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Abstract 

This thesis explores three important issues in credit risk modeling: the nonlinear credit risk 

stress testing models, the recovery term structure of point-in-time (PIT) loss given default 

(LGD), and the estimation of LGD by mixture beta regression model. 

 

In the first essay of this thesis, we study the credit risk stress testing models. By 

incorporating the regime-switching and quantile regression techniques into credit risk 

stress testing models, we propose two new dynamic models that outperform the traditional 

linear regression model according to both the point estimate accuracy and the confidence 

interval breaches. This confirms the importance of nonlinear regression approaches in the 

estimation and the prediction of credit risk determinants. The proposed models perform 

especially well in capturing the extreme values on the tail of the estimated distribution of 

the credit risk measure. The proposed models could be used for both the International 

Financial Reporting Standard 9 (IFRS9) expected loss calculation and Basel’s Advanced 

Internal Rating-Based (AIRB) regulatory capital calculation purposes. 

 

In the second essay, we examine and model the time-series pattern of recovery throughout 

the bankruptcy and workout process of a retail credit portfolio; whereas other researchers 

are concerned with predicting the overall recovery rates of debt instruments, we model the 

amounts a creditor can recover at different points in time subsequent to the default event. 

This is of practical interest to commercial banks in managing the risk of their default loan 

portfolios. Like managing performing loan portfolios, banks must assign loss provision and 
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determine the capital requirement associated with non-performing (i.e., defaulted) loan 

portfolios. Given the fact that it usually takes two to three (up to five or more) years to 

complete the recovery process for a typical defaulted retail (corporate) loan, it is important 

to understand the time-varying risk characteristic of the defaulted portfolio as a function of 

its vintage in the recovery process. An accurate point-in-time (PIT) risk assessment enables 

financial institutions to manage their defaulted loan portfolios in a timely fashion. 

 

In the third essay, we further extend our understanding of the distribution of LGD. For 

credit risk management purposes, the LGD of credit instruments is one of the key 

determinants in estimating capital requirements for financial institutions. To address the 

practical problems encountered in implementing LGD prediction model (e.g., in capturing 

the bimodal characteristic of the LGD distribution), we propose to develop a mixture beta 

regression LGD model. By using the maximum likelihood estimation and the method of 

moment approaches, the parameters of the mixture beta regression model can be estimated. 

Furthermore, we examine the impact of the systematic factors and model the time-series 

variation of the LGD distribution as a function of these systematic factors. Finally, through 

a number of empirical analyses, we demonstrate the superior performance of our proposed 

mixture beta models in comparison with the single-beta logit-linked model commonly 

considered in the literature. 
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Chapter 1 

Introduction 

 

This thesis focuses on three important issues in credit risk modeling: the nonlinear credit 

risk stress testing models, the recovery term structure of point-in-time (PIT) loss given 

default (LGD), and the estimation of LGD by mixture beta regression model. In this chapter, 

we highlight the background and motivation of the research, as well as the main findings 

and contributions of the three essays. 

 

Following the financial crisis in 2008, many new regulatory requirements have been 

introduced in the financial industry and specifically for banks. Most of them focus on stress 

testing and capital adequacy mainly due to the 2010 Dodd-Frank Act. Starting from 2011, 

new regulations in the United States require the submission of Comprehensive Capital 

Analysis and Review (CCAR) documentation for the financial industry. CCAR requires 

financial institutions to report on their internal procedures for managing capital, and 

financial institutions are required to include a discussion on the impact of various stress-

tested scenarios in their final report. It involves examining how the banks’ asset portfolios 

behave under historical and/or hypothetical stress conditions, usually by using a statistical 

model to establish the relationship between the key risk parameters and some 

macroeconomic variables that define the stress condition. For example, a historical stress 

scenario could be the bursting of the dot-com bubble (in 2001) or the global financial crisis 

(in 2007-2008). The economists in the banks would determine which macroeconomic 
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variables are involved in each scenario and estimate the directions and magnitudes of the 

changes of these variables. Then, with the help of risk models, the changes in the key risk 

factors can be derived based on the changes in these macroeconomic variables. Finally, the 

expected loss and capital requirement, which are the major management concerns, are 

calculated with the estimated risk factors. To fulfill this regulatory objective, banks need 

to develop stress testing models that assist in making business decisions.  

 

There are in general three key credit risk parameters: Probability of Default (PD), Loss-

Given-Default (LGD), Exposure at Default (EAD). As mentioned in Basel’s guidelines, 

financial institutions need to estimate these parameters so as to calculate the required risk 

measures such as the expected loss and the unexpected loss. 

 

In the first essay, we focus on the stress testing models of the probability of default (PD) 

that are used in calculating regulatory capital. We contribute to the literature in several 

ways.  First, previous PD stress testing models typically utilize linear regression techniques 

to establish the relation between PD and the selected macroeconomic variables based on 

historical data. The key risk parameters under the stress scenarios are then simulated 

contingent on the realizations of specific values of the macroeconomic variables that are 

consistent with the stress scenarios. In this study, we propose a couple of non-linear PD 

stress testing models that can better capture the dynamic behaviors of credit risk across 

different states (e.g., contraction versus expansion) of the economy. The two non-linear 

models are, respectively, the regime-switching model (Hamilton, 1989) and the quantile 



12 
 

regression model (Koenker and Bassett, 1978). We conduct an empirical analysis to 

compare the performance of our proposed models with that of an OLS stress testing model, 

so as to have a better understanding of the advantages and disadvantages of each model. 

Finally, unlike the previous studies where the primary concern of the researchers is on the 

accuracy of the point estimate, we also examine the performance of the model in replicating 

tail events across the distribution of the predicted PD value. We find that the regime-

switching model is the best among all as it outperforms other models (quatile regression 

models and OLS models) in producing the most accurate point estimation (based on the 

absolute average error) and breach counts (based on both the 80% and the 90% confidence 

intervals). 

 

In the second essay, we examine and model the time-series pattern of recovery throughout 

the bankruptcy and workout process of a retail credit portfolio. This essay is a joint work 

with Dr. Donghui Chen (Scotiabank) and Dr. Peter Miu. As one of the key credit risk 

parameters, the recovery rate (or LGD) of a defaulted instrument attracts a lot of attention 

from both researchers and practitioners with the introduction of the Basel II Accord in 2006, 

under which the amount of regulatory capital required to be held by banks becomes a direct 

function of not only PD but also LGD and EAD of the loan portfolios.   

 

To our understanding, all previous studies of recovery rate focus on the investigation of 

either the point-in-time (e.g., Krüger and Rösch, 2017) or the through-the-cycle (e.g., 

Jankowitsch, 2014) behavior of the overall recovery rate from the workout process rather 
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than the profile of recovery rate within the workout process. In this study, we contribute to 

the aforementioned literature by examining and modeling the time-series pattern of 

recovery throughout the bankruptcy and workout process of a retail credit portfolio; 

whereas other researchers are concerned with predicting the overall recovery rates of debt 

instruments, we model the amounts a creditor can recover at different points in time after 

the default event. This is of practical interest to commercial banks in managing the risk of 

their default loan portfolios.  Like managing performing loan portfolios, banks must assign 

loss provision and determine the capital requirement associated with non-performing (i.e., 

defaulted) loan portfolios. Given the fact that it usually takes two to three (up to five or 

more) years to complete the recovery process for a typical defaulted retail (corporate) loan, 

it is important to understand the time-varying risk characteristic of the defaulted portfolio 

as a function of its vintage in the recovery process. An accurate point-in-time (PIT) risk 

assessment enables financial institutions to manage their defaulted loan portfolios in a 

timely fashion. 

 

The third essay investigates the distribution of LGD and proposes a new parameterization 

to extend the generalized beta regression model (GBR) by incorporating two beta 

distributions in modeling LGD. Huang and Oosterlee (2012) propose the GBR framework 

for estimation of the prediction of LGD. The idea is to utilize a monotonic, differentiable 

link function and a linear combination of predictors to model the mean and variance of the 

LGD distribution. Potential predictors can be macroeconomic variables or firm-level 

variables capturing the characteristics of the underlying assets. The link functions can be 

logit or probit functions.  
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In the third essay, we contribute to the literature on LGD modeling in a number of ways. 

First, we propose a new dual-beta regression LGD model that considers the probability 

weights of realizing the two underlying beta distributions as functions of macroeconomic 

variables. The general five-factor model and a simplified three-factor model are introduced. 

Second, with an extensive dataset on the recovery values of corporate defaults, we estimate 

the proposed models with a number of different macroeconomic variables that are expected 

to be associated with the recovery value. We conduct both in-sample and out-of-sample 

tests and demonstrate the superior performance of our proposed mixture beta distribution 

regression model when compared with the commonly used single-beta logit-link regression 

models. Third, we demonstrate how our proposed mixture distribution model can capture 

the time-varying behavior of the LGD distribution and how the probability weights 

assigned to the two underlying beta distributions vary with the business cycle. We find that 

our proposed models perform better in predicting the LGD distribution during recessionary 

periods1. 

 

 

 

 

 

 
1 Most of the coding of these three chapters are finished by MATLAB, while some preliminary analysis and 
graphs are prepared by STATA and R. 
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Chapter 2 

Non-linear Credit Risk Stress Testing Modelling 

2.1 Introduction  

 

As a watershed event for regulators of financial institutions, the great depression in 1929 

shows how the failure of banks impacted all of society. Among the lessons which were 

learned from that event, the most important one is the need to formulate an effective way 

to regulate banks. After some unsustainable attempts post-depression, such as rate-based 

competition, regulators came up with Basel I. By introducing a minimum capital 

requirement that depends on a bank’s risk profile, it established a link between risk-taking 

behavior and capital requirements. Following several amendments to the capital accord in 

1996 and 1998, the Basel II framework was introduced emphasizing the importance of 

capital adequacy. 

 

Let us use an example to illustrate how capital requirements may affect a bank’s risk 

management strategies. Assume there is a Bank A (a deposit-taking financial institution) 

with the capital structure depicted in Figure 2.1.1. As we know, assets are equal to the sum 

of liabilities and equities. For Bank A, the liabilities can be divided into two parts: deposits 

and debts, which we assume to be 60% and 30% of overall assets, respectively. So the 

equity amounts to 10% of assets. Although the rights of claim may vary between countries 

because of different legal traditions, the depositor usually ranks on the top in the hierarchy 
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of claims. Bank A utilizes capital (i.e., shareholders’ equity) raised to make investments as 

other financial institutions do. The returns of such investment opportunities are uncertain. 

If the returns are high, the equity holders take most of the profits, while the debtholders 

and depositors receive the interest as promised. If the returns turn out to be poor, the equity 

capital is the first to evaporate followed by debt and deposits. For Bank A, when the loss 

is higher than 10% of the asset value, it is insolvent and a default incident happens. In a 

more severe condition - suppose the loss is greater than 40% of assets - both the equity 

capital and debt together are not enough to absorb the loss. The depositors will then suffer 

from the poor investment decision made by the management of Bank A. As we see in this 

example, the liability holders face an asymmetric pattern of returns. The risk they take is 

just compensated by a very limited promised return (i.e., interest income), whereas the 

management and equity holders are incentivized to pick the risky investment opportunities 

to maximize their potential profits2. Regulators are therefore interested in finding the 

answers to the following two questions: 

 

1. How can we protect the liability holders, especially the depositors? 

2. How can we regulate the risk-taking behavior of equity holders? 

 

A minimum regulatory capital requirement gives us a solution to both. Assuming we have 

a Bank B which has the same risk profile as that of Bank A. But unlike Bank A, which is 

 
2 The management’s incentive to take risky behavior in making investment is profit driven, which is a 
rational choice (from the perspective of management) rather than personal preference. The personal 
attachment and business skills which may affect their strategies in making decisions are not in the scope of 
this chapter.  

Formatted: Justified
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not subject to any regulatory requirement, Bank B is required by the regulators to maintain 

a minimum capital ratio of 20% of the assets based on its risk profile. Generally speaking, 

the minimum required capital of a particular financial institution depends on the riskiness 

of its investments are. The riskier a bank’s portfolio, the more equity capital is required to 

cushion the corresponding risk taken. Compared with Bank A, Bank B is more financially 

stable when faced with economic turbulence given its larger capital cushion. Bank B can 

absorb more financial losses before it becomes insolvent. Even with the extreme loss of 

40% of asset value, Bank B’s depositors can still recover all the money they deposited in 

the bank. For the equity holders of Bank B, given the regulatory capital requirement, more 

of their money is at stake and they will be less inclined to pursue a risky investment strategy. 

Since the minimum capital requirement is a direct function of the risk profile, it prevents 

the bank management from becoming too aggressive as they will need to raise more equity 

capital to provide a thicker cushion to protect liability holders. There is a trade-off between 

optimizing the capital requirement and the pursuit of an aggressive investment strategy.3 

INSERT FIGURES 2.1.1 and 2.1.2 ABOUT HERE 

The minimum capital requirement has proved to be an effective way to instill stability in 

the financial sector in the past decades. However, regulators start to notice that it is not 

wise to utilize a static regulator driven capital adequacy measure to deal with the risk 

profile and capital requirement of an active financial institution in a dynamic risk 

environment. The need for an internal and comprehensive assessment of the capital profile 

of a bank-led to the introduction of an Internal Capital Adequacy and Assessment Process 

 
3 Many banks maintain a capital level well above the minimum capital requirement as stipulated by the 

regulators. Such a strategy makes the banks more attractive from the perspective of depositors and debt 

holders, potentially lowering their costs of debt.  
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(ICAAP) whose objective is to allocate risk capital to all significant sources of risk and 

stress test the result so that the senior management and the board of directors are informed 

of any expected or projected capital shortfall.  

 

Following the financial crisis in 2008, a number of new regulatory requirements were 

introduced in the financial industry and specifically for banks. Most of them focus on stress 

testing and capital adequacy mainly due to the 2010 Dodd-Frank Act. Starting in 2011, 

new regulations in the United States required the submission of Comprehensive Capital 

Analysis and Review (CCAR) documentation for the financial industry. CCAR requires 

financial institutions to report on their internal procedures for managing capital, and 

financial institutions are required to cover various stress-tested scenarios in their final 

report. This involves examining how the banks’ asset portfolios behave under historical 

and/or hypothetical stress conditions, usually by using a statistical model to establish the 

relationship between key risk parameters and macro variables that define the stress 

condition. For example, a historical stress scenario could be the bursting of the dot-com 

bubble (in 2001) or the global financial crisis (in 2007-2008), while a hypothetical scenario 

might be nuclear warfare. Bank economists would determine which macro variables are 

involved in each scenario and estimate the directions and magnitudes of the change of each 

macro variable. Then, with the help of risk models, the changes in the key risk factors can 

be derived based on the changes in these macro variables. Finally, the expected loss and 

capital requirement, which are the major management concerns, are calculated with the 

estimated risk factors. To fulfill this regulatory objective, banks need to develop stress 

testing models that assist in making business decisions. 
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In addition to CCAR reporting, systemically important financial institutions (typically 

those with greater than $50 billion in assets) in the United States deemed too big to fail by 

the Financial Stability Board must include stress-tested reporting on planning for a 

bankruptcy scenario4. Currently, Basel III is in effect for banks as well. This is a universal 

reporting stress test that requires reporting documentation on banks’ capital levels with 

specified requirements for stress testing of various designed crisis scenarios. 

 

In Canada, all banks and investment firms that are regulated by the federal government are 

required to comply with the Basel Capital Adequacy Requirement (BCAR). BCAR focuses 

on the capital to risk-based asset ratio and an asset-to-capital multiple of the financial 

institutions and is required to be filed with the Office of the Superintendent of Financial 

institution (OSFI) on a quarterly basis. Two methodologies are available for calculating the 

capital requirements: the standardized and the internal rating-based (IRB) approaches. 

Prior approval from OSFI is required to use IRB. OSFI reviews stress testing programs of 

financial institutions as part of their supervisory process. Expecting to see evidence that 

the stress testing procedure is integrated into the financial institution’s internal risk 

management process, OSFI may:5 

1. Evaluate the consistency of the scenarios. 

2. Assess the appropriateness of scenarios. 

 
4 In the US government’s most recent reporting review of these financial institutions in 2016, there were 

eight too big to fail systemically important financial institutions. 
5 OSFI itself also conducts analysis on stress testing results for system-wide scenarios. 



22 
 

3. Assess the sufficiency of timing and frequency of stress testing. 

4.  Examine the capital adequacy under stress testing scenarios. 

 

The present study focuses on the stress testing of credit risk exposure. Among all types of 

risks (e.g., market risk, operational risk, credit risk, etc.) defined by the Basel committee, 

credit risk is the most important one for commercial banks. Let us take the Bank of 

Montreal (BMO) as an example. In Table 2.1.1, we present the risk-weighted assets (RWA) 

of BMO calculated using the Advanced Internal Rating Based (AIRB) approach from 2012 

to 2016. The amount of RWA in credit risk consistently represents more than 80% of the 

overall RWA of the bank. More importantly, the importance of credit risk is not isolated in 

a specific line of business of the bank. Based on the economic capital (EC) allocated to the 

different risk classes according to the 2016 annual report, BMO is heavily exposed to credit 

risk in all of its major banking businesses, namely personal banking, commercial banking, 

capital market, and corporate services (see Table 2.1.2).  

INSERT TABLES 2.1.1 and 2.1.2 ABOUT HERE 

In this study, we focus on one of the most important risk parameters that define the credit 

risk of an instrument – the probability of default (PD) of the obligor. The other two 

parameters are respectively loss-given-default (LGD) and exposure-at-default (EAD). To 

measure the magnitude of credit risk in daily operations (e.g., to calculate the expected loss 

of a loan), we need to estimate the PD, LGD, and EAD of the instruments.  
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The probability of default, which estimates the likelihood that a borrower will be unable to 

fulfill its promised obligation at the settlement date, concerns the quality of the obligor 

over a particular time horizon. As one of the most important topics in credit risk 

management, PD estimation has been well studied. There are many popular alternatives for 

estimating PD. For example, default probabilities can be estimated from historical data of 

default frequencies using regressions analysis. The PD of large publicly traded companies 

can be inferred from the market prices of their credit default swaps, options on stocks, and 

bonds. Banks also use models developed by external rating agencies, such as Moody’s, to 

estimate the PD of corporations from historical default experiences. On the other hand, 

credit scoring models are commonly used to evaluate PD for individuals and small 

businesses.  

 

PD by itself cannot fully define the credit risk of an instrument. Even if the PD of the 

borrower is very high, a bank may not be subject to any credit risk if the loan is sufficiently 

secured. This is because, in the event of the borrower defaulting on the loan, the bank may 

fully recover the money that it lends by liquidating the collateral underlying the secured 

loan. Besides PD, we also need to estimate the LGD of the instrument. LGD represents the 

share of an asset that is lost in the case of default (because of legal fees, transaction costs, 

degeneration of asset value, etc.). So LGD can also be expressed as one minus the recovery 

rate. LGD is influenced by key transaction characteristics such as the value of the collateral 

and the degree of subordination. The LGD calculation can be easily understood with the 

help of an example. Suppose a borrower defaults with an outstanding debt of $100 and the 

financial institution is able to liquidate the collateral for a net price of $50. Then the LGD 
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is 50% (= ($100-$50) / $1050). Typically expressed as a proportion of the outstanding 

amount, LGD is the total loss divided by the exposure-at-default (EAD), which is another 

crucial parameter in defining credit risk. EAD, also known as credit exposure, represents 

the exposure of the lender if the counterparty defaults on his debt. EAD is simply the 

current amount outstanding in the case of fixed-exposure instruments like loans. It becomes 

more complicated if it is a revolving exposure, such as a line of credit. EAD is then made 

up of two parts: the drawn amount and (part of) the undrawn commitment. Financial 

institutions need to estimate the amount of the facility that is likely to be drawn if a default 

occurs in the future. The product of PD, LGD, and EAD gives us the expected loss (EL) 

under an independent assumption of the risk parameters: 

Expected loss (EL) = PD * E(LGD) * E(EAD),                        (1) 

where PD = probability of default 

           LGD = Loss given default 

           EAD = Exposure at default 

 

Let us illustrate the calculation involved with a numerical example (see Figure 2.1.3). 

Suppose we want to estimate EL for a line of credit issued to a borrower whose PD is 5%, 

LGD is 50% (70%) with a probability of 30% (70%), and EAD is either $40 or $60 with 

equal probability. As there are two potential outputs for each of the three parameters, we 

have eight possible outcomes in total. When there is no default (with a 95% probability), 

the loss will be zero for four of the eight possible outcomes. So, we focus on the remaining 

four outcomes. The tree in Figure 2.1.3 shows these four possible outcomes when we put 

PD, EAD, and LGD into consideration respectively and sequentially. The number on the 



25 
 

left of each cell represents the probability of realizing a particular outcome of the 

corresponding parameter. The calculation of EL is quite straightforward if we assume PD, 

LGD, and EAD are independent of each other. Upon the default of the borrower (with a 5% 

probability), there is an equal chance of realizing an exposure of $40 or $60. If a $40 EAD 

is realized, the credit loss will be either $20 (=$40 * 50%) if the realized LGD is 50% (with 

a 30% probability) or $28 (=$40 * 70%) if the realized LGD is 70% (with a 70% 

probability). If a $60 EAD is realized, the credit loss will be either $30 (=$60 * 50%) if the 

realized LGD is 50% (with a 30% probability) or $42 (=$60 * 70%) if the realized LGD is 

70% (with a 70% probability).6  There are then two ways to calculate EL. One way is to 

evaluate the probability-weighted average loss across the four possible outcomes, i.e., 

EL=5%*50%*30%*$20+5%*50%*70%*$28+5%*50%*30%*$30 + 5%*50%*70%*$42     

= $1.6 

Alternatively, we can simply use Eq. (1), i.e.,  

E(LGD) = 50%*30%+70%*70% = 0.64 

E(EAD) = $40*50%+$60*50% = $50 

Finally, 

EL = 0.05*0.64*$50 = $1.6 

 

INSERT FIGURE 2.1.3 ABOUT HERE 

 

To calculate the capital requirement for both regulatory or internal risk management 

purposes, besides finding the EL, we also need to estimate the unexpected loss (UEL). UEL 

is the extreme amount of loss to be incurred under a small but plausible probability (e.g., 

 
6 Without assuming PD, LGD and EAD are independent of each other, it is more complicated to calculate 

the probability of each outcome as we need to consider the correlations among the parameters. 
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0.05%). Banks need to ensure they have sufficient capital to survive even under such an 

extreme event. For example, an AA-rated financial institution would like to make sure it 

can survive with a 99.95% certainty. UEL, therefore, corresponds to an extreme tail event. 

The economic capital (EC) requirement can therefore be defined as the amount of UEL in 

excess of EL; whereas regulatory capital (RC) is the amount of capital a bank needs to hold 

as required by the financial regulator based on specific assumptions of EL and UEL 

assessments. The former is formulated for internal risk management and decision purposes, 

while the latter is the mandatory minimum capital required to maintain for regulatory 

purposes. 

 

Our paper focuses on the stress testing models of PD that are used in calculating EL, UEL, 

and EC. We contribute to the literature in a number of ways. First, previous PD stress 

testing models typically utilize linear regression techniques to establish the relation 

between PD and selected macroeconomic variables based on historical data. The key risk 

parameters under the stress scenarios can then be simulated contingent on the realizations 

of specific values of the macroeconomic variables that are consistent with the stress 

scenarios. In this study, we propose a couple of non-linear PD stress testing models that 

can better capture the dynamic behaviors of credit risk across different states (e.g., 

contraction and expansion) of the economy. Besides, we conduct an empirical analysis to 

compare the performance of our proposed models with that of an OLS stress testing model, 

so as to have a better understanding of the advantages and disadvantages of each model 

and check the robustness of our proposed nonlinear against the OLS model.  Finally, unlike 

the previous studies where the primary concern of the research is on the accuracy of the 
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point estimate, we also examine the performance of the model in replicating tail events 

across the distribution of the predicted PD value. In this study, we focus on applying our 

non-linear model to PD. With some adjustments, the proposed methodology can be readily 

used in the modeling of LGD and EAD. Please note that the correlation impacts among 

assets in the portfolio is not in considered in this study as the focus is on PD estimation and 

prediction.  

 

 

 

The rest of the paper is organized as below. In Section 2, we provide a literature review. 

We outline our proposed stress testing models in Section 3. In Section 4, we present the 

results of our empirical analysis with the proposed models. A validation exercise is then 

conducted and the results are summarized in Section 5. In Section 6, we conclude with a 

few remarks. 

 

2.2 Literature Review 

 

Credit risk is one of the major concerns among financial institutions that are active in the 

lending business. To assess credit risk, financial institutions need to estimate the 

probability of default (PD) of their retail and corporate customers. For a long time, The 

OLS model (and its extensions such as the logit model and probit model) is a common 
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approach adopted by banks to estimate and predict PD for stress testing purposes. Bank 

stress tests can be categorized into two types based on their purposes: micro stress test and 

macro stress test. The former is a bank-level stress test to check the capital adequacy of a 

particular bank or investment firm. Miu and Ozdemir (2008) propose a stress testing model 

of the probability of default and migration rate concerning the Basel II requirement 

allowing for the robust use of external data, and further identify, examine, and quantify the 

impact of stress events. Yang and Du (2015) extend Miu and Ozdemir’s model on stress 

testing by incorporating different asset correlations. The proposed models demonstrate the 

desired sensitivity to the risk factors as expected. A macro stress test is usually run by 

central banks to stimulate macroeconomic environment change to assess the resilience of 

the financial system as a whole rather than by individual institutions. Borio, Drehmann, 

and Tsatsaronis (2011) review the state of macro stress testing, assess its strengths and 

weaknesses, and discuss ways to improve its performance such as generating more realistic 

nonlinearities and feedback effects. Havrylchyk (2010) utilizes linear models to connect 

the explanatory variables with PD and demonstrates that macroeconomic shocks, e.g., 

changes in the interest rate and property prices, have an enormous influence on credit loss 

in South Africa.  

 

This study is on micro-level credit risk stress testing. The purpose is to quantify the credit 

risk under an unfavorable economic environment or other scenarios so as to determine 

whether a financial institution has enough capital to withstand the impact. Stress testing 

provides risk managers with an idea of the possible impact of extreme (but plausible) 

shocks on their financial institutions. We would like to investigate the impact on credit 
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portfolio (e.g., corporate loans, residential mortgages) of a financial institution. The stress 

testing exercise cannot answer “when will be the next crisis” but rather “what if there is a 

crisis?” For example:     

• What happens if GDP falls by x% in a given year? 

• What happens if the unemployment rate rises to x% in a given year? 

• What happens if interest rates go up by x% in a given year? 

Defining the stress scenarios is the first step of the stress testing procedure (see Figure 

2.2.1). We then determine both the direction and magnitude of changes in the relevant 

macroeconomic variables based on the specific stress scenario. In the third step, we find 

out the relationships between the credit risk factors, like PD, LGD and EAD, and the 

macroeconomic variables with the help of statistical models usually referred to as stress 

testing models. Finally, with the simulated risk factors (PD, LGD, and EAD), EL and 

capital requirement can be calculated for internal risk management purposes and to satisfy 

regulatory requirements.  

INSERT FIGURE 2.2.1 ABOUT HERE 

Below we provide a review of the research on micro-level credit risk stress testing. For 

example, Misina, Tessier, and Dey (2006) build a stress testing model for the corporate 

loan portfolio of the Canadian banking sector following the procedure described in Figure 

2.2.1 and conclude that PD is negatively correlated with GDP, while positively correlated 

with the interest rate. Specifically, a 200 basis point increase in the U.S. real interest rate 

from 0.18 percent to 2.18 percent will result in an expected loss of 4.6 percent and an 

unexpected loss (99% VaR) of 8.5 percent. 
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Although it is still a common practice to adopt a linear model (like those considered by 

Miu and Ozdemir (2008) in establishing the relation between macroeconomic factors and 

credit risk parameters, researchers and practitioners have started to understand that the 

relationship is unlikely to be identical in different phases of the economic cycle. This 

observation is mainly due to the asymmetric pattern of risk and returns for the creditor (i.e., 

the bank) in a loan contract. For the creditor, the upside gain is limited to the promised 

interest payment, while the downside risk in a default event could be substantial and 

depends on the financial situation of the debtor. Such an asymmetric pattern, which is due 

to the presence of capital structure, increases the sensitivity of credit risk during recessions. 

It makes the PD of banks’ credit portfolios more sensitive to the business environment 

during downturns. This argument is supported by empirical evidence. For example, in 

BCBS (2005), it is shown that PD is more sensitive to changes in the business cycle under 

stressed conditions. Aguais, Forest, Wong, and Diaz-Ledezma (2004) point out the 

importance of developing separate ratings for short- and long-term exposures. Without 

considering this feature, we tend to underestimate the downside risk if we assume these 

variables to react in their usual ways by using one regression such as OLS to fit for all 

situations. In other words, the stress test would lose its original designed purposes.  

 

Researchers started to look for alternative approaches to accommodate the asymmetric 

effect. Nickell, Perraudin, and Varotto, S. (2000) use a probit model to exam the 

dependence of rating transition probabilities on different stages of the business cycle, and 

confirm that the business cycle is the most important factor in explaining the variation of 
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their transition probabilities using the Moody’s data from 1970 to 1997. Bangi, Diebold, 

and Schuermann (2002) extend this idea to incorporate business cycles into the stress 

testing process and point out the potential usefulness of regime-switching models in credit 

risk stress testing. In the present study, we contribute to this line of research by utilizing 

nonlinear regression models that can capture the dynamic relationship between the PD and 

the explanatory variables in conducting stress testing, and we compare such frameworks 

with the traditional OLS model. 

 

The first kind of nonlinear model we consider is the regime-switching model of Hamilton 

(1989). This nonlinear model characterizes the time series behavior in multiple regimes. 

By allowing for the switching among regimes, this model is able to capture complex 

dynamic patterns. Although not used extensively in credit risk modeling, the regime-

switching model has been extensively used in empirical studies in finance. For example, 

Elliott, Siu, and Chan (2005) price volatility swap under Heston’s stochastic volatility 

model with a regime-switching model. Ang and Timmermann (2012) study the financial 

market with regime-switching models and conclude that the regime-switching models are 

capable of capturing the stylized behavior of many financial series including fat tails, 

heteroskedasticity, skewness, and time-varying correlations. In credit risk modeling, 

Bruche and Gonzalez-Aguado (2006) propose and estimate a model with switching 

coefficients formalizing the idea that the default probability and recovery rates are 

negatively correlated and show that the proposed model fits the data well. Alexander and 

Kaeck (2008) demonstrate that credit default swap (CDS) spreads are extremely sensitive 

to stock return volatility during market turbulence. Nyberg (2017) estimates and forecasts 
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US interest rates and business cycles using a Markov switching vector autoregression 

(VAR) model. These studies make progress in incorporating the regime-switching model 

into financial analysis and show that the regime-switching model is a good candidate for 

recognizing state-contingent time series behavior. From our knowledge, we are the first to 

examine the use of regime-switching models in credit risk stress testing. In allowing for 

different behaviors of PD in different states of the economy, we can arrive at a more reliable 

prediction of credit risk with the estimated regime-switching coefficients than with the 

OLS model. We find that both the direction and the magnitude of the relation between PD 

and the explanatory variables may differ between recession and expansion states of the 

economy. The naïve use of a single OLS model will therefore lead to a biased estimation 

of PD.  

 

The second kind of nonlinear model we consider is the quantile regression model. The 

quantile regression model accommodates different sensitivities between the dependent and 

the independent variables at different levels of the dependent variable. Unlike in the 

regime-switching model, where the regression equation switches between states in the time 

dimension, the quantile regression allows for the regression coefficients to vary cross-

sectionally. Specifically, it models the whole distribution of the dependent variable by 

estimating the regression coefficients for different quantiles. The quantile regression model 

is first introduced by Koenker and Bassett (1978) and its use became widespread in the late 

20th century. The approach has been widely adopted in empirical research in finance. For 

example, Ma and Pohlman (2005) investigate stock market returns with quantile 

regressions. They show that quantile regression provides more accurate forecasts and more 
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value-added portfolios than the traditional OLS method. Mensi et al. (2014) examine the 

asymmetric dependence structure among BRICS countries’ stock markets using the 

quantile regression approach. Baur, Dimpfl, and Jung (2012) provide a comprehensive 

description of the dependence pattern of stock returns by investigating the return 

distribution with quantile regression and conclude that lower quantiles exhibit positive 

dependence while upper quantiles are negatively dependent. Lee and Zeng (2011) study 

the impact of changes in oil prices on stock returns of G7 countries. Their quantile 

regression estimates are quite different from those of the OLS model in many cases 

showing some crucial implications for the linkage between oil prices and the stock market.  

 

We are not the first to use quantile regression in studying credit risks. Li and Miu (2010) 

establish a hybrid bankruptcy prediction model with dynamic loadings for both accounting 

ratio-based and market-based information. They find that the distance-to-default variable 

derived from the market-based model is statistically significant in explaining default for 

poor credit quality firms, while the z-score obtained from the accounting-based model is 

significant in forecasting default event of firms with good credit quality. Kruger and Rosch 

(2017) propose a quantile regression approach to get a comprehensive view of the loss-

given-default distribution. They conclude that the middle quantiles and tail events are 

explained by observable covariates and unobservable random events, respectively. Due to 

its advantage in capturing the full distribution information and its robustness against 

outliers and fat tails relative to the OLS regression, the quantile regression models proposed 

in the above studies outperform the models constructed based on the classical conditional 

mean estimation method. These studies confirm the importance of nonlinear regression 
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approaches in the estimation and prediction of risk determinants. In the present study, we 

extend the literature by examining the use of quantile regression in credit risk stress testing 

models. Specifically, we explore the different reactions of PD with respect to 

macroeconomic variables in different quantiles of the credit risk level. By capturing the 

different behavior of PD in high quantiles (high credit risk) vs. that of low quantiles (low 

credit risk), we are able to arrive at a more accurate estimation and prediction of PD over 

the stress periods.  

