, and scalable. The approach employs multiple SDN controllers; one for

each collection of nodes or what is referred to as WMN islands. The focus of these studies

is to use SDN in such dynamic networks. However, the focus of our work is to structure

network topologies for security.

2.6.4 SDN Firewalls

There are many design architectures in the literature for implementing firewalls in an SDN

environment. In these designs, firewalls are either centralized or distributed, stateless or

stateful, resides at the control plane or the data plane.

The architectures in [JRR14, KS16, SPLY14] adopt the design of a single centralized state-

less firewall resides at the control plane. For example, in [SPLY14] rules are inserted in

the firewall individually and given a name by the user through a Command-line interface

(CLI), which makes this architecture limited in handling a policy with a huge number of

rules. Moreover, in this architecture, all traffic is handled by the firewall at the control

plane except for limited deny rules which are inserted in the switch flow tables. This man-

ual approach for entering the rules would have limited usage in a large dynamic network. It

has a scalability limitation as all the traffic is assessed by the firewall at the control plane.

Moreover, there is a coupling between the data plane switches and the firewall.

The architectures in [PY14, KKSG15, MAN16, TA15] use a design of distributed stateless
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firewalls where a firewall application resides at the control plane that uses the data plane

switches as distributed firewalls. In [PY14], the firewall application at the control plane

assigns a firewall module for each switch. Each firewall inserts deny rules in the switch,

such that the switch drops unwanted traffic without forwarding the packets to the controller.

When a packet arrives at a switch with no entry in its flow table to handle the packet, it

forwards the packet to the firewall at the controller which instructs the switch on how

to forward the packet and inserts an entry to handle such packets in the future. The

architectures in [KKSG15, MAN16, TA15] while they use only a single firewall at the

control plane, they adopt the same approach of inserting deny rules in the switches at the

data plane. The above-mentioned approaches use stateless firewalls that are not able to

block packets that are not part of an established connection and do not protect from fake

packets. Moreover, stateless firewalls block traffic in both directions while in real-world

settings it is desired to allow traffic initiated from an internal resource and to allow the

outer reply while blocking traffic initiating from an outer resource. Stateful firewalls store

and track communication states and therefore able to block packets that are not part of an

established connection. Moreover, they are able to allow for traffic to pass from one direction

and to be blocked from the opposite direction. The architectures in [GKK16, TA16] use a

stateful firewall. Architecture designs that are based on firewall applications at the control

plane suffer from multiple issues related to scalability and controller overhead as they rely

on forwarding a huge amount of traffic to the controller.

The architectures presented in [CRDP19, CHA+18, ZE18] adopt a design of distributed

stateful firewalls at the data plane. They use stateful data plane approaches to allow

data plane switches to act as stateful firewalls without the need to forward traffic to the

controller for stateful processing. The architecture in [CRDP19] uses OpenState [BBCC14]

and [CHA+18] uses Open vSwitch conntrack module [PPK+] to enable stateful tracking

in data plane switches. Such an approach takes the load off the controller and improves

latency as traffic is handled at the switches; however, it has a setup and maintenance cost
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associated with it as a huge number of rules need to be inserted in the switches.

In the implementation of the results of the formalism into SDN presented in Chapter 8, we

propose three architectures: a single and centralized stateful firewall at the control plane,

multiple distributed stateful firewall at the control plane, and multiple distributed stateful

firewall at the data plane. These architectures cover all the architectures we found in the

literature. However, we are only interested in stateful firewalls as indicated above.

2.7 Summary

This thesis tackles the strategies of layered protection and segmentation to structure and

configure networks achieving robust and secure network design. I approach these strate-

gies from an access control perspective. Therefore, this chapter started by surveying the

literature related to access control policies. Then surveying the literature related to layered

protection and network segmentation. Since the formalism presented in this thesis is based

on a family approach, the chapter surveyed the literature related to the use of a family

approach in security and access control systems. Afterward, it surveyed topics related to

network access control. Finally, because the proposed formalism is implemented in SDN,

the chapter introduced the literature related to SDN.

The formalism presented in this thesis is based on multiple assumptions. First, a policy is

a special kind of program and therefore can be modeled using guarded commands. Second,

the language is generic and not tied to a specific policy or firewall language. Third, the

policies are enforced by distributed access control points and by a centralized management

unit.
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Chapter 3

Mathematical Background

This chapter introduces the mathematical background required for the rest of the thesis. In

particular, Section 3.1 presents an illustrative example that is used throughout the thesis to

relate the theory and concepts to the real-world network security context. Section 3.2 gives

the necessary background on relations. It also presents tabular expressions as a means to

represent policies and automate their analysis and transformation. Section 3.3 introduces

guarded commands which are used to model access control policies as relations. Section 3.4

introduces PFA which is the basis for dealing with access control policies. Finally, Sec-

tion 3.5 summarizes the chapter.

3.1 Illustrative Example

In this section, we present an example to illustrate the concepts and theory discussed

throughout the rest of the thesis. We seek simplicity in presenting the example here and the

concepts introduced later. Consider an organization with different departments, in which

resources are connected in a network. We consider the following small subset of resources:

A Web server , an Email server , two workstations belonging to the Engineering department

(i.e., Engineering1 and Engineering2 ), two workstations and a database belonging to the
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Finance department (i.e., Finance1 , Finance2 , and Finance DB), and an internal File

server available to all departments.

The above resources have different security requirements governing their access. These

requirements stated in a high-level natural language as follows: Web server and Email

server allow outer users for only the designated services (i.e., web pages and email) and

deny any other services. For internal users, they allow full access. File server allows

every user from inside the organization and blocks everyone else. Finance and engineering

workstations allow only users belonging to their department and deny everyone else.

The requirements are translated to a network requirement as follow: all resources allow

an established or related connection and drop every invalid packet. The Web server and

Email server allow every HTTP (TCP port 80) and SMTP (TCP port 25) connection from

any source, any access from all internal resources, and drop everything else. The File server

rejects access requests made by the Web server and Email server , allows all internal re-

sources, and drops every other access requests. The resources belonging to the engineering

and finance departments have stricter policies, which allow access only by users and re-

sources within their respective department, reject all requests made by any other internal

resource, and drops every other access requests. These security requirements are written in

the language of iptables and are given in Figures 3.1, 3.2, 3.3, and 3.4.

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 80 −j ACCEPT

4 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 25 −j ACCEPT

5 −A INPUT −s 192 . 168 . 1 . 0/24 −j ACCEPT

6 −A INPUT −s 192 . 168 . 2 . 0/24 −j ACCEPT

7 −A INPUT −s 192 . 168 . 3 . 0/24 −j ACCEPT

8 −A INPUT −s 192 . 168 . 4 . 0/24 −j ACCEPT

9 −A INPUT −j DROP

Figure 3.1: Web server policy
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1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 192 . 168 . 1 . 0/24 −j ACCEPT

4 −A INPUT −s 192 . 168 . 2 . 0/24 −j ACCEPT

5 −A INPUT −s 192 . 168 . 3 . 0/24 −j ACCEPT

6 −A INPUT −s 192 . 168 . 4 . 0/24 −j REJECT

7 −A INPUT −j DROP

Figure 3.2: File server policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 192 . 168 . 1 . 0/24 −j REJECT

4 −A INPUT −s 192 . 168 . 2 . 0/24 −j ACCEPT

5 −A INPUT −s 192 . 168 . 3 . 0/24 −j REJECT

6 −A INPUT −s 192 . 168 . 4 . 0/24 −j REJECT

7 −A INPUT −j DROP

Figure 3.3: Engineering workstation policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 192 . 168 . 1 . 0/24 −j ACCEPT

4 −A INPUT −s 192 . 168 . 2 . 0/24 −j REJECT

5 −A INPUT −s 192 . 168 . 3 . 0/24 −j REJECT

6 −A INPUT −s 192 . 168 . 4 . 0/24 −j REJECT

7 −A INPUT −j DROP

Figure 3.4: Finance workstation policy

3.2 Brief Overview on Relations

This section presents briefly the necessary background on relations which can be found in

many books on discrete mathematics (e.g., [GS93, Ros02]).

Definition 3.2.1 (Relation — e.g., [Khe08]). Let Σ be a set of states. A (binary) relation

R over Σ is a subset of the Cartesian product of Σ× Σ. �

Let Q and R be relations on Σ, we present the following operations:
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Empty Relation ∅ def
= {(a, a′) | false}

Universal Relation L def
= {(a, a′) | true}

Complement R
def
= {(a, a′) | (a, a′) /∈ R}

Converse R` def
= {(a, a′) | (a′, a) ∈ R}

Union R ∪Q def
= {(a, a′) | (a, a′) ∈ R ∨ (a, a′) ∈ Q}

Intersection R ∩Q def
= {(a, a′) | (a, a′) ∈ R ∧ (a, a′) ∈ Q}

Composition R;Q
def
= {(a, a′′) | ∃(a′|a′ ∈ Σ : (a, a′) ∈ R ∧ (a′, a′′) ∈ Q)}

Domain dom(R)
def
= {a | ∃(a′|a′ ∈ Σ : (a, a′) ∈ R)}

Range ran(R)
def
= {a′ | ∃(a|a ∈ Σ : (a, a′) ∈ R)}

In this thesis, and to proceed with the model for policies, two relational operations need to

be introduced: the demonic join tt and the demonic meet uu.

A relation Q is said to refine relation R written as Q vr R iff ((Q∩R;L ⊆ R) ∧ (R;L ⊆ Q;L))

or, equivalently, iff ((Q∪Q;L ⊆ R∪R;L) ∧ (Q;L ⊆ R;L)) [Khe08]. In other words, a relation

Q refines a relation R if Q agrees with R on whatever in the domain of R and that the

domain of R is a subset of the domain of Q.

Definition 3.2.2 (Demonic join of relations— e.g., [Khe08, DBS+95]). The demonic join

of two relations R and Q is defined as R tt Q
def
= (R ∪ Q) ∩ R;L ∩ Q;L. We also have

(R tt Q);L = R;L ∩Q;L �

In other words, the demonic join of two relations is the union of their common domain.

For example, for a set K = {(1, 2), (1, 3), (2, 5)} and L = {(1, 4), (1, 5), (3, 6)} their demonic

join K tt L = {(1, 2), (1, 3), (1, 4), (1, 5)}. So, we can say (a, a′) ∈ (K tt L) ⇐⇒ ((a, a′) ∈

K ∨ (a, a′) ∈ L) ∧ a ∈ dom(K) ∧ a ∈ dom(L).

Definition 3.2.3 (Demonic meet of relations – [Khe08, DFKM98]). Let R and Q be two

relations on Σ. The demonic meet of R and Q denoted by R uu Q is equal to R uu Q
def
=

(R ∩Q) ∪ (R ∩Q;L) ∪ (Q ∩R;L) only when R;L ∩Q;L = (R ∩Q);L. �

The condition R;L ∩Q;L = (R ∩Q);L can be written as dom(R ∩Q) ⊆ dom(R) ∩ dom(Q).

It means that R and Q has to map every element in their common domain to at least one
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common element in the range. For example, for the relation S = {(1, 2), (1, 3), (2, 4)} and

T = {(1, 2), (1, 4), (3, 5)} satisfy the condition by having 2 in their range for the common

domain 1. Therefore, S uu T = {(1, 2), (2, 4), (3, 5)}. While for the relations K and L in the

above example, their demonic meet is not defined. For more details on relations and their

demonic operations, the reader is referred to [BKS97] and [SS93].

Let S be a set, and let + and · be two binary operations on S (i.e., +, · : S × S → S),

and ≤ be a partial order. We say that:

• The operation · is associative ⇐⇒ (∀x, y, z | x, y, z ∈ S · x · (y · z) = (x · y) · z ).

• The operation · is commutative ⇐⇒ (∀x, y | x, y ∈ S · x · y = y · x ).

• The operation · is idempotent ⇐⇒ (∀x | x ∈ S · x · x = x ).

• The element 1 is the identity element for · ⇐⇒ (∀x | x ∈ S · x · 1 = x = 1 · x ).

• The element 0 is an annihilator for · ⇐⇒ (∀x | x ∈ S · x · 0 = 0 = 0 · x ).

• The operation · right-distributes over the operation + ⇐⇒ (∀x, y, z | x, y, z ∈

S · (x+ y) · z = x · z + y · z ).

• The operation · left-distributes over the operation + ⇐⇒ (∀x, y, z | x, y, z ∈ S · x ·

(y + z) = x · y + x · z ).

• The operation · is right-isotone with respect to ≤ ⇐⇒ (∀x, y, z | x, y, z ∈ S · x ≤

y =⇒ x · z ≤ y · z ).

• The operation · is left-isotone with respect to ≤ ⇐⇒ (∀x, y, z | x, y, z ∈ S · x ≤

y =⇒ z · x ≤ z · y ).

• The relation ≤ is reflexive ⇐⇒ (∀ a | a ∈ B · a ≤ a ).

• The relation ≤ is antisymmetric ⇐⇒ (∀ a, b | a, b ∈ B · a ≤ b ∧ b ≤ a =⇒ a = b ).

• The relation ≤ is transitive ⇐⇒ (∀ a, b, c | a, b, c ∈ B · a ≤ b ∧ b ≤ c =⇒ a ≤ c ).
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3.2.1 Tabular Expressions

Relations are used in documenting software requirements and specifications [JPZ97, JK01,

JP10]. However, such relations tend to be long and tedious which lead to the use of tab-

ular expressions to improve their readability and ease calculations on relations. Tabular

expressions [JK01] are mathematical expressions in tabular form. They are easier to read

and comprehend and therefore bring a practical advantage to mathematical expressions.

Moreover, they aid in the automation and verification of mathematical expressions. They

have been proven to be effective and used in the documentation of the requirements of

many projects such as the A-7E aircraft for the U.S. Navy and the Darlington Nuclear

Power Generation in Ontario, Canada [JPZ97]. Tabular expressions have been formalized

by Parnas [JP10]. Parnas formalized them in multiple classes. A single class presented

in [JK01] that covers all classes. We use one class of tables called normal tables.

In this thesis, policies and rules are modelled using guarded commands which are essentially

relations, as will be discussed in the next section. Therefore, tabular expressions can be

used to represent them.

A table is an organized sets of cells, where each cell contains a mathematical expres-

sion [JK01]. The table contains a collection of headers and a grid indexed by these headers.

A header H, is an indexed set of cells, H = {h[i]|i ∈ I}, where I = {1, 2, . . . , k} is a set

of indexes and k ∈ IN. A grid G is a set of cells indexed by headers H1, . . . ,Hn where

n ∈ IN and Hj = {hj [i]|i ∈ Ij}, j = 1, . . . , n is a set of cells indexed by Ij , therefore,

G = {g[α]|α ∈ I} where I = Πn
i=1I

i. The set I is the index of G. A collection of headers

H1, . . . ,Hn and a grid G indexed by them is the table skeleton. A table is intended to repre-

sent a relation (a policy in the context of this thesis) R which is composed of simpler relation

(rules) R[α], α ∈ I. Every R[α] is specified by one grid cell g[α] and header cells hj [α|j],

where α|j is the jth element of α. Table 3.1 shows a table skeleton. H1 = {h1[i]|i = 1, 2, 3},

H2 = {h2[i]|i = 1, 2} and G = {g[i, j]|i = 1, 2, 3 ∧ j = 1, 2}. Therefore, R[2, 2] is defined
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by the expressions in g[2, 2], h1[2], and h2[2]. Every relation (rule) R[α] is defined of the

form: if Pα then Eα, where Pα is a predicate that defines the domain of the relation (i.e.,

starting states) and Eα is a predicate that defines the range of the relation (i.e., the ending

states). Note that in our case, Pα is split between headers and the grid holds Eα.

h1[1] h1[2] h1[3]

h2[1] g[1, 1] g[2, 1] g[3, 1]

h2[2] g[1, 2] g[2, 2] g[3, 2]

Table 3.1: Schematic table of a tabular expression

Consider the relation R:

R = {
(
(x, y), (x′, y′)

)
| (x >= 0 ∧ y >= 0 ∧ y′ = x) ∨ (x < 0 ∧ y < 0 ∧ y′ = y)}

We represent R as a two-dimensional tabular expression as shown in Table 3.2. This table

has headers H1 and H2 to represent the domain of the relation. It has the grid G for the

range of R. The relation R[1, 1] is defined by the expressions in g[1, 1], h1[1], and h2[1] as

follows: R[1, 1] = {
(
(x, y), (x′, y′)

)
| (x >= 0 ∧ y >= 0 ∧ y′ = x)}. The relation R[2, 2] is

defined by the expressions in g[2, 2], h1[2], and h2[2] as follows: R[2, 2] = {
(
(x, y), (x′, y′)

)
|

(x < 0 ∧ y < 0 ∧ y′ = y)}.

x >= 0 x < 0

y >= 0 y′ = x false

y < 0 false y′ = y

Table 3.2: R as a tabular expression

Note that in a tabular expression, all table entries represent relations. For example, in Ta-

ble 3.2, the first cell inH1 represent the relation h1[1] = {
(
(x, y), (x′, y′)

)
| x >= 0}. And the

cell in the first row of the first column in G represent the relation g[1, 1] = {
(
(x, y), (x′, y′)

)
|
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y′ = x}. In fact, as shown in [Wu01], the whole table can be interpreted as the below rela-

tion,

T
def
=

n⋃
i=1

m⋃
j=1

H1[i] ∩H2[j] ∩G[i, j],

where n and m are the number of cells in H1 and H2, respectively. Which unfolds to the

relation R.

R = {
(
(x, y), (x′, y′)

)
|

(x >= 0 ∧ y >= 0 ∧ y′ = x)

∨ (x >= 0 ∧ y < 0 ∧ false)

∨ (x < 0 ∧ y >= 0 ∧ false)

∨ (x < 0 ∧ y < 0 ∧ y′ = y)}

As an example of a policy represented using tabular expressions, Table C.2 is the tabular

expression of the File server policy shown in Figure 3.3. The table has two headers, H1

which specifies the source IP numbers and protocols and H2 which specifies the states and

destination ports, and an internal grid G which specifies actions.

For the tabular expression representation of all the resource policies for the illustrative

example, see appendix C. And for more details on tabular expressions, we refer the reader

to [JK01].

Tabular Expressions to Calculate Demonic Join In this section, we demonstrate

the use of tabular expressions to calculate the demonic join tabular expression T of tabular

expressions T1 and T2. To construct T , we use the procedure ComputeDemonicJoin,

which computes the demonic join defined in Section 3.3.

Similar to what we find in [Wu01] for calculating the demonic meet, this procedure, first

transforms the two input tables T1 and T2 to tables T ′1 and T ′2 such that both have identical
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procedure ComputeDemonicJoin(T1, T2)
Transform T1 and T2 to T ′1 and T ′2 having identical headers.
TH1 = H ′1 . first header for T = the first header of T ′1 and T ′2
TH2 = H ′2 . second header for T = the second header of T ′1 and T ′2
for all i between 1 and the number of cells in H ′1 do

for all j between 1 and the number of cells in H ′2 do
if G′1[i, j] 6= false ∧G′2[i, j] 6= false then

G[i, j] = G′1[i, j] ∪G′2[i, j]
else G[i, j] = false
end if

end for
end for
return T

end procedure

Figure 3.5: This procedure takes two tables T1 and T2 as input and returns their demonic
join table T

headers. This transformation possibly gives rise to new cells in both tables. For the cells

for which no action is specified, we set their values to false – which indicates that no rule

exists corresponding to such cells in the policy. We then construct the demonic join table

T by first having its headers identical to the headers of tables T ′1 (or T ′2 as they have same

headers). Then, we compute Grid G of T as follows: Loop through each cell in G; if the

corresponding cells in T ′1 and T ′2 are not set to false, then set its value equal to their union;

otherwise set it to false.

As an example, consider Table D.7 which is the demonic join of the finance workstations

and database policy (Table C.3) and the engineering workstations policy (Table C.4) rep-

resented as tabular expressions. Since the two tables have identical headers the procedure

ComputeDemonicJoin skips the first step. It constructs the demonic join table by first

having identical headers as those seen in Table C.3 (Table C.4). Then Grid G of this table

is computed as follows by the procedure: it loops through each cell of G starting with the

first one. Since the cell G[1, 1] in Table C.3 and Table C.4 both have a value of a′ = ACCEPT,
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then the cell G[1, 1] in Table D.7 is set to a′ = ACCEPT. While computing G, if the corre-

sponding two tables’ cells have different values as seen in the cell G[1, 5] of Table C.3 with

value a′ = ACCEPT, and Table C.4 with value a′ = REJECT, then the value at this cell is the

union of their values; that is, the value at Table D.7 is a′ = ACCEPT ∨ a′ = REJECT. All the

other cells are computed analogously.

3.3 Guarded Commands

In this section, we present a variant of Dijkstra’s guarded commands which are used to model

access control policies. The following material on guarded commands is based on [MS06,

HKM11b]. Essentially, a command is a transition relation from starting states to possible

ending states, and a set of states that do not lead to failure.

Definition 3.3.1 (Command — e.g., [HKM11b] ). Consider a set Σ of states; the exact

nature of its elements does not matter.

1. A command over Σ is a pair (R,P ) where R ⊆ Σ× Σ is a transition relation and P

is a subset of Σ.

2. The restriction of a transition relation R ⊆ Σ × Σ to a subset Q ⊆ Σ is Q↓R
def
=

R ∩ (Q× Σ).

The set P is intended to characterize those states from which the command cannot lead to

abortion/failure. �

Hence, a command is modelled as a pair (R,P ) to avoid the possibility of leading to abor-

tion [Par83, Par97].

Definition 3.3.2. The following are basic commands and command-forming operators that

correspond to program constructs [HKM11b].
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1. The command abort is the one that offers no transitions and does not exclude abortion

of any state: abort
def
= (∅, ∅).

2. The command skip does not do anything; it leaves the state unchanged and cannot

lead to abortion for any state: skip
def
= (I,Σ), where I def

= {(s, s) | s ∈ Σ} is the

identity relation on states.

3. The command fail does not offer any transition but guarantees that no state may lead

to abortion: fail
def
= (∅,Σ).

4. The command chaos is unpredictable: chaos
def
= (Σ× Σ, ∅).

�

Definition 3.3.3 (e.g., [HKM11b]). Let C = (R,P ) and D = (S,Q) be commands. The

command CdcD is intended to behave as follows. For a starting state s, non-deterministically

a transition under R or S is chosen (if there is any). Absence of aborting is guaranteed

for s iff it can be guaranteed under both C and D, i.e., iff s ∈ P ∩ Q. The command dc is

defined as: (R,P )dc(S,Q)
def
= (R ∪ S, P ∩Q). �

The operation dc is associative, commutative, and idempotent and the command fail is the

neutral element. The placement for the union in the first part and intersection in the second

is due to the fact that if the choice of starting states gets greater, then the set of states

which no abortion is guaranteed gets smaller.

Definition 3.3.4 (Feasible Commands — e.g., [HKM11b]). Let (R,P ) be a command, then

it is feasible when P ⊆ dom(R). �

Definition 3.3.4 is used to distinguish subclass of commands which guarantee the absence

of abortion only for those states that offer transitions.

Definition 3.3.5 (Guarded Commands — e.g., [HKM11b]). For the command (R,P ) and

Q ⊆ Σ, the guarded command Q −→ (R,P ) (where Q is called the guard) is defined as:

Q −→ (R,P )
def
= (Q↓R,Q ∪ P ), where Q is the complement of Q w.r.t. Σ. �
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For the set of states from which the guarded command does not lead to abortion, we

augment the set P by the complement of Q; that is, by Q. The reason is that outside of

the set of states Q (i.e., Q) the command cannot be executed and therefore there is no

possibility of abortion or failure. In a starting state, the guarded command Q −→ (R,P )

can lead to a transition only if the starting state is in Q and the domain of R. Abortion is

excluded if the state is not in Q or P . Hence, Q −→ (R,P ) is not a feasible command even

if (R,P ) is. This is solved using the if fi-statement.

Definition 3.3.6 (if fi-statement — e.g., [HKM11b]). The if fi-statement for a command

(R,P ) is defined by: if (R,P ) fi
def
= (R,P ∩ dom(R)). �

The command is surrounded with if fi to convert it to a feasible command.

When modelling access control policies using guarded commands. The guard ensures that

no changing of the state of the system is done unless the condition of the rule is met. The

state of the system changes according to the transition relation of the command.

For a firewall rule attributes S, P,St,Dport, and A, where S is the set of all possible source IP

numbers, P is the set of all possible protocols, St is the set of all possible connection states,

Dport is the set of all possible destination ports, and A is the set of all possible actions. L

denotes the universal relation on this space. Then we have Σ = S × P × St × Dport × A.

Then, for example, the rule given in Line 5 in Figure 3.1, which we call C can be written

as follows:

C = [Q −→ (R,P )], where

Q ⊆ Σ is the guard and written as follows:

{(s, p, st, dport, a) | s = 192.168.1.0/24}.

The relation R is written as:
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R = {
(
(dr, s, p, st, ds, a), (dr′, s′, p′, st′, ds′, a′)

)
| a′ = ACCEPT},

and we take the set of states that does not lead to abortion as P = ∅; this states that since

the domain of R is Σ, the relation does not guarantee the absence of the abortion for any

the sates in its domain (i.e., Σ).

Then, the guarded command Q −→ (R,P ) is equal to (Q↓R,Q∪P ) = (R ∩ (Q×Σ), Q∪∅) =

(R ∩ (Q × Σ), Q) = (R ∩ (Q × Σ), Q). Therefore, the first element of the tuple of the

command C can be written as:

R′ = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.1.0/24 ∧ a′ = ACCEPT)}.

And the second element of the tuple P ′ = Q states that with the guard, the states that are

guaranteed not to lead to abortion are the states in the complement of the guard. And the

command C corresponding to the rule is written as C = (R′, P ′).

The policy of the Web server presented in Figure 3.1 can be represented as a set of rules

or as a single rule as follow:

Rweb = {((s, p, st, dport, a), (s′, p′, st′, dport′, a′)) |

(st ∈ {RELATED, ESTABLISHED}) ∧ a′ = ACCEPT

∨ (st /∈ {RELATED, ESTABLISHED, NEW} ∧ a′ = DROP)

∨ (p = TCP ∧ st = NEW ∧ dport ∈ {80, 25} ∧ a′ = ACCEPT)

∨ (s ∈ {192.168.1.0/24, 192.168.2.0/24, 192.168.3.0/24, 192.168.4.0/24}

∧ a′ = ACCEPT)

∨ (s /∈ {192.168.1.0/24, 192.168.2.0/24, 192.168.3.0/24, 192.168.4.0/24}

∧ p 6= TCP ∧ st = NEW ∧ a′ = DROP)

∨ (s /∈ {192.168.1.0/24, 192.168.2.0/24, 192.168.3.0/24, 192.168.4.0/24}

∧ p = TCP ∧ st = NEW ∧ dport /∈ {80, 25} ∧ a′ = DROP)}
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Definition 3.3.7 (Refinement on Commands — e.g., [MS06, HKM11b]). The refinement

relation on commands is defined as (R,P ) v (S,Q)
def⇔ Q ⊆ P ∧ Q↓R ⊆ S �

The refinement relation is reflexive, transitive, and not antisymmetric. The equivalence

relation ≡ associated with v is defined as C ≡ D
def⇐⇒ C v D ∧D v C. Therefore, the

equivalence relation on commands is defined as: (R,P ) ≡ (S,Q)
def⇐⇒ P = Q∧P↓R = P↓S.

The equivalence relation partition a set into equivalent classes. All the elements of a class

are equivalent. Two classes are related by v if their class representatives are. Therefore,

there is a partial order on equivalence classes of commands.

For example, for the relations R and R′ presented above, we have R v R′ as the domain of

R′ is a subset of the domain of R and restricting R to the domain of R′ is equal to R′.

Definition 3.3.8 (Demonic meet — e.g., [DBS+95, HKM11b]). The greatest lower bound

of commands (R,P ) and (S,Q) w.r.t. v is the demonic meet which is defined as

(R,P ) u (S,Q) = ((R ∩ S) ∪ (P↓S) ∪ (Q↓R), P ∪Q). �

The u operation is commutative, associative, and the command abort is its neutral element.

Let R and S be two relations and let the commands (R, dom(R)) and (S, dome(S)) be two

feasible commands. The meet of these two commands is said to be feasible iff dom(R∩S) =

dom(R)∩dom(S). In other words, the meet is feasible if and only if R and S give the same

actions for their common domain. This allows for the integration of R and S or what is

called integrability property.

Definition 3.3.9 (Integrability — e.g., [HKM11b]). Two relations R and S are integrable

iff dom(R ∩ S) = dom(R) ∩ dom(S). �

Let R1 and R2 be the relations of policies P1 and P2 respectively:

R1 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
|

(s = 192.168.1.0/24 ∧ a′ = ACCEPT)
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∨ (s = 192.168.2.0/24 ∧ a′ = REJECT)

∨ (s = 192.168.3.0/24 ∧ a′ = ACCEPT)}

R2 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
|

(s = 192.168.1.0/24 ∧ a′ = ACCEPT)

∨ (s = 192.168.2.0/24 ∧ a′ = ACCEPT)

∨ (s = 192.168.4.0/24 ∧ a′ = ACCEPT)}

Then, the demonic meet of R1 and R2 is as follows:

R1 uR2 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
|

(s = 192.168.1.0/24 ∧ a′ = ACCEPT)

∨ (s = 192.168.3.0/24 ∧ a′ = ACCEPT)

∨ (s = 192.168.4.0/24 ∧ a′ = ACCEPT)}

The demonic meet R1 uR2 in the above example is not feasible. The reason for this is that

R1 and R2 do not agree on the action for the common domain (i.e., s = 192.168.2.0/24).

Therefore, we can say R1 and R2 are not integrable.

Definition 3.3.10 (Demonic Join — e.g., [DBS+95]). The least upper bound of commands

(R,P ) and (S,Q) w.r.t. v is the demonic join which is defined as (R,P )t (S,Q) = ((P∩Q)↓

(R ∪ S), P ∩Q). �

The demonic join coincides with the Greatest Common Divisor (GCD) of policies discussed

in Chapter 4.

Then, the demonic join of R1 and R2 is as follows:

R1 tR2 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
|
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(s = 192.168.1.0/24 ∧ a′ = ACCEPT)

∨ (s = 192.168.2.0/24 ∧ (a′ = ACCEPT ∨ a′ = REJECT))}

Note that the operator t is commutative and associative and has fail as its neutral element.

Also, t and u distribute over each other and therefore the commands form a distributive

lattice.

For further discussion on guarded commands, we refer the reader to [MS06, HKM11b].

3.4 Product Family Algebra

Product family algebra (PFA) [HKM11a, HKM06] is a mathematical structure of product

families. It is based on the mathematical structure of idempotent and commutative semir-

ing. It aids in the capture and analysis of the commonalities and variabilities of product

families. Moreover, it allows for mathematical description and manipulation of product

family specifications. In the following, we introduce the mathematical foundations of PFA.

