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BIVARIATE FUNCTIONAL NORMALIZATION OF METHYLATION ARRAY DATA

ABSTRACT

DNA methylation plays a key role in disease analysis, especially for studies that compare

known large scale differences in CpG sites, such as cancer/normal studies or between-tissues

studies. However, before any analysis can be done, data normalization and preprocessing of

methylation data are required. A useful data preprocessing pipeline for large scale compar-

isons is Functional Normalization (FunNorm), (Fortin et al., 2014) implemented in the minfi

package in R. In FunNorm, the univariate quantiles of the methylated and unmethylated

signal values in the raw data are used to preprocess the data. However, although FunNorm

has been shown to outperform other preprocessing and data normalization processes for

these types of studies, it does not account for the correlation between the methylated and

unmethylated signals into account; the focus of this paper is to improve upon FunNorm by

taking this correlation into account. The concept of a bivariate quantile is used in this study

as an attempt to take the correlation between the methylated and unmethylated signals

into consideration. From the bivariate quantiles found, the partial least squares method is

then used on these quantiles in this preprocessing. The raw datasets used for this research

were collected from the European Molecular Biology Laboratory - European Bioinformatics

Institute (EMBL-EBI) website. The results from this preprocessing algorithm were then

compared and contrasted to the results from FunNorm. Drawbacks, limitations and future

research are then discussed.
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Chapter One

Introduction

1.1 Background Information on Epigenetics

Before epigenetics is discussed, it is important understand the basis of genetics. This basis

starts with Deoxyribonucleic acid, or DNA. A DNA molecule is a double-stranded polymer

that carries the genetic information of a living organism. Each single strand of one DNA

molecule is made up of nucleotides, which are molecules made up of a sugar group, a phos-

phate group and one of four nitrogen bases, which are purines composed of adenine (A) and

guanine (G) and pyrimidines composed of cytosine (C) and thymine (T). Two strands are

joined together by binding of the complementary bases to form a double helix structure.

The binding rules for DNA, named the Watson-Crick base pairings rules, are that A binds

with T and G binds with C. Due to this pairing rule, each strand of DNA contains the

exact same genetic information, with different coding. A sequence of DNA that produces a

protein or other functional element is referred to as a gene and the genome is the complete

set of genetic information in an organism. Genomes are stored in chromosomes, which are

made up of long strands of DNA tightly coiled together around histone proteins. Each cell

within the human body contains the complete genome, which consists of 2 copies of the 22

autosomal chromosomes and 2 sex chromosomes. Lastly, a locus is a specific, fixed position

on the genome where a particular gene or genetic marker is located.
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Epigenetics is the study of changes in organisms caused by modification of gene expression

rather than alteration of the genetic code itself. For a gene to produce a protein, DNA is first

converted to Ribonucleic Acid or RNA, which is comprised of the coding regions for functional

elements spliced together. Expression is the amount of RNA produced for a given gene in a

cell. This varies across cells for the same gene and across genes in the same cell. Epigenetic

changes involve genetic control by factors other than an individual’s DNA sequence, usually

involving modifications via chemical compounds that regulate the gene’s activity. These

changes can switch genes “on” or “off” and determine which proteins are made. By “turning

on” or expressing certain sets of genes and “turning off” or inhibiting other sets, these changes

are one of the main ways in which cells, tissues, and organs in most living organisms differ

from one another. The epigenome comprises all of the chemical compounds that have been

added to the entirety of a genome as a way to regulate the expression of all the genes within

the genome. The chemical compounds of the epigenome are not part of the DNA sequence,

but are physically attached to DNA. Epigenetic modifications remain as cells divide and in

some cases can be inherited through the generations. Environmental influences, such as a

person’s diet and exposure to pollutants, can also impact the epigenome. Within cells, there

are three systems that can interact with each other to silence genes: histone modifications,

RNA-associated silencing, and DNA methylation. However, DNA methylation usually is the

main focus in epigenetic research as it is the most common epigenetic signaling tool that cells

use to lock genes in the “off" position, as well as proven to be important in Epigenome Wide

Association Studies, or EWAS, which is the study of the association of any epigenetic marks

across the whole genome. This is primarily due to DNA methylation being easily quantifiable

at genetic loci across the entire genome. Note however that other forms of EWAS also exist

(Rakyan et al., 2011).
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1.2 Background Information on Methylation

DNA methylation is a biological process by which methyl groups (a carbon atom with 3

hydrogen atoms attached) are added to the DNA molecule. In mammals, DNA methylation

occurs at cytosines in any context of the genome; however, more than 98% of DNA methyla-

tion occurs in a CpG dinucleotide, or Cytosine—phosphate—Guanine context, abbreviated

in the literature as CpG sites. Relatedly, a CpG island is a region on the genome in which

there are a large number of repeating CpG sites. (B. Jin et al., 2011). The addition of these

methyl groups then inhibits the expression of the gene to which they are attached. Research

has shown that methylation is an important component in numerous cellular processes, and

has been linked to the formation of human diseases, such as cancer. In particular, research

has shown that there are significant differences in overall and specific methylation levels be-

tween different tissue types and between normal cells and cancer cells from the same tissue

(Z. Jin and Liu, 2018).

Recent advances in medical technology have been made in regards to obtaining and

analyzing methylation data. In particular, Illumina, a biotechnology company, has devel-

oped the Infinium HumanMethylation microarray assay, which offers a cost-effective, high

throughput method for quantitatively assessing methylation across the genome using limited

amounts of DNA. The HumanMethylation450 (450K) BeadChip assays DNA methylation

at 482,421 CpG sites using bisulfide treated DNA, which is the treatment of DNA with

sodium bisulfite (NaHSO3).This chemical compound converts unmethylated cytosines into

another nucleotide called uracil (U). The cytosines that have not converted into uracil are

methylated. The treated DNA is then amplified through Whole genome amplification which

is a method for generating copies of an entire genome when the starting amount of DNA

material is limited. After amplification, the unmethylated cytosines appear as thymines.

(Bibikova et al., 2011).
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1.3 Background Information on the 450K array

The Infinium HumanMethylation450 array, or 450K array for short, makes it possible to

assess the methylation status of >450,000 CpG sites located throughout the genome. It

provides genome-wide coverage featuring comprehensive gene region and coverage of regions

of the genome that contain a large number of CpG dinucleotide repeats, or CpG islands,

as well as content outside of these regions that are important for studies and analysis. Its

uniqueness lies in the use of two different types of chemical probes named Infinium I and

Infinium II assays (or Type I and Type II assays), that are used on bisulfite treated DNA

which then attach to CpG regions of the bisulfite treated DNA that have been selectively

chosen by methylation experts.

In terms of Type I probes, there are two bead types for each CpG site per locus. These

probes comprise of a bead and single-stranded DNA oligonucleotides, DNA strands comprised

of a small amount of nucleotides, that differ in sequence only at the free, unconnected end.

Bead types will correspond to the methylated cytosine locus and the other will correspond

to the unmethylated cytosine locus, which has been converted into uracil during bisulfite

treatment, and converted to thymine after amplification. The bisulfite-converted amplified

DNA products are split into single strands and hybridized, or combine, to the chip to either

the methylation-specific probe or the non-methylation probe. Hybridization is followed by

single-base extension with dideoxynucleotides (ddNTPs) attached with either biotin or 2,4-

dinitrophenol (DNP). The ddCTP and ddGTP are labeled with biotin while ddATP and

ddUTP are labeled with DNP, with biotin fluorescing green and DNP fluorescing red when

staining occurs. After the staining process, the chip is scanned to show the intensities of

the unmethylated and methylated bead types. These attached probes will then fluoresce

green for methylated signals and red for unmethylated signals. The light intensities are then

measured to obtain the methylated and unmethylated values at each chosen CpG site. The

main difference between Type I assays and Type II assays is that the Type I assay uses two
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types of probes, with one probe used for the methylation measurement and another probe

for the unmethylated measurement, whereas the Type II assay uses a single probe for both

methylated and unmethylated measurements. The two probes on the Type I assay have the

same base extension, whereas The Type II assay uses a single probe for both alleles, and

base extension depends on the methylation state of the hybridized genomic DNA molecule.

Due to their different chemistries, the Type I and Type II probes each have their distinct

advantages. Since Type II probes use half the physical space on the BeadChip compared

with Type I, it is easier to manufacture these probes. As such, these probe types consists of

approximately two-thirds of the a 450K array, thereby allowing a more in-depth coverage of

a patient’s genome. However, Type I probes’ design characteristics mean they can measure

methylation at more CpG dense regions than Type II probes (Pidsley, Zotenko, et al., 2016).

Furthermore, the overall distribution of methylation values measured using Type I and Type

II probes is different and it has been reported that Type II probes are sometimes both less

reproducible and sensitive (Wu et al., 2013).

Figure 1.1 shows a basic outline of both assays. Also, it is worth noting that the 450K

array contains 848 control probes. These probes are divided into negative control probes

(613), probes intended for between array normalization (186) and the remainder (49), which

are designed for quality control. For a more in-depth understanding of the 450K array, refer

to (Bibikova et al., 2011).