2.3 Methodology and Data 

 

2.3.1 Markov regime-switching Model  

 

The Markov regime-switching model is a type of specification in which the main 

contribution is the flexibility in accommodating processes driven by heterogeneous states 

of the world. In this section, we give a brief introduction to the model. More details can be 

found in Hamilton (1994), and Kim and Nelson (1999).  

Consider the following process of a random variable 𝑦𝑡 given by: 

 𝑦𝑡 = 𝜇𝑆𝑡 + 𝜖𝑡 (1) 

where 𝑆𝑡 = 1,2,⋯ , 𝑘 denote the k regimes (or states). The residual 𝜖𝑡 follows a normal 

distribution with zero mean and variance given by 𝜎𝑆𝑡
2 . This is the simplest case of a 

dynamic model with switching regimes. Usually 𝜇𝑆𝑡  can be expressed as a linear 

combination of 𝑛 independent variables (𝑖 =  1 𝑡𝑜 𝑛) with coefficients 𝛽𝑖,𝑆𝑡. Note that the 

intercept has k states, which means there are k values for both intercept and variance. If k 
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= 1, then the process becomes a simple linear regression model under the general condition. 

The number of parameters of the Markov regime-switching model will increase 

dramatically as the number of states and the number of independent variables increase.  

 

In this study, we consider a two-state regime-switching model (i.e., k = 2). The two states 

can generally be interpreted as the contraction and expansion states of the economy. The 

limited monthly data we have essentially forbid us to consider a model with more than two 

states. By adopting a parsimonious model, we can ensure the robustness of our results. A 

two-state model is also intuitive, as the two states naturally represent the upturn and 

downturn of the economy over a business cycle.  

 

Suppose there are n independent variables (e.g., macroeconomic variables). Then the two-

state model can be represented by: 

𝑦𝑡 = 𝛽0,1 +∑𝛽𝑖,1𝑥𝑖,𝑡 + 𝜖𝑡

𝑛

𝑖=1

   𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 1 

𝑦𝑡 = 𝛽0,2 +∑ 𝛽𝑖,2𝑥𝑖,𝑡 + 𝜖𝑡
𝑛
𝑖=1    𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 2, 

where  

𝜖𝑡 ~ (0, 𝜎1
2)    𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 1 

𝜖𝑡 ~ (0, 𝜎2
2)   𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 2 

For a credit risk model, 𝑦𝑡  can represent a vector of default frequency (or its 

transformation). The different standard deviation in each state represents the uncertainty 
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regarding the predictive power of the model in that state of the world. Going back to our 

setup, one would expect that PD during the contraction period is more volatile than that of 

the expansion period. This means that we can expect 𝜎𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
2  to be higher than 

𝜎𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛
2 . This model also allows us to accommodate the possibility that the variation of 

PD with macroeconomic variables behaves differently across two states. Note that we do 

not identify the states, for example, contraction as State 1. Actually, here  𝑆𝑡 is just an index 

of the states, while the interpretation depends on the values of the estimated parameters. 

 

To complete the specification of the regime-switching model, we assume a constant 

transition probability matrix 𝑃 that governs the switching between the two states:7 

𝑃 = [
𝑝11 𝑝12
𝑝21 𝑝22

], 

where 𝑝12 and 𝑝21 are the probability of a switch from State 1 to State 2 and from State 2 

to State 1 in the next period, respectively, while the probability of staying in State 1 and 

State 2 in the next period is given by 𝑝11 and 𝑝22. 

 

The filtered probability of realizing a certain state evolves over time and is updated 

according to the arrival of new information. Specifically, the updating of the probability of 

realizing State j (i.e., Pr (𝑆𝑡 = j)) follows: 

 
7 The model can be generalized by specifying a time-varying transition probability matrix (see, e.g., Wang 

(2003)). 
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1. Setting the starting probability (at t = 0) of each state to be 0.5. That is, 

Pr(𝑆0 = j) = 0.5 for j = 1,2. 

 

2. The probability of realizing State j at time t = 1 given the information set up to time 

t = 0 (𝜓0) is given by:   

Pr(𝑆1 = j|𝜓0) =∑𝑝𝑖𝑗(Pr(𝑆0 = i|𝜓0))

2

𝑖=1

 

 

3. We then update the probability of each state with the new information available at 

time t=1. Suppose the likelihood function in each state is given by 𝑓(𝑦1|𝑆1 = 𝑗, 𝜓0). 

We use the following formula to update the probability of realizing State j: 

Pr(𝑆1 = j|𝜓1) =
𝑓(𝑦1|𝑆1 = 𝑗, 𝜓0) Pr(𝑆1 = j|𝜓0)

∑ 𝑓(𝑦1|𝑆1 = 𝑗, 𝜓0) Pr(𝑆1 = j|𝜓0)
2
𝑗=1

 

4. We then repeat the above steps over time until we arrive at the end of the sample 

period  t = T. We therefore obtain a time series of filtered probabilities for each of 

the two states over our sample period. 

The log-likelihood function of the model can be expressed with the set of parameters β, 

𝜎1, 𝜎2, 𝑝11𝑎𝑛𝑑 𝑝22: 

 

𝑙𝑛𝐿 =∑𝑙𝑛∑𝑓(𝑦𝑡|𝑆𝑡 = 𝑗, Θ) Pr(𝑆𝑡 = j|𝜓𝑡)

2

𝑗=1

𝑇

𝑡=1

 

 

(2) 

The model can be calibrated by maximizing equation (2) to find the set of estimated 

parameters. In our empirical analysis, we will be comparing the performance of different 
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specifications of the regime-switching model. We gauge their performance by calculating 

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) of the 

models. With the built-in penalty for increasing the number of estimated parameters, the 

AIC and BIC measures allow us to arrive at an optimal model by incorporating the 

appropriate trade-off between the goodness of fit of the model and its complexity. 

2.3.2 Quantile Regression Model 

 

The quantile regression model is built on the method of minimum absolute deviation which 

was first proposed by Boscovich in 1757 and later developed by Laplace. With the growing 

interest in robust methods and extreme value modeling, this method becomes more popular 

in the late 20th century. Hao and Naiman (2007) and Wooldridge (2010) give a detailed 

introduction to the quantile regression method. In general, quantile regression aims at 

estimating specific quantiles of the response variable (i.e., the dependent variable). For 

stress testing purposes, one of the desired properties of the quantile regression model is 

that the quantile regression estimates are more robust and reliable against outliers in the 

response measurements. 

 

Let us define τ as the quantile to be estimated; the median is τ = 0.5. For each observation 

i, let 𝜀𝑖 be the residual 

𝜀𝑖 = 𝑦𝑖 − 𝑥𝑖
′𝛽𝜏̂ 

In order to estimate the parameters of the quantile regression model, we minimize the 

objective function:  
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 𝑐𝜏(𝜀𝑖) = (𝜏1{𝜀𝑖 ≥ 0} + (1 − 𝜏)1{𝜀𝑖 < 0})|𝜀𝑖| = (𝜏 − 1{𝜀𝑖 < 0})𝜀𝑖, 

 

(3) 

where 1{·} is the indicator function. Please note that, in choosing the parameters 𝛽𝜏̂ that 

minimize 𝑐𝜏(𝜀𝑖), we are in effect finding the 𝛽𝜏̂ that makes 𝑥𝑖
′𝛽𝜏̂ fit the quantiles of y given 

x. 

 

As quantile regression is not estimated with the likelihood function, it is not appropriate to 

use AIC and BIC as the model selection criteria. To measure and compare the performance 

of quantile regression models, we first calculate the Pseudo-𝑅2 suggested by Koenker and 

Machado (1999). It measures the goodness of fit by comparing the sum of weighted 

deviation from the calibrated model with that based on the raw data: 

 
𝑅𝜏
2 = 1 −

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑟𝑎𝑤 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒
 

= 1 −
∑ 𝜏 ∙ |𝑦𝑖 − 𝑦𝑖̂| + ∑ (1 − 𝜏) ∙ |𝑦𝑖 − 𝑦𝑖̂|𝑦𝑖<𝑦𝑖̂𝑦𝑖≥𝑦𝑖̂

∑ 𝜏 ∙ |𝑦𝑖 − 𝑦̅| + ∑ (1 − 𝜏) ∙ |𝑦𝑖 − 𝑦̅|𝑦𝑖<𝑦̅𝑦𝑖≥𝑦̅
 

 

 

 

 

(4) 

The shortcoming with this statistic as a performance measure is similar to that of 𝑅2 in the 

Ordinary Least Square (OLS) model, that is, Pseudo-𝑅2  will always be higher as the 

number of explanatory variables increases since there is no penalty for data mining. To 

avoid arriving at an unnecessarily complicated model, we adjust the Pseudo-𝑅2 in a similar 

fashion as we calculate adjusted 𝑅2 in OLS regression. That is, 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑃𝑠𝑒𝑢𝑑𝑜𝑅2 = 1 −
(𝑛 − 1)(1 − Pseudo𝑅2)

𝑛 − 𝑝 − 1
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With adjusted Pseudo-𝑅2, we can more readily compare quantile regression models with 

different numbers of parameters. 

 

2.3.3 Data  

 

In this section, we describe the details regarding the preparation of variables for both 

quantile regression models and Markov regime-switching models. 

 

2.3.3.1 Dependent Variable 

 

We collect the information of default frequency (DF) in the United States from 

BankruptcyData. BankruptcyData has been collecting and storing data since the 1980s, 

giving us the country’s largest collection of historical and current public company 

bankruptcy information. We note that companies with assets of less than one million are 

not included in their database. And we further exclude all firms that are private in their data 

sets. Here we use the default frequency (DF) as the definition of the probability of default. 

So DF and PD are interchangeable in this paper. For time period t: 

𝐷𝐹𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 3 𝑚𝑜𝑛𝑡ℎ𝑠 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝑡
 

Our sample period is February 1987 to December 2015. The number of firms that defaulted 

during each month is from BankruptcyData and the total number of public-listed firms in 

the US in each month is based on data from the World Federation of Exchanges. In Table 
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2.3.1, we present the annual number of defaults observed for different industries over our 

sample period. We have about 3,000 default cases in total from 1987 to 2015. The number 

of default peaks in 2001, 2002, and 2009, which are the time windows for the bursting of 

the dot-com bubble and the global financial crisis. Among the different industries, the 

manufacturing sector suffers from the most default incidences compared to that of other 

industries.  

INSERT TABLE 2.3.1 ABOUT HERE 

 

To develop a PD stress testing model, we construct a time series of quarterly default 

frequency (DF) over our sample period. For example, the first DF is: 

𝐷𝐹𝐹𝑒𝑏1987 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑓𝑖𝑟𝑚𝑠 𝑓𝑟𝑜𝑚 𝐹𝑒𝑏1987 𝑡𝑜 𝐴𝑝𝑟1987

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝐹𝑒𝑏1987
 

, and the second data point is: 

𝐷𝐹𝑀𝑎𝑟1987 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑓𝑖𝑟𝑚𝑠 𝑓𝑟𝑜𝑚 𝑀𝑎𝑟1987 𝑡𝑜 𝑀𝑎𝑦1987

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝑀𝑎𝑟1987
 

In general, we have: 

𝐷𝐹𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑓𝑖𝑟𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡 𝑡𝑜 𝑡 + 2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝑡
 

and 

𝐷𝐹𝑡+1 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑓𝑖𝑟𝑚𝑠 𝑓𝑟𝑜𝑚 𝑡 + 1 𝑡𝑜 𝑡 + 3

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝑡 + 1
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In Figure 2.3.1, we plot the calculated DF over the sample period from Feb 1987 to Dec 

2015. DF peaks at the two recession periods: (1) the bursting of the dot-com bubble in 2001, 

and (2) the global financial crisis in 2008. There are significant variations of DF over the 

last three decades. The maximum and minimum DF are 1.6% and 0.3% respectively. The 

average DF is 0.46% and the standard deviation is 0.2%. 

INSERT FIGURE 2.3.1 ABOUT HERE 

The preliminary tests on the varaibles above indicates that the residuals of regressions are 

not normally distributed which may lead to biased results in the further analysis. So We 

conduct the Shapiro-Wilk test to check the normality of DF and we can reject the 

hypothesis that it follows a normal distribution (see Table 2.3.2). We then repeat the test 

on two commonly used transformations of DF: logit and probit transformations. We can 

again reject the normal distribution hypothesis for the logit transformation, but not for the 

probit transformation. In the rest of the study, in order to satisfy the normal distribution 

assumption of the models, we use the probit transformation of DF as our dependent variable.  

INSERT TABLE 2.3.2 ABOUT HERE 

 

2.3.3.2 Independent Variables 

 

Six macroeconomic variables are considered as our potential candidates in developing our 

stress testing models: Gross domestic product (GDP), federal fund rate (FFR), 

unemployment rate (UE), 10-year Treasury bond yield (T10), 3-month treasury bill yield 

(T3), and corporate credit spread (CS). The choice of these variables is motivated by a 
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number of previous studies,e.g., Havrylchyk (2010), and Misina, Tessier, and Dey (2006). 

Havrylchyk (2010) finds that credit risk is sensitive to GDP, UE, CS, and interest rates, 

confirming that higher interest rates and inflation increases have a positive effect on credit 

risk, while GDP and employment are negatively correlated with loan loss provisions in 

univariate and multivariate regressions. The empirical results of Misina, Tessier, and Dey 

(2006) suggest that a decrease in the US real GDP growth rate leads to an increase in the 

credit loss from loans. Below we describe how each of the macroeconomic variables is 

constructed. 

• GDP: 3-month US GDP growth rate is calculated based on monthly GDP collected 

from Bloomberg. 

 

𝐺𝐷𝑃 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒𝑡 =
𝐺𝐷𝑃𝑡+3 − 𝐺𝐷𝑃𝑡

𝐺𝐷𝑃𝑡
 

 

• UE: 3-month change in the US unemployment rate is another popular indicator of 

economic condition, which is available on the International Labor Organization, 

ILOSTAT database.  

 

𝑈𝐸 𝑐ℎ𝑎𝑛𝑔𝑒𝑡 = 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑡+3 − 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑅𝑎𝑡𝑒𝑡 

 

• FFR, T10, and T3:  These interest rates are collected from the Federal Reserve 

Bank of St. Louis on a monthly basis. 

• CS: Credit Spread is calculated with the following formula: 
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𝐶𝑆 = 𝑀𝑜𝑜𝑑𝑦′𝑠 𝐵𝑎𝑎  𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑(%) −𝑀𝑜𝑜𝑑𝑦′𝑠 𝐴𝑎𝑎 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑(%) 

 

where the yields are from the Federal Reserve Bank of St. Louis. 

 

In Table 2.3.3, we report the summary statistics of the six macroeconomic variables over 

the sample period from February 1987 to December 2015. The pair-wise correlation 

coefficients of the macroeconomic variables together with the DF are presented in Table 

2.3.4. PD is found to be positively correlated with UE and CS, while negatively correlated 

with GDP and all three interest rates. The intuition behind this observation is the logic that 

we expect PD, unemployment rate, and credit spread to be higher when the economy is in 

a downturn. On the other hand, interest rates and GDP growth rates tend to be lower during 

a recession indicating a negative correlation with PD. 

INSERT TABLES 2.3.3 AND 2.3.4 ABOUT HERE 

 

2.4 Results of Empirical Analysis 

 

2.4.1 Preliminary Analysis 

 

First of all, univariate analysis is performed for each explanatory variable using simple 

OLS regression: 
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 Φ−1(𝐷𝐹𝑡) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽𝑥𝑡−𝑠 + 𝜀𝑡, where s = 1, 2, 3, 4  

 

(6) 

The dependent variable is the probit transformation of DF. In order to capture the 

possibility of a lead-lag relation between DF and the macroeconomic variables, we 

consider different lagged versions of the univariate regression (lag s = 1, 2, 3, and 4). The 

results are reported in Table 2.4.1. All of the coefficients of the macroeconomic variables 

are statistically significant. Consistent with the pair-wise correlation results examined 

earlier, DF is significantly positively (negatively) associated with the unemployment rate 

and credit spread (GDP growth rate and interest rates). By examining the magnitude of the 

estimated coefficients across the different lags, we notice that, for FFR, T10, T3, and CS, 

the most recent data (i.e., lag 1) has the strongest influence on the current DF, while for 

GDP and UE, it takes a few periods (around lag 3) before their explanatory power reaches 

their peak. The possible explanation for this observation is that the response of DF is 

quicker to the change in interest rates and credit spread than to that of GDP and UE.  

INSERT TABLE 2.4.1 ABOUT HERE 

 

2.4.2 Model Selection 

  

In this section, we develop PD stress testing models based on the regime-switching model 

and the quantile regression model, respectively. In doing so, we highlight the 

characteristics of these nonlinear approaches in capturing the dynamic effects of the 
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macroeconomic factors that could be state-contingent and/or condition on the prevailing 

risk level of the economy.  

We start by developing an optimal regime-switching model in explaining the observed time 

series of DF. We consider all the combinations of macroeconomic variables based on our 

data set. Using the probit transformation of DF, Φ−1(𝐷𝐹𝑡) as our dependent variable, we 

start from regressing a single explanatory variable, two explanatory variables,…, until all 

six variables are exhausted. For the purpose of building a stress testing model, we are 

developing a prediction model where all the explanatory variables are lagged as we 

described in 4.1, that is, one month lag for interest rates and CS, and three months lag for 

UE and GDP. The regime-switching regression results are presented in Table 2.4.2. The 

univariate regime-switching regression results reported in Panel A suggest that, except for 

T3 and CS, there are significant regime-switching effects for the selected macroeconomic 

variables with respect to DF. The signs of the coefficients that are statistically significant 

are consistent with our expectation as stated in 3.3.2. Moreover, the magnitudes of these 

coefficients are greater in state 2 (bad state) compared to that of state1(good state). In Panel 

B, we report the best multivariate regime-switching models of combinations of two, three, 

four and five regressors in Columns (7) to (10), respectively, based on AIC and BIC The 

reason for not regressing all six variables in the same regression is that T3 and FFR are 

both short rates and are highly correlated. So we pick one each time to avoid 

multicollinearity issues in our regression. 

INSERT TABLE 2.4.2 ABOUT HERE 

Among all the regressions with different combinations of macroeconomic variables, the 

best performing regime-switching model (according to AIC and BIC) is the one with GDP, 
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UE, T10, T3, and CS as the explanatory variables. The estimation results can be found in 

Column (10) of Panel B. All the estimated coefficients are statistically significant and of 

the expected sign in both States 1 and 2. Specifically, the GDP growth rate and interest 

rates are negatively associated with PD, while the credit spread and unemployment rates 

have a positive relationship with PD. This is consistent with our intuition. When PD is low, 

the economy is usually growing which tends to be accompanied by a high-interest rate, a 

low unemployment rate, a narrow credit spread, and vice versa. Based on the average DF 

and the standard deviation of the residuals, States 1 and 2 can be interpreted as the “good” 

(i.e., expansion) and the “bad” (i.e., contraction) states of the economy, respectively. The 

regime-switching model also provides us with the average time we spend in the two states. 

For our best regime-switching model, the expected durations are 240 and 79 months for 

States 1 and 2, respectively. It is therefore more likely we are in the “good” state than in 

the “bad” state. 

 

In Figure 2.4.1, we plot some of the key time-series characteristics based on our best 

regime-switching model. The top subgraph is the time-series plot of DF. The middle 

subgraph shows the conditional standard deviation of the residuals. The one on the bottom 

exhibits the (smoothed) probability of realizing the two states as defined in Section 3.1. 

The bad (i.e., contraction) state is characterized by the larger conditional standard deviation. 

The two episodes of contraction periods predicted by the model are from Sep 1999 to Nov 

2003 and from Oct 2008 to Jun 2010. They generally align with the timing of the bursting 

of the dot-com bubble in 2000 and the global financial crisis in 2008. Nevertheless, the 

predicted recession windows are slightly later than the timing of the two crises respectively. 
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This may be due to the fact that it usually takes more than a few months after a recession 

begins before we witness distressed companies filing for bankruptcy. We, therefore, expect 

a time lag between the predicted credit risk cycle and the general business cycle which is 

usually measured by GDP and other macroeconomic indicators. Based on the smooth 

probability plot (bottom subgraph of Figure 2.4.1), we notice that the regime-switching 

effect is very strong in the sense that the states are quite persistent over time (i.e., they do 

not switch from one to the other frequently). The estimated transition probabilities are 0.99 

and 0.97 for States 1 and 2 respectively. 

INSERT FIGURE 2.4.1 ABOUT HERE 

In comparing the estimated coefficients between the two states of our best regime-

switching model in Column 10 of Table 2.4.2 Panel B, we notice that the magnitudes are 

consistently larger for the bad state than for the good state. However, it does not necessarily 

mean that DF is more sensitive to the macroeconomic variables in the bad state because 

the regression is based on the probit transformation of DF, Φ−1(𝐷𝐹𝑡), rather than DF itself. 

The estimated coefficients of our probit regime-switching models do not quantify the 

influence of the macroeconomic variables on DF. Rather, it represents a change in the Z-

score of the normal distribution with respect to the changes of the right-hand side variables. 

To have a better understanding of the impact on DF, we calculate the marginal effect of 

the right-hand side variables. There are generally two methods of calculating marginal 

effects. One approach is to calculate the average marginal effect. It is the average change 

in the probability of default (i.e., DF) when a particular macroeconomic variable increases 

by one unit. The other one is called marginal effect at the mean, which is the marginal 

effect at the sample mean of the independent variable. Here we use the former approach as 
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it is more appropriate to provide a realistic interpretation of the estimation results. Since 

probit regression is a non-linear model, the effect differs from point to point of the 

distribution. What the average marginal effect does is to compute the average effect across 

the different points.8 

Table 2.4.3 presents the average marginal effect of the same regressions reported in Table 

2.4.2, with the univariate and multivariate results in Panel A and B respectively. Unlike the 

results in Table 2.4.2, the difference in the magnitude of the marginal effects between the 

two states tells us the difference in the sensitivities of DF on the macroeconomic variables 

across the two states. From Table 2.4.3, it is clear that DF is less sensitive to changes in the 

macroeconomic variables in the good state (i.e., State 1) than in the bad state (i.e., State 2) 

for almost all of the macroeconomic variables under consideration.9 For example, based on 

our best regime-switching model (see Column (10) of Table 2.4.3 Panel B), the same 

change in GDP growth rate would have approximately twice the amount of impact on PD 

during the bad state than in the good state. If we had developed a stress testing model with 

OLS, we would not be able the capture this state-contingent sensitivity, thus potentially 

leading to inaccurate predictions of capital requirements across the two states of the 

economy. 

INSERT TABLE 2.4.3 ABOUT HERE 

 
8 More details regarding the similarities and differences between the two approaches of calculating the 

marginal effects can be found in Bartus (2005). 
9 We can interpret the difference between Table 2.4.2 and 2.4.3 as follows. As the good state is usually 

associated with small PD which is closer to the left tail of the PD distribution, the marginal effect on the tails 

is smaller than that of the points closer to the middle since the cumulative distribution function of a normal 

distribution has a steeper slope around the mean. This results in strong magnitudes of average marginal effects 

for bad states as shown in Table 2.4.3. By comparing the coefficients in Table 2.4.2 with the corresponding 

marginal effects in Table 2.4.3, it is clear that the magnitudes have been magnified in state two within each 

regression. 
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Next, we develop an optimal quantile regression model in explaining the observed time 

series of DF. We consider all the combinations of macroeconomic variables. As in the 

regime-switching model, we use the probit transformation of DF,  Φ−1(𝐷𝐹𝑡)  as our 

dependent variable. We again use different lagged values of the macroeconomic variables 

to enhance the explanatory power. Specifically, we apply a one month lag for interest rates 

and CS and a three month lag for UE and GDP. We run the regressions at five different 

quantiles: 10%, 25%, 50%, 75%, and 90%. The lowest (highest) quantile corresponds to 

the lowest (highest) DF. Let us first examine the univariate quantile regression results as 

reported in Table 2.4.4. Most of the estimated coefficients (twenty-nine out of thirty) are 

statistically significant at the 5% level (see Panel A). A total of twenty-eight are significant 

at the 1% level. More importantly, the signs of coefficients are consistent with our 

expectations. Specifically, DF is negatively associated with the GDP growth rate and 

interest rates (T3, T10, and FFR), while it is positively related to the unemployment rate 

and credit spread. The corresponding average marginal effects of each of the 

macroeconomic variables at different quantiles of DF are reported in Panel C.10 We notice 

a consistent trend of the magnitudes of the impact of macroeconomic variables on PD 

across the quantiles. Specifically, the effect is stronger, the higher the quantile (i.e., the 

larger is PD). In other words, PD becomes more sensitive to the macroeconomic variables 

as PD becomes higher. This is consistent with the findings in the regime-switching model 

where the sensitivity is found to be higher in the bad state of the economy. Lastly, the 

 
10 The same calculations that we use to transform the estimated coefficients to marginal effects in the 

regime-switching model are involved here for the quantile regression coefficients. 
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pseudo R-squared in panel B shows a similar increasing trend of explanatory power from 

low quantiles to high quantiles. 

INSERT TABLE 2.4.4 ABOUT HERE 

We exhausted all the combinations of macroeconomic variables in arriving at the best 

quantile regression model based on the adjusted pseudo R-squared defined in Section 3.2. 

The best model uses five macroeconomic variables: GDP, UE, FFR, T10, and CS. As in 

the univariate models, we run the multivariate regressions at five different quantiles: 10%, 

25%, 50%, 75%, and 90%. The estimated coefficients (Panel A) and the corresponding 

average marginal effects (Panel B) of the best model are reported in Table 2.4.5. Most of 

the coefficients are statistically significant, especially for high quantile coefficients. Thus 

the influence of the macroeconomic variables is more statistically significant at higher 

levels of PD (i.e., during contraction periods). More importantly, GDP and interest rates 

are negatively related to PD, while UE and CS are positively associated with PD. This 

finding aligns with our intuition discussed in Section 3.3.2. Turning to the marginal effects 

reported in Panel B, as in the univariate quantile regression models, we observe a consistent 

pattern when comparing the effects across the five quantiles. The influence of the 

macroeconomic variables becomes stronger the higher the level of PD. For example, by 

comparing the average marginal effects between the 10% and 90% quantiles, we notice 

that the effect can be more than twice as much at high PD levels vs. low PD levels. Finally, 

based on both pseudo R-squared and adjusted pseudo R-squared, the prediction power at 

the 90% quantile is the highest among the quantile regressions. 

In summary, the quantile regression results point to a non-uniform relation between PD 

and its key drivers, which is conditional on the level of credit risk. Ignoring such a structural 
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pattern in developing PD stress testing models could potentially lead to a biased estimation 

of credit risk. Through a validation exercise, we attempt to provide more insight into this 

issue in the subsequent section. 

INSERT TABLE 2.4.5 ABOUT HERE 

 

2.5 Model Validation 

 

2.5.1 Model Validation Process 

 

In the previous sections, we demonstrate the use of a Markov regime-switching model and 

quantile regression model in developing a PD stress testing model. In doing so, we 

highlight how these nonlinear models can capture the dynamic relation of PD with the 

macroeconomic variables, which cannot be captured with an OLS model. Will these 

nonlinear models be able to outperform the traditional OLS model in terms of accuracy in 

predicting PD? How do the two nonlinear models compare with each other in terms of their 

performance? We would like to answer these questions in this section by conducting a 

number of out-of-sample model performance validation tests. We assess the performance 

based on the accuracy of the model in predicting both the central tendency and the tail 

events of the distribution. In this subsection, we outline the validation methodology 

involved. We will then discuss the validation results in the next subsection.  
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First of all, to gauge the performance of the proposed models, we need to define a 

benchmark model that is commonly used in practice. We consider the OLS model to be 

appropriate for this purpose as it is widely used both in the stress testing literature and in 

practice. Second, we need to select the same set of macroeconomic variables for all the 

models being tested in order to make sure that the prediction results are comparable. In this 

validation exercise, we include all the six macroeconomic variables (i.e., GDP, UE, FFR, 

T10, T3, and CS) in all the model estimations. Third, it is important to compare model 

performance in an out-of-sample setting. Since both the regime-switching model and the 

quantile regression model can be considered the generalized version of the OLS model 

involving more degrees of freedom, it is not surprising that they will outperform the OLS 

model in an in-sample comparison. We assess their out-of-sample performance on a rolling 

sample basis. Specifically, it involves the following steps: 

 

1. The first calibration window includes the first 50% of the data points (a total of 172 

observations) from Feb 1987 to Jun 2001. We calibrate all the candidate models 

with the realized observations of both PD and the macroeconomic variables to get 

the first set of estimated parameters. Assuming we were at the end of that 

calibration window (denoted as time t = 0). With the estimated model parameters, 

we predict the PD to be realized in the next month (i.e., t = 1) using the latest 

realized observations of the macroeconomic variables (MR0). 

2. At t = 1, we observe the actual realized PD. We can then assess the accuracy by 

comparing the previously predicted PD (P1) with the realized PD (R1) at t = 1. The 

difference between P1 and R1 is our prediction error at t = 1 (TR1). 
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3. With one more observation from t = 1, we extend the calibration window by one 

month and recalibrate all the candidate models with 173 data points. We then repeat 

Step 1 to get our PD prediction for t = 2 (P2), followed by repeating Step 2 to 

calculate the second prediction error (TR2) by comparing the predicted value P2 

with the actually realized value R2. 

 

Repeating Step 1 to Step 3 while rolling our calibration window forward generates a 

series of prediction errors (TR1 to TR172) after we have exhausted all 344 observations 

in our full sample. The mean and the absolute mean of these prediction errors can be 

used as indicators measuring how good the models are. Besides conducting a one-

month ahead prediction, we also consider the model performance in longer-term 

predictions (e.g., two-month, three-month, etc.). We use the same rolling out-of-sample 

approach. For example, again starting with the first calibration window from Feb 1987 

to Jun 2001, we estimate all the candidate models, but now by regressing the PD two 

periods ahead (time t + 2) against the macroeconomic variables observed at time t. At 

the end of the calibration window, using the calibrated models, we then predict the PD 

to be realized in two months. Comparing this predicted value with the PD realized two 

months from now would give us the two-month ahead prediction error. As in the one-

month prediction exercise, we then roll forward the calibration window to obtain a 

time-series of two-month ahead prediction errors. Longer-term prediction errors can be 

calculated in a similar fashion.  
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Besides judging the model performance by calculating the error in the point estimates, 

we also check the performance of each of the models for its accuracy in replicating the 

distribution of the prediction. Specifically, for each of the out-of-sample predictions 

for each of the models, we check if the realized PD actually lies within specific 

confidence intervals (e.g., 90% confidence interval) of the PD distribution as implied 

by the model. If there are too many breaches, we will conclude the model is incapable 

of accurately replicating the dispersion of the PD. This serves as our second measure 

of model performance in addition to assessing the accuracy in predicting the mean. For 

example, we will be doubtful about the performance of a model if we observe many 

more than seventeen breaches of the 90% confidence interval out of a total of 173 

observations. We test the null hypothesis of a 10% breaches based on the binomial 

distribution. Suppose we observe forty breaches. According to the cumulative binomial 

probability, the corresponding p-value is 0.131, and thus we cannot reject the null 

hypothesis at the 10% confidence level.  

 

There are a few details that are involved in assessing the out-of-sample performance of 

the regime-switching model and the quantile regression model worth mentioning. 

Unlike the OLS model, our two-state Markov regime-switching model gives us two 

sets of parameters, and thus two-point estimates of PD, at each point in time. To obtain 

an overall point estimate of PD, we calculate the weighted average of the two PDs with 

the estimated filtered probability of realizing each of the two states. Specifically, point 

estimation is calculated as follows: 

𝑃𝐷̂ = 𝑊1(𝑃𝐷̂1) +𝑊2(𝑃𝐷̂2), 
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where W1 and W2 are the filtered probabilities of realizing State 1 and State 2.  

 

A similar weighting scheme is used to arrive at the confidence intervals (CI) used in 

counting the number of breaches for out-of-sample prediction of the regime-switching 

model. Specifically, the CI corresponding to a particular z-score (𝑍𝛼) corresponding to 

𝛼-percent of confidence level is calculated by using the weighted average of the two 

standard deviations (SD1 and SD2) of the residuals of the two states of the calibrated 

regime-switching model: 

Φ−1(𝐶𝐼) = Φ−1(𝑃𝐷)̂ ± 𝑍𝛼(𝑊1𝑆𝐷1 +𝑊2𝑆𝐷2) 

When the realized PD falls outside the CI of the predicted PD, we count it as a breach. 

In this validation exercise, we will be considering the 80% and 90% CI.  

 

The out-of-sample prediction assessment for the quantile regression model is more 

complicated as there are no such filtered probabilities as in the regime-switching model 

for us to use as weights for the corresponding regressions from the quantile regression 

model. In order to determine which quantile regression to use in predicting the PD over 

the next period, we look at all the historical PD realized up to the current time period 

and determine how the last observed PD ranks among the historical PD observations. 