Definition 3.4.1 (Semigroup — e.g., [GS93, Hun80]). A semigroup is an algebraic struc-

ture (S, ·) such that S is a set, and · is an associative binary operation. A semigroup is

commutative if · is commutative, and idempotent if · is idempotent. �

Definition 3.4.2 (Monoid — e.g., [GS93, Hun80]). A monoid is an algebraic structure

(S, ·, 1), such that (S, ·) is a semigroup and 1 is the identity element. A monoid is commu-

tative if · is commutative, and idempotent if · is idempotent. �

Definition 3.4.3 (Semiring — e.g., [HW98]). A semiring is an algebraic mathematical

structure (S,+, 0, ·, 1), such that (S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid

such that · distributes over + and 0 is an annihilator for ·. A semiring is idempotent if +

is idempotent and commutative if · is commutative. In an idempotent semiring the relation,

a ≤ b
def⇐⇒ a + b = b is a partial order (i.e., a reflexive, antisymmetric and transitive
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relation) called the natural order on S. It has 0 as its least element. Moreover, + and · are

isotones with respect to ≤. �

Definition 3.4.4 (Product Family Algebra — e.g., [HKM11a]). A product family algebra

is a commutative idempotent semiring (S,+, ·, 0, 1), where:

a) S corresponds to a set of product families;

b) + is interpreted as the alternative choice between two product families;

c) · is interpreted as a mandatory composition of two product families;

d) 0 corresponds to an empty product family;

e) 1 corresponds to a product family consisting of only a pseudo-product which has no

features.

�

The term a+1 is the product family offering the choice between a and the identity product.

Let p1 and p2 be the policies enforced at nodes N1 and N2, respectively. The policy p1

consists of the composition of rules r1, r2, and r3 (i.e., p1 = r1 · r2 · r3). While the policy p2

is the composition of r1 and r2 (i.e., p2 = r1 · r2). Let N0 be the immediate parent node of

N1 and N2 on the graph that represent the network. Assuming N0 has only N1 and N2 as

children, then the family of policies enforced at N0 is F = p1 + p2 = r1 · r2 · r3 + r1 · r2 =

r1 · r2 · (r3 + 1). Hence, p1 and p2 share the rules r1 and r2. However, p1 has only one extra

rule r3. Therefore, the term (r1 · r2) denotes the commonality of the products in the family

F .

Set Model In [HKM11a], concrete models are presented to give a meaning for the semir-

ing structure. Each model consists of sets of products where each product is a set of

features.
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Let F be a set of arbitrary features. A product is a set or collection of features which is

an element of the power set of F. The power set of F (i.e., P def
= P(F)) is the set of all

products of F. A product family is a subset of P that is a collection of products. A special

family 1 = {∅} is the family that has one product with no features. The family 0 is the

empty set of products.

A formal definition of the semiring operations is given in [HKM11a]. The operation · is the

composition of families on products.

· : P(P)× P(P)→ P(P)

P ·Q def
= {p ∪ q | p ∈ P ∧ q ∈ Q}.

The operation + offers a choice between families.

+ : P(P)× P(P)→ P(P)

P +Q
def
= P ∪Q,

where ∪ denotes the set union.

The structure of the set model is PFS
def
=
(
P(P),+, ∅, ·, {∅}

)
. Note, the set model does not

allow products to have multiple occurrences of the same feature.

Bag Model Sometimes, it is desired to have multiple occurrences of the same feature in

a product. To achieve this, we use the bag model. The definition of 1, 0, and the operation

+ are the same as in the set model. However, the operation · as is redefined to allow for

multiple occurrences of features.

· : P(P)× P(P)→ P(P)

P ·Q def
= {p ] q | p ∈ P ∧ q ∈ Q},
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where ] denotes the bag sum.

Products, Features, Refinement, and Constraints

Definition 3.4.5 (Product — e.g., [HKM11a]). Let A = (A,+, ·, 0, 1) be a product family

algebra and let a ∈ A. We say that a is a product if it satisfies the following:

(∀ b | b ∈ A · b ≤ a =⇒ (b = 0 ∨ b = a) ), (3.1)

(∀ b, c | b, c ∈ A · a ≤ b+ c =⇒ (a ≤ b ∨ a ≤ c) ). (3.2)

The element 0 is a product. A product is said to be proper if a 6= 0. �

Equation 3.1 indicates that a product does not have a subfamily except the empty family

and itself. Equation 3.2 states that if a product a is a subfamily of a family formed by c

and b, it must be a subfamily of one of them. The policy p1 defined above is an example of

a product according to Definition 3.4.5.

Definition 3.4.6 (Feature — e.g., [HKM11a]). Let A = (A,+, ·, 0, 1) be a product family

algebra. We say that a ∈ A is a feature if it is a proper product different than 1 satisfying:

(∀ b | b ∈ A · b |a =⇒ b = 1 ∨ b = a ), (3.3)

(∀ b, c | b, c ∈ A · a |(b · c) =⇒ a | b ∨ a | c ), (3.4)

where the division operator | is defined for x, y ∈ A by (x | y)
def⇐⇒ (∃ z | z ∈ A · y =

x · z ). �

Equation 3.3 states that if we have a product b that divides a, then either b is 1 or b = a.

Equation 3.4 states that for all product families b and c, if a is mandatory to form b ·c, then

it is mandatory to form b or it is mandatory to form c. Essentially, a feature is a product

that is indivisible with regards to · operator.
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Definition 3.4.7 (Subfamily — e.g., [HKM11a]). Let A = (A,+, ·, 0, 1) be a product family

algebra. For every a, b ∈ A, we say that a is a subfamily of b denoted by a ≤ b iff (∀ a, b |

a, b ∈ A · a+ b = b ). �

Let a and b be two product families, a is a subfamily of b written as a ≤ b iff all the products

in family a are at the same time products of the family b. For example, the policy p1 is a

subfamily of F , since p1 ≤ F = p1 + F = p1 + (p1 + p2) = p1 + p2 = F .

Definition 3.4.8 (Refinement — e.g., [HKM11a]). Let A = (A,+, ·, 0, 1) be a product

family algebra and a, b ∈ A. We say that a refines b written as a v b iff (∀ a, b | a, b ∈

A · (∃ c | c ∈ A · a ≤ b · c ) ). �

This refinement relation is a preorder (i.e., reflexive and transitive).

For two product families a and b, a is a refinement of b written as a v b iff every product in

a has at least all the features of some products in b. For example, p1 v p2 as p1 v p2 ⇐⇒

(∃ c | · p1 ≤ p2 · c ) ⇐⇒ (∃ c | · p1 +p2 · c = p2 · c ) ⇐⇒ (∃ c | · r1 · r2 · r3 + r1 · r2 · c =

r1 · r2 · c ) which is satisfied for c = r3 as p1 has all the rules of p2 and more (i.e., rule

r3). Moreover, we also have p1 v F as p1 v F ⇐⇒ (∃ c | · p1 ≤ F · c ) ⇐⇒ (∃ c |

· p1 +F · c = F · c ) ⇐⇒ (∃ c | · r1 · r2 · r3 + (r1 · r2 · (r3 + 1)) · c = (r1 · r2 · (r3 + 1)) · c ),

which is true for c = 1.

Constraints in feature models [KCH+90] are captured in PFA using the requirement relation.

The relations of subfamily and refinement are used to define requirement relation.

Definition 3.4.9 (Requirement — e.g., [HKM11a]). Let A = (A,+, ·, 0, 1) be a product

family algebra. For elements a, b, c, d ∈ A, and product p ∈ A we define the requirement

constraint, in a family-induction style,

a -p b
def⇔ (p v a =⇒ p v b),

a -c+ d
b

def⇔ a -c b ∧ a -d b,
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where a -p b means that if product p has feature a then it also has feature b. �

Constraints have two main usages: inclusion or exclusion. Consider the following rules for

a policy: r1 and r2. An example of an inclusion constraint is: r1 -F r2, which means if we

have the rule r1 in a product of the family F then we must have the rule r2. On the other

hand, an example of an exclusion constraint comes in the form: r1 · r2 -F 0, which states

that we cannot have the rules r1 and r2 at the same time in any product of F .

In the context of access control policies, the constraints are used to express policies on

the specified policies. This is similar to the concept of metapolicy in ABAC or conflict

classes in the Chinese wall model. For example, constraints can be used to express that

if a user a is allowed access to resource x, then it should be denied access to resource

y. These constraints ensure the enforcement of global policies that limit the implemented

local policies. Using PFA, policies can be defined and constrained using the requirement

relation. For example, constraints can be specified by administrators and resource owners

are allowed to define their policies. Any rule that violates the constraints is eliminated.

We say that a family F satisfies a constraint (a
q→ b), and we write ((a

q→ b) ` F ), iff

(∀ p | p ≤ F ∧ q v p · a p→ b ).

We have the divisibility relation among families (a | b) ⇐⇒ (∃ c | · b = a.c )1, which

allows us to find divisors of families. And therefore, find the GCD. The GCD is the common

divisor that is divided by all other common divisors. Hence, the following property holds:

gcd(a, b) = d such that the following condition is satisfied, ( d | · (d | a) ∧ (d | b) ∧ ((∀ c |

· (c | a) ∧ (c | b) ) =⇒ (c | d)) ). Finding the commonalities of two families is formalized

by finding the GCD. The annihilating element of gcd is 1 such that for any family a the

gcd(1, a) = 1.

1In this thesis, we adopt the notation used by Gries and Schneider in [GS93] for quantifiers. The general
form of the notation is ?(x | R : P ) where ? is the quantifier, x is the dummy or quantified variable, R is
predicate representing the range, and P is an expression representing the body of the quantification. An

example of the notation is (+ i | 1 ≤ i ≤ 3 · i2 ) = 12 + 22 + 32.
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Definition 3.4.10 (Coprime families — e.g., [KJA17]). Let a and b be two product families,

we say they are coprime families if gcd(a, b) = 1. �

In the context of this thesis, a policy is a set of rules or a single rule obtained by combining

other rules. An atomic rule (discussed in Chapter 4) is an indivisible modelled as a guarded

command.

Using product family algebra, it is possible to perform calculations on features, products,

and product families. Through calculus, one can verify the equivalence of two specifications,

give the number of possible products of a product family, list the common features, or verify

whether a family refines another family. In addition, it is possible to build new families,

find new products, and exclude unwanted feature combinations. The PFA theory presented

in this section is a general representation which can be interpreted in many domains. It has

been interpreted in the domain of requirement scenarios [HKM11b]. In the next chapter,

we give an interpretation of PFA in the domain of access control policies where a feature

is interpreted as a rule modelled in guarded commands, and a product is interpreted as a

deterministic policy.

For more details on the product families and the use of this mathematical framework to

specify them, we refer the reader to [HKM06, HKM08, HKM11a].

3.5 Summary

In this chapter, we gave the necessary mathematical background for the rest of the thesis.

Essentially, policies are modelled as relations using guarded commands. A policy is a set of

rules or a single rule obtained by combing rules. A policy specification at an access control

point is a family of policies. Tabular expressions are used to represent policies and aid in

automating the manipulation and analyses of policies.
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Chapter 4

Access Control Policies as Product

Families

The first step to analyze and reason on a network access control system consisting of dis-

tributed resources is to specify the system formally. This chapter tackles this issue. First,

Section 4.1 introduces the mathematical framework to specify access control systems, where

a policy at an access control point is modeled as a family of related policies. Section 4.2

presents the concepts of policy and atomic rule. It also gives interpretations of the concepts

of subfamily, refinement, constraint, GCD, and coprime families in terms of policies and

rules. Section 4.3 presents further usages of the framework. Finally, Section 4.4 summarizes

the chapter.

4.1 Policy Family Model

Based on guarded commands and PFA presented in Chapter 3, a model for access control

policies can be defined. Let G be a set of rules (i.e., commands). Let IP
def
= P(G), a set of

policies. An element of P(IP) is a set of policies.
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Definition 4.1.1 (Policy Family Model — e.g., [KJA17]). A policy family model F =

(P(IP),⊕,�, 0F , 1F ) is a product family algebra, where for A,B ∈ P(IP)

1. A⊕B def
= A ∪B

2. A�B def
= {a uIP b | a ∈ A ∧ b ∈ B}

3. 0F
def
= ∅

4. 1F
def
= { {abort} }

�

The operation ⊕ is the union of policy families representing the choice of families, and the

operation � is the extended notion of demonic meet presented in Chapter 3 to policies

representing the composition of families. The constant 0F is a policy family that is not

executable, and the constant 1F is the policy family that has a policy with a single rule

abort. It enforces nothing and therefore allows all traffic to pass. Hence, 0F is the annihilator

element for � and 1F is the neutral element for �. A� 0F = {a uIPb | a ∈ A ∧ b ∈ 0F} =

{a uIPb | a ∈ A ∧ b ∈ ∅} = {a uIPb | a ∈ A ∧ false} = {a uIPb | false} = ∅ = 0F . Also,

we have A � 1F = {a uIPb | a ∈ A ∧ b ∈ 1F} = {a uIPb | a ∈ A ∧ b ∈ { {abort} } } =

{auIP{abort} | a ∈ A} = {a | a ∈ A} = A. Therefore, we can define the natural order that

comes with the semiring structure (i.e., the subfamily relation) for F as a �F b
def⇔ a⊕b = b.

Let N1, N2 be two nodes represent one engineering workstation and one finance workstation,

respectively, and let N0 be an access control point governing access to these two resources

only. Let p1 be the policy of the engineering workstation consisting of rules r1.1, r1.2, and

r1.3 presenting the Lines 3-5 of the policy shown in Figures 3.3 and p2 be the policy of the

finance workstation consisting of the Lines 3-5 of the policy shown in Figures 3.4.

r1.1 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.1.0/24 ∧ a′ = REJECT)}

r1.2 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.2.0/24 ∧ a′ = ACCEPT)}
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r1.3 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.3.0/24 ∧ a′ = REJECT)}

Recall that a policy is a set of rules or a single combined rule. Therefore, the policy p1 can

be represented as set of rules r1.1, r1.2 and r1.3 or a combined rule r1.

r1 = {((s, p, st, dport, a), (s′, p′, st′, dport′, a′)) | (s = 192.168.2.0/24 ∧ a′ = ACCEPT)

∨ (s ∈ {192.168.1.0/24, 192.168.3.0/24} ∧ a′ = REJECT)}

In the policy family model, p1 is the family of policies that has one policy p1 = r1.1� r1.2�

r1.3 = r1 or in a set representation as a set of one element p1 = {{r1.1, r1.2, r1.3}} = {{r1}}.

Similar treatment for p2, the policy of the finance workstation. Let F0 be the policy family

at N0, and let it equal to F0 = p1 ⊕ p2 or a set of sets F0 = {p1, p2}. Because firewall

rules are executed sequentially, they need to be transformed into disjoint rules before being

represented in the policy family model. The reason for this transformation is that rules in

our model are executed without necessary following and order.

4.2 Notions and Properties

In this section, we define the notions of policy and atomic rule and give an interpretation

for the concepts of subfamily, refinement, and requirement in the policy family model F .

A policy in the model F is the family that cannot be decomposed using the ⊕ operator and

defined formally below.

Definition 4.2.1 (Policy). An element p is called a policy if it satisfies:

(∀ q | q · q �F p =⇒ (q = 0F ∨ q = p) ), (4.1)

(∀ q, t | q, t · p �F q ⊕ t =⇒ (q �F p ∨ t �F p) ). (4.2)

The element 0F is a policy. A policy is said to be proper if p 6= 0F . �
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Equation 4.1 states that there is no subfamily for a policy except 0F and itself. Equation 4.2

indicates that if a policy is a subfamily of the policy family q⊕t then it has to be a subfamily

of q or t. For example, the policy p1 defined above is an example of a policy according to

Definition 4.2.1.

Recall that demonic meet to be defined on guarded commands, they need to be integrable.

Therefore, since a policy is formed using �, its rules need to be integrable. To solve this

issue for firewall rules, they need to be transformed into disjoint ones as discussed above

using a decorrelation algorithm that is applied to the rules. Hence, the members of a policy

family do not need to be integrable.

A policy is formed of a set of rules or a single rule modeled using guarded commands.

Therefore, it is important to differentiate an atomic or a singleton rule from a combined

rule.

Definition 4.2.2 (Atomic rule). We say that a policy r is an atomic rule if it satisfies:

(∀ s | s · s |F r =⇒ s = 1F ∨ s = r ), (4.3)

(∀ s, t | s, t · r |F (s� t) =⇒ r |F s ∨ r |F t ), (4.4)

where the division operator for policies |F is defined by (x |F y)
def⇐⇒ (∃ z | · y =

x� z ). �

Equation 4.3 states that if we have a policy s that divides r, then either s is 1F or s = r.

Equation 4.4 states that for all policy families s and t, if r is mandatory part of s� t, then

it is mandatory part of s or it is mandatory part of t. For example, rules r1.1, r1.2 and,

definitely, r1 are not atomic rules as they can be decomposed further using division. An

atomic rule is the one that has a single value for each starting state attribute. Therefore,

the rule ra is an atomic rule.

ra = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.1.0/32 ∧ p = TCP ∧ st = NEW
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∧ dport = 80 ∧ a = ACCEPT ∧ a′ = REJECT)}.

Note that an atomic rule that is mapped to multiple ending states is still an atomic rule

because it cannot be decomposed further according to the division operator defined above.

therefore, the rule ra2 is still an atomic rule.

ra2 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.4.0/32 ∧ p = TCP ∧ st = NEW

∧ dport = 80 ∧ a = ACCEPT ∧ a′ ∈ {ACCEPT, REJECT})}.

In a similar way to the definitions presented in Chapter 3, we have the notion of subfamily,

refinement, and requirement constraints. For that we need to substitute ≤ with �F . We

denote the refinement on families of policies by vF and we use a similar notation for the

requirement relation.

Definition 4.2.3 (Subfamily). The subfamily relation for F (�F) is defined as p �F q
def⇔

p⊕ q = q. �

Let p and q be two policy families, p is a subfamily of q written as p �F q iff all the policies

in family p are at the same time policies of the family q. For example, the policy p1 is a

subfamily of F0, since p1 �F F0 = p1 ⊕ F0 = p1 ⊕ (p1 ⊕ p2) = p1 ⊕ p2 = F0.

Now, we can define the refinement relation for F as follows:

Definition 4.2.4 (Policy Family Refinement). Let p and q be two policy families, we say

p refines q iff p vF q
def⇔ (∃ s | · p �F q � s ) �

For two policy families p and q, the policy family p refines q written as p vF q iff every

policy in p has at least all the atomic rules of some policies in q. This asserts that p is

a refined version (i.e., superset or equal) of some policies in q. For example, p1 vF F0 as

p1 vF F0 ⇐⇒ (∃ s | · p1 �F F0 � s ), which is true for s = 1F .

Also, let p3 = r1.1, then p1 vF p3 as p1 vF p3 ⇐⇒ (∃ s | · p1 �F p3 � s ) ⇐⇒ (∃ s |

· (r1.1 � r1.2 � r1.3)⊕ (r1.1 � s) = (r1.1 � s) ) which is satisfied for s = r1.2 � r1.3 as p1 has
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all the rules of p3 and more (i.e., rule r1.2). A ≡F B
def⇐⇒ A vF B ∧ B vF A defines the

equivalence relation ≡F associated with vF .

Since F is a model for PFA, then we have

p �F q ⇒ p vF q, (4.5)

p� q vF q, (4.6)

p vF p⊕ q, (4.7)

p vF q ⇒ p⊕ r vF q ⊕ r, (4.8)

p vF q ⇒ p� r vF q � r, (4.9)

p vF 0F ⇔ p �F 0F , (4.10)

0F vF p vF 1F , (4.11)

p |F q ⇔ q vF p, (4.12)

p⊕ q vF r ⇔ p vF r ∧ q vF r, (4.13)

p vF q ⊕ r ⇔ p vF q ∨ p vF r (4.14)

Now, we can define the requirement relation presented in Section 3.4 for F as follows.

Definition 4.2.5 (Policy Requirement). For elements q, r, s, t and a policy p in F , the

requirement relation (→) is defined1 in a family-induction style as:

q
p→ r

def⇔ p vF q =⇒ p vF r

q
s ⊕ t−→ r

def⇔ q
s→ r ∧ q t→ r.

�

The first argument states that the relation q
p→ r implies that if the policy p satisfies all

the policies in the family q, then it must satisfy all the policies in r. This relation is called

1As it is a simple instantiation in a model of PFA of that of Section 3.4, we use the same notation.
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a Policy Requirement Constraint (PRC) and usually used to express constraints on the

policies. These constraints can be of the requirement of inclusion, for example, q
p→ r

means that if we have q in any member of p then we must have r at the same time. While

if we want to express the exclusion such that two elements q and r cannot coexist in any

member of p we write q · r p→ 0F .

For example, if we have the requirement that system administrators’ machines from the

subnetwork 192.168.5.0/24 are to be allowed to every resource in F0, then we write the

policy family p4 with the rule r4

r4 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.5.0/24 ∧ a′ = ACCEPT)},

and we define the constraint 1F
F0→ p4. This constraint states that every policy of the family

F0 should have the policy p4 as 1F is refined by all policies. Moreover, if we have the

requirement that every resource an engineer has access to, then his manager from machine

IP 192.168.6.0/24 should have access to at the same time, then p1.1 has the rule r1.1 and

we write the policy p5 with one rule r5

r5 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.6.0/24 ∧ a′ = ACCEPT)},

and we define the constraint p1.1
F0→ p5. Finally, if we have the requirement that an engineer

and a financial analyst cannot have access to the same resource, then we write the constraint

(p1.1 � p2.1)
F0→ 0F .

We now define the GCD operation mentioned in Section 3.4 for F as it is a model of PFA.

Definition 4.2.6 (Greatest Common Divisor for Policies). The GCD of families of policies

is defined as the demonic join of the policies as follow:

(∀A,B | A,B ∈ P(IP) · gcd(A,B)
def
= {a tIP b | a ∈ A ∧ b ∈ B} ). �
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For example, the GCD of the two policy families p1 and p2 is a policy family p3 = r3

r3 = {((s, p, st, dport, a), (s′, p′, st′, dport′, a′)) | (s = 192.168.3.0/24 ∧ a′ = REJECT)

∨ (s ∈ {192.168.1.0/24, 192.168.2.0/24} ∧ a′ ∈ {ACCEPT, REJECT})}

Calculating the GCD is more comprehensive when we use tabular expressions. This will be

evident in the automation of Chapter 5.

Since GCD is a divisor of a policy family and from implication 4.12, we can state that

gcd(p, q)⇒ p vF gcd(p, q) ∧ q vF gcd(p, q).

Definition 4.2.7 (Coprime Policies). Let A and B be two families of policies, we say they

are coprime policies iff gcd(A,B) = 1F . �

For example, the policies p1.1 and p2.1 are an example of coprime policies as they do not

have any common domain.

4.3 Policy Family Model Usage

In this section, we discuss multiple usages of the policy family model. These usages include

network policy abstraction, measuring the security requirement level of a policy family, and

policy conflicts.

4.3.1 Policy Abstraction

Using this model, it is possible to abstract a network policy as the family of policies of

its resources. This family is implemented at the entry point of the network. For exam-

ple, resources within a lab can be abstracted as the node implementing the family policy

consisting of the resource policies. Using such an approach allows us to reason on network

policies at multiple levels.
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One way to handle large networks is by abstracting subnetworks into one node that has a

family of policies and not one policy as we would do for a single resource. Consider a room

including a large number of computers that have very similar access control policies. We

can abstract this room into one node in the global network that has a family of policies.

Moreover, we can have our global network distributed in many buildings. In designing

the subnetwork for a building, we consider the other resources located at other buildings

as nodes each with a family of policies. Furthermore, in real-world networks, a security

policy governing an access control point consists of rules, possibly coming from different

stakeholders (for example management, security officers, or users). Clearly, the policies

derived from the perspectives of the stakeholders, share common rules and differ on others.

Therefore, we can think of these policies as families of policies. Hence, we need to adopt a

family approach to manage similar cases illustrated above. For this purpose, we adopt PFA

as the formalism that links the access control policies to the network.

4.3.2 Measuring Security Requirement Level

In this section, we discuss one way of comparing policy families by measuring their security

requirement level or strictness. This measurement is based on assigning a weight value to

the atomic rules. Such that, the weight of a policy is the sum weight of its atomic rules and

the weight of a policy family is the weight of the internal union of the policies.

Recall that an atomic rule is modeled as a guarded command, which is essentially a tran-

sition relation from a starting state to a possible ending state(s). The weight of an atomic

rule is calculated based on the weights of it is ending state(s). One way of computing the

weight of an ending state is done by assigning weights to the different values of a chosen

state attribute. The higher the security requirement the higher the weight assigned to the

value. Moreover, since a chain is strong as its weakest link, an atomic rule that maps a

starting state to multiple ending states has a weight equal to the minimum of the weights

of the ending states.

79



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

Formally, let SAi, where 1 ≤ i ≤ m, be the different state attributes, and let VSAi =

{ai1, ai2, . . . , ain} be the set of all possible values assigned to SAi. Then wVSAi : VSAi → Z

is the weight function that assigns an integer value to each element in VSAi , such that for

any two elements aik, ail ∈ VSAi if the security requirement of aik is less than that of ail,

then wVSAi (aik) < wVSAi (ail). Let R be the set of all atomic rules for all the resources

in the organization. Then wR : R → N ∪ {−1}, is the weight function which assigns to

an atomic rule r ∈ R its corresponding weight. The weight of 1F is taken to be −1, as

it is a rule that does not bring any security constraints. Furthermore, the weight of a

rule (r) with its domain mapped to multiple end states (say p), is the minimum of the

weights assigned to its end states. For each end state si, where 1 ≤ i ≤ p, we take

vsi = eval(wVSA1 , wVSA2 , . . . , wVSAp ), where wVSAi is the weight of the assigned value to the

state attribute SAi. For a state si, the eval function takes the weight of the attributes of

si and assigns to it an overall security weight vsi . Then to compute the weight of such an

atomic rule, we take the minimum of all the values vsi . Therefore, for an atomic rule r that

has p end states, we have wR(r) = min(vs1 , · · · , vsp).

Recall from the illustrative example presented in Chapter 3. For the firewall policy, we

compute the weights of our atomic rules based on the ACTION (AC) state attribute, where

AC = {ACCEPT, REJECT, DROP}. The three actions in AC contribute differently to the confi-

dentiality of the resources of the network, and so DROP has a higher weight than REJECT,

which in turn has a higher weight than ACCEPT. Based on this we assign the following

weights to each element in AC: wAC(ACCEPT) = 0, wAC(REJECT) = 1, and wAC(DROP) = 2.

Then, for example, a rule that maps an initial state to two end states (s1 and s2) where the

action attribute in s1 is assigned the value ACCEPT and the action attribute in s2 is assigned

the value REJECT, then the rule has a weight equal to the minimum weight of the two; that

is, 0.

The weight of a policy or a combined rule r that is formed by the set Ar of atomic rules is

the sum of the weights of the atomic rules in Ar. Let P be the set of all policies composed
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of the atomic rules in R. Then wP : P → N ∪ {−1}, is the weight function that assigns

an integer value to each element in P based on wR. We assign −1 as the weight of the 1F

policy, and +∞ as the weight of the 0F policy.

In a typical firewall policy, rules are executed sequentially. Such rules usually are not

atomic. For example, rule 9 in the policy in Figure 3.1 can be divided by all other rules

in the policy. Therefore, a rule might be followed by another that includes part or all of

its domain. If we apply the weight function to these rules, we can have a double-counting

of weights. Therefore, to avoid any problem we transform policies into a set of rules that

are (relative) atomic (or, relative prime). A relative atomic/prime rule in this context is

a rule that is indivisible by any other given rule (i.e., it is only divisible by 0 and itself).

The weight function takes such a rule and assigns a weight to it. For example, consider

the policy shown in Figure 3.3 which is transformed to a relative atomic policy with 270

rules: two rules with ACCEPT actions, three rules with REJECT actions, and 265 rules with

DROP actions. Therefore, the weight assigned to the policy is 2 ∗ 0 + 3 ∗ 1 + 265 ∗ 2 = 533.

Figure F.20 shows a snippet of the relative atomic policy of the engineering workstation

presented in Figure 3.3 relative to the other policies in the network.

The weight of a policy family is the weight of the internal union of its policies. Then,

wF : F→ Z is the weight function that assigns an integer value to a policy family.

The union of the policy family F is defined as union(F ) = (∪IP pi | pi ∈ F · pi ), and the

weight of F is equal to wF(F ) = wP(union(F )).

As can be seen we measure the level of security requirements of a resource by the weight

of the policy governing it, such that its security requirements are directly proportional to

the weight of its policies. For example, consider two resources v1 and v2, where the weights

of their policies are wP(p(v1)) and wP(p(v2)), respectively. If wP(p(v2)) < wP(p(v1)), it

means that v1 has higher level of security requirement than v2.

Let wR be the partial order on the atomic rules based on their weights and wP be the total

order on the policies based also on their weights. Then there exists an order preserving map
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f : wR → wP satisfying the following condition:

(∀ i | 1 ≤ i ≤ n ∧ xi, yi are atomic rules · xi <wR yi )

⇔ f(P (x1, x2, . . . , xn)) <wP f(P (y1, y2, . . . , yn)),

P (x1, x2, . . . , xn), and P (y1, y2, . . . , yn) are the policies consisting of atomic rules x1, x2, . . . , xn

and y1, y2, . . . , yn respectively. Since wR is a partial order, some values of the atomic rules

might not have a weight assigned. In this case, the mapping f assigns zero, the neutral

value for addition.

4.3.3 Access Request

Checking the inclusion of a policy family R within a policy family F is defined using

refinement as follows:

Definition 4.3.1 (Policies Inclusion). Let R and F be two policy family, we say R is in F

iff R ∈F F
def
= (∀ r | r ∈ R · (∃ f | f ∈ F · f vF r ) ). �

Definition 4.3.1 checks that a policy family R is defined within a policy family F . Let r6 as

follow:

r6 = {
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.6.0/24 ∧ a′ = REJECT)}.

Let p6 be a policy consisting of a single rule r6 (i.e., p6 = r6). We retake rules r4 and r5

given on Page 77 to have p7 = r4� r6 and p8 = r4� r5. Let F1 be a policy family consisting

of the policies p7 and p8 (i.e., F1 = p7 ⊕ p8).

Using this operation ∈F we can check the existence of the policy p6 within the policy family

F1. Note, as policy families are not necessary integrable, we find in F1 a policy p8 that

leads to a different ending state than p6 for the same domain. Then, because F1 has the

policy p2, which has the rule r5, we cannot guarantee that the behavior of F1 will be REJECT
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for the domain of p6. However, since a rule with multiple ending states has a weight equal

to the minimum of its ending states, a policy family that has conflicting policies behaves

according to the one with the least security requirement level. Therefore, a policy family is

guaranteed if it satisfies an allow access request.

On the other side, if we want to extract the part of a policy family that deals with a certain

domain D ⊆ Σ, we do this by extending the guard command defined in Chapter 3 to policy

families.

Definition 4.3.2 (Policy Family Restriction). Let D ⊆ Σ and F be a policy family, the

restriction of F to D is defined as: D ↓F F
def
= (⊕Pi | Pi �F F · (�Rj | Rj ∈

Pi · D −→ Rj ) ). �

Let D ⊆ Σ defined as follows:

{(s, p, st, dport, a) | s = 192.168.1.0/24}.

