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Abstract 

Risk assessment is essential for nuclear power plants (NPPs) due to the complex 

dynamic nature of such systems-of-systems, as well as the devastating impacts of 

nuclear accidents on the environment, public health, and economy. Lessons learned 

from the Fukushima nuclear accident demonstrated the importance of enhancing 

current risk assessment methodologies and developing efficient early warning 

decision support tools. Static probabilistic risk assessment (PRA) techniques (e.g., 

event and fault tree analysis) have been extensively adopted in nuclear applications 

to ensure NPPs comply with safety regulations. However, numerous studies have 

highlighted the limitations of static PRA methods such as the lack of considering 

the dynamic hardware/software/operator interactions inside the NPP and the 

timing/sequence of events. In response, several dynamic probabilistic risk 

assessment (DPRA) methodologies have been developed and continuously evolved 

over the past four decades to overcome the limitations of static PRA methods. 

DPRA presents a comprehensive approach to assess the risks associated with 

complex, dynamic systems. However, current DPRA approaches are faced with 

challenges associated with the intra/interdependence within/between different NPP 

complex systems and the massive amount of data that needs to be analyzed and 

rapidly acted upon.  

In response to these limitations of previous work, the main objective of this 

dissertation is to develop a physics-based DPRA platform and an intelligent data-

driven prediction tool for NPP safety enhancement under normal and abnormal 

operating conditions. The results of this dissertation demonstrate that the developed 

DPRA platform is capable of simulating the dynamic interaction between different 

NPP systems and estimating the temporal probability of core damage under 

different transients with significant analysis advantages from both the 
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computational time and data storage perspectives. The developed platform can also 

explicitly account for uncertainties associated with the NPP's physical parameters 

and operating conditions on the plant's response and probability of its core damage. 

Furthermore, an intelligent decision support tool, developed based on artificial 

neural networks (ANN), can significantly improve the safety of NPPs by providing 

the plant operators with fast and accurate predictions that are specific to such NPP. 

Such rapid prediction will minimize the need to resort to idealized physics-based 

simulators to predict the underlying complex physical interactions. Moving 

forward, the developed ANN model can be trained under plant operational data, 

plants operating experience database, and data from rare event simulations to 

consider for example plant ageing with time, operational transients, and rare events 

in predicting the plant behavior. Such intelligent tool can be key for NPP operators 

and managers to take rapid and reliable actions under abnormal conditions.  
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Chapter 1 : INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

Nations across the globe have been harnessing nuclear energy to fulfill their 

demands for electrical power. According to the World Nuclear Association, the 

Harmony programme has been established with the aim of adding 1,000 gigawatts 

by 2050 in order to meet the ever increasing global demand for electricity (World 

Nuclear Association 2018). Currently, 448 nuclear power reactor units are 

operational worldwide and provide more than 10% of the global electricity (World 

Nuclear Association 2019). In addition, around 150 and 57 reactor units are 

currently under planning and construction, respectively (Canadian Nuclear 

Association 2019). A nuclear power plant (NPP) is a complex system-of-systems 

that includes the reactor core, secondary cooling, primary heat transport, condenser 

cooling, shutdown cooling, and emergency core cooling systems, each with its 

own distinctive functions. All such NPP systems interact dynamically during 

normal operation to ensure safe and continuous electricity supply. The effective 

operation and control of a NPP require a full understanding of the component- and 

system-level behaviors, as well as the dynamic interaction/interdependence 

between the plant subsystems under normal and abnormal operating conditions. 

However, accidents attributed to unexpected operation or external hazards can have 

catastrophic consequences. For example, the Fukushima Daiichi NPP accident 

resulted in a core meltdown of three nuclear reactor units and a massive release of 
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radioactive material into the environment (Chino et al. 2011). It is thus more 

essential now than ever before to ensure the safety of NPPs, as they become more 

complex, dynamic, and interdependent. 

Major catastrophic NPP accidents that took place over the past few decades 

(e.g., Three Mile Island, Chernobyl, and Fukushima Daiichi) have highlighted the 

need for risk assessment methodologies. Probabilistic risk assessment (PRA) 

techniques have significantly evolved over the past four decades. Traditionally, 

PRA has been performed using static event and fault tree (ET/FT) analysis. 

Although such methods have been applied successfully in different disciplines (e.g., 

oil and gas industry, chemical industry), several studies (Aldemir 2013; Amendola 

and Reina 1981; Hofer et al. 2002a; Hsueh and Mosleh 1996; Mercurio et al. 2009; 

Siu 1994; Zio 2014) have demonstrated several associated limitations, especially 

when ET/FT analyses are applied to complex dynamic systems such as NPP. Key 

limitations include the inability to account for the dynamic interaction between 

different components, software, and operators (Hu 2005). In NPPs, the uncertain 

nature of the physical parameters, operating conditions, and accident propagation 

necessitates conducting the risk assessment within a dynamic stochastic framework 

in order to efficiently capture the interactions amongst the plant subsystems. As 

such, dynamic PRA (DPRA) approaches are desired to consider the dynamic 

interaction between the different subsystems in NPPs, as well as the dynamic 

accident propagation.  
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In the environment of a NPP, operators, decision-makers, and consultants 

need to consider many aspects to assess the risk associated with the plant operation. 

A rapid decision support system (DSS) can support NPP operators with an early 

warning to mitigate the risks posed by operational transients and accidents. Lessons 

learned from the Fukushima nuclear accident demonstrated the necessity of having 

adequate monitoring systems for pre-accident operation and management processes 

(IAEA 2015). Strategic NPP decision-making is challenging because of the highly 

interdependent complex dynamical subsystems within the NPP. Artificial 

intelligence (AI) techniques have been utilized to develop intelligent DSS in many 

fields, in which a large amount of data is analyzed in order to provide faster and 

more accurate and effective decisions— creating a possibility to radically empower 

decision-making within NPP environments (Filip 2008; Phillips-Wren 2013).  

1.2. RISK ASSESSMENT OF NUCLEAR POWER PLANTS 

PRA techniques are used to assess the risk of NPPs under normal and abnormal 

operating conditions and when the system is subjected to natural or anthropogenic 

hazards (CNSC 2014; IAEA 2001). Static ET/FT analysis methods were originally 

presented within one of the earliest comprehensive PRA platforms, WASH-1400 

(U.S. NRC 1975). In NPPs, PRA is a thought process used to estimate three basic 

NPP risk levels (Hakobyan 2006). Level 1 PRA estimates the risk of severe reactor 

core damage, in which the plant response is evaluated under different types of 

postulated initiating events and subsequent accident sequences. These accident 

scenarios, including both successes and failures (i.e., core damage), can be 

http://scholar.google.ca/scholar?q=postulated+initiating+events&hl=en&as_sdt=0&as_vis=1&oi=scholart
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represented through ET analysis. On the other hand, FT analysis is used to 

determine the probability of the system failure based on the logical combination of 

component and software failures together with human errors. In Level 2 PRA, plant 

responses to Level 1 PRA are evaluated based on accident sequences that result in 

core damage and subsequent release of radioactive materials from the containment 

to the environment. Level 3 PRA estimates the impact of radioactive material 

releases on the public health and economy. In addition, the use of ET/FT analyses 

provides a qualitative insight on beyond-design-basis risk scenarios, which can 

subsequently be used to enhance the NPP design and operation conditions. 

Numerous concerns have been raised regarding the capability of static ET/FT 

analysis methods to adequately account for the time and sequence of events during 

the nonlinear dynamic components/software/operators interactions (Nejad-

Hosseinian 2007). For example, ET/FT analysis methods cannot account for time 

delays in the activation of safety systems, which may affect the accident 

propagation. In addition, these methods neglect the feedback mechanisms between 

NPP physical processes and the system logic (e.g., the behaviors of components 

and operators) (Hsueh and Mosleh 1996) which result in a highly nonlinear 

behavior. Furthermore, in static ET/FT, the order of events is prespecified by the 

analyst (Mandelli et al. 2013b; Zio 2014). This may limit the ability to capture new 

events that might be overlooked by the analyst (Swaminathan and Smidts 1999a). 

Thus, the PRA analysis quality, based on ET/FT methods, is entirely analyst 

dependant (Jankovsky et al. 2018a). Overall, ET/FT analysis methods fail to 
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reliably evaluate the risk when the dynamic interaction between components, 

physical plant processes, and operators is of the highest importance. Previous 

studies (Hu 2005; Mercurio et al. 2009; Nivolianitou et al. 1986; Siu 1994; Zio 

2014) have highlighted the importance of considering event times during 

components/software/operators interactions because the nonlinear dynamic nature 

of the system parameters may affect the accident propagation. Siu (1994) indicated 

that PRA limitations can influence the probability of event occurrence, resulting in 

an unreliable risk assessment. Therefore, limitations of static ET/FT methods, 

combined with recent NPP accidents, have highlighted the need for developing 

more reliable risk assessment methods to better assure the safety of NPPs. 

Amendola and Reina (1981) presented the first step towards the development 

of a DPRA, which is referred to as “Event sequences and consequence spectrum.” 

This approach integrates the states of the system with its physical response in order 

to investigate the temporal accident sequence and the corresponding probability of 

occurrence. DPRA of NPPs was subsequently envisioned as the integration of NPP 

simulation codes (Cojazzi 1996; Smidts 1994) and stochastic processes (Acosta and 

Siu 1993; Cojazzi 1996; Hofer et al. 2002a; Hsueh and Mosleh 1996; Mandelli et 

al. 2013b, 2018; Rabiti et al. 2012), in which the stochastic processes include the 

random failure of subsystems/components (Mandelli et al. 2018) and human 

intervention with NPP system dynamics (Hu 2005). Accordingly, several DPRA 

methods have been developed over the past few decades to evaluate the risks within 

NPPs. These methods represented the event temporal sequence with branching 
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occurring when a critical variable of the NPP system (e.g., the thermal-dynamic 

process of the primary loop variables, component states, or operator response) 

changes (Hsueh and Mosleh 1996). However, recent studies (e.g., Jankovsky et al. 

2018; Mandelli et al. 2013, 2017; Manselli et al. 2013; Varuttamaseni 2011) 

identified new challenges pertaining to the application of DPRA approaches to 

simulating large complex systems in NPPs including: excessive computational 

time, massive data to be analyzed, as well as the limited application of DPRA in 

multi-unit stations, thus highlighting the need to address such challenges to ensure 

NPP safety (Mandelli et al. 2013b, 2018; Varuttamaseni 2011). 

1.3. METHODS AND APPROACHES 

As discussed above, extensive research efforts have been conducted to develop 

effective DPRA methodologies able to consider the dynamic interaction between 

the different subsystems in NPPs. Such studies provided valuable resources that can 

be analyzed in order to identify trends in DPRA methodologies and highlight the 

ongoing evolution and challenges. Text mining provides an efficient quantitative 

analysis approach that can be used to explore key topics in unstructured datasets 

(e.g., text). The Latent Dirichlet Allocation (LDA) topic modeling and N-Gram text 

classification are selected in this thesis to identify the main topics related to both 

DPRA simulation and graphical methodologies, and to identify associated 

promising methodologies. In addition, a qualitative literature review is performed 

to investigate the main challenges facing the current DPRA methodologies, 
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highlighting the necessity of developing a more efficient DPRA platform that can 

overcome the current limitations of DPRA and enhance the overall safety of NPPs. 

The first and key step towards developing a DPRA platform is analyzing the 

physical response of the plant following an initiating event. The DPRA platform 

developed in this study is based on physics-based simulation models. System 

dynamics (SD) is a comprehensive modeling technique used to simulate the 

nonlinear dynamic behavior of complex systems, in which the first-order 

differential equations governing the system are solved numerically. SD was 

developed by the mid of 1950s by Jay Forrester (Forrester 1971) to simulate 

complex social and economic systems. Feedback loops are key in the SD models, 

and are used to simulate the interdependence between the system components such 

that the nonlinear dynamical nature of the system can be effectively captured 

(Sterman 2000). A deterministic SD model is first developed in this study to 

simulate the thermal dynamic processes inside the pressurized water reactor (PWR) 

subsystems, including the reactor core, primary and secondary cooling systems, hot 

and cold legs, reactor core inlet and outlet plenums, and steam generator inlet and 

outlet plenums. The developed model simulates the nonlinear dynamic interactions 

among these subsystems, in which the PWR subsystem parameters are adopted 

from the Palo Verde Nuclear Generating Station (Arda 2013). Uncertainties 

associated with the PWR physical parameters and operating conditions are 

subsequently considered. Such uncertainties are essential for evaluating the risk 

associated with design-basis transients. The efficiency of the developed DPRA 
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platform is demonstrated through assessing its ability to estimate the temporal 

probability of core damage under different transients. 

Finally, AI is adopted to develop an early warning system that can support 

the plant operators with a fast and accurate DSS. Feed-forward back propagation 

artificial neural network (ANN) is one of the most popular data-driven modeling 

(DDM) tools that rely on AI to learn automatically based on patterns in data. As 

such, an ANN model is developed in this study based on the responses of a PWR 

subsystems under 32 different transients. The developed ANN provides an early 

warning tool that is able to predict the dynamic response of the critical parameters 

of a PWR system in a quick, reliable and effective manner. 

1.4. RESEARCH OBJECTIVES 

The main goals of the work in this dissertation are to: i) develop an integrated SD 

platform for the DPRA of NPPs that can aid in enhancing the safety of NPPs by 

overcoming the limitations of simulating the dynamic interaction among several 

large complex systems; and, ii) develop an intelligent early warning decision tool 

to aid in the development of effective risk mitigation strategies under abnormal 

conditions. As such, the following specific objectives are defined: 

• Identify main literature topics in DPRA simulation and graphical 

methodologies that show promise for risk assessment of NPPs, as well as 

highlight the evolution and development of DPRA methodologies and the main 

challenges facing the DPRA approach. 
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• Develop a deterministic model to simulate the dynamic interaction between the 

different NPP subsystems. 

• Develop a DPRA simulation platform that can efficiently simulate the dynamic 

interaction between large subsystems in NPPs, considering uncertainties in the 

plant physical parameters and operating conditions. 

• Evaluate the temporal probability of reactor core damage under different 

transients. 

• Develop an intelligent DSS for rapid decision making to overcome 

computational burdens and calibration (using actual plant operational 

conditions) of physics-based models. 

The developed DPRA platform is conducted under the following general 

assumptions (additional assumptions are highlighted in specific sections where 

applicable): 

• Several parameters are used to describe the physical processes and operating 

conditions in the considered PWR, in which the nominal values of these 

parameters were chosen based on those of the Palo Verde Nuclear Generating 

Station. 

• Based on a review of previous studies, twenty-six parameters are assumed to 

follow a normal distribution, whereas seven parameters are assumed to follow 

a uniform distribution as a conservative assumption.  
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• The average fuel temperature is related to the probability of the reactor core 

damage, where the lower and upper limits of the average fuel temperature are 

assumed to be 1,600oF [871oC] and 2,600oF [1426oC], respectively. 

1.5. THESIS ORGANIZATION 

This section summarizes the content of each of the six chapters in this dissertation. 

Chapter 1 provides the research need background, overview of SD simulation 

approach, research objectives, and a description of the thesis organization. 

Chapter 2 provides quantitative analysis and qualitative literature review of 

published articles that discussed the main topics in DPRA methodologies for NPPs. 

Text mining is utilized to identify the relevant information within 387 articles 

published in approximately 50 different journals and conferences, providing a 

quantitative evaluation. LDA topic modeling and N-Gram text classification model 

are subsequently applied to identify the main topics in DPRA simulation and 

graphical methodologies. This chapter also qualitatively identifies the main 

challenges facing the DPRA approach that need to be considered in future studies. 

The obtained results showed the need to improve or develop new DPRA 

methodologies in order to enhance the overall safety of NPPs. 

Chapter 3 provides the first and key step towards developing an integrated 

DPRA platform for NPPs. A deterministic model simulating thermal dynamic 

processes in a PWR is developed to account for the dynamic interactions inside the 

PWR. SD is utilized to simulate the nonlinear dynamic feedback mechanisms 

between the different subsystems within the PWR. The developed SD model is 
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validated using results from other published work. Furthermore, the developed 

PWR SD model are evaluated under different transients to investigate the dynamic 

response of the PWR critical parameters. 

Chapter 4 presents the newly developed DPRA platform for NPPs. This 

platform overcomes the limitations of current DPRA methodologies in simulating 

large complex systems and provides significant advantages from both the time and 

data storage perspectives. Uncertainties associated with the physical parameters and 

plant operating conditions are considered while evaluating the temporal probability 

of core damage under different transients. A global sensitivity analysis is conducted 

to identify the uncertain PWR input parameters that have a significant impact on 

the core damage risk. 

Chapter 5 discusses the development of an AI-based tool that can rapidly 

predict the response of critical PWR parameters, and thus serve as an intelligent 

DSS. An ANN is therefore trained based on the results of several transients and 

eight different training functions. The results of the ANN are compared to those of 

the SD model discussed in Chapters 3 and 4. The mean squared error and central 

processing unit time are used to evaluate the performance of the developed ANNs. 

The developed ANN efficiently predict the dynamic response of the critical PWR 

parameters, and thus can serve as a rapid early warning tool. 

Finally, Chapter 6 provides a summary of this research, the overall 

conclusions, and suggestions for future work. 
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Chapter 2 : Dynamic Probabilistic Risk Assessment of Nuclear 

Power Plants: State-of-the-Art Review using Text Mining 

ABSTRACT 

Serious nuclear power plant (NPP) accidents, such as the 2011 Fukushima Daiichi 

nuclear accident, have highlighted the need for advancement of relevant risk 

assessment methodologies. NPP risk assessment approaches have been evolving for 

more than four decades, with recent research focusing on dynamic probabilistic risk 

assessment (DPRA) of NPPs to overcome the limitations of probabilistic risk 

assessment (PRA) methods that use static event and fault tree analysis methods. 

DPRA considers the dynamic aspect of NPP physical behavior, the interaction 

between different systems and the operating crew responses, and the stochastic 

dynamic behavior of cascade failures in NPPs. In this respect, the current study 

utilizes text mining (a class of data mining) to analyze NPP DPRA-related articles 

published since 1981. Following the data collection and preparation, Latent 

Dirichlet Allocation topic modeling is utilized to identify and categorize published 

articles in terms of their key topics. The N-Gram text classification model is also 

performed, providing a visual network to the key topics in published articles. 

Finally, a qualitative survey of the DPRA methodologies, as well as the challenges 

of DPRA, is presented. The aim of this study is to identify trends in DPRA 

methodologies related to NPP safety and highlight their evolution and ongoing 

challenges. The study also identifies DPRA methodologies that are used in the 
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greatest numbers of published articles on risk assessment of NPP and that are most 

promising for DPRA of NPPs, and establishes a state of the practice survey of how 

laboratories/universities/organizations have been developing relevant risk 

assessment tools. The overarching goal of this study is to guide future DPRA 

methodology developments in order to enhance the safety of NPPs under dynamic 

cascade (systemic) risks. 

 

Keywords: Nuclear Power Plant; Dynamic Probabilistic Risk Assessment; Text 

Mining; Latent Dirichlet Allocation; N-Gram. 
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2.1. INTRODUCTION  

Major investment plans to construct new nuclear power infrastructure are 

undergoing across the world in order to meet the increasing demands for sustainable 

energy. In this respect, the Harmony program was launched to expand nuclear 

energy to provide at least 25% of global electricity by 2050 as part of a reliable and 

clean low-carbon mix (World Nuclear Association 2018). Globally, around 150 and 

57 nuclear reactors are currently in their planning and construction stages, 

respectively (Canadian Nuclear Association 2019). Considering this significant 

increase and the number of current plants, the safety of nuclear power plants (NPPs) 

during normal and abnormal operating conditions is key to ensure sustainable 

power production. A NPP is a complex system-of-systems (El-Sefy et al. 2019) that 

contains a large number of interdependent components and systems, each with its 

own distinctive functions, that interact to operate as designed. Such 

component/system interdependence aims at controlling the reactor power, cooling 

the reactor core, and containing radioactivity to ensure the safety of the plant while 

generating electricity.  

Natural (e.g., flood and earthquake) or anthropogenic (e.g., fire and human 

errors) hazards can have severe impacts on the operability and safety of NPPs. In 

2011, tsunami waves as high as 14-15 m, caused by the Tōhoku earthquake, hit the 

Fukushima Daiichi NPP (Yukiya Amano 2015), resulting in eventual core 

meltdown in three reactor units and the release of a massive amount of radioactive 

materials. In 2012, three nuclear reactors (i.e., Nine Mile Point 1, Indian Point 3, 
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and Salem Unit 1 nuclear stations) were shut down by the Nuclear Regulatory 

Commission during Hurricane Sandy (Bucci et al. 2013). Such hazard realizations 

demonstrated the importance of the ongoing research efforts (Amin et al. 2018; El-

Sefy et al. 2019; Kim et al. 2017; Mandelli et al. 2017b; Rabiti et al. 2014) to 

enhance traditional risk assessment methodologies and to develop more capable 

ones. 

Prior to 1975, the U.S. nuclear regulations for the design and operation of 

NPPs were based on a deterministic safety assessment (DSA) approach to ensure 

that all needed functions would be safely accomplished during both normal and 

abnormal operations. The DSA approach was mainly utilized to ensure that the 

defense-in-depth approach is implemented by analyzing the plant response under 

pre-determined operational and accident conditions. Several approaches have been 

developed for the DSA of NPPs (IAEA 2009); initially, a conservative approach 

was used to take into account the uncertainties in analyzing anticipated operational 

occurrences and design basis accidents (DBA) due to the lack of data and limited 

understanding of physical phenomena. Subsequently, the Best Estimate Plus 

Uncertainty approach was considered more realistic as more experimental data 

became available. DSA approaches provide a high level of confidence in the design 

of NPP components under normal operation, DBA, and beyond DBA (CNSC 

2017). However, as the probability that a component may malfunction always 

exists, introducing the probabilistic risk assessment (PRA) approach in the context 

of NPP became necessary. 
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In 1975, the US reactor safety study (WASH-1400 (U.S. NRC 1975)) 

introduced the PRA approach for NPPs by using static event and fault tree 

(ETs/FTs) analysis techniques. PRA quantifies the frequencies of low-probability 

high-consequence accidents, including the frequency of core damage (Level 1-

PRA), the frequency of radioactive releases from the containment (Level 2-PRA), 

and the risk to off-site public health and environment (Level 3-PRA) (IAEA 2010a). 

However, numerous concerns have been raised regarding the capability of PRA to 

account for the interdependence between the different NPP components (e.g., 

hardware and software and their operators) considering their overall stochastic and 

time-dependant (dynamic) behaviors (Aldemir 2013). Specifically, static analysis 

techniques typically do not consider the feedback mechanism between NPP system 

dynamics (e.g., physics of the systems such as temperatures, pressures, flow, etc.) 

and the system logic (e.g., the behavior of the components/operators) (Amendola 

and Reina 1981; Nivolianitou et al. 1986), since the analyses of NPP behavior and 

system response are performed separately (Hsueh and Mosleh 1996). In addition, 

static ETs are propagated following a so-called “effect line where branching points 

are prescribed by order of safety system demands at set points (Hofer et al. 2002a)” 

without any consideration of event propagation with time (Mercurio et al. 2009; 

Zio 2014). The evolution of system dynamic parameters with time may affect the 

probability of an event and may influence the accident sequence (Siu 1994). In this 

respect, the order of events is pre-determined by the analyst (Mandelli et al. 2013b; 

Zio 2014), based on separate thermal-hydraulic calculations. Thus, the quality and 
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outcome of the PRA analysis are entirely dependant on the analyst developing the 

event tree to reflect realistic scenarios (Jankovsky et al. 2018a). In addition, static 

ETs are not capable of capturing new events that might be overlooked by the analyst 

(Swaminathan and Smidts 1999a). In fact, Siu (1994) indicated that such PRA 

limitations can result in an inadequate or erroneous NPP risk assessment and can 

influence the computed probability of event occurrence. Also, Hu (2005) indicated 

that static ET/FT methods could not enumerate all risk scenarios for the NPP system 

with complex interactions between components, software operations, and humans. 

In order to overcome these limitations of the static ET/FT analysis techniques, the 

notion of a dynamic PRA (DPRA) approach has been identified.  

The DPRA approach has been developed to consider the dynamic interaction 

between different systems in NPPs and the temporal propagation of failures within 

a probabilistic framework. The DPRA of NPPs integrates both NPP simulation 

codes, including plant system dynamics/software/human interactions (Cojazzi 

1996; Smidts 1994) with a stochastic process (Acosta and Siu 1993; Cojazzi 1996; 

Hofer et al. 2002a; Hsueh and Mosleh 1996; Mandelli et al. 2013b, 2018; Rabiti et 

al. 2012). Several simulation codes have been used to predict the response of NPPs 

as part of a dynamic risk assessment. These include RELAP (U.S. NRC 1995) and 

MELCOR (Gauntt et al. 2000) codes used to simulate the thermal-hydraulic 

behavior of the plant, while the stochastic process includes models of random 

system/component failure (Mandelli et al. 2018) and human intervention with NPP 

system dynamics (Hu 2005). DPRA has been developed to capture event sequences 
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as a function of time because the branching occurs at a time when any critical 

variable of the NPP systems (e.g., the thermal-dynamic process of the primary loop 

variables, component states, and operator response) changes (Hsueh and Mosleh 

1996). Specifically, in DPRA, scenarios within an dynamic event tree are developed 

after triggering a single initiating event and, when a system parameter exceeds a 

threshold, branching occurs based on the possible outcomes of the 

system/component responses (Kunsman et al. 2008). Branching thus can create two 

different scenarios for system evolution, each of which has its own criteria as a 

function of time.  

