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Abstract
Geometry optimization is a fundamental step in the numerical modelling of chem-

ical reactions. Many thermodynamic and kinetic properties are closely related to

the structure of the reactant, product, and the transition states connecting them.

Different from the reaction and product, which are local minima on the poten-

tial energy surface, a transition state is the first-order saddle point with only one

negative curvature. Over years, many methods have been devised to tackle the

problem. Locating stable structures is relatively easy with a reliable algorithm and

high accuracy. One can follow the gradient descent direction to pursuit the local

minimum until convergence is reached. But for the transition state, the determi-

nation is more challenging as either the up-hill or down-hill direction is allowed in

the process.

Motivated by the difficulty, many well-designed optimization algorithms are

elaborated specifically to stress the problem. The performance of geometry opti-

mization is affected by various aspects: the initial guess structure, the coordinate

system representing the molecule, the accuracy of the initial Hessian matrix, the

Hessian update schemes, and the step-size control of each iteration. In this thesis,

we propose a new geometry optimization algorithm considering all the important

components. More specifically, in Chapter 2, a new set of robust dihedral and

redundant internal coordinates is introduced to effectively represent the molecular

structures, as well as a computational efficient transformation method to gener-

ate a guess structure. In Chapter 3 and 5, a sophisticated robust algorithm is

presented and tested to solve intricate transition state optimization problems. In

Chapter 4, a new algorithm to exploring reaction pathways based on redundant
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internal coordinates is illustrated with real chemical reactions. Last but not least,

in Chapter 6, a systematic test to explore the optimal methods in each procedure

is presented. A well-performed combination of optimization methods is drawn for

generic optimization purposes.

All the methods and algorithms introduced in this thesis is included in our forth-

coming open-source Python package named GOpt. It’s a general-purpose library

that can work in conjunction with major quantum chemistry software including

Gaussian. More features are under development and await to be released in the

coming update.
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Chapter 1

Introduction

1.1 Introduction

At its most fundamental level, chemistry is the study of how chemical bonds cleave

and form to create new substances, along with the properties of these substances.

The detailed sequence of steps by which a new substance is created is called the

reaction mechanism. Key structures on the reaction path include the starting

structure (the reactant), the final structure (the product), stable structures along

the way (reactive intermediates), and first-order saddle points (transition states

between stable structures along the path). The lowest-energy pathway that con-

nects the reactant to the product is called the intrinsic reaction coordinate or

minimum-energy reaction path [1]. The reaction path reveals, in atomistic detail,

how the reactant transforms into the product. Some reaction paths are relatively

simple for chemists to guess, or relatively easy to determine computationally. But

this is not always the case: there are many reactions where it is difficult, both

conceptually and computationally, to find key transition states, much less to fully

characterize the reaction pathway. The goal of this thesis is to develop new compu-

tational methods to find transition states and location chemical reaction pathways
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that work even for the most difficult reactions. This is especially important for

reactions that are inaccessible (e.g., astrochemistry)[2, 3], dangerous (e.g., decom-

position of high-energy materials)[4, 5], or unhealthy (e.g., metabolism of toxic

substances) to experimentalists.[6, 7] Our specific goal is to leverage recent ad-

vances in computer hardware and software, new innovations in quantum chemistry,

and new algorithms we shall develop to extend the range of chemical reactions for

which detailed mechanistic computational studies can be performed.

The characteristics of a chemical reaction are largely determined by the molec-

ular structures associated with the reactant, the product, the transition state,

and the path connecting them. Therefore, locating the stationary points on the

molecular potential surface is the first step towards successful numerical modeling.

Mathematically, reactants, products, and reactive intermediates are local minima

on the potential energy surface. Two local minima are connected by a stationary

point which is a maximum along the reaction path but a minimum in all other

directions. This saddle point is called the transition state (TS) between the two

local minima.[8] Once all the important stationary points on the potential surface

have been located, one can model the whole reaction process, including the mech-

anism(s) of the reaction and its kinetic and thermodynamic properties (reaction

rate, equilibrium constant, exothermicity, etc.).[9] For multistep reactions, the ex-

istence of intermediate(s) complicates the reaction mechanism. In addition, there

may be multiple possible reaction paths, wherein different intermediate structures

connect the same reactants and products. In these complicated scenarios, hav-

ing a complete minimum-energy path showing how reactants and products are

connected by various sequences of structures is especially useful, as it provides re-

searchers with atomistic detail about the reaction mechanism. This can be useful,

2
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for example, for designing better catalysts.[10]

In computational studies of reaction mechanisms, three sorts of structure op-

timizations occur: minimization (for reactants, products, and reactive intermedi-

ates), saddle-point optimization (for transition states), and pathfinding (for the

reaction coordinate). Each optimization is typically treated as a separate problem,

and over the years researchers have developed many methods for each task. The

effectiveness and efficiency of these algorithms are affected by many factors, among

them the choice of the coordinate system, the initial guess structure(s), the initial

Hessian, the Hessian update method, stepsize control methods, etc..[11–13]

Finding a local minimum on the potential surface is considered an easy task.

One may simply follow the gradient descent direction until a minimum is reached,

since a structure with lower energy is always preferred. For a transition state, the

structure needs to be the maximum in only one dimension and a minimum in all

others, so it is impossible to know whether a step should increase or decrease the en-

ergy without further (nonlocal) information about the structure. Researchers have

designed multiple optimization algorithms to address the difficulty of transition-

state optimization.[11, 14–17] Disappointed by the speed and robustness of cur-

rent approaches, we developed a new set of algorithms to (a) effectively generating

initial guess structures for transition-states, (b) optimize transition-states using

chemical information about key internal coordinates, and (c) find reaction path-

ways in a more robust way. All these features and algorithms are included in our

forth coming quantum chemistry software GOpt.

3
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1.2 The Potential Energy Surface

Within the Born-Oppenheimer approximation, the electronic energy of a molecule

is determined by its geometric structure, which is defined by the relative positions

of its constituent atoms. To obtain the total energy of a system, one needs to solve

the Schördinger equation,

H |Ψ〉 = E |Ψ〉 (1.1)

whereH is the quantum-mechanical operator for the energy, the Hamiltonian. The

explicit expression of H is[18]

H =−
N∑
i=1

1
2∇

2
i −

M∑
A=1

1
2MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

+
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.2)

In the Eqn1.2, MA is the ratio of mass between nucleus A and one electron. ZA

is the nuclear charge of atom A. The first and second terms in H are the kinetic

energy operators for the electrons and the nuclei respectively. The third term is

the potential of the electron-nuclei attraction and the last two terms represent the

Coulomb repulsion between electrons and between nuclei.

1.2.1 The Born-Oppenheimer Approximation

Because atomic nuclei are much more massive than electrons, it is sensible to

assume the electrons adapt instantaneously to the relatively slow motions of the

nuclei. That is, from the viewpoint of the electrons, the nuclei are clamped in well-

defined positions. This is the basis for the Born-Oppenheimer approximation, and

it leads to the concept of a molecular potential energy surface. As the nuclear

4
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positions are assumed fixed, the nuclear kinetic energy (the second term in H)

is zero and the nuclear-nuclear repulsion (the last term in H) is constant. The

remaining terms define the electronic Hamiltonian, Helec,

Helec = −
N∑
i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij

(1.3)

The electronic energy and wavefunction are determined by solving the electronic

Schördinger equation

HelecΨelec = EelecΨelec (1.4)

Note that the electronic wavefunction and energy change depending on the nuclear

positions:

Ψelec = Ψelec({ri}; {RA}) (1.5)

Eelec = Eelec({RA}) (1.6)

It is common to add the nuclear interaction term to the electronic energy to obtain

the potential energy surface on which the nuclei move, U({RA}),

U({RA}) = Eelec({RA}) +
M∑
A=1

M∑
B>A

ZAZB
RAB

(1.7)

If the nuclei are assumed to be classical, then they are treated as classical point-

particles moving on the potential energy surface. If the nuclei are assumed to be

quantum, then the potential energy surface defines the potential in the nuclear

Schrödinger equation. Because Etot depends on the nuclear positions, one needs

to repeatedly solve the electronic Schördinger equation. This task is normally

5
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handled by quantum chemistry software.

The energy of a molecule with M atoms is a function of 3M − 6 free vari-

ables. When the positions of each nucleus are specified by their Cartesian co-

ordinates, {XA, YA, ZA}, the molecular structure is defined by 3M coordinates.

The true potential energy surface is only 3M − 6-dimensional, however, because

of translation invariance (typically specified by the location of the center-of-mass,

(Xcom, Ycom, Zcom)) and rotational invariance (typically specified by three Euler

angles, {α, β, γ}). This leaves a total of 3M − 6 degrees of freedom (3M − 5 for a

linear molecule).

Characterization of the Potential Energy surface

The potential energy surface is a function that indicates the relative stability of

different arrangements of the atomic nuclei. Just like a geographical landscape, a

potential energy surface has peaks, valleys, and pathways that connect them.

Valleys on the potential energy surface represent stable structures like reactants,

products, and reactive intermediates. These structures are usually associated with

the local minima at the bottom of the associate valley on the potential energy

surface. Since any change of nuclear coordinates away from a local minima in-

creases the energy, these are stable structures. Local minima are connected by

paths on the potential energy surface. The most interesting paths are minimum-

energy pathways (MEP), which specify the lowest-energy way to transform one

structure to another; these reaction paths are parameterized by reaction coordi-

nates. The highest-energy point on a reaction path is the transition state of that

reaction. Mathematically, a transition state is the 1st order saddle point on the

potential energy surface. That is, a transition-state structure is the maximum in
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one direction (tangent to the reaction coordinate) and the minimum in all other

directions. Given the energies and energy-derivatives of the reactant, product, and

transition state, one can easily estimate the thermodynamic and kinetic properties

of the reaction using the (free) energy differences between structures.

Figure 1.1: A four-well two-dimensional potential energy surface

In some reactions, there are pathways linking the same reactant and product

structures.[19, 20] In these cases, paths with similar energy represent competing

reaction mechanisms. The relative importance of mechanisms can be ascertained

from the energy profile of the pathways. This is especially important for studies

of chemical synthesis. Catalysts can be designed by preferentially lowering the

barrier(s) of any of the feasible reaction pathways.

Mathematical Characterization of the Potential Energy surface

The potential energy surface, U({RA}), is a function which, given a specification

of the molecular geometry, returns a real number. This real number will usually

be substantially below zero, since it takes energy to dissociate a molecule into

atoms, and the energy of a molecule where all the atoms are infinitely far apart

7
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is the sum of the atomic energies, which are themselves negative (with magnitude

equal to the energy required to remove all the electrons from the molecule). The

potential energy surface is positive, then, only when two or more atomic nuclei are

extremely close together.

Key chemical structures correspond to stationary points on the potential en-

ergy surface, that is, places where the gradient of the potential energy is zero:

∇U({RA}) = 0. Generalizing to arbitrary choices for the coordinate system used

to specify the molecular geometry, we introduce the vector-notation, g(x), as short-

hand for the gradient of the potential:

g(x) = ∇U(x) =


∂U(x)
∂x1

∂U(x)
∂x2

...

 (1.8)

At a given structure x with potential U(x), the gradient g(x) is the negative of

the force exerted on the nuclei,

F(x) = −g(x) (1.9)

In order to distinguish between stable molecular structures (minima) and tran-

sition states (first-order saddle points) on the potential energy surface, one uses the

second derivative matrix, or Hessian, of the potential energy function,∇∇TU({RA}).

The notation ∇∇T denotes the outer product of the gradient operators. Again,
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we introduce a matrix-notation for the Hessian, H(x),

H(x) = ∇∇TU(x) =


∂2U
∂x2

1

∂2U
∂x1∂x2

· · ·
∂2U

∂x2∂x1
∂2U
∂x2

2
· · ·

... ... . . .

 (1.10)

The Hessian matrix is symmetric and describes the curvature of the potential

energy surface for the specified molecular structure. The eigenvalues’ signs specify

whether a structure is in a valley (all eigenvalues are positive), near a first-order

saddle point (one and only one negative eigenvalue), or at a higher-order sad-

dle point (which is usually chemically irrelevant, as such points do not lie along

minimum-energy pathways between stable structures). First-order saddle points

are transition-states between stable molecular structures: if one starts in the di-

rection of the eigenvector associated with the negative eigenvalue (which defines

the negative-curvature direction) and then follows the steepest descent gradient

pathway, one locates the reactant and product structures associated with the ini-

tializing transition state. The steepest-descent path one follows is a minimum

energy pathway, and is often called the intrinsic reaction coordinate.

1.2.2 Numerical Calculations on Potential Energy Surfaces

The potential energy surface is a function of coordinates specifying the molecular

geometry, x. With a known initial structure x0, one can estimate the potential of

9
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nearby points, x, by Taylor expansion,[21]

U(x) = U(x0) +∇U(x0) · (x− x0)

+1
2(x− x0)T · ∇∇TU(x0) · (x− x0)

+...

(1.11)

Due to the computational expense associated with computing and using higher-

order derivatives, Eqn 1.11 is normally truncated after the second-order derivative:

E(x) ≈ E(x0) + gT0 ∆x + 1
2∆xTH0∆x (1.12)

where ∆x = (x − x0) and g0 and H0 are the gradient and the Hessian of the

potential energy surface, evaluated at x0, respectively.

Traditional geometry optimization methods require the analytic calculation of

energy and the gradient at each iteration; for most quantum chemistry methods

the gradient can be computed relatively cheaply after the electronic wavefunction

and energy have been determined.[22] For example, in the steepest-descent algo-

rithm for determining local minima structures, one repeatedly takes small steps in

the gradient-descent direction until one reaches a local minimum. The steepest-

descent method does not work for transition states, because one needs to know the

Hessian eigenvalues to determine in which direction the energy will be minimized,

and in which directions it will be maximized. If the analytic Hessian is avail-

able, Newton’s method is an effective strategy for optimizing both minima and

transition-states. Unfortunately, the analytic computation of the Hessian is signif-

icantly more expensive than the analytic computation of the energy and gradient,

so approximate Hessians are often used. The accuracy of approximate Hessians is
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strongly affected by the coordinate system one uses to specify the molecular geom-

etry; it is favorable to choose a coordinate system in which the coupling between

coordinates (as indicated, for example, by off-diagonal elements in the Hessian) is

relatively small.

1.3 Coordinate System

While any coordinate system which uniquely specifies the positions of the atoms

in the system will suffice for geometry optimization, in practice, certain choices

give a better computational performance.[23–25]

1.3.1 Cartesian Coordinates

Conceptually, the simplest coordinate system is to use the Cartesian coordinates

of the atoms, {(Xα, Yα, Zα)}. For a molecule with M atoms, there are 3M Carte-

sian coordinates. In popular quantum chemistry packages, Cartesian coordinates

are used to compute the energy and its derivatives, so using Cartesian coordinates

is the most straightforward choice. However, direct use of the Cartesian coordi-

nates has several drawbacks. Most importantly, the relative positions of atoms in

Cartesian coordinates are highly coupled. A simple change in a single Cartesian

coordinate for one atom changes the bond distances and bond angles between that

atom and all of its neighbors. Conversely, a simple change in the interatomic dis-

tance between two atoms tends to change the Cartesian coordinates not only of the

two atoms involved in the bond, but also of all the other atoms connected to those

atoms. The highly-coupled nature of molecular motions in Cartesian coordinates

is reflected in the Hessian matrix, which has large off-diagonal elements. The large
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number of nonzero elements in the Hessian matrix and the relatively large changes

in the coordinates, gradient, and Hessian that occur after simple chemical changes

make the Hessian difficult to approximate.

1.3.2 Internal Coordinates

Building on chemical intuition, one can specify the molecule’s geometry with in-

ternal coordinates (bond lengths, bond angles, and dihedral angles). These coor-

dinates are more descriptive and intuitive at characterizing molecular structures,

and because they depend only on relative atomic positions, they automatically

impart rotational and translation invariance. Internal coordinates are less cou-

pled, so there are fewer off-diagonal elements in the Hessian, making it easier to

approximate.

For a nonlinear molecule with M atoms, only 3M − 6 independent internal

coordinates are needed to fully define the structure. However, the number of

internal coordinates one can specify is far higher. For example, for a molecule

with three atoms, one can specify three bond angles and three bond lengths.

There are many ways to remove the redundant coordinates: one can use three

bond lengths, one bond length and two angles, or two bond lengths and one angle.

It is unclear what the best choice will be. The redundancy problem becomes more

severe with increasing molecule size, as it is not uncommon that the number of

internal coordinates is an order of magnitude larger than 3M − 6.[26, 27]

The inherent redundancy of the internal coordinates can be removed auto-

matically or manually, by explicit construction. The most common manual ap-

proach is to define a set of non-redundant internal coordinates by constructing a

Z-matrix.[28] In a Z-matrix, each atom’s position is specified by one bond length,
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one bond angle, and one dihedral angle. This gives 3M coordinates. The extra

redundancy is removed by defining one atom as a reference atom, and not specify-

ing any of its three coordinates relative to other atoms. A second atom’s position

is defined with a reference bond (one interatomic distance to an atom, typically

the reference atom), but no bond angle or dihedral angle. A third atom’s position

is defined with a second reference bond and a bond angle (typically defined as the

angle between the two reference bonds), but no dihedral coordinate.

The Z-matrix strategy performs seamlessly in many cases, though the perfor-

mance can be sensitive to the specific bond lengths, angles, and dihedrals included.

The transformation between Cartesian coordinates and the Z-matrix internal co-

ordinates is likewise straightforward: bond lengths, angles, and dihedrals can be

determined with straightforward trigonometry and, because the Z-matrix is nonre-

dundant, any change in Z-matrix can be realized by a corresponding change in

Cartesian coordinates. The Z-matrix strategy, however, performs poorly for cyclic

molecules, because one of the bonds in the ring will be missing.[29, 30] For ex-

ample, in ozone, which is a bent molecule, there is an obvious choice for the two

bonds and the one bond angle that should be included in the Z-matrix. How-

ever, for isoozone, which is an equilateral triangle structure, picking the correct

bonds and angles is ambiguous, and the molecular symmetry of the structure is

not respected. Therefore, for a cyclic molecule, the bond which closes the ring is

missing, the elongation and contraction of this bond can only be described using

the other bonds and angles in the ring. These bonds and angles are therefore

tightly coupled, and the Hessian matrix has a significant off-diagonal structure.

The problem of rings, along with other problems associated with arbitrary user

choices that need to be made when constructing a Z-matrix, leads to the idea of
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explicitly using redundant internal coordinates.[11] A set of primitive redundant

internal coordinate is formed by including all chemically-sensible bonds, angles,

and dihedrals, along with out-of-plane bends. The number of redundant internal

coordinates in a system is larger than the 3M−6 degree of freedom. To reduce the

dimensionality of the redundant internal space to the desired 3M − 6, one takes

suitable linear combinations of the redundant internal coordinates. One popular

way to do this is to generate delocalized internal coordinates, but there are other

choices.[26, 31]

1.3.3 Transformation between Cartesian coordinates and

redundant internal coordinates

The Cartesian coordinates are normally used in quantum chemistry software pack-

ages to compute the energy and its derivatives. However, as mentioned in the pre-

vious section, internal coordinates are more suitable for geometry optimization.

Therefore, one must be able to interconvert Cartesian and internal coordinates,

along with the gradient and Hessian in these coordinate systems. At each op-

timization step, the gradient and (approximate) Hessian in internal coordinates

will be used to compute a displacement of the internal coordinates, which then

needs to be transformed back to Cartesian space so that the energy, gradient, and

possibly Hessian can be computed for the next step.

The key tool in these transformations is the Wilson B matrix, which is the

Jacobian of the transformation from Cartesian to internal coordinates, with ele-

ments,[32]

bij = ∂qi
∂xj

(1.13)
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With Wilson B matrix, one can convert an infinitesimal change in Cartesian space

to its corresponding change in redundant internal coordinates.

