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Abstract  
 
Linking allelic variants to variation for complex traits has been a major focus in 

modern genetics. However, the ability to assess and predict how genetic factors influence 

complex traits (including human disease) requires an understanding of the specific genes 

that influence a trait, but also a broader understanding of the genetic architecture of 

complex traits. Epistatic interactions are crucial when mapping genotypic to phenotypic 

effects, as mutations in two (or more) genes can produce a phenotype that differs 

substantially from the expectation of the sum of individual effects. Epistatic interactions 

are both common and vary considerably in magnitude. Yet little current research focuses 

on identifying and predicting when mutations will have epistatic interactions and the 

extent of such effects. I examined the extent of epistatic interactions as a function of 

individual allelic effects (magnitudes) and wild-type genetic background using the 

Drosophila melanogaster wing as a model system. The aim of this research is to 

demonstrate whether individual mutational effects are predictive of the magnitude and 

direction of epistatic interactions. My results indicate 1) relationships between the 

average mutant effect and the resulting epistasis and 2) the genetic background can have a 

strong influence on epistasis.  
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1. Introduction 
 
1.1 Complex Traits are Complex  
 

Complex trait variation is not explained by one or a small number of genetic 

variants, but rather a complex combination of genetic and environmental factors 

(Robinson, Wray, & Visscher, 2015). There is importance in understanding the genetic 

architecture of these traits to understand how variation at the genomic level is linked to 

phenotypic variation.  While genome-wide association studies (GWAS) have allowed 

thousands of variants to be linked to traits (Robinson et al., 2015) , it still remains 

challenging and necessary to understand the genetic underpinnings of many complex 

traits. It is crucial to recognize that genetic architecture extends beyond just identifying 

single variants but additionally encompasses the number of variants influencing a 

phenotype, the magnitude of their effects on the phenotype, the population frequency of 

these variants, and notably the interactions among these variants with each other and their 

environment in terms of how they influence the phenotype (Timpson, Greenwood, 

Soranzo, & Lawson, 2017). 

 Evidence has shown that a particular “focal” mutation under study will not 

always have the same phenotypic effect in different individuals, and interactions between 

genetic variants modulate variation in penetrance and expressivity. A portion of this 

variation is explained by interactions between mutations and the genetic background in 

which they occur, also known as epistasis or genetic interaction (Domingo, Baeza-

Centurion, & Lehner, 2019). It is apparent that the ability to assess and predict how 
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genetic factors influence complex traits requires an understanding of not only the specific 

loci that affect a trait but also an understanding of the genetic architecture of complex 

traits (Timpson et al., 2017).   

This chapter will provide an overview of our current understanding of genetic 

interactions, specifically between two mutations (pairwise) and more (genetic background 

effects), the possible implications, and what our current knowledge tells us about the 

predictability of these interactions.  

 
1.2 What is Epistasis? 
 

Epistasis is a type of genetic interaction that has been used in many different 

contexts and to describe a variety of phenomenon since William Bateson originally 

defined the word in 1909 (Phillips, 1998). Do to the many distinct usages, there has been 

confusion by biologists from different disciplines as to what epistasis does in fact mean. 

William Bateson first defined the term after observing phenotypes from a series of 

dihybrid crosses and noting that the phenotypic ratios were altered from the expected 

9:3:3:1 and, in some cases, novel phenotypes not seen in crosses with either individual 

single mutant were observed (Bateson, 1909). Bateson inferred that this was a result of a 

masking effect taking place where the allele of one gene prohibited the allele at another 

gene to manifest its phenotypic effect; much in the same way complete dominance 

involves masking of one allele by another. The mutation that “stopped” the phenotypic 

effect of other mutations was described as epistatic, and the mutations being blocked were 

said to be hypostatic. Qualitative, discrete differences in phenotypes illustrated that these 

mutations were interacting in some sense. In contrast, R.A Fisher defined a related term 
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“epistacy” in 1918 when he was able to show that one cannot always predict the 

quantitative phenotype of a particular two-locus genotype by merely adding the effect of 

the loci together  (Fisher, 1918). Population geneticists quickly adopted the term epistasis 

to describe this phenomenon, and it became evident that many forms of genetic 

interaction can lead to epistatic “deviations”.  In the intervening years of study of 

genetics, epistasis has been used to describe three distinct things: functional relationships 

between genes, genetic ordering of pathways, and quantitative differences of allele-

specific effects (Phillips, 2007). Making it necessary for researchers who work with 

epistasis to be incredibly clear (one hopes) in defining the type of gene interaction they 

are referring.   

Phillips (2007) has condensed epistasis into three main categories to illustrate key 

differences between the various phenomena currently defined as epistasis.  Functional 

epistasis describes the molecular interactions that proteins (and other genetic elements) 

have with one another.  These interactions can occur within a single pathway or between 

proteins involved in a complex together. This type of epistasis describes a functional 

relationship that does not offer a direct genetic link. The term statistical epistasis is used 

when the average deviation of combinations of alleles at different loci is estimated over 

all other genotypes present in a population. This type of epistasis can be used to describe 

the deviation induced by substituting two alleles at different loci within a random 

individual within a population, after taking into account the expected effect of 

substituting each allele separately. Importantly measures of statistical epistasis are 

dependent on genotypic frequencies and thus is not simply a function of comparisons 
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among genotypes. Lastly, Compositional epistasis depicts the traditional Bateson 

definition of epistasis, which is the complete blocking of one allelic effect by an allele at 

another locus. For this type of interaction, one allele is substituted for another in a 

standard genetic background.  Therefore, the effects of a specific genotype can be 

observed, and the influence that this specific genetic background has on these particular 

set of alleles.  This can be expanded to include genetic interactions that include 

quantitative phenotypes and thus quantitative measures of interactions. This is also 

sometimes referred to as “physiological epistasis”(Cheverud & Routman, 1995). 

Additionally, this can be extended to include interactions beyond those shown with a 

double mutant homozygote.  In my work, a compositional approach is used to observe the 

quantitative effects of allelic substitutions in two different wild-type genetic backgrounds.  

Much like the definition of epistasis, terminology about epistasis can vary 

between scientific fields.  Magnitude epistasis describes the situation where the 

phenotype associated with a double mutant deviates from the mutants' additive effects, 

but not in a way that will change the sign (or direction) of either allele's individual effect. 

For example, mutant X1 decreases wing size in Drosophila by 0.30mm, while mutation 

Y1 reduces wing size by an average effect of 0.20 mm. The double mutant X1Y1 is 

observed to have a wing size reduction of 0.40 mm, which is better (a smaller reduction) 

than the 0.50 mm reduction expected from the additive effects of the mutants. In this 

example, both mutant alleles have the same direction of effect, but the magnitude of these 

effects’ changes when together. These interactions can be further classified into negative 

or positive epistatic interactions (Figure 1.1). When a double mutant has a less severe (or 
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more fit) phenotype than expected from the additive effects of the mutants individually it 

is referred to as positive epistasis.  While negative epistasis defines an interaction when a 

double mutant's observed phenotype is more severe (or less fit) than what is expected. For 

sign epistasis, the sign (i.e. from deleterious to beneficial) of an individual alleles 

phenotypic effect changes in the presence another mutation. An example of sign epistasis 

when a mutation is beneficial individually, but it can act deleterious when in the presence 

of another mutation, and has been shown to be common among alleles that contribute to 

antibiotic resistance and their interactions with second site compensatory modifiers 

(Weinreich, Watson, & Chao, 2005). 

Relative to haploid organisms, epistasis in diploids is further complicated by the 

presence of two alleles of each gene (and dominance between them). Therefore, epistasis 

can occur between loci and between the two copies of each locus in heterozygotes.  In the 

absence of epistasis, mutations will act in an additive manner. Meaning that the estimates 

of additive and dominance effects for each locus are the same regardless of the genotype 

at a different locus.  While in the presence of epistasis, both additive and dominance 

effects are dependent on the genotype of the interacting locus. Given this, genetic effects 

can be partitioned (and estimated) into eight different effects: additive and dominance 

effects for each locus and then additive-by-additive, dominance-by-additive, additive-by-

dominance, and dominance-by-dominance epistasis (Figure 1.2).  
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Positive and Negative Genetic Interactions  
 

 

Figure 1.1: Types of genetic interactions. When mutant x and mutant y reduce wing size 
by 0.3mm and 0.20mm, the expected double mutant (xy) based on the additive effects of 
each individual mutant is a reduction of 0.50mm. A negative epistatic interaction occurs 
when the observed double mutant phenotype (wing size) is worse or smaller than 
expected (red). A positive epistatic interaction occurs when the double mutant phenotype 
is better or larger than expected (green). When the alleles act in a purely additive manner, 
there is no interaction (purple). 
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Four Different Types of Epistatic Interactions  
 

 
Figure 1.2: A graphical representation of some of the ways the different epistatic 
interactions can manifest. For additive-by-dominance, the additive effect of Y (black 
lines) is influenced by the dominance of X. For dominance-by-additive, the dominance 
effect of Y (red line) is impacted by the additive effect of X. For dominance-by-
dominance, the dominance of Y (red line) is influenced by the dominance of X. Lastly, 
for additive-by-additive, the additive effect of Y (black lines) is influenced by the additive 
effect of X. Additive-by-additive can also manifest as changes in the same direction, but 
with differing slopes according to the genotype at gene 2.  
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1.3 The Prevalence and Relevance of (Pairwise) Epistasis  
 

Research using natural, engineered and selected mutations has shown that 

epistasis is extremely common. Work by Costanzo et al. (2016) illustrated the abundance 

of epistatic interactions in Saccharomyces cerevisiae when examining temperature 

sensitive mutant alleles, carrying mutations that generally alter coding regions of genes. 

These temperature sensitive mutants were screened at a temperature where cells were 

viable but partially compromised for gene function and associated with a reduced growth 

rate. 23 million double mutants were constructed and 550,000 negative and 350,00 

positive genetic interactions were identified. Elena and Lenski (1997) constructed 27 

recombinant genotypes in Escherichia coli, and observed that 52% of random pairs of 

mutations tested showed epistasis for fitness. Similarly, Yamamoto et al. (2007), 

generated 105 double heterozygotes carrying p[GT1] transposon insertions in Drosophila 

melanogaster. 36% of the double heterozygotes had significant effects on startle-induced 

locomotor behaviour. Also in Drosophila melanogaster, 27% of random pairs tested for 

epistasis showed significant epistatic effects of quantitative traits affecting metabolism 

(Clark & Wang, 1997). Interestingly, these epistatic effects were large, but the individual 

mutations did not always have substantial individual (marginal) effects, exemplifying the 

importance of looking at the combined effects of mutations not just assessing them 

individually. 

Modifier screens can identify second site mutations that modify the phenotypic 

outcome of a focal mutation. The starting material is a strain whose genetic composition 

causes a phenotypic defect. Second site mutations are then introduced (via crosses or 
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direct mutagenesis) and progeny are examined to determine if they enhance or suppress 

the starting phenotype (Jorgensen & Mango, 2002). A modifier screen was performed by 

Verheyen et al. (1996) to isolate modifiers of the eye phenotype caused by the expression 

of Notch in Drosophila. 137,000 individuals were screened, and 290 dominant modifiers 

were recovered. Many new alleles were recovered in previously identified genes in the 

Notch pathway, while new alleles of known genes not directly implicated in Notch 

signalling previously were also isolated.  These results (as well as others) suggest that 

modifier screens are a successful tool used to identify missing components of genetic 

pathways (Johnston, 2002; Jorgensen & Mango, 2002). Modifier alleles may not have a 

phenotypic effect by themselves but can modify the phenotypes of other alleles. For 

example, Rutledge et al. (1988) examined the effects of 6 allele specific modifier genes 

on the expression of 18 modifiable alleles at 11 loci in Drosophila melanogaster. The 6 

allele specific modifier genes had no visible mutant phenotype on their own, but a screen 

of 40,000 individuals illustrated the each of the 6 allele specific modifiers enhanced some 

phenotypes, suppressed others, and had no noticeable effect on others.  

Genetic interactions have also been shown to be an important consideration when 

evaluating disease risk as mutations can affect the severity of a disease phenotype. In 

some rare cases, individuals have been reported where a single large effect mutation 

associated with severe disease outcomes showed no clinically relevant phenotypic effects. 

For example, individuals that are homozygous for a mutant allele in DFNB26 have 

complete hearing loss. Yet, individuals in one family were carrying two copies of this 

deleterious allele have been identified with full hearing. These individuals were found to 
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have a secondary mutation, DFNM1, which protects against hearing loss (Riazuddin et 

al., 2000). Similarly, a screen of 874 genes in 589,306 genomes identified 13 adults with 

mutations associated with 8 severe Mendelian conditions, with no reported manifestation 

of the indicated disease (Chen et al. 2016). Suppression interactions are also of key 

importance in understanding how genetic differences can affect complex disease 

phenotypes, such as cancer progression. The growth defect caused by the absence of the 

tumor suppressor gene BRCA1 in humans can be suppressed by the loss of either 53BP1 

or REV7 (Bouwman et al., 2010; Xu et al., 2015) It has also been shown that a cancer 

causing mutation can interact strongly with many mutations, having little effect 

individually, but lethal when combined (Ashworth, Lord, & Reis-filho, 2011). Epistasis 

has also been shown to be involved with other complex diseases, including cardiovascular 

disease (Y. Li, Cho, Wang, Canela-Xandra, & Luo, n.d.), diabetes (Wiltshire et al., 2006), 

autism (Mitra, Yeh, & Tsang, 2017), cleft lip and palate (Vieira, 2008), schizophrenia and 

other neurological disorders (Combarros, Cortina-borja, Smith, & Lehmann, 2009), and 

different types of cancer (X. Wang, Fu, Mcnerney, & White, 2014).  

Based on the ease of isolating these interactions in model organisms and examples 

illustrated in disease severity, it seems probable that epistatic interactions are common, 

and important determinants for variation for complex traits. This is supported by research 

showing that epistatic interactions contribute to natural variation of traits and can explain 

significant proportions of otherwise unattributed variance within populations (Caicedo, 

Stinchcombe, Olsen, Schmitt, & Purugganan, 2004; Gaertner, Parmenter, Rockman, 

Kruglyak, & Phillips, 2012; Jarvis & Cheverud, 2011). Yet, the relative importance of 
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these non-additive interactions to the genetic contributions to complex traits and diseases 

remains controversial (Monnahan & Kelly, 2015).  

 

1.4 The Genotype-Phenotype Map and Epistasis 

 
The effects of epistasis can differ significantly in both magnitude and sign, but 

what remains unclear is why such a range is observed. Fundamentally, the work 

summarized in this dissertation is meant to address this question.  Understanding what 

causes variation in epistatic interactions is essential to predict phenotypic effects from 

genotypic variation.  In some cases, epistatic effects are highly specific to the alleles 

involved in the interaction and arise through the distinctive effects of particular 

combinations of mutations (Diss and Lehner, 2018).  In such occurrences, resulting 

interactions may depend not only on the effect size (magnitude) of the mutations involved 

but also specifics of the alleles or genes involved. These specifics include, the three-

dimension structure of proteins (Melamed, Young, Gamble, Miller, & Fields, 2013), and 

changes in physical interaction affinity and specificity (Ortlund, Bridgham, Redinbo, & 

Thornton, 2007).  This is illustrated when observing the consequences for two mutations 

in human protooncogenes FOS and JUN on the formation of the AP-1 transcription factor 

complex (Melamed et al. 2013). The Glu residue in position 3g of Fos establishes a salt-

bridge with the Arg residue in position 4e of Jun. Individual mutations Glu3gLys and 

Arg4eGlu destabilize the interaction between Fos and Jun by replacing the salt-bridge by 

repulsive electro-static interactions. However, when these two mutations are combined, 
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they are able to compensate each other by recreating the salt-bridge (Melamed et al. 

2013).   

In other cases, genetic interactions may emerge from the quantitative nonlinearity 

between gene activity and the phenotype.  This may make it possible to predict the effects 

of individual mutations on epistatic interactions without knowing the molecular identity 

of the mutations involved in interactions.  One of the first major insights of nonlinearity 

was illustrated when examining dominance (Ford, 1907; Kacser & Burns, 1981; Wright, 

1934). A nonlinear relationship occurs between gene activity and phenotype, such that a 

fractional change (i.e. the same delta) in gene activity may have different consequences 

depending on the form of the curve. Kacser and Burns (1981) illustrated a non-linear 

relationship between gene activity and phenotype and show that dominance is not a 

property of genes but explains a relationship of the phenotype between genotypes. More 

specifically as a form of interaction among alleles within a gene. Nonlinearity is an 

abundant feature in development, with examples occurring for ligand binding (Gonze & 

Abou-Jaoudé, 2013), transcriptional regulation (Frank, T. D., Cavadas, M. A. S, Nguyen, 

L. K. & Cheong, 2016), diffusion of morphogens (Lander & Nie, 2002), and importantly 

continuing to describe quantitative relationships between gene activity and phenotypic 

outcome. For example, Green et al. (2017) manipulated gene dosage of Fgf8, a regulator 

of mouse development, and demonstrated that variation in activity in this signaling 

molecule has a nonlinear relationship to phenotypic variation. Similarly, Barkoulas et al. 

(2013) showed that the system for cell fate specification in the C. elegans vulva could 

tolerate a 4-fold variation in the genetic dose of an upstream signaling model, LIN-
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3/EGF, without a phenotypic change in cell fate pattern. Interestingly, this work also 

exposed an epistatic relationship between EGF and Notch when combining dosage 

perturbations in the two pathways; overexpression of EGF switched the function of Notch 

from lateral induction to induced lateral cell inhibition.   

Changes in gene expression can alter the effects of mutations and importantly how 

mutations interact whenever the relationship between gene expression and phenotype is 

nonlinear. Given that sigmoidal relationships are commonly observed between gene 

expression and phenotype, switches in interactions between mutations should be expected 

when the expression level of a gene changes.  Li et al. (2019) introduced random 

mutations into the DNA binding domain of the phage lambda repressor and examined the 

ability of each genotype to repress expression of a fluorescent protein. When observing 

how mutations combine at different expression levels, they saw that a change in mutant 

expression transformed the magnitude of genetic interaction and the direction of the 

interaction. For example, a genetic interaction can be suppressive at one expression level 

but can enhance at another expression level. While this work focusses on the phage 

lambda repressor, these conclusions are likely to apply to many genes. This work also 

suggests that changes in gene expression alone will facilitate changes in genetic 

interactions.  

Nonlinear relationships between changes in free energy and the activity of 

individual proteins and complexes can arise due to the thermodynamics of protein folding 

(Tokuriki & Tawfik, 2009) and molecular interactions (Diss et al., 2018). Similarly, 

regulatory systems have steep sigmoidal dose-response functions because of cooperativity 
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molecular titration and feedback (Gjuvsland, Hayes, Omholt, & Carlborg, 2007) , 

(Gjuvsland, Plahte, & Omholt, 2007). The kinetic coupling of enzymes can also generate 

non-linear relationships between gene expression and phenotype (Kacser & Burns, 1981). 

While previous work has provided insight into the shapes of genotype–phenotype 

relationships and the mechanisms that cause them, it is unclear how these shapes and 

mechanisms extend to genetic interactions.  

 Epistasis is a ubiquitous component of genetic architecture, but it remains 

unknown to what extent these interactions are necessary to make accurate predictions. 