From the analysis of methylated and unmethylated intensities of 450K data, the methy-

lation level is then estimated based on the measured intensities of these pair of probes. To

date, two methods have been proposed to measure the methylation level; the Beta value and

the M-value.

The Beta value, ranging from 0 to 1, has been widely used to measure the percentage

of methylation, a method which is recommended by Illumina. The Beta-value for an ith

interrogated CpG site is defined the following equation:
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Figure 1.1 For the Infinium I design, both signals are measured in the same color:
one probe for the methylated signal and one probe for the unmethylated signal. For
Infinium II design, only one probe is used. The intensity read in the green channel
measures the methylated signal, and the intensity read in the red channel measures
the unmethylated signal.

Betai =
max (yi,methy, 0)

max (yi,unmethy, 0) + max (yi,methyl, 0) + γ1
(1.1)

where yi,methy and yi,unmethy are the intensities measured by the ith methylated and unmethy-

lated probes, respectively. To avoid negative values , any negative values will be reset to 0.

Illumina recommends adding a constant offset γ1 (by default, γ1 = 100 ) to the denominator

to regularize the Beta value when both methylated and unmethylated probe intensities are

low. The Beta value results in a number between 0 and 1. Equation 1.1 thus shows an in-

tuitive approach to seeing methylation levels; Beta values close to 0 are sites that are highly

unmethylated, wheres values close to 1 are sites that are highly methylated.

The M-value is calculated as the log2 ratio of the intensities of methylated probe versus

unmethylated probe as shown in the equation below:

Mi = log2

(
max (yi,methy, 0) + γ2

max (yi,unmethy, 0) + γ2

)
(1.2)

where γ2 is usually equal to 1 in this case and is added to the intensity values to prevent

unexpected big changes due to small intensity estimation errors, as well as to avoid division

by 0 and/or taking logs of 0. In literature, the Beta-value has a more intuitive biological
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interpretation, and the Beta-value statistics are more widely used than the M-value counter-

part when reporting the results to investigators. However, the M-value has shown to be more

statistically valid for the differential analysis of methylation levels, as the M-value method

provides much better performance in terms of Detection Rate (DR) and True Positive Rate

(TPR) for both highly methylated and unmethylated CpG sites (Du et al., 2010).

However, before looking at these values of methylation, due the nature of microarrays

having non-biological issues such as non-specific hybridization (sequences other than the

intended target of a selected probe), bleeding of the signal into background and human

issues such as unequal DNA amounts, data normalization or preprocessing is a critical step

to consider before data analysis (Wang et al., 2015).

Several methods have been developed to preprocess and normalize the 450K array data, in

order to adjust for assay type or color bias, subtract background signals, eliminate systematic

errors and other batch effects (non-biological factors in an experiment that causes changes in

the data produced by the experiment). One method is quantile normalization, developed by

Bolstad et al. (2003), for gene expression microarrays but has been since been extended for

450K data by Touleimat and Tost (2012). In quantile normalization, the signal intensity of

a probe replaces with the mean intensity of the probes that have the same ordinal rank from

all studied samples, and thus makes the distribution of probe intensities from each array the

same. In a related manner, when a reference distribution is defined, quantile normalization is

done by replacing the signal intensity of a probe in the test distribution with signal intensity

of the probe in the reference distribution that has the same rank as the probe in question.

However, it is noted that raw data should be preprocessed by color balance adjustment and

background correction before quantile normalization (Wang et al., 2015).

For quantile normalization of 450K data described by Touleimat and Tost (2012), a strat-

ified version of quantile normalization is used, with the method being applied to methylated

and unmethylated intensities separately. The distribution of Type I and Type II signals are

forced to be the same by first quantile normalizing the Type II probes across samples and
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then interpolating a reference distribution to which the Type I probes will be normalized.

However, before this interpolation is done, the probes are stratified by probe regions where

they vary, with these regions specified by Touleimat and Tost (2012).

In recent years, an extension to quantile normalization created by (Fortin et al., 2014),

named Functional Normalization, has been made that removes unwanted technical variation

and batch effects. For the purpose of this thesis, background information of Functional

Normalization is needed.

1.4 Functional Normalization

Functional normalization extends the idea of quantile normalization by adjusting for known

covariates measuring unwanted variation and was developed by Fortin et al. (2014).

1.4.1 Definitions

Let Y1, . . . ,Yn be high dimensional, continuous observations and let Zi,j be their associated

scalar covariates, with i = 1, . . . , n indicating samples and j = 1, . . . ,m indexing covariates.

The known covariates are chosen such that they are associated with unwanted variation and

unassociated with biological variation. As such, functional normalization attempts to remove

their influence. Hence, consider the empirical quantile function for the marginal distribution

of Yi, qemp
i . Since quantile functions are defined on the unit interval, to evaluate them

pointwise, let r ∈ [0, 1]. The model in pointwise form is the following:

qemp
i (r) = α(r) +

m∑
j=1

Zi,jβj(r) + εi(r) (1.3)

where α(r) is the mean of the quantile functions across all samples, βj(r) are the coefficient

functions associated with the covariates and εi are the error functions that are assumed to

be independent and centered around 0.
∑m

j=1 Zi,jβj(r) represents variation in the quantile
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functions explained by the covariates. From how Zi,j is chosen, functional normalization

removes unwanted variation by regressing out
∑m

j=1 Zi,jβj(r). After obtaining estimates

β̂j(r) for j = 1, . . . ,m, the functional normalized quantiles can be obtained as such:

qFunnormi (r) = qemp
i (r)−

m∑
j=1

Zi,jβ̂j(r) (1.4)

Yi is then transformed into the functional normalized quantity Ỹi using the formula

Ỹi = qFunnorm
i (F emp

i (Yi)) (1.5)

where F emp
i = (qemp

i )−1. This guarantees that the marginal distribution of Ỹi has qFunnorm
i

as its quantile function.

To obtain estimates for β̂j(r) for j = 1, . . . ,m, note that Equation 1.3 is an example of

function-on-scalar regression. Function-on-scalar regression makes assumptions about the

smoothness of the coefficient functions and uses a penalized framework due to the observa-

tions usually appearing noisy and non-smooth, such as the use of the l1 and l2 norm (Reiss

et al., 2010). However, since Yi are high dimensional and continuous, the jumps of the em-

pirical quantile functions are very small, thereby allowing to bypass the smoothing approach

used in traditional function-on-scalar regression. Thus, Fortin et al. (2014) proposes the use

of a dense grid of H equidistant points between 0 and 1,, where the dimension of H is chosen

to be much smaller than the dimension of Yi. Subsequently, Equation 1.3 reduces point-

wise to a standard linear model on this grid. Since the empirical quantile functions qemp(r)

have very small jumps, the variation between parameter estimates from the linear models

of two neighbouring grid points are small. As such, H standard linear model fits can be

used to compute estimates α̂(h) and β̂j(h), j = 1, . . . ,m, with {h ∈ d/H : d = 0, 1, . . . , H}.

Estimates then can be formed for α̂(r) and β̂j(r), j = 1 . . . ,m, for any r ∈ [0, 1] via linear

interpolation. This allows for faster computation time than other well established methods.

From the general framework, it is easy to see how functional normalization is related to

quantile normalization. In particular, if we let Zi,j be covariates that associate with both
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wanted and unwanted variation, then the application of functional normalization removes

all variation and is equivalent to quantile normalization. In contrast, including no covariates

makes the model comparable to no normalization at all. By choosing covariates that only

measure unwanted technical variation, functional normalization will remove the variation

explained by these technical measurements and preserve biological variation.

1.4.2 Functional Normalization for 450K Array Data

As mentioned before, the 450K array contains 848 control probes, none of which are designed

to measure a biological signal. As such, Fortin et al. (2014) proposed using these control

probes as surrogates for the effect of non-specific hybridization. Furthermore, this paper

also uses out-of-band probes, which are the measurement of intensities of Type I probes in

the “wrong” color channel. For more information on “out-of-band” probes, refer to Triche

et al. (2013). The control probes and out-of-band probes are then transformed into 42

summary measures, with the control probes contributing 38 of these 42 measures and the

out-of-band probes contributing four. For an in-depth description of how these summarized

measurements were obtained, refer to Fortin et al. (2014).

These 42 summary control measures allow the application of functional normalization

to 450K array data to remove unwanted batch effects. For functional normalization for

450K array data, the algorithm is applied to the methylated (M) and unmethylated (U)

channels separately. Due to the relationship between the methylation values and the control

probes differing between Type I and Type II probes, functional normalization is also applied

separately by probe type to obtain more representative quantile distributions. Furthermore,

probes on the sex chromosomes are normalized (11,232 and 416 probes for the X and Y

chromosomes, respectively) separately from the autosomal probes. For each of the two sex

chromosomes, males and females were normalized separately when there are sufficient sample

sizes in each gender to allow it. For the X chromosome, functional normalization is used,
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and for the Y chromosome, regular quantile normalization is used. The reason for this

is the number of H points is chosen to be 500, whereas the number of probes on the Y

chromosome is 413. Since the dimension of Y is assumed to have a much larger dimension

than the dimension of H, the assumptions of functional normalization are violated. This

results in multiple applications of functional normalization, using the exact same covariate

matrix. From the 42 summary control measurements, the first m = 2 principal components

of the summary control measures are used as covariates in functional normalization based

on empirical observations on several data sets (Fortin et al., 2014)

1.5 Limitations of Functional Normalization

One notable observation from beta values obtained from methylation data for the 450K array

is that, in almost all cases, the beta values are bimodal in nature. An example of this is

shown in Figure 1.2.