Several research studies have been focused on DPRA approaches, especially 

following the Fukushima nuclear accident in 2011. Text mining (TM) is utilized in 

the current study as an objective means to identify the different DPRA 

methodologies that have been developed in the field of nuclear safety. TM is a 

subclass of data mining that is used in several research fields to explore key topics 

within scientific publications (Lazard et al. 2015; Nassirtoussi et al. 2014). TM 

deals with unstructured or semi-structured data like HTML files, emails, and full-

text documents (Salloum et al. 2018). Latent Dirichlet Allocation (LDA) is a widely 

used statistical analysis technique, proposed by Blei et al. (2003) and used in 

different fields (Tang et al. 2014), including social science (Koltcov et al. 2014), 

software engineering (Campbell et al. 2015), business (Maskeri et al. 2008), 

medical science (Paul and Dredze 2011), structural engineering (Ezzeldin and El-

Dakhakhni 2019), geography (Yin et al. 2011) and political science (Greene and 
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Cross 2015), to find relationships among text documents and subsequently extract 

their key topics. 

The goal of this study is to present a thorough survey of how 

laboratories/universities/organizations have been developing relevant risk 

assessment tools and to identify recent DPRA methodologies that show promise for 

risk assessment of NPPs. This study also aims at highlighting and understanding 

the key challenges facing the developed DPRA methodologies. Identifying DPRA 

challenges is a crucial step toward exploring new research streams that need to be 

addressed in future studies. In this respect, TM analysis is performed on published 

articles to identify such methods and their applications within the nuclear power 

field. The considered dataset represents 387 articles published in approximately 50 

different journals and conferences from 1981 to 2019. Afterward, such articles are 

analyzed to provide a visual representation of the DPRA research topic landscape, 

using the LDA and N-Gram text classification modeling techniques. Finally, a 

qualitative literature review is performed to present an overview of the concepts of 

DPRA methods and their point of application, as well as to investigate the main 

challenges facing the DPRA approach. 
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2.2. TEXT MINING OF THE DYNAMIC PROBABILISTIC RISK 

ASSESSMENT RESEARCH DATABASE  

2.2.1. DATA COLLECTION AND PREPROCESSING  

This section provides a quantitative literature analysis, based on TM, to identify 

key nuclear DPRA topics in the relevant literature. As shown in Figure 2-1, in the 

first step, published articles are collected from Web of Science (2020), Google 

Scholar (2020), and Engineering Village (2020). Articles are collected using the 

following criteria: i) journal and conference articles published from 1981 to 2019; 

ii) articles with abstracts that contain technical information; and iii) articles with 

relevant keywords (e.g., NPP and DPRA methods). During data collection, article 

titles and abstracts are used for the analysis as they contain the research problem, 

the overall objective of the study, the approach/method/software used in the study, 

and the main findings as a result of the study (Gatti et al. 2015; Griffiths and 

Steyvers 2004). A total of 387 articles is collected for dataset A that is subsequently 

analyzed to explore DPRA methods; however, such a dataset does not provide clear 

topics for DPRA methods, as will be discussed later. As such, a search is performed 

using the following keywords: NPP, dynamic probabilistic risk assessment, DPRA 

simulation methodologies or DPRA graphical methodologies. A total of 223 and 

164 articles are collected for DPRA simulation (dataset 1) and graphical (dataset 

2) methods, respectively. Figure 2-2 shows a growing trend in the number of 

published articles related to DPRA methodologies of NPP with approximately 50% 
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of the articles being published since 2011. However, with only 387 relevant articles 

in 40 years, there is an urgent need to make significant progress in the field of 

DPRA in order to enhance the safety of nuclear power. As shown in Figure 2-3 and 

Figure 2-4, the majority of articles are published in Reliability Engineering and 

System Safety Journal, International Topical Meeting on Probabilistic Safety 

Assessment and Analysis, and International Conference on Probabilistic 

Assessment and Management. The high number of journals and conferences 

indicates that the development of DPRA of NPPs is spread through a wide variety 

of sources and is still a subject of ongoing study.  

The second step is focused on data cleaning, which is essential to avoid any 

linguistic noise that can have a negative impact on the statistical analysis within the 

context of TM (Salloum et al. 2018). The linguistic noise is due to common words 

(e.g., the, of, and, for), punctuation, variation in word case types (e.g., NUCLEAR 

and nuclear) and word forms (e.g., assess and assessment). The data cleaning step 

consists of the following sub-steps: i) tokenization, where the abstracts are 

separated into tokens (i.e., individual words); ii) treatment, where the datasets are 

treated to remove all common words (e.g., the, of, are, it) and un-needed characters 

(e.g., tags, punctuation, non-alphabetic characters); iii) transformation, where all 

characters are converted to a lowercase format; iv) Lemmatizing/Stemming, where 

all words are returned to their roots/stem based on the Porter stemming algorithm 

(Khoury and Sapsford 2016); and v) cleaning, where all tokens with more than 25 

or less than four characters are removed. Figure 2-5 shows the raw and clean 
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datasets, where the size of each word is in proportion to its probability of 

occurrence. As can be seen in Figure 2-5, while the raw dataset contains several 

words with high frequency (e.g., of, and, for, the), the clean dataset has several 

high-frequency words that are related to nuclear engineering research (e.g., nuclear, 

dynamic, system, probabilistic), which demonstrates the key importance of these 

preprocessing steps in enhancing the dataset quality for meaningful analyses. There 

are many topic modeling techniques presented in the literature, but the LDA model 

is considered one of the most effective techniques (Blei et al. 2003), as will be 

shown next. Following the LDA model, the N-Gram text classification model 

(Violos et al. 2018) is utilized in the current study for data classification and 

visualization. 

2.2.2. LATENT DIRICHLET ALLOCATION MODEL DESCRIPTION 

The main concept of the LDA model is that key topics can be identified based on 

the probability of co-occurrence of words within the same document. Thus, words 

with the highest probabilities in each topic provide a good indication of that topic. 

The LDA model is a generative model that simulates each document as a mixture 

of topics, and subsequently, the Gibbs sampling algorithm evaluates the probability 

of each word appearing in each given topic. Based on these topics, LDA generates 

a concise representation of a document (Alghamdi and Alfalqi 2015). In a simple 

way, the LDA model initially assumes a collection of K latent topics, where each 

topic contains a distribution of words (ψk) that is estimated from a Dirichlet 

distribution β. Given the K topics, each document (d ∈ {1,..., D}) is analyzed by 
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sampling a topic distribution in a document, θd, over K topics, where the 

multinomial distribution of topics in a document, θd, is estimated from a Dirichlet 

distribution α. Then, for each word i in the document, the LDA model allocates a 

certain topic, Zdi, that belongs to K (i.e., Zdi ∈ {1,..., K}) based on θd and 

subsequently wdi is selected based on multinomial distribution ψZdi. LDA technique 

utilizes several algorithms to estimate the word distribution (ψ) and the document 

topic distribution (θ). The current study uses the Gibbs sampling algorithm in the 

sense that key topics can be predicted, regardless of the algorithm that is used 

(Hofmann and Chisholm 2016). Full details of both the Dirichlet and multinomial 

distributions can be found in Minka (2000) and Correa (2001), respectively. As 

indicated earlier, the LDA model requires values for the hyperparameters β and α 

that control both ψk and θd. According to Griffiths and Steyvers (2004), large β and 

α values could lead to a uniform topic distribution, while small values of β and α 

provide sparser topic distribution for the dataset under investigation. In this respect, 

this study utilizes small values for the hyperparameters β = 0.01 and α = 0.125 

(Griffiths and Steyvers 2004).  

The optimum number of topics (K) is another challenging step in the topic 

modeling of unstructured document datasets. Perplexity is a commonly used 

statistical measure to assess how well a probability model predicts a dataset (Blei 

et al. 2003). In this regard, for a given k topic initiated by the LDA model, 

the theoretical word distributions are compared to the actual topic mixtures or 

distribution of words in the actual documents. According to Zhao et al. (2015), an 
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iterative approach can be used to determine the number of topics for the dataset, 

based on the LDA model with minimum perplexity. To do this, datasets A, 1, and 

2 are randomly divided into 90% and 10% for training and testing, respectively.  

2.2.3. WORD CO-OCCURRENCE NETWORK 

A visual representation of data facilitates gaining insights and making better data-

driven decisions. In this regard, another text classification method has been used in 

the current study based on the N-Gram graph representation model (Violos et al. 

2018), in which the R code (Silge and Robinson 2019) is utilized to create an 

alternative representation model for DPRA datasets classification based on TF-IDF 

(term frequency-inverse document frequency) algorithm. This algorithm is used to 

assign importance to the words in a text, in which term frequency is used to estimate 

the frequency of a word in a document, while inverse document frequency 

represents the ratio between the total number of documents and the number of 

documents that contain a word. Full details about this algorithm can be found in 

Qaiser et al. (2018). In its most basic form, the N-Gram model is a contiguous 

sequence of n items from a given sample of text or speech. These items can be 

letters, words, syllables, or base pairs based on the application. The N-Gram model 

classification model has the advantages of providing a well-structured 

representation of data using directed networks, in which words are represented as 

nodes, while directed links are used to show the sequence of these words within the 

text. In addition, the frequency of adjacent words is represented by weights on the 

links between such words.  
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2.3. TEXT MINING RESULTS FOR DPRA OF NPPS 

2.3.1. RESULTS OF THE LDA MODEL 

The LDA model's primary outcomes include the probability of word w in topic k, 

ψkw, and distribution of words in each topic k, ψk. Based on these results, the group 

of words with the highest probabilities are linked to a corresponding research topic. 

Figure 2-6, Figure 2-7, and Figure 2-8 show the key topics presented in the literature 

based on the LDA model results of dataset A, 1, and 2, respectively. As shown in 

the figures, the font size is directly proportional to the word frequency and only 

words with high frequencies are shown to facilitate the identification of each key 

topic through these words. It should be noted that certain words such as “reliability, 

analysis, system, results, using” have a high co-occurrence frequency between 

different topics. This could contribute to two methods mentioned in the same topic 

“i.e., same word cloud” because LDA topic modeling tends to collect the words 

with a high frequency of co-occurrence in the same topic. In this regard, these 

common words are excluded during LDA modeling of dataset 1 to ensure that each 

topic is represented in a particular word cloud. Finally, topic titles are identified by 

the authors after inspecting the keywords comprising each word cloud. 

As can be seen in Figure 2-6, the LDA analysis of dataset A provides 11 

different topics, where 5 topics are considered as general topics related to DPRA, 

such as Topic No.1: DPRA, Topic No. 3: general topic, and Topic 11: Nuclear 

Power Plant. Therefore, the results of the LDA model for dataset A do not provide 
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a comprehensive list of topics for DPRA methods. Instead, LDA analysis of 

datasets 1 and 2 provides 9 and 7 topics for DPRA simulation and graphical 

methods, respectively, as discussed below. 

The LDA model results for dataset 1 are shown in Figure 2-7. The words 

“event, tree, dynamic, discrete, continuous, comparison” in Topic No. 1, are mostly 

related to the DPRA simulation approaches including discrete dynamic event tree 

(DDET) and continuous event tree (CET). Similarly, the words “application, event, 

tree, dynamic, generate”, “methodology, plant, safety, dynamic, system, dylam, 

process”, and “control, markov, model, scenario, learn, ccmt”, in Topics No. 2, 3 

and 4 are typically connected to the DET, DYLAM and Markov/CCMT methods, 

respectively. Also, the words “adsidac, study, dynamic, pra, behavior” in Topic No. 

5 are frequently used in the ADS-IDAC methodology, while “raven, code, relap5-

3d” in Topic No. 8 are frequently used in RAVEN code. In summary, LDA results 

have shown seven topics (i.e., topics 2 to 8) related to DPRA simulation 

methodologies, while topic 1 is related to DPRA simulation approaches, as 

presented in Figure 2-7. Moreover, Topic No. 9 present one of the most frequent 

applications of DPRA simulation methods in the nuclear engineering field related 

to simulating the crew/operator’s response as presented in the words “operator, 

model, cognitive, response, crew, simulation, accident”, besides other applications 

are mentioned within topics 2 and 8, as presented in the words “rupture, steam, 

tube”, and “flood, water, station, blackout”, respectively.  

The LDA model results for dataset 2 are shown in Figure 2-8. The words 
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“monitor, reliability, go-flow, methodology” in Topic No. 1 are mostly related to 

the Go-flow method. Similarly, the words “methodology, dynamic, flowgraph, 

model” in Topic No. 4 are typically connected to the dynamic flowgraph method, 

while “dynamic, network, risk, Bayesian” in Topic No. 6 are frequently used in the 

dynamic Bayesian network (DBN) methodology. In summary, LDA results have 

shown six topics (i.e., topics 1 to 6) related to DPRA graphical methodologies, as 

presented in Figure 2-8. Moreover, Figure 2-8 shows that the LDA can identify 

some general topics that are frequently used in technical writing. For example, the 

words “safety, system, analysis, application, software, method” in Topic No. 7 are 

considered as general words that are used frequently within several scientific 

research fields. Figure 2-6, Figure 2-7, and Figure 2-8 also show the sensitivity of 

the perplexity to the number of topics for each dataset, in which the minimum 

perplexity values are attained at K equals 11, 9, and 7 for datasets A, 1, and 2, 

respectively. Therefore, the current study utilized the same K values in presenting 

key topics in datasets A, 1, and 2. In general, the results of the LDA analysis of 

datasets 1 and 2 show 7 and 6 technical topics for DPRA simulation and graphical 

methods, respectively. Figure 2-7 shows that DET, DYLAM, Markov/CCMT, 

ASD-IDAC, Monte Carlo, ADAPT, and RAVEN are the most common topics 

related to DPRA simulation methods, while topics of go-flow, Petri-net (PN), 

dynamic fault tree (DFT), dynamic flowgraph (DFM), event sequence diagram 

(ESD), and Bayesian network (BN) are the most common topics related to DPRA 

graphical methods, as shown in Figure 2-8. 
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2.3.2. RESULTS OF THE N-GRAM MODEL 

The N-gram weighted directed network was the second text classification methods 

used in the current study to investigate the literature in the field of DPRA of NPPs. 

Using this classification method, Figure 2-9 and Figure 2-10 represent the most 

frequent words in datasets 1 and 2 as a sequence of separated words through a 

directed network. In addition, links connecting words with high frequencies, 

relative to other words, have higher weights represented by bold arrows in Figure 

2-9 and Figure 2-10. For example, Figure 2-9 and Figure 2-10 show a contiguous 

sequence of the most frequent words in the DPRA simulation and graphical 

methods, respectively. It is clear from Figure 2-9 that DET, DYLAM, ASD-IDAC, 

MCDET, RAVEN, Markov-CCMT, and ADAPT are the main topics in the field of 

DPRA simulation methods. Also, the word sequences crew-response, operator 

action/response, operating-crew, and human-performance show that the operator 

action has been investigated through the different DPRA simulation methods. 

Besides the word sequence station-blackout, steam-generator-tube-rupture 

represent applications of DPRA in NPPs. On the other hand, go-flow, dynamic 

flowgraph, event sequence diagram, Petri-net, Bayesian network, and dynamic fault 

tree are the main topics in the field of DPRA graphical methods, as shown in Figure 

2-10. As can be demonstrated from Figure 2-7 through Figure 2-10, several DPRA 

simulation and graphical methods have been developed in the nuclear engineering 

field. Thus, the following section presents the different DPRA methods which are 

extracted from the LDA and N-Gram analyses of DPRA datasets 1 and 2. 
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2.4. DPRA SIMULATION METHODS 

The LDA statistical analysis technique identified eight main topics related to DPRA 

simulation approaches/methods. Figure 2-11a and Figure 2-11b present the rate of 

publications in DPRA simulation methods and the cumulative number of 

publications for each DPRA simulation methodology, respectively. As shown in 

this figure, some methodologies have a significant contribution to the number of 

publications with an increasing growth rate in the number of publications, while 

other methodologies have a stable or decreasing trend in the number of 

publications. As shown in Figure 2-2 and Figure 2-11b, the rate of new publications 

increased after 2005 and 2011. In the first phase, between 2005 and 2011, ADAPT 

was developed around 2006 and contributed to new publications related to DPRA 

simulation method. In addition, the rate of new publications related to ADS-IDAC 

and DET increased during this phase compared to other DPRA simulation methods. 

In the second phase, between 2011 and 2019, RAVEN was developed as a new 

DPRA simulation method and significantly contributed to a high number of 

publications during this phase. In addition, the rate of publications related to DET, 

MC, and ADAPT increased during this phase compared to the first phase. It should 

be noted that the ADS-IDAC simulation methodology made a significant 

contribution to the number of published articles with 20% of the published articles 

related to DPRA simulation methodologies over the last 23 years. Also, the number 

of articles written using ADAPT and RAVEN during the last decade indicates the 

promising start for these new DPRA simulation methodologies for NPPs: ADAPT 
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and RAVEN have contributed to 12% and 16% of the published articles related to 

DPRA simulation methodologies over the last decade. On the other hand, the 

DYLAM simulation methodology has had a fixed number of publications since the 

mid-1990s due to the development of other DPRA simulation methodologies.  

Finally, it should be noted that an R code is developed to identify the 

methodology implemented in each article and check the overlap between different 

methodologies. In this respect, seven research studies in dataset 1 contained two 

different methodologies in the same articles, particularly for ADAPT and RAVEN, 

as well as Monte Calro and Markov simulation methodologies. These articles are 

categorized twice based on the two methodologies that are mentioned in the article. 

The rest of the published articles in dataset 1 that are not shown in Figure 2-11b are 

related to the DPRA approach without referring to any of the DPRA simulation 

methodologies. The following sub-sections include a qualitative literature review 

of these topics to investigate their development. 

2.4.1. TOPIC 1: DISCRETE DYNAMIC EVENT TREE AND 

CONTINUOUS EVENT TREE 

There are two primary simulation approaches for DPRA of NPPs, including DDET 

and CET (known as the Monte Carlo simulation approach). DDET provides a basis 

for discrete-time DPRA simulation methods that integrate the physical response of 

NPPs, the logic of the system, and the operator actions to generate dynamic event 

trees, in which branching occurs at discrete points in time. A DDET consists of 
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three main parts that are integrated to create the DPRA of NPPs: i) model of the 

NPP physical and control processes; ii) model of the components and crew 

responses; and iii) a scheduler to control branching points. Unlike DDET, CET 

allows events to occur randomly at any time. It should be noted that the majority of 

DPRA simulation methods are related to the discrete-time DPRA method, while 

Monte Carlo and RAVEN have both capabilities to be applied for discrete and 

continuous DPRA of NPPs. DET is the most popular method to apply the DDET 

approach and is considered the basis for existing discrete-time DPRA simulation 

methods, including DYLAM, Markov/CCMT, ADS-IDAC, MCDET, and ADAPT. 

As can be seen in Figure 2-11b, DDET, through its discrete-time DPRA simulation 

methodologies, has contributed to a substantial number of published articles related 

to DPRA simulation methods, and thus DDET is considered the most common 

approach for DPRA simulation methods. 

2.4.2. TOPIC 2: DYNAMIC EVENT TREE (DET) 

Unlike static ETs, DETs consider timing and sequence of system responses through 

a scheduler that controls the timing and branching of the event tree and thus saving 

the information about the system states at all branching points (Chang et al. 2003). 

In DET, after the first scenario associated with a branch is completed, the simulation 

returns to the previous branching point and subsequently, the saved system state is 

restored to start a new scenario. As such, the temporal progression and sequence of 

system responses after an initiating event in dynamic event trees are determined by 

a time-dependent model of system evolution and branching conditions selected by 
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the analyst (Aldemir 2013). Branching nodes are allowed to occur at random, 

representing discrete points in time (Acosta and Siu 1991) when a system or 

operator action is called for. As such, the length of the time step has a significant 

influence on the accuracy of the analysis (Hu 2005). The procedural evolution of 

the DET approach is demonstrated in Chang et al. (2003). In general, this approach 

was established to consider all possible combinations of system states at branching 

points, where each branch represents a new stochastic event.  

2.4.3. TOPIC 3: THE DYNAMIC LOGIC ANALYTICAL 

METHODOLOGY (DYLAM) 

DYLAM is a simulation software developed by the Joint European Center at Ispra, 

Italy, in the mid-1980s (Aldemir 2013). DYLAM was the most common simulation 

methodology until the mid 1990s, as shown in Figure 2-11a. DYLAM was 

developed by integrating the time dimension into the logical analytical 

methodology modeling technique (Cacciabue et al. 1986; Cojazzi 1996; 

Nivolianitou et al. 1986) in order to create a tool that couples the probabilistic and 

dynamic behavior of the system. Specifically, DYLAM considers the dynamic 

aspect generated from the interaction between time-dependent physical parameters 

of components, control and safety systems, and human actions, in which the 

probability of an undesirable event is estimated by summing the probabilities of 

contributing scenarios (i.e., branches) (Aldemir 2013). As a first step, the 

information regarding the physical system under investigation is contained within 
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the system simulator (Cojazzi 1996; Kunsman et al. 2008) developed by the analyst 

(Cojazzi 1996). The system simulator is constructed by linking different models to 

represent the physical systems, where the active components are modeled to have 

different operating states (nominal, failed on, failed off, stuck, etc.). Once the 

system simulator is linked to DYLAM, DYLAM assigns a stochastic transitions in 

the component states or initial states to each tree branch in order to drive the 

simulation, considering the logical states time-history of system components 

(Cojazzi 1996; Kunsman et al. 2008). DYLAM starts at time t = 0 and a user-

defined initial condition for the system. At the end of each time step, the system 

simulator is used to examine the change in the system dynamic variables to 

determine whether or not to generate a new branch. If DYLAM creates a new 

branch, all the information about component states is stored when a new branching 

point occurs. After analyzing an initial scenario, DYLAM returns to the last 

branching point and retrieves all the stored data about component states at that time 

in order to start a new scenario. DYLAM then repeats the previous process to 

identify all the possible accident scenarios. For each path, a time-dependent 

probability is determined, while the probability of occurrence of a top event is 

calculated by summing the probabilities of all scenarios resulting in the top event 

(Aldemir 2013; Cojazzi 1996; Kunsman et al. 2008).  

DYLAM has several alternatives that use different branching logic with more 

emphasis on the modeling of human-system interactions. An extension of DYLAM 

called the dynamic event tree analysis (DETAM) (Acosta and Siu 1993) was 
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developed to deal with the limitations of DYLAM in dealing with the dynamic NPP 

behavior and its crew following the initiation of an event. The DETAM is a 

simulation tool that is capable of modeling both the stochastic variations in the 

component states and the operator states (i.e., defined by the crew’s diagnosis 

states, quality states, and planning states) (Cojazzi 1996). This tool considers the 

interdependence between component states, system’s dynamic responses, and the 

crew actions during the accident scenario.  

2.4.4. TOPIC 4: MARKOV/CELL-TO-CELL MAPPING TECHNIQUE 

(MARKOV-CCMT) 

Markov-CCMT is a combination between the discrete-state Markov process and 

the Cell-to-Cell mapping technique (e.g., a systematic technique to present the 

linear and non-linear dynamic characteristics of the system in discrete-time and 

discretized system state space (Mandelli 2008)). Markov-CCMT provides an 

efficient modeling technique to address the reliability of the digital Instrumentation 

and Control (I&C) system by considering the dynamic interactions between 

different components comprising the digital I&C system, and between this system 

and the control NPP physical processes (Aldemir et al. 2009). 

The Markov/CCMT technique was utilized in a recent study to investigate the 

steam generator digital water level control system inside a pressurized water reactor 

(PWR) (Gomes and Saldanha 2013). The obtained results showed the possible 

failure scenarios that can occur due to the dynamic interactions between the I&C 
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system, the controlled process, and the various subsystems of the digital system. 

Recently, Markov/CCMT was utilized in (Li et al. 2017) to assess the dynamic 

reliability of the main and startup feedwater control system inside a NPP. The 

results demonstrated the efficiency of Markov/CCMT compared to static ET/FT 

methods. 

2.4.5. TOPIC 5: ACCIDENT DYNAMIC SIMULATOR (ADS)  

The ADS has been extensively used to perform the dynamic risk assessment of 

NPPs starting from 1996, as shown in Figure 2-11a. The ADS was developed at the 

University of Maryland (Chang and Mosleh 2007a; Hsueh and Mosleh 1996) for 

the dynamic simulation of Level 1-PRA, especially for large-scale dynamic 

accident sequences (Hsueh and Mosleh 1996). The ADS exhibited significant 

improvement when being integrated with human reliability analysis and RELAP 

within dynamic risk analysis (Mercurio et al. 2009), in which the DDET is utilized 

to generate time-dependent scenarios following initiating events in NPPs by 

predicting the changes in both the component and crew responses during the 

accident sequences. Hsueh and Mosleh (1996) explained the ADS strategy to be 

based on “breaking down the accident analysis model into different parts according 

to the nature of the processes involved, simplifying each part while retaining its 

essential features, and developing integration rules for full-scale application 

(Hsueh and Mosleh 1996)”. In addition, the ADS has been developed to simulate 

the variations in the crew responses during NPP transient and/or accident events by 

integrating the Information, Decision, and Actions in a Crew context (IDAC) 
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within a cognitive model. IDAC provides a significant contribution in simulating 

the operator performance to include three main categories of operators, namely 

“decision-maker, action maker, and consultant (Chang and Mosleh 2007b)”. 