This rank ordering thus serves as our best guess of which quantile we are currently at 

based on the latest information. For example, if we observe a relatively high PD at time 

t, which falls in the largest 10% of all previously observed PDs, then we assume the 

PD at time t+1 will be in the 90%-100% range as that of time t. We therefore use the 
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calibrated 95% quantile regression equation to predict the out-of-sample test. We will 

be switching among different quantile regression equations as we conduct the out-of-

sample prediction over time, so as to select the most appropriate quantile regression 

equation to do the prediction. Similar to the regime-switching model, we construct the 

CI for the quantile regressions based on the distribution of the residuals obtained from 

the regressions. Unlike the regime-switching model, we do not need to calculate any 

probability-weighted average, as we use the standard deviation estimated for the 

selected quantile regression equation (e.g., the 95% quantile equation) in calculating 

the CI for that particular time period. 

 

In general, the more quantiles we include in our quantile regression model, the more 

accurate we are able to depict the whole distribution of PD. The cost of having more 

quantiles is the complexity of the model. The number of quantiles we can consider is 

also restricted by the number of data points available. The prediction power may 

degenerate when we run out of degrees of freedom. Due to the limited number of 

observations in our data set, we consider three different levels of granularity of 

quantiles, by dividing the probability distribution into three, five or ten equal segments. 

In the least granular case of three segments, the quantiles are 16.7%, 50%, 83.3% 

respectively. In the five-segment case, the quantiles are 10%, 30%, 50%, 70%, and 90% 

respectively. In the most granular case of ten segments, they are 5%, 15%, 25%, 35%, 

45%, 55%, 65%, 75%, 85%, and 95%. To serve as another benchmark, we also examine 

the performance of a (degenerated) quantile regression model at the median (i.e., the 

50th percentile). Altogether we, therefore, have six models to compare: (1) OLS model, 
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(2) 2-state Markov regime-switching model, (3) median quantile regression model, (4) 

3-segment quantile regression model, (5) 5-segment quantile regression model, and (6) 

10-segment quantile regression model.  

 

2.5.2 Model Validation Result 

 

In Table 2.5.1, we report the average prediction errors and the average absolute prediction 

errors calculated for each of the six models from the differences between the realized values 

and the predicted values of PD. We conduct the performance comparison for different 

prediction horizons, between the time of the information set we have and the time we try 

to make the prediction. “No gap” means that we have all the information until time t and 

we make a prediction for PD at t+1, while “4 months” means that we are predicting a PD 

value at time t+5. Not surprisingly, for all six models, the magnitude of the prediction errors 

increases with the length of the prediction horizon. Regardless of the prediction horizon, 

the Markov regime-switching model has the smallest absolute prediction error, meaning 

that it has the most accurate point estimation among all the six models. The 10-segment 

quantile regression actually slightly outperforms the regime-switching model for a couple 

of prediction horizons (“one month” and “two months”) if we assess based on the average 

prediction errors. Nevertheless, the performances of the other models are not significantly 

worse than these two “best” models. In particular, as the prediction horizon lengthens to 

more than three months, we do not see a clear advantage of using the more complicated 

nonlinear models in terms of their point estimates. Finally, among the four quantile 

regression models, we notice a general pattern of increasing accuracy from the least 
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granular model (i.e., the median quantile regression) to the most granular one (i.e., the 10-

segment quantile regression) overall prediction horizons. This observation is consistent 

with our intuition that the number of segments affects the prediction accuracy of the 

quantile regression model.  

INSERT TABLE 2.5.1 ABOUT HERE 

In Figure 2.5.1, we present the time-series plots of the PD point estimates of the six models 

over our sample period. Although all models show a similar trend, we see that the OLS 

model underestimates the credit risk during the crisis compared to those predicted by the 

regime-switching model and quantile regression models. In Figure 2.5.2, we plot the out-

of-sample one-month ahead PD point estimates based on our regime-switching model (our 

best model) along with the actual realized PD. Based on the plot, the regime-switching 

model performs reasonably well in capturing the time-series variations of PD during both 

the expansion and the recession (e.g., the 2008-09 financial crisis) periods. Nevertheless, 

although the point estimates lie close to the realized PD values for most of the time, the 

predicted PD tends to be higher than the corresponding realized PD.  

INSERT FIGURES 2.5.1 AND 2.5.2 HERE 

To further examine the performance of the models, we turn our attention to the breaches of 

the out-of-sample predicted confidence intervals reported in Table 2.5.2. We count the 

breaches for the 80% and 90% confidence intervals respectively. Let’s first focus on the 

full sample results in the first two columns of Table 2.5.2. According to the p-values, the 

regime-switching model is the only model for which we cannot reject the null hypothesis 

that it accurately replicates the PD distribution at both the 80% and 90% confidence 
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intervals. Its performance is therefore considered to be superior to the other models under 

consideration. The 10-segment quantile regression model is likely to be our second best 

model. Although it has a significant p-value based on the usual 5% level for the 90% CI 

breaches, the null hypothesis cannot be rejected based on the 80% CI breaches.  

Is our conclusion regarding model performance robust under different market conditions?  

We address this question by assessing the model performances during the contraction and 

the expansion subsample periods separately. We separate our sample into contraction and 

expansion periods following the definition of the National Bureau of Economic Research 

(NBER) and the Federal Reserve Bank of St.Louis. The two contraction periods are from 

Jul 2001 to Nov 2002 and then from Dec 2007 to Dec 2010; whereas the two expansion 

periods are from Dec 2002 to Nov 2007 and, then, from Jan 2011 to Dec 2015. The two 

contractions (expansion) periods together last for 53 (120) months. These subsample 

results are reported in Columns 3 to 6 of Table 2.5.2. Still, the regime-switching model and 

(to a lesser extent) the 10-segment quantile regression model outperforms the other models 

in the contraction periods. We cannot reject the null hypothesis that the regime-switching 

model correctly replicates the distribution PD for both the 80% and 90% CI. The difference 

in model performance is not that stark during the expansion periods. We cannot reject the 

null hypothesis for four out of the six models for the 80% CI during the expansion periods. 

Similar to what we have observed in the point estimation results, we notice that the 

granularity of the quantile regression models can help to improve the model performance, 

with the 10-segment (5-segment) quantile regression model outperforming the 5-segment 

(3-segment) model. Most importantly, the OLS model does a poor job of replicating the 

distribution of PD regardless of the market conditions. 
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INSERT TABLE 2.5.2 ABOUT HERE 

In summary, based on the performance results, we conclude the regime-switching model 

is the best as it outperforms the other models in point estimation (based on absolute 

prediction error) and breaches count for both the 80% and the 90% CI. Although we notice 

an improvement in performance as we increase the granularity of the quantile regression 

segment, the 10-segment quantile regression model is still inferior to the two-state regime-

switching model based on our validation results. Although the performance of the OLS 

model is not much worse than some of the nonlinear models in terms of its PD point 

estimates, its implied PD distribution in an out-of-sample setting is significantly different 

from what we observe in the actual data. 

 

2.6 Conclusion 

 

This chapter investigates the performances of two different types of dynamic models for 

credit risk stress testing: a regime-switching model and a quantile regression model. We 

utilize these statistical modeling approaches in a credit risk stress testing framework and 

compare their performances with that of the traditional OLS model. Putting all the test 

results into consideration, we conclude the regime-switching model is the best among all 

as it outperforms other models in producing the most accurate point estimation (based on 

the absolute average error) and breach counts (based on both the 80% and the 90% CI). 

Although we see an improvement in the performance as we increase the granularity of the 

segments of the quantile regression models, it is still generally inferior to the regime-
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switching model based on our validation tests. Introducing more segments in the quantile 

regression makes the model more complex, involving more model parameters. Future 

studies can focus on:  

1. Optimizing the number of states of the regime-switching model and the number of 

segments for the quantile regression model. 

2. Determining the macroeconomic factors that influence credit risk indicators. 

The performance of the proposed models could be enhanced with a more detailed 

consideration of these two modeling aspects. 
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Appendix 

Table 2.1.1 Risk-weighted Assets (in millions) Pertaining to Different Risk Class 

This table reports the Risk-Weighted Assets (RWA) of different risk classes from 2012 to 

2016 at the Bank of Montreal (BMO). All the numbers are from BMO 2013-2016 annual 

reports. 

 2016 2015 2014 2013 2012 

Credit Risk $222,499 $200,385 $185,387 $179,289 $171,955 

Market Risk $8,962 $10,262 $9,002 $9,154 $7,598 

Operational Risk $30,502 $28,538 $27,703 $26,651 $25,677 

% of Credit Risk 84.94% 83.60% 83.47% 83.53% 83.79% 

Total $261,963 $239,689 $222,092 $215,094 $205,230 

 

Table 2.1.2 Economic Capital Allocated to Different Lines of Business in BMO as of 

Dec 31, 2016 

This table reports the Economic Capital (EC) allocated to different lines of business in 

2016 at the Bank of Montreal (BMO). All the numbers are from BMO 2016 annual reports. 

 Personal and 

Commercial Banking 

BMO Capital Market Corporate services 

Credit Risk 78% 65% 64% 

Market Risk 4% 14% 27% 

Operational Risk 18% 21% 9% 
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Table 2.3.1 Summary Statistic of Defaults from BankruptcyData 

The table reports the default events in history. There are two dimensions: year and industry. The industries are segmented as 

follows based on SIC codes: 

 

Number of Defaults 

Year Agriculture Construction Manufacturing 

Transportation 

& 

Communication Trade Finance Services Total 

1987 1 3 9 1 4 0 4 22 

1988 1 3 11 5 7 4 3 34 

1989 0 3 20 5 16 14 7 65 

1990 0 7 25 7 17 22 9 87 

1991 1 2 38 13 24 17 14 109 

1992 0 5 21 8 24 6 12 76 

1993 0 8 30 6 11 6 9 70 

1994 0 2 19 7 15 2 8 53 

1995 0 4 12 9 24 7 11 67 

1996 0 5 23 4 20 1 11 64 

1997 0 4 20 15 14 6 7 66 

1998 0 7 34 13 21 13 15 103 

1999 0 13 53 20 24 8 25 143 

2000 1 7 69 20 34 10 46 187 

2001 1 6 85 48 45 13 68 266 

2002 0 13 82 58 15 14 47 229 

2003 0 8 66 27 21 10 44 176 
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2004 0 6 39 12 21 2 14 94 

2005 0 3 44 13 10 5 15 90 

2006 0 2 34 8 7 3 12 66 

2007 0 5 36 7 12 6 14 80 

2008 1 14 54 13 21 19 21 143 

2009 1 29 97 14 15 32 25 213 

2010 0 7 40 9 8 22 21 107 

2011 0 10 30 11 13 8 15 87 

2012 0 9 34 12 6 9 17 87 

2013 1 5 26 10 8 7 14 71 

2014 0 7 18 10 7 5 7 54 

2015 0 38 20 2 6 4 9 79 

Total 8 235 1089 387 470 275 524 2988 
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Table 2.3.2 Normality Test 

The table presents the results of the Shapiro-Wilk normality test for original DF, logit 

transformation of DF and probit transformation of DF. Obs stands for the number of 

observations. W is the Shapiro-Wilk test statistic. Z statistics and p-values are reported in 

the last two columns. The same tests are conducted for residuals. 

Variable Obs W z Prob>z 

DF 347 0.9857 2.94 0.0016 

Logit DF 347 0.9015 7.50 0.0000 

Probit DF 347 0.99921 1.55 0.0607 
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Table 2.3.3 Summary of Macroeconomic Variables 

This table reports the summary statistic of six macroeconomic variables. The sample 

period is from Feb 1987 to Dec 2015. 

• GDP: GDP growth rate is calculated based on the monthly GDP collected from 

Bloomberg.  

• UE: Monthly UE is another popular indicator of economic condition, which is 

available on the International Labor Organization, ILOSTAT database. 

• FFR, T10 and T3: All these interest rates are collected from the Federal Reserve 

Bank of St. Louis on a monthly basis. 

• CS: Credit Spread is calculated by the following formula: 

 

𝐶𝑆 = 𝑀𝑜𝑜𝑑𝑦′𝑠 𝐵𝑎𝑎  𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑(%) −𝑀𝑜𝑜𝑑𝑦′𝑠 𝐴𝑎𝑎 𝐵𝑜𝑛𝑑 𝑌𝑖𝑒𝑙𝑑(%), 

 

where the yields are from the Federal Reserve Bank of St. Louis. 

 

 GDP (%) UE (%) CS (%) T10 (%) T3 (%) FFR (%) 

No. Of 

Observations 347 347 347 347 347 347 

Mean 1.02 -0.01 0.97 5.21 3.40 3.62 

Median 1.08 -0.10 0.90 5.09 3.72 3.97 

Std.dev 0.78 0.31 0.39 2.09 2.59 2.74 

Max 3.00 1.50 3.38 9.52 9.14 9.85 

Min -2.65 -0.80 0.55 1.53 0.01 0.07 
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Table 2.3.4 Correlation Matrix of Variables 

This table presents the correlation coefficients between all seven variables. As we can see, 

DF is positively correlated with GDP, UE and CS, while negatively correlated with the 

three interest rates. 

  DF FFR GDP UE TBill(3M) TBill(10Y) CS 

DF 1       

FFR -0.33835 1      

GDP -0.30848 0.2054 1     

UE 0.380797 0.010234 -0.23665 1    

TBill(3M) -0.39003 0.987393 0.248645 -0.02359 1   

TBill(10Y) -0.3544 0.617133 0.279243 -0.02828 0.651831 1  
CS 0.663234 -0.45539 -0.51905 0.423516 -0.48912 -0.46593 1 
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Table 2.4.1 Univariate OLS Analysis 

This table presents the OLS regression results of DF with respect to each macroeconomic 

factor (lagged). *,**,*** correspond to statistical significance at the 10%, 5% and 1% 

level, respectively. 

Panel A: lag 1 

 GDP UE CS T10 T3 FFR 

Intercept 0.0057*** 0.0047*** 0.0004 0.008*** 0.0063*** 0.0062*** 

Slope -0.1066*** 0.5061*** 0.4395*** -0.0646*** -0.0496*** -0.0426*** 

R^2 0.08 0.2873 0.3395 0.211 0.19 0.1573 

       

Panel A: lag 2 

 GDP UE CS T10 T3 FFR 

Intercept 0.0059*** 0.0047*** 0.0005 0.008*** 0.0063*** 0.0061*** 

Slope -0.124*** 0.5248*** 0.4325*** -0.0627*** -0.0496*** -0.0398*** 

R^2 0.1086 0.31 0.3290 0.1985 0.17 0.137 

       

Panel A: lag 3 

 GDP UE CS T10 T3 FFR 

Intercept 0.0061*** 0.0047*** 0.0007* 0.0078*** 0.0062*** 0.006*** 

Slope -0.1404*** 0.5283*** 0.4145*** -0.0605*** -0.0441*** -0.0368*** 

R-sqaured 0.1392 0.316 0.3029 0.1844 0.1504 0.1174 

       

Panel A: lag 4 

 GDP UE CS T10 T3 FFR 

Intercept 0.0061*** 0.0047*** 0.0009*** 0.0077*** 0.0061*** 0.0059*** 

Slope -0.1389*** 0.5199*** 0.3866*** -0.0582*** -0.0411*** -0.034*** 

R-sqaured 0.1368 0.3075 0.2644 0.1704 0.1308 0.1 
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Table 2.4.2 Univariate and Multivariate Regime-Switching Regression Models 

Panel A presents the univariate regime-switching regression results and Panel B presents the selected multivariate regime-switching 

regression results. RS stands for regime-switching, which indicates whether regime-switching occurs in the corresponding regression. 

*,**,*** correspond to statistical significance at the 10%, 5% and 1% level, respectively. 

 

 

 

                            Panel A    

 (1) (2) (3) (4) (5) (6) 

 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 

GDP -7.75*** -13.74***           

UE   27.13*** 52.91***         

T10     -5.84*** -11.62***       

T3       N/A N/A     

CS         N/A N/A   

FFR           -0.5*** -0.8*** 

RS Yes Yes Yes No No Yes 

AIC -3422.33 -3504.07 -3569.42 -3109.66 -3459.85 -3486.97 

BIC -3391.60 -3473.35 -3538.65 -3078.89 -3429.08 -3456.19 
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 Panel B 

 (7) (8) (9) (10) 

 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 

GDP       -1.15*** -1.28*** 

UE     28.17*** 35.71*** 22.26*** 27.79*** 

T10 -4.9*** 6.51*** -6.94*** -7.03*** -3.67*** 2.99*** -6.63*** -14.19*** 

T3     -0.92*** -2.23*** -0.86*** -0.95*** 

CS 11.72*** 19.2*** 9.09*** 19.96*** 5.43*** 6.26*** 4.27*** 9.13*** 

FFR   -1.79*** -2.74***     

RS Yes Yes Yes Yes 

AIC -3564.9 -3629.2 -3511.62 -3642.88 

BIC -3449 -3583.1 -3450.85 -3588.43 
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Table 2.4.3 Average Marginal Effect of Regime-Switching Regression Models 

Panel A presents the univariate regime-switching regression marginal effects and Panel B presents the selected multivariate regime-

switching regression marginal effects. RS stands for regime-switching, which indicates whether regime-switching occurs in the 

corresponding regression. 

 

Panel A 

 (1) (2) (3) (4) (5) (6) 

 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 

GDP -0.06 -0.14           
UE   0.12 0.34         
T10     -0.05 -0.13       
T3       N/A N/A     
CS         N/A N/A   

FFR           -0.05 -0.09 

RS Yes Yes Yes No No Yes 

AIC -3422.33 -3504.07 -3569.42 -3109.66 -3459.85 -3486.97 

BIC -3391.6 -3473.35 -3538.65 -3078.89 -3429.08 -3456.19 
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Panel B 

 (7) (8) (9) (10) 

 State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2 

GDP       -0.02 -0.04 

UE     0.10 0.22 0.08 0.28 

T10 -0.04 0.12 -0.05 -0.07 -0.16 0.12 -0.03 -0.08 

T3     -0.01 -0.03 -0.03 -0.05 

CS 0.19 0.46 0.16 0.46 0.21 0.34 0.02 0.12 

FFR   -0.21 -0.69     
RS Yes Yes Yes Yes 

AIC -3564.9 -3629.2 -3511.88 -3642.62 

BIC -3449 -3583.1 -3450.43 -3588.85 
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Table 2.4.4 Univariate Quantile Regression Models 

This table includes three panels that report the univariate quantile regression coefficients,  

the corresponding pseudo R^2 and average marginal effects respectively. The quantile 

regressions are based on five quantiles, which are 10%, 25%, 50%, 75% and 90%. *,**,*** 

correspond to statistical significance at the 10%, 5% and 1% level, respectively. 

 

Panel A: Coefficients 

 0.1 0.25 0.5 0.75 0.9 

GDP -7.29*** -9.24** -9.16*** -7.61*** -8.61*** 

UE 33.86*** 37.32*** 32.88*** 30.04*** 31.02*** 

T10 -5.82*** -5.92*** -5.95*** -5.94*** -7.21*** 

T3 -5.44*** -4.66*** -3.59*** -3.86*** -4.26*** 

CS 22.56 29.28*** 32.27*** 29.53*** 26.31*** 

FFR -4.98*** -4.55*** -3.16*** -3.44*** -4.08*** 

      

Panel B: Pseudo R^2 
 0.1 0.25 0.5 0.75 0.9 

GDP 0.0208 0.0223 0.0309 0.0445 0.1103 

UE 0.051 0.0525 0.0957 0.202 0.2878 

T10 0.1596 0.1867 0.1605 0.1003 0.1505 

T3 0.0976 0.1218 0.1385 0.1072 0.1332 

CS 0.0035 0.1498 0.2232 0.2401 0.2233 

FFR 0.0372 0.0404 0.0548 0.0863 0.1091 

 
     

Panel C: Marginal Effect 
 0.1 0.25 0.5 0.75 0.9 

GDP -0.04*** -0.07** -0.08*** -0.1*** -0.14*** 

UE 0.20*** 0.34*** 0.36*** 0.36*** 0.44*** 

T10 -0.04*** -0.05*** -0.06*** -0.07*** -0.14*** 

T3 -0.03*** -0.04*** -0.04*** -0.05*** -0.1*** 

CS 0.12 0.36*** 0.47*** 0.49*** 0.5*** 

FFR -0.26*** -0.33*** -0.39*** -0.42*** -0.55*** 
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Table 2.4.5 Selected Multivariate Quantile Regression Models 

Panel A presents the coefficients of the selected quantile regression models based on R^2 

and adjusted R^2 and Panel B shows the corresponding average marginal effects. Variable 

definitions are provided in Table 3.3. The first row represents five different quantiles 

selected for the model. *,**,*** correspond to statistical significance at the 10%, 5% and 

1% level, respectively. 

Panel A  
0.1 0.25 0.5 0.75 0.9 

GDP -4.04** -4.28** -4.31 -4.89** -4.81*** 

UE 24.14*** 26.01*** 22.01*** 29.32*** 26.41*** 

FFR -2.02* -2.03 -2.34 -2.26 -2.3*** 

T10 -5.48*** -5.82*** -5.41*** -5.55*** -6.44*** 

CS 4.86 4.13 5.52*** 6.80*** 7.08*** 

R^2 0.3356 0.3499 0.3553 0.3485 0.3856 

adj-R^2 0.3258 0.3403 0.3458 0.3389 0.3765 

Panel B  
0.1 0.25 0.5 0.75 0.9 

GDP -0.05 -0.06 -0.07 -0.09 -0.11 

UE 0.21 0.25 0.24 0.38 0.50 

FFR -0.09 -0.093 -0.12 -0.1 -0.16 

T10 -0.05 -0.05 -0.05 -0.06 -0.09 

CS 0.14 0.18 0.23 0.27 0.39 
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Table 2.5.1 Point Estimation Comparison Result 

This table presents the tracking errors of the point estimation results of six different models. The first column represents the lag between 

the date of an information set and the prediction point. For example, “0 Month” means predicting PD at time t+1 with information until 

time t, while “1 month” means predicting PD at t+2 with information until time t. The first row represents the comparison models. The 

minimum differences among all six models are highlighted. Please note that all numbers are in percentages. 

  

 0 month One month Two months Three months Four months 

 average abs_average average abs_average average abs_average average abs_average average abs_average 

OLS -0.30 0.40 -0.32 0.42 -0.32 0.44 -0.33 0.44 -0.34 0.46 

MS -0.28 0.37 -0.31 0.41 -0.32 0.42 -0.33 0.44 -0.33 0.45 

Quantile 

(median) -0.29 0.38 -0.31 0.43 -0.32 0.44 -0.33 0.44 -0.34 0.46 

Quantile_3 -0.29 0.38 -0.31 0.42 -0.31 0.43 -0.34 0.44 -0.34 0.46 

Quantile_5 -0.28 0.38 -0.32 0.41 -0.31 0.43 -0.33 0.44 -0.34 0.46 

Quantile_10 -0.28 0.37 -0.30 0.41 -0.31 0.43 -0.33 0.44 -0.33 0.46 
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Table 2.5.2 Comparison of models based on CI Breach  

Panel A and Panel B report the number of breaches (N) and corresponding probability (of getting N or more breaches) of all six 

different models for 80% CI and 90% CI, respectively. The second, fourth and sixth columns are the total number of breaches, 

breaches during contraction period and breaches during expansion periods respectively. 

PANEL A: 80% CI 

  Number of breaches p Contraction breaches p expansion breaches p 

OLS 60 0 22 0 38 0 

MS 40 0.18 14 0.16 26 0.36 

Quantile(median) 62 0 24 0 38 0 

Quantile(3) 46 0.02 16 0.05 30 0.11 

Quantile(5) 43 0.07 16 0.05 27 0.28 

Quantile(10) 41 0.13 15 0.09 26 0.36 

 
      

PANEL B: 90% CI 

  Number of breaches p Contraction breaches p expansion breaches p 

OLS 35 0 13 0.0018 22 0 

MS 23 0.0972 8 0.1558 15 0.22 

Quantile(median) 38 0 16 0 22 0 

Quantile(3) 34 0 12 0.0053 22 0 

Quantile(5) 33 0.0002 12 0.0053 18 0.05 

Quantile(10) 30 0.002 10 0.0355 18 0.05 
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Figure 2.1.1 Hypothetical Capital Structure of Bank A 

This figure presents the hypothetical capital structure of bank A. 

 

 

 

 

 

 

 

 

Figure 2.1.2 Hypothetical Capital Structure of Bank B 

This figure presents the hypothetical capital structure of bank A. 
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Figure 2.1.3: Binomial Tree of the Potential Loss 

This figure shows all the possible paths leading to four outcomes with a potential loss. 

Three key factors are considered sequentially: PD, EAD and LGD, which are assumed to 

be independent of each other. 
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Figure 2.2.1 Stress Testing Procedure 

The figure summarizes the procedure of stress testing. Usually, stress testing includes 

four parts as shown below starting from the left side. 
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Figure 2.3.1 Summary of DF 

This figure reports the DF calculated based on Equation number and the summary 

statistics are available in the table below. The sample period is from Feb 1987 to Dec 

2015. From this graph we see two significant peaks, which in general, align with 

historical recessions: One is the dot-com bubble in 2001 and the other is the global 

financial crisis in 2008. 
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Figure 2.4.1 Regime-Switching Model Summary 

 

The subgraph on the top is the visualization of time-series PD. The middle subgraph shows 

the conditional standard deviation of the equation. The one on the bottom exhibits the 

smoothed probability as defined in 3.1. 
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Figure 2.5.1 Point Estimation Result Based on Different Models 

 

This graph presents the point estimation results based on six different models:  

OLS model, Markov regime-switching model, Quantile regression model (median), 

Quantile regression model (three segments), Quantile regression model (five segments) 

and Quantile regression model (ten segments) 

All point predictions are based on the most recently available information, which means 

we use the information up until time t-1 to predict PD at time t.  
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Figure 2.5.2 Comparison between the True Value of PD and Predicted PD by MS 

Model 

These graphs show the difference between the predicted PD by MS model and realized 

PD from Aug 2001 to Aug 2015. Please note the second graph presents the absolute value 

of differences, so all numbers are positive. 
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Chapter 3 

Point-in-Time Model of Recovery Value of Defaulted Portfolio 

(This essay is a joint work with Dr. Donghui Chen of Scotiabank and Dr. Peter Miu) 

 

3.1 Introduction and Literature Review 

 

The key determinants of the credit risk of a debt instrument (e.g., a bank loan) are the 

probability of default (PD) of the borrower or issuer, the expected loss-given-default (LGD) 

and the expected exposure-at-default (EAD) upon a default event. Among these three risk 

parameters, PD is the most studied; there has been substantial literature on the modeling 

and prediction of PD ever since Beaver (1966) and Altman (1968) published their findings 

on the use of accounting information to predict corporate bankruptcy. The present study 

focuses on LGD, which has, until recently, received much less attention than PD from both 

researchers and practitioners.11 LGD is defined as the fraction of the outstanding loan 

exposure that cannot be recovered by creditors during the bankruptcy process (e.g., by 

liquidating the collateral). Thus, if the recovery rate is defined as the fraction of the 

recovered outstanding exposure, then LGD is simply one minus the recovery rate.  

 

Recently, both researchers and practitioners have become more attentive to the modeling 

and prediction of recovery rate and LGD with the introduction of the Basel II Accord in 

 
11 There is a small but growing literature on EAD (e.g., Qi, 2009; Jacobs and Bag, 2010; Tong et al., 2016). 
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2006, under which the amount of (regulatory) capital required to be held by banks becomes 

a direct function of not only PD but also LGD and EAD of loan portfolios. Perhaps the first 

systematic study on recovery rate was conducted by Altman and Kishore (1996), who 

document the importance of industry effect and debt instrument seniority in estimating 

recovery rate and discover statistically significant differences between the recovery rate of 

the utility sector and those of other industry sectors. Besides the cross-sectional difference, 

a significant time-series variation of the recovery rate is also documented. For example, by 

examining the recovery rates on corporate bond defaults over the sample period of 1982 to 

2002, Altman et al. (2005) reveal a significant time-series relation between the aggregated 

recovery rates and the supply and demand for the defaulted instruments that are dictated 

by the system-wide default rates.  

 

In this study, we contribute to the aforementioned literature by examining and modeling 

the time-series pattern of recovery throughout the bankruptcy and workout process of a 

retail credit portfolio; whereas other researchers are concerned with predicting the overall 

recovery rates of debt instruments, we model the amounts a creditor can recover at different 

points in time subsequent to the default event. This is of practical interest to commercial 

banks in managing the risk of their default loan portfolios. Like managing performing loan 

portfolios, banks must assign loss provision and determine the capital requirement 

associated with non-performing (i.e., defaulted) loan portfolios. Given the fact that it 

usually takes two to three (up to five or more) years to complete the recovery process for a 

typical defaulted retail (corporate) loan, it is important to understand the time-varying risk 

characteristic of the defaulted portfolio as a function of its vintage in the recovery process. 
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An accurate point-in-time (PIT) risk assessment enables financial institutions to manage 

their defaulted loan portfolios in a timely fashion. 

To manage their performing loan portfolios, Basel II Pillar 1’s risk-weighted asset (RWA) 

calculation requires banks to develop a methodology to assess the LGD of their loans in a 

through-the-cycle (TTC) fashion. The TTC LGD can be interpreted as a cycle-neutral long-

term average LGD measure. When combined with the necessary downturn LGD 

adjustment, this measure serves as input in calculating the required regulatory capital. As 

a result of the specific regulatory requirements, banks have been focusing their effort on 

trying to understand the TTC LGD of their debt instruments, typically estimated using 

historical defaulted loan data. In practice, the same TTC LGD parameters are also used 

directly for risk and portfolio management activities that are not directly governed by Basel 

II Pillar 1, such as calculating the economic capital of defaulted loan portfolios. More 

importantly, it is not uncommon that banks directly use the TTC LGD parameters, which 

are estimated for their performing loan portfolios, in assessing the risk of their non-

performing (defaulted) loan portfolios. However, such an approach does not allow for an 

accurate measure of the time-varying portfolio risks of defaulted loan portfolios over the 

recovery process. Specifically, as recovery cash flows are realized throughout the recovery 

process, the uncertainty of the overall recovery value becomes smaller the longer the debt 

has defaulted. In addition, the amount of partially realized recovery cash flow, as an 

indicator of the prevailing state of the economy, should also be informative in updating our 

estimation of the residual recovery cash flow (and in turn the overall recovery value). 

Ignoring this PIT information could result in the underestimation (overestimation) of 

portfolio loss during the recessionary (expansionary) stage of the business cycle. Therefore, 



93 
 

conducting PIT LGD assessments throughout the recovery process is of paramount 

importance for us to assess accurately the risk of the defaulted loans of different vintages 

and under different prevailing market conditions.12 In this study, we propose adopting a 

PIT LGD model to capture these time-varying risk characteristics of the defaulted loan 

portfolios, while leveraging on the well-developed TTC LGD methodology that has been 

used in managing performing loan portfolios. 

 

What do we know about the PIT nature of LGD and how LGD might be governed by firm-

level and instrument-level characteristics? As pointed out by Altman et al. (2005), 

aggregated recovery rates are likely to be varying with the aggregated default rates in a 

positive fashion over time as a result of supply and demand shocks of defaulted assets. 

Some empirical studies also demonstrate that credit risk could be understated by using 

historical average TTC LGD. For example, Frye (2000) concludes that making simple 

recovery assumptions for collateralized loans can lead to errors because the same factors 

that result in an increase of default rates can also attribute to a decrease in the collateral 

value. Schuermann (2004) find out that the key determinants of LGD are the seniority of 

the debt instrument in the capital structure, the presence and quality of the collateral, the 

industry the debtor belongs to, and the business cycle; while Jankowitsch et al (2014) 

confirms the influences of firm fundamentals on the LGD of its debt instruments. Altman 

and Kalotay (2014) and Acharya et al (2007) explore the effect of macroeconomic variables 

such as industry and market-wide PD on LGD. The empirical relationship between the 

 
12 A PIT LGD is also instrumental for financial institutions in conducting stress testing and in calculating 

loss provision according to the new IFRS-9 requirement.  
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credit cycle and LGD has been confirmed by many studies, including research from Kansas 

City Federation (2014) and Frye and Jacobs (2012). Recently, a number of researchers 

propose the use of different PIT LGD models. For example, Chawla et al. (2016) proposed 

a framework to cover the estimation of PIT LGD and PIT EAD for wholesale exposures, 

and Krüger and Rösch (2017) propose a quantile regression approach to estimate the entire 

LGD distribution. They find that the middle quantiles are explained by observable 

covariates, while the tail events are driven by unobservable random events.13  

 

All of the above studies focus on the investigation of the PIT behavior of the overall 

recovery rate from the workout process rather than the profile of recovery rate within the 

workout process. The understanding of the former will suffice in assessing the credit risk 

of a performing loan portfolio; however, the latter is required in order to accurately model 

the risk of a defaulted loan portfolio. To manage a defaulted loan portfolio, in addition to 

knowing the expected overall recovery rate, one must also understand the creditors’ 

expected recovery amount at different points in time subsequent to the default event. In the 

present study, we propose and estimate a time-series model to capture the recovery rate 

profile of a retail portfolio of a bank. Contrary to a TTC LGD model, our proposed model 

allows for the dynamic updating of the expected future recovery rate based on the recovery 

information realized in the current time period. This dynamic feature of our model allows 

 
13 Our research is also related to the corporate finance literature on the bankruptcy and recovery process. For 

example, Bris et al. (2006) explore a comprehensive sample of corporate bankruptcies in US from 1995 to 

2001. They found that bankruptcy costs are sensitive to the measurement method used that Chapter 11 seems 

to preserve assets better, allowing creditors to recover relatively more. The amount of recovery can also be 

affected by the presence of different stakeholders in the bankruptcy process. For example, Jiang et al. (2012) 

find that the presence of hedge funds in the Chapter 11 process can actually enhance the recovery values of 

junior creditors.  
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for more precise capturing of the time-varying nature of the portfolio risk across different 

phases of the business cycle; otherwise, we could be understating (overstating) risk and 

thus in turn capital requirement during recessionary (expansion) time periods.  