Evidence has shown that many QTLs' effects might be masked by interactions with other 

loci which can make mapping difficult. For example, Carlborg et al. (2004) examined the 

genetic basis of chicken body size and only one QTL seemed to have a weak effect. 

However, when looking at epistatic interactions they were able to identify five more 

genomic regions associated with significant growth effects. Similarly, Stylianou et al. 

(2006) examined QTLs for obese mice and found epistatic interactions that showed 

interacting networks of multiple genes play a significant role in body weight. Illustrating 

not only the importance of epistasis in the prediction of complex traits, but that epistasis 

can reveal networks of interacting QTL. Interestingly, Forsberg et al.( 2017) showed that 

not only are genetic interactions common, but that they are key part of genetic 

architectures of multiple complex traits in a yeast population. They were able to show 

how interactions effect model estimations and how understanding this relationship 

improves trait predictions.  
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 Epistatic interactions have also shown to be important consideration when 

investigating drug resistance. A noteworthy example of this is shown when looking at 

influenza's main treatment (Domingo et al., 2019). Oseltamivir is an antiviral that blocks 

the active site of the neuraminidase enzyme necessary for viral replication. In clinical 

trials, researchers detected a mutation, H274Y, that generated resistance to this drug. 

However, this mutation led to attenuated viruses and it was concluded that this mutation 

was not clinically relevant. However, eight years after this drug was introduced, antiviral-

resistant strains appeared with the mutation H274Y. This mutation was no longer 

deleterious (to the virus) in newly evolved strains as the virus acquired additional 

mutations that suppressed the deleterious effects of H274Y(Moscona, 2009). A 

frightening example of the consequences epistatic interactions can have in human health 

and reinforces the importance of investigating how mutations in pathogens interact.  

 While epistatic interactions can have detrimental implications, there have been 

efforts to use these interactions to our advantage. Synthetic lethality is an extreme 

negative genetic interaction where the inactivation of two genes individually has little 

effect on viability, but the combination of both genes leads to cell death (Ashworth et al., 

2011). This has been of interest of cancer drug companies as it allows for targeted 

therapies that kill cancer cells that lack a specific tumor suppressor gene but spare normal 

cells. For example, a BRCA1 mutant cell and a pharmacological inhibition of another 

leads to death, while normal cells (which lack the BRAC1 mutation) are not affected by 

the effect of the drug (Nijman & Friend, 2013).  
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1.5 Genetic Background Effects  
 

It has been shown that the genetic context of a mutation can have substantial 

effects on a phenotype, a phenomenon known as genetic background effects (Chandler et 

al., 2017). The interaction of mutant alleles with naturally occurring variants throughout 

the genome, creates substantial variation in phenotypic expressivity and penetrance. 

Genetic background effects occur across a range of taxa and mutant classes, proving to be 

a pervasive feature of the genetics of all living systems.  Dowell et al. (2010) performed a 

systematic deletion of 5100 genes in two distinct strains of Saccharomyces cerevisiae and 

identified essential genes for viability. When scoring colonies as dead or alive, they 

observed that 894 genes were essential for viability in both S288c and S1278b. While 44 

genes were essential only in S1278b, and 13 genes were essential in S288c, thus 

identifying “conditional essentials”.  Such results suggest that inferences from one strain 

may not be generalizable to other strains as mutant phenotypes can change drastically by 

segregating allelic variation among wild type genetic backgrounds. Toivonen et al. (2007) 

examined longevity in Drosophila. When using an Indy mutation previously linked to 

longevity as a control, they discovered that the mutation did not increase longevity when 

the wild type genetic background is altered. Again, illustrating how our genetic inferences 

can change drastically when accounting for genetic background effects.  In this instance it 

led to a misleading appearance of a single gene effect. Illustrating that genetic interactions 

of genes under study with other variants in the genome can have a larger effect than the 
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effects of the mutations under study. Comparisons across species, conditions, time and 

cell types have repeatedly found that genetic interactions are plastic, changing in different 

cells and conditions ( Li et al. 2019). 

It also has become apparent that genetic background effects extend to genetic 

interactions. Remold and Lenski (2004) examined the effects of 18 random insertion 

mutations in Escherichia coli in two environments and five genetic backgrounds. Half of 

the mutations had epistatic interactions that varied among genetic backgrounds in an 

environment-dependent manner. Similarly, two beneficial mutations examined in two 

strains of Escherichia coli were found to have background dependent interactions. 

Notably, interactions between the focal mutations and background specific modifiers 

were common, but also the interactions between the two focal mutations varied in a 

background dependent manner ( Wang et al. 2013).  Background effects were also shown 

to extend beyond single mutations when Dworkin et al. (2009) revealed a background-

dependent epistatic interaction between two mutations in Drosophila melanogaster 

influencing wing size. These studies reinforce that the phenotypic effect of a mutation in 

a given background can depend on an individual’s genotype at a potentially large number 

of loci that interact in complex ways. Therefore, not only are pairwise interactions 

important for determining phenotypic variation but so are higher order level interactions.   

In addition, what appear to be gene-gene interactions in a specific experiment can 

become gene-gene-environment-genetic background interactions when additional 

experiments are performed. For example, environmental influences of epistasis have also 

been observed in phage (You & Yin, 2002), bacteria (Remold & Lenski, 2004b) and yeast 
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(Musso et al., 2008). An excellent example of this is shown in a yeast study that 

examined interactions between polymorphisms influencing sporulation efficiency in 

crosses that generated 32 yeast strains and saw a direct change across 8 environmental 

conditions (Gerke et al 2010). These strains differed by four nucleotide changes in three 

transcription sites, illustrating that a small number of nucleotides can create complex, 

quantitative variation in phenotype.  

A central goal in genetics is the identification of variants that influence 

susceptibility to disease. Most statistical modeling approaches currently used, including 

polygenic risk scores, consider just the additive contribution of allelic effects for 

simplicity. For instance, the common-disease-common variant hypothesis predicts that 

disease-causing variants will have a small additive or multiplicative effect on the trait or 

disease phenotype (Blanco-Gómez et al., 2016). However, association studies have often  

failed to account for observed heritability of diseases and traits, a problem known as 

missing heritability (Zuk, Hechter, Sunyaev, & Lander, 2012). An example of this can be 

illustrated when looking at the risk associated loci for Crohn’s disease. GWAS has 

identified 71 associated loci, yet under the assumption that disease arises from an additive 

genetic architecture, these loci account for 21.5% of the estimated heritability of the 

disease (Zuk et al., 2012). To account for this missing heritability, explanations have been 

proposed: (1) There are larger numbers of variants of smaller effect that are yet to be 

found. (2) Rare variants of large effect are yet to be detected. (3) Shared environment 

among relatives has yet to be accounted for in these association studies. (4) Genetic 

interactions (epistasis) has not been embraced in models (Algahtani, Aldarmahi, Al-
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Rabia, & Yar, 2013). 

It is easy to find variation in the human genome as it can differ at millions of sites 

(Abecasis et al., 2011). Thousands of variants affect the copy number of large, multi-

kilobase segments (Handsaker, Korn, Nemesh, & Mccarroll, 2011). There are also about 

a hundred gene disrupting variants, ranging from large deletions to single nucleotide 

polymorphisms (MacArthur et al. 2012). Additionally, we have thousands of variants that 

affect expression of nearby genes and sets of regulatory variants acting in different tissues 

(Nica et al., 2011). Lastly, thousands of protein coding genes possess missense variants 

that may influence their function in complex ways (Abecasis et al., 2011).  These 

examples show that it is easy to find variation in our genomes. However, it makes it 

difficult to truly identify what variants matter in terms of contributing to complex traits. 

We know that these variants interact in complex ways with each other and with focal 

mutations, and as such it is vital to establish how often higher-order interactions account 

for phenotypic variation between individuals. Epistasis detectable in an individual could 

differ significantly from the population level measurements. This has the power to 

complicate the detection of epistasis in human association studies.  

While previous work has exposed some insight into the way context-dependence 

affects allelic expressivity, many unknowns remain. Critically, how context-dependence 

affects genetic interactions and if the influence of genetic background can be predicted 

for genetic interactions. Chandler et al. (2017) explored how genetic background effects 

impact phenotypic expressivity of allelic series for two genes in the Drosophila wing 

network, scalloped and vestigial.  Intriguingly, they observed that alleles with moderate 
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effects had the greatest background dependence, while alleles with weak or strong effects 

had considerably less background dependence. An essential outcome from this work is 

that the magnitude of the individual allelic effect influences the allele’s sensitivity to 

genetic background, such that the impact of genetic background may be predictable. The 

results from this work suggest that alleles with moderate effects are most sensitive to the 

impact of other variants across genetic backgrounds. Whereas alleles with strong effects 

are less affected by modifiers in the genetic background as strong allelic effects leave 

little room for variability. Similarly, alleles with weak effects are less affected by other 

variants in the background as they only slightly perturb the network and are well above 

the required gene dosage threshold.  While this work does an excellent job illustrating the 

predictably of individual alleles, it is unclear how this predictability extends to epistatic 

interactions.  

 

1.6 Measuring Epistasis  
 

It has been proven difficult to detect epistasis in quantitative genetic studies as 

gene effects may only be detected in an experimental framework that accommodates 

epistasis, otherwise those interactions could be confounded with the main (additive) 

effects. For example, an alleles’ biological effect might be too small to detect with any 

statistical power and sample size, but it might be a critical epistatic modulating allelic 

effects at a second gene. If a mutation functions through a complex mechanism that 

involves multiple genes, the effect might be missed if the gene is examined in isolation 

without allowing for its potential interactions with other unknown factors. Due to the 
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challenges of detecting epistasis there has been motivation to develop new analytical 

approaches that help detect these interactions (Boucher & Jenna, 2013; Mafhukar, 

Elemento, & Pandey, 2015; Uppu, Krishna, & Gopalan, 2018).  In some cases, the 

motivation is to increase the power to detect effects (Kraft, Yen, Stram, Morrison, & 

Gauderman, 2007), in other cases the motivation is to detect statistical interactions that 

are informative about the biological and biochemical pathways involved in complex traits 

(Moore, 2003). 

While epistasis has proven to be an important part of the genetic architecture of 

complex traits, the link between statistical estimates of epistasis to molecular interactions 

remains largely unknown.  In the statistical sense epistasis is the deviation from additivity 

between the effects of two mutations but what does this mean in terms of biological 

function? Epistatic effects estimated in a standard linear model (regression framework) 

are statistically well defined, can be estimated with standard techniques and the properties 

of these estimates are well understood. However, it is not always clear how epistasis 

components connect to biological mechanisms. We need to identify types and patterns of 

epistasis that are biologically relevant, but it is not always clear what those patterns mean.  

Data transformations are necessary in data analysis as the appropriate scale of 

effect aids in biological interpretations. The choice of scale can become important when 

measuring epistasis as mutations that are additive for a phenotype measured on one scale 

may not be additive when a different transformed scale is used (Frankel & Schork, 1996).  

For example, a wildtype individual may produce an average phenotypic value of 1.0, a 

heterozygote produces a phenotypic value of 2.0, and the homozygote produces a value of 
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4.0. This appears to be a non-additive relationship as the difference between the 

heterozygote and the homozygote is greater than the difference between the wildtype and 

heterozygote. However, when transformed on a log scale the phenotypic values are 0, 

0.30 and 0.60. This relationship would then appear to be additive. This is an example on 

how the scale effect could lead to an inference that epistasis is present when it may not 

be. If a transformation can eliminate a statistical interaction, we have no reason to think 

that it reflects a mechanistic reality (Wagner, 2015). Two scales that will be used in this 

thesis are square root and logarithm of the measured trait (wing area). Square root is a 

measurement scale and easy to interpret as it has units of length. In addition, a square root 

transformation to wing area measurements compresses high values and low values 

become more spread out.  Mutants can have a range of mutant effects ranging from weak 

to severe phenotypic effects. This transformation increases the relative difference 

between observations of large values (weak to moderate mutants) while increasing these 

relative differences for small values (severe mutants). While log transforming data 

compresses high and spreads low values by expressing the values as orders of magnitude. 

It is important to consider whether we know enough biologically to know the scale effects 

that are relevant to our questions. This is crucial to make statistical and functional 

interactions mechanistically meaningful.  It is clear that scale choice is important, but it is 

not always clear on what is best to use. It is also important to note that it may not be 

possible to compare properties of genetic architectures across species and populations 

measuring epistasis unless they are on a common scale. 
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1.7 Outstanding Research questions  
 

Understanding how loci interact is vital to understanding how variation at the 

genomic level is linked to phenotypic variation. However, before such an understanding 

can be reached there are several outstanding questions regarding epistasis that remain.  

Firstly, can differences between the magnitude and the sign of epistatic effects be 

explained solely through the distinctive effects of particular combinations of mutations, or 

can such differences be explained by the quantitative nonlinearity between gene activity 

and the phenotype.  Consequently, the magnitude of the individual mutants may make it 

possible to predict the effects of individual mutations on epistatic interactions without 

knowing the molecular identity of the mutations involved in interactions.  Specifically, 

can the relationship between gene activity (via magnitude of mutational effects) and 

phenotype explain which mutant combinations will have positive or negative, or strong vs 

weak epistatic interactions. Examining this relationship will not only allow predictions for 

which mutations will show interactions and how, but also may give insight into a model 

for how alleles interact.  

In addition, it is important to identify how genetic interactions vary as a function 

of genetic background. Therefore, the context dependent nature of genetic interactions 

needs to be explored as this will allow for identification of any patterns or relationships 

between genetic background and genetic interactions.  

The majority of studies that have examined epistasis use high throughput 

approaches that observe interactions between gene deletions mutants and common 
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deletion backgrounds. Indeed, these approaches can provide important outcomes and give 

some understanding on how complex gene networks build robustness (Hartman, Garvik, 

& Hartwell, 2016), but results are often largely qualitative (Segrè, DeLuna, Church, & 

Kishony, 2005), and the distribution of epistatic effects observed might not reflect what 

would be observed with alleles differing in magnitude, in particular for allelic series 

within a gene. Therefore, is it crucial to examine epistatic interactions with alleles of 

differing severity, as there is no reason to assume that all forms of epistasis will be 

revealed by null mutations. 

 

1.8 Project Overview  
 

For the first part of my project, I generated a large series of crosses and genetic 

interactions were estimated as a function of the magnitude of individual allelic effects and 

genetic background using the Drosophila melanogaster wing as a model system. This 

system has proven to be a good model when examining epistasis as previous work has 

demonstrated that genes involved in the wing development network show substantial 

amounts of epistatic interactions (Gilchrist & Partridge, 2001; Roch, Baonza, Martin-

Blanco, & Garcia-Bellido, 1998; Sturtevant, Roark, & Bier, 1993). Weak, moderate, and 

severe mutations in the scalloped gene have been used in combination with mutations in 

beadex (bx), vestigial (vg), and bifid/Omb (bi), as these genes interact with the scalloped 

protein or with genes known to be regulated by the scalloped protein (SD). In addition, 

the gene pathway for wing development has been well characterized (Connahs, Rhen, & 

Simmons, 2016) as shown in (Figure 1.3).  Drosophila wings can be easily dissected and 
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changes in wing size can be readily quantitatified. Genes chosen in the pathway offer an 

allelic series, meaning that known mutations exist for each gene with a range of 

phenotypic severity. This allows for the relationship between gene activity and phenotype 

to be examined for these genetic interactions. These mutant combinations were examined 

in two wild type genetic backgrounds, Samarkand (SAM) and Oregon- R (ORE). These 

are two common lab wild-type strains that have previously illustrated genetic background 

effects for single alleles and genetic interactions (Chandler et al., 2017; Chandler, Chari, 

Tack, & Dworkin, 2014; Dworkin et al., 2009).  Therefore, they were rational choice to 

explore these relationships further. 

The second part of my project is an extension of Chari and Dworkin (2013) that 

examined modifiers of 𝑠𝑑$% in Samarkand and Oregon-R. The results from this work 

illustrated that ~74% of all identified modifiers of sdE3 are background dependent. These 

results suggested that Samarkand and Oregon-R vary in sensitivity to mutational 

perturbations, as well as having strain specific responses to modifiers. The majority of 

background effects changed the magnitude of modifier effects, however there were 

examples where the deletion modified the phenotypic expressivity of 𝑠𝑑$% in opposite 

directions. For example, a deletion suppressed the 𝑠𝑑$% phenotype in Samarkand, but the 

same deletion enhanced the 𝑠𝑑$% phenotype in Oregon-R. Using a subset of these 

previously identified modifiers (co-isogenic deletions) used in Chari and Dworkin (2013), 

we examined how background dependence changes and how the magnitude of modifier 

effects changed when using scalloped alleles differing in magnitude of phenotypic 

effects. For example, does the background dependence of modifiers decrease when using 
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a weaker scalloped allele? Do we see larger magnitude of modifier effects for moderate 

scalloped alleles?  To address these questions, we examined the combination of various 

scalloped alleles with molecularly defined deletions in two genetic backgrounds, 

Samarkand and Oregon-R.  

 

The Drosophila Wing Network 

 

Figure 1.3: A simplified view of the genetic pathway for Drosophila wing development. 
Figure by Caitlyn Daley adapted from “Transcriptome analysis of the painted lady 
butterfly, Vanessa cardui during wing color pattern development” by Coonahs, Rhen, & 
Simmons, 2016,. BMC Genomics, 17(1), 1–16. 
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1.9 Key Genes  
 

The development of the Drosophila wing is governed by the action of two long 

range signaling proteins encoded by decapentaplegic (dpp) and wingless (wg) (Nellen, 

Burke, Struhl, & Basler, 1996; Zecca, Basler, & Struhl, 1996).  These genes are expressed 

at the borders of the anterior/posterior (A/P) and the dorsal/ventral (D/V) compartments 

and promote cell proliferation and pattern of the wing (Resino, Salama-cohen, & Garcı, 

2002). Scalloped (sd) and vestigial (vg) are also main players in this gene network as the 

expression of these is crucial for wing development. sd encodes a transcription factor that 

encodes a TEA protein with a DNA binding domain and its activity regulates the cis-

regulatory elements of genes that promote wing growth and morphogenesis (Lunde et al., 

2003). Sd has two coactivators, Vg and Yorkie (yki) (Guss et al., 2014). The VG-Sd 

complex is necessary for wing development (Simmonds et al., 1998), while the latter Yki-

Sd complex is crucial for wing growth and proliferation (Bandura & Edgar, 2008). 

Importantly the Sd-Vg heterodimer regulate transcription of both sd and vg.  Specifically, 

Sd is needed for early vg expression, while Vg is needed to maintain sd expression (Bray, 

1999). sd and vg are expressed at low levels during the second larval instar in the wing 

imaginal disc but as development continues into third instar the expression of both 

increases and they become well defined in the progenitor cells of the wing margin via 

induction by Wg (Paumard-Rigal, Zider, Vaudin, & Silber, 1998; Simmonds et al., 1998). 

In late third instar wing discs sd and vg expression continues to increase and extend to the 

primordia of the wing pouch and hinge regions (Simmonds et al., 1998). Sd and Vg then 

direct wing development as a dimer activating the transcription of several target genes. 
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For example, this complex drives cell cycle progression by inducing expression of the 

dE2F1 transcription factor, which regulates genes involved in DNA replication and cell-

cycle progression (Delanoue, Legent, Godefroy, & Flagiello, 2004).  