Then we can extract the part of F0 that deals with D using Da
↓FF0.

Da
↓FF0 = {

(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.1.0/24 ∧ a′ = REJECT)}

⊕{
(
(s, p, st, dport, a), (s′, p′, st′, dport′, a′)

)
| (s = 192.168.1.0/24 ∧ a′ = ACCEPT)}.

4.3.4 Conflicts

Conflicts between two rules, policies, or policy families arise when they have different ac-

tions to the same request. The single firewall conflicts presented in Chapter 2; that is,

shadowing [ASH04], correlation, and generalization are formalized in F as a single conflict

called inconsistency of policies. We say that a policy p is inconsistent iff (∃ r, q | r, q ∈

p · (dom(r) ∩ dom(q) 6= dom(r ∩ q)) )

From the above, the integrability (i.e., dom(a ∩ b) = dom(a) ∩ dom(b)) guarantees the

absence of inconsistency (i.e., shadowing, generalization and correlation) in a policy.
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A policy in F as defined above is a set of rules that are combined using the operator

�. Recall that demonic meet of two commands to be defined these commands need to

be integrable. Therefore, rules in a policy need to be integrable. And this requirement

guarantees the absence of inconsistency conflict in a single policy.

For a policy family, it is allowed to have conflicting policies. However, integrability checks

can be performed and conflicting rules are highlighted to the system administrator. A reso-

lution strategy can be performed in case of conflict, we adopt to allow the most permissive

policy, as a link is secure as its weakest point.

In the case of distributed access control points, it is possible to have conflicting policy fami-

lies on a path from the root to a resource. The conflicts include shadowing and spuriousness

as presented in Chapter 2. The refinement relation guarantees the absence of conflicts on a

path from the root to a resource. Therefore, if B vF A, then there are no conflicts in the

path from A to B. This will be evident and explain in detail in the next Chapter. More-

over, in the case of many paths from the root to the resource, the refinement guarantees

the absence of cross-path inconsistency. The policy faced by a request from the root to a

resource is the � of these policy families.

4.3.5 Completeness

A policy is complete is if its domain equal to Σ and a policy family is complete if the union

all of its policies is complete. The gcd of two complete policies is complete.

A policy family is evaluated in response to an access request as follows. If one rule is

applicable, then that rule action is executed. If two or more rules are applicable and they

have the same action, then that action is executed. If they have different actions, then the

most permissive one is executed.
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4.4 Summary

In this chapter, we have presented the model for policy family which models policies as

related families. We have also defined different operations such as policy family union,

policy family composition, subfamily, refinement, requirement, and the concepts of policy

and atomic rule based on that model. We have also shown how to measure the security

requirement level for a policy family, how to evaluate access requests in a policy family, how

to restrict a policy family to a certain domain, and discussed conflicts within this model.
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Chapter 5

Defense in Depth

Layered protection or DD is one of the strategies used in securing access to network re-

sources. This chapter presents a formal understanding of this strategy based on the mate-

rial presented so far. Section 5.1 presents the concept of DD based on the mathematical

framework defined in Section 4.1. Moreover, it presents formal approaches to generate ac-

cess control policies for networks such that DD is satisfied. Section 5.2 present the stricter

form of DD. Finally, Section 5.3 summarizes the main results of the chapter.

5.1 Defense in Depth Strategy and its Usage

Defense in depth offers layers of defenses such that traffic traveling the network from the

root to a resource is faced with multiple defenses each is equal or stronger than the one

preceding it. From the perspective of resources, threats and known untrusted sources are

blocked by multiple layers and kept as close to the outer edge as possible.

In this section, we give a formal definition for DD. Moreover, we use the definition to assess

whether a given network satisfies the DD strategy. We also present different approaches to

assign access control policies to internal access control points such that the DD strategy is

satisfactorily implemented.
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A network with an outer entry point r can be represented as a connected directed acyclic

graph rooted at r. The network resources are represented by the graph leaves while the

access control points are represented by the internal vertices. An edge represents a link

between nodes. All vertices of the graph represent nodes that execute policies. For example,

Figure 5.1 shows a graph representing a network that is rooted at r. The leaves are the

vertices v6 to v10, and the internal vertices are v1 to v5. The edge (v1, v6) represent the

traffic link between the nodes v1 and v6.

We execute policy p(v1) r

v2

v3

v4

v5

v1

v v v v v6 7 8 9 10

The leafs represent resources that also can enforce local policies

Figure 5.1: A network as a rooted connected directed acyclic graph (figure borrowed
from [KJA17])

Let G
def
= (V,E, r) be a rooted connected directed acyclic graph representing a network,

where:

• V is a set of vertices that represents the set of access control points and resources that

enforce access control policies;

• E is a set of edges (i.e., ordered pairs of vertices) that represent links between the

network access control points and resources;

• r is the root of the graph and it represents the outer entry point between the network

and the external world.

To guarantee the absence of conflicts in the policies of a network G, any edge between two

vertices access control points should respect the refinement property discussed in Chapter 4.
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For example, if the edge (v5, v10) ∈ E then the family of policies implemented at v5 is refined

by the policy implemented at v10. Therefore, the family of policies at a node (e.g., v10 ) is

a refinement of its ancestors v5, v2, and r.

Definition 5.1.1 (Defense in Depth Law (DDL) — e.g., [KJA17]). Let G
def
= (V,E, r)

be a network. Where p(v) is family of policies enforced by vertex v in G. The network G

employs a DD strategy if p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) vF p(a) ) �

The 0F family is not allowed as it is a non-executable policy family. The second condition

requires that every policy family enforced at a node is more deterministic or at least as

deterministic as the family of policies at the parent node in the graph. This is articulated

in Proposition 5.1.1(a). Note, if the desired requirement is that p(b) to be more restrictive

than p(a), then the condition for wF(p(b)) > wF(p(a)) is added. Also note that by the

refinement condition p(b) vF p(a), p(b) is at least as restrictive as p(a) if not more restrictive

but never less restrictive. Moreover, the refinement means that every policy in b refines at

least a policy in a, the weight of the policy family at b is equal or more to the policy family

at a. Moreover, as the weight of a family is equal to the weight of the internal union of its

policies, then the weight of the family b is equal or more than the weight of a. Therefore,

by the refinement condition, it is ensured that it is as deterministic and as restrictive or

more.

Definition 5.1.1 does not prevent the instance where all or some nodes in a path enforce

the same policy. For example, in the network given in Figure 5.1, if all nodes in the path

〈r, v3, v8〉 enforce the same policy, the network would still implement the DD strategy given

in the definition. Enforcing the same policy is a waste of network resources as it adds cost

without adding value. Moreover, the enforced policy could be the policy family 1F that

enforces no control over the traffic. For example, the nodes from the root r to the resource

v8 could enforce the policy family 1F . This case hinders the overall security of the network

as discussed later in the chapter.
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Proposition 5.1.1 (e.g., [KJA17]). Let G be a network that employ a DD strategy. Let

P = 〈v1, v2, ..., vm〉 be a path of P . We have

a) (∀ i | 1 ≤ i ≤ m · p(vm) vF p(vi) )

b) (∀ v | v ∈ E · p(v) vF p(r) )

Proof. The proof for item (a) uses the reflexivity and transitivity of vF and some basic

quantifier rewriting rules. While the proof for item (b) is done by induction on Q(m)
def⇔

(∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ). The detailed proof is given in the Appendix A.1.

The first result 5.1.1(a), states that if a network implements a DD strategy, then the deeper

we go in any path from the root, we are faced by policy families that are as deterministic

if not more deterministic than the one proceeds it. For example, if the network shown in

Figure 5.1 implements the DD strategy. Then, it is guaranteed that if we take the path

〈r, v1, v4, v7〉 starting from r to v7, then we are faced with policies that are as deterministic or

more deterministic as the one before it. The second result 5.1.1(b) states that all the policy

families of all the nodes in the network are as deterministic or more deterministic as the

policy family enforced at the root. Therefore, if the network of Figure 5.1 implements DD,

then the policies of all the nodes v1, . . . v10 are as deterministic or more deterministic that

the policy at the root r.

5.1.1 Defense in Depth in Networks with Multiple Entry Points

A network with several entry points can be represented as G
def
= (V,E, I), where I is a set

of roots/entry points, V is the set of vertices, and E is the set of edges. For every r ∈ I,

we can derive a network graph Gr
def
= (Vr, Er, r) from the G as follows:

• Vr = {v | (r, v) ∈ E∗} = {v | v is reachable from r}, where E∗ is the reflexive

transitive closure of E.

• Er = (Vr × Vr) ∩ E is the set of edges in G belonging to paths starting at r.
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Hence, we notice that a network with several entry points can be decomposed into several

networks each with a single entry point. For example, the network shown in Figure 5.2a can

be decomposed to the networks in Figures 5.2b and 5.2c. The algorithms presented later

in Chapter 7, use this fact to reason on a network with several entry points by reducing it

into several networks with only one entry point each. Therefore, we restrict our attention

to theoretical background on networks with a single entry point.

e1

v2v1 v3

v7 v8 v9

e2

v4 v5 v6

v10

(a) Graph G

e1

v2v1

v7 v8 v9 v4

(b) Graph Ge1

v2 v3

v8 v9

e2

v4 v5 v6

v10

(c) Graph Ge2

Figure 5.2: Decomposition of a graph G with two entry points e1 and e2 to two graphs Ge1
and Ge2 with single entry point each
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5.1.2 Generating Lower-Level Policies from Higher-Level Ones

Let G
def
= (V,E, r) be a graph representing a network. The root r is assigned a level 0, the

lowest level. Let vi a node at level n, then a node vj such that (vi, vj) ∈ E has a level n+ 1.

A node can belong to more than one level as it could be reached from multiple paths of

different lengths. The node will belong to a unique level when the graph forms a tree.

Proposition 5.1.2 (e.g., [KJA17]). Let G
def
= (V,E, r) be a network. Let T be a directed

spanning tree of G rooted at r and having a set L of leaves. For every l ∈ L, we are given

p(l). If we have p(v)
def
= (⊕ vi | (v, vi) ∈ E ∧ p(vi) 6= 1F · p(vi) ) for every v ∈ V that is

an ancestor of an l ∈ L, then G employs a DD strategy.

Proof. The condition of the Definition 5.1.1 is satisfied because for each v ∈ V that is not

a leaf, enforces a family of policies generated using the operator ⊕ from the families of the

nodes that are at a higher level and attached to it. Then, the families of policies at these

nodes refine the family of policies at v.

The scheme presented by Proposition 5.1.2 allows for the generation of the families of policies

for the nodes starting from the resources. The process starts by assigning policies for the

resources by system administrators. Using these families of policies and this approach, the

families of policies for the rest of the network are generated level by level till the root is

reached.

Recall the illustrative example presented in Section 3.1. Suppose those resources are placed

in the topology architecture shown in Figure 5.3, and we wish to generate the policies for

r, F1, F2, and F3 such that the policies enforced implement the DD strategy.

We generate the policies for the internal access control points using the scheme presented

in Proposition 5.1.2. Using ⊕ is straight forward. The policy family at F2 will be p(F2) =

p(Eng1) ⊕ p(Eng2) and F3 will have the policy family p(F3) = p(Fin1) ⊕ p(Fin2) ⊕

p(FinDB). The node F1 will have a policy family p(F1) = p(File) ⊕ p(F3) ⊕ p(F2) =
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Eng.1 FinDBFin.2

MailWeb

Fin.1

3F

r

1F

2FFile

Eng.2

Figure 5.3: Illustrative example topology

p(File) ⊕ p(Eng1) ⊕ p(Eng2) ⊕ p(Fin1) ⊕ p(Fin2) ⊕ p(FinDB). Finally, the root r will

have the policy family p(r) = p(F1)⊕ p(Web)⊕ p(Mail) = p(File)⊕ p(Eng1)⊕ p(Eng2)⊕

p(Fin1)⊕p(Fin2)⊕p(FinDB)⊕p(Web)⊕p(Mail). We can see that Definition 5.1.1 is sat-

isfied for every edge in the topology graph. For example, p(Eng1) vF p(F2)⇔ p(Eng1) vF

p(Eng1)⊕p(Eng2)⇔ p(Eng1) vF p(Eng1) ∨ p(Eng1) vF p(Eng2), which is true. We also

see that every policy family refines the policy family at the root. Moreover, on every path

from the root to a resource, policy families at the higher level refines the ones at lower level.

Note, we can notice that policy families at internal nodes are not integrable.

In the following, a different scheme is presented for the generation of policies.

Proposition 5.1.3 (e.g., [KJA17]). Let G
def
= (V,E, r) be a network. Let T be a directed

spanning tree of G rooted at r and having a set L of leaves. For every l ∈ L, we are given

p(l). If we have p(v) = (gcd vi | (v, vi) ∈ E ∧ p(vi) 6= 1F · p(vi) ) for every v ∈ V that is

an ancestor of an l ∈ L, then G employs a DD strategy.

Proof. The proof is based on the fact that in PFA, a · c v a. This is true for the current

model as it is a model for PFA as discussed in Chapter 4. For a vertex v enforcing a policy

that is the gcd for the vertices vi, . . . , vj , then each of the vertices has a policy equal to

p(v)� c for some c and therefore refines p(v) and satisfy the condition for DD.
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If two vertices vi, vj ∈ G have a common parent v and are enforcing coprime families of

policies (i.e., gcd(vi, vj) = 1F ) then the families of policies enforced at v equals to 1F . It

indicates that two coprime families have no common domain. If the families have two rules

with the same domain but different action, then their gcd is different than 1F .

For the resources of the illustrative example presented in Section 3.1 placed in the topol-

ogy shown in Figure 5.3. We generate the policies for the internal access control points

r, F1, F2, and F3 such that the policies enforced implements the DD strategy using the

scheme of Proposition 5.1.3. The scheme gives the following policy families. For the node

F2, its policy family is equal to the policy family of the engineering workstations as they

have the same policy and the same applies for F3 for the finance workstations.

Similar policy will be applied at F3 which changing attributes to the ones of the financial

department. The node F1 will have a policy family with a single policy having the following

rule:

RF1 = {((s, p, st, dport, a), (s′, p′, st′, dport′, a′)) |

(st ∈ {RELATED, ESTABLISHED} ∧ a′ = ACCEPT)

∨ (st = INVALID ∧ a′ = DROP)

∨ (s ∈ {192.168.1.0/24, 192.168.2.0/24, 192.168.3.0/24} ∧ a′ ∈ {ACCEPT, REJECT})

∨ (s = 192.168.4.0/24 ∧ a′ = REJECT)

∨ (s /∈ {192.168.1.0/24, 192.168.2.0/24, 192.168.3.0/24, 192.168.4.0/24} ∧ a′ = DROP)}

The policy of the root r is generated using gcd as well. We can see that Definition 5.1.1 is

satisfied for every edge in the topology graph. We also see that every policy family refines

the policy family at the root. Moreover, on every path from the root to a resource, policy

families at the higher level refine the ones at the lower level.

Obviously, a network graph G can have multiple spanning trees T1 · · ·Tn, where n ≤
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|V |(|V |−2) as stated by Cayley’s formula that for m vertices the number of spanning trees is

mm−2. For each tree Ti, 1 ≤ i ≤ n, the family of policies at an internal node is computed

using the gcd or ⊕ operator schemes. Also note that, an internal node could be a node in

multiple spanning trees, say Ti · · ·Tk. In this case, the family of policies implemented at

such a node v is p(v) = (gcd i | 1 ≤ i ≤ k · pi(v) ) or p(v) = (⊕ i | 1 ≤ i ≤ k · pi(v) ),

where pi(v) is the family of policies for the node v in the spanning tree Ti.

The proposition below is about preserving the DD strategy when applying PRCs.

Proposition 5.1.4 (e.g., [KJA17]). Given a network G that employs a DD strategy, where

each node v has a family of policies p(v) assigned to it. Let C be a given set of PRCs. The

following scheme gives a network that employs a DD strategy.

For every v ∈ V that is an ancestor of an l ∈ L, we assign a family of policies p′(v) such

that

1. p′(v) ≤ p(v), and

2. (∀ c, v, w | c ∈ C ∧ (v, w) ∈ E · (p(w) ≤ p(v)) ∧ (c ` p′(v)) ∧ (c ` p′(w)) ).

Proof. Because p′(v) ≤ p(v) and the refinement relation between a the family of policies at

vertices w and the family of policies at v (i.e., p(w) vF p(v) ) is reduced to the subfamily

relation (i.e., p(w) ≤ p(v)), applying the constraint preserve the refinement relation and

therefore the DD strategy. The refinement relation is not guaranteed to be preserved without

the condition (p(w) ≤ p(v)).

In the network given in Figure 5.3, if the network implements a DD strategy and we have

a set of constraints C. The network is guaranteed to preserve the DD only when the

refinement relation is reduced to the subfamily relation. If we have constraints and we wish

to generate the internal nodes’ policies, then the the DD preserved only using the scheme

of Proposition 5.1.2.
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5.1.3 Calculating GCD using a Prototype Tool

In Appendix B, a prototype tool is presented to show the use of the above theories. The

prototype tool calculates the policies of the internal nodes of a network.

5.2 Strict Defense in Depth

This section defines the Strict Defense in Depth strategy SDD which is a stricter form of

DD than that of Definition 5.1.1.

Definition 5.2.1 (Strict Defense in Depth Law (SDDL)). Let G
def
= (V,E, r) be a network.

The network G employs a SDD strategy if p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ),

where p(b) @F p(a) ⇐⇒ (p(b) vF p(a) ∧ p(a) 6= p(b)). �

The SDD is a stronger form of DD obtained by replacing the refinement relation vF by

its stricter form @F . Using SDD excludes the instance discussed above of equal policy

families on successive nodes in a path. The SDD strategy is used later in Chapter 6 to place

resources in the network.

Let G
def
= (V,E, r) be a network and S

def
= {v | v ∈ V ∧ (r, v) ∈ E} be the set of vertices

connected to the root r. Let T be a spanning tree of G rooted at r. For every leaf node

l ∈ L assigned a family of policies p(l). If we want to generate the families of policies of the

internal vertices such that G implements SDD, the following lemmas present cases when

SDD is not achievable.

Lemma 5.2.1. Let T be a spanning tree of G having a height greater than 2. If T has a

leaf l /∈ S , such that p(l) = 1F , then it is impossible to have SDD implementation using
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gcd scheme. Formally,

(∃ l | l ∈ L · p(l) = 1F )

=⇒

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

Proof. The proof is based on the fact that the policies of l ancestors will be equal to 1F

using the gcd scheme. This violates the requirements of SDD. The detailed proof is in

Appendix A.2

r

V1 V2

V4 V5 V6V3

Figure 5.4: A network graph

Lemma 5.2.1 states that if a leaf node, that is not attached to the root, has a family of

policies equals to 1F and the implementation scheme is gcd, then the family of policies

executed at its parent and ancestors will be equal to 1F . For example, in Figure 5.4 if

p(v6) = 1F then calculating p(v2) and p(r) using the gcd scheme will result in their families

of policies equal to 1F . This case does not meet the requirements of the SDD strategy which

states that each child node should strictly refine its parent.

Having a leaf node with a family of policies equal to 1F deep in the network will hinder the

overall security of the network. It will result in no security control in the chain of firewalls
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from the root to that node. Therefore, allowing unauthorized users to access deep into

the network without any line of defense. To prevent this case, the solution is to isolate

those nodes from the network or move them closer to the edge. Since those nodes are not

meant to be protected, we isolate them from the nodes that need protection. Therefore, by

segregating and moving the nodes with 1F policy close to the root we can efficiently protect

the resources with stricter policies.

Lemma 5.2.2. Let T be a spanning tree of G having a height greater than 2. If T has

two leaf nodes l1, l2 belonging to the same subtree having coprime policy families, then it is

impossible to have a SDD implementation using the gcd scheme. Formally,

(∃ l1, l2, s, n,m | s ∈ S ∧ n ≥ 1 ∧ m ≥ 1 ∧ (s, l1) ∈ En

∧ (s, l2) ∈ Em · gcd(l1, l2) = 1F )

=⇒

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) )),

where (a, b) ∈ Ex is a path from node a to node b with x edges.

Proof. The proof is based on the fact that the policies of the common ancestors of l1 and

l2 will be equal to 1F using the gcd scheme. This violates the requirements of SDD. The

detailed proof is in Appendix A.3

Lemma 5.2.2 states that if a subtree T of G has two nodes such that their policy families have

no common domain. Then calculating the families of policies of their common ancestors

including the root of T and the root of G using the gcd scheme will result in the family

of policies equal to 1F . In this case, the SDD strategy is not satisfied. For example, in

Figure 5.4 if p(v4) and p(v6) are coprime policy families such that gcd(p(v4), p(v6)) = 1F

then calculating p(v2) and p(r) using the gcd scheme will result in p(v2) = 1F and p(r) = 1F .

Having nodes with coprime policy families at one subtree will result in no security control
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in the chain of firewalls from their common ancestor to the root. This affects the overall

security of the network. Therefore, a well-designed network groups nodes that share common

policies (e.g., belong to the same department) in one segment, and places resources having

nothing in common into different segments/subnetworks. This allows for maximum security

and protection than grouping nodes randomly. The solution to avoid this case is to place

nodes that have different domains into different subnetworks.

Lemma 5.2.3. If we have a family of policies at a node that is equal to the GCD of the

policies of its siblings, then it is impossible to have a SDD implementation using gcd scheme.

Formally,

(∃ v | (u, v) ∈ E · p(v) = (gcd vi | (u, vi) ∈ E · p(vi)))

=⇒

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

Proof. If the policy of a node v is equal to the gcd of all the members of the segment, then

the policy of the root of the segment using the gcd scheme is equal to the policy of the node

v. This violates the requirements of SDD. The detailed proof is in Appendix A.4.

Lemma 5.2.3 states that if we have a node such that its policy family is equal to the

commonality of its siblings. Then calculating the family policies of its parent using the gcd

scheme will equal to the policy of this node. Therefore, not satisfying the SDD strategy.

For example, in Figure 5.4 if p(v4) = gcd(p(v5), p(v6)) then calculating p(v2) using the gcd

scheme will result in its policy p(v2) = p(v4).
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Lemma 5.2.4. It is impossible to have a SDD implementation using ⊕ scheme. Formally,

(∃ v | (u, v) ∈ E · p(u) = (⊕ vi | (u, vi) ∈ E · p(vi)))

=⇒

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

Proof. The proof is based on the fact that calculating a family of policies using the ⊕ for a

set of policies scheme does not strictly refine any of them which violates the requirements

of SDD. The detailed proof is in Appendix A.5

Lemma 5.2.4 states that calculating the family of policies for a node using the ⊕ scheme

does not satisfy the SDD strategy. For example, in Figure 5.4 if p(v2) = p(v4)⊕p(v5)⊕p(v6).

The condition of the SDD strategy is that each child strictly refines the policy family p(v2).

Therefore, p(v4) @F p(v4) ⊕ p(v5) ⊕ p(v6) ⇔ p(v4) @F p(v4) ∨ p(v4) @F p(v5) ∨ p(v4) @F

p(v6) should be true for p(v4), p(v5), and p(v6). Which is false and therefore the SDD

strategy is not satisfied.

Lemma 5.2.5. If we have a node that has only one child, then it is impossible to have a

SDD implementation using ⊕ or gcd schemes.

Proof. The proof is based on the fact that ⊕ or gcd are binary operations, and therefore

we cannot calculate for a node with one child.

Lemma 5.2.5 states that if we have a node that has one child. Then calculating its family

of policies using the ⊕ or gcd schemes is not achievable. Therefore, not satisfying the

requirements for SDD strategy. For example, in Figure 5.4 if calculating p(v1) using the gcd

or ⊕ scheme is not possible. The solution is either we do not allow a node to have only one

child or have a special case to handle this situation.

Based on the above results, we propose in the following chapter an approach to network

segmentation that implements SDD.
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5.3 Summary

In this chapter, we have presented a formal definition for the of DD strategy. Which can

be used to assess the implementation of the strategy in a given network. Moreover, we

have presented different approaches to generate policies for internal access control points

from the resources policies based on the definition of DD. We have also introduced the SDD

strategy and presented results related to the cases when it is not achievable.
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Chapter 6

Network Segmentation

One of the most important strategies for building a secure network is segmentation or com-

partmentalization. Segmentation is essentially grouping resources in a way that provides

maximum protection for the resources. This chapter presents a formal discussion of net-

work segmentation and robust network architecture. Based on the network segmentation

formalism we propose an algorithm that uses the SDD strategy to group resources system-

atically to achieve maximum protection. This results in a network configuration that is by

construction secure from an access control perspective. Section 6.1 introduces the concept

of network segmentation and its relevance to network security. Section 6.2 gives a formal

definition for network segmentation and robust secure network. Section 6.3 presents an

exponential and another polynomial algorithm to segment resources to reach a robust and

secure network structure. Finally, Section 6.4 summarizes the chapter.

6.1 Network Segmentation

Organizations use access control points (e.g., firewalls) to protect their resources from

threats, attacks, and untrusted sources. Access control points inspect network traffic (pack-

ets) and perform actions on it based on specified policies [CB94, VE05]. They control traffic
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between networks with different security requirement levels. These networks can be separate

networks such as the internet and the organization’s internal network or internal subnet-

works. Traditionally, organizations deploy a single access control point at the perimeter

of their network which is not sufficient to protect internal resources. Therefore, organi-

zations currently place access control points at multiple places in the network protecting

subnetworks or segments [VE05].

In Chapter 1, we have introduced the concept of segmentation and its relation to network

security. In Chapter 2, we have presented the research related to network segmentation.

Essentially, segmentation [MHMR06] or compartmentalization [Sta07, Sta09] is partitioning

the network into segments or subnetworks based on their security requirements such that

resources are grouped with the ones that have similar security requirements. Traffic between

these segments is controlled by access control points. The concept of segmentation has no

formal definition in the literature [Sta07, WŞW+16]. This chapter builds on the results

presented in previous chapters to propose a formal approach for network segmentation.

6.1.1 Related Work and Motivation

Research, industry, and government security agencies recommend segmentation as a mea-

sure to protect resources and mitigate threats [Goo12, Nat13, Cen15]. However, network

resources can be segmented in many possible ways, even for a small set of resources. The

possibilities grow exponentially with the increase in the number of resources. With the

absence of a formal approach to achieve segmentation, the task of finding the best segmen-

tation is left to the expertise of network administrators. Moreover, research on the topic of

segmentation is limited as presented in Chapter 2.

We discuss the relation between the research presented by Wagner et al. [WŞŞP+17, WŞPS19,

WŞW+16] and our proposed approach in this chapter. In [WŞW+16], they present a heuris-

tic approach to segment network resources based on risk evaluation to reach optimal or

near-optimal segmentation. Moreover, this proposal is high in cost and impractical for
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large networks. However, our approach is a policy-based segmentation and fully automated

to reach the best segmentation. In [WŞŞP+17], they develop a Markov chain model to eval-

uate a given segmentation architecture. This model can be used by network administrators

to evaluate different segmentation architectures. Their solution is not for building network

architectures but only to evaluate them. In [WŞPS19], they present an approach to segment

network resources that is optimized for multiple objectives. These objectives are security,

cost, and mission performance. This solution is fully automated. Our focus is on formal-

izing policy-based network segmentation, build an algorithm to achieve segmentation, and

implement it in an actual setting.

Further, Rahman and Al-Shaer in [RAS13] propose an automated solution that decides the

physical placements of security devices within the network and generates network security

configurations. Given a network topology, security requirements, and business constraints

as inputs, the solution writes the security design problem as a formula and solves it using

the Satisfiability Modulo Theories (SMT) [dMB09]. This solution supports placing security

devices in an existing network. In contrast to [RAS13], we build a network topology from

scratch that achieves security goals by design rather than placing security devices on existing

topologies.

Therefore, although there exist some approaches to segment network resources and place

network security devices on existing topologies, there is no formal approach to achieve it.

Moreover, the notion of ‘similarity’ or ‘different security levels’ between resource policies

has not been precisely articulated, which results in the inability to define, automate, and

prove the correctness of the best segmentation. The above has motivated us to present a

formal approach to network segmentation.

6.1.2 Illustrative Example Revisited

Recall the organization resources presented in the illustrative example in Chapter 3. Now,

we consider three different network topological structures for these resources. The first
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structure, shown in Figure 6.1, has an outer firewall Fw1 that protects all the resources.

Observe that this structure does not provide sufficient protection for resources as it suffers

from many drawbacks. First, it keeps internal resources (e.g., Engineering1 ) vulnerable for

outer attacks as it has a single layer of defense which the firewall Fw1 . A successful attack

that bypasses Fw1 can attack other sensitive resources easily. Second, it does not protect

from internal attacks initiated from within the organization. This is due to the fact that

this structure assumes complete trust of internal traffic. In conclusion, this kind of structure

and segmentation of resources is not sufficient to protect resources, and therefore there is

a need for a better network structure to achieve a maximum protection for resources in

which resources are segmented in a way that provides protection from external and internal

threats.

As discussed in previous chapters, it is important to adhere to segmentation and DD strate-

gies when building and designing a network structure. The second structure, shown in

Figure 6.2, attempts to implement these strategies. It does this by placing resources into

different segments protecting each segment with a firewall and by having multiple layers

of firewalls to reach internal resources. This approach is not based on a formal approach

and does not guarantee maximum protection. We observe, in Figure 6.2 that the outer

firewall Fw1 and internal Fw3 would have the policy that allows traffic from the internet

to Web server and Email server . Therefore, this structure makes the engineering worksta-

tions vulnerable to outer threats. An outside attacker can easily gain access to the segment

and attack the engineering workstations. Therefore, although this structure implements

segmentation and DD strategies, it does not provide sufficient protection for resources with

strict security requirements. Therefore, simply adding extra layers of firewalls does not

always guarantee extra protection without proper placement and configuration of network

resources. More importantly, we are concerned with the ability to reach these conclusions

for large networks, something not readily possible via only general guidelines and human

judgment.
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(a) A topological representation of network (1)

Fw 1

Web Email File Eng 1Fin 1 Fin 2 Fin DB Eng 2

(b) A graph representation of network (1)

Figure 6.1: Network structure (1)

Finally, the third network structure, shown in Figure 6.3, correctly follows and implements

the guidelines and best practices for network design [Pet01]. This structure is the ideal

structure for the resources. However, following the guidelines and reaching such a structure

might be achievable for a small network, it is unattainable for a large network with a huge

number of resources with different policies using only human judgment, motivating the use

of a formal and rigorous approach.

In this chapter, we present a formal approach to segment network resources into nested
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(b) A graph representation of network (2)

Figure 6.2: Layered network structure (2)

segments to provide maximum protection for these resources and the overall network. The

strategy addresses the question of where to place these segments within the network to

achieve the goal of reaching an optimal robust and secure structure. It also generates the

policies to be enforced at the internal access control points in the network. The approach is

based on the theory of PFA and the theory of Guarded Commands presented in Chapter 3.