2.4.6. TOPIC 6: MONTE CARLO SIMULATION METHOD 

Unlike the DDET, Monte Carlo (MC) simulation allows events to occur at any time 

(e.g., represent a continuous event tree) and is insensitive to the size and complexity 

of the system (Hu 2005). It can also include any modeling assumptions such as the 

non-fixed failure rate assumption, interaction between components and process 

dynamics, and random delays. While the MC simulation method can result in an 

inadequate representation of rare events, this can be addressed by integrating 

appropriate biasing techniques. Additionally, this method provides the probability 

of reaching a specific end state (i.e., reactor core damage) without collecting 

detailed information related to scenarios that lead to this end state (Varuttamaseni 

2011).  

The MC dynamic event tree (MCDET) simulation combines the dynamic 

event tree and the MC simulation method to generate a discrete-time DPRA 

simulation method, in which MCDET can be integrated with severe accident 

analysis code MELCOR. The MCDET method, developed at Gesellschaft für 

Anlagen und Reacktorsicherheit, aimed at achieving a realistic simulation of a 

dynamic system (Hofer et al. 2002a), and contributed to approximately 60% of 

published papers related to MC method. This method generates a discrete DET to 

estimate the response of dynamic parameters and probabilities along branches for 
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each random event generated by MC simulation. Kloos and Peschke (2007) 

integrated MCDET with a Crew module to simulate the crew interactions with the 

plant model, including the operator’s knowledge and communications, ergonomics 

and stress. Pan et al. (2017) also utilized MCDET to investigate the behavior of the 

level control dynamic system and the emergency standby power system due to 

different aging components. The results demonstrated that MCDET provides 

adequate modelling of sequences with low probabilities of occurrence. 

2.4.7. TOPIC 7: ANALYSIS OF DYNAMIC ACCIDENT PROGRESSION 

TREES (ADAPT)  

ADAPT is a system software developed at Ohio State University under a Sandia 

National Laboratories (SNL) research project in 2006 (Kunsman et al. 2008). 

ADAPT has been developed to generate automated accident progression event trees 

(APET) based on the DET concept for different types of reactors (Jankovsky et al. 

2018b) and has evolved for over 14 years, as shown in Figure 2-11a. Initially, the 

APET approach was used to quantify the accident progression and containment 

responses for Levels 2 and 3 PRAs (U.S. NRC 1990). However, APET has some 

drawbacks, as described by Hakobyan et al. (2008). For example, the APET 

approach is relatively computationally expensive (Hakobyan et al. 2006) while 

being a static approach, similar to the ET analysis, but with explicit modeling of the 

physical behavior (Hakobyan et al. 2008). ADAPT is used to overcome the 

limitations of the APET approach by coupling the dynamic behavior of NPPs 
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(MELCOR, RELAP, SAS4A) with the modeling of stochastic system evolution for 

dynamic risk assessment of nuclear processes. ADAPT is similar to other DET 

techniques, in which the system code determines the path of the accident sequence 

within a probabilistic context. ADAPT has a significant advantage of running all 

the branching scenarios in parallel to create the event tree (Hakobyan 2006). 

ADAPT is capable of considering the aleatory uncertainties associated with the 

behavior of active (e.g., pump, valve) and passive (e.g., pipes, containment) 

components, while also considering the epistemic uncertainty associated with 

system parameters (e.g., heat transfer coefficient, coolant flow) (Aldemir 2013; 

Hakobyan et al. 2008). Furthermore, ADAPT can be used for Level 1 PRA and for 

the analysis of any complex system that can be abstracted as an event tree. 

2.4.8. TOPIC 8: REACTOR ANALYSIS AND VIRTUAL CONTROL 

ENVIRONMENT (RAVEN) 

Developed in 2012 at the Idaho National Laboratory (INL), RAVEN performs 

probabilistic analysis considering the dynamic response of NPPs through providing 

dynamic risk analysis capabilities to the thermal-hydraulic simulator RELAP-7. As 

shown in Figure 2-11a, RAVEN has attached significant interest during the last 

seven years because of its flexibility in terms of its interface abilities with other 

code (Rabiti et al. 2014).  

The first version of RAVEN (i.e., coded in python) focused on developing a 

DPRA, in which RAVEN was coupled with RELAP-7 thermal-hydraulic simulator 
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to derive NPP system control logic that is dictated by: i) NPP control logic; ii) crew 

actions; and iii) the stochastic behavior of components and human actions 

(Mandelli et al. 2014; Rabiti et al. 2012). Since then, INL has extended the 

capabilities of RAVEN to be coupled with RELAP5-3D and BISON fuel behavior 

code (Williamson et al. 2012). In RAVEN, the stochastic behavior of the system is 

implemented by MC and DET analysis methodologies (Mandelli et al. 2017b; 

Rabiti et al. 2012). RAVEN is used to perform parametric and probabilistic analyses 

based on the response of a complex system (Alfonsi et al. 2014). RAVEN is 

comprised of a Control Logic System, Graphical User Interface, and a Probabilistic 

and Parametric framework as summarized by Alfonsi et al. (2013) and Rabiti et al. 

(2013).  

2.5. DPRA GRAPHICAL METHODS  

The LDA statistical analysis technique identified six topics related to DPRA 

graphical methods. Figure 2-12a and Figure 2-12b show the rate of publications in 

DPRA graphical methods and the cumulative number of publications for each 

DPRA graphical methodologies, respectively. As can be seen in Figure 2-12a, the 

dynamic flowgraph method contributed to approximately 32% of the published 

articles related to the DPRA graphical interface methods since 1995. PNs also 

account for a significant proportion of publications, with approximately 25% of the 

published paper related to DPRA graphical interface methods. Moreover, the 

number of articles published using DBNs indicate that this graphical method is 

promising for DPRA of NPPs. Specifically, as shown in Figure 2-2 and Figure 
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2-12b, the rate of new publications increased after 2005 and 2011. In the first phase, 

between 2005 and 2011, the rate of new publications related to DFM increased 

during this phase compared to other DPRA graphical methods. In the second phase, 

between 2011 and 2019, DBN was developed as a new DPRA graphical method 

and significantly contributed to a high number of publications during this phase. In 

addition, the rate of publications related to Go-Flow, PN, and DFM increased 

during this phase compared to the first phase. On the other hand, ESD publication 

showed a decreasing trend over the last decade with limited articles compared to 

other DPRA graphical interface methods. Finally, it should be noted that an R code 

is developed to identify the methodology implemented in each article and check the 

overlap between different methodologies. In this respect, six research studies in 

dataset 2 contained two different methodologies in the same articles, particularly 

for Petri Net and Bayesian Network, as well as Go-Flow and Bayesian Network 

graphical methodologies. These articles are categorized twice based on the two 

methodologies that are mentioned in the article. The following sub-sections include 

a qualitative literature review of these topics to investigate their development. 

2.5.1. TOPIC 1: GO-FLOW  

The Go-Flow methodology was presented in 1985 as a reliability analysis method 

(Matsuoka and Kobayashi 1985, 1987) with a large proportion of published articles, 

as shown in Figure 2-12a; however, the contribution of this methodology to the 

DPRA graphical methods decreased after developing the dynamic flowgraph 

method (Topic 4) at the beginning of the 1990s. The Go-Flow methodology is a 
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success-oriented system analysis technique used to evaluate the reliability and 

availability of dynamic systems (Matsuoka 1988). As a key step, the Go-Flow chart 

is developed to represent the function of operators/components/systems in addition 

to the majority of the operating system conditions (Takeshi 2010). A recent research 

study integrated the Go-Flow methodology with the DBN (Topic 6) for uncertainty 

analysis for the auxiliary power system of a NPP under different input for the 

operator action, in which the results showed an enhancement in the reliability 

evaluation of the Go-flow methodology, providing the operators with valuable risk 

information for the safe operation of NPPs (Ren et al. 2017). Another recent study 

utilized the Go-Flow methodology for the risk assessment of the auxiliary 

feedwater system in a PWR (Xinyu et al. 2017). 

2.5.2. TOPIC 2: PETRI NETS (PNS) 

In 1987, Leveson and Stolzy (1987) explored the ability to use time Petri net 

modeling in the design and analysis of safety-critical dynamic systems. Petri net is 

a graphical and mathematical modeling tool that can set up algebraic equations that 

describe the characteristics of many systems. A Petri net contains places (i.e., 

possible states of the system), transitions (i.e., events or actions that may occur and 

have an influence on the state of the system), and arcs that connect places and 

transitions. Places in PN may contain a number of tokens (i.e., conditions or input 

data related to the place), in which tokens are used to simulate the dynamic, 

concurrent, and asynchronous activities of systems. Many extensions of Petri nets 

have been developed, including deterministic PNs (Tomek et al. 1994), stochastic 
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PNs (Murata 1989), colored PNs (Cho et al. 1996) and hybrid PNs (David and Alla 

2004). Colored PNs were utilized to analyze the critical safety of several systems 

after the shutdown of a Korean NPP (Cho et al. 1996). In a different study, PNs 

were utilized to model the dynamic process of the emergency management system 

within the Khaskovo NPP (Tavana 2008).  

2.5.3. TOPIC 3: DYNAMIC FAULT TREE (DFT) 

The DFT approach was developed by Dugan (1991) to overcome the limitation of 

static FTs by adding additional dynamic gates to model the complex dynamic 

interactions. Specifically, this approach is an extension of FTs that can capture the 

dynamic features of complex systems, in which Markov analysis is utilized to solve 

dynamic gates such as the priority-AND gate, sequence-enforcing gate, the standby 

or spare gate, and the functional dependency gate (Dugan et al. 1992). Several 

software packages such as DITree and later Galileo have been developed at the 

University of Virginia to solve DFT (Dugan 2000; Dugan et al. 2000). Another 

DFT method was proposed by Cepin (Cepin 2001; Cepin and Mavko 2002) to 

extend the classical FTs with time requirements in a way that reduces the system 

unavailability and assesses the actual time-dependent risk profile. Both DFT 

methods have limited dynamic characteristics; these approaches are not capable of 

dealing with the full spectrum of dynamic system features (Hu 2005). As such, the 

dynamic interaction between different components/systems and the process 

parameters are not easily captured by DFT methods (Nejad-Hosseinian 2007). 
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2.5.4. TOPIC 4: DYNAMIC FLOWGRAPH METHOD (DFM) 

DFM is considered one of the most important DPRA graphical methods to assess 

the safety/reliability of NPPs. This method was developed in the early 1990s 

(Garrett et al. 1993) based on the logic flowgraph method but with dynamic 

characteristics. The DFM is a directed graph that is analyzed at discrete time steps 

(Karanta 2013). This method is used to model the logical and dynamic behavior of 

complex systems, including the interdependence between system parameters such 

as hardware, software and operator actions. DFM models contain vertices and edges 

to represent the system, in which vertices represent the components and variables, 

while edges represent the interaction between such vertices (Tyrväinen 2013). The 

DFM models were developed in terms of cause and effect relationships between the 

physical variables and the states of control systems. This method can be used to 

identify the root cause of a top event or to trace event propagation in time (Karanta 

2013). For example, DFM has been applied to assess the digital I&C system for the 

feedwater control system through different scenarios, such as the failure of the main 

computer or the main feedwater control valve (Yin et al. 2013). The obtained results 

demonstrated the ability of DFM to find the roots (i.e., initial events) that lead to 

the top event.  

2.5.5. TOPIC 5: EXTENDED EVENT SEQUENCE DIAGRAM   

In 1999, Swaminathan and Smidts (1999a) proposed a mathematical model to 

extend the event sequence diagrams to allow for modeling of dynamic scenarios. 
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Static Event Sequence Diagram (ESD) is a graphical method used to present both 

the success and failure scenarios starting from an initial event to a final state. The 

main breakthrough in ESD occurred when Swaminathan and Smidts (1999a; b; c) 

extended the static ESD to capture dynamic phenomena such as time conditions, 

physical conditions, competing events, synchronizations, concurrent independent 

processes, mutually exclusive processes, and cyclic scenarios. However, the 

Extended ESD has not been fully developed, as Xie et al. (2010) showed some 

limitations in the proposed icons that can affect the modeling of many dynamic 

scenarios.  

2.5.6. TOPIC 6: DYNAMIC BAYESIAN NETWORKS (DBNS) 

DBNs are probabilistic networks based on graph theory and can be considered as 

one of the most promising modeling techniques utilized to assess the reliability and 

safety of dynamic systems recently (Boudali and Dugan 2005; Langseth and 

Portinale 2007; Mahadevan et al. 2001). According to Weber et al. (2012), 

Reliability Engineering and System Safety published a significant number of articles 

related to DBNs and their applications to risk analysis between 1999 and 2009. 

Although this modeling technique can add value to the NPP monitoring processes, 

the application of DBNs to investigate the safety of dynamic NPP systems is still 

limited (Jones et al. 2016).  

DBNs are a graphical method that contains a set of nodes, representing 

random variables that can change with time, and directed links between these nodes, 

representing temporal probabilistic dependencies between the connected variables. 
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DBNs allow the modeling of random variables and investigation of their influence 

on the future distribution of other variables (Weber and Jouffe 2006). For example, 

Varuttamaseni (2011) integrated DBNs with reactor transient code to evaluate the 

time-dependent core damage frequency following a loss-of-feedwater accident. A 

combination of discrete DET (implemented through ADAPT), MELCOR, and BN 

techniques were also integrated to provide a new risk-informed accident 

management framework for NPP diagnostic support (Groth et al. 2014). In a 

different study, Jones et al. (2016) investigated the viability of the developed 

framework through DBNs. The developed DBN was utilized to investigate the 

conditions of observed power plant parameters that could lead to transient 

overpower and loss of flow accidents. Based on this framework, Groth et al. (2018) 

developed a prototype model to analyze and investigate the generic sodium fast 

reactor states following the loss of flow and earthquake-induced overpower 

transients. Another recent application utilized DBNs to assess two critical systems, 

namely the fire alarm system and the steam generator system (Amin et al. 2018).  

2.6. CURRENT CHALLENGES AND FUTURE RESEARCH ROADMAP 

DPRA methodologies have been extensively utilized to investigate the crew 

behavior and the dynamic response of NPP systems following an internal event 

such as loss-of-feedwater, station blackout, and shutdown of the safety system. 

Although numerous papers related to DPRA of NPPs have been published in 

journals and conference proceedings, some key challenges still need to be 

addressed. DPRA methodologies adopting dynamic event trees provide extensive 
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information associated with all the possible accident-sequence scenarios since each 

branch contains evolution over time of a large number of system variables, and 

therefore can generate a large number of branches (Mandelli et al. 2013a). In this 

respect, DPRA methodologies are computationally expensive and memory-

intensive with a storage requirement of gigabytes or higher (Mandelli et al. 2018), 

and can be challenging to organize and interpret the underlying data toward 

identifying scenario evolutions and the primary risk contributors for each initiating 

event (Zio 2009). In addition, such a large amount of information can lead to 

complexity in extracting useful information and provide an insufficient estimate for 

the risk and its associated uncertainty (Mandelli et al. 2013b). As a result of these 

challenges, to date, DPRA methodologies have only been used to simulate critical 

situations for small subsystems, when the interactions between the process variable 

and the control systems are important or when operator actions need to be explicitly 

modeled; these methodologies have limited applications in the risk assessment of 

large/complex systems (Varuttamaseni 2011). Moreover, the Fukushima nuclear 

accident demonstrated the importance of quantifying the risk of multi-unit NPPs; 

however, only a limited number of studies have analyzed the risk associated with 

the dynamic interaction between multiple units under normal and abnormal events 

(Mandelli et al. 2017b).  

The rate of publications on DPRA of NPPs has grown rapidly due to the 

importance and the promising potential of DPRA approaches. DPRA 

methodologies experienced major evolution over four decades to continuously 
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enhance and improve the overall safety of NPPs. Some of these methodologies are 

still being developed and improved at laboratories, universities, and organizations. 

In addition, some of the key challenges mentioned above are currently under 

investigation. In this regard, the current study presents a set of research streams that 

need to be considered in future studies. This study demonstrates the importance of 

improving and/or developing DPRA tools that are capable of simulating large 

subsystems within NPPs. Such complex and interdependent subsystems need to be 

precisely simulated to consider all the scenarios that may occur during the operation 

of NPPs. In addition, multi-unit risk is an important issue in several countries and 

needs to be addressed comprehensively since the majority of NPPs contain more 

than one reactor unit (Kumar et al. 2015). Thus, multi-unit DPRA of NPPs is a 

crucial research stream that requires several studies to assess the safety of NPPs 

under normal or abnormal operating conditions (Mandelli et al. 2017b). Moreover, 

several algorithms (e.g., regression models, artificial neural networks, cluster 

analysis, machine learning) have been developed recently to analyze large amounts 

of information; these methods/algorithms can be used for data mining of DPRA 

data to extract useful information from large data sets. This study also recommends 

the importance of continuous funding for researchers, universities, and laboratories 

to support the developed work in DPRA methodologies. Recent DPRA 

methodologies (e.g., RAVEN, ADAPT, DBNs) have shown great potential in 

DPRA of NPPs; these methodologies are under development, and it is 

recommended to consider the challenges mentioned above in their future 
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development efforts. 

2.7. CONCLUSIONS 

NPPs are complex dynamic systems-of-systems because of their internal 

interdependence and their connectivity to other external systems. Previous research 

studies have been conducted to develop DPRA methodologies that take into 

account the dynamic interactions between hardware, software, and operator actions. 

In this respect, a total of 387 articles published in 50 different journals and 

conferences from 1981 to 2019 was analyzed in the current study using text mining 

to identify the key topics in the field of DPRA of NPP. The LDA topic modeling 

was used to identify and categorize published articles in terms of their topics. An 

N-Gram classification model was also developed, providing visual networks to 

evaluate the DPRA research topics. Afterward, quantitative measures were 

performed to estimate the temporal distribution of these topics over four decades. 

Based on such quantitative analyses, a qualitative literature review was presented 

to show several DPRA simulation/graphical methods and their corresponding 

applications within the nuclear engineering field, in addition to investigate the main 

challenges facing the current DPRA approach. 

The analysis results identified eight topics related to the DPRA simulation 

approaches/methodologies and six related to graphical methodologies. LDA results 

demonstrated that the discrete dynamic event tree is one of the most common 

approaches for DPRA simulation methodologies. In addition, RAVEN, ADAPT, 

and DBNs all showed a growing trend among recent publications related to DPRA. 
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Furthermore, the results showed the significant impact of both ADS-IDAC and 

DFM in publications on DPRA simulation and graphical methods, respectively. In 

addition, the quantitative analysis showed several applications of DPRA simulation 

methodologies related to station blackout, fire, flood, steam generator tube rupture, 

and operator actions.  

Text mining analysis and quantitative literature review presented in the 

current study demonstrates the impact of DPRA methodologies in enhancing the 

safety of NPPs by overcoming the limitation of static PRA. Several universities, 

laboratories, and organizations are continually working on improving and/or 

developing DPRA methodologies for NPPs. However, the qualitative literature 

review of DPRA methodologies has highlighted specific challenges in simulating 

large/complex systems and analyzing massive data for a considerable number of 

scenarios, highlighting the necessity of developing a more efficient DPRA platform 

that can overcome the current limitations of DPRA and enhance the overall safety 

of NPPs. Further research is required to address DPRA-related challenges, such as 

simulating several subsystems, considering the dynamic interaction among multi-

units, and analyzing the large value of DPRA-data in order to improve our 

understanding of DPRA of NPPs. 
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2.9. NOTATION 

The following symbols are used in this paper: 

D = Number of documents; 

d = Index of documents, (d ∈ {1,..., D}); 

K = Number of topics; 

k = Index of topics, (k ∈ {1,..., K}); 

wdi = Word i in document d; 

Zdi = Topic assignment for word wdi from document d; 

θ = Topic distribution; 

θd = Multinomial distribution of topics in a document d; 

α = Dirichlet prior on the per-document topic distributions; 

β = Dirichlet prior on the per-topic word distributions; 

ψ = Word distribution; 

ψk = Distribution of words in topic k; 

ψkw = Probability of word w in topic k; and 

ψZdi = 
Multinomial distribution of topic assignment for word wdi from 

document d. 
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Figure 2-1: A Schematic Diagram for Text Mining Analysis Approach.
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Figure 2-2: Cumulative Number of Publications for DPRA Methods from 1981 to 

2019. 

 

 

Figure 2-3: Ranking of Most Referred Journals by Number of Published Articles. 
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Figure 2-4: Ranking of Most Referred Conferences by Number of Published 

Articles. 

 

Raw Dataset
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Figure 2-5: Comparison Between Raw and Clean Datasets Through Word Clouds. 
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Figure 2-6: Word Cloud of Topic No.1 to Topic No.11 for DPRA Methods-Dataset A. 
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Figure 2-7: Word Cloud of Topic No.1 to Topic No.9 for DPRA Simulation Methods-Dataset 1. 
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Figure 2-8: Word Cloud of Topic No.1 to Topic No.7 for DPRA Graphical Methods-Dataset 2. 
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Figure 2-9: Directed graph for DPRA Simulation Methods-Dataset 1. 
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Figure 2-10: Directed Graph for DPRA Graphical Methods-Dataset 2. 
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a.  

 

b. 

 

Figure 2-11: a. Topic distribution, and b. Cumulative number of publications for 

DPRA simulation methodologies from 1984 to 2019. 
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b. 

 
Figure 2-12: a. Topic distribution, and b. Cumulative number of publications for 

DPRA Graphical Topics from 1985 to 2019. 
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Chapter 3 : System Dynamics Simulation of the Thermal 

Dynamic Processes in Nuclear Power Plant 

ABSTRACT 

A nuclear power plant (NPP) is a highly complex system-of-systems as manifested 

through its internal systems interdependence. The negative impact of such 

interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear 

disaster. As such, there is a critical need for new strategies to overcome the 

limitations of current risk assessment techniques (e.g., the use of static event and 

fault tree schemes), particularly through simulation of the nonlinear dynamic 

feedback mechanisms between the different NPP systems/components. As the first 

and key step towards developing an integrated NPP dynamic probabilistic risk 

assessment platform that can account for such feedback mechanisms, the current 

study adopts a system dynamics simulation approach to model the thermal dynamic 

processes in: the reactor core; the secondary coolant system; and the pressurized 

water reactor. The reactor core and secondary coolant system parameters used to 

develop system dynamics models are based on those of the Palo Verde Nuclear 

Generating Station. These three system dynamics models are subsequently 

validated, using results from published work, under different system perturbations 

including the change in reactivity, the steam valve coefficient, the primary coolant 

flow, and others. Moving forward, the developed system dynamics models can be 
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integrated with other interacting processes within a NPP to form the basis of a 

system-level (systemic) dynamic risk assessment tool. 

 

Keywords: Nuclear power plant; Pressurized water reactor; Dynamic probabilistic 

risk assessment; System dynamics; Thermal dynamic processes. 
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3.1. INTRODUCTION  

Nuclear power is considered a vital solution to the continuous demand for clean, 

secure, sustainable and reliable energy (IAEA 2016). The 448 nuclear power 

reactor units currently operating around the world provide 10.4% of the global 

electricity (World Nuclear Association 2019), while a total of 60 and 168 units are 

currently undergoing their construction and planning stages, respectively (Barrett 

2017). As a result of their associated cost, nuclear power plants (NPP) are mega 

infrastructure that are expected to operate for a relatively long time span, whereas 

the plant design and planning decisions must account for abnormal events. Recent 

events (e.g., Fukushima Daiichi nuclear disaster) have highlighted that natural 

hazard intensity can exceed that originally used for plant design (Hassija et al. 

2014). In addition to natural hazards, anthropogenic hazards (e.g., fire, internal 

flooding, and human-made errors) might also initiate events that lead to a 

component and/or system failure. In addition, both natural and anthropogenic 

hazards can, independently or through interaction, trigger cascade disasters 

(defined as disasters in which impacts progressively increase over time and cause 

unexpected secondary events of more significant consequences (Pescaroli and 

Alexander 2015)) throughout a major part of or the entire NPP, due to 

component/system interdependence. Such disasters have been known to cause 

major failures in NPP (e.g., Three Mile Island accident in 1979, Chernobyl disaster 

in 1986, H.B. Robinson NPP fire event in 2010, and Fukushima Daiichi disaster in 

2011), as described by Little (2002), Mosleh (2014), and Perrow (2011). NPP 
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disasters can cause substantial economic and human losses where, for example, the 

Fukushima Daiichi disaster resulted in the release of a large amount of radioactive 

material (Chino et al. 2011), and more than 100,000 people were forced to evacuate 

communities within 25 miles from the NPP (Holt et al. 2012). The estimated total 

cost of this disaster is 500 billion U.S. dollars (ASME 2012), which includes the 

costs for cleanup and damaged units decommissioning and compensation to the 

affected people. 

NPPs have typically been designed and constructed employing deterministic 

safety approaches, as described by IAEA safety standards (No. SSG-2) (IAEA 

2009) and (Dawson 2017). These approaches assume that all the required functions 

can be achieved during normal and abnormal operations. Although there is a high 

level of confidence in NPP components when designed using such approaches 

(CNSC 2017), there is still a probability that a component does not perform as 

expected under normal operation scenarios, abnormal events, and extreme events, 

which necessitated adopting probabilistic risk assessment (PRA) approaches. PRA 

is an analytical technique that integrates the frequency of external/internal events, 

accident sequences, human reliability analysis, and the probability of components 

failure in order to evaluate NPP safety, as described in the U.S. Nuclear Regulatory 

Commission report NUREG/CR-2300 (1983).  