δq = B · δx (1.14)

For most molecules with more than a few atoms, the number of redundant inter-

nal coordinates is far greater than 3M , so B is rectangular and singular (because

internal coordinates, but not Cartesian coordinates, are invariant to molecular

translation and rotation). To compute the change in Cartesian coordinates in-

troduced by an infinitesimal change in internal coordinates, the Moore-Penrose

pseudo-inverse, B+, is used

B+ · δq = δx (1.15)

The gradient and Hessian can be converted between the internal, (gq,Hq), and

Cartesian, (gx,Hx), coordinate systems using:

gx = BTgq (1.16)

gq =
(
BT

)+
gx (1.17)

Hx = BTHqB + K (1.18)

Hq =
(
BT

)+(
Hx −K

)
B+ (1.19)

where K is the matrix including the second derivatives of the internal coordinates

with respect to Cartesian coordinates,

kjk =
Nint∑
i=1

[
gq
]
i

∂2qi
∂xj∂xk

=
Nint∑
i=1

[
gq
]
i

∂bij
∂xk

(1.20)
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Unlike the (explicit) transformation from Cartesian to internal coordinates,

the transformation from internal coordinates to Cartesian coordinates cannot be

expressed as a simple formula, and various iterative methods are used. Suppose

the optimization starts from an initial structure x0, and its corresponding internal

representation q0. The target structure we wish to converge is denoted similarly

as xtarget with internal qtarget. The first step towards the target is computed as

s0 = qtarget − q0 (1.21)

x1 = x0 + B+s0 (1.22)

q1 = q(x1) (1.23)

s1 = ∆q = qtarget − q1 (1.24)

At the kth iteration, the new structure xk is computed

xk = xk−1 + B+sk−1 (1.25)

sk = qtarget − qk (1.26)

until xk and xk+1 are sufficiently close together. However, this fixed-point iteration

method does not always work. Typically, but not always, this failure is due to

(nearly) linear bond angles.

We propose a different, robust, method for converting structures from internal

coordinates to Cartesian coordinates. The strategy is based on the idea that only

a (3M − 6)-dimensional manifold within the Nint-dimensional internal-coordinate

space correspond to physically realizable molecular geometries, and therefore it is

only points on this manifold that have Cartesian-coordinate representations. Our
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am is to choose the Cartesian structure, x, on this manifold, q(x), that is closest

to the target set of internal coordinates qtarget,

min︸︷︷︸
x

(
qtarget − q(x)

)T
W
(
qtarget − q(x)

)
(1.27)

Here W is a positive-definite diagonal matrix with weight wi for each internal

coordinates. Eq.1.27 minimizes the weighted-squared deviation between the op-

timized and target structures. By default W matrix is the identity matrix, but

sometimes it is beneficial to prioritize certain internal coordinates over others (e.g.,

in a constrained optimization).

1.4 Numerical Methods for Optimization

Newton-Raphson Method

Starting from the initial structure on the potential energy surface with coordinates

x0 and energy U0, the energy of nearby structures can be estimated through Taylor

expansion

E(x) = E(x0) + gT0 (x− x0) + 1
2(x− x0)TH0(x− x0) + ... (1.28)

Higher-order derivatives of energy are expensive to compute, so they are not rou-

tinely available in quantum-chemistry programs. Therefore the Taylor series is

usually truncated after the second derivative. The gradient can also be expanded

as a Taylor series,

g(x) = g0 + H0(x− x0) + ... (1.29)
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Truncating after the Hessian matrix, Eqn.1.29 becomes

g(x) = g0 + H0∆x (1.30)

where ∆x = x − x0 is the step. The preceding equations hold for any coordinate

system.

Key molecular structure like the reactions, products, (quasi)stable reactive in-

termediates, and transition states are all stationary points on the potential energy

surface with zero gradient, g(x) = 0.

0 = gx = g0 + H0∆x (1.31)

Rearranging this equation, one can estimate the change in molecular structure

that is needed to obtain a stationary point by either solving a system of linear

equations or inverting the Hessian matrix,

H0∆x = −g0 (1.32)

∆x = −H−1
0 g0 (1.33)

The step ∆x in Eqn.1.33 is called the Newton step. One can update the struc-

ture x0 with the Newton step to x1 = x0 +∆x. If the the quadratic approximation

is exact (i.e., all the higher-order derivatives of the potential energy are zero), the

gradient of g(x1) will be exactly zero and the optimization is finished. This is not

the case for real molecules, so one needs to iterate until convergence is reached.

This iterative process of solving the linear equation is called Newton–Raphson

method.
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The Newton–Raphson method is based on the hypothesis that the objective

function at the initial point is well-approximated by a paraboloid. It converges

rapidly when the higher-order derivatives are small and is the basis for other,

more-sophisticated, numerical optimization algorithm.[33–36] For smooth objec-

tive functions and sufficiently small ∆x, the higher-order terms in the Taylor

series are always negligible. Conversely, if ∆x is too large, higher-order terms are

nonnegligible and Newton step from 1.33 is no longer reliable. Since higher-order

derivatives are rarely practical for molecular structure optimizations, the optimiza-

tion is instead performed by imposing constraints that ensure the step does not

exceed the region where the quadratic approximation is robust. One common ap-

proach is to set a trust radius such that ‖∆x‖ < τ . The τ is set to ensure the

proper behaviour of the Newton step.[37, 38] The trust radius is updated based on

the performance of each iteration. Another solution is to guarantee the decrease

of gradient in each iteration by performing a line-search, i.e., selecting α so that

the step xi = xi−1 + α∆x minimizes the norm of the gradient.

1.4.1 Quasi-Newton method

Newton’s method is accurate and efficient where the quadratic approximation to

the potential energy surface is accurate. It also requires the analytic computation

of the Hessian matrix. Unlike energy and gradient evaluation, which can be eval-

uated using the unperturbed (zeroth-order) electronic wavefunction, computation

of the Hessian matrix requires computing the first-order electronic wavefunction,

and is thus relatively computationally demanding. Therefore, for large molecules,

it’s computationally prohibitive to evaluate the Hessian to take Newton’s step at

every optimization iteration. Quasi-Newton methods avoid this cost by using an
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approximate Hessian. Specifically, in quasi-Newton methods, the gradients from

previous iterations are used to approximate the Hessian matrix of the new config-

uration.

At the beginning of the optimization, the first Hessian matrix used in the pro-

cedure can be computed analytically through ab initio methods, or approximated

by either semi-empirical or numerical methods.[39, 40] It’s also possible to intro-

duce a Hessian with a low accurate molecular mechanical force field[41–43] or even

use a pure identity matrix with a scaling factor (though that may lead to slow

convergence or outright convergence failures).[44]

After each iteration, a new step sn is taken. With the new structure xn+1 =

xn + sn, one can obtain the energy En+1 and gradient gn+! through a standard

computation. The updated Hessian needs to ensure the gradient changes match

the step taken under the quadratic approximation for local potential.

∆gn ≈ Hn+1∆xn (1.34)

y, denoted as secant condition, is defined as

y = ∆gn = (gn+1 − gn) (1.35)

Enforcing the secant condition y is the key to many different quasi-Newton update

methods.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS)

BFGS is the most famous and widely used quasi-Newton update,[45–49]

Hnew = Hold + yyT

y∆x
−

(
Hold∆x

)(
Hold∆x

)T(
∆xT

)
Hold∆x

(1.36)

Given a positive-definite Hessian matrix, the BFGS method preserves its positive-

definite nature, ensuring that the update step is always in an energy-decreasing

direction. This feature makes BFGS ideal for minimization, such as locating re-

actants and products, but ineffective for transition states, where accomodating

negative eigenvalues of the Hessian is essential.

Symmetric-Rank-1 (SR1)

SR1 is a simple and straightforward rank-one update method,[50]

Hnew = Hold +

(
y−Hold∆x

)(
y−Hold∆x

)T
(
y−Hold∆x

)T
∆x

(1.37)

The SR1 method does not guarantee a positive-definite matrix. This feature makes

SR1 a better candidate for transition state optimization than BFGS. There is also a

drawback to this method. When the value of Hold∆x is very close to y, a numerical

ill-conditioning occurs due to division by zero. To circumvent this problem, one

can check the value of y−Hold∆x first and conduct the Hessian update only when

the difference is not negligible.
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Powell-symmetric-Broyden (PSB)

PSB is a rank-two Hessian update method. It has the advantage of an accu-

rate rank-two level adjustment without constraining the update to be positive-

definite,[51]

Hnew = Hold +

(
y−Hold∆x

)
∆xT + ∆x

(
y−Hold∆x

)T
‖∆x‖2

−
(∆x ·

(
y−Hold∆x

)
‖∆x‖4

)
∆xxT (1.38)

Bofill

Both SR1 and PSB are proper candidates for geometry optimization, including

transition states. Bofill proposed a mixed method combining the SR1 and PSB

methods.[52]

HBofill = φHSR1 + (1− φ)HPSB

φ =

∥∥∥(y−Hold∆x)T∆x
∥∥∥2

‖y−Hold∆x‖2‖∆x‖2 (1.39)

The Bofill update is considered among the best quasi-Newton methods for transi-

tion state optimization.

The Hessian matrix for transition state needs to have exact one negative eigen-

value; its corresponding eigenvector is directed along the reaction coordinate.

Knowing the information about bond-breaking and forming can also improve the

performance and effectiveness of the optimization process. In Chapter3, we intro-

duce a new optimization algorithm that exploits chemical intuition to ensure an

appropriate negative-eigenvalue direction. Specifically, from the difference between
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the reactant and product, the algorithm can recognize the key internal coordinates.

These reduced coordinates are used to ensure that the Hessian matrix has the cor-

rect eigenstructure.

1.5 Iteration strategies

During the optimization process, one starts from the initial structure x0 and itera-

tively changes the structure to approach a stationary point on the potential energy

surface. The iterative process is terminated when certain stopping protocols (e.g.,

a sufficiently small value for the gradient) are satisfied. Each successive candidate

structure is determined using the gradient gi and (approximate) Hessian Hi of

the current structure xi, possibly together with information from previous points

xi−1,xi−2...x0.

1.5.1 Line Search method

In the linear search method, a direction vector pi is chosen. The algorithm searches

along the specified direction until a point with sufficiently lower energy or smaller

gradient magnitude is found. This simplifies the multidimensional optimization

problem into a one-dimensional optimization,

min︸︷︷︸
α>0

f(xi + αpi) (1.40)

Accurately minimizing this expression is expensive and unnecessary because too

many steps are taken when the structure is still far from the minimum. Conver-

gence can be guaranteed as long as a sufficient decrease in the objective function is
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achieved. After a new point xi+1 is found, a new pi+1 is selected, and the algorithm

is repeated.[44]

Steepest Descent

When choosing a optimization direction, the easiest choice is the direction of

−∇U(xi), namely, −gi. This is the direction along with the energy of the sys-

tem decreases most rapidly. Following the gradient descent direction, the energy

change of the system is approximated by the Taylor’s expansion up to the second

order derivatives,

∆U ≈ f(xi + αpi)− f(xi) = αpTi ∇fi + 1
2α

2pTi (∇2fi)pi (1.41)

To minimize the value of ∆U is equivalent to

min︸ ︷︷ ︸
pi

pTi ∇fi = min︸ ︷︷ ︸
pi

‖pi‖‖∇fi‖cosθ (1.42)

where pi is a unit vector, ‖pi‖ = 1. Eqn. 1.42 is minimized when the cos θ = −1.

Linear search along the steepest descent direction is an effective way to lower the

energy of the system, especially because no information about the Hessian matrix

is required. Pictorially, the direction of the move is perpendicular to the contour of

the energy surface. Steepest descent works well when the contours of the objective

function are well scaled, but this is frequently untrue in chemical applications,

where the eigenvalues of the Hessian matrix span several orders of magnitude.

Steepest-descent, then, should only be used as a last result in molecular structure

optimizations.[53]
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Newton direction

The Newton direction is derived from Eqn.1.33, based on the local quadratic

approximation. For minimization, the linear search method requires a positive-

definite Hessian matrix to fulfill the descent requirement. However, iteratively

taking the full Newton step does not always converge. Instead, the Newton direc-

tion is used, and then scaled by the factor α using a line-search protocol to ensure

sufficient reduction in the energy (or the gradient norm).

Using the Newton step gives relatively fast and robust convergence. The limi-

tation is the computation cost for the Hessian matrix in each iteration. Without

explicitly compute the Hessian matrix, one can either use finite-differences to es-

timate the Hessian (e.g., the truncated Newton method) or use approximations to

the Hessian matrix (quasi-Newton methods).

1.5.2 Trust-Region Methods

To compute a more accurate and consistent step for optimization, a model func-

tion is normally taken to estimate the potential energy locally, near the current

structure. For example, the newton step from 1.33 is premised on the quadratic

energy model. The model is accurate for steps close to the current structure xi. If

the step is too long, the higher-order derivatives omitted in the quadratic model

become non-negligible and the approximations in the local model become inaccu-

rate [44, 54]. To ensure a proper step size, it is important to limit the maximum

length of the step at each iteration,

‖∆x‖ ≤ τ (1.43)
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where τ is the trust radius set according to the accuracy of the current model.

When a step surpasses the trust radius, the step is deemed risky and scaled back

accordingly. Specifically, when the step from Eqn.1.33 is larger than τ , one mini-

mizes the energy subject to the constraint on the step-size. Introducing λ̃ as the

Lagrange multiplier for the step-size constraint, the constrained Newton step is

obtained by solving the linear system,

(H + λ̃I)∆x = −g (1.44)

When minimizing the objective function, λ̃ is set to be positive. Conversely, when

maximizing the function, λ̃ is negative. Expanding the Hessian matrix with spec-

tral theorem,

H =
Nint∑
i=1

λiχiχ
T
i (1.45)

the solution for optimizaiton step can be expressed as[52, 55]:

∆x(λ̃) =
Nint∑
i=1

−1
λi + λ̃sgn(λi)

χiχ
T
i g (1.46)

where λ̃ is determined by solving the nonlinear equation,

∥∥∥∆x(λ̃)
∥∥∥ = τ (1.47)

and sgn(λi) denotes the sign of each eigenvalue. This shift ensures eigenvalues

retain their sign but the step length is reduced. The τ from previous iteration

need to be updated with respect to the accuracy of local quadratic approxima-

tion. A conventional method is comparing the real energy difference between two
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structures with approximated energy change from the model

ρ = E(x + ∆x)− E(x))
gT∆x + 1

2∆xHx
(1.48)

When the two energies are close, ρ ≈ 1 and the quadratic model is considered

accurate, so τ is increased in the next iteration. If the quadratic model is poor,

the trust radius is decreased. In intermediate situations, the trust radius is retained

for the next iteration.

The preceding method applies the same scaling λ̃ for both positive and nega-

tive eigenvalues. There is also revised version where separate values are used for

negative-curvature and positive-curvature respectively,

∆x = −1
λ1 − λn

χ1χ
T
1 g +

Nint∑
i=2

−1
λi + λp

χiχ
T
i g (1.49)

λp and λn must obviously be selected to ensure that λ1 − λn < 0 and λi + λp > 0.

Another popular method is the rational function optimization(RFO) method.[56–

59] In the RFOmethod, the quadratic approximation is replaced by a rational func-

tion model. This shift allows higher order derivatives to be approximated through

Padé approximation. The energy change is expressed as

∆E(x) =
gT∆x + 1

2∆xTH∆x
1 + ∆xTS∆x

(1.50)

To minimize the energy change, the equation is rewritten as a system of linear

equations  Hold gold

(gold)T 0


∆x

1

 = 2
(
∆E

)  S 0

0T 1


∆x

1

 (1.51)
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where S is normally chosen to be a scalar times the identity matrix, S = ξI After

solving the Eqn.1.51, the smallest eigenvalue is a proper candidate for minimization

tasks, while the second smallest eigenvalue is more suitable for transition state

optimization.

The RFO method permits a strategy for 1.49, wherein one solves two sepa-

rate generalized eigenvalue problems of negative-curvature and positive-curvature

respectively for the Lagrange multipliers:

 λ1 xT1 g

gTx1 0

vn = λn

ξ 0

0 1

vn (1.52)



λ2 0 0 . . . xT2 g

0 λ3 0 . . . xT3 g
... . . . . . . . . . ...

0 0 . . . λ3N−6 xT3N−6g

gTx2 gTx3 . . . gTx3N−6 0


vp = λp



ξ 0 0 . . . 0

0 ξ 0 . . . 0
... . . . . . . . . . ...

0 0 . . . ξ 0

0 0 . . . 0 1


vp (1.53)

The absolute value of the largest eigenvalue from 1.52 is assigned to λn while the

absolute value of the smallest eigenvalue of 1.53 is allocated to λp. In this case, the

minimization is taken place in all the other space while the negative eigenvector

is left to ascend the energy barrier towards the transition state on the potential

energy surface.
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1.6 Transition State Optimization

There are two main tasks for molecular geometry optimization: minimization and

saddle point optimization. When conducting minimization, procedures are rela-

tively straightforward. One can take a step in the energy descent direction until

a local minimum is attained. Saddle point optimization is more complicated be-

cause, at a stationary point on the PES, the structure is the maximum in some

direction(s) but minimum in the other direction(s). When taking a step towards

the desired saddle point, the energy can go either uphill or downhill. It’s also pos-

sible to observe an increase in the magnitude of the gradient when taking a good

step towards the transition state. Without extra information about the landscape,

one’s ability to optimize to a desired saddle point is quite limited.

To approach the transition state of interest, three categories of methods are

generally used. The most common one is to generate a guess based on chemical

intuition. The guess structure is expected to be close to the target transition

state structure. The numerical optimization procedures can effectively optimize

the guess structure to the saddle point from the input geometry. Other methods

try to automate the searching procedure by exploiting the information from the

reaction, product, or both.

1.6.1 Single-Ended Methods

One common method is to start the geometry optimization from one end of the

reaction, typically the reactant or product. The path to the transition state re-

quires the initial structure to go uphill on the potential energy surface. Beginning
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from a near minimum point, every direction is an energy-ascending direction. Se-

lecting a proper direction to drive the energy higher is crucial to the success of the

algorithm.

The coordinate-driving method supposes that the reaction can be characterized

by one coordinate. The algorithm takes steps in that direction and, at each step,

constrained optimization is performed to minimize all the other coordinates. If the

minimum energy path can be parameterized using the selected coordinate, then

this procedure recovers the minimum-energy path and the highest point along the

path provides a good guess for the transition state guess structure. Coordinate-

driving is ineffective when a reaction cannot be simply characterized. For example,

when the path is curved so that the value of the coordinate-driving coordinate does

not increase or decrease monotonically, the coordinate-driving method fails.[60–63]

The coordinate-driving method also presupposes significant information about the

reaction mechanism, which may not be accessible in all cases.

To extend the applicability of coordinate driving, one can select more additional

internal coordinates as the driven coordinates (multi-dimensional coordinate driv-

ing) or construct compound coordinates. For example, in a hydrogen-transfer

reaction like isomerization from HCN to CNH, the bond angle ]HCN changing

from 0° to 180° is a sensible choice. If the reaction involving an atom moving

directly from one donor to the acceptor, such as the atom transfer reaction from

AB · · · C to A · · · BC, the difference between to two bonds q = RBC −RAB is a

more descriptive driving coordinate.

Another simple but effective method is the direction-of-least-ascent, which is

often called the hill-climbing method.[64, 65] This method leads the structure to

go uphill towards the direction with the least energy ascending. It performs well
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for small molecules with a simple mechanism. When the molecules are large,

the least-ascent direction normally characterizes a conformational change (e.g., a

methyl rotation) instead of the desired chemical transformation. Therefore, for

large molecules, it is more reliable to follow the eigenvector of the Hessian matrix

that corresponds to the reaction path of interest.[66, 67]

The dimer method is an algorithm for this eigenvector following technique.[68–

71] In the dimer method, two points are kept at a fixed small distance. In each it-

eration, the curvature is calculated by finite difference between the points’ energies

along the axis. The direction of the next step is determined by rotating the dimer

to align with the lowest curvature direction. Then the dimer is displaced in this

direction. This allows the lowest-eigenvalue direction to be traced without explicit

computation of the Hessian. The cost of the dimer method is mainly determined

by the rotation of the dimers for the lowest eigenvalue mode.