We also use the strategy of DD presented in Chapter 5.
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Figure 6.3: Ideal network structure (3)
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6.2 Segmentation and Robust Network Architecture

To assess whether an approach achieves the desired goal, it has to be defined formally. In

this section, the definitions of network segmentation and robust network architecture are

presented. In network segmentation, resources are grouped into segments or zones such

that this segmentation provides maximum protection. Maximum protection for a resource

is achieved when its placed within a segment that is protected by an access control point

that enforces a policy family with the highest possible security level. The concept of network

segmentation is defined based on the weight function introduced in Section 4.3. The weight

function is used to quantify and measure the different security requirements of an access

control policy.

Definition 6.2.1 (Segment). Let R be a set of resources. A set S ⊆ R is said to be a

segment of R iff

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(gcd(p(r), p(r′))) ≤ wP(gcd( r | r ∈ S · p(r) )) ) �

Definition 6.2.2 (Segmentation). Let R be a set of resources, and let F be a set of subsets

of R such that (∪A | A ∈ F · A ) = R. Then F is a segmentation of R iff

(∀A | A ∈ F · A is a segment of R ). �

In our definition of segmentation, a resource r is placed in a segment S if and only if the

gcd (i.e., commonality) of the policies of the resources in the segment S and r has more

or equal weight than the gcd of r and any other resource out of S. Therefore, the gcd of

the segment S, which is the policy enforced at the firewall controlling access to resources in

the segment, provides maximum protection for the resources in the segment than any other

policy specification. In Definition 6.2.1, a segment is forced to have at least two resources

as the GCD is a binary operator. Note that segments can be nested and therefore a node

can belong to more than one segment if the smaller one is within the other one.
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Lemma 6.2.1.

(a) Let S ⊆ R be a set of resources formed by only mutually co-prime policies that are

6= 1F . S forms a segment only if (∀ r | r ∈ (R− S) · p(r) = 1F )

(b) Let S ⊆ R, and there exists resources r, r′ ∈ S such that p(r) = 1F and p(r′) @ 1F , and

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · gcd(p(r), p(r′)) = 1F ).

Then S is a segment.

Proof. The detailed proof is given in Appendix A.6.

By requiring DD, resources with 1F policy are directly attached to the root having 1F

policy. If a segment satisfying the condition in Lemma 6.2.1(a) exists, then the root of this

segment has 1F policy. Consequently, the root of the global network has 1F policy. To

achieve SDD all the resources and internal nodes attached to the root of the segment S is

attached to the global root. By Lemma 6.2.1(b), S is not a segment if S ⊆ R, there exists

resources r, r′ ∈ S, such that p(r) = 1F and p(r′) @ 1F , and there exists resources r ∈ S

and r′ ∈ (R − S) such that gcd(p(r), p(r′)) 6= 1F . In other words, for a set of resources S

that has some resources with 1F policy and others resources with policies different than 1F .

If the commonality of each resource in S with every resource out of S is 1F , then S forms

a segment. Otherwise, S is not a segment.

Superfluous Firewall Chain is a chain of firewalls where each firewall has only one child,

that is a firewall, ending with a firewall that has resources or multiple firewalls attached

to it. In this case, each firewall in the chain protects only one firewall aside from the last

firewall. A superfluous firewall chain is a waste of network resources and therefore it is

possible to remove all firewalls except the last one as it has the most restrictive policy.

Below, the definition of a robust network is presented. The definition is based on the

segmentation defined above and the SDD strategy presented in Chapter 5. In a robust
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network, the SDD strategy is used to place optimal segments within the network such

that the generated topology is guaranteed to provide maximum access control protection

employing compartmentalization and layered defense.

Definition 6.2.3 (Robust Network). A network graph G is said to be robust if the following

criteria hold:

1. G satisfies SDD strategy in every path from the root to the parent of a resource,

2. G implements segmentation as defined in Definition 6.2.2, and

3. G has no superfluous firewall chain.

�

The first criterion for a robust network ensures that taking any path from the root, the

traffic is faced by stricter policies the deeper it gets into the network. This is achieved by

forcing a strict refinement at every edge in the network graph. However, this condition is

not required at an edge with a leaf node. It allows a leaf node (i.e., a resource) and its parent

to have the same policy. This is seen when the gcd of resources in a segment equals a policy

of one of the resources. The second criterion ensures that a resource belongs to the segment

that is protected by the strongest possible policy (i.e., gcd). Then, using the SDD strategy

the segments are placed at the appropriate depth based on their security requirement level

that is the weight of their gcd. Such that, resources with high-security level requirements

are placed deep in the network protected by multiple layers of defenses where each layer is

stronger than the one proceeding it. And resources with lower security level requirements

are placed closer to the root of the network. Therefore, traffic going from outside the

network to an internal resource is faced by multiple access control points ensuring that

only legitimate traffic is allowed in. Moreover, lateral traffic from segment to segment is

controlled by internal access control points such that authorized users are allowed only to

the segment needed to perform their job and denied access to other segments. Therefore,
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ensuring the protection of resources from internal and external threats. Finally, the third

criterion ensures that the robust network is obtained with minimum cost.

6.3 Network Segmentation Algorithms

In this section, we present the network segmentation algorithms to build robust networks.

We start by presenting an exponential algorithm then proceed to present a polynomial

version of the algorithm. The purpose of starting with the exponential algorithm is that it

is easy to grasp the use of the formalism presented in constructing the network graph.

6.3.1 Exponential Network Segmentation Algorithm (Exp-RNS)

In this section, we present the Exponential Robust Network and Segmentation Algorithm

(Exp-RNS) which is a brute force algorithm to build a robust network having an exponential

running time. Given a set R of resources and their policies, the Exp-RNS algorithm uses

R to build a robust network by computing the GCDs of resource policies and using the

refinement relation on these GCDs. For simplicity, we discuss the algorithm using singleton

families of policies, and so we refer to them as policy rather than a family of policies.

A resource having 0F is essentially inaccessible, as it cannot be protected by an access control

system. The 0F which represents a pseudo policy cannot be enforced at an access control

point. Therefore, it cannot be part of robust network architecture. Hence, we assume that

the input R does not contain resources with 0F policies. Furthermore, by Lemma 5.2.1,

having any internal node/leaf with 1F policy implies that SDD is not achievable in the

network graph. By Lemma 6.2.1(a) resources with 1F policy have to be attached to the

root with 1F policy. Therefore, in the Exp-RNS algorithm, we remove resources with 1F

policy a priori from the set R, and as a final step add these resources to the root.

The Exp-RNS algorithm consists of five main tasks. The first task is calculating the GCDs

or common policies. The second task is building a network graph based on the refinement
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relation consisting of only firewalls. The third task is adding resources to the network graph,

and the fourth task is pruning the network graph to remove superfluous firewall chaining.

Finally, the fifth task is to add all the resources with 1F policy (if they exist) to the graph.

Algorithm 1 Exponential Robust Network and Segmentation Algorithm

1: procedure Exp-Segmentation(R)
2: S ← set of resources having 1F policy
3: R← R− S
4: GCD← Compute-GCD(R)
5: G← Build-Network-Graph(GCD, R)
6: Add-Resources-to-Net(G,GCD, R)
7: Optimize-Network-Graph(G)
8: if S 6= ∅ then
9: Add-1F-resources(G,S)

10: end if
11: end procedure

In the subsequent sections, we will explain each of the main steps of the above algorithm.

Calculating GCDs

The procedure Compute-GCD computes the commonalities or the GCD of policies of

resources. As seen in Section 6.2, to segment resources we need to place them within a

segment such that maximum security (access-protection) is achieved. To achieve this, we

use a brute force approach to compute all possible segments by computing the power set

of R, P(R), (where each set in P(R) represent a possible segment). Then we compute

the commonalities in each segment by computing the GCD of the resource policies in that

segment.

procedure Compute-GCD(R)

P(R)← power set of R minus all singleton sets and the empty set.

GCD← ∅ . initialize GCD set.

for each s ∈ P(R) do

Create gcd s object

gcd s.p← Calculate the GCD of the policies of resources in s
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gcd s.weight← weight of gcd s.p

flag ← false

for each gcd ∈ GCD do

if gcd.p = gcd s.p then

flag ← true

if gcd.size < |s| then

gcd.size← |s|

gcd.set← s

end if

else if gcd.p @ gcd s.p ∧ gcd.weight = gcd s.weight then

GCD = GCD− {gcd}

else if gcd s.p @ gcd.p ∧ gcd.weight = gcd s.weight then

flag ← true

end if

end for

if flag = false then

gcd s.set← s

gcd s.size← |s|

gcd s.weight← weight of gcd s.p

GCD← GCD ∪ {gcd s}

end if

end for

return GCD

end procedure

We now explain the Compute-GCD procedure in detail. The procedure first computes

the power set of the set of resources R, P(R). It then computes the GCD for each set

in P(R). While computing the GCDs, the procedure maintains a set GCD, consisting of
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objects called the gcd objects. Each gcd object has the following attributes: p, set, weight,

and size. Attribute set represents the set of resources, which is a set in P(R). Attribute p

represents the GCD of the policies of the resources in set. Attribute weight is the weight of

the policy p, and attribute size represents the cardinality of set. To minimize the number

of gcd objects stored in GCD, each object in GCD has a unique policy p. To achieve this,

if the GCD of two sets in P(R) is the same, then we store the gcd object corresponding to

the larger set. Further for any two sets s1, s2 ∈ P(R), if the GCD of policies of s1 refines the

GCD of policies of s2, and if both of these policies have the same weight, then we only store

the gcd object corresponding to s2. Table 6.1 gives all the gcd objects in the GCD set,

and the set of resources in set for the illustrative example after procedure Compute-GCD

is executed. In Appendix-D, we present the computation of policies for all the gcd objects

given in Table 6.1.

gcd objects
in GCD
set

Set of Resources

gcd 1 {Web server, Email server, F ile server,
F in.DB,F in.1, F in.2, Eng.1, Eng.2}

gcd 2 {File server, F in.DB,F in.1, F in.2, Eng.1,
Eng.2}

gcd 3 {Eng.1, Eng.2, F in.DB,F in.1, F in.2}
gcd 4 {Eng.1, Eng.2}
gcd 5 {Fin.DB,F in.1, F in.2}

Table 6.1: gcd objects in GCD set, and their corresponding set of resources

Building a Network Graph

The procedure Build-Network-Graph builds a network graph G with no resources at-

tached. This graph is a temporary network graph consisting of only firewalls and might

contain a superfluous firewall chain. However, the extra firewalls are removed at a later

stage (by the Optimize-Network-Graph). The procedure uses the GCD set = F or-

dered in decreasing order by weights, and the refinement relation to produce the network
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graph. The vertices of the network graph are partitioned into gcd nodes representing a gcd

object (representing firewalls), and resource nodes representing resources in the network.

Each node in the graph has all the attributes defined for a gcd object, and in addition to

these, it has two more attributes: is resource and π. The attribute is resource identifies

whether the node is a resource node or a gcd node. It is set to true if the node represents

a resource, otherwise, it is set to false. The attribute π stores the set of the parent(s) of

the node.

The root r is the gcd object having the least weight and its set consists of all resources

(except the resources with 1F policy). It is first added to the network graph G. After which

nodes in F having the same weight as the root r are removed. Then, it computes wmax

weight - the maximum weight over the weights of all nodes in F , and computes the set T

consisting of all nodes with wmax weight and removes them from F . Then each node in

the set T is added to G using the Add-Nodeset-to-G procedure. The last two steps are

repeated till F = ∅; that is, the last two steps are repeatedly executed to (possibly) add all

the nodes in F to G.

procedure Build-Network-Graph(F,R)

G← ∅ . G = (E;V ; r)

r ← gcd object that has all resources R in its set attribute

r.π ← ∅; r.resource← false

V ← V ∪ {r}

F ← F− minus gcd objects with the same weight as the root r

while F 6= ∅ do

wmax ← maximum weight of any s ∈ F .

T ← ∅

for each s ∈ F do

if s.weight = wmax then

T ← T ∪ s;F ← F − s
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end if

end for

Add-Nodeset-to-G(G,F, T, wmax)

end while

return G

end procedure

Adding gcd Nodes in T to the Network Graph The gcd nodes are added to the

network graph based on the weight attribute of the gcd object. We add nodes to G in

batches (set T ) starting with maximum weight to minimum weight. The Add-Nodeset-

to-G procedure adds the set of nodes in T in non-increasing order by their size attribute;

that is, nodes in T having the largest size is processed first, followed by a node with the next

(or same) largest size is processed to add it to G. During the execution of the procedure,

at all times we maintain the resT set that contains the set of resources for which gcd nodes

have not been added. Initially, resT contains all resources contained in all the gcd nodes in

T . Then the procedure loops through each node s in T and if s.set still contains resources

unaccounted for in G, it is evaluated. During this evaluation, every child c of the root r

that refines s is added to cset. Then v is added to G by attaching it to r. If cset is not

empty, then all nodes in it are attached to v as its children, and their connection to r is

removed.

procedure Add-Nodeset-to-G(G,F, T, wmax) . G = (V ;E; r)

resT ← ∅

for each s ∈ T do

resT ← resT ∪ s.set

end for

T ← T nodes ordered in non-increasing order by their size attribute.

for each s ∈ T ∧ (s.set ∩ resT 6= ∅) do

116



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

cset← ∅

for each child c of r do

if c.p @ s.p then

cset← cset ∪ {c}

end if

end for

V ← V ∪ {s}

E ← E ∪ {(r, s)}

s.π ← {r}

if cset 6= ∅ then

for each c ∈ cset do

E ← E − {(r, c)} ∪ {(s, c)}

c.π ← c.π − {r} ∪ {s}

end for

end if

resT ← resT − s.set

end for

end procedure

Figure 6.4 shows the network graph for the illustrative example produced by the procedure

Build-Network-Graph. Observe that in the graph each path represents a refinement

chain (e.g., gcd4 @F gcd3 @F gcd2 @F gcd1).

Adding resources to the Network Graph

The procedure Add-Resources-to-Net adds resource nodes to the network Graph G.

While adding the resource nodes, we first order the gcd objects in GCD in descending

order by weight (GCDmax). Then we choose the gcd node having the maximum weight

and attach all the resources in its set attribute, and in R′ (initially R′ = R), to it. After

which we remove the attached resources from the set of resources R′. We do this for each
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gcd 1

gcd 2

gcd 3

gcd 4 gcd 5

Figure 6.4: The network graph of the illustrative example after Build-Network-Graph
procedure

gcd node in GCDmax. In the end, all resources are added to the network graph G. Observe

that by adding resources to gcd nodes starting with maximum weight to minimum weight,

we ensure that resources with higher security requirements are protected with maximum

layers of protection.

procedure Add-Resources-to-Net(G,GCD, R)

GCDmax ← ordered list of gcd ∈ GCD in descending order by weights.

R′ = R

for each gcd ∈ GCDmax do

for each s ∈ gcd.set do

if s ∈ R′ then

s.is resource← true

s.π ← s.π ∪ {gcd}

V ← V ∪ {s}

E ← E ∪ {(gcd, s)}
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R′ ← R′ − {s}

end if

end for

end for

end procedure

Optimize GCD graph

The network graph obtained after executing the procedure Add-Resources-To-Net could

suffer from superfluous firewall chaining. To eliminate this issue, we use the Optimize-

Network-Graph procedure. This procedure performs a post-order traversal of G using

two stacks S and T so that all children of a node are evaluated before it gets evaluated.

Since our graph G is not necessarily binary, we do not always evaluate the children of a

node from left to right (any order is acceptable). The only criteria we follow is that all

children of a node are evaluated before evaluating it. S is used to keep track and evaluate

all children of a node before itself, and T is used to store the post-order traversal of G.

When S is empty (and T is full), we pop nodes from T one at a time and begin evaluating

them. When a node u is being evaluated, if u is a gcd node and it has no children or if u

has only one child that is a gcd node, then u and its corresponding edges are deleted from

G. If u has only one child that is a gcd node, then the child is attached to u’s parent.

procedure Optimize-Network-Graph(G) . G = (V ;E; r)

S ← ∅; T ← ∅ . S, T are stacks

Push(S, r)

while S 6= ∅ do

u← Pop(S)

Push(T, u)

for each c child of u do

Push(S, c)
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end for

end while

while T 6= ∅ do

u← Pop(T )

child count← 0

f flag ← false

for each c child of u do

child count← child count+ 1

if c.is resource = false then

f flag ← true

end if

end for

if child count = 0 ∧ u.is resource = false then

V ← V − {u}

for each x ∈ u.π do

E ← E − {(x, u)}

end for

else if (child count = 1 ∧ f flag = true) then

V ← V − {u}

c.π ← c.π − {u}

c.π ← c.π ∪ {u.π}

E ← E − {(u, c)}

for each x ∈ u.π do

E ← E − {(x, u)}

E ← E ∪ {(x, c)}

end for

end if
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end while

end procedure

The robust network graph with resources attached for the illustrative example is shown in

Figure 6.5.

gcd 1

Webgcd 2 Email

File gcd 3

gcd 4 gcd 5

Eng 1 Fin 1 Fin 2 Fin DBEng 2

Figure 6.5: The network graph of the illustrative example after adding resources

Adding resources with policy 1F to G

If S 6= ∅; that is, the set of resources having 1F policy is not empty, we add it to the network

graph using the procedure Add-1F-resources outlined as follows:

1. If the policy of the root r is equal to 1F , then we directly attach all the resources in

the set S to r.

2. However, if the policy of the root r is not equal to 1F , then we create a new node

r′, set its attributes appropriately (as shown in Procedure Add-1F-resources), and
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add it to G. After which we attach r and all the resources in the set S to it. The

node r′ is the new root for the network graph G.

procedure Add-1F-resources(G,S)

if S = ∅ then return error

end if

if r.p = 1F then

r.set← r.set ∪ S; r.size← r.size+ |S|

for each s ∈ S do

s.is resource← true

s.π ← {r}

V ← V ∪ {s}

E ← E ∪ {(r, s)}

end for

else

Create node r′ . Create new root r′ of G

r′.set← r.set ∪ S; r′.size← r.size+ |S|

r′.p← 1F ; r′.weight← weight of 1F policy

r′.π ← ∅

V ← V ∪ {r′} . Add new root r′ to G

r.π ← {r′} . Attach r to r′

E ← E ∪ {(r′, r)}

for each s ∈ S do

s.is resource← true

s.π ← {r′}

V ← V ∪ {s}

E ← E ∪ {(r′, s)}
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end for

end if

end procedure

Exp-RNS Algorithm: Robustness and complexity

The running time of the Exp-RNS algorithm is exponential in the size of the set of resources

R. This is due to the brute force approach used to compute the gcd nodes, obtained by

computing the power set P(R), and using it to build the network graph.

Theorem 6.3.1. The Exp-RNS algorithm constructs a robust network graph.

Proof. The proof is straightforward and is by contradiction. We assume that at least one

of the three criteria required for a network graph to be robust (Section 6.2), is not satisfied.

Suppose Condition 1 is not satisfied. Then there exists at least one path in G from the

root to the parent of a resource, such that the SDD strategy is not satisfied. Recall that

the GCD set computed by the Compute-GCD procedure has gcd objects with distinct

policies. In Exp-RNS, gcd nodes are added to G only by the Build-Network-Graph

and Add-1F-resources procedures. In the Build-Network-Graph procedure, a gcd

node s is first added to G, and any child of r that refines s is disconnected from the root

and attached as a child to s. In both these cases, the SDD strategy is satisfied. In the

Add-1F-resources procedure, the only gcd node added to G is the root r′ having 1F

policy, and is added only if r.policy 6= 1F . Clearly, SDD strategy is satisfied as all policies

6= 1F strictly refine 1F . Therefore, every path from the root to a resource’s parent satisfies

the SDD strategy, which is a contradiction.

Suppose Condition 2 is not satisfied. Then there exists a segment S, such that a resource

r ∈ S and a resource r′ /∈ S have commonalities with more weight than the weight of the

commonalities between elements of the segment S. If this holds then there will be a gcd

node in G with the policy gcd(r, r′) and its corresponding weight. However, since we add
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resources to gcd nodes starting with gcd nodes having maximum weight to the gcd nodes

having minimum weight, the resources r and r′ would be added to the node having the

policy gcd(r, r′), which is a contradiction.

Suppose Condition 3 is not satisfied; that is, superfluous firewall chaining exists in G. Then

there exists at least one firewall with a single node that is a firewall attached. Recall that

in the procedure Optimize-Network-Graph, we count the number of children attached

to each firewall. If the node has only one child that is a firewall, we remove this node and

attach its child to its parent(s). Therefore, by the end of the Exp-RNS algorithm, G has

no superfluous firewalls, which is a contradiction.

6.3.2 Robust Network and Segmentation Algorithm (RNS)

In this section, we propose RNS algorithm which a polynomial algorithm to build a robust

network. This version of the algorithm is obtained in collaboration with other researchers

and is published as joint work in [MAK21]. Given a set R of resources with their policies,

RNS builds a robust and secure network. Similar to Exp-RNS, for this algorithm also we

assume that R does not contain resources with 0F policies.

The idea of the algorithm is simple. We use an approach similar to the one used in the

Build-Network-Graph procedure presented in Section 6.3, where the gcd nodes are

added in non-increasing order of weights (except for the root). However, to achieve a

polynomial running time, we use resources and their weights and create temporary nodes

to guide us through the network building process.

In RNS algorithm, the root is added first to G, and nodes are added in batches (set T ) to G

in decreasing order of their weights. Hence at any given time, when a node s is evaluated to

see where in G it can be added, the weight of all the nodes in G is greater or equal s.weight.

While adding s to G, clusters of resources are evaluated to see if they can form a segment

containing s based on their weights. Note that, the weight of any segment containing s is

always less or equal to s.weight, and so the maximum weight of any segment containing s
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is s.weight. Therefore, when such a cluster of nodes is identified, we create a gcd node to

protect this segment and add it to the root of G and attach the nodes forming the segment

to it. Otherwise, we create a temporary node for the cluster and add it to F , so that it can

be evaluated later when the set having the weight of the cluster is being evaluated.

Algorithm 2 Robust Network and Segmentation Algorithm

1: procedure Segmentation(R) . R = {r1, r2, . . . , rn}
2: G← NULL . G = (V,E, r)
3: r ← Create-node(R) . Create root r
4: Add-node-to-G(G, r, ∅, false) . Add root r to G

5: S1, S2, . . . , Sm ⊂ R such that
m⋃
i=1

Si = R, and no two subsets have resources with

same policies
6: F = ∅
7: for each s ∈ {S1, S2, . . . , Sm} do
8: F = F ∪Create-node(s)
9: end for

10: while F 6= ∅ do
11: wmax ← maximum weight of any s ∈ F .
12: T ← ∅
13: for each s ∈ F do
14: if s.weight = wmax then
15: T ← T ∪ s;F ← F − s
16: end if
17: end for
18: Add-Nodeset-to-G(G,F, T, wmax)
19: end while
20: end procedure

Note that, temporary nodes are never added to G. While evaluating a temporary node,

if the cluster of nodes with s actually forms a segment at that point, a new gcd node is

created and added to G. This is similar to any other gcd node. After which, the temporary

node is deleted from F . We now give the outline of the algorithm as follows:

• The algorithm first creates the root r for all resources in R using the Create-node

procedure and adds it to the network graph G.

• Then it creates subsets S1, S2, . . . , Sm ⊂ R, such that no two subsets have resources
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with same policies, and creates a node for each subset Si, 1 ≤ i ≤ m, and adds it to

F . Therefore, F contains either a single resource node or a gcd node having resources

in its set. If we assign distinct values from 1−m termed as key values, to each distinct

policy in R, then the subsets S1, S2, . . . , Sm can be easily created using Bucket sort

as follows: we create m buckets labeled from 1 −m, for each distinct policy. As we

traverse through the policies in R, we simply evaluate its label and place it in the

bucket having the same label.

• After which, it computes the wmax weight - the maximum weight over the weights of

all nodes in F , and computes the set T consisting of all nodes with wmax weight and

removes all these nodes from F .

• Then the nodes in set T are added to G using the Add-Nodeset-to-G procedure.

• The above two steps are repeated till F = ∅; that is, the above two steps are repeatedly

executed to (possibly) add all the nodes in F to G.

procedure Add-Nodeset-to-G(G,F, T, wmax) . G = (V ;E; r)

if wmax = r.weight then . Attach resources having same weight as r to r

Attach-resources-to-R(G,T )

else

for each s ∈ T do . Add permanent nodes in T to G

if s.temp = false then

Add-node-to-G(G, s, ∅, false)

end if

end for

for each s ∈ T do . Check child nodes of r to add gcd node

cset← ∅

cset← Curr-max-weight-set(G, s)
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if cset 6= ∅ then

gcd = Create-node(cset)

if !s.temp then

if (s.weight = gcd.weight) then

Add-node-to-G(G, gcd, cset, true)

else . Mark gcd as a temporary node

gcd.temp← true; gcd.set← s

gcd.size← 1

F ← F ∪ {gcd}

end if

else

if gcd.weight = s.weight then

Add-node-to-G(G, gcd, cset, true)

end if

end if

end if

end for

end if

end procedure

The Add-Nodeset-to-G procedure adds the set of nodes in T to G. The outline of this

procedure is as follows:

• If wmax = r.weight, the Add-Nodeset-to-G procedure directly attaches to r all the

resources in every non-temporary node s ∈ T and exits. Otherwise, it implements the

below steps.

• The procedure loops through each node in T to (possibly) add it to G. If s is not a

temporary node (indicated by the temp node attribute), it is added to G as a child of

127



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

the root r.

• Then every child of r is evaluated to compute cset - the set consisting of all nodes

including s (or including s.set, if s is a temporary node). cset is computed by the

Curr-max-weight-set function.

• A new gcd node is computed for the set of resources in cset, if cset 6= ∅. If s is a

permanent node, then it checks if gcd.weight = s.weight. If it is, gcd is added to

G; otherwise gcd is tagged as “temporary” – to be considered for evaluation later –

and added to F . If s is a temporary node and if the node is in s.set is still part of

the segment formed by gcd, then gcd is added to G. Otherwise, it is automatically

removed from F , as all the nodes in T are removed from F , before adding them to G

in Algorithm 2.

Recall that nodes are added in batches (T ) to G in decreasing order of their weights.

Therefore, in the Add-Nodeset-to-G procedure when gcd.weight < s.weight, the node

gcd is not added to G, but instead added to F (if it is not a temporary node), to be

evaluated when the set of nodes (T ) having weight = gcd.weight is processed. Furthermore,

temporary nodes are associated with a node for which they were created. For example, when

a permanent node s from T is added to G, we check to see if any child nodes of r can form

a segment with s. If the weight of this segment is less than the weight of s, we create a

temporary node for the segment and evaluate it later when the nodes with its weight are

being evaluated.

During the execution of the Add-Nodeset-to-G function, while evaluating a set s ∈ T , let

the root r have c1, c2, . . . , ck child nodes. Let the GCD of the policies of (c1, s), (c2, s), . . . , (ck, s)

be g1, g2, . . . , gk. Let cmax be the maximum weight over all the weights of the the policies

g1, g2, . . . , gk. Then the primary objective of the Curr-max-weight-set function is to

compute the set (not necessarily the largest) of all child nodes smax = {ci1, ci2, , . . . cil},

such that smax ⊆ {c1, c2, . . . , ck}, and gcd(ci1, ci2, . . . cil, s) has cmax weight.
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To compute smax, Curr-max-weight-set function maintains a stack S (this can also be

achieved with an array/list). Initially, S is empty and cmax = 0. While evaluating the child

nodes of r, S contains the nodes having the current/local maximum weight. Therefore, by

the end of the for loop, S contains all the child nodes, such that the weight of the GCD of

their policies is cmax. smax contains the largest possible set of nodes if cmax = s.weight.

However, if cmax 6= s.weight, it does not necessary store the largest set. This is not

a problem, as a node corresponding to cmax is added as a temporary node (if s is a

permanent node) to F , in which case it is evaluated later and the maximum possible set of

nodes corresponding to it, is formed at that time.

Note that, we do not consider s while computing this set, because gcd(s, s) ≥ gcd(ci, s),

where 1 ≤ i ≤ k. Hence, if s is included in the set, cmax = s.weight. This would be a

problem if smax = {s}, as we cannot form a segment with only one element. Therefore,

we compute S without considering s and if S 6= ∅ we add s to it. Furthermore, if cmax is

equal to the weight of the root, it is pointless to create another sub segment with its weight

= r.weight. Therefore, we disregard this case.

function Curr-max-weight-set(G, s)

S ← ∅; snew ← ∅

Sgcd← ∅ . gcd of policies of the nodes in S

cmax← 0 . Current Max.weight of gcd of policies

flag ← false

for each child c of r do

if s.temp ∧ c ∈ s.set then

flag ← true

end if

if (!s.temp ∧ c 6= s) ∨ (s.temp ∧ c 6∈ s.set) then

tempp← gcd(c.p, s.p)

tempw ← weight of tempp
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if cmax < tempw then

Empty S;Push(S, c)

Sgcd← gcd(s, c)

cmax← tempw

else if cmax = tempw then

Sgcd← gcd(Sgcd, c)

Sgcdweight← weight of Sgcd

if Sgcdweight = cmax then

Push(S, c)

end if

end if

end if

end for

if !S.isempty ∧ cmax 6= r.weight ∧ s.temp ∧ flag then

Push(S, s.set)

while S 6= ∅ do

snew ← snew ∪ Pop(S)

end while

end if

if !S.isempty ∧ cmax 6= r.weight ∧!s.temp then

Push(S, s)

while S 6= ∅ do

snew ← snew ∪ Pop(S)

end while

end if

return snew

end function
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The Attach-resources-to-R procedure attaches resources having the same weight as r

to r.

procedure Attach-resources-to-R(G,T ) . G = (V ;E; r)

for each s ∈ T ∧!s.temp do

if !s.isresource then

for each res ∈ s.set do

res = Create-node(res)

Add-node-to-G(G, res, ∅, false)

end for

else

Add-node-to-G(G, s, ∅, false)

end if

end for

end procedure

The Add-node-to-G procedure encapsulates the steps to add nodes (and any resources

not already added to G in its set attribute) to G. The Add-node-to-G procedure always

adds the node s to the root of r (if it exists). If s is a gcd node and has children that are

resource nodes not added to G yet (indicated by exist = false), then s is added to G and

all the resources in its s.set are created as new nodes and added to G as children of s. If s

is a gcd node object, which is created to be a gcd node for existing nodes in G (indicated

by exist = true), then s is added to G and all nodes in cset are added as its children (this

includes removing their connection with r and attaching them to s). In this case, cset can

contain a node having the same weight as that of s, in which case, we delete that node from

G, and attach its children to s.

procedure Add-node-to-G(G, s, cset, exist)

if G 6= NULL then
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V ← V ∪ s;E = E ∪ {(r, s)}

s.π ← s.π ∪ {r}

else

if s.set = R then

V ← V ∪ s; r ← s

end if

end if

if s.set 6= empty ∧ s 6= r ∧!exist then . Add gcd node with only resources

not yet added to G as children

for each res ∈ s.set do

res = Create-node(res, ∅, false)

V ← V ∪ res

E ← E ∪ {(s, res)}

res.π ← res.π ∪ {s}

end for

else if cset 6= empty ∧ s 6= r ∧ exist then . Adding gcd node with

children already added to G and possibly having gcd nodes as children.

for each res ∈ cset do

if res.isresource = false ∧ s.weight = res.weight then

V ← V − {res}

E ← E − {(r, res)}

for each child c of res do

E ← E − {(res, c)} ∪ {(s, c)}

res.π ← res.π − {res} ∪ {s}

end for

else

E ← E − {(r, res)} ∪ {(s, res)}
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res.π ← res.π − {r} ∪ {s}

end if

end for

end if

end procedure

The Create-node function creates nodes so that they can be added to the graph G. While

building G, two types of nodes, namely the resource nodes, and the GCD (firewall) nodes are

created, and their attributes set according to the code given in the Create-node function.