Sd also regulates cell growth and proliferation with its complex with Yki in the 

hippo signalling pathway. Yki is downstream of the hippo signalling pathway, which 

controls cell proliferation and cell apoptosis (Goulev, Fauny, Gonzalez-marti, Flagiello, 

& Silber, 2008). In the absence of hippo signalling, Yki binds with sd in the nucleus 

where it induces cell proliferation and inhibits apoptosis by regulating the activity of 

genes downstream. In the presence of hippo signalling, Yki is transported into the 

cytoplasm and is inactivated as a result (Goulev et al., 2008) .  

Beadex (Bx) has shown to regulate Apterous (Ap) levels (Milan, Diaz-benjumea, 

& Cohen, 1998). The LIM-homeodomain protein Ap is a selector gene for the dorsal 

compartment wing imaginal disc (Cohen, Mcguffin, Pfeifle, Segal, & Cohen, 1992). An 

additional LIM-homeodomain protein, Chip, is a cofactor for Ap (Morcillo, Rosen, 

Baylies, & Dorsett, 1997). When Bx is overexpressed it binds Chip, interfering in the 

complex between Ap and Chip. Therefore, Bx and Ap look to function in an antagonistic 

feedback loop to regulate ap expression. The binding of Chip to Ap is necessary for ap 

expression and the formation of the D/V boundary as they form a functional complex 

(Cohen et al., 1992). Gain of function mutations in bx reduce ap expression, while loss of 

function mutations increases ap expression. Therefore, Mutant phenotypes for bx 

overexpression mutants are due to Ap loss of function (Sorrosal, Bejarano, & Luque, 

2008). Loss of function of Ap is detrimental as the binding of Chip to Ap is crucial for Ap 
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stability (Weihe, Milán, & Cohen, 2001). While selector genes are often though of as a  

switch, the Chip and bx interaction illustrates that this process is complex and that Ap 

levels are modulated during wing development (Weihe et al., 2001).  

Along the A/P the precise expression of dpp and its receptors is required for the 

transcriptional regulation of specific target genes (Entchev, Schwabedissen, and 

Gonzalez-Gaitan, 2000). Bifid (bi/omb) is a target gene of Dpp that encodes a T-box 

transcription factor modulating cell proliferation, viability and cell migration (Shen, 

Dorner, Bahlo, & Pflugfelder, 2005). The expression of thickveins(tkv) is reduced in dpp 

producing cells along the A/P boundary by the transcription factor master of thickness 

(mtv) (Rogriguz, Felix, & Diaz-Benjumea, 2001). tkv and mtv are upregulated in omb 

mutants and it appears that Omb is required for Mtv to repress tkv. Lack of omb leads to 

cell death in its expression domain which leads to misactivation of the notch pathway and 

overproliferation of lateral wings (Rogriguz et al., 2001).  In addition, Omb is required for 

the expression of dpp targets spalt (sal) and vg (Tabata, 2001). While more work needs to 

be conducted in determining the role that Omb has in wing development, it seems 

probable that Omb helps in maintaining the A/P boundary and that target genes much 

exist in this process.  

 

2.0 Hypothesis and Predictions  
 

My primary hypothesis is that there is a relationship between the type and 

magnitude of genetic interaction and individual magnitude of effect (severity) of alleles. 

Additive genetic interactions will occur most frequently between weak alleles. This is 
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anticipated as previous research and models have shown that alleles of weak effect tend to 

act in an additive manner ( Mackay 2014). Epistatic interactions will occur most 

frequently between alleles of moderate and strong severity. Alleles of strong effect will 

disrupt the system so greatly that they will completely mask the effect of a second allele, 

similar to complete dominance. While epistatic interactions are predicted to occur when 

alleles of moderate effect are involved, specific predictions about the type or magnitude 

cannot be made. Figure 1.4 illustrates how negative epistasis may arise between two 

moderate alleles. Two mutations may decrease tissue growth individually, and a double 

mutant with these mutations have an additive effect on gene expression, but reduction for 

tissue growth is more than expected from the additive phenotypic effects of the individual 

mutants.  

It is also predicted that the degree of background dependence for genetic 

interactions will be predicable by the magnitude of individual allelic effects involved in 

the interaction. Genetic interactions involving alleles of weak effect will be more robust 

and have less context dependence than alleles of moderate effect. In addition, there will 

be interesting and important genetic background effects when alleles of moderate effect 

are combined in a double mutant as slight changes in gene activity will have a stronger 

impact on the resulting magnitude and type of genetic interaction due to the predicted 

nonlinearity between gene activity and phenotypic outcome (illustrated in Figure 1.5) 

Two mutations may decrease tissue growth individually to varying degrees in two 

different genetic backgrounds due to differences in gene expression. Therefore, the gene 

expression of the double mutant with these mutations is also different between the two 
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backgrounds and as a result the phenotypic outcome is different. Lastly, genetic 

interactions involving alleles of strong magnitude will not show strong background 

dependence, as the gene activity for these alleles is so low that slight changes in gene 

activity will not affect phenotypic outcome. 
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Moderate Alleles Predicted to Have Negative Epistatic Interactions 

 
Figure 1.4: Negative epistasis generated from moderate alleles. The effect of mutation X2 
and the effect of mutation Y2 may have an additive effect on gene expression but the 
phenotype (tissue growth) is more than the additive effects of the mutants. 
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Genetic Background Effects Predicated to Be Stronger with Moderate Alleles 

 

Figure 1.5: Genetic background effects for epistatic interactions with moderate alleles. 
This figure illustrates changes in the effects of variants X1 and Y2 due to variants in the 
genetic background. The resulting total gene activity changes, which in turn affects the 
phenotypic outcome and the magnitude of the genetic interaction.  
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2. Methods 
 
Experimental Methods 
 
Table 2.1:Summary of scalloped mutant alleles.  

Allele Allele 
Strength  

Allele 
Class  

Mutagen DNA Lesion Description 
of Allele  

Reference  

29.1 Weak  Hypomorph P-
element 
insertion 

Insertion in the 
first intron 
after the 
translation 
start site, close 
to 5`-splice 
site 

Homozygotes 
show minor 
scalloping at 
the posterior 
wing margin.  

(Shyamala & 
Chopra, 1999) 

1 Weak  Hypomorph X-ray Polytene 
chromosomes 
normal. 

Homozygotes 
have weak 
scalloping and 
gaps in 
bristles at 
wing margin.  

(Campbell, 
Duttaroy, 
Katzent, & 
Chovnick, 
1991; Paumard-
Rigal et al., 
1998) 

ETX4  Moderate  Hypomorph P-
element 
insertion 

Insertion ~ 
400bp 
upstream of 
the translation 
start site 

Homozygotes 
show nicking 
of the anterior 
and lateral 
margins of the 
wing blade. 

(Inamdar, 
Vijayraghavan, 
& Veronica, 
1993) 

E3 Moderate  Hypomorph P-
element 
insertion 

Insertion of 
element in an 
intron, 
approximately 
5kb 
downstream of 
the 
transcription 
start site. 

Homozygotes 
have severely 
scalloped 
wings.  

Vijayraghavan, 
& Veronica, 
1993) 

58d Strong Hypomorph Gamma 
Ray 

Gamma ray  Homozygotes 
have strong 
reduction in 
wing tissue.  

(Campbell et 
al., 1991; 
Williams, Bell, 
& Carroll, 
1991) 
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Table 2.2:Summary of vestigial mutant alleles.  

 

 

 

 

 

Allele 
Allele 
Strength
  

Allele Class  Mutagen DNA Lesion Description of 
Allele  Reference  

21-3 Moderat
e - 
Strong 

Hypomorph P-element 
insertion 

Insertion has a 
deletion of bases 
1862-2015 with a 
2bp AT insertion 
at the deletion 
site. The inserted 
element also has a 
single A to T 
transversion at 
position 32. 

Homozygotes 
have strong 
reduction in 
wing tissue. 

(Anderson, 
Davis, & 
Hodgetts, 
2006; 
Hodgetts & 
Keefe, 
2001) 

1 Strong Hypomorph Spontaneo
us 

Insertion of an 
8kb 412 in intron 
3 and an insertion 
of 6kb of 
unknown DNA at 
the 3' end of 
intron 2. 

Homozygotes 
have strong 
reduction in 
wing tissue. 

(Silber, 
Menn, 
Chevillard, 
Zider, & 
Paumard, 
1993) 

83b27 Strong Hypomorph Gamma 
Ray 

Deletion of a 
major part of 
intron 2. 

Homozygotes 
have extremely 
strong 
reduction in 
wing tissue. 

(Silber et 
al., 1993) 
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Table 2.3:Summary of bifid/Omb mutant alleles.  

 

 

 

 

 

 

 

 

Allele Allele 
Strength  

Allele 
Class  Mutagen DNA 

Lesion 
Description 
of Allele  Reference  

 1 Weak  Hypomorph Spontaneous An 
insertion 
in the first 
intron 

Homozygotes 
have proximal 
fusion of all 
longitudinal 
veins and 
variable 
defects at the 
tip of the 
wing. 

(Grimm & 
Pflugfelder, 
1996; Shen et 
al., 2005) 

 GAL4 Weak  Hypomorph P-element 
insertion 

Enhancer 
trap 
insertion 

Homozygotes 
have 
scalloping of 
the wings and 
vein defects. 

(Lecuit et al., 
1996) 

 md653 Moderate Hypomorph P-element 
insertion 

Enhancer 
trap  
insertion 

Homozygotes 
have 
scalloping of 
the wings and 
vein defects. 

(Enerly, 
Larsson, & 
Lambertsson, 
2002) 
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Table 2.4: Summary of beadex mutant alleles.  

 

 

 

Allele Allele 
Strength
  

Allele 
Class  

Mutagen DNA Lesion Description of 
Allele  

Reference  

 ms1096 Weak    P-element 
insertion 

Enhancer 
trap insertion 

Homozygous 
females have wing 
venation defects. 

(Milan et 
al., 1998) 

 1 Weak Hyper
morph 

Spontaneous Roo element 
insertion is 
within the 3' 
untranslated 
region of Bx. 

Homozygotes 
have loss of 
posterior wing 
margin. 
Heterozygotes 
have weaker loss 
of posterior wing 
margin.  

(Tsai, 
Bainton, 
Blau, & 
Heberlein, 
2004) 

 2 Weak -
Moderate  

Hyper
morph 

Spontaneous Insertion of 
gypsy 
element 
approximatel
y 8kb into 
the 3' UTR. 

Homozygotes 
have loss of 
posterior wing 
margin. 
Heterozygotes 
have weaker loss 
of posterior wing 
margin.  

(Shoresh et 
al., 1998) 

 3 Strong Hyper
morph 

Spontaneous Insertion of  
roo element 
approximatel
y 9kb into 
the 3' UTR. 

Homozygotes 
have loss of 
posterior wing 
margin. 
Heterozygotes 
have weaker loss 
of posterior wing 
margin.  

(Rabinow, 
Chian, & 
Birchler, 
1993; 
Shoresh et 
al., 1998) 
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Introgression of Mutations into Each Genetic Background  
 
 

Mutations were introgressed into Samarkand and Oregon-R through 

backcrossing.  This entails crossing a donor individual (with the mutation) to a recipient 

for ~ 10 generations while selecting for the mutant allele. This allows for rapid 

recombination and consequently removes the majority of the genome of the donor and 

replaces it with the recipient’s genetic background.  Stocks were given to me at 

generation 3 in this process and consequently had to be backcrossed for 7 more 

generations. Samarkand and Oregon-R strains both are marked with white eyes (w-) and 

mutations with eye markers  (𝑠𝑑&'.), 𝑠𝑑$%, 𝑏𝑖*#+!%, 𝑏𝑖,*-./012, 𝑏𝑥*3)4'+) and alleles 

with dominant effects ( 𝑏𝑥),  𝑏𝑥&,  𝑏𝑥%,) were selected for after each cross and 

heterozygous females were repeatedly crossed to recipient population.  Remaining alleles 

(𝑠𝑑), 𝑠𝑑$562,	𝑠𝑑!"#,  𝑏𝑖), 𝑣𝑔),	𝑣𝑔&).%,	𝑣𝑔"%-&7) only have phenotypic effects that are 

visible in hemizygous males and homozygous females. As such, backcrossing these 

alleles into each genetic background required selection of males and heterozygous 

females every other generation. In Drosophila recombination only occurs in females, 

therefore, recombination only occurred every other generation. A balancer mediated 

replacement of the complete second and third chromosome was performed to account for 

this limitation.  
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Figure 2.1: Backcrossing that takes place for allele introgression from one genetic 
background to another. Donor stocks with allele were backcrossed for a total of 10 
generations, replacing most of the genome via recombination.  

 

 
Generating Recombinant Double Mutants 
 
 Scalloped, bifid and beadex are all located on the X chromosome. Therefore, to 

obtain desired double mutants I generated recombinant X chromosomes. Homozygous 

females for one allele were crossed to a male carrying the second allele of interest. 

Heterozygous females from this cross were then crossed to a male with an Fm7 balancer 

on the X chromosome. Progeny from this cross were screened for the necessary genotype. 

At times the presence of both alleles was more obvious than others. For example, if ~4% 

(the expected recombinant rate) of individuals had a novel phenotype that was much more 

severe than either individual allele we could deduce that this was the double mutant 

phenotype. At other times, the presence of two alleles was much less obvious. In this case 

complementation tests were set up to verify the presence of both alleles.  
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Figure 2.2: Crossing scheme to generate recombinants. A female with mutation x is 
crossed to a male with mutation y. The female progeny from this cross were then crossed 
to a male with a balancer and recombinants were then screened and verified using 
complementation tests. Green rectangles represent the mutant alleles. Balancer 
chromosomes are represented in grey. 

 

Generating scalloped and vestigial Double Mutants 
 

scalloped is on the X chromosome and vestigial is on the second chromosome. In 

order to make scalloped and vestigial double mutants, multiple crosses using balancers 

and a dominant marker was necessary. Fm7 is a first chromosome balancer that is marked 

with an eye shape change mutant (Bar, B). Curly-of-Oster (CyO) is a second chromosome 

balancer marked with curly wings (Cy). Sternopleural (Sp) is a dominant second 

chromosome marker with increased sternopleural bristle number. By selecting for and 

against balancers and markers at various crosses we could verify the presence of both 

scalloped and vestigial. 
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Figure 2.3: Crossing scheme for scalloped and vestigial mutants. The light grey 
chromosomes represent chromosomes with a dominant marker. The darker grey 
chromosomes represent balancer chromosomes. The green rectangles represent the 
mutant alleles.  

 

Crossing Scheme to Generate All Possible Genotypic Combinations for Each  
 

 In order to examine the epistatic effects for a given allelic pair, I had to construct 

all nine two-locus genotypes. Table 2.5 illustrates how each of these genotypes were 

created in Samarkand and Oregon-R for 50 allelic pairs. Repeat genotypes, such as those 

specific to 𝑠𝑑)and  𝑏𝑥)were not repeated for each allelic pair, but a higher number of 

individuals were dissected to ensure an accurate comparison. 654 unique genotypes (in 

each background) were generated over the course of seven experimental blocks. Across 

all blocks, each genotype is represented in at least two biological replicates (distinct vials 
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across blocks) with at least 5 individual samples per replicate.  

 

     Table 2.5: Experimental Crosses to Generate 9 Genotypic Combinations 

Female 
Parent 

Male 
Parent 

F1 Female 
Genotype 

Notes Rep 1 Rep 2 

+/+ +/+ +/+ Specific 
for WT 

Block 1 Block 2 

𝑠𝑑!/𝑠𝑑! 𝑠𝑑!/Y 𝑠𝑑!/𝑠𝑑! Specific 
for 𝑠𝑑! 

Block 1 Block 2 
𝑠𝑑!/𝑠𝑑! 𝑠𝑑"/Y 𝑠𝑑!/+ Block 1 Block 2 
𝑏𝑥!/𝑏𝑥! 𝑏𝑥!/Y 𝑏𝑥!/𝑏𝑥! Specific 

for 𝑏𝑥! 
Block 1 Block 2 

𝑏𝑥!/𝑏𝑥! 𝑏𝑥"/Y 𝑏𝑥!/+ Block 1 Block 2 
𝑠𝑑!,	𝑏𝑥!/𝑠𝑑!,	𝑏𝑥! 𝑠𝑑!,	𝑏𝑥!/Y 𝑠𝑑!,	𝑏𝑥!/𝑠𝑑!,	𝑏𝑥! Specific 

for 
𝑏𝑥!,𝑠𝑑! 

Block 1 Block 2 
𝑠𝑑!,	𝑏𝑥!/𝑠𝑑!,	𝑏𝑥! 𝑠𝑑!/Y 𝑠𝑑!,	𝑏𝑥!/𝑠𝑑! Block 1 Block 2 
𝑠𝑑!,	𝑏𝑥!/𝑠𝑑!,	𝑏𝑥! 𝑏𝑥!/Y 𝑠𝑑!,	𝑏𝑥!/𝑏𝑥! Block 1 Block 2 
𝑠𝑑!,	𝑏𝑥!/𝑠𝑑!,	𝑏𝑥! 𝑏𝑥"/Y 𝑠𝑑!,	𝑏𝑥!/+ Block 1 Block 2 

 

Evaluating Epistatic Interactions with Known Modifiers of Scalloped Function 
  

The Exelixis Deletion lines have molecularly defined deletions spanning 90% of 

the autosomes, with an average deletion of 400kb to 140kb (Parks et al., 2004).  A subset 

of 41 deletions were used that span the genome. These deletions were previously used in 

Chari & Dworkin (2013) and chosen because they span the range of modifier phenotypes 

across both severity and background dependence observed in the genome wide dominant 

screen for 	𝑠𝑑$%. Male deletion-bearing individuals were crossed to homozygous females 

with scalloped alleles (𝑠𝑑8, 𝑠𝑑&'.), 𝑠𝑑), 𝑠𝑑$562,	𝑠𝑑$%, 	𝑠𝑑!"#)  from Samarkand and 

Oregon-R over the course of four blocks. Male progeny from this cross were hemizygous 
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for the scalloped allele but heterozygous at all other loci. Each genotype is represented in 

at least two replicate vials with at least 5 individual samples per vial.  

 

Figure 2.4: Crossing scheme for modifiers. Male deletion-bearing individuals were 
crossed to homozygous females with scalloped alleles. Male offspring that were 
hemizygous for the scalloped and heterozygous at all other loci were compared between 
Samarkand and Oregon-R. Green rectangles represent the scalloped allele and the yellow 
rectangles represents the deletion. A Balancer chromosome is represented in grey. Red 
represents the Samarkand background and blue represents the Exelixis isogenic 
background. 

 
General Methods: 
 
Fly Rearing and Collections 
 

All crosses were reared at 24°C in a Percival incubator on a 12:12 hour day: night 

cycle. Progeny were collected from crosses via standard CO2 procedures. Collection 

continued for 20 days after the cross was set (as some crosses will be developmentally 

delayed). Flies were stored by genotype in 70% ethanol. All flies were reared on a 

standard cornmeal media (recipe 

https://github.com/DworkinLab/Protocols/blob/master/Recipes.md) 

Wing Dissections, Imaging and Measurement  
 

The right wing of each fly was dissected using standard lab procedures. Wings 

were then mounted onto microscope in 70% glycerol and 30% PBS solution. Wings were 
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imaged with a Olympus BX43 microscope using a 4X objective (40X magnification). 