Gradient-extremal path is an alternative method to construct a path from one

stationary point to another stationary point on the potential energy surface.[72–

74] At each stationary point, the gradient g is a eigenvector of the Hessian matrix

H(s)g(s) = 0 ·g(s). The gradient extremal path, x(s), is defined by the eigenvalue

condition,

H(s)g(s) = λ(s)g(s) (1.54)

where s is the arc length in the path and g(s) and H(s) are the gradient and Hessian

at x(s), respectively. Starting from any point on the potential energy surface, one

can follow Eqn.1.54 to generate a path towards a stationary point on the surface.

Because gradient-extremal paths pass through stationary points, paths starting

from different initial structures intersect at the stationary structures. There are
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also some drawbacks in the gradient-extremal method. It has the tendency to form

a circuitous path on the surface. The path generated from gradient-extremal is also

dependent on coordinate system. Finally, in each step, an analytical calculation

for Hessian matrix is required, so direct implementation of the gradient-extremal

path is computationally costly.

The reduced-gradient-following(RGF) method is also devised for stationary

points searching.[75–77] In RGF, the direction of gradient in each iteration is fixed

by a constant. Like the gradient-extremal path, RGF paths starting from different

directions intersect at the stationary points of the potential energy surface. Unlike

gradient-extremal paths, RGF paths do not require computing the Hessian at each

step.

All these methods have some intrinsic drawbacks as the algorithm is searching

for a one-dimensional parameterized path for the transition state. The performance

is good when the molecule is small. But when the system is large, these methods

are no longer reliable because of the high dimensionality of the potential energy

surface. Multi-dimensional surface walking is considered the most advantageous

choice when dealing with more complicated system.[78–81] One can select several

key internal coordinates involving in the reaction as the reduced space to generate

a reduced potential energy surface. The reduced surface is characterized by the key

internal coordinates while keeping all the other coordinates minimized. However,

multi-dimensional surface walking is computationally costly (with cost growing

exponentially with the number of coordinates retained), and selecting the right

key coordinates is crucial to the success of the algorithm. It is not that difficult

to identify processes where six or more key coordinates may be required.
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1.6.2 Double-Ended Methods

Double-ended methods (more generally, multi-ended methods) exploit the informa-

tion from the reactant and product (and, more generally, reactive intermediates)

to provide a more comprehensive description of the reaction and the transition-

state region. In double-ended methods, the reaction path is initially represented

by a sequence of points that interpolate between the reactant and the product.

During the optimization process, each point is optimized starting from its initial

guess structure towards a point on the minimum-energy reaction path.

One of the most popular double-ended method is nudged elastic band (NEB)

method.[82–90] In NEB method, the reaction path consists of several equally-

spaced points. All the points are connected by a virtual spring with zero equilib-

rium length.

V spring = 1
2

(
‖xi − xi−1‖2 + ‖xi+1 − xi‖2

)
(1.55)

At each point, the gradient of the point is the sum of potential surface and the

spring

g = gspring + gPES (1.56)

where gspring = dV spring

ds
and gPES is the surface potential gradient. The NEB

method projects out the perpendicular components of spring gradient and the

parallel components of the surface potential gradient during the optimization. The
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force at each point is thus

gNEB = gspring‖ + gPES⊥ (1.57)

gspring‖ = ττTgspring (1.58)

gPES⊥ = (I− ττT )gPES (1.59)

where τ is the unit vector tangent to the reaction path. The gspring‖ component in

gNEB is solely for maintaining equal distance between points while the gPES⊥ is used

to drag points downhill to the optimal position in the perpendicular space. This

separation decouples the interference of spring force from the relaxation process,

circumventing the corner-cutting problem of the (non-nudged) elastic band method

for curved reaction paths.

For some reactions, the energy of the system changes rapidly without enough

restoring force acting on it. This situation causes a kinky reaction path, which

slows down the convergence. To solve this problem, a switch function is introduced

into NEB method to gradually increase the perpendicular components of the spring

force.
˜gNEB = gNEB + f(φ)

(
gspring − gspring‖

)
(1.60)

where the switch function, f(φ), change from 0 to 1 as the angle of the path change

from 0° to 90°.

f(φ) = 1
2(1 + cos(π cos(φ))) (1.61)

The drawback of the NEB method is it couples neighbouring points on the reaction

path, resulting in a slow optimization process.

In the string method(SM), the reaction path is set to be a smooth one-dimensional
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curve connecting the reactant and product.[91–96] The curve is parameterized by

the reaction progress, x(t), where t is normalized to be 0 for the reactant and 1

for the product. The initial guess string is generated as an interpolation from the

reactant to the product. The string path is expected to fit the minimum energy

path(MEP) of the reaction after the optimization. This requires the tangent unit

vector τ of the path to be parallel to the gradient

τ = dx(t)
dt
∝ g (1.62)

The force of each point on the path when the point is not on the MEP is

F = −g⊥ = (I− ττT )gPES (1.63)

Following the Eqn.1.63 the force gradually evolves the initial guess towards the

desired MEP. Since it is impossible to optimize an infinite number of points on

the path, practical implementations of the string method represent the string path

with discrete states and connect the states by an interpolation curve, typically a

cubic spline. The objective of the optimization is to minimize ∑i

∥∥∥g(i)
⊥

∥∥∥ at each

state along the whole string path. One can adopt various numerical optimization

methods such as the steepest-decent or Quasi-Newton method to update the state.

Unlike the NEB method, there’s no direct spring energy between neighbouring

points. Less-coupled states make the string method converge more smoothly. How-

ever, without the nudged force, the states on the string must be redistributed to

ensure adequate coverage near the transition state region. Also, an extra "kinking"

force is required to straighten out the path, as the path sometimes doubles-back

on itself, especially in regions where the gradient is small.
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In the growing string method (GSM), the number of states representing the

path increases steadily.[97–100] Starting from both reactant and product, states

are added to the string until the paths meet and a complete reaction path is con-

structed. A parameterized density function and an indicator function are defined

to keep track of the newly added points and the spacing. For each growing-string

step, the density function and indicator function evolve to ensure a uniform distri-

bution of states. The optimization is carried separately between the two segments

of the united path. The highest energy point interpolated on the united path is the

optimal transition state guess for further optimization. To reduced the computa-

tional burden, low-level computational methods are used to sketch the string path

with a relative efficient optimization algorithm. Then a more advanced ansatz is

applied for a more accurate result. The GSM method works well in some cases

but, as molecule size increases, it becomes increasingly probable that the reactant-

starting-string and the product-starting-string never meet.

1.7 Summary

Effectively modelling chemical reactions requires accurate determination of key

molecular structures (reactant, product, intermediates, transition states), their

energies, and the reaction path between them. With these pieces of information,

the reaction mechanism can be explored in detail, and key thermodynamic and

kinetic properties of the chemical reaction can be modelled.

In this chapter, we reviewed molecular geometry optimization. While geometry

optimization is an old problem, it is also difficult, so it is still an active area for
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research. First, a good initial guess structure is important for geometry optimiza-

tion. It’s relatively easy to generate a good starting point for minimization to find

the optimal geometry for a reactant, product, or reactive intermediate. It’s more

challenging to find a good guess for transition states. In chapter.2, a new efficient

and unambiguous method is introduced. The generated structure is an interpo-

lation between the structures of the reactant and the product. Besides, a new

set of robust dihedrals are also implemented to facilitate a more comprehensive

representation of molecules during the optimization process.

The most efficient geometry optimization methods use the Taylor expansion of

the potential energy surface to provide local information about the surface near

a given molecular structure. When the third- and higher-order derivatives are

omitted, the update step is called the Newton step or quasi-Newton step, de-

pending on whether the Hessian is calculated exactly or approximated. Transition

state optimization requires the Hessian matrix to have one exact negative eigen-

value. We present a new hybrid method where reaction information is used to

identify key internal coordinates. The entries of the Hessian associated with the

reaction space are then explicitly evaluated through finite differences, while the

remaining elements are updated using traditional quasi-Newton methods. This

new approach combines the advantage of accurate Hessian information with a fast

update method. In Chapter.3, systematic testing proves this strategy is promising

for effectively converge transition state optimization.

In Chapter.5, comprehensive testing is conducted to measure the performance

of our new approach. Different initial guess structures are generated by a certain

amount of perturbation from the transition state structure. The difficulty increases

as the perturbation change from 0.1 to 0.4 atomic units. The result shows our new

37

http://www.mcmaster.ca/
http://www.sorbonne-universite.fr/


Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

approach is better than traditional approaches even when the initial guess is poor.

When it is especially difficult to find an initial guess for a transition state, it is

helpful to first find a (approximate) reaction path on the potential energy surface.

In Chapter.5, we introduced a new double-ended approach to generate the reaction

path by sequential bisection. The optimization technique is the same as the one in

Chapter.3 except the key coordinates are selected as the reaction vector. Unlike

the transition state optimization looking for a saddle point, at each iteration of

the path point, a local minimum in the hyperplane perpendicular to the reaction

path is found.

The key innovations of this thesis are released as a free and open-source software

package, GOpt, written in Python 3. GOpt is designed to work with Gaussian, but

is easily adapted to in quantum chemistry software method that prints energies

and gradients in a commonly accessible format. In addition to the methodological

innovations in GOpt, GOpt is distinguished from other packages by its reliance

on modern software engineering practices, including comprehensive documentation

and complete testing of code correctness, quality, and readability. GOpt is designed

to be used as a Python library by other Python packages, and its API is designed

to facilitate this usage.
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Chapter 2

Generating Initial Guesses for

Transition States with Redundant

Internal Coordinates and Robust

Dihedrals

2.1 Abstract

A new set of robust dihedral indicators are designed to circumvent the problem

of ill-defined geometry changes associated with the dihedral angle with collinear

bonds. Using the robust internal coordinates, an interpolation algorithm is used

to generate a high-quality initial guess for the transition-state structure using only

the reactant and product structures. A comprehensive assessment confirms the

robustness and efficiency of this procedure for guessing transition-state structures.
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2.2 Introduction

The performance of geometry optimization methods is sensitive to the coordinate

system that is used to specify the molecular geometry.[1–3] Using atoms’ Carte-

sian coordinates is the most straightforward choice, and is implemented by de-

fault in many modern quantum chemistry software packages including Gaussian,[4]

Psi4,[5] and HORTON.[6] However, during the molecular geometry changes, atoms’

Cartesian coordinates are tightly coupled together, which makes this set of coordi-

nates inefficient for geometry optimization.[7] For example, during a simple bond-

breaking process represented by Cartesian coordinates, one may keep one group

unchanged while moving the others away from the reaction site. To accomplish

the stretch, all atoms in the second group have to change their {x,y, z} coordi-

nates synchronously to maintain the same relative position. This coupling only

becomes more extensive, and more difficult to decode into chemical insight, for

more complicated reaction mechanisms.

Therefore, for geometry optimization, it is usually more efficient and intuitive to

optimize using internal coordinates including interatomic distances, the angle be-

tween bonds, and the dihedral/torsion angles for rotation around bonds. Internal

coordinates have direct chemical interpretation and are more weakly coupled, so

the second-derivative (Hessian) of the potential energy surface is more diagonally

dominant when using internal coordinates than when using Cartesian coordinates.

However, there are many different ways to choose internal coordinates, and in some

systems (especially heavily-branched molecules and molecules with rings), no sin-

gle intuitive choice for the internal coordinates exists, and defining a sensible set of

internal coordinates using, e.g., a Z-matrix,[8] becomes difficult. Especially in such
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cases, it is helpful to use redundant internal coordinates, wherein all chemically

intuitive interatomic bonds, bond angles, and dihedrals are included.[9–11] This

resolves the difficulty of making an arbitrary choice of internal coordinates, but

introduces two new problems:

• An arbitrary change in redundant internal coordinates generally does not

correspond to a physically realizable change in molecular geometry. For

example, in the ozone molecule, anytime the bond angles are changed so

that their sum is not 180 degrees, the structure is not physically realizable.

• When three or more atoms are collinear, a dihedral angle is ill-defined be-

cause all choices for the dihedral angle describing rotation about one of the

collinear bonds give the same molecular geometry. This causes numerical ill-

conditioning of the derivatives of the potential energy surface with respect

to the dihedral angle for systems with (nearly) collinear bonds.

Here we present solutions to these issues. First, we provide a specific method

for constructing redundant internal coordinates. Then we discuss how the ill-

conditioning of the dihedral angle can be removed by using an alternative specifi-

cation that is robust for near-linear bonds. We then present a method, based on

projecting points from the high-dimensional redundant internal-coordinate space

to the (3N−6)-dimensional manifold of physically-realizable molecular structures,

that maps nonrealizable changes in redundant internal coordinates to the closest-

possible physically-realizable change. This robust algorithm makes it possible to

perform computational studies using sets of redundant internal coordinates that
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are far from physically realizable, which allows larger step-sizes in geometry opti-

mization. It also allows one to generate good guesses for transition-state geome-

tries by interpolating between the reactant and product structures in redundant

internal coordinates.

2.3 Methodology

2.3.1 Normal Redundant Internal Coordinates

The geometry of a molecule with N atoms can be described by 3N Cartesian

coordinates, {Xi}3N
i=1. It can also be characterized by internal coordinates: bond

lengths, bond angles, dihedral angles, etc., {qi}Mint
i=1 . Each internal coordinate can

be calculated directly from the Cartesian coordinates:

qbondAB = ‖RAB‖ (2.1)

qangleABC = cos−1
(

RBA ·RBC

‖RBA‖‖RBC‖

)
(2.2)

qdihedABCD = cos−1
(

RBA ×RBC ·RCB ×RCD

‖RBA ×RBC‖‖RCB ×RCD‖

)
(2.3)

where RAB is the interatomic vector in Cartesian coordinates,

RAB = (xB − xA, yB − yA, zB − zA) (2.4)

Since the transformation from Cartesian to internal is a non-linear transfor-

mation, the inverse cannot be expressed as a matrix. However, small changes in

Cartesian coordinates can be mapped into small changes in internal coordinates

by a linear transformation. Specifically, the Jacobian matrix of the transformation
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is called the Wilson B matrix, with elements:[12]

bij = ∂qi
∂xj

(2.5)

Owing to the redundancy of the internal coordinates, the B matrix is rectangular

with M rows and 3N columns; typically M � 3N . For a change in Cartesian

coordinates δx, the corresponding change in internal coordinates can be expressed

as:

δq = B · δx (2.6)

Since the internal coordinates are invariant to molecular translations and rota-

tions but the Cartesian coordinates are not, the Wilson B matrix is always sin-

gular. Therefore the Moore-Penrose pseudoinverse, B+, is used for the inverse

transformation,

δx = B+ · δq (2.7)

Given a set of Cartesian coordinates {x0}, we can easily construct a set of

internal coordinates {q0} through 2.1 - 2.3. However, given an arbitrary set of

redundant internal coordinates, {q1}, it may not be possible to reconstruct a

corresponding set of Cartesian coordinates. If {q1} is close to the known x0(q0),

one can use 2.7 to estimate the Cartesian structure,

x1 ≈ x0 + B+(q1 − q0) (2.8)

If the internal coordinates corresponding to x1 are not close enough to q1, then

we can iterate this procedure by setting x0 = x1 and q0 = q(x1) and reevaluate

Eq. (2.8) until eventually convergence,[10, 11, 13–26] which occurs where x0 and
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x1 are sufficiently close to each other. This fixed-point iteration method is used in

most geometry optimization software, but it does not always converge.

2.3.2 Robust Redundant Internal Coordinates

Inspired by the method for selecting internal coordinates in the Dalton pro-

gram,[27] we specify a protocol to define a set of redundant internal coordinates.

Interatomic Distance

Five types of interatomic distances are considered.

1. Regular (covalent) bonds are defined between all pairs of atoms, α and β,

whose distance is less or equal than the 1.3 times the sum of their covalent

radii:

Rαβ ≤ 1.3 ∗ (rcovα + rcovβ ) (2.9)

2. Hydrogen bonds are designated between hydrogen atoms covalently bonded

to one atom with strong electronegativity, X = N, O, F, P, S, Cl, and located

in the peripheral area of another strong electronegative atom, Y = N, O, F,

P, S, Cl. The H-Y distance is required to be less than 0.9 times the sum of

their van der Waals radii and the angle between X-H-Y must be larger than

90°.

RHY ≤ 0.9 ∗ (rvdWH + rvdWY ) (2.10)

]XHY > 90° (2.11)
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3. Interfragment bonds are included when the system has more than one frag-

ment. Atoms connected by a regular bond are assigned to the same fragment

group in the system. Between different fragments, interfragment bonds are

added.

(a) If each fragment is a single atom, then the interatomic distance is in-

cluded.

(b) If one fragment is an atom and the other fragment is polyatomic, three

coordinates are added, including at least two inter-fragment bonds.

(c) If both fragments are polyatomic, six internal coordinates, including at

least two inter-fragment bonds, will be added.

In cases (b) and (c), at least two interfragment bonds are necessary to specify

the relative positions of the fragments. By default, the two shortest interfrag-

ment bonds are selected. Additional interfragment bonds are added when

atoms in different fragments are closer than 2 Å or closer than 1.3 times the

shortest interfragment distance.

RXY ≤ max(1.3 ∗Rmin
inter, 2Å) (2.12)

In some cases (e.g., two sheet-like molecules stacked on top of each other),

the number of interfragment bonds becomes prohibitively large. To avoid

this, the total number of bonds is not allowed to exceed the number of non-

hydrogen atoms in the fragments.
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4. To describe rotations of functional groups linked by long linear chains, a

special linear-chain bond is defined. Specifically, for a molecule with a long-

chain structure, the distance between the first and last atoms of the chain is

added.

5. Auxiliary bonds are added between any two atoms that are closer than 2.5

times the sum of their covalent radii is counted. Most auxiliary bonds de-

scribe Urey-Bradley (1-3) interactions.[28] Unlike the aforementioned bond

types, auxiliary bonds are not used when constructing bond angles and di-

hedrals.

RXY ≤ 2.5 ∗ (rcovx + rcovy ) (2.13)

Bond Angles

For every atom α that connects two other atoms β, γ by non-auxiliary bonds, the

angle ]βαγ is counted as an essential internal coordinate.

Conventional Dihedral Angles

Dihedral ]αβγδ is defined as the angle between two planes, the first defined by the

positions of atoms αβγ and the second defined by the positions of atoms βγδ. The

dihedral angle can therefore be computed as the angle between the normal vectors

of these planes. The normal vectors can be obtained from the cross products of

the unit vectors in that plane,

n̂αβγ = R̂βγ × R̂βα∥∥∥R̂βγ × R̂βα

∥∥∥ (2.14)
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where R̂βα denotes the unit vector of bond linking atom β and α,

R̂βα = Rα −Rβ

‖Rα −Rβ‖
(2.15)

The conventional dihedral angle is computed as angle between the normal vectors

from each plane.

]αβγδ = cos−1 (n̂αβγ · n̂βγδ) (2.16)

If one were to include all possible dihedrals in the system, an enormous number

of internal coordinates would be obtained. To reduce the unnecessary redundancy,

we first restrict the dihedrals to exclude auxiliary bonds. Then, given a (non-

auxiliary) bond Rβγ, among all the atoms connected to β, we select α as the one

with the most bonded neighbours. Any atoms that are connected to γ are included

in the dihedrals αβγ∗. Symmetrically, δ is selected to be the most bonded atom

among γ’s neighbour atoms. All dihedrals ∗βγδ are appended to the internal

coordinates set.

The above description doesn’t include every situation. Sometimes, the dihedral

is consist of planes αβγ and δβγ where α and δ are both bonded to atom β. This

kind of improper dihedral is used to describe puckering motions for the central

atom in near-planar structures. For this situation, we will include the dihedral,

denoted as αβγδ, if the sum of the angles ]αβγ, ]αβδ, and ]γβδ is greater than

345°.