Since we mark nodes as temporary (nodes that are added to F and evaluated later) we

introduce a new attribute –temp– which is added to all nodes. For permanent nodes, temp

is set to false, and for temporary nodes, temp is set to true.

function Create-node(s)

Create node v . Create node and initialize attribute values

if |s| = 1 ∧ s 6= R then . Adding a resource

v.p← policy of resource s

v.weight← weight of v.p

v.set← ∅; v.size← 0

v.isresource← true; v.temp← false

else

v.p← GCD of all resource policies in s

v.weight← weight of v.p

v.isresource← false; v.temp← false

for each node ∈ s do

if !node.isresource then

v.set← v.set ∪ node.set

v.size← v.size+ node.size

133



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

else

v.set← v.set ∪ node

v.size← v.size+ 1

end if

end for

end if

return v

end function

Figure 6.6 shows the progression of executing the RNS algorithm on the illustrative example.

The last iteration generates the network shown in Figure 6.5.

RNS Algorithm: Robustness and complexity

Theorem 6.3.2. The RNS algorithm constructs a robust network graph.

Proof. The proof is by contradiction. It is also given in [MAK21]. We assume that at least

one of the three criteria required for a network graph to be robust (Section 6.2), is not

satisfied.

Suppose Condition 1 is not satisfied. Then there exists at least one path in G from the

root to the parent of a resource, such that the SDD strategy is not satisfied. In the RNS

algorithm, the root is added first to an empty graph G. After which nodes both resource

and gcd nodes are added in non-increasing order of their weights to G by first attaching

them to the root only in the Add-nodeset-to-G procedure. In Add-nodeset-to-G,

when a gcd node is added to the root r, cset contains all its child nodes. The policy at

gcd is equal to the GCD of policies of all nodes in cset. Furthermore, while adding child

nodes from cset to gcd, we check if any child node’s weight is equal to gcd.weight, in which

case we delete the child node (if it is not a resource) and attach all of its children to gcd.

Therefore, in all the cases the SDD strategy is satisfied while adding resources and gcd
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(a) Net. graph after 1st iteration of Add-
Nodeset-to-G

gcd 1

gcd 3

gcd 4 gcd 5

Eng 1 Fin 1 Fin 2 Fin DBEng 2

(b) Net. graph after 2nd iteration of Add-
Nodeset-to-G

gcd 1

gcd 2

File gcd 3

gcd 4 gcd 5

Eng 1 Fin 1 Fin 2 Fin DBEng 2

(c) Net. graph after 3rd iteration of Add-
Nodeset-to-G

Figure 6.6: Progression of RNS for the illustrative example

nodes. Therefore, the SDD strategy is satisfied in all paths from the root to the node of

the parent of a resource, which is a contraction.

Suppose Condition 2 is not satisfied. Then, the condition stated under Definition 6.2.1 is

not satisfied; that is, there exists a segment S, such that a resource r ∈ S and a resource
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r′ /∈ S have commonalities with more weight than the weight of the commonalities between

elements of the segment S.

Without loss of generality, let us assume that w(p(r)) ≤ w(p(r′)). Nodes are added to G

in non-increasing order of their weights. Therefore, when r is added to G, all the existing

nodes in G have a weight greater than or equal to r.weight. Since r.weight ≤ r′.weight,

G must include r′. Furthermore, while evaluating clusters of resources (having a weight

greater than or equal to r.weight) including r, we choose a cluster having the maximum

weight (and possibly the maximum size) among all such clusters evaluated, as the segment

S. Therefore, it must be the case that a cluster having r and r′ is evaluated. Since r and

r′ have commonalities with higher weight, then the chosen cluster forming a segment must

contain r and r′. Therefore, the segment S must contain both r, r′, which is a contradiction.

Suppose Condition 3 is not satisfied; that is, superfluous firewall chaining exists in G. Then

there exists at least one firewall/gcd node with a single node that is a firewall attached.

Recall that gcd nodes are added to G only when more than one node can be attached to

them. Therefore, by the end of the RNS algorithm, G has no superfluous firewalls, which

is a contradiction.

Theorem 6.3.3. Let R = {r1, r2, . . . , rn} be the input of size n to the RNS Algorithm.

Then, the running time of RNS is O(n2).

Proof. The proof can also be found in [MAK21]. Using numeral key values between 1−m as

labels for distinct policies in R, and Bucket sort, the time required to compute the subsets

S1, S2, . . . , Sm, where m ≤ n is O(n).

Since gcd nodes (either permanent or temporary) are created for each set s ∈ S1, S2, . . . , Sm

exactly once, the number of gcd nodes in the network graph is at most n. Analogously, the

number of temporary nodes created during the execution of the RNS algorithm is also at

most n. Hence the total time required for the the RNS algorithm is O(n), plus the total

time required to execute the Add-nodeset-to-G procedure.
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Let t ≤ n be the number of distinct weights of policies in the resource set R. Then,

the Add-nodeset-to-G procedure is executed t times, and the total number of nodes

processed by it is at most 2n (since |F | ≤ 2n). Hence the time taken by Add-nodeset-

to-G is 2n plus the time taken by the Curr-max-weight-set for each node s in F where

s.weight > r.weight.

The total time required by the Curr-max-weight-set procedure is equal to the number

of child nodes of r the procedure evaluates to construct the smax set for all nodes in F .

The maximum number of such nodes is at most 2n (total number of nodes in G) at each

execution of the Curr-max-weight-set procedure. Further, the Curr-max-weight-

set procedure is executed at most 2n times (number of nodes in F ). Hence, the total time

required by the Curr-max-weight-set procedure is at most O(n2).

Therefore, the total running time for the RNS Algorithm is O(n2).

6.3.3 Discussion

We proposed two algorithms, Exp-RNS and RNS, for building a robust network topology.

The Exp-RNS algorithm has an exponential running time, and RNS has a polynomial run-

ning time. Despite its exponential complexity, we presented the Exp-RNS algorithm for its

simplicity in demonstrating the usage of the formalism in building a robust network. We

later introduced RNS, which can easily meet the needs of most real-time network configu-

ration in dynamic networks.

The restriction in the superfluous firewall chaining concept mentioned in Section 6.2 can

be further tightened, where a firewall having no resources attached to it (irrespective of

the number of firewalls attached to it) is removed from the network. This would not only

simplify the network but also significantly economize it by minimizing the number of fire-

walls required to produce a secure and robust network. The Exp-RNS and RNS algorithms

can be easily modified with minor changes to adapt to the tighter version of firewall chain-

ing. Both these versions have their advantages and drawbacks. The superfluous firewall
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chaining mentioned in Section 6.2 would result in a network having more firewalls and a

greater number of layers protecting the resources, however building such a network could be

expensive. The tighter version results in a network having fewer firewalls and fewer layers

protecting the resources; however, it is economical.

Our approach is for designing and building networks and is not focused on improving the

security in existing networks. Quantified attack graphs ([WNJ06, ILP06, DPRW07, AJN12,

PDR12, MATWYO16]), and similar formalisms (e.g., [RAS13]) have been proposed to

harden the security of existing networks. However, our approach can be used to assess

the security robustness of an existing network in the following ways. One way is to use

the GCD to calculate the best policy for each of the segments of the existing networks.

Then, we compare the calculated firewall policy for each segment to the existing policy.

This would reveal any missing rules or any flaws in the policy of the existing firewall. The

second way is to verify whether the existing network implements DD strategy. A third way

is to use RNS algorithm to get the appropriate robust network for the resources that are

in the existing network. Then, we compare the topologies (existing and calculated) with

regard to their effectiveness in protecting the resources. This comparison might lead the

network security architect to better tune the existing network for enhanced security.

Today’s networks are very large in terms of the number of their nodes. The abstraction

adopted in the family approach (discussed in Chapter 4) allows collapsing a subset of nodes

into one node that is protected by a family of policies obtained from the policies of the

abstracted nodes. This approach for example allows us to focus on the design of a network

in a geographic area while considering the rest of the network in another geographic area as

a node running a family of policies. It is direct usage of the principle of divide and conquer.

It is also important to put our results in perspective with Network Address Translation

(NAT) which is a translation mechanism executed by a firewall that is in contact with the

Internet outside of a private network. It assigns public addresses to a computer inside a

network. Its purpose is to limit the number of public addresses that internal nodes within a
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network need to know about external resources. In our work, we assume that only the node

that we call root will have this translation capability. Our purpose is to design local networks

and NAT can be placed on the boundary between the local network to be designed and the

external Internet (i.e., on the entry points (roots) of the network). Hence, our policies use

only local addresses to the designed network.

We used the RNS algorithm on a network with 100 resources. On an Apple MacBook Pro

with a CPU 2.7 GHz Intel Core i5 and a memory of 8 GB 1867 MHz DDR3, the algorithm

toke 24.40 seconds to calculate the network topology and the policies to be enforced at

its firewalls. Then, we inactivated 10 resources among the previous 100 and run the RNS

algorithm to recalculate the new network topology and the policies of its firewalls. The

machine took 24.36 seconds. While the above performance numbers do not constitute, by

any stretch of empirical assessment, a definitive real performance indicator, they give an

idea about the range of time needed. We should keep in mind that after changing the

network, we simply recalculate everything. One can imagine several strategies that use

the characteristics of the resources that are added or removed. For instance, if the change

affects only a subnetwork, we can recalculate only the new topology of that subnetwork that

involves a small number of resources. In this situation, we will see an enhanced performance

that appropriate for real-time network reconfiguration. In many situations, the performance

of the RNS algorithm when used to recalculate the whole topology of the network at each

network change is acceptable to reconfigure the network in a reaction to several security

threats. However, an empirical study to further assess this aspect is needed. Moreover, we

also need further research related to the usage of RNS algorithm in many networks such as

mesh networks.

The algorithm presented in this chapter is about generating a network structure from

scratch. This leaves room for discussing approaches for an already established network.

For instance, an approach that validates the segmentation of a given network and points for

potential threats, and gives a suggested new secure structure with minimum changes such
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that the structure is not disrupted so much.

6.4 Summary

In this chapter, we have presented a formal definition for segmentation based on security

policies. Based on the segmentation formalism we have defined a robust network that

is concerned with building the topology of the network and the placement of resources

and security mechanisms. We have also proposed an approach that goes beyond building

segments to place these segments within the topology to build a robust and secure network

topological structure.
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Chapter 7

Network Segmentation for

Multiple Entry Networks

Current computer networks have several entry points. This chapter extends the formalism

for network segmentation introduced in the previous chapter to networks with multiple entry

points. Section 7.1 introduces networks with multiple entry points. Section 7.2 presents an

illustrative example used to explain the algorithms proposed in this chapter. Section 7.3

proposes two algorithms for implementing the segmentation in a network with multiple

entry points. Finally, Section 7.4 presents a summary of the chapter.

7.1 Multiple Entry Networks

Computer networks are experiencing rapid growth in recent years and expected further

growth in the future. The number of the resources they encompass is reaching considerable

levels which could span over multiple geographical locations. The diversity in the access

control policies governing these resources has become challenging for security officers to

correctly articulate and maintain, especially for dynamic networks. Moreover, these net-

works usually have several entry points, which increase the network attack surface. Each
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entry point is usually intended to give access to a subnetwork. This brings a unique set of

challenges, both while designing and maintaining the network. One of these challenges is

segmenting networks to achieve a robust and secure structure such that all resources are

properly protected independently from which entry point the traffic has originated.

The decision of having a single entry point to a network or several entry points depends

on many aspects. For instance, small networks that use Virtual Private Network (VPN)s

typically have a single entry point [WWF13]. On the other hand, many large organizations

have networks with site-to-site connections, requiring networks with multiple entry points

configuration.

In Chapter 2, we have presented the concept of network slicing and its relation to the

segmentation of networks with multiple entry points.

The segmentation algorithm proposed in Chapter 6 builds a network with a single entry

point. This chapter extends that algorithm to construct an optimal network with multiple

entry points. We consider the example given below to explain the algorithms proposed for

building networks with multiple entry points.

7.2 Illustrative Example of Multiple Entry Networks

We consider an organization’s network resources. The resources belong to two branches:

A and B. Branch A consists of a Web server, an Email server, two File servers, two

Human Resources (HR) workstations, and two finance workstations. The Web server and

Email server allow access for HTTP and SMTP protocols from the internet. Moreover,

they allow access from all internal resources within the branch and block everything else.

The File servers are intended to be accessed by only internal resources within branch A.

The HR workstations allow access to each other only, and the same applies for the finance

workstations. Branch B consists of the same resources and requirements except that it does

not have a File server . Moreover, the organization has two HR servers that are accessed
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only by HR workstations in both branches. It has also two finance servers that allow access

to finance workstations only. Figures 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, and 7.9 show the

policy of these resources in iptables language.

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 80 −j ACCEPT

4 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 25 −j ACCEPT

5 −A INPUT −s 1 0 . 0 . 1 . 0 / 2 4 −j ACCEPT

6 −A INPUT −s 1 0 . 0 . 2 . 0 / 2 4 −j ACCEPT

7 −A INPUT −s 1 0 . 0 . 3 . 0 / 2 4 −j ACCEPT

8 −A INPUT −s 1 0 . 0 . 4 . 0 / 2 4 −j ACCEPT

9 −A INPUT −j DROP

Figure 7.1: Branch A Web and Email servers policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 2 . 0 / 2 4 −j ACCEPT

4 −A INPUT −s 1 0 . 0 . 3 . 0 / 2 4 −j ACCEPT

5 −A INPUT −s 1 0 . 0 . 4 . 0 / 2 4 −j ACCEPT

6 −A INPUT −j DROP

Figure 7.2: Branch A File server policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 3 . 0 / 2 4 −j ACCEPT

4 −A INPUT −j DROP

Figure 7.3: Branch A Finance workstations policy

The requirement is to structure the network of the organization and to have an entry point

for each of its branches A and B. The desired structure is shown in Figure 7.10.
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1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 4 . 0 / 2 4 −j ACCEPT

4 −A INPUT −j DROP

Figure 7.4: Branch A HR workstations policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 80 −j ACCEPT

4 −A INPUT −p tcp −m s t a t e −−s t a t e NEW −m tcp −−dport 25 −j ACCEPT

5 −A INPUT −s 1 0 . 0 . 5 . 0 / 2 4 −j ACCEPT

6 −A INPUT −s 1 0 . 0 . 6 . 0 / 2 4 −j ACCEPT

7 −A INPUT −s 1 0 . 0 . 7 . 0 / 2 4 −j ACCEPT

8 −A INPUT −j DROP

Figure 7.5: Branch B Web and Email servers policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 6 . 0 / 2 4 −j ACCEPT

4 −A INPUT −j DROP

Figure 7.6: Branch B Finance workstations policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 7 . 0 / 2 4 −j ACCEPT

4 −A INPUT −j DROP

Figure 7.7: Branch B HR workstations policy

7.3 Network Segmentation Algorithms for Multiple Entry

Networks

In this section, we present two solutions which take n > 1 sets of resources Q1, Q2, . . . , Qn as

input, and generate a secure and robust network graph with e1, e2, . . . , en entry points, such
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1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 3 . 0 / 2 4 −j ACCEPT

4 −A INPUT −s 1 0 . 0 . 6 . 0 / 2 4 −j ACCEPT

5 −A INPUT −s 1 0 . 0 . 8 . 0 / 2 4 −j ACCEPT

6 −A INPUT −j DROP

Figure 7.8: Finance server policy

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 1 0 . 0 . 4 . 0 / 2 4 −j ACCEPT

4 −A INPUT −s 1 0 . 0 . 7 . 0 / 2 4 −j ACCEPT

5 −A INPUT −s 1 0 . 0 . 8 . 0 / 2 4 −j ACCEPT

6 −A INPUT −j DROP

Figure 7.9: HR server policy

that the i-th entry point ei, protects the i-set of resources Qi, 1 ≤ i ≤ n. While designing

networks with multiple entry points, the intersection of the sets of the resources can be dealt

with in two ways as presented in Solution-1 and Solution-2 . Solution-1 integrates the in-

tersections as the network graph G is generated at each step. On the other hand, Solution-2

separates the intersected sets, such that each of the non-empty set of intersections forms a

segment of its own. Hence, Solution-2 constructs separate slices for the shared resources.

For example, if we have a network with three entry points it creates separate slices for com-

mon resources accessed from entries points (e1, e2), (e1, e3), (e2, e3) and (e1, e2, e3). Later,

in Section 7.3.3, we compare the two solutions and discuss the advantages and drawbacks

of each.

7.3.1 Solution-1: Non-slicing of Shared Resources (NSR) Algorithm

The Non-slicing of Shared Resources (NSR) algorithm is a simple algorithm that builds a

network with multiple entry points. It takes resource sets Q1, Q2, . . . , Qn, where n > 1 as

input to build a network graph with entry points e1, e2, . . . , en, respectively. The outline of

145



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

Internet

Fw 1

Internet

File server A.2
10.0.2.2

Finance B.1
10.0.6.1

Finance B.2
10.0.6.2

Fw 2

Fw 8

Fw 12 Fw 13

Fw 14HR server1
10.0.9.1

Finance server2
10.0.8.1

Fw 11

Fw 6

Fw 5Fw 3 Fw 4

File server A.1
10.0.2.1

Web server B
10.0.5.1

Email server B
10.0.5.2

HR B.2
10.0.7.2

HR B.1
10.0.7.1

Finance A.2
10.0.3.2

Finance A.1
10.0.3.1

HR A.2
10.0.4.2

HR A.1
10.0.4.1

Email server A
10.0.1.2

Web server A
10.0.1.1

Fw 7

Fw 10

Fw 9
Finance server1

10.0.8.1

HR server2
10.0.9.2

(a) A topological representation of the network

Fw8

WebAFw4 Em.A

FileA.1Fw5

Fw6 Fw7

FinA.1 HRA.1 HRA.2FinA.2

Fw2 Fw1

Fw3Fw11

FileA.2

Fw10 Fw9

HRS1 HRS2 FinS1 FinS2

WebB Fw12Em.B

Fw13 Fw14

FinB.1 HRB.1 HRB.2FinB.2

(b) A graph representation of the network

Figure 7.10: The desired network topology and the output of the SSR algorithm
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the algorithm is as follows:

• On input Q1, Q2, . . . , Qn, the NSR algorithm first generates a network graph for re-

sources in Q1 using the RNS algorithm (Algorithm 2).

• Then it loops through resource sets Q2, . . . , Qn one at a time. At the i-th iteration, the

algorithm generates the network graph for resources in Qi using the RNS algorithm

and merges (adds Vi, Ei, ri to G) it with the graph G constructed so far.

Algorithm 3 Non-slicing of Shared Resources (NSR) Algorithm

function Simple Multi Entry Points(Q1, Q2, . . . , Qn) . Q1, Q2, . . . , Qn 6=
∅

G = NULL . G = (V,E, I)
(G1, r1) = RNS(Q1)
V = V ∪ V1;E = E ∪ E1; I = I ∪ {r1}
Q = Q1

for i = 2 to n do
(Gi, ri) = RNS(Qi)
V = V ∪ Vi;E = E ∪ Ei; I = I ∪ {ri}
Q = Q ∪Qi

end for
return G

end function

Figure 7.11 presents the topology of the network generated after implementing the NSR

algorithm on the resources of the illustrative example.

Theorem 7.3.1. The NSR algorithm constructs a robust network graph G, with entry

points e1, e2, . . . , en protecting resources in the sets Q1, Q2, . . . , Qn, respectively.

Proof. The graphs G1, G2, . . . , Gn are constructed using the RNS algorithm, and by Theo-

rem 6.3.2, they all are robust. Merging the subgraph Gi, 2 ≤ i ≤ n with G, still preserves

the robustness of the network as no new vertices are added to G (as Vi ⊂ V ). Furthermore,

since Gi is robust, the edges in Ei preserve this robustness when added to G. Therefore,

the resulting graph G, obtained after execution of the NSR algorithm, is a robust network

graph.
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Figure 7.11: The network topology generated after implementing the NSR algorithm
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The NSR algorithm is a simple algorithm to build a robust network graph with multiple

entry points. The NSR algorithm computes the network graph in time linear to the sum of

sizes of the robust networks generated for the input sets Q1, Q2, . . . , Qn.

7.3.2 Solution-2: Slicing of Shared Resources (SSR) Algorithm

The Slicing of Shared Resources (SSR) algorithm builds a robust network graph. Given

the sets of resources Q1, Q2, . . . , Qn, the SSR algorithm builds a robust network with entry

points e1, e2, . . . , en, where ei is the entry point for Qi. The network graph generated by

the SSR algorithm does not have any overlapping subnetworks; that is, the set of resources

in all subnetworks are disjoint. The outline of the algorithm is as follows:

• Given an input of sets of resources Q1, Q2, . . . , Qn = Set, the SSR algorithm first adds

all the entry points e1, e2, . . . , en protecting resources Q1, Q2, . . . , Qn to G, using the

Add entry points function.

• For each set Qi, 1 ≤ i ≤ n, the Add entry points function creates an entry point

ei, and sets its policy equal to the gcd of the resource policies in Qi. The other gcd

object parameters for ei are set accordingly and can be seen in the Add entry points

function.

• The SSR algorithm then generates the set Inter Set, which is a collection of disjoint

sets, obtained from the powerset of Input Set (P(Input Set)) as follows:

– Let Pd be the list consisting of all the sets in the powerset P(Input Set), in

non-increasing order of their sizes, such that the sets with same cardinalities are

placed together.

– For each set s ∈ Pd, starting from the largest set, remove each resource r,

contained in the sets of resources in s, from all sets in Pd − s; that is, for all

s′ ∈ Pd − s, s′ = s′ − s.
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– For each s ∈ Pd, where s = {Qi1, Qi2, . . . , Qik}, 1 ≤ k ≤ n, Qi1 ∩Qi2 ∩ . . . ∩Qik

is added to Inter Sets if and only if Qi1 ∩ Qi2 ∩ . . . ∩ Qik 6= ∅. This step is to

identify the resources that are going to form slices of shared resources.

• For each s ∈ Inter Sets, the SSR algorithm computes the robust network graph Gs

for s using the RNS algorithm and add it to G using the Concatenate function.

• The Concatenate function takes the graphs G and Gs as inputs. It loops through

every entry point ei, 1 ≤ i ≤ n, and adds and edge from ei to rs, only if, the policy of

rs refines the policy of ei and rs.set ⊂ ei.set. If the policies of rs and ei are equal and

rs.set ⊆ ei.set, then it deletes the root rs, and all its outgoing edges and attaches its

children to ei.

Algorithm 4 Slicing of Shared Resources (SSR) Algorithm

function Multiple Entry Points(Q1, Q2, . . . , Qn) . Q1, Q2, . . . , Qn 6= ∅
Input Set = {Q1, Q2, . . . , Qn}
G = NULL . G = (V,E, I)
G = Add entry points(G, Input Set)
Inter sets = Disjoint intersection sets without empty sets
for each s ∈ Inter set do

(Gs, rs) = RNS(s)
G = Concatenate(G,Gs)

end for
return G

end function

Figure 7.10 presents the topology of the network generated after implementing the SSR

algorithm on the set of resources of the illustrative example.

function Add entry points(G,Set)

for each Qi ∈ Set do

Create node ei

ei.p← GCD(Qi) . GCD of all resources in Qi

e.weight← weight of e.p
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ei.set← Qi;

e.size← |e.set|; e.is resource← false

V ← (V ∪ ei); I ← (I ∪ ei)

end for

return G

end function

function Concatenate(G,Gs)

for each ei ∈ I do

if rs.p @ ei.p ∧ rs.set ⊂ ei.set then

E ← E ∪ {(ei, ri)}

end if

if rs.p = ei.p ∧ rs.set ⊆ ei.set then

for each child c of ri do

E ← E − {(ri, c)}

E ← E ∪ {(ei, c)}

c.π = c.π − {rs} ∪ {ei}

end for

V = V − {rs}

end if

end for

end function

Since the SSR algorithm computes the powerset of the Input Set, it is an exponential

algorithm. Therefore, it requires more time to execute than the NSR algorithm. However,

it creates a network design with slices of the shared resources, such that the set of resources

in the slices are disjoint; thus, resulting in a smaller attack surface that is limited to the

concerned segment.
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Theorem 7.3.2. The SSR algorithm constructs a robust network graph G, with entry points

e1, e2, . . . , en, protecting resource sets Q1, Q2, . . . , Qn respectively.

Proof. The SSR algorithm, creates all the entry points e1, e2, . . . , en and adds it to G. At

this point G consists of n disconnected vertices (entry points) and is robust. Then, the

algorithm uses the RNS algorithm to build a subnetwork graph for each of the disjoint sets

in Inter Set. By Theorem 6.3.2, all these sub-graphs are robust network graphs. Further,

when a subnetwork Gi, where 1 ≤ i < 2n, is added to G using the Concatenate function,

an edge is added between ri and an entry point ej , where 1 ≤ i ≤ n, only if the policy at

ej is refined by the policy at ri and rs.set ⊂ ei.set. If both the policies at ej and ri are

the same and rs.set ⊆ ei.set, then the root ri is removed from G along with its outgoing

edges, and all its children are attached to ej . Thus, in both these cases the policy at each

child node of ei refines the policy at ei. Therefore, the resulting graph G, obtained after

execution of the SSR algorithm, is a robust network graph.

7.3.3 Discussion

We presented the NSR and SSR algorithms to design a network with multiple entry points.

Each of the algorithms presents a design solution. In the following, we review the strengths

and the weaknesses of the output of each of the two algorithms. The NSR algorithm

gives networks that provide deeper layered protection to resources. We can notice that in

Figure 7.11, which gives the topology of the network obtained from the illustrative example

using the NSR algorithm, the resource Finance server1 (10.0.8.1) is protected by four

firewalls on each path from any of the two entry points. It is heavily protected by four

layers of access control protection. While in the topology given by the SSR algorithm and

illustrated by Figure 7.10, the same resource (i.e., Finance server1 ) is protected by only

three firewalls. We notice that the enhanced security offered by the topology given by

the NSR algorithm induces a high implementation cost (more firewalls). Moreover, the
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network generated by the NSR algorithm, has edges going from a firewall in a subnetwork,

to resources in other subnetworks. For instance, in Figure 7.11, firewall Fw17 which is a part

of the subnetwork of Branch B is related to the resource Finance server1, which belongs

to the subnetwork of Branch A. This might lead to increasing the attack surface for an

internal intruder; through Finance server1 it can reach the two networks. On the other

hand, in the topology generated by the SSR algorithm and illustrated by Figure 7.10, the

resource Finance server1 is isolated in a subnetwork under one firewall Fw9, which reduces

any contamination for the rest of the network, should an internal attack be mounted starting

from this resource.

Recall that the run time complexity of the NSR algorithm is linear in the sum of sizes of

the robust networks created for the input set of resources Q1, Q2, . . . , Qn. On the other

hand, the runtime complexity of the SSR algorithm is exponential (caused by constructing

Inter Set set).

The weight function captures the implied security requirements embodied in the policies.

This weight function can be amended to capture for instance the traffic volume induced by

each rule. This would require measuring the traffic and tracing it back to the rules that

allowed it. Then, one can perform a slicing based on the criterion of traffic volume by

capturing in the weight function the information about the effect of the rules of the policies

on the traffic between nodes. Hence, the algorithm that we propose in this chapter can be

extended to be used in many forms of network slicing.

Conventional firewalls rely on enforcing traffic filtering at the entry points, and on that each

machine within the network is to be trusted [Bel99]. However, due to the latter assumption

securing the entire network is hard in practice. Firewalls at the entry point do not protect

the network from internal attacks. The RNS algorithm, and consequently the NSR and SSR

algorithms presented in Section 7.1, are based on the assumption that all nodes are not to

be trusted. Internal traffic has to satisfy the policies to be allowed access to resources. If a

node wants to communicate with another node, due to DD strategy, it has to go through
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internal firewalls to access the destination.

It has been documented (e.g., [KKE+20]) that it is trivial for anyone to establish a new

clandestine unauthorized entry point (or rogue access point) to a network. Let G be a

network with two entry points e1 and e2 that is built using either the NSR algorithm or the

SSR algorithm. Let e3 be a clandestine entry point connected to an internal node. Only

packets arriving from e3 satisfying the policies will reach their corresponding resources.

In other words, clandestine entry points can be created, but their packets can access the

resources only if they abide by the policies. To fully prevent clandestine entry points,

one needs to have a mechanism to trace the paths of a packet from an entry point to the

resources.

7.4 Summary

In this chapter, we have proposed an extension of the segmentation algorithm to networks

with multiple entry points. The NSR algorithm integrates shared resources while the SSR

algorithm separate shared resources.
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Chapter 8

SDN Segmentation

Software Defined Networks (SDN) is a networking paradigm that separates the control

plane from the forwarding plane. This chapter implements the RNS algorithm in SDN en-

vironment. The implementation is done through the introduction of an additional plane in

charge of the configuration and governance of SDN data planes that we call Dynamic Con-

figuration and Governance (DCG) plane. It is intended to give agility to dynamic networks.

Section 8.1 gives an overview of the work presented in this chapter. Section 8.2 presents

the implementation details of the RNS module located in the DCG plane. Section 8.3

presents the implementation of the three proposed architectures. Section 8.4 presents the

testbed and selected topology for the experimentation. Section 8.5 shows and discusses the

assessment and extermination results. Finally, Section 8.7 summarizes the chapter.

8.1 Overview

We have introduced the concept of SDN and related research in Chapter 2. There is little

research on structuring the SDN data plane for security as discussed in Chapter 2. The RNS

algorithm can be used in SDN environment to create the data plane topology and to assign

policies to be enforced by the switches. It could also be used to segment large networks into
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multiple subnetworks with multiple SDN controllers. The RNS algorithm and its interfaces

to the data plane and the control plane form a module for dynamic configuration and

governance of the network. We call this module DCG plane as shown in Figure 8.1.

Application PlaneApplication Plane

Control PlaneControl Plane

Data PlaneData Plane

SwitchSwitch

Controller

Southbound API

Northbound API

HostServer
Switch

ApplicationApplicationApplication

Dynamic Config. & 
Gov. Plane

RNS module

Dynamic Config. & 
Gov. Plane

RNS module

Figure 8.1: SDN architecture and the module running the RNS algorithm

In this chapter, we aim at assessing the efficiency of the use of DCG plane that is supported

by the RNS algorithm in SDN. For this purpose, we build three SDN architectures using

mininet [dOSSP14] that conform to the topology calculated by the RNS algorithm. Since

in SDN environment the firewalls can be placed either at the control plane or at the data plan

(see the discussion in Chapter 2), we conceive the following three possible implementations

for the firewalls calculated by the RNS algorithm:

1. Architecture 1: A single and centralized stateful firewall located at the control

plane. The firewall governs all the data plane switches.