 

We conduct an estimation of our proposed model using an internal data set of recovery 

information on a portfolio of defaulted retail instruments of a financial institution. The rich 

data set spans the time period from 2003 to 2011 and consists of recovery rate information 

defined along two-time dimensions: the default date (measured in absolute calendar time) 

and the time since default occurred (measured relative to the default date). Under the first 

time dimension, we track the recovery experience of thirty-four different cohorts defaulting 

respectively in thirty-four different quarters within our sample period, starting from 

2003Q1 and ending in 2011Q2. Under the second time dimension, for each cohort, we 

track how much we recover in each of the next twenty quarters (i.e., over five years) 

subsequent to the respective default time of that cohort. By using the panel data regression 

method proposed by Baltagi and Li (1994, 1997), we estimate our time-series model to 

capture the evolution of the recovery rate profile of the defaulted portfolio over the sample 

period. Estimation results reveal a robust pattern of the long-term average recovery rate 

profile. More importantly, the findings indicate that the realized recovery rate does deviate 

from its long-term average and there is a significant time-series relation of the realized 

recovery rates. Our model utilizes this time-series relation to dynamically update our 

expectation of the overall recovery rate of a cohort conditional on the recovery rate realized 

up to the current time. By doing so, we enhance the accuracy of modeling the PIT portfolio 

risk over the business cycle. In comparing our proposed conditional model with the 
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commonly-used unconditional approaches, our simulation analysis with the dataset 

confirms the ability of our proposed model to generate more realistic estimations of both 

the mean LGD and portfolio value-at-risk (VaR) measures. 

 

The present study has a number of practical and business implications other than the pursuit 

of a more accurate prediction of LGD that reflects the dynamic nature of the recovery rate. 

First of all, the proposed model can be used to enhance the estimation of required economic 

capital under the Basel II’s Advanced Internal Rating-Based (AIRB) regulatory 

requirement and the loss provision under IFRS 9 of the International Financial Reporting 

Standard for financial institutions. The model can also be used in the pricing of defaulted 

portfolios, e.g., when a financial institution is making an investment or divestment 

decisions regarding its defaulted portfolios. Finally, the proposed model can be used in the 

pricing of credit derivatives such as recovery swaps, which provide hedging against the 

uncertainty of recovery in default. Please note that this study is based on retail portfolio. 

We aware that the wholesale portfolio risk profile could be very different from the data we 

have, leading to potential different conclusions. 

  

The remainder of the paper is organized as follows. We will describe the data sample being 

examined in Section 2, and outline the proposed model and the estimation methodology in 

Section 3. Then, in Section 4, we will estimate the proposed model using recovery rate 

sample information and examine how prevailing recovery rate information can be used in 

updating the conditional model. We will compare the proposed model with two 

unconditional models commonly adopted in practice to highlight the differences in the 
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resulting value-at-risk (VaR) and economic capital measures in Section 5. Lastly, we will 

provide a conclusion in Section 6.  
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3.2 Data 

 

The data set is derived from the internal database of a Bank and consists of detailed 

information on the Bank’s defaulted retail credit portfolio, including the number of defaults, 

outstanding loan balances, and recovery rates (measured as fractions of the loan exposures) 

for each quarter from April 2003 to July 2011. In our sample, there are altogether 13,098 

defaulted retail facilities with a combined default balance of about $268 million that are 

classified into four different segments based on the internal risk assessment conducted by 

the Bank. Specifically, Segment 1 represents the lowest risk (i.e., with the highest expected 

recovery rate), while Segment 4 represents the highest risk (i.e., with the lowest expected 

recovery rate).14  In classifying them into the four segments, we assume the recovery 

behavior of the defaulted instruments to be sufficiently homogenous (different) within 

(among) the segment(s). The segment level analysis can be further extended with more 

data available. 

 

Typically, financial institutions recover the money lent to defaulted retail customers 

through internal debt collection efforts; formal procedures are followed by debt collection 

call centers in determining the customers who should be called as well as the number of 

times follow-ups should be made. Occasionally, financial institutions may decide to 

 
14 The determination of the risk category is based on a rigorous segmentation model adopted by the Bank, 

which is a logistic regression model considering the loan-level characteristics, including security, loan-to-

value ratio, bureau score, and behavior indicators (e.g., whether it has been delinquent in the prior twelve 

months). With the prediction values from the logistic model, the Bank then uses a decision tree to divide 

them into the four segments. The four segments are verified to be sufficiently distinct from each other by 

conducting various statistical tests. 
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involve third-party debt collectors in the recovery process. And for secured retail loans 

(e.g., residential mortgages), the recovery process also involves the liquidations of the 

collaterals (e.g., the underlying residential properties). It is a time-consuming process for 

debtors of defaulted loans to recover cash flow. In a retail setting, most of the recovery 

occurs within the first two years after the default date, but the process can extend up to five 

years or longer. The dataset we have consisted of quarterly recovery rate information for 

each defaulted instrument over the five-year period after its default date. It is worth 

mentioning that, though uncommon, the overall recovery rate measured as a fraction of the 

loan amount can be negative (in other words, LGD can be larger than unity). A negative 

recovery rate represents the situation where the cost of the collection effort is higher than 

the amount of money actually collected from the debtors. Upon screening the sample data, 

we note several incidences where the recorded recovery rates are lower than minus one 

(i.e., LGD higher than two); to minimize the likelihood of data errors, these extreme 

outliers are excluded in performing the analysis. 

 

For each risk segment (i.e., Segments 1 to 4), we group the defaulted facilities into thirty-

four cohorts based on their default dates. Specifically, facilities of the first cohort defaulted 

in the quarter ending April 2003 (i.e., in the months of February to April 2003). Facilities 

of the second cohort defaulted in the quarter ending July 2003, and so forth until the thirty-

fourth cohort defaulted in the quarter ending July 2011. Then, for each cohort, we track 

how much is recovered (as fractions of the loan amounts) in each of the quarters from the 

default quarter up to five years after the default quarter (i.e., in total twenty quarters of 
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recovery rate information).15 Figure 3.2.1 depicts the timeline of the first three cohorts. In 

summary, there is a panel data of thirty-four cohorts times twenty quarters of recovery rate 

information for each risk segment. 

 

The recovery rates realized from the first cohort (defaulted in the quarter ending April 2003) 

of Segment 4 over the twenty quarters are plotted in Figure 3.2.2. This particular cohort 

has altogether fifty-seven defaulted facilities with a total outstanding balance of about 

$588,000. For this cohort, most of the recovery cash flows are realized within the first three 

and a half years. It is noteworthy that negative recovery cash flows, though rarely occurring, 

transpired in the second quarter. This is likely because the money recovered from the 

debtors in that quarter cannot fully offset the costs incurred in the collection effort. 

 

In Figure 3.2.3, we plot the mean recovery rates of each of the four risk segments over the 

twenty quarters since the respective default time. For each segment, the average recovery 

rate of each quarter is calculated across the thirty-four cohorts using their recovery rates 

realized in the same quarter since the respective default time. This provides a time profile 

of quarterly recovery rates measured in a relative fashion with respect to the default time 

rather than according to the absolute calendar time. It can therefore be interpreted as the 

long-term average profile of recovery rates. As expected, the recovery rates of Segment 1 

(lowest recovery risk) are consistently higher than those of Segment 4 (highest recovery 

risk); the overall average LGD of the four segments are 0.76 (Segment 1), 0.82 (Segment 

 
15 We essentially assume the money that we can recover beyond the fifth year from the default date to be 

small enough that we can ignore 
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2), 0.87 (Segment 3), and 0.93 (Segment 4). Interestingly, all four segments have a similar 

hump-shape recovery rate profile that peaks at approximately one year after the default 

time and the majority of the recovery cash flows are realized within the first three years 

since the default. Conditional on the prevailing economic condition, the amount of 

recovery realized in any specific quarter since the respective default time is expected to 

deviate from the long-term profile depicted in Figure 3.2.3. Specifically, we expect to 

recover more (less) than the long-term average during an expansionary (a recessionary) 

time period. In the next section, we propose a time-series model to capture the time-varying 

deviation from the long-term profile, so as to allow us to arrive at a point-in-time LGD 

prediction. 

INSERT FIGURES 3.2.1 to 3.2.3 ABOUT HERE 

 

3.3 Proposed Model and Estimation Methodology 

 

Our objective is to model the evolution of the mean recovery rates of a cohort as some of 

the quarterly recovery amounts have been realized over time. Given the persistence of the 

recovery rate as we go through the different phases of the economic cycle, we expect that 

the recovery rate realized in the current time period is informative in predicting the 

recovery rate of the subsequent period. Specifically, we expect the next period recovery 

rate will tend to be higher (lower) when a higher (lower) recovery rate is realized in the 

current period. We assume that the recovery rate can be decomposed into two components: 

the expected and unexpected components. The former captures both the long-term average 

profile of recovery rate and the information carried by the recovery rate realized in the last 
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period while the latter captures any residual unexpected shocks. Let us illustrate by 

considering a T period model with the following timeline: 

𝑡 = 0 
𝑃𝑒𝑟𝑖𝑜𝑑 1
→     𝑡 = 1

𝑃𝑒𝑟𝑖𝑜𝑑 2
→      𝑡 = 2 → ⋯

𝑃𝑒𝑟𝑖𝑜𝑑 𝑇
→      𝑡 = 𝑇 

For a specific cohort 𝑖, the recovery rate 𝑅̃𝑖,𝑡 realized at quarter 𝑡 (measured relative to the 

default time of the cohort) is modeled as the following time-series model with 

autoregressive residuals 𝑣̃𝑖,𝑡. 

     𝑅̃𝑖,𝑡 = 𝑐𝑡 + 𝑣̃𝑖,𝑡   (1) 

where 

     𝑣̃𝑖,𝑡 = 𝜌𝑣̃𝑖,𝑡−1 + 𝑒̃𝑖,𝑡   (2) 

and  𝑒̃𝑖,𝑡~ 𝑁 (0, 𝜎𝑒
2) for 𝑡 = 1 to 𝑇.16 The intercept 𝑐𝑡  (𝑡 = 1 to 𝑇) captures the long-run 

average profile of recovery rates at different quarters since the default time. We expect that 

the intercepts are not only specific to the time 𝑡 since the time of default, but also specific 

to the risk segment the defaulted facility belongs to. Specifically, we expect Segment 1 to 

have larger intercept values than Segment 4. However, we assume different cohorts of the 

same risk segment defaulting at different points in time share the same intercept profile 𝑐𝑡 

(𝑡 = 1 to 𝑇). Also note that, according to Equation (2), the unconditional mean and variance 

of 𝑣̃𝑖,𝑡 are given by: 

     𝐸(𝑣̃𝑖,𝑡) = 0    (3) 

 
16 We further assume that 𝑒̃𝑖,𝑡 is independently and identically distributed across both cohort 𝑖 and time 𝑡. 
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     𝑣𝑎𝑟(𝑣̃𝑖,𝑡) =  𝜎𝑣
2 =

𝜎𝑒
2

1−𝜌2
  (4) 

 

Based on our model (Equations (1) and (2)), the unexpected component of the recovery 

rate is captured by the shocks 𝑒̃𝑖,𝑡 that is independent of any of the previously realized 

recovery rates. On the other hand, the expected component is composed of the long-run 

average recovery rate 𝑐𝑡 and the serially correlated component 𝜌𝑣̃𝑖,𝑡−1 of the residuals. The 

former captures the long-run average recovery profile; whereas the latter captures the 

persistence of recovery rate (governed by the autocorrelation coefficient 𝜌) as we progress 

through the economic cycle. Note that 𝑣̃𝑖,𝑡 is a latent variable to be estimated by observing 

the recovery rate 𝑅̃𝑖,𝑡. Different cohorts can start with different initial values 𝑣̃𝑖,0 , which 

represent the prevailing economic conditions when the cohorts defaulted. If the economy 

is booming (weak), 𝑣̃𝑖,0 is expected to be positive (negative) as more (less) is expected to 

be recovered from the facilities. 

 

It is important to emphasize the fact that both indices 𝑖 and 𝑡 are time indices. The former 

denotes the cohort under consideration, which is defined by its default quarter. For example, 

the facilities in Cohort 1 defaulted in the quarter ending April 2003, while those in Cohort 

2 defaulted in the subsequent quarter ending July 2003, and so forth. Thus, Index 𝑖 is a 

default date measure in terms of absolute calendar time. On the other hand, Index 𝑡 is 

defined as the time passed since the default date of the cohort under consideration and is a 

relative time measure with respect to the default date, which varies from one cohort to the 
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other. Therefore, our proposed model can accommodate the time-series variations of 

recovery rates along these two-time dimensions. 

 

We estimate our proposed model with the panel data of retail recovery rates of the Bank as 

described in Section 2. We follow the approach adopted by Baltagi and Li (1994, 1997) in 

conducting a panel data regression with serially correlated disturbances. Baltagi and Li 

derive the spectral decomposition of the variance-covariance matrix of the composite error 

when the remainder error follows an AR(p) or an MA(q) process. With 𝑇 =  20 (twenty 

quarters), Equation (1) can be expressed in the following matrix form: 

𝑅𝑖 =  𝐼 × 𝐶 + 𝑣𝑖 ,      for 𝑐𝑜ℎ𝑜𝑟𝑡 𝑖 = 1, 2,⋯ , 𝑁 (5) 

where 𝑅𝑖 = [ 𝑅𝑖,1 𝑅𝑖,2  ⋯ 𝑅𝑖,20]′,  𝐼  is the 20 × 20  identity matrix, 𝐶 = [𝑐1  𝑐2  ⋯ 𝑐20]′ , 

and 𝑣𝑖 = [ 𝑣𝑖,1 𝑣𝑖,2  ⋯ 𝑣𝑖,20]′  where the disturbances 𝑣𝑖,𝑡 follows a stationary 𝐴𝑅(1) 

process of Equation (2). In the regression representation of Equation (5), the only 

regressors are the twenty dummy variables denoting the twenty different quarters 𝑡 =

1, 2, … , 20 since default date.17 Each of these dummy variables has a coefficient 𝑐𝑡 for 𝑡 =

1, 2, … , 20. With a total of thirty-four cohorts (i.e., 𝑁 = 34), we have a panel regression 

model comprising thirty-four Equation (5) each for a different 𝑖 . Our objective is to 

estimate the autocorrelation coefficient  𝜌 , the parameter vector 𝐶 , and the standard 

deviation of the shocks 𝜎𝑒.  

 
17 It will be a straightforward extension to incorporate other time-varying regressors as our independent 

variables. For example, we can test the effects of selected macroeconomic variables (e.g., GDP growth 

rate) on the recovery rate profile by adding them as regressors.  



105 
 

Baltagi and Li (1997) suggest the following estimator for 𝜌, 

𝜌̂ =  
𝑄̃1−𝑄̃2

𝑄̃0−𝑄̃1
 ,                                                 (6) 

where 𝑄̃𝑠 = ∑ ∑ 𝑣𝑖,𝑡𝑣𝑖,𝑡−𝑠 𝑁(𝑇 − 𝑠)⁄𝑇
𝑡=𝑠+1

𝑁
𝑖=1 and 𝑣𝑖𝑡  denotes the OLS residuals from 

Equation (1). With the estimated 𝜌̂, we follow the two-step process of Baltagi and Li (1994) 

to estimate parameter vector 𝐶. The objective of the two-step transformation is to allow us 

to use OLS to obtain the coefficients while correcting for the bias introduced by the serial 

correlation under the panel data setting. In brief, let 𝑀 be a 𝑇 × 𝑇 matrix that removes the 

serial correlation in the disturbances, in the sense that 𝑀𝑣𝑖 ~𝑁 (0, 𝜎
2𝐼). In Step 1, we 

apply the 𝑀 transformation on the vector of observed recovery rates 𝑅𝑖 to remove the serial 

correlation and obtained the transformed vector 𝑅𝑖
∗. 

𝑅𝑖
∗ = 𝑀𝑅𝑖            (7) 

Then, in Step 2, we perform a further transformation on the transformed observations 𝑅𝑖
∗, 

from which we subtract a fraction of a weighted average value of the observations 𝑅𝑖
∗. After 

correcting for the bias introduced by the serial correlation with these two-step 

transformations, we can then conduct a OLS regression with 𝑅𝑖
∗ to estimate vector 𝐶 =

[𝑐1  𝑐2  ⋯ 𝑐20]′ and 𝜎𝑒.
18 In the next section, we report the results of our model estimations 

and discuss the implementation of the calibrated model. 

  

 
18 In conducting our panel data regression, we ignore any cross-sectional (i.e., across cohort) random effect. 
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3.4 Model Estimation and Implementation 

 

We estimate our proposed model for each risk segment of the Bank’s recovery data set 

based on the estimation method described in Section 3. The estimated values of the 

autocorrelation coefficient 𝜌, the parameter vector 𝐶, and the standard deviation of the 

shocks 𝜎𝑒 of each segment are reported in Table 3.4.1. Consistent with our expectation of 

in general positively autocorrelated recovery rates, the estimated AR (1) coefficient 𝜌 is 

found to be positive for three of the four segments. Based on the magnitudes of the 

estimated 𝜎𝑒, the higher the average recovery rate of the segment, the higher the variability 

of the shocks. In other words, it is more difficult to predict the recovery rate profile of 

Segment 1 than that of Segment 4. All of the estimated values of 𝑐1, 𝑐2, ⋯ , and 𝑐20, which 

together represent the long-run average recovery rate profile, are at least weakly 

statistically significant. Consistent with our expectation, Segment 1 (lowest recovery risk) 

has in general the highest long-run average recovery rates, while Segment 4 (highest 

recovery risk) has the lowest. Tracking the estimated value of 𝑐𝑡 over the elapsed time 

𝑡 since the default date, the hump shape pattern of the long-run average recovery rate 

profile is quite salient and robust. The recoveries in the first year following the default time 

are relatively low. For all four segments, the highest expected recoveries are realized in the 

second year after default, from the fourth to the seventh quarter. The expected recovery 

rates then gradually diminish following the peak for the rest of the five-year recovery 

period. 

INSERT TABLE 3.4.1 ABOUT HERE 
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Our model allows us to utilize the time-series relation of recovery rates to dynamically 

update our expectation of the overall recovery rate of a cohort conditional on the recovery 

rate realized up to the current time. Intuitively, as we observe a recovery rate that is higher 

(lower) than the long-run average in the current quarter, it suggests the economic condition 

is better (worse) than average, and thus we would expect the recovery rate in the subsequent 

quarter will also be higher (lower) as the prevailing economic condition persists. By 

exploiting this time-series relation, we can arrive at a more accurate assessment of the PIT 

portfolio risk than if such timely information is ignored. 

 

Let us first examine the dynamic updating rule based on our proposed model. Then, with 

the model parameters estimated above, we demonstrate how the updating rule is applied in 

calculating the conditional LGD of the Bank’s retail defaulted portfolio as new information 

is being incorporated over time. In the illustration below, we focus on a particular cohort 

𝑖 . Without loss of generality, we can therefore suppress subscript 𝑖  in the following 

derivation and focus on the description of how the recovery rate evolves over 𝑡. Let us start 

with the relatively simple case of a two-period problem. That is, we assume recovery cash 

flows will only be realized over two quarters after the default date. We will generalize to 

the multi-period case later. The objective here is to predict the overall recovery rate 𝑅̃, 

which is the sum of the recovery rates to be realized in the first and the second quarters. It 

is a random variable at 𝑡 = 0 (i.e., the default date), which can be expressed as (according 

to Equations (1) and (2)): 
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𝑅̃ = 𝑅̃1 + 𝑅̃2 

= 𝑐1 + 𝑣̃1 + 𝑐2 + 𝜌𝑣̃1 + 𝑒̃2   (8) 

Therefore, based on Equation (3), the expected value of the overall recovery rate is: 

𝐸0(𝑅̃) = 𝑐1 + 𝑐2   (9) 

and, according to Equation (4), the variance of the overall recovery rate is: 

𝑣𝑎𝑟0(𝑅̃) = (1 + 𝜌)
2𝑣𝑎𝑟(𝑣̃1) + 𝑣𝑎𝑟(𝑒̃1) 

= (1 + 𝜌)2
𝜎𝑒
2

1 − 𝜌2
+ 𝜎𝑒

2 

= (
1 + 𝜌

1 − 𝜌
+ 1)𝜎𝑒

2 

=
2𝜎𝑒

2

1 − 𝜌
 

          (10) 

At 𝑡 = 1 (i.e., at the end of the first quarter after default), conditional on observing 𝑅1, we 

have: 

𝑅̃ =  𝑅1 + 𝑅̃2 =  𝑅1 + 𝑐2 + 𝜌𝑣1 + 𝑒̃2 

= 𝑅1 + 𝑐2 + 𝜌(𝑅1 − 𝑐1) + 𝑒̃2   (11) 

Now, the only random variable is the recovery rate 𝑅̃2 (or, in other words, the shock 𝑒̃2) to 

be realized in the subsequent quarter. Therefore, the conditional (i.e., updated) expected 

values and variances of the second quarter and the overall recovery rate become: 
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𝐸1(𝑅̃2) =  𝑐2 + 𝜌(𝑅1 − 𝑐1)   (12) 

𝐸1(𝑅̃) = 𝑅1 + 𝑐2 + 𝜌(𝑅1 − 𝑐1)  (13) 

𝑣𝑎𝑟1(𝑅̃) = 𝑣𝑎𝑟1(𝑅̃2) = 𝜎𝑒
2   (14) 

 

The updating effect can also be illustrated by examining the changes in the conditional 

mean and the conditional variance of the overall recovery rate from 𝑡 =  0 to 𝑡 =  1. 

Comparing Equations (9) and (13), the change in the expected value is: 

𝐸1(𝑅̃) − 𝐸0(𝑅̃) =  𝑅1 + 𝑐2 + 𝜌(𝑅1 − 𝑐1) − 𝑐1 − 𝑐2 

= (1 + 𝜌)(𝑅1 − 𝑐1),   (15) 

whereas, by comparing Equations (10) and (14), the change in variance is: 

𝑣𝑎𝑟1(𝑅̃) − 𝑣𝑎𝑟0(𝑅̃) =  𝜎𝑒
2 −

2𝜎𝑒
2

1 − 𝜌
 

                                             = −
1+𝜌

1−𝜌
𝜎𝑒
2                                (16) 

           

From Equation (15), we notice that the direction and magnitude of the update to our 

expectation of the overall recovery rate is governed by how the realized recovery rate in 

the first quarter 𝑅1  compared with the long-run average recovery rate 𝑐1  of the same 

quarter. If an unexpectedly high recovery rate is realized in the first quarter (i.e., 

(𝑅1 − 𝑐1) > 0), we will upwardly adjust our expectation, and vice versa, when a lower 

than expected recovery rate is realized in the first quarter (i.e., (𝑅1 − 𝑐1) < 0). A larger 



110 
 

deviation from the long-run average will result in a larger adjustment. On the other hand, 

according to Equation (16), the conditional variance of the overall recovery rate is always 

decreasing (regardless of the realized recovery rate in the first quarter) as part of the 

repayment is realized. 

 

Let us now generalize the problem and examine the multi-period case where recovery cash 

flows are realized over T periods (i.e., T quarters) after the default time. At the time of 

default (i.e., at 𝑡 = 0), the overall recovery rate is the sum of the quarterly recovery rates 

from 𝑡 =  1 𝑡𝑜 𝑇. That is, 

𝑅̃ = 𝑅̃1 + 𝑅̃2 +⋯+ 𝑅̃𝑇 

= 𝑐1 + 𝑐2 +⋯+ 𝑐𝑇−1 + 𝑐𝑇 + 𝑣̃1 + 𝑣̃2 +⋯+ 𝑣̃𝑇 = ∑ (𝑐𝑖 + 𝑣̃𝑖)
𝑇
𝑖=1            (17) 

Therefore, the expected overall recovery rate is: 

𝐸0(𝑅̃) = 𝐸0(𝑅̃1 + 𝑅̃2 +⋯+ 𝑅̃𝑇) 

= 𝑐1 + 𝑐2 +⋯+ 𝑐𝑇−1 + 𝑐𝑇 = ∑ 𝑐𝑖
𝑇
𝑖=1                                 (18) 

whereas the variance of the overall recovery rate as at 𝑡 =  0 (refer to the Appendix for 

the detailed derivations) is: 

𝑣𝑎𝑟0(𝑅̃) = 𝑣𝑎𝑟0(𝑅̃1 + 𝑅̃2 +⋯+ 𝑅̃𝑇) 

= (∑ 𝜌𝑖𝑇−1
𝑖=0 )2

𝜎𝑒 
2

1−𝜌2
+ (∑ 𝜌𝑖𝑇−2

𝑖=0 )2𝜎𝑒
2 + (∑ 𝜌𝑖𝑇−3

𝑖=0 )2𝜎𝑒
2 +⋯+ (∑ 𝜌𝑖1

𝑖=0 )2𝜎𝑒
2 + 𝜎𝑒

2   (19) 

What are the conditional expectation and variance of the overall recovery rate when we are 

within the recovery process and some quarterly recovery rates have already been realized? 



111 
 

Suppose we are at the end of the period 𝑡∗ − 1 (𝑇 ≥ 𝑡∗ > 1) and we observe the historical 

quarterly recovery rate of 𝑅1, 𝑅2, ⋯ , 𝑅𝑡∗−1  realized in time periods 1, 2, … , 𝑡∗ − 1 

respectively. Conditional on this information, our updated expectation of the overall 

recovery rate is given by (refer to the Appendix for the detailed derivations): 

𝐸𝑡∗−1(𝑅̃) = 𝐸(𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑅̃𝑡∗ +⋯+ 𝑅̃𝑇) 

=  ∑ 𝑅𝑖 + ∑ 𝑐𝑖 + (𝑅𝑡∗−1 − 𝑐𝑡∗−1)
𝑇
𝑖=𝑡∗ ∑ 𝜌𝑖𝑇−𝑡∗+1

𝑖=1
𝑡∗−1
𝑖=1                        (20) 

Comparing the conditional expectation of the overall recovery rate at 𝑡∗ − 1 (Equation (20)) 

with its initial (unconditional) expectation (Equation (18)), we have: 

𝐸𝑡∗−1(𝑅̃) − 𝐸0(𝑅̃) = (𝑅𝑡∗−1 − 𝑐𝑡∗−1)∑ 𝜌𝑖𝑇−𝑡∗+1
𝑖=0 + ∑ (𝑅𝑖 −

𝑡∗−2
𝑖=1 𝑐𝑖)      (21) 

From Equation (21), we notice that the direction and magnitude of the update of our 

expectation is dictated by how the realized quarterly recovery rates 𝑅1, 𝑅2, ⋯ , 𝑅𝑡∗−1 

compared with their respective long-run average recovery rates 𝑐1, 𝑐2, ⋯ , 𝑐𝑡∗−1 . Any 

unexpectedly high (low) realized recovery rates will result in an upward (a downward) 

adjustment of our expectations. The larger the deviations from the long-run averages, the 

larger will be the adjustment. With autocorrelation coefficient 𝜌 lying between 0 and 1, an 

unexpectedly high recovery rate realized in the last quarter (i.e., (𝑅𝑡∗−1 − 𝑐𝑡∗−1) > 0) will 

have a positive but diminishing impact on the expected values of the recovery rates to be 

realized in the subsequent quarters. On the other hand, an unexpectedly low recovery rate 

in the last quarter (i.e., (𝑅𝑡∗−1 − 𝑐𝑡∗−1) < 0) will have a negative but diminishing impact 

on the expected values of the recovery rates to be realized in the upcoming quarters. 
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At the end of period 𝑡∗ − 1, the conditional variance of the overall recovery rate can be 

expressed as (refer to the Appendix for the detailed derivations): 

𝑣𝑎𝑟𝑡∗−1(𝑅̃) = 𝑣𝑎𝑟𝑡∗−1(𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑅̃𝑡∗ +⋯+ 𝑅̃𝑇) 

= (∑ 𝜌 𝑖𝑇−𝑡∗

𝑖=0 )2
𝜎𝑒 
2

1−𝜌2
+ (∑ 𝜌𝑖𝑇−𝑡∗−1

𝑖=0 )2𝜎𝑒 
2 + (∑ 𝜌𝑖𝑇−𝑡∗−2

𝑖=0 )2𝜎𝑒 
2 +⋯+ (∑ 𝜌𝑖1

𝑖=0 )2𝜎𝑒 
2 + 𝜎𝑒 

2 (22) 

Unsurprisingly, when 𝜌 is positive, the conditional variance of the overall recovery rate is 

monotonically decreasing as time passes and when more quarterly recovery cash flows are 

realized. Thus, the longer the time since the default date, the lower the risk of the defaulted 

cohort. It is also important to note that the conditional variance is always smaller than the 

initial (unconditional) variance (Equation (19)). 

 

Below we demonstrate the updating of the expected overall recovery rate for a cohort of 

Segment 1 that defaulted in 2006Q3. The resultant PIT expected recovery rates of the 

cohort over the sample period from 2006Q3 to 2011Q3 are plotted in Figure 4, together 

with the levels of the TTC (i.e., unconditional) expected value and the actual realized 

overall recovery rate indicated. Note that with the facilities in the cohort just defaulted, we 

have yet to observe any recovery rate information in 2006Q3. We, therefore, start with the  

TTC expected value given by the sum of the long-run average recovery rates 𝑐𝑖 . 

Specifically, according to Equation (18), our expected overall recovery rate as perceived 

in 2006Q3 is (according to the estimated values of 𝑐𝑖 of Segment 1 presented in Table 1): 

𝐸0(𝑅̃) = 𝑐1 + 𝑐2 +⋯+ 𝑐20 = 0.2436 
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In the subsequent quarter 2006Q4, a recovery rate of -0.0133 (i.e., 𝑅1 = −0.0133) is 

realized. This is the first realized quarterly recovery rate for this cohort. Given this 

information, we therefore update our assessment of the expected overall recovery rate by 

following the updating Equation (20). That is (according to the estimated values of 𝑐𝑖 and 

𝜌 of Segment 1 presented in Table 1), 

    𝐸1(𝑅̃) = 𝑅1 + ∑ 𝑐𝑖 + (𝑅1 − 𝑐1)
20
𝑖=2 ∑ 𝜌𝑖19

𝑖=1  

  = −0.0133 + 0.2299 + (−0.0133 − 0.0137) × ∑ 0.0245𝑖19
𝑖=1 = 0.2160 

In other words, with the negative recovery rate realized in the first quarter, we downwardly 

adjust our expectation from the initial (unconditional) value of 0.2436 to 0.2160. Our PIT 

assessment of the expected overall recovery rate is updated in each of the subsequent 

quarters in a similar fashion using Equation (20) as more recovery information is realized 

as time passes. As depicted in Figure 3.4.1, the dynamic updating allows our conditional 

model to more accurately approximate the actual overall recovery rate of 0.1882 for this 

cohort as eventually fully realized in 2011Q3. Without updating, the TTC expected value 

of 0.2436 grossly overstates the actual recovery rate of 0.1882, thus leading to an 

underestimation of the recovery risks. 

INSERT FIGURE 3.4.1 ABOUT HERE 
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3.5 Model Applications in Portfolio Risk Management 

 

In this section, we illustrate how our proposed model can be used to enhance the risk 

management of a defaulted facilities portfolio. There are two key risk measures to estimate: 

value-at-risk (VaR) and the required economic capital. The VaR of a portfolio can be 

defined as the critical loss of the portfolio such that it will only be exceeded on very rare 

occasions, e.g., with only a 0.10% or even 0.05% probability of occurrence (i.e., with 

corresponding confidence levels of 99.90% or 99.95% respectively). The choice of the 

appropriate probability of occurrence is governed by the risk appetite of the financial 

institution. On the other hand, the required economic capital that needs to be set aside by 

the financial institution to cushion the unexpected loss from the portfolio can be defined 

by the difference between VaR and the expected loss of the portfolio. By subtracting the 

expected loss (which has already been booked as loss provision) from the extreme VaR 

loss amount, we determine the unexpected component of the loss, which will have to be 

absorbed by the shareholders’ capital of the financial institution in protecting its 

debtholders and deposit holders. 

 

In the previous sections, we propose and estimate a time-series model of recovery rate 

profile based on our sample portfolio of defaulted retail facilities. The proposed model 

allows us to utilize realized recovery rates to update our expectation of the overall recovery 

rate of a cohort. We are essentially forming an expectation of the aggregated recovery rate 

of the portfolio of facilities making up the cohort. In order to measure the VaR and in turn 

the economic capital requirement, in addition to knowing the mean recovery rate of the 
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portfolio or cohort, we also need to find out the cross-sectional variability of the recovery 

rate of the individual defaulted facilities. For the same aggregated mean recovery rate, the 

higher the cross-sectional variability of recovery rates, the higher is the VaR, since VaR is 

driven not by the mean of the distribution but the extreme tail events. Thus, prior to using 

the conditional model to generate VaR and economic capital, we need an assessment of the 

cross-sectional variability of recovery rate within the cohort. 