Robust Dihedral indicators

There are still numerical issues associated with torsions around bonds for which

the αβγ angle or the βγδ angle is nearly 180 degrees. In such cases, a small change
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in the position of the terminal atom can cause an enormous change in the dihedral

angle. To circumvent the problem, we developed two new robust dihedral descrip-

tors to replace the traditional dihedral angle in our implementations. Specifically,

we use the cosine angle between the two terminal bonds αβ and γδ bonds and the

volume of the parallelepiped enclosed by αβγδ.

R̂βα · R̂γδ (2.17)

R̂βγ ·
(
R̂βα × R̂γδ

)
(2.18)

These robust dihedral descriptors prevent the failure of redundant internal coor-

dinates in the geometry optimization algorithms because, when the position of an

atom is changed by a small amount, the corresponding changes in the robust dihe-

dral descriptors is also small. To evaluate the performance of the robust dihedral

indicators, a comprehensive test is performed in the next section.

2.3.3 Mapping between Internal coordinates and Carte-

sian coordinates

Based on the protocol we proposed in the previous section, the number of robust

internal coordinates Mint will be far greater than 3N - 6. Therefore, a randomly

selected value for the internal coordinates is exceedingly unlikely to correspond to

a realizable molecular structure. The feasible structures of molecule define a 3N -

6 Manifold inside the M -dimensional space of internal coordinates.
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Figure 2.1: Illustration of internal coordinates consist of 4 atoms

In order to map every point from the M-dimenstional space onto the 3N − 6-

dimensional manifold consistently, a mapping scheme f : RM 7→ R3N−6 is con-

structed as follow. Given a set of redundant internal coordinates of interest,

q(target), the closest point on the 3N - 6 q(x) manifold, measured by following

cost function, is selected,

x(q(target)) = arg min︸︷︷︸
x

(q(x)− q(target))TW(q(x)− q(target)) (2.19)

where W is a weight matrix with only diagonal elements. It is used to weight the

importance of each internal coordinates when conducting the manifold mapping.

Typically, W is a identity matrix. However, alternative weightings are sometimes

desired. For example, if some internal coordinates are selected to be frozen during

an optimization, a large weight forces that internal coordinate to be retained.

Similarly, when conventional dihedrals are included in the system, its weight is
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adjusted to sin2 ]αβγ sin2 ]βγδ to mitigate problems with the near-collinear bonds.

In the objective function, cosine functions are applied to angles with periodicity

and square functions are deployed as the main penalty function for bonds:

costbond =
(
q(x)− q(target)

)2
(2.20)

costangle =
(
cos(θ(x))− cos

(
θ(target)

))2
(2.21)

For the conventional dihedral,

costdihed =
(

cos(φ(x))− cos
(
φ(target)

))2
+
(

sin(φ(x))− sin
(
φ(target)

))2
(2.22)

The complete objective function to be minimized is thus,

f(q) =
∑
bonds

(
qαβ(x)− q(target)

αβ

)2
+

∑
robust

(
qαβγδ(x)− q(target)

αβγδ

)2

+
∑
angle

(
cos(θαβγ)− cos

(
θ

(target)
αβγ

))2

+
∑

dihedral

(
cos(φ(x))− cos

(
φ(target)

))2
+
(

sin(φ(x))− sin
(
φ(target)

))2
(2.23)

To generate a sensible initial guess structure, a double-ended method is pro-

posed in conjunction with redundant internal coordinates and the manifold pro-

jection method. We start with Cartesian coordinates of the reactant and product.

Following the protocols introduced in the last section, the redundant internal coor-

dinates are generated for both structures. We make a line segment that interpolates

from the reactant to the product. Without further information, the midpoint of

the segment is selected as the guess structure for the transition-state optimization,
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qguess = (1− p)qreactant + pqproduct (2.24)

In general, the guess in the redundant coordinates is not physically realizable, so

the manifold projection method is applied to locate the nearest Cartesian repre-

sentation. We observe that the final structure is, in most cases, an excellent initial

guess for transition-state optimization.

Cguess(p) = min︸︷︷︸
x

|q(x)− [(1− p)qreactant + pqproduct]|2w (2.25)

xguess(p) = arg min︸︷︷︸
x
|q(x)− [(1− p)qreactant + pqproduct]|2w (2.26)

where p is the fractional variable determining the interpolation ratio. When p = 0,

the guess structure is equivalent to the reactant, while p = 1, the guess is the

same as the product. The choice of p value indicates the resemblance of the

guess to either of the two known structures. Without further information about

the reaction mechanism, it is sensible to select p = 0.5 as an impartial starting

value. The redundant internal coordinates corresponding to p = 0.5 are rather far

from the manifold of realizable molecular structures. For this strategy, then, it is

important that the robust manifold projection technique is being used to find the

molecular structure, because the fixed-point iteration method commonly used in

the literature is only robust when the redundant internal coordinates are nearly

realizable.

64

http://www.mcmaster.ca/
http://www.sorbonne-universite.fr/


Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

2.4 Results and Discussion

2.4.1 Testing Protocol

A set of 32 chemical reactions involving various mechanisms is constructed. It

includes proton or hydrogen transfer reactions, pericyclic reactions, Diels-Alder

reactions, intramolecular reactions, SN2 reaction, free radical reactions, etc.. De-

tailed reaction information is presented in Table 2.1.

All calculations are computed at the Hartree-Fock level with the 6-31+G basis,

except for reactions 21 and 25, where the 6-31+G(d,p) basis was used. (For these

reactions, exceptionally slow convergence was obtained with the 6-31+G basis set.)

We are not asserting that this computational method is accurate, but it defines a

potential energy surface with well-defined barriers, and is thus suitable for test-

ing transition-state optimization methods. The reactant and product structures

used in the double-ended method are obtained from an intrinsic reaction coordi-

nate(IRC) process from the known, pre-optimized, TS.[29] The transition state

optimization update is performed by GOpt, a geometry optimization package de-

veloped by us along with Gaussian 16 for energy and gradient evaluation at each

iteration.

2.4.2 Overview of result

When constructing the guess structure, the union of the redundant internal co-

ordinates from the reactant and product structures are used. Robust dihedrals

and conventional dihedrals are deployed separately to form the respective initial
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guesses, as well as in the following optimization iterations. All other parame-

ters are set to be the same. The purpose of this study is to evaluate the effi-

ciency, robustness, and consistency of the two sets of dihedrals, and to establish

the reactant/product averaging technique as a reasonable strategy for generating

transition-state guesses.

2.4.3 Result and Discussion

Table2.1 presents our computational data. First, we establish that the mean

between the reactant and product structures works as an initial guess for the

transition-state optimization. As a first indication, we evaluate whether the transition-

state guess has one, and only one, negative eigenvalue. Both definitions for the

dihedral coordinate work well here: the average number of negative eigenvalues

are 0.97 and 1.03 respectively, within the same error range of ±0.03 (see Table

2.2). This isn’t a significant difference.

When used in optimization, the advantage of the robust dihedrals becomes

clear. Transition-state optimizations with conventional dihedrals fail for reactions

24, 25, 26, 27, and 30, all of which have ill-defined conventional dihedrals at the

initial geometry. When both methods work, usually the same number of iterations

(13 cases) are required, with conventional dihedrals converging more rapidly in

9 cases and robust dihedrals converging more rapidly in 5 cases. The additional

iterations required by the robust dihedrals can be justified by the fact that each

conventional dihedral is replaced by two robust dihedrals: as the dimensionality

(i.e., the number of internal coordinates) is higher when robust dihedrals are used,

it is sensible for the number of iterations to increase also. Note, however, that in
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difficult cases (e.g., reaction 21 before we added polarization functions to the basis

set), the robust dihedrals work significantly better (36 vs. 71 iterations).

For reactions where the conventional dihedral fails, you can eliminate the prob-

lematic coordinate. Table 2.3 shows the number of iterations required if this is

done. This is not suitable as a general-purpose strategy because by eliminating

the defective collinear dihedral, the ability to describe non-collinear structures is

removed and the optimization is constrained to collinear structures. This works

for these reactions (where the true transition-state has a collinear dihedral, but

does not work in general. For these reactions, the constrained transition-state

optimization (with omitted dihedrals) tends to converge a bit more rapidly when

conventional dihedrals are used.

2.5 Conclusion

In this chapter, we proposed a set of protocols to generate the redundant inter-

nal coordinates. First, five types of bonds are built, including covalent bonds,

hydrogen bonds, interfragment bonds, long-distance bonds for linear chains, and

auxiliary (Urey-Bradley) bonds. Second, the cosine of all the bond angles be-

tween all pairs of non-auxiliary bonds are added; the cosine is used because it

naturally includes the periodicity of the bond angle. Adding dihedral angles for

all (nonauxiliary) bonds leads to a prohibitively large number of dihedral coordi-

nates. In GOpt, for every non-auxiliary bond βγ, the atoms α is selected as the

atom bonded to β with the most bonds connected to other atoms. Then all possi-

ble αβγ are included. Symmetrically, the dihedrals defined by ∗βγδ are also added

to the system where δ is set to be the atom with the most bonded atom. we also
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introduced a new set of robust dihedral indicators to deal with the troublesome

linear system in geometry optimization. Based on the tests, the robust dihedral

has shown promising results compared to the traditional dihedrals, which fail for

5 of the 32 reactions considered, and perform poorly in one other case. However,

for cases where conventional dihedrals work well, using robust dihedrals tends to

increase the computational cost slightly, by about 10%.

The other issue associated with redundant internal coordinates is that convert-

ing Cartesian to/from redundant internal coordinates is not unique. Notably, most

values of the redundant internal coordinates do not correspond to any permissible

molecular structure. We avoid this using a manifold projection method to find the

Cartesian structure whose redundant internal representation is as close as possible

to the specified redundant internal coordinates.

As an initial application of the proposed techniques for generating redundant

internal coordinates, we generated initial guesses for transition-state optimizations

from the average of reactant and product structures in internal coordinates. This

procedure provides excellent initial guesses for the transition-state geometry for

the reactions considered: the Hessian of the initial-guess structure has exactly one

negative eigenvalue in 28 of 32 reactions and the optimization is 100% successful

and requires on average less than 8 iterations when robust dihedrals are used.

When conventional dihedrals are used, the number of iterations is about 10% less,

but the optimizer fails for 5 reactions.

In conclusion, we recommend the average of the reactant and product struc-

tures in internal coordinates as a suitable initial guess for geometry optimization.

We also recommend using our new robust dihedral descriptor in most cases, as
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avoiding the human intervention required to remedy failed optimizations is gen-

erally more salient than the slight increase in computer time associated with the

robust dihedral descriptors.
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Table 2.1: The number of iterations and negative eigenvalues
for generated guess structures. An entry of − indicates that the
calculation failed due to ill-defined dihedrals.

index Reaction Num. of neg. eigval. Num. of opt. iter.
Conv. Dihed Spe. Dihed Conv. Dihed Spe. Dihed

1 C4H6 + C2H4 1 1 6 6
2 C5H6 + C2H4 1 1 4 4
3 C4H4Si+ C2H4 1 1 4 4
4 C6H8O + C2H4 1 1 5 5
5 C4H5N + C2H4 1 1 5 5
6 C4H6 1 1 4 4
7 C6H8 1 1 3 3
8 C8H8 1 1 4 4
9 C12H18 1 1 6 6
10 N2O + C2H4 1 1 5 5
11 N3 + C2H4 1 1 12 11
12 N2C2 + C2H4 1 1 5 6
13 ONC + C2H4 1 1 8 11
14 N2CH + C2H4 1 1 6 5
15 HF + C2H4 1 1 6 10
16 C2H4 +H2 1 1 9 10
17 HCN +H2 1 1 6 6
18 HNC +H2 1 1 11 7
19 C2H6 + SiH2 1 1 5 5
20 HONS 1 1 5 5
21 HNCS 1 1 6 6
22 C3H4O2 1 1 6 7
23 C6H8 1 1 6 8
24 CH3F + Cl− 1 1 - 10
25 CH3Cl + F− 1 2 - 8
26 CH3F + F− 0 1 - 11
27 CH3OH + F− 1 1 - 6
28 CH3OH + ·OOH 1 1 10 11
29 CH3OH + ·CH3 2 1 9 11
30 HF + ·CH3 1 2 - 7
31 N2O + ·H 1 1 9 13
32 H2O + ·CH3 0 0 14 16
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Table 2.2: Average performance of conventional dihedrals and
robust dihedrals

Stats
Methods Conv. Dihed Special Dihed

Average Neg. Eigenvalues 0.97 1.03
Average iteration 7.15 7.38
Convergence rate 84.4% 100%
Median iteration 6 6

Table 2.3: Optimization iteration needed after removing ill-
defined conventional dihedrals

Index Reaction Conventional Special
24 CH3F + Cl− 6 10
25 CH3Cl + F− 5 8
26 CH3F + F− 8 11
27 CH3OH + F− 7 6
30 HF + ·CH3 20 25
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Chapter 3

A Robust Algorithm for geometry

optimization and transition state

search with Reduced Internal

Coordinates

3.1 Abstract

A robust algorithm for geometry optimization in redundant internal coordinates,

with robust dihedral descriptors that prevent failures due to collinear bonds, is

proposed. One of the salient advantages of this method is the separation of a

subset of key internal coordinates, corresponding to the bond-breaking and bond-

forming processes. Quasi-Newton updates are used at each iteration, but when the

elements of the Hessian matrix associated with key coordinates are judged to be

inaccurate, they are approximated with finite differences of gradients. Optimiza-

tion steps are controlled using a trust radius, and a Hessian modification scheme

is used to ensure that the Hessian matrix has a chemically sensible eigenstructure.
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A set of 32 reactions consisting of various reaction types are used to assess the

performance of our algorithm and compare it to the popular Berny algorithm. All

the energy and gradient evaluation are computed in Gaussian[1]. Compared with

Berny algorithm, our new approach exhibits more robust and consistent results.

The new algorithm and all the advanced features will be accessible in our coming

open-source Python package GOpt.

3.2 Introduction

To effectively model a chemical reaction, one needs the structures of the reactant,

product, and the transition state (TS) connecting them. Mathematically, these

structures correspond to stationary points on the potential energy surface(PES)

where the reactant and product are local minima and the TS is the first-order

saddle point. It’s relatively easy to locate the reactant and product as, given a

sufficiently accurate initial guess structure, one may follow the gradient downhill

to the minimum. However, finding the TS is a more challenging task, both because

it is more difficult to form an initial guess for the TS and because it is a saddle

point, so it is a maximum along one direction and a minimum in the others.

Many sophisticated geometry optimization methods have been developed. There

are three popular types of transition-state optimization methods. First, one can

perform a straightforward optimization starting from a guess structure. This

method is effective when the guess structure is relatively close to the real transition

state. The performance is highly dependent on the quality of the guess structure

and the researcher’s chemical intuition. The other two methods can be divided
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into two categories: single-ended methods and double-ended methods according

to whether there is one, or two, starting point structures.

The most popular optimization method is the Berny algorithm.[2] It starts from

a provided initial guess structure and an initial Hessian matrix. The Berny algo-

rithm displaces the guess along the direction with the negative eigenvalue. The

Berny algorithm is regarded as one of the most effective algorithms for geometry

optimization. It is the default option in Gaussian software for geometry optimiza-

tion. Like all methods based on a single initial structure, the Berny algorithm is

sensitive to the initial structure chosen, and fails to perform robustly when the

initial Hessian does not have one, and only one, negative eigenvalue.

Single-ended methods normally start from the reactant or the product. An

ascending direction is selected to drive the energy uphill towards the transition

state. The simplest method is the coordinate driving.[3] One coordinate is selected

as the dominant coordinate to propel the reaction process. More advanced methods

such as least-ascent,[4–7] and dimer-methods[8–11] are introduced to utilize the

eigenvector information. Gradient-extremal-method[12–14] and reduced-gradient-

following[15–17] are also effective methods in generating pathways passing through

stationary points. These methods do not give the lowest-energy-path but they

potentially discover more, and different, transition states.

Two-ended methods, on the other hand, do not directly rely on the initial guess

structure. These methods start with the input reactant and product coordinates.

Many families of methods, such as the nudged elastic band (NEB) methods,[18–26]

string methods (SM),[27–32] and growing string methods (GSM),[33–36] have been

developed. Among these methods, Synchronous Transit-Guided Quasi-Newton
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(STQN) is one of the most renowned. STQN uses a linear synchronous tran-

sit(LST)[37] or quadratic synchronous transit(QST)[38] method to connect the

two end points. A minimum-energy path is obtained on the PES. The interpo-

lated highest energy point is taken as the initial guess for TS optimization. It’s a

relatively expensive approach since multiple energy and gradient evaluations are

needed.

Though continual progress has been made for various computational meth-

ods, TS optimization is still challenging. Optimization Failures frequently occur.

Among the most common failures are (1) failures due to the underlying quantum

chemistry software, typically because converging the self-consistent field (SCF)

calculation becomes problematic, (2) unphysical structures obtained during the

optimization process, and (3) inaccurate Hessian matrix approximations leading

to poor convergence or convergence to an undesired structure. We will address the

latter two of these issues in this work.

Many factors contribute to the success of a TS optimization, such as the choice

of coordinates, the selection of initial Hessian matrix, the Newton or Quasi-Newton

update method, and the step-size control strategy..[39–41] Motivated by the prob-

lems of existing methods, we herein propose a robust and efficient algorithm, the

GOpt algorithm.

In GOpt, we adapted the redundant internal coordinates from the work of Pu-

lay.[42] We specify a set of redundant internal coordinates with bonds, angles, and

robust dihedrals to determine the molecular structure. The redundancy of inter-

nal coordinates is eliminated by forming a set of 3N − 6 delocalized coordinates

through linear combination. The method implemented in GOpt is similar to the

one proposed by Baker.[43, 44]
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3.3 Methodology

3.3.1 Overview

Geometry optimization is difficult because the number of stationary points grows

exponentially as the number of atoms increases. This is especially problematic

for transition states, where a specific transition state connecting the reactant and

product structure is desired, and not another, quite possibly nearby, transition

state associated with a different chemical transformation or conformation change.

At a mathematical level, then, geometry optimization is nearly intractable. Yet

chemists are frequently able, through intuition and experience, to suggest plausible

molecular structures for reactants, products, and transition states.

To build a mathematical formulation for these chemical insights, we note that

chemists’ intuition is guided by the realization that during a chemical reaction, typ-

ically only a few key internal coordinates change significantly. These coordinates

are typically interatomic distances associated with the formation and fracture of

chemical bonds and/or the opening or closing of bond angles. These key chemi-

cal coordinates define a reduced-dimensionality potential energy surface (all other

coordinates are minimized over or thermally-averaged). A system with M internal

coordinates can then be characterized, mechanistically, with many fewer key coor-

dinates; these key coordinates are commonly called the reduced coordinates, be-

cause they can be used to parameterize a reduced-dimensionality potential energy

surface. The most accurate way to effectively identify the key internal coordinates

is to allow the researcher running the software to specify them explicitly. However,

for large datasets, this may be impractical, and then key internal coordinates can

be identified based on the changes between the structure of the reactants and the
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products.

To use this intuition in a practical geometry optimization method, we treat the

key internal coordinates and the non-key internal coordinates separately. After

selected the K key internal coordinates, the remaining non-key coordinates are

determined. The non-key coordinates are then reduced to form a nonredundant

set of 3N – 6 – K coordinates, all of which are linear combinations of the original

redundant internal coordinate set. Combining the key internal basis and the non-

key internal basis, a reduced-internal transformation matrix, V is obtained.

During the optimization process, we map the molecular structure from Carte-

sian coordinates to the redundant internal coordinates, then to reduced internal

coordinates. Using the V matrix, the conversion of the gradient and Hessian to

nonredundant reduced+nonreduced coordinates is straightforward, and an opti-

mization step can be determined. Because determining the Hessian is expensive,

but having accurate values for the Hessian is most important for the block asso-

ciated with key coordinates, the key-coordinate-Hessian is approximated with a

finite-difference approximation, and the eigenstructure of the key-coordinate and

the non-key-coordinate blocks of the Hessian are forced to have appropriate eigen-

structure.