2. Architecture 2: Multiple distributed stateful firewalls located at the control plane.
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Each of the firewalls is assigned to a unique switch at the data plane. Hence, we have

as many firewalls as switches.

3. Architecture 3: Multiple distributed stateful firewalls located at the data plane.

Each switch is transformed into a stateful firewall. This is made possible by the usage

of the data plane abstraction, BEBA software switch [SPB+20], which is an extension

of OpenState [BBCC14].

We assess the usage of the RNS algorithm, as an essential component of the DCG plane,

within the three above architectures. We aim at determining the most appropriate archi-

tecture to use with the RNS algorithm for SDN environment. We look at the performance

of the above architectures. We consider the following performance attributes:

1. Setup cost: It is evaluated by the number of exchanging packets between control and

data planes during the setup phase. We used Wireshark [Com20] to count the number

of exchanged packets.

2. Reachability: To test the effectiveness of the enforced policies, we use ping [Muu83]

utility such that each host tries to reach every other host in the network.

3. Response time or latency: We use ping [Muu83] utility to find out the time needed

for the communication between two selected nodes.

4. Bandwidth: We assess this performance parameter using iPerf [DEF+20] TCP test to

obtain the bandwidth for the link under consideration.

5. Latency variation(jitter): We use iPerf UDP test to get the jitter for the link under

consideration.

6. Resilience to topology change: It is measured by the number of packets exchanged to

fulfill an intended topology change.
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The contribution of the chapter is twofold. First, it illustrates the use of the RNS algorithm

as an essential component of the DCG plane in SDN. It shows how the algorithm is essential

for a dynamic SDN. We give the details on the use of the RNS algorithm in SDN for the

implementation of the three architectures under consideration. Second, we assess these

architectures to capture their drawbacks and strengths. This helps us identify the most

appropriate architecture for using RNS algorithm in SDN. We find out that when the

network is very dynamic, Architecture 2 is the most appropriate. For a relatively stable

network, Architecture 3 is the most appropriate. Although it has the highest cost in the

setup and update phases, in the operation phase it does not exchange any packets between

the control and the data planes.

8.2 RNS Implementation

For this study, the RNS algorithm has been implemented as a module located in the DCG

plane. In the context of SDN, the RNS module generates the data plane topology and

structure. It determines how many switches are needed, where they should be placed, and

the links between resources and switches. Moreover, it generates policies to be enforced at

each switch. In Architecture 1, a single firewall with a single policy is used, as shown in

Figure 8.4 and will be explained later in detail. The RNS application generates this single

policy by combing all the generated policies for the switches, it also adds an attribute to

each rule to identify the switch this rule enforced at.

The RNS module at the DCG plane consists of six classes as shown in Figure 8.2. A main

class, a class for storing and manipulating policies, a class for storing and calculating GCDs

of the families of policies, and a class for storing and generating network graph that uses

a node class. Moreover, it has a utility class that encompasses useful methods used by

the classes of the RNS module. In the assessment work that we carried for this work, we

provide to the RNS module a list of resource names along with their policy files. In the
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policy file, the first line indicates the IP address of the resource. The rest gives the policy

by sequentially stating the rules. The grammar of the rules is given in Figure 8.3.

main

policy gcd graph

node
utilities

RNS module

Resource 1 
Policy

Topology File

Resource 1 
Policy
Resource 
Policies

Resource 1 
Policy

Resource 1 
Policy
Firewall 
Policies

RNS moduleRNS module

1..*1..*

1..*1..*

1..11..1

1..*1..*

Figure 8.2: Structure of the RNS module and its input and output

〈rule〉 −→ [〈source ip〉], [〈source port〉], [〈destination ip〉],
[〈destination port〉], [〈protocol〉], 〈action〉
〈source ip〉 −→ 〈ip number〉 | 〈sub network〉
〈source port〉 −→ 〈port number〉 | 〈port range〉
〈destination ip〉 −→ 〈ip number〉 | 〈sub network〉
〈destination port〉 −→ 〈port number〉 | 〈port range〉
〈protocol〉 −→ TCP | UDP | ICMP | all
〈action〉 −→ allow | deny
〈sub network〉 −→ 〈ip number〉/〈dgits〉
〈ip number〉 −→ 〈8bit digit〉.〈8bit digit〉.〈8bit digit〉.〈8bit digit〉
〈8bit digit〉 −→ 0− 255
〈port range〉 −→ 〈port number〉 : 〈port number〉
〈port number〉 −→ 〈digits〉
〈digits〉 −→ 〈digit〉 | 〈digit〉〈digits〉
〈digit〉 −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 8.3: Firewall rule grammar

The non-terminals 〈source ip〉 and 〈destination ip〉 are optional indicating the source IP

and destination IP, respectively. They can be a specific resource IP address, a network,

or a sub-network. When these non-terminals are not given, it indicates the IP that covers

all IP domain (i.e., 0.0.0.0/0). The non-terminals 〈source port〉 and 〈destination port〉 are

optional indicating the source and destination ports, respectively. They can be a specific

port or a range of ports. When not provided, it indicates the whole range of possible ports
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(i.e., 0 to 65535). The non-terminal 〈protocol〉 is optional and indicates the communication

protocol. The non-terminal can be a specific protocol (i.e., TCP, UDP, or ICMP) or “all” which

indicates all protocols. When no value is given for this field, it indicates the “all” value.

The non-terminal 〈action〉 is the only mandatory one that indicates the action to be taken

by the switch. The possible values in our simulation are allow or deny which instruct the

switch to forward the packet to its destination or drop the packet, respectively.

The RNS module at the DCG plane creates a policy object for each resource. The policy

object reads a policy file and stores the policy. It transforms the sequential rules into

disjoint rules such that executing them in any order produces a consistent policy. It does

the transformation as it reads rules one by one from the policy file. If a new rule has a

domain that intersects with that of an already existing rule, the intersected part is removed

from the new rule as it already exists in another rule. The policy object uses a weight

function to calculate and stores the weight of the policy.

The RNS module proceeds to implements the RNS algorithm as explained in detail in

Chapter 6. In the case of a policy or topology change, the DCG plane gets notified and

re-executes the RNS module dynamically to generate the updated topology and firewall

policies. The updates are then carried to the data plane topology and firewall policies are

updated.

8.3 Implementation of the Architectures

In this section, we present the implementation of the three architectures introduced in Sec-

tion 8.1. They implement stateful firewalls, which keep track of connections state. There-

fore, each firewall needs to follow the progress of a session by recording its state attributes

and values. The firewall changes the state of the connection upon receiving a packet. The

architectures presented in this chapter record sessions’ attribute values using state tables.

In all architectures, each firewall has its state table. Therefore, Architecture 1 has a single

160



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

state table as shown in Figure 8.4, Architecture 2 has a state table for each firewall as shown

in Figures 8.5. Architecture 3 has a state table at each firewall for each protocol as shown

in Figure 8.6.

In all the architectures that we are considering, the topology that is generated by the DCG

plane is used to create the data plane architecture as shown in the Figures 8.4, 8.5, and 8.6.

It is the same topology that we will be using in the assessment section. Also, the firewall

policies in all architectures under consideration are generated by the DCG plane. In the

setup phase, each firewall fetches its policy. In Architecture 1, the single firewall reads

its policy, processes it, and stores it in a policy holder as shown in Figure 8.4. The same

applies for each firewall in Architecture 2 in Figure 8.5. However, in Architecture 3, as each

switch registers with the controller, its policy is read and processed at the control plane

then pushed down to the flow tables of the switch at the data plane as shown in Figure 8.6.

In the operation phase, switches in Architectures 1 and 2 forward the first packets of ev-

ery communication to the control plane for checking policy and connection state. Once

communication is established or communication is denied by the policy, flow table entries

are inserted in the switch to handle future packets. However, Architecture 3 checks policy

and track state connection at the switch without the need for any communication with the

control plane.

Before we go on to explain the detailed implementation of each architecture, it is important

to explain how the ICMP, UDP, and TCP communications are processed in a network. The ICMP

protocol is a protocol that provides error and information messages for IP-based network.

The ping application uses ICMP messages to test connectivity. It sends an echo request to a

host and waits for the echo reply, if no reply is received within a certain period of time, it

times out and the remote host is declared unreachable. The UDP protocol is a connectionless

protocol which means there is no need to establish communication before sending data.

iPerf sends a UDP stream from the sender host. In the end, the receiver host sends an

acknowledgment to the sender host. The TCP protocol is a reliable connection-oriented
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protocol. TCP needs to establish the communication before sending data. The connection is

established using the three-way handshake in which three packets are exchanged between

the communicating hosts. The first packet in the handshake, sent by the first host, is

identified by setting the SYN bit. The second host replies with a second packet in which

the SYN and ACK bits are set to indicate the acknowledgment of receiving the first packet

and continuing the handshake. To which, the first host sends a third packet that has the

ACK bit set to inform the other host of the establishment of the connection.

8.3.1 Implementation of Architecture 1

The first architecture is a single centralized firewall as shown in Figure 8.4. In this archi-

tecture, the firewall application creates a single firewall object responsible for enforcing the

policies of all the switches in the data plane.

Ryu SDN FrameworkRyu SDN Framework
Dynamic Config. & 
Gov. Plane
Dynamic Config. & 
Gov. Plane

Southbound API

MininetMininet

File Server
192.168.3.1
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application

Topology 
File
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1 Policy
Firewall 
Policies

Figure 8.4: Architecture 1 - A single and centralized firewall at the control plane

To implement this architecture, we have created a firewall application attached to the
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controller. It has a policy holder, a state table, a package that has protocol handlers, a

handler for each protocol, and a module that implements the switch functionality or to

communicate OpenFlow commands to the switch. In this architecture, the state is handled

by the firewall, it has a single state table to keep track of all the connections for all the

switches in the network. The same applies to the policy, in this architecture we have a

single policy that gets enforced. Hence, the question is then how to obtain the policy of

this unique firewall from the several policies to be deployed at the internal control points

calculated by the RNS algorithm? The idea is to add to the state-space of the policies an

attribute that indicates on what switch a rule is enforced. Hence, generating this global

policy is straight forward from the policies of the internal access control points calculated

by RNS algorithm.

Once this application is initiated and the firewall object is created at the control plane,

it reads and stores its policy that governs the decisions of all the switches. The policy

generated by the DCG plane for this architecture is one single policy. When the topology

is created on mininet , each switch registers with the controller and the firewall instructs it

to add a single rule with low priority to forward packets to the controller. When a switch

receives a packet, it matches the added rule and forwards the packet to the firewall. The

firewall inspects the packet header and assigns it to the appropriate handler. For example, a

first ICMP packet in communication is checked against the state table. If the state table has

no entry for it, the policy is checked. If the policy denies the packet, the firewall instructs

the switch to drop the packet and adds an entry to its flow table to drop similar packets

for a certain period of time. However, if the packet is allowed by the policy, the firewall

adds an entry to the state table to handle the reply packet. It also instructs the switch

to forward the packet and adds an entry to its flow table to forward similar packets for a

certain period of time. When the reply packet arrives at the switch, the switch forwards

the packet to the firewall. The firewall finds an entry in the state table, then updates the

state table setting the connection state to established and instructs the switch to forward
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the packet and add an entry to its flow table. A UDP connection is handled similarly. The

firewall handles the TCP protocol handshake in a similar way except the first packet has an

SYN flag, the second packet has an SYN-ACK flag, and the third packet has an ACK flag.

The firewall prevents DDoS attack by keeping track of request packets that have no reply, if

it passes a certain threshold, the firewall instructs the switch to add an entry to drop such

packets and avoid overhead.

In the data plane switches, each time the firewall adds an entry to the flow table, it sets

an expiry time for its usage. Once an entry reaches its expiry time, it is removed from the

flow table and the firewall gets a notification by an OpenFlow message. Once it receives

this notification message, the firewall application removes the state table entries.

8.3.2 Implementation of Architecture 2

Architecture 2 consists of multiple firewalls each one is responsible for managing a single

switch as shown in Figure 8.5.

To implement this architecture, we have created a firewall application at the controller.

It creates a firewall object for each switch. Each firewall object has a policy holder, a

state table, a package that has a protocol handler for each protocol, and a module that

implements the switch functionality or communicates OpenFlow commands to a switch. In

this architecture, the state is handled by each firewall separately as it has a state table

to keep track of connections for the assigned switch. Compared to Architecture 1, this

architecture presents a better design as it applies the principle of separation of concerns:

what concerns a switch is delegated to a firewall object.

In the setup phase, once a switch is created at the data plane and sends its features to the

controller, the firewall application creates a firewall object designated for this switch. A

firewall object reads the policy that governs the decisions of its switch and stores it. When

the switch receives a packet that is not matched by any entry table in its flow tables, it

forwards it to its corresponding firewall. The firewall checks its state table and, if needed,
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Figure 8.5: Architecture 2 - Multiple distributed firewalls at the control plane

the policy, then it instructs the switch on how to handle the packet. When a communication

is established, the firewall instructs the switch to add an entry to its entry table to handle

similar future packets.

8.3.3 Implementation of Architecture 3

Architecture 3 is a distributed firewall architecture at the data plane. In this architecture, we

transform data plane switches into stateful firewalls using BEBA software switch as shown

in Figure 8.6. Such that switches handle firewall rules and keep track of the connection

state without forwarding traffic to the controller.

In this architecture, we use a state machine to handle each protocol. This is why each

protocol is handled by a separate flow table as we explain below. A state machine for a

protocol forwards legitimate packets or drops packets according to its state transitions, and
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Figure 8.6: Architecture 3 - Multiple distributed firewalls at the data plane

changes state if needed. If a packet is part of an established connection or a connection to

be established, then it is forwarded by the firewall. Otherwise, it is dropped.

In Architecture 3, each protocol is handled by a separate flow table which has a state table.

Therefore, we have a state table for each of TCP, UDP, and ICMP protocols. Policies might

involve rules that are specific to a protocol. Therefore, the policy at each switch can be

split into (sub-)policies associated with the flow tables of the protocols. Each flow table

enforces the rules that are relevant to its protocol.

To implement Architecture 3, we have created an application attached to the controller.

The application consists of a main class, and five more classes each is assigned to handle
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a flow table. The first class inserts rules in the first flow table, T0, to route packets to the

appropriate flow table. The second class inserts flow entries in the flow table, T1, to handle

ICMP packets. The third class inserts TCP packets rules in the flow table T2. The fourth

class inserts rules in the flow table T3 to handle UDP packets. The last class inserts entries in

the flow table T4, which is intended to keep track of what port is assigned to communicate

on each mac address.

In Architecture 3, the firewall application starts with the controller. When a switch sends a

feature reply message to the controller (i.e., registers at the controller), the firewall object

reads the policy associated with the switch and stores it. It then starts a first table object

which inserts six rules in the first flow table, the first two rules are to drop every LLDP and

IPV6 packets. The third, fourth, and fifth rules forward ICMP, TCP, and UDP to tables T1,

T2, and T3, respectively. The sixth rule forwards packets not matched by the above rules

to T4.

Afterward, the firewall starts the second object, which is to prepare the flow table T1 to

handle ICMP packets. The first OpenFlow command sets T1 into a stateful table. Then it

sets the lookup-scope attributes, which are the attributes that the switch extracts from the

packet and matches with the state table entries. The lookup-scope in the ICMP case is the

tuple (source ip, destination ip). The next attributes to be set at the switch are the

update-scope attributes, which are the attributes used by the switch to update the state

table. In ICMP, the update-scope is the tuple (destination ip, source ip). Finally, it

is the step of inserting entries in the XFSM flow table. The first entry is to handle an

established connection. It checks if the state found in the state table is 1 (i.e., established)

then the switch forwards the packet to T4 to be forwarded to the right port, and update the

state for the other direction to 1 (i.e., established). This rule is given the highest priority.

Then the object checks the policy rules and inserts flow entries for the rules that are related

to ICMP or “all” packets. These rules are used to match first packets in a communication

(i.e., state 0). An allow rule passes the packet to T4 to be forwarded and updates the state
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for the other direction to 1, otherwise, it drops the packet. An allow rule is given a medium

priority and a deny rule is given a low priority. A first packet is processed by the state

table which does not match any entry and is given the default state 0. The XFSM table

processes the packet to either forward it and update the state table, or to drop the packet.

The third and fourth objects have similar functionality to handle TCP and UDP packets. The

fifth object is intended to update the T4 entries, which are for keeping track of the ports

associated with every mac address.

8.4 Assessment of The Architectures

8.4.1 Testbed Environment

To assess the three architectures presented in Section 8.3, we used the following components:

• mininet 2.2.2 [dOSSP14]: It is a tool used to emulate and prototype SDNs, running

on Ubuntu 14.04.4 (64 bit) virtual machine on VirtualBox 6.0.

• BEBA controller: It is based on Ryu OpenFlow Controller 3.29.

• BEBA software switch supporting OpenFlow 1.3.

For generating flows and collecting measurement data we used ping, Wireshark 1.10.6, and

iPerf 2.0.5 utilities. The testbed environment is setup on a MacBook Pro with a CPU 2.7

GHz Intel Core i5 and a memory of 8 GB 1867 MHz DDR3.

8.4.2 Experiment Use Case

Selection of the topology to be used in the testbed

The topology used in the testbed is the topology generated by the RNS module in the DCG

plane for a network composed of the resources of the illustrative example presented in

Chapter 3. The topology can be seen in the Figures 8.4, 8.5, and 8.6.
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The low-level policies of these resources fed to the RNS module in the DCG plane. The DCG

plane generates the topology as shown in Figures 8.4, 8.5, and 8.6.

To test the dynamic nature of the network, we added two admin resources to the set of

resources. The policy of these resources is to allow access for traffic generated from the

admin resources only. These resources are to gain access to every resource in the network

and this is achieved by updating the policies of all network resources. The DCG plane

recalculates the topology and generates updated firewall policies.

Selection of the data flow to be used in the testbed

In the following section, we present some results for tests done on the testbed. First, we

measure the setup cost for the different architectures based on the number of exchanged

packets between the data plane and the control plane. Second, we assess the reachability

by verifying the correctness of the implemented policies. Then, for the traffic originating

from Engineering1 to Web server , we measure the response time, bandwidth, and latency

variation. Finally, to have an idea about the effect of the dynamic aspects of the network

topology, we measure the cost of updating the topology.

8.5 Results and discussion

In this section, we present and discuss the results of the assessment of the three architectures.

The tests are done on the SDN topology generated by the DCG plane for the network

resources mentioned above. We have tested the three architectures for the topology shown

in Figures 8.4, 8.5, and 8.6.

8.5.1 Setup Cost

One of the criteria to compare the architectures is the cost for the setup of the network.

The cost is measured by the number of exchanged packets between the control plane and
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the data plane in the setup phase. For Architectures 1 and 2, 46 packets are exchanged

to complete the setup. Architecture 3 took on average 1508 packets. We performed 10

tests on Architecture 3 and the minimum number of packets exchanged is 1459 and the

maximum number is 1742. This is due to the fact that in Architectures 1 and 2 the only

messages exchanged are the setup messages, while in Architecture 3 besides setup messages,

the messages for setting stateful tables, inserting flow table entries are also exchanged at

this stage.

We can notice that Architecture 3 is significantly high in the setup cost compared to archi-

tectures 1 and 2. This is due to the fact that in Architectures 1 and 2 the only messages

exchanged are the setup messages, while in Architecture 3 besides setup messages, the

messages for setting stateful tables, inserting flow table entries are exchanged at this stage.

8.5.2 Reachability

After the setup of the environment, the first test we perform on all architectures is whether

the policies are enforced as expected, and for that, we did a reachability test between all

the resources in the network. Architectures 1, 2, and 3 all have the same result as shown

in Figure 8.7. The reachability test is done by the command pingall, where every host tries

to ping every other host in the data plane. In the first line in the result, we see a label at

each line (i.e., eng1) which is the name of the resource initiating the ping request. After

the arrow -> a resource name (i.e., eng2) indicates a successful communication with that

resource (i.e., reply), and an x indicates a failed communication (i.e., blocked). For example,

eng1 is able to access eng2, file, web, and email while failing to access fin1, fin2, and

finDB.

8.5.3 Response Time

The response time or latency test measures the time it takes to get a reply for a request.

We carried this test by sending several ICMP packets using ping. We measure the response

170



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

Figure 8.7: Reachability test

time for the traffic originating from Engineering1 to Web server .

In Figure 8.8, we present the results for only 10 ICMP packets as the results are the same

for a number above 10 packets. Figure 8.8 shows that the first packet took about the same

time for Architectures 1 and 2 and less time for Architecture 3. The reason is that switches

in Architectures 1 and 2 do not have entries in their flow tables to handle the packet, and

the packet is forwarded to the controller. On the other hand, switches in Architecture 3

have entries in their flow tables to handle the packet, which reduces the time to handle the

first packet. Moreover, Architecture 1 and Architecture 2 needed to exchange 32 packets

between data plane switches and the controller while Architecture 3 does not exchange

any packets. Architectures 1, 2, and 3 show similar response times for the subsequent

packets. The reason is that for the subsequent packets switches already have entries in all

architectures to handle the packets that follow the first packet.

To see the difference in response time between the three architectures more clearly, we have

created three different topologies with the Engineering1 on one end and Web server on the

other end. The three topologies consist of 1, 10, and 20 switches between these resources.

These switches enforce the same policy. In all tests, Engineering1 sends a single ICMP packet

(i.e., ping request) and we measured the response time. Figure 8.9 shows the average results

for 10 tests. The average times for the case of a single switch for Architectures 1, 2, and 3 are

30.31 ms, 29.5 ms, and 1.18 ms, respectively. The average times for the case of 10 switches

for Architectures 1, 2, and 3 are 1312.2 ms, 1300.3 ms, and 607.5 ms, respectively. Finally,

the average times for the case of 20 switches for Architecture 1, 2, and 3 are 4963.3 ms,

171



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

icmp_seq

tim
e

0 ms

100 ms

200 ms

300 ms

400 ms

2 4 6 8 10

Architecture 1 Architecture 2 Architecture 3

Response time

Figure 8.8: Response time for 10 ICMP packets

5003 ms, and 2116.5 ms, respectively. It is clear from Figure 8.9 that Architectures 1, and

2 has similar response time and Architecture 3 has a significantly less time.
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Figure 8.9: Response time for topologies of 1, 10, and 20 switches

8.5.4 Bandwidth

One of the tests we performed to compare the three architectures is network bandwidth.

Network bandwidth is the maximum rate or volume of data that can be transferred on a
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link per unit of time. The bandwidth test is done by performing a TCP communication using

iPerf between the selected hosts (i.e., eng1 and web). The result is shown in Table 8.1 and

broken down into 0.5 second intervals in Figure 8.10. Note that bandwidth test between

virtual hosts depends on the host machine CPU speed. The bandwidth for the virtual host

in mininet varies because of the host machine running processes and CPU load at a given

time [BJD16]. Therefore, the three architectures will not vary in bandwidth as they use the

same environment with the same switches and links.

Interval Transfer Bandwidth

Architecture 1 0.0-20.4 sec 512 KBytes 206 Kbits/sec

Architecture 2 0.0-19.0 sec 512 KBytes 221 Kbits/sec

Architecture 3 0.0-20.4 sec 512 KBytes 205 Kbits/sec

Table 8.1: Network bandwidth for Architectures 1,2, and 3

For a TCP communication, Architecture 1 and Architecture 2 exchange 154 packets between

the data plane and control plane while Architecture 3 does not exchange any packet.
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173



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

8.5.5 Latency Variation

Latency variation or jitter is the variance in delay time or latency between packets’ arrival.

The jitter test is done by performing a UDP communication using iPerf between the selected

hosts (i.e., eng1 and web). The result is shown in Table 8.2 which is broken down into 0.5

second intervals in Figure 8.11. We notice that the three architectures have very similar

jitter and that it is not affected by the difference in architectures for the same reasons

discussed for the bandwidth.

Architecture 1 and Architecture 2 exchange 45 packets in UDP connection while 0 packets

are exchanged in Architecture 3.

Interval Transfer Bandwidth Jitter

Architecture 1 0.0-8.8 sec 1.09 MBytes 1.05 Mbits/sec 17.349 ms

Architecture 2 0.0-9.1 sec 1.14 MBytes 1.05 Mbits/sec 16.792 ms

Architecture 3 0.0-9.9 sec 1.25 MBytes 1.06 Mbits/sec 15.962 ms

Table 8.2: Network jitter for Architectures 1,2, and 3
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Figure 8.11: Latency variation (jitter)

Looking at the tests done on the operation phase which are the latency, bandwidth, and

jitter, we can notice the following. First, results are similar for bandwidth and jitter tests
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for the three architectures as they are based on the environment consisting of topology,

switches, and links which are the same for our architectures. Second, the result for the

response time is high in Architecture 1 and Architecture 2 and low in Architecture 3. The

reason for this is the time architectures 1 and 2 take to add entries in the flow table of

the switches in response to the first packet. Finally, we also notice that for all these tests,

Architecture 1 and Architecture 2 exchange packets between the data plane and the control

plane while Architecture 3 does not exchange any packet.

8.5.6 Resilience to Topology Change

In network topology, many changes to the topology can occur. These changes can be

intentional and planned for by network administrators such as adding resources, removing

resources, or changing resource policies. Moreover, in a dynamic environment, resources

can be in and out of the network at will. Hence for efficient security, the governance of

the network access needs to shadow the changes. In any of these cases, the RNS module

in the DCG plane is re-executed on the fly to generate an updated topology and firewall

policies. Then, the data plane topology running on mininet needs to be updated at run-

time. For this purpose, the updated topology is compared to the old topology and a

topology update script is created. The script contains mininet commands to delete or add

hosts, switches, or links. We run the script on mininet CLI. The controller gets notified

for such topology changes, and it updates firewall policies that are provided by the DCG

plane.

To assess the effect of a change, we added two administration workstations. These worksta-

tions can access all resources and they allow access between themselves and deny everything

else. we use this case to re-execute the RNS module and generate new firewall policies and

an updated topology. The mininet topology is updated on the fly as explained above.

To compare the response for the update by the three architectures, we evaluate the update

cost of each architecture which is measured by the number of exchanged packets between
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the control and data plane to fulfill the update. In our example, Architectures 1 and 2

exchanged 54 packets between control and data planes. Architecture 3 exchanged 1670

packets on average. The difference is huge between Architectures 1 and 2 on one side and

Architecture 3 on the other side.

We also did the reachability test of all the architectures after the topology update. The

result for the architecture 1, 2, and 3 is shown in Figure 8.12.

Figure 8.12: Reachability test after topology update

The use of mininet does not allow to test the effect of topology changes perfectly with BEBA

software switch as it is not supported fully by mininet . Instead, mininet fully supports Open

vSwitch. One of the future suggestions is to implement the RNS algorithm using the new

version of Open vSwitch.

8.6 SDN Implementation for Multiple Entry Networks

We have implemented the NSR and SSR algorithms presented in Chapter 7 in an SDN envi-

ronment. They have been implemented as modules in the DCG plane shown in Figure 8.1.

Each module takes as input sets of policies of resources that need to be accessed from the

given entry points. If we have n entry points, we should input n sets of policies of the

resources. Each set contains the policies of the resources accessed from its corresponding

entry point. Each of the modules generates a topology of the data plane along with policies

to be enforced at each switch. They also generate a single policy that combines the policies

of the switches to be used by the single firewall.
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We adapt the same three architectures presented in Section 8.3 to implement the NSR and

SSR algorithms. The above conclusions obtained using the RNS algorithm are also preserved

when we use NSR, and SSR algorithms. They are related to network setup procedures and

the way packets are exchanged between the switches and the controller. Hence, they cannot

be affected by the algorithms used in the DCG plane.

We have used the topologies generated by the NSR and SSR algorithms for the resources

of the illustrative example of a network with multiple entry points presented in Section 7.2.

The topologies are tested in all three architectures. In all cases, after the setup of the envi-

ronment, we have performed a reachability test to confirm the enforcement of the corrected

policies as shown in Figure 8.13. The three architectures using NSR and SSR algorithms

show expected reachability results: the policies are enforced correctly.

Figure 8.13: Reachability test of multiple entry points

8.7 Summary

In this chapter, we have presented a practical implementation of the RNS algorithm into an

SDN environment. The implementation is achieved by the introduction of the DCG plane,

which is responsible for structuring network resources and configuring policies. The new

plane provides an adaptive security solution for dynamic changes in the network. We have
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proposed three different architectures for incorporating RNS into SDN environment. We

assessed each architecture and drew conclusions for which architecture is most suitable for

which scenario.
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Chapter 9

Conclusion and Future Work

As discussed in Section 1.2, there is a lack of formalism tackling the strategies of layered

protection and segmentation for designing secure network architectures. This thesis pro-

poses a mathematical framework for network segmentation from an access control policy

perspective. Moreover, the thesis gives a formalism for configuring network resources and

structuring network topologies to achieve layered protection and segmentation. Further-

more, the thesis presents an implementation of this formalism into an SDN environment.

In this chapter, we highlight the contributions of the thesis and point to future work.

9.1 Highlights of the Contributions

The contributions related to the material presented in this thesis include:

(1) A mathematical approach for analyzing network policies that is based on

product family: In this thesis, we have proposed a model for network resource ac-

cess control policies based on guarded commands and PFA. The model uses a family

approach where a resource policy is thought of as a set of policies coming from differ-

ent stakeholder perspectives such as management, laws, and security administration.

Another usage of the family approach in the context of a network is the abstraction of
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the policies of the resources of a network/subnetwork. The policy enforced at the entry

point of the network/subnetwork is the abstraction of the network which is the policy

family of its resource policies.

The network policies are abstracted at the entry point of the network as a family of

policies at the firewall or node governing the access for these resources. For example, a

lab or a building. We have also proposed a weight function that gives weight to policies

based on certain security requirements. The function is used in the RNS algorithm to

place segments within the network.

(2) A formalism for layered protection: In this thesis, we have proposed a formal

understanding of layered protection: the DD strategy. This formalism allows us to

assess whether a given network with its resource policies satisfies the DD strategy.

Moreover, we used a calculation approach to assign policies of network resources such

that it satisfies the DD strategy.

We also defined a stronger version of DD strategy which is SDD. We have also presented

a set of results indicating when SDD is not achievable in a given network.

(3) An approach to build secure networks: In this thesis, we formally defined segmen-

tation and robust network architecture. Then, we have proposed the RNS algorithm

to build the robust network architecture which segments resources such that maximum

access control protection is provided to the resources. We have also extended the RNS

algorithm to networks with multiple entry points.

The advantage of building a robust network using the RNS Algorithm is that public-

facing resources are placed close to the edge of the network and have limited access

to internal resources. While resources requiring more security are placed farther from

the edge of the network and protected by many layers. Furthermore, access from one

segment to the other is controlled by internal access control points. This is a common
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practice adopted in network segmentation that is driven by intuition. We gave the

mathematical rationale for it. Moreover, the advantage of having a formal treatment

of the problem allows for the automation of the solution. By automating the solution,

networks with a huge number of resources can be handled efficiently.

