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Abstract 

 Complexity-modulated tasks elicit differential hemodynamic activations in the primary 

motor cortex for upper limb motor representations. However, much is yet to be learned regarding 

lower limb complexity modulation, as most fNIRS complexity modulation studies focus on the 

upper limb. It is currently unknown whether hemodynamic activations from single-joint lower 

limb motor tasks are detectable by fNIRS, and further, if fNIRS can detect differences between 

activations from simple and complex lower limb motor tasks. An fNIRS study was conducted to 

investigate the effects of an unpredictable, complex force-tracking task vs. a predictable, simple 

force-tracking task on hemodynamic activations in the TA motor representation. No significant 

TA motor cortex activations were found for 4/5 participants, with one participant showing a 

significant activation in one channel. Lack of activation in the TA motor representation was 

attributed to the depth of the area within the central sulcus. Significant hemodynamic activations 

were also found in areas assumed to overly STG/SII, and pre-SMA/SMA. These activations were 

attributed to sensory integration and motor learning, respectively. An fNIRS processing review 

was also conducted to inform processing decisions in the first experiment and to further fNIRS 

usage in our lab. Common techniques were identified as low-pass, band-pass, and high-pass 

filters, smoothing filters, wavelet filters, and the GLM. More appropriate alternative techniques 

were provided, including short-separation regression, pre-whitening, and spline interpolation 

with a Savitsky-Golay filter. Future studies may elucidate the lack of activity in the TA motor 

representation, and will further basic neuroscience regarding fNIRS. 
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1.1 History of fNIRS 

Functional Near-Infrared Spectroscopy (fNIRS) is a relatively new neuroimaging 

technique that was discovered by Jobsis (1977), based on the optical method developed by Glenn 

Millikan in the 1940s (Millikan 1942). Jobsis worked under Britton Chance from 1962 to 1964 at 

the University of Pennsylvania (Ferrari and Quaresima 2012). After moving on to Duke 

University in North Carolina (United States), Jobsis was interested in cytochrome-C-oxidase, to 

further understand the mitochondrial respiratory chain utilizing optical methods (Piantadosi 

2007). Instead, Jobsis accidentally discovered that the high transparency of brain tissue in the 

near-infrared (NIR) range of light allowed for non-invasive detection of hemoglobin oxygenation 

(Jobsis 1977). This discovery sparked new research into optical methods, and marked the start of 

the fNIRS field of research.  

It was not until 1993 that the first fNIRS studies on human adults were published using 

single-channel systems with low temporal resolution and poor sensitivity (Chance et al., 1993; 

Hoshi and Tamura 1993; Kato et al., 1993; Villringer et al., 1994). These first studies were 

focused on measuring fNIRS signals in the prefrontal and occipital lobes during cognitive and 

visual task performance, respectively. FNIRS seemed to be promising, however it still required 

validation. To this end, Kleinschmidt et al. (1996) sought to validate fNIRS utilizing Functional 

Magnetic Resonance Imaging (fMRI), the better-known technique at the time. Researchers 

simultaneously measured deoxy-hemoglobin levels using fMRI and fNIRS during a unilateral 

finger opposition task. They discovered that fNIRS measurements of deoxy-hemoglobin spatially 

matched the fMRI measurements for activation (Kleinschmidt et al., 1996).  

Until this point in time, fNIRS systems were strictly single channel, and thus a 

combination of different systems was required to use more than one channel for measurement. 
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However, in 1994 commercially-available multi-channel systems were developed, allowing for 

multiple fNIRS measurements utilizing a single system (Watanabe et al., 1994). This 

development allowed for cortical mapping of hemodynamic responses using fNIRS (Ferrari and 

Quaresima 2012). The first study utilizing the 10 channel Hitachi system was Maki et al. (1995), 

where fNIRS channel coordinates were compared with MRI data to successfully map fNIRS 

activity on the cortex for the first time.  

 

1.2 Principles of fNIRS 

1.2.1 Basic Principles 

 FNIRS is a neuroimaging modality that uses light to measure brain activity in real time. 

This procedure is non-invasive, portable, relatively inexpensive, and can disentangle oxygen 

consumption and blood flow changes without acquiring blood flow images like in fMRI (Davis 

et al., 1998; Hoge et al., 1999). As such, it has gained the interest of many researchers for usage 

during motor and cognitive tasks in a variety of populations (Ferrari and Quaresima 2012). 

FNIRS utilizes the NIR light range (~700-1000 nm) to exploit the relative transparency of 

biological tissues (Irani et al., 2007) and indirectly measure concentration changes of oxy- (HbO) 

and deoxy-hemoglobin (HbR) species through neurovascular coupling.  

Neurovascular coupling describes the idea that regional blood flow in the brain is directly 

related to the firing of neurons within the region (Girouard and Iadecola 2006). Neurons acquire 

glucose and oxygen in the form of HbO from nearby capillary beds to function (Irani et al., 

2007). As such, neuronal firing stimulates the brain to increase local cerebral blood flow (CBF) 

and cerebral blood volume (CBV). The area is then oversupplied with glucose and oxygen from 
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the increased CBF, utilizing HbO to do so (Fox et al., 1988). When the neurons stop firing, they 

stop consuming oxygen, and the flow of HbO to the area is reduced to a baseline level. This 

pattern of activity is known as the hemodynamic response function (HRF), and has a 

characteristic shape (see Figure 1). Of the two types of hemoglobin, HbO peaks ~5-10 s after 

stimulation begins (Leff et al., 2011), and remains elevated for the duration of the stimulation 

period. For HbR, the time to the lowest trough is more variable than that for HbO, and the 

response may not reach this point until ~15 seconds have passed (Leff et al., 2011). Usually ~12-

18 seconds after the stimulation period, the hemodynamic response has settled to baseline values 

(Santosa et al., 2018). 

 

Figure 1: A characteristic hemodynamic response function (HRF). Oxygenated hemoglobin 

(HbO) is represented by the red line, whereas deoxygenated hemoglobin (HbR) is represented by 

the blue line. The x-axis is time in seconds, and the y-axis is the relative change in concentration 

in micromolar. The stimulus producing this response was 10 seconds long, beginning at the zero 

second mark, indicated by the dashed black line. HbO is observed to peak at ~6-7 seconds, and 

HbR at ~8-9 seconds. Adapted from Ferrari and Quaresima (2012). 
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Throughout this time, NIR light is projected through extracerebral tissues (scalp, skull, 

Cerebrospinal Fluid [CSF]). The light is absorbed, scattered, and reflected along its banana-

shaped path (Gratton et al., 1994), and finally exits the head to be detected (see Figure 2). 

Depending on the source-detector separation, NIR light can reach a depth of ~5-8 mm in the 

cortex (Huppert 2016). Increasing the source-detector distance on the surface of the scalp leads 

to deeper penetration of light into the brain (Villringer et al., 1993; McCormick et al., 1992). 

However, the caveat from this is that light intensity decreases beyond detectability after the 

source-detector distance increases above 5.5-6 cm (Gratton et al., 2006). Detectors become 

sensitive to hemodynamic activity when source-detector distances are 4 cm or less, and stay 

sensitive down to ~2 cm (Irani et al., 2007). Due to the nature of fNIRS, the chance for 

absorption in superficial layers of the head is higher because the light passes through these layers 

twice – once projecting into the head, and once coming out. This back-reflection geometry 

makes fNIRS much more sensitive to superficial signals (Gagnon et al., 2011). 

 

A 

F 

E 

D 

C 

G 
B 
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Figure 2: Adapted from Gratton et al. (1994). NIR light is projected along a banana-shaped path 

(A) from the light source (B) through scalp (C), skull (D), cerebrospinal fluid (E), and into the 

cortex (F), and is absorbed, scattered, and reflected back out of the head to the detector (G).  

 

If the light reaches the cortex, hemoglobin molecules present in the capillaries supplying 

the neurons of the cortex absorb it. The more hemoglobin molecules that are present in the area 

at that time, the greater the amount of light that is absorbed, and thus the less light that proceeds 

to detectors on the surface of the head. The ratio between the projected and detected light is then 

used to calculate attenuation of light (see Equation 1, Delpy et al., 1988). In this equation, the 

attenuation of light intensity is equal to the negative logarithm of the detected light (𝐼) divided by 

the projected light (𝐼0).  

                                                         𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 =  − log (
𝐼

𝐼0
)                                                  (1) 

This ratio is equal to the differential pathlength factor (𝐷𝑃𝐹) multiplied by the absorption 

coefficient for the light (𝜇𝑎) and the source-detector distance (𝑑) plus the unknown source-

detector geometry coefficient (𝐺, see Equation 2a). This law is known as the Modified Beer-

Lambert Law, and is the basis for fNIRS (Delpy et al., 1988). 

                                             𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 = − log (
𝐼

𝐼0
) = 𝐷𝑃𝐹𝜇𝑎𝑑 + 𝐺                                 (2a) 

 The DPF is a coefficient used to correct for the different paths of light due to scatter from 

biological tissues (Strangman et al., 2003). This coefficient is dependent on wavelength and can 

be measured with frequency-dependent or time-dependent fNIRS systems. The geometry 

coefficient represents the loss of light due to scattering (Matcher and Cooper 1994), the amount 

of which cannot be measured in the most commonly-used continuous-wave fNIRS systems 

(Ferrari and Quaresima 2012). However, light scatter can be assumed to be constant in the 
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system, in which case changes in light attenuation are attributed to changes in absorption by 

hemoglobin species (Pinti et al., 2020). As such, the determination of absolute concentration 

changes in the tissue cannot be made in these systems, as the system cannot parse attenuation 

due to scatter and absorption separately. Instead, only relative concentration changes are able to 

be determined with these systems. 

The absorption coefficient (𝜇𝑎) from equation 2a can be expanded, where it is equal to 

the molar extinction coefficients of HbO and HbR at a particular wavelength (𝜆) multiplied by 

their respective changes in concentration (∆[𝐻𝑏𝑂] and ∆[𝐻𝑏𝑅]) in the tissue (see Equation 2b). 

                                         = [𝜀𝐻𝑏𝑂(𝜆)∆[𝐻𝑏𝑂] +  𝜀𝐻𝑏𝑅(𝜆)∆[𝐻𝑏𝑅]]𝐷𝑃𝐹𝑑                                 (2b) 

 

1.2.2 Absorption 

 Absorption of light is largely dependent upon the inherent physical characteristics of the 

molecule it is projected on, as well as the wavelength of the light being projected (Jobsis 1977). 

In the case of fNIRS, the molecular characteristics of hemoglobin, both in oxygenated and 

deoxygenated forms, determine NIR light absorption. The hemoglobin molecule has four heme 

groups, each containing porphyrin rings (Perutz 1978; Anson and Mirsky 1930; see Figure 3A). 

The porphyrin rings each contain one ferric iron ion (Fe3+) when not bound to oxygen (see 

Figure 3B). When the ferric iron ion binds to oxygen, it becomes ferrous iron (Fe2+) and is 

pulled into the plane of the porphyrin ring by oxygen (see Figure 3C). 
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Figure 3: Adapted from Perutz (1978). Figure depicting the chemical composition of the heme 

group in the hemoglobin molecule. A. Top view. A solid black line depicts a single bond, 

whereas two black lines depicts a double bond. A dashed black line depicts a bond projecting 

away from the viewer. An iron ion is kept in the middle of the heme group by four nitrogen ions 

of the porphyrin. B. Side view. Connections to ions from the porphyrin ring are depicted by solid 

black lines. Dashed black lines depict connections projected away from the viewer. The ferric 

iron ion (Fe3+) is pulled by connection to histidine (not shown) which makes the porphyrin 

domed. C. Side view. Connections to ions from the porphyrin ring are depicted by solid black 

lines. Dashed black lines depict connections projected away from the viewer. Ferric iron gains an 

electron from binding to oxygen (O) and becomes ferrous iron (Fe2+). The binding of oxygen to 

the iron ion pulls it into the plane of the porphyrin. 

A 

B C 
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The shape of the hemoglobin molecule is thus altered by the binding of oxygen, and with 

it, the absorption characteristics of the molecule. For example, at lower wavelengths of light 

HbR absorbs a relatively high proportion of light compared to HbO (see Figure 4). However, 

when wavelength increases, HbO absorbs more light in comparison to HbR (Jobsis 1977). 

Therefore, changes in the concentrations of both molecules can be obtained using two different 

wavelengths of light. 

 

Figure 4: A figure depicting the absorption coefficients for both oxygenated (HbO) and 

deoxygenated (HbR) hemoglobin species as a function of wavelength. HbO is represented by the 
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red line, and HbR is represented by the blue line. Generally, as wavelength increases, HbO starts 

to absorb more light, when at 800 nm it surpasses HbR. Adapted from Irani et al. (2007).  

 

1.2.3 Scattering 

 NIR light is not only absorbed in biological tissues, but is also highly scattered 

(Strangman et al., 2003). Light scattering is 100 times more frequent than light absorption and is 

another factor besides absorption that leads to light attenuation (Delpy and Cope 1997). The 

main causes of scattering in the head are collagen, keratin, melanin, and lipids located in skin, 

blood vessels, and soft tissues of the individual (Veesa and Dehghani 2019). Different types of 

light scatter exist depending on the size difference between the wavelength of light projected and 

the size of the scattering particle. For example, Mie scattering occurs with light scattered by any 

size sphere comparable to or larger than the wavelength of light, whereas Rayleigh scattering 

occurs with particles much smaller than the wavelength of light (Jacques 2013). This scatter 

affects the pathlength of photons. As a photon is scattered more throughout the tissue, its 

pathlength increases, and the probability that it will be absorbed increases as well (Pinti et al., 

2020). The more scatter, the longer the pathlength, and the more chances for photon absorption. 

However, due to scatter contributing to light attenuation, many commercially-available fNIRS 

systems are unable to resolve absolute concentrations of hemoglobin. As such, scatter in these 

systems is often assumed to be constant, so relative changes in hemoglobin concentrations are 

obtained instead (Pinti et al., 2020). Scatter is also wavelength-dependent. As the wavelength of 

light increases, scatter decreases, and vice versa (Jobsis 1977). This fact means that scatter 

occurs more for HbR than HbO, as HbR is measured at lower wavelengths than HbO. Greater 

amount of scatter for HbR thus means that less light can be absorbed, the effects of which is seen 
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in the overall lower signal changes and signal-to-noise ratio (SNR) of HbR when compared to 

HbO (Cui et al., 2011; Pinti et al., 2020).  

 

 

1.3 Simple and Complex Motor Tasks in fNIRS 

Most fNIRS motor research has focused on responses to upper limb motor tasks, which 

have been found to elicit robust and reliable hemodynamic responses in primary motor cortex 

(M1; Plichta et al., 2006, 2007; Sato et al., 2006a; Strangman et al., 2002, 2003, 2006). 

Specifically, many groups have investigated hemodynamic responses to finger tapping tasks 

(Chiang et al., 2007; Holper et al., 2009; Kuboyama et al., 2004, 2005; Sato et al., 2006a), and 

finger opposition tasks (Colier et al., 1997; Franceschini et al., 2003). All of these studies found 

significant increases in HbO and significant decreases in HbR in channels overlying M1 in 

response to either simple finger tapping or finger opposition tasks. This research shows that 

fNIRS can detect hemodynamic responses in the motor cortex from simple motor tasks. 

Simple motor tasks, however, can be altered in frequency, intensity, or complexity to 

modulate the hemodynamic response (Leff et al., 2011). Intensity and frequency-modulated tasks 

have been explored using fNIRS, but mostly in the upper limb (Leff et al., 2011). Studies 

involving frequency-modulated tasks have found that movements performed at higher 

frequencies led to greater increases in HbO concentrations in the primary motor cortex (Obrig et 

al., 1996; Kuboyama et al., 2004, 2005). Similarly, studies involving intensity-modulated tasks 

have found that higher-effort movements led to greater motor cortex activation (Kuboyama et al., 

2004; Rasmussen et al., 2007; Horovitz and Gore 2003). Complex motor tasks are described as 

being more difficult than simple tasks (Holper et al., 2009). However, what defines increasing 
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difficulty of a task is more ambiguous. For example, the number of muscles used to perform a 

motor task does not necessarily determine the level of difficulty of the task (Verstynen et al., 

2005).  

Complexity in motor tasks strongly affects the level of activation in bilateral primary 

motor cortices (M1), and changes patterns of activation in the interconnected cortical areas 

responsible for planning and correction of movements, and motor learning. Hatakenaka et al. 

(2007) found that a complex pursuit rotor (PR) task led to significant increases in HbO and 

significant decreases in HbR in the presupplementary motor, supplementary motor, and primary 

motor areas (preSMA, SMA, and M1, respectively). This response shifted from preSMA to SMA 

as participants gained proficiency in the task (Hatakenaka et al., 2007), suggesting that preSMA 

may be more involved in early stages of motor learning, whereas SMA may be more involved in 

the later stages. Overall, this study showed that complex motor tasks could elicit cortical 

hemodynamic activations. Similarly, Holper et al. (2009) investigated the differences between 

simple and complex upper limb motor tasks. Complex finger tapping in both dominant and non-

dominant hands produced significantly larger HbO responses in the contralateral hemisphere to 

the hand when compared to simple finger tapping (Holper et al., 2009). In summary, not only can 

fNIRS detect hemodynamic activity from complex motor tasks, these tasks also differ in their 

activations when compared to simple motor tasks. 

However, all of this research involves upper limb tasks. Many lower limb tasks in fNIRS 

involve walking (de Lima-Pardini et al., 2017; Groff et al., 2019; Herold et al., 2019; Huppert et 

al., 2013; Jin et al., 2018) or cycling (Asahara and Matsukawa 2018; Asahara et al., 2018; 

Chacaroun et al., 2019; Lin et al., 2012). However, not many lower limb fNIRS studies include 

single-joint tasks. As many lower limb tasks involve multiple joints (i.e. walking and cycling), 
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the information gleaned from these tasks may not translate fully to single-joint tasks. Further, 

there is a paucity of research involving complexity modulation in lower limb tasks provoking a 

number of questions. Specifically, can fNIRS detect hemodynamic activations induced by single-

joint lower limb tasks in the motor cortices? Further, do these hemodynamic activations differ 

between simple and complex versions of a lower limb task? This thesis will attempt to address 

these questions, the answers to which are important for basic neuroscience and the usage of 

fNIRS for lower limb research. 
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2.1 Introduction 

 Motor task complexity relates to the difficulty of a motor task (Holper et al., 2009). For 

example, a finger tapping task in which many fingers are tapped in a specific sequence may be 

considered more complex than tapping a single digit (Holper et al., 2009). In fMRI work, 

complex movements differ from simple movements by introducing greater activation globally, 

while reducing laterality (Rao et al., 1993, Solodkin et al., 2001). However, the study of human 

movement via fMRI is challenging due to the sensitivity of fMRI to motion artifacts, and the 

confinement of the machine that limits the performance of large movements such as walking or 

cycling. Hence, motor tasks in the lower limb such as walking or cycling are not feasible to study 

using fMRI. Additionally, fMRI is also expensive in comparison to other imaging methods such 

as fNIRS (Ferrari and Quaresima 2012). To study motor task complexity while overcoming some 

of the limitations of fMRI, fNIRS could be used instead. Generally, fNIRS is an attractive option 

for studying complexity modulation as the areas involved in motor actions are considered to be 

“optically friendly”, meaning that NIR light can easily reach the majority of these areas (Leff et 

al., 2011). However, the degree to which the motor cortex can be measured may depend on the 

particular muscle group of interest. Further, fNIRS is more resistant to motion artifacts than other 

neuroimaging modalities (Pinti et al., 2019). 

The hemodynamic response recorded by fNIRS can be modulated by the frequency, 

intensity, or complexity of a motor task (Leff et al., 2011). For example, Holper et al. (2009) 

investigated the effects of a complex finger tapping task and observed greater changes in M1 

oxy-hemoglobin levels when compared to a simple finger opposition task. Additionally, task 

complexity does not depend on the number of required muscles to induce this greater activation 

(Verstynen et al., 2005), at least in the upper limb. In this study, fMRI activation differences 
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presented in the motor cortex between the simple, repetitive finger tapping, and the more 

complex finger tapping sequences. The complex finger tapping sequences elicited greater M1 

activation than simple finger tapping regardless of the number of fingers used in this experiment 

(Verstynen et al., 2005). 