With these revisions, a quasi-Newton algorithm for both geometry minimization

and transition-state finding becomes straightforward. The cost is superficially

more than a typical quasi-Newton method because additional gradient calculations

are needed for the finite-difference updates of the key-coordinate portions of the

Hessian, but these updates are infrequently required and relatively affordable, and

their impact on increasing the convergence rate is important.
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3.3.2 Selection of redundant internal coordinates

The details of selecting redundant internal coordinates in GOpt is fully described

in Chapter 2. Here, we briefly recap its salient features. Interatomic bonds, bond

angels, and dihedrals are used to fully describe the molecular structure. Five types

of bonds are built including covalent bonds, hydrogen bonds, interfragment bonds,

long-distance bonds for linear chains, and auxiliary bonds. All these bonds are

measured in atomic unit. Bond angles are measured between any two non-auxiliary

bonds. The value is measure in cosine function rather to provide more robust

performance for nearly collinear structure and to directly include the periodicity

of the bond angle. One of the major improvements is the selection of dihedrals

compared to normal redundant internal coordinate schemes. In GOpt, for every

non-auxiliary bond βγ, the atoms α is selected as the atom bonded to β with

the most bond connections to other atoms. Then all possible αβγ∗ dihedrals are

included. Symmetrically, the dihedrals defined by ∗βγδ are also added to the

system where δ is set to be the atom with the most bonds. Conventional dihedral

angles fail when three atoms in the dihedral are located near one line. A small

change in the Cartesian coordinates of these atoms may result in an enormous

shift in the dihedral angle. To circumvent the problem, we proposed the robust

dihedral indicators as substitutes. They are defined as,

R̂βα · R̂γδ (3.1)

R̂βγ · (R̂βα × R̂γδ) (3.2)
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where

R̂βα = Rα −Rβ

|Rα −Rβ|
(3.3)

is the unit vector along the direction of βα bond. It’s worth noting the geomet-

rical meaning of these indicators. Eqs 3.1 represents the cosine angle of the two

ending bonds included in the dihedral. Eqs 3.2 computes the volume of the paral-

lelepiped enclosed by αβγδ. These indicators can effectively prevent the collapse

of redundant internal coordinates in the geometry optimization process. Unlike

conventional dihedral angles, when a small perturbation is imposed on one atom,

the corresponding changes in the robust dihedral descriptors are small as well,

ensuring the consistency of the coordinate transformation.

3.3.3 Coordinate transformations

Cartesian coordinates are the direct and straightforward representation for the

positions of the atoms in a molecular structure, but they are neither numerically

efficient nor chemically intuitive. Conversely, internal coordinates are effective

for geometry optimization and chemically intuitive, but they are less facile for

computing energy and its derivatives in quantum chemistry software. A robust

transformation method for interconverting Cartesian and redundant internal co-

ordinates is therefore essential. Because the transformation from Cartesian to

internal is not linear, the best approximation for the transformation is by Wilson

B matrix, which is the Jacobian matrix of the transformation from the 3Natoms

Cartesian coordinates to the Mint internal coordinates, with entries:

bij = ∂qi
∂xj

(3.4)
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These elements can be obtained from trigonometry. Usually, the B matrix is

rectangular because there are usually far more internal coordinates than the 3N

Cartesian coordinates, whereN denotes the number of atoms. Since only 3N−6(5)

degrees of freedom are needed to fully specify a molecule’s structure, the B matrix

is also singular, with only 3N − 6(5) nonzero singular values. The corresponding

nonsingular vectors are called the delocalized internal coordinates. By rearranging

eqn. 3.4, we obtained the matrix format,

Bδx = δq (3.5)

This equation expresses the change of internal coordinates induced by a small

change in Cartesian coordinates. Because B matrix is rectangular, there isn’t

a unique inverse. We use the Moore-Penrose pseudoinverse of B matrix for the

inverse transformation,

B+δq = δx (3.6)

It’s worth noting that not every change in internal coordinates is realizable. Con-

sider, for example, three atoms forming a triangular structure, characterized by

three bond lengths and three bond angles. You cannot change any bond angle in

isolation, because any change that leads to the sum of three bond angles other than

180° is not physically realizable. To convert these nonphysical internal coordinates,

we project them onto a realizable space spanned by B matrix with minimum error

distance,

δq̃ = P̂δq (3.7)
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where

P̂ = BB+ (3.8)

3.3.4 Transformation between Internal and Cartesian Co-

ordinates

Here we use x, gx, Hx and q, gq, Hq to denote the energy, gradient, and Hessian in

Cartesian and internal coordinates, respectively. Given the Wilson B matrix,

gx = BTgq (3.9)

Hx = BTHqB +K (3.10)

where K is

Kjk =
∑
i

[gq]ib′ijk (3.11)

where b′ijk is the derivative of the elements in the B matrix,

b′ijk ≡
∂2qi

∂xj∂xk
= ∂bij
∂xk

(3.12)

Similarly, the energy derivatives in internal coordinates can be computed through,

gq = (BT )+gx (3.13)

Hq = (BT )+(Hx −K)B+ (3.14)

Equation 3.13 is essential because most quantum chemistry software compute en-

ergy and its derivatives in Cartesian coordinates.
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Eqs. 3.5 and 3.6 are only valid for interconverting infinitesimal changes in Carte-

sian and intenral coordinates. During the process of a geometry optimization in

internal coordinates, larger changes are made. Specifically, starting from a real-

izable molecular structure with Cartesian coordinates x(k) and its corresponding

internal coordinates q(x)(k), after a non-infinitesimal step in internal coordinates

s, the new internal coordinates would be

q(k+1) = q(x)(k) + s (3.15)

This new configuration in internal coordinates space will rarely be located on the

3N − 6 manifold realizable by Cartesian coordinates. Specifically, the Cartesian

representation,

x = x(k) +B+s(k) (3.16)

will not be the exact counterpart of the target internal coordinates. To maintain

a consistent transformation between the two system, we choose xk+1 as the closest

point on the 3N − 6 manifold to the target internal value, qk+1,

x(k+1) ≡ arg min︸︷︷︸
mathbfx

|q(x)− q(k+1)|2 (3.17)

More details about the manifold projection strategy can be found in 2.

3.3.5 Select key internal coordinates in optimization

For most chemical reactions, the active reaction sites can be characterized by a

few key internal coordinates. These coordinates are usually related to the bond

formation/breaking and bond angle opening/closing. Motivated by this idea, a
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reduced dimensional potential energy surface can be generated to describe the

energy changing during the reaction. Given a system consisting of Mint internal

coordinates, the crucial information related to the reaction mechanism is located

in the K-dimensional key internal coordinate space. The PES around the reaction

site is chiefly dependent on the changes of these key internal coordinates.

It is best for researchers to specify the key coordinates based on the chemical

process(es) of interest. However, if no user input is provided, it is also possible to

automatically select the key internal coordinates. A set of protocols are conducted

to select proper key internal coordinates based on the difference between the re-

actant and product structure. Initially, a set of internal coordinates is specified

as the union of the internal coordinates from the reactant, product, and the TS

guess structure.

A given coordinate is selected as a key internal coordinate if:

• An inter-atomic distance changes more than half the sum of the composing

covalent radii

• An angle changes by at least 30◦

No intuitive and reliable criterion can be easily generalized to describe the be-

haviors of dihedrals, so they are not included in the auto-selection scheme. Note,

however, that in some reactions (e.g., nucleophilic elimination reactions for cyclic

hydrocarbons) it is clearly appropriate to include a dihedral among the key coor-

dinates.
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3.3.6 Construct delocalized reduced internal coordinates

We developed a geometry optimization algorithm based on reduced internal coordi-

nates. Our strategy is similar to the idea proposed to Baker.[43, 44] The geometry

of a chemical system can be specified by 3N − 6 independent coordinates. To ef-

fectively represent the reaction process without introducing extra redundancy, we

treat the key internal coordinates and the non-key internal coordinates separately.

After selected the K key internal coordinates, the non-key coordinates are con-

structed as a linear combination of all the other redundant internal coordinates.

v(j) =
Mint∑
i=1

v
(j)
i qi (3.18)

The V matrix to transform reduced delocalized internal coordinates to redundant

internal coordinates. is denoted as

V =



v
(1)
1 v

(2)
1 . . . v

(3Natoms−6)
1

v
(1)
2 v

(2)
2 . . . v

(3Natoms−6)
2

... ... ...

v
(1)
Mint

v
(2)
Mint

. . . v
(3Natoms−6)
Mint


(3.19)

To construct the V matrix, 3Natoms−6 non-zero singular vectors are selected from

the Wilson B matrix through singular value decomposition. These vectors are

denoted as

a(i) =
[
a

(i)
1 a

(i)
2 . . . a

(i)
Mint

]
i = 1, 2, . . . , 3Natoms − 6 (3.20)
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These vectors spans the same space as Baker’s delocalized internal coordinates

since the singular vectors are eigenvectors of matrix BBT.

BMint×3N = UMint×Mint
·ΣMint×3N ·V∗3N×3N (3.21)

BBT = UMint×Mint
·Λ ·UT

Mint×Mint
(3.22)

To separate the changes in key and non-key internal coordinates, we impose a

small changes on each key internal coordinate successively without changing other

internal coordinates. This operation usually results in an unphysical structure.

We then project the unrealizable structure onto the physical space through,

c(j) = Pê = BB+ê(j) (3.23)

where ê(j) is a unit vector with 1 in the jth position but 0 anywhere else. The

vectors c(j) are not orthonormal. To form a well-behaved basis, we orthogonalize

them through,

CCT = VΛVT (3.24)

where C = [c(1), c(2), . . . , c(k)]. We pick the eigenvectors vi from V with non-zero

eigenvalues λi.

Vkey =
[
v1 v2 . . . vk

]
(3.25)

where k is the number of independent reduced coordinates. Normally, k should be

equal to the number of key internal coordinates selected. If not, it indicates that
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there is redundancy in the key internal space. We then should reduced the dimen-

sionality of key-internal space by only including the independent eigenvectors.

To construct the full V space for the non-key internal coordinates, we need to

project out the key-internal space,

d(j) ≡ (I−Pkey)a(j) (3.26)

= a(j) −VkeyVT
keya(j) (3.27)

where Pkey is the projection operator onto the key-coordinate space. After project-

ing out the key internal space, the leftover vectors D = [d(1),b(2), . . . ,d(3N−6−k)]

are not orthonormal either. The same procedures are conducted for the non-key

space to generate a orthonormal basis:

DDT = V′ΛV′T (3.28)

There are 3N − 6− k eigenvectors with non-zero eigenvalues in V′.

Vnonkey =
[
v′1 v′2 . . . v′3N−6−k

]
(3.29)

Combining the key- and non-key spaces,

V =
[
Vkey Vnonkey

]
(3.30)

we obtain the complete V matrix for transforming redundant internal coordinates

to the delocalized internal space.V matrix needs to be constructed at each iteration

of the optimization process. The choice of the basis for non-key internal space
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is almost arbitrary, so the V determined may vary dramatically between each

iteration. To keep the minimal variance between each V matrix, a rotation is

applied for maximum overlap,

Vnew = QVold (3.31)

Q = VnewVT
old (3.32)

= UΣWT (3.33)

The optimal orthonormal rotation matrix is

Q(max) = UWT (3.34)

and the maximally aligned new basis is

Vnew = Q(max)Vold (3.35)

During the optimization process, we map the molecular structure from Carte-

sian coordinates to redundant internal coordinates, then to key+non-key delocal-

ized internal coordinates. With the V matrix, the conversion of gradient, Hessian,
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and optimization step is straightforward,

gv = VTgq (3.36)

gq = Vgv (3.37)

Hv = VTHqV (3.38)

Hq = VHvVT (3.39)

∆v = VT∆q (3.40)

∆q = V∆v (3.41)

(3.42)

3.3.7 The secant condition in reduced coordinates

In the GOpt algorithm, the Hessian matrix of energy is updated through Quasi-

Newton methods where the value is computed based on the difference of gradients

between iterations. Since the main optimization is performed in V space, the

secant condition for Hv is selected to be

Hold
v δv ≈ δgv − (Vold)T

(
(Bold)T

)+(
(Bold)T δVgoldv + (δB)Tgoldq

)
(3.43)

3.3.8 Quasi-Newton Updates

In GOpt, the Hessian matrix is updated by quasi-Newton methods. These methods

approximate the Hessian with the gradient changes from the previous iterations.

The four methods we introduce here only require the gradient difference between

the latest two structures.

s(k)
v = v(k+1) − v(k) (3.44)
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and the secant condition

y(k) = (g(k+1)
v −g(k)

v )−(V(k)T
(

(B(k))T
)+
(

(B(k))T (V(k+1)−V(k))g(k)
v +(B(k+1)−B(k))Tg(k)

q

)
(3.45)

The four major methods we consider in GOpt are the symmetric-rank-one up-

date(SR1)

Hv
(k+1) =


H(k)
v

∥∥∥(y(k)
v −H(k)

v s(k)
v )·s(k)

v

∥∥∥∥∥∥y(k)
v −H(k)

v s(k)
v

∥∥∥·∥∥∥s(k)
v

∥∥∥) ≤ 1e−9

H(k)
v + (y(k)

v −H(k)
v s(k)

v )(y(k)
v −H(k)

v s(k)
v )T

(y(k)
v −H(k)

v s(k)
v )·s(k)

v

Otherwise

(3.46)

the Powell-symmetric-Broyden update (PSB)

Hv
(k+1) = H(k)

v + (y(k)
v −H(k)

v s(k)
v )(s(k)

v )T + s(k)
v (y(k)

v −H(k)
v s(k)

v )T

(s(k)
v )T s(k)

v

−
(

(y(k)
v −H(k)

v s(k)
v )T (s(k)

v )
(s(k)
v )T s(k)

v

)
s(k)
v (s(k)

v )T
(3.47)

the Broyden-Fletcher-Goldfarb-Shanno update (BFGS)

Hv
(k+1) = H(k)

v + y(k)
v (y(k)

v )T

(y(k)
v )T s(k)

v

− (H(k)
v s(k)

v )(H(k)
v s(k)

v )T

(s(k)
v )tH(k)

v s(k)
v

(3.48)
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and Bofill’s 1994 update (Bofill), which is a mixed method of the SR1 and PSB

updates

H(k+1)
Bofill = (1− ψ)H(k+1)

SR1 + ψH(k+1
PSB (3.49)

ψ = 1−
|s(k)
v ·

(
y(k)
v −H(k)

v s(k)
v

)
|2

|s(k)
v |2|y(k)

v −H(k)
v s(k)

v |2
(3.50)

=
|s(k)
v ×

(
y(k)
v −H(k)

v s(k)
v

)
|2

|s(k)
v |2|y(k)

v −H(k)
v s(k)

v |2
(3.51)

where ψ is the square of the sine value of the angle between the step, s(k), and

the difference between the gradient difference y(k)
v and the change in gradient that

accompanies the step H(k)
v s(k)

v . The original form of SR1 will encounter numerical

problem when the y(k)
v −H(k)

v s(k)
v is close to 0. We avoided this problem by impos-

ing a value check before the update takes place. The BFGS method circumvents

this misbehavior by ensuring the Hessian update preserves positive-definiteness.

SR1 and PSB do not preserve the positive semi-definite during the Hessian update

process. In the TS optimization, it is important to maintain one negative eigen-

value during the process. This makes SR1, PEB, and Bofill the ideal candidates

for TS optimization, leaving BFGS a superior choice for minimization.

3.3.9 Hessian Finite Differences Update

GOpt is an efficient algorithm as it can effectively describe the PES changes within

the key/reduced-coordinate space. It is particularly important to maintain the

accuracy of the elements of the approximate Hessian corresponding to the key

coordinates during the whole optimization process. To achieve this, we update the

first k rows/columns (corresponding to the key reduced coordinates) with finite
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difference when needed. Denote the perturbation in the rth key reduced coordinate

as δv = εer, where er is the unit vector with all 0’s except a ’1’ at the rth position.

The finite-difference formula for the rth row/column of the Hessian matrix is similar

to Eqn. 3.43,

Her = dgv
dε
−VT (BT )+

(
BT dV

dε
gv +

(dB
dε

)T
gq
)

(3.52)

The rth row/columns of the Hessian matrix are approximated by

dg(v + εer)
dε

= g(v + εer)− g(v)
ε

(3.53)

The default value for ε we use in GOpt is 0.001.

Finite difference evaluation is a time-consuming step, requiring an additional

energy and derivative evaluation. It is inefficient and unnecessary to update the

Hessian at each iteration of the process. With the proper choice of the Quasi-

Newton method, the key-coordinate portion of the Hessian matrix is often accu-

rate. Therefore, the finite difference method is only invoked when the following

criteria are met:

|g(r)
v | > ω

|gv|√
3Natoms − 6

(3.54)

|H(k)
v er −H(k−1)

v er| > ν|H(k−1)
v er| (3.55)

The user parameters ω and ν are set, by default, to be 1.0. Criterion 3.54 checks

the norm of the gradient in a specific direction compared with the overall gradient.

There is no reason to ensure that the Hessian elements corresponding to an element

of the gradient that is nearly zero are accurate, since in that case, the optimization
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along that key coordinate is not hindering the convergence efficiency. Criterion 3.55

compares the discrepancy between Hessian matrix updated by the quasi-Newton

methods. When the difference is small, it indicates that the update for that row

of the Hessian is possibly accurate enough without the need for a finite-difference

update.

3.3.10 Hessian Modification

A transition state is a saddle point on the PES. This requires the structure to

have exactly one negative eigenvalue in the Hessian matrix. The corresponding

eigenvector indicates the direction along which the energy is ascending.

It is important for the Hessian matrix to preserve exactly one negative eigen-

value with its eigenvector related to the chemical reaction. But it’s not always the

case when the molecular structure under optimization is far from the TS or the

approximated Hessian is inaccurate. To ensure a well-behaved Hessian matrix, we

modify the matrix to force the right structure.

First, we do not want the negative eigenvalue to be associated with molecular

coordinates that are not related to the chemical reaction of interest. To prevent

this, we ensure the non-key block of the Hessian matrix is positive semi-definite. If

not, we replace the negative eigenvalue in the subblock with zero and reconstruct

the block.

Second, one exact sufficiently negative eigenvalue in the key-coordinate space is

needed. We diagonalize key subblock and check its eigenvalue(s). If the smallest

eigenvalue is larger than the threshold λn (by default, -0.005 a.u.), we set the value

to that threshold. If there are more than one negative eigenvalues, we reset all but

the smallest negative eigenvalues to 0 and reconstruct the key-reduced block.
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Third, after examine the two subblocks separately, we then do a complete eigen-

value check on the entire Hessian matrix.

H(k)
v = UΛUT (3.56)

where Λ is the diagonal matrix with ith eigenvalues λi. We list the eigenvalues in

ascending order, λ1 ≤ λ2 ≤ · · · ≤ λ3N−6. If there’s only one negative eigenvalue

less than the threshold λn, and all the other positive eigenvalue are greater than

threshold λp, no further action is needed. This is most frequent situation.

λ1 ≤ λn (3.57)

λi ≥ λp i = 2, 3, . . . , 3N − 6 (3.58)

However, sometimes the Hessian matrix does not satisfied this criterion. If there

is one negative eigenvalues, but it does not meet the requirements, we modify the

eigenvalues,

λ1 = min(λ1, λn) (3.59)

λi = max(λi, λp) i = 2, 3, . . . , 3N − 6 (3.60)

If there are multiple negative eigenvalues, we pick the one whose corresponding

eigenvector has the most overlap with the key-reduced space. For each eigenvector

with a negative eigenvalue, we sums up its components in the key-reduced space,

pi =
R∑
r=1
|χi;r|2 (3.61)
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χi:r is the rth element of the ith eigenvector. We then retain the negative eigenvalue

of the eigenvector with the largest pi value, replacing all the other eigenvalues to

max(λp, λi).