The U.S. WASH-1400 was the first major PRA framework that investigated 

many accident sequences in NPP and provided quantitative estimates of the risk 

associated with these sequences (Bartel 2016). The WASH-1400 framework uses 
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static event and fault tree analysis schemes to simulate the accident sequences 

following an extreme event. Although such risk assessment techniques have 

experienced significant improvements, all these improvements essentially followed 

the WASH-1400 framework developed more than 40 years ago, as illustrated by 

Mosleh (2014), Dawson (2017), and Moieni and Spurgin (1994). As such, current 

risk assessment techniques still have significant fundamental limitations including, 

for example, the difficulty of developing accident scenarios for NPP risk 

assessment through event and fault trees, as such prescribed trees might be 

insufficient in terms of predicting new scenarios. The event and fault tree 

limitations are partly attributed to the lack of accurate physics representation when 

NPP systems’ dynamic interdependence-induced failures are considered. The 

limitations are also attributed to the inability to identify the exact timing of the 

failure-initiating events and the corresponding value of the system variables at such 

a time (Mandelli et al. 2017a).  

Limitations of current PRA and the occurrence of severe NPP accidents have 

raised the need to develop adequate methodologies that take into account the 

complexity of hardware/software/operator interactions inside NPP (Nejad-

Hosseinian 2007). As such, developing a dynamic PRA approach has been 

identified as key to overcoming the limitations of current PRA. Dynamic PRA is 

developed in a way that considers the timing and sequencing of events during 

hardware/software/operator action interactions (Aldemir 2018), which is essential 

for NPP risk assessment (Mandelli et al. 2013a). Simulation methods of dynamic 



Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

88 

 

PRA have been evolving over the past three decades including DYLAM (Amendola 

1988), DETAM (Acosta and Siu 1993), ADS (Hsueh and Mosleh 1996), ADS-

IDAC (Coyne and Mosleh 2014), MCDET (Hofer et al. 2002b), ADAPT 

(Catalyurek et al. 2010), and RAVEN (Alfonsi et al. 2013b). These platforms, 

however, need to be integrated with NPP simulators such as RELAP (U.S. NRC 

1995) and MELCOR (Gauntt et al. 2000) that represent the dynamic behavior of 

NPP. 

3.2. SYSTEM DYNAMICS SIMULATION APPROACH 

In order to improve risk assessment techniques of NPP, there is a need for an 

integrated platform that simulates the NPP dynamic processes, and thus their 

responses under abnormal events. In this respect, the current study adopts a system 

dynamics (SD) simulation approach to assess the dynamic response of different 

systems in pressurized water reactor (PWR) as a first step in developing an 

integrated dynamic PRA platform. SD is a simulation approach has been adopted 

in many disciplines, and it is typically used to simulate the dynamic behavior and 

interdependence within large complex systems, as described by Sonnessa (2004), 

Sterman (2000), and Bala et al. (2017). SD was first developed in the 1950s by Jay 

Forrester as a way to investigate the behavior of complex economic and social 

systems. Recently, SD has had extensive applications in simulating numerous real-

world applications (Grigoryev 2016). The concepts of SD are presented in a 

simplified manner through graphs and basic algebraic formulation rather than 

complex mathematical/numerical models. For example, Figure 3-1 shows a 
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schematic diagram of a PWR SD model, where the feedback loops, stocks, and 

flows (e.g., the rate of change in stocks) are used to represent the parameters and 

simulate the PWR’s dynamic processes (Forrester 2009). Feedback loops are key 

in SD as they control the dynamic interdependence between the different system 

components, whereas stocks are used to quantify the system parameters at any time. 

SD is essentially a system of differential equations that are analyzed numerically to 

simulate the behavior of complex systems (Borshchev and Filippov 2004).  

Similar to other disciplines, although not to the same extent, models based on 

SD have been recently developed for nuclear applications, such as to investigate 

the nuclear fuel cycle starting from the mining and enrichment processes to 

repository disposal (Yacout et al. 2005). In a different study, Jeong and Choi (2007) 

investigated the fuel cycle process in Korea using a SD model and  illustrated the 

importance of using the spent PWR fuel in both the Canada deuterium uranium and 

sodium-cooled fast reactors in order to reduce the spent fuel inventory. Another 

recent application of SD was to investigate the effect of generating nuclear power 

on economic, environmental, political, and social aspects in Singapore (Chia et al. 

2015). SD was also recently used to investigate the development of nuclear power 

in China, combining different aspects that have influences on the nuclear power 

development such as electricity consumption, power generation, and uranium 

resources (Guo and Guo 2016). While a SD simulation approach has been used in 

the above referenced nuclear applications, to date, no study has applied SD to 

simulate the thermal dynamic processes in a NPP.  
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The ultimate goal of the current multi-phase study is to develop a dynamic 

PRA platform to enhance current risk assessment techniques through considering 

the complex dynamic interdependence between NPP systems/components in one 

platform. As a first step in this endeavor, the objective of this phase of the current 

study is to simulate the nonlinear behavior of the thermal dynamic processes in a 

PWR using SD simulation approach, including the physical response of multiple 

parameters/systems inside a NPP that may lead to system failure. In this respect, 

three SD models are developed to simulate the nonlinear behavior of the thermal 

dynamic processes for the reactor core, secondary coolant system and complete 

PWR based on the PWR behavior described in Thakkar (1975), Kerlin et al. (1976), 

Ali (1976), Arda et al. (2013), Arda (2013), and Puchalski et al. (2017). The 

developed PWR models can later be further integrated with other system models to 

map the event consequence propagation throughout different NPP systems, thus 

overcoming the limitations of current static fault and tree event tree analysis 

schemes. A concise background on thermal dynamic processes inside the reactor 

core and the secondary coolant system (SCS) is provided next. Afterwards, the 

reactor core, SCS, and complete reactor simulation models are validated using the 

results from published data (Arda 2013). Finally, the responses of the developed 

SD models are evaluated under several different perturbations in primary coolant 

flow and temperature, external reactivity, and steam valve opening events. 

 

 

 

 



Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

91 

 

3.3. SYSTEM DYNAMICS MODEL DEVELOPMENT OF PWR  

The primary function of a PWR is to convert the heat energy produced by uranium 

fission to electric power. In the PWR, a reactor pressure vessel holds the enriched 

uranium fuel required for the fission reactions. These reactions take place inside the 

RPV, generating heat energy and radioactive materials. Next, a high-pressure liquid 

(water) is circulated in a primary coolant system to cool the reactor core. This 

results in hot water that leaves the reactor pressure vessel through hot legs to the 

metal U-tube inside a steam generator. Finally, the steam generator transfers the 

heat to light-water to produce steam that in turn drives the turbine to generate 

electricity. A schematic diagram of the PWR generating unit, including the reactor 

pressure vessel, steam generator, turbine, hot and cold legs, is shown in Figure 3-2. 

In the current study, SD is used to simulate the thermodynamic process (i.e., 

the energy production, storage, transfer and conversion) in the PWR, including the 

reactor core, the plenums, the hot and cold legs, and the steam generator. Three 

models are established to predict the nonlinear behavior of a complete PWR and 

validated using the work of Arda (2013). The three models are intended to simulate: 

1) the thermodynamic process in the reactor core; 2) the thermodynamic process in 

the SCS; and 3) the interdependence between the reactor core and the SCS. The 

reactor core and SCS parameters are based on those of the Palo Verde Nuclear 

Generating Station (Arda 2013). Table 3-1 and Table 3-2 summarize the reactor 

core and SCS parameters, respectively. In addition, the delayed neutron fractions βi 

and the delayed neutron precursor decay constants λi for the six delayed-neutron 

http://www.nuclear-power.net/nuclear-power-plant/nuclear-reactor/
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groups are based on Puchalski et al. (2017). The thermodynamic process is 

represented in SD models by first-order differential equations. These equations 

control the interdependency among the different PWR dynamic parameters (e.g., 

reactor thermal power, reactor fuel and primary coolant temperatures, reactivity of 

reactor core, metal tube and secondary coolant temperatures, and steam pressure in 

steam generator) in terms of static parameters such as the heat transfer coefficients, 

coolant flow, and fuel and coolant masses. 

3.3.1. MODEL I: THERMAL PROCESS IN THE REACTOR CORE 

SYSTEM 

The heat transfer process inside the reactor core is simulated as a function of the 

reactor core thermal power. This thermal power is represented by point kinetics 

equations since the reactor power is controlled by reactivity feedbacks due to 

deviations in fuel, primary coolant temperatures, and external reactivity induced by 

control rods. Reactivity is assumed to be zero in the reactor steady state operation 

phase. During the reactor power maneuvering, the reactivity feedback mechanism 

is controlled by equation [3-1].  

𝜌(𝑡) = 𝛿𝜌𝑒𝑥𝑡 + 𝛼𝐹𝛿𝑇𝐹 +
𝛼𝐶

2
𝛿𝑇𝐶1 +

𝛼𝐶

2
𝛿𝑇𝐶2     [3-1] 

The linearized point kinetics in Eqs. [3-2] and [3-3] control the reactor core 

thermal power with the influence of delayed neutron precursors (Duderstadt and 

Hamilton 1976). 
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𝑑𝛿𝑃

𝑑𝑡
=

−𝛽

𝛬
𝛿𝑃 + ∑ 𝜆𝑖𝛿𝐶𝑖(𝑡)

6
𝑖=1 +

𝑃0

𝛬
𝛿𝜌𝑒𝑥𝑡 +

𝛼𝐹𝑃0

𝛬
𝛿𝑇𝐹 +

𝛼𝐶𝑃0

2𝛬
𝛿𝑇𝐶1 +

𝛼𝐶𝑃0

2𝛬
𝛿𝑇𝐶2 

          [3-2] 

𝑑𝛿𝐶𝑖(𝑡)

𝑑𝑡
=

𝛽𝑖

𝛬
𝛿𝑃 − 𝜆𝑖𝛿𝐶𝑖 , 𝑖 = 1, . . . ,6      [3-3] 

The current study utilizes Mann’s model (Kerlin 1978) to represent the 

deviation in the primary coolant and fuel temperatures. As shown in Figure 3-3, this 

model includes one node for the uranium fuel temperature and two nodes for the 

primary coolant temperature. In the reactor steady state operation phase, the reactor 

thermal power is constant and there is no deviation in the reactor fuel and coolant 

temperatures. As such, fluctuation in the reactor thermal power is achieved by 

changing the reactor core parameters such as the inlet coolant temperature, external 

reactivity, and primary coolant flow. Afterwards, the feedback mechanism causes 

a deviation in the overall PWR response. The reactor core parameters used in the 

current study are provided in Table 3-1, as mentioned earlier. Equation [3-4] 

represents the deviation in the reactor fuel temperature, while Eqs. [3-5] and [3-6] 

control the deviation in the coolant temperature nodes from the steady state. 

𝑑𝛿𝑇𝐹

𝑑𝑡
=

𝑓

𝑚𝑓𝑐𝑓
𝛿𝑃 −

𝑈𝐹𝐶∗ 𝐴𝐹𝐶

𝑚𝑓𝑐𝑓
(𝛿𝑇𝐹 − 𝛿𝑇𝐶1)     [3-4] 

𝑑𝛿𝑇𝑐1

𝑑𝑡
=

1−𝑓

𝑚𝑐𝑐𝑐
𝛿𝑃 −

𝑈𝐹𝐶∗ 𝐴𝐹𝐶

𝑚𝑐𝑐𝑐
(𝛿𝑇𝐹 − 𝛿𝑇𝐶1) −

2𝑤𝑐

𝑚𝑐
(𝛿𝑇𝑐1 − 𝛿𝑇𝐿𝑃)  [3-5] 

𝑑𝛿𝑇𝑐2

𝑑𝑡
=

1−𝑓

𝑚𝑐𝑐𝑐
𝛿𝑃 −

𝑈𝐹𝐶∗ 𝐴𝐹𝐶

𝑚𝑐𝑐𝑐
(𝛿𝑇𝐹 − 𝛿𝑇𝐶1) −

2𝑤𝑐

𝑚𝑐
(𝛿𝑇𝑐2 − 𝛿𝑇𝑐1)  [3-6] 

The thermal dynamic process of the reactor core is simplified in the current 

study using the following assumptions (Puchalski et al. 2017): 1) the fuel to coolant 

heat transfer coefficient is constant; 2) the coolant flow is one dimensional; and 3) 
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the coolant is a single phase with constant density and specific heat. 

The dynamic parameters of the reactor core (e.g., fuel and coolant 

temperatures, reactor thermal power, and reactivity) are modeled using stocks. The 

rates of change of these parameters are controlled by the feedback from multiple 

dynamic parameters and static parameters such as the fuel and coolant masses, heat 

transfer coefficient, and coolant flow, as shown in Figure 3-4. 

3.3.2. MODEL II: THERMAL PROCESS IN THE SECONDARY 

COOLANT SYSTEM  

The steam generator contains number of metal U-tubes for the primary coolant flow 

process. These tubes are essential components that separate the secondary and 

primary coolants in order to prevent the transfer of radioactive material to the SCS. 

The primary function of the steam generator is to convert the heat energy stored in 

the primary coolant into electric power. This is performed by boiling the water 

inside the steam generator to produce steam that drives the turbine of an electric 

generator. Next, this steam is condensed and returned to the steam generator. 

The thermodynamic process in the steam generator consists of two heat 

transfer processes. First, the heat stored in the primary coolant is transferred to the 

metal tubes. Second, the heat is transferred from the metal U-tubes to the secondary 

coolant. A simplified simulation for the thermodynamic process in the steam 

generator is performed by representing the SCS using five lumps, as shown in 

Figure 3-3. The primary coolant and U-tubes are each represented by two lumps to 
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simulate the two branches of U-tubes, while the secondary coolant is simulated by 

only one lump.  

Several aspects of the thermodynamic process in the steam generator are 

considered (Ali 1976; Arda 2013): 1) the heat transfer coefficients are constant 

during the reactor fluctuations; 2) the thermal conductivity of the steam generator 

metal U-tubes is constant; 3) the coolant flow is one-dimensional; 4) the properties 

of the saturated water and steam are constant over the steam pressure range of 600-

1000 psi; 5) the feedwater flow is controlled (i.e., the feedwater flow is equal to the 

steam flow); and 6) and the steam flow rate is controlled only by the steam generator 

pressure (i.e., critical flow assumption). 

In order to simulate the heat transfer process inside the steam generator using 

SD, the differential equations of the SCS dynamic parameters (e.g., primary 

coolant, metal U-tubes, secondary coolant temperatures, and steam pressure) are 

adopted using the following physical phenomena (Arda 2013): 1) heat balance for 

primary fluid; 2) heat balance for metal tube; 3) secondary fluid (liquid and steam 

phase) mass balance; 4) steam generator volume balance (i.e., the change of 

secondary coolant volume plus the change in the steam volume is zero); and 5) 

secondary fluid (liquid and steam phase) energy balance. Algebraic substitutions 

are also performed to yield the following differential equations. After linearization, 

deviations in primary coolant and metal U-tube lump temperatures are expressed 

by Eqs. [3-7], [3-8], [3-9], and [3-10], respectively. Finally, Eqs. [3-11] and [3-12] 

represent the deviation in the steam pressure inside the steam generator. The steam 
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generator parameters used in the current study are provided in Table 3-2. The steam 

valve coefficient (CL) in the SD model is calibrated to predict the thermal dynamic 

behavior of the SCS similar to that of Arda’s model because this coefficient is not 

reported in Arda (2013).  

𝑑𝛿𝑇𝑃1

𝑑𝑡
=

1

𝜏𝑃1
𝛿𝑇𝑃𝐼 − (

1

𝜏𝑃𝑀1
+

1

𝜏𝑃1
)𝛿𝑇𝑃1 +

1

𝜏𝑃𝑀1
𝛿𝑇𝑀1    [3-7] 

𝑑𝛿𝑇𝑃2

𝑑𝑡
=

1

𝜏𝑃2
𝛿𝑇𝑃1 − (

1

𝜏𝑃𝑀2
+

1

𝜏𝑃2
)𝛿𝑇𝑃2 +

1

𝜏𝑃𝑀2
𝛿𝑇𝑀2    [3-8] 

𝑑𝛿𝑇𝑀1

𝑑𝑡
=

1

𝜏𝑀𝑃1
𝛿𝑇𝑃1 − (

1

𝜏𝑀𝑆1
+

1

𝜏𝑀𝑃1
)𝛿𝑇𝑀1 +

1

𝜏𝑀𝑆1
(
𝜕𝑇𝑆𝐴𝑇

𝜕𝑃
)𝛿𝑃𝑆   [3-9] 

𝑑𝛿𝑇𝑀2

𝑑𝑡
=

1

𝜏𝑀𝑃2
𝛿𝑇𝑃2 − (

1

𝜏𝑀𝑆2
+

1

𝜏𝑀𝑃2
)𝛿𝑇𝑀2 +

1

𝜏𝑀𝑆2
(
𝜕𝑇𝑆𝐴𝑇

𝜕𝑃
)𝛿𝑃𝑆   [3-10] 

𝑑𝛿𝑃𝑆

𝑑𝑡
=

1

𝐾

[
 
 
 
 
𝑈ms𝑆ms1𝛿𝑇𝑀1 + 𝑈ms𝑆ms2𝛿𝑇𝑀2 − [

(𝑈ms𝑆ms1 + 𝑈ms𝑆ms2) (
𝜕𝑇𝑆𝐴𝑇

𝜕𝑃
)

+𝑤𝑠𝑜
𝜕𝑇𝑆𝐴𝑇

𝜕𝑃
+ 𝐶𝐿(ℎ𝑔 − 𝑐𝑝𝑖𝑇𝑓𝑖)

] 𝛿𝑃𝑆

+𝑤𝑠𝑜𝑐𝑝𝑖𝛿𝑇𝑓𝑖 − 𝑃𝑆0(ℎ𝑔 − 𝑐𝑝𝑖𝑇𝑓𝑖)𝛿𝐶𝐿 ]
 
 
 
 

 

          [3-11] 

𝐾 = (𝑚𝑠𝑤
𝜕ℎ𝑓

𝜕𝑃
+ 𝑚𝑠𝑠

𝜕ℎ𝑔

𝜕𝑃
− 𝑚𝑠𝑠

ℎ𝑓𝑔

𝑣𝑓𝑔

𝜕𝑣𝑔

𝜕𝑃
)     [3-12] 

Stocks are used to represent the primary coolant, metal U-tube lump 

temperatures, and steam pressure. Equations [3-7] to [3-12] provide the rates of 

change of these parameters. All other parameters (e.g., coolant residence time, mass 

of coolant, coolant flow, and mass of metal lump) are considered as static 

parameters for simplicity of the model. As can be seen in Figure 3-5, the SD model 

of the SCS shows feedback loops between the system dynamic parameters (i.e., 

stocks) and the static parameters.  
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3.3.3. MODEL III: THERMAL PROCESS IN THE PRESSURIZED 

WATER REACTOR 

The thermal dynamic process for the reactor core upper (outlet) and lower (inlet) 

plenums, steam generator outlet and inlet plenums, and the hot and cold legs are 

combined with the reactor core and SCS models to present a better representation 

for the whole PWR, as shown in Figure 3-6. The primary coolant residence time 

values inside the plenums, cold and hot legs are provided in Table 3-3. Following 

the thermodynamics procedure, the linearized differential equations [3-13] to [3-

18] are extracted. More specifically, Eqs. [3-13] and [3-14] define the coolant 

temperature deviation in the upper reactor core and lower plenums, while Eqs. [3-

15] and [3-16] represent the coolant temperature deviation in the inlet and outlet 

steam generator. Finally, Eqs. [3-17] and [3-18] provide the coolant temperature 

deviation in the hot and cold legs. 

𝑑𝛿𝑇𝑈𝑃

𝑑𝑡
=

1

𝜏𝑈𝑃
(𝛿𝑇𝑐2 − 𝛿𝑇𝑈𝑃)       [3-13] 

𝑑𝛿𝑇𝐿𝑃

𝑑𝑡
=

1

𝜏𝐿𝑃
(𝛿𝑇𝐶𝐿 − 𝛿𝑇𝐿𝑃)       [3-14] 

𝑑𝛿𝑇𝐼𝑃

𝑑𝑡
=

1

𝜏𝐼𝑃
(𝛿𝑇𝐻𝐿 − 𝛿𝑇𝐼𝑃)       [3-15] 

𝑑𝛿𝑇𝑂𝑃

𝑑𝑡
=

1

𝜏𝑂𝑃
(𝛿𝑇𝑃2 − 𝛿𝑇𝑂𝑃)        [3-16] 

𝑑𝛿𝑇𝐻𝐿

𝑑𝑡
=

1

𝜏𝐻𝐿
(𝛿𝑇𝑈𝑃 − 𝛿𝑇𝐻𝐿)        [3-17] 

𝑑𝛿𝑇𝐶𝐿

𝑑𝑡
=

1

𝜏𝐶𝐿
(𝛿𝑇𝑂𝑃 − 𝛿𝑇𝐶𝐿)       [3-18] 
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3.4. SYSTEM DYNAMICS MODEL VALIDATION OF PWR 

3.4.1. MODEL I: THE REACTOR CORE SYSTEM 

The thermal dynamic process in the reactor core is validated under an increase in 

the external reactivity (ρext) by 7.3x10-5 at 10 s, to facilitate a direct comparison with 

available data (Arda 2013). This action is followed by an increase in the neutron 

flux that subsequently causes an immediate increase in the reactor thermal power. 

After reactor stability, the reactor core thermal power increases to 24.8 and 27.9 

MWth in the SD model and Arda’s model, respectively, as shown in Figure 3-7a. 

Increasing the thermal power of the reactor core is accompanied by an increase in 

the temperatures of the fuel and coolant nodes, as shown in Figure 3-7b. This 

initiates negative reactivity feedback that drives the total reactivity to decrease. As 

can be seen in Figure 3-7a, although the SD model shows a considerable difference 

in thermal power relative to Arda’s model immediately after the increase in external 

reactivity at 10 s, the reactor power after stabilization is simulated accurately by the 

SD model with a deviation of only 11%. As shown in Figure 3-7b, the reactor fuel 

and coolant temperature values estimated by the SD model are lower than those 

calculated from Arda’s model by 11%. 

3.4.2. MODEL II: THE SECONDARY COOLANT SYSTEM 

The thermal dynamic process in the SCS is validated under an increase in the inlet 

coolant temperature (TIP) by 10oF at 5 s without changing the steam valve 

coefficient (CL). This is followed by an increase in the temperature of the primary 
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coolant lumps (TP1, TP2). Additional heat is transferred from the primary coolant to 

the metal U-tubes. As a result, the temperature of these tubes increases and 

additional heat energy is transferred to the secondary coolant, which in turn 

generates additional steam. Figure 3-8a shows similar increases in the coolant (TP1) 

and metal U-tube (Tm1) temperatures after an increase in the inlet coolant 

temperature in both the SD model and Arda’s model. Subsequently, as can be seen 

in Figure 3-8b, the steam pressure in the steam generator increases because the 

steam valve opening is maintained constant. The dynamic parameters of the SCS 

(i.e., primary coolant, metal tube temperatures, and steam pressure) in the SD model 

and Arda’s model show similar nonlinear dynamic response after an increase in the 

inlet coolant temperature. As can be seen in Figure 3-8b, the steam pressure is 

increased by 51.1 and 52.4 psi in the SD model and Arda’s model, respectively, a 

minor deviation of only 2.5%.  

3.4.3. MODEL III: THE PRESSURIZED WATER REACTOR  

The complete thermodynamic process in the PWR is validated under an increase in 

the external reactivity. This investigates the dynamic response of different 

parameters in the SCS to small perturbations inside the reactor core. A positive 

reactivity of 7.3x10-5 is applied at 10 s without changing the steam valve coefficient. 

As shown in Figure 3-9a, the reactor fuel temperature increases following the 

increase of the external reactivity. This causes more heat energy to be transferred 

from the primary coolant system to the SCS. As a result, additional steam is 

produced that causes an increase in the steam pressure, as shown in Figure 3-9b. It 
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should be noted that the reactor core inlet coolant temperature (TLP) increases after 

a complete primary coolant cycle, as shown in Figure 3-9a, which in turn causes a 

high negative reactivity feedback. As such, the fuel temperature decreases after 

reaching the maximum value in both the SD model and Arda’s model, with a 

maximum difference between the models of 15%. As can be seen in Figure 3-9b, 

the steam pressure in the SCS after a positive change in the external reactivity 

shows similar responses (within 5%) in the SD model and Arda’s model.  

3.5. PERTURBATION EVENT EFFECTS ON THERMAL DYNAMIC 

PROCESS IN THE PWR 

Following the SD model validation, the thermal dynamic processes in the reactor 

core, SCS, and complete PWR are tested separately under different perturbation 

events to verify the interaction among feedback mechanisms. These events include 

either single or multiple actions at a specific time or actions that fluctuate with time.  

3.5.1. MODEL I: THE REACTOR CORE SYSTEM   

The response of reactor thermal power, coolant, and fuel temperatures are 

investigated due to a change in: 1) the external reactivity (ρext) induced by the 

control rod; 2) the inlet core coolant temperature (TLP); and 3) the primary coolant 

mass flow (wc).  

In the first event, the external reactivity is increased by 7.3x10-5 at 10 s. 

Simultaneously, three different scenarios are carried out to investigate the influence 

of the primary coolant mass flow on the thermal dynamic behavior of the reactor 
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core. More specifically, the primary coolant flow (wc) is maintained constant in the 

first scenario, while this flow is increased and reduced by 20% in the second and 

third scenarios, respectively. As shown in Figure 3-10a, the reactor thermal power 

is immediately increased after adding a positive reactivity, a behavior that is 

observed in all scenarios. As the thermal power increases, the reactor fuel and 

primary coolant temperatures increase, as shown Figure 3-10b, causing negative 

reactivity feedback. Also, Figure 3-10b shows that the low value of the coolant 

mass flow in the third scenario (0.8 wc) leads to an increase in the coolant 

temperature relative to first and second scenarios. In particular, the third scenario 

shows a higher negative reactivity feedback as expected, which leads to a reduction 

in the reactor thermal power by 8.6% compared to the first scenario, respectively. 