There are different ways of altering task complexity, one of which is the predictability of 

the motor sequence (Dassonville et al., 1998). Dassonville et al. (1998) showed that their 

unpredictable finger-tapping task, which was considered to be complex, increased hemodynamic 

activations in specific areas of the cortex such as the premotor cortex (PMC), superior parietal 

lobule (SPL), and the SMA. The predictable and unpredictable tasks, however, did not show 

differential activations in the somatomotor cortex (SMC, Dassonville et al., 1998). In contrast, 

more recent fNIRS studies have shown differential increases in SMC activity between complex 

and simple tasks (Holper et al., 2009; Koenraadt et al., 2013). For example, an fNIRS study by 

Koenraadt et al. (2013) reported significantly higher activations in the SMC for an unpredictable 

mixed-frequency finger tapping task compared to a predictable single frequency finger tapping 

task. Further, Holper et al. (2009) showed increased SMC activations for a complex sequenced 

finger tapping task compared to a simple single-digit tapping task. The discrepancy between 

studies could be due to a multitude of different reasons. First, the predictability and complexity 

differences between the finger tapping tasks in Dassonville et al. (1998) may not have been large 

enough to elicit differential activations between the tasks. Second, the study by Koenraadt et al. 

(2013) used changes in frequency to make the task unpredictable, which may have been relying 

on the differential activations usually found in the SMC with changes in frequency (i.e. the “rate 

effect”, Rao et al., 1996), instead of changes in complexity per se (Kuboyama et al., 2004, 2005; 

Obrig et al., 1996). Thus, the rate effect could be the driving factor for the increase in HbO 
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during the mixed-frequency task. However, the mixed-frequency task (combination of 0.4, 0.8, 

and 1.4 Hz) induced significantly greater HbO activations than the high frequency task (1.4 Hz), 

suggesting that the rate effect is not driving the differences (Koenraadt et al., 2013). From these 

results, it seems that altering the predictability of the motor stimulus may change the complexity 

of the task.  

FNIRS can also be used to measure cortical hemodynamic activity from lower limb 

motor tasks such as walking and cycling. For example, Kurz et al. (2012) investigated the 

differences in cortical activity between forward and backward walking tasks with fNIRS. The 

authors observed greater activity in the SMA, precentral gyrus (pCG), and SPL for the backward 

walking task than the forward walking task (Kurz et al., 2012). They suggested that the backward 

walking task could have induced greater activation because it is not a task practiced in daily life 

for most individuals. Further, they suggest that the absence of peripheral visual stimuli in 

backward walking makes accurate foot placement more difficult (Kurz et al., 2012). This study 

was limited in that participants were required to hold on to bars on the sides of the treadmill the 

entire time they were walking. The data could thus be confounded by providing motor stimuli 

extraneous to the walking task (i.e. holding onto the bars). Due to the poor spatial resolution of 

fNIRS (~2-3 cm, Pinti et al., 2020), this extraneous motor stimulus and the associated activity 

within its representation in the motor cortex could be partially driving the activity in the pCG. 

Additionally, many muscles are used in the process of walking. Future research could investigate 

activations from single-muscle complex movements to see if the idea posed by Verstynen (2005) 

holds true in the lower limb as well. 

Beyond the aforementioned study, there is a paucity of research in fNIRS involving lower 

limb complexity modulation. In general, lower limb fNIRS studies usually focus on walking or 
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cycling tasks. These studies have reported cortical hemodynamic activity in the prefrontal cortex 

(Asahara and Matsukawa, 2018; Asahara et al., 2018; Beurskens et al., 2014; Huppert et al., 

2013), the premotor cortex (Herold et al., 2019; Lin et al., 2012, 2016), the SMA (Herold et al., 

2019; Kurz et al., 2012; Kim et al., 2017; Lin et al., 2012, 2016), the SMC (Kurz et al., 2012; 

Koenraadt et al., 2012, 2014; Kim et al., 2017; Lin et al., 2012, 2016), and the SPL (Kurz et al., 

2012).  

The goal of the present study was to investigate the effects of a complexity-modulated 

lower limb force-tracking task on the amplitude of the hemodynamic response function. In the 

present study, movement complexity was examined by comparing a complex, unpredictable 

force-tracking task with a simpler, predictable force-tracking task. For the present study, activity 

was hypothesized to occur in the medial SMC where the tibialis anterior (TA) motor 

representation exists. Further, it was of interest to see what other brain areas may be responsive 

to the motor task. I hypothesized that the force tracking task employing an unpredictable, 

complex waveform (“Random”) would be more difficult than a task with a predictable, simple 

waveform (“Rhythmic”) and would thus induce a larger HbO amplitude in the TA representation 

of M1 in comparison (Holper et al., 2009). 
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2.2 Methods 

2.2.1 Participants 

Five healthy participants between the ages of 18-35 years were recruited for this study.  

To determine the sample size, an a priori power analysis to find a moderate effect size was 

computed with G*Power. The analysis indicated that a minimum of 33 participants were 

required to reach partial eta-squared of 0.061 for an alpha of 0.05 and power of 0.80. Group-level 

statistical analyses were not completed for this dataset. 

 

2.2.2 Inclusion/Exclusion Criteria 

Participants had no previous or current neurological or psychiatric illnesses. Participants 

were right-hand dominant as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971), 

and right-foot dominant as assessed by the Waterloo Footedness Questionnaire (van Melick, 

Meddeler, Hoogeboom, Nijhuis-van der Sanden, & van Cingel, 2017). They did not possess any 

musculoskeletal upper and lower limb impairments, or self-reported colour deficiencies, 

including colourblindness. All participants possessed normal or corrected-to-normal vision. 

 

2.2.3 Apparatus 

A visual diagram of experimental setup is shown in Figure 5. Participants were seated in 

an adjustable custom-designed chair with their hands on their lap. Their right foot was positioned 

in an apparatus that attempted to isolate TA muscle activation and positioned their right knee at a 

120-degree angle as measured by a goniometer at the beginning of the experiment. Their left foot 
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rested on a platform next to the apparatus. The participant’s right calf was secured to a slanted 

platform with foam padding which ensured minimal movement of the leg during the dorsiflexion 

contraction. The participant’s right foot was secured to a floor plate with Velcro straps included 

in the apparatus. Participants were asked to remove their right shoe to allow for a better fit on the 

floorplate.  

 

A 
B 

C 

D 
E 
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Figure 5: Diagram of experimental setup. A participant is seated (A) facing a computer monitor 

(B) and dorsiflexes their right ankle (C) to correspond to waveforms depicted on the monitor. 

The resistance band stretches (D) and pulls the 3D-printed casing, which in turn exerts a force on 

the force transducer (E). 

 

A resistance band was secured to the underside of the distal area of the floor plate (see 

Figure 6) to allow for a dorsiflexion contraction. The attending graduate researchers verbally 

checked with the participant to ensure that the Velcro straps were secure but comfortable. A 

force transducer was positioned underneath the floorplate to assess the amount of force that the 

participant produced during the experiment. This force transducer was placed in a custom 3D-

printed plastic casing to allow for force translation from the resistance band to the force 

transducer. This plastic casing consists of two halves: one to hold the force transducer, and the 

other to apply the load. The lower half of the plastic casing was secured to wooden posts screwed 

into the apparatus platform, and held the force transducer. This half could translate up and down 

the unthreaded portions of the screws (see Figure 7). The upper half of the casing was secured to 

the tops of the screws with epoxy resin. When the participant would dorsiflex their right ankle, 

this would stretch the resistance band. The resistance band, when stretched, applies a load to the 

lower half of the plastic casing holding the force transducer, pulling this half upwards along the 

axis of the screws. When the force transducer contacts and is pressed into the upper half of the 

casing, a load is applied to the force transducer. As the participant pulls harder, more force is 

applied to the force transducer. Conversely, as the participant relaxes, the force applied to the 

transducer is lessened in tandem. This device was used to execute the “Random” and 

“Rhythmic” force tracking tasks. Participants sat facing a computer monitor (Dell 1920x1080 

pixel resolution 24”, model G2410) with a screen dimension of 30 x 53 cm. The vertical center 

of the monitor was aligned with the participant’s mid-line, and the height was adjusted to the 
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comfort of the participant. The protocol for the force-tracking tasks was implemented and 

controlled by National Instruments LabVIEW (2017, 32-bit) Software. This software also 

recorded and saved the force-tracking amplitudes for each trial on a secure computer to assess in 

later data analysis. 

 

 

Figure 6: Front view of the force-transducer apparatus. A metal floor plate was connected to a 

resistance band. The resistance band was wrapped around a 3D-printed case for the force 

transducer. The participant’s right foot was strapped to the floor plate using Velcro. The floor 

plate is on a hinge which allows the participant to dorsiflex the foot. When the participant pulled 

up on the floor plate, the resistance band pulled the force transducer case, which then applied a 

load to the force transducer.  
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Figure 7: A figure depicting the 3D-printed casing holding the force transducer. The top half of 

the casing (green, A) would apply a load to the force transducer (B) when pressed against it, and 

was secured to the tops of the screws (C) using epoxy resin. The lower half of the casing (white, 

D) held the force transducer and could move freely up and down along the unthreaded portions 

of the screws (E), which were screwed into wooden blocks (F) at the base of the apparatus. 

 

2.2.4 Maximum Voluntary Force (MVF) 

Maximum Voluntary Force (MVF) was acquired from TA muscle. Participants 

performed 3 maximum force contractions by maximally dorsiflexing their right ankle for 5 

seconds with a 2-minute rest interval in between trials. The largest force relative to baseline on 

B 

A 

C 

D 

E 

F 
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the force-transducer obtained from any of the three trials was defined as MVF. The levels of 

force corresponding to 20% and 70% MVF were used to calibrate the force transducer for the 

dorsiflexion tasks (see below). The maximum wave form height was produced with 70% force. 

This force was chosen to mitigate fatigue throughout the protocol as the participant did not have 

to exert maximum force to reach the peaks of the waveform. As well, this force limit 

standardized the level of force exerted across all participants. Additionally, each waveform was 

standardized so that the average force needed to track each waveform was 45% MVF.  

 

2.2.5 Experimental Timeline 

 The entire experiment took place over a period of ~1.5-2 hours. Consent took place over 

5-10 minutes, where participants were able to ask the attending graduate student any questions 

they may have about the experiment. Explanation of any experimental procedures always took 

place before that portion of the experiment. Experiment setup was ~60-75 minutes, including the 

fNIRS cap, force transducer, and fNIRS recording setup procedures. The fNIRS recording took 

place over ~20 minutes, throughout which participants performed the three tasks described 

below.  

 

2.2.6 FNIRS Setup 

 FNIRS was performed using the Brainsight NIRS device (Rogue Research, Montreal, 

QC). This machine projects wavelengths of 705nm and 830nm to measure deoxy-hemoglobin 

and oxy-hemoglobin, respectively. The sources and detectors were placed in a stretchable cap 

before-hand, after which the participant put on the cap and adjusted the chin strap to comfort. 
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Optode placement was organized in a lattice arrangement over the head (see Figure 8). Source 

optodes are denoted by S, while detector optodes are denoted by D. Optode pairs will thus be 

referred to as S#D# where the number sign corresponds to the number of source or detector in 

the montage. The cap was positioned so that the optode pairs S5D1 and S10D13 were centered 

over the C3 and C4 respectively (International 10-20 system), corresponding to the bilateral 

primary motor cortices. Once the cap was positioned, hair was displaced from the area under 

each optode, and the optode was secured in the cap. A self-adhesive wrap was then placed 

around the cap on the head to increase optode coupling to the scalp, which was used to improve 

signal quality. The signal quality was then checked for each channel by looking for the presence 

of systematic physiological signals. Signal quality was deemed acceptable when clear signals for 

heartbeat (~1-1.5 Hz), and for Mayer waves (~0.1 Hz) were observed for each channel. Global 

detector sensitivity was then increased until signal saturation, at which point it was reduced ~2-5 

V to allow for modulations in the signal during recording. Individual detector sensitivities were 

then adjusted so that each signal matched the channel with the highest signal strength as closely 

as possible.  

 

C3 
C4 

C3 C4 
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Figure 8: A representation depicting the optode montage. A. The montage represented on the 

participant’s head. A source is represented by a letter. A detector is represented by a number. 

The grey lines in between sources (letters) and detectors (numbers) represent channels. Two 

channels will be centered over C3 and C4 (primary motor cortices). B. The montage as it looks 

in the fNIRS processing software. 

 

2.2.7 Protocol for Acquisition of Experimental Trial 

First, a baseline measure was performed. Participants were seated comfortably with their 

arms and legs relaxed and their eyes closed, breathing normally. Participants were asked to relax 

for 5 minutes to ensure that any pre-existing hemodynamic changes due to previous activities 

were reduced to their baselines. Once the 5 minutes had passed, the fNIRS recording was 

initiated with a 2-minute baseline measurement while the participants were at rest. Participants 

were instructed to keep as still as possible to not introduce motion artifacts into the data. Prior to 

the commencement of each trial, a 10 second baseline measure was taken to compare to each 

task period. Following the conclusion of a trial, a variable 30-50 second rest period allowed for 

hemodynamic activity to return to baseline values and prevented time-locking of physiological 

noise to the task. The secondary purpose of the rest period was to mitigate potential fatigue that 

participants may experience from repeated force productions during the task. The combination of 

baseline and rest periods amounted to a variable 40-60 seconds between trials. During baseline 

and rest periods, a centrally-positioned white fixation cross appeared on the screen. Participants 

were instructed beforehand to relax and fixate on the cross when it appeared. Trial timing was 

not divulged to participants, so as to mitigate the effects of trial anticipation on hemodynamic 

activity. 
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2.2.8 Tasks 

Three tasks were compared in the present study. Each task was presented for a 10 second 

duration and the order of task presentations was randomized for each participant. No participant 

had the same order of tasks as another. Tasks consisted of A. Dorsiflexion of the ankle during 

random waveform force-tracking (“Random”) B. Dorsiflexion during rhythmic waveform force-

tracking (“Rhythmic”), and C. Rest without task demands (no stimulation; “Rest”). Importantly, 

the mean force produced during tasks A and B were matched to ensure that the intensity of force 

production was not the cause of any difference in hemodynamic activation between tasks. Task 

A consisted of random waveform force-tracking with dorsiflexion of the right ankle, where a 

pseudorandom sinusoid with unpredictable amplitude and peak timing was tracked for each trial. 

Task B consisted of rhythmic waveform force-tracking task in which a rhythmic sine wave with 

predictable timing and amplitude for each peak was tracked for each trial. All waveforms were 

comprised of 10 peaks and troughs, to ensure that the frequencies of the waveforms were similar 

and did not modulate the hemodynamic response. The order of tasks was pseudo-randomized to 

prevent order effects. For example, task A may have been followed by task B or task C, but not 

by another task A (see Figure 9). Each task was repeated 10 times, for a total of 30 task 

presentations. A full description for each task is provided below. 

 

Figure 9: A figure depicting the pseudo-randomization of tasks during the fNIRS recording. 

Tasks were randomized so that one type of task may not occur concurrently. For example, above, 
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task ordering is A C A B C, however, the ordering A A C B C is not possible due to the 

concurrent presentation of task A. Tasks were 10 seconds long, with rest and baseline periods of 

30-50 seconds and 10 seconds respectively, in between task presentations. There were 10 

presentations of each task, for a total of 30 task presentations. 

 

2.2.8.1 Task A: In this task, participants controlled a cursor and followed the path of a pre-

generated waveform on a screen. This pre-generated waveform was a random sinusoid with 

varying amplitude and timing of peaks and troughs (see Figure 10) that was selected from a set 

of 10 based on the pseudo-randomization for that participant. Each of these waveforms was used 

once in a given collection – only the order of presentation changed. No waveform was repeated 

for the same participant. The waveforms used were considered to be complex as they are 

unpredictable, and thus would require more motor planning and finer motor control than a 

simpler sinusoid to track accurately. Force tracking was elicited through contracting the right TA 

muscle. As the force was tracked in real time, an increase caused the cursor to rise and a decrease 

caused the cursor to fall. The waveforms oscillated within 20% and 70% MVF for the 

participant. Performance on the task was assessed using the root mean squared error (RMSE) of 

the difference between the participant’s cursor and the pre-generated waveform. 

 

Figure 10: A representation of task A. Participants fixated on a white fixation cross before the 

task. The task then commenced, and continued for 10 seconds. During the task, the participant 

controlled the cursor (red) to try to follow the pre-generated waveform (white). The waveform 

was a random sinusoid that moved unpredictably in timing and amplitude. The mean force 
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produced corresponded to 45% MVF. As well, the waveform was set so that it is within the 

range of 20% to 70% MVF. The participant would modify the height of the cursor by pulling 

more (upward) or less (downward) with their right foot. Performance on the task was assessed 

using RMSE of the distance between the cursor and the waveform. 

 

2.2.8.2 Task B: In this task, participants controlled a cursor and followed the path of a pre-

generated waveform on a screen (see Figure 11). This pre-generated waveform was a sinusoid 

with consistent timing and amplitude throughout the 10 second task duration. Force tracking was 

elicited through contracting the right TA muscle. As with task A, the waveforms oscillated 

within 20% and 70% MVF for the participant. Task A and B waveforms were matched for mean 

amount of force. This was to ensure that the intensity of force production did not modulate the 

fNIRS response. Additionally, all waveforms were comprised of 10 peaks and troughs to ensure 

that the frequencies of the waveforms were similar and did not modulate the hemodynamic 

response. The same waveform was presented each time to ensure that the complexity of the task 

was not affected by changing the shape of the waveform. Performance on the task was assessed 

using RMSE of the difference between the participant’s cursor and the pre-generated waveform. 

 

Figure 11: A figure depicting task B. Participants fixated on a cross before the task. The task 

then began, and continued for 10 seconds. During the task, the participant controlled the cursor 

(red) to follow the pre-generated waveform (white). The waveform was predictable in timing 

and amplitude. The participant modified the height of the cursor by pulling more (upward) or 

less (downward) with their right foot. The sine wave oscillated between 20% and 70% MVF, 
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with a mean force produced of 45% MVF. Performance was assessed using root mean squared 

error (RMSE) of the distance between the cursor and the waveform. 

 

2.2.8.3 Task C: This task was a rest task with no task demands. The screen presented for this task 

was the same as those presented for rest and baseline (see Figure 12). As such, participants were 

unaware of the timing of this task to avoid anticipation effects on hemodynamic activity. This 

task is important as it allowed a baseline measure of hemodynamic activity that was compared to 

other tasks to ensure that the hemodynamic activity was significantly different. 

 

Figure 12: A figure depicting task C. Participants fixated on a cross before the task. The task 

then began, and continued for 10 seconds. During the task, the participant watched the fixation 

cross and refrained from making any movements. 

 

2.2.9 FNIRS Data Processing 

 FNIRS data was processed using NIRS Brain AnalyzIR Toolbox in MATLAB (Santosa 

et al., 2019). FNIRS signals were first downsampled to 4 Hz to reduce serial correlations. The 

raw light intensity signals were then converted to changes in Optical Density, and a Principal 

Component Analysis (PCA) filter was applied to reduce global spatial trends in the data, 

removing 2 components. The global spatial trends include low-frequency drift, as well as 
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fluctuations due to heart rate, respiration, and Mayer waves. Although I was going to use short-

separation channel regression to reduce physiological noise (Saager and Berger 2005), the fNIRS 

machine used in this study did not have the capability to record from short-separation channels, 

hence the PCA filter was used. The PCA filter was chosen because some sources of 

physiological noise (i.e., respiration and Mayer waves) can have frequency overlap with the 

hemodynamic response. Hence other techniques that rely on differences in frequency content to 

distinguish between cortical signal and noise are unable to remove it. Relative changes in 

hemoglobin concentrations were then calculated using the Modified Beer Lambert Law (Delpy et 

al., 1988). The fNIRS data was modelled with a General Linear Model (GLM) with a design 

matrix corresponding to the canonical HRF, and with an autoregressive prewhitening procedure 

to reduce the effects of serial correlations (Huppert 2016). The GLM assumes a linear 

combination of elements, including those from the predictors and different types of noise. The 

GLM was solved with an Iteratively-Reweighted Least Squares procedure, which removed 

outliers from whitened data that were assumed to correspond to motion artifacts. 