 

We hypothesize that cross-sectional variability in facility-level recovery rate is an 

increasing function of the aggregated mean recovery rate. In other words, the distribution 

becomes more dispersed as the mean of the distribution increases. Once we establish this 

relationship empirically, we can then estimate the cross-sectional variability of the 

recovery rate of a cohort by knowing its mean recovery rate as predicted by our conditional 

model estimated in the previous section. With this objective, we conduct a regression 

analysis with the mean recovery rate of each cohort and the standard deviation of the 

realized recovery rates of the facilities within that cohort. For each segment, we have thirty-

four data points from the thirty-four cohorts defaulted at different quarters over our sample 

period from April 2003 to July 2011. As an example, in Table 3.5.1, we present the means 

and the standard deviations of the realized recovery rates of the facilities that defaulted in 

the 2003Q1 (Cohort 1), 2003Q2 (Cohort 2), and 2003Q3 (Cohort3) of Segment 1. There 

are fifteen defaulted facilities in Cohort 1, and the mean and standard deviation of the 

overall recovery rates of these fifteen defaulted facilities are 0.3105 and 0.3665, 

respectively, in five years after default. In the second quarter of 2003, eighteen facilities 

defaulted with the mean and the standard deviation of recovery rates equal to 0.2998 and 
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0.3504. After calculating the means and standard deviations for all thirty-four cohorts up 

to the last one defaulting in the quarter ending July 2011, we regress the standard deviations 

of the thirty-four cohorts against an intercept term, the means, and the squared-means. The 

regressions are conducted at both the segment level and for the overall portfolio. The results, 

reported in Table 3.5.2, indicate that the linear models are statistically significant for all 

the segments and the overall portfolio. Consistent with our hypothesis, all the coefficients 

are positive and strongly statistically significant. In other words, the larger the mean 

recovery rate, the larger is the standard deviation. On the other hand, the quadratic term is 

only statistically significant for the overall portfolio and Segment 1. The estimated 

coefficients of both of these regressions are negative, suggesting a diminishing effect of 

the increase in the mean on the standard deviation as the mean increases. The fittings of 

the linear and quadratic functions of the overall portfolio are graphically presented in 

Figure 3.5.1. Given the above regression results, we adopt the quadratic (linear) function 

for Segment 1 (Segments 2, 3, and 4) in the subsequent simulations of VaR and economic 

capital. 

INSERT FIGURE 3.5.1, TABLES 3.5.1 AND 3.5.2 ABOUT HERE 

Below we compare the performance of our proposed conditional recovery model 

(Conditional Model) with those of two models commonly used in practice: (i) Benchmark 

Model - an unconditional recovery model without adjusting the variance according to the 

stage of recovery; and (ii) Unconditional Model - an unconditional recovery model with an 

ad-hoc adjustment of the residual variance. We compare the predicted portfolio losses, the 

portfolio VaR, and the corresponding economic capital requirements from the three models 

by conducting a simulation exercise with real-life retail defaulted portfolio. 
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Firstly, let us highlight the key differences among the three models under consideration 

before revealing the simulation results. We will be implementing the models on the same 

defaulted portfolio consisting of twenty cohorts of different default dates, which represents 

a snapshot of the aggregated defaulted portfolio at a certain point in time. Suppose Cohort 

1 consists of facilities defaulted in the last quarter. Cohort 2 consists of those defaulted two 

quarters ago and thus we have only witnessed recovery information for one quarter. Cohort 

3 consists of those defaulted three quarters ago with only two quarters of recovery rates 

observed, and so forth, until Cohort 20, in which the defaulted facilities approach the end 

of the 5-year recovery process and there remains one more quarter of recovery rate 

information to be realized. The Benchmark Model assumes the mean recovery rate for each 

of the twenty cohorts, regardless of their historical default dates, is identical and equal to 

the unconditional average given by Equation (18) for the specific segment to which they 

belong. The model-implied portfolio risk will therefore be static over time, representing a 

TTC measure of the long-run average recovery rate profile of that segment. Thus, we ignore 

the information conveyed in observing the amount of money that has already been 

(partially) recovered up to the current point in time. The cross-sectional standard deviations 

of the facilities’ recovery rates of each of the cohorts are also assumed to be identical to 

each other and static over time. The standard deviation is calculated using the linear 

(quadratic) function estimated earlier for Segments 2, 3, and 4 (Segment 1) and with the 

unconditional mean given by Equation (18). The Unconditional Model adopts the same 

assumptions of the Benchmark Model, except that the cross-sectional standard deviations 

of different cohorts are adjusted to reflect the fact that the variability of recovery rates 

becomes smaller as the remaining time till the end of the 5-year recovery process becomes 
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shorter. Specifically, the variance is assumed to decrease in a quadratic fashion with the 

remaining time. That is, for Cohort 𝑗 (𝑗 =  1, 2, … , 20), the variance is: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑗  =  (
20−𝑗+1

20
)2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑                           (23) 

Unlike the Benchmark and Unconditional Models, in which the model-implied portfolio 

risk is static over time, reflecting a TTC condition, our proposed Conditional Model 

dynamically updates the expected recovery rate based on the realized recovery rate 

information, thus giving us a PIT measure of portfolio risks that varies over the business 

cycle. The updating is conducted based on the methodology outlined in Section 3. 

 

In Table 3.5.3, we present the means and variances of the recovery rates of the Benchmark 

and Unconditional Model. The mean recovery rates are calculated based on Equation (18) 

and the values of 𝑐1, 𝑐2, ⋯ , and 𝑐20 , which together represent the long-run average 

recovery rate profile, as estimated in Section 4. The corresponding variances of the 

Benchmark Model are calculated using the linear (quadratic) function estimated earlier for 

Segments 2, 3, and 4 (Segment 1). The same variance is applied to all cohorts. For example, 

for Segment 1, all cohorts have the same variance of 0.1245. For the Unconditional Model, 

we adjust the variances of different cohorts using Equation (23). For example, the variances 

of Cohorts 1 and 2 of Segment 1 are calculated as: 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒1  =  (
20 − 1 + 1

20
)2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 1 × 0.1245 = 0.1245 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒2  =  (
20 − 2 + 1

20
)2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 0.95

2 ∗ 0.1245 = 0.1124 
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With the estimated means and variances of the recovery rates, we conduct a number of 

Monte Carlo simulations to calculate the VaR and the economic capital requirement as 

described below by assuming a beta distribution for the recovery rates. 

INSERT TABLE 3.5.3 ABOUT HERE 

To ensure our simulation results are not affected by the changing portfolio composition, 

we focus on a specific snapshot of our defaulted facilities portfolio and examine how the 

model-implied portfolio risks vary over time as the risk parameters are undated under our 

proposed Conditional Model. The snapshot represents the portfolio composition as 

observed in 2011Q4. The default balances and corresponding numbers of defaulted 

facilities of each of the cohorts of the snapshot portfolio are reported in Table 3.5.4. The 

portfolio composition information is presented in two dimensions: time after default (TIME) 

and risk segment (Segment1 to Segment 4). The TIME of 0.25Y denotes the cohort 

consisting of facilities that defaulted in the past three months (i.e., Cohort 1). On the other 

hand, the TIME of 5Y denotes the cohort consisting of facilities that defaulted from 4.75 

years (57 months) to 5 years (60 months) ago (i.e., Cohort 20). As we can see from Table 

3.5.4, since Segment 1 is the largest portfolio in our dataset, most observations are from 

the segment that defaulted during 2009 and 2010 as a result of the financial crisis. 

INSERT TABLE 3.5.4 ABOUT HERE 

Since portfolio composition is fixed throughout the simulation process, the means and 

variances of recovery rates are identical overtime under the Benchmark Model and the 

Unconditional Model as reported in Table 3.5.3. The corresponding model-implied VaR 

and economic capital requirement are therefore also static over time. For the proposed 

Conditional Model, the risk parameters (i.e., mean and variance of recovery rates) for each 
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cohort are updated over time based on the latest recovery information as described in 

Section 4. Therefore, we expect to obtain a more accurate PIT estimation of the portfolio 

risk by using the Condition Model. Let us examine in detail the calculations involved in 

the updating process. Suppose the Bank is holding the snapshot portfolio (as described 

above) in 2008Q1 and thus observe the realized recovery rates of all twenty cohorts up to 

2008Q1. The realized recovery rates of Segment 1 are presented in Table 3.5.5. Under 

Columns 1 to 19, we have the quarterly realized recovery rates for the twenty cohorts of 

Segment 1 that defaulted respectively from 2003Q2 to 2008Q1. Specifically, the recovery 

rates realized in the first quarter after the respective default date are presented under 

Column 1, whereas those realized in the 19th quarter after the default date are presented 

under Column 19. As we can see from Table 3.5.5, the cohort that defaulted in the most 

recent quarter 2008Q1 (i.e., Cohort 1) has no recovery information available yet. Cohort 2, 

which defaulted one quarter prior to Cohort 1, has only one quarter’s recovery rate 

information available. The Bank has so far recovered 0.0051 from that cohort (see row 2 

in Table 3.5.5). For Cohort 3, there are two quarters of recovery information available as 

of 2008Q1: 0.0103 recovered in the first quarter after default and 0.0132 recovered in the 

second quarter after default (see row 3 in Table 3.5.5). Finally, for Cohort 20, a total of 

nineteen quarters of recovery data are observed (see the last row of Table 3.5.5). 

INSERT TABLE 3.5.5 ABOUT HERE 

 

The means and variances of the recovery rates for each cohort of Segment 1 are reported 

in the last two columns of Table 3.5.5. Let us illustrate the calculations involved by using 



121 
 

Cohort 2 as an example. First of all, the mean overall recovery rate is updated according to 

Equation (20). That is, 

𝐸𝑡∗−1(𝑅̃) = ∑ 𝑅𝑖 + ∑ 𝑐𝑖 + (𝑅𝑡∗−1 − 𝑐𝑡∗−1)

𝑇

𝑖=𝑡∗

∑ 𝜌𝑖
𝑇−𝑡∗+1

𝑖=1

𝑡∗−1

𝑖=1

 

Since there is the only one realized recovery rate of 0.0051 for Cohort 2, the first term is 

𝑅1 = 0.0051. To calculate the second term, we sum up all the long-run recovery rates 𝑐𝑖 

from 𝑖 =  2 to 20, based on the estimated values presented in Table 1, ∑ 𝑐𝑖 = 0.2299
20
𝑖=2 . 

The last term is (𝑅1 − 𝑐1)∑ 𝜌𝑖19
𝑖=1 = (0.0051 − 0.0137) ∑ 0.0245𝑖19

𝑖=1 = −0.0002. The 

updated mean overall recovery rate, therefore, equals the sum of these three terms. That is 

0.0051 + 0.2299 − 0.0002 = 0.2348. Based on this conditional mean value, we then use 

the quadratic function estimated earlier in this section for Segment 1 (reported in Table 

3.5.2) to estimate the corresponding cross-section standard deviation of the recovery rates 

for Cohort 2. Numerically, 

𝑠𝑡𝑑. 𝑑𝑒𝑣. =  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ∗ 𝑚𝑒𝑎𝑛 + 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

∗ 𝑚𝑒𝑎𝑛2 = 0.054 + 1.9729 ∗ 0.2348 + (−2.9395) ∗ 0.23482

= 0.3552 

These mean and standard deviation of Cohort 2 are reported in the last two columns of 

Table 3.5.5 (see the second row). The means and standard deviations of the other cohorts 

are calculated in a similar fashion using Equation (20) and the quadratic function that 

relates the standard deviation to the corresponding mean. Using the means and standard 

deviations of recovery rates of all the twenty cohorts of Segment 1, we can therefore assess 

the portfolio risks of Segment 1 of our snapshot portfolio as perceived in 2008Q1 based on 
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the Conditional Model (as described below). By repeating the above calculations based on 

the same snapshot portfolio but using recovery rate information observed up to 2008Q2, 

we will then be able to assess the portfolio risks as of 2008Q2. In the subsequent simulation 

exercise, we track the portfolio risks of our snapshot portfolio on a quarterly basis 

following the above procedure up to 2011Q3, always using the most up-to-date recovery 

information in updating our risk parameters. We contrast this conditional portfolio risk 

assessment with those from the Benchmark and Unconditional Models. The key differences 

among the Benchmark, Unconditional, and Conditional Models are further summarized in 

Table 3.5.6. 

INSERT TABLE 3.5.6 ABOUT HERE 

 

With the estimated mean and the variance of the recovery rates for each cohort under the 

Benchmark and Unconditional Models as reported in Table 3.5.3, we simulate the LGD 

(i.e., one minus the recovery rate) of each of the 8,670 defaulted facilities in the snapshot 

portfolio by assuming the random LGD value follows a beta distribution with parameters 

α and β calculated based on the mean and the variance of the cohort to which the default 

facilities belong.19 

      𝛼 =
𝑚𝑒𝑎𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
∗ (−𝑚𝑒𝑎𝑛2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)    (24) 

   𝛽 = (𝑚𝑒𝑎𝑛 −𝑚𝑒𝑎𝑛2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) ∗
1−𝑚𝑒𝑎𝑛

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
  (25) 

 
19 The traditional beta distribution is a bounded distribution between zero and one. In practice, we do observe 

LGD values exceeding one. In other words, the Bank loses more than it lent. It is likely due to the different 

direct or indirect costs incurred by the Bank during the recovery process (e.g., collection costs, legal fees). 

We therefore conduct an adjustment on the beta distribution to extend the range of the beta distribution to 

beyond one. 
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With the LGD value generated for each defaulted facility, we can then calculate the 

portfolio-level LGD by aggregating the facility-level LGD weighted by their respective 

default balances within the snapshot portfolio as presented in Table 3.5.4. Repeating the 

above random sampling procedures 200,000 times gives us an empirical portfolio loss 

distribution, from which the VaR at the 99.95% confidence level under the Benchmark and 

Unconditional Models are calculated to be 0.954 and 0.915 respectively. Subtracting the 

portfolio-level mean loss rates from these VaR values gives us the required economic 

capitals of $0.185 and $0.147 per dollar of exposure under the Benchmark and 

Unconditional Models respectively. Unsurprisingly, the Benchmark Model gives us higher 

portfolio risk measures than the Unconditional Model; nevertheless, there is no guarantee 

that the former will always result in a conservative risk measure given the changing 

economic condition over time. 

 

Unlike the Benchmark and Unconditional Models where the risk parameters are time-

invariant, the portfolio risk measures implied by the Conditional Model vary over time as 

new recovery rate information is realized. To calculate the time-varying VaR and economic 

capital requirement, we, therefore, need to repeat the simulation procedures for each 

quarter over our sample period from 2008Q1 to 2011Q3. The procedure is described in 

Figure 3.5.2. For each quarter, the simulation process starts with the latest recovery 

information (e.g., the cohort recovery rate information realized up to 2008Q1 as reported 

in Table 3.3.6). Together with the long-term recovery parameters presented in Table 3.4.1, 

the updated expected overall recovery rate for each cohort is then calculated (just like the 

calculation for Cohort 2 we demonstrate earlier in this section). Next, using the estimated 
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linear or quadratic function governing the relation between the cross-sectional standard 

deviation of recovery rates and their mean as reported in Table 3.5.2, the corresponding 

cohort-specific standard deviations are estimated. With the estimated mean and the 

standard deviation, we then determine the α and β parameters of the LGD beta distribution 

based on Equations (24) and (25). The LGD value of each defaulted facility in the snapshot 

portfolio is then generated with the fitted beta distribution for each cohort and each segment. 

The facility-level LGD are then aggregated to arrive at the portfolio loss using the default 

balance per facility. This process is repeated 200,000 times resulting in the portfolio loss 

distribution for us to determine the VaR and in turn the economic capital requirement for 

that quarter. The above procedure is then repeated in the next quarter (2008Q2) as new 

recovery rate information is realized to calculate the PIT portfolio risk measures (i.e., VaR 

and economic capital) in the next quarter, and so forth for each of the subsequent quarters 

until we arrive at the last quarter (2011Q3) of our sample period. 

INSERT FIGURE 3.5.2 ABOUT HERE 

The simulation results for the overall snapshot portfolio are presented in Figure 3.5.3. In 

Panel A, we plot the expected loss rates from different models together with the actual 

realized loss rate. Unlike the Benchmark and Unconditional Models, which only capture 

the long-run mean, the proposed Conditional Model can track the variation of the actual 

realized loss rate over time quite well. Turning to the VaR results in Panel B, we notice the 

Benchmark and Unconditional Models significantly understate the PIT VaR generated by 

the Conditional Model in the aftermath of the 2009 financial crisis.20 Finally, the economic 

 
20 We expect there is a certain time lag between an economic downturn and the peak of the resulting credit 

loss from a retail portfolio. It can take a few quarters before we witness defaults to occur and facilities entering 

the recovery process. 
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capital assessments based on the three models are presented in Panel C. We do not observe 

the significant underestimation of the PIT economic capital by the Benchmark Model. Note 

that economic capital is simply the difference between VaR and the expected loss rate. It 

appears that there is a similar amount of underestimation in both the mean and the tail (as 

measured by the VaR) of the distribution based on the Benchmark Model, thus being able 

to preserve an appropriate economic capital assessment. On the other hand, the 

Unconditional Model, which is commonly used in practice, can significantly underestimate 

both the VaR and the economic capital requirement. 

INSERT FIGURE 3.5.3 ABOUT HERE 

 

3.6 Conclusion 

 

We propose a conditional model to capture the time-series variations of the recovery rate 

profile that can incorporate up-to-date recovery information in predicting the ultimate 

recovery rate and we estimate the proposed model using a sample of defaulted facilities of 

a retail credit portfolio. Based on the simulation results covering a sample period including 

the recent financial crisis, we demonstrate that the proposed model can generate more 

realistic PIT portfolio risk measures over time in comparison to commonly used models. 

The proposed model captures both the dynamic evolution of the mean and the variance of 

recovery rate over time and is simple to implement for both facility-level and portfolio-

level risk analysis. With the time-series panel regression setup, the model can be readily 

extended to incorporate other macroeconomic variables that may also drive the variations 



126 
 

of recovery rate over time. The flexibility and effectiveness of the proposed model make it 

a viable candidate to replace the models currently used in practice.  
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Appendix  

Derivations of Equations (19), (20), and (22) 

 

Derivation of Equation (19): 

𝑣𝑎𝑟0(𝑅̃) = 𝑣𝑎𝑟0(𝑅̃1 + 𝑅̃2 +⋯+ 𝑅̃𝑇) 

= 𝑣𝑎𝑟0(𝑣̃1 + 𝑣̃2 +⋯+ 𝑣̃𝑇) 

= (1 + 𝜌 +⋯+ 𝜌𝑇−1)2𝑣𝑎𝑟0(𝑣̃1) + (1 + 𝜌 +⋯+ 𝜌
𝑇−2)2𝜎𝑒

2 + (1 + 𝜌 +⋯+ 𝜌𝑇−3)2𝜎𝑒 
2

+⋯+ (1 + 𝜌)2𝜎𝑒 
2 + 𝜎𝑒 

2  

= (1 + 𝜌 +⋯+ 𝜌𝑇−1)2
𝜎𝑒 
2

1 − 𝜌2
+ (1 + 𝜌 +⋯+ 𝜌𝑇−2)2𝜎𝑒

2 + (1 + 𝜌 +⋯+ 𝜌𝑇−3)2𝜎𝑒 
2

+⋯+ (1 + 𝜌)2𝜎𝑒 
2 + 𝜎𝑒 

2  

= (∑𝜌𝑖
𝑇−1

𝑖=0

)2
𝜎𝑒 
2

1 − 𝜌2
+ (∑𝜌𝑖

𝑇−2

𝑖=0

)2𝜎𝑒
2 + (∑𝜌𝑖

𝑇−3

𝑖=0

)2𝜎𝑒
2 +⋯+ (∑𝜌𝑖

1

𝑖=0

)2𝜎𝑒
2 + 𝜎𝑒

2 

 

Derivation of Equation (20): 

𝐸𝑡∗−1(𝑅̃) = 𝐸(𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑅̃𝑡∗ +⋯+ 𝑅̃𝑇) 

= 𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑐𝑡∗ + 𝑐𝑡∗+1 +⋯+ 𝑐𝑇−1 + 𝑐𝑇 + (𝜌 + 𝜌
2 +⋯+ 𝜌𝑇−𝑡

∗

+ 𝜌𝑇−𝑡
∗+1)𝑣𝑡∗−1 

= 𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑐𝑡∗ + 𝑐𝑡∗+1 +⋯+ 𝑐𝑇−1 + 𝑐𝑇 + (𝜌 + 𝜌
2 +⋯+ 𝜌𝑇−𝑡

∗

+ 𝜌𝑇−𝑡
∗+1)(𝑅𝑡∗−1 − 𝑐𝑡∗−1) 
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= ∑ 𝑅𝑖 + ∑ 𝑐𝑖 + (𝑅𝑡∗−1 − 𝑐𝑡∗−1)

𝑇

𝑖=𝑡∗

∑ 𝜌𝑖
𝑇−𝑡∗+1

𝑖=1

𝑡∗−1

𝑖=1

 

Derivation of Equation (22): 

𝑣𝑎𝑟𝑡∗−1(𝑅̃) = 𝑣𝑎𝑟𝑡∗−1(𝑅1 + 𝑅2 +⋯+ 𝑅𝑡∗−1 + 𝑅̃𝑡∗ +⋯+ 𝑅̃𝑇) 

= (1 + 𝜌 + 𝜌2 +⋯+ 𝜌𝑇−𝑡
∗
)2𝑣𝑎𝑟(𝑣𝑡∗) + (1 + 𝜌 +⋯+ 𝜌

𝑇−𝑡∗−1)
2
𝜎𝑒
2 +⋯

+ (1 + 𝜌)2𝜎𝑒
2 + 𝜎𝑒

2 

= (1 + 𝜌 + 𝜌2 +⋯+ 𝜌𝑇−𝑡
∗
)2

𝜎𝑒 
2

1 − 𝜌2
+ (1 + 𝜌 +⋯+ 𝜌𝑇−𝑡

∗−1)
2
𝜎𝑒
2 +⋯+ (1 + 𝜌)2𝜎𝑒

2

+ 𝜎𝑒
2 

= (∑ 𝜌 𝑖
𝑇−𝑡∗

𝑖=0

)2
𝜎𝑒 
2

1 − 𝜌2
+ ( ∑ 𝜌𝑖

𝑇−𝑡∗−1

𝑖=0

)2𝜎𝑒 
2 + ( ∑ 𝜌𝑖

𝑇−𝑡∗−2

𝑖=0

)2𝜎𝑒 
2 +⋯+ (∑𝜌𝑖

1

𝑖=0

)2𝜎𝑒 
2 + 𝜎𝑒 

2  
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Table 3.4.1 Estimated Coefficients for Different Segments 

This table presents the estimated coefficients (c, ρ and σ²) for all four segments. *,**,*** 

correspond to statistical significance at the 10%, 5% and 1% level, respectively. Please 

note that there is no significant information for ρ. 

 
Seg1 Seg2 Seg3 Seg4 

ρ 0.0245 -0.0234 0.0985 0.0316 

σ² 3.67E-04*** 9.48E-05*** 6.47E-05*** 1.60E-05*** 

c1 0.0137*** 0.00172** -0.0034*** -0.0053*** 

c2 0.0069*** -0.0002** 0.0001** -0.0039*** 

c3 0.0157*** 0.0052*** 0.0035*** 0.0005** 

c4 0.0300*** 0.0230*** 0.0173*** 0.0088*** 

c5 0.0300*** 0.0230*** 0.0137*** 0.0091*** 

c6 0.0308*** 0.0183*** 0.0155*** 0.0067*** 

c7 0.0213*** 0.0170*** 0.0124*** 0.0064*** 

c8 0.0191*** 0.0145*** 0.0109*** 0.0069*** 

c9 0.0133*** 0.0127*** 0.0105*** 0.0071*** 

c10 0.0105*** 0.0090*** 0.0097*** 0.0066*** 

c11 0.0106*** 0.0096*** 0.0076*** 0.0043*** 

c12 0.0116*** 0.0078*** 0.0063*** 0.0044*** 

c13 0.0059*** 0.0064*** 0.0069*** 0.0039*** 

c14 0.0064** 0.0064*** 0.0050*** 0.0039*** 

c15 0.0072** 0.0063*** 0.0046*** 0.0028*** 

c16 0.0018*** 0.0042*** 0.0049*** 0.0025*** 

c17 0.0030* 0.0032** 0.0030*** 0.0023*** 

c18 0.0032* 0.0029** 0.0018* 0.0018*** 

c19 0.0023* 0.0039*** 0.0027** 0.0016*** 

c20 0.0003* 0.0013* 0.0005* 0.0010* 
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Table 3.5.1 An Example of Data for Mean and Standard Deviation Calibration 

 

This table presents the means and standard deviations of three consecutive cohorts (from 

Q1,2003 to Q3,2003) as an example of data collected leading to the result in Table 3. 

 

 Default during  

Q1-2003 

 Default during 

Q2-2003 

Default during 

Q3-2003 

No. of facilities 15 18 10 

Mean 0.3105 0.2998 0.2364 

Standard Deviation 0.3665 0.3504 0.3625 
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Table 3.5.2 Mean and Standard Deviation Calibration Results 

 

This table shows the mean and standard deviation calibration results for both the linear 

model and the quadratic model. The corresponding p-values are in parentheses. The R-

squared are also reported in the last column. The first table includes all four segments, 

while the others only include data points from each segment. 

 

All Segments Intercept Mean Mean2 R2 

Linear model 0.1568*** 

(< 0.0001) 

0.7961*** 

(< 0.0001) 

- 0.8486 

Quadratic 

model 

0.1163*** 

(< 0.0001) 

1.3928*** 

(< 0.0001) 

-1.7357*** 

(< 0.0001) 

0.8817 

 

 

Segment 1 Intercept Mean Mean2 R2 

Linear model 0.2159*** 

(< 0.0001) 

0.5507*** 

(< 0.0001) 

- 0.5991 

Quadratic 

model 

0.0540 

(0.3385) 

1.9729*** 

(0.0002) 

-2.9395*** 

(0.0044) 

0.6927 

 

Segment 2 Intercept Mean Mean2 R2 

Linear model 0.1961*** 

(< 0.0001) 

0.6211*** 

(< 0.0001) 

- 0.5680 

Quadratic 

model 

0.1125* 

(0.0776) 

1.6076** 

(0.0298) 

-2.7997 

(0.1683) 

0.5940 

  

Segment 3 Intercept Mean Mean2 R2 

Linear model 0.1739*** 0.7092*** - 0.5578 
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(< 0.0001) (< 0.0001) 

Quadratic 

model 

0.09941** 

(0.0428) 

1.7708*** 

(0.0100) 

-3.391 

(0.1052) 

0.5943 

  

Segment 4 Intercept Mean Mean2 R2 

Linear model 0.1360*** 

(< 0.0001) 

0.9006*** 

(< 0.0001) 

- 0.7192 

Quadratic 

model 

0.1518*** 

(< 0.0001) 

0.4494 

(0.2387) 

2.6669 

(0.2204) 

0.7327 
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Table 3.5.3 Mean and Variance of Recovery Rates of Benchmark and Unconditional 

Model 

This table presents the mean and variance of the recovery rates of the benchmark and 

unconditional models used in portfolio risk simulations. The mean and variance for the 

benchmark model are constant across cohorts and time, whereas, for the unconditional 

model, the variances are decreasing from the most recently defaulted cohort (Cohort 1) to 

the earliest default cohort (Cohort 20) according to Equation (23).  

  Benchmark Model 

 Cohort Segment 1 Segment 2 Segment 3 Segment 4 

Mean recovery rates All 0.2441 0.1758 0.1306 0.0706 

      

Variance of recovery 

rates All 0.1245 0.0940 0.0727 0.0410 

      

  Unconditional Model 

  Segment 1 Segment 2 Segment 3 Segment 4 

Mean recovery rates All 0.2441 0.1758 0.1306 0.0706 

      

 

Variance of recovery 

rates 

 

 

 

 

 

 

 

 

 

 

  

1 0.1245 0.0940 0.0727 0.0410 

2 0.1124 0.0848 0.0656 0.0370 

3 0.0910 0.0687 0.0531 0.0300 

4 0.0658 0.0496 0.0384 0.0217 

5 0.0421 0.0318 0.0246 0.0139 

6 0.0237 0.0179 0.0138 0.0078 

7 0.0116 0.0088 0.0068 0.0038 

8 0.0049 0.0037 0.0029 0.0016 

9 0.0018 0.0013 0.0010 0.0006 

10 0.0005 0.0004 0.0003 0.0002 

11 0.0001 0.0001 0.0001 0.0000 

12 0.0000 0.0000 0.0000 0.0000 

13 0.0000 0.0000 0.0000 0.0000 

14 0.0000 0.0000 0.0000 0.0000 

15 0.0000 0.0000 0.0000 0.0000 

16 0.0000 0.0000 0.0000 0.0000 

17 0.0000 0.0000 0.0000 0.0000 

18 0.0000 0.0000 0.0000 0.0000 

19 0.0000 0.0000 0.0000 0.0000 

20 0.0000 0.0000 0.0000 0.0000 
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Table 3.5.4 Snapshot Portfolio Used in Simulation 

This table presents the default balances and the corresponding number of facilities that 

defaulted as of 2011Q4 in Panel A and Panel B, respectively. The portfolio composition 

information is presented in two dimensions: time after default (TIME) and risk segment 

(Segment1 to Segment 4). The TIME of 0.25Y denotes the cohort consisting of facilities 

that defaulted in the past three months (i.e., Cohort 1). On the other hand, the TIME of 5Y 

denotes the cohort consisting of facilities that defaulted from 4.75 years (57 months) to 5 

years (60 months) ago (i.e., Cohort 20). 
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PANEL A: DEFAULT BALANCE (2011Q4 SNAPSHOT) 

TIME Segment 1 Segment 2 Segment 3 Segment 4 

0.25Y $         6,341,210 $       5,505,888 $       4,077,823 $       2,597,039 

0.5Y $         7,240,639 $       3,623,269 $       1,639,160 $          147,552 

0.75Y $         9,720,200 $       2,024,387 $          315,953 $                     - 

1Y $       12,258,295 $          497,528 $                     - $              4,430 

1.25Y $       12,283,221 $          146,911 $                     - $                     - 

1.5Y $       12,076,539 $          316,195 $                     - $                     - 

1.75Y $       10,740,089 $          133,186 $            25,596 $            25,819 

2Y $       12,263,599 $            92,334 $            34,438 $                     - 

2.25Y $       11,341,960 $            69,032 $              4,912 $              7,046 

2.5Y $         8,051,168 $          137,756 $                     - $                 143 

2.75Y $         7,880,610 $            82,063 $            12,634 $                     - 

3Y $         6,127,697 $            83,167 $              9,259 $                     - 

3.25Y $         4,866,032 $            45,887 $                     - $                     - 

3.5Y $         4,407,207 $            36,404 $                     - $                     - 

3.75Y $         3,176,088 $            31,020 $                     - $                     - 

4Y $         2,490,440 $            27,901 $              3,315 $                     - 

4.25Y $         1,927,589 $            62,825 $              3,435 $                     - 

4.5Y $         2,037,338 $            15,301 $                     - $                     - 

4.75Y $         1,407,993 $            68,491 $                     - $                     - 

5Y $         6,711,157 $          145,890 $            25,056 $                     - 

PANEL B: NO. OF ACCOUNTS (2011Q4 SNAPSHOT) 

TIME Segment 1 Segment 2 Segment 3 Segment 4 

0.25Y 490 269 191 129 

0.5Y 416 159 84 8 

0.75Y 521 111 21 0 

1Y 672 36 0 1 

1.25Y 585 10 0 0 

1.5Y 624 23 0 0 

1.75Y 579 13 2 1 

2Y 608 12 4 0 

2.25Y 424 8 1 1 

2.5Y 403 10 0 1 

2.75Y 329 6 1 0 

3Y 303 6 1 0 

3.25Y 245 4 0 0 

3.5Y 232 4 0 0 

3.75Y 166 2 0 0 

4Y 149 2 1 0 

4.25Y 128 3 1 0 

4.5Y 110 3 0 0 

4.75Y 90 8 0 0 

5Y 433 22 4 0 
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Table 3.5.5 Realized Cohort Recovery Inputs for Conditional Model Simulation 

This table presents the recovery rates of Segment 1 as of 2008Q1. Under Columns 1 to 19, we have the quarterly realized recovery rates 

for the 20 cohorts of Segment 1 that defaulted respectively from 2003Q2 to 2008Q1. Specifically, the recovery rates realized in the first 

quarter after the respective default date are presented under Column 1, whereas those realized in the 19th quarter after the default date 

are presented under Column 19.  