Increasing the primary coolant flow has the opposite effect of reducing the negative 

reactivity feedback, leading to a relative increase in the reactor thermal power.  

The second event investigates the dynamic parameters of the reactor when 

the control rods are inserted (i.e., a 7.3x10-5 decrease of reactivity). Figure 3-11a 

shows an immediate drop in the thermal power of the reactor core, which then 

stabilizes to 15.7 MWth. This behavior is attributed to the control rods that capture 

neutrons, and simultaneously, the fuel and coolant nodes temperatures are 

decreased. As can be seen in Figure 3-11b, the reactor fuel and coolant nodes (TC2, 

TC1) temperatures decrease by 2.44oF , 0.22oF , and 0.1oF, respectively. 

In the third event, the temperature of the inlet coolant (TLP) is increased by 

5oF at 10 s. This is followed by a high negative reactivity feedback that induces a 
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significant drop in the reactor thermal power. As can be noted from Figure 3-12a, 

the reactor thermal power stabilizes because of the negative reactivity feedback 

with a reduction in its initial value by 120 MWth. In addition, Figure 3-12b shows 

a reduction in the fuel temperature by 13.7oF in response to the increase in the inlet 

coolant temperature, because of the thermal power reduction.  

3.5.2. MODEL II: THE SECONDARY COOLANT SYSTEM  

Fluctuations in steam pressure, primary coolant, and metal U-tube lump 

temperatures are investigated during several events. 

In the first event, the steam valve coefficient (CL) is decreased by 5% at 5 s. 

As can be seen in Figure 3-13a, this event is followed by an immediate increase in 

the steam pressure inside the steam generator. Then, a small amount of heat is 

transferred from the primary coolant system to the SCS followed by increases in 

the coolant and metal tube lump temperatures, as shown in Figure 3-13b. 

In the second event, the temperature of the steam generator inlet coolant (TIP) 

is increased by 10oF at 5 s. Simultaneously, three different scenarios are applied to 

investigate the influence of steam valve opening position on the thermodynamic 

behavior of the SCS. In the first scenario, the steam valve coefficient is maintained 

constant, while the steam valve coefficient is increased and decreased by 5% in the 

second and third scenarios, respectively. As shown in Figure 3-14a, an immediate 

slight reduction in steam pressure is observed in the case of the steam valve opening 

(i.e., second scenario), followed quickly by a much larger increase in steam pressure 

as more heat is transferred from the primary to the secondary system following the 
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increase in the inlet coolant temperature. As can be seen also in Figure 3-14b, the 

primary coolant lump 1 (TP1) temperature is lower for the second scenario compared 

to other scenarios. This is because more steam is required due to the opening of the 

steam valve, leading to more heat energy being transferred from the primary coolant 

system and therefore smaller increase in primary coolant temperature. In summary, 

the increase in the steam valve coefficient reduces both the steam pressure and 

primary coolant temperature compared to the first and third scenarios.  

3.5.3. MODEL III: THE PRESSURIZED WATER REACTOR 

Following the evaluation of the reactor core and the SCS to different perturbation 

events, a SD model of the complete thermodynamic process is essential to predict 

the response of the steam generator when perturbation events occur inside the 

reactor core and vice versa. This SD model is developed by combining the 

aforementioned reactor core and SCS thermal dynamic models as described earlier. 

In this subsection, the thermal dynamic process of a complete PWR is investigated 

under three different perturbation events. 

First a small perturbation is applied by increasing the steam valve coefficient 

by 5% at 5 s. Therefore, additional steam is expected to be produced in order to 

balance the SCS thermal dynamic process. This event is followed by a reduction in 

the steam pressure (PS) and temperature (Tsteam) values by 29.1 psi and 3.4oF, as 

shown in Figure 3-15a and Figure 3-15b, respectively. More heat is transferred from 

the primary coolant in the U-tube to the secondary system in order to accommodate 

the steam generation, and subsequently, the primary coolant lump temperatures 
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(TP1, TP2) are reduced. This behavior is followed by a reduction in the reactor core 

inlet primary coolant temperature (TLP). Also, Figure 3-15b shows that the reactor 

core primary coolant temperatures (Tc1, Tc2) are reduced by 2.1oF and 1.4oF, 

respectively. The reduction in coolant temperature causes a positive reactivity 

feedback that leads to an increase in the reactor thermal power by 97 MWth, as 

shown in Figure 3-15a. Figure 3-15b also shows that the reactor fuel temperature is 

increased by 12.3oF because of this increase in the reactor thermal power.  

The second event investigates different steam valve opening positions after a 

positive reactivity of 7.3x10-5
 is added. The first scenario is applied without 

changing the steam valve coefficient, while the steam valve coefficient is increased 

and decreased by 5% in the second and third scenarios, respectively. All scenarios 

show an immediate increase in the reactor thermal power (Figure 3-16b), and 

subsequently the fuel temperature (Figure 3-16c) increases after the external 

reactivity is added. However, in the third scenario, the reduction in the steam valve 

coefficient results in a negative reactivity feedback, primarily because of an 

increase in the reactor core inlet coolant temperature. As can be seen in Figure 

3-16a, a reduction in the steam valve coefficient (third scenario) by 5% causes an 

increase in the reactor inlet coolant temperature (TLP) by 4.0oF. Because of the 

negative reactivity feedback in this scenario, the thermal power is reduced by 81.6 

MWth relative to the first scenario. On the other hand, Figure 3-16b shows an 

increase in the reactor thermal power by 95 MWth relative to the first scenario after 

an increase in the steam valve coefficient. In this second scenario, the reactor core 
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thermal power reaches a peak value, then drops as a result of the decay of fission 

fragments, and finally, the reactor power starts increasing again due to the feedback 

of increasing the steam valve coefficient. It is clear from Figure 3-16c that the 

reactor fuel temperature is significantly reduced in the third scenario as a result of 

the negative reactivity feedback. Figure 3-16b and Figure 3-16d show that closing 

the steam valve by 5% reduces the thermal power of the reactor core by 81.6 MWth 

and increases the steam pressure by 35.3 psi relative to the first scenario, in which 

the deviations in the reactor thermal power and steam pressure are 12.2 MWth and 

3.1 psi, respectively. On the other hand, increasing the steam valve coefficient leads 

to a reduction in the steam pressure by 29.6 psi and an increase in the thermal power 

by 95 MWth relative to the first scenario. 

In the third and final events, a positive reactivity of 6.5x10-5 is applied for a 

30 s interval through a constant steam valve coefficient, followed by a 30 s interval 

of zero reactivity, as shown in Figure 3-17a. This external reactivity event is mainly 

to investigate the nonlinear response of the reactor thermal power to the change in 

the position of control rods within this time frame (i.e., up to 180 s). Figure 3-17b 

shows an increase in the fuel, coolant nodes, and steam temperatures after the 

reactivity is increased. Removal of the external reactivity reduces the total reactivity 

immediately due to the negative fuel and coolant temperature reactivity feedback. 

As can be seen in Figure 3-17c, the thermal power fluctuates immediately after 

changing the external reactivity. The cumulative behavior of the reactor parameters 

shows an increase in the thermal power, as well as the fuel and coolant 
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temperatures. Figure 3-17d shows also an increase in the steam pressure since the 

increase in the coolant temperature transfers additional heat energy from the 

primary coolant system to the secondary system. 

3.6. CONCLUSIONS 

A nuclear power plant (NPP) contains multiple systems that interact through several 

feedback mechanisms to generate electricity. The complex dynamic 

interdependence among these systems, the consequence severity of interacting 

hazards, and the drawbacks of current risk assessment techniques have raised major 

concerns about NPP safety, especially after the Fukushima Daiichi disaster. To 

address this challange, a system dynamics (SD) approach was used to simulate the 

thermal dynamic processes for different systems inside a pressurized water reactor 

(PWR), since this process is considered as a first step to overcome the limitation of 

current risk assessment techniques of NPPs. Three SD models of the reactor core, 

secondary coolant system (SCS), and complete PWR were validated against the 

results of a previously published model. Subsequently, these models were evaluated 

under different perturbation events pertaining to the external reactivity, primary 

coolant flow, and the steam valve coefficient. The results obtained from the 

complete PWR model, combining the reactor core and SCS, were used to 

investigate the interconnectivity and nonlinear feedback mechanism between 

different systems inside the PWR.  

The results of the current study demonstrate the capability of the SD approach 

to simulate the physical processes between major interdependent systems in NPPs 
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under different perturbation events. These physical processes are represented by the 

reactor thermal power, fuel and coolant temperatures and steam pressure. 

Moreover, the developed system dynamics simulation approach provides 

significant advantages from both the time and data storage perspectives, since the 

analysis of the developed SD models was very fast (e.g., the time needed for the 

longest perturbation event analysis is less than 60 s) with a very modest size of 

output data (e.g., the generated data for all perturbation events for both validation 

and evaluation analysis conducted in the current study was less than 500 KB). In 

this respect, SD is expected to facilitate the development of an integrated risk 

assessment technique with feedback loops that facilitates accurate simulation of 

several complex accident scenarios. Thus, the current study presents the first phase 

in a multi-phase research program aimed at developing an integrated dynamic 

probabilistic risk assessment platform that takes into account the interaction and 

interdependence of different NPP systems with an ultimate goal of enhancing the 

overall NPP safety. 
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3.8. NOTATION 

The following symbols are used in this paper: 

AFC = Effective heat transfer surface area between the reactor fuel and primary 

coolant; 

cc = Specific heat of primary coolant; 

cf = Specific heat of the reactor fuel; 

Ci = Delayed neutron precursors, i=1,……,6; 

CL = Steam valve coefficient;  

cm = Specific heat of metal U-tubes in steam generator; 

cpi = Specific heat of feedwater in steam generator; 

f = Fraction of the total power produced in the reactor fuel; 

hf = Enthalpy of saturated water; 

hg = Enthalpy of saturated steam; 

hfg = hf - hg; 

mc = Mass of primary coolant in the core region; 

mc-UP = Mass of primary coolant in reactor upper plenum; 

mf = Mass of the reactor fuel; 

mm1 = Mass of metal U-tube lump 1; 

mm2 = Mass of metal U-tube lump 2; 

mp1 = Mass of coolant in primary coolant lump 1; 

mp2 = Mass of coolant in primary coolant lump 2; 

msw = Mass of water in steam generator; 

mss = Mass of steam in steam generator; 

P = Thermal power of the reactor core; 

Po =      Initial steady state of reactor thermal power; 

Ps = Steam pressure; 

Pso = Initial steady state of steam pressure; 

Sms1 = Heat transfer area between steam generator tube metal lump 1 and 

secondary coolant; 

Sms2 = Heat transfer area between steam generator tube metal lump 2 and 

secondary coolant; 

Spm1 = Heat transfer area between primary coolant lump 1 and metal tube lump 1; 

Spm2 = Heat transfer area between primary coolant lump 2 and metal tube lump 2; 

TC1 = Primary coolant temperature at node 1; 
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TC2 = Primary coolant temperature at node 2; 

TCL = Primary coolant temperature in cold-leg; 

TF = Average fuel temperature; 

Tfi = Feedwater temperature in steam generator; 

THL = Primary coolant temperature in hot-leg; 

TIP = Primary coolant temperature in the steam generator inlet plenum; 

TLP = Primary coolant temperature in reactor lower plenum; 

TM1 = Average temperature of metal tube lump 1; 

TM2 = Average temperature of metal tube lump 2; 

TOP = Primary coolant temperature in the steam generator outlet plenum; 

TP1 = Bulk mean temperature of primary coolant lump 1; 

TP2 = Bulk mean temperature of primary coolant lump 2; 

TUP = Primary coolant temperature in reactor upper plenum; 

UFC = Heat transfer coefficient from fuel to coolant; 

Ums = Heat transfer coefficient between steam generator tube metal and 

secondary coolant; 

Upm = Heat transfer coefficient between primary coolant and tube metal in steam 

generator; 

vf = Specific volume of saturated water; 

vg = Specific volume of saturated steam; 

vfg = vf - vg; 

wc = Primary coolant mass flow rate of inside the core; 

wso = Steam flow rate; 

αc = Coolant temperature coefficient of reactivity; 

αF = Fuel temperature coefficient of reactivity; 

β = Total delayed neutron fraction; 

βi = Delayed neutron fraction for the six delayed-neutron groups, i=1,……,6; 

Δ = Deviation in the dynamic parameters from the steady state; 

𝛿ℎ𝑓 𝛿𝑃⁄  = Change of enthalpy of saturated water versus steam pressure; 

𝛿ℎ𝑔 𝛿𝑃⁄  = Change of enthalpy of saturated steam versus steam pressure; 

𝛿𝑇𝑆𝐴𝑇 𝛿𝑃⁄  = Slope of the change in saturation temperature with respect to steam 

pressure; 

𝛿𝑣𝑔 𝛿𝑃⁄  = Change in specific volume of saturated steam versus pressure; 

λi = Delayed neutron precursor decay constant for the six-delayed neutron 

group, i=1,……,6; 
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ρ = Reactivity; 

ρext = Reactivity induced by control rods; 

τCL = Coolant residence time in cold-leg; 

τHL =       Coolant residence time in hot-leg; 

τIP = Coolant residence time in steam generator inlet plenum; 

τLP = Coolant residence time in reactor lower plenum; 

τOP = Coolant residence time in steam generator outlet plenum; 

τP1 = Residence time for primary coolant lump 1; 

τP2 = Residence time for primary coolant lump 2; 

τMP1 = mm1 cm/Upm Spm1= Time constant for metal tube lump 1 to primary coolant 

lump 1 heat transfer; 

τMP2 = mm2 cm/Upm Spm2= Time constant for metal tube lump 2 to primary coolant 

lump 2 heat transfer; 

τMS1 = mm1 cm/Ums Sms1= Time constant for metal tube lump 1 to secondary 

coolant heat transfer; 

τMS2 = mm2 cm/Ums Sms2= Time constant for metal tube lump 2 to secondary 

coolant heat transfer; 

τPM1 = mp1 cc/Upm Spm1= Time constant for primary coolant lump 1 to metal tube 

lump 1 heat transfer; 

τPM2 = mp2 cc/Upm Spm2= Time constant for primary coolant lump 2 to metal tube 

lump 2 heat transfer; 

τUP =       mc-UP/wc= Coolant residence time in reactor upper plenum; and 

Ʌ = Neutron generation time. 
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Table 3-1 Parameters for the reactor core system 

Po MWth 3800  αc 1/oF -1.0*10-4   Ufc (Btu/hr)/(ft2.oF) 325.588 

f –– 0.975  αf 1/oF -1.20*10-5  Afc ft2 68600 

β –– 0.0065  wc lb/hr 164*106  mf lb 257.1*103 

β1 –– 0.000215  λ1 1/s 0.0124  cf Btu/lb.oF 0.1056 

β2 –– 0.001424  λ2 1/s 0.0305  mc lb 30721 

β3 –– 0.001274  λ3 1/s 0.1110  cc Btu/lb.oF 1.448 

β4 –– 0.002568  λ4 1/s 0.3010  Ʌ s 30*10-6 

β5 –– 0.000748  λ5 1/s 1.1400     

β6 –– 0.000273  λ6 1/s 3.0100     

 

Table 3-2 Parameters for the secondary coolant system 

τP1 s 1.2815  𝛿𝑇𝑆𝐴𝑇 𝛿𝑃⁄  oF/psi 0.1176  msw lb 334000 

τP2 s 1.2815  𝛿ℎ𝑓 𝛿𝑃⁄  Btu/lb.psi 0.1508  mss lb 36904 

τPM1 s 1.2233  𝛿ℎ𝑔 𝛿𝑃⁄  Btu/lb.psi -0.0385  Pso psi 1070 

τPM2 s 0.5826  𝛿𝑣𝑔 𝛿𝑃⁄  ft3/lb.psi -4.64*10-4  cpi Btu/lb.oF 1.278 

τMP1 s 0.3519  hg Btu/lb 1189  wso lb/hr 17.18*106 

τMP2 s 0.1676  hf Btu/lb 554  cm Btu/lb.oF 0.10205 

τMS1 s 0.3519  vf ft3/lb 0.0218  Tfi oF 450 

τMS2 s 0.1676  vg ft3/lb 0.4114  CL –– 6 

 

Table 3-3 Parameters for plenums, hot and cold legs 

τUP s 2.517  τOP s 0.726 

τHL s 0.234  τCL s 1.310 

τIP s 0.659  τLP s 2.145 

 

 

 



Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

120 

 

 

Figure 3-1: Schematic diagram of a PWR system dynamics model. 

 

 

Figure 3-2: Schematic diagram of a pressurized water reactor. 

https://www.sciencedirect.com/topics/engineering/pressurized-water-reactor


Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

121 

 

 

Figure 3-3: Schematic diagram of a PWR thermal dynamic process. 

 

 

Figure 3-4: Model I: system dynamics of the thermal dynamic process in the reactor 

core. 
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Figure 3-5: Model II: system dynamics of the thermal dynamic process in the 

secondary coolant system. 

 

 

Figure 3-6: Model III: system dynamics of the complete thermal dynamic process 

in PWR. 
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Figure 3-7: a. Reactor thermal power response due to adding positive reactivity 

(Model I). b. Fuel and coolant nodes temperature response due to adding positive 

reactivity (Model I). 

 

 

Figure 3-8: a. Primary coolant (Tp1) and metal U-tube (Tm1) temperature response 

due to an increase in inlet coolant (TIP) temperature (Model II). b. Steam pressure 

response due to an increase in inlet coolant (TIP) temperature (Model II). 

 

 

https://www.sciencedirect.com/topics/engineering/thermal-reactor
https://www.sciencedirect.com/topics/engineering/primary-coolant
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Figure 3-9: a. Fuel and inlet coolant (TLP) temperature response due to adding 

positive reactivity (Model III). b. Steam pressure response due to adding positive 

reactivity (Model III). 

 

 

Figure 3-10: a. Reactor thermal power response due to adding positive reactivity 

for different primary coolant flow (wc) values (Model I – 1st Event). b. Fuel and 

coolant nodes temperature response due to adding positive reactivity for different 

primary coolant flow (wc) values (Model I – 1st Event). 
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Figure 3-11: a. Reactor thermal power response due to adding negative reactivity 

(Model I – 2nd Event). b. Fuel and coolant nodes temperature response due to 

adding negative reactivity (Model I – 2nd Event). 

 

 

Figure 3-12: a. Reactor thermal power response due to an increase in the inlet 

coolant (TLP) temperature by 5°F (Model I – 3rd Event). b. Fuel and coolant nodes 

temperature response due to an increase in the inlet coolant (TLP) temperature by 

5 °F (Model I – 3rd Event). 
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Figure 3-13: a. Steam pressure response due to a decrease in steam valve coefficient 

by 5% (Model II – 1st Event). b. Primary coolant and metal tube lump temperature 

response due to a decrease in steam valve coefficient by 5% (Model II – 1st Event). 

 

 

Figure 3-14: a. Steam pressure response due to an increase in inlet temperature (TIP) 

by 10°F with different steam valve (CL) coefficient (Model II – 2nd Event). 

b. Primary coolant lump (Tp1) temperature response due to an increase in inlet 

temperature (TIP) by 10°F with different steam valve (CL) coefficient (Model II – 

2nd Event). 
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Figure 3-15: a. Reactor thermal power and steam pressure response due to an 

increase in steam valve coefficient by 5% (Model III – 1st Event). b. Fuel, coolant 

nodes, steam temperature response due to an increase in steam valve coefficient by 

5% (Model III – 1st Event). 

 

 

Figure 3-16: a. Inlet coolant (TLP) temperature response due to adding positive 

reactivity with different steam valve coefficient (CL) (Model III – 2nd Event). 

https://www.sciencedirect.com/topics/engineering/thermal-reactor
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b. Reactor thermal power response due to adding positive reactivity with different 

steam valve coefficient (CL) (Model III – 2nd Event). c. Fuel temperature response 

due to an increase in reactivity with different steam valve coefficient (CL) (Model 

III – 2nd Event). d. Steam pressure response due to an increase in reactivity with 

different steam valve coefficient (CL) (Model III – 2nd Event). 

 

 

Figure 3-17: a. Fluctuation in external reactivity every 30 s (Model III – 3rd Event). 

b. Fuel, coolant, and steam temperature response due to adding positive reactivity 

every 30 s (Model III – 3rd Event). c. Reactor thermal power response due to adding 

positive reactivity every 30 s (Model III – 3rd Event). d. Steam pressure response 

due to adding positive reactivity every 30 s (Model III – 3rd Event). 
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Chapter 4 : Dynamic Probabilistic Risk Assessment of Core 

Damage under Different Transients using System Dynamics 

Simulation Approach 

ABSTRACT 

Due to the limitations of static probabilistic risk assessment (PRA) techniques, 

dynamic PRA (DPRA) of nuclear power plants (NPPs) has become one of the most 

critical research areas in the field of nuclear engineering, especially in the aftermath 

of the 2011 Fukushima Daiichi nuclear accident. Uncertainty in the NPP actual 

behavior is key when considering the safety of the plant under normal and abnormal 

operating conditions. Such uncertainty typically results from site operation 

parameters, system conditions, and modeling assumptions. The current study 

adopts a system dynamics (SD) simulation approach to establish a platform for 

DPRA of NPPs, considering different sources of uncertainty. To demonstrate the 

approach’s applicability, the average fuel temperature is used as an indicator to 

estimate the probability of the reactor core damage under different transients, 

representing perturbations in reactivity and steam valve coefficient. A Monte Carlo 

simulation is subsequently employed to investigate the effect of uncertainties 

associated with the different model input parameters. A global sensitivity analysis 

demonstrates that the total delayed neutron fraction, the heat transfer coefficient 

from fuel to coolant, the coolant temperature coefficient of reactivity, and the fuel 

temperature coefficient of reactivity are the primary controllers of the plant 
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response variability under the transients considered. In summary, the integration of 

SD and Monte Carlo simulation techniques presents a useful approach to DPRA of 

NPPs by estimating the temporal probability of core damage, as this overcomes the 

limitation of static PRA techniques while minimizing the computational cost and 

time of DPRA analysis.  

 

Keywords: Dynamic Probabilistic Risk Assessment; System Dynamics; 

Sensitivity Analysis; Uncertainty Analysis; Temporal Probability of Core Damage. 
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4.1. INTRODUCTION  

A nuclear power plant (NPP) is a complex system-of-systems that requires full 

understanding of the behavior of each of its components, the system-level behavior, 

and the dynamic interaction/interdependence between these different systems and 

components, under both normal and abnormal operating conditions. Such 

understanding is now more essential than ever before because of the increased 

magnitude and frequency of hazard events that can exceed what was originally 

considered in the NPP design, causing negative impacts on the plant (Hassija et al. 

2014). NPP probabilistic risk assessment (PRA) approaches adopt static event tree 

(ET) and fault tree (FT) analysis methods to estimate the probability of occurrence 

of each accident scenario and its consequences. These methods rely on the so-called 

effect line (Hofer et al. 2002a), where branching points occur based on a specific 

action strategy for safety systems to mitigate accident propagation. ET/FT analysis 

methods were previously employed to estimate the frequencies of core damage 

(IAEA 2010b) and containment radioactive release (IAEA 2010a) as well as the 

impact of the latter on the public and the economy (CNSC 2014). However, these 

methods have been extensively criticized (Aldemir 2013; Hsueh and Mosleh 1996; 

Jankovsky et al. 2018a; Mercurio et al. 2009; Siu 1994; Swaminathan and Smidts 

1999a; Zio 2014) due to their inability to: i) account for the probabilistic time-

dependent interaction among component/system behaviors and the subsequent 

cascading failures following extreme events; and, ii) consider the dynamic (time 

sequence) propagation of disruptive events. Lessons learned from the Fukushima 
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nuclear accident also highlighted the importance of enhancing existing, and 

developing new, PRA approaches to facilitate understanding of the complex 

dynamic behavior of NPPs following various independent or interrelated hazards 

(Mosleh 2014). In this regard, precise evaluation of NPP dynamic risks following 

disruptive events requires an accurate representation of the system and its 

components' complex interactions. 

Due to the limitations of static PRA techniques (i.e., ET and FT), more 

advanced (dynamic) methods have been developed to account for the dynamic 

nature of NPP systems. These dynamic PRA (DPRA) analysis methods consider 

the timing and sequence of events throughout the modeled NPP systems. Examples 

of DPRA analysis methodologies include RAVEN (Rabiti et al. 2012, 2013), 

ADAPT (Hakobyan 2006; Jankovsky et al. 2018b; Kunsman et al. 2008), and 

dynamic Bayesian network (Jones et al. 2016; Varuttamaseni 2011; Weber et al. 

2012). However, DPRA methodologies still face some challenges related to the 

computational cost (Maljovec et al. 2013; Mandelli et al. 2013a; b, 2017b, 2018), 

resulting in them being utilized to model small subsystems (Varuttamaseni 2011). 

More recently, system dynamics (SD) simulation has been shown to provide an 

effective technique for modeling the behavior of dynamic complex systems under 

different transients (El-Sefy et al. 2019). Therefore, integrating uncertainty 

quantification and available SD tools within a DPRA framework has the potential 

of providing a new DPRA platform that can overcome the limitations of static PRA 

approaches. Such integration can be employed in the field of nuclear engineering 
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to enable accurate prediction and generation of different accident scenarios 

including core damage. 