 

2.2.10 Statistical Analysis 

T-tests were used to compare average baseline and task period values for each channel 

across task (Random, Rhythmic, and Rest) for oxygenated hemoglobin (HbO) using the NIRS 

Brain AnalyzIR Toolbox software in Matlab. HbO was used for analysis as previous research has 

found that the retest reliability, SNR, and stability of HbO signals are higher than those for HbR 

(Plichta et al., 2006; Cui et al., 2011; Miyai et al., 2001; Strangman et al., 2002). The specific 

region of interest (ROI) that was investigated in this study was the bilateral TA representation of 

the motor cortex. This ROI was chosen because of the specific activation of the right TA muscle 
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in each of the tasks. To this end, four channels were selected in the midsection of the fNIRS 

montage that corresponded to this ROI: S4D8, S4D10, S8D8, and S8D10. It was expected that 

fNIRS signal would arise in one or more of these channels. Due to the poor spatial resolution of 

fNIRS (2-3 cm, Pinti et al., 2020) and potential differences in individual anatomy, no one 

channel was singled out as the expected channel for hemodynamic activation. In addition, 

channels with significant differences (p<0.05) between baseline and task period amplitudes were 

investigated further for specific activation patterns. Mean RMSE values were calculated for each 

participant across the “Random” and “Rhythmic” tasks, however due to the low sample size, 

these were not statistically analyzed.  

 

2.3 Results 

2.3.1 TA Motor 

The primary area for investigation in this study was the motor cortex representation for 

TA. Four channels were selected that overlaid the TA motor representation in the participants. 

These channels were S4D8, S4D10, S8D8, and S8D10 in the center of the montage, as indicated 

by the blue box in Figure 13. Average baseline values were compared to task amplitudes for all 

three tasks in each individual participant. The figures displayed below are average responses 

over the 10 trials for each task. P<0.05 was used as the statistical threshold for significance. The 

“0” on the x-axis of each graph represents the start time for the trial. One significant channel 

(S8D8) was found for one participant (P10) in the “Rhythmic” task (see Figure 16). All other 

channels/tasks were non-significant for participants. Considering the absence of activity in most 

participants, the hypothesis regarding activation in M1 from TA activity could not be addressed. 
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Figure 13: Figure depicting ROIs for the experiment. The blue box surrounds the medial 

channels overlying the TA motor representation. The red box surrounds the lateral channels 

overlying the left Somatomotor cortex. The green and purple boxes surround channels thought to 

overly Frontal and Temporal cortices, respectively. 
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Figure 14: Figure depicting HbO activation detected in channels overlying the TA motor 

representation for P01. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channels S4D8 and S8D8 

looked like they may have had some activation for both the “Random” and “Rhythmic” tasks, 

however no channels reached statistical significance. 
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Figure 15: Figure depicting HbO activation detected in channels overlying the TA motor 

representation for P03. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Large decreases in HbO 

were seen in every channel after ~6 seconds. No channels reached statistical significance. 
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Figure 16: Figure depicting HbO activation detected in channels overlying the TA motor 

representation for P10. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channel S8D8 reached 

statistical significance in the “Rhythmic” task, however this result could be due to excessive 

noise in the channel. No other channel reached statistical significance. 
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Figure 17: Figure depicting HbO activation detected in channels overlying the TA motor 

representation for P12. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channels S4D10 and S8D8 

seem to have large random fluctuations, which may indicate excessive noise in those channels. 

Channel S4D8 may have had some activation in the “Random” and “Rhythmic” tasks, but not 

enough to reach significance. No channels reached statistical significance. 
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Figure 18: Figure depicting HbO activation detected in channels overlying the TA motor 

representation for P14. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. All channels seem to have a 

downward trend, potentially indicating baseline drift. Additionally, signals in all channels seem 

to be very oscillatory, potentially indicating the presence of systematic physiological noise in the 

data. No channels reached statistical significance. 
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2.3.2 Other Areas Demonstrating Significance 

2.3.2.1 Somatomotor Area 

One area that showed significant channels in addition to the TA motor representation 

region was the area labelled “Somatomotor”. Four channels were selected that overlaid the 

Somatomotor area in participants, represented by the red box in Figure 13. These channels were 

S2D1, S2D4, S3D1, and S3D4 in the left hemisphere of the montage. Average baseline values 

were compared to task amplitudes for all three tasks in each individual participant. The figures 

displayed below are average responses over the 10 trials for each task. P<0.05 was used as the 

statistical threshold for significance. The “0” on the x-axis of each graph represents the start time 

for the trial. Significant channels were found for all participants in various channels. 
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Figure 19: Figure depicting HbO activation detected in channels overlying the Somatomotor 

representation for P01. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channel S2D1 reached 

statistical significance in the “Random” task. Channels S3D1 and S3D4 seem to have some 

activation in both the “Random” and the “Rhythmic” tasks, however the “Rest” task also seems 

to show some activation, indicating that the other activations could be spurious. No other channel 

reached statistical significance. 
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Figure 20: Figure depicting HbO activation detected in channels overlying the Somatomotor 

representation for P03. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channels S2D1, S3D1, and 

S3D4 reached statistical significance for the “Random” task, and channel S3D4 for the 

“Rhythmic” task as well. Channel S2D4 did not reach statistical significance. 
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Figure 21: Figure depicting HbO activation detected in channels overlying the Somatomotor 

representation for P10. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channels S2D4 and S3D4 

reached statistical significance for the “Rhythmic” and “Rest” tasks, respectively. In S3D4, the 

fact that the “Rest” task increases alongside the “Random” and “Rhythmic” tasks potentially 

indicates that these activations are spurious. No other channels reached statistical significance. 
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Figure 22: Figure depicting HbO activation detected in channels overlying the Somatomotor 

representation for P12. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channels S2D4, S3D1, and 

S3D4 reached statistical significance for the “Rhythmic” task. Channels S2D4 and S3D4 also 

reached statistical significance for the “Random” task. The activation patterns and amplitudes 

seemed to be very similar across the “Random” and “Rhythmic” tasks in all channels. Channel 

S2D1 did not reach statistical significance. 
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Figure 23: Figure depicting HbO activation detected in channels overlying the Somatomotor 

representation for P14. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channel S2D1 reached 

statistical significance for the “Rest” task, and S3D4 for the “Random” and “Rhythmic tasks. 

However, activations in S3D4 were consistently in the negative direction, potentially indicating 

excessive noise in the channel. Additionally, each channel demonstrated oscillatory activity for 

each task, potentially indicating that any activations were spurious. No other channels reached 

statistical significance. 
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2.3.2.2 Frontal Cortex 

Another area that showed significant channels in addition to the TA motor representation 

region was the Frontal cortex. Channels S4D9 and S8D9 were assumed to overly the Frontal 

cortex in participants, and are represented by the green box in Figure 13. Average baseline 

values were compared to task amplitudes for all three tasks in each individual participant. The 

figures displayed below are average responses over the 10 trials for each task. P<0.05 was used 

as the statistical threshold for significance. The “0” on the x-axis of each graph represents the 

start time for the trial. The two channels demonstrated significance in P10 for both the 

“Random” and “Rhythmic” tasks (see Figure 24). All other channels/tasks were non-significant 

for participants. 

 

Figure 24: Figure depicting HbO activation detected in channels overlying the Frontal 

representation for P10. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 
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“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Both S4D9 and S8D9 

reached statistical significance for both the “Random” and the “Rhythmic” tasks. However, the 

large pre-task activation in S4D9 for the “Rhythmic” task potentially indicates that this particular 

activation could be spurious. 

 

2.3.2.3 Temporal Cortex 

 A final area that showed significant channels in addition to the TA motor representation 

region was the Temporal cortex. Channels S3D3 and S5D6 were assumed to overly the 

Temporal cortex in the left hemisphere, and are represented by the purple box in Figure 13. 

Average baseline values were compared to task amplitudes for all three tasks in each individual 

participant. The figures displayed below are average responses over the 10 trials for each task. 

P<0.05 was used as the statistical threshold for significance. The “0” on the x-axis of each graph 

represents the start time for the trial. Channel S5D6 was active in P01 for both the “Random” 

and “Rhythmic” tasks, whereas channel S3D3 was active in P03 for the “Random” task. All 

other channels/tasks were non-significant for participants. 
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Figure 25: Figure depicting HbO activation detected in channels overlying the Temporal 

representation for P01. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channel S5D6 reached 

statistical significance for the “Random” and the “Rhythmic” tasks. However, the large 

activation during the “Rest” task and the large pre-task activation for the “Random” task 

potentially indicate that these activations are spurious. The other channel did not reach statistical 

significance. 
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Figure 26: Figure depicting HbO activation detected in channels overlying the Temporal 

representation for P03. X axis is time in seconds, with negative numbers representing the 

baseline period. The dashed line above Time = 0 s represents the start of the task. Tasks were 10 

seconds long. Y axis is the relative change in HbO concentration in micromolar. The HbO 

activation in the “Random” task is represented by a red line, “Rhythmic” by a blue line, and 

“Rest” by a green line. (*) represents a significant increase in HbO amplitude from baseline, 

whereas (†) represents a significant decrease in HbO amplitude from baseline. All graphs in the 

figure are scaled to the same size to accurately compare activations. Channel S3D3 reached 

statistical significance for the “Random” task, however this activation seems to be at the same 

amplitude as the pre-task baseline. Additionally, other activations seem to be higher, however 

they also seem to be peaking later than the task period, and thus may be spurious activations. The 

other channel did not reach statistical significance. 

 

 

2.3.3 Behavioural Results 

 Behavioural performance on both force-tracking tasks was assessed using RMSE values 

expressed as % MVF. Mean RMSE values and their standard deviations are presented in Table 

1. Force-tracking signals were truncated by 1 second at the beginning of each trial so that 
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seconds 1-9 were used in the calculation of RMSE. This was done to avoid errors from delays in 

starting the task. No trends emerged from the RMSE data. I expected that RMSE values would 

be larger in the “Random” task than in the “Rhythmic” task. The “Random” task was 

hypothesized to be more difficult for the participants to complete due to the varying amplitude 

and timing of peaks and troughs in each waveform. With a full dataset, this result could have 

been statistically analyzed and would have provided more information on the RMSE. 

Participant Number P01 P03 P10 P12 P14 

RMSE average - 

Random 

10.11 (± 2.89) 28.83 (± 18.76) 17.78 (± 4.74) 13.34 (± 4.78) 11.16 (± 3.17) 

RMSE average - 

Rhythmic 

15.04 (± 3.78) 46.34 (± 31.91) 17.02 (± 3.30) 11.49 (± 3.17) 15.20 (± 8.87) 

Table 1: Table depicting average RMSE values (% MVF) across tasks for participants. 

 

Figure 27: Figure depicting a box and whisker plot of RMSE values across participants and 

tasks. X’s on the graph represent mean values. Within participants, error rates are very similar 

across tasks, suggesting that the tasks were equally difficult (complex). 
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2.4 Discussion 

The present study explored cortical hemodynamic responses to a lower limb force-

tracking task in healthy individuals. Although the study was incomplete, preliminary findings 

provide interesting information regarding the feasibility of performing lower limb fNIRS for a 

motor task involving a single joint. Additionally, the results of the present study indicate activity 

in similar cortical regions to previous work, suggesting that activations in the present study may 

reflect similar cortical mechanisms. Below, the preliminary findings and their possible biological 

origins are discussed. 

 

2.4.1 Why was there no activation from TA motor representation? 

 No significant increases were found for HbO in channels overlying the TA motor 

representation excepting one in the present study. There could be multiple reasons why other 

channels failed to reach statistical significance. First, methodological issues like inadequate 

optode coupling to the top of the scalp could have introduced extraneous noise and decimated the 

SNR for the channels. However, each channel was double-checked to limit the amount of hair 

under the optodes before the experiment started. Additionally, the head was wrapped with a 

bandage to improve optode coupling to the scalp. Despite the wrap, pressure may have been 

disproportionate across channels due to the head shape of individual participants. Further, the 

task may have been ineffective in activating the TA motor region due to the transient task period 

(10 seconds). However, some lower limb fNIRS studies have reported task periods of as little as 

two seconds, while reporting significant HbO activations (De Lima-Pardini et al., 2017; Huppert 

et al., 2013).  
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Second, it is possible that fNIRS was unable to record signals from the area simply due to 

depth of the area within the longitudinal fissure in most participants. Light projected by fNIRS is 

only able to measure signals from 5-8 mm into the cortex (Huppert 2016), which may not be 

deep enough to reach the TA motor representation. These deeper areas also have lower contrast-

to-noise ratios (Huppert et al., 2013), which may affect researchers’ ability to see signals from 

these regions. However, other fNIRS studies such as Pittaccio et al. (2013) and Koenraadt et al. 

(2012) reported activation in the medial motor cortices during similar lower limb tasks to the 

present study. Pittaccio et al. (2013) showed some fNIRS activation in the medial motor region 

during passive and active ankle dorsiflexion, however these results were not analyzed 

statistically and thus the level of activation may not be statistically significant. Koenraadt et al. 

(2012) showed significant fNIRS activation in a rhythmic ankle dorsiflexion-plantarflexion 

movement over the motor cortex, however this result could be due to the activation of multiple 

muscles, the motor representations of which may be closer to the scalp than others. Therefore, it 

is difficult to say whether a motor task dominated by the action of TA muscle can induce 

activations within the depths of the central sulcus that can be detected by fNIRS in healthy 

individuals. In line with this, the TA motor representation is not the same in all individuals. For 

example, a Transcranial Magnetic Stimulation (TMS) motor-mapping study by Vaalto et al. 

(2013) found that TA motor representations for trained figure skaters were significantly larger in 

the dominant hemisphere than TA motor representations in age-matched controls. Similarly, 

Streletz et al. (1995) found that biceps brachii (BB) motor maps were significantly greater in area 

and produced larger responses in patients with acute complete cervical spinal cord injury (SCI) 

compared to healthy controls. If the TA motor representation is similar to the motor 

representation for BB, the TA motor representation may be greater in area and produce larger 
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responses in SCI patients. However, complete SCI prevents these patients from participating in 

the task, as there is no residual function. Instead, incomplete SCI patients, while presenting 

similar changes to complete SCI, still retain function in the affected limbs. Specifically, Freund 

et al. (2011) assessed 10 SCI patients (2 complete, 8 incomplete; cervical SCI) in regards to 

fMRI activations in motor representations of affected limbs. They found that a handgrip task 

elicited greater fMRI activations in the motor representation for the hand when compared to 

controls (Freund et al., 2011). This effect was augmented in tandem with reduced spinal cord 

area. This study demonstrates that in incomplete SCI, some motor areas with residual function 

have greater levels of activation. This phenomenon, if also present in lower limb motor areas, 

may allow for more expansive studies of the lower limb in SCI patients. This increased level of 

activation is also present in other clinical populations. In fact, a recent fNIRS study by Sukal-

Moulton et al. (2020) investigated different activations between young adults with typical 

development (TD), unilateral cerebral palsy (UCP), or bilateral cerebral palsy (BCP) during an 

ankle dorsiflexion task. The authors found that only the BCP group had significant channels for 

the ankle dorsiflexion task, and not the TD or UCP groups (Sukal-Moulton et al., 2020). 

Additionally, the UCP and BCP groups had more global activity than the TD group (Sukal-

Moulton et al., 2020). Thus, TA motor representations may only produce detectable responses to 

fNIRS in specific populations, such as those with SCI. Future studies should investigate 

activations from TA motor tasks in both clinical and healthy populations to elucidate this issue. 

 

2.4.2 Why was there activity in Somatomotor Area? 

 One area that produced statistically significant channels was the area labelled 

“Somatomotor”. The channels in this area were S2D1, S2D4, S3D1, and S3D4. These channels 
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produced statistically significant increases in HbO activation during the “Random” and 

“Rhythmic” tasks for four out of five participants. These increases could be related to multiple 

functions from the underlying brain regions. For example, these channels could be relaying 

activations from the superior temporal gyrus (STG), which is responsible for sensory integration. 

In a lower limb fNIRS study, Tachibana et al. (2011) found statistically significant activations in 

channels overlying this area when participants played a dance video game. The authors 

suggested that multiple sensory cues such as the arrows on the screen and the music from the 

game required sensory integration for the participant to accurately dance in the game (Tachibana 

et al., 2011). In the present study, participants also needed to integrate information from multiple 

sources. The visual cue of the waveform, the proprioceptive cue from the position of the foot, 

and the somatosensory cue from the resistance band all contribute to the accuracy of the 

participant in the force-tracking task. These cues may have been integrated into a cohesive unit 

that was then sent downstream to the motor cortex to affect behaviour (Tachibana et al., 2011). 

 Alternatively, fNIRS activations in these channels could reflect secondary somatosensory 

cortex (SII) activation. In a recent fMRI study, the authors reported significant activations in SII 

while participants attended to either a virtual hand (VH) or to their real hand (RH) during 

repeated grasping motions, with higher activations in the RH condition (Limanowski and Friston 

2020). The authors suggested that this increased activity in SII could be related to proprioceptive 

attention to the hand; in other words, attending to the unseen body part. This idea of 

proprioceptive attention is in line with previous hypotheses of motor attention (Rushworth et al., 

2001). In the present study, participants could be directing proprioceptive attention to their foot 

in the apparatus to connect that location with the location of the cursor on the screen. 
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Consequently, both areas SII and STG could be active, due to the requirement of sensory 

integration to complete the task.  

 

2.4.3 Why was there activity in Frontal Area? 

 A third area that showed significant HbO activations in one participant (P10) was 

labelled as “Frontal”. The channels in this area were S4D9 and S8D9. These channels produced 

statistically significant HbO increases for both the “Random” and “Rhythmic” tasks. Due to their 

proximity to Cz, these channels could possibly be overlying the preSMA and/or the SMA in P10. 

The preSMA and SMA areas are thought to be important for the learning of new motor skills 

(Hund-Georgiadis and von Cramon 1998; Hatakenaka et al., 2007). For example, in Hund-

Georgiadis and von Cramon (1998), the authors found significant fMRI activations in the SMA 

throughout a complex finger tapping task. Specifically, the authors compared fMRI activations 

between piano players (PP) and non-musicians (NM) throughout their learning of a complex 

finger tapping task. The NM group had significantly higher SMA activations than the PP group 

throughout most of the training. Additionally, SMA activations decreased in both groups as the 

training progressed. From these results, the authors suggest that the SMA is involved in motor 

learning (Hund-Georgiadis and von Cramon 1998). Similarly, a more recent fNIRS study by 

Hatakenaka et al. (2007) found increased activations in the preSMA and SMA as participants 

were trained on a PR task. The authors in this study also concluded that preSMA and SMA were 

likely involved in the motor learning process due to decreasing activations in both areas as 

training progressed (Hatakenaka et al., 2007). 
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In the present study, only one participant (P10) showed significant activations in these 

channels, however other participants did not. One potential reason for this may be anatomical 

differences between that participant and others. The head size of P10 was smaller compared to 

other participants’ head sizes. Thus, the montage may have reached these more frontal areas in 

comparison to someone with a larger head size. Another potential reason, though unlikely, is that 

other participants learned the task faster, and thus had lower overall activations in these areas 

that, when averaged over the different trials, did not lead to significant activations. However, this 

theory cannot be tested as error rates cannot be compared statistically across so few participants. 

 

2.4.4 Why was there activity in Temporal area? 

 The fourth area that showed significant activations in channels was labelled “Temporal” 

due to its anterior and lateral position on the montage. The channels in this area were S3D3 and 

S5D6. Two participants (P01, P03) had significant increases in HbO for these channels in the 

“Random” and “Rhythmic” tasks. However, the patterns of activation in some of these channels 

imply that they were spurious activations. For example, in Figure 25 channel S5D6, all three 

tasks (“Random”, “Rhythmic”, and “Rest”) seemed to increase around the same period, 

suggesting that they could be due to global physiological or motion artifacts. Additionally, 

Figure 26 showed a significant activation in channel S3D3 for the “Random” task, however 

from visual inspection there seemed to be no increase, especially in comparison to the 

“Rhythmic” task from the same channel. In channel S5D6 of the same figure, there were much 

larger activations that appeared to be non-significant, however these activations seemed to peak 

later in time (~12 s after task begins) than is usual (~5-10 s, Leff et al., 2011). 
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2.4.5 Complexity Modulation 

 There was limited evidence of hemodynamic complexity modulation for the present 

study. In most participants, HbO activations were similar for the “Random” and “Rhythmic” 

tasks across most channels. One explanation for this result is that the tasks were too similar. Both 

the “Random” and “Rhythmic” tasks were ~0.5 Hz frequency, and the mean amount of force 

produced in each task remained at 45% MVF. Simply the timing and amplitude of the peaks and 

troughs of the waveforms differed. In this sense, perhaps such changes were minute and did not 

increase the difficulty of the task enough to change the hemodynamic response. However, the 

fact that the channels overlying the TA motor representation did not produce significant 

increases in HbO in either case prevents further investigation, as differences in activations 

between the tasks would be expected to arise in that region (Holper et al., 2009; Koenraadt et al., 

2012). Further, considering the small sample size, an effect may be present but may not be 

visible without a larger sample. Within participants, statistical contrasts revealed no statistical 

differences between all channels in these areas. If the area labelled Somatomotor truly lay over 

areas STG and/or SII, a lack of differences in activation between the “Random” and “Rhythmic” 

force-tracking conditions may simply reflect the fact that the same amount of sensory integration 

is required for both tasks. This notion may be likely, as the only difference between the tasks was 

between the waveforms themselves, while the basic methodology for force-tracking remained 

similar. 