However, from the definition of Beta-values, as well as biological domain knowledge,

Figure 1.2 The Bimodal Nature of Beta Values from methylation usually seen on
450K array data. Note that Group A values stem from sample tissues that are
normal / healthy and Group B values are from sample tissues that have cancer.
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this bimodal nature is due to the values of the methylated and unmethylated signals. In

particular, from a biological standpoint, it makes sense that when a region of DNA is highly

methylated, then its methylation signal would be relatively high, whereas its unmethylated

signal should be relatively low. The converse is also true, and thus, there is usually a

negative correlation between the methylated and unmethylated signals (Pidsley, Wong, et

al., 2013). However, in most preprocessing and data normalization methods for the 450K,

this correlation is never taken into consideration. As such, the main objective of this research

is to develop a way to take this correlation into account when doing functional normalization.

In particular, the research proposed in this thesis tries to improve on functional normalization

via the use of a definition of a bivariate quantile, as well as the use of partial least squares

to take the correlation between the two signals into account.
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Chapter Two

Bivariate Quantiles

As stated before, to take the correlation of the methylated and unmethylated signals into

account when doing preprocessing and data normalization of 450K array data, the use of a

bivariate quantile is applied in this research. There are two definitions of a bivariate quantile

that have been looked at for the purpose of this research, the first definition coming from

Chen and Welsh (2002) and the second coming from Vineshkumar and Nair (2019). However,

as research was conducted, particular limitations with these definitions of bivariate quantiles

were found when applying these definitions on the 450K array data, which will be outlined

later in this thesis. As such, the need to develop a new definition of a bivariate quantile was

needed, which will, again, be discussed later.

2.1 Bivariate Quantiles defined by Chen andWelsh (2002)

Chen and Welsh (2002) firstly defines the North-South (NS) bivariate quantile points, and

then defines bivariate quantile points using the NS definition.

2.1.1 Definitions

Suppose that the direction is fixed for convenience from south to north. Likewise, let F be the

joint cumulative density function (CDF) for X1 and X2, F1 be the CDF of X1, F2 be the CDF
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of X2 and F12 be the joint CDF evaluated at X1 = x1 and X2 = F−12 (α1 + α2) . Then the

(α1, α2) NS bivariate quantile point is the vector ξ (α1, α2) =
(
F−112 (α1, α2) , F

−1
2 (α1 + α2)

)′
which satisfies

F−12 (α1 + α2) = inf {x2 : F2 (x2) ≥ α1 + α2}

and

F−112 (α1, α2) = inf
{
x1 : F

(
x1, F

−1
2 (α1 + α2)

)
≥ α1

}
for α1, α2 ≥ 0 and α1 + α2 ≤ 1. The α th NS bivariate quantile point is defined as ξ(α) =

ξ
(
1
2
α, 1

2
α
)
for 0 ≤ α ≤ 1,.

As noted by Chen and Welsh, using the north-south direction, while natural, is fixed and

arbitrary. As such, using the definition of NS bivariate quantile points, as well as using the

distribution of X to specify the appropriate direction, Chen and Welsh develop a definition

of bivariate quantile points.

Thus, suppose that X = (X1, X2)
′ has location vector µ and positive definite spread

matrix Σ. Then, Since Σ is positive definite, there exists an orthogonal matrix P such that

Σ = PAP ′, where A is the diagonal matrix of eigenvalues λ1 ≤ λ2 of Σ. Set Σ1/2 = PA1/2

so that Σ = Σ1/2Σ1/2. Let the bivariate vectors σ′1 and σ′2 denote the rows of Σ−1/2
′
. Then

let

Y =

 Y1

Y2

 = Σ−1/2
′
(X − µ)

The joint distribution function of Y1 and Y2 is denoted by G and the marginal distribution

functions of Y1 and Y2 are denoted by G1 and G2, respectively. Then the for α1, α2 ≥ 0 and

α1 + α2 ≤ 1, the bivariate vector η (α1, α2) is an (α1, α2) the bivariate quantile point if

η (α1, α2) = µ+ Σ1/2ξ∗ (α1, α2)

where ξ∗ (α1, α2) =
(
G−112 (α1, α2) , G

−1
2 (α1 + α2)

)′ is the (α1, α2) th NS bivariate quantile

point of Y = Σ−1/2
′
(X − µ).
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In the application to 450K data, no assumptions on the distributions of the methylated

and unmethylated values were placed, and as such, the empirical marginal distributions

were used instead. As such the sample (α1, α2) th NS bivariate quantile point ξ̂ (α1, α2) , is

defined as in the original definition of the NS bivariate quantile, but with F2 and F being

replaced by F̂2 and F̂ , respectively.

2.1.2 Limitations

In the original functional normalization algorithm, H = 500 to find 500 equidistant quantiles,

ranging from 0 to 1 for each sample and done separately for methylated and unmethylated

signals. For the purposes of this research, as well as time constraints, we do not want

to significantly deviate from the original functional normalization method. As such, we

would want these bivariate quantiles of methylated and unmethylated signals to have non-

decreasing monotonicity, as well as interpretability, similar to that of univariate quantiles.

Hence, it is appropriate to use the definition of ξ(α) = ξ
(
1
2
α, 1

2
α
)
, 0 ≤ α ≤ 1, to find the

bivariate quantiles of a single sample. Using the definition seems to perform as described on

elliptical-shaped data, as shown in Figure 2.1. In the figure, the chosen bivariate quantile

points follow the orientation of the data in space. However, for our purposes, we would like to

use a definition of a bivariate quantile that bears some resemblance to the univariate quantile

in regards on how the quantile function relates to the density function in the univariate

setting. As such, we would hopefully like to see these bivariate quantiles have some relation

to their joint CDF. However, examining Figure 2.1, this does not seem to be the case.

Notably, in the third plot of Figure 2.1, although the chosen quantile points in the plot

follow the definition described by Chen and Welsh (2002), it is fairly obvious that all the

points have a probability smaller than or equal to 0.5.

For our purposes, we would like to have a definition of a bivariate quantile that can get

the full range of values of methylated and unmethylated signals so we can have values akin
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Figure 2.1 α Bivariate Quantiles of Bivariate Normal Distribution with correlation
ρ = 0.8, -0.8 and 0 respectively, with the sample size for each being n = 5000. The
red points represent the calculated α bivariate quantile levels as defined by Chen
and Welsh (2002), with α ∈ [0, 1], ai < aj, i = 1, 2...500

to the univariate quantiles retrieved in the original Functional Normalization algorithm.

2.2 Bivariate quantile by Vineshkumar and Nair (2019)

Upon looking at the limitations of the quantiles proposed by Chen and Welsh (2002), we

then looked at the definition of a bivariate quantile proposed by Vineshkumar and Nair

(2019). The bivariate quantile function of (X1, X2) is defined in this paper as the pair

(Q1 (u1) , Q21 (u2|u1)) , where Q1(u) is

Q1 (u1) = inf {x1|F1 (xi) ≥ u1} ,

and Q21 is given as

Q21 (u2|u1) = inf {x2 |P (X2 ≤ x2|X1 > Q1 (u1)) ≥ u2}

where 0 ≤ ui ≤ 1, i = 1, 2

As stated previously, for the sake of non-decreasing monotonicity, as well as interpretabil-

ity, we define the αth bivariate quantile point of (X1, X2) in the same manner as above, but
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with u1 = u2 = α. Also, following in a similar manner to the previous bivariate quantile

definition defined by Chen and Welsh, we use the empirical CDFs of X1 and X2 as in our

case, we make no assumption on the univariate distributions. Using these empirical CDFs

should not be an issue since for X1 and X2, there are >450,000 values each.

2.2.1 Limitations

One alluring aspect of this definition is that there is no particular restriction placed on the

sum of u1 and u2, which allows us to theoretically find larger values of the X2 component

of the bivariate quantile. Although this definition of a bivariate quantile does not have

the same caveats as the previous definition defined by (Chen and Welsh, 2002), it is not

without its own concerns. When finding αth bivariate quantile points of the methylated

and unmethylated data of the 450K array, defined as (X1,α, X2,α), we then compared α to

the empirical joint CDF of the methylated and unmethylated signals, F̂ (x1, x2), evaluated

at (X1,α, X2,α). Table 2.1 below shows this comparison for the samples of the minfiData

dataset at the 10% quantiles for Type I green, Type I red and Type II signals.