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mean Std

cohort1 (default 2008Q1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2436 0.3602

cohort2 0.0051 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2348 0.3552

cohort3 0.0103 0.0132 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2467 0.3618

cohort4 0.0026 -0.0129 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2003 0.3312

cohort5 0.0373 -0.0155 -0.0022 -0.0052 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1907 0.3234

cohort6 -0.0133 0.0054 -0.0151 0.0598 0.0506 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2352 0.3554

cohort7 0.0003 -0.0080 0.0652 0.0400 0.0004 0.0065 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2202 0.3459

cohort8 0.0032 -0.0172 -0.0068 0.0723 0.0451 -0.0017 0.0482 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2390 0.3576

cohort9 0.0175 -0.0085 -0.0090 0.0861 0.0395 0.0463 -0.0014 0.0485 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2957 0.3804

cohort10 -0.0073 -0.0039 -0.0010 0.0368 -0.0054 0.0384 0.0431 0.0013 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1654 0.2999

cohort11 0.0203 0.0010 -0.0095 0.1284 0.0044 0.0000 0.0399 0.0431 0.0027 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2881 0.3784

cohort12 0.0086 -0.0096 -0.0083 0.0443 0.0706 0.0178 0.0144 0.0371 0.0072 0.0398 0.0077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2712 0.3729

cohort13 -0.0084 -0.0076 0.1308 0.0493 0.0000 0.0879 0.0081 0.0284 0.0000 0.0017 0.0013 0.0036 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3249 0.3847

cohort14 0.0046 -0.0065 -0.0076 0.0508 0.0566 0.0569 0.0028 0.0535 0.0007 0.0025 0.0574 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2959 0.3804

cohort15 0.0619 0.0352 0.0861 0.0125 0.0408 0.0052 0.0092 0.0150 -0.0018 0.0409 0.0004 0.0000 0.0382 0.0075 0.0000 0.0000 0.0000 0.0000 0.0000 0.3688 0.3818

cohort16 0.0695 0.0042 0.0084 0.0625 0.1217 0.0021 -0.0005 0.0040 0.0011 0.0051 0.0050 0.0073 0.0024 0.0104 0.0129 0.0000 0.0000 0.0000 0.0000 0.3269 0.3848

cohort17 0.0330 0.0869 -0.0021 0.0050 0.0000 0.0412 0.0031 0.0013 0.0351 0.0010 0.0015 0.0009 0.0004 0.0029 0.0020 0.0004 0.0000 0.0000 0.0000 0.2214 0.3467

cohort18 0.0121 -0.0051 -0.0104 0.0952 -0.0027 0.0865 0.0010 0.0010 0.0000 0.0000 0.0044 0.0119 0.0074 0.0042 0.0061 0.0040 0.0039 0.0000 0.0000 0.2251 0.3492

cohort19 0.0629 -0.0069 0.0508 0.0003 0.0050 0.0299 0.0036 0.0092 0.0060 0.0075 0.0093 0.0765 0.0342 -0.0002 0.0028 0.0019 0.0033 0.0028 0.0000 0.3014 0.3816

cohort20 (default 2003Q2) -0.0020 -0.0056 0.0230 -0.0017 -0.0030 0.0655 0.0713 0.0364 0.0000 0.0000 0.0549 0.0644 0.0000 0.0073 0.0000 0.0000 0.0000 0.0000 0.0000 0.3107 0.3832
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Table 3.5.6 Simulation Setup for Three Different Models 

This table presents the key differences between the means and variances of each cohort 

for the three models under consideration.  

 

 Mean Variance 

Benchmark Model the universal mean of mean 

recovery (constant across 

cohort and overtime) 

the universal variance of 

mean recovery (constant 

across cohort and 

overtime) 

Unconditional Model the universal mean of mean 

recovery (constant across 

cohort and overtime) 

the universal variance of 

mean recovery (decrease in 

quadratic fashion constant 

over time) 

Conditional Model dynamic  dynamic 
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Figure 3.2.1 Cohort Formation Process 

This figure illustrates the timeline of the first three cohorts of defaulted facilities in our 

sample data. Twenty quarter-end recovery amounts are collected for each cohort. Cohort 1 

contains the facilities that defaulted in 2003Q1 (i.e., the quarter ending April 2003) and 

their recovery information is collected until 2008Q1 (i.e., the quarter ending April 2008). 

Cohorts 2 and 3 consists of those facilities that defaulted respectively in 2003Q2 and 

2003Q3. Their quarterly recovery values are tracked from their default quarters up to the 

end of 2008Q2 and 2008Q3, respectively.  
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Figure 3.2.2 Quarterly Recovery Rates of Cohort 1 in Segment 4 

 

This figure presents the quarterly average recovery rates of Cohort 1 in Segment 4 of our 

sample of defaulted retail facilities. The recovery rate is expressed as a fraction of the loan 

balance. Cohort 1 consists of those facilities defaulted in the quarter ending April 2003 (i.e., 

2003Q1). Average recovery rates of the facilities are observed on a quarterly basis from 

the first quarter after default (i.e., rec_1) to the 20th quarter (i.e., rec_20) after default. We 

therefore assume a 5-year recovery process. 
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Figure 3.2.3 Segment-Level Recovery Rates 

 

This figure presents the average recovery information in two dimensions: time and segment. 

This figure includes the average recovery amounts for all four segments and over twenty 

quarters after default.  
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Figure 3.4.1 PIT Expected Overall Recovery Rates of a Cohort 

This figure presents the updating of the expected overall recovery rate for a cohort of 

Segment 1 that defaulted in 2006Q3 based on the proposed conditional model. The 

resultant PIT expected recovery rates of the cohort over the sample period from 2006Q3 to 

2011Q3 are plotted, together with the levels of the TTC (i.e., unconditional) expected value 

and the actual realized overall recovery rate indicated. 
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Figure 3.5.1 Mean and Variance Calibration 

This figure shows the linear and quadratic regression results for the overall portfolio (i.e., 

all segments). The standard deviations are regressed against the corresponding means as 

shown in Table 3.  
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Figure 3.5.2 Simulation Procedure 

This figure describes the simulation process for each cohort. Each cohort has a unique LGD beta distribution based on its recovery mean 

and recovery variance. Each facility is assigned a random draw within the corresponding LGD beta distribution to generate loss per 

facility together with default balance and the number of facilities. The facility-level loss amounts are aggregated to arrive at the portfolio-

level loss rate. By repeating 200,000 times, we obtain the empirical distribution of the portfolio loss rate to calculate VaR and economic 

capital. 
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Figure 3.5.3 Simulation Results 

This figure shows the expected portfolio loss rate, the value-at-risk (VaR), and the 

economic capital estimated by the three models (Benchmark, Unconditional, Conditional 

Models) based on the simulation results over the sample period from 2008Q1 to 2011Q3.  
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Panel C: Economic capital 
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Chapter 4 

Estimating Loss-Given-Default by Mixture Beta Regression 

Model 

 

4.1 Introduction and Literature Review 

 

Credit risk is one of the most important risks financial institutions are facing in the modern 

financial world. Probability of Default (PD), Loss Given Default (LGD) and Exposure at 

Default (EAD) are the three key determinants in defining the credit risk of corporate bonds 

and loans. PD is used to describe the likelihood that a borrower will be unable to meet its 

debt obligation over a particular time horizon and EAD is the total value a lender is exposed 

to when a default happens. The focus of this paper is LGD. By definition, LGD is the share 

of an asset that is lost when a borrower defaults, measuring the severity of the credit loss 

given the default event. Under Basel II for financial institutions, it is also an important 

parameter in credit risk modeling and in assessing capital requirements. Recovery Rate 

(RR) measures the amount recovered by the creditor from default as a fraction of the 

outstanding loan balance. It can therefore be expressed as one minus LGD. Summing up 

to one, RR and LGD carry exactly the opposite economic meaning as discussed in this 

paper. In practice, RR is the discounted value of the net cash flow received by the creditor 

minus any loss or costs incurred during the collection process expressed as a fraction of 

the exposure at default. For tradeable instruments (e.g., corporate bonds), the discounted 
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market value at resolution or the price of traded debt at default can also be used as a proxy 

of RR.  

 

Different from the Probability of Default (PD), which has been extensively studied in both 

the academic and practitioner literature, LGD attracts relatively less attention from 

researchers. The present study contributes to our understanding of the time-series behavior 

of the distribution of LGD. Traditionally, in credit risk modeling, the focus has been 

primarily on the modeling of the probability of default (PD), while the recovery rate (or 

LGD) is assumed to be a constant without necessarily recognizing its potential variation 

(both cross-sectionally and over time). As the understanding and modeling of LGD are still 

in their infancy and far from satisfactory, its research is still on the way to recovery. 

Previous studies on LGD mainly focus on analyzing the factors influencing LGD, the 

relationship between LGD and PD, and the probability density function of LGD. The 

modeling of LGD is intriguing and can also be challenging given that the distribution of 

LGD is quite different from a normal distribution that is commonly used for statistical 

models. First, the LGD distribution is supposed to be bounded between 0 and 1. Second, it 

is not uncommon to encounter bimodal LGD distribution that exhibits fat tails. 

 

Previous studies on credit risk can be broadly classified into two categories: theoretical 

papers dealing with credit risk modeling and empirical studies analyzing past defaults. The 

two main credit risk modeling approaches are the structural model starting from Black and 

Scholes (1973) and Merton (1974) and the reduced-form model pioneered by Jarrow and 

Turnbull (1995) and Duffie and Singleton (1999). The former assumes that default is driven 
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by the process generating the value of the borrower’s asset. When the asset value is lower 

than the firm’s debt level at maturity, default occurs and the residual asset value defines 

the rate of recovery. In other words, since the payment of the debt at maturity is the smaller 

of the two: the residual value of the firm or the face value of its debt, so the payoff of debt 

is equivalent to the face value of the debt minus a put option whose strike price is equal to 

the face value of the debt and maturity is equal to the maturity of its debt. Based on this 

framework, Merton estimates the PD and LGD of debts. Researchers have since extended 

the structural model by relaxing some of the unrealistic assumptions made by Merton. For 

example, the Black-Cox model (Black and Cox, 1976) extends the Merton framework by 

allowing intermediate default and the Geske model (Geske, 1979) applies the framework 

to interest-paying corporate bonds. Under the structural model, LGD is an endogenous 

variable and is positively related to the probability of default (PD). Despite the fact that the 

structural model provides an intuitive way to model both PD and LGD within a consistent 

framework, it still suffers from several drawbacks. First, as one of the most important 

parameters in the model, the firm’s value is not directly observable and its estimation is far 

from trivial. Second, Merton’s model cannot handle a complex capital structure. Last, the 

assumption of continuous firm value is at odds with reality. 

 

Contrary to the structural model, the reduced form credit risk model (e.g., that of Jarrow 

and Turnbull, 1995, and Madan and Unal, 1998) does not explicitly condition default on 

the firm’s capital structure, rather, it allows separate assumptions regarding PD and LGD 

making recovery rate an exogenous variable. The reduced form approach models the 

default event as a statistical process using the hazard rate to represent PD in a continuous-
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time framework and recovery is usually treated as another input of the model. For example, 

in Jarrow and Turnbull (1995), default is modeled as a Poisson process stopping at the first 

jump. There are some empirical studies of credit derivatives basing on the reduced-form 

model. For example, Chen, Cheng, Fabozzi and Liu (2008) provide an explicit solution to 

the valuation of credit default swap based on the reduced-form model. The recovery can 

be assumed to be zero, a constant, or to follow a stochastic process. There are in general 

two methods to parameterize the recovery rate in the reduced-form approach: as a fraction 

of the market value (Duffie and Singleton, 1999) or as a fraction of the face value. The 

former assumes that, in case of the default, creditors are compensated based on the rest of 

the market value of the risky bonds, while the recovery value is based on the face value of 

the bonds in the latter. These are the extensions of the reduced-form model following 

Jarrow and Turnbull coming up with different approaches in the modeling of recovery rates. 

Since PD and LGD in the reduced form framework are independent of each other and not 

necessarily related to the firm value as that in the structural model, it overcomes some of 

the disadvantages of the structural model mentioned above, e.g. the unobserved asset value. 

However, since there is a lack of an underlying economic model (like Merton's firm value 

and shareholder model), we cannot intuitively explain the behavior of the observed credit 

risk measures (e.g., the term structure of credit spread and the correlation of PD and LGD) 

by using the reduced form model.  

 

There is an active and growing literature on the modeling of LGD. Through empirical 

works investigating past default events, researchers have a better understanding of the 

stochastic nature of LGD in their endeavor to improve the modeling of LGD. Altman et al. 
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(2005), Grunert and Weber (2008) investigate the factors that may affect LGD, confirming 

that PD, the size of the company, the intensity of the client relationship, and the 

creditworthiness of the borrower all play a pivotal role in dictating LGD. Altman et al. 

(2005), Hu and Perraudin (2002), and Rosch and Scheule (2005) document a positive 

relationship between PD and LGD. Creditors, therefore, expect to recover less the higher 

the default probability of the debtors. If this relationship is ignored in credit risk modeling, 

a financial institution might underestimate the expected loss of its credit portfolios. In turn, 

its capital requirement will also be underestimated. Besides, some studies focus on 

examining the statistical properties of LGD, for example, Gert (2014) investigates different 

techniques of backtesting LGD. More recently, researchers have been adopting 

unconventional approaches and parameters in modeling LGD, e.g., Heng (2018) considers 

time-to–recovery as an explanatory factor of LGD. 

 

Another strand of LGD research is on its distribution. Earlier researchers adopt different 

variations/transformations of the normal distribution. For example, the logit-normal 

distribution model by Dullmann and Trapp (2004), and by Rosch and Scheule (2005), the 

normal distribution model by Frye (2000), log-normal distribution model Pykhtin (2003) 

and the probit-normal distribution model by Anderson and Sidenius (2003) are introduced. 

Dullmann and Trapp (2004) compare the performance of the normal model, log-normal 

model, and the logit-normal model using S&P’s LGD data from 1982 to 1992. Judging 

from the p-values of Sharpiro-test and Jarque-Bera-test, they find that the log-normal 

model is inferior to the other two models in fitting the LGD distribution. The normal 

distribution model by Frye assumes that recovery is a linear function of the normal risk 
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factor associated with the Vasicek distribution. This idea is further expanded in log-normal 

and probit-normal models to accommodate the LGD specifications. These assumptions are 

used in modeling recovery rates to avoid downward-biased estimation of economic capital. 

 

By far, the beta distribution is the most popular class of distribution used in the modeling 

of LGD. Beta distribution has been widely used in the industry in estimating LGD (e.g., in 

Moody’s Losscalc, J.P. Morgan’s Credit Metrics, and KMV’s Efficient Frontier). The 

main advantage is that it has the support of [0, 1]. Besides, with its two shape parameters 

𝛼 and 𝛽, it is quite flexible in fitting the commonly observed LGD distribution shapes as 

depicted in Figure 4.1.1 (e.g., bell shape, U-shaped, J-shaped, left-skewed, and right-

skewed shapes). 

INSERT FIGURE 4.1.1 ABOUT HERE 

 

Adopting the beta distribution within the regression model framework, Huang and 

Oosterlee (2012) propose the Generalized Beta Regression model (GBR) of LGD. The idea 

is to utilize a monotonic, differentiable link function and a linear combination of predictors 

to model the mean and variance of the LGD distribution. Potential predictors can be 

macroeconomic variables or firm-level variables capturing the characteristics of the 

underlying assets. The link functions can be logit or probit functions. Either the least-

squares method or the maximum likelihood estimation (MLE) method can be used to 

estimate the model parameters. Jacob and Ahmet (2011) also develop a simultaneous 

equation model based on the beta-link generalized linear model (BLGLM), which can be 

considered as an extension of the GBR framework by using a mixture of cumulative beta 
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distributions as the link function. The use of a mixture of beta distributions has proven to 

be a worthwhile extension in modeling LGD since it has been shown that the single-beta 

distribution is not flexible enough to accommodate the LGD distributions encountered in 

practice. As pointed out by Schuermann (2004), single-beta distribution cannot model the 

bimodal and the fat tail of the LGD distribution sometimes observed in practice. The 

research by Renault and Scaillet (2004), using the S&P’s default data observed between 

1981 and 1999, suggests that LGD distribution is far from a (single) beta distribution. No 

matter how we change the two shape parameters of the beta distribution, we cannot 

replicate the observed bimodal shape. We admit that it is easier for researchers to fit LGD 

distribution by using just two parameters with beta distribution, but such convenience is at 

a cost of losing the accuracy in fitting the observed LGD data. The resulting errors, 

especially in the tails of the LGD distribution, could be too large to be ignored by financial 

institutions in assessing their capital requirements.   

 

The use of a mixture of distributions provides the modeler the flexibility to capture 

different features of a data sample that consists of multiple components with different types 

of distribution. It thus facilitates the detailed description of complex data systems. Mixture 

distributions have been used in answering research questions in diverse areas, such as 

ecology, bioinformatics, astronomy, computer science, economics, engineering, robotics, 

and biostatistics. For instance, in genetics, the location of quantitative traits on a 

chromosome and interpretation of microarrays both relate to mixture distributions. While 

in computer science, spam filters and web context analysis start from a mixture assumption 

to distinguish spams from regular emails and to group pages by topics. Specifically, Ji et 
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al. (2005) propose a beta-mixture model approach in solving a variety of problems in 

bioinformatics related to a large number of correlation coefficients. In their experiments, 

the subsamples of a single variable behave differently. The finite mixture model is typically 

used to analyze data of this type. Recently, researchers have applied different kinds of 

mixture models in addressing research questions in economics and finance. For example, 

Andreas and Ulrich (2009) investigate the viability of finite mixtures of Gaussians to model 

marginal distributions of the stock market in some sub-periods. Roman (2012) also 

proposes a mixture model to explain the behavior of daily price changes and trading 

volume on the financial market. 

 

Given the restrictions imposed by the single-beta distribution in modeling LGD and the 

unrealistic implications of such a model as mentioned earlier, we propose a mixture beta 

regression LGD model that accommodates the dynamic changes in the LGD distribution 

over the business cycle as defined by various macroeconomic variables. In formulating our 

mixture beta model, we are motivated by the time-varying bimodal distribution of recovery 

rate as observed in practice. These different shapes of bimodal distributions can be seen as 

a combined distribution of LGD with time-varying weights over the business cycle. To 

capture this facet of the LGD distribution, unlike the commonly used beta-linked regression 

models where the shape parameters of the beta distribution vary with the underlying 

variables (e.g., Simas and Rocha, 2010), we model the probability weights of realizing 

different beta distributions as functions of the underlying variables. Through extensive 

empirical analysis, we demonstrate that our proposed model can outperform the commonly 
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used models in both in-sample and out-of-sample settings, resulting in a more accurate 

fitting of the observed time-varying LGD distribution.21  

 

In this study, we contribute to the literature on LGD modeling in a number of ways. First, 

we propose a new dual-beta regression LGD model that considers the probability weights 

of realizing the two distributions as functions of macroeconomic variables. The general 

five-factor model and a simplified three-factor model are introduced. Second, with an 

extensive dataset on the recovery values of corporate defaults, we estimate the proposed 

models with a number of different macroeconomic variables that are expected to be 

associated with the recovery value. We conduct both in-sample and out-of-sample tests and 

demonstrate the superior performance of our proposed mixture beta distribution regression 

model when compared with the commonly-used single-beta logit-link regression models. 

Third, we demonstrate how our proposed mixture distribution model can capture the time-

varying behavior of the LGD distribution and how the probability weights assigned to the 

two underlying beta distributions vary with the business cycle. We find that our proposed 

models perform better in predicting the LGD distribution during recessionary periods. 

 

The rest of the paper is organized as follows. Section 4.2 elaborates on the mixture beta 

distribution framework, including the parameter estimation methodology and the 

regression setup. In section 4.3 we present the details of data that contains the recovery 

 
21 We are not the first to apply a mixture distribution model in examining recovery rates. Altman and Kalotay 

(2010) introduce a Bayesian approach to model the distribution of the discounted ultimate recoveries on 

defaulted debts using mixtures of normal distributions. Specifically, they model recovery rates using a 

weighted mixture of several normal distributions and show that the technique is flexible enough to 

accommodate important idiosyncratic features of recovery distributions. The problem with this approach is 

that the support of the mixed normal distribution is [-∞,∞], which is not realistic for LGD. 
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rates and macroeconomic variables that are involved in this paper. Section 4.4 shows the 

empirical results based on the mixture beta distribution framework and then compare the 

performance of the proposed models with that of the commonly used single-beta regression 

model. The last section of Chapter 4 summarizes the important conclusions of this essay.  

 

 

4.2 Methodology 

 

4.2.1 Beta Distribution of LGD 

 

As mentioned in the introduction and literature review section, the beta distribution has 

been widely used in the modeling of LGD. It is by far the most popular distribution 

assumption adopted by researchers in studying recovery rate and LGD in the literature. It 

is also commonly used in practice in the management of default risk by financial 

institutions. A static beta distribution assumption is utilized in popular credit risk models, 

like J.P. Morgan’s Credit Metrics and KMV’s Portfolio Manager, in the modeling of LGD. 

 

The beta distribution is a two-parameter distribution and its probability density function 

𝑓(𝑥) can be expressed as: 

𝑓(𝑥) =
𝑥𝛼−1(1−𝑥)𝛽−1

𝐵(𝛼,𝛽)
=

Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1                          (1) 

where 𝐵(·) denotes the beta function and Γ (·) denotes the gamma function. It has support 

[0, 1]. The two parameters, 𝛼 and 𝛽, are referred to as the shape parameters of the beta 
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distribution. With both 𝛼 and 𝛽 greater than 0, we can ensure a proper probability density 

function. The mean and variance of variable 𝑥 are given by: 

𝜇 = 𝐸[𝑥] =
𝛼

𝛼+𝛽
                                                      (2) 

𝜎2 = 𝑣𝑎𝑟[𝑥] =
𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
=
𝜇(1−𝜇)

𝛼+𝛽+1
                                 (3) 

 

We can also define a dispersion parameter, 𝜑, as the sum of 𝛼 and 𝛽 as it related to the 

variance in Equation (2). The two shape parameters can then be expressed as functions of 

𝜇 and 𝜑. 

𝛼 = 𝜇𝜑                                                              (4) 

𝛽 = (1 − 𝜇)𝜑                                                        (5) 

By varying the two shape parameters, we can arrive at different distribution shapes, e.g., 

bell shape, U-shaped, J-shaped (as depicted in Figure 4.1.1), in modeling LGD.  

 

Using the single-beta distribution, Giese (2006) and Bruche (2010) study LGD by 

modeling the shape parameters, 𝛼 and 𝛽, as functions of different explanatory variables. 

For example, Bruche (2008) first specifies the arrival of defaults by assuming a discrete 

hazard rate function in the form of:  

𝜆𝑡 = [1 + exp(𝛾0 + 𝛾1𝑋𝑡)]
−1                                          (6) 

where 𝑋𝑡 are credit variables or macroeconomic variables. And then the random recovery 

value is drawn from a beta distribution, of which the shape parameters depend on the same 

set of variables that are governing the hazard rate. Finally, to ensure the positivity of 𝛼 and 

𝛽, an exponential specification is imposed on them. With this joint modeling of hazard rate 
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and recovery value, Bruche confirms the dependency of PD and LGD and proposes an 

econometric model allowing for the time variation in PD and LGD. 

  

The Generalized Beta Regression (GBR) model extends the idea and provides a different 

parameterization of the beta distribution. To be specific, rather than modeling 𝛼 and 𝛽 

directly, GBR models the mean and standard deviation of beta distribution with credit 

variables and macroeconomic variables. This approach can provide a more intuitive 

interpretation of the parameters. Here we provide a detailed description of the GBR 

framework as proposed by Huang and Oosterlee (2008). The model proposed by them is, 

hereafter, referred to as the logit-link beta regression model. The shape parameters of the 

beta distribution are formulated as follow, 

𝛼 = 𝜇𝜑 

𝛽 = (1 − 𝜇)𝜑 

Then a monotonic, differentiable link function, e.g. a logit function is used to connect the 

linear predictors 𝜂 and the mean, 

𝜇 =
𝑒𝜂

1+𝑒𝜂
                                                              (7) 

which guarantees a mapping to [0,1] for LGD. Here, the mean can be modeled by linear 

regression functions that are driven by selected macroeconomic factors and the dispersion 

parameter is considered to be a nuisance parameter. Jacob (2011) discusses some more 

complicated linked functions and recommends using beta distribution as opposed to 

Gaussian distribution. The motivation of using beta distribution here is to restrict the 

recovery rate within the range of (0,1). Another contribution of Jacob’s paper is that it 
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examines a wide range of firm-level and instrument level variables that potentially affect 

LGD.  

 

As mentioned in the introduction section, some of the previous studies mentioned the 

limitations of current models when fitting the bimodal LGD. This motivates us to use a 

mixture beta distribution as a potential alternative to accommodate such difficulties.  

 

4.2.2 Mixture Beta Regression Model 

 

4.2.2.1 Mixture of Beta Distributions 

 

To overcome the shortcomings of the single-beta distribution in accommodating different 

kinds of multi-modal LGD distribution observed in practice, we propose the use of a 

mixture of distributions. A mixture distribution can be expressed as a weighted linear 

combination of a number of (say 𝑛 ) probability density functions 𝑝1(𝑥), 𝑝2(𝑥), ⋯ ,

𝑝𝑛(𝑥).  Specifically, the probability density function 𝑓(𝑥) of the mixture distribution can 

be expressed as: 

𝑓(𝑥) =∑𝜔𝑖𝑝𝑖

𝑛

𝑖=1

(𝑥) 

where 𝜔𝑖  (𝑖 =  1 𝑡𝑜 𝑛)  denotes the weight assigned to the underlying probability 

distribution 𝑖. The weight 𝜔𝑖  can be constant or vary over time with some co-variates. 

Although the underlying 𝑝𝑖(𝑥) are individually probability density functions, a general 

linear combination of the 𝑛 probability density functions does not necessarily give us a 
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proper probability density function, since it is possible to be negative or it may integrate to 

some values other than 1. To ensure we will arrive at a proper density function for the 

mixture distribution, we will focus on a convex combination of probability density 

functions, where ∑ 𝜔𝑖 = 1
𝑛
𝑖=1  and 𝜔𝑖 ≥ 0.  

 

Unlike in some of the previous studies that consider a mixture of normal distributions, we 

examine a mixture of beta distributions with bounded support from 0 to 1, which is most 

appropriate to represent the fractional amount of default loss out of, for example, a fixed 

par value of a defaulted bond. Although in our subsequent analysis, we focus on a mixture 

of two beta distributions (i.e., n =2), the framework can be readily extended to incorporate 

more than two underlying beta distributions. As we will demonstrate in our empirical 

analysis (see Section 4), a dual-beta distribution is flexible enough to capture the dynamic 

changes in LGD distribution over the business cycle that cannot be accommodated by a 

single-beta approach. To ensure we have a proper mixture distribution density, we restrict 

that the two weights, 𝜔1 and 𝜔2, add up to one by introducing a single weight parameter 𝜌 

(0 ≤ 𝜌 ≤ 1), where 𝜔1 = 𝜌  and 𝜔2 = 1 − 𝜌 . The probability density function of our 

mixture beta distribution can therefore be expressed as: 

𝑓(𝑥) = 𝜌
1

𝐵(𝛼1,𝛽1)
𝑥𝛼1−1(1 − 𝑥)𝛽1−1 + (1 − 𝜌)

1

𝐵(𝛼2,𝛽2)
𝑥𝛼2−1(1 − 𝑥)𝛽2−1        (8) 

where 0 ≤ 𝑥 ≤ 1 , 𝐵(𝛼1, 𝛽1)  and 𝐵(𝛼2, 𝛽2)  are two beta functions. Here, 𝑓(𝑥)  is the 

mixed probability density function based on two different beta distributions and the 

parameter 𝜌 governs how much weight we assign to the two distributions. If 𝜌 is larger 

(smaller) than 0.5, we put more weight on the first (second) beta distribution with shape 
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parameters 𝛼1 and 𝛽1 (𝛼2 and 𝛽2). Obviously, 𝑓(𝑥) meets all the requirements of being a 

probability density function with five parameters, 𝛼1,  𝛽1, 𝛼2, 𝛽2, and 𝜌, that need to be 

estimated. When 𝜌 is 0 or 1, 𝑓(𝑥) becomes the probability density function of a (single) 

beta distribution. Thus, the beta distribution is a special case of the mixture beta distribution 

model. With three more parameters, the mixture beta distribution is a generalized version 

of single beta distribution with only two shape parameters. Hereafter, we refer to this 

generalized mixture beta distribution as our five-factor mixture beta distribution model, 

given that it is governed by a total of five parameters. In Figure 4.2.1, we plot the 

probability distribution density of our mixture beta distribution with 𝛼1 = 4,  𝛽1 =

10, 𝛼2 = 8, 𝛽2 = 3, and 𝜌 = 0.33 . In Figure 4.2.2, we plot the probability density 

separately for the two underlying beta distributions. The first (Beta distribution 1) with 

shape parameters 𝛼1 = 4 and 𝛽1 = 10 . The second (Beta distribution 2) with shape 

parameters 𝛼2 = 8 and 𝛽2 = 3. In Table 4.2.1, we present the model-implied mean LGD, 

standard deviations of LGD and the corresponding dispersion factors of the two individual 

beta distributions and the mixture beta distribution. With a lower mean LGD of 0.286, Beta 

distribution 1 can be interpreted as a “Good” LGD distribution, representing the 

distribution under a good state of the economy. On the other hand, with a higher mean 

LGD of 0.727, Beta distribution 2 can be interpreted as a “Bad” LGD distribution, 

representing the distribution under a bad state of the economy. By varying the weight 𝜌, 

we can construct mixture beta distributions that represent different degrees of resemblance 

to the “Good” versus the “Bad” distribution. For example, when the economy is recovering 

from a downturn, we naturally expect a gradually larger (smaller) weight to be assigned to 

the “Good” (“Bad”) distribution. This enhances the flexibility in the modeling of time-
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varying LGD distribution and allows us to generate bimodal LGD distributions (see Figure 

4.2.1) that we observe in practice, which cannot be replicated by using single beta 

distribution. 

INSERT FIGURES 4.2.1 and 4.2.2, AND TABLES 4.2.1 ABOUT HERE 

A special case of the generalized mixture beta distribution model introduced above can be 

obtained by restricting 𝛼1 = 𝛽2  and 𝛼2 = 𝛽1 . These restrictions bring us the following 

mixture beta distribution. 

𝑓(𝑥) = 𝜌
1

𝐵(𝛼,𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1 + (1 − 𝜌)

1

𝐵(𝛼,𝛽)
𝑥𝛽−1(1 − 𝑥)𝛼−1, 0 ≤ 𝑥 ≤ 1     (9) 

This is a simplified version of the above five-factor model. Hereafter, we refer to it as our 

three-factor mixture beta distribution model, since it is governed by three parameters, 𝛼,

𝛽, and 𝜌. In simplifying the mixture model, we are giving up some flexibility in fitting the 

observed LGD distribution comparing to the five-factor model. Nevertheless, the three-

factor model is still able to meet the bi-modal LGD distribution requirement. To 

demonstrate that, in Figure 4.2.3, we plot the distribution density function of a three-factor 

model with 𝛼 = 4.0, 𝛽 = 1.8, and 𝜌 = 0.35. By setting 𝛼1 = 𝛽2 and 𝛼2 = 𝛽1, the two 

underlying beta distributions, as depicted in Figure 4.2.4, are in fact mirror images of each 

other. The statistics of the two underlying beta distributions (Beta distribution 1 and Beta 

distribution 2) and the three-factor mixture beta distribution are presented in Table 4.2.2. 

With a lower (higher) mean LGD, Beta distribution 1 (Beta distribution 2) can therefore be 

interpreted as the “Good” (“Bad”) distribution representing the good (bad) state of the 

economy. It is important to point out that the restrictions imposed in obtaining the three-
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factor model result in the mixture beta distribution having the same standard deviation and 

dispersion factor as the two underlying beta distributions. 

 INSERT FIGURES 4.2.3 AND 4.2.4, AND TABLE 4.2.2 ABOUT HERE 

 

 

4.2.2.2 Time-Series Model of LGD 

 

Previous empirical studies tell us that LGD distribution does not remain static over time. 

How much a creditor can recover from a defaulted debtor is expected to be highly 

procyclical. The creditor tends to recover less in, say, liquidating the collateral when the 

workout process coincides with a recessionary period of the business cycle; whereas the 

recovery value is likely to be higher under a booming economy. We, therefore, expect LGD 

to vary over time in a counter-cyclical fashion. In this section, we would like to develop a 

model that can systematically explain/predict the time-series variations of our mixture beta 

distributions of LGD, as introduced in the previous section. It is important to note that any 

time-series variation does not only involve the first (i.e., the mean) and the second (i.e., the 

standard deviation) moments of the LGD distribution, but also the shape of the overall 

distribution. In some credit risk management applications, we can be more concerned about 

the tails of the LGD distribution, which are heavily related to the shape of the distribution, 

than the central tendency of the distribution. For example, the value-at-risk of a credit 

portfolio is governed by extreme tail events. It is therefore important to adopt a modeling 

approach that will allow us to capture how the shape of the distribution might vary over 

time. 
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In the literature, researchers incorporate macroeconomic variables in their models by using 

different link functions e.g., the logit function, beta distribution, and the Gaussian 

distribution. For example, in the GBR approach, the models’ LGD mean and dispersion is 

logit or probit functions of the explanatory variables; whereas Bruche (2010) directly 

models the shape parameters of the beta distribution instead. In our mixture beta 

distribution setup, there are multiple ways that we can incorporate time-series explanatory 

variables (e.g., GDP growth rate, stock market return, etc.) in driving the dynamic changes 

in the LGD distribution. Similar to previous studies, we can model the shape parameters 𝛼 

and 𝛽 as functions of the explanatory variables. Alternatively, we can directly model how 

the mean and standard deviation of the distribution change over time. In addition, our 

mixture distribution model offers us a unique way to model the effects of the covariates 

via the weights 𝜌 and 1 − 𝜌 assigned to the two underlying beta distributions. In this third 

modeling approach, we essentially assume that the chance of realizing the first vs. the 

second beta distribution varies with the explanatory variables. As explained earlier, the two 

underlying beta distributions can be interpreted as representing, respectively, the “Good” 

vs. “Bad” economic conditions, with the former (latter) LGD distribution characterized by 

a lower (higher) means and a heavier left (right) tail. As the weights on the two underlying 

beta distributions vary with the predictor variables over time, the overall shape of the 

mixture distribution also changes over time. It is this third approach that we are taking in 

developing our time series model. Specifically, we model our weight parameter 𝜌 as a logit 

function of a linear combination of explanatory variables 𝑌𝑡 specified as: 

𝜌𝑡 = 0.5 +
0.5

1+𝑒𝑌𝑡𝛾+𝜀𝑡
                                                    (10) 
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where 𝛾 is a vector of coefficients of the explanatory variables to be estimated, and 𝜀𝑡 is 

the residual. This specification ensures that 0.5 ≤ 𝜌 ≤ 1.0, and thus 0 ≤ 1 − 𝜌 ≤ 0.5. In 

other words, the weight on the first (second) underlying beta distribution is between 0.5 

and 1.0 (0 and 0.5). This specification does not impose any restriction on our mixture beta 

distribution since we do not restrict the relative values of the shape parameters 

𝛼1,  𝛽1, 𝛼2, and 𝛽2 of the two beta distribution. When 𝜌 = 1.0, the mixture beta distribution 

degenerates into a single beta distribution. When 𝜌 = 0.5, we assign equal weights to the 

two beta distributions. We contribute to the literature by examining the channel through 

which the explanatory variables drive the LGD distribution via the weight parameter of the 

mixture distribution. This approach facilitates the interpretation of how the systematic 

factors govern the relative importance of the two underlying beta distributions, with which 

we can model the dynamics of the recovery rates over the business cycles. Specifically, we 

expect the underlying beta distribution that represents the “Bad” economic condition to be 

weighted heavier during a downturn than during an expansionary phase of the cycle, vice 

versa for the other underlying beta distribution representing the “Good” economic 

condition. 