Images were taken with cellSens Standard software at a resolution of 4080 x 3072 pixels 

(0.0005375 mm/px) using an Olympus Dp80 camera. A custom ImageJ macro was used 

to measure wing area.  

 
Statistical Methods: 
 
The Natural and Orthogonal InterActions (NOIA) model 
 

The Natural and Orthogonal InterActions (NOIA) model provides a mathematical 

tool to estimate genetic effects as allele substitutions on one specific genotype (Alvarez-

Castro & Carlborg, 2007). While this method allows any genotype to be the reference, the 

reference point for this work is the wildtype genotype which can be used to estimate a 

Genotype-Phenotype (GP) map for wing size.  The NOIA model uses a similar notation 

to the maps used for one locus and two alleles, where 𝑮	 = 	𝑺	•	𝒆 (Zeng, Wang, & Zou, 

2005) 

-
𝒔𝒅8𝒔𝒅8
𝒔𝒅𝟏𝒔𝒅8
𝒔𝒅𝟏𝒔𝒅𝟏

0 = -
𝟏 𝟎 𝟎
𝟏 𝟏 𝟏
𝟏 𝟐 𝟎

0 ∙ -
𝑹
𝒂
𝒅
0 

 

As shown above for an example with a single bi-allelic locus (sd1 vs sd+), G is the vector 

of genotypic values (the phenotypes for all 3 genotypes). S is the genetic effect design 

matrix. The first column of this matrix demonstrates that the phenotypes are measured as 

deviations from the reference point, in this case wildtype. The second column is the 

contribution of additive effects added to the wildtype for each scalloped1 allele, and the 

third column the dominance deviation for heterozygotes. e is the vector of estimated 
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genetic effects (reference - R, additive effects- a and dominance- d), accounting for the 

reference (wild type) in the model and additive and dominance effects.  

Using the NOIA package this equation is extended for two alleles at two loci. In 

this case G is the vector of genotypic values for the 9 genotypes for each allelic pair. The 

design matrix expands to include the additive and dominance effects for the second locus, 

as well as the interactions between additive and dominance effects across both loci. 

Consequently, for the 2-loci model with epistatic interactions, the vector e expands to 

include additive-by-additive, dominance-by-additive, additive-by-dominance, and 

dominance-by-dominance interaction effects. An example of this is shown below with the 

allelic pair 𝑠𝑑)𝑏𝑥).  

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝒔𝒅8𝒔𝒅8𝒃𝒙8𝒃𝒙8
𝒔𝒅𝟏𝒔𝒅8𝒃𝒙8𝒃𝒙8
𝒔𝒅𝟏𝒔𝒅𝟏𝒃𝒙8𝒃𝒙8
𝒔𝒅8𝒔𝒅8𝒃𝒙𝟏𝒃𝒙8
𝒔𝒅8𝒔𝒅8𝒃𝒙𝟏𝒃𝒙𝟏
𝒔𝒅𝟏𝒔𝒅8𝒃𝒙𝟏𝒃𝒙8
𝒔𝒅𝟏𝒔𝒅𝟏𝒃𝒙𝟏𝒃𝒙8
𝒔𝒅𝟏𝒔𝒅8𝒃𝒙𝟏𝒃𝒙𝟏
𝒔𝒅𝟏𝒔𝒅𝟏𝒃𝒙𝟏𝒃𝒙𝟏 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝟏 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟎 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟎
𝟏 𝟎 𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
𝟏 𝟐 𝟏 𝟎 𝟏 𝟐 𝟎 𝟎 𝟎
𝟏 𝟏 𝟐 𝟏 𝟎 𝟐 𝟐 𝟏 𝟎
𝟏 𝟐 𝟐 𝟎 𝟎 𝟒 𝟎 𝟎 𝟎⎠

⎟
⎟
⎟
⎟
⎟
⎞

∙

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑹
𝒂𝒔𝒅
𝒂𝒃𝒙
𝒅𝒔𝒅
𝒅𝒃𝒙
𝒂𝒂
𝒅𝒂
𝒂𝒅
𝒅𝒅⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

The second column of this matrix demonstrates that one additive effect is added to the 

wildtype for each scalloped allele, and the third column illustrates one additive effect is 

added for each beadex allele. The fourth and fifth columns illustrate the dominance effect 

that is added when the individual is a heterozygote. Columns 6-9 represent epistatic 

interactions. This model was fit for each allelic pair in each background.  Models were fit 

using the linearRegression() function in the NOIA package (v0.97.1)(Le Rouzic, 
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Gjuvsland, & Ariste, 2015) . We confirmed the results from the NOIA package using the 

standard lm() (v4.0.2), linear modelling function in R using custom design (S) matrices, 

with identical estimates to NOIA. 

Linear Models 
 

Using the NOIA linear regression we estimated the genetic effects summarized in 

the vector e, from each “set” of 9 genotypes as shown above.  Using these estimates (e)  

we analyzed the influence of the genetic background and average mutant effect (eg, from 

asd1 and abx1) to each of the epistatic effects (aa(sd1 bx1), dd(sd1 bx1), ad(sd1 bx1), da(sd1 bx1)  ). To 

assess these relationships, a linear mixed model was fit with the epistasis value as 

described above as the response variable. The genetic background (Samarkand or 

Oregon-R) was a fixed effects and average allelic effect (eg, average of asd1 and abx1) was 

a continuous predictor. The allelic pair, scalloped allele, and the second allele (from gene 

2) were fit as random effects, allowing for random intercepts. We included these terms as 

each epistatic estimate contains some related information (e.g same wild type data was 

used to estimate epistatic terms for all sd alleles). Therefore, the measurements are not 

statistically independent, and this random effect is necessary to account this relationship. 

The allelic pairs are created from various combinations of scalloped, bifid, beadex and 

vestigial alleles. Therefore, the same allele is present in multiple measurements. 

Consequently, measurements may be correlated, and it would appear that we have more 

independent replicates than we really have if this was not accounted for as a random 

effect. While it was important for us to assess how genetic background and average 

mutant effect influence epistatic effects individually, we also needed to examine the 
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interaction for these effects. For example, do we see different relationships between 

average mutant effect and epistasis in each background (i.e. separate slopes for each 

background). To assess this, a linear mixed model was fit with epistasis as the response 

variable. The genetic background and average allelic effect, and the interaction between 

them were fit as predictors. The scalloped allele, and the second allele (from gene 2) were 

fit as random effects, allowing for random intercepts. In this model the random effect for 

Allelic pair is removed as this is accounted for explicitly in the interaction term. Models 

were fit using the lmer() function in the lme4 R library (v1.1.23) (Bates, Maechler, 

Bolker, & Walker, 2015). 

To assess block effects for this experiment, two linear models were fit. For the 

first one block effects were estimated across all genotypes. For this model, the wing area 

was the response variable.  The genetic background and genotype, and the interaction 

between them were fit as fixed effects. Block was fit as a random effect, allowing for 

random intercepts. For the second model block effects were estimated for each genotype. 

For this model wing area was the response variable. The genetic background and 

genotype, and the interaction between them were fit as fixed effects. Block was fit as 

random effect, allowing genotype and background specific variation for each block. 

Models were fit using the lmer() function.  

For the modifier screen, in order to assess the phenotypic variability for each 

scalloped allele among all deletion lines two linear models were used.  For the first 

model, wing area is the response variable. The genetic background, scalloped allele, and 

the interaction between them were fit as fixed effects. Deletion was fit as random effect, 
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allowing allele and background specific variation for each block.  A diagonal, 

heterogeneous variance-covariance matrices was fit for the random effect. This allowed 

us to analyze the variability for each scalloped allele in each background among all 

deletions, but with effects assumed to be independent across alleles of sd. For the second 

model, wing area is the response variable. The genetic background, scalloped allele, and 

the interaction between them were fit as fixed effects. Deletion was fit as random effect, 

allowing allele specific variation for each block. This allowed us to analyze the variability 

for each scalloped allele among all deletions without accounting for differences in genetic 

background. Models were fit using the glmmTMB() (v1.0.2.1) function from the 

glmmTMB library (Brooks et al., 2017).  All other analyses were performed in R using 

functions in base R (v4.0.2) 

 

Summary of Epistasis Terminology and Calculations  

 

A central aim for this project is to determine if the magnitude and direction of 

epistatic interactions can be predicted from the individual allelic effects. For example, is 

epistasis larger in magnitude for alleles of moderate effect? In order to examine this, we 

had to observe the magnitude of epistasis by using the absolute values of the epistatic 

components. In this case, the sign or direction of individual epistatic components is not 

relevant. We simply wanted to observe how the overall magnitude of effects changes for 

different genetic backgrounds and allelic combinations. We also wanted to examine how 

the direction of epistasis changes for different gene and allele combinations and genetic 
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backgrounds. For example, are Oregon-R epistasis values more likely to be negative? In 

this case, it was important for us to examine the sign of epistatic components. Epistasis 

estimates can be negative or positive, indicating the direction of the effect. When these 

values are used it will be referred to as signed epistasis, referring to the fact that it can be 

either positive or negative. However, the “signed epistasis” I discuss should not be 

confused with “sign epistasis” as described in the introduction. 

 

Magnitude Epistasis:  The phenotype associated with a double mutant deviates from the 

mutants' additive effects, but not in a way that will change the sign (or direction) of either 

allele's individual effect.  

Positive epistasis: double mutant has a less severe (or more fit) phenotype than 

expected from the additive effects of the mutants individually. 

Negative epistasis: a double mutant's observed phenotype is more severe (or less 

fit) than what is expected. 

 

Sign Epistasis: the sign (i.e. from deleterious to beneficial) of an individual alleles 

phenotypic effect changes in the presence another mutation. An example of this is when a 

mutation is beneficial individually, but it can act deleterious when in the presence of 

another mutation.  

 
Average Magnitude Epistasis: The absolute average of all 4 epistasis components.  
 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒	𝑒𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠	 =
𝑎𝑏𝑠(𝑎𝑎) + 𝑎𝑏𝑠(𝑎𝑑) + 𝑎𝑏𝑠(𝑑𝑎) + 𝑎𝑏𝑠(𝑑𝑑)

4  
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Average Signed Epistasis: The average of all 4 epistasis components.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑠𝑖𝑔𝑛𝑒𝑑	𝑒𝑝𝑖𝑠𝑡𝑎𝑠𝑖𝑠	 =
(𝑎𝑎 + 𝑎𝑑 + 𝑑𝑎 + 𝑑𝑑)

4  
 
 
Average Mutant Effect: The average mutant effect is the average of the two additive 

allelic effects for scalloped and Gene2 (the second gene used in combination with 

scalloped).   

 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑚𝑢𝑡𝑎𝑛𝑡	𝑒𝑓𝑓𝑒𝑐𝑡	 =
(𝑎3# 	+ 	𝑎/>?>&)

2  
 
 

 

3. Results  
 
 
Genetic Background Effects for Homozygotes  
 

Mean wing size was estimated for scalloped, beadex, bifid, and vestigial 

homozygous mutants in Samarkand and Oregon-R (shown in figure 3.1). The genetic 

background has a significant effect on wing area (P-value = 9.0e-11) but importantly 

there is also an interaction effect between the genetic background and allelic effect (P-

value = < 2.2e-16).  Indicating that the genetic background influences alleles to varying 

degrees, allowing some alleles to be more background dependent than others as expected 
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based on previous work (Chandler et al. 2017). While we see various alleles with 

substantial size differences between Samarkand and Oregon-R, we see the greatest 

variation for alleles of moderate effect. For example, for scalloped we see the largest 

variation in wing size between genetic backgrounds in 𝑠𝑑$562 and 𝑠𝑑$%.  While 

Samarkand has larger wings for these moderate alleles, Oregon-R has slightly larger 

wings for weaker alleles ( 𝑠𝑑&'.) and 𝑠𝑑)).  In beadex, we see the greatest difference in 

mean wing size between Samarkand and Oregon-R for  𝑏𝑥&. For this moderate allele, 

Oregon-R is larger than Samarkand. There is less variation between backgrounds for the 

vestigial alleles overall, but we see the greatest variation between 𝑣𝑔&).% as Samarkand 

wings are significantly larger. While we see differences in the expressivity of these alleles 

in the two genetic backgrounds, the ordering of allelic effects stays generally consistent 

between the genetic backgrounds.   

 

 

 

 

 

 

 

 

 
 
 
 



                                              M.Sc. Thesis – D. Henderson; McMaster University- Biology 

	 52		

 
 
 
 
 
 
 
 
 
 
Genetic Background Effects For scalloped, beadex, bifid, and vestigial Homozygotes  

 

 
Figure 3.1: The influence of genetic background on the expressivity of allelic series in 
scalloped, beadex, bifid and vestigial genes. The mean phenotypic effect is shown for 
each homozygote in Samarkand and Oregon-R. The greatest variation between 
Samarkand and Oregon-R is for alleles of moderate effect. Error bars reflect 95% 
confidence intervals. N = 476.  
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Visualizing Epistatic Interactions Using Reaction Norms 
 

A graphical representation of epistatic effects is shown by plotting the mean wing 

size for the nine possible genotypes for each allelic pair in both the Samarkand and 

Oregon-R wild type genetic backgrounds as shown in Figure 3.2. A purely additive effect 

takes place when the additive and dominance effects are the same at each locus, despite 

the genotype at the other locus. This would result in parallel lines in the reaction norm 

plot.  A partial example of this is shown in the panel for 𝑏𝑥*3)4'+𝑠𝑑!"#.  While there are 

still epistatic effects for this allelic pair, the magnitude of epistatic effects is very small 

with this allele pair. The relationship between the alleles is not linear due to a large 

dominance effect of 𝑠𝑑!"#  but after taking this effect into account these alleles behave in 

a mostly additive manner. An epistatic interaction takes place when the effect of one 

locus depends on the genotype at the other locus. Meaning that there is a change in the 

direction or slope of the lines in the reaction norm plot. Examples of this are shown in the 

3 other panels.  For example, in the 𝑏𝑥)𝑠𝑑!"# panel we see that 𝑏𝑥8/𝑏𝑥8	and 𝑏𝑥)/𝑏𝑥8	 

behave similarly with increasing copies of 𝑠𝑑!"# but we see slope and direction changes 

in 𝑏𝑥)/𝑏𝑥) when a copy of 𝑠𝑑!"# is added. While it is hard to visually “dissect” the 4 

epistatic components from this plot, it clearly shows that there are epistatic interactions 

taking place.  

We also see differences in the ways the alleles behave in the two genetic 

backgrounds. For example, for the genotype 𝑏𝑥), 𝑠𝑑!"#/𝑏𝑥) we see differences in the 

average wing area between Samarkand and Oregon-R. Indicating that the phenotypic 

effect of  𝑏𝑥)/𝑏𝑥) manifests differently in the two backgrounds when a copy of 𝑠𝑑!"# is 
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added. Interestingly, the direction of the same epistatic effect for these backgrounds 

switches for 𝑏𝑥%, 𝑠𝑑!"#/𝑏𝑥% compared to 𝑏𝑥), 𝑠𝑑!"#/𝑏𝑥).  These plots indicate that 

epistasis is taking place, and that epistatic effects may change depending on the alleles 

involved in the interaction and in different backgrounds. However, these plots make it 

difficult to make direct comparisons between allele strength and genetic backgrounds 

with resulting epistatic interactions.  
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Genotypic Effects for beadex and 𝒔𝒅𝟓𝟖𝒅 
 

 

Figure 3.2: Graphical representations of genotypic effects at two biallelic loci as a 
reaction norm. The magnitude and direction of epistatic effects change depending on the 
alleles involved in the interaction and in different backgrounds. Error bars reflect 95% 
confidence intervals. N = 2,426. 35 individuals scored/genotype.  
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Examining Epistasis as A Function of Average Mutant Effect and Genetic 
Background 
 

The central goal for this project is to examine genetic interactions as function of 

the magnitude of the individual allelic effects and genetic background. To observe this 

relationship, mutants were created by combining scalloped alleles along an allelic series 

with alleles in beadex, bifid, and vestigial in both the Samarkand and Oregon-R genetic 

background.  The four epistatic outputs consist of additive-by-additive, dominance-by-

additive, additive-by-dominance, and dominance-by-dominance. The average of all 4 of 

these effects was calculated in order to give us an average epistasis value.  This value can 

be negative or positive, indicating if this effect is “better” or “worse” than expected. In 

this case, the sign of epistasis indicates if the wings are smaller or larger compare to the 

additive effects of the individual alleles. When these values are used it will be referred to 

as signed epistasis, referring to the fact that it can be either positive or negative. However, 

the “signed epistasis” I discuss should not be confused with “sign epistasis” referring to 

the change of direction of allelic substitutions based on the genotype at a second locus.  

The epistasis values can also be looked at as an absolute value which illustrates how the 

magnitude of all epistatic effects contribute to phenotypic change. When these values are 

used it will be referred to as magnitude epistasis. The average mutant effect is simply the 

average of the two additive allelic effects (asd and ageneX).  

 Models were used to estimate the mean magnitude and signed epistasis among all 

allelic pairs for each epistatic component and each gene combination in both genetic 

backgrounds. An ANOVA analysis was then performed to examine how much variation 

occurs for epistasis estimates between Samarkand and Oregon-R. A summary of these 
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results is in Table 3.1, which is then described in detail below. A second model was used 

to estimate the effect of the average mutant effect on the mean magnitude and signed 

epistasis among all allelic pairs for each epistatic component and each gene combination 

in both genetic backgrounds. An ANOVA analysis was performed to examine the 

significance of the average mutant effect on epistasis.  A summary of these results is in 

Table 3.2. This second model also allowed us to estimate interaction effects between 

average mutant effect and the genetic background on epistasis. An ANOVA analysis was 

performed to examine the significance of these interaction effects. A summary of these 

results is in Table 3.3.  
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Table 3.1: Summary of significant genetic background effects for magnitude and signed 
epistasis among all allelic pairs for different gene combination and types of epistasis. A 
“Yes” indicates a significant effect from the genetic background on epistasis (P-value < 
0.05) while a “No” indicates no significant effect (P-value > 0.05). P-Value estimated 
from ANOVA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Gene 2  
Magnitude: Difference in 

Backgrounds 
Signed: Difference in 

Backgrounds 
Type of 

Epistasis 

bx No Yes 

Average  bi No Yes 

vg Yes No 

Total No Yes 

bx No Yes 

Additive-by-
additive  

bi No No 

vg No No 

Total No No 

bx Yes Yes 

Additive-by-
dominance   

bi No Yes 

vg No No 

Total No Yes 

bx No Yes 

Dominance-
by-additive  

bi No Yes 

vg No No 

Total No Yes 

bx No Yes 
Dominance-

by-
dominance   

bi No No 

vg No No 

Total No No 
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Table 3.2: Summary of significant mutant effects for magnitude and signed epistasis 
among all allelic pairs for different gene combination and types of epistasis. A “Yes” 
indicates a significant effect from the average mutant effect on epistasis (P-value < 0.05) 
while a “No” indicates no significant effect (P-value > 0.05). P-Value estimated from 
ANOVA.  