In the Frontal channels, significant activations in a single participant were also similar 

between tasks. If the Frontal channels truly lie over preSMA/SMA areas, similar activations may 

indicate similar difficulty between tasks. However, as reported by Hatakenaka et al. (2007), 

activations in these areas change as the participant learns the motor task. Consequently, it may be 
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more accurate to observe the activations across time for each task instead of as an average 

activation level.  

 

2.5 Conclusions 

 These preliminary data suggest that fNIRS is not capable of detecting hemodynamic 

activation from the TA motor representation, and thus may not be capable of detecting 

complexity-modulated responses in this area. Further, force-tracking may induce hemodynamic 

activation in STG/SII, and preSMA/SMA in regards to sensory integration and motor learning, 

respectively. No further conclusions can be drawn in regards to the present data due to small 

sample size. Future studies may conduct similar studies with lower limb force-tracking to 

disambiguate hemodynamic activity and its biological origin. 
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Chapter 3: FNIRS Processing - The Uses and 

Considerations Regarding Processing Techniques 
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3.1 Introduction 

 FNIRS is often paired with tasks involving human movement due to the relatively 

superficial location of the motor cortex (Leff et al., 2011). As such, a large number of papers 

have been published utilizing fNIRS to study experimental paradigms related to human 

movement. Consequently, fNIRS methodologies have become increasingly varied in regards to 

recording and processing of fNIRS data. 

FNIRS data contains noise from different sources including those from physiological, 

instrumental, and motion. These different noise sources can enshroud the cortical signal and 

prevent researchers from observing the effects of their tasks. Consequently, revealing a tangible 

cortical signal requires pre-processing of the collected fNIRS data to remove this extraneous 

noise. Many different pre-processing techniques exist; however, some perform better in certain 

situations than others. As a result, the implementation of sensible pre-processing is of cardinal 

importance for the accurate detection of task-related cortical hemodynamic events. 

The fNIRS literature reveals a wide range of processing methods (see section 3.3 

Processing Techniques and their Uses). The variety and lack of information in pre-processing 

methods creates challenges for new fNIRS users. The purpose of this chapter is to identify 

common fNIRS pre-processing methodologies that are specific to the motor control field. 

Subsequently, the techniques identified as the most common will be discussed in terms of their 

uses, considerations for utilization, and methodology. 
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3.2 Literature Review 

 

3.2.1 Literature Search Criteria and Data Extraction 

The following PubMed headings were used in a PubMed literature search:  

((((((((NIR) OR NIRS) OR fNIRS) OR fNIR) OR functional near-infrared spectroscopy) OR 

functional near-infrared spectroscopic) OR optical imaging system) OR optical topography) 

AND ((((((((motor) OR motor control) OR motor behaviour) OR motor behavior) OR motor 

function) OR motor coordination) OR motor activity) OR motor ability) AND 

(((((((((((((((((upper limb) OR lower limb) OR gait) OR locomotion) OR balance) OR 

ambulation) OR cycling) OR walking) OR standing) OR obstacle) OR dorsiflexion) OR 

plantarflexion) OR finger opposition) OR finger tapping) OR squeezing) OR grasping) OR 

manipulation) AND ("2010/01/01"[PDAT] : "2020/12/31"[PDAT]). Additionally, the NCBI 

filter function was used to narrow the search based on the date of the study (1st January 2010 to 

1st June of 2020). Studies were also limited to those written in English and performed on 

humans. The following information was independently collected from each study by two 

graduate trainees (P.D., S.F.): first author, year of publication, fNIRS hardware used, processing 

software used, experimental task, fNIRS optode montage, participant demographics, sample size, 

processing approach, and the presence or absence of figures reporting of processed 

hemodynamic responses.  

 

3.2.2 Inclusion/Exclusion Criteria 

In order to have been included in this review, studies had to meet the following criteria: 

a) Studies must be peer-reviewed articles, b) studies must employ an ON/OFF task paradigm 

https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
https://www.ncbi.nlm.nih.gov/pubmed?term=((((((((NIR)%20OR%20nirs)%20OR%20nirs)%20OR%20fnir)%20OR%20functional%20near-infrared%20spectroscopy)%20OR%20functional%20near-infrared%20spectroscopic)%20OR%20optical%20imaging%20system)%20OR%20optical%20topography)%20AND%20((((((((motor)%20OR%20motor%20control)%20OR%20motor%20behaviour)%20OR%20motor%20behavior)%20OR%20motor%20function)%20OR%20motor%20coordination)%20OR%20motor%20activity)%20OR%20motor%20ability)%20AND%20(((((((((((((((((upper%20limb)%20OR%20lower%20limb)%20OR%20gait)%20OR%20locomotion)%20OR%20balance)%20OR%20ambulation)%20OR%20cycling)%20OR%20walking)%20OR%20standing)%20OR%20obstacle)%20OR%20dorsiflexion)%20OR%20plantarflexion)%20OR%20finger%20opposition)%20OR%20finger%20tapping)%20OR%20squeezing)%20OR%20grasping)%20OR%20manipulation)%20AND%20(%222010/01/01%22%5bPDAT%5d%20:%20%222020/12/31%22%5bPDAT%5d)&cmd=correctspelling
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which alternates between task and rest periods, c) studies must employ fNIRS in relation to, in 

combination with, or separate from other neuroimaging techniques on the cortex of the brain, d) 

studies must investigate healthy populations, e) studies must report processing techniques for 

fNIRS data, and f) studies must be performed in human participants. 

These criteria were used to determine the inclusions at each stage of the review process 

(see Figure 1). 

 

3.2.3 Study Selection 

 

Figure 1: Figure depicting the study selection process for the review. 

 

3.2.4 Results of the Literature Review 

Article information (i.e. authors, processing, montage, etc.) from the final sample of 100 

articles is included in Appendix A. Otherwise, processing technique usage from the final sample 
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is included in Table 2 below. Studies are categorized by processing techniques employed – as 

such, many studies appear more than once in the table, as more than one technique was usually 

utilized when pre-processing fNIRS data. The techniques utilized by more than 10 studies were 

considered to be the most common. Therefore, the most common techniques in the motor control 

field were identified to be band-pass, low-pass, and high-pass filters, smoothing algorithms 

(moving average, Gaussian, Savitzky-Golay), wavelet filtering, and the general linear model 

(GLM). 

Table 2: Processing Technique Usage 

Processing Techniques Used by 

Band-pass, Low-pass, and 

High-pass filtering 

Anwar et al. 2013; Banville et al. 2017; Batula et al. 2017a, 

2017b; Brigadoi et al. 2012; Bruno et al. 2018; Buccino et al. 

2016; Chen et al. 2017; Choi et al. 2019; Crivelli et al. 2018; 

de Lima-Pardini et al. 2017; Derosiere et al. 2014; Dresler et 

al. 2011; Ferrari et al. 2014; Fu et al. 2017; Funane et al. 

2014; Gagnon et al. 2012; Groff et al. 2019; Harrison et al. 

2018; Heinze et al. 2019; Herold et al. 2017, 2019; Holper and 

Wolf 2010, 2011; Holper et al. 2010, 2012, 2014; Holtzer et 

al. 2011, 2017, 2019; Hong and Naseer 2016; Hu et al. 2013; 

Khan et al. 2018; Kobashi et al. 2012; Koenraadt et al. 2012, 

2013, and 2014; Koren et al. 2019; Kurz et al. 2012; Lachert 

et al. 2017; Lin et al. 2012, 2016; Lu et al. 2013, 2015, 2017; 

Lucas et al. 2019; Maidan et al. 2018; Mandrick et al. 2013; 

Mehnert et al. 2013; Mehta and Rhee 2017; Mirelman et al. 

2014, 2017; Muthalib et al. 2016, 2018; Naseer and Hong 

2013; Pfurtscheller et al. 2011; Pittaccio et al. 2013; Propper 

et al. 2017; Rosner and Barlow 2016; Seidel et al. 2017, 2019; 

Shibuya 2011; Shibuya et al. 2014; Shin et al. 2014; Stuart et 

al. 2019; Tempest et al. 2019; Vasta et al. 2017; Waldert et al. 

2012; Willis et al. 2019; Wolf et al. 2011; Woorons et al. 

2019; Wriessnegger et al. 2017, 2018; Yin et al. 2015; Yu et 

al. 2014 

Smoothing (moving average, 

Savitzky-Golay filter, 

Gaussian weighted filter) 

Amemiya et al. 2010; Anwar et al. 2013; Chacaroun et al. 

2019; Funane et al. 2014; Gagnon et al. 2012; Holper and 

Wolf 2010; Jang et al. 2014; Koehler et al. 2012; Kim et al. 

2017; Lachert et al. 2017; Sagari et al. 2015; Shin et al. 2014; 
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Wriessnegger et al. 2018; Yeo et al. 2013; Yokoyama et al. 

2019 

Visual inspection Beurskens et al. 2014; Holtzer et al. 2017, 2019; Lucas et al. 

2019; Muthalib et al. 2018; Pittaccio et al. 2013; Shibuya et 

al. 2014; Vasta et al. 2017; Wriessnegger et al. 2017, 2018 

Downsampling De Lima-Pardini et al. 2017; Holper and Wolf 2011; Holper et 

al. 2010, 2012, 2014; Ishii et al. 2018; Kobashi et al. 2012; 

Yin et al. 2015; Zimmermann et al. 2013 

Wavelet filtering Beurskens et al. 2014; Bruno et al. 2018; Herold et al. 2019; 

Jang et al. 2014; Jin et al. 2018; Kim et al. 2017; Koren et al. 

2019; Maidan et al. 2018; Mehta and Rhee 2017; Mirelman et 

al. 2014, 2017; Moro et al. 2016; Muthalib et al. 2015; 

Schurholz et al. 2012; Seidel et al. 2019; Stuart et al. 2019; 

Tempest et al. 2019; Yeo et al. 2013 

PCA Filter Harrison et al. 2018; Holtzer et al. 2011; Kurz et al. 2012; Lin 

et al. 2012; Lu et al. 2015 

Independent Component 

Analysis (ICA) Filter 

Holtzer et al. 2011 

General Linear Model (GLM) Bruno et al. 2018; de Lima-Pardini et al. 2017; Dresler et al. 

2011; Gagnon et al. 2012; Hu et al. 2013; Huppert et al. 2013; 

Jang et al. 2014; Karim et al. 2012; Kim et al. 2017; Lu et al. 

2013; Mehnert et al. 2013; Moro et al. 2016; Muthalib et al. 

2015; Pittaccio et al. 2013; Rosso et al. 2017; Seidel et al. 

2017, 2019; Tempest et al. 2019; Yu et al. 2014 

Kalman filtering Gagnon et al. 2012; Khan et al. 2018 

Standard Deviation Cutoff Beurskens et al. 2014; Rosner and Barlow 2016 

Inverse Z-score Zimmermann et al. 2013 

Linear Interpolation Fu et al. 2017; Lachert et al. 2017; Mehnert et al. 2013; 

Metzger et al. 2017; Yin et al. 2015 

Spline Interpolation Beurskens et al. 2014; Holper et al. 2012, 2014; Kobashi et al. 

2012; Koren et al. 2019 

Common Average 

Referencing (CAR) 

Batula et al. 2017a, 2017b; Shibuya et al. 2016 

Correlation-Based Signal 

Improvement (CBSI) 

Batula et al. 2017b; Maidan et al. 2018; Metzger et al. 2017; 

Mirelman et al. 2017; Shin et al. 2014 
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Prewhitening Huppert et al. 2013; Karim et al. 2012 

Precoloring Beurskens et al. 2014; De Lima-Pardini et al. 2017; Schurholz 

et al. 2012 

Bayesian modelling Brigadoi et al. 2012 

Short-Separation Channel 

Regression 

Gagnon et al. 2012; Koenraadt et al. 2014; Moro et al. 2016; 

Seidel et al. 2019 

 

3.3 Processing Techniques and their Uses 

3.3.1 General Filter Considerations 

 There are two general types of filters: Infinite Impulse Response (IIR), and Finite 

Impulse Response (FIR) filters. The mathematical equations for these two types of filters differ 

in their filter coefficients, which are calculated as the ratio between the sampling frequency of 

the system and the cutoff frequency of the filter (Winter 2009).  

The FIR filter type has filter coefficients that are comprised of entirely inputs, whereas 

the IIR filter has filter coefficients that are comprised of both inputs and previous outputs of the 

filter. In this sense, the output of the IIR filter can be recursive, because it depends on both 

inputs and previous outputs (Winter 2009). FIR filters also have a linear phase, meaning that 

there is no phase distortion of the signal. IIR filters, however, have phase distortion, in that 

different frequencies have different levels of phase shift. This distortion can be avoided by using 

a zero-phase filter (Pinti et al., 2019). Pinti et al. (2019) suggest using a high-order (>1000) FIR 

filter in place of an IIR filter due to the problem of phase distortion. Additionally, because FIR 

filters always have a finite output for a finite input, they are considered inherently stable. IIR 

filters may not be stable, as the output could be finite or infinite (Ifeachor and Jervis 2002; Pinti 

et al., 2019). 
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 Filter order is another important characteristic. The higher the order of a filter, the greater 

the slope of the filter at the cutoff frequency (see Figure 2; Winter 2009). In the filter’s equation, 

the number of filter coefficients represents the filter order, which becomes greater as more 

coefficients are added. Consequently, filters with greater filter orders require more time to 

compute (Winter 2009). FIR filters need to be implemented with greater orders than IIR filters to 

get similar results (Pinti et al., 2019). Consequently, this also means that computers using FIR 

filters require a greater amount of time to compute the output of the filter, due to the greater 

number of terms in the equation.  

 

Figure 2: Figure depicting the magnitude-response of a low-pass Butterworth-type filter with a 

cutoff frequency of 1 Hz. Different colours represent different orders of filter. Red has a filter 

order of 1, orange has a filter order of 2, yellow has a filter order of 3, green has a filter order of 
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4, and blue has a filter order of 5. Higher order filters have steeper curves, and thus attenuate 

signals to greater degrees than lower order filters, except at the cutoff frequency. As signals 

increase in frequency, they are attenuated more, the degree to which is decided by filter design. 

 

3.3.2 Low-pass, High-pass, and Band-pass Filters 

 A low-pass filter passes signals with a frequency lower than a selected cutoff frequency, 

and attenuates signals with frequencies higher than the cutoff frequency (Winter 2009). 

Similarly, a high-pass filter passes frequencies higher than a cutoff while attenuating lower ones. 

The band-pass filter passes frequencies within a certain band, while outside the band, frequencies 

are attenuated. In all of these filters, the passband describes the range of frequencies passed 

through the filter, whereas the stopband describes the range of frequencies that are attenuated. 
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Figure 3: A comparison between FFTs of unprocessed oxygenated hemoglobin concentration 

data (A) and band-pass filtered data (B, 0.1-0.4 Hz, 3rd order IIR Butterworth filter). The x-axis 

represents frequency in Hz, and the y-axis represents power/frequency in dB/Hz. As can be seen, 

the higher frequencies in A (~1.5 Hz, presumably related to HR) are significantly reduced in 

power when the bandpass filter is applied (B). What is less noticeable but still of note is the 

reduction in power of very low-frequency oscillations (~0.01 Hz) from nearly 82 dB/Hz to ~42 

db/Hz (B). 

 

 

These techniques are used in fNIRS to attenuate high and low-frequency physiological 

and instrumental noise which are usually attributed to heart rate, respiration rate, extraneous 

light, and baseline drift. The low-pass filter is used to attenuate very high frequency noise arising 

from the environment such as extraneous light, and physiological noise such as heart rate and 

respiration. The high-pass filter is used to attenuate very low frequency oscillations, specifically 

those from baseline drift, which can arise from the gradual movement of the optodes on the 

scalp. The band-pass filter is a simple combination of a low-pass and high-pass filter, in that it 

passes a certain band of frequencies, and attenuates the frequencies located outside of the band, 

which are typically all of the sources of noise listed above. 

 To implement these filtering techniques, the type of filter, filter order, and cutoff 

frequency (or frequencies) must be chosen. There are many different subtypes of these filters, the 

most common being the different IIR filters such as Butterworth, Chebyshev Types I and II, and 

the Elliptic filters, as well as the FIR filter (Naseer and Hong 2015). Butterworth filters are 

designed to be maximally-flat-magnitude-response filters, in that frequencies in both the 

passband and the stopband experience the least distortion possible (Ifeachor and Jervis 2002). 

Chebyshev Type I filters are designed so that frequencies after the cutoff frequency are much 

more sharply attenuated and monotonic (flat), but this comes with the cost of the passband 

frequencies becoming slightly distorted (Ifeachor and Jervis 2002). Chebyshev Type II filters 

are designed in the opposite way to Type I, such that the passband is as monotonic (flat) as 
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possible, which then introduces distortion into the stopband (Ifeachor and Jervis 2002). Elliptic 

filters have “equiripple”, or equal distortions in both the passband and the stopband, however, 

these filters also have the highest rate of attenuation of the different filters for the same order 

(Ifeachor and Jervis 2002). 

 When using these filters, differences in physiology between populations and individuals 

may necessitate the adjustment of filter parameters. For example, athletes have lower resting 

heart rate than non-athletes (Barak et al., 2011). In the case of a low-pass filter, the researcher 

would have to potentially lower the cutoff frequency to account for the lower resting heart rate of 

the athlete. For the higher resting heart rate of the non-athlete, the researcher could potentially 

use a higher cutoff frequency for the low-pass filter. Additionally, the type of task used can 

affect decisions as well. For example, heart rate and respiration rate increase during exercise vs. 

non-exercise motor tasks (Turner and Carroll 1985). Therefore, implementing a filter with a 

“one-size-fits-all” cutoff frequency is not ideal. In consideration of these factors, applying a fast 

Fourier transform (FFT) to an fNIRS dataset will allow the researcher to visually inspect the data 

and determine the spectral location of noises for a particular dataset. In light of these 

considerations, general recommendations exist for filter parameters. Naseer and Hong (2015) for 

example, recommend a passband of 0.1~0.4 Hz to remove most physiological and instrumental 

noises from fNIRS data if the task period is 10 seconds in length. Many other passbands have 

been used by fNIRS researchers (ex. 0.01-0.2 Hz, Heinze et al., 2019; 0.01-0.5 Hz, Anwar et al., 

2013) but no explanations are given for the parameters beyond the basic reasons for usage of a 

filter. 

 These filters are quick and easy to implement, and are included in most fNIRS processing 

programs such as HOMER2 (Huppert et al., 2009). As well, filtering techniques like these can be 
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useful since the frequencies related to physiology are usually known (Naseer and Hong 2015). 

However, some researchers disagree with this notion and instead suggest that frequency 

characteristics can vary across time, location on the head, and participant (Duan et al., 2018). 

Additionally, some types of simple filters produce “ripples”, which affect the signal amplitudes 

of certain frequencies in the passband and/or the stopband (Ifeachor and Jervis 2002). As a 

result, some cortical data may be distorted, or some frequencies in the stopband may not be 

attenuated. Another related aspect of these filters is that frequencies in the stopband are not 

completely removed, but instead are only attenuated (Naseer and Hong 2015), still allowing 

some noise to pass through the filter. Even if noise does not penetrate the filter due to incomplete 

attenuation, some physiological noise (i.e. Mayer waves, resulting from changes in blood 

pressure) can overlap in frequency with the cortical signal (Duan et al., 2018), rendering the filter 

unable to completely remove noise while preserving signal. As such, other processing techniques 

have been created to better distinguish physiological noises from the cortical signal of interest, 

such as short-separation channel regression. Finally, with improper use of these filters, the 

cortical response may be affected. For example, if the cutoff frequency is set to remove noise in 

the range of the hemodynamic response (~0.15 Hz for a 10 s task; Ferrari and Quaresima 2012), 

the user risks affecting a portion of the response itself, either by attenuation or amplification of 

certain frequencies (Duan et al., 2018).  