 

Finally, it is important to note that the proposed approach of incorporating the time-series 

variables via the weight parameter is applicable to both the three- and five-factor mixture 

distribution models outlined in Section 2.2.1. In Section 4, based on the above time-series 

model, we will test the explanatory power of a number of commonly considered 

independent variables, e.g., GDP growth rate and unemployment rate, in explaining the 

systematic variation of LGD. We will also compare the performance of our proposed model 
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with other models considered in the literature. Before we discuss the empirical results, in 

the next section, we first outline the model estimation methodologies involved. 

 

4.2.3 Parameter Estimation 

 

After setting up the mixture beta distribution model, the estimation of parameters is 

described in this section. There are two different approaches to estimate the models – 

method of moments and maximum likelihood estimation. 

 

4.2.3.1 Method of Moments Approach 

 

In the method of moments approach, we estimate the model parameters by matching the 

moments implied by the model and the empirical moments based on the observations. For 

our general five-factor mixture beta distribution, there are altogether five parameters 

(𝛼1,  𝛽1, 𝛼2, 𝛽2, and 𝜌) to be estimated by matching the first five moments of the LGD 

distribution. The five model-implied moments can be expressed as: 

𝐸(𝑥𝑗) =  ∫ 𝑥
𝑗𝑓(𝑥)𝑑𝑥, 𝑗 = 1,2,3,4,5

1

0
                                       (11) 

where 𝑓(𝑥) = 𝜌
1

𝐵(𝛼1,𝛽1)
𝑥𝛼1−1(1 − 𝑥)𝛽1−1 + (1 − 𝜌)

1

𝐵(𝛼2,𝛽2)
𝑥𝛼2−1(1 − 𝑥)𝛽2−1 

Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be 𝑛 observations of LGD (or recovery rate) in our sample. The five 

sample moments 𝐸̂(𝑥𝑗) can be estimated by: 

𝐸̂(𝑥𝑗) =  
1

𝑛
∑ 𝑥𝑖

𝑗𝑛
𝑖=1 , 𝑗 = 1,2,3,4,5                                      (12) 
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By solving the five equations in matching the five model-implied moments (𝐸(𝑥𝑗)) with 

their sample counterparts (𝐸̂(𝑥𝑗)), it is straightforward to obtain the estimated values of 

𝛼1,  𝛽1, 𝛼2, 𝛽2, and 𝜌. But the results of the generalized method of moments approach can 

be biased (Bowman and Shenton, 1998). Thus, in our empirical analysis, we do not use the 

method of moments approach in conducting the main model estimations. It is however used 

in the estimation of the initial starting values of the parameters for the iterative model 

estimation process involved in the maximum likelihood estimation (MLE), as outlined in 

the subsequent section. 

 

4.2.3.2 Maximum Likelihood Approach 

 

The probability density function 𝑓(𝑥) of recovery rate 𝑥 of our general five-factor 

mixture beta distribution can be expressed as:22 

𝑓(𝑥) = 𝜌
1

𝐵(𝛼1,𝛽1)
𝑥𝛼1−1(1 − 𝑥)𝛽1−1 + (1 − 𝜌)

1

𝐵(𝛼2,𝛽2)
𝑥𝛼2−1(1 − 𝑥)𝛽2−1     (13) 

We further specify the weight parameter 𝜌 as a function of a vector of explanatory 

variables 𝑌. 

𝜌𝑡 = 0.5 +
0.5

1+𝑒𝑌𝑡𝛾+𝜀𝑡
                                              (14) 

We conduct the estimation with panel data of historical recovery rates. For each year of 

our sample period, we observe the recovery rates of facilities defaulted within that year. 

 
22 We essentially follow the approach of Ferrari (2004), Huang (2011), and Cribari-Neto and Zeileis (2010) 

in formulating our maximum likelihood estimation methodology. Their models are based on single-beta 

regression, while ours is based on mixed beta regression instead. 
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Let 𝑥𝑛,𝑡  represents the recovery rate of the 𝑛th defaulted asset in the 𝑡th year (𝑛 =

1 𝑡𝑜 𝑁𝑡, 𝑡 =  1 𝑡𝑜 𝑇).  Based on the density function of the five-factor model, the log-

likelihood ℒ(∎) of realizing the panel data of observations is: 

ℒ(𝑥1,1, 𝑥2,1,⋯ , 𝑥𝑁𝑇,𝑇, Y1, Y2, … ,Y𝑇 ;  𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛾) 

= ∑ ∑ ln [𝜌
1

𝐵(𝛼1,𝛽1)
𝑥𝑛,𝑡
𝛼1−1(1 − 𝑥𝑛,𝑡)

𝛽1−1
+ (1 − 𝜌)

1

𝐵(𝛼2,𝛽2)
𝑥𝑛,𝑡
𝛼2−1(1 − 𝑥𝑛,𝑡)

𝛽2−1𝑁𝑡
𝑛=1

𝑇
𝑡=1 ]      (15) 

The values of parameters  that jointly maximize this log-likelihood function are the 

maximum likelihood estimators. The model parameters 𝜃𝑗 ∈ { 𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝛾}  can be 

estimated by solving the following set of equations obtaining by setting the partial 

derivative of the log-likelihood function with respect to each estimator 𝜃𝑗  to zero. 

𝜕ℒ(∎)

𝜕𝜃𝑗
= 0 

Closed-form representations of the partial derivatives are however not readily available. 

We therefore resort to the numerical method to obtain an approximate solution. Starting 

from a set of initial values of the estimate parameter 𝜃, an iterative process is conducted to 

numerically estimate the likelihood function and its derivatives, until we converge to a set 

of estimates that maximize the objective function in satisfying a number of pre-specified 

tolerance criteria. After obtaining the point estimates, the first order and second order 

partial derivatives of the log-likelihood function with respect to the parameters 𝜃  are 

utilized to estimate and derive the Fisher information matrix, which allows us to estimate 

the asymptotic standard errors of the maximum likelihood estimates of the model 

parameters. With the estimated asymptotic standard errors, we can then model the variation 

of the recovery rate and check the statistical significance of estimated parameters. 
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The three-factor model is a special case of the generalized five-factor model stated above, 

with its log-likelihood function as follows, 

ℒ(𝑥1,1, 𝑥2,1,⋯ , 𝑥𝑁𝑇,𝑇, Y, Y2,… , Y𝑇 ;  𝛼, 𝛽, 𝛾) 

= ∑ ∑ ln [𝜌
1

𝐵(𝛼,𝛽)
𝑥𝑛,𝑡
𝛼−1(1 − 𝑥𝑛,𝑡)

𝛽−1
+ (1 − 𝜌)

1

𝐵(𝛽,𝛼)
𝑥𝑛,𝑡
𝛽−1
(1 − 𝑥𝑛,𝑡)

𝛼−1
]

𝑁𝑡
𝑛=1

𝑇
𝑡=1     (16) 

 

4.2.3.3 Goodness-of-fit tests 

 

A number of goodness-of-fit tests are used in measuring the performance of the different 

models examined in our empirical analysis. We consider three standard approaches that are 

widely used in practice: Log-Likelihood function (LL), Akaike information criterion (AIC) 

and, Bayesian information criterion (BIC). 

 

The LL is commonly used to measure the goodness-of-fit of statistical models by 

measuring the probability of realizing the observed data sample. As the logarithm 

transformation is strictly increased, we judge the model performance by comparing the log-

likelihood function. With the assumption of independence of each observation, the overall 

log-likelihood is the sum of the log-likelihood of each individual observation of the sample 

data. The higher the LL, the better the goodness-of-fit of a model. This is consistent with 

the log-likelihood functions utilized in the MLE method outlined in the previous section.  
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The more complicated and the more degrees of freedom of a model, the higher is its LL. It 

does not necessarily mean that the model performs better than others in a parsimonious 

fashion. We might actually be overfitting the model. To remedy this deficiency of judging 

solely based on LL, we use the AIC and BIC measures to help us to strike the appropriate 

trade-off between the goodness-of-fit of the model and the simplicity of the model. Both 

measures are founded on information theory and likelihood function. AIC and BIC estimate 

the relative amount of information lost by a given model. In other words, there is a penalty 

if more parameters are introduced in a model as the degree of freedom decreases. The two 

performance measures are formally defined as: 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) 

𝐵𝐼𝐶 = 𝑘𝑙𝑛(𝑛) − 2ln (𝐿) 

where 𝐿 is the maximized value of the likelihood function, 𝑘 is the number of parameters 

in the model, and 𝑛 is the number of observations. The lower the value of AIC (or BIC), 

the better is the performance of a model. As we can see, AIC and BIC are similar in their 

formulation while with a different penalty for the number of parameters. The penalty term 

under AIC is 2𝑘, while it is 𝑘 ∙ 𝑙𝑛(𝑛) for BIC. A detailed discussion on the comparison of 

AIC and BIC measures can be found in Burnham and Anderson (2002, 2004). In practice, 

BIC is a more popular measure for model selection purposes than AIC.  
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4.3 Data 

 

4.3.1 Recovery Data 

 

4.3.1.1 Data description  

 

Facility-level recovery value data of defaulted US companies are obtained from the 

Standard & Poor’s (S&P’s) CreditPro database. The recovery rate in the S&P’s database 

is calculated by discounting the ultimate recovery value back to the time of the default 

event and expressed as a dollar amount per notional value ($1,000) of the defaulted asset. 

The ultimate recovery value of a defaulted debt is computed by one of the following 

methods: 

a. Emergency pricing - the debt trading price at the point of emergence from the 

default; 

b. Settlement pricing - the debt trading price at the emergence of those instruments 

received in the workout process in exchange; or 

c. Liquidity event pricing - values of the debts received in the settlement at their 

respective liquidity events. 

 

The dataset includes both public and private US companies that have bank loans or bonds 

that are greater than fifty million dollars. And the companies must also have all recovery 

information available and fully completed the restructuring process to be qualified for 
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inclusion. The recovery information of defaulted instruments from 1987 to 2012 is 

examined. Out of 4,347 defaulted instruments, there are 386 senior secured bonds, 1,228 

senior unsecured bonds, 564 senior subordinated bonds, 332 subordinated bonds, 54 junior 

subordinated bonds, 818 term loans, 848 revolving credit, and 17 others. The defaulted 

companies belonged to thirty-eight different industries and came from all 51 different states 

and districts of the United States. Please note that we adjust all recovery rates that are lower 

than zero to zero and those higher than one to one to ensure that all recovery rate 

observations fall within the range of (0,1). 

 

4.3.1.2 Summary Statistics  

 

In Table 4.3.1, we present the number of recovery rate observations and the mean recovery 

rate by industry over the sample period from 1987 to 2012. The recovery rate is expressed 

as a proportion of its notional value (i.e., recovery amount per $1). Most of the industries 

are well represented in our historical data sample, with the most defaulted cases (516) from 

Telecommunication, while Insurance has the least number of defaulted cases (4). The mean 

recovery rate varies across the industries. The Consumer Nondurable and the Utility 

industries have mean recovery rates of over 80%, which are the highest among all the 

industries; whereas the lowest average recovery rate is from Government (18%) and the 

Insurance industry (27%). Out of the 38 industries, 33 have average recovery rates fall 

within the range of 40% to 70%. In Table 4.3.2, for each of the years from 1987 to 2012, 

we present the number of observations, mean, standard deviation, and the 25th and 75th 

percentiles of recovery rate. It is shown that the recovery rate varies over time. The lowest 
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average recovery rate appeared in 1998 (37%), while the highest in 2007 (78%). Not 

surprisingly, the average recovery rate tends to be lower during the recessionary period 

than during the expansionary period. Out of the 26 years, six (1987, 1989, 1998, 2000, 

2001, and 2008) have average recovery rates lower than 50%. Most of them are recession 

years.  

INSERT TABLES 4.3.1 AND 4.3.2 ABOUT HERE 

In Table 4.3.3, we present more detailed summary statistics of the discounted recovery 

rates of the full sample and two subsamples – Recession and Expansion – based on the 

bankruptcy date of the debt contract. The US Federal Reserves defines 1990-1991, 2001-

2002, and 2008-2009 as global recessions. We follow them in defining the timing of the 

recession and expansion periods but extending the recession period windows to also 

include those defaulted incidents that occurred within one year ahead of the defined periods. 

Since the recovery workout process tends to be longer than a year, this treatment is 

necessary to ensure that we are correctly classifying a recovery observation, of which the 

default date is within a year prior to a recession period, as an observation of the recession 

subsample.  

 

The mean recovery rate of the full sample is 0.56, suggesting that creditors on average 

recover slightly more than half of the money owed. With a standard deviation of 0.378, the 

variation in the recovery rate is substantial. The skewness and kurtosis statistics suggest 

that the recovery rate distribution is quite different from a normal distribution. Although 

the minimum and maximum values are zero and one, respectively as expected, it is worth 

noting that 25th and 75th percentiles are zero and one as well, which means both tails are 
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heavily weighted in the distribution of recovery rate. Turning to the subsample results. Not 

surprisingly, the recovery rate in the expansion period is higher than that in the recession 

period. The median recovery rate during an expansion (0.65) is 0.15 higher than the 

recovery rate during the recession (0.50). This is consistent with our intuition that creditors 

tend to recover more in disposing/liquidating the default company assets when the 

economy is doing good. Based on the large standard deviations, the variation in the 

recovery rate within each of the two subsamples remains significant. Comparing the other 

statistics of the two subsamples indicates that the distribution of recovery rates observed 

during the recession and the expansion periods behaves quite differently. The null 

hypothesis of equality of distribution is rejected by a Kolmogorov-Smirnov test at the 90% 

confidence level. 

 INSERT TABLE 4.3.3 ABOUT HERE 

 

4.3.2 Macroeconomic Variables 

 

4.3.2.1 Data Description 

 

To explain the time-series variation of the LGD distribution, we consider four 

macroeconomic variables that are examined in the literature as potential systematic factors 

that impact the recovery rate: the Real Gross Domestic Product (GDP), Unemployment 

Rate (UE), Standard & Poor’s 500 Index (SP500) and the Probability of Default (PD). 

Havrylchyk (2010) finds that credit risk is sensitive to GDP and UE, confirming that GDP 

and employment are negatively correlated with loan loss provisions in both univariate and 
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multivariate regressions. On the other hand, the empirical results of Misina (2006) suggest 

that a decrease in the US real GDP growth rate leads to an increase in the credit loss of 

loan. The S&P 500 index growth rate is commonly used as an indicator of economic growth 

in many recovery rate studies (e.g., Jacob and Karagozoglu (2011)). Finally, PD is well 

documented to be correlated with LGD based on both theoretical models (e.g., Merton’s 

model) and empirical studies (e.g., Altman (2005); Havrylchyk (2010); Misina (2006)). 

 

The definitions of these variables are as follow: 

• GDP: Annual US GDP growth rate is calculated based on the annual US GDP level 

collected from Bloomberg. 

𝐺𝐷𝑃 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒𝑡 =
𝐺𝐷𝑃𝑡+1−𝐺𝐷𝑃𝑡

𝐺𝐷𝑃𝑡
                              (17) 

 

• UE: The unemployment rate is another popular indicator of economic condition. 

We obtain the US unemployment rate from the Bureau of Labor Statistics. 

According to the definition of the US Department of Labor, a person is defined as 

unemployed if they do not have a job and have actively looked for work for at least 

four weeks and still available for work. Temporarily laid off persons are also 

included as unemployed. UE is formally defined as: 

𝑈𝐸 𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑈𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 𝑡

𝐿𝑎𝑏𝑜𝑟 𝐹𝑜𝑟𝑐𝑒𝑡
                                    (18) 

• SP500: SP500 is the annual return on the S&P 500 index (i.e., the annual growth 

rate of the S&P 500 index) calculated based on the S&P 500 index level obtained 

from Bloomberg.  
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𝑆&𝑃 500 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒𝑡 =
𝑆&𝑃 500 𝑖𝑛𝑑𝑒𝑥𝑡+1−𝑆&𝑃 500 𝑖𝑛𝑑𝑒𝑥𝑡

𝑆&𝑃 500 𝑖𝑛𝑑𝑒𝑥𝑡
            (19) 

• PD：Here, we use the annual default frequency of US corporations as our PD 

measure. Specifically, for each year t, we calculate PD by dividing the number of 

US firms defaulted in that year (obtained from Bankruptcydata.com) by the total 

number of US firms in that year (obtained from the World Bank database).  

𝑃𝐷𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑡ℎ𝑎𝑡 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑦𝑒𝑎𝑟 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑟𝑚𝑠 𝑎𝑡 𝑡
                  (20) 

 

4.3.2.2 Summary Statistics of Macroeconomic Variables 

 

In Table 4.3.4, we present the summary statistics of the selected macroeconomic variables 

over the sample period from 1987 to 2012.  The means of GDP, UE, PD and SP500 are 

2.7%, 5.9%, 1.6%, and 8.7%, respectively. Based on the relative value of the standard 

deviation and the mean, SP500 (PD) exhibits the highest (lowest) time-series variation. 

The time-series variations of the macroeconomic variables from 1987 to 2012 are presented 

in Figure 4.3.1. We can see that GDP and SP500 show similar time-series variations that 

are negatively correlated with those of UE and PD. This observation is consistent with our 

intuition as we expect GDP and SP500 to be high during economic expansion and low 

during the recession, and vice versa for UE and PD. This opposite behavior is most 

noticeable during the 2008-2009 financial crisis. During that time, both GDP and SP500 

attain their lowest values of -2.5% and -38%, respectively; whereas both UE and PD reach 

their highest values of 10% and 4.2%, respectively. Finally, it is important to point out that 
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our sample period of 1987 to 2012 covers more than a couple of business cycles, including 

a number of market downturns (e.g., the early 1990s recession, the bursting of the dot-com 

bubble, the 2008-09 financial crisis) and economic expansion episodes (e.g., during the 

late 1990s and the mid-2000s).  

INSERT TABLE 4.3.4 AND FIGURE 4.3.1 ABOUT HERE 

In our empirical analysis, we consider different combinations of these macroeconomic 

variables in explaining the time-series variation of the observed LGD distribution. Besides, 

the contemporaneous values, we also consider the explanatory power of the lagged values 

of these macroeconomic variables. To avoid any statistical issues as a result of 

multicollinearity, we calculate the pair-wise correlations of these macroeconomic variables 

(and their lags) and make sure we exclude any combinations of independent variables that 

are highly correlated with each other in our regression framework. The pair-wise 

correlations are presented in Table 4.3.5. As expected, GDP is positively correlated with 

SP500, but negatively correlated with both UE and PD. Although the magnitude of most 

of the correlations is not considered to be high, there are a few highly (positively or 

negatively) correlated pairs. We set a threshold of +0.6/-0.6 for the pair-wise correlation to 

be too large for including both variables as the independent variables in our regression 

framework. For example, GDP and UE (lag 1) would not appear in the same regression as 

their correlation coefficient of -0.8 breaches the limit of -0.6.  

INSERT TABLE 4.3.5 ABOUT HERE 
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4.4 Empirical Results 

 

4.4.1 Three-factor Model vs. Five-factor Model 

 

In this section, we compare the three-factor and five-factor models by assessing their ability 

to explain the time-series variation of the weight parameter 𝜌 of the mixed beta distribution 

over time. For both models, we adopt the same logit function for 𝜌 as proposed in Section 

2.2.2 (see Equation (10)). We consider the univariate version of the logit function using 

the lagged-one values of macroeconomic variables of GDP, SP500, PD, and UE separately 

in explaining the time-series variations of 𝜌. We are therefore making a one-year prediction 

on the weight parameter based on the macroeconomic variables. The estimation results are 

presented in Table 4.4.1 based on the full sample period from 1987 to 2012. The dependent 

variable is the recovery rate of the defaulted facilities. In each of these four univariate 

models and for both the three-factor and the five-factor versions of the model, the first 

(second) beta distribution is considered as the “Good” (“Bad”) distribution, given its 

relatively higher (lower) mean value of recovery rate. All the coefficients on the 

macroeconomic variables as presented in Table 4.4.1 are significant at least at the 10% 

confidence level, and the signs of the coefficients are consistent with our expectation. 

Specifically, according to the estimated coefficients, the lower (higher) the values of GDP 

and SP500 (UE and PD), the lower the weight we assigned to the “Good” beta distribution. 

This is consistent with our expectation that, in an economic downturn (e.g., in 2009), the 

lower (higher) GDP growth rate and S&P 500 return (unemployment rate and default 

frequency) are associated with a lower chance of realizing a high recovery rate, given the 
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lower weight assigned to the “Good” recovery distribution. This, therefore, confirms our 

expectation that GDP and SP500 are positively correlated with recovery rate, while PD and 

UE are negatively correlated with the recovery rate. For example, during our sample period, 

the GDP growth rate ranges from the lowest value of -2.5% (in 2009) to the highest value 

of 4.8% (in 1999). Based on the estimated coefficient, the weight of the “Good” beta 

distribution (𝜌 ) ranges from approximately 0.615 (in 2009) to 0.852 (in 1999). The 

goodness-of-fit results ‒ likelihood value (LL), AIC, and BIC ‒ indicate that the five-factor 

models are consistently superior to the three-factor models by having a higher LL and 

lower AIC and BIC. Among the four explanatory variables, using GDP gives us both the 

best three-factor model and the best five-factor model in terms of goodness-of-fit. 

INSERT TABLE 4.4.1 ABOUT HERE 

To further judge the performance of the three-factor and five-factor models, we also 

compare the accuracy of their one-year predictions of the weight parameter 𝜌 in year 𝑡 

based on the macroeconomic variables observed in year 𝑡 − 1. Specifically, the one-year 

predictions are obtained by using the eight univariate models (i.e., four three-factor models 

and four five-factor models) presented in Table 4.4.1, together with corresponding 

macroeconomic variables; whereas the accuracy is measured against the realized weight 

parameter 𝜌 obtained by fitting the respective mixture beta model (i.e., either the three-

factor or the five-factor model) with the actual observed recovery rates in year 𝑡. The time-

series plots of the one-year predicted 𝜌 of each of the eight models in comparison with the 

realized 𝜌 are presented in Figure 4.4.1.  

 



182 
 

We notice that the predicted 𝜌, in general, follows the same time-series pattern as the 

realized 𝜌. In particular, both the predicted and realized 𝜌 tend to be lower during the three 

episodes of the market downturn, namely the US recession in the early 1990s, in the 

aftermath of the bursting of the dot-com bubble in 2001, and the 2008-09 financial crisis. 

Since 𝜌 is the weight assigned to the first beta distribution, both the three-factor and five-

factor models are assigning a lower weight to the first beta distribution during market 

downturns compared to that during the market expansion. This is an intuitive finding given 

the fact that the first (second) beta distribution is the “Good” (“Bad”) distribution with a 

higher (lower) average recovery rate. The models appropriately capture the time-series 

variations in recovery rate by correctly producing a lower recovery rate during market 

downturns through adjusting the weights assigned to the two underlying beta distributions. 

A visual inspection of the plots reveals that the five-factor models in general give us a 

better prediction of the realized weight over time than the three-factor models. Nevertheless, 

the performance varies among the four five-factor (and also among the four three-factor 

models). Specifically, it seems that the five-factor model with GDP as the explanatory 

variable provides us with a tighter fit of the time-series change in the realized 𝜌 than the 

other three five-factor models.  

INSERT FIGURE 4.4.1 ABOUT HERE 

 

To further quantify the performance of the models, we calculate the mean differences and 

the root mean squared differences (RMSD) of the one-year predicted 𝜌 from the realized 

𝜌 for our four three-factor models and four five-factor models over the sample period from 

1988 to 2012.  
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Mean difference =
∑ (Realized ρ𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝜌𝑡)
2012
𝑡=1988

25
                         (21) 

𝑅𝑀𝑆𝐷 = √
∑ (Realized ρ𝑡−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝜌𝑡)2
2012
𝑡=1988

25
                              (22) 

The results reported in Table 4.4.2 suggest that the five-factor models are consistently 

superior to the three-factor models resulting in a smaller error based on both measures, 

regardless of the explanatory variable used. In the subsequent empirical analysis, we, 

therefore, focus our attention on using the five-factor version of the mixture beta 

distribution model. 

INSERT TABLE 4.4.2 ABOUT HERE 

 

4.4.2 Selection of Explanatory Variables 

 

In this section, we consider different combinations of explanatory variables (GDP, UE, PD, 

and SP500) in formulating our five-factor mixture beta distribution. We would like to 

identify the models that will give us the best goodness-of-fit in explaining the observed 

distribution of recovery rate over our same period from 1987 to 2012. We start by 

examining the univariate versions of the five-factor model each time using only a single 

macroeconomic variable. In the previous section, we have examined the univariate results 

by using the lagged-one values of the variables. Here we also consider the explanatory 

power of the lagged-zero (i.e., contemporaneous), lagged-one, and lagged-two values of 

the macroeconomic variables. The univariate estimation results are presented in Table 4.4.3. 

Besides the estimated intercepts and coefficients, we also present the respective likelihood 
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function, AIC, and BIC. The sign of all the estimated coefficients is consistent with our 

expectation of the directional relation between recovery rate and the respective explanatory 

variable. Based on these univariate results, GDP (lag 1) has the best explanatory power in 

terms of the statistical significance of its coefficient, the likelihood value, AIC, and BIC. 

Five coefficients out of the total 12 univariate models are statistically significant. They are 

from the univariate models with GDP (lag 1), UE (lag 1), UE (lag 2), PD (lag 1), and SP500 

(lag 0), respectively, as the explanatory variables. They are Model no. 4, 5, 6, 7, and 10 as 

presented in Table 4.4.3. 

INSERT TABLE 4.4.3 ABOUT HERE 

In Table 4.4.4, we present the estimation results for the five-factor models with different 

combinations of more than one explanatory variable. We exhaust all combinations of two, 

three, and four explanatory variables selected out of the five significant univariate variables 

‒ GDP (lag 1), UE (lag 1), UE (lag 2), PD (lag 1), and SP500 (lag 0) ‒ as identified in the 

previous univariate analysis. 23  In doing so, however, we exclude those combinations 

involving variables with pair-wise correlation coefficients of magnitude larger than 0.6 (see 

Table 4.3.5), so as to avoid any issue of multicollinearity. Since GDP (lag 1) is highly 

correlated with all other significant univariate variables, it is not included in any 

combination.  

INSERT TABLE 4.4.4 ABOUT HERE 

All the estimated coefficients of the seven multi-variable models (i.e., Model no. 13 to 19) 

presented in Table 4.4.4 are of the expected sign. Specifically, without any exception, the 

 
23 We do not consider models with both UE (lag 1) and UE (lag 2) as explanatory variables. 
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coefficients of UE and PD (SP500) are positive (negative). A majority of the estimated 

coefficients are statistically significant. Nevertheless, the performance of these models 

does vary in terms of their goodness-of-fit as measured by their AIC and BIC. We rank all 

the univariate models (i.e., Model no. 1 to 12 in Table 4.3) together with all the multi-

variable models (i.e., Model no. 13 to 19 in Table 4.4) based on their AIC and BIC, and 

arrive at the following three five-factor models as our best model candidates:  

o The best model (with the lowest AIC/BIC among all the models): With GDP (lag 

1) as the single explanatory variable [Model no. 5 in Table 4.4.3] 

o The second best model (with the second-lowest AIC/BIC): With SP500 (lag 0), PD 

(lag 1), and UE (lag 2) as the explanatory variables [Model no. 18 in Table 4.4.4] 

o The third best model (with the third-lowest AIC/BIC): With SP500 (lag 0) and UE 

(lag 2) as the explanatory variables [Model no. 15 in Table 4.4.4] 

In the subsequent section, we will demonstrate the superior performance of these 

three five-factor models in explaining the time-series variation of the recovery rate 

distribution in comparison with that of the commonly-used logit-link regression 

models. 

 

4.4.3 Comparison with Other Recovery Rate Model  

 

To highlight the importance of using a mixed distribution, in this section, we compare the 

performance of our proposed five-factor mixture beta distribution models with single-beta 

distribution time-series recovery rate models considered by other researchers. In the 
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literature, the logit-link regression model has been commonly used to explain the time-

series variation of the observed recovery rates. We consider a specific version of that as 

examined by Huang and Oosterlee (2012). In particular, the mean 𝜇 of the (single) beta 

distribution is formulated as a logit function of the explanatory variables, while the 

dispersion parameter 𝜑 is constant over time. The model can be expressed as: 

𝛼 = 𝜇𝜑                                                       (23) 

𝛽 = (1 − 𝜇)𝜑                                                (24) 

𝜇 =
𝑒𝜂

1+𝑒𝜂
                                                      (25) 

where 𝜂 is a linear function of the explanatory variables that change over time. First of all, 

we compare the goodness-of-fit of our proposed mixture beta distribution models with that 

of the single-beta logit-link models based on the full sample period from 1987 to 2012. To 

ensure we have a fair comparison, we use the same set of macroeconomic variables in 

driving both models. We consider three different versions of our mixture beta distribution 

(i.e., the best, second-best, and third-best models as identified in Section 4.2) and compare 

their goodness-of-fit with three different versions of the single-beta logit-link model each 

with the same combinations of macroeconomic variables as in our best, second-best, and 

third-best models, respectively. The estimation results together with the model 

performance are reported in Table 4.4.5. 

INSERT TABLE 4.4.5 ABOUT HERE 

 

Firstly, let us take a look at the estimation results of the three logit-linked models. The 

signs of coefficients of each macroeconomic variable are consistent with our expectations.   
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Specifically, the higher (lower) the GDP and SP500 (PD and UE), the higher is the mean 

of the recovery rate distribution. Four out of the six estimated coefficients are also 

statistically significant (at least at the 10% level). Turning to the estimated shape 

parameters of the five-factor mixture beta distribution models. Comparing the shape 

parameters 𝛼1, 𝛽1, 𝛼2, and 𝛽2 across the three mixture beta distribution model, we notice 

that the two underlying beta distributions of our best model are not the same as those of 

our second best and third best models. Nevertheless, for all three models, the first beta 

distribution (with shape parameters 𝛼1 and 𝛽1) can always be interpreted as the “Good” 

distribution in the sense that it gives us a higher mean recovery rate than the second beta 

distribution (with shape parameters 𝛼2  and 𝛽2 ), which can be labeled as the “Bad” 

distribution. Taking the best model as an example, with 𝛼1 = 1.237 and 𝛽1 = 0.829, the 

mean recovery rate of the first beta distribution is 0.599; whereas, with 𝛼2 = 4.343 and 

𝛽2 = 6.867, the mean recovery rate of the second beta distribution is 0.387. Thus, during 

the expansion period, we expect the first (“Good”) beta distribution to be weighted heavier 

than the second (“Bad”) beta distribution, and vice versa during the recession period. This 

expectation is confirmed by the negative coefficient of -31.281 estimated for the 

explanatory variable of the lagged-one GDP. During the expansion period, as the GDP 

growth rate is higher, with the negative coefficient, the logit function of Equation (10) gives 

us a higher weight parameter 𝜌 that is closer to 1. Since 𝜌 is the weight on the first beta 

distribution, the model indeed assigns a heavier weight to the “Good” beta distribution 

during a good time. On the other hand, during a recession when the GDP growth rate is 

low (or even negative), the model correctly assigns a lower weight to the first beta 

distribution. Besides having different means, the shape of the first and second beta 
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distributions is also quite different (see Figure 4.4.2). We can see that the “Good” beta 

distribution is an “inverse L” shape, while the “Bad” one is a bell shape. 

INSERT FIGURE 4.4.2 ABOUT HERE 

Based on the LL, AIC, and BIC presented in Table 4.4.5, the goodness-of-fit of the 

proposed five-factor mixture beta distribution models is consistently better than that of the 

single-beta logit-link regression models. Specifically, the former has a lower AIC and BIC 

and a higher LL than the latter, indicating its superior performance in modeling the 

observed recovery rates.  