 
 
  

Gene 2  
Magnitude: Mutant 

Effect  
Signed: Mutant 

Effect  Type of Epistasis 

bx Yes No 

Average  bi No No 

vg Yes No 

Total Yes No 

bx No Yes 

Additive-by-
additive  

bi Yes Yes 

vg Yes Yes 

Total Yes Yes 

bx No No 

Additive-by-
dominance   

bi No Yes 

vg No No 

Total Yes Yes 

bx Yes Yes 

Dominance-by-
additive  

bi No No 

vg Yes Yes 

Total Yes Yes 

bx No No 

Dominance-by-
dominance   

bi No Yes 

vg Yes Yes 

Total Yes Yes 
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Table 3.3: Summary of significant interaction effects between the genetic background and 
average mutant effect for magnitude and signed epistasis among all allelic pairs for 
different gene combination and types of epistasis. A “Yes” indicates a significant effect 
from the interaction from average mutant effect and genetic background on epistasis (P-
value < 0.05) while a “No” indicates no significant effect (P-value > 0.05). P-Value 
estimated from ANOVA.  

 
 

Gene 2  
Magnitude: Mutant 

Effect  
Signed: Mutant 

Effect  Type of Epistasis 

bx 
No 

No 

Average  bi 
Yes 

No 

vg 
No 

No 

Total 
No 

Yes 

bx 
No No 

Additive-by-
additive  

bi 
No No 

vg 
No No 

Total 
No No 

bx 
No No 

Additive-by-
dominance   

bi 
Yes No 

vg 
No No 

Total 
No No 

bx 
No No 

Dominance-by-
additive  

bi 
Yes Yes 

vg 
No No 

Total 
Yes Yes 

bx 
No No 

Dominance-by-
dominance   

bi 
No No 

vg 
No No 

Total 
No No 
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Average Epistasis  
 

Estimates of average epistasis was calculated for each allelic pair in Samarkand 

and Oregon-R allowing for direct comparisons between the two backgrounds. Epistasis 

values were estimated from square root transformed wing areas for epistasis plots, but the 

importance of scale is examined later in this section “How Much Does Scale Matter” 

(short answer, not a lot). When examining signed epistasis, we see much more variation 

between the genetic backgrounds compared to magnitude epistasis. For example, beadex 

and scalloped mutants, bifid and scalloped mutants, and all mutants combined show 

significant differences for signed epistasis estimates between Samarkand and Oregon-R 

(Figure 3.4).  

Oregon-R is more likely to be a negative value, meaning for these genotypes wing 

size are more likely to be smaller than expected based on the additive contributions of 

individual mutants. While Samarkand is more likely to be (slightly) positive, indicating 

that these wings are bigger than expected based on the additive effects of individual 

mutants. When looking at the magnitude of average epistasis, there is only a significant 

difference between the backgrounds for vestigial and scalloped mutants (Figure 3.7).  

The average mutant effect were also estimated to get further insight on how this 

influences genetic interactions. For the signed estimate of epistasis there appears to be no 

significant relationship between the average mutant effect and the resulting epistasis 

(Table 3.5). However, there is a significant effect from the interaction of the background 
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and the average mutant effect for all mutant combinations. In Samarkand, the average 

epistasis is more likely to be a positive value at a weaker average mutant effect but 

become increasingly more negative as the average mutant effect increases. While in 

Oregon-R the average epistasis is more likely to be negative at a weaker average mutant 

effect and remain negative with a gentle slope as the average mutant effect increases 

(Figure 3.5). For magnitude epistasis the contribution of the average mutant is significant 

for beadex and scalloped mutants, vestigial and scalloped mutants, and all mutants 

combined (Figure 3.8). As the average mutant effect increases in severity, so does the 

average epistasis.  There is also a significant effect from the interaction of the background 

and the average mutant effect for bifid and scalloped mutants (Figure 3.8).  Interestingly, 

in Samarkand the average epistasis decreases as average mutant effect increases, whereas 

in Oregon-R as average epistasis increases with average mutant effect, demonstrating a 

form of classic “sign” epistasis where mutational effects change direction depending on 

background. 

In summary, we see that both the genetic background and the magnitude of 

average mutant effect do influence epistasis. We see more variation between genetic 

backgrounds when including the direction of these interactions than the magnitude of 

these effects alone.  Though, we see a relationship between the average allelic effect and 

epistasis more often when looking at the magnitude of epistasis, rather than the average of 

signed components. It is important to note that for Figures 3.3 and 3.6 each point on this 

plot represents the epistasis estimated derived from each set of 9 genotypes. The title of 
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these plots indicates the second gene that scalloped is combined with. Additionally, a plot 

was made for all the genes combined (for the full range of phenotypic effects).   

 

Average Signed Epistasis of Samarkand and Oregon-R Allelic Pairs  

 
Figure 3.3: Model estimates of signed epistasis for each allelic pair in Samarkand and 
Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.4: Statistical model estimates of the average signed epistasis for Samarkand and 
Oregon-R among all allelic pairs for each gene combination. The P-value representing the 
difference in genetic backgrounds was estimated from ANOVA analysis. 

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

avg bx ORE -0.0281 0.0034 
1.5E-12 

avg bx SAM 0.0007 0.0034 

avg bi ORE -0.0156 0.0084 
4.5E-04 

avg bi SAM 0.0119 0.0084 

avg vg ORE -0.0206 0.0064 
2.98E-01 

avg vg SAM -0.0164 0.0064 

avg Total ORE -0.0206 0.0040 
4.7E-09 

avg Total SAM -0.0005 0.0040 
 
Table 3.5: Statistical model estimates of the effect of the average mutant effect on the 
average signed epistasis among all allelic pairs for each gene combination. P-value and 
estimated from ANOVA analysis.

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

avg bx 0.0458 0.0332 0.53   
avg bi -0.0465 0.0773 0.85   
avg vg -0.0187 0.0402 0.74   
avg Total -0.0062 0.0233 0.11   

 
Table 3.6: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on average signed epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis.
Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

avg bx 0.0434 0.0725 0.15 
avg bi 0.0755 0.0845 0.37 
avg vg 0.0172 0.0478 0.72 
avg Total -0.0590 0.02578 0.022 
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Impact of Genetic Background on Average Signed Epistasis  

 
Figure 3.4: Model estimates of the average signed epistasis in Samarkand and Oregon-R 
for beadex and scalloped mutants (P-value =1.47E-12), bifid and scalloped mutants (P-
value = 4.51E-04), and all mutants (P-value = 4.72E-09). Error bars reflect 95% 
confidence intervals. (Table 3.4) N = 5,905. 
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Impact of The Interaction between Average Mutant Effect and Genetic Background 
on Average Signed Epistasis  
 
 

 

Figure 3.5: Model estimated values of the effect of the interaction between genetic 
background and the average mutant effect on average signed epistasis for all mutants (P-
value = 0.0220). (Table 3.6) N = 5,905. 
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Average Magnitude Epistasis of Samarkand and Oregon-R Allelic Pairs 
 

 
Figure 3.6: Model estimates of magnitude epistasis for each allelic pair in Samarkand and 
Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.7:Statistical model estimates of the average magnitude epistasis for Samarkand 
and Oregon-R among all allelic pairs for each gene combination. The P-value 
representing the difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

avg bx ORE 0.060 0.0130 
2.39E-01 

  

avg bx SAM 0.053 0.0130  

avg bi ORE 0.057 0.0084 
5.14E-01 

  

avg bi SAM 0.065 0.0087  

avg vg ORE 0.096 0.0226 
4.00E-02 

 

avg vg SAM 0.081 0.0226  

avg Total ORE 0.066 0.0095 
2.77E-01 

  

avg Total SAM 0.060 0.0096  
 
Table 3.8: Statistical model estimates of the effect of the average mutant effect on the 
magnitude epistasis among all allelic pairs for each gene combination. P-value estimated 
from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

avg bx 0.0766 0.0514 0.0152   
avg bi 0.1377 0.0794 0.7565   
avg vg 0.4535 0.1135 1.64E-05  
avg Total 0.2414 0.0541 7.58E-06  

 
Table 3.9: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the magnitude epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

avg bx 0.0434 0.0725 0.5491 
avg bi -0.3320 0.1159 0.0041 
avg vg 0.0820 0.0797 0.3037 
avg Total -0.0999 0.0688 0.1469 
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Impact of Genetic Background on Average Magnitude Epistasis  
 

 
Figure 3.7: Model estimates of average magnitude epistasis for vestigial and scalloped 
mutants in Samarkand and Oregon-R (P-value = 4.00E-02).  Error bars reflect 95% 
confidence intervals. (Table 3.7) N = 1,406.  
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Impact of Average Mutant Effect on Average Magnitude Epistasis 

 
Figure 3.8: Statistical model estimated values of the effect of average mutant effect on 
magnitude epistasis for beadex and scalloped mutants (P-value = 0.0152), vestigial and 
scalloped mutants (P-value =1.64E-05) and all mutants (P-value =7.58E-06). There is 
also a significant effect for the interaction between genetic background and the average 
mutant effect on the magnitude epistasis for bifid and scalloped mutants (P- value 
=0.0041).(Table 3.8 and Table 3.9)  N = 5,905. 
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Additive–by–Additive Epistasis 
 

When examining epistasis as a function of average allelic effect and genetic 

background, it is important to examine these relationships with both the average epistasis 

as well as individual epistatic components as relationships may differ greatly depending 

on the component of epistasis. When examining the signed additive–by–additive epistasis 

among all allelic pairs we see a significant difference between the backgrounds for 

beadex and scalloped mutants (Figure 3.10). Oregon-R is more likely to more negative 

than Samarkand for this type of epistasis. When observing the magnitude of additive-by-

additive epistasis we see no significant difference between Samarkand and Oregon-R 

wild type backgrounds (Table 3.13). Overall, it appears that the genetic background does 

not have a major influence on resulting additive-by-additive interactions for bifid and 

scalloped mutants, beadex and scalloped mutants and vestigial and scalloped mutants.  

For signed additive-by-additive epistasis, the average allelic effect has a 

significant effect on the resulting epistasis for all mutant combinations (Figure 3.11).  In 

all cases, the additive-by-additive epistatic effect is negative at a small average allelic 

effect but becomes increasingly positive as the average allelic effect increases. Indicating 

that the magnitude of the allelic effects has a direct effect on the direction of the additive-

by-additive effect. When weaker mutants are involved in the interaction the wings are 

more likely to be smaller than expected, and for stronger mutants the wings are more 

likely to be bigger. The average mutant effect has a significant effect on the magnitude of 

additive-by-additive epistasis for bifid and scalloped mutants, and vestigial and scalloped 
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mutants, and all mutant combinations (Figure 3.13). For bifid and scalloped mutants, as 

average mutant effect increases, the magnitude for additive-by-additive epistasis 

decreases. For vestigial and scalloped mutants, and all mutant combinations, as average 

mutant effect increases so does the epistatic effect. 
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Additive–by–Additive Signed Epistasis Allelic Pairs across wild type backgrounds 

 
Figure 3.9: Estimates of additive–by–additive signed epistasis for each allelic pair allelic 
pair in Samarkand and Oregon-R for the different gene combinations. N = 5,905 
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Table 3.10: Statistical model estimates of the average signed epistasis for Samarkand and 
Oregon-R among all allelic pairs for each gene combination. The P-value representing the 
difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

aa bx ORE -0.0261 0.0154 
2.68E-05 aa bx SAM -0.0138 0.0154 

aa bi ORE -0.0333 0.0114 
9.25E-02 aa bi SAM -0.0468 0.0116 

aa vg ORE 0.0562 0.0123 
1.12E-01 aa vg SAM 0.0673 0.0122 

aa Total ORE -0.0029 0.0076 
7.01E-01 aa Total SAM -0.0013 0.0076 

 
Table 3.11: Statistical model estimates of the effect of the average mutant effect on the 
signed epistasis among all allelic pairs for each gene combination. P-value estimated from 
ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

aa bx 0.679 0.0700 < 2e-16   
aa bi 0.531 0.0864 1.41E-13   
aa vg 0.984 0.0557 <2e-16    
aa Total 0.545 0.0451 <2e-16    

 
Table 3.12: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the signed epistasis among all allelic pairs 
for each gene combination. P-value code estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

aa bx -0.0709 0.0674 0.2932 
aa bi 0.0899 0.0896 0.3155 
aa vg -0.0136 0.0818 0.8677 
aa Total -4.18E-3 0.0469 0.9929 
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Impact of the Genetic Background on Additive- by-Additive Sign Epistasis  

 
Figure 3.10: Model estimates of additive–by–additive signed epistasis for beadex and 
scalloped mutants in Samarkand and Oregon-R (P-value = 2.68E-05). Error bars reflect 
95% confidence intervals. (Table 3.10)  N = 2,460.  
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Impact of Average Mutant Effects on Additive-by-Additive Signed Epistasis 

 
Figure 3.11:Model estimated values of the effect of average mutant effect on additive–
by–additive signed epistasis for beadex and scalloped mutants (P-value = 2.20E-16), bifid 
and scalloped mutants (P-value= 1.41E-13), vestigial and scalloped mutants (P-value = 
2.00E-16) and all mutants ( P-value = 2.00E-16). (Table 3.11) N = 5,905. 
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Additive-by -Additive Magnitude Epistasis of Samarkand and Oregon-R Allelic 
Pairs 

 
Figure 3.12: Estimates of additive–by–additive epistasis among for each allelic pair allelic 
pair in Samarkand and Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.13:Statistical model estimates of the average magnitude epistasis for Samarkand 
and Oregon-R among all allelic pairs for each gene combination. The P-value 
representing the difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

aa bx ORE 0.0557 0.0083 
9.50E-02 

  

aa bx SAM 0.0420 0.0083  
aa bi ORE 0.0547 0.0083 

2.36E-01 
  

aa bi SAM 0.0664 0.0086  
aa vg ORE 0.0711 0.0101 

8.00E-01 
 

aa vg SAM 0.0693 0.0101  
aa Total ORE 0.0611 0.0089 

3.98E-01 
  

aa Total SAM 0.0559 0.0090  
 
Table 3.14: Statistical model estimates of the effect of the average mutant effect on the 
magnitude epistasis among all allelic pairs for each gene combination. P-value estimated 
from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

aa bx -0.132 0.0817 0.5024   
aa bi -0.162 0.0867 3.03E-04   
aa vg 0.837 0.0540  <2e-16   
aa Total 0.126 0.0595 0.0258  

 
 
Table 3.15: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the magnitude epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

aa bx 0.198 0.110 0.070 
aa bi -0.144 0.127 0.25 
aa vg 0.110 0.0793 0.17 
aa Total -0.0459 0.0781 0.56 
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Impact of Average Mutant Effects on Additive–by–Additive Magnitude Epistasis 

 
Figure 3.13: Model estimated values of the effect of average mutant effect on additive–
by–additive magnitude epistasis for beadex and scalloped mutants (P-value = 3.03E-4), 
bifid and scalloped mutants (P-value= 2.0E-16), vestigial and scalloped mutants (P-value 
= 2.00E-16) and all mutants ( P-value = 0.02583). (Table 3.14). N = 5,905. 
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Additive–by–Dominance Epistasis 

For additive-by-dominance, the additive effect of Gene2 (beadex, bifid, and 

vestigial) is influenced by the dominance of scalloped. When examining the signed 

additive–by–dominance effects we see a significant difference between the two genetic 

backgrounds for beadex and scalloped mutants, bifid and scalloped mutants and all 

mutants combined (Figure 3.15). For these genes the additive–by–dominance effect for 

Oregon-R is more likely to be negative, while Samarkand is more likely to be positive. 

When examining the magnitude (absolute value) of additive–by–dominance effects we 

see less variation between the backgrounds as there is only a significant difference 

between the two genetic backgrounds for beadex and scalloped mutants (Figure 3.18).   

 The signed epistasis the average allelic effect has a significant effect for bifid and 

scalloped and all mutants combined (Figure 3.16). Values are more likely to be positive 

when the average mutant effect is weak and become more negative as the mutant effect 

increases. The average allelic effect is only significant when looking at all mutations 

together for magnitude epistasis (Figure 3.19). When the mutant effect increases so does 

the additive–by–dominance effect. There is also a significant interaction effect between 

genetic background and allelic effect for bifid and scalloped mutants (Figure 3.19). In 

Samarkand, as mutant effect increases, the magnitude of the additive–by–dominance 

effect decreases. In Oregon-R as mutant effect increases so does the magnitude of the 

epistatic effect. 
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Additive–by–Dominance Signed Epistasis of Samarkand and Oregon-R Allelic Pairs 
 

 

Figure 3.14: Estimates of additive–by–dominance signed epistasis for each allelic pair 
across Samarkand and Oregon-R wild type backgrounds for the different gene 
combinations. N = 5,905. 
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Table 3.16: Statistical model estimates of the average signed epistasis for Samarkand and 
Oregon-R among all allelic pairs for each gene combination. The P-value representing the 
difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

ad bx ORE -0.0347 0.0225 
8.49E-06 ad bx SAM 0.0046 0.0225 

ad bi ORE -0.0149 0.0173 
2.19E-06 ad bi SAM 0.0437 0.0176 

ad vg ORE -0.1178 0.0412 
1.79E-01 ad vg SAM -0.0974 0.0412 

ad Total ORE -0.0560 0.0111 
3.61E-06 ad Total SAM -0.0195 0.0112 

 
Table 3.17:Statistical model estimates of the effect of the average mutant effect on the 
signed epistasis among all allelic pairs for each gene combination. P-value estimated from 
ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

ad bx -0.0842 0.114 0.2912 
ad bi -0.545 0.144 3.97E-06 
ad vg -0.153 0.232 3.40E-01 
ad Total -0.454 0.0724 < 2.2e-16 

 
Table 3.18: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the signed epistasis among all allelic pairs 
for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

ad bx -0.0618 0.118 0.60 
ad bi -0.125 0.142 0.37 
ad vg -0.193 0.171 0.26 
ad Total -0.157 0.0804 0.051 
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The Impact of Genetic Background on Additive–by–Dominance Signed Epistasis  

 
Figure 3.15: Model estimates for additive–by–dominance signed epistasis in Samarkand 
and Oregon-R for beadex and scalloped mutants (P-value = 8.49E-06), bifid and 
scalloped mutants (P-value = 2.19E-06), and all mutants (P-value =3.61E-06). Error bars 
reflect 95% confidence intervals. (Table 3.16) N = 5,905.  
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Impact of Average Mutant Effects on Additive- by-Dominance Signed Epistasis 

 
Figure 3.16: Model estimated values of the effect of average mutant effect on additive–
by–dominance signed epistasis for bifid and scalloped mutants (P-value= 3.97E-06), and 
all mutants ( P-value = 2.2E-16). (Table 3.17). N = 5,905. 
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Additive–by–Dominance Magnitude Epistasis of Samarkand and Oregon-R Allelic 
Pairs 

 

Figure 3.17: Estimates of additive- by- dominance magnitude epistasis for each all allelic 
pair in Samarkand and Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.19: Statistical model estimates of the average magnitude epistasis for Samarkand 
and Oregon-R among all allelic pairs for each gene combination. The P-value 
representing the difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

ad bx ORE 0.0644 0.0075 
3.49E-04 

  
ad bx SAM 0.0334 0.0075  
ad bi ORE 0.0557 0.0117 

5.21E-01 
  

ad bi SAM 0.0666 0.0121  
ad vg ORE 0.1187 0.0350 

2.68E-01 
 

ad vg SAM 0.1045 0.0350  
ad Total ORE 0.0782 0.0083 

1.32E-01 
  

ad Total SAM 0.0661 0.0084  
 
Table 3.20: Statistical model estimates of the effect of the average mutant effect on the 
magnitude epistasis among all allelic pairs for each gene combination. P-value estimated 
from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

ad bx 0.0214 0.0771 0.4017   
ad bi 0.1581 0.1090 4.74E-01   
ad vg 0.2681 0.1950 8.56E-02  
ad Total 0.3017 0.06626 1.39E-07  

 
Table 3.21: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the magnitude epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

ad bx 0.0581 0.114 0.61 
ad bi -0.462 0.160 0.0038 
ad vg 0.183 0.143 0.20 
ad Total -0.0613 0.0884 0.49 
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The Impact of Genetic Background on Additive–by–Dominance Magnitude 

Epistasis 

 

Figure 3.18: Statistical model estimates of additive-by-dominance magnitude epistasis for 
beadex and scalloped mutants in Samarkand and Oregon-R (P-value = 3.49E-02). Error 
bars reflect 95% confidence intervals. (Table 3.19). N = 2,460.  
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The Impact of Average Mutant Effects on Additive-by-dominance Magnitude 

Epistasis 

 

Figure 3.19: Model estimated values for the effect of average mutant effect on additive–
by–dominance magnitude epistasis for all mutants (P-value = 1.39E-07) (Table 4.5). 
There is also a significant interaction effect between genetic background and average 
mutant effect for bifid and scalloped mutants (P-value= 0.0038). (Table 3.20 and Table 
3.21).  N = 5,905. 
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Dominance–by–Additive Epistatic Effects 
 
 For dominance-by-additive epistasis, the dominance of Gene2 (beadex, bifid, and 

vestigial) is influenced by the additive effect for scalloped. When examining the 

dominance-by-additive signed epistasis there are significant differences between 

Samarkand and Oregon-R for beadex and scalloped mutants, bifid and scalloped mutants, 

and all mutants combined (Figure 3.21). Oregon-R is likely to be more negative than 

Samarkand for this epistatic effect. When examining the magnitude of dominance–by–

additive effects there are no significant differences between genetic backgrounds for any 

allelic combination (Table 3.25). 