In sum, low-pass, band-pass, and high-pass filters are all simple noise-filtering techniques 

that are employed to attenuate high and/or low frequency noise in fNIRS. Many different types 

and subtypes of these filters exist, which may distort noise or data depending on the type. Types 

of filter (IIR or FIR) can also differ in their time requirement for computation, which may affect 
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decisions for usage in online scenarios. Individual physiological differences can also affect usage 

of these techniques, particularly regarding the cutoff frequency.  

 

3.3.3 GLM 

 The GLM is a method of statistical modelling for fNIRS data. It has previously been used 

to model the fMRI BOLD response (Monti 2011), and has thus been adopted due to the 

similarity between the hemodynamic responses from the two types of systems. The GLM utilizes 

predictors to describe the largest sources of variability within the fNIRS data (Monti 2011). For 

example, the researcher would input their task timings into the model, along with the predictor 

that describes the hemodynamic response, either through estimation or assumption of the shape 

of the hemodynamic response function. Some studies model the hemodynamic response with a 

linear combination of gamma functions as a predictor (ex. de Lima-Pardini et al., 2017, Dresler 

et al., 2011, Jang et al., 2014, etc.) assuming the shape of the hemodynamic response function. 

Other studies use a deconvolution procedure (ex. Moro et al., 2016), which estimates the 

hemodynamic response with a series of gaussian functions spaced in increments along the task 

period. 

 In its simplest form, the GLM is represented by a linear equation (see Equation 1), in 

which the amplitude of the hemodynamic response in one channel (𝑌) is equal to the predictor 

(𝑋) multiplied by the “weight” of that predictor (𝛽) plus the error term (𝜀). 

                                                                       𝑌 = 𝑋𝛽 +  𝜀                                                           (1) 

Predictors are given weight in the model in regard to how much that predictor contributes 

to the variability of the signal. In other words, if the researcher’s estimate/assumption of the 
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shape of the hemodynamic response is correct, then that estimate will be given a higher weight 

by the model. The error term in the equation represents all noise in the recording, consisting of 

physiological, instrumental, and motion noise. 

The GLM has assumptions regarding the data and the noise in the system. These 

assumptions are as follows (Monti 2011): 

1. Task responses are non-stochastic (non-random), and are the same across trials of the 

same task. 

2. Noise is independently and identically distributed, with a mean of zero and with some 

amount of variance around that point. 

a. Noise is homoscedastic, meaning there is noise from only one distribution in the 

data. 

b. Noise is not serially correlated, meaning that past noise does not affect future 

noise. 

3. Predictors are not linear derivations of each other. 

 To use this technique, a researcher would need to decide on the method of 

inference/estimation of the hemodynamic response. As mentioned above, many fNIRS studies 

assume the shape of the hemodynamic response with canonical gamma functions. Different 

convolutions of gamma functions are used to assume the shape of the canonical hemodynamic 

response (Tak and Ye 2014). While this method of the GLM is useful if the shape of the 

response is already known, assuming the shape could potentially lead to modelling errors as the 

response can change between recordings (Hoshi 2007). Another potential method is 

deconvolution (Monti 2011), which instead estimates the shape of the hemodynamic response. 

After the method is chosen, the predictors are put into the GLM, which then estimates the 
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weights of each of the predictors (i.e. how much they contribute to variability), and if they are 

significantly different from zero (Monti 2011). Some programs, like Homer2, have additional 

parameters to control such as the option to include short-separation channels as predictors or the 

option to change the GLM solving method (Huppert et al., 2009). 

 An additional consideration for the GLM is that the researcher can avoid the uncertainty 

of the DPF (Tak and Ye 2014), a term used to correct for the extra distance that NIR light travels 

in the cortex due to light scatter from biological tissues (Kamran et al., 2018). The DPF is a 

highly variable parameter because it can change between different ages and populations of 

participants (Duncan et al., 1996), as well as between brain regions (Zhao et al., 2002). Group-

analysis of fNIRS data can also be easily completed using a multi-level GLM analysis (Tak and 

Ye 2014). However, fNIRS data seems to violate many of the GLM assumptions, particularly 

regarding the contents of the noise (Monti 2011). Motion artifacts and systematic physiological 

noise violate the assumption that noise is independent (Barker et al., 2013), and thus lead to 

biased results from the GLM. Specifically, noise comes from multiple distributions, and is not 

independently distributed (Huppert 2017). 

 To summarize, the GLM is a statistical technique used to model the cortical signal 

recorded with fNIRS. It is simple and effective, as it assumes the recording is simply the linear 

combination of multiple regressors, representing task-related cortical signal and task-unrelated 

noise. The GLM also has multiple assumptions, of which fNIRS violates many. However, with 

proper removal of noise-related artifacts, assumptions can be met and therefore the true 

hemodynamic response can be assessed. 
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3.3.4 Wavelet Filter 

 Wavelet filters are used to filter out different types of noise, but mostly spike motion 

artifacts (Molavi and Dumont 2012). Wavelet filtering is based on the premise that cortical 

signal is comprised of different frequencies than motion artifacts (Molavi and Dumont 2012). 

Wavelet filtering begins with the base mother wavelet, which is scaled and translated to create 

daughter wavelets (Gurley and Kareem 1999). The fNIRS recording is then decomposed using 

these daughter wavelets. Wavelet coefficients (expressions) then describe how well the wavelet 

transform describes the fNIRS recording. The greater the number of wavelet coefficients, the 

better the wavelet transform can represent the full signal. These wavelet coefficients are 

organized into a distribution, associated with the scaling and translation parameters (Gurley and 

Kareem 1999). Motion artifacts are considered to be outliers in this distribution because of their 

differences when compared to cortical signal, and can be removed as such (Molavi and Dumont 

2012). 
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Figure 4: A comparison between unprocessed oxygenated hemoglobin concentration data (A) 

and data filtered with a discrete wavelet transform (IQR = 1.5; Molavi and Dumont 2012). The 

x-axis represents time in seconds, and the y axis represents relative change in oxygenated 

hemoglobin concentration in micromolar. A positive spike at ~350 s is first at an amplitude of 

~20 μMol in graph A, however once filtered it was reduced to an amplitude of ~14 μMol in 

graph B. Additionally, the negative spike very close to the positive spike doesn’t seem to change 

from A to B, however the signals producing this spike may be inside the IQR of 1.5. 
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There are different types of wavelet transforms, including the discrete wavelet transform 

(DWT; Robertson et al., 2010), the continuous wavelet transform (CWT; Sato et al., 2006b), and 

the minimum-description-length wavelet (wavelet-MDL), which is a specific DWT for reducing 

global physiological trends (Jang et al., 2009). All wavelet transforms are derived from a mother 

wavelet, which is scaled and translated to produce the daughter wavelets (Ifeachor and Jervis 

2002). The difference between the CWT and the DWT lies in the manner that daughter wavelets 

are derived from the mother wavelet.  

Daughter wavelets in the DWT are derived based on specific methods, in other words by 

discretizing the scale, translation, time, and setting parameters of the mother wavelet (Ifeachor 

and Jervis 2002). For example, powers of 2 could be used to scale and translate a mother wavelet 

(Robertson et al., 2010). In DWTs, the number of wavelet coefficients required for full 

representation of the original signal is the same as the number of time points in the dataset. The 

discrete wavelet-MDL detrending algorithm can be used to remove spike motion artifacts, as 

well as global trends in the data related to physiological activity (Jang et al., 2009). It does this 

by estimating the number of wavelet coefficients required to fit the wavelet transform to the data, 

and then using the minimum number. In other words, if there are many different but viable ways 

to describe the data, use the simplest way (Jang et al., 2009). 

In the CWT, there is less of a restriction on scaling and time shifting factors for the 

daughter wavelets than in the DWT (Ifeachor and Jervis 2002). The daughter wavelets can 

consist of any combination of dilations and translations of the mother wavelet. This means that 

redundancies may arise from CWTs due to oversampling, however the flexibility of the scaling 

and translation parameters can make small changes in the data easier to interpret if used to 

greater extents (Gurley and Kareem 1999). Consequently, the number of wavelet coefficients 
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that may be used to describe the full signal in the CWT is much greater than the number of time 

points in the signal.  

Generally, the utilization of the wavelet technique requires the researcher to not only 

choose which type of wavelet transform to apply (Discrete, Continuous), but also which mother 

wavelet to use and the scaling and translation parameters for the daughter wavelets. There are 

many different mother wavelets to choose from. For example, the wavelet transform described in 

Molavi and Dumont (2012) designed specifically for fNIRS data uses the Daubechies mother 

wavelet (Daubechies 1988). Once the scaling and transformation parameters are chosen for all 

wavelets, the wavelets are compared to the fNIRS data, and the data is decomposed into wavelet 

coefficients using the daughter wavelets. The decomposition allows for different frequencies in 

the original signal to be seen at different times, at which point frequency components relating to 

motion can be removed (Robertson et al., 2010). The wavelet coefficients, formed from the 

different daughter wavelets and their interactions with the data, are assumed to form a gaussian 

probability distribution (Brigadoi et al., 2014). In this distribution, wavelet coefficients around 

the zero mean with low variability are assumed to represent the slow frequency hemodynamic 

response, while those around the edges describe the highly variable, high frequency motion 

artifacts. The probability threshold, α, is then set by the researcher to know which wavelet 

coefficients to remove from the distribution; i.e. if a coefficient does not meet the probability 

threshold, then it is labeled an artifact and is decreased in signal amplitude (Brigadoi et al., 

2014). After the outliers are reduced in signal amplitude, the rest of the coefficients are 

combined to form the original waveform, without artifacts (Molavi and Dumont 2012). 

 This method of filtering relies on the assumption that motion artifacts oscillate much 

faster in time than fNIRS hemodynamic signals (Molavi and Dumont 2012). As such, motion 
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artifacts that result from slower movements over time are not identified by this filter. As well, the 

type of motion artifact present in the researcher’s fNIRS data may depend on the population. For 

example, young infants are known to move even in their sleep and cannot be instructed to keep 

still (Sato et al., 2006b). Additionally, infants are known to make spontaneous movements if the 

duration of the stimulus is longer (Aslin and Mehler 2005). These spontaneous movements are 

likely to result in fast changes of the hemodynamic signal, in the form of baseline shifts or spike 

artifacts. Adults, on the other hand, may be less likely to produce motion artifacts considering the 

simple fact that they can be instructed not to move outside the confines of the task presentation. 

Wavelet transforms are useful in that they can localize fast signal changes and can separate the 

signal into different frequencies at different times, which allows for the removal of solely 

motion-related components. However, they are not good for removing artifacts with slower 

oscillations (Robertson et al., 2010). With improper usage, motion artifacts are not removed 

efficiently from the data. Specifically, if the threshold criterion is too strong or weak for motion 

artifact removal, the researcher risks removing too much signal or too little artifact.  

In summary, wavelet filters involve the decomposition of an fNIRS recording into its 

constituents. This technique is useful for removing motion artifacts and physiological noise, 

depending on the type of wavelet filter used. The two types of wavelets are continuous and 

discrete wavelet transforms, which decompose the fNIRS recording based on non-discretized or 

discretized wavelet parameters, respectively.  
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3.3.5 Smoothing Filters 

 This technique is most frequently used to decrease the presence of high-frequency noise 

in fNIRS data. Smoothing filters can thus be considered to be a type of low-pass filter. However, 

the difference is the method by which smoothing filters reduce high-frequency noise. For 

example, the moving average filter smooths signals by averaging neighboring points and using 

that average as the new value of a point (Kawala-Sterniuk et al., 2020). In the low-pass filter, 

however, lower frequencies are passed and higher frequencies are specifically attenuated. There 

are many different types of smoothing algorithms, some of the most common in our search being 

the moving average (ex. Amemiya et al., 2010, Button et al., 2015, Groff et al., 2019, etc.), 

Gaussian smoothing (ex. Chacaroun et al., 2019, Funane et al., 2014, Kim et al., 2017, etc.), and 

Savitzky-Golay smoothing filters (ex. Holper and Wolf 2010, Shin et al., 2014).  

Signals can be smoothed in different ways, some being in the time domain, and some 

being spatial smoothing. Time domain smoothing reduces the contribution of high-frequency 

noise in the data, whereas spatial smoothing averages signals from poor channels with the 

surrounding fNIRS channels, reducing the effect of the noisy channel while still preserving some 

of its signal (Wriessnegger et al., 2018). The moving average type of smoothing works by 

averaging a number of data points together, reducing high-frequency fluctuations (Mivule and 

Turner 2014). Gaussian smoothing involves a Gaussian weighting function, which multiplies the 

value of each point according to where it is on the distribution. The center of the Gaussian is set 

on one point, which is weighted along with the neighboring points. The distribution is then 

moved to the next point and the process is repeated (Ye et al., 2009, Khan et al., 2018). Savitsky-

Golay smoothing is mostly employed to smooth over spike motion artifacts (Savitzky and Golay 

1964). It can also be used to smooth physiological noise in data, however the reasons for why 
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this filter is appropriate are unclear in this circumstance (Rahman et al., 2019). This type of filter 

uses a least-squares polynomial to fit the fNIRS data within a certain window, while preserving 

some higher frequencies (Nguyen et al., 2013). For more detail on the specific mathematics of 

this filter, see Savitzky and Golay 1964. 

 To smooth fNIRS data, the type of smoothing filter needs to be chosen. This choice will 

depend on the specific requirements for the filter. The moving average filter replaces values 

based on the average of neighboring data points (Kawala-Sterniuk et al., 2020). This is the 

‘classic’ smoothing filter. To use this filter, one needs to decide on a window around the point 

they wish to average. Many fNIRS studies (ex. Button et al., 2015, Groff et al., 2019, Harrison et 

al., 2018, Herold et al., 2017, etc.) appear to use a five second window to smooth data. It is 

unclear why these studies use specifically five seconds, as no reasons were given for the chosen 

parameter. Once the window is chosen, applying the filter requires computational processing for 

each data point. Gaussian smoothing is implemented much like the moving average filter, only 

the neighboring points around the point of interest are weighted according to a Gaussian 

distribution, instead of merely averaged (Khan et al., 2018, Ye et al., 2009). The Savitzky-Golay 

filter uses a polynomial fitting function to approximate the values of the fNIRS waveform within 

a specific time window (Savitzky and Golay 1964). The fitting is performed with a least-squares 

fitting function of 2n + 1, where n is the number of neighboring samples in the window and can 

be equal or greater than the order of the polynomial (Jahani et al., 2018). Jahani et al. (2018) 

suggest choosing an n less than the number of samples (time points) of the hemodynamic 

response, otherwise the response may be smoothed itself. 

 There is not much information regarding considerations for smoothing techniques; 

however, these techniques are similar to low-pass filtering in that they “smooth over” high-
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frequency spikes in the data. In contrast, smoothing techniques do not account for the frequency 

components of the noise like low-pass filters – they operate in the time or spatial domains. In this 

sense, smoothing techniques do not account for particular frequency-related aspects of the signal 

and noise. However, this may be seen as a positive aspect of smoothing algorithms, as they do 

not assume certain frequencies only represent noise. As learned from the implementation of 

smoothing filters in Electroencephalography (EEG), smoothing a signal too strongly can have 

adverse effects (Kawala-Sterniuk et al., 2020). In the case of fNIRS, the hemodynamic response 

may become distorted and less obvious in the time course of the experiment. 

 

3.4 Discussion 

 The purpose of this chapter was to identify the most common fNIRS processing 

techniques in the motor control field, and to describe them in terms of their uses, methodologies, 

and methodological considerations. The most common techniques were identified as band-pass, 

low- and high-pass filtering, wavelet filtering, the GLM, and smoothing filters. The following 

topics will be discussed below: considerations regarding the development of a processing stream, 

and basic descriptions of less common techniques that may be useful. 

When choosing techniques for a processing stream, it is important to always take the 

specific characteristics of the fNIRS dataset into account. For example, if the dataset does not 

include spike motion artifacts, utilizing a wavelet filtering technique is illogical as it specifically 

removes those artifacts (Molavi and Dumont 2012). Further, both physiological and motion 

characteristics can change between individuals, populations, tasks, and brain regions (Duncan et 

al., 1996; Zhao et al., 2002; Duan et al., 2018, Sato et al., 2006b). Therefore, the processing 
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stream should be personalized for each dataset to account for differences in physiological, 

motion, and instrumental noise, and variation in fNIRS responses to different tasks.  

The improper use of a technique results in the distortion of the fNIRS response (ex. Over-

smoothing fNIRS data; Kawala-Sterniuk et al., 2020), or the incomplete removal of noise (ex. 

Low-pass filtering with a high cutoff frequency). The creation of a processing stream particular 

to the researcher’s dataset thus requires an in-depth knowledge of the different processing 

techniques available, as well as their parameters and methodologies. Additionally, knowledge of 

the different techniques is important for the assessment of other studies in the field. For example, 

the researcher can assess the validity of other studies based on their processing stream. This 

particular aspect is important for the progression of the field, as it ensures that high-quality 

research is being done, in both the researcher’s own work and others. 

There are many different fNIRS processing techniques available to use, and the most 

common techniques may not be the best to use. For example, band-pass, low and high-pass 

filters could be replaced with short-separation channel regression which has been shown to be 

effective in reducing physiological noises (Saager and Berger 2005; Yamada et al., 2009). This 

technique is used to regress physiological noises from the scalp and cerebrospinal fluid out from 

channels containing physiological noises and hemodynamic activity, so that the only signals left 

correspond to actual hemodynamic activity. Short-separation channel measurements are 

available with many devices, such as those from Artinis, Hitachi, TechEn, and other companies. 

Another relatively uncommon technique is prewhitening. Barker et al. (2013) describe an 

autoregressive prewhitening filter that can be applied to data as a part of the GLM. In this 

method, the frequency composition of the noise term is estimated, and a prewhitening filter is 

then designed specifically for that noise. This process is then repeated until the noise has been 
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whitened, meaning that no one frequency is represented over any others in the noise – all 

frequencies have similar power. Finally, a replacement technique for wavelet or smoothing filters 

may be something like spline interpolation in combination with a Savitzky-Golay filter (Jahani et 

al., 2018). This technique was found to reduce the contributions of baseline shifts and spikes in 

fNIRS data better than some other motion correction techniques like wavelet filtering and CBSI, 

with a lower processing time. 

 

3.5 Conclusions 

In this chapter, some common and uncommonly used fNIRS processing techniques were 

reviewed in terms of methodology, and considerations for usage. Processing was mostly limited 

to the use of a few common techniques (i.e. band-pass filtering), although these techniques may 

not be the best to use for all researchers. FNIRS contains different types of noise in comparison 

to other neuroimaging modalities, requiring the implementation of specific techniques to process 

such noise. As well, processing should account for differences in the noise due to time, ROI, and 

population. The information in this chapter may benefit the field by providing some insight on 

the usage of common techniques, and some replacements for those techniques to new fNIRS 

researchers. In the future, the information in this chapter may help to provide a basis for 

choosing standard fNIRS processing techniques. 
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Chapter 4: General Discussion and Conclusions 
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There were two goals of this thesis. The first goal was to explore lower limb complexity 

modulation using fNIRS. The second goal was to develop the use of fNIRS technology in the 

Neurophysiology and Neuroimaging lab. To attain the first goal, I performed an experiment in 

which fNIRS was recorded while participants engaged in ankle dorsiflexion force-tracking. The 

second goal was pursued through performing a comprehensive review on processing techniques 

in fNIRS. This general discussion will explore the implications, significance, limitations, and 

future directions of the work. 

 

4.1 Experiment 1 

4.1.1 Experiment 1 Summary 

I conducted a study to investigate the effects of a complexity-modulated lower limb force 

tracking motor task on hemodynamic activity, particularly in the TA motor representation. No 

statistically significant activations except one were found over the TA motor representation when 

participants engaged in a simple versus complex force tracking task. This was possibly due to the 

depth of the TA representation within the central sulcus. Complexity-modulated upper limb tasks 

elicit differential activations in the motor cortices (Leff et al., 2011), however, the question of 

whether complexity modulated lower limb tasks can alter cortical hemodynamic responses thus 

remains unanswered. However, channels overlying areas thought to be preSMA/SMA and 

STG/SII produced significant increases in HbO activity. These areas, and thus the associated 

activations, are thought to be related to motor learning (Hatakenaka et al., 2007) and sensory 

integration (Tachibana et al., 2011), respectively. 
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4.1.2 Implications 

 There are many implications for this thesis in the field of fNIRS. The lack of 

hemodynamic activity in the TA motor region for most participants potentially indicates that 

fNIRS is incapable of detecting activity from this area, unlike activity induced by upper limb 

tasks. Consequently, this result may drive researchers to consider the results of their own lower 

limb fNIRS studies more closely. Specifically, similar studies such as Pittaccio et al. (2013) and 

Koenraadt et al. (2012) reported fNIRS activations from the medial motor cortices during lower 

limb tasks, but did not statistically evaluate these activations. To overcome this limitation, lower 

limb fNIRS studies must recruit greater numbers of participants to allow for a true statistical 

evaluation of lower limb hemodynamic signals. However, if these lower limb signals cannot be 

identified after this assessment, researchers may look to other avenues for study, or may study 

the TA motor representation with different neuroimaging methods. The present study is also 

important for basic knowledge regarding complex and simple motor tasks. This area of research 

is mostly dominated by upper limb studies, with few lower limb studies. As such, it is not known 

if complex and simple lower limb tasks induce activation in the same way as activations induced 

by the upper limb. This information would be vital for future research involving lower limb 

neurorehabilitation, as the same principles applied to upper limb neurorehabilitation may be 

insubstantial in this circumstance.  