From Table 2.1, we see that at each α level, the joint probabilities calculated from these

bivariate quantile points greatly differ from the α level value. We would hope that from a

definition of a bivariate quantile that α and F̂X1,X2(X1 = x1,α, X2 = x2,α) would be relatively

similar, since it seems more natural for a non-decreasing bivariate quantile to have a relation

with the related joint CDF.

2.3 Building a new definition for Bivariate Quantiles

We consider the development of an αth bivariate quantile points via the diagonal line of the

unit square, [0, 1]2, from point (0, 0) to (1, 1). However, we still would like to take the corre-

lation between methylated and unmethylated signals along with the usage of the joint CDF.

Copulas provide a natural bridging of these ideas, since copulas can model dependencies of
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α Type I Green Type I Red Type II

0.10 0.0001-0.0004 0.0003-0.0012 0.0031-0.0091

0.20 0.0014-0.0027 0.0019-0.0054 0.0247-0.0467

0.30 0.0065-0.0088 0.0077-0.0164 0.0785-0.1170

0.40 0.0150-0.0207 0.0235-0.0398 0.1564-0.2039

0.50 0.0317-0.0425 0.0565-0.0925 0.2484-0.3038

0.60 0.0676-0.1112 0.1143-0.1816 0.3532-0.4168

0.70 0.1399-0.2371 0.2068-0.3115 0.4690-0.5423

0.80 0.2593-0.4196 0.3428-0.4819 0.5979-0.6746

0.90 0.4825-0.6700 0.5613-0.7178 0.7463-0.8052

Table 2.1 Comparisons Between α and ranges of FX1,X2(X1 = x1,α, X2 = x2,α)
for Type I Green, Type I Red and Type II probes signals for all samples in the
MinfiData dataset

variables, as their joint CDF is defined in terms of the marginal CDFs. We thus consider

the use of copulas to come up with a definition of a monotonically non-decreasing bivari-

ate quantile. Before the definition of the copula-based bivariate quantile can be discussed,

background information on copulas is needed.

2.3.1 Copulas

Consider a random vector (X1, X2, . . . , Xd) . By applying the probability integral transform

to each component, the random vector

(U1, U2, . . . , Ud) = (F1 (X1) , F2 (X2) , . . . , Fd (Xd))

has uniformly distributed marginals.

The copula of (X1, X2, . . . , Xd) is defined as the joint cumulative distribution function of

(U1, U2, . . . , Ud)

C (u1, u2, . . . , ud) = Pr [U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud]
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The copula C contains all information on the dependence structure between the components

of (X1, X2, . . . , Xd) whereas the marginal cumulative distribution functions Fi contain all

information on the marginal distributions. Copulas have been used in multiple applications,

most notably the Gaussian copula in quantitative finance (Li, 1999). Other uses include

medicine, specifically in neuroscience (Onken et al., 2009). However, for our purposes, we

would like to have a more concrete relation between copulas and the marginal distributions,

as seen in the previous bivariate quantile definitions. Fortunately, this is possible through

Sklar’s Theorem.

Sklar’s Theorem

Sklar’s theorem provides the theoretical foundation for the application of copulas (Sklar,

1959). Sklar’s theorem states that every multivariate cumulative distribution function

F (x1, . . . , xd) = Pr [X1 ≤ x1, . . . , Xd ≤ xd]

of a random vector (X1, X2, . . . , Xd) can be expressed in terms of its marginals Fi (xi) =

Pr [Xi ≤ xi] and a copula C:

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd))

The theorem also states that, given F , the copula is unique on Ran (F1)×· · ·×Ran (Fd) ,

which is the cartesian product of the ranges of the marginal cdf’s. This implies that the

copula is unique when the marginals, Fi, are continuous. The converse is also true: given

a copula C : [0, 1]d → [0, 1] and marginals Fi(x) then C (F1 (x1) , . . . , Fd (xd)) defines a d-

dimensional cumulative distribution function. From here, we note that a copula, especially

copulas stemming from bivariate data, can be modelled by its dependence structure, which

is usually a scatterplot modelling of the marginal CDFs against each other.
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Name of Copula Bivariate Copula Cθ(u, v) parameter θ

Ali–Mikhail–Haq uv
1−θ(1−u)(1−v) θ ∈ [−1, 1]

Clayton
[
max

{
u−θ + v−θ − 1; 0

}]−1/θ
θ ∈ [−1,∞)\{0}

Frank −1
θ

log
[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
θ ∈ R\{0}

Gumbel exp
[
−
(
(− log(u))θ + (− log(v))θ

)1/θ]
θ ∈ [1,∞)

Independence uv

Joe 1−
[
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

]1/θ
θ ∈ [1,∞)

Table 2.2 Most Prominent Bivariate Archimedean Copulas (Nelsen, 2011)

Archimedean copulas

Archimedean copulas are copulas that admit an explicit formula. Archimedean copulas allow

modeling dependence in arbitrarily high dimensions with only one parameter, governing the

strength of dependence.

A copula C is called Archimedean if it has the form:

C (u1, . . . , ud; θ) = ψ[−1] (ψ (u1; θ) + · · ·+ ψ (ud; θ) ; θ)

where ψ : [0, 1] × Θ → [0,∞) is a continuous, strictly decreasing and convex function such

that ψ(1; θ) = 0. θ is a parameter within some parameter space Θ . ψ is the so-called

generator function and ψ[−1] is its pseudo-inverse defined by

ψ[−1](t; θ) =

 ψ−1(t; θ) if 0 ≤ t ≤ ψ(0; θ)

0 if ψ(0; θ) ≤ t ≤ ∞

In the literature, there are many bivariate Archimedean copulas that are used to model

the dependence of bivariate data. Table 2.2 highlights the most prominent bivariate Archimedean

copulas.

For parameter estimation, each copula has statement that connects its parameters to

Kendall’s Tau (τ) and Spearman’s Rho (ρ), both of which are measures of non-parametric
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rank correlations, and can be formulated as special cases of a more general correlation coef-

ficient. However, it is noted in literature that the it is more common to use Kendall’s Tau

over Spearman’s Rho for parameter estimation (Wysocki, 2015).

Kendall’s Tau (τ)

Consider (x1, y1) , (x2, y2) , . . . , (xn, yn) a set of observations of the joint random variables X

and Y respectively. Any pair of observations (xi, yi) and (xj, yj) , where i < j, are said to

be concordant if the ranks for both elements agree; that is, if both xi > xj and yi > yj; or if

both xi < xj and yi < yj. Furthermore, they are said to be discordant if xi > xj and yi < yj,

or if xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither. Kendall’s τ is defined as:

τ =
( number of concordant pairs )− ( number of discordant pairs )(

n
2

)
If the agreement between the two rankings, wis perfect (the two rankings are identical),

τ = 1. Similarly, if the disagreement between the two rankings, is perfect (one ranking is

the reverse of the other), τ = −1. On the other hand, if X and Y are independent, then

τ is approximately zero, as every pair has equal chance of being concordant or discordant.

Kendall’s τ ’s relationship with the parameters of the listed bivariate Archimedean copula

are shown in Table 2.3. Note that

D1(α) =
1

α

∫ α

0

t

et − 1
dt

and

DJ(θ) =

∫ 1

t=0

[
ln
(
1− tθ

)−] (
1− tθ

)
tβ−1

dt

is the Debye function of the first kind and Debye function respectively.

Using Archimedean copulas gives us an advantage since the majority of them are writ-

ten in explicit form, especially bivariate Archimedean copulas. By utilizing these bivariate

Archimedean copulas with explicit form, as well as everything else mentioned above, we now

develop a definition of a bivariate quantile.
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Name of Copula Relationship to τ (τ =)

Ali–Mikhail–Haq 3θ−2
3θ
− 2(1−θ)2 ln(1−θ)

3θ2

Clayton θ
θ+2

Frank 1− 4
θ

[1−D1(θ)]

Gumbel θ−1
θ

Joe 1 + 4
θ
DJ(θ)

Table 2.3 Kendall’s τ relationship to the parameters of the mentioned bivariate
copulas. Table taken from Karakas et al. (2017)

Definition of the copula-based bivariate quantile

Let (x1, y1) , (x2, y2) , . . . , (xn, yn) be bivariate observations. Then, from Sklar’s Theorem, we

have the following:

F (x, y) = C(F1(x), F2(y))

where F (x, y) is the joint distribution of X and Y , F1(x) and F2(y) are the marginal dis-

tributions of X and Y respectively, and C is a bivariate copula, ideally with an explicit

form. Now, let F1(x) = u and let F2(y) = g(u), where g(u) is a monotonically increasing,

continuous function, with the restrictions u = 1 =⇒ g(u) = 1 and u = 0 =⇒ g(u) = 0.

Then we have

C(F1(x), F2(y)) = C(u, g(u))

Now, set F (x, y) to a value α, where α ∈ [0, 1]. The αth bivariate quantile point is thus the

solutions to the equation

α = C(u, g(u))

which is thus the point (F−11 (u), F−12 (g(u))), where
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F−11 (u) = inf {x|F1(x) ≥ u}

and

F−12 (g(u)) = inf {x|F2(x) ≥ g(u)}

where u ∈ [0, 1].