For the signed dominance-by-additive effects we see that the allelic effect is 

significant for beadex and scalloped, vestigial and scalloped and all mutants combined 

(Figure 3.22). Values are more likely to be positive when the average mutant effect is 

weak and become more negative as the mutant effect increases.  There is also a 

significant interaction between mutant effect and the genetic background for bifid and 

scalloped mutants (Figure 3.22). In Oregon- R as the mutant effect increases, the 

dominance-by-additive epistasis becomes more negative. While in Samarkand as the 

mutant effect increases the epistatic effect becomes more positive. The average allelic 

effect is significant for beadex and scalloped mutants, vestigial and scalloped mutants 

and all mutants combined when examining magnitude epistasis (Figure 3.24). As mutant 

effect increases so does the magnitude of dominance-by-additive effects. Interestingly, 

there is a significant effect from the interaction of background and mutant effect for 
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magnitude epistasis (Figure 3.24). For bifid and scalloped mutants, in Samarkand as 

mutant effect increases, the epistatic effect decreases. While in Oregon-R as the mutant 

effect increases so does the epistatic effect. For all the mutants combined the magnitude 

of dominance-by-additive increases with average mutant effect. However, in Oregon-R 

this increase is faster, indicated by changes in slope. 
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Dominance–by–Additive Signed Epistasis of Samarkand and Oregon-R Allelic Pairs 

 

Figure 3.20: Estimates of dominance–by–additive sign epistasis for each allelic pair in 
Samarkand and Oregon-R for the different gene combinations. N = 5,905. 

 
 
 
 

−0.1

0.0

0.1

0.0 0.1 0.2 0.3

bx

−0.1

0.0

0.1

0.0 0.1 0.2 0.3

bi

−0.2

−0.1

0.0

0.3 0.4 0.5

vg

−0.2

−0.1

0.0

0.1

0.0 0.1 0.2 0.3 0.4 0.5

Total

Average Mutant Effect

D
om

in
an

ce
 b

y 
Ad

di
tiv

e 
Ep

is
ta

si
s

Gene2 bi bx vg Background ORE SAM



                                              M.Sc. Thesis – D. Henderson; McMaster University- Biology 

	 92		

Table 3.22:Statistical model estimates of the average signed epistasis for Samarkand and 
Oregon-R among all allelic pairs for each gene combination. The P-value representing the 
difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

da bx ORE -0.0239 0.0163 
3.22E-02 

 
da bx SAM -0.0017 0.0163  
da bi ORE -0.0308 0.0228 

3.74E-02 
 

da bi SAM 0.0193 0.0232  
da vg ORE -0.0882 0.0112 

1.21E-01 
 

da vg SAM -0.0725 0.0112  
da Total ORE -0.0472 0.0103 

2.84E-04 
 

da Total SAM -0.0158 0.0104  
 
 
Table 3.23: Statistical model estimates of the effect of the average mutant effect on the 
signed epistasis among all allelic pairs for each gene combination. P-value estimated from 
ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

da bx -0.445 0.119 3.2E-06   
da bi -0.607 0.222 0.098   
da vg -0.940 0.0926 <2e-16    
da Total -0.429 0.0677 1.06E-13   

 
 
Table 3.24: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the signed epistasis among all allelic pairs 
for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

da bx -0.180 0.116 0.12 
da bi 0.647 0.249 0.0093 
da vg -0.0158 0.124 0.90 
da Total 0.0527 0.0870 0.54 
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Impact of Genetic Background Effects on Dominance–by–Additive Signed Epistasis  

 

Figure 3.21: Statistical model estimates of dominance- by- additive sign epistasis in 
Samarkand and Oregon for beadex and scalloped mutants (P-value = 3.22E-02), bifid and 
scalloped mutants (P-value = 3.74E-02), and all mutants (P-value = 2.84E-04). Error bars 
reflect 95% confidence intervals. (Table 3.22) N = 5,905.  
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The impact of Average Mutant Effects on Dominance-by-additive Sign Epistasis 

 

Figure 3.22: Model estimated values for the effect of average mutant effect on 
dominance–by–additive signed epistasis for beadex and scalloped mutants (P-value = 
3.18E-06), vestigial and scalloped mutants (P-value= 2E-16), and all mutants (P-value = 
1.06E-13)(Table 3.23). There is also a significant interaction effect between genetic 
background and average mutant effect for bifid and scalloped mutants (P-value= 
0.009398). (Table 3.24).  N = 5,905. 
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Dominance–by–Additive Magnitude Epistasis of Samarkand and Oregon-R Allelic 
Pairs 

 

Figure 3.23: Estimates of dominance–by–additive magnitude epistasis for each allelic pair 
in Samarkand and Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.25: Statistical model estimates of the average magnitude epistasis for Samarkand 
and Oregon-R among all allelic pairs for each gene combination. The P-value 
representing the difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

ad bx ORE 0.0499 0.0140 
7.1E-01 ad bx SAM 0.0534 0.0141 

ad bi ORE 0.0655 0.0147 
6.5E-01 ad bi SAM 0.0726 0.0151 

ad vg ORE 0.0889 0.0106 
1.5E-01 ad vg SAM 0.0746 0.0106 

ad Total ORE 0.0604 0.0127 
4.2E-01 ad Total SAM 0.0538 0.0127 

 
Table 3.26: Statistical model estimates of the effect of the average mutant effect on the 
magnitude epistasis among all allelic pairs for each gene combination. P-value estimated 
from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

ad bx 0.316 0.0862 2.6E-05   
ad bi -0.607 0.222 0.098   
ad vg 0.939 0.0851  <2e-16  
ad Total 0.269 0.0644 5.3E-04  

 
Table 3.27: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the magnitude epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

ad bx -0.0541 0.1157 0.64 
ad bi 0.647 0.2492 0.0093 
ad vg 0.0050 0.1227 0.97 
ad Total -0.170 0.0726 0.019 
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The Impact of Average Mutant Effect on Dominance–by–Additive Magnitude 
Epistasis 

 
Figure 3.24: Statistical model estimates of the effect of average mutant effect on 
dominance–by–additive magnitude epistasis for beadex and scalloped mutants (P-value = 
2.58E-05), vestigial and scalloped mutants (P-value= 2E-16), and all mutants (P-value = 
5.26E-04)(Table 3.26). There is also a significant interaction effect between genetic 
background and average mutant effect for bifid and scalloped mutants (P-value= 0.0093), 
and all mutants (P-value= 0.0193). (Table 3.27).  N = 5,905. 
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Dominance–by–Dominance Epistasis 
 

When examining the signed dominance–by–dominance epistatic effects we see a 

significant difference between genetic backgrounds for beadex and scalloped mutants 

(Figure 3.26). Oregon-R is more likely to have a negative value, while Samarkand is 

more likely to be positive. However, we see no significant differences between 

Samarkand and Oregon-R for the magnitude of dominance–by–dominance effects (Table 

3.31).  

For signed epistasis, the allelic effect has a significant effect for bifid and 

scalloped mutants, vestigial and scalloped mutants, and all mutants combined (Figure 

3.27). The dominance–by–dominance effect is more likely to be negative when the 

average mutant effect is small and become more positive as mutant effect increases. The 

average allelic effect is significant for vestigial and scalloped mutants and all mutants 

when examining magnitude epistasis (Figure 3.29). For both mutant combinations as the 

mutant effect increases so does the magnitude of the dominance–by–dominance effect.   
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Dominance–by–Dominance Signed Epistasis of Samarkand and Oregon-R Allelic 
Pairs 

 

Figure 3.25:Estimates of dominance–by–dominance signed epistasis for each allelic pair 
in Samarkand and Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.28: Statistical model estimates of the  signed dominance–by–dominance  epistasis 
for Samarkand and Oregon-R among all allelic pairs for each gene combination. The P-
value representing the difference in genetic backgrounds was estimated from ANOVA 
analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

dd bx ORE -0.0251 0.0287 
2.06E-02 

 
dd bx SAM 0.0177 0.0287  
dd bi ORE 0.0215 0.0214 

5.78E-01 
 

dd bi SAM 0.0353 0.0224  
dd vg ORE 0.0765 0.0164 

6.04E-01 
 

dd vg SAM 0.0657 0.0164  
dd Total ORE 0.0267 0.0137 

2.35E-01 
 

dd Total SAM 0.0417 0.0139  
 
Table 3.29: Statistical model estimates of the effect of the average mutant effect on the 
signed dominance–by–dominance epistasis among all allelic pairs for each gene 
combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

dd bx 0.0491 0.148 4.1E-01   
dd bi 0.448 0.182 0.010   
dd vg 0.890 0.162 <2e-16   
dd Total 0.389 0.0895 3.8E-06   

 
Table 3.30: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the signed dominance–by–dominance 
epistasis among all allelic pairs for each gene combination. P-value estimated from 
ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

dd bx 0.0993 0.214 0.64 
dd bi -0.211 0.261 0.42 
dd vg 0.256 0.235 0.28 
dd Total -0.123 0.113 0.28 
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Impact of Genetic Background on Dominance–by–Dominance Signed Epistasis  
 

 

Figure 3.26: Statistical model estimates of dominance–by–dominance signed epistasis for 
beadex and scalloped mutants in Samarkand and Oregon-R (P-value = 2.06E-02) Error 
bars reflect 95% confidence intervals. (Table 3.28). N = 2,460.  
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Impact of Average Mutant Effect on Dominance-by-Dominance Signed Epistasis 

 
Figure 3.27: Model estimated values for the effect of average mutant effect on 
dominance–by–dominance signed epistasis for bifid and scalloped mutants (P-value = 
0.01022), vestigial and scalloped mutants (P-value =2.00E-16) and all mutants ( P-value 
= 3.76E-06). (Table 3.29). N = 5,905. 
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Dominance–by–Dominance Magnitude Epistasis of Samarkand and Oregon-R 
Allelic Pairs 

 

Figure 3.28: Estimates of dominance–by–dominance magnitude epistasis for each allelic 
pair in Samarkand and Oregon-R for the different gene combinations. N = 5,905. 
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Table 3.31:Statistical model estimates of the average magnitude epistasis for Samarkand 
and Oregon-R among all allelic pairs for each gene combination. The P-value 
representing the difference in genetic backgrounds was estimated from ANOVA analysis.  

Type of 
Epistasis Gene Background 

Average 
Mean 

Epistasis 

Standard 
Error P-Value 

dd bx ORE 0.0584 0.0191 
3.51E-01 dd bx SAM 0.0714 0.0191 

dd bi ORE 0.0575 0.0144 
8.53E-01 dd bi SAM 0.0539 0.0150 

dd vg ORE 0.0920 0.0124 
8.30E-01 dd vg SAM 0.0882 0.0124 

dd Total ORE 0.0645 0.0109 
9.60E-01 dd Total SAM 0.0640 0.0110 

 
Table 3.32: Statistical model estimates of the effect of the average mutant effect on the 
magnitude epistasis among all allelic pairs for each gene combination. P-value estimated 
from ANOVA analysis. 

Type of 
Epistasis Gene Effect of Average Mutant 

Effect 
Standard 

Error P-Value 

dd bx 0.0692 0.1104 5.72E-01 
dd bi 0.2900 0.1418 0.1769 
dd vg 0.8279 0.1389  <2e-16 
dd Total 0.2610 0.0704 8.38E-05 

 
Table 3.33: Statistical model estimates of the effect of the interaction between genetic 
background and the average mutant effect on the magnitude epistasis among all allelic 
pairs for each gene combination. P-value estimated from ANOVA analysis. 

Type of 
Epistasis Dataset Effect of Background: 

Average Mutant   
Standard 
Error  P-Value  

dd bx -0.0458 0.1543 0.7665 
dd bi -0.3162 0.2016 0.1169 
dd vg 0.1085 0.2016 0.5905 
dd Total -0.0917 0.0915 0.3164 
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The Impact of Average Mutant Effects on Dominance- by -Dominance Magnitude 
Epistasis 

 

Figure 3.29: Model estimated values for the effect of average mutant effect on 
dominance–by–dominance magnitude epistasis for vestigial and scalloped mutants (P-
value = 2.00E-16) and all mutants (P-value = 8.38E-05) (Table 3.32). N = 5,905. 
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Correlation of epistatic effects across wild type genetic backgrounds  
 

One of the main goals of this study is to examine how wild type genetic 

background influences the strength of epistatic interactions. In the previous section I 

demonstrated that the genetic background can have a strong influence when estimating 

epistasis among all allelic pairs for different epistatic components and gene combinations. 

To further assess this relationship, the Pearson correlation coefficient was estimated using 

epistasis values estimated within each wild type genetic background. Correlation 

estimates indicate how similar the epistasis values are in Samarkand and Oregon-R for 

each allelic pair. For example, when the epistasis value is smaller for an allelic pair in 

Samarkand, does it also tend to be smaller for the same allelic pair in Oregon-R as well? 

Estimates were calculated for average magnitude and signed epistasis, and for each type 

of epistasis. A summary of significant correlations between Samarkand and Oregon-R 

wild type backgrounds for magnitude epistasis among all allelic pairs of different gene 

combinations and types of epistasis is shown in Table 3.34. A Summary of significant 

correlations for signed epistasis is shown in Table 3.35.  In general, the results suggest 

that the estimated epistatic effects are not well correlated across wild type genetic 

backgrounds (i.e. epistatic effects differ across backgrounds). 

For magnitude epistasis we see that the backgrounds are not well correlated 

overall. The only time we see a significant correlation between Samarkand and Oregon-R 

is for additive-by-additive epistasis for bifid and scalloped mutants (P-value= 0.025).  

When examining signed epistasis, we see examples where the two backgrounds 

are moderately correlated. Interestingly, we do not see significant correlations between 
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Samarkand and Oregon-R for average epistasis, but we do see examples of correlation for 

other epistatic components. For example, additive-by-additive and additive-by-dominance 

show correlation between backgrounds for beadex and scalloped mutants, bifid and 

scalloped mutants and all of the mutants combined. vestigial and scalloped allelic pairs 

have no significant correlation between Samarkand and Oregon-R for any of the types of 

epistasis.  
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Table 3.34: Summary of correlations between Samarkand and Oregon-R wild type 
backgrounds for magnitude epistasis among allelic pairs among all allelic pairs for 
different gene combination and types of epistasis. 

 
 
 

Gene 2  Correlation  P-Value Type of Epistasis 

bx -0.32 0.19 

Average  bi 0.12 0.69 

vg 0.24 0.38 

Total -0.07 0.62 

bx 0.39 0.098 

Additive–by–additive  bi 0.59 0.025 

vg -0.11 0.68 

Total 0.06 0.69 

bx 0.35 0.14 

Additive–by–dominance   bi -0.14 0.64 

vg 0.10 0.723 

Total 0.22 0.13 

bx 0.43 0.066 

Dominance–by–additive  bi -0.20 0.50 

vg 0.04 0.88 

Total 0.12 0.40 

bx 0.11 0.66 

Dominance–by–dominance   bi -0.27 0.40 

vg 0.37 0.21 

Total 0.15 0.34 
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Table 3.35: Summary of correlations between the Samarkand and Oregon-R wild type 
backgrounds for signed epistasis among allelic pairs among all allelic pairs for different 
gene combination and types of epistasis. 

 
  Gene 2  Correlation  P-Value Type of Epistasis 

bx 0.15 0.53 

Average  bi 0.09 7.70E-01 

vg 0.29 3.0E-01 

Total 0.14 0.34 

bx 0.73 0.0004 

Additive–by–additive  bi 0.73 0.0031 

vg -0.10 0.71 

Total 0.48 0.0006 

bx 0.73 0.0003 

Additive–by–dominance   bi 0.78 0.0010 

vg 0.06 0.82 

Total 0.54 8.4E-05 

bx 0.62 0.0050 

Dominance–by–additive  bi 0.05 0.85 

vg 0.02 0.94 

Total 0.32 0.025 

bx 0.39 0.0963 

Dominance–by–dominance   bi 0.21 0.5115 

vg 0.37 0.2078 

Total 0.38 0.01  
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Correlation of Samarkand and Oregon-R Average Epistasis Among Allelic Pairs 
 

 
 
Figure 3.30: Correlation values among Samarkand and Oregon-R mutants for average 
magnitude and signed epistasis for each gene combination. Values represent how similar 
average epistasis values are across all allelic pairs between genetic backgrounds. High r 
values indicate a high degree of association for epistasis values between genetic 
backgrounds and a low r value indicates a low association. N = 5,905 
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Correlation of Samarkand and Oregon-R Additive–by–Additive Epistasis Among 
Allelic Pairs 

Figure 3.31: Correlation values among Samarkand and Oregon-R mutants for additive-
by-additive magnitude and signed epistasis for each gene combination. Values represent 
how similar average epistasis values are across all allelic pairs between genetic 
backgrounds. High r values indicate a high degree of association for epistasis values 
between genetic backgrounds and a low r value indicates a low association. N = 5,905 
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Correlation of Samarkand and Oregon-R Additive–by–Dominance Epistasis Among 
Allelic Pairs  
 

 
 
Figure 3.32: Correlation values among Samarkand and Oregon-R mutants for additive-
by-dominance magnitude and signed epistasis for each gene combination. Values 
represent how similar average epistasis values are across all allelic pairs between genetic 
backgrounds. High r values indicate a high degree of association for epistasis values 
between genetic backgrounds and a low r value indicates a low association. N = 5,905 
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Correlation of Samarkand and Oregon-R Dominance–by–Additive Epistasis Among 
Allelic Pairs  

 
Figure 3.33: Correlation values among Samarkand and Oregon-R mutants for dominance-
by-additive magnitude and signed epistasis for each gene combination. Values represent 
how similar average epistasis values are across all allelic pairs between genetic 
backgrounds. High r values indicate a high degree of association for epistasis values 
between genetic backgrounds and a low r value indicates a low association. N = 5,905 
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Correlation of Samarkand and Oregon-R Dominance–by–Dominance Epistasis 
Among Allelic Pairs  

 
Figure 3.34: Correlation values among Samarkand and Oregon-R mutants for dominance-
by-dominance magnitude and signed epistasis for each gene combination. Values 
represent how similar average epistasis values are across all allelic pairs between genetic 
backgrounds. High r values indicate a high degree of association for epistasis values 
between genetic backgrounds and a low r value indicates a low association. N = 5,905 
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How Much Does Scale Matter?  