 

 

 

 



M.Sc. Thesis – P. W. Dans; McMaster University – Kinesiology 

 

86 

 

4.2 Processing Review 

4.2.1 Processing Review Summary 

I conducted a review of fNIRS processing techniques to investigate the current state of 

the literature and to provide a processing guide for new fNIRS researchers. The most common 

fNIRS processing techniques were identified from 100 fNIRS motor studies and were 

subsequently explained in terms of their methodologies and considerations for usage. Common 

techniques were identified as low-pass, band-pass, and high-pass filters, wavelet filters, 

smoothing filters, and the GLM. Less common alternatives to these techniques were also 

provided. 

 

4.2.2 Implications 

The processing review has one main implication for fNIRS. Processing streams are very 

important for the outcome of a study, as they can completely change the results. Some fNIRS 

researchers thus have completed studies comparing and contrasting different processing 

techniques (for example, Brigadoi et al., 2014; Jahani et al., 2018). However, these studies do not 

usually explain the techniques in a way that newer researchers would understand. Further, few of 

these studies provide in-depth information on how to use the techniques, which is very important 

for newer fNIRS researchers. In this review, many common techniques were identified from the 

literature. Importantly, these techniques, although common, were not necessarily the most 

appropriate options. As such, researchers should take care to choose techniques to use not 

because they were used by other labs, but because they are appropriate for their dataset. 
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4.3 Limitations and Challenges 

 This thesis has provided important information regarding complexity modulated force-

tracking in the lower limb, however it is not without its limitations. Anatomical variations can 

contribute to variability within fNIRS data, as well can human error in the positioning of the cap. 

No MRI data was collected from participants, therefore anatomical differences between 

participants were not recorded except for differences in head circumference. This data would 

have allowed me to personalize certain characteristics of the fNIRS processing stream for each 

participant, potentially reducing variability in results. As well, the machinery available to us was 

limited in that it was not capable of short-separation channel measurements. Short-separation 

channel regression is thought to be the current gold standard for removal of physiological noises 

from fNIRS data as the noise is directly measured (Saager and Berger 2005; Zhou et al., 2020). 

As such, the machine’s incapability of providing this data for us affected our choices for 

elements of the processing stream. However, the processing stream we developed for the present 

study was unbiased, as it utilized an autoregressive prewhitening procedure that utilized statistics 

to remove physiological noise, along with an iterative reweighted least squares estimation to 

remove motion noise (Huppert 2016). Another limitation of this work was that the “Random” 

waveforms were handmade, and as such were not truly random, but instead pseudorandom. 

Thus, some waveforms may have been more difficult/easier to track than others. However, there 

will always be a degree of subjectivity when creating the waveforms, as truly random waveforms 

may be extremely difficult to track. Future research may involve creating an algorithm that 

chooses characteristics of the waveform at random within certain bounds. For example, a 

waveform may be created to have an average frequency of 2 Hz with a certain level of variance 

around that frequency. This work may have also been limited in that twitch interpolation was not 
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used, and as such there was no objective confirmation that participants were fully activating their 

TA muscle during the MVF recording. This may have introduced additional variability into the 

data as participants may not have been attempting the task to the fullest extent of their ability. 

Another potential limitation is that different participants may have become fatigued at different 

rates, and thus this may have affected the signals obtained from the task by providing different 

relative levels of difficulty between participants. Regarding statistics, p-values were not 

Bonferroni-corrected due to the exploratory nature of the experiment. Consequently, the family-

wise error rate may have been inflated. A final limitation of this work is the small sample size of 

five participants. Further data collection could not proceed due to the Covid-19 pandemic. This 

limits the data in that group statistics may not be performed, and the data collected may not 

convey the true activity present within the healthy population. Nonetheless, the exploratory 

nature of the present study provides a glimpse into not only lower limb complexity modulation, 

but also general lower limb fNIRS studies. 

 

4.4 Future Directions 

 The investigation of similar lower limb tasks may be warranted using fNIRS due to the 

results of the present study, as the question of fNIRS detecting lower limb complexity 

modulation remains unanswered. Some previous lower limb fNIRS studies investigating similar 

muscles to the present study have not statistically analyzed their data, and thus this information 

would help to clarify whether the lack of TA motor activation in the present study is a true result. 

Additionally, future studies may investigate lower limb muscles with motor representations 

closer to the surface of the scalp. Consequently, this information may change the way lower limb 

fNIRS research is conducted, in that lower limb fNIRS research may become limited to certain 
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tasks or muscles. Another future direction of this work lies in adding other control conditions to 

elucidate activations from purely perceptual components of the task, and activations from purely 

motor components. These control conditions could be called “Motor Only” and “Visual Only”, 

and could also be implemented in a pseudorandom order like the present study. 

The force-tracking task created in the present study has many applications. Namely, this 

task could be used for diagnostic and/or neurorehabilitation purposes. For diagnostics, muscular 

function could be analyzed with the participant’s performance on the task while changing 

different aspects, including fine motor control, muscular endurance, and muscle power. 

However, the diagnostic assessment may be more valuable to connect with neuroimaging 

measures, as changes in motor cortex organization may not translate to changes in task 

performance (Shadmehr and Holcomb 1997). As such, the utility of the task may depend on the 

manner in which it is used, or its combination with neuroimaging methods like fNIRS. 

More importantly, this force-tracking task could potentially be used in neurorehabilitation 

due to the wide range of characteristics that can be altered to change the difficulty and the motor 

control elements required to complete the task. For example, the difficulty of the task could be 

slowly increased as an SCI patient regains muscular function. Difficulty may be increased in a 

number of ways, including providing more unpredictable waveforms, increasing the intensity or 

frequency of the waveforms, or possibly by changing the wave shapes. As well, altering these 

characteristics in certain ways may change with the goal of the task. For example, the amount of 

time that participants perform the task may be increased to train muscular endurance. 

Additionally, participants may be required to perform underneath a certain error threshold to 

train fine motor control. This may be a more space efficient and less expensive method than 

using some other neurorehabilitation equipment, while also being safer for the patient since they 
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do not need to stand. To improve upon the task, future researchers may develop a waveform 

generator to objectively produce waveforms for participants to complete. This waveform 

generator would have multiple characteristics for a researcher to change, such as the frequency 

of the waveform, amplitude range, and the variability of the peaks and troughs. This 

development would allow researchers to continuously and effortlessly produce reliably different 

waveforms while preserving control over aspects like difficulty. 

 Regarding processing techniques, developing a true comprehensive guide for researchers 

may be essential, as there is no one-size-fits-all technique at the moment that can address all 

noise issues with fNIRS data. Such a technique or set of techniques would address not only 

physiological and motion noise, but also variability between different populations of participants 

and recordings within participants. Further, future researchers should be encouraged to examine 

all processing techniques when choosing a processing stream, as many uncommon techniques 

may provide better-suited processing for their dataset than some more common techniques. This 

small change in the way researchers conduct their processing may benefit the field enormously 

by ensuring the production of high-quality science. 

 More studies are required to compare the efficacies of fNIRS processing techniques, 

especially more uncommon processing techniques. These studies would provide future 

researchers with the background needed to make informed decisions about their processing 

streams. As well, the creation of new techniques and the improvement of older techniques is 

constantly needed to ensure that fNIRS is optimized for future research. 
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4.5 Conclusions 

 This thesis has explored the potential for complexity modulation research in the lower 

limb. Due to a limited dataset, no conclusions can be made at this time. Nonetheless, the present 

study has shown that fNIRS may not be capable of detecting hemodynamic activations from the 

TA motor representation using specific lower limb motor tasks.  
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Appendix A 

Table 1: Processing Methodologies of Recent fNIRS Motor Control Studies 

Author/Date Equipment 

Hardware 

Processing 

Software 

Montage 

(ROIs) 

Participant 

Demographics 

Task (s) Processing 

Techniques 

Reported 

HRFs? 

Type of task 

Amemiya et 

al. 2010 

Hitachi 

ETG-7000 

Continuous 

wave 

Not 

reported 

4x4 optode 

arrangement, 24 

channels 

located over 

bilateral pre-

SMA, SMA, 

PMC, SMC, 

DLPFC 

n = 33 (18F, 

avg age 21.4 

yrs) 

ME, MI, and control. 

ME - Finger tapping 

for 30s, alternated 

with 30s rest 

(counting task). 

MI – imagined 

finger-tapping for 

30s, alternated with 

30s rest (counting) 

Control – counting 

for 30s. 

Applied moving 

average to data 

smoothing factor of 

5 

Yes Finger tapping ME + 

MI 

Anwar et al. 

2013 

Artinis 

Oxymon 

Mk-III 

Continuous 

wave 

Not 

reported 

15 channels 

located over 

contralateral 

MC, PMC, and 

PFC 

n = 6 (5F, avg 

age 25 yrs) 

Finger tapping (1 

digit) – Repeated at 

2-5 Hz for 30s, 

alternating with 30s 

rest. 

Finger tapping 

sequence (simple) – 

30s of sequential 

tapping against the 

thumb alternated with 

30s rest. 

Bandpass filtered 

between 0.01-0.5 

Hz, smoothed time 

series with window 

length of 25 points 

No Finger tapping ME 

Anwar et al. 

2016 

Artinis 

Oxymon 

Mk-III 

Continuous 

wave 

Not 

reported 

15 channels 

located over 

SMC, PMC, 

and DLPFC 

n = 9 (5F, avg 

age 27 yrs) 

Finger tapping – 

Single digit tapping 

at 2-5 Hz for 30s, 

alternated with 30s 

rest.  

Simple sequence – 

Sequential finger 

tapping against the 

thumb for 30s 

alternated with 30s 

rest.  

Complex sequence – 

Sequential finger 

tapping against the 

thumb for 30s, 

Removed mean time 

series from time 

series, no filtering 

applied 

No Finger tapping ME 
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alternated with 30s 

rest. 

Asahara and 

Matsukawa 

2018 

Hamamatsu 

NIRO 200 

Continuous 

wave 

Not 

reported 

Two channels 

located over 

bilateral PFC 

n = 19 (7F, avg 

age 24 yrs) 

Passive cycling for 1 

minute with either 

both legs or 1 leg, 

performed at 35, 50, 

and 65 rpm. 

Averaged data for 

every 5 seconds 

Yes Cycling 

Asahara et al. 

2018 

Hamamatsu 

NIRO 200 

Continuous 

wave 

BIOPACK 

Systems 

Two channels 

located over 

bilateral PFC 

n = 13 (5F, avg 

age 25 yrs) 

Active and passive 

one and two-legged 

cycling for 1 minute, 

and MI of active 

cycling for 1 minute, 

each trial separated 

by rest time of 5 

minutes. 

Sequentially 

averaged data for 

every 1 s 

Yes Cycling 

Banville et al. 

2017 

NIRx 

NIRScout 

Continuous 

wave 

HOMER2 60 channels 

located over 

frontal, central, 

temporal, and 

parietal lobes 

n = 12 (5F, avg 

age 24.6 yrs) 

Motor imagery of 

finger tapping for 

15s, alternated with 

10-15s of rest. 

Bandpass filtered 

0.8-1.2 Hz, rejected 

channels with 

nonsignificant 

correlation across 

all epochs, bandpass 

filtered again 0.01-

0.3 Hz 

Yes Finger Tapping MI 

Batula et al. 

2017a 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

Two 3x3 arrays, 

24 channels 

located over 

bilateral motor 

cortices 

(centered over 

Cz) 

n = 13 (sex not 

reported, aged 

18-35) 

15s motor imagery or 

execution task of RH, 

RF, LH, LF, 4s rest 

after task. 

Applied 20th-order 

low-pass filter (FIR, 

0.1 Hz), any 

channels with very 

high gain removed, 

CAR 

Yes U+L ME+MI 

Batula et al. 

2017b 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

2 3x3 arrays, 24 

channels 

located over 

bilateral motor 

cortices 

(centered over 

Cz) 

n = 13 (sex not 

reported, aged 

18-35) 

15s motor imagery or 

execution, with 4s 

rest. LH and RH 

clenching (ME or 

MI), LF and RF 

tapping (ME or MI), 

and rest. 

100th order low-pass 

FIR filter (0.1 Hz), 

CAR, CBSI  

Yes U+L ME+MI 

Beurskens et 

al. 2014 

NIRx 

DYNOT 

Continuous 

wave 

NIRS-SPM 14 channels 

overlying the 

bilateral frontal 

lobe  

N = 25, n1 = 15 

(sex not 

reported, avg 

age 24.5 ± 3.3 

yrs) and n2 = 10 

(sex not 

reported, avg 

NW + visual 

checking or alphabet 

recall demands 

(active 30s). 

 

Visually inspected, 

applied moving 

standard deviation 

and spline 

interpolation, 

baseline-corrected, 

applied pre-coloring 

Yes Dual-task Walking 
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age 71.0 ± 3.8 

yrs)  

 

filter, applied 

wavelet-MDL de-

trending algorithm, 

applied wavelet 

transform  

 

Brigadoi et al. 

2012 

ISS 

Imagent 

Frequency 

domain 

Not 

reported 

10 channels 

located over 

bilateral M1 

and SMA 

n = 7 (0F, avg 

age 29.3 yrs) 

1s or 3s finger 

tapping alternated 

with 15 s rest. 

Applied bandpass 

filter (0.01-0.3 Hz), 

applied algorithm 

(Scarpa et al 2011) 

to reduce global 

physiological noise, 

applied non-

parametric Bayesian 

approach (Scarpa et 

al 2010) to reduce 

further 

Yes Finger tapping ME 

Bruno et al. 

2018 

NIRx 

NIRSport 

Continuous 

wave 

HOMER2 40 channels 

located over 

bilateral parietal 

cortices and 

PFC 

n = 21 (10F, 

avg age 23.48 

yrs) 

Driving (straight, 

turning) with 

congruent (normal 

steering), and 

incongruent (reversed 

steering) trials. Task 

was ~30s with ~14.5s 

“rest” (autonomous 

driving). 

Applied motion 

artifact correction 

with wavelet filter, 

applied bandpass 

filter (0.01-0.5 Hz), 

applied GLM 

Yes Driving 

Buccino et al. 

2016 

NIRx 

NIRScout 

Continuous 

wave 

Not 

reported 

34 channels 

located over 

bilateral motor 

cortices 

n = 15 (0F, avg 

age 27.4 yrs) 

R and L arm raising, 

R and L hand 

grasping for 6s, with 

6s rest 

Applied 4th order 

IIR Butterworth 

bandpass filter 

(0.01-0.2 Hz) 

No Arm task 

Button et al. 

2015 

Hamamatsu 

NIRO-200 

Continuous 

wave 

MATLAB 1 channel 

located over 

right PFC 

n = 32 (16F, 

aged 18-45 yrs) 

Tread water for 150s, 

60s rest OR 150s 

tread water and 

watch video + 120s 

swim at 60% Vmax + 

swimming time at 

90% Vmax. 

Applied moving 

average (5.0s)  

No Swimming 

Chacaroun et 

al. 2019 

Artinis 

Oxymon 

Mk-III 

Continuous 

wave 

Not 

reported 

Montage placed 

over left PFC 

n = 21 (12F, 

avg age 29 yrs) 

 

 

 

CL exercise (30 min) 

or HII exercise (15 

1min exercise 

alternated with 1min 

rest). 

Applied Gaussian 

smoothing 

algorithm (2s width) 

No Cycling 
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Chen et al. 

2017 

fNIR 

Devices 

fNIR 

Imager 

1000 

Continuous 

wave 

Not 

reported 

16 channels 

located over 

bilateral PFC 

n = 90 (46F, 

avg age 78.1 

yrs) 

NW, WWT, ON + 

NW, or ON +WWT 

for 3 consecutive 

loops at their “normal 

pace”. 

Applied low-pass 

filter (FIR, 0.14 Hz) 

No Dual-task Walking 

Choi et al. 

2019 

NIRx 

NIRScout 

Continuous 

wave 

Not 

reported 

31 channels 

located over 

bilateral M1, 

PMC, SMA, 

prefrontal, and 

somatosensory 

cortices 

n = 18 (0F, avg 

age 25.3 yrs) 

WBVe with 4 

different conditions 

(0, 10, 20, 27 Hz 

vibration) while in a 

half-squat position 

for 30s alternated 

with 30s rest. 

Applied low-pass 

filter (FIR, 0.2 Hz) 

No Balance task 

Crivelli et al. 

2018 

NIRx 

NIRScout 

Continuous 

wave 

Not 

reported 

16 channels 

located over 

bilateral vPMC, 

and 

somatosensory 

cortices 

n = 20 (10F, 

avg age 24.15 

yrs) 

Five conditions – 

OBS, LIS, OBS-LIS, 

EXE, EXE-LIS for 

6s, alternated with 

10s rest. Tasks were 

taken from a set of 22 

transitive actions (ex. 

“light a lighter”, 

“pour some wine”).  

Applied bandpass 

filter (0.01-0.3 Hz) 

Yes Upper Limb Tasks (22 

actions) 

De Lima 

Pardini et al. 

2017 

NIRx 

NIRSport 

Continuous 

wave 

nirsLAB 

v201605 

23 channels 

located over 

bilateral SMA 

n = 8 (0F, avg 

age 23.63 yrs) 

Single step with a 

walker and without 

for 2 s, alternated 

with rest of 10-13 s. 

Downsampled (2 

Hz), applied 

bandpass filter (FIR, 

0.02-0.2 Hz), 

applied GLM 

(canonical boxcar 

function), applied 

precoloring  

Yes Walking 

Derosiere et 

al. 2014 

Artinis 

Oxymon 

Mk-III 

Continuous 

wave 

Artinis 

Oxysoft 

10 channels 

located over 

bilateral SM1 

and rostral PFC 

n = 15 (sex not 

reported, avg 

age 28 yrs) 

Isometric handgrip at 

different levels of 

MVC (5, 10, 20, 30, 

40, and 50% MVC) 

for 30s, alternated 

with 60s of rest. 

Applied low-pass 

filter (0.7 Hz), 

detrended 

No Hand 

grasping/clenching 

ME 

Dresler et al. 

2011 

Custom 

built 

Continuous 

wave 

Not 

reported 

22 channels 

located over 

right central 

sensorimotor 

areas 

n = 6 (0F, avg 

age 29.6 yrs) 

Dreamed hand 

clenching, 10 s LH 

alternated with 10 s 

RH, regular hand 

clenching, and 

imagined hand 

clenching. 

Applied low-pass 

3rd order 

Butterworth filter 

(0.3 Hz), applied 

GLM (canonical 

boxcar function, 

cosine-filter) 

Yes Dreamed Hand 

Clenching 
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Ferrari et al. 

2014 

Hamamatsu 

NIRO-200 

Continuous 

wave 

MATLAB 8 channels 

located over 

bilateral PFC 

n = 22 (0F, avg 

age 26.5 yrs) 

Balance (ITBBT or 

Constant TBBT) for 

5 min, 2 min rest 

afterwards. 

Detrended, applied 

low-pass filter (0.1 

Hz) 

No Balance task 

Fu et al. 2017 Hitachi 

ETG-4000 

Continuous 

wave 

NIRS-SPM 24 channels 

located over 

central and 

sensorimotor 

areas 

n = 6 (3F, avg 

age 26.8 yrs) 

Imagined hand 

clenching at different 

speeds (0.5, 1, and 2 

Hz) and different 

forces (20, 50, and 

80% MVGF) for 10s, 

alternated with 18-

20s rest. 

Applied low-pass 

filter (0.1 Hz), 

linearly detrended 

Yes Hand 

grasping/clenching MI 

Funane et al. 