If no negative eigenvalue is presented, then pi is computed for each eigenvector.

Among all the eigenvectors with pi ≥ 0.5, we pick the one with the smallest

eigenvalue as the candidate, modifying its eigenvalue to λn. The other positive

eigenvalues are set to max(λp, λi).

3.3.11 Step Size Control

Given a non-stationary structure with its Hessian Hv and gradient gv, we can

locate the TS through by taking the Newton step on the potential energy surface.

Starting from the structure vk, the TS, which has zero gradients, is expected to

be at vk+1 such that,

g(k)
v + H(k)

v (v(k+1) − v(k)) = 0 (3.62)

the step to obtain the TS is then,

s(k)
v = v(k+1) − v(k) = −

(
H(k)
v

)−1
g(k)
v (3.63)

Expanding 3.63 with its eigenvalues and eigenvectors,

s(k)
v = −

3N−6∑
i=1

(
χiχ

T
i g(k)

v

λi

)
= −

3N−6∑
i=1

(
χTi g(k)

v

λi

)
χi (3.64)

The step, s(k)
v would lead to the exact TS structure if the objective function is

quadratic and the Hessian matrix were exact. However, the PES is not quadratic,
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and our Hessian matrix is usually approximate. Therefore the above-computed

step is only reliable when v(k+1) is close enough to v(k) for the (approximate)

quadratic model to be accurate.. To ensure the s(k)
v does not step out the valid

region, a spherical region defined by radius τ is introduced.[45, 46] When the

calculated stepsize from 3.63 is larger than the trust radius τ , it needs to be re-

scaled to fit in the trust region.

Trust-region image method (TRIM)

To scale down oversized optimization step, TRIM modifies the eigenvalues by an

undetermined variable λ̃ ≥ 0,

s(k)
v (λ̃) = −

∑
λi<0

(
χT1 g(k)

v

λ1 − λ̃

)
χ1 −

∑
λi≥0

(
χTi g(k)

v

λi + λ̃

)
χi (3.65)

The value of λ̃ is computed by solving the nonlinear equation,

|s(k)
v (λ̃)| = τ (3.66)

3.3.12 Trust Radius Determination

The value of τ should be neither too large to violate the validity of 3.63, nor too

small to hinder the optimization convergence. The step-size should also scaled

correctly as the number of atoms increases. To make sure the step is under proper
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range, we define the trust radius as,

τinit = 0.35
√
Natomsa.u. (3.67)

τmin = 0.1
√
Natomsa.u. (3.68)

τmax =
√
Natomsa.u. (3.69)

(3.70)

where τinit is the initial trust radius, which is used in the first optimization step.

In the GOpt algorithm, if the magnitude of the gradient decreases after taking a

step, the optimization step is accepted and the trust radius range is to be updated

using either the "energy-based criterion" or the "gradient-based criterion". If the

gradient increases instead, the step length is shortened by a factor of 4, τnew = τold
4 ,

and the step is recomputed. If the step is too small, τnew < τmin
10 , then the step

is taken and the trust radius is reset to its minimum value, τnew = τmin. This

criterion is implemented to make sure when the structure is far from the ideal TS,

the guess structure can make a step in the uphill direction from a near-minimum

area, even if this step increases the magnitude of the gradient.

Energy-based update

The energy-based update compares the actual energy difference between the new

geometry and the previous geometry to the estimated energy from quadratic ap-

proximation. The method uses the ratio of these two values to assess the accuracy
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of the local quadratic approximation,

∆m(k) = g(k)
v · s(k)

v + 1
2(s(k)

v )TH(k)
v s(k)

v (3.71)

∆U (k) = U(x(k+1))− U(x(k)) (3.72)

where ∆m is the approximated energy calculated in v-space and ∆U is the actual

energy difference between the latest two structures. When

2
3 <

∆m(k)

∆U (k) <
3
2 , (3.73)

then τnew = min(max(2τold, τmin), τmax) (3.74)

It indicates the quadratic approximation of local potential energy is very accurate

because the actual approximated energy is close to the real one. We then double

the trust radius for the next step. If

1
3 <

∆m(k)

∆U (k) < 3, (3.75)

then τnew = max(τold, τmin) (3.76)

It shows the quadratic model is moderately accurate. It is safer to keep the trust

radius unchanged. Otherwise, we view the energy approximation as inaccurate

and the trust radius is reduced for the next optimization step:

τnew = max(1
4τold, τmin) (3.77)
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Gradient-based update

The energy-based method is effective for minimization but when locating a tran-

sition state, it’s more intuitive and appropriate to use a trust-radius update based

on the accuracy of the predicted gradient.The predicted gradient is calculated as

g(k+1)
v;predict = g(k)

v + H(k)
v s(k+1)

v (3.78)

There are two indicators used in gradient-based method,

• The agreement in magnitude of gradient between the predicted and actual

one, measured by the ratio.

ρ =
|g(k+1)
v;predict| − |g(k)

v |
|g(k+1)
v | − |g(k)

v |
(3.79)

• The agreement in direction of gradient between the predicted and actual

ones, measured by the cosine of the angle between them

cos(θ) =
(g(k+1)

v;predict − g(k)
v ) · (g(k+1)

v − g(k)
v )

|g(k+1)
v;predict − g(k)

v | · |g(k+1)
v − g(k)

v |
(3.80)

The angle aligned by the gradient difference is sensitive measurement to the dimen-

sion of the system. As the dimension get larger, the chance of two vectors being

aligned in the same direction decreases. For example, if one generates a large

number of random vectors in d dimensions, 10% of the them will fulfill Eqn.3.81
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and 40% will satisfy Eqn. 3.82

cos(θ) ≥ p10(d) ≈
√

1.6424
d

+ 1.11
d2 (3.81)

cos(θ) ≥ p40(d) ≈
√

0.064175
d

+ 0.0946
d2 (3.82)

The approximated expression are derived by least-square fitting to a much more

complicated analytical expression.

For gradient-based trust-radius update, after a step is taken, if

4
5 < ρ <

5
4 (3.83)

and p10(3N − 6) < cos(θ) (3.84)

then τnew = min(max(2τold, τmin), τmax) (3.85)

then the approximate Hessian is accurate and we double the trust radius. If

1
5 < ρ < 6 (3.86)

and p40(3N − 6) < cos(θ) (3.87)

then τnew = max(τold, τmin) (3.88)

Otherwise, we deem the approximate gradient from Eq. (3.78) inaccurate, so we

halve the current trust radius,

τnew = max(1
2τold, τmin) (3.89)
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Recapitulation

These procedures for updating the trust radius are rather complicated, so we

summarize:

1. If g(k+1) < g(k), accept the step and update the trust radius with (a) the

energy-based method or (b) the gradient-based method.

2. Otherwise, change the current trust radius to τnew = 1
4τold. If τnew ≥ 1

10τmin

recompute a new step with the shorter length to go back to step 1. Otherwise,

set τnew = τmin and take the step anyway.

3.3.13 Convergence Criterion

In GOpt, we use a similar criterion to the one proposed by Baker and Chan. We

regard the optimization has achieved convergence if the largest component of the

Cartesian gradient is less than 3.0×10−4 a.u. If the optimization doesn’t converge

after 100 iterations, it is then considered as a failed trial.

3.3.14 Summary of the Algorithm

Here, we put together all the components of the entire GOpt algorithm for geom-

etry optimization

1. Start from the Cartesian coordinates; this set of coordinates is the input for

GOpt.

2. Form a complete set of redundant internal coordinates to describe the system

with preset protocols. Select the user-specified coordinates as the key internal
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coordinates. If no key coordinates are specified, select the coordinates from

the structural difference between reactant and product.

3. Construct the Wilson B matrix based on the selected redundant internal

coordinates; construct reduced V matrix according to given key internal

coordinates

4. Invoke external quantum chemistry software to compute the energy, energy

gradient, and (possibly) Hessian.

5. Transform gradient and Hessian from Cartesian space to redundant internal

space with the B matrix and to reduced internal space with V matrix.

6. Check if finite-differences are needed to update the rows/columns corre-

sponding to the key reduced internal space. If criterion 3.54 and 3.55 are

met, external software is invoked to conduct extra calculations.

7. Modify the hessian to ensure there is only one, sufficiently negative, eigen-

value.

8. Compute the optimization step in V-space within the trust radius.

9. Transform the step from V-space to internal coordinates. Then use manifold-

projection to convert the target internal coordinates to the Cartesian coor-

dinates of a molecular structure. Compute the energy and gradient of the

new structure with external software.

10. If the magnitude of gradient decreases, accept the step. Otherwise, decrease

the trust radius, and go back to step 8 to recompute a shortened step. If the

105

http://www.mcmaster.ca/
http://www.sorbonne-universite.fr/


Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

trust radius is less than τmin/10, accept the step anyway and then reset the

trust radius to τmin.

11. Construct B matrix and V matrix for the new structure. Align the new V

with the previous one.

12. Update the Hessian matrix H with one of the quasi-Newton methods.

13. Check if the new structure meets the convergence criterion, if yes, return

the latest structure as the final TS result. if not, go back to 5 to start next

iteration of the optimization.

Figure 3.1: Illustration of optimization Procedures

106

http://www.mcmaster.ca/
http://www.sorbonne-universite.fr/


Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

3.4 Results and Discussion

3.4.1 Testing Protocol

To test the general performance of the algorithm, we use GOpt to optimize the TS

for 32 randomly selected reactions of different types. Details of the reactions are

list in Table 3.1. All energy calculations are performed by Gaussian 16 with HF/6-

31+G(d,p). Only the initial Hessian is computed analytically with Gaussian.

3.4.2 GOpt default methods

GOpt provides many different options for geometry optimization. Different com-

binations may perform differently for different reaction types. In this study, we

selected methods we’ve found to have good overall performance. The details of the

optimization comparison between different methods are elaborated upon in Chap-

ter 5. By default, GOpt uses the Bofill quasi-Newton update, TRIM for step-size

control, and gradient-based trust radius updates.

3.4.3 Comparison with Berny Algorithm

The Berny Algorithm is one of the most popular geometry optimization algorithm,

implemented in many renowned software including Gaussian. To compare the

performance, both algorithms start from the same initial guess and try to optimize

the structure to the TS of interest.
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3.4.4 Results and Discussion

The data presented in the 3.1 show the performance difference between the GOpt

and Berny algorithms. Overall, GOpt needs averagely 7.38 steps to reach conver-

gence, compared with 10.8 steps by Berny’s. Also, among all the random sampled

reactions, GOpt has converged all the guess structure to the desired transition

state while Berny failed in 1 case. 78.1% of the reactions converge with the same,

or fewer, gradient evaluation with GOpt. The failed case for Berny is reaction

32. During the optimization, the guess structure was displaced to an unrealistic

structure where the SCF energy calculation cannot converge, resulting in an SCF

error. In test. 6, 11 and 29, the performance of GOpt is substantially better than

Berny. Using reduced internal coordinates and proper step control methods help

eliminate excessive energy oscillation.

All these results suggest that GOpt is a promising algorithm for geometry op-

timization with robustness, efficiency, and versatility.
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Table 3.1: Number of gradient evaluation needed for transition
state optimization

index Reaction Num. of iterations
GOpt algorithm Berny Algorithm

1 C4H6 + C2H4 6 6
2 C5H6 + C2H4 4 5
3 C4H4Si+ C2H4 4 6
4 C6H8O + C2H4 5 6
5 C4H5N + C2H4 5 6
6 C4H6 4 5
7 C6H8 3 6
8 C8H8 4 5
9 C12H18 6 20
10 N2O + C2H4 5 7
11 N3 + C2H4 11 30
12 N2C2 + C2H4 6 7
13 ONC + C2H4 11 9
14 N2CH + C2H4 5 10
15 HF + C2H4 10 6
16 C2H4 +H2 10 14
17 HCN +H2 6 8
18 HNC +H2 7 8
19 C2H6 + SiH2 5 12
20 HONS 5 8
21 HNCS 6 7
22 C3H4O2 7 14
23 C6H8 8 10
24 CH3F + Cl− 10 7
25 CH3Cl + F− 8 6
26 CH3F + F− 11 7
27 CH3OH + F− 6 17
28 CH3OH + ·OOH 11 13
29 CH3OH + ·CH3 11 54
30 HF + ·CH3 7 6
31 N2O + ·H 13 10
32 H2O + ·CH3 16 failed

Ave. iterations 7.38 9.37
Converge Rate 100% 93.8%

The number of gradient evaluation needed to achieve convergence
from the same TS guess for GOpt algorithm and berny algorithm.
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3.5 Summary

Here, we present a new algorithm, GOpt, for geometry optimization. It uses the

reduced internal coordinates with reaction-related key internals, which ensure that

the Hessian matrix is accurate for the most chemically-important coordinates and

to ensure that the TS optimization approaches the direction we desire. GOpt

algorithm only needs to evaluate the Hessian matrix once (in the first iteration);

in subsequent steps, the Hessian was updated using a Quasi-Newton update and

finite-differences for key coordinates. In a future paper, we will show that even

an approximate initial Hessian (e.g., from a minimal basis-set calculation) often

suffices to initialize the procedure.

The optimization process is conducted in reduced internal space while the major

quantum chemistry properties, like energy, gradient, are computed in Cartesian

coordinates. To effectively convert geometries between different representations,

we introduced the robust dihedral descriptors and the manifold-projection method.

These methods provide us a failsafe way to interconvert between redundant internal

coordinates and Cartesian coordinates.

Due to these improvements, our transition-state algorithm performs signifi-

cantly better than those in traditional quantum chemistry software. Specifically,

the incidence of convergence failure is reduced, and the number of gradient evalu-

ations required to converge from a reasonably good initial guess is reduced.
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Chapter 4

Bisecting hyperplane optimization

for reaction path finding

4.1 Abstract

A new double-ended algorithm is proposed to locate the reaction path. The algo-

rithm is based on the robust reduced internal coordinates introduced in chapter2.

The reaction vector is determined by the two end structure and updated over the

optimization process. Each state of the reaction path is optimized to the minimum

structure in the bisecting hyperplane perpendicular to the reaction vector between

two structures. The resulting paths agree with reaction paths obtained from other

techniques, but this method is explicitly parallelizable and avoids numerical ill-

conditioning and kinking problems associated with other techniques.

4.2 Introduction

Especially for complicated multi-step reactions, it can be very difficult to locate

transition states, or even to propose reasonable reactive intermediates. In such
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cases, it is best to determine the chemical reaction path directly, rather than

attempt to guess stable structures along the reaction path. Having a full reaction

pathway is also useful for detailed mechanistic studies of reactions, where having

an atomistic description of the reaction pathway is useful. By definition, the

reactive pathway will pass through reactive intermediates and transition states.

Though several choices of reaction pathways are present in the literature, the

most common is the minimum energy pathway, which is normally coincident with

the intrinsic reaction coordinate obtained as the steepest-descent path from the

transition state(s). The minimum energy path forms a leading line about which

reactive trajectories cluster (in the limit of zero temperature).

The main two strategies for finding reaction pathways are the single-ended and

double-ended schemes. Single-ended methods ascend uphill towards a transition

state from a single stable structure, either from the reactant or the product. How-

ever, taking a random step towards any direction is an uphill move, so extra infor-

mation is needed to locate the desired transition. The most common strategy is

the coordinate driving method, which relies on the researcher to pick a coordinate

associated with the reaction; the energy is minimized with respect to the other

coordinates.[1]. Coordinate-driving is challenging when it is difficult to identify a

single key coordinate.[2–5] An alternative idea is to follow the direction along the

eigenvector of Hessian matrix with the smallest eigenvalue.[6–9] This is equivalent

to choosing the direction with the least energy ascent on the potential energy sur-

face, but it often leads towards transition states associated with conformational

change, rather than chemical bond formation/breaking. Another popular method

is to follow the gradient extremal path to the transition state.[10–12] This method
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is designed to pass through stationary points on the potential energy surface. Dif-

ferent pathways from gradient extremal intersect at transition states. There are

two common drawbacks to the latter methods. First, the costly evaluation of the

Hessian matrix is required; Second, paths that weave around the potential en-

ergy surface are often obtained when using gradient extremals. For the gradient

extremal method, the paths generated are normally different from the minimum

energy paths.

Rather than looking for the paths from one side of the reaction, some methods

try to locate the path by a set of discrete points connecting the reactant to the

product, namely the chain-of-states methods. The nudged elastic band (NEB)

method and the string method (SM) are the two main types of methods in the

double-ended family. For the NEB method, one or more extra virtual spring poten-

tials are appended to the original potential energy expression for the atomic nuclei.

The gradient of the spring potential and surface potential are used to adjust the

states in the direction along the reaction path and the perpendicular hyperplane

respectively to maintain equal spacing between states in the chain. In the string

method, the reaction pathway is described as a string connecting the reactant

and product. When implemented, the string is represented by multiple discrete

points connected by a spline path. During the optimization, each point follows

the steepest gradient descent in the hyperplane of the reaction path. Chain-of-

state methods like NEB and SM can effectively locate the reaction path from the

reactant to the product while bypassing the direct calculation of the exact transi-

tion state. The main drawback of these chain-of-state methods is the demanding

computational requirements. High-performance parallel computing is commonly

used, but the coupling between states in the NEB method makes this less than
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totally straightforward. Beside NEB and SM, other chain-of-states methods are

also actively developed such as conjugate peak refinement,[13] replica path,[14–17]

line-integral,[18–22] and different derived string methods including zero tempera-

ture string methods,[23–26] finite temperature string methods,[27] quadratic string

method,[28] and growing string methods.[29–34]

4.3 Overview

Here we presented a new bisection algorithm for locating a reaction pathway to

help identify the transition state between the reactant and the product. The mo-

tivation for this strategy is to construct a method for finding the minimum energy

pathway that is easily parallelized and robust. Like other two-ended methods, the

bisection method works by defining the reaction path as a sequence of points. Un-

like other techniques, every step in the bisection method is a simple, robust, local

minimization that can be performed simultaneously with other minimizations.

The first step in the bisection method is to take the reactant and product,

denoted by qreactant and qproduct in redundant internal coordinates. The reac-

tion path vector is initialised to the vector between the two structures, qpath =

qproduct−qreactant. Minimizing starting from the midpoint between the structures,

qguess = (qproduct + qreactant)/2 on the hyperplane perpendicular to the reaction

path-vector always locates a point on a minimum energy path. The manifold pro-

jection algorithm is used to find a molecular structure corresponding to qguess.

Since the constrained minimization and the manifold projection algorithm are ro-

bust, this method always converges.
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Note that this algorithm works for any two structures. Denoting the Cartesian

structures of two points as xstart and mathbfxend, one can uniquely define the

redundant internal coordinates, denoted as qstart and qend respectively. The reac-

tion path vector is qpath = qend − qstart and the initial guess structure is a linear

combination of each end qinit = (qstart + qend)/2, where the manifold projection

method is used to locate the closest structure q(x)init in Cartesian space.

Therefore, after the first point between the reactant and product is located, one

can bisect between this point and the reactant and product, setting up two parallel

constrained minimizations. This procedure can be repeated for any number of

sequential points, and every time computational resources become available, one

can choose any interval between two previous completed calculations and bisect it.

Typically one would pick an interval based on chemical interest (e.g., proximity to a

stationary point on the potential surface) or mathematical necessity (e.g., a region

of the reaction path where the curvature is high or the distance between previous

structures is large). If at the end of this procedure, a continuous reaction path is

obtained, this is guaranteed to be a minimum energy reaction path. If a continuous

reaction path is not located (which can happen when the reactant and product

structures are very different and the topology of the potential energy surface is very

complicated, one nonetheless knows that every continuous segment of the curve is a

minimum-energy pathway. Then, by adding additional structures to extend these

curves, a full minimum energy pathway can be constructed, to whatever precision

is desired (by bisecting to the degree desired). This method, therefore, eliminates

the non-robustness (convergence failures) and kinked-pathway problems (due to

local minimum tracks) that are associated with the competing elastic-band and

string methods.
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4.4 Methodology

4.4.1 Coordinate system

To effectively describe a chemical reaction with meaningful coordinates, we nor-

mally select redundant internal coordinates, such as chemical bonds, angles, and

dihedrals between planes, to represent the system during the reaction, denoted

{q1, q2, . . . , qMint
}. There are various methods to select internal coordinates but

here we use the protocol described in Chapter 2.