With this definition of a bivariate quantile, we hope to overcome the limitations that

were observed with the previous definitions.
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Chapter Three

Bivariate Functional Normalization

Methodology

Using the copula-based bivariate quantile defined in Chapter 2, we now discuss how we build

a bivariate version of the functional normalization algorithm. In the original functional nor-

malization algorithm from Fortin et al. (2014), they change the quantiles of the methylated

and unmethylated signals via the use of a linear fitting for each signal separately by uni-

variate principal component regression. However, to take the correlation into account when

normalizing the distributions of the methylated and unmethylated signals, we propose the

use of partial least squares modelling instead of the regular principal component regression

done in the original method. This allows for a bivariate response linear model rather than

two separate univariate response.

3.1 Partial Least Squares Regression (PLSr) - Background

Developed by Wold (1966), partial least squares regression (PLSr) is a generalization of

multiple linear regression (MLR) and is similar to principal component regression (PCR).

The method is used to analyze data with strongly collinear, correlated, noisy, and numerous

predictor X variables, and it can also simultaneously model several response variables Y
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taking into account correlations between them. The main focus of PLS is to extract the

latent variables (LVs) accounting for as much of the variation between the covariates as

possible while modeling the responses well. This is achieved indirectly by extracting the

latent variables T and U, from sampled covariates and responses, respectively. In general:

X = TPT + EX

Y = UQT + EY

where X is an n× k matrix of predictors, Y is an n×m matrix of responses; T and U are

n× a matrices that are, respectively, projections of X (the X score matrix) and projections

of Y (the Y scores). Furthermore, P and Q are, respectively, k × a and m × a orthogonal

loading matrices, and matrices EX and EY are the error terms, assumed to be independent

and identically distributed random normal variables. Note that for PLS X is approximated

by the first a components chosen and takes care of measurement error through EX . The

decompositions of X and Y are done to maximize the covariance between T and U. The

extracted X scores, T are then used to predict the Y scores, U. The predicted Y scores

are then used to construct predictions for the responses. Formally, PLSR methods solve the

following maximization problem:

max
w,c
{cov (Xiwi,Yici)}

subject to

wT
i wi = 1, cT

i ci = 1

and

tTi tj = 0,uTi uj = 0

for all i 6= j, i = 1, 2, ...A.

where wi, ci and ti,ui are weight vectors and score vectors for X and Y, respectively. A

simple schematic of PLS can be shown in Figure 3.1.
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Figure 3.1 A General Schematic of Partial Least Squares from Filzmoser, Serneels,
et al. (2009)

For PLSR, the components are obtained iteratively. It starts with the singular value

decomposition of the crossproduct matrix S = XTY, thus including information on variation

in both X and Y, and on the correlation between them. The first left and right singular

vectors, w and c, are used as weight vectors for X and Y, respectively, to obtain scores t

and u via the following equations:

t = Xw = Ew

u = Yc = Fc

Here, where E and F are initialised as X and Y, respectively. The X scores t are often

normalised as t = t/
√

tT t. Next, X and Y loadings are obtained by the following equations:

p = ET t

q = FT t

The data matrices are then “deflated”; the information related to this latent variable, in

the form of the outer products tpT and tqT , is subtracted from the (current) data matrices

E and F.
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En+1 = En − tpT

Fn+1 = Fn − tqT

where the dimensions of t,p and q are n× 1, k × 1 and m× 1 respectively. The estimation

of the next component then can start from the SVD of the crossproduct matrix ET
n+1Fn+1.

After every iteration, vectors w, t,p and q are saved as columns in matrices W,T,P and

Q, respectively. The relationship between the weights to the original X matrix is given by

T = XW
(
PTW

)−1
= XR

where R = W
(
PTW

)−1. Using this relationship, the regression coefficients, β, can be

calculated, and converted to the realm of the original variables by pre-multiplying matrix

R. We thus get the following equation :

β = R
(
TTT

)−1
TTY = RTTY = RQT

where here only the first l components are used. The number of optimal components are

usually determined by cross-validation.

There are many variants of the PLS algorithm for estimating the factor and loading

matrices T,U,P and Q. The most prominent algorithms used are the kernel algorithm

by Lindgren et al. (1993), the classic orthogonal scores algorithm (known as the “Nonlin-

ear Iterative Partial Least Squares” or NIPALS algorithm) that was developed along with

PLS regression and the SIMPLS algorithm, developed by (Jong, 1993). Due to producing

the same results as the original NIPALS algorithm and being faster on average than the

other mentioned methods, the kernel algorithm is chosen for our needs. Briefly, the kernel

algorithm uses the results from the original NIPALS algorithm along with the calculation of

w, c, t and u using eigenvalue-eigenvector equations described in Jöreskog and Wold (1982).
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3.2 Bivariate Quantiles for 450K array data

As in the original functional normalization algorithm for 450K array data, we attempt to

first retrieve 500 equidistant quantiles from each sample. However, instead of extracting

the univariate quantiles from methylated and unmethylated signals separately, we treat the

methylated and unmethylated signals as a bivariate data set, with Xi and Yi being the

methylated and unmethylated data values from sample i respectively, and retrieve the bi-

variate quantiles from each sample.

However, before the bivariate quantiles are retrieved from each sample, an appropriate

copula must be chosen. Again, we restricted ourselves to bivariate Archimedean copulas

for reasons of computational complexity and time constraints. However, of the bivariate

Archimedean copulas listed in Table 2.2, only the Ali–Mikhail–Haq (AMH) copula and the

Frank copula can model both positive and negative dependence of Xi and Yi, whereas the

other listed copulas can only model positive dependence (Ruppert and Matteson, 2015).

Investigating the AMH copula further reveals that when using this copula, Kendall’s τ is

bounded. In particular, from Table 2.1 and Table 2.2, the parameter θ for the AMH copula

lies in the interval [−1, 1] and its relationship to τ is the formula

τ(θ) =
3θ − 2

3θ
− 2(1− θ)2 ln(1− θ)

3θ2

From the formula, when θ = −1, τ(θ) = 5−8 ln 2
3

and when θ = 1, τ(θ) = 1
3
. Hence, this

copula is not suitable for obtaining bivariate quantiles of methylation data. On the other

hand, the Frank copula does not have this restriction. In particular, for the Frank copula,

τ(θ) is the following:

1− 4

θ
[1−D1(θ)]

where D1 is the Debye function of the first kind. Expanding out the equation gives

τ(θ) = 1− 4

θ
+

4

θ2

∫ θ

0

t

et − 1
dt

28



Now, with the use of numerical integration, as θ → +∞ the integral
∫ θ
0

t
et−1dt ≈ 1.644934,

making limθ→+∞ τ(θ) = 1. In a similar manner, as θ → −∞,

lim
θ→−∞

∫ θ

0

t

et − 1
dt = lim

θ→−∞

∫ 0

θ

−t
et − 1

dt ≤ lim
θ→−∞

∫ 0

θ

−t
−1

dt = −∞

From the above, using L’Hospital’s Rule and the Fundamental Theory of Calculus, limθ→−∞
4
θ2

∫ θ
0

t
et−1dt =

−2, which then implies limθ→−∞ τ(θ) = −1. Thus, τ ∈ (−1, 1)\{0} for the Frank Copula.

As such, with τ ′s flexibility in range for the Frank copula, as well as being able to model

positive and negative correlation, the Frank copula is a suitable candidate to obtain the

bivariate quantiles of the methylated and unmethylated signals.

3.3 Building the Algorithm

For implementing the algorithm, R 4.0.0 was used (R Core Team, 2020).

In terms of building a bivariate version of the functional normalization algorithm, we

first acknowledge that we would want to build it in a very similar manner to the original

functional normalization method. As such, we reuse a lot of the original functions from the

functional normalization algorithm (Fortin et al., 2014).

In the original paper, it has been suggested to use data that have already been background

corrected using the normal-exponential out-of-band (noob) method; a background correction

method with dye-bias normalization for Illumina Infinium methylation arrays (Triche et al.,

2013). Briefly, the noob process is as follows. Let Xb ∼ N (µ, σ2) and XS ∼ Exp(γ), and the

observed foreground intensity Xf = XS + Xb. Parameters are estimated from the background

distribution using all control probes, and the signal parameter γ from the observed foreground

intensities with the background mean subtracted (Xf − µ) The conditional expectation of

the signal given the observed foreground and background is computed by,

E [Xs|Xf ] = µsf + σ2 φ (0;µsf , σ
2)

1− Φ (0;µsf , σ2)

29



where µs,f = xf − µ− σ2/γ, φ(·) the standard normal density and Φ the cumulative normal

distribution. Due to getting slightly better results in the original functional normalization

method demonstrated by Fortin et al. (2014), we include the use of background correction

or background and dye bias correction in our algorithm via the preprocessNoob function in

the minfi package.

We also use the same the 42 summary control measurements mentioned in the origi-

nal functional normalization method as our covariates, since they have been shown to be

surrogate for the unwanted, non-biological variation that we wish to regress out.

To get the bivariate quantiles via the Frank copula, the Kendall’s τ correlation between

the methylated and unmethylated signals of the sample in question must be calculated.