2014 

Hitachi 

ETG-7100 

Continuous 

wave 

Not 

reported 

84 channels 

located over the 

left motor area 

n = 14 (0F, avg 

age 40 yrs) 

Finger-tapping task 

for 15s, alternated 

with 25s rest. 

Applied low-pass 

filter (0.5 Hz), and 

high-pass filter 

(0.0125 Hz), applied 

Gaussian smoothing 

(FWHM: 2s) 

Yes Finger tapping ME 

Gagnon et al. 

2012 

Techen 

CW6 

Continuous 

wave 

Not 

reported 

21 channels 

located over the 

left motor 

cortex 

n = 6 (sex not 

reported, age 

not reported) 

Finger tapping for 

30s, alternated with 

30s rest. 

Applied bandpass 

filter (0.01-1.25 

Hz), applied 

Kalman filter to 

regress SS channels 

and recover HRF, 

applied Rauch-

Tung-Striebel 

smoother, further 

applied low-pass 

filter (0.5 Hz), 

applied GLM 

Yes Finger tapping ME 

Groff et al. 

2019 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

4x4 array 

centered on Cz, 

24 channels 

located over 

bilateral SMA, 

PreCG, 

PostCG, and 

SPL 

n = 10 (4F, avg 

age 22.1 yrs) 

Walking for 30s, 

alternated with 30s of 

rest (standing). 

Applied moving 

average (5.0s), 

applied high-pass 

filter (0.01 Hz) 

No Walking 

Harrison et al. 

2018 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

4x4 centered 

over Cz, 16 

channels 

located over 

bilateral motor 

and 

n = 17 (7F, 

aged 19-36 yrs) 

Finger tap/no-tap 

(30s task, 30s rest), 

self-paced finger 

tapping for 15 

minutes, and 

coordinated finger 

Applied moving 

average (5.0s), 

applied high-pass 

filter (0.01 Hz), 

applied PCA 

No Finger tapping ME 
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sensorimotor 

cortices 

tapping for 15 

minutes. 

Heinze et al. 

2019 

NIRx 

NIRSport 

Continuous 

wave 

nirsLAB 

v201605 

20 channels 

located over 

bilateral PFC 

n = 15 (5F, avg 

age 21.5 yrs) 

Learning piano 

chords for 30s, 

alternated with 22s of 

rest. 

Applied bandpass 

filter (0.01-0.2 Hz) 

Yes Learning Piano Chords 

Herold et al. 

2017 

Hitachi 

ETG-4000 

Continuous 

wave 

Device-

intern 

software 

4x4 array 

overlying 

bilateral SMA, 

PreCG, and 

Post-CG 

n = 10 (sex not 

reported, aged 

21-47 yrs) 

Standing and balance 

on board task (active 

30s, rest 30s). 

Applied a moving 

average (5.0 s), 

applied low-pass 

filter (0.5 Hz) 

 

No Balance task 

Herold et al. 

2019 

NIRx 

NIRSport 

Continuous 

wave 

HOMER2 10 channels 

located over 

bilateral PFC, 

PMC, and SMA 

n = 13 (sex not 

reported, age 

not reported) 

Walking for 40s, 

alternated with rest 

(standing) for 40s. 

Applied wavelet 

(IQR = 1.219) and 

bandpass filters 

(0.01-0.5 Hz) 

No Walking 

Holper and 

Wolf 2010 

MCP-II 

(custom 

built) 

Continuous 

wave 

MATLAB 10 channels 

located over left 

primary motor 

cortex 

n = 15 (9F, avg 

age 29 yrs) 

Motor imagery (with 

(positive or negative) 

and without 

feedback) for 20s, or 

finger tapping for 

20s, alternated with 

20s rest. 

Applied low-pass 

filter (0.1 Hz), 

smoothed with 1st 

order Savitzky-

Golay filter (501 

points) 

No Finger tapping ME + 

MI 

Holper and 

Wolf 2011 

Custom 

built 

wireless 

miniaturize

d NIRS 

Continuous 

wave 

MATLAB 4 channels 

located over left 

PMC and SMA, 

centered over 

F3 

n = 12 (6F, avg 

age 29 yrs) 

Simple finger tapping 

(pressing ‘0’ key) or 

complex finger 

tapping (finger 

tapping sequence), or 

imagined finger 

tapping (MI-simple, 

MI-complex) for 15s, 

alternated with 20s 

rest. 

Applied low-pass 7th 

order Chebyshew 

filter (20dB 

attenuation @ 5 

Hz), downsampled 

to 10 Hz 

Yes Finger tapping ME + 

MI 

Holper et al. 

2010 

Custom 

built 

wireless 

miniaturize

d NIRS 

Continuous 

wave 

MATLAB 4/8 channels 

located over 

either 

contralateral 

(unilateral 

group) or 

bilateral 

(bilateral group) 

secondary 

motor areas, 

n = 23 (sex not 

reported, age 

not reported) 

RH OBS, RH OBS + 

MI, MI, or IM of 

ball-catching for 20s 

alternated with 30s 

rest. 

Applied low-pass 7th 

order Chebyshew 

filter (20dB 

attenuation @ 5 

Hz), downsampled 

to 10 Hz 

Yes Observation/VR/VMT 

+ MI 
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centered over 

F3/F4 

Holper et al. 

2012 

Custom 

built 

wireless 

miniaturize

d NIRS 

Continuous 

wave 

MATLAB 4/8 channels 

located over 

bilateral 

secondary 

motor areas 

(PMC, SMA), 

centered over 

F3/F4 

n = 17 (10F, 

avg age 25.6 

yrs) 

IM ball grasping, 

mirrored IM, MI + 

OBS, or MI + OBS 

mirrored for 15s, 

alternated with 20s 

rest. 

Applied low-pass 7th 

order Chebyshew 

filter (20dB 

attenuation @ 5 

Hz), downsampled 

to 10 Hz, applied 

spline interpolation 

for motion artifacts 

No Observation/VR/VMT 

+ MI 

Holper et al. 

2014 

Custom 

built 

wireless 

miniaturize

d NIRS 

Continuous 

wave 

MATLAB 4 channels 

located over 

right PMC 

n = 17 (7F, avg 

age 30.7 yrs) 

Finger tapping for 

10s, alternated with 

rest of 10-12s. 

Applied low-pass 7th 

order Chebyshew 

filter (20dB 

attenuation @ 5 

Hz), downsampled 

to 10 Hz, applied 

spline interpolation 

for motion artifacts 

No Finger tapping ME 

Holtzer et al. 

2011 

Drexel 

custom 

built fNIRS 

sensor 

Continuous 

wave 

Not 

reported 

16 channels 

located over 

bilateral PFC 

N = 22, n1 = 11 

older adults 

(7F, aged 69-88 

yrs) and n2 = 11 

younger adults 

(7F, aged 19-29 

yrs) 

NW (15 ft), WWT 

(15 ft) – minimum 

time was ~3.5-4 s for 

task. 

Applied low-pass 

filter (FIR, 0.14 

Hz), applied 

combined ICA/PCA 

No Dual-task Walking 

Holtzer et al. 

2017 

fNIRS 

Devices 

fNIRS 

Imager 

1000 

Continuous 

wave 

Not 

reported 

4x10 overlying 

bilateral PFC 

n = 314 (56F, 

avg age 76.8 ± 

6.7 yrs) 

Continuous straight 

walks under NW and 

WWT conditions (3 

loops around track, 

30s active dual task). 

Visually inspected, 

applied low-pass 

filter (FIR, 0.14 Hz) 

Yes Dual-task Walking 

Holtzer et al. 

2019 

fNIRS 

Devices 

fNIRS 

Imager 

1100 

Continuous 

wave 

Not 

reported 

4x10 overlying 

bilateral PFC 

N = 75, n1 = 19 

with fear of 

falling (13F, 

avg age 79.84 ± 

6.01 yrs) and n2 

= 56 without 

fear of falling 

(25F, avg age 

76.73 ± 6.39 

yrs) 

NW and WWT 

(alphabet recital) for 

3 loops around track 

(30s active dual task). 

 

Visually inspected, 

applied low-pass 

filter (FIR, 0.14 Hz)  

 

No Dual-task Walking 
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Hong and 

Naseer 2016 

NIRx 

DYNOT 

Continuous 

wave 

Not 

reported 

12 channels 

located over left 

MC 

n = 2 (0F, age 

not reported) 

RH clenching for 

20s, rest for 1min. 

Applied low-pass 

filter (0.3 Hz), 

applied high-pass 

filter (0.01 Hz) 

Yes Hand 

grasping/clenching 

ME 

Hu et al. 2013 NIRx 

DYNOT 

Continuous 

wave 

MATLAB 34 channels 

located over 

bilateral motor 

cortices 

(centered over 

Cz) 

n = 5 (0F, aged 

24-31 yrs) 

Finger tapping for 

24s, alternating with 

20s rest. 

Applied bandpass 

filter (0.01-0.08 Hz, 

Butterworth), 

applied GLM 

Yes Finger tapping ME 

Huppert et al. 

2013 

Techen 

CW6 

Continuous 

wave 

MATLAB 15 channels 

located over left 

prefrontal, 

frontal, motor, 

peri-insular 

vestibular and 

premotor 

cortices 

n = 10 (5F, 

aged 21-47 yrs) 

Stepping in response 

to a directional cue, 

4-8s rest between 

steps. 

Applied GLM 

(canonical gamma 

functions, discrete 

cosine transform (0-

1/120 Hz)), 

prewhitened data 

(2nd order 

autoregressive) 

Yes Walking 

Ishii et al. 

2018 

Shimadzu 

FOIRE 

Continuous 

wave 

Not 

reported 

44 channels 

located over 

bilateral frontal, 

and 

frontoparietal 

areas (MC, 

somatosensory, 

SMA, PM, 

PFC) 

n = 22 (11F, 

avg age 25 yrs) 

Voluntary (30 or 

60% MVC) or 

passive one arm 

cranking exercise for 

1 min. 

Downsampled to 

1Hz, block averaged 

trials 

Yes Arm task 

Jang et al. 

2014 

Shimadzu 

FOIRE-

3000 

Continuous 

wave 

NIRS-SPM 49 channels 

located over 

bilateral (but 

mostly left) 

frontal and 

frontoparietal 

areas (MC, 

somatosensory, 

SMA, PM, 

PFC) 

n = 12 (5F, avg 

age 29 yrs) 

RH grasping 

movements for 20s, 

alternated with 20s 

rest, pre- and post-

NMES. 

Applied Gaussian 

smoothing (FWHM 

= 2s), applied 

wavelet-MDL based 

detrending, applied 

GLM (canonical 

HRF) 

Yes Hand 

grasping/clenching 

ME 

Jin et al. 2018 Shimadzu 

FOIRE-

3000 

Continuous 

wave 

Not 

reported 

22 channels 

located over 

bilateral PFC, 

FEC, PMC, 

SMA 

n = 22 (5F, avg 

age 22 yrs) 

Walking with 3 

conditions – SL, SM, 

+ ML, alternated with 

rest for 30s. 

Applied wavelet 

decomposition 

No Walking 

Karim et al. 

2012 

Techen 

CW6 

MATLAB 32 channels 

located over 

n = 9 (4F, aged 

18-42 yrs) 

Wii balance board 

task for 37.6s 

Applied GLM 

(canonical boxcar 

Yes Balance task 
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Continuous 

wave 

bilateral PFC, 

frontal cortex, 

and STG 

(beginner), 63.1s 

(advanced), 

alternated with 30s 

rest. 

function, discrete 

cosine transform 0-

1/120 Hz), 

prewhitening (2nd 

order 

autoregressive) 

Khan et al. 

2018 

NIRx 

DYNOT 

Continuous 

wave 

NIRS-SPM 12 channels 

located over left 

motor cortex 

n = 9(0F, avg 

age 30 yrs) 

Walking for 10s, 

alternated with 20s 

rest. 

Applied low-pass 

filter (0.5 Hz), 

applied high-pass 

filter (0.01 Hz), 

compared different 

filters (Butterworth, 

Kalman, HRF, FIR, 

Wiener, Gaussian) 

No Walking 

Kim et al. 

2017 

Shimadzu 

LABNIRS 

Continuous 

wave 

NIRS-SPM 31 channels 

located over 

bilateral PFC, 

SMA, PMC, 

SMC, and SAC 

n = 1 (1F, aged 

30 yrs) 

Walking at different 

speeds (1.5, 2, 2.5, 

and 3 km/h) for 30s, 

alternated with 30s 

rest. 

Applied Gaussian 

smoothing (FWHM 

= 2s), used wavelet 

detrending for 

motion artifacts, 

applied GLM 

(canonical) 

No Walking 

Kobashi et al. 

2012 

Custom 

built 

miniaturize

d wireless 

fNIRS 

sensor 

Continuous 

wave 

MATLAB Centered on 

F3/F4, 8 

channels 

located over 

bilateral 

secondary 

motor areas 

including PMC 

n = 12 (13F, 

avg age 25.6 

yrs) 

MI + OBS of ball-

grasping, or IM of 

ball-grasping, in both 

first-person and 

mirrored views for 

15s, alternated with 

20s rest. 

Applied spline 

interpolation to 

reduce motion 

artifacts, low-pass 

filter (7th order 

Chebyshew with 

20dB attenuation @ 

5 Hz), downsamples 

to 10 Hz 

Yes Observation/VR/VMT 

+ MI 

Koehler et al. 

2012 

Hitachi 

ETG-4000 

Continuous 

wave 

MATLAB 3x11 array, 52 

channels 

located over left 

frontal, central, 

and parietal 

areas 

n = 39 (25F, 

avg age 21.8 

yrs) 

ME or OBS 

(allocentric or 

egocentric) of a 

table-setting task for 

12s, alternated 

with12s of rest. 

Applied moving 

average (5s) 

Yes Observation/VR/VMT 

ME 

Koenraadt et 

al. 2012 

Artinis 

Oxymon 

Continuous 

wave 

Oxymon 

software 

8 channels 

located over left 

motor cortex 

n = 13 (11F, 

avg age 24 yrs) 

Hand and foot 

rhythmic and discrete 

movements for 20s, 

alternated with 20-

30s of rest. 

Applied low-pass 

filter (Butterworth, 

1 Hz) 

No Hand + Foot Tapping 

Koenraadt et 

al. 2013 

Artinis 

Oxymon 

Mk-III 

Not 

reported 

8 channels 

located over left 

motor cortex 

n = 11 (9F, avg 

age 30 yrs) 

Hand tapping at 

different frequencies 

Applied low-pass 

filter (2nd order 

Butterworth, 1 Hz) 

No Finger tapping ME 
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Continuous 

wave 

for 25-35s, alternated 

with rest for 25-35s. 

Koenraadt et 

al. 2014 

Artinis 

Oxymon 

Continuous 

wave 

Oxymon 

software 

9 channels 

located over left 

sensorimotor 

cortex, SMA, 

and prefrontal 

cortex 

n = 11 (8F, avg 

age 23 yrs) 

Walking or precision 

stepping for 35s, 

alternated with rest 

for 25-35s. 

Applied low-pass 

filter (2nd order 

Butterworth, 1.25 

Hz), applied high-

pass filter (2nd order 

Butterworth, 0.01 

Hz), regressed SS 

channels, applied 

low-pass filter again 

(2nd order 

Butterworth, 1 Hz) 

Yes Walking 

Koren et al. 

2019 

Artinis 

PortaLight 

Continuous 

wave 

HOMER2 6 channels 

located over 

bilateral PFC 

n = 20 (sex not 

reported, aged 

18-30 yrs) 

Walking (ON or 

NW) around 20m 

long course, 

alternating with 30s 

rest. 

Applied spline 

interpolation to 

correct motion 

artifacts (p = 0.99), 

applied wavelet 

correction as needed 

for motion artifacts 

(IQR = 0.1), applied 

bandpass filter 

(0.01-0.2 Hz) 

Yes Obstacle Negotiation 

Kurz et al. 

2012 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

24 channels 

located over 

medial aspects 

of M1, SMA, 

and paracentral 

lobule 

n = 13 (sex not 

reported, avg 

age 23.7 yrs) 

 

Walking at 0.45 m/s 

for 30s, alternated 

with rest for 30s. 

Applied high-pass 

filter (0.01 Hz), 

applied 5s moving 

average, applied 

PCA on all channels 

Yes Walking 

Lachert et al. 

2017 

Custom 

built fNIRS 

sensor 

Time 

domain 

Not 

reported 

8 channels 

located over 

bilateral motor 

cortices 

n = 10 (5F, avg 

age 28.1 yrs) 

Tapping a computer 

mouse for 20s, 

alternated with 30s 

rest. 

Detrended via linear 

approximation, 

smoothed with a 

moving average (10 

points), applied 

low-pass filter (0.4 

Hz) 

Yes Finger tapping ME 

Lin et al. 

2012 

ISS 

Imagent 

Frequency 

domain 

HOMER 20 channels 

located over 

bilateral SMC, 

SMA, and PMC 

N = 25, n1 = 12 

younger (4F, 

avg age 23.4 

yrs) and n2 = 13 

elderly (6F, avg 

age 67.6 yrs) 

Cycling for 20s, 

alternated with 30s 

rest 

Applied 3rd order 

IIR Butterworth 

bandpass filter 

(0.002-0.5 Hz), 

applied PCA 

No Cycling 

Lin et al. 

2016 

ISS 

Imagent 

HOMER 20 channels 

located over 

n = 19 (0F, avg 

age 23.7 yrs) 

Knee extension tasks 

(VOL, ES, HA @ 10, 

Applied 3rd order 

IIR Butterworth 

Yes Knee Extension 
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Frequency 

domain 

bilateral SMC, 

and PMC 

30, and 50 mA) for 

20s, alternated with 

30s of rest. 

bandpass filter 

(0.0016-0.8 Hz) 

Lu et al. 2013 NIRx 

DYNOT 

Continuous 

wave 

NAVI 

(NIRx) 

5x6 array, 

located over left 

SMC 

n = 10 (5F, avg 

age 22.7 yrs) 

Hand grasping for 

20s, alternated with 

20s rest. 

Applied low-pass 

filter (0.5 Hz), 

applied GLM 

Yes Hand 

grasping/clenching 

ME 

Lu et al. 2015 NIRx 

NIRSport 

Continuous 

wave 

HOMER2 14 channels 

located over 

bilateral PFC, 

PMC, and SMA 

n = 17 (8F, avg 

age 23.1 yrs) 

NW, WCT, or WMT 

for 60s, alternated 

with 60s rest. 

Applied bandpass 

filter (0.01-0.2 Hz), 

applied PCA and 

spike rejection 

Yes Dual-task Walking 

Lu et al. 2017 Techen 

CW6 

Continuous 

wave 

HOMER2 13 channels 

located over 

right motor 

cortex, PMC, 

PFC, and SMA 

n = 29 (15F, 

avg age 24.2 

yrs) 

Serial finger-tapping 

for 5s, alternated with 

4.9s of rest. 

Applied bandpass 

filter (0.1-0.8 Hz) 

Yes Finger tapping ME 

Lucas et al. 

2019 

fNIRS 

Devices 

fNIRS 

Imager 

1000 

Continuous 

wave 

Not 

reported 

4x10 overlying 

bilateral PFC 

n = 55 (27F, 

avg age 74.76 

yrs) 

Continuous straight 

walks under NW or 

WWT conditions (3 

loops around track). 

 

Visually inspected, 

applied low-pass 

filter (0.14 Hz)  

 

Yes Dual-task Walking 

Maidan et al. 

2018 

Artinis 

PortaLite 

Continuous 

wave 

MATLAB 6 channels 

located over 

bilateral 

DLPFC, and 

anterior PFC 

n = 20 (sex not 

reported, aged 

20-50 yrs) 

ON while walking 

along a 50m elliptical 

pathway, alternated 

with 20s rest. 

Applied bandpass 

(0.01-0.14 Hz), 

applied wavelet 

filter, applied CBSI 

Yes Obstacle Negotiation 

Mandrick et 

al. 2013 

Hamamatsu 

NIRO-300 

Continuous 

wave 

MATLAB PFC (at the 

midpoint 

between Fp2-

F4) 

n = 15  

(0F, avg age 

28.3 ± 6 yrs) 

Grasping tasks with 

non-dominant 

hand.  

60s at two 

submaximal 

workloads (15% and 

30% MVC). 

Applied low-pass 

filter (0.1 Hz), 

utilized time series 

analysis 

technique 

(amplitude-based 

approach)  

 

Yes Hand 

grasping/clenching 

ME 

Mehnert et al. 