Core damage accidents are severe events that may cause extreme damage to 

the reactor fuel. According to the U.S. NRC, "thousands or even millions of 

accident sequences within a NPP can lead to core damage (U.S. NRC 2016)". 

Natural and anthropogenic hazards (e.g., fire, internal flooding, and human errors) 

can also lead to concurrent or partial damage of multiple components within the 

NPP, which may seriously affect the reactor core integrity. Therefore, 

probabilistically assessing the dynamic response of NPP-systems is vital to quantify 

the probability of core damage and the different system contributions to the overall 

plant risk.  

A deterministic SD model for a pressurized water reactor (PWR) was 

developed and validated in a previous study by El-Sefy et al. (2019) as a key step 

for developing a DPRA platform. In this respect, the present study focuses on 

adopting the same SD simulation approach to quantify the temporal probability of 

PWR core damage under different transients considering the uncertainties 

associated with both the plant physical parameters (e.g., the specific heat of coolant, 

heat transfer coefficient) and plant operating conditions (e.g., primary coolant flow 

rate, steam flow rate). This is particularly important as such uncertainties can have 

a significant influence on the dynamic response of critical parameters in the PWR 

system (e.g., average fuel temperature, reactor thermal power, steam pressure), and 

subsequently the reactor core integrity. Therefore, incorporating uncertainties into 
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the SD model is crucial for an accurate DPRA of the NPP. A global sensitivity 

analysis is also conducted to identify the most influential parameters affecting the 

system output (i.e., the average fuel temperature).  

Following this introduction section, a brief background about the developed 

SD simulation approach is presented before discussing the concept and 

methodology applied for estimating the probability of core damage. Following that, 

the conducted parameter analysis is described, the details of the uncertainty and 

sensitivity analyses conducted are discussed, and finally, the results of the 

parameter analysis, temporal probability of core damage, and temporal sensitivity 

analysis are summarized.  

4.2. SYSTEM DYNAMICS SIMULATION APPROACH  

The SD simulation approach was developed by Jay Forrester (Forrester 1971) to 

investigate the behavior of complex economic and social systems. SD presents a 

comprehensive technique that can simulate the nonlinear dynamic behavior of 

complex systems through numerically solving the first-order differential equations 

describing system behavior. Feedback loops are the key elements of a SD model 

that describe the nonlinear interdependence between different components, and 

thus, enable the complete set of the system's nonlinear dynamic features to be 

described properly (Sterman 2000). The SD simulation approach has been 

extensively applied to numerous applications (e.g., ecological, agricultural, and 

economical systems) (Grigoryev 2016), and has been recently utilized in nuclear 
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applications (Chia et al. 2015; El-Sefy et al. 2019; Guo and Guo 2016; Jeong and 

Choi 2007)  

The present study adopts a SD simulation as the backbone of the DPRA 

platform. A validated SD model (El-Sefy et al. 2019) was developed to simulate 

the deterministic physical behavior of the thermal dynamic processes within 

large/complex systems (i.e., reactor core, primary and secondary cooling systems, 

hot and cold legs of primary coolant system, and reactor core inlet and outlet 

plenums, steam generator inlet and outlet plenums) of a PWR. This model was 

described in more detail by El-Sefy et al. (2019), where the PWR system parameters 

were adopted from the Palo Verde NPP (Arda 2013). This SD model was validated 

using the results from an earlier study (Arda 2013) and was subsequently evaluted 

under different perturbations (El-Sefy et al. 2019). This model was found to provide 

significant advantages from both computational time and data storage perspectives. 

Nonetheless, uncertainties associated with physical parameters and plant operating 

conditions remained to be incorporated within such a model to adequately predict 

the temporal probability of core damage. Figure 4-1 shows a schematic diagram of 

the utilized SD model considering uncertainty in the model input parameters. 

4.3. CORE DAMAGE DEFINITION 

Following an initiating event, the propagation of an accident can take many 

different scenarios. Each of these scenarios may cause numerous undesired 

consequences such as reactor core damage and release of radioactivity into the 

environment. Core damage is one of the most extreme events that can lead to 
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significant adverse impacts on public health and the environment. For example, the 

Fukushima nuclear accident led to the meltdown of three nuclear reactors, which 

resulted in the emission of extensive amounts of radioactive materials to the 

environment (Chino et al. 2011).  

The term "core damage" has multiple drastically different definitions in the 

literature including: uncovering of the reactor core (U.S. NRC 2010); violation of 

design basis limits of any of the fuel parameters (IAEA 2010b); heat increase of the 

reactor fuel until severe fuel damage is anticipated (Bogazici University Nuclear 

Engineering Department 2000); loss of core geometry or exceeding the design basis 

limits of any of the fuel parameters (Atomic Energy Regulatory Board 2005); and, 

the loss of structural integrity of multiple fuel channels (Nuclear Energy Agency 

2009). Quantitatively, Knochenhauer and Holmberg (Knochenhauer and Holmberg 

2011) defined core damage as the state where the local fuel temperature exceeds 

2200oF [1204oC]; that limit is defined in section 1b of 10 CFR 50.46 (U.S. NRC 

2017). Probabilistically, core damage has been defined based on a triangular 

probability density function (pdf) for the Zircaloy cladding temperature 

(Varuttamaseni 2011).  

In the present study, the average fuel temperature (henceforth, “fuel 

temperature”) was utilized as the basis for evaluating the probability of core 

damage. The lower and upper limits of the fuel temperature were assumed to be 

1600oF [871oC] and 2600oF [1426oC], respectively. The pdf of core damage beyond 

these limits was assumed to be equal to zero, whereas a triangular distribution was 
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used to describe that pdf between the upper and lower limits, as shown in Figure 

4-2. A maximum accepted fuel temperature of 2200oF was assumed with a 

corresponding core damage probability of 0.6 (Figure 4-2). This relationship 

follows the triangular pdf defined by Varuttamaseni (2011) except that both the pdf 

and the corresponding probability of core damage are evaluated based on the fuel 

temperature, rather than the fuel cladding temperature, as discussed by 

Knochenhauer and Holmberg (2011). 

4.4. PARAMETER ANALYSIS 

Parameter analysis is typically utilized to assess how the system response is affected 

by changing some, or all, of the model input parameters. Parameter analysis was 

applied, in the present study, to the PWR SD model developed by El-Sefy et al. 

(2019) in order to evaluate the influence of four different transients: i) reactivity (P-

1); ii) steam valve coefficient (P-2); iii) reactor core inlet temperature (P-3); and iv) 

steam generator inlet temperature (P-4). For each of these, the deviations from their 

corresponding nominal values are given in Table 4-1. The PWR response (i.e., the 

fuel temperature, the reactor core thermal power, and the steam pressure inside the 

steam generator) were subsequently investigated under the considered transients to 

assess the influence of each transient on the PWR response, and especially to 

determine the transients that lead to an increase in the reactor core temperature. 
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4.5. UNCERTAINTY ANALYSIS 

Uncertainty analysis is utilized to investigate the impact of uncertain parameters on 

the fuel temperature response during a transient. The response of reactor fuel 

temperature is predicted under uncertain physical parameters and operating 

conditions, leading to an estimate of the temporal probability of core damage. 

Uncertainty analysis first requires determining the input parameters to be included 

in the SD model of the PWR. PWR parameters with the expected uncertain ranges 

are listed in Table 4-2. The uncertainty associated with each of these parameters 

was defined in terms of a pdf, which was chosen based on other related studies 

(Brown and Zhang 2016; Demazière and Pázsit 2002; Perin and Jimenez 2017; 

Radaideh et al. 2018; Romojaro et al. 2019; Sánchez et al. 2018; Zimmerman et al. 

1999), whereas nominal values were chosen based on those of the Palo Verde NPP 

(Arda 2013; El-Sefy et al. 2019). When information about any specific parameters 

is not available, the corresponding pdfs are chosen based on conservative 

assumptions or on similar parameters discussed in relevant literature. In this 

respect, the uniform distribution is chosen as a conservative assumption, when 

similar parameters do not exist, as minimum, maximum, and nominal values can 

be encountered with the same probability (Marcum and Brigantic 2015). Referring 

to Table 4-2, a total of 26 parameters follow a normal distribution and seven 

parameters follow a uniform distribution.  

A Monte Carlo (MC) simulation was utilized in the present study to assess 

the propagation of uncertainties associated with the input parameters based on their 
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pdfs. This approach is preferred over other uncertainty analysis approaches as it is 

computationally efficient and has no restrictions on the number of uncertain 

parameters considered (Brown and Zhang 2016). MC simulation relies on 

generating multiple realizations of the input parameters (based on their 

corresponding pdfs), and subsequently estimating the statistics of the output(s). An 

iterative method has been utilized in the present study to estimate the number of 

realizations (n) required for applying the MC simulation, in order for the 

uncertainty in the output to be accurately assessed. This method was proposed by 

Bukaçi et al. (2016), in which n is determined through monitoring the convergence 

of the output’s standard deviation.  

4.6. SENSITIVITY ANALYSIS  

Sensitivity analysis attempts to quantify the impact of fluctuations in different input 

parameters on the simulation output and/or the overall system performance. In 

addition, the analysis aims at investigating how the variability in the system 

output(s) can be allocated to different inputs (Helton et al. 2006). Therefore, 

sensitivity analysis provides a more precise picture of how the system inputs and 

outputs are interrelated. This analysis can be applied either locally or globally, 

where global sensitivity analysis is preferred as it considers the entire range of the 

input parameters as well as the interaction among multiple inputs (Ikonen 2016; 

Ikonen and Tulkki 2014). The Spearman's correlation, rs, and partial correlation 

coefficients, PCCs, are non-parametric statistical measures that are used to assess 

the interdependence between an input X and an output Y based on the ordered ranks 

https://en.wikipedia.org/wiki/Uncertainty
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of the different values of each variable, and can also be used for sensitivity analysis 

(Hauke and Kossowski 2011). rs is defined as the covariance of the rank variables 

(X and Y) divided by the product of their standard deviations. On the other hand, 

the PCC between X and Y represents their correlation without considering the 

collinearity between X and the other inputs affecting Y. Therefore, the PCC is 

typically used for assessing the direct influence of an input X on the output Y. 

In the present study, global sensitivity analysis was applied through 

estimating the PCC values between the system inputs (shown in Table 4-2) and the 

fuel temperature (output). MC simulation was utilized to fluctuate the system inputs 

under specified transients. These transients were selected based on their impact, 

following the results of the parameter analysis, on increasing the fuel temperature. 

The selected transients include: i) increasing the reactivity by 0.006 (S-1); ii) 

increasing the steam valve coefficient by 20% (S-2); iii) decreasing the reactor core 

inlet temperature by 20oF (S-3); and iv) decreasing the steam generator inlet 

temperature by 20oF (S-4). The PCC values were subsequently calculated under 

each of these transients using the "partialcorr" function from the MATLAB 

statistics toolbox (MATLAB 2018a). Comparing the different PCC values indicates 

the relative contribution of each input to the variability in the system response (i.e., 

the fuel temperature) within each transient. In addition, a temporal sensitivity 

analysis was conducted by evaluating the PCCs at every time step under each 

transient in order to address time-varying sensitivities in the dynamic PWR system. 

It is noteworthy that the PCC-based Spearman method has also been utilized in 
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relevant related studies (e.g., (Brown and Zhang 2016)), and for simulating a station 

blackout event in the Jules Horowitz reactor (Ghione et al. 2017).  

4.7. RESULTS AND DISCUSSION 

4.7.1. PARAMETER ANALYSIS  

Figure 4-3 shows the effect of changing the reactivity by between -0.0015 and 

+0.0015 (Transient P-1) on the PWR critical dynamic output parameters (i.e., fuel 

temperature, thermal power, and steam pressure). Increasing the reactivity levels 

inside the reactor core causes the neutron flux to increase, which in turn increases 

the fuel temperature, reactor thermal power, and steam pressure. Afterward, the 

steam pressure continues to increase due to the thermal energy transferred from the 

primary coolant system to the secondary one.  

Figure 4-4 shows the dynamic responses of fuel temperature, thermal power, 

and steam pressure under Transient P-2 (changing the steam valve coefficient by 

between -10% and +10%). Increasing the steam valve coefficient leads to a 

decrease in the steam pressure, as well as an increase in both the fuel temperature 

and thermal power. This is attributed to the fact that more steam is required because 

of opening the steam valve, causing more heat energy to be produced inside the 

reactor core. 

Figure 4-5 shows the effect of changing the coolant temperature by between 

-5o F and +5o F (Transient P-3) on the PWR critical dynamic output parameters. 

Increasing the core inlet temperature yields negative reactivity feedback, and 
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subsequently decreases both the fuel temperature and the thermal power. On the 

other hand, increasing the coolant temperature leads to an increase in the steam 

pressure due to the heat energy transferred to the steam generator. 

Figure 4-6 shows the impacts of changing the steam generator-inlet coolant 

temperature by between -5o F and +5o F (Transient P-4) on the dynamic responses 

of fuel temperature, thermal power, and steam pressure. As expected, increasing 

the coolant temperature leads to an increase in the heat transferred to the steam 

generator, and subsequently an increasing steam pressure. However, negative 

reactivity feedback is developed, which decreases both the fuel temperature and 

thermal power. 

In general, Transients P-1 and P-3 affect both the fuel temperature and 

thermal power relatively quickly (Figure 4-3 and Figure 4-5), whereas Transients 

P-2 and P-4 influence these quantities more gradually (Figure 4-4 and Figure 4-6). 

This is attributed to Transients P-1 and P-3 occurring inside the reactor core, leading 

to a rapid change in both the fuel temperature and thermal power. On the other 

hand, Transients P-1 and P-3 affect the steam pressure inside the steam generator 

at later times (Figure 4-3 and Figure 4-5) because these transients occurred inside 

the reactor core and an approximately half coolant cycle is required to impact the 

secondary coolant system (SCS). In summary, based on the considered transients, 

the following lead to an increase in the reactor fuel temperature: increasing the 

reactivity, increasing the steam valve coefficient, decreasing the reactor core inlet 

temperature, and decreasing the steam generator-inlet coolant temperature. Thus, 
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these are considered the basis for both the subsequent uncertainty and sensitivity 

analysis. 

4.7.2. UNCERTAINTY ANALYSIS AND TEMPORAL PROBABILITY OF 

CORE DAMAGE 

As discussed before, an iterative method was utilized to assess the number of 

realizations (i.e., n) required for the MC-based uncertainty analysis. In this method, 

different values for n were assumed and the corresponding estimates of fuel 

temperature were analyzed under steady-state conditions (i.e., at 100 s) to determine 

a value of n at which the standard deviation has converged. The results showed that 

both the mean and minimum fuel temperature do not change over the different 

number of realizations assumed, whereas the maximum fuel temperature showed a 

variation as the number of realizations increased. This was partially attributed to 

approximately 1% of the fuel temperature outputs (Figure 4-7a) being statistical 

outliers. Outliers arise because of the variety of parameters that influence the 

system outputs, particularly the uniform distribution that was conservatively 

assumed for system parameters that do not have more well-defined statistical 

distributions. As these statistical outliers arise because of the confluence of these 

conservative assumptions and do not reflect the likely real statistical distribution of 

system outputs, they are eliminated in order to provide a more robust analysis of 

the results (Ghosh and Vogt 2012) by avoiding over-conservative estimates of the 

average values, maximum fuel temperature, and the probability of reactor core 
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damage. In this regard, a point is considered a statistical outlier if its value lies more 

than three times the scaled median absolute deviations away from the median, 

which is identified using the "isoutlier" function from the MATLAB statistics 

toolbox (MATLAB 2018a). The standard deviation of maximum fuel temperature 

data was subsequently evaluated without considering the outliers to evaluate the 

convergence of the standard deviation as n increased, as shown in Figure 4-7b. In 

this respect, a total of 5,000 realizations was consided in the uncertainty analysis 

because the standard deviation results were stable by that number of realizations. 

According to the results from the parameter analysis described previously, 

the PWR considered was tested under two transients that could increase the fuel 

temperature. These transients were: i) increasing the reactivity sequentially from 

0.001 to 0.016 (U-1); and, ii) increasing both the reactivity and steam valve 

coefficient from 0.002 to 0.016 and from 5% to 30% (U-2), respectively. The 

temporal probability of core damage was subsequently evaluated, based on the fuel 

temperature, under each of these transients. 

In Transient U-1, the input parameters together with their corresponding 

statistical distributions (Table 4-2) were employed, and the corresponding dynamic 

responses of fuel temperature were monitored under different levels of reactivity. 

A MC simulation with 5,000 realizations was adopted at each reactivity level, and 

the ensemble average of the fuel temperature realizations at different reactivity 

levels is shown in Figure 4-8. For example, Figure 4-9a and Figure 4-9b show the 

average, the upper bound, the lower bound, the 25th percentile, and the 75th 
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percentile of the fuel temperature and the probability of core damage at a reactivity 

level of +0.015. When the reactivity increased to 0.015, the following responses 

occur: i) the propagation of uncertainties in the PWR system led to an increase in 

the fuel temperature at 100 s by up to 12.9% relative to the average value of fuel 

temperature, 1672oF; ii) both the fuel temperature and the probability of core 

damage follow an approximately 3-parameter lognormal distribution, where the 

majority of their responses are around the mean with relatively few responses that 

are extremely high or low; and iii) the mean and maximum probability of core 

damage at 100 s are 0.01 and 0.045, respectively. Similar measures can be obtained 

at other reactivity levels through dissecting the surface plot shown in Figure 4-8.  

In Transient U-2, the impact of uncertainty within the input parameters on the 

PWR was evaluated under a concurrent change in the reactivity levels and the steam 

valve coefficient. Both the fuel temperature and the probability of core damage 

were estimated similarly to Transient U-1. Figure 4-10a shows a contour plot for 

the ensemble average of the fuel temperature realizations at 100 s under different 

levels of reactivity and steam valve coefficient. As shown in Figure 4-10a, the mean 

fuel temperature increased with the increase in either the reactivity or the steam 

valve coefficient. For example, when the reactivity and the steam valve coefficient 

increased by 0.014 and 30%, respectively, the following was observed: i) both the 

fuel temperature and the probability of core damage follow an approximately 3-

parameter lognormal distribution (Figure 4-11a and Figure 4-11b); ii) the mean and 

maximum probability of core damage at 100 s are 0.018 and 0.068, respectively; 
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and, iii) the uncertainties in the input parameters have a significant impact on the 

fuel temperature, especially under high levels of reactivity (Figure 4-10b), since the 

fuel temperature is increased by 13.45% and 2.4% at reactivity levels of 0.016 and 

0.002, respectively. 

The results obtained from Transients U-1 and U-2 demonstrate the 

importance of considering system uncertainties in evaluating the PWR system's 

critical parameters since the maximum fuel temperature increased significantly 

compared to the mean value. Moreover, this study demonstrated a DPRA 

measurement method that can quantify operational NPP risk and calculate of a core 

damage probability for the two different initiating events.  

4.7.3. SENSITIVITY ANALYSIS 

The sensitivity measures for fuel temperature (i.e., PCC) were dynamically 

evaluated to obtain the different inputs governing the transient history, as shown in 

Figure 4-12. The same number of realizations (5,000) employed in the uncertainty 

analysis was also adopted here. The transient ensemble average PCCs for all inputs 

were replaced by their corresponding squared values to remove the effect of 

correlation direction (i.e., direct or inverse correlation). The analysis results show 

that the coolant temperature coefficient of reactivity (αc) had a significant influence 

on the fuel temperature in the different transients considered in the sensitivity 

analysis. However, αc had a lower impact during the first 25 seconds of the 

reactivity transient S-1 compared to other transients. This is attributed to the 

relatively long time required for the coolant to complete a full cycle. The fuel 
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temperature coefficient of reactivity (αF) was also found to have a significant 

impact on the fuel temperature, especially in the cases including positive reactivity 

transients. These confirm the influence of both αc and αF on controlling the stability 

within the PWR core. In addition, the heat transfer coefficient from the fuel to 

coolant (UFC) had a significant influence on the fuel temperature within all 

transients. This is expected as UFC controls the transfer of the thermal energy from 

the fuel to the primary coolant system. The results from the sensitivity analysis 

show that αc, αF, and UFC are the primary governing parameters of the fuel 

temperature variability. In addition, the total delayed neutron fraction (β) can also 

considerably impact the fuel temperature, especially at earlier times, due to the high 

rate of change in the reactor thermal power at the beginning of the transients. 

Furthermore, the coolant mass flow was found to have a considerable impact on the 

fuel temperature in the transients related to a change in the coolant temperature 

within either the core or the steam generator (Figure 4-12 and Figure 4-13).  

Figure 4-13 shows the PCC values between the different inputs and the fuel 

temperature at 100 s under the selected ranges of the considered transients. Among 

these inputs, αF was found to be negatively correlated with the fuel temperature 

(i.e., can reduce the fuel temperature). This is expected as the selected transients 

typically lead to an increasing fuel temperature. Therefore, increasing αF can bring 

the core back to a stable condition. In addition, αc was found to be negatively 

correlated with the fuel temperature within the reactivity transient S-1 only, 

whereas they were positively correlated in other transients. These interrelations are 
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attributed to the impact of the different transients on the primary coolant 

temperature. For example, adding a positive reactivity to the system yields an 

increasing coolant temperature. Subsequently, αc induces a negative reactivity 

feedback which, in turn, decreases the fuel temperature. UFC was found to be 

inversely related to the fuel temperature as the increase in the heat energy 

transferred to the coolant can decrease the fuel temperature. Furthermore, 

uncertainty of the parameters pertaining to the steam generator system (e.g., τPM1, 

τPM2, τMP1, τMP2, τMS1, τMS2,) was also found to have a significant impact on the fuel 

temperature when Transients S-2 and S-4 occur within the SCS (e.g., changing the 

steam valve coefficient and fluctuating the steam generator inlet temperature). 

Finally, the remaining parameters had minor impacts on the fuel temperature 

compared to those discussed above. 

4.8. CONCLUSIONS 

This study utilized a SD simulation approach for DPRA of nuclear power plants to 

estimate the risk associated with various plant transients. The transients that are 

expected to occur during plant operation cause challenges to NPP systems and 

operators, potentially leading to core damage. As such, identifying and addressing 

the potential risk associated with NPP transients is vital to ensure the safety of 

NPPs. In this regard, parameter analysis was performed to investigate the behavior 

of fuel temperature, reactor thermal power, and steam pressure under different 

transients. These transients included changing the reactivity, the steam valve 

coefficient, the reactor core inlet temperature, and the steam generator inlet 
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temperature. Afterward, the developed DPRA platform was used to predict the 

nonlinear dynamic response of fuel temperature within a PWR when uncertainty in 

the reactor physical parameters and operating conditions were considered under 

different transients. The fuel temperature was subsequently used to estimate the 

temporal probability of core damage based on a triangular probability density 

function of core damage. Monte Carlo simulation was adopted to predict how the 

propagation of uncertainty associated with each of the input parameters would 

affect the temporal probability of core damage. This probability was estimated 

under: i) increasing reactivity levels; and, ii) a simultaneous increase in the steam 

valve coefficient and reactivity. Finally, a global sensitivity analysis was performed 

to identify the uncertain parameters that significantly impact the average fuel 

temperature. 

The results of the current study demonstrate that the newly developed DPRA 

platform is able to consider the dynamic interaction among several complex 

systems inside the NPP, including the reactor core, primary and secondary cooling 

systems, hot and cold legs, reactor core inlet and outlet plenums, and steam 

generator inlet and outlet plenums, and therefore, overcome the challenges facing 

existing DPRA approaches in simulating large complex systems. Moreover, the 

results from the Monte Carlo simulation revealed that both the fuel temperature and 

the probability of core damage follow a 3-parameter lognormal distribution under 

the considered transients. Furthermore, the impact of uncertain input parameters 

was found to amplify with increasing transient severity. A global sensitivity 
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analysis also demonstrated that the coolant temperature coefficient of reactivity, the 

fuel coefficient of reactivity, the heat transfer coefficient from fuel to coolant, and 

the total delayed neutron fraction are the primary controllers of the fuel temperature 

variability under the different transients considered. In addition, the primary coolant 

mass flow rate had a considerable impact on the fuel temperature variability during 

the transients related to the core and steam generator inlet temperatures. 

The results from the present study demonstrate the influence of integrating 

the uncertainty analysis and SD simulation approach to estimate the temporal 

probability of core damage, thus overcoming the limitations of static PRA methods. 

In this respect, the developed platform is a crucial step toward minimizing the 

computational cost of DPRA methods (e.g., the analysis time needed to estimate 

the temporal probability of core damage for transients U-1 or U-2 is only about 10-

15 min) and integrating many systems in order to establish a DPRA approach for 

simulating large, complex NPP systems. 
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Table 4-1 The different ranges of the transients employed in the present study 

Transient description Transient level 

Nominal values  

(Arda 2013; El-

Sefy et al. 2019) 

Transient P-1: Changing the reactivity (ρ) 
Max= 0.0015 

Min= -0.0015 
0.0 [Steady State] 

Transient P-2: Changing the steam generator-

steam valve coefficient (CL) 

Max= 10% 

Min= -10% 
6.0 

Transient P-3: Changing the reactor core inlet 

temperature (TLP) 

Max= 5oF 

Min= -5oF 
296.3oF 

Transient P-4: Changing the steam generator 

inlet temperature (TIP) 

Max= 5oF 

Min= -5oF 
625.0oF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

160 

 

Table 4-2 Selected SD model input uncertanties: standard deviation and 

distributions 

Parameter Symbol  
Nominal 

(Mean) 

Standard 

Deviation 
 Reference* 

Normal Distributed Inputs      

Specific heat of 

primary coolant 

[Btu/lb.oF] 

cc  1.448 0.01448  ------ 

Specific heat of the 

reactor fuel [Btu/lb.oF] 
cf  0.1056 0.001056  

(Sánchez et al. 