 

There are two follow-up issues we want to address: (a) How different is the relative 

performance of the two kinds of models in different phases of the economic cycle? Does 

the superior performance of the mixture beta distribution model exist only during specific 

economic conditions? (b) The above model comparison is conducted in an in-sample 

setting. How do the two kinds of models perform in an out-of-sample setting?  

 

To address these two issues. We conduct the Kolmogorov–Smirnov test (KS test) to gauge 

the accuracy in modeling the recovery rate distribution observed each year from 1990 to 

2012. The KS test is a nonparametric test of which the test statistic quantifies the distance 

between the sample distribution and the reference distribution. So it can be used to test 

whether two distributions differ. The null hypothesis here is that the model-implied 

distribution is identical to the observed distribution. We first conduct the test in an in-

sample setting. Using all the sample data from 1987 to 2012, we estimate the parameters 
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of our three five-factor mixture beta distribution models and the three single-beta logit-link 

models. Using the estimated parameters together with the observed macroeconomic 

variables, we calculate the model-implied recovery rate distribution for each year from 

1990 to 2012. The reason why we choose the estimation window starting from 1990 rather 

than 1987 is there are very few observations before 1990 leading to potentially biased 

estimation results for the earlier time period from 1987 to 1989. The respective KS statistics 

are then calculated to check whether the null hypothesis can be rejected or not for each 

model and each of these years. In addition to the six models, we also calculate the KS 

statistics based on a constant single-beta distribution obtained by pooling all the recovery 

rate observations overall years. The p-values of the KS statistics are presented in Table 

4.4.6. 

 INSERT TABLE 4.4.6 ABOUT HERE 

Except for in 2008, the model-implied recovery rate distributions of all the three single-

beta logit-link models are (at least weakly) significantly different from the observed 

distributions for each year from 1990 to 2012 according to the KS statistics. This finding, 

therefore, casts doubt on the accuracy of the commonly-used logit-link models in 

explaining the variations of the recovery rate distribution over time. Not surprisingly, with 

highly significant p-values throughout the years, the constant single-beta distribution also 

fails horribly in fitting the observed recovery rates. The performance of the proposed 

mixture beta distribution models is much more promising than both the single-beta logit-

link models and the constant single-beta distribution. For most of the years over our sample 

period, the model-implied distributions are not significantly different from the observed 

distributions according to the KS statistics. As expected, the best and second-best mixture 
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beta distribution models tend to perform better than the third-best model. Nevertheless, in 

1992, 1996, 1997, 2007, and 2012, there are significant differences (at least weakly) 

between the model-implied and observed distributions regardless of which of the three 

mixture-beta models we use. It is important to point out that the US economy was in general 

booming during these five years.24 Based on the p-values, it seems that the proposed 

mixture-beta distribution models perform better during the recessionary periods than 

during the expansionary periods. Most notably, in 2001-2002 and 2008-2010, the high p-

values reflect the close resemblance between the model-implied and observed recovery 

rate distributions. 

 

To confirm the robustness of our conclusions and to address the concern of overfitting the 

sample data, we repeat the above analysis but in an out-of-sample setting. Specifically, in 

predicting the recovery rate distribution in a specific target year, we estimate the 

parameters of all the models under consideration using the subsample data observed within 

the calibration window from 1987 up to and including the year prior to the target year. To 

ensure we have sufficient data in our estimation process, the first target year is 1995. In 

predicting the recovery rate distribution in 1995, we, therefore, use all the data points from 

1987 to 1994 to calibrate the parameters of each model. After obtaining the model-implied 

distributions for 1995, we then calculate the KS statistics so as to compare the performance 

of the models for that target year. Then, for the target year of 1996, the calibration window 

is extended for a year to include the observations in 1995, i.e., covering the period of 1987-

 
24 All the five years are outside the recessionary time periods of 1990-1991, 2001-2002, and 2009-2009 as 

defined by the US Federal Reserves. 
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1995. This calibration window extension process is repeated for each of the subsequent 

years until the last target year of 2012, which uses the data observed between 1987 and 

2011. The p-values of the resultant KS statistics of all the models are presented in Table 

4.4.7. 

INSERT TABLE 4.4.7 ABOUT HERE 

 

As expected, all the models have a more difficult time replicating the observed distribution 

in this out-of-sample setting than in the previous in-sample setting. There are more 

instances where the model-implied distributions are significantly different from the 

observed distributions.25 Without any exception, the single-beta logit-link models fail to 

produce accurate enough recovery rate distributions in each year from 1995 to 2012. The 

null hypothesis of identical distribution is consistently rejected according to the KS test (at 

least at the 5% confidence level). The performance of the mixture-beta distributions models 

is consistently better. In particular, their ability to accurately replicate the observed 

recovery rate distributions during the recessionary periods of 2001-2002 and 2008-2010 

can still be confirmed by the KS statistics in this out-of-sample test. 

 

Finally, to visualize the fitting of the observed recovery rate distributions, we present the 

implied distributions of all the models under consideration in comparison to the kernel 

density of the observed distribution for each year from 1995 to 2012 in Figure 4.4.3 from 

 
25 Nevertheless, we do observe a trend of an improvement of the out-of-sample test results over time. As 

the calibration window lengthens over time, more data are included in the parameter estimation, and thus 

the better is the performance of the models. 
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the out of sample results. The graphs give us a clear view of the relative performance of 

the different models under consideration. It is obvious that the mixture beta five-factor 

model plots are consistently closer to that of the benchmark nonparametric distribution 

compared to those of the single-beta logit-link models. The superior performance of the 

mixture beta models is particularly stark in the recession years such as 2000 and 2008 as 

the mixture beta models can replicate the details of the recovery distribution better by 

adjusting the weights of two individual beta distributions. For example, the weight on the 

“Good” beta distribution has decreased from 0.73 to 0.59 from 2007 to 2008, thus altering 

the shape of the mixture distribution from an “inverse L” shape to a bell shape and shifting 

the overall mean of recovery rate to the left (i.e., lower end) as shown in the R2008 subplot 

of Figure 4.4.3. This kind of time-series variation in the distribution shape cannot be 

accommodated by the single beta logit-link models. 

INSERT FIGURE 4.4.3 ABOUT HERE 

 

4.5 Conclusion 

 

In this paper, we propose a new LGD model – a dual-beta mixture regression model –

which is different from all other previous models. We show that this approach is flexible 

enough to accommodate the important features of the LGD distribution. Rather than just 

treating it as a static LGD distribution model, we also examine how we can allow the 

mixture beta LGD distribution to be driven by the systematic risk factors through linking 

the weights of the underlying beta distributions to the macroeconomic variables. To our 
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knowledge, this is the first study that uses this approach to model LGD. The results enable 

some interesting insights that complement and extend the findings in the literature. For 

example, based on our corporate default data sample, the positive correlation between PD 

and LGD is confirmed, which means, when the economy is good, both PD and LGD are 

relatively low and vice versa. Besides, the macroeconomic variables such as GDP, UE, and 

SP500 are also associated with the realized recovery rates in an intuitive fashion based on 

our empirical tests. By comparing the proposed mixture beta regression model with other 

commonly used models in practice, we find that the estimation accuracy is much improved, 

especially for modeling the peaks and tails of the LGD distributions.  

 

Future studies can be extended to incorporate three or more beta distributions in the mixture 

beta model and to test the significance of other macroeconomic variables. The former could 

improve the accuracy of the model, but at the price of becoming more difficult to be 

estimated as more parameters are involved. Fortunately, statistical techniques like AIC, 

BIC, root mean squared deviation, coefficient of determination, KS test statistic and 

average deviation on cumulative distribution function can be utilized to facilitate the 

estimation process. The difficulty in the latter is in the determination of the potential 

macroeconomic variables (and the lags of them) that are both statistically significant and 

economically meaningful in the model. 
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Table 4.2.1 Five-factor Model Example 

 

The mean, standard deviation, and dispersion factor of each individual beta distribution in 

a five-factor model example is shown in the table below, 

 Mean Standard Deviation Dispersion factor 

Beta distribution 1 (Good) 0.286 0.069 14 

Beta distribution 2 (Bad) 0.727 0.087 11 

Mixture beta distribution 0.582 0.081 11.99 
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Table 4.2.2 Three-factor Model Example 

 

The mean, standard deviation, and dispersion factor of each individual beta distribution of 

a three-factor model example is shown in the table below, 

 Mean Standard Deviation Dispersion factor 

Beta distribution 1 (Good) 0.310 0.159 5.8 

Beta distribution 2 (Bad) 0.690 0.159 5.8 

Mixture beta distribution 0.443 0.159 5.8 
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Table 4.3.1 Recovery Rate by Industry 

This table presents the number of recovery rate observations and the mean recovery rate 

by industries.  

Industry No. of observations 
 

Mean recovery rate 

AEROSPACE/DEFENSE 24 0.44 

AIRLINES 89 0.42 

AUTOMOTIVE 192 0.60 

BUILDING MATERIALS 115 0.65 

CHEMICALS 130 0.60 

COMPUTERS & ELECTRONICS 257 0.56 

CONSTRUCTION 52 0.49 

CONSUMER NONDURABLES 11 0.88 

ENTERTAINMENT AND LEISURE 92 0.56 

ENVIRONMENTAL SERVICES 10 0.59 

FINANCIAL SERVICES 96 0.57 

FOOD AND BEVERAGE 119 0.62 

FOREST PRODUCTS 96 0.63 

GAMING AND HOTELS 104 0.49 

GOVERNMENT 15 0.18 

HEALTHCARE 175 0.55 

HOME FURNISHINGS 49 0.63 

INSURANCE 4 0.27 

LEASING 71 0.65 

MACHINERY 85 0.66 

MANUFACTURING 20 0.59 

MEDIA 262 0.62 

METALS & MINING 90 0.66 

OIL & GAS 214 0.54 

PERSONAL SERVICES 17 0.54 

PRINTING & PUBLISHING 98 0.58 

PROFESSIONAL&BUSINESS SERVICES 58 0.44 

REAL ESTATE 120 0.49 

RETAIL FOOD & DRUG 138 0.53 

RETAILING 414 0.52 

SECURITIES & TRUSTS 38 0.38 

SHIPPING & SHIP BUILDING 32 0.65 

STEEL 87 0.58 

TELECOMMUNICATIONS 516 0.45 

TEXTILE & APPAREL MFG. 149 0.61 

TRANSPORTATION 70 0.61 

UTILITIES 230 0.80 

WHOLESALE TRADE 8 0.66 

Grand Total 4,347 0.56 
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Table 4.3.2 Recovery Rate by Year 

 

This table presents the number of observations, mean recovery rate, the standard deviation 

of recovery rate, and the 25th and 75th percentile of recovery rate per year from 1987 to 

2012. 

Year 
No. of 

observations 
Mean 

recovery rate 

Standard deviation of 

recovery rate 

25th percentile of 

recovery rate 

75th percentile of 

recovery rate 

1987 32 0.47 0.36 0.18 0.83 

1988 78 0.57 0.38 0.18 1.00 

1989 109 0.40 0.35 0.08 0.58 

1990 173 0.52 0.39 0.10 1.00 

1991 241 0.54 0.38 0.16 0.97 

1992 203 0.58 0.36 0.28 1.00 

1993 160 0.59 0.37 0.26 1.00 

1994 67 0.65 0.37 0.35 1.00 

1995 83 0.61 0.37 0.28 1.00 

1996 80 0.63 0.35 0.36 1.00 

1997 69 0.61 0.37 0.25 1.00 

1998 71 0.37 0.36 0.06 0.55 

1999 179 0.55 0.37 0.18 1.00 

2000 286 0.47 0.39 0.08 0.86 

2001 527 0.46 0.38 0.09 0.82 

2002 632 0.50 0.37 0.14 0.92 

2003 347 0.69 0.34 0.41 1.00 

2004 150 0.70 0.30 0.54 0.97 

2005 129 0.73 0.27 0.61 0.95 

2006 65 0.68 0.37 0.42 1.00 

2007 33 0.78 0.27 0.79 0.99 

2008 122 0.48 0.30 0.22 0.66 

2009 401 0.64 0.37 0.30 1.00 

2010 52 0.59 0.36 0.31 0.94 

2011 26 0.62 0.39 0.44 0.99 

2012 32 0.72 0.33 0.49 1.00 

Grand Total 4,347 0.56 0.37 0.28 0.92 
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Table 4.3.3 Summary Statistics of Recovery Rate 

 

This table presents the detailed summary statistics of the discounted recovery rates of the 

full sample and two subsamples – Recession and Expansion – based on the bankruptcy date 

of the debt contract.  

  

 

Full sample 

Recession 

subsample 

Expansion 

subsample 

Mean 0.56 0.42 0.65 

Median 0.59 0.50 0.65 

Standard Deviation 0.38 0.45 0.37 

Kurtosis -1.44 -1.56 -1.28 

Skewness -0.12 0.00 -0.22 

Minimum 0.00 0.00 0.00 

25th percentile 0.00 0.00 0.06 

75th percentile 1.00 0.88 1.00 

Maximum 1.00 1.00 1.00 

No. of observation 4,347 2,096 2,251 
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Table 4.3.4 Summary Statistics of Macroeconomic Variables 

 

This table presents the summary statistics of the selected macroeconomic variables: GDP, 

UE, PD, and SP500. The data sources of the variables are as follow: 

• GDP: Bloomberg 

• UE: Bureau of Labor Statistics 

• PD: BankruptcyData and World Bank database 

• SP500: Bloomberg 

  GDP UE PD (%) SP500 (%) 

Mean 0.027 0.059 1.65 8.73 

Standard Deviation 0.0036 0.020 0.23 18.06 

Min -0.024 0.039 0.37 -38.49 

Max 0.048 0.099 4.19 34.11 

25th percentile 0.019 0.049 0.63 -1.54 

75th percentile 0.040 0.065 2.48 26.31 

skewness -1.47 1.30 0.90 -0.84 

Kurtosis 2..32 1.77 -0.26 0.61 

median 0.032 0.056 1.33 10.70 
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Table 4.3.5 Correlative Matrix of Macroeconomic Variables 

 

This table presents the correlation matrix of the macroeconomic variables and their lags. We set a threshold of +0.6/-0.6 for the pair-

wise correlation to be too large for including both variables as the independent variables in our regression framework. For example, 

GDP and UE (lag 1) would not appear in the same regression as their correlation coefficient of -0.8 breaches the limit of -0.6. 

 

  GDP UE PD SP500 GDP lag 1 UE lag 1 PD lag 1 SP lag 1 GDP lag 2 UE lag 2 PD lag 2 SP lag 2 

GDP 1.00            
UE -0.72 1.00           
PD -0.64 0.39 1.00          

SP500 0.24 -0.06 -0.22 1.00         
GDP lag 1 0.45 -0.23 -0.19 0.67 1.00        
UE lag 1 -0.80 0.80 0.42 -0.35 -0.72 1.00       

PD lag 1 -0.19 -0.13 0.51 -0.55 -0.60 0.31 1.00      
SP lag 1 0.08 0.11 -0.10 0.02 0.26 -0.09 -0.22 1.00     
GDP lag 2 0.14 0.13 0.05 0.04 0.44 -0.21 -0.17 0.70 1.00    

UE lag 2 -0.59 0.46 0.20 -0.33 -0.80 0.82 0.34 -0.38 -0.68 1.00   
PD lag 2 0.32 -0.42 -0.07 0.05 -0.19 -0.10 0.49 -0.56 -0.60 0.32 1.00  

SP lag 2 -0.11 0.22 -0.16 0.01 0.07 0.12 -0.10 0.02 0.25 -0.07 -0.21 1.00 
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Table 4.4.1 Three-factor Model vs. Five-factor Model 

In this table, we present the estimated parameters and coefficients of the three-factor 

models (Panel A) and the five-factor models (Panel B). For both types of models, we adopt 

the same logit function for the weight parameter 𝜌  as proposed in Section 2.2.2 (see 

Equation (10)). We consider the univariate version of the logit function using the lagged-

one values of macroeconomic variables of GDP, SP500, PD, and UE separately in 

explaining the time-series variations of 𝜌. The estimations are conducted over the full 

sample period from 1987 to 2012. The dependent variable is the recovery rate of the 

defaulted facilities.  

 

Panel A：Three-factor model 

 GDP UE PD SP500 

Shape parameter 

𝛼 2.46*** 4.05 3.78* 2.16* 

𝛽 1.95** 2.74* 2.19** 1.75** 

Coefficients of explanatory variable 

𝛾 -12.28*** 1.09* 0.39** -0.03** 

Goodness-of-fit 

LL 167.1 112.8 134.0 145.7 

AIC 15.89 17.67 19.89 18.12 

BIC 17.67 19.43 20.98 20.31 

 

Panel B：Five-factor model 

 GDP UE PD SP500 

Shape parameter 

𝛼1 1.24 1.34 2.87 4.13 

𝛽1 0.82 0.67 1.92 3.70 

𝛼2 4.34 5.87 3.12 4.65 

𝛽2 6.87 9.87 6.12 8.05 

Coefficients of explanatory variable 

𝛾 -31.28*** 19.32*** 0.33*** -0.04** 

Goodness-of-fit 

LL 288.1 195.4 211.4 229.87 

AIC 9.42 13.67 12.19 11.19 

BIC 10.95 15.78 14.32 13.86 
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Table 4.4.2 Performance of Three-factor Model vs. Five-factor Model 

 

This table presents the mean differences and root mean squared differences (RMSD) of 

the one-year predicted weights for time 𝑡 (from both the five-factor model and the three-

factor model) from the realized weights based on the realized recovery rates at time 𝑡. 

The mean difference and RMSD are calculated from the equations below. 

Mean difference =
∑ (Realized ρ𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝜌𝑡)
2012
𝑡=1988

25
 

𝑅𝑀𝑆𝐷 = √
∑ (Realized ρ𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝜌𝑡)2
2012
𝑡=1988

25
 

Three-factor model 

  GDP UE PD (%) SP500 (%) 

Average Difference -0.0235 -0.0253 -0.0201 0.0636 

RMSD 0.0890 0.0921 0.0774 0.1142 

Five-factor model 

  GDP UE PD (%) SP500 (%) 

Average Difference -0.0042 -0.0050 -0.0063 0.0139 

RMSD 0.0340 0.0584 0.0512 0.0494 
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Table 4.4.3 Selection of Explanatory Variables – Univariate Results 

 

This table presents the coefficients and significances of all univariate models. The Likelihood, AIC and BIC are also reported for 

comparison purposes. 

  MODELS 

  LAG (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

GDP 

0 -8.85            

1     -31.28***        

2         -9.75    

UE 

0  1.42           

1      19.32**       

2          20.93***   

PD 

0   0.06          

1       0.33***      

2           0.09  

SP500 

0    -0.04***         

1        -0.04     

2            0.00 

Intercept   -0.17 -0.50 -0.51* -0.22 0.42*** -1.57*** -0.95*** -0.36* -0.16 -1.69*** -0.56* -0.42*** 

Likelihood   135.76 106.85 91.28 229.87 288.18 195.47 211.42 149.87 110.93 200.14 137.97 120.63 

AIC   46.17 58.32 74.31 11.19 9.42 13.67 12.19 42.19 55.80 11.03 45.23 52.91 

BIC   49.79 60.53 76.85 13.86 10.95 15.78 14.32 45.86 59.02 12.76 47.44 57.38 
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Table 4.4.4 Selection of Explanatory Variables – Combinations of Variables 

 

This table presents the coefficients and significances of selected combinations of macroeconomic variables. Please note that the pair of 

independent variables with correlation coefficients of out of the range from -0.6 to 0.6 are excluded to avoid multicollinearity. The 

correlation coefficients are reported in section 3.2.4.  

 MODELS 

  (13) (14) (15) (16) (17) (18) (19) 

GDP (lag 1)        
UE (lag 1) 11.79   0.27**   12.50* 

UE (lag 2)   14.45**  0.25** 0.17  
PD (lag 1)  0.19*  13.21* 14.82** 10.14 0.15 

SP500 (lag 0) -0.02*** -0.02** -0.02***   -0.01* -0.01** 

Intercept -0.96** -0.59** -1.14** -1.65*** -1.74*** -1.18** -1.31*** 

Likelihood 202.18 215.82 235.61 212.34 221.30 246.07 233.22 

AIC 13.51 12.10 10.93 12.15 11.59 10.87 11.11 

BIC 15.07 13.98 12.43 14.27 13.51 11.96 12.62 
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Table 4.4.5 Model Performance – Mixture Beta Distribution Model vs. Single-Beta Logit-Link Regression Model 

 

This table presents the coefficients, significances AIC, BIC and LL results of six different models: Three best five-factor models and 

three best Jacob’s models. As expected, five-factor models are superior to their corresponding versions of Jacob’s models based on AIC, 

BIC and LL. 

 Five-factor mixture beta distribution model Single-beta logit-link regression model 

 Best Second best Third best Best Second best Third best 

Shape parameters 

𝛼1 1.237*** 1.348** 1.389**    

𝛽1 0.829*** 0.677** 0.610**    

𝛼2 4.343** 4.646** 4.911***    

𝛽2 6.867** 8.057** 8.131***    

𝜑 4.352** 4.694** 4.760** 6.291** 8.137* 8.787* 

Coefficients of explanatory variables 

GDP (lag 1) -31.281***   12.600***   

SP500 (lag 0)  -0.018*** -0.013**  0.014** 0.008* 

PD (lag 1)   0.151   -3.121 

UE (lag 2)  14.450** 12.501*  -0.897** -8.420 

Intercept 0.42*** -1.14 -1.31 0.01** 0.97* 1.17 

Goodness-of-fit 

LL 288.1 251.2 250.8 163.1 154.2 127.7 

AIC 9.42 12.27 13.09 24.14 26.52 29.01 

BIC 10.95 12.97 14.54 26.55 27.31 31.18 
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Table 4.4.6 In-Sample Tests Results 

This table presents the in-sample results from 1990 to 2012 of the models in comparison. 

The KS statistics are calculated for every year of each model against the realized recovery 

rates in that year. The corresponding p values are reported below. For example, for a model 

with a p-value larger than 0.10, we cannot reject the null hypothesis that the model-implied 

recovery rates and the realized recovery rates are from the same distribution at a confidence 

level of α = 10%. 

In Sample 

  
No. of 

observations 

Mixed 

beta 5-

factor 

best 

model  

Mixed beta 

5-factor 

second-best 

model 

Mixed 

beta 5-

factor 

third best 

model 

Logit-

link best 

model 

Logit-link 

second-best 

model 

Logit-

link 

third 

best 

model 

Constant 

single Beta 

model 

1990 173 0.273 0.261 0.248 0.061 0.008 0.011 0.009 

1991 241 0.181 0.173 0.179 0.043 0.006 0.005 0.011 

1992 203 0.089 0.079 0.072 0.098 0.009 0.008 0.013 

1993 160 0.248 0.254 0.243 0.032 0.011 0.012 0.011 

1994 67 0.122 0.109 0.102 0.006 0.009 0.011 0.008 

1995 83 0.101 0.103 0.082 0.011 0.014 0.008 0.009 

1996 80 0.075 0.052 0.061 0.013 0.011 0.009 0.012 

1997 69 0.071 0.041 0.037 0.097 0.012 0.007 0.011 

1998 71 0.233 0.187 0.191 0.031 0.009 0.013 0.005 

1999 179 0.284 0.292 0.294 0.044 0.024 0.011 0.014 

2000 286 0.078 0.131 0.147 0.009 0.031 0.014 0.080 

2001 527 0.263 0.209 0.211 0.021 0.019 0.011 0.013 

2002 632 0.292 0.304 0.263 0.033 0.033 0.012 0.006 

2003 347 0.203 0.182 0.182 0.011 0.009 0.009 0.012 

2004 150 0.174 0.098 0.081 0.009 0.008 0.008 0.014 

2005 129 0.193 0.164 0.154 0.006 0.009 0.012 0.005 

2006 65 0.121 0.112 0.092 0.012 0.012 0.011 0.009 

2007 33 0.087 0.051 0.044 0.011 0.011 0.011 0.008 

2008 122 0.373 0.334 0.327 0.108 0.103 0.008 0.013 

2009 401 0.298 0.278 0.282 0.083 0.052 0.022 0.007 

2010 52 0.276 0.251 0.241 0.007 0.018 0.011 0.011 

2011 26 0.202 0.193 0.173 0.022 0.022 0.009 0.014 

2012 32 0.099 0.042 0.068 0.011 0.011 0.008 0.005 
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Table 4.4.7 Out-of-Sample Tests Results 

 

This table presents the out-of-sample results from 1995 to 2012 of the models in 

comparison. The KS statistics are calculated for every year of each model against the 

realized recovery rates in that year. The corresponding p values are reported below. For 

example, for a model with a p-value larger than 0.10, we cannot reject the null hypothesis 

that the model-implied recovery rates and the realized recovery rates are from the same 

distribution at a confidence level of α = 10%. 

 

Out of Sample 

  
No. of 

observations 

Mixed 

beta 5-

factor 

best 

model  

Mixed beta 

5-factor 

second-best 

model 

Mixed 

beta 5-

factor 

third best 

model 

Logit-

link 

best 

model 

Logit-link 

Second best 

model 

Logit-link 

third best 

model 

Constant 

single 

Beta 

model 

1995 83 0.014 0.007 0.012 0.011 0.008 0.005 0.014 

1996 80 0.011 0.005 0.009 0.005 0.012 0.009 0.011 

1997 69 0.005 0.009 0.005 0.009 0.011 0.009 0.012 

1998 71 0.022 0.014 0.013 0.013 0.008 0.013 0.013 

1999 179 0.153 0.136 0.138 0.012 0.011 0.011 0.007 

2000 286 0.065 0.101 0.062 0.014 0.007 0.012 0.009 

2001 527 0.162 0.122 0.131 0.007 0.005 0.011 0.009 

2002 632 0.134 0.118 0.103 0.009 0.012 0.008 0.006 

2003 347 0.071 0.085 0.098 0.005 0.013 0.007 0.013 

2004 150 0.062 0.061 0.063 0.012 0.008 0.005 0.011 

2005 129 0.136 0.125 0.134 0.006 0.014 0.013 0.014 

2006 65 0.059 0.063 0.047 0.011 0.007 0.012 0.009 

2007 33 0.063 0.051 0.033 0.014 0.009 0.014 0.008 

2008 122 0.287 0.268 0.261 0.027  0.031 0.007 0.005 

2009 401 0.257 0.243 0.242 0.022 0.018 0.009 0.013 

2010 52 0.235 0.211 0.188 0.015 0.023 0.011 0.014 

2011 26 0.202 0.182 0.171 0.023 0.005 0.005 0.011 

2012 32 0.095 0.044 0.068 0.021 0.024 0.008 0.008 
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Figure 4.1.1 Beta Distributions 

 

This figure shows the different shapes of beta distributions result from different pairs of 

shape parameters. The shape parameters of beta distributions are as follow: 

• Solid line - 𝛼 = 0.5, 𝛽 = 0.5 

• Long dash line - 𝛼 = 2, 𝛽 = 5 

• Dotted line - 𝛼 = 1, 𝛽 = 3 

• Dashed line - 𝛼 = 5, 𝛽 = 1 

• Dot dash line - 𝛼 = 2, 𝛽 = 2 
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Figure 4.2.1 Five-factor Mixture Beta Distribution 

 

This figure plots an example of five-factor mixture beta distribution. 
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Figure 4.2.2 Individual Beta Distributions in Five-factor Model 

 

This figure shows two individual beta distributions in a five-factor model. 

• Dash line -  𝛼 = 4, 𝛽 = 10 

• Solid line - 𝛼 = 8, 𝛽 = 3 
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Figure 4.2.3 Three-factor Mixture Beta Distribution 

  

This figure plots an example of three-factor mixture beta distribution. 
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 Figure 4.2.4 Individual Beta Distributions in Three-factor Model 

 

This figure shows two individual beta distributions in a three-factor model. 

• Dash line -  𝛼 = 4, 𝛽 = 1.8 

• Solid line - 𝛼 = 1.8, 𝛽 = 4 
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Figure 4.3.1 Time-Series Variations of Macroeconomic Variables 

 

These graphs present the time-series variation of the four macroeconomic variables – GDP, 

UE, PD, and SP500 – from 1987 to 2012. We can see that GDP and SP500 show similar 

time-series variations that are negatively correlated with those of UE and PD. This 

observation is consistent with our intuition as we expect GDP and SP500 to be high during 

economic expansion and low during the recession, and vice versa for UE and PD.  
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Figure 4.4.1 Predicted weights vs. Realized weights 

 

We present the time-series plots of the one-year prediction of the weight parameter 𝜌 of 

each of the eight univariate mixture beta models, in comparison with the realized weight 

parameter. There are four three-factor models and four five-factor models based on the four 

macroeconomic variables: GDP, UE, PD, and SP500.  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

Three-factor model with GDP

one-year predicted ρ

realized ρ

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Five-factor model with GDP

one-year predicted ρ

realized ρ



221 
 

 
221 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

Three-factor model with UE

one-year predicted ρ

realized ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Five-factor model with UE

one-year predicted ρ

realized ρ

0

0.2

0.4

0.6

0.8

1

1.2

Three-factor model with PD

one-year predicted ρ

realized ρ



222 
 

 
222 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

Five-factor model with PD

one-year predicted ρ

realized ρ

0

0.2

0.4

0.6

0.8

1

1.2

Three-factor model with SP500

one-year predicted ρ

realized ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Five-factor model with SP500

one-year predicted ρ

realized ρ



223 
 

 
223 

 

Figure 4.4.2 “Good” Beta Distribution vs. “Bad” Beta Distribution 

 

This figure shows that the shapes of the “Good” beta distribution (solid line) and “Bad” 

beta distribution (dotted line) are quite different in the five-factor models  
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Figure 4.4.3 Out-of-Sample Models Comparison 

 

This figure shows the predicted distributions of all models against nonparametric recovery 

rates distribution (beta kernel) from 1995 to 2012. The legends are as follow: 

• Solid line - Nonparametric distribution 

• Two dash line – Mixture beta five-factor model (Best) 

• Long dash line – Mixture beta five-factor model (Second best) 

• Dotted line – Mixture beta five-factor model (Third best) 

• Dashed line – Single-beta logit-link model (Best) 

• Dot-dash line – Single-beta logit-link model (Second best) 
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Chapter 5 

 

Conclusions 

 

This thesis focuses on three important issues in credit risk modeling: the nonlinear credit 

risk stress testing models, the recovery term structure of point-in-time loss given default 

(LGD), and the estimation of LGD by mixture beta regression model. In this chapter, we 

summarize the research conducted and the main findings of the three essays in Chapters 2, 

3, and 4 of this thesis. 

 

In chapter two, we investigate the performances of the regime-switching model and the 

quantile regression model in credit risk stress testing. We utilize these statistical modeling 

approaches under a credit risk stress testing framework and compare their performances 

with that of the traditional OLS model. We demonstrate that the regime-switching model 

is the best among all as it outperforms other models (in comparison) in producing the most 

accurate point estimation. Although we see an improvement in the model performance as 

we increase the granularity of the segments of the quantile regression models, it is still 

generally inferior to the regime-switching model.  

 

In chapter three, we propose a conditional model to capture the time-series variations of 

the recovery rate profile that can incorporate up-to-date recovery information in predicting 
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the ultimate recovery rate and we estimate the proposed model using a sample of defaulted 

facilities of a retail credit portfolio. Based on the simulation results covering a sample 

period including the recent financial crisis, we demonstrate that the proposed model can 

generate more realistic PIT portfolio risk measures over time in comparison to commonly 

used models. The proposed model captures both the dynamic evolution of the mean and 

the variance of recovery rate over time and is simple to implement for both facility-level 

and portfolio-level risk analysis. With the time-series panel regression setup, the model can 

be readily extended to incorporate other macroeconomic variables that may also drive the 

variations of recovery rate over time. The flexibility and effectiveness of the proposed 

model make it a viable candidate to replace the models currently used in practice. 

 

In chapter four, we propose a new approach – a dual-beta mixture regression model – in 

the modeling of LGD distribution which is different from all other previous models. We 

show that this approach is flexible enough to accommodate the important features of the 

LGD distribution. Rather than just treating it as a static LGD distribution model, we also 

examine how we can allow the mixture beta distribution to be driven by the systematic risk 

factors through linking the weights of the underlying beta distributions to the time-varying 

macroeconomic variables. The results enable some interesting insights that complement 

and extend the findings in the literature. For example, the intuitive impacts of the 

macroeconomic variables such as GDP, PD, UE, and SP500 on the realized recovery rate 

are confirmed under our model setup. 
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In summary, this thesis studies three important aspects of credit risk modeling. We propose 

several new models in estimating, predicting, and stress testing PD and LGD. For PD stress 

testing purposes, our model extends previous studies by utilizing the regime-switching and 

the quantile regression techniques. For LGD, we conduct, to our knowledge, the first study 

to investigate the recovery term structure during the recovery process. Finally, in the third 

essay, we shift our focus to LGD estimation by incorporating mixture beta distribution and 

linking the weights of the underlying distributions with the macroeconomic variables to 

reflect the credit cycle dynamically. All models proposed are statistically proven to be 

either superior to models that are best practice in use (PD stress testing models and LGD 

mixture beta regression model) or be useful in addressing risk management issues currently 

encountered by the financial institutions (PIT recovery term structure model). 

 

An interesting observation of these studies is that we find that the credit cycle, business 

cycle and the recovery cycle are not contemporaneous. Although this topic is not in the 

scope of our studies, it can improve our understanding of the mechanics of insolvency and 

recovery processes by investigating the interactions among these three different cycles and 

further assisting financial institutions to predict next cycles and prevent them from 

suffering potential unexpected losses. 

 