(4) An SDN implementation of RNS: In this thesis, we have shown the validity of the

RNS algorithm in a modern network scenario. We have implemented three different

architectures for RNS in an SDN environment. We have assessed these architectures

and drawn some conclusions and recommendations for implementing RNS in SDN. We

have introduced RNS as a separate plane that provides adaptive security. It provides

robust and secure topology and configuration for data plane resources. Moreover, it

dynamically adapts the topology for any changes in the environment such as policy

change or resource availability.

9.2 Future Work

The work presented in the thesis can be extended in many directions. This can include

theory, applications, and tools.

9.2.1 Theory: Models and Techniques

(1) In Chapter 2, we have presented an approach introduced in [HPF16] which uses a family

approach to model FQAs such as security policies. It uses an aspect-oriented approach

to insert the configuration into the application model. The aspect-oriented is also used

to insert changes in the security policy. The issue of frequent policy changes is relevant

to network access control policies. An aspect-oriented approach would be applicable

to quickly handle changes in the network policy without disturbing enforced policy

or network topology. Our approach is built on PFA. There is an extension of PFA
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which support aspect-oriented which is Aspect-Oriented Product Family Algebra (AO-

PFA) [ZKJ12, ZKJ14, ZK16]. Therefore, the formalism presented in the thesis can be

extended to handle policy changes using an aspect-oriented approach. This work and its

effect on overall network security remain open for further investigation and exploration.

(2) The proposed RNS Algorithm could be scaled to enforce additional requirements or

constraints on the segmentation to achieve the desired protection. For example, an

organization can limit the number of levels required. Furthermore, additional measures

can be added to achieve the desired segmentation. For example, risk assessment mea-

sures [WŞW+16] such as infection spread ratio and cleansing time can be added to the

requirement of the network. Note that these additional factors can be incorporated into

the weight function.

9.2.2 Applications

With respect to the possible applications of the proposed work, the following directions can

be investigated further:

(1) A huge body of work focusing on experimental evaluation in several contexts such

as evaluating the RNS algorithm in dynamic networks and IoT is needed. Further-

more, based on the evaluations in different settings, one could propose improvements to

the RNS algorithm (as it is the base of the other algorithms) to better meet the needs

of some settings.

(2) The formalism presented in this thesis is based on the perspective of network access

control policies. However, the range of the policies domain can be explored further.

This can be applied to other network policies such as routing, NAT, IDS, etc.
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9.2.3 Tools and Automation

As part of the work of this thesis, we have presented an implementation to validate the

theories presented in the thesis. However, this can be extended in many ways.

(1) A tool that given an established network architecture, finds flaws in that architecture,

and proposes changes which would enhance the segmentation and protection of the

network resources without disturbing the whole structure of the network.

(2) A tool for the overall management of policies within networks which extends the im-

plementation presented in this thesis. The extensions include validation, consistency

check, and monitoring.

9.3 Closing Remarks

Security concerns are some of the limiting factors of modern networks’ ongoing growth.

Security solutions for these networks to be effective need to be adaptive to cope with the

dynamic nature of their environment. In this thesis, we have presented a formalism for the

network governance of dynamic networks. The formalism provides an adaptive approach

for segmenting and configuring network resources. This work provides a formal approach

that takes into consideration the security requirements of local resources and the global

overall network. Moreover, the work provides a formal foundation for automated security

solutions that are applicable to many domains of connected resources.
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Appendix A

Detailed Proofs

A.1 Detailed Proof of Proposition 5.1.1

Proof. a) (∀ i | 1 ≤ i ≤ m · p(vm) vF p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m ⇐⇒ 1 ≤ i ≤ m− 1 ∨ i = m 〉

(∀ i | 1 ≤ i ≤ m− 1 ∨ i = m · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom, and Reflexivity of vF 〉

(∀ i | 1 ≤ i ≤ m− 1 · p(vm) vF p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉

(∀ i | 1 ≤ i ≤ m− 1 · p(vm) vF p(vi) )

⇐⇒ 〈 1 ≤ i ≤ m− 1 ⇐⇒ 1 ≤ i ≤ m− 2 ∨ i = m− 1 〉

(∀ i | 1 ≤ i ≤ m− 2 ∨ i = m− 1 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom 〉

(∀ i | 1 ≤ i ≤ m− 2 · p(vm) vF p(vi) ) ∧ p(vm) vF p(vm−1)

⇐⇒ 〈 Since (vm−1, vm) ∈ E =⇒ p(vm−1) vF p(vm) and transitivity of vF 〉

(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉

(∀ i | 1 ≤ i ≤ m− 2 · p(vm) vF p(vi) )
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⇐⇒ 〈 1 ≤ i ≤ m− 2 ⇐⇒ 1 ≤ i ≤ m− 3 ∨ i = m− 2 〉

(∀ i | 1 ≤ i ≤ m− 3 ∨ i = m− 2 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split and One Point Axiom 〉

(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) ) ∧ p(vm) vF p(vm−2)

⇐⇒ 〈 Since (vm−2, vm−1) ∈ E =⇒ p(vm−1) vF p(vm−2) and transitivity of vF 〉

(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) ) ∧ true

⇐⇒ 〈 Identity of ∧ 〉

(∀ i | 1 ≤ i ≤ m− 3 · p(vm) vF p(vi) )

⇐⇒ 〈 Range Split several times and transitivity of vF 〉

true

b) Let Q(m)
def⇔ (∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ), for some m ∈ IN.

Base Case: Q(1)
def⇔ (∀ i | 1 ≤ i ≤ 1 · p(vi) vF p(v1) ), which is obviously true due to

the One Point Axiom and the reflexivity of vF .

Inductive Step: For arbitrary m ≥ 1, we prove Q(m+ 1) using the hypotheses (Q(m)

is true) and (G employs a DD strategy).

(∀ i | 1 ≤ i ≤ m+ 1 · p(vi) vF p(v1) )

⇐⇒ 〈 1 ≤ i ≤ m+ 1 ⇐⇒ 1 ≤ i ≤ m ∨ i = m+ 1 〉

(∀ i | 1 ≤ i ≤ m ∨ i = m+ 1 · p(vi) vF p(v1) )

⇐⇒ 〈 Range Split and One Point Axiom 〉

(∀ i | 1 ≤ i ≤ m · p(vi) vF p(v1) ) ∧ p(vm+1) vF p(v1)

⇐⇒ 〈 From the hypothesis Q(m) is true 〉

true ∧ p(vm+1) vF p(v1)

⇐⇒ 〈 From (a), and Idompotency of ∧ 〉

true
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A.2 Detailed Proof of Lemma 5.2.1

Proof.

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

⇐⇒ 〈 De Morgan Law 〉

p(r) = 0F ∨ (∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 Strengthening 〉

(∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 (v, l) ∈ E 〉

p(l) 6@F p(v)

⇐= 〈 p(v) = gcd(p(v), p(l)) 〉

p(l) 6@F gcd(p(v), p(l))

⇐= 〈 From the hypothesis p(l) = 1F 〉

1F 6@F gcd(p(v), 1F )

⇐= 〈 Because 1F is the annihilator of gcd 〉

1F 6@F 1F

⇐= 〈 From the definition of @F 〉

true
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A.3 Detailed Proof of Lemma 5.2.2

Proof.

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

⇐⇒ 〈 De Morgan Law 〉

p(r) = 0F ∨ (∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 Strengthening 〉

(∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 (r, s) ∈ E 〉

p(s) 6@F p(r)

⇐= 〈 p(s) = gcd(p(s), gcd(p(l1), p(l2))) and p(r) = gcd(p(r), p(s)) 〉

gcd(p(s), gcd(p(l1), p(l2))) @F gcd(p(r), p(s))

⇐= 〈 From the hypothesis gcd(l1, l2) = 1F 〉

gcd(p(s), 1F ) @F gcd(p(r), p(s))

⇐= 〈 Because 1F is the annihilator of gcd 〉

1F 6@F gcd(p(r), 1F )

⇐= 〈 Because 1F is the annihilator of gcd 〉

1F 6@F 1F

⇐= 〈 From the definition of @F 〉

true
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A.4 Detailed Proof of Lemma 5.2.3

Proof.

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

⇐⇒ 〈 De Morgan Law 〉

p(r) = 0F ∨ (∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 Strengthening 〉

(∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 (u, v) ∈ E 〉

p(v) 6@F p(u)

⇐= 〈 p(u) = (gcd vi | (u, vi) ∈ E · p(vi) ) 〉

p(v) 6@F (gcd vi | (u, vi) ∈ E · p(vi) )

⇐= 〈 From the hypothesis p(v) = (gcd vi | (v, vi) ∈ E · p(vi) ) 〉

p(v) 6@F p(v)

⇐= 〈 From the definition of @F 〉

true

A.5 Detailed Proof of Lemma 5.2.4

Proof.

¬(p(r) 6= 0F ∧ (∀ a, b | (a, b) ∈ E · p(b) @F p(a) ))

⇐⇒ 〈 De Morgan Law 〉
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p(r) = 0F ∨ (∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 Strengthening 〉

(∃ a, b | (a, b) ∈ E · p(b) 6@F p(a) )

⇐= 〈 (u, v) ∈ E as a counter example 〉

p(v) 6@F p(u)

⇐= 〈 p(u) = (⊕ vi | (u, vi) ∈ E · p(vi) ) 〉

p(v) 6@F (⊕ vi | (v, vi) ∈ E · p(vi) )

⇐= 〈 From the property p vF q ⊕ r ⇔ p vF q ∨ p vF r 〉

p(v) 6@F p(v1) ∧ · · · ∧ p(v) 6@F p(v) ∧ · · · ∧ p(v) 6@F p(vn)

⇐= 〈 From the definition of @F 〉

true ∧ · · · ∧ true ∧ · · · ∧ true

⇐= 〈 From the Idompotency of ∧ 〉

true

A.6 Detailed Proof of Lemma 6.2.1

Proof of Lemma 6.2.1 (a).

S is a segment

⇐⇒ 〈 Definition 3 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(gcd(p(r), p(r′))) ≤ wP(gcd( r | r ∈ S · p(r) )) )
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⇐⇒ 〈 S is a set consisting of resources having co-prime policies, gcd of co-prime

policies = 1F 〉
(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(gcd(p(r), p(r′))) ≤ wP(1F ) )

⇐= 〈 From hypothesis p(r′) = 1F 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(gcd(p(r), 1F )) ≤ wP(1F ) )

⇐⇒ 〈 Because (∀ a | · gcd(a, 1F ) = 1F ) 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(1F ) ≤ wP(1F ) )

⇐= 〈 reflexivity of ≤ 〉

true

Proof of Lemma 6.2.1 (b).

S is a segment

⇐⇒ 〈 Definition 3 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) ·

wP(gcd(p(r), p(r′))) ≤ wP(gcd( r | r ∈ S · p(r) )) )

⇐= 〈 From hypothesis: (∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · gcd(p(r), p(r′)) = 1F ) 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(1F ) ≤ wP(gcd( r | r ∈ S · p(r) )) )

⇐= 〈 r ∈ S and p(r) = 1F , which makes gcd( r | r ∈ S · p(r) ) = 1F 〉

(∀ r, r′ | r ∈ S ∧ r′ ∈ (R− S) · wP(1F ) ≤ wP(1F ) )

⇐= 〈 reflexivity of ≤ 〉

true
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Appendix B

Prototype Tool

This appendix presents a prototype that is implemented to automate and validate the results

and theories presented in Chapters 4 and 5. Precisely, given a network topology with the

leaf nodes assigned policies, the prototype aims at calculating the policies of the internal

nodes according to Proposition 5.1.3 and maintain the DD implementation. Section B.1

discusses the high-level design of the prototype. Section B.2 presents the detailed design of

the prototype. Section B.3 presents a simple use case of using the tool.

B.1 High-Level Design

The main functionality of the prototype can be explained as follows: given a network

topology with leaf nodes assigned policies by the administrator, the tool aims at determining

the policies of the internal nodes (i.e., firewalls) that provide resources (i.e., leaf nodes) with

extra protection and without disturbing their reachability and availability. Moreover, in case

of any change in topology or policy update, the tool readjusts the policies of the internal

nodes accordingly. The tool runs on a central unit and agents running on every node in the

network. The prototype tool includes two major elements: An analysis element (Analyzer)

and a broker element (Broker) as shown in Figure B.1. These two components reside in the
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central unit.

Broker

Analyzer

Agent1

Agent2

Agent3

Figure B.1: High level view of the tool

The broker is responsible for managing the different components of the prototype tool.

It communicates with agents running on nodes. Through this communication channel, it

checks the status of the node, its policy, and the communication. Once an agent is up

on a node it registers itself along with its policy to the broker. The agent of a leaf node

monitors the policy changes. If the agent observers any change in the policy, it notifies

the broker. The broker then updates the registered policy and recalculates the policies of

the affected internal nodes and transmits the newly calculated policies through the agents

running on those nodes. When an agent of an internal node registers to the broker, the

broker calculates its policy from the policies of the nodes attached to it. If a node goes down

or the connection gets lost, the broker recalculates and reassigns policies of affected nodes.

Moreover, the broker manages the calculation and generation of policies by calling the

analyzer. The broker is implemented using Java Remote Method Invocation (RMI) [Co.].

Java RMI is a Java API that performs remote method invocation equivalent to Remote

Procedure Call (RPC) for distributed Java applications. It enables a Java program running
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on one virtual machine to invoke a method of another Java program on a different virtual

machine.

The other component of the prototype, the analyzer, is responsible for checking policy

consistency and calculating gcds of policies. Policies are fed into the analyzer in the form

of tabular expressions presented in Chapter 3.

These tables can be encoded using a markup language. The one used in our prototype

is called TabML [KWS03]. Moreover, for the verifications and calculations the analyzer

uses Prototype Verification System (PVS) [SRI02]. Essentially, the analyzer is a modified

version of the SCENATOR tool [KWS03] which is developed for the verification of require-

ment scenarios and is built using C language. The formalism SCENATOR uses to verify

requirement scenarios similar to the one used in this thesis to analyze policies. The main

addition to the prototype to SCENATOR is the development of modules to verify policies

consistency and a module to calculate GCDs.

TabML [KWS03] is a markup language used to represent tabular expressions. Figure B.2

shows the TabML representation of rules 3− 5 in the policy shown in Figure 3.3.

A TabML file is divided into two main parts. The first part has the general information

of the table such as table name, focus, log, variables, etc. The second part shows the

actual table including headers and grids. For more details on TabML, the reader is referred

to [Wu01, KWS03].

PVS [OSRSC01] is a theorem prover used by the analyzer. The analyzer generates conjunc-

tures and uses PVS to prove them. It has been shown in [RS93] that PVS is an appropriate

theorem prover to perform formalisms similar to the ones used by the analyzer. It has been

chosen for several reasons including that theorems can be formalized easily in PVS and

saved to text files. Moreover, PVS can run in a patch mode which makes it invisible for the

user. All it wants to run in a patch mode is the conjunctures and proof strategies.
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1 <MathTable , (1 ,3)>

2 <name> POLICY TABLE </name>

3 <focus>p o l i c y tab le</focus>

4 <source>V e r i f i c a t i o n and I n t e g r a t i o n Using Tabular Express ions</source>

5 <log>Wed Feb 13 10 : 07 : 0 0 2019</ log>

6 <vers ion> 1 </vers ion>

7 <input>

8 <tabvar>

9 IPSEG , TYPE = {x : int | x >= 0 & x < 255}<varmeaning> IP segment type</varmeaning>

10 </tabvar>

11 <tabvar>

12 IPSN , TYPE = {y : int | y = 8 OR y = 16 OR y = 24 OR y = 32}<varmeaning> IP subnet type</varmeaning>

13 </tabvar>

14 <tabvar>IPT , TYPE= [ IPSEG , IPSEG , IPSEG , IPSEG , IPSN ] <varmeaning> IP Type</varmeaning></tabvar>

15 <tabvar>s , VAR IPT <varmeaning> source IP var i ab l e </varmeaning> </tabvar>

16 <tabvar>dport , VAR int <varmeaning> dport va r i ab l e </varmeaning> </tabvar>

17 <tabvar>TE, TYPE={tcp , icmp , udp , any} <varmeaning> pro to co l type </varmeaning> </tabvar>

18 <tabvar> p , VAR TE <varmeaning> pro to co l v a r i a b l e </varmeaning> </tabvar>

19 </input>

20 <output>

21 <tabvar>J , TYPE={ACCEPT, REJECT} <varmeaning> ac t i on type </varmeaning> </tabvar>

22 <tabvar>j , VAR J <varmeaning> ac t i on v a r i a b l e </varmeaning> </tabvar>

23 </output>

24 <author> Mohammed Alabbad </author>

25 <s l i c e ,8>

26 <r e s i t r c i t i o n > / true </ r e s t r i c t i o n >

27 <header ,(1 ,3)>

28 <headername> H1 </headername>

29 <l i n e>

30 <c e l l>s = (192 ,168 ,1 , 0 , 24 ) </ c e l l>

31 <c e l l>s = (192 ,168 ,2 , 0 , 24 ) </ c e l l>

32 <c e l l>s = (192 ,168 ,3 , 0 , 24 ) </ c e l l>

33 </ l i n e>

34 </header>

35 <header , (1 ,1)>

36 <headername> H2 </headername>

37 <l i n e>

38 <c e l l> p = any</c e l l>

39 </ l i n e>

40 </header>

41 <gr id ,(1 ,3)>

42 <l i n e>

43 <c e l l>j = REJECT</c e l l>

44 <c e l l>j = ACCEPT</c e l l>

45 <c e l l>j = REJECT</c e l l>

46 </ l i n e>

47 </gr id>

48 </ s l i c e >

49 </mathTable>

Figure B.2: Part of the Engineering workstation policy in TabML
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B.2 Detailed Design

This section shows the detailed design of the main components of the prototype tool. The

broker and analyzer modules and functionalities are discussed below.

B.2.1 Broker

The design of the broker is based on the observer pattern. In the observer pattern, an

object (i.e., broker) maintains a list of observers (e.g., agents running on nodes) and notifies

them of any changes (e.g., assigned policies) by calling one of their methods.

The interface of the broker has two taps. Figure B.3 shows the first tap where the user

enters the topology of the network or imports it from an existing file. The broker uses this

topology to know the graph of the network and the placement of nodes. Figure B.4 shows

the main tap of the broker where the user gets the broker activated and monitors the status

of the system. It also allows the user to read the policies of the nodes he wishes to check.

Figure B.3: Broker interface-topology tap
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Figure B.4: Broker Interface-main tap

The class diagram of the broker is shown in Figure B.5. The broker is written in Java and

contains multiple classes as follows:

• The broker class (RmiBroker.java)

Service: It manages the whole system.

Secret: It is the main class that initializes the system. It creates topology, status,

and policy holder objects to store the topology of the network, the status of the nodes,

and the policies of the nodes, respectively. Agents register themselves to the broker by

calling the register method and update their policies if needed by calling the update

method. The broker sends a class (session) to each agent to maintain the connection.

The broker internally changes the status of the agent and store its policy. It calculates

the GCD, if needed, by sending two policies to the analyzer where the GCD of them
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Figure B.5: Class diagram for the broker element

returned to the broker. The broker then updates the policies of the affected nodes.

• The agent class (RmiAgent.java)

Service: It runs on each node and communicates to the broker.

Secret: It is a class to be located in every node. Once it runs, it registers to the

broker by sending its IP and policy. Afterward, it keeps checking the policy of the

node periodically, if there is a change in the policy it notifies the broker and sends the

new policy.

• The session class (RmiUnique.java)

Service: It is a class that keeps tracks of the status of connection for every agent.

Secret: It is sent by the broker to the agent to keep track of the connection. Once

the connection is lost the session class notifies the broker of the lost connection.

• Interface classes (RmiBrokerIntf.java, RmiUniqueIntf.java)

Service: Classes that makes methods visible to be invoked by the agent.
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Secret: They are interface classes that hold the method definitions that can be

invoked by the agent class.

• Translator classes (TranslatorControl.java, Translator.java

Service: These are classes that translate from the language of iptables to TabMl and

vice versa.

Secret: It contains the methods to translate from iptables to TabMl and vice versa.

• Status holder class (StatusHolder.java)

Service: The broker uses this class to store the status of the different nodes in the

network.

Secret: It is a class that the broker class creates an object from to store the status

of agents.

• Topology class (Topology.java)

Service: It is a class to store the topology of the network.

Secret: The broker uses an object of this class to store the topology of the networks.

Which is entered by the user through the interface.

• Policy holder class (PolicyHolder.java)

Service: This class is to store the policies of the nodes in the network.

Secret: This class stores the policies of the registered nodes and the calculated ones

for easier reach by the broker.

• Interface class (BrokerFrame.java)

Service: The interface class for the broker.

Secret: It is a class that contains the components that control the interface of the

broker.

Figures B.6, B.7, B.8 present the sequence diagrams for the agent register, agent update,

and loss of connection respectively.
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PolicyHolderAgent

getIP()

getPolicy()

Broker

registe(ip,policy)

Status

Session

calculate(ip)

Session

addPolicy(ip,policy)

activate(ip)

New(ip)

Figure B.6: Sequence diagram for agent registering

B.2.2 Analyzer

The Analyzer is responsible for all the calculations needed to generate policies to be assigned

to nodes

according to the scheme given in Propositions 5.1.3 based on the assigned policies to leaf

resources. Since the analyzer is a modified version of the SCENATOR tool, this section

focuses on the added modules to the tool. For the details of the modules that are part of

SENATOR, we refer the reader to [Wu01, KWS03].

The parts that have been added or updated to fit the requirement for calculating the gcd

of two policies are the following:

• Table GCD module (TableGCD.c)
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PolicyHolderAgent

getPolicy()

Broker

update(ip,policy)

Status Session

calculate(ip)

addPolicy(ip,policy)

loop

alt

else

if policy changed

keepSession

Figure B.7: Sequence diagram for agent update

Service: It calculates the gcd of two policy tables and generates a new table.

Secret: Takes two policies written in TabML as arguments. Then it checks if each

one of them is consistent. If any of the policies are inconsistent, it notifies the user and

generates a new policy with the inconsistent elements marked. Otherwise, it resumes

to calculate their gcd and generates the output file.

• Table Consistency check module (cons.c)

Service: It checks the consistency of a policy table.

Secret: Takes a policy table in TabML language and generates PVS conjunctures

to check the consistency of the table. If it is inconsistent, it notifies the user and

generates a new table with inconsistent cells marked.
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PolicyHolderAgent Broker Status Session

calculate(ip)

removePolicy(ip,policy)

logout(ip)

deactivate(ip)

Figure B.8: Sequence diagram for agent logout

In Section 3.2.1, we have presented the procedure ComputeDemonicJoin which is used

to calculate the demonic join of tabular expression representations of relations. After the

modification of the SCENATOR tool, the integrated analyzer executes the procedure Com-

puteDemonicJoin. Where the GCD of two tabular expressions is essentially the demonic

join of them.

In this procedure, to calculate the GCD of tow policies P1 and P2 represented in TabML,

the headers of P1 and P2 are first transformed to have identical headers which would be the

headers of the of the GCD. Then, the grid values of the GCD are determined as follows:

the analyzer loops through the grids in the transformed P ′1 and P ′2. If a grid cell value is

not false in both tables, then the cell value in the GCD is the union of the corresponding

cells in P ′1 and P ′2, otherwise it is set to false. That is; if the identical grid in the two tables
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TableGCD (table1, table2)

Split Header 
Manager

Identical header tables

GCD Table

Build GCD 
Table

Table 1       Table 2

Table 1'       Table 2'

Figure B.9: Data flow diagram for the analyzer element

has the same value then the matching grid in the GCD table will have the same value, if

the grids have different values then the grid cell in the GCD table will be the ∨ of those

values, if any of the grid cells have false then the value will be false because in this case,

it is outside the domain of one table therefore not part of the demonic join.

Comparing the headers, splitting them, and creating new tables with modified headers are

all part of the SCENATOR tool. SCENATOR is written in C and it reads the policies

written in TabML format. From the TabML files, headers are extracted, PVS conjunctures
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are generated to compare table headers where PVS run in the patch mode. The results

are then read and based on them the decision to split headers. The headers are split again

based on running PVS conjunctures. After the tables are transformed and have identical

headers, the values for the cells are compared as discussed above.

There are also improvements in the PVS theories to check consistency and calculate GCD

of tables.

• cons.pvs It contains a function intersect that is used by conjunctures created by

consistency check to check the consistency of policies. It is also used to check if

headers intersect before splitting tables in the step of table transformation before

calculating gcd of table policies.

• equalr.pvs It is a theory that contains a function equalrule that used in the conjunc-

tures created by the analyzer to compare the headers of the two tables. if two headers

are equal, they are left otherwise we proceed to check the intersection. If they are not

intersected, then the header in table T1 that is not equal or intersect with any other

header in table T2 is added to T2.

• attr.pvs it contains functions used to determine which attribute to split at for inter-

secting rules.

• attrtype.pvs contains functions used to determine the type of attribute intersection

to aid in splitting rules in the deferent tables.

B.3 A Case Study

As a case study, the prototype is executed to calculate the GCD of the Lines 3 − 5 of the

policies of the engineering workstations and the finance workstations presented in Chapter 3.

Figures B.2 and B.10 present the engineering workstation policy and finance workstation

policy after translation to TabML, respectively. Figure B.11 represent the GCD in TabML.
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1 <MathTable , (1 ,3)>

2 <name> POLICY TABLE </name>

3 <focus>p o l i c y tab le</focus>

4 <source>V e r i f i c a t i o n and I n t e g r a t i o n Using Tabular Express ions</source>

5 <log>Wed Feb 13 10 : 07 : 0 0 2019</ log>

6 <vers ion> 1 </vers ion>

7 <input>

8 <tabvar>

9 IPSEG , TYPE = {x : int | x >= 0 & x < 255}<varmeaning> IP segment type</varmeaning>

10 </tabvar>

11 <tabvar>

12 IPSN , TYPE = {y : int | y = 8 OR y = 16 OR y = 24 OR y = 32}<varmeaning> IP subnet type</varmeaning>

13 </tabvar>

14 <tabvar>IPT , TYPE= [ IPSEG , IPSEG , IPSEG , IPSEG , IPSN ] <varmeaning> IP Type</varmeaning></tabvar>

15 <tabvar>s , VAR IPT <varmeaning> source IP var i ab l e </varmeaning> </tabvar>

16 <tabvar>dport , VAR int <varmeaning> dport va r i ab l e </varmeaning> </tabvar>

17 <tabvar>TE, TYPE={tcp , icmp , udp , any} <varmeaning> pro to co l type </varmeaning> </tabvar>

18 <tabvar> p , VAR TE <varmeaning> pro to co l v a r i a b l e </varmeaning> </tabvar>

19 </input>

20 <output>

21 <tabvar>J , TYPE={ACCEPT, REJECT} <varmeaning> ac t i on type </varmeaning> </tabvar>

22 <tabvar>j , VAR J <varmeaning> ac t i on v a r i a b l e </varmeaning> </tabvar>

23 </output>

24 <author> Mohammed Alabbad </author>

25 <s l i c e ,8>

26 <r e s i t r c i t i o n > / true </ r e s t r i c t i o n >

27 <header ,(1 ,3)>

28 <headername> H1 </headername>

29 <l i n e>

30 <c e l l>s = (192 ,168 ,1 , 0 , 24 ) </ c e l l>

31 <c e l l>s = (192 ,168 ,2 , 0 , 24 ) </ c e l l>

32 <c e l l>s = (192 ,168 ,3 , 0 , 24 ) </ c e l l>

33 </ l i n e>

34 </header>

35 <header , (1 ,1)>

36 <headername> H2 </headername>

37 <l i n e>

38 <c e l l> p = any</c e l l>

39 </ l i n e>

40 </header>

41 <gr id ,(1 ,3)>

42 <l i n e>

43 <c e l l>j = REJECT</c e l l>

44 <c e l l>j = REJECT</c e l l>

45 <c e l l>j = ACCEPT</c e l l>

46 </ l i n e>

47 </gr id>

48 </ s l i c e >

49 </mathTable>

Figure B.10: Part of the Finance workstation policy in TabML
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1 <MathTable , (1 ,3)>

2 <name> POLICY TABLE </name>

3 <focus>p o l i c y tab le</focus>

4 <source>V e r i f i c a t i o n and I n t e g r a t i o n Using Tabular Express ions</source>

5 <log>Wed Feb 13 10 : 07 : 0 0 2019</ log>

6 <vers ion> 1 </vers ion>

7 <input>

8 <tabvar>

9 IPSEG , TYPE = {x : int | x >= 0 & x < 255}<varmeaning> IP segment type</varmeaning>

10 </tabvar>

11 <tabvar>

12 IPSN , TYPE = {y : int | y = 8 OR y = 16 OR y = 24 OR y = 32}<varmeaning> IP subnet type</varmeaning>

13 </tabvar>

14 <tabvar>IPT , TYPE= [ IPSEG , IPSEG , IPSEG , IPSEG , IPSN ] <varmeaning> IP Type</varmeaning></tabvar>

15 <tabvar>s , VAR IPT <varmeaning> source IP var i ab l e </varmeaning> </tabvar>

16 <tabvar>dport , VAR int <varmeaning> dport va r i ab l e </varmeaning> </tabvar>

17 <tabvar>TE, TYPE={tcp , icmp , udp , any} <varmeaning> pro to co l type </varmeaning> </tabvar>

18 <tabvar> p , VAR TE <varmeaning> pro to co l v a r i a b l e </varmeaning> </tabvar>

19 </input>

20 <output>

21 <tabvar>J , TYPE={ACCEPT, REJECT} <varmeaning> ac t i on type </varmeaning> </tabvar>

22 <tabvar>j , VAR J <varmeaning> ac t i on v a r i a b l e </varmeaning> </tabvar>

23 </output>

24 <author> Mohammed Alabbad </author>

25 <s l i c e ,8>

26 <r e s i t r c i t i o n > / true </ r e s t r i c t i o n >

27 <header ,(1 ,3)>

28 <headername> H1 </headername>

29 <l i n e>

30 <c e l l>s = (192 ,168 ,1 , 0 , 24 ) </ c e l l>

31 <c e l l>s = (192 ,168 ,2 , 0 , 24 ) </ c e l l>

32 <c e l l>s = (192 ,168 ,3 , 0 , 24 ) </ c e l l>

33 </ l i n e>

34 </header>

35 <header , (1 ,1)>

36 <headername> H2 </headername>

37 <l i n e>

38 <c e l l> p = any</c e l l>

39 </ l i n e>

40 </header>

41 <gr id ,(1 ,3)>

42 <l i n e>

43 <c e l l>j = REJECT</c e l l>

44 <c e l l>j = ACCEPT OR REJECT</c e l l>

45 <c e l l>j = ACCEPT OR REJECT</c e l l>

46 </ l i n e>

47 </gr id>

48 </ s l i c e >

49 </mathTable>

Figure B.11: GCD policy in TabML
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Appendix C

Example Policies in Tabular

Expressions

s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = DROP

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = DROP a′ = DROP

Table C.1: Web and Email servers policy represented as a tabular expression

s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

Table C.2: File server policy represented as a tabular expression
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s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

Table C.3: Finance workstations and database policy represented as a tabular expression

s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ = REJECT a′ = REJECT a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = REJECT a′ = REJECT a′ = ACCEPT a′ = ACCEPT a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

Table C.4: Engineering workstations policy represented as a tabular expression
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Appendix D