 

 Transforming the scale of measurement can have major effects when examining 

epistasis. For example, an epistatic interaction seen with one scale, may be entirely 

additive on another scale. Therefore, it was important to verify that epistasis values 

observed using the square root wing area transformation are not simply scale effects.  To 

examine this, the Pearson correlation coefficient was calculated for log transformed and 

square root transformed data used for epistasis estimates among allelic pairs. The 

correlation estimates indicate how similar the epistasis values are when using each scale 

for each allelic pair.   

 Overall, the correlation of epistasis values for the square root and log transformed 

data is very high. Illustrating that when we see higher values of epistasis using one scale 

(the linear/arithmetic scale which is the relevant scale of measure for the square root of 

wing area), we also see high values in on the log2 scale. This suggests the epistatic effects 

do not simply reflect proportional (i.e. multiplicative) changes in wing size. When 

looking at all gene combinations together the correlation is high for both magnitude (r = 

0.93) and signed epistasis (r = 0.91). Indicating that the epistatic effects are largely 

invariant to such scale effects. 
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Correlation of Log Transformed and Square Root Transformed Data for Epistasis 
Estimates Among Allelic Pairs 

 
Figure 3.35: Correlation of Log Transformed and Square Root Transformed Data for 
Epistasis Estimates Among Allelic Pairs. Values represent how similar epistasis values 
are across allelic pairs for each data transformation. High r values indicate a high degree 
of association for epistasis values between log and square root data transformation and a 
low r value indicates a low association. N = 5,905.  
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Block Effects  

Experimental crosses were performed over 8 blocks as the number of crosses 

performed was too large to conduct at one single time. Three repeat crosses (and 

subsequent progeny genotypes) were performed in each block so we could estimate the 

magnitude of block effects. While experimental design does its best to help minimize 

such sources of variation, it is important to consider blocking effects that happen even in 

the best of experimental conditions. The NOIA package used to estimate epistasis values 

for each allelic pair does not allow for random effects to be fitted. Therefore, any 

variation between blocks is not accounted for in our current estimates. To get a better idea 

of how this may be impacting our results we estimated the variance in wing size between 

blocks using the data from the three repeat crosses preformed in all 8 blocks. The 

variance for the block effect is 0.0249, while the residual variance is 0.0752. Therefore, 

the variation due to block effects model is only about 10.7% the magnitude of the 

unexplained variation. Suggesting that the block effect accounts for a relatively modest 

amount variance in our data. While this shouldn’t impact the overall trends in our results, 

accounting for the block effects will influence individual epistasis estimates. To get a 

better idea of blocks effects we ran two models that estimated these effects. The first 

model estimated the average block effects averaged across the genotypes and 

backgrounds. The second model estimated the block effects for each background and 

genotype. This showed that block effects do not always move in the same direction for 

each genotype. Indicating that for some genotypes the average wing size is bigger in one 
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block, while for other genotypes the wing size is smaller in that block.  For example, the 

block effect for 𝑏𝑥)𝑠𝑑) is -0.0318 for block 2, but for 𝑏𝑥&𝑠𝑑$% it is 0.0059 for that block. 

The block effects also effect Samarkand and Oregon-R to varying degrees and directions. 

For example, the block effect for 𝑤𝑡8in Oregon-R is 0.0215 in block 4, while for 𝑤𝑡8in 

Samarkand the block effect is -0.0283. Despite these examples, the block effects seemed 

to behave similarly between genotypes and backgrounds overall. Prior to submitting this 

work for peer reviewed publication, additional models will be further examined to assess 

block effects and the extent to which they influence our epistatic estimates.  
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Block Effects 
 
 

 

Figure 3.36: The block effects for individuals generated from 6 repeat crosses performed 
across all experimental blocks (1-7). N = 784.  
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Examining epistatic interactions between the sd allelic series and a set of previously 
identified modifiers 
 

The detailed results presented in the previous section suggest that interactions 

between alleles of sd and bx, bi and vg suggest a fairly clear picture about the relationship 

between epistatic effects and magnitude of allelic effects as well as genetic background 

effects. However, to further confirm these results and determine the broader scope of the 

effects I wished to also examine an additional set of potential modifiers that are known to 

interact epistatically with sd. Using a subset of deletions that cover previously identified 

modifiers of the phenotypic effects of sdE3 identified in Chari and Dworkin (2013), I 

wanted to examine how background dependence changes and how the magnitude of 

modifier effects changes when using scalloped alleles differing in magnitude of 

phenotypic effects. The aim for this experiment was to examine how enhancer and 

suppressor relationships resulting from deletions with scalloped alleles vary as function 

of allelic effect and genetic background. The phenotypic effects of the scalloped alleles 

with a subset of deletion lines can be observed in a reaction norm plot (shown in Figure 

3.37). These deletions can dominantly enhance or suppress the phenotypic effects of 

scalloped mutants to varying degrees, with these effects changing in magnitude and 

direction in different genetic backgrounds. 

In order to summarize these relationships, we examined the phenotypic variability 

for each scalloped allele among all deletion lines. More variation in the phenotypic 

effects for a scalloped allele among all the deletion lines indicates a relative greater 
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magnitude of modifier effects (either enhancers or suppressors) either across scalloped 

alleles or wild type backgrounds.  

Figure 3.38 illustrates the mean wing area for each scalloped allele with the 

control Exelixis strain (shown as solid circle) as well as the mean wing area for each 

scalloped allele with each deletion (shown as transparent circle). As expected alleles of 

moderate effect result in greater among (deletion) strain variation across both 

backgrounds than alleles of weak and severe phenotypic effect. The standard deviation 

among deletion lines for each allele was estimated allowing for comparisons between 

other alleles.  𝑠𝑑$562	has the highest standard deviation value (stdev = 4.30E-02mm), 

with 𝑠𝑑$% having a close second (stdev = 4.22E-02 mm). In contrast, 𝑠𝑑!" has the lowest 

standard deviation (stdev =  8.90E-11mm). These results suggest that the effects of 

modifiers are greater in magnitude for alleles of moderate effect.  

Our results also indicate that the effects of modifiers are background dependent. 

To examine this background dependence, we estimated the standard deviation for each 

scalloped allele in each background. While the overall pattern for which alleles show the 

greatest variation stay consistent between genetic backgrounds, we do see differences 

between the phenotypic variability for each scalloped allele among all deletion lines 

between backgrounds. For instance, for 𝑠𝑑$562 the phenotypic variation among deletion 

lines is approximately twice the magnitude in in Oregon-R (stdev = 5.47E-02mm) than 

the variation in Samarkand (std = 1.79E-02mm). Indeed, the phenotypic variability 

among deletion strains for scalloped alleles is always lower in Samarkand than in 

Oregon-R (Table 3.37). Suggesting that the effects of modifier alleles of scalloped are of 



                                              M.Sc. Thesis – D. Henderson; McMaster University- Biology 

	 122		

smaller in magnitude in Samarkand than in Oregon-R, consistent with the more limited 

results of Chari and Dworkin (2013). 

To see how significant these background effects are we compared the two models 

that estimated the standard deviations among deletions (treating the deletion lines as 

random effects). For the first model, the standard deviations were estimated for each 

scalloped allele among genetic backgrounds. For the second model, the standard 

deviations were estimated for each scalloped allele in each genetic background. The AIC 

(Akaike Information Criterion) for the first model is -5756.2 and the AIC for the second 

model is -6109.3 (∆AIC = 353), suggesting that the model allowing for background 

specific estimates is a substantially improved fit. This is consistent with estimates of 

variability among deletion lines for scalloped alleles differs across each wild type 

background.  

Table 3.36: Statistical estimates of standard deviations for each scalloped allele across 
deletions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

sd Allele Std 

WT 2.69E-03  

29.1 4.64E-03 

1 1.83E-02 

ETX4 4.30E-02 

E3 4.22E-02 

58d 8.90E-11 
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Table 3.37: Statistical estimates of standard deviations for each scalloped allele across 
deletions for Samarkand and Oregon-R.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sd Allele Std : ORE Std : SAM 

WT 5.41E-03 1.47E-02 

29.1 4.71E-03 2.47E-03 

1 1.91E-02 2.89E-04 

ETX4 5.47E-02 1.79E-02 

E3 2.49E-02 2.65E-02 

58d 9.39E-11 1.41E-12 
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Phenotypic Effects of Scalloped Alleles with a Subset of Deletion Lines 

 
Figure 3.37: Estimates of mean phenotypic effect of each scalloped mutant with a subset 
of deletions. N = 1616.  
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Phenotypic Variability of Scalloped Alleles Across Deletion Lines in Samarkand and 
Oregon-R 

 

 

Figure 3.38: Estimates of mean wing area for each scalloped allele with the control 
Exelixis line (shown as solid circle) as well as the mean wing area for each scalloped 
allele with each deletion (shown as transparent circle). N = 6506.  
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Discussion 
 

The effects of epistasis can differ significantly in both magnitude and sign, but it 

is not always clear why such a range is observed. Understanding what causes variation in 

epistatic interactions is essential to predict phenotypic effects from genotypic variation. 

One explanation for why genetic interactions may emerge is from the quantitative 

nonlinearity between gene activity and the phenotype. An example of nonlinearity was 

demonstrated in Green et al. (2017) where the gene dosage of a regulator of mouse 

development was manipulated. It was shown that variation in activity in this signalling 

molecule has a nonlinear relationship to phenotypic variation. Changes in gene expression 

have also shown to alter how mutations interact when the relationship between gene 

expression and phenotype is nonlinear.  Li et al. (2019) introduced random mutations into 

the DNA binding domain of the phage lambda repressor and demonstrated that changes in 

gene expression can dramatically alter the effects of mutations and importantly how 

mutations interact. Specifically, a change in mutant expression transformed the magnitude 

and the direction of epistasis. While this work illustrates that the magnitude of individual 

allelic effects may have a strong influence on the resulting epistasis, it was not clear how 

changes in gene expression alone can facilitate changes in genetic interactions and if 

these changes are predictable. 

The main goal for this project was to examine genetic interactions as a function of 

the magnitude of individual allelic effects and genetic background. Specifically, we 

sought to determine if the magnitude and direction of epistatic interactions can be 

predicted from the individual allelic effects. Using wing size in Drosophila, I examined 
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the phenotypic effects across a broad set of allelic combinations using four genes in the 

wing regulatory network, among two genetically distinct wild type genetic backgrounds 

(Samarkand and Oregon-R). In addition, I examined the phenotypic effects of known 

modifiers of 𝑠𝑑$% with the scalloped allelic series in both Samarkand and Oregon-R. The 

aim was to observe how genetic background effects and the magnitude of modifier effects 

changes when using scalloped alleles of differing magnitude of phenotypic effects. Our 

results indicate that the magnitude and sign of epistatic interactions can, in large part, be 

predicted based on the average additive effects of allele and that the genetic background 

can have a strong influence on epistasis (both will be discussed in more detail below).  

The choice of scale can become important measuring epistasis as mutations that 

are additive for a phenotype measured on one scale may not be additive when a different 

transformed scale is used (Frankel & Schork, 1996).  Epistasis estimates were calculated 

using square root (producing a “standard” arithmetic scale of measure) and logarithm of 

wing area. To verify that epistasis values observed are not the result of a scale effect we 

calculated the Pearson correlation coefficient for log transformed and square root 

transformed data used for epistasis estimates among allelic pairs. A high correlation was 

observed between the two transformations for both magnitude and signed epistasis for 

each gene combination. Suggesting that epistasis estimates are not substantially impacted 

whether the responses measures are on an additive (for arithmetic scale) or multiplicative 

(log scale). Rather, epistasis estimates reflect “real” differences in the interaction effects 

among mutations.  
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Recapitulating Genetic Background Effects For sd, bx, bi, and vg Homozygotes  
 

Chandler et al. (2017) demonstrated the influence of genetic background on the 

expressivity of an allelic series in two functionally related genes in the Drosophila wing 

network. For vestigial and scalloped alleles, the extent of background dependence was 

predicted from the magnitude of the individual phenotypic effect (severity) of the allele.  

Work by Daley (2009) extended and confirmed these findings across a larger set of wild 

type backgrounds, more alleles and more genes that function in the wing development 

network.  Estimates of wing size and variance confirmed that scalloped alleles of 

moderate effect ( 𝑠𝑑$562 and 𝑠𝑑$%) exhibited greater background dependence than alleles 

of weak and strong effect. However, the relationship between magnitude and variance 

was less clear for other genes. Among beadex, cut and bifid alleles the magnitude of 

phenotypic variance was largely similar among alleles of the same gene. However, a 

limited phenotypic range of some allelic series may explain the limited range of 

phenotypic variance among alleles compared to the scalloped alleles that had a much 

bigger range of effects on wing size. While both studies illustrate the impact of genetic 

background on individual allelic effects, it was unclear how this relationship impacts 

more alleles and genes with different functional relationships. Before we could begin to 

examine the background dependence of genetic interactions, it was necessary to examine 

the background dependence of the alleles and genes being used in my project. The 

phenotypic effects were analyzed for homozygous females for allelic series in scalloped, 

beadex, bifid, and vestigial, among two genetically distinct wild-type backgrounds, 
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Samarkand and Oregon –R. There was considerable variation in mean wing size between 

the two backgrounds. Genetic background effects were common across alleles, but as 

expected the largest effects were seen in alleles with individually moderate phenotypic 

effects. Interestingly, for some weak alleles of scalloped, mean wing size was slightly 

larger in Samarkand than Oregon-R. In Chandler et al. (2017), mutational effects of 

scalloped and vestigial were greater in Oregon-R than in Samarkand. Data from Daley 

(2009) illustrated that Oregon- R wings are larger than Samarkand with weaker scalloped 

knockdown, however the slope of this effect is greater in Oregon-R.  This pattern is seen 

in the results from my project with scalloped alleles as well (seen in Figure 3.1). 

Samarkand has smaller wings for weak scalloped alleles ( 𝑠𝑑&'.) and 𝑠𝑑)) but larger 

wings for moderate alleles (𝑠𝑑$562 and 𝑠𝑑$%).  For beadex, we see switching for which 

background has larger wings for each allele (Figure 3.1).  This switching may be due to a 

modest sample size (per genotype) and relatively modest phenotypic effects rather than 

reflecting background effects that are not consistently moving in the same direction for 

different alleles. Overall, our results are largely consistent with the results seen with 

Chandler et al. (2017) and Daley (2009). Moderate effect homozygotes showed the 

greatest background dependence, while alleles with weak and strong effects showed less 

background dependence. This suggests that the sensitivity to genetic background effects 

may be predictable for individual alleles. One explanation for background dependence of 

mutations is natural variation for robustness to mutational perturbations across wild type 

strains (Chari & Dworkin, 2013). Regulatory networks often exhibit nonlinear 

relationships between genes and gene products (Félix & Barkoulas, 2015). As such, one 
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strain may be more sensitive to genetic perturbations due to differences in the ability to 

buffer sources of variation. This proposed explanation and the predictability seen between 

individual allelic effects and background dependence allowed us to make predictions 

between the relationship of genetic background and genetic interactions (Figure 1.4 and 

Figure 1.5). 

 

The Magnitude and Sign of Epistatic Interactions Can Be Predicted Based on The 
Average Additive Effects of Alleles. 
 

We sought to demonstrate if differences between the magnitude and sign of 

epistasis can be explained solely through the distinctive effects of particular gene 

combinations, or if differences can be explained by the quantitative relationship between 

gene activity and phenotype. To examine if the magnitude and sign of epistatic 

interactions can be predicated based on the average additive effects of alleles, we 

estimated the effect of the average mutant effect on the mean magnitude and signed 

epistasis among all allelic pairs for each epistatic component and each gene combination. 

When looking at the summary of significant mutant effects for magnitude epistasis among 

all allelic pairs across gene combinations and types of epistasis we saw that the average 

mutant effect had a significant effect on magnitude and signed epistasis 60% of the time 

(Table 3.2).  For the majority of cases where the average mutant effect is significant for 

magnitude epistasis, as the mutant effect increases so does the mean epistasis. Illustrating 

strong predictably between the magnitude of the individual mutant effects and the 

resulting epistasis. These results suggest that epistasis is likely to be stronger for alleles of 
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strong effect and weaker in magnitude when alleles of weaker effect interact. However, 

when examining additive-by-additive epistasis for bifid and scalloped mutants, as the 

magnitude of mutant effect increases, the magnitude of epistasis decreases. An opposite 

relationship compared to the other significant relationships between average mutant effect 

and magnitude of epistasis. While rare in this context, this illustrates that patterns 

observed can differ dramatically between different components of epistasis and gene 

combinations, which could lead to inaccurate predictions when assuming the magnitude 

of epistasis is always stronger for alleles of strong effect.  

It is also apparent that the relationship between average mutant effect and signed 

epistasis can differ greatly between epistatic components. For example, when observing 

additive-by-additive signed epistasis it is very clear that as mutant effect increases the 

epistasis becomes increasingly more positive. However, for additive-by-dominance and 

dominance-by-additive we see that as mutant effect increases the epistasis becomes 

increasingly more negative. This demonstrates a strong predictability between average 

mutant effect and signed epistasis for each type of epistasis individually, but that the 

direction of average mutant effect is dependent on the component of epistasis. In addition, 

when looking at all the genes combined for all 4 individual epistatic interactions the 

average mutant effect is always significant for signed epistasis. These results suggest that 

while the average mutant effect may be a good predicator for the sign of some epistatic 

effects individually, it is not a good predictor for the average epistasis. This may suggest 

that our average epistasis measure is not capturing the epistatic components in a way that 

best illustrates the relationships between average allelic effect and epistasis. Displaying 
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that just because the average epistatic effect is a simple measure, it may not be easy to 

interpret biologically. This can be very misleading because by just looking at the average 

signed epistasis it appears that the average mutant effect does not have a relationship with 

epistasis, but we see this is clearly the not the case when looking at the epistasis 

components individually.  