2018) 

Specific heat of 

feedwater in steam 

generator [Btu/lb.oF] 

cpi  1.278 0.01278  ------ 

Enthalpy of saturated 

water [Btu/lb] 
hf  554 1.108  

(Perin and 

Jimenez 2017) 

Enthalpy of saturated 

steam [Btu/lb] 
hg  1189 2.378  ------ 

Heat transfer 

coefficient from fuel to 

coolant [Btu/sec.ft2.oF] 

UFC  0.090441111 9.0441x10-3  
(Sánchez et al. 

2018) 

Delayed neutron 

precursor decay 

constant for the six-

delayed neutron group, 

i=1,……,6 [1/s] 

λ1  0.0124 2.48x10-4  

(Radaideh et al. 

2018) 

λ2  0.0305 8.235x10-4  

λ3  0.111 3.33x10-3  

λ4  0.301 9.632x10-3  

λ5  1.14 0.09918  

λ6  3.01 0.23779  

Total delayed neutron 

fraction 
β  0.0065 4.615x10-4  

(Radaideh et al. 

2018) 
Delayed neutron 

fraction for the six 

delayed-neutron 

groups, i=1,……,6; 

β1  0.000215 1.8275x10-5  

β2  0.001424 8.9712x10-5  

β3  0.001274 1.223x10-4  

β4  0.002568 1.926x10-4  

β5  0.000748 9.5744x10-5  

β6  0.000273 4.6137x10-5  

Fuel temperature 

coefficient of reactivity 
αF  -1.2x10-5 -1.968x10-6  

(Zimmerman et 

al. 1999) 
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Time constant for 

primary coolant lump 1 

to metal tube lump 1 

heat transfer [s] 

τPM1  1.2233 0.1233  ------ 

Time constant for 

primary coolant lump 2 

to metal tube lump 2 

heat transfer [s] 

τPM2  0.5826 0.05826  ------ 

Time constant for 

metal tube lump 1 to 

primary coolant lump 1 

heat transfer [s] 

τMP1  0.3519 0.03519  ------ 

Time constant for 

metal tube lump 2 to 

primary coolant lump 

heat transfer [s] 

τ
MP2

  0.1676 0.01676  ------ 

Time constant for 

metal tube lump 1 to 

secondary coolant heat 

transfer [s] 

τMS1  0.3519 0.03519  ------ 

Time constant for 

metal tube lump 2 to 

secondary coolant heat 

transfer [s] 

τ
MS2

  0.1676 0.01676  ------ 

Uniform Distributed Inputs  Values   

Primary coolant mass 

flow rate of inside the 

core [lb/s] 

wc  45555.56 
Min= 44189 

Max= 46922 
 

(Brown and 

Zhang 2016) 

Primary coolant mass 

flow rate in the hot leg 

[lb/s] 

wc-hl  22777.78 
Min= 22094 

Max= 23461 
 ------ 

Primary coolant mass 

flow rate in the cold 

leg [lb/s] 

wc-cl  11388.88 
Min= 11047 

Max= 11730 
 ------ 

Primary coolant mass 

flow rate in steam 

generator [lb/s] 

wc-sg  22777.78 
Min= 22094 

Max= 23461 
 ------ 
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Steam flow rate [lb/s] wso  4772.22 
Min= 4629 

Max= 4915 
 ------ 

Coolant temperature 

coefficient of reactivity 
αc  -1.0x10-4 

Min=  

-7.504x10-5 

Max=  

-1.2496x10-4 

 
(Demazière and 

Pázsit 2002) 

Neutron generation 

time [s] 
Ʌ  0.00003 

Min= 

2.965x10-5 

Max= 

3.035x10-5 

 
(Romojaro et 

al. 2019) 

* Uncertainties associated with the model input parameters are determined based 

on references in Table 4-2. 
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Figure 4-1: Schematic diagram of SD model of a PWR considering uncertainties 

associated with the input parameters. 

 

Figure 4-2: Probability density and probability distribution of core damage at 

different fuel temperatures. 
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a.  

b.   

c.   

Figure 4-3: a. Fuel temperature, b. Reactor thermal power, and c. Steam pressure 

responses due to changing the reactivity levels (Transient P-1). 
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a.   

b.  

c.   

Figure 4-4: a. Fuel temperature, b. Reactor thermal power, and c. Steam pressure 

responses due to changing the steam valve coefficient (Transient P-2). 
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a.   

b.   

c.   

Figure 4-5: a. Fuel temperature, b. Reactor thermal power, and c. Steam pressure 

responses due to changing the reactor core inlet temperature (Transient P-3). 
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a.   

b.   

c.   

Figure 4-6: a. Fuel temperature, b. Reactor thermal power, and c. Steam pressure 

responses due to changing the steam generator inlet temperature (Transient P-4). 
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a.  

 

b.  

 

Figure 4-7: a. Percentage of outliers in the data with number of realizations. b. 

Convergence analysis of standard deviation of the fuel temperature. 
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Figure 4-8: Ensemble average of the fuel temperature realizations under increasing 

reactivity levels. 
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a.  

 

b.  

 

Figure 4-9: a. Dynamic response of fuel temperature at a +0.015 increase in the 

reactivity level. b. Temporal probability of core damage at the same transient. 
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a.  

 

b.  

 

Figure 4-10: a. Ensemble average of the fuel temperature realizations under an 

increasing reactivity and steam valve coefficient. b. Percentage increase in the 

maximum fuel temperature relative to the mean values. 
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a.  

 

b.  

 

Figure 4-11: a. Dynamic response of fuel temperature at an increase in the reactivity 

and steam valve coefficient by +0.014 and 30%, respectively. b. Temporal 

probability of core damage at the same transient.
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Figure 4-12: PCCs between the fuel temperature and the input parameters under four transients including: S-1. reactivity increases 

by 0.006; S-2. steam valve coefficient increases by 25%; S-3. core inlet temperature decreases by 20oF; and S-4. steam generator 

inlet temperature decreases by 20oF. 
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 Figure 4-13: PCC between the fuel temperature and the different input parameters at 100 s under transients S-1 to S-4.
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Chapter 5 : Artificial Neural Network for Predicting Nuclear 

Power Plant Dynamic Behavior 

ABSTRACT 

A Nuclear Power Plant (NPP) is a complex system-of-systems with dynamic 

behavior during its operations. In order to control the plant operation under both 

normal and abnormal conditions, different systems in NPPs (e.g., the reactor core 

components, primary and secondary coolant systems) are usually monitored 

continuously, leading to very large amounts of data. This opens the possibility of 

integrating relevant qualitative and quantitative knowledge with artificial 

intelligence techniques to provide faster and more accurate predictions, leading to 

more rapid decisions, based on the NPP operation data. Data-driven models (DDM) 

rely on artificial intelligence to learn automatically based on patterns in data, and 

they represent alternatives to physics-based models that typically require significant 

computational burden and might not fully represent the actual operation conditions 

of an NPP. In this study, a feed-forward backpropagation artificial neural network 

(ANN) model was trained to simulate the interaction between the reactor core and 

the primary and secondary coolant systems in a pressurized water reactor. The 

transients used for model training included perturbations in reactivity, steam valve 

coefficient, reactor core inlet temperature, and steam generator inlet temperature. 

Uncertainties of the plant physical parameters and operating conditions were also 

incorporated in these transients. Eight training functions were adopted during the 
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training stage to develop the most efficient network. The developed ANN was 

subsequently tested under new different transients. The developed ANN model was 

able to accurately predict the considered plant behavior under the new transients. 

Overall, through rapid prediction of NPP behavior under different transients, the 

study aims at demonstrating the potential of artificial intelligence to empower rapid 

emergency response planning and risk mitigation strategies. 

 

Keywords: Data-driven models; Machine learning; Artificial Neural Network; 

Nuclear Power Plant; Back-Propagation Algorithm. 
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5.1. INTRODUCTION  

A nuclear power plant (NPP) is a complex system-of-systems that contains highly 

dynamic, interconnected, and interdependent subsystems such as the reactor core 

and primary and secondary coolant systems. Each of these subsystems consists of 

multiple critical components where the malfunction of any has the potential to 

initiate an accident that can propagate through the whole plant causing serious 

negative consequences. NPP safety and performance are key concerns during the 

plant's service life that require a sufficient understanding of the plant's nonlinear 

dynamic behavior to control the reactor power, cool the reactor fuel, and contain 

the radioactivity. Lessons learnt from the Fukushima Daiichi nuclear accident 

showed that the monitoring systems used were ineffective, leading to poor pre-

accident operation and management (IAEA 2015). Early warning systems are 

therefore essential as, in addition to monitoring, they also include analysis abilities 

to accurately predict the nonlinear dynamic behavior of the components, 

subsystems, as well as the whole system under normal and transient conditions 

(Min et al. 2019). A quick early warning system can contribute to effective risk 

mitigation strategies, based on complex considerations, to serve as a rapid decision 

support system (DSS) (Korovin and Kalyaev 2015; Tamimi et al. 2019) for plant 

operators.  

Decision-making for a complex dynamic system can be challenging, 

especially for highly interdependent and interconnected systems such as NPPs. As 

such, aside from physics-based models, each NPP must adopt an intelligent and 
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adaptive plant-specific DSS to ensure the safety of the plant, environment, and 

public. An intelligent DSS aims to collect, organize, and analyze large amounts of 

data such that decision-makers can take informed actions during emergency 

situations (Ahmad and Simonovic 2006). Intuitive interpretation of such data is 

typically challenging, and more sophisticated tools are thus necessary to predict the 

system response under different operating conditions. Artificial intelligence (AI) 

provides faster and effective tools that can learn automatically based on patterns in 

data, and therefore have the potential to predict the behavior of complex systems 

and create intelligent DSSs (Filip 2008; Phillips-Wren 2013).  

Several data-driven models (DDMs) have been developed based on AI, and 

have been rapidly progressing over the past few years due to the complex nature of 

real-world systems, the flourishing of database management (Rätz et al. 2019), and 

the continuous development of powerful machine learning algorithms (Bao et al. 

2019). DDMs utilize the available data for a specific system operation to obtain 

mathematical relationships between the system state variables (i.e., inputs and 

outputs), albeit with limited knowledge about the physical/mathematical 

interdependence of such variables (Solomatine and Ostfeld 2008). Learning from 

data is the main feature of DDMs, where the mathematical interdependence 

between the system inputs and outputs is discovered iteratively through minimizing 

the deviation between observed and estimated values (Mitchell 1997). Additionally, 

DDMs can be applied to gain valuable insights from the system state variables in 

an unsupervised fashion (i.e., cluster analysis). DDMs provide a different concept 
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to analyze challenging problems in science and engineering (Montáns et al. 2019), 

and have been widely applied to simulate the dynamic behavior of different 

complex systems (e.g., transportation, finance, management, climate, medicine, 

and environment) (Burchard-levine et al. 2014; Holdaway 2014; Oxtoby et al. 

2018; Solomatine and Ostfeld 2008; Zhang et al. 2011). However, the application 

of AI-based DDMs in the field of nuclear engineering is still limited and has been 

identified only recently as a critically important research area (Gomez et al. 2017). 

Several DDMs have been developed over the past decades, including 

regression models, artificial neural networks, and cluster analysis (Fahrmeir et al. 

2013; Foshch et al. 2016; Maljovec et al. 2016; Patra et al. 2010), of which the 

artificial neural network (ANN) shows superior efficiency in uncovering complex 

relationships between system inputs and outputs (Abiodun et al. 2018; Kang et al. 

2019). Several types of ANNs have been developed to date (e.g., feed-forward back 

propagation neural network, recurrent neural network, convolutional neural 

network) (Li. et al. 2012; Mikolov et al. 2010; O’Shea and Nash 2015), each of 

which is appropriate for certain applications. Training is the first stage in 

developing an ANN, and several training algorithms have been developed, such as 

gradient descent algorithms (GD), conjugate gradient algorithms (CG), and quasi-

newton algorithms (QN) (Battiti 1992; Hagan and Menhaj 1994; Moller 1997, 

1993; Nawi et al. 2008). Training an ANN is a challenging step because: i) a proper 

combination of learning, transfer, and training functions is usually needed (Sharma 

and Venugopalan 2014); ii) different training algorithms result in different accuracy 

https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/physics-and-astronomy/neural-networks
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levels (Mustafidah et al. 2014); iii) training performance depends on the range and 

amount of data employed (Sug 2010); and, iv) overfitting may be encountered 

(Lawrence et al. 1997). Once trained with enough and representative data, an ANN 

can be used subsequently to predict the system response under new input values. 

ANNs have been previously employed within the field of nuclear engineering to 

predict NPP response under multiple core power inputs and loss of flow accidents 

(Gomez et al. 2017), to simulate the intermediate heat exchanger of a nuclear 

reactor (Patra et al. 2010), to develop a plant-wide management plan (i.e., transient 

identification, plant-wide monitoring, analysis of vibrations, monitoring of 

performance and efficiency) (Uhrig 1993), and to model the thermal dynamic 

behavior of an NPP (Guo and Uhrig 2017).  

Several previous studies (Knochenhauer and Holmberg 2011; U.S. NRC 

2017; Varuttamaseni 2011) have utilized the fuel temperature to estimate the 

probability of core damage. In addition, fuel temperature and steam pressure are the 

primary controllers of the reactor core and secondary coolant systems’ integrity. 

Thus, developing a model to estimate the temporal fuel temperature and steam 

pressure is key for effective early warning. In this respect, the present study aims at 

developing an intelligent DSS based on a DDM to predict the critical state variables 

in a pressurized water reactor (PWR); this includes predicting the reactor fuel 

temperature and steam pressure in the PWR under four different transients (a 

change of reactivity, a change of steam valve coefficient, a deviation in the core 

inlet temperature, and a change of steam generator inlet temperature) considering 
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uncertainty in physical parameters and system operating conditions. Each of the 

considered transients is represented through eight different severity levels. A feed-

forward backpropagation ANN is developed based on data obtained from a 

previously developed system dynamics (SD) model of a PWR, including 

uncertainties in the physical parameters and plant operating conditions. Three 

algorithms (GD, CG, QN), represented by eight training functions, are tested during 

the training stage, and the best function is identified based on the network 

performance. The developed ANN serves as a rapid early warning system and 

intelligent DSS that can enable the development of quick and proper risk mitigation 

strategies under changing and dynamically challenging operating conditions.  

5.2. DATASET 

An SD model has been previously developed by El-Sefy et al. (2019) to simulate 

the nonlinear dynamic behavior of a PWR. The developed SD model represents a 

single loop reactor in which the feedback mechanisms between the reactor core, the 

secondary coolant system, the primary coolant system, and the plenums are 

simulated based on the mathematical descriptions employed in previous studies (Ali 

1976; Arda 2013; Arda et al. 2013; Kerlin et al. 1976; Puchalski et al. 2017; 

Thakkar 1975). The nominal values of PWR system parameters are adopted from 

those of the Palo Verde NPP. Uncertainties associated with the system physical 

parameters (e.g., the specific heat of primary coolant, heat transfer coefficient from 

fuel to coolant, coolant temperature coefficient of reactivity) and operating 

conditions (e.g., primary coolant mass flow rate of inside the core, steam flow rate) 
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were also considered in that SD model. Such uncertainties were represented in 

terms of probability distributions similar to those employed in previous studies 

(Brown and Zhang 2016; Demazière and Pázsit 2002; Perin and Jimenez 2017; 

Radaideh et al. 2018; Romojaro et al. 2019; Sánchez et al. 2018; Zimmerman et al. 

1999). A normal distribution was assumed for 26 parameters, while the other seven 

parameters were assumed to follow uniform distributions. A schematic diagram of 

the PWR generating unit, including the feedback loops between the SD 

representations of the reactor core and secondary coolant system, is shown in Figure 

5-1. The reader is referred to El-Sefy et al. (2019, 2020) for detailed descriptions of 

the SD model employed in the present study. 

The SD model developed by El-Sefy et al. (2019, 2020) was utilized in the 

current study to obtain synthetic, real-time data corresponding to different 

transients. Four transients were considered, each of which was represented by eight 

different levels of severity, as summarized in Table 5-1. A total of 32 different 

transients were simulated, and the corresponding SD model outputs (i.e., reactor 

core reactivity (ρ), reactor core thermal power (Pth), reactor core inlet temperature 

(TIP), steam generator inlet temperature (TLP), steam valve coefficient (cl), fuel 

temperature (Tf), and steam pressure(Ps)) were monitored and recorded 

continuously. The SD model was embedded within a Monte-Carlo framework, 

where a total of 5,000 realizations was employed for each transient in order to 

consider the impact of uncertain physical parameters and operating conditions. The 

number of realizations was determined based on the study by El-Sefy et al. (2020), 
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who investigated the probabilistic dynamic behavior of the same PWR using a SD 

modelling approach. The outputs of the SD model were subsequently employed for 

the development of a corresponding ANN to investigate if the latter can reproduce 

the same results, albeit faster and without overburdening the model with handling 

the complex physics-based interactions within the system.  

The reactor core reactivity, reactor core thermal power, reactor core inlet 

temperature, steam generator inlet temperature, and steam valve coefficient were 

selected as the ANN inputs, while the fuel temperature Tf and the steam pressure Ps 

were selected as the outputs because Tf provides an indication for the probability of 

core damage and Ps controls the secondary coolant system integrity. Each of the 

ANN inputs/outputs was represented by a time series over a time frame of 80 

seconds. Eleven realizations corresponding to the minimum and maximum values 

of Tf and Ps together with those corresponding to each decile (i.e., 10th to 90th 

percentile range) were used to represent each transient, and were subsequently 

employed for the development of the ANN. Figure 5-2 shows a portion of SD 

dataset utilized for the development of the ANN. A total of 57,024 (32 Transients 

x 11 realizations x 2 outputs x 81 time-steps) samples were thus adopted for the 

development of the ANN using the NN toolbox in MATLAB statistics toolbox 

(MATLAB 2018a). The total number of samples was divided into 70% training 

(representing 39,916 samples), 15% validation (representing 8,554 samples), and 

15% testing (representing 8,554 samples) subsets. The training subset was used to 

build the ANN through adjusting the network parameters. The validation subset 
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was used within the training process to prevent overfitting, while the testing subset 

was utilized to test the trained network to obtain the performance under data not 

employed for training (Perez 2019).  

5.3. ARTIFICIAL NEURAL NETWORK 

5.3.1. NETWORK ARCHITECTURE 

ANN is one of the most popular DDM tools that depends on the concept of learning 

to replicate the behavior of complex dynamic systems (Arce-Medina and Paz-

Paredes 2009). ANN was inspired by biological neural systems (e.g., the human 

brain) that can learn to perform tasks through exposure to different examples 

without being constrained to task-specific rules. Therefore, ANNs present an 

alternative to complex mathematical/physics models without prior knowledge of 

the underlying processes. In addition, ANNs typically show excellent prediction 

capabilities when appropriately trained. Due to their capability to simulate 

nonlinear behaviors, approximate input-output relationships, and recognize patterns 

within a reasonable amount of time, ANNs are seeing an explosion of application 

to different research areas (Rallo et al. 2002). 

The feed-forward ANN (hereafter referred to simply as ANN) was employed 

in the present study, and a detailed description of it is provided herein. An ANN 

typically consists of three main components: the input layer, the hidden layer, and 

the output layer (Figure 5-3). The input and output layers consist of a group of 

nodes, each of which corresponds to an input or output. The hidden layer contains 
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a collection of artificial neurons that are highly interconnected to the input nodes. 

The links between input nodes and hidden layer neurons represent the flow of data 

between the two layers, where weights are assigned to represent the amount of 

information shared. A hidden layer is followed by an activation function (e.g., step 

function, ramp function, or sigmoid function) that is used to limit the amplitude of 

a neuron output (Haykin and H 1999). Bias is also introduced when the activation 

function is applied such that the hidden layer output matches the actual output. In 

general, in an ANN, biased weighted inputs are passed to an activation function to 

capture the behavior of complex systems (Arce-Medina and Paz-Paredes 2009). 

The ANN output(s) can be represented mathematically as: 

𝑶 = 𝑓(𝑿𝑾 + 𝒃)             [5-1] 

where O, X, W, and b represent the outputs, inputs, weights, and bias in matrix 

notation, respectively. The function f in Equation [5-2] represents the activation 

function, where the sigmoid function was utilized in the present study as follows: 

𝑓(𝑧) =
1

1+𝑒−𝑧           [5-2] 

where z is an arbitrary input variable. The weights and bias (i.e., W and b) are 

adjusted iteratively through a backpropagation algorithm such that the network 

output O matches the actual output (P). This is referred to as the training process, 

as the ANN parameters (i.e., W and b) are adjusted to fit the relationships inherited 

within the data. In this study, a backpropagation algorithm was applied using 

different functions (referred to as training functions), and the mean squared error 

(MSE) was utilized to evaluate the performance of corresponding networks. It is 
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noteworthy that a more complex ANN with multiple hidden layers may be used 

when highly nonlinear behavior cannot be captured through simple network 

architecture (i.e., an ANN with a single hidden layer). A mathematical formula, 

similar to Equation [5-1], can then be applied to estimate the network output (i.e., 

O). However, the use of one hidden layer has been proven to be efficient in 

approximating continuous nonlinear functions according to the universal 

approximation theorem (Cybenkot 1989; Gandomi and Roke 2015). 

The present study employed an ANN with a single hidden layer containing nh 

neurons (Figure 5-4) to predict the nonlinear response of a PWR. Identifying the 

number of hidden layer neurons is crucial as small nh values disable the neural 

network from capturing the relationship between the inputs and outputs (i.e., the 

model can neither fit the training data nor be generalized) whereas large nh values 

may lead to the problem of overfitting (Xu and Chen 2008). Overfitting occurs 

when the results from an ANN cannot be generalized (i.e., the ANN is constrained 

to the training data only) (Lawrence et al. 1997). In the present study, nh is 

determined based on the number of inputs, ni, according to Kalmogorov’s theorem 

(Hecht-Nielsen 1987):  

𝑛ℎ ≤ 2𝑛𝑖 + 1            [5-3] 

5.3.2. TRAINING ALGORITHMS 

As mentioned before, different functions may be used for training an ANN. In 

general, the most appropriate function is that enables the network to simulate the 

underlying system behavior (i.e., Tf and Ps of a PWR in the context of the present 



Ph.D. Thesis – M. Elsefy  McMaster University – Civil Engineering 

 

187 

 

study) for the training subset of the available data within a reasonable amount of 

time and minimum MSE. Three backpropagation algorithms with eight training 

functions were assessed in this study. These algorithms, together with the 

corresponding training functions, are given in Table 5-2 as: i) the GD algorithm 

(traingd, traingdm, and trainrp); ii) the CG algorithm (trainscg, traincgp, and 

traincgf); and iii) the QN algorithm (trainbfg, and trainlm). GD is the most widely 

applied training algorithm that adjusts W and b based on the descending gradient 

direction of the function (Sharma and Venugopalan 2014). The GD algorithm 

typically shows a fast-initial convergence rate but a slow zigzagging behavior when 

approaching the final solution (Krylatov and Hirokolobova 2017). Although the 

convergence of the GD algorithm is in the steepest descent direction, this may not 

necessarily produce the fastest convergence. The CG algorithm is, in contrast, 

performed along the conjugate direction, which generally provides a faster 

convergence rate than the steepest descent direction (Johansson et al. 1992). The 

QN algorithm relies on defining a better search direction based on the Hessian 

matrix (i.e., a matrix of the second derivatives of the error function at the current 

values of the weights and biases) (Moller 1997). An approximated version of the 

Hessian matrix is adopted within the QN algorithm to overcome the complexity and 

the large memory size that typically results from computing the exact one (Setiono 

and Hui 1995). Although the convergence of the QN algorithm is typically faster 

than that of the CG algorithm, the latter is simpler and easy to apply (Sug 2010). In 

this study, all of the training functions were applied for different values of nh in 
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order to obtain the best ANN architecture that resulted in the highest correlation 

coefficient (R) and lowest MSE between O and P during the training stage.  

5.4. RESULTS AND DISCUSSION 

5.4.1. NETWORK TRAINING, TESTING AND VALIDATION 

The dataset obtained from the SD model of the PWR system was divided into three 

portions (training, validation, testing), as discussed above. The training and 

validation portions were used together for training purposes (i.e., obtaining the 

optimum values for W and b in Equation [5-1]). For training, the following 

parameters were fixed for all training functions within the MATLAB-NN toolbox: 

i) the performance function = MSE; ii) performance goal = 0; iii) the adaptation 

learning function = LEARNGDM; iv) learning rate parameter = 0.1; v) the 

activation function = TANSIG; and vi) number of training iterations (max_epochs) 

= 1,000. In addition, numerical measures haven been defined to assess the 

performance of each training function. Such measures include MSE, the Central 

Processing Unit (CPU) time elapsed by the end of the training, the number of 

epochs at the end of the training, and the average regression value (R) over the 

training, validation, and testing subsets. The ANN was trained with each training 

function until the MSE did not change for six consecutive epochs, except with the 

training function trainbfg, which reached the maximum of 1,000 epochs first. As 

retraining the network typically results in different values of W and b, the training 

stage was repeated 100 times using the same dataset. Table 5-2 shows the average 
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training measures for each of the different ANNs that result from combining the 

different training functions with the different nh values. 

The training functions traingd and traingdm could not converge and therefore 

the corresponding ANNs were eliminated in this study. On the other hand, the 

ANNs corresponding to the rest of the training functions (i.e., trainrp, trainscg, 

traincgp, traincgf, trainbfg, and trainlm) were all adequately trained, but with 

differences in the CPU time used for training and the MSE values. The training 

function trainlm (a QN training algorithm) with eleven neurons showed the best 

performance in terms of the lowest MSE (Table 5-2), and the corresponding ANN 

is referred to as the developed ANN. 