GCD Policies in Tabular

Expressions

s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ =

ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = DROP

a′ = DROP

dport /∈ {80, 25} a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ = DROP a′ = DROP

Table D.5: GCD1 represented as a tabular expression

s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ =

ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

Table D.6: GCD2 represented as a tabular expression
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s = 192.168.1.0/24 s = 192.168.2.0/24 s = 192.168.3.0/24 s = 192.168.4.0/24 s /∈ {192.168.1.0/24,
192.168.2.0/24,
192.168.3.0/24,
192.168.4.0/24}

p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP p = TCP p 6= TCP

st ∈ {RELATED,
ESTABLISHED}

dport ∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

dport /∈ {80, 25} a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT a′ = ACCEPT

st = INVALID
dport ∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP a′ = DROP

st = NEW
dport ∈ {80, 25} a′ =

ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

dport /∈ {80, 25} a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ =
ACCEPT ∨
a′ = REJECT

a′ = REJECT a′ = REJECT a′ = REJECT a′ = REJECT a′ = DROP a′ = DROP

Table D.7: GCD3 represented as a tabular expression
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Appendix E

Example Policies and GCDs in

TabML
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1 <MathTable , (6 ,10)>

2 <name> POLICY TABLE </name>

3 <focus>p o l i c y tab le</focus>

4 <source>V e r i f i c a t i o n and I n t e g r a t i o n Using Tabular Express ions f inance</source>

5 <log>Sun Mar 3 12 : 12 : 2 1 2019

6 </log>

7 <vers ion> 1 </vers ion>

8 <input>

9 <tabvar>

10 IPSEG , TYPE = {x : int | x >= 0 & x < 255}<varmeaning> IP segment type</varmeaning>

11 </tabvar>

12 <tabvar>

13 IPSN , TYPE = {y : int | y = 8 OR y = 16 OR y = 24 OR y = 32}<varmeaning> IP subnet type</varmeaning>

14 </tabvar>

15 <tabvar>IPT , TYPE= [ IPSEG , IPSEG , IPSEG , IPSEG , IPSN ] <varmeaning> IP Type</varmeaning></tabvar>

16 <tabvar>s , VAR IPT <varmeaning> source IP var i ab l e </varmeaning> </tabvar>

17 <tabvar>dport , VAR int <varmeaning> dport va r i ab l e </varmeaning> </tabvar>

18 <tabvar>TE, TYPE={tcp , icmp , udp , any} <varmeaning> pro to co l type </varmeaning> </tabvar>

19 <tabvar> p , VAR TE <varmeaning> pro to co l v a r i a b l e </varmeaning> </tabvar>

20 <tabvar>SK, TYPE = {NEW, RELATED, ESTABLISHED, INVALID}<varmeaning> s t a t e type </varmeaning> </tabvar>

21 <tabvar>sk , VAR SK <varmeaning> s t a t e v a r i a b l e </varmeaning> </tabvar>

22 </input>

23 <output>

24 <tabvar>J , TYPE={ACCEPT, REJECT, DROP} <varmeaning> ac t i on type </varmeaning> </tabvar>

25 <tabvar>j , VAR J <varmeaning> ac t i on v a r i a b l e </varmeaning> </tabvar>

26 </output>

27 <author> Mohammed Alabbad </author>

28 <s l i c e ,8>

29 <r e s i t r c i t i o n > / true </ r e s t r i c t i o n >

30 <header ,(1 ,10)><headername> H1 </headername>

31 <l i n e> <c e l l>s = (192 ,168 ,1 , 0 , 24 ) and p = tcp </ c e l l>

32 <c e l l>s = (192 ,168 ,1 , 0 , 24 ) and p /= tcp </ c e l l>

33 <c e l l>s = (192 ,168 ,2 , 0 , 24 ) and p = tcp</c e l l>

34 <c e l l>s = (192 ,168 ,2 , 0 , 24 ) and p /= tcp</c e l l>

35 <c e l l>s = (192 ,168 ,3 , 0 , 24 ) and p = tcp</c e l l>

36 <c e l l>s = (192 ,168 ,3 , 0 , 24 ) and p /= tcp</c e l l>

37 <c e l l>s = (192 ,168 ,4 , 0 , 24 ) and p = tcp</c e l l>

38 <c e l l>s = (192 ,168 ,4 , 0 , 24 ) and p /= tcp</c e l l>

39 <c e l l>s /= (192 ,168 ,1 , 0 , 24 ) and s /=(192 ,168 ,2 ,0 ,24) and s /= (192 ,168 ,3 , 0 , 24 )

40 and ( s /=192 ,168 ,4 ,0 ,24) and p = tcp </ c e l l>

41 <c e l l>s /= (192 ,168 ,1 , 0 , 24 ) and s /=(192 ,168 ,2 ,0 ,24) and s /= (192 ,168 ,3 , 0 , 24 )

42 and ( s /=192 ,168 ,4 ,0 ,24) and p /= tcp </ c e l l ></l i n e></header>

43 <header , (1,6)><headername> H2 </headername>

44 <l i n e> <c e l l> ( sk = RELATED or sk = ESTABLISHED) and ( dport = 80 or dport = 25)</ c e l l>

45 <c e l l> ( sk = RELATED or sk = ESTABLISHED) and ( dport /= 80 and dport /= 25)</ c e l l>

46 <c e l l> ( sk = INVALID) and ( dport = 80 or dport = 25)</ c e l l>

47 <c e l l> ( sk = INVALID) and ( dport /= 80 and dport /= 25)</ c e l l>

48 <c e l l> ( sk = NEW) and ( dport = 80 or dport = 25)</ c e l l>

49 <c e l l> ( sk = NEW) and ( dport /= 80 and dport /= 25)</ c e l l ></l i n e></header>

50 %Grid c e l l s

51 </mathTable>

Figure E.12: Table information and headers common to all policies in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT </ c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT </ c e l l>

8 <c e l l>j = ACCEPT </ c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT </ c e l l>

11 <c e l l>j = ACCEPT </ c e l l>

12 <c e l l>j = ACCEPT </ c e l l>

13 <c e l l>j = ACCEPT </ c e l l>

14 <c e l l>j = ACCEPT </ c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT </ c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT </ c e l l>

18 <c e l l>j = ACCEPT </ c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT </ c e l l>

21 <c e l l>j = ACCEPT </ c e l l>

22 <c e l l>j = ACCEPT </ c e l l>

23 <c e l l>j = ACCEPT </ c e l l>

24 <c e l l>j = ACCEPT </ c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP </ c e l l>

27 <c e l l>j = DROP </ c e l l>

28 <c e l l>j = DROP </ c e l l>

29 <c e l l>j = DROP </ c e l l>

30 <c e l l>j = DROP </ c e l l>

31 <c e l l>j = DROP </ c e l l>

32 <c e l l>j = DROP </ c e l l>

33 <c e l l>j = DROP </ c e l l>

34 <c e l l>j = DROP </ c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP </ c e l l>

37 <c e l l>j = DROP </ c e l l>

38 <c e l l>j = DROP </ c e l l>

39 <c e l l>j = DROP </ c e l l>

40 <c e l l>j = DROP </ c e l l>

41 <c e l l>j = DROP </ c e l l>

42 <c e l l>j = DROP </ c e l l>

43 <c e l l>j = DROP </ c e l l>

44 <c e l l>j = DROP </ c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT </ c e l l>

46 <c e l l>j = ACCEPT </ c e l l>

47 <c e l l>j = ACCEPT </ c e l l>

48 <c e l l>j = ACCEPT </ c e l l>

49 <c e l l>j = ACCEPT </ c e l l>

50 <c e l l>j = ACCEPT </ c e l l>

51 <c e l l>j = ACCEPT </ c e l l>

52 <c e l l>j = ACCEPT </ c e l l>

53 <c e l l>j = ACCEPT </ c e l l>

54 <c e l l>j = DROP </ c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT </ c e l l>

56 <c e l l>j = ACCEPT </ c e l l>

57 <c e l l>j = ACCEPT </ c e l l>

58 <c e l l>j = ACCEPT </ c e l l>

59 <c e l l>j = ACCEPT </ c e l l>

60 <c e l l>j = ACCEPT </ c e l l>

61 <c e l l>j = ACCEPT </ c e l l>

62 <c e l l>j = ACCEPT </ c e l l>

63 <c e l l>j = DROP </ c e l l>

64 <c e l l>j = DROP </ c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.13: Web and Email servers policy in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT </ c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT </ c e l l>

8 <c e l l>j = ACCEPT </ c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT </ c e l l>

11 <c e l l>j = ACCEPT </ c e l l>

12 <c e l l>j = ACCEPT </ c e l l>

13 <c e l l>j = ACCEPT </ c e l l>

14 <c e l l>j = ACCEPT </ c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT </ c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT </ c e l l>

18 <c e l l>j = ACCEPT </ c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT </ c e l l>

21 <c e l l>j = ACCEPT </ c e l l>

22 <c e l l>j = ACCEPT </ c e l l>

23 <c e l l>j = ACCEPT </ c e l l>

24 <c e l l>j = ACCEPT </ c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP </ c e l l>

27 <c e l l>j = DROP </ c e l l>

28 <c e l l>j = DROP </ c e l l>

29 <c e l l>j = DROP </ c e l l>

30 <c e l l>j = DROP </ c e l l>

31 <c e l l>j = DROP </ c e l l>

32 <c e l l>j = DROP </ c e l l>

33 <c e l l>j = DROP </ c e l l>

34 <c e l l>j = DROP </ c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP </ c e l l>

37 <c e l l>j = DROP </ c e l l>

38 <c e l l>j = DROP </ c e l l>

39 <c e l l>j = DROP </ c e l l>

40 <c e l l>j = DROP </ c e l l>

41 <c e l l>j = DROP </ c e l l>

42 <c e l l>j = DROP </ c e l l>

43 <c e l l>j = DROP </ c e l l>

44 <c e l l>j = DROP </ c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT </ c e l l>

46 <c e l l>j = ACCEPT </ c e l l>

47 <c e l l>j = ACCEPT </ c e l l>

48 <c e l l>j = ACCEPT </ c e l l>

49 <c e l l>j = ACCEPT </ c e l l>

50 <c e l l>j = ACCEPT </ c e l l>

51 <c e l l>j = REJECT </ c e l l>

52 <c e l l>j = REJECT </ c e l l>

53 <c e l l>j = DROP </ c e l l>

54 <c e l l>j = DROP </ c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT </ c e l l>

56 <c e l l>j = ACCEPT </ c e l l>

57 <c e l l>j = ACCEPT </ c e l l>

58 <c e l l>j = ACCEPT </ c e l l>

59 <c e l l>j = ACCEPT </ c e l l>

60 <c e l l>j = ACCEPT </ c e l l>

61 <c e l l>j = REJECT </ c e l l>

62 <c e l l>j = REJECT </ c e l l>

63 <c e l l>j = DROP </ c e l l>

64 <c e l l>j = DROP </ c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.14: File server policy in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT </ c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT </ c e l l>

8 <c e l l>j = ACCEPT </ c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT </ c e l l>

11 <c e l l>j = ACCEPT </ c e l l>

12 <c e l l>j = ACCEPT </ c e l l>

13 <c e l l>j = ACCEPT </ c e l l>

14 <c e l l>j = ACCEPT </ c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT </ c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT </ c e l l>

18 <c e l l>j = ACCEPT </ c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT </ c e l l>

21 <c e l l>j = ACCEPT </ c e l l>

22 <c e l l>j = ACCEPT </ c e l l>

23 <c e l l>j = ACCEPT </ c e l l>

24 <c e l l>j = ACCEPT </ c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP </ c e l l>

27 <c e l l>j = DROP </ c e l l>

28 <c e l l>j = DROP </ c e l l>

29 <c e l l>j = DROP </ c e l l>

30 <c e l l>j = DROP </ c e l l>

31 <c e l l>j = DROP </ c e l l>

32 <c e l l>j = DROP </ c e l l>

33 <c e l l>j = DROP </ c e l l>

34 <c e l l>j = DROP </ c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP </ c e l l>

37 <c e l l>j = DROP </ c e l l>

38 <c e l l>j = DROP </ c e l l>

39 <c e l l>j = DROP </ c e l l>

40 <c e l l>j = DROP </ c e l l>

41 <c e l l>j = DROP </ c e l l>

42 <c e l l>j = DROP </ c e l l>

43 <c e l l>j = DROP </ c e l l>

44 <c e l l>j = DROP </ c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT </ c e l l>

46 <c e l l>j = ACCEPT </ c e l l>

47 <c e l l>j = REJECT </ c e l l>

48 <c e l l>j = REJECT </ c e l l>

49 <c e l l>j = REJECT </ c e l l>

50 <c e l l>j = REJECT </ c e l l>

51 <c e l l>j = REJECT </ c e l l>

52 <c e l l>j = REJECT </ c e l l>

53 <c e l l>j = DROP </ c e l l>

54 <c e l l>j = DROP </ c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT </ c e l l>

56 <c e l l>j = ACCEPT </ c e l l>

57 <c e l l>j = REJECT </ c e l l>

58 <c e l l>j = REJECT </ c e l l>

59 <c e l l>j = REJECT </ c e l l>

60 <c e l l>j = REJECT </ c e l l>

61 <c e l l>j = REJECT </ c e l l>

62 <c e l l>j = REJECT </ c e l l>

63 <c e l l>j = DROP </ c e l l>

64 <c e l l>j = DROP </ c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.15: Finance workstation policy in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT </ c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT </ c e l l>

8 <c e l l>j = ACCEPT </ c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT </ c e l l>

11 <c e l l>j = ACCEPT </ c e l l>

12 <c e l l>j = ACCEPT </ c e l l>

13 <c e l l>j = ACCEPT </ c e l l>

14 <c e l l>j = ACCEPT </ c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT </ c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT </ c e l l>

18 <c e l l>j = ACCEPT </ c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT </ c e l l>

21 <c e l l>j = ACCEPT </ c e l l>

22 <c e l l>j = ACCEPT </ c e l l>

23 <c e l l>j = ACCEPT </ c e l l>

24 <c e l l>j = ACCEPT </ c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP </ c e l l>

27 <c e l l>j = DROP </ c e l l>

28 <c e l l>j = DROP </ c e l l>

29 <c e l l>j = DROP </ c e l l>

30 <c e l l>j = DROP </ c e l l>

31 <c e l l>j = DROP </ c e l l>

32 <c e l l>j = DROP </ c e l l>

33 <c e l l>j = DROP </ c e l l>

34 <c e l l>j = DROP </ c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP </ c e l l>

37 <c e l l>j = DROP </ c e l l>

38 <c e l l>j = DROP </ c e l l>

39 <c e l l>j = DROP </ c e l l>

40 <c e l l>j = DROP </ c e l l>

41 <c e l l>j = DROP </ c e l l>

42 <c e l l>j = DROP </ c e l l>

43 <c e l l>j = DROP </ c e l l>

44 <c e l l>j = DROP </ c e l l ></l i n e>

45 <l i n e> <c e l l>j = REJECT </ c e l l>

46 <c e l l>j = REJECT </ c e l l>

47 <c e l l>j = ACCEPT </ c e l l>

48 <c e l l>j = ACCEPT </ c e l l>

49 <c e l l>j = REJECT </ c e l l>

50 <c e l l>j = REJECT </ c e l l>

51 <c e l l>j = REJECT </ c e l l>

52 <c e l l>j = REJECT </ c e l l>

53 <c e l l>j = DROP </ c e l l>

54 <c e l l>j = DROP </ c e l l ></l i n e>

55 <l i n e> <c e l l>j = REJECT </ c e l l>

56 <c e l l>j = REJECT </ c e l l>

57 <c e l l>j = ACCEPT </ c e l l>

58 <c e l l>j = ACCEPT </ c e l l>

59 <c e l l>j = REJECT </ c e l l>

60 <c e l l>j = REJECT </ c e l l>

61 <c e l l>j = REJECT </ c e l l>

62 <c e l l>j = REJECT </ c e l l>

63 <c e l l>j = DROP </ c e l l>

64 <c e l l>j = DROP </ c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.16: Engineering workstation policy in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT</c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT</c e l l>

8 <c e l l>j = ACCEPT</c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT</c e l l>

11 <c e l l>j = ACCEPT</c e l l>

12 <c e l l>j = ACCEPT</c e l l>

13 <c e l l>j = ACCEPT</c e l l>

14 <c e l l>j = ACCEPT</c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT</c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT</c e l l>

18 <c e l l>j = ACCEPT</c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT</c e l l>

21 <c e l l>j = ACCEPT</c e l l>

22 <c e l l>j = ACCEPT</c e l l>

23 <c e l l>j = ACCEPT</c e l l>

24 <c e l l>j = ACCEPT</c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP</c e l l>

27 <c e l l>j = DROP</c e l l>

28 <c e l l>j = DROP</c e l l>

29 <c e l l>j = DROP</c e l l>

30 <c e l l>j = DROP</c e l l>

31 <c e l l>j = DROP</c e l l>

32 <c e l l>j = DROP</c e l l>

33 <c e l l>j = DROP</c e l l>

34 <c e l l>j = DROP</c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP</c e l l>

37 <c e l l>j = DROP</c e l l>

38 <c e l l>j = DROP</c e l l>

39 <c e l l>j = DROP</c e l l>

40 <c e l l>j = DROP</c e l l>

41 <c e l l>j = DROP</c e l l>

42 <c e l l>j = DROP</c e l l>

43 <c e l l>j = DROP</c e l l>

44 <c e l l>j = DROP</c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

46 <c e l l>j = ACCEPT or j = REJECT</c e l l>

47 <c e l l>j = ACCEPT or j = REJECT</c e l l>

48 <c e l l>j = ACCEPT or j = REJECT</c e l l>

49 <c e l l>j = ACCEPT or j = REJECT</c e l l>

50 <c e l l>j = ACCEPT or j = REJECT</c e l l>

51 <c e l l>j = ACCEPT or j = REJECT</c e l l>

52 <c e l l>j = ACCEPT or j = REJECT</c e l l>

53 <c e l l>j = DROP or j = ACCEPT</c e l l>

54 <c e l l>j = DROP</c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

56 <c e l l>j = ACCEPT or j = REJECT</c e l l>

57 <c e l l>j = ACCEPT or j = REJECT</c e l l>

58 <c e l l>j = ACCEPT or j = REJECT</c e l l>

59 <c e l l>j = ACCEPT or j = REJECT</c e l l>

60 <c e l l>j = ACCEPT or j = REJECT</c e l l>

61 <c e l l>j = ACCEPT or j = REJECT</c e l l>

62 <c e l l>j = ACCEPT or j = REJECT</c e l l>

63 <c e l l>j = DROP</c e l l>

64 <c e l l>j = DROP</c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.17: GCD1 in TabML

216



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT</c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT</c e l l>

8 <c e l l>j = ACCEPT</c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT</c e l l>

11 <c e l l>j = ACCEPT</c e l l>

12 <c e l l>j = ACCEPT</c e l l>

13 <c e l l>j = ACCEPT</c e l l>

14 <c e l l>j = ACCEPT</c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT</c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT</c e l l>

18 <c e l l>j = ACCEPT</c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT</c e l l>

21 <c e l l>j = ACCEPT</c e l l>

22 <c e l l>j = ACCEPT</c e l l>

23 <c e l l>j = ACCEPT</c e l l>

24 <c e l l>j = ACCEPT</c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP</c e l l>

27 <c e l l>j = DROP</c e l l>

28 <c e l l>j = DROP</c e l l>

29 <c e l l>j = DROP</c e l l>

30 <c e l l>j = DROP</c e l l>

31 <c e l l>j = DROP</c e l l>

32 <c e l l>j = DROP</c e l l>

33 <c e l l>j = DROP</c e l l>

34 <c e l l>j = DROP</c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP</c e l l>

37 <c e l l>j = DROP</c e l l>

38 <c e l l>j = DROP</c e l l>

39 <c e l l>j = DROP</c e l l>

40 <c e l l>j = DROP</c e l l>

41 <c e l l>j = DROP</c e l l>

42 <c e l l>j = DROP</c e l l>

43 <c e l l>j = DROP</c e l l>

44 <c e l l>j = DROP</c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

46 <c e l l>j = ACCEPT or j = REJECT</c e l l>

47 <c e l l>j = ACCEPT or j = REJECT</c e l l>

48 <c e l l>j = ACCEPT or j = REJECT</c e l l>

49 <c e l l>j = ACCEPT or j = REJECT</c e l l>

50 <c e l l>j = ACCEPT or j = REJECT</c e l l>

51 <c e l l>j = REJECT</c e l l>

52 <c e l l>j = REJECT</c e l l>

53 <c e l l>j = DROP</c e l l>

54 <c e l l>j = DROP</c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

56 <c e l l>j = ACCEPT or j = REJECT</c e l l>

57 <c e l l>j = ACCEPT or j = REJECT</c e l l>

58 <c e l l>j = ACCEPT or j = REJECT</c e l l>

59 <c e l l>j = ACCEPT or j = REJECT</c e l l>

60 <c e l l>j = ACCEPT or j = REJECT</c e l l>

61 <c e l l>j = REJECT</c e l l>

62 <c e l l>j = REJECT</c e l l>

63 <c e l l>j = DROP</c e l l>

64 <c e l l>j = DROP</c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.18: GCD2 in TabML
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1 <MathTable , (6 ,10)>

2 %Table In format ion

3 %headers

4 <gr id ,(6 ,10)>

5 <l i n e> <c e l l>j = ACCEPT</c e l l>

6 <c e l l>j = ACCEPT</c e l l>

7 <c e l l>j = ACCEPT</c e l l>

8 <c e l l>j = ACCEPT</c e l l>

9 <c e l l>j = ACCEPT</c e l l>

10 <c e l l>j = ACCEPT</c e l l>

11 <c e l l>j = ACCEPT</c e l l>

12 <c e l l>j = ACCEPT</c e l l>

13 <c e l l>j = ACCEPT</c e l l>

14 <c e l l>j = ACCEPT</c e l l ></l i n e>

15 <l i n e> <c e l l>j = ACCEPT</c e l l>

16 <c e l l>j = ACCEPT</c e l l>

17 <c e l l>j = ACCEPT</c e l l>

18 <c e l l>j = ACCEPT</c e l l>

19 <c e l l>j = ACCEPT</c e l l>

20 <c e l l>j = ACCEPT</c e l l>

21 <c e l l>j = ACCEPT</c e l l>

22 <c e l l>j = ACCEPT</c e l l>

23 <c e l l>j = ACCEPT</c e l l>

24 <c e l l>j = ACCEPT</c e l l ></l i n e>

25 <l i n e> <c e l l>j = DROP</c e l l>

26 <c e l l>j = DROP</c e l l>

27 <c e l l>j = DROP</c e l l>

28 <c e l l>j = DROP</c e l l>

29 <c e l l>j = DROP</c e l l>

30 <c e l l>j = DROP</c e l l>

31 <c e l l>j = DROP</c e l l>

32 <c e l l>j = DROP</c e l l>

33 <c e l l>j = DROP</c e l l>

34 <c e l l>j = DROP</c e l l ></l i n e>

35 <l i n e> <c e l l>j = DROP</c e l l>

36 <c e l l>j = DROP</c e l l>

37 <c e l l>j = DROP</c e l l>

38 <c e l l>j = DROP</c e l l>

39 <c e l l>j = DROP</c e l l>

40 <c e l l>j = DROP</c e l l>

41 <c e l l>j = DROP</c e l l>

42 <c e l l>j = DROP</c e l l>

43 <c e l l>j = DROP</c e l l>

44 <c e l l>j = DROP</c e l l ></l i n e>

45 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

46 <c e l l>j = ACCEPT or j = REJECT</c e l l>

47 <c e l l>j = ACCEPT or j = REJECT</c e l l>

48 <c e l l>j = ACCEPT or j = REJECT</c e l l>

49 <c e l l>j = REJECT</c e l l>

50 <c e l l>j = REJECT</c e l l>

51 <c e l l>j = REJECT</c e l l>

52 <c e l l>j = REJECT</c e l l>

53 <c e l l>j = DROP</c e l l>

54 <c e l l>j = DROP</c e l l ></l i n e>

55 <l i n e> <c e l l>j = ACCEPT or j = REJECT</c e l l>

56 <c e l l>j = ACCEPT or j = REJECT</c e l l>

57 <c e l l>j = ACCEPT or j = REJECT</c e l l>

58 <c e l l>j = ACCEPT or j = REJECT</c e l l>

59 <c e l l>j = REJECT</c e l l>

60 <c e l l>j = REJECT</c e l l>

61 <c e l l>j = REJECT</c e l l>

62 <c e l l>j = REJECT</c e l l>

63 <c e l l>j = DROP</c e l l>

64 <c e l l>j = DROP</c e l l ></l i n e></gr id></s l i c e ></mathTable>

Figure E.19: GCD3 in TabML
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Appendix F

Relative Atomicity

1 −A INPUT −m s t a t e −−s t a t e RELATED,ESTABLISHED −j ACCEPT

2 −A INPUT −m s t a t e −−s t a t e INVALID −j DROP

3 −A INPUT −s 192 . 168 . 1 . 0/24 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :65535 −p a l l −j REJECT

4 −A INPUT −s 192 . 168 . 2 . 0/24 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :65535 −p a l l −j ACCEPT

5 −A INPUT −s 192 . 168 . 3 . 0/24 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :65535 −p a l l −j REJECT

6 −A INPUT −s 192 . 168 . 4 . 0/24 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :65535 −p a l l −j REJECT

7 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p udp −j DROP

8 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p icmp −j DROP

9 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p tcp −j DROP

10 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p tcp −j DROP

11 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p udp −j DROP

12 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p udp −j DROP

13 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p icmp −j DROP

14 −A INPUT −s 0 . 0 . 0 . 0 / 1 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p icmp −j DROP

15 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p udp −j DROP

16 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p icmp −j DROP

17 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p tcp −j DROP

18 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p tcp −j DROP

19 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p udp −j DROP

20 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p udp −j DROP

21 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p icmp −j DROP

22 −A INPUT −s 1 2 8 . 0 . 0 . 0 / 2 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 81 :65535 −p icmp −j DROP

23 −A INPUT −s 1 9 2 . 0 . 0 . 0 / 9 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p udp −j DROP

24 −A INPUT −s 1 9 2 . 0 . 0 . 0 / 9 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 0 :79 −p icmp −j DROP

25 −A INPUT −s 1 9 2 . 0 . 0 . 0 / 9 −−spor t 0 :65535 −d 0 . 0 . 0 . 0 / 0 −−dport 80 :80 −p tcp −j DROP

26 . . . .

Figure F.20: Snippet of Engineering workstations relative atomic policy
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Cherkaoui. Distributed firewall anomaly detection through LTL model

checking. In IFIP/IEEE International Symposium on Integrated Network

Management (IM 2013), pages 194–201, May 2013.

[HOKY07] Manabu Hirano, Takeshi Okuda, Eiji Kawai, and Suguru Yamaguchi. De-

sign and implementation of a portable id management framework for a

secure virtual machine monitor. In Journal of Information Assurance and

Security (JIAS). Dynamic Publishers, 2007.

[HPF16] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. An automatic pro-

cess for weaving functional quality attributes using a software product line

approach. Journal of Systems and Software, 112:78 – 95, 2016.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection

in operating systems. Commun. ACM, 19(8):461–471, August 1976.

233



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

[HSE+08] Manabu Hirano, Takahiro Shinagawa, Hideki Eiraku, Shoichi Hasegawa,

Kazumasa Omote, Koichi Tanimoto, Takashi Horie, Kazuhiko Kato,

Takeshi Okuda, Eiji Kawai, and Suguru Yamaguchi. Introducing role-based

access control to a secure virtual machine monitor: Security policy enforce-

ment mechanism for distributed computers. In IEEE Asia-Pacific Services

Computing Conference APSCC, pages 1225–1230, 2008 2008.

[HSM12] Brandon Heller, Rob Sherwood, and Nick McKeown. The controller place-

ment problem. In Proceedings of the First Workshop on Hot Topics in

Software Defined Networks, HotSDN ’12, pages 7–12, New York, NY, USA,

2012. Association for Computing Machinery.

[HSP00] Adiseshu Hari, Subhash Suri, and Guru Parulkar. Detecting and resolving

packet filter conflicts. In Proceedings IEEE INFOCOM 2000. Conference

on Computer Communications. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies (Cat. No.00CH37064), vol-

ume 3, pages 1203–1212 vol.3, March 2000.

[Hun80] Thomas W Hungerford. Algebra, volume 73 of graduate texts in mathe-

matics, 1980.

[HW98] Udo Hebisch and Hanns Joachim Weinert. Semirings: algebraic theory and

applications in computer science, volume 5. World Scientific, 1998.

[HXCL12] JeeHyun Hwang, Tao Xie, Fei Chen, and Alex X. Liu. Systematic structural

testing of firewall policies. IEEE Transactions on Network and Service

Management, 9(1):1–11, March 2012.

[ILP06] Kyle Ingols, Richard Lippmann, and Keith Piwowarski. Practical attack

graph generation for network defense. In Proc. Comput. Security Appl.

Conf., pages 121—30, 2006.

234



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

[JGT+11] Karthick Jayaraman, Vijay Ganesh, Mahesh Tripunitara, Martin Rinard,

and Steve Chapin. Automatic error finding in access-control policies. In

Proceedings of the 18th ACM Conference on Computer and Communica-

tions Security, CCS ’11, pages 163–174, New York, NY, USA, 2011. ACM.

[JK01] Ryszard Janicki and Ridha Khedri. On a formal semantics of tabular expres-

sions. Science of Computer Programming, 39(1-2):189–213, March 2001.

[JP10] Ying Jin and David Lorge Parnas. Defining the meaning of tabular mathe-

matical expressions. Science of Computer Programming, 75(11):980 – 1000,

2010. Special Section on the Programming Languages Track at the 23rd

ACM Symposium on Applied Computing.

[JPZ97] Ryszard Janicki, David Lorge Parnas, and Jeffery Zucker. Tabular Rep-

resentations in Relational Documents, pages 184–196. Springer Vienna,

Vienna, 1997.

[JRR14] Tariq Javid, Tehseen Riaz, and Asad Rasheed. A layer2 firewall for software

defined network. In 2014 Conference on Information Assurance and Cyber

Security (CIACS), pages 39–42. IEEE, 2014.

[JS09] Alan Jeffrey and Taghrid Samak. Model checking firewall policy configu-

rations. In Policies for Distributed Systems and Networks, 2009. POLICY

2009. IEEE International Symposium on, pages 60–67, July 2009.

[JSBZ15] Sebastian Jeuk, Gonzalo Salgueiro, Fred Baker, and Shi Zhou. Network

segmentation in the cloud a novel architecture based on ucc and iid. In

2015 IEEE 4th International Conference on Cloud Networking (CloudNet),

pages 58–63, Oct 2015.

235



Ph.D. Thesis – Mohammed Alabbad McMaster University – Software Engineering

[JSSS01] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrah-

manian. Flexible support for multiple access control policies. ACM Trans.

Database Syst., 26(2):214–260, June 2001.

[KBB+03] Anas Abou El Kalam, Rania El Baida, Philippe Balbiani, Salem Benfer-

hat, Frédéric Cuppens, Yves Deswarte, Alexandre Miège, Claire Saurel,
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