Specifically, we consider five types of inter-atomic bonds, including covalent

bonds, hydrogen bonds, inter-fragment bonds, long-distance bonds, and auxiliary

bonds; these are added based on the types of atoms involved and the distance

between them. We include the angles formed by each pair of bonds that are

connected to the same atom, excluding auxiliary bonds. For dihedrals, we replace

the conventional definition with our robust dihedral indicator. To limit the number

of dihedrals in the system, we only include the dihedral consisting of αβγ∗ and

∗, βγδ where α and δ represent the most connected atoms bonded to β and γ

respectively, while * represents a non-selected atom.

The transformation from an infinitesimal change in Cartesian coordinates to an

infinitesimal change in redundant internal coordinates is defined by the B matrix

δq(x) = Bδx (4.1)

while the inverse is performed by iterative manifold projection method

x(q(target)) = arg min︸︷︷︸
x

(q(x)− q(target))TW(q(x)− q(target)) (4.2)
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where x is the Cartesian coordinates; q(x) is the set of internal coordinates corre-

sponding to x; q(target) is the desired internal set, which may not be a physically

realizable molecular structure. The forward and back transformation is not sym-

metric, because the number of redundant internal coordinates is far higher than

the number of Cartesian coordinates. Therefore, for a set of Cartesian coordinates,

corresponding internal coordinates can always be explicitly computed, but not vice

versa.

Delocalized internal coordinates

To fully specify the structure of a (nonlinear) N -atom molecule, only 3N − 6

degrees of freedom are needed. In this bisection algorithm, we adopted a similar

idea as the one elaborated in chapter 2 to generate initial guesses for points on the

reaction pathway, then we refine these guesses.

The delocalized internal coordinates are found by choosing 3N− 6 non-zero

singular vectors from the B matrix, denoted as

a(i) =
[
a

(i)
1 a

(i)
2 . . . a

(i)
Nint

]
i = 1, 2, . . . , 3Natoms − 6 (4.3)

To separate the reaction-path coordinate from the non-reaction coordinates, we

compute the coordinate displacement qpath between the reaction and product

qpath = qstart − qend (4.4)

We then project the reaction path indicator into the realizable space

q′path = BB+qpath (4.5)
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The Vreact consists solely of the reaction path vector

Vreact =
q′path
|q′path|

(4.6)

To construct the full non-react space without the reaction path vector, we need to

project out the path vector first

d(j) ≡ (I−Preact)a(j) (4.7)

= a(j) −VreactVT
reacta(j) (4.8)

where Preact is the projection operator for the reaction-path vector. In the leftover

D space, we pick the 3N − 7 non-singular orthonormal eigenvectors as the basis,

DDT = V′ΛV′T (4.9)

These orthonormal vectors are a basis for the hyperplane perpendicular to the

reaction vector, denoted as

Vnonreact =
[
v′1 v′2 . . . v′3N−7

]
(4.10)

Optimization Process

After projecting out the reaction path vector, finding a point on the minimum-

energy path reduces to a constrained minimization problem within the leftover

subspace. The energy, gradient, and Hessian are normally computed in Cartesian
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coordinates. Conversion between the different coordinate system are defined as:

g̃v = ṼTgq (4.11)

gq = Ṽg̃v (4.12)

H̃v = ṼTHqṼ (4.13)

Hq = ṼH̃vṼT (4.14)

∆ṽ = ṼT∆q (4.15)

∆q = Ṽ∆ṽ (4.16)

(4.17)

Here, we use X̃ to denoting all quantities in the Vnonreact space. The Newton step

truncated at the second order derivative is

s̃ = −H̃−1g̃ (4.18)

One could minimize the hyperplane by simply following the (constrained) gra-

dient descent direction. It’s significantly more efficient to use the Hessian matrix,

but to ensure a proper direction is taken for the optimization step, the hessian

matrix is required to have all positive eigenvalues. Therefore, whenever the Hes-

sian matrix has a negative eigenvalue, a Hessian shift function is called to alter

the negative or small positive value to the preset threshold λp.

λi =


λp if λi < λp

λi otherwise
(4.19)
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The BFGS quasi-Newton method is used to update the Hessian. This ensures

that given an initial positive-definite Hessian, the updated Hessian preserves this

structure. The energy-based trust-radius update presented 3 is used to ensure

global convergence. We consider the calculation to have converged when the largest

component of the Cartesian gradient in the non-reacting Vnonreact space is less than

1× 10−3.

4.5 Examples and Cases

4.5.1 Muller-Brown Potential

The Muller-Brown potential is a two-variable parametric potential that is com-

monly used to test reaction-pathfinding methods.[35] The minimum energy path

connects the reactant and product through an intermediate and two saddle points.

Also, the path deviates strongly from linear interpolation between the reactant and

product structures, which is challenging for some approaches.

The path-optimization process for the bisecting hyperplane method is presented

in Fig. 4.1. The initial guess structure, G is halfway between the reactant, P0, and

product, P1 structures, and when it is optimized in the hyperplane perpendicular

to the vector qP1 − qP0 gives the structure P2 (Fig. 4.1A). After the first middle

point P2 anchors the reaction pathway, new points are generated halfway between

P0 and P2 and halfway between P1 and P2, and optimized on the corresponding

bisecting hyperplanes (Fig. 4.1B). This process is continued until enough points

are generated to represent the reaction path. Unlike other popular reaction path

methods, bisecting hyperplane optimization does not keep even-spaced points.

This grants the algorithm the ability to put more points in regions where the
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Figure 4.1: Reaction path finding on Muller-Brown surface with
Bisection method

curvature of the path is large, where the gradient is small (near stationary points),

etc..

The process converges when a user-specified number of points have been gen-

erated, or other preset criteria (e.g. the maximum distance between consecutive

points on the reaction path is sufficiently small) In Fig. 4.1C & D, we generate 9

points and 17 points respectively to describe the reaction path. Additional points

could be considered, if desired.

The data in Tab.4.1 illustrates the accuracy of the reaction paths in Fig. 4.1C

& D. The intermediate and saddle points are interpolated by a cubic spline going
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Table 4.1: Analytical and interpolated stationary points from the
reaction paths

Intermediate Saddle Point1 Saddle Point1
Coordinates & Potential

Analytic (-0.050, 0.467 ) (-0.822, 0.624) (0.212, 0.293)
-80.768 -40.665 -72.249

path 4.1C (-0.040, 0.473) (-0.845, 0.602) (0.222, 0.298)
-80.714 -40.421 -72.218

path 4.1D (-0.050, 0.464) (-0.814, 0.632) (0.220, 0.298)
-80.761 -40.633 -72.230

through all path points. (The path in Fig. 4.1B is not shown in the table because

there is not enough data to locate all the stationary points.) The two saddle

points and the intermediate are successfully identified and located. The absolute

error in coordinates is ±0.02 and ±0.01 for C and D respectively. The energy

difference is ±0.2 for Path C and ±0.03 for D. Structures with this level of accuracy

suffice as initial guesses for subsequent geometry optimization for the reactive

intermediate(s) and/or transition state(s).

4.5.2 Chemical Reactions

1. HCN Isomerization

To test the bisecting hyperplane method for real chemical reactions, we consider

first the HCN→ HNC isomerization. This isomerization reaction has been studied

thoroughly both experimentally and theoretically and, as a 3-atom molecule has

just 3 degrees of freedom.[36–38] All calculations, including the initial reactant

and product structures, were determined using the HF/6-31+G method.
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Considering the CH and CN bond lengths and the ∠HCN as the three internal

coordinates, one observes that the CN bond length does not change very much

during the reaction process. The reaction path, therefore, can be illustrated by

neglecting the change in this coordinate, as depicted in Figure 4.2. It is worth

noting that in the actual result from the bisecting hyperplane optimization, the

bond length between is C and N is not constant. The CN bond slightly stretches

from 2.19 a.u. in the reactant to 2.26 a.u. near the transition state.

Table 4.2: Transition state from interpolation and analytic Com-
putation for HCN -> CNH reaction

Interpolation Analytic Computation
Energy -92.72995 a.u. -92.72972 a.u.
CH bond 2.2801 a.u. 2.2862 a.u.
HCN angle 71.44° 71.83°

Parameterizing the interpolated reaction path by its arc length allows one to

generate the continuous reaction coordinate diagram in Fig.4.3. The transition

state of the isomerization can be obtained by finding the maximum on the spline.

As seen in Table4.2, the energy and molecular structure from the interpolated

reaction path agrees closely with the reference obtained by normal transition-state

optimization methods, even though only 7 points were used to define the spline.

2. HSNO ← HONS Isomerization

The isomerization from HSNO to HONS may seem similar to the previous exam-

ple, but it is far more complicated.[39–41] There are several competing reaction

mechanisms, with multiple reactive intermediates and transition states, as shown

in Fig.4.4.
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With such a complicated chemical reaction, more points along the reaction path

are needed. Starting from the stable structures of HSON and HNOS, a reaction

path consisting of 17 points (including two starting points) is generated. The

energy change along the chemical reaction process is shown in Fig.4.5.

Based on the structures we observe, the bisecting hyperplane optimization

method locates reaction mechanism A in Fig.4.4. The path successfully goes

through two transition states, together with the connecting intermediate, and the

interpolated structures and their energies are very accurate (see Table 4.3), pro-

viding quantitative accuracy for the whole reaction path. One can even obtain

additional insight: the tiny peak around x = 0.13, which one might at first pre-

sume to be a computational artifact, corresponds to the hydrogen-atom-rotational

barrier.

Table 4.3: Energies from interpolation of the reaction path and
direct optimization of key structures in the HSNO ← HONS reac-
tion

Interpolation Direct Optimization Relative error
TS1 Energy -527.080177 a.u. -527.080348 a.u. 0.000032%
TS2 Energy -527.068519 a.u. -527.068274 a.u. 0.000046%

Intermediate Energy -527.192585 a.u. -527.189130 a.u. 0.00066%

4.6 Conclusion

The bisecting hyperplane optimization method is an efficient, accurate, and robust

way to generate a minimum energy pathway connecting the reactant and product.

By construction, the method provides a kink-free pathway, wherein several points

on the reaction path can be optimized simultaneously. The only required input
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is the two end structures. No limitation is imposed on what starting and ending

points are selected; they do not even have to be stable reactant/product geometries.

The basic idea of the algorithm is to divide the space of internal coordinates into

a path-direction vector (defined by the points before and after the current point on

the reaction path) and its orthogonal hyperplane. Optimization in the orthogonal

hyperplane is performed directly as a minimization in a reduced-dimensionality

space, and yields a point that is guaranteed to be on a minimum energy path-

way. Additional points can be strategically allocated in regions where a better

description of the potential energy surface is needed.

Three different examples were used to illustrate the effectiveness of the algo-

rithm. The first is the venerable Muller-Brown model, which is difficult because

of its curved reaction pathway. In this reaction, the potential energy surface is

nonconvex, and the Gopt Hessian-matrix modification scheme, which forces the

Hessian matrix to be positive definite, was helpful. The second and third exam-

ples were chemical reactions of varying complexity, the isomerization of HCN, and

of HSNO. Minimum energy pathways without difficulty in both cases, and ener-

gies and molecular structures of the reactive intermediate and transition states

were accurately located. This suggests that the bisecting hyperplane optimization

method should be considered as an alternative to other, alternative, two-ended

approaches to reaction path optimization like the nudged elastic band and string

families of methods.
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Figure 4.2: Path points generated by Bisection algorithm for
HCN -> CNH reaction

P0 and P1 are stable structures for reactant and product. The labels
indicate the sequence in which points were generated by the serial
bisecting hyperplane algorithm.

Figure 4.3: Energy curve of reaction HCN -> CNH along the
reaction coordinates
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Figure 4.4: HSNO ← HONS isomerization mechanism

Figure 4.5: HSNO ← HONS Energy vs Reaction process
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Chapter 5

Systematic Assessment on

performance and robustness of

GOpt algorithm

5.1 Abstract

A comprehensive and systematic test is conducted to assess the overall effectiveness

and robustness of the newly elaborated GOpt optimization algorithm for transition

states. The test set consists of 32 reactions of various types. A random distortion

is applied to the known transition state to generate 10 random initial structures,

generating distorted geometries from 0.05 a.u. to 0.4 a.u. away from the actual

transition state. Then the GOpt algorithm and the benchmark Berny algorithm

are tested for their ability to converge to the original transition state. For small

distortions, the GOpt is more efficient than Berny. For larger distortions, Gopt is

marginally slower. In all cases, Gopt converges more frequently, suggesting that it

is among the best algorithms for optimizing transition states.
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5.2 Introduction

The Gopt algorithm for optimizing chemical structure is introduced in chapter

3. Gopt is a quasi-Newton method, where the Hessian update includes finite-

difference updates for key chemically-relevant coordinates, as well as suitable eigen-

value shifts to ensure convergence to a structure with the appropriate number of

negative eigenvalues. A gradient-based trust-radius method is used to control the

optimization step. The algorithm shows promising efficiency and robustness in

preliminary tests. In these tests, as summarized in Table.3.1, GOpt converges

faster and more robustly than Berny. However, these tests used a good initial

guess from interpolation between the reactant and the product. However, a good

initial guess is not always available, especially when the reaction mechanism is

complicated, with multiple intermediates and TS sharing the same vicinity of the

potential energy surface.

In this chapter, a more systematic and thorough assessment is conducted to

explore how well Gopt works for poor initial guesses. As before, we use pro-

gram parameters (related to the transformation between redundant internal and

Cartesian coordinates, quasi-Newton update, secant conditions, and trust-radius

protocols) that were optimized separately, see Chapter.6. (It is simply not prac-

tical to optimize this many parameters for a large dataset like that considered

here.)
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5.3 Testing protocol

A database of chemical reactions for testing

To effectively test a computational algorithm, it is important to construct a broad

and relevant database. Our database includes diverse reaction types focussing on

organic (Diels-Alder cycloadditions,[1] electrocyclizations,[2, 3] Huisgen cycloaddi-

tions,[4], and SN2 nucleophilic substitutions, and radical additions, together with

main-group inorganic radical addition and proton-transfer reactions.[5] In a few

cases methyl groups were added to reagents to ensure that there were competing

low-energy barriers (corresponding to conformational rearrangements). All quan-

tum chemistry computations are conducted in Gaussian 16 with HF/6-31+G.[6]

The exact Hessian is only computed at the very first step; subsequently the Hessian

is updated using finite differences and/or quasi-Newton Hessian updates.

5.3.1 Systematic Methods to Generating Initial Guesses of

Varying Quality

To systematically generate a set of random initial guesses of varying quality, we

randomly distort the true transition state. Specifically, we start with a random

vector, a, in Cartesian coordinates. The random vector is projected using the

Wilson B matrix and its pseudo-inverse B+,[7] and then normalized

û = B+Ba
|B+Ba|

(5.1)

This produces a random perturbation excluding molecular translation and rota-

tion. A set of random structures are generated by adding the transition state
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geometry with a scaled perturbation.

xguess = xt.s. +
√

3N · εû (5.2)

Here N is the number of atoms in the molecule and 3N is the dimensionality

of the Cartesian-coordinate vector. The factor ε contols the average amount of

perturbation on each atom in the molecule. We choose to generate 10 random

initial guess for each ε. We chose ε ∈ {0.05, 0.1, 0.2, 0.3}. We did not consider

larger values of ε because already when ε = 0.3, in many cases the initial guesses

were so unreasonable (e.g., near-collisions between atoms) that it was impossible

to converge the Hartree-Fock calculations.

When guessing a TS, one can usually accurately predict the positions of various

"spectator" atoms, and only has significant uncertainty about the values of the key

internal coordinates. To test this sort of error, we generated a random vector in

internal coordinates, a, with nonzero entries only for the key internal coordinates.

We then project out the redundancy due to internal coordinates,

v = BB+aint (5.3)

The generated perturbation is applied to the target transition state structure. The

transformation from the internal coordinates to Cartesian coordinates is carried

out by the manifold projection method introduced as Eqn.2.19,

min︸︷︷︸
xκ

|q(xκ)− (qt.s. + ·κv̂)|2 (5.4)

where qt.s is the redundant internal coordinates of the exact transition state and
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κ is the factor used to scale the perturbation of the equilibrium structure. The

distance of the perturbed Cartesian coordinates from the original transition state

structure is computed in Cartesian coordinates.

||xκ − xt.s.|| = ε ·
√
Nkey (5.5)

Where Nkey is the number of key internal coordinates that are perturbed. In order

to remove the irrelevant rotation and translation, Kabsch’s Algorithm was used

to align the two structures.[8] Again, We generate 10 random initial guesses for

each choice of ε ∈ {0.1, 0.2, 0.3, 0.4}. We did not consider ε > 0.4 because such

structures are extremely distorted.

5.3.2 Results and Comparison

We compare the performance of GOpt with the default Berny algorithm in Gaus-

sian based on the convergence rate and the number of gradient evaluations per-

formed. For large values of ε, the initial structure is very poor. Large initial steps

and aggressive step-size updates can lead to severe overshooting of the transition

state. Therefore, we set the initial stepsize in GOpt to 0.15 ∗
√
N , and reduced

the rate at which the trust radius is increased from 2.0 to 1.5. These adjustments

slow the convergence, but decrease the rate at which the optimization fails. Even

though some of the initial structures are very poor, we retained the default con-

dition for the maximum number of steps: the optimization is considered a failure

if it doesn’t converge within 100 steps. Though the step limit is 100, extra gra-

dient evaluations may occur due to the finite-difference hessian update and the

recalculation of rejected steps.
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To compare the performance of GOpt and Berny, we count the number of

gradient evaluations required. (The gradient evaluation is the most expensive step

in the geometry optimization, especially for large molecules.)

Table 5.1 shows the performance of GOpt and Berny when the positions of

all atoms are perturbed. For the small displacements (ε = 0.05 and 0.1), GOpt

converges with fewer gradient evaluations than Berny. As the displacement gets

larger, the quality of the test structures deteriorates and the number of gradient

evaluations required dramatically increases. The number of gradient evaluations

required by Gopt and Berny seem comparable, but this result is biased by the

fact that Gopt converges from difficult initial structures (which tend to require

additional gradient evaluations) where Berny fails. While the computational cost

of Gopt and Berny are similar, Gopt converges much more robustly in all cases.

Indeed, the failure rate for Gopt is 20-30% that of Berny. This is not so critical for

good initial guesses (where Berny still converges for about 90% of structures), but

is especially impressive for the poor initial guesses. For example, Berny converges

for less than half the initial structures with ε = 0.3, but Gopt converges for more

than 80% of those structures.

The performance plot in Figure 5.3 shows the percentage of reactions that have

converged after a specified number of gradient evaluations have occurred. For

transition-state guess structures that converge in 20 or fewer gradient evaluations,

GOpt and Gauss perform very similarly. For poor guess structures, significantly

more gradient iterations are required, and Gopt performs significantly better than

Berny. We do not consider what happens beyond the 100textth evaluation of the

gradient because by this point, the calculation has already failed or, alternatively,

the optimization is converging towards an undesired transition state. The salient
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features of GOpt are its efficiency (which is comparable to Berny) and its ro-

bustness (even for very poor initial guesses, Gopt often converges). The good

performance of Gopt can be attributed to the emphasis it places on the key inter-

nal coordinates, which ensure that the single negative eigenvalue of the Hessian

is sensibly imposed. Moreover, when the initial structure has no negative Hes-

sian eigenvalues, GOpt is able to identify a sensible direction in which to take an

uphill step, and thereby navigate the potential energy surface towards the right

structure.