We examined the phenotypic variability for each scalloped allele among all 

deletion lines and illustrated that alleles of moderate effect result in more phenotypic 

variation than alleles of weak and strong phenotypic effect. Suggesting that the effects of 

modifiers are greater in magnitude for alleles of moderate effect. This matches with the 

predictions made for this project (Figure 1.4), and is consistent with intra-locus 

interactions among alleles (Chandler et al. 2017) for sd and vg. These results match the 

explanation that epistatic interactions emerge from the quantitative nonlinearity between 

gene activity and phenotype, where a fractional change in gene activity may have 

different consequences depending on the form of the curve. This results in modifiers 

having different magnitude of effects for different scalloped alleles. For example, our 

results show that modifiers do not have as strong as an effect on 𝑠𝑑!"# compared to 

alleles of moderate phenotypic effect, as strong mutants may disrupt the system so greatly 

that there is little room for compensation. It is also possible that modifiers of alleles of 

weak phenotypic effect (𝑠𝑑&'.), 𝑠𝑑))  show less magnitude of effects as they only 

marginally perturb the function of the regulatory network and result in little changes in 

mean phenotype. Lastly, modifiers of alleles of moderate effect (𝑠𝑑$562, 𝑠𝑑$%) may show 

the greatest magnitude of allelic effects as changes in gene activity may have the most 
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severe consequences due to the shape of the nonlinear relationship between gene activity 

and phenotype. Our analysis has not allowed for us to make direct comparisons for how 

specific deletions affect each scalloped allele specifically. For example, with our analysis 

we cannot compare the magnitude of an enhancer effect in 𝑠𝑑) versus 𝑠𝑑&'.) for specific 

deletions. Therefore, just because the effects for moderate alleles are more variant overall, 

specific deletions may have larger magnitude of effects in weak or strong alleles. Despite 

this, these results clearly illustrate the magnitude of modifier effects may be predicable 

from the severity of the focal mutations in scalloped. 

While both experiments for this project demonstrate predictive relationships, we 

observed key differences between them when observing genetic interactions as a function 

of average mutant effect. For the modifiers, moderate alleles had more phenotypic 

variability among all deletion lines compared to weak and strong mutants. Yet, when 

examining the relationship between average mutant effect and epistasis with double 

mutants, we did not see this same relationship. Here, when the average mutant effect 

increased so did epistasis. Meaning that when alleles of strong phenotypic effect interact, 

they are more likely to have stronger epistatic interactions for these allelic combinations. 

This suggests that observed patterns can change drastically when using different 

techniques and analyses to examine epistasis. It remains unclear why such differences 

were observed and what the genetic architecture is underlying these effects.  
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The Influence of Genetic Background on the Magnitude and Sign of Epistatic 
Interactions 
 

To investigate how context dependence affects genetic interactions, we first 

examined estimates of mean magnitude epistasis among all allelic pairs in Samarkand and 

Oregon-R for the different gene combinations and types of epistasis. My results indicate 

that while genetic background can influence epistatic interactions, it was often a 

seemingly modest impact and depends a great deal on the allelic pairs under 

consideration, and importantly the component of epistasis under consideration (Table 

3.1). The only time we see significant genetic background effects for the magnitude 

average epistasis (i.e the average of the four epistatic components {aa, ad, da, dd}) is for 

vestigial and scalloped mutants (Figure 3.6). This was unexpected as the vestigial 

homozygote phenotypes showed the least amount of variation between Samarkand and 

Oregon (Figure 3.1).  These results suggest that if you combine individual alleles that do 

not have strong background dependence on their own, they may have significant 

background effects when combined together. This was similar to observations also seen 

in Chandler et al. (2017) where hetero-allelic combinations (but within a locus) showed 

strong genetic background effects, even when the homozygotes (for very weak or very 

severe alleles) did not show strong background dependence. Demonstrating that 

genotypic combinations for one allelic pair can have dramatically different relationships 

between epistasis and background effects and that it is not always obvious which allelic 

combinations will show strong background dependence.  

When examining estimates of mean signed epistasis among all allelic pairs in 

Samarkand and Oregon-R for the different gene combinations and types of epistasis, the 
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genetic background had a significant effect 55% of the time (Table 3.1). For these cases, 

Oregon-R is more likely to be a negative value, meaning that the wings for these 

genotypes are more likely to be smaller than expected based off the individual mutants. 

While in Samarkand, epistatic interactions were more often slightly positive (or close to 

zero), indicating that these wings are close to, or slightly larger than expected based off 

the additive effects of individual mutants. When examining the estimates of mean 

magnitude epistasis among all allelic pairs in Samarkand and Oregon-R for the different 

gene combinations and types of epistasis, the genetic background had a significant effect 

in two instances (Table 3.1) This is interesting because an earlier explanation for the 

context dependent nature of individual alleles is that Oregon-R is less robust to genetic 

perturbations than Samarkand. However, these results suggest that the magnitude of 

epistasis may be somewhat similar in the two backgrounds when comparing mean 

estimates, it just tends to be a different sign. 

 For signed epistasis we see significant differences in estimates of mean epistasis 

values among all allelic pairs in Samarkand and Oregon-R for scalloped - bifid as well as 

scalloped - beadex mutant pairs across the different components of epistasis. Yet, there is 

not one instance of a significant background effect when comparing mean signed epistasis 

values for vestigial and scalloped mutants. Unfortunately, it not clear if these differences 

are due to the relationship bifid, beadex and vestigial have with scalloped or if this is due 

to the magnitude of mutant effects, where the vg alleles tended to be among the most 

severe as homozygotes. scalloped and vestigial form a heterodimer that functions as a 

transcription factor, that among other targets regulates the transcription of each other.  
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Specifically, scalloped is needed for early vestigial expression, while vestigial is needed 

to maintain scalloped expression (Bray, 1999). This direct physical relationship between 

scalloped and vestigial may possibly explain the distinct patterns of epistasis than the less 

direct relationships scalloped has with bifid and beadex. Another consideration is that the 

mutational effects are not equal between gene combinations. Alleles in beadex and bifid 

have weaker phenotypic effects compared to vestigial.  The average mutant effects (in 

mm) for scalloped and bifid mutants range from a value of 0.004 – 0.30, beadex and 

scalloped range from 0.017 – 0.335, and vestigial and scalloped range from 0.228 – 

0.497. Therefore, the overlap in patterns seen between bifid and beadex combinations 

may be due to a similar range in effects of the individual mutant alleles. While the 

patterns observed for vestigial and scalloped mutants may be linked to the more severe 

end of distributions of allelic effects. It would have been beneficial to have alleles of 

greater phenotypic range (for vg, bx and bi) to help indicate what relationships are due to 

mutant effects and what are due to gene differences.  For example, do we see no 

significant background effects when comparing mean sign epistasis values for vestigial 

and scalloped mutants because the nature of scalloped and vestigial interaction? Or do we 

see less background effects for the sign of epistasis when the average mutant effect is 

higher? Including stronger effect bifid and beadex alleles, and weaker vestigial alleles 

would help cover a greater average mutant effect range for each gene. Unfortunately, we 

were limited by the alleles available and with stronger alleles the issue of lethality arises.  

Despite the background dependence appearing to be weak across the set of all 

interactions, there were a number of cases of quite profound effects. For bifid and 
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scalloped mutants there is a significant effect from the interaction of the genetic 

background and average mutant effect for average, additive–by–dominance and 

dominance–by–additive epistasis. Meaning that the effect of the average mutant effect on 

epistasis differs between Samarkand and Oregon-R. In some cases, the effect of the 

average mutant effect is much greater in one genetic background, while in other cases the 

effects are in opposite directions (illustrating sign epistasis). For example, when 

observing bifid and scalloped mutants for dominance–by–additive epistasis, the average 

mutant effect is much stronger in Oregon-R than in Samarkand (indicated by differences 

in slopes) (Figure 3.24).  In comparison, when observing bifid and scalloped mutants for 

additive-by-dominance magnitude epistasis we see that the average mutant effect appears 

to be strong in both backgrounds, but this effect moves in opposite directions between 

genetic backgrounds (Figure 3.19). Specifically, in Oregon-R as the mutant effect 

increases, so does the epistasis. Yet, in Samarkand as the mutant effect increases the 

mean epistasis slightly decreases. Indicating the relationship between average mutant 

effect and magnitude of average epistasis can be background dependent. Interesting, these 

interaction effects occurred only in bifid and scalloped mutants.  

To further assess the relationship between genetic background and genetic 

interactions, the Pearson correlation coefficient was estimated using the estimated 

epistasis values for Samarkand and Oregon-R among all allelic pairs. While there are a 

few examples of moderate to strong correlation between backgrounds for signed epistasis 

(Figure 3.31 and Figure 3.32), we see that the epistasis estimates are generally not well 

correlated overall between the genetic backgrounds. This illustrates that while the genetic 
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backgrounds effects can appear generally modest when comparing mean epistasis 

estimates between genetic backgrounds, wild type genetic background does have a strong 

influence on epistasis. While there are significant correlations between genetic 

backgrounds in all 4 epistatic components for different gene combinations, there is never 

a significant correlation for average epistasis. Reinforcing that that our average epistasis 

measure is not capturing the epistatic components in a way that best illustrates the 

relationships between average allelic effect and epistasis across genetic backgrounds. In 

addition, there are instances where we see significant differences in estimates of mean 

sign epistasis values among all allelic pairs in Samarkand and Oregon-R, but the epistasis 

values are significantly correlated. For example, when examining additive by dominance 

sign epistasis for bifid and scalloped mutants, Oregon-R is more negative while 

Samarkand is more positive value (P = 2.19E-06). In this instance the backgrounds have 

significant differences in the overall direction of their additive by dominance epistatic 

effects, but the epistatic effects are still correlated (Figure 3.32). Meaning, when the 

epistasis value for one allelic pair in Samarkand is small it tends to also be small in 

Oregon-R. This demonstrates that both approaches can be necessary when evaluating the 

degree of genetic background effects. When examining only the mean epistasis estimates 

it could be misinterpreted that genetic background effects are weak, when we see the 

opposite when examining correlations. In comparison, when examining only the 

correlations we see a case where a strong correlation is seen, but the mean estimates are 

significantly different in genetic backgrounds across allelic pairs.  
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Chari and Dworkin (2013) examined whether background dependence of genetic 

interactions is a general property of genetic systems by performing a genome wide 

modifier screen for 𝑠𝑑$% in Samarkand and Oregon-R using deletions. They demonstrated 

that ~74% of all modifiers were background dependent. Deletions displayed enhancement 

or suppression for sdE3 in Samarkand or Oregon-R, with many showing an effect in only 

one genetic background. However, there were instances where deletions had opposite 

effects in genetic backgrounds, indicating sign epistasis. While this work illustrates the 

impact of higher-order effects on genetic interactions, it remained unclear how this 

relationship would change when using different scalloped alleles across an allelic series 

(i.e. not just an allele of moderate effect). Our aim for our second experiment was to 

examine how modifiers vary as function of genetic background across the full range of 

allelic effects. Our results indicate that the effects of modifiers are background dependent, 

with alleles across a spectrum of phenotypic effects. While the overall pattern for which 

alleles show the greatest variation stay consistent between genetic backgrounds, we do 

see differences between the phenotypic variability for each scalloped allele among all 

deletion lines between backgrounds. Overall the phenotypic variability for scalloped 

alleles is lower in Samarkand than in Oregon-R. Suggesting that the magnitude of effects 

for modifiers are smaller in magnitude in Samarkand than in Oregon-R, consistent with 

the more limited experimental design of Chari and Dworkin (2013). Our approach has not 

allowed for us to make direct comparisons for how specific deletions affect each 

scalloped allele in Samarkand and Oregon-R. For example, we have not directly assessed 

if deletion 7960 enhances 𝑠𝑑) in Oregon-R but suppresses 𝑠𝑑) in Samarkand. We have 
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simply observed how the deletions overall effect each scalloped allele in each 

background. Therefore, just because scalloped alleles in Samarkand are less variant 

overall, specific deletions may have larger magnitude of effects in Samarkand than in 

Oregon-R. Overall, our results reinforce that the genetic background can have strong 

influence on epistasis.  

 

Caveats 
 

For this project Drosophila wing area, measured using a custom ImageJ macro, 

was used to assess phenotypic effects of alleles. An important consideration is how well 

wing size in general (and the macro in particular) can accurately reflect weak phenotypic 

effects. Individuals with some of the phenotypically weaker alleles may not have strong 

size effects but more subtle phenotypic effects that influence bristle loss along the margin 

of the wing. The ImageJ macro used to estimate wing area is sensitive to subtle changes 

in wing size, but it is only estimating wing area, not any changes in wing shape or 

structure. This is particularly relevant for the weak bifid alleles as these mutants often 

display vein defects as well. Meaning the effects of mutants with weak bifid alleles may 

have larger phenotypic effects on the wing than what is captured using wing size as a 

measurement for phenotypic effect. Previous work (Chari and Dworkin 2013, Chandler et 

al. 2017, Daley 2019) have all demonstrated that while there is a strong correlation 

between semi-quantitative scales of wing perturbation and wing area for moderate to 

strong allelic effects, very subtle effects are not captured well by wing area alone.  
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A limitation for the experiment examining the effect modifiers with various 

scalloped alleles and between genetic backgrounds is that 𝑠𝑑$% in Oregon-R has not been 

examined with all possible deletions. When performing a large set of experimental 

crosses, crosses fail. 𝑠𝑑$% in Oregon-R is prone to bacterial infections more so than other 

stocks which can cause higher rates of failed crosses. Due to time constraints induced by 

COVID-19, there was not enough time to repeat some failed crosses. Due to this, we have 

less data for 𝑠𝑑$% in Oregon-R compared to other scalloped alleles. This may impact our 

interpretations as less data may result in poorer estimates of phenotypic variability among 

deletion strains. Despite missing data,  𝑠𝑑$% in Oregon-R still manages to have the second 

largest standard deviation compared to other scalloped alleles in Oregon-R, consistent 

with previous results (Chari & Dworkin, 2013). This suggests the missing data is not 

interfering with our conclusions about which alleles have large modifier effects. 

However, when comparing standard deviations (among deletions) for 𝑠𝑑$%	in Oregon-R 

and Samarkand, we see these values are somewhat similar in the two backgrounds 

compared with other sd alleles. Adding in the data from missing crosses may increase the 

standard deviation for 𝑠𝑑$%	in Oregon-R and cause Oregon-R to be more variable than 

Samarkand. Therefore, our inferences regarding the background dependence for the 

interactions with 𝑠𝑑$% specifically may change. Prior to submitting this work for peer 

reviewed publication, failed crosses will hopefully be repeated. Similarly, 𝑠𝑑8 has not 

been examined with all possible deletion lines. Due to time constraints caused by 

COVID-19, there was not enough time to dissect and analyze 𝑠𝑑8 with all deletion lines. 

A subset of ten deletion lines was chosen to represent the phenotypic effects for the wild 
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type sd allele. While adding the remaining deletion lines may increase the phenotypic 

variability for 𝑠𝑑8, this should not impact any main conclusions drawn previously 

regarding how modifiers vary as function of allelic effect and genetic background. Prior 

to submitting this work for peer reviewed publication, missing genotypes will hopefully 

be dissected and analyzed. 

Conclusions 
 

To conclude, we have confirmed that moderate effect homozygotes show greater 

background dependence compared to homozygotes with weak and strong phenotypic 

effect alleles for scalloped, bifid, beadex and vestigial. We also demonstrated that the 

average mutant effect can have a strong influence on the magnitude and sign of epistasis. 

This was illustrated when examining mean epistasis estimates among all allelic pairs 

across gene combinations and types of epistasis.  In general, as the average mutant effect 

increases, so does the mean epistasis. While this relationship offers some predictability 

for how alleles may interact, it is not consistent between gene combinations and types of 

epistasis. When examining the phenotypic variability for each scalloped allele among 

various deletion lines we saw that alleles of moderate effect result in more phenotypic 

variation than alleles of weak and strong phenotypic effect. Clearly demonstrating that the 

magnitude of modifier effects may be predicable based off the severity of the focal 

mutation for scalloped. 

 Our results also demonstrate that the genetic background can have a strong 

influence on the magnitude and sign of epistasis.  When comparing mean epistasis 
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estimates for signed epistasis there is a clear relationship between the genetic background 

and the sign of epistasis. Oregon-R is more likely to be a negative value, meaning that the 

wings for these genotypes are more likely to be smaller than expected based off the 

individual mutants. While in Samarkand, epistatic interactions were more often positive, 

indicating that these wings are bigger than expected based off the individual mutants. 

When comparing mean magnitude epistasis estimates the relationship between genetic 

background can be more subtle. Despite this, we observed cases of strong interaction 

effects between the genetic background and the average mutant effect in both magnitude 

and signed epistasis. Indicating that the genetic background can have a strong influence 

on the relationship between epistasis and average mutant effect. The influence of the 

genetic background is further reinforced as we see a generally weak correlation between 

genetic backgrounds when the Pearson correlation coefficient was estimated using 

epistasis values for Samarkand and Oregon-R among all allelic pairs. We also observed 

differences between the phenotypic variability for each scalloped allele among all 

deletion lines between backgrounds as the phenotypic variability for scalloped alleles is 

lower in Samarkand than in Oregon-R. Suggesting that the magnitude of effects for 

modifiers are smaller in magnitude in Samarkand than in Oregon-R. 

While our results shed some light on the predictability of epistatic interactions, 

many unknowns still exist. For example, it is important to investigate these relationships 

with different genes in additional developmental networks. The genes in our study are all 

transcription factors in the Drosophila wing network, and it is unclear how generalizable 

these results are.  Furthermore, understanding how genetic interactions vary as a function 
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of the magnitude of allelic effects and genetic background is necessary, but there is also 

great importance in understanding mechanistically why this variation occurs. In 

particular, non-additive effects that occur between mutations involved in epistatic 

interactions may appear in the adult phenotype (wing size), yet aspects of the gene 

regulatory network (such as gene expression) or aspects governing the development of the 

trait (such as cell proliferation and apoptosis) may appear as additive (or potentially vice 

versa). Thus, understanding the relationship between modes of gene action, its molecular 

underpinnings (or close proxies) are crucial to improve our understanding of how 

genotype maps to phenotype. The study of the development of the Drosophila wing 

imaginal disc is an excellent model for investigating genetic pathways, proliferation and 

patterning during development (Neufeld, De La Cruz, Johnston, & Edgar, 

1998). Therefore, it is suggested that interesting sets of interacting pairs observed will be 

further examined by looking at cellular and molecular correlates during wing disc 

development to determine not just their effects, but associations with the 

phenotypic effects in the adult wing.  The purpose being to determine when or where 

changes during development can be detected that govern the phenotypic changes we 

observe in the wing. I.e. can we observe non-linear relationships between genes (that we 

are perturbing) and in known target gene expression? Quantitative RT-PCR can quantify 

transcript abundance as a proxy for gene expression for both focal genes (the ones being 

manipulated) and downstream targets in late third instar wing imaginal discs. Lastly, the 

statistical approach we employed is built upon a general linear model. This assumes that 

the effects of mutations will act additively, with deviations for dominance and epistasis 
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being second order effects. However, if the fundamental relationship is nonlinear, this can 

result in “apparent” epistasis reflecting the difference between the linear relationship that 

is assumed, and the actual non-linear relationship (Cordell, 2002; Phillips, 2008). While 

not investigated for data like I have generated here, it has been examined for higher-order 

epistasis (beyond 2 way interactions) in haploids (Sailer & Harms, 2017). Therefore, the 

linear model framework here for the NOIA approach used could lead to different epistatic 

estimates that may reflect the difference between the assumptions of linear relationships 

between genotype and phenotype, when the reality is most likely a non-linear 

relationship. While my data will be very useful to explore such relationships, there are no 

specific methods that have been developed to examine this in detail yet.  Despite the 

limitations of the statistical approach used, my work represents a “classical” genetic 

analysis, and it is clear that this “simple” approach still has a great deal to offer and teach 

us about the nature of genetic interactions.  
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