Figure 5-5 shows the MSE between the estimated and actual outputs under 

the trainlm training function. Large average MSE values were encountered during 

the first few iterations (<20) and subsequently decreased to smaller values. The 

results of the training stage demonstrate the ability of the developed ANN to 

successfully learn from the SD model-based dataset despite the complex dynamic 

behavior of the underlying PWR system, and highlight the potential to use the 

developed ANN to predict the system response under new transients (i.e., new input 

values). Subsequently, Figure 5-6 shows the relationship between the NN estimated 

values (vertical axis) and SD actual outputs (horizontal axis) for the training, 

validation, and testing subsets when the trainlm training function was adopted with 

nh equal to eleven. The line of best fit through the data for all three subsets (i.e., 

training, validation, and testing) has nearly a unit slope and zero intercept, reflecting 
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the ability of the developed ANN to replicate the SD model outputs.  

5.4.2. ADDITIONAL NETWORK TESTING 

After training, it is crucial to test the developed ANN to ensure its efficacy to predict 

the response of the PWR system under new transients. Therefore, the SD model 

was used to simulate the PWR behavior under new transients, and the 

corresponding outputs were used for additionally testing the developed ANN. 

These new transients were: 1) a perturbation in reactivity by +0.001; 2) a 

perturbation in reactivity by +0.001 including uncertainties in the system physical 

parameters and operating conditions; 3) a perturbation in steam valve coefficient 

by +7.5%; 4) a deviation in steam valve coefficient by +7.5% including 

uncertainties in the system physical parameters and operating conditions; and, 5) a 

perturbation in core inlet temperature by +7.5oF. 

Transient 1: Increase in Reactivity  

In Transient 1, the performance of the developed ANN was evaluated under 

an increase of reactivity by +0.001. Increasing the reactivity level leads to a higher 

fuel temperature, which subsequently causes more heat energy to transfer to the 

primary cooling system. Such heat then transfers to the secondary coolant system 

through the metal U tubes and converts the secondary coolant into steam. As a 

result, additional steam is produced in the steam generators, leading to a higher 

steam pressure as long as there is no change in the steam valve opening. The 

developed ANN sufficiently reproduced the SD model estimates of fuel 
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temperature and steam pressure under transient 1, as shown in Figure 5-7a and 

Figure 5-7b, respectively. The developed ANN underestimated the fuel temperature 

at the beginning of the transient (t = 0 s) by only 1.6%, and the deviations between 

the ANN and SD model estimates of fuel temperature decreased significantly as the 

reactor approached steady-state conditions. On the other hand, the developed ANN 

efficiently replicated the temporally changing steam pressure values estimated by 

the SD model with negligible deviations. 

Transient 2: Increase in Reactivity with Uncertain Other Parameters 

Several sources of uncertainty are typically present in complex systems (e.g., 

uncertainty in input parameters, uncertainty in model structure). Integrating the 

uncertainty of the input parameters in the developed ANN is therefore essential to 

reflect the real behavior inside the underlying PWR. The effect of the uncertain 

physical parameters and operating condition on the system response were 

considered during the additional testing of the developed ANN. A total of 5,000 

realizations of the SD model parameters were generated, and the corresponding 

outputs were estimated under a reactivity change of +0.001. The ANN inputs (i.e., 

ρ, Pth, TIP, TLP, cl) were extracted from the SD model outputs, and were used to 

predict the uncertain temporal fuel temperature and steam pressure. The temporal 

minimum, median, and maximum fuel temperature and steam pressure were 

predicted, as shown in Figure 5-8a and Figure 5-8b, respectively. The considered 

uncertainty led to an increase in the fuel temperature and steam pressure by 1.2% 

and 1.6% compared to the median value, respectively, at the reactor steady state. 
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The developed ANN produced similar results to those of the SD model with 

negligible differences. In addition, the statistical distributions of fuel temperature 

and steam pressure predicted using the developed ANN do not follow a uniform 

distribution but rather an approximately 3-parameter lognormal distribution, where 

the maximum and minimum responses have a lower probability of occurring 

compared to the mean response. These statistical distributions are similar to those 

estimated using the SD model.  

Transient 3: Increase in Steam Valve Coefficient 

The developed ANN was also tested under an increase of the steam valve 

coefficient by +7.5%, which represents an increase in the steam valve opening. The 

steam pressure inside the steam generator decreases immediately after increasing 

the steam valve opening. This is followed by a reduction in the reactor core inlet 

temperature, which causes a positive reactivity and a subsequent increase in the fuel 

temperature, as shown in Figure 5-9a. As a result, more heat energy is generated 

inside the reactor core to accommodate the reduction in steam pressure. The 

developed ANN sufficiently simulated this physical behavior and reproduced the 

SD model outputs under this transient, with maximum differences of 0.14% and 

1.16% in the fuel temperature (t = 80 s) and the steam pressure (t = 0 s), respectively 

(Figure 5-9a and Figure 5-9b).  
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Transient 4: Increase in Steam Valve Coefficient with Uncertain Other 

Parameters 

 In Transient 4, the developed ANN was tested under an increase in the steam 

valve coefficient by +7.5% considering uncertain physical parameters and 

operating conditions. Similar to the transient 2, a total of 5000 realizations were 

utilized as the inputs for the developed ANN and the corresponding uncertain 

temporal fuel temperature and steam pressure were predicted. The SD model 

estimates were efficiently reproduced using the developed ANN, with maximum 

differences of 0.162% and 0.137% in the minimum and maximum fuel temperature 

at t = 80 s, respectively, and 1.145% in the steam pressure at t = 0 s (Figure 5-10). 

In addition, the statistical distribution of the ANN predictions can be approximated 

by a 3-parameter lognormal distribution (Figure 5-10a and Figure 5-10b). 

Transient 5: Increase in Reactor Inlet Temperature 

Finally, the performance of the developed ANN was evaluated under an 

increase in the reactor core inlet temperature of 7.5oF. Increasing the coolant 

temperature results in a negative reactivity feedback that reduces the fuel 

temperature, as shown in Figure 5-11a. On the other hand, more heat energy is 

transferred to the secondary coolant system due to the increasing coolant 

temperature in the primary coolant system. In addition, the secondary coolant is 

converted into steam, leading to a higher steam pressure. The SD model outputs 

were adequately predicted using the developed ANN under this transient, with 
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maximum difference of 1.0 % in the fuel temperature at t = 1 s and negligible 

deviations in the steam pressure as shown in Figure 5-11a and Figure 5-11b, 

respectively.   

Overall Evaluation of Additional Network Testing 

Overall, the developed ANN is adequately trained under 32 different 

transients to simulate the dynamic interaction between complex systems inside the 

PWR. The ANN performance under Transients 1 through 5 supports its ability to 

predict the PWR physical behavior similar to a SD modeling approach, but with 

lower computational cost and time. Therefore, the developed ANN can be used to 

provide the plant operators with early warnings under the considered transients. 

This can reduce the likelihood of having severe accident consequences and 

ultimately enhance the overall safety conditions. 

5.5. CONCLUSIONS 

The present study aimed at exploring the potential of applying AI tools within the 

nuclear engineering field, and specifically for the prediction of NPP response. A 

previously published validated SD (physics-based) model was employed to 

generate data pertaining to PWR dynamic behavior under different transients. The 

data was subsequently utilized to develop a corresponding ANN (data-driven) 

model. The uncertainty associated with the PWR system’s physical parameters and 

operating conditions were also incorporated in these transient analyses. A feed-

forward backpropagation ANN was trained based on 32 transients to model the 
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interaction between complex systems inside the PWR, including the reactor core, 

primary and secondary cooling systems, hot and cold legs, reactor core inlet and 

outlet plenums, and steam generator inlet and outlet plenums. The ANN was 

developed with an input layer with five nodes, a single hidden layer with different 

numbers of neurons, and an output layer with two nodes. Three backpropagation 

algorithms with eight training functions were utilized during the model training 

stage. The ANN corresponding to the trainlm function, with eleven neurons in the 

hidden layer, showed the best performance compared to other training functions.  

 The developed ANN was subsequently tested under new transients 

representing perturbations in reactivity, steam valve coefficient, and core inlet 

temperature. In all cases, the developed ANN reproduced the SD model estimates 

of the temporal fuel temperature and steam pressure with negligible differences (no 

more than 1.6%). In addition, the predicted statistical distributions of fuel 

temperature and steam pressure using ANN are compatible with the corresponding 

distributions from the SD simulation model when the input uncertainties are 

considered. In an actual NPP, the developed ANN would provide a computationally 

efficient alternative compared to physics-based models, especially for considering 

the uncertain system physical parameters and operating conditions. In addition, the 

developed ANN can be utilized as an early warning tool that enables the 

development of effective risk mitigation strategies under unexpected operating 

conditions, and can therefore serve as a rapid decision support systems for NPP 

operators and managers. Moving forward, the developed ANN can be trained using 
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real plant operation data and different transients in different systems in order to 

cover all possible scenarios that can occur during normal or abnormal operating 

conditions. Finally, the adoption and development of AI tools within the nuclear 

engineering field will enable major breakthroughs in mitigating the risk of accidents 

and human errors when dealing with systems as complex, dynamic and critical such 

as NPPs. 
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Table 5-1 Different transients employed in the present study 

Transient description Max. Min. Increment 

Transient 1: Changing the 

reactivity 

-0.006 +0.006 0.0015 

Transient 2: Changing the steam 

generator-steam valve coefficient  

-20% +20% 5% 

Transient 3: Changing the reactor 

core inlet temperature 

-20oF +20oF 5oF 

Transient 4: Changing the steam 

generator inlet temperature 

-20oF +20oF 5oF 
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Table 5-2 Results of the PWR-NN for different training function 

Algorithm 
Training 

function 
Description nh 

Average 

number 

of 

epochs 

R (Tf) R (Ps) 

MSE 

(Tf) 
oF2 

MSE 

(Ps) 

psi2 

CPU 

time  

(s) 

Gradient 

Descent  

traingd 

Gradient 

descent back 

propagation 

  did not converge 

traingdm 

Gradient descent 

with 

momentum back 

propagation 

  did not converge 

trainrp 
Resilient back 

propagation 

4 879 0.9854 0.9985 201 22 11 

8 894 0.9886 0.9989 157 16 13 

11 904 0.9893 0.9991 147 14 15 

Conjugate 

Gradient  

trainscg 

Scaled conjugate 

gradient back 

propagation 

4 276 0.9844 0.9990 215 15 6 

8 303 0.9876 0.9991 171 13 8 

11 301 0.9881 0.9991 164 13 9 

traincgp 

Conjugate gradient 

back propagation 

with Polak-Ribiére 

updates 

4 270 0.9843 0.9991 217 14 12 

8 294 0.9874 0.9992 174 12 15 

11 332 0.9884 0.9992 159 12 21 

traincgf 4 264 0.9851 0.9991 206 13 12 
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Conjugate gradient 

back propagation 

with Fletcher-

Reeves updates 

8 389 0.9892 0.9994 150 9 20 

11 431 0.9900 0.9994 138 8 28 

Quasi-

Newton  

trainbfg 

Broyden-Fletcher-

Goldfarb- Shanno 

(BFGS) quasi-

Newton back 

propagation 

4 1000 0.9797 0.9949 279 77 65 

8 1000 0.9777 0.9926 306 112 78 

11 1000 0.9783 0.9937 298 95 95 

trainlm 

Levenberg-

Marquardt back 

propagation 

4 265 0.9904 0.9995 132 7 17 

8 250 0.9934 0.9996 91 5 22 

11 336 0.9940 0.9997 83 4 38 
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Figure 5-1: Schematic diagram of a typical PWR (El-Sefy et al. 2019). 
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a.  

 

b.  

 

Figure 5-2: a. Sample of SD estimates of Tf due to reactivity transient of +0.0015. 

b. Sample of SD estimates of Ps at the same transient level. 
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Figure 5-3: Schematic diagram of the feed forward back propagation neural 

network with single hidden layer. 

 

Figure 5-4: Schematic Diagram of ANN employed in the present study to 

simulate the dynamic behavior of a PWR. 
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Figure 5-5: MSE values under the trainlm training function and over the different 

training iterations. 
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Figure 5-6: Regression values of the ANN with 11 hidden layer neurons under the 

trainlm training function for: a. Training subset, b. Validation subset, c. Testing 

subset, and d. All subsets combined together. 
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a.  

 
b.  

 

Figure 5-7: a. Comparison between NN prediction and SD estimate of fuel 

temperature due to an increase in reactivity level by +0.001 (Transient 1). b. 

Comparison between NN prediction and SD estimate of steam pressure at the same 

transient level.  
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a.  

 

b.  

 

Figure 5-8: a. Comparison between NN predictions and SD estimates of uncertain 

fuel temperature due an increase in reactivity level by +0.001 (Transient 2). b. 

Comparison between NN predictions and SD estimates of uncertain steam pressure 

at the same transient level. 



Ph.D. Thesis – M. Elsefy    McMaster University – Civil Engineering 

 

 

217 

 

 

a.  

 

b.  

 

Figure 5-9: a. Comparison between NN prediction and SD estimate of fuel 

temperature due to an increase in steam valve coefficient by +7.5% (Transient 3). 

b. Comparison between NN prediction and SD estimate of steam pressure at the 

same transient level. 
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a.  

 

b.  

 

Figure 5-10: a. Comparison between NN predictions and SD estimates of uncertain 

fuel temperature due to an increase in steam valve coefficient by +7.5% (Transient 

4). b. Comparison between NN predictions and SD estimates of uncertain steam 

pressure at the same transient level. 
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a.  

 

b.  

 

Figure 5-11: a. Comparison between NN prediction and SD estimate of fuel 

temperature due to an increase in the reactor core inlet temperature by +7.5oF 

(Transient 5). b. Comparison between NN prediction and SD estimate of steam 

pressure at the same transient level. 
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Chapter 6 : SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1. SUMMARY 

The overarching goals of this dissertation were to enhance the safety of nuclear 

power plants (NPPs) and overcome the challenges facing the existing DPRA 

approach through developing a physics-based system dynamics (SD) platform for 

dynamic probabilistic risk assessment (DPRA) of NPPs, as well as a data-driven 

early warning decision tool to empower rapid emergency response planning and 

risk mitigation strategies. As a first step in this endeavour, Latent Dirichlet 

Allocation (LDA) topic modelling and N-Gram text classification were utilized to 

identify the main trends in the current DPRA methodologies based on a total of 387 

articles published in 50 different journals and conferences between 1981 and 2019. 

The evolution of DPRA simulation and graphical methodologies were accordingly 

presented and discussed. A qualitative literature review was subsequently 

performed to identify the main challenges facing current DPRA approaches. 

Next, SD was utilized to deterministically simulate the dynamic interaction 

between the large and complex systems of a pressurized water reactor (PWR). In 

this respect, the developed model was used to simulate the thermal dynamics 

processes between different PWR systems. The model was validated using 

previously published results and was then used to predict system response under 

new reactor core and secondary coolant system transients.  
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The probabilistic nature of the PWR system parameters was subsequently 

coupled with the developed SD model, resulting in a DPRA platform, by 

considering the uncertainties associated with the plant's physical parameters and 

operating conditions. The DPRA platform was developed by integrating both the 

SD simulation technique and Monte Carlo simulations in conjunction with a 

triangular probability density function for the average fuel temperature in order to 

estimate the temporal probability of core damage. In this respect, the statistical 

behavior of 26 behavior governing parameters was represented by normal 

distributions, whereas seven other parameters were conservatively assumed to 

follow uniform distributions. The developed DPRA platform was subsequently 

used to estimate the temporal changes in fuel temperature and the probability of 

core damage under different transients considering the uncertainties of the PWR 

system. Moreover, a global sensitivity analysis was carried out to determine the 

parameters that significantly impact the average fuel temperature. 

Finally, an artificial neural network (ANN) was developed to predict the 

nonlinear dynamic behavior of the critical PWR parameters (i.e., average fuel 

temperature and steam pressure of secondary cooling systems) in a fast, accurate, 

and intelligent fashion in order to avoid the computational overburden of physics-

based models. The developed ANN was trained using a real-time dataset 

corresponding to 32 different transients and was subsequently tested under new 
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transients in order to evaluate its efficacy in predicting the response of the PWR 

system. 

6.2. CONCLUSIONS AND CONTRIBUTIONS 

The research in the present dissertation introduced a physics-based simulation 

platform for NPP DPRA that considers the dynamic interactions between large 

complex systems inside the NPP. The developed DPRA platform has the capability 

of simulating the complex feedback mechanisms among different systems 

including the reactor core, primary and secondary cooling systems, hot and cold 

legs, reactor core inlet and outlet plenums, and steam generator inlet and outlet 

plenums. In addition, this research demonstrates the ability of the developed 

platform to evaluate the temporal probability of core damage under different 

transients considering the uncertainties in the plant's physical parameters and 

operating conditions. Moreover, global sensitivity analysis demonstrated that the 

fuel coefficient of reactivity, the coolant temperature coefficient of reactivity, the 

heat transfer coefficient from fuel to coolant, and the total delayed neutron fraction 

are the primary controllers of the fuel temperature variability under the different 

transients considered. In summary, this research contributes to enhancing NPP 

safety by overcoming the challenges facing PRA approach for simulating large 

complex systems. In particular, the developed DPRA platform provides substantial 

advantages compared to current DPRA tools in terms of both computational time 

and data storage. Finally, this research introduced an artificial intelligence-based 
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early warning tool that can support the plant operators with rapid and accurate 

predictions of the system behavior. The developed data-driven model can 

accurately predict the nonlinear dynamic behavior of PWR critical parameters (i.e., 

average fuel temperature, steam pressure) under different transients. In addition, 

the statistical distributions of these parameters using ANN are compatible with the 

corresponding distributions from the SD simulation model (physics-based) when 

the uncertain system physical parameters and operating conditions are considered. 

The developed ANN also provides a computationally efficient alternative compared 

to SD models, especially when considering uncertainties. As such, the developed 

AI tool enables the development of effective risk mitigation strategies under 

unexpected operating conditions and can therefore serve as a rapid decision support 

system for plant operators and managers.  

In light of the research findings reported in this dissertation, the following 

sections present the conclusions and contributions for Chapters 2 to 5. 

6.2.1. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 2 

Quantitative analysis of DPRA publications identified seven topics related to 

DPRA simulation and six topics related to graphical methodologies. The discrete 

dynamic event tree was found to be the most common approach for DPRA 

simulation methodologies. Afterward, qualitative literature reviews were 

performed to investigate the main challenges facing the DPRA approach. The main 

conclusions and contributions from Chapter 2 are: 
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• Static PRA methods have numerous limitations that can result in an inadequate 

assessment of the risk associated with complex dynamic systems such as NPPs. 

• DPRA methodologies have a significant impact on enhancing the safety of 

NPPs by overcoming the limitations of static PRA methods, and there is a 

growing trend in the number of articles published on DPRA of NPPs because it 

is vital to consider the dynamic behavior of the system for risk assessment. 

• Dynamic Logic Analytical Methodology )DYLAM(, Markov/Cell-to-Cell 

Mapping Technique (Markov/CCMT), The Accident Dynamics Simulator 

paired with the Information, Decision, and Action in a Crew context cognitive 

model (ADS-IDAC), Monte Carlo Dynamic Event Tree (MCDET), Analysis 

of Dynamic Accident Progression Trees (ADAPT), and Reactor Analysis and 

Virtual Control Environmental (RAVEN) are the DPRA simulation 

methodologies most frequently employed in previous studies, while Go-Flow, 

Petri Net, dynamic fault tree, dynamic flowgraph method, extended event 

sequence diagram, and dynamic Bayesian network are the most frequently used 

DPRA graphical methodologies. 

• RAVEN, ADAPT, and DBNs exhibit a growing trend in the publications related 

to DPRA and are considered promising methodologies for assessing the safety 

of dynamical systems. 
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• ADS-IDAC and DFM have significantly contributed to the publication of 

DPRA simulation and graphical methodologies, representing approximately 

25% and 30% of the published articles, respectively. 

• Further qualitative review highlights the limited applications of the DPRA 

approach in simulating large complex systems within NPPs, multi-unit risk 

assessment, and computational expensive of currently employed DPRA 

methodologies. 

• The Fukushima Daiichi nuclear accident demonstrated the importance of 

assessing the risk of multi-unit NPPs; however, the application of DPRA in such 

systems is still in its infancy. 

• The results from this chapter demonstrate the importance of enhancing and/or 

developing new DPRA tools that are capable of simulating the dynamic 

interaction between large complex systems within NPPs. 

6.2.2. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 3 

Three SD models were developed to simulate the thermal dynamic processes inside 

the reactor core, secondary coolant system, and the complete PWR system, 

respectively, in a deterministic way. The main conclusions and contributions from 

Chapter 3 are: 
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• The developed models were validated using the results of a previous study, and 

evaluated under different transients, such as adding a positive reactivity and 

increasing the reactor core inlet temperature.  

• The developed SD models are able to simulate the nonlinear dynamic response 

of the PWR parameters under single and multiple transients, thereby indicating 

their ability to efficiently capture fluctuation in system behavior. 

• The results of the SD model demonstrate the capability of the SD modelling 

approach to simulate the dynamic interactions between different large complex 

systems within the PWR. 

• The developed SD model has significant advantages from both time and data 

storage perspectives compared to more complex NPP simulators. 

6.2.3. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 4 

Uncertainties associated with the NPP physical parameters and operating 

conditions were incorporated in the deterministic SD model developed in Chapter 

3. The SD model is embedded within a Monte Carlo framework to enable the 

development of a NPP DPRA platform. The DPRA platform was subsequently used 

to predict the temporal probability of core damage under different transients. The 

main conclusions and contributions from Chapter 4 are: 
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• Uncertainties associated with the plant physical parameters and operating 

conditions significantly impact the average fuel temperature and probability of 

core damage.  

• The developed DPRA platform is able to consider the dynamic interaction 

between several large systems including the reactor core, primary and 

secondary cooling systems, hot and cold legs, reactor core inlet and outlet 

plenums, and steam generator inlet and outlet plenums. 

• The developed DPRA platform demonstrates the ability to assess the safety of 

NPPs by evaluating the temporal probability of core damage under single and 

multiple transients at a relatively low computational cost. 

• The fuel temperature coefficient of reactivity, coolant temperature coefficient 

of reactivity, heat transfer coefficient from the fuel to coolant, and total delayed 

neutron fraction are the primary parameters governing the fuel temperature 

variability. 

• The primary coolant mass flow has a considerable impact on the fuel 

temperature during the transients associated with a change in the inlet coolant 

temperature for either the reactor core or the secondary coolant system. 

6.2.4. CONCLUSIONS AND CONTRIBUTIONS FROM CHAPTER 5 

A data-driven model was developed to predict the dynamic response of the critical 

PWR parameters. A feed-forward backpropagation ANN model was trained based 
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on 32 transients to model the interaction between different systems. Eight training 

functions were employed during the training stage, in which the mean squared error 

(MSE) was utilized to select the most appropriate training function. The main 

conclusions and contributions from Chapter 5 are: 

• The Levenberg-Marquardt backpropagation “trainlm” training function 

combined with eleven hidden-layer neurons showed the best performance 

compared to other considered training functions. 

• The results of the training stage demonstrate the ability of the developed ANN 

model to successfully learn from the dataset despite the complex and dynamic 

nature of the underlying system. 

• The developed ANN model was tested under new transients, including 

perturbations in reactivity, steam valve coefficient, and core inlet temperature. 

The obtained results demonstrate the capability of the developed ANN model 

to predict the PWR critical parameters (i.e., the average fuel temperature and 

steam pressure inside the secondary coolant system) with a lower computational 

cost compared to physics-based models. 

• Uncertainties associated with the PWR system parameters are captured using 

the developed ANN model. 

• The developed ANN model can provide the plant operators with rapid and 

accurate predictions of the system behavior without overburdening the model 

with the underlying complex physical interactions. 
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• The ANN-based model represents an intelligent early warning decision tool that 

can aid in the development of effective risk mitigation strategies under 

abnormal conditions, and can therefore serve as a rapid decision support system 

for NPP operators and managers. 

6.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

The research presented in this dissertation contributes to DPRA simulation methods 

for NPPs by providing an integrated Monte Carlo-SD platform that can be 

employed to effectively predict the temporal probability of core damage in a PWR. 

Furthermore, the ANN-based model developed in this study represents an 

intelligent early warning decision tool that can support the plant operators with 

quick and accurate predictions of PWR critical parameters, which can enhance the 

safety of NPPs under abnormal conditions. In light of findings/results presented in 

this dissertation, this section presents possible research extensions that can be 

carried out to expand the developed DPRA simulation platform. 

• The developed DPRA platform can include other PWR systems such as 

pressurizer, emergency coolant system, and emergency diesel generators to 

provide a digital twin of operational NPP. 

• The SD model can be coupled with those representing external systems (e.g., 

power grid) in order to investigate the dynamic interaction between the PWR 

and such systems under natural or anthropogenic hazards. 
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• In light of the Fukushima Daiichi accident, DPRA of multi-unit NPPs has 

become more essential than ever before. The feedback loops in the SD modeling 

technique can simulate the dynamic interaction associated with multi-unit sites, 

thereby providing a comprehensive DPRA platform. 

• Artificial intelligence-based techniques can be trained using real plant operation 

data in different systems to cover all possible operational transients and accident 

scenarios that can occur during NPP normal or abnormal operating conditions. 

 

 

 

 

 

 