Table 5.1: Test results from GOpt and Berny algorithm for ran-
dom perturbations of all atoms’ Cartesian coordinates of specified
magnitude ε. The number of gradient evaluations is averaged over
the number of initial structures for which convergence to the desired
transition state was attained by a given method. I.e., for ε = 0.3,
Gopt requires on average 41.7 gradient evaluations for the 80% of
optimizations it converges, while Berny requires on average 41.0
gradient evaluations for the 43% of optimizations it converges.

ε(Bohr)
Methods GOpt Algorithm Berny Algorithm

Average Gradient Evalution
0.05 7.5 9.7
0.10 13.7 17.2
0.20 28.2 29.0
0.30 41.7 41.0

Convergence Rate
0.05 0.98 0.94
0.10 0.97 0.89
0.20 0.93 0.74
0.30 0.80 0.43
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Figure 5.1: The percentage of transition-state optimizations con-
verged by GOpt and Berny for a given number of gradient eval-
uations, where the initial guess structures are constructed by ran-
domly perturbing the Cartesian coordinates of the exact transition-
state structure.
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Table 5.2: Test results from GOpt and Berny algorithm for a ran-
dom perturbation of key internal coordinates. The number of gra-
dient evaluations is averaged over the number of initial structures
for which convergence to the desired transition state was attained
by a given method. I.e., for ε = 0.3, Gopt requires on average
9.2 gradient evaluations for the 90% of optimizations it converges,
while Berny requires on average 8.6 gradient evaluations for the
85% of optimizatoins it converges.

ε(Bohr)
Methods GOpt Algorithm Berny Algorithm

Average Gradient Evalution
0.1 4.7 6.6
0.2 6.4 7.9
0.3 9.2 8.6
0.4 10.4 10.0

Convergence Rate
0.1 0.99 0.96
0.2 0.97 0.93
0.3 0.90 0.85
0.4 0.87 0.81
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Figure 5.2: The percentage of transition-state optimizations
converged by GOpt and Berny for a given number of gradient
evaluations, where the initial guess structures are constructed by
randomly perturbing the key internal coordinates of the exact
transition-state structure

To assess how Gopt and Berny perform for more chemically reasonable initial

guess structures, we use initial structures generated by random displacements of

the key internal coordinates. As seen in Table 5.2, these initial guess structures

are much better, and convergence is usually attained with fewer than 10 gradient

evaluations. Similar trends persist: when it converges, Gopt requires slightly fewer

gradient evaluations than Berny for good initial guesses (ε = 0.1 and 0.2), and

slightly more for poorer initial guesses (ε = 0.3 and 0.4)). However, in all cases,

Gopt converges more initial guess structures than Berny. The computational cost

of Gopt can be reduced by allowing larger initial step-sizes and expanding the trust

radius more aggressively, but then slightly fewer calculations converge.

The performance plot in Fig.5.2 shows that for both Gopt and Berny, 70%
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of the optimizations converge to the targeted transition state with 20 or fewer

gradient evaluations. Directly comparing the results for perturbations of all atomic

positions vs. only the key internal coordinates, as in Figure 5.4, indicates that for

calculations that converge with 15 or fewer gradient evaluations, the algorithms are

comparable. For calculations that converge more slowly, Gopt is clearly preferable.

5.4 Summary

We have constructed a systematic testing protocol for transition-state optimization

and used it to test our recently proposed Gopt algorithm and compare its perfor-

mance to the Berny algorithm that is used in the Gaussian16 software package,

and prevalent elsewhere in the literature. Our protocol is based on a database of

32 organic and main-group inorganic reactions, with known transition states at the

HF/6-31+G level. Initial guesses for these transition states are generated by either

randomly displacing all the atoms in the structure (Cartesian perturbations) or

the key internal coordinates (internal perturbations) by a specified amount, ε. As

expected, when the initial structure is less chemical reasonable (Cartesian pertur-

bations) and further from the transition state (larger values of ε), transition-state

optimization is more likely to fail and, if it converges, more evaluations of the

gradient are required. While Gopt and Berny require similar numbers of gradient

evaluations, Gopt is much more robust, converging more than 80% of the time

even for chemically unreasonable (ε = 0.3; Cartesian displacements) or deformed

chemically reasonable (ε = 0.4; key internal displacements) molecular structures.

From these results, it is difficult to conceive of a situation where the Berny al-

gorithm would be deemed preferable to Gopt, but Berny is certainly a capable
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transition-state optimizer when an accurate, chemically sensible, transition-state

guess structure is available.
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Figure 5.3: Convergence rate for random Cartesian perturbation

Figure 5.4: Convergence rate for random key internal perturba-
tion
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Chapter 6

Summary and Future Work

6.1 Abstract

In the preceding chapters, we have established that GOpt is a robust and efficient

optimization package. Here we review the key ideas and features of Gopt and

discuss a few key program options which were included in the package for versatility

and flexibility. Some preliminary tests of these options are presented, using a small

set of 20 reactions. Specifically, we test different secant conditions, different quasi-

Newton methods, and different trust-radius updates. The BFGS quasi-Newton

method with the energy-based trust-radius update is the best default choice for

optimizing to a minimum on the potential energy surface, while the Bofill quasi-

Newton method with the gradient-based trust-radius update is the optimal choice

for transition state optimization.
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6.2 Introduction

In this thesis, we have presented the key features of the Gopt software package,

which is conceived as a general-purpose package for molecular structure optimiza-

tion and reaction-path finding. The first key component of Gopt is the use of

redundant internal coordinates. While redundant internal coordinates are prefer-

able for geometry optimization to Cartesian coordinates or nonredundant (e.g.,

Z-matrix) internal coordinates, there are issues associated with internal coordi-

nates in general (e.g., ill-defined dihedral angles if one of the bonds rotating is

nearly collinear with the central bond about which it rotates), and redundant in-

ternal coordinates in particular (the difficulty of mapping physically unrealizable

redundant internal coordinates to a realizable molecular structure in Cartesian

coordinates). Chapter 2 shows how to overcome these obstacles by defining a ro-

bust set of redundant internal coordinates (including interfragment bonds, special

interatomic distances for long linear chains, and robust dihedral coordinates that

do not fail for torsions around collinear bonds). In addition, a manifold projection

strategy, wherein a specified set of redundant internal coordinates is mapped to

the closest realizable molecular structure, solves the issue of nonphysical redundant

internal coordinates.

Using the developments in chapter 2, we noted that a good initial guess for

transition-state optimizations is often obtained by averaging the reactant and

product structures in redundant internal coordinates. Where this initial guess is

inadequate, it can be refined by constrained minimization in the hyperplane that

is orthogonal to the reaction-path-vector, qpath = qproduct − qreactant. The result-

ing structure is guaranteed to be on a minimum-energy pathway on the molecular
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potential energy surface. If this structure is still a poor guess for the transition

state, the procedure can be iterated by adding, and optimizing, additional points

between the structures of the reactant and the transition-state guess, and between

the transition-state guess and the product. By iteratively optimizing structures on

the bisecting hyperplane between previously determined structures along the re-

action path, a minimum energy path that connects reactants and products can be

attained. This bisecting hyperplane method is tested in Chapter 4, and observed

to overcome many of the problematic issues associated with other two-ended ap-

proaches for constructing chemical reaction pathways.

WhileGopt includes utilities for redundant internal coordinates and methods for

transition-state guessing and reaction-path finding, the primary use-case of Gopt

is geometry optimization. Gopt is designed to be user-friendly, including both

sensible default parameters but also the flexibility to easily adjust these defaults

and interface Gopt to other software packages.

The primary innovation in Gopt is the identification, either automatically or

by the user, of certain key coordinates, which typically correspond to the bonds

that fracture/form and the angles that open/close during the reaction. By iden-

tifying these coordinates, ensuring that the Hessian matrix for these coordinates

is accurate (using finite-differences where necessary), and ensuring that the nega-

tive curvature direction features these coordinates (using explicit shifts of Hessian

eigenvalues where necessary), Gopt converges with comparable computational cost

to the commonly used Berny algorithm that is included as the default in Gaus-

sian16 and commonly mimicked elsewhere. However, Gopt is significantly more

robust than the Berny method. For example, in about half the cases where the
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Berny algorithm fails to converge, Gopt successfully locates the targeted transi-

tion state. The details of the Gopt algorithm are described in Chapter 3, with

systematic tests in Chapter 4 establishing its low computational cost and high

robustness, at least compared to the Berny algorithm.

The remainder of this chapter presents some of our preliminary data on select-

ing appropriate default parameters for the Gopt program. Specifically, we will

explore different quasi-Newton updates, trust-radius update methods, and secant

conditions.

6.3 Testing Protocol

20 chemical reactions with 6 different mechanisms were explored using redundant

internal coodinates. The initial guess structure was generated using the protocol in

chapter 2. Specifically, we averaged the reduced internal coordinate representation

of the reactant and the product,

xinit = arg min︸︷︷︸
x

∥∥∥∥q(x)−
[

1
2q(reactant) + 1

2q(product)
]∥∥∥∥ (6.1)

Where x and q denote the system in Cartesian coordinates and in reduced internal

coordinates, respectively. All calculations were performed using Gaussain16 at the

HF/6-31+G level, with the initial Hessian computed exactly. Calculations that did

not converge to the targetted transition state within 100 iterations are considered

to be convergence failures.
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6.3.1 Secant Condition

Because computing the Hessian exactly is time-consuming, it is preferable to use a

quasi-Newton method, wherein the Hessian is updated after each iteration based

on the computed gradient. Different quasi-Newton methods update the Hessian

in different ways, using differing amounts of information from previous iterations.

The key idea is that information about the Hessian can be deduced from the change

in the gradient,

Hvδv ≈ gv(v + δv)− gv(v) (6.2)

Here v is the molecular structure represented in the space of (nonredundant) de-

localized internal coordinates. However, because this coordinate system changes

as one moves along the manifold of physically realizable molecular structures, the

secant condition is not unique. Different secant conditions are derived depending

on how one treats the changes in V with molecular geometry.

One strategy is to start with the secant condition in Cartesian coordinates,

Hold
x δx = δgx (6.3)

Using the chain rule of derivatives with transformation matrix B and V, one

obtains:

Hold
v δv ≈ δgv − (Vold)T ((Bold)T )+

(
(Bold)T δVgoldv + (δB)Tgoldq

)
(6.4)

Another alternative is to directly evaluate the expression Holdδv,

Hold
v δv ≈ δgv + (VoldT )(δB+)Tgoldx + (δVT )goldq (6.5)
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When the local energy quadratic approximation is accurate, the gradient change

is the same when taking a step δv at Hold as taking a step −δv at Hnew.

Hold · δv = Hnew · −δv (6.6)

Eqn.6.4 and 6.5 do not maintain the symmetry. However, we can enforce this con-

dition by averaging the "old" and "new" versions of these equations. For example,

corresponding to Eq. 6.5

Hδv = δgv + 1
2
(
(Vold)T (δB+)Tgoldx + (Vnew)T (δB+)Tgnewx + (δVT )(goldq + gnewq )

)
(6.7)

6.3.2 Quasi-Newton Update

The second condition is used to update the Hessian matrix in quasi-Newton meth-

ods. Though we intend to add addition Hessian-update formulas to Gopt, for

now we hae four choices, chosen due to their ubiquity in molecular optimization:

simple-rank one (SR1),[1] Powell symmetric Broyden (PSB),[2] Broyden, Fletcher,

Goldfarb, Shanno (BFGS),[3–7] and Bofill’s 1994 update.[8] The SR1 update is

slightly modified from its usual form to avoid divide-by-zero errors:

Symmetric-Rank-One update (SR1)

Hv
k+1 =


H(k)
v

∥∥∥(y(k)
v −H(k)

v s(k)
v )·s(k)

v

∥∥∥∥∥∥y(k)
v −H(k)

v s(k)
v

∥∥∥·∥∥∥s(k)
v

∥∥∥) ≤ 1e−9

H(k)
v + (y(k)

v −H(k)
v s(k)

v )(y(k)
v −H(k)

v s(k)
v )T

(y(k)
v −H(k)

v s(k)
v )·s(k)

v

Otherwise

(6.8)
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Powell-symmetric-Broyden update (PSB)

Hv
k+1 = H(k)

v + (y(k)
v −H(k)

v s(k)
v )(s(k)

v )T + s(k)
v (y(k)

v −H(k)
v s(k)

v )T

(s(k)
v )T s(k)

v

−
(

(y(k)
v −H(k)

v s(k)
v )T (s(k)

v )
(s(k)
v )T s(k)

v

)
s(k)
v (s(k)

v )T
(6.9)

Broyden-Fletcher-Goldfarb-Shanno update (BFGS)

Hv
k+1 = H(k)

v + y(k)
v (y(k)

v )T

(y(k)
v )T s(k)

v

− (H(k)
v s(k)

v )(H(k)
v s(k)

v )T

(s(k)
v )tH(k)

v s(k)
v

(6.10)

Bofill’s 1994 update (Bofill)

H(k+1)
Bofill = (1− ψ)H(k+1)

SR1 + ψH(k+1
PSB (6.11)

ψ = 1− |s
(k)
v · y(k)

v −H(k)
v s(k)

v |2

|s(k)
v |2|y(k)

v −H(k)
v s(k)

v |2
(6.12)

= |s
(k)
v × y(k)

v −H(k)
v s(k)

v |2

|s(k)
v |2|y(k)

v −H(k)
v s(k)

v |2
(6.13)

6.3.3 Trust Radius Update

At each iteration, a quadratic model for the potential energy surface is constructed

using the quasi-Newton Hessian, with possible modifications to ensure that the

eigenstructure of the Hessian is appropriate for converging to a saddle point (with

exactly one negative-curvature direction associated with the key chemical coordi-

nates) or to a minimum (with all positive-curvature directions). If the quadratic

model were perfect, then the optimization step s = H−1g would lead exactly to

the stationary point. However, when the higher-order terms in the Taylor series

expansion of the potential energy surface are significant, or when the quasi-Newton
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approximate Hessian is inaccurate, the predicted optimization step may be inac-

curate. As a sufficiently short optimization step (in the direction indicated by the

gradient) is always beneficial, it seems sensible to optimize the quadratic model

subject to the constraint that the solution lies within a trust radius where we be-

lieve the quadratic model will be accurate, ‖s‖ ≤ τ .[9, 10] Based on the accuracy

of the quadratic model, the trust radius is adjusted after each step.

Specifically, the trust radius is updated based on the difference between the

computed properties of the next iterate and the properties predicted for the next

iterate by the quadratic model. In GOpt, we implemented two general types of

trust radius update schemes: an energy-based method that is targeted primarily

for structure minimization, and a gradient-based method that is targeted primarily

towards transition states.

6.3.4 Energy-Based Trust Radius Update

In the energy-based method, accuracy of the quadratic approximation is measured

by the predicted energy difference. The predicted energy change is calculated

∆mk+1 = gk · sk + 1
2sTkHksk (6.14)

and compared to the real energy change is ∆Uk+1 = U(xk+1) − U(xk). If the

predicted energy change is accurate enough,

2
3 <

∆mk

∆UK
<

3
2 (6.15)
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then the trust radius is doubled, τnew = min(max(2τold, τmin), τmax)), where τmin

and τmax are minimum and maximum trust radii based on the characteristic length

scale of oscillations on the potential energy surface. Similarly, if the accuracy of

the quadratic model is moderate, the trust radius is retained. I.e., if

1
3 <

∆mk

∆UK
< 3 (6.16)

then, τnew = max(τold, τmin). Otherwise the quadratic model is inaccurate and the

trust-radius is reduced by a factor of four, τnew = min(1
4τold, τmin)

Gradient-Based Trust Radius Update

When searching for a stationary point rather than a minimum, the reducation

of the gradient is a better indicator for the progress of the optimization. In the

gradient-based scheme, the trust radius is updated based on the latest gradient

and the one of previous step. When adjusting the trust radius, both the magnitude

and the direction of the gradient vectors are considered,

ρ =

∥∥∥gk+1
predict

∥∥∥− ∥∥∥gk∥∥∥
‖gk+1‖ − ‖gk‖

(6.17)

cos(θ) =
(gk+1

predict − gk) · (gk+1 − gk)∥∥∥gk+1
predict − gk

∥∥∥‖gk+1 − gk‖
(6.18)

As dimension increases, the chance of two gradient vectors aligned in the same

direction decreases. To treat high-dimensional systems appropriately, the function

px(d) is defined so that x% of d-dimensional vectors have a value of cos(θ) greater
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than px(d). In the gradient-based trust-radius update, we use:

cos(θ) ≥ p10(d) ≈
√

1.6424
d

+ 1.11
d2 (6.19)

cos(θ) ≥ p40(d) ≈
√

0.064175
d

+ 0.0946
d2 (6.20)

The trust radius is then increased if the magnitude and the direction of the pre-

dicted gradient are accurate. I.e., if

4
5 < ρ <

5
4 (6.21)

p10(3N − 6) < cos(θ) (6.22)

then τnew = min(max(2τold, τmin), τmax). Similarly, for moderately accurate pre-

dicted gradients, we retain the trust radius,

1
5 < ρ < 6 (6.23)

p40(3N − 6) < cos(θ) (6.24)

then τnew = max(τold, τmin), Otherwise, the predicted gradient is inaccurate and

we reduce the trust radius by a factor of two, τnew = min(1
2 , τmin).

6.4 Results and Discussion

Tables 6.1 - 6.3 compare the aforementioned program options. The results are

nearly invariant with respect to the choice of secant condition (see Table 6.1),

163

http://www.mcmaster.ca/
http://www.sorbonne-universite.fr/


Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

which is reasonable since all the secant conditions are consistent with a quadratic

model, and only differ at higher orders. We are already performing tests to see

if when the initial guess structure is poorer, and therefore step sizes are larger, it

may be possible to make meaningful distinctions between the quality of the various

secant conditions.

By contrast, different quasi-Newton methods perform quite differently (see Ta-

ble 6.2. It is not very surprising that BFGS does not perform well for saddle-point

optimizations, nor is the significant advantage of the symmetric-rank-2 update

(PSB) over a symmetric-rank-1 update (SR1) unexpected. The Bofill update

(which combines PSB and SR1 in an advantageous way) works best of all. It

would be interesting to see whether some of the more recent update formulas from

Bofill’s group might perform even better.

Finally, both trust radius updates perform well, though the gradient-based

method is slightly better. This may be because we are testing with quite good

initial guesses, so that the final structure already lies near, if not inside, the initial

trust radius. We plan to revisit this result for a larger set of reactions, with more

inaccurate initial guesses, to see if the results change.

These studies support the use of the first secant condition, the Bofill quasi-

Newton method, and the gradient-based trust radius that we used, by default,

elsewhere in this thesis. They also reinforce that not only is Gopt highly efficient

(with comparable computational cost to state-of-the-art methods in the literature)

and robust to poor initial guess structures (converging much more frequently than

the best readily available molecular optimization packages), Gopt is also robust

with respect to program options. That is, changing algorithmic parameters in Gopt

rarely changes the performance much, and even when a remarkably poor choice is
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made (e.g., using the BFGS quasi-Newton method for transition-state optimiza-

tion), the method still converges without too many iterations. This helps us feel

confident that the Gopt software should be widely used for molecular structure

optimization and reaction-path finding.
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Table 6.1: Test results for different secant conditions

Secant 1 6.4 Secant 2 6.5 Secant 3 6.6

Converge Rate 100% 100% 100%
Steps 9.15 9.45 9.6
Gradient Eval. 10.9 11.35 11.4
The number of steps and gradient evaluations needed to achieve
convergence from the same GOpt algorithm but different secant
conditions.

Table 6.2: Test results for different quasi-Newton update methods

BFGS SR1 PSB Bofill

Converge Rate 100% 100 % 100% 100%
Steps 15.35 12.65 9.9 9.15
Gradient Eval. 24.85 19.75 11.55 10.9

The number of steps and gradient evaluations needed with the same
GOpt algorithm but different Quasi-Newton methods.

Table 6.3: Test results for different trust-radius update methods

Energy-Based Gradient-Based

Converge Rate 100% 100%
Steps 9.35 9.15
Gradient 11.65 10.9

The number of steps and gradient evaluations needed with the same
GOpt algorithm but different trust-radius update schemes.
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