However, it has been stated in the R documentation that in base R, computation of Kendall’s

τ using the cor function is very slow, as its implementation was meant for smaller datasets

(R Core Team, 2020). We overcome this issue by using the cor.fk function in the pcaPP

package in R (Filzmoser, Fritz, et al., 2018). Once the Kendall’s τ correlation is obtained,

the parameter θ needs to found. Using the equation in Table 2.1 will allow one to find the

parameter θ. However, it is apparent from the equation that there is not a closed form

expression for θ and hence, numerical inversion methods must be done to solve for θ. To

find θFrank, we use the BiCopTau2Par function found in the VineCopula package (Nagler

et al., 2019). After obtaining θ, with the use of our definition of a bivariate quantile, we

obtain the bivariate quantiles via probe type. To keep things simple and understandable,

we used the diagonal of the copula, C(FX(x), FY (y)), to gather our two sets of bivariate

quantiles. In other words, from our definition of a our copula-based bivariate quantile, we

use FY (y) = g(FX(x)) = FX(x) = g(u) = u.

For g(u) = u, we get the following equation

αj = −1

θ
log

[
1 +

(exp(−θu)− 1)2

exp(−θ)− 1

]
where αj is one of the 500 probabilities that are initially chosen. Formally, αj ∈ [0, 1], where
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j = 1, 2, 3...500, j < k =⇒ αj < αk. Rearranging the above equation gives us

exp(−2θu)− 2 exp(−θu) + exp(−θ)− exp(−θ(αj + 1)) + exp(−θαj) = 0

Substituting exp(−θ) = w then gives us

w2u − 2wu + w − wαj+1 + wαj = 0

Doing another substitution, s = wu, we get the equation:

s2 − 2s+ q − qαj+1 + qαj = 0

which makes it apparent that the variable u can be solved via quadratic equation. We thus

get

u(αj) =
ln(1±

√
−e−θ − e−θαj + e−θ(αj+1) + 1)

−θ

Through empirical analysis via analyzing the functions behavior on the minfiData dataset,

as well as looking at the denominator of the equation, when θ is negative, the positive root,

to get positive values of u. Similarly, when θ is positive, we need the negative root to obtain

positive values of u.

Hence, through our analysis, for u ∈ [0, 1],

u(αj) =
ln(1− sign(θ)

√
−e−θ − e−θαj + e−θ(αj+1) + 1)

−θ

After obtaining the bivariate quantile for each sample, we now mimic the original func-

tional normalization method by regressing out the unwanted variation through known co-

variates that can measure unwanted variation. However, unlike the original method where

they used principal component regression to regress out the unwanted variation, we use PLS

regression instead.

In the original Functional Normalization algorithm, unwanted variation was removed via

the following steps. First, for a given probe type, a matrix of quantiles of signal intensities

(either methylated or unmethylated), H, is obtained, where H is 500 × N , where N is
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the number of samples and the 500 columns correspond to one of the equidistant quantile

values, α1...α500. Then, the algorithm fixes potential problems with extreme quantile values

by setting the rows of H where α1 = 0 to a value of zero, as well as setting the largest

methylated value (or the α500 quantiles) of each sample to be greater than the previous

quantile (α499) value by a value of 1000.

Then, the across-samples mean is obtained for each quantile level, denoted by h̄i• =

1
N

N∑
j=1

hi,j, i = 1 . . . 500 From here on, a matrix of ‘residuals’, named H∗ is created via the

equation

H∗ = H− h̄N•J1×N

where h̄T
N• =

[
h̄1•, ..., h̄500•

]
with dimension 1 × 500 and J1×N is a 1 × N matrix (row

vector) of all ones. In other words, the values at a given quantile level are centered via their

corresponding mean. The rows of this new ‘residual’ matrix, are then regressed separately

via principal component regression, which thus regresses out the unwanted variation for each

quantile. The residuals of the linear fitting are then placed in a new matrix, Hnew and the

previous row means, h̄i•, are added to this new matrix by the corresponding row, or simply

Hnew = H∗ + h̄N•J1×N

This is done so as to preserve the inherent noise and biological differences within the quantile

functions. The quantiles are then regularized to ensure a monotonically increasing and non-

negative quantile function. αi is set to the cumulative maximum of α1, , αi.

Linear interpolation is then used between quantile values for each sample, creating a new

target quantile distribution. The signal intensities of each sample are then normalized via

quantile normalization using this new target distribution as the reference distribution for

quantile normalization. This process is repeated separately by probe type and separately for

methylated and unmethylated signals. The sex chromosomes are normalized separately from

the autosomal signals and for these males and females are normalized separately if there are

sufficient samples from each gender to do this reliably. For the X chromosome, functional
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normalization is used, and for the Y chromosome, quantile normalization is used.

For our study, we use a similar process to the original Functional Normalization, but

instead with the use of PLS regression. We first note that we also fix potential problems

with extreme quantile values the exact way as it was done in the original algorithm. As such,

for the 500th bivariate quantile for each sample to be greater than the previous quantile (α499)

value by a value of 1000, or (qm,500, qu,500) = (qm,499, qu,499) + (1000, 1000). For a particular

αth bivariate quantile, we firstly create a matrix Yα with dimensions N × 2, with each row

being the nth sample’s αth bivariate quantile, with the first column being methylated signals

and the second column being unmethylated signals.

Yα =



F̂−1Meth1
(u(α1)) F̂−1Unmeth1

(u(α1))

F̂−1Meth2
(u(α2)) F̂−1Unmeth2

(u(α2))

...
...

F̂−1MethN (u(αN)) F̂−1UnmethN (u(αN))


Relatedly, akin to functional normalization, we subtract the column means from values

in the corresponding column, which are the averages of the methylated and unmethylated

signals across samples at a given quantile level, α, denoted by ȳ·1 = 1
N

N∑
i=1

F̂−1Methi(uα,i) and

ȳ·2 = 1
N

N∑
i=1

F̂−1Unmethi(uα,i),creating a ‘residual’ matrix, denoted by Y∗α

Y∗α =



F̂−1Meth1
(u(α1))− ȳ·1 F̂−1Unmeth1

(u(α1))− ȳ·2

F̂−1Meth2
(u(α2))− ȳ·1 F̂−1Unmeth2

(u(α2))− ȳ·2
...

...

F̂−1MethN (u(αN))− ȳ·1 F̂−1UnmethN (u(αN))− ȳ·2


We then regress on Y∗α with the control probe summary matrix as our covariates via PLS

regression via the plsr function in the pls package (Mevik et al., 2019). From the fitting,

we obtain the N × 2 residual matrix, EY∗α . The previous column means are then added to

the residuals from the PLS regression fitting so as to preserve inherent noise and differences
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in the quantile functions, again, similar to the original algorithm, hence creating these new

fitted quantiles, Ynew
α .

Ynew
α = EY∗α + JN×1

[
ȳ·1 ȳ·2

]
where JN×1 is a N × 1 matrix (column vector) of all ones.

The process is repeated for all 500 α bivariate quantiles. These new quantiles are then

regularized to ensure a monotonically increasing and non-negative quantile function in the

same fashion as done in Functional Normalization, but with our bivariate quantiles instead.

We then use the .normalizeMatrix function in the minfi package to separately normalize

the methylated and unmethylated signals (Fortin et al., 2014). This process is repeated for all

probe types. For the purposes of this thesis we only applied our method to the 22 autosomal

chromosomes and not the sex chromosomes.

In terms of the choosing the number of components that one should use for the PLS

regression fitting, we need to consider the varying sample sizes, since as N increases, so

too does the number of possible components that can be chosen, up to a maximum of 42

components. However, we would hope that using a small number of components in the PLS

regression fitting will capture the variation explained by non-biological factors and preserve

the inherent biological variation within a 450k array dataset. As such, for research purposes,

we look at the number of components m = 1, 2, 3, 4 when running our method on chosen

datasets.

We also note that due to the nature of doing PLS regression on each of these 500 quantiles

gives us different X scores for each regression and thereby giving us different regression coef-

ficients at each quantile. Table 3.1 demonstrates this fact when the number of components,

m = 3 on a small dataset in the minfiData package, which is one of the datasets in which we

applied our algorithm. More information on the datasets used will be given in Section 3.3.1.

In regards to this observation, although the regressions done at each quantile level are
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10% quantile 50% quantile 90% quantile

Component 1 2 3 1 2 3 1 2 3

Sample 1 -5.8023145 3.4642573 -1.4369603 -8.4256324 0.2360034 0.3656026 8.3658829 -0.2202471 0.2791163

Sample 2 1.5235729 0.7891839 -1.3192991 0.1660735 2.6473295 1.4078039 -0.2488104 2.2306782 0.6004411

Sample 3 2.1216217 -1.3350432 -5.1282881 1.6584443 1.5399841 -4.1920118 -1.702056 1.3763422 -4.3431328

Sample 4 0.4501457 2.1691718 4.1739757 0.4360793 -3.9013887 -1.1998152 0.1686988 -0.8399016 0.8058703

Sample 5 4.5932469 0.8115803 1.7893483 4.0185043 0.9703661 1.3648776 -3.7310464 2.7135289 2.4275566

Sample 6 -2.8862727 -5.8991501 1.9212236 2.146531 -1.4922944 2.2535429 -2.8526689 -5.2604006 0.2301484

Table 3.1 The x-scores of the PLS regression fitting of the 10%, 50% and 90%
quantiles for Type I Green probes, with the number of components,m = 3 on the
minfiData dataset

essentially using different regression coefficients, doing so may allow the possibility that batch

effects may have more pronounced effects at particular levels of methylated and unmethylated

signals.