2013 

NIRx 

NIRScout 

Continuous 

wave 

MATLAB 16x16 

overlying 

bilateral 

occipito-parietal 

and precentral 

areas 

n = 20 (5F, avg 

age 27.7 yrs)  

Normal or mirrored 

finger movements  

(80 trials per hand, 

15s active, 10s rest). 

Linearly 

interpolated data to 

correct for motion 

artifacts, applied 3rd 

order Butterworth 

band-pass filter 

(0.016-0.2 Hz), 

Yes Hand/finger 

movements ME 
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applied GLM 

Mehta and 

Rhee 2017 

TechEn 

CW6 

Continuous 

wave 

HOMER2 PFC (Fp1 and 

Fp2) 

n = 9 (6F, aged 

65 yrs or older)  

n = 10 (6F, 

aged 20–35 yrs) 

6 arm force control 

trials, (10s at 30% 

MVC, 20s rest). 

 

 

Applied low- 

pass filter (3 Hz), 

used wavelet- 

based method (1.5 

IQR), applied low-

pass filter again (0.5 

Hz), applied high-

pass filter (0.016 

Hz) 

No Arm task 

Metzger et al. 

2017 

Hitachi 

ETG-4000 

Continuous 

wave 

MATLAB Frontal, 

temporal and 

parietal cortex 

of both 

hemispheres 

using two large 

4x4 probe-sets 

with 

24 channels 

n = 12 

(8F, avg age 

27.6 yrs) 

NW at 3km/h or 

5km/hr for 45s, rest 

15 s, as well as a 

WWT condition. 

 

Applied moving 

average within a 

time window of five 

seconds, baseline 

corrected (10s), 

linear fit (consisting 

of 10-s baseline, 45-

s activation task, 

and 15-s rest), 

applied CBSI 

Yes Dual-task Walking 

Mirelman et 

al. 2014 

Artinis 

system 

Continuous 

wave 

Not 

reported 

Two separate 

pairs of NIRS 

probes each  

6 channels 

overlying 

left (Fp1) and 

right 

(Fp2) 

n = 23 (13F, 

avg age 30.9 ± 

3.7 yrs) 

Speed walking while 

counting forward, 

walking while 

serially subtracting or 

standing while 

serially subtracting   

(30 m walking, 20 s 

rest). 

Applied low-pass 

filter with a finite 

impulse response 

filter (0.14 Hz), 

applied Continuous 

Wavelet transform  

 

 

Yes Dual-task Walking 

Mirelman et 

al. 2017 

Artinis 

PortaLite 

Continuous 

wave 

MATLAB Two probes 

overlying 

left and right 

Brodmann’s 

areas 10, the 

dorsolateral and 

anterior 

prefrontal 

cortex (PFC) 

N = 43, n1 = 23 

young adults 

(13F, avg age 

30.9 ± 3.7 yrs) 

and n2 = 20 

older adults 

(10F, avg age 

69.7 ± 5.8 yrs) 

Walking at self-

selected comfortable 

speed, 

walking while 

serially subtracting,  

and NW + ON  

(30 s active, 20 s 

rest). 

Applied bandpass 

filter (0.01–0.14 

Hz), applied 

wavelet filter, 

applied CBSI  

No Dual-task Walking 

Moro et al. 

2016 

Artinis 

Oxymon 

Mk-III 

Continuous 

wave 

HOMER2 20 channels 

located over 

bilateral 

DLPFC, 

frontopolar 

cortex, VLPFC 

n = 21 (0F, avg 

age 26.1 yrs) 

2 min VMT, with 

baseline and rest of 1 

min. VMT was 

moving a virtual 

sphere over a virtual 

path. 

Applied wavelet 

filter (iqr = 1) for 

motion artifact 

correction, applied a 

deconvolution GLM 

(temporal basis = 

Yes Observation/VR/VMT 

ME 
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gaussian (2s apart, 

SD = 3s)) which 

also used SS 

channels to regress 

physiological signal, 

then IWLS method 

to solve GLM  

Muthalib et 

al. 2015 

Custom 

built 

Time 

domain 

NIRS-SPM Full 

topographic 

map from 32 

optical channels 

n = 9 (0F, avg 

age 39.2 ± 13 

yrs) 

10 voluntary wrist 

extension 

contractions 

(active 1s, rest 1s). 

 

Applied GLM 

(gamma functions), 

detrending filter 

(Wavelet-MDL), 

and Time series 

(O2Hb or HHb time 

course) modeled as 

a linear combination 

of L regressors 

No Wrist Extension ME 

Muthalib et 

al. 2016 

Artinis 

Oxymon 

MkIII 

Continuous 

wave 

Not 

reported 

12x4 (16 

channels) 

overlying left 

and right SMC 

n = 8 (sex not 

reported, avg 

age 30.4 ± 10.6 

yrs) 

Finger tapping task 

with RH or LH 

(active 30s, rest 30s), 

before (Pre), during 

(Online), and after 

(Offline) anodal HD-

tDCS (2 mA, 20 min) 

targeting left SMC. 

Applied low-pass 

filter (0.1 Hz), 

baseline corrected 

(last 5 seconds of 

rest), sample-to-

sample averaged (10 

samples/s) 

Yes Finger tapping ME 

Muthalib et 

al. 2018 

Artinis 

Oxymon 

Mk III 

Continuous 

wave 

Not 

reported 

8x2 overlying 

bilateral SMC  

 

n = 8 (0F, avg 

age 25.9 ± 4.3 

yrs) 

NMES evoked wrist 

extension and 

voluntary wrist 

extension (10 blocks 

of 10 wrist 

extensions, 1s active, 

1s rest). 

Applied low-pass 

filter (0.1 Hz), 

visually inspected 

 

Yes Wrist Extension ME 

Naseer and 

Hong 2013 

NIRx 

DYNOT 

Continuous 

wave 

Not 

reported 

12x12 (17 

channels each 

hemisphere) 

overlying left 

and right  

primary motor 

cortices 

 

n = 10 (0F, avg 

age 28.5 ± 4.8 

yrs) 

MI for LW or RW 

upwards 4 or 5 times 

(10s active, 20s rest). 

 

Baseline corrected, 

applied low-pass 

filter using 4th order 

Butterworth filter 

(0.1 Hz) 

Yes 

 

Wrist Extension MI 

Pfurtscheller 

et al. 2011 

Custom 

built 

Continuous 

wave 

 

Not 

reported 

1x1 overlying 

frontal cortex 

(FP1) 

 

n = 26 (14F, 

avg age 23 ± 

2.8 yrs) 

Finger movements 

(active 40 s, rest 5 

min). 

 

Applied 5th-order 

Butterworth filter 

(0.9 Hz) 

No Hand/finger 

movements ME 
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Pittaccio et al. 

2013 

Commercia

l fNIRS 

device 

Continuous 

wave 

Not 

reported 

32 channels 

overlying the 

motor and 

somatosensory 

brain areas 

 

n = 2 (0F, avg 

age 32 ± 7.1 

yrs) 

Active, passive, and 

assisted foot 

dorsiflexion 

conditions (5min. 

each, 7s of 

dorsiflexion, 30s of 

rest). 

 

 

Visually inspected, 

applied low pass 

filter (0.030 Hz), 

segmented 

continuous tracks 

into epochs, applied 

GLM 

No Ankle Dorsiflexion 

Propper et al. 

2017 

Biopac 

Systems 

fNIR400 

Continuous 

wave 

Not 

reported 

16 channels 

overlying left 

and right 

dorsolateral 

prefrontal 

cortex  

n = 39 (0F, ages 

not reported) 

Sustained unilateral 

hand clenching 

(active 30s, rest 20s). 

 

Applied finite 

impulse response 

filter, applied cut-

off between 400 mV 

- 4000 mV 

 

 

No Hand 

grasping/clenching 

ME 

Rosner and 

Barlow 2016 

TechEn 

CW6 

Continuous 

wave 

HOMER2 4x12 overlying 

face and hand 

sensorimotor 

cortices 

n = 22 (17F, 

avg age 23.16 ± 

1.76 yrs) 

Repetitive hand grip 

task at 10% MVC 

(20s active, 20s rest). 

Applied low-pass 

filter (0.3 Hz), 

applied automated 

detection algorithm 

based on standard 

deviation, block 

averaged from -10s 

to +30s 

Yes Hand 

grasping/clenching 

ME 

Rosso et al. 

2017 

TechEn 

CW6 

Continuous 

wave 

Not 

reported 

15x15 

overlying the 

prefrontal, 

temporal, and 

motor cortices 

of the left 

hemisphere 

N = 16, n1 = 10 

(7F, aged 66–81 

yrs), n2 = 6 (2F, 

aged 22–30 yrs) 

Balance task on a 

dynamic 

posturography 

platform, auditory 

choice reaction time 

task while seated, and  

postural control with 

attention tasks (active 

121s, rest 30s). 

Applied GLM 

(canonical) 

 

Yes Balance task 

Sagari et al. 

2015 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

24 channels 

overlying right 

and left PFC, 

presupplementa

ry motor area, 

supplementary 

motor area, 

dorsal premotor 

cortex, and 

sensorimotor 

cortex 

n = 20 (11F, 

avg age 27.5 ± 

5.5 yrs) 

Character entry into a 

touch- 

screen terminal 

(active 15s, rest 25s). 

Applied moving 

average (window: 5 

s), analyzed in 

integral mode  

No Character Entry 
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Schurholz et 

al. 2012 

Shimadzu 

FOIRE-

3000 

Continuous 

wave 

NIRS-SPM 4x4 overlying 

bilateral motor 

cortex, primary 

motor cortex, 

premotor cortex 

and 

somatosensory 

cortex 

 

n = 8 (6F, avg 

age 24.8±2.4 

yrs) 

 

RH MI, or passive 

RH movement by 

FES (active 10s). 

 

Detrended (of 

global trends and of 

noise components) 

using wavelet-

MDL, utilized 

precoloring  

No Wrist 

Flexion/Extension MI 

Seidel et al. 

2017 

NIRx 

NIRSport 

Continuous 

wave 

nirsLAB 15 optodes 

overlying the 

sensorimotor 

system 

 

n = 43 (20F, 

avg age 25 yrs) 

Static balance task 

(20s rest), MBT 

training  

20 min 

Signal quality 

checked by CV 

(15% cutoff) 

applied baseline 

correction (10s of 

rest), applied 

bandpass filter (0.01 

Hz to 0.2 Hz), 

applied time series 

analysis, applied 

GLM 

 

No Balance task 

Seidel et al. 

2019 

NIRx 

NIRSport 

Continuous 

wave 

HOMER2 15 optodes 

overlying 

bilateral 

sensorimotor 

system 

 

n = 42 (16F, 

avg age 26.81 

yrs) 

Cycled five trials at 

20, 40, and 60% PPO 

(active 30 s) 

Signal quality 

checked by CV 

(15% cutoff), 

applied wavelet 

filtering (1.219 

IQR), applied band-

pass filter (0.01-0.5 

Hz), applied short 

separation 

regression 

No Cycling 

Shibuya 2011 Hamamatsu 

NIRO-

300L 

Continuous 

wave 

Not 

reported 

Overlying the 

C3 and C4 hand 

motor areas 

n = 12 (0F, avg 

age 24.08 ± 

0.18 yrs) 

 

 

5 sets static-handgrip 

at 60% MVC (active 

10s, rest 75s) 

 

Baseline corrected 

(30s), applied high-

pass filter (0.02 Hz) 

Yes Hand 

grasping/clenching 

ME 

Shibuya et al. 

2014 

NIRS: 

NIRO-

300L 

Continuous 

wave 

Chart 

software 

Overlying M1 

areas of both 

hemispheres 

n = 10 (0F, avg 

age 21.1 ± 0.84 

yrs) 

Unilateral finger 

movement task at 20, 

40, and 60% MVC 

(10s active) 

 

 

Applied visual 

inspection, applied 

low-pass filter (0.7 

Hz), baseline 

corrected (60s) 

 

Yes Hand/finger 

movements ME 
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Shibuya et al. 

2016 

Shimadzu 

NIRStation 

OMM3000 

Continuous 

wave 

Not 

reported 

Overlying M1 

areas of both 

hemispheres 

n = 10 (0F, avg 

age 22.2 ± 0.2 

yrs) 

Handgrip task at 30-

60% MVC (active 

180s) 

 

  

 

Applied CAR, 

projected onto CSP 

Yes Hand 

grasping/clenching 

ME 

Shin et al. 

2014 

Custom 

built 

Continuous 

wave 

Not 

reported 

8 channels 

overlying 

bilateral M1 

n = 8 (1F, avg 

age 26.8 ± 1.6 

yrs) 

 

L and R arm lifting 

and knee extension 

with various active 

and rest periods 

Normalized, applied 

zero-phase 

distortion filter 

(third-order 

Chebyshev I with a 

ripple factor of 0.5 

dB; 0.03-0.07 Hz), 

applied CBSI, 

applied third-order 

Savitzky–Golay 

smoothing filter 

Yes Arm Lifting + Knee 

Extension 

Stuart et al. 

2019 

Shimadzu 

LABNIRS 

Continuous 

wave 

NIRS-SPM Overlying 

bilateral frontal 

lobes 

N = 35, n1 = 17 

(9F, avg age 

20.3 ± 1.2 yrs), 

n2 = 18 (9F, avg 

age 72.6 ± 8.0 

yrs) 

Single and dual-task 

conditions 

(active 30s, rest 30s). 

Standing or NW on a 

treadmill, or WCT. 

Applied low-pass 

filter (0.15 Hz), 

applied wavelet-

minimum 

description length 

algorithm, applied 

baseline correction 

No Dual-task Walking 

Tempest et al. 

2019 

NIRx 

NIRSport 

Continuous 

wave 

HOMER2 16x16 

overlying 

prefrontal, 

parietal, and 

motor regions 

 

n = 13 (7F, avg 

age 29.8 ± 3.9 

yrs) 

Handgrip squeezing   

(active 10s, rest 20s). 

 

Pruned channels 

with poor signal 

quality, applied 

wavelet-based 

motion correction, 

applied bandpass 

filter (0.01-0.5 Hz), 

applied GLM 

No Hand 

grasping/clenching 

ME 

Vasta et al. 

2017 

Hitachi 

ETG-4000 

Continuous 

wave 

NIRS-SPM 22 channels 

overlying 

premotor 

cortex, primary 

motor cortex 

and the 

supplementary 

motor area 

n = 11 (5F, 

aged 27–64 yrs) 

Hand MTA tasks 

(60s active, 60s rest). 

 

 

Applied visual 

inspection, applied 

moving average 

with a window 

width of 5 s, applied 

bandpass filter 

(0.005-0.5 Hz) 

No Hand/finger 

movements ME 

Waldert et al. 

2012 

NIRx 

DYNOT-

932 

Not 

reported 

23 detectors and 

9 sources 

overlying C3 

and C4 

n = 17 (7F, avg 

age 

26.8 ± 5.6 yrs) 

Periodic (0.25 Hz) 

hand movements 

causing the finger 

tips to alternate 

Applied low-pass 

filter using a 3rd 

order Butterworth 

filter, applied 

Yes Hand/finger 

movements ME 
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Continuous 

wave 

between the outer 

and home 

position for 10s in 

each trial 

acausal filtering 

(zero phase 

shift) with 0.12 Hz 

cutoff  

 

Willis et al. 

2019 

Artinis 

PortaLite 

Continuous 

wave 

Not 

reported 

Overlying 

prefrontal 

cortex 

n = 7 (2F, avg 

age 26.6 ± 2.9 

yrs) 

Maximal sprints 

(active 10s, 

rest 20s). 

Applied fourth-

order low-pass zero-

phase Butter-worth 

filter (0.2 Hz) 

No Sprinting 

Wolf et al. 

2011 

Omnia ISS 

Frequency 

domain 

Not 

reported 

10 channels 

overlying 

dominant motor 

area for each 

individual 

n = 12 (1F, avg 

age 28.8 ± 12.7 

yrs) 

Palm-squeezing 

(active 21s or 10s, 

rest 20s or 17s). 

 

Applied DPF-

method, applied 

low-pass filter (0.1 

Hz) 

No Hand 

grasping/clenching 

ME 

Woorons et 

al. 2019 

Artinis 

PortaLite 

Continuous 

wave 

Not 

reported 

Overlying left 

prefrontal 

cortex 

n = 10 (3F, avg 

age 19.2 ± 2.3 

yrs) 

 

Back-and-forth 

sprints at maximal  

velocity (active 6s). 

Applied low-pass 

filter (0.1 Hz) 

Yes Sprinting 

Wriessnegger 

et al. 2017 

NIRx 

NIRScout 

Continuous 

wave 

MATLAB  61 channels 

overlying 

parietal and 

motor cortical 

areas 

n = 13 (5F, avg 

age 25 ± 3 yrs) 

ME or MI hand grip 

task 

(active 10s, 10-14 

rest). 

Applied visual 

inspection, applied 

high pass filter (0.01 

Hz), applied low 

pass filter (0.8 Hz), 

utilized TF models 

Yes Hand 

grasping/clenching 

ME + MI 

Wriessnegger 

et al. 2018 

NIRx 

NIRScout 

Continuous 

wave 

MATLAB  61 channels 

overlying 

frontal left, 

central left, 

parietal left, 

frontal right, 

central right 

parietal right 

brain regions  

n = 20 (10F, 

avg age 24.8 ± 

2.5 yrs) 

MI of hand squeezing 

(active 10s). 

 

Applied visual 

inspection, applied 

high pass filter (0.01 

Hz), applied low 

pass filter (0.8 Hz), 

utilized TF models, 

applied spatial 

smoothing 

No Hand 

grasping/clenching MI 

Yeo et al. 

2013 

Shimadzu 

FOIRE-

3000 

Continuous 

wave 

NIRS-SPM 49 channels 

overlying 

primary 

sensory-motor 

cortex, 

premotor 

cortex, and 

prefrontal 

cortex 

n = 9 (2F, avg 

age 27.4 ± 3.2 

yrs) 

Flexion-extension 

movements of the 

right 

shoulder or hand  

(active 30s, rest 60s). 

Applied Gaussian 

smoothing (FWHM 

= 2s), applied 

wavelet-MDL based 

detrending 

algorithm 

No Arm task 
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Yin et al. 

2015 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

24 channels 

overlying 

primary motor 

area and the 

supplementary 

motor area 

n = 6 (3F, avg 

age 26.8 ± 3.3 

yrs) 

Hand clenching MI 

speed task and hand 

clenching  

force task. 

 

 

Applied linear-

detrending filter, 

applied low-pass 

5th-order Chebyshev 

II filter (0.1 Hz), 

downsampled to 1 

Hz 

Yes Hand 

grasping/clenching 

ME + MI 

Yokoyama et 

al. 2019 

Shimadzu 

FOIRE-

3000 

Continuous 

wave 

Not 

reported 

31 channels 

overlying  

PM, M1, and 

PPC of both 

hemispheres 

n = 20 (20F, 

avg age 21.6 

yrs) 

Hand grip task 

(active 10s). 

  

 

Applied moving 

average (smoothing 

factor of 25 points), 

applied baseline 

normalization (-5s 

to 0s) 

Yes Hand 

grasping/clenching 

ME 

Yozu et al. 

2016 

Hitachi 

ETG-4000 

Continuous 

wave 

Not 

reported 

24 channels 

overlying Fz 

n = 10 (5F, avg 

age 32.0 ± 7.7 

yrs) 

Hand-knee 

quadrupedal 

crawling, upright 

quadrupedal using 

crutches and typical 

upright bipedalism  

(active 30s, rest 40s). 

 

Applied baseline 

drift correction, 

applied first-degree 

baseline fit, 

averaged across 

channels over SMA  

 

Yes Quadrapedalism + 

Walking 

Yu et al. 2014 NIRx 

DYNOT 

Continuous 

wave 

NIRS-SPM 122 channels 

located over 

bilateral 

primary motor, 

and 

somatosensory 

cortices 

n = 8 (sex not 

reported, age 

not reported) 

Hand grasping MI or 

passive hand 

movement (active 

5s), alternated with 

10s rest. 

Applied low-pass 

filter, applied GLM 

Yes Hand 

grasping/clenching MI 

Zimmermann 

et al. 2013 

ISS 

Oxiplex TS 

Continuous 

wave 

 

 

Not 

reported 

Two probes 

overlying left 

M1 and left 

PMv 

n = 7 (1F, avg 

age 26.0 ± 

2.2 yrs) 

Finger pinching task 

(active 20s, rest 15 to 

24 s). 

Downsampled to 5 

Hz, applied 5-point 

median filter, used 

inverse z-score of 

the raw 

intensity signals to 

identify MA 

 

Yes Hand/finger 

movements ME 

 

 

 