3.3.1 Applying the Methodology to Datasets

As shown throughout this thesis, we have built our methodology using the minfiData dataset

as a reference. To see how methodology works on other larger datasets, we have chosen

Methylation data obtained from the European Bioinfomatics Institute website (https://

www.ebi.ac.uk/). The particular dataset we used was ‘E-GEOD-68777 - Association of

DNA Methylation with Acute Mania and Inflammatory Markers’ created by Sabunciyan et

al. (2015). For ease of reference, we will refer to the latter as the Mania dataset.

MinfiData dataset

The minfiData dataset is a R package containing a dataset that is used in tutorials for

applying pipelines to 450K data in R (Hansen et al., 2019). This particular dataset stems

from 6 samples across 2 groups from 450K methylation arrays, with half of the group having

cancer and the other half as control. We compare results from our method to the results

from Functional Normalization and to the raw dataset where no preprocessing is done (no
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noob and no normalization). Figures 3.2, 3.3 and 3.4 show the results from no processing,

Functional Normalization and the developed normalization method respectively.

Figure 3.4 Beta Value Density Plots for the minfiData dataset, with number of
components chosen m =1,2,3,4

Comparing our results to the results obtained from Functional Normalization and the

unprocessed data, we seem to be taking the correlation between the methylated and un-

Figure 3.2 Beta Value Density Plots for the minfiData dataset with no normaliza-
tion done
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Figure 3.3 Beta Value Density Plots for the minfiData dataset with Functional
Normalization and dye bias correction done

methylated signals into account and thus lowering the peaks at the extremes of the data.

Furthermore, we seem to be keeping the integrity of the distributions separable via group

type (cancer vs. control). Examining Figure 3.4 more closely, we see that as the number of

m components increases, the closer the distributions come together. Furthermore, it seems

that the distributions come closer together via group type. We also see that peak at right

side of the Beta-value distribution at m = 3, 4 seems to nearly flatten out when compared

to Figures 3.2 and 3.3. As such, this new method seems very promising. However, problems

arise when looking at other datasets, specifically datasets with higher peaks at the extremes,

as well as with larger samples.

Mania Dataset

The Mania dataset is a genome wide DNA methylation profiling of serum samples from 20

patients hospitalized with acute mania and 20 unaffected individuals using the Illumina 450K

methylation arrays (Sabunciyan et al., 2015). In a similar fashion to the minfiData dataset,

we compare our results from our method to the results from Functional Normalization and

to the raw dataset where no preprocessing is done.
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We now see a problem with our method. Although we are taking the correlation between

the methylated and unmethylated signals into account, the lowering in extremely large peaks

at the extremes of the beta distribution causes the distribution to essentially be ‘squished’,

causing this multimodal distribution to form and thus most likely adding more variation

to the data. Upon further inspection of our method, we note that the use of the built

in function in the Functional Normalization algorithm, .normalizeMatrix, may not be a

good idea. This is due to the function assuming that there are equal spacings between the

quantiles at the univariate level. Although we have made our quantiles to be monotonically

increasing as such with Functional Normalization, the equal spacings of our bivariate quan-

tiles do not translate well in the univariate sense. Thus, the linear interpolation done by

.normalizeMatrix does not work well with our bivariate quantiles. It is at this point where

we try to revise our original method in an attempt to improve the performance.
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Figure 3.5 Beta Value Density Plots for the Mania dataset with no normalization
done

Figure 3.6 Beta Value Density Plots for the Mania dataset with Functional Nor-
malization and dye bias correction done
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Figure 3.7 Beta Value Density Plots for the Mania dataset, with number of com-
ponents chosen m =1,2,3,4
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Chapter Four

Variations of Fitting for Bivariate

Functional Normalization

We have tried to alleviate the issues with our proposed method shown in the previous chapter

with methods that will be discussed throughout this chapter. We use the Mania dataset

to see how well these methods work. Also, when doing the fitting for all methods using

PLSr, we always used m = 3, because this value seems to make the beta-value distributions

more similar to each other compared to m = 1, 2 and does not show much difference to

when m = 4. Figures 4.1 and 4.2 show the beta-value densities via probe type of the

Mania dataset, with no preprocessing and the original Functional Normalization with noob

correction respectively.
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Figure 4.1 Beta Value Density Plots for the Mania dataset via probe type, with
no preprocessing.

Figure 4.2 Beta Value Density Plots for the Mania dataset via probe type, with
Functional Normalization and noob.
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4.1 Variation Method 1: Bivariate Adjustment Using Bi-

variate Quantiles

4.1.1 Methodology

First, assume there are n arrays and we are choosing H quantiles on each at probability

values 0 < p1 < p2 < · · · < pH < 1. Let these bivariate quantiles be denoted qi,1, . . . , qi,H for

i = 1, . . . , n and they are found using our bivariate quantile method with the Frank copula.

At level ph we fit a model to q1,h, . . . , qn,h and, after subtracting out the effect of the control

variables, we obtain the normalized quantiles q̂1,h, . . . , q̂n,h. After doing this for h = 1, . . . , H

we have q̂i,1, . . . , q̂i,H on each array i = 1, . . . , n. Now, from the normalization process, we

can write q̂i,h = qi,h + (q̂i,h − qi,h) = qi,h + â (qi,h), where âi,h represents the adjustment for

the ph quantile on array i. We then try to make a similar adjustment for points on array

i which are close to qi,h in some sense. Due to the path of quantiles that we have chosen

(going along the diagonal of the Copula with v = u), Euclidean distance does not seem to be

the ideal measure of how close points are to the normalized quantiles. Instead, we propose

to use the empirical distribution function to obtain the adjustment. In particular we find h0

such that

F̂i (qi,h0) ≤ F̂i (yi,j) < F̂i (qi,h0+1)

We then set

â (yi,j) = â (qi,h0) +
F̂i (yi,j)− F̂i (qi,h0)

F̂i (qi,h0+1)− F̂i (qi,h0)
(â (qi,h0+1)− â (qi,h0))

We use this adjustment to get ŷi,j = yi,j + â (yi,j)

There are two situations in which this is not possible; when F̂i (yi,j) < F̂(qi,1) and when

F̂i (yi,j) > F̂(qi,K). To alleviate this issue, we add the two following quantiles:

qi,0 = (min (mi,1, . . . ,mi,M) ,min (ui,1, . . . , ui,M)) qi,K+1 = (max (mi,1, . . . ,mi,M) ,max (ui,1, . . . , ui,M))
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where mi,1, . . . ,mi,M are the methylation probe values on array i and ui,1, . . . , ui,M are

the unmethylation probe values. We treat these exactly like the other quantiles in the sense

that we would fit a model and find the adjustments at each of these minimum and maximum

levels. Note that these points are guaranteed to satisfy the inequalities

F̂i (qi,0) ≤ F̂i (yi,j) F̂i (qi,K+1) ≥ F̂i (yi,j) j = 1, . . . , K

so now it will always be possible to find a k0 (which might be 0 or K ). We would now be

fitting a total of K + 2 models. We propose using K = 499 which results in pj = j/500, j =

0, ..., 500.

For implementation of this method, we need to obtain the empirical joint distribution

of each probe separately by probe type. To do this as efficiently as possible, the ebvcdf()

function in the bivariate package in R was used (Spurdle, 2020). We compare the results

via probe type. Again, before applying our method, we apply the noob dye bias correction.

4.1.2 Results

Refer to Figure 4.3 below for the results when we applied our method to the Type I Green

probes.

Figure 4.3 Beta Value Density Plots for the Mania dataset of the Type I Green
with our first variation and dye bias correction done
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From the results that we have obtained on the Type I probes, it is easy to see that

the method proposed seems to cause multiple shifts for some samples in the Beta-value

distributions, which is a behaviour not seen in the raw data or its preprocessed form via

Functional Normalization. This is most likely due to the use of our bivariate quantiles and

how we have chosen them. Since we set v = u from our definition of a bivariate quantile, this

gives us both increasing methylated and unmethylated values as the quantile level increases.

We would then not have a situation for some points where, for a given sample, methylated

values would be significantly larger then the unmethylated values, or vice versa. This causes

the corresponding Beta value fitted with our monotonically increasing bivariate quantiles

not being able to be fitted properly at beta-values approaching 1. Simply, our quantiles do

not cover the full range of beta-values, as demonstrated for the Type I Green probes in the

Mania dataset in Figure 4.4. We now discuss a second variation to our proposed method

in an attempt to increase the range of beta-values covered.; using the the probability points

stemming from the off-diagonal of the copula for the fitting.

Figure 4.4 Beta-values from quantiles plotted against probabilities from 0-1 for
Type 1 Green probes for the Mania dataset. As the probability increases, the
corresponding Beta-values derived from the quantiles are limited to at most 0.5
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4.2 Variation Method 2: Bivariate Adjustment Using

Probability Points

We now look at the probability points obtained from the off-diagonal of the copula so as to

provide better coverage of large beta values.

4.2.1 Methodology

Let h(u) = 1− u. To obtain these off-diagonal points, we must solve the equation:

α = P (X1 ≤ F−11 (u), X2 ≥ F−12 (h(u))) = u− C(u, h(u))

where h(u) is a monotonically decreasing, continuous function, u = 1 =⇒ h(u) = 0 and

u = 0 =⇒ h(u) = 1 and

F−11 (u) = inf {x|F1 ≥ u}

and

F−12 (h(u)) = inf {x|F2 ≥ h(u)}

In a similar manner to the bivariate quantiles, for h(u) = 1− u, we have

αj = −1

θ
log

[
1 +

(exp(−θu)− 1)(exp(−θ(1− u))− 1)

exp(−θ)− 1

]
Rearranging the equation, we get

exp(θαj) exp(−θu) exp(−θ)−exp(θαj) exp(−θu) = 2 exp(−θ)−exp(−θu)−exp(−θ) exp(θu)

Now, let z = exp(−θu). Since z 6= 0, we can multiply both sides of the equation by z.

Rearranging and collecting like terms then gives us
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z2 (exp(θα) exp(−θ)− exp(θα) + 1)− 2 exp(−θ)z + exp(−θ) = 0

We again use quadratic formula to solve for z and hence find u. Let a = exp(θα) exp(−θ)−

exp(θα) + 1, b = 2 exp(−θ) and c = exp(−θ). We hence get

u(αj) =
ln
− b±

√
b2 − 4ac

2a
−θ

In a very similar fashion to when g(u) = u for the bivariate quantiles, through empirical

analysis, as well as looking at the denominator of the equation, when θ is negative, we need

1 +
√
..., to get positive values of u. Similarly, when θ is positive, we need 1−√... to obtain

positive values of u. We thus get

u(αj) =
ln
− b− sign(θ)

√
b2 − 4ac

2a
−θ

After obtaining these bivariate probability probability points, which we will denote by

ri,k, we follow suite to the first variation method stated before. Let

ˆ̃F (ci, di) = P (Methi ≤ ci,Unmethi ≥ di) = P (Methi ≤ ci)−P (Methi ≤ ci, Unmethi ≤ di)

Then, through a similar process to what was mentioned before, we get k0 such that ˆ̃Fi (ri,k0) ≤
ˆ̃Fi (yi,j) <

ˆ̃Fi (ri,k0+1) and have the following adjustment:

ˆ̃a (yi,j) = ˆ̃a (ri,k0) +
F̂i (yi,j)− F̄i (ri,k0)
F̂i (ri,k0+1)− F̂i (ri,k0)

(
ˆ̃a (ri,k0+1)− ˆ̃a (ri,k0)

)
We then use this adjustment to get ˆ̃yi,j = yi,j + ˆ̃a (yi,j)

Comparing the new chosen probability points to the bivariate quantile points, we see

that the new chosen points cross into the regions of the data that are highly dense, whereas

our original quantiles only partially do this. The reason for this is most likely related to

the negative correlation that is observed in the (Meth,Unmeth) data in each array. This
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is demonstrated in Figures 4.5, 4.6 and 4.7, where each figure shows the scatterplot of

methylated vs unmethylated values and its corresponding dependence structure via probe

type. The black points refer to the probability points chosen and the orange points refer to

the bivariate quantiles. By taking these dense regions into account by using these probability

points instead, we should get a better fit.

Figure 4.5 Scatterplot of Methylated vs. Unmethylated values and the correspond-
ing dependence structure for Type I Green probes.

Figure 4.6 Scatterplot of Methylated vs. Unmethylated values and the correspond-
ing dependence structure for Type I Red probes.
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Figure 4.7 Scatterplot of Methylated vs. Unmethylated values and the correspond-
ing dependence structure for Type II probes.

4.2.2 Results

We present our results graphically in Figure 4.8. From this figure we see that the green and

red probes beta distributions have stabilized more compared to our first variation method

that we suggested before, as well as not exhibiting multimodal behaviour as seen before

in our first proposed method that was discussed in Chapter 3. However, when looking at

the Type II probes, the beta value distributions vary a noticeable amount between samples,

especially towards values of beta = 1. This is not ideal since we would like these distributions

to be as cohesive as possible. We thus tried to develop a way to attenuate this deviation

between samples through the combination of both variation methods mentioned before.
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Figure 4.8 Beta Value Density Plots for the Mania dataset of the Type I Green,
Type I Red and Type II probes with Second Variation preprocessing done

4.3 Variation Method 3: Bivariate Adjustment Using Bi-

variate Quantiles and Probability Points

4.3.1 Methodology

Using the bivariate quantiles and probability points obtained in the first two variation meth-

ods, we would get the two adjustments

â (yi,j) = â (qi,k0) +
F̂i (yi,j)− F̂i (qi,k0)
F̂i (qi,k0+1)− F̂i (qi,k0)

(â (qi,k0+1)− â (qi,k0))

and

ˆ̃a (yi,j) = ˆ̃a (ri,k0) +
F̂i (yi,j)− F̄i (ri,k0)
F̂i (ri,k0+1)− F̂i (ri,k0)

(
ˆ̃a (ri,k0+1)− ˆ̃a (ri,k0)

)
We then use these adjustments to get ŷi,j = yi,j + â (yi,j) and ˆ̃yi,j = yi,j + ˆ̃a (yi,j). We

then use a weighted average of the fits to obtain the final fitted value using the Euclidean

distance from the point yij. To do this, we obtain the distances, d1 and d2 such that

d1 = ||yij − 0.5(qi,k0 + qi,k0+1)||
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and

d2 = ||yij − 0.5(ri,k0 + ri,k0+1)||

The final adjusted y bivariate point is then

yfinali,j =
1
d1

1
d1

+ 1
d2

ŷi,j +
1
d2

1
d1

+ 1
d2

ˆ̃yi,j =
d2

d1 + d2
ŷi,j +

d1
d1 + d2

ˆ̃yi,j

4.3.2 Results

From the results shown in Figure 4.9 , it seems that this new method, which was developed

to normalize the probe distributions better via removing deviating densities between samples

as seen prior, is causing more of this behaviour. Comparing to the results from our second

variation method, the differences in beta-value densities between samples are also apparent

in Type I green and Type I red probes. It is at this point in time where although we have

other ideas that we would like to try out, we could not due to the time constraints of the

thesis.
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Figure 4.9 Beta Value Density Plots for the Mania dataset of the Type I Green,
Type I Red and Type II probes with Third Variation preprocessing done
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Chapter Five

Limitations and Future Work

In this work, we have conducted multiple methodologies that try to extend Functional Nor-

malization to a bivariate setting. However, this has proved to be quite challenging. For

our first methodology discussed in Chapter 3, using our bivariate quantiles and normalizing

the methylated and unmethylated values separately does not generalize to all 450K data, as

shown when applied to the Mania dataset. In Chapter 4, we try to alleviate the issues found

from our first proposed method by doing adjustments to the methylated and unmethylated

values using joint probability distributions and adjustments stemming from the adjustments

done to our quantiles and probability points after normalizing via PLSr. However, although

the new methods to perform better than our previous attempt in Chapter 3, as well as the

unprocessed raw data, the deviation of beta-value distributions between samples remains

concerning. Furthermore, retrieving the empirical joint distribution of each probe type using

the bivariate package created by Spurdle (2020) is computationally difficult. This is prob-

ably due to this method is not designed to deal with samples of the size we get from the

450K array, and is likely to be even worse with the newer EPIC arrays. It is very apparent

from our results that more work must be done towards this project. However, due to time

constraints, other methods which were could not be implemented. Some ideas that we would

have liked to implement are the use of mixture copulas and bilinear interpolation.

For our purposes, the Frank copula was used due to being able to model negative de-
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pendence, as well as having a closed, solvable form compared to other copulas, such as the

Gaussian and the Student-t copula; a special trait of Archimedean copulas. However, looking

at the dependence structures from samples of the Mania dataset, we see that the structures

do not follow the Frank copula. We illustrate this by comparing the dependence structure

of Type I Green, Type I Red and Type II probes from the first sample of the Mania dataset

to simulated data of the same size stemming from the Frank copula via the copula package

by Hofert et al. (2020). The comparisons are shown in Figures 5.1, 5.2 and 5.3. The Frank

copulas in the figures are simulated by using the Kendall’s Tau (τ) value retrieved from the

sample’s methylated and unmethylated values via probe type. This shows how the depen-

dence structures stemming from the sample should theoretically look if the data is from a

Frank copula. In fact, the particular correlation structure we see here is not well modelled

by any of the commonly used copulas in the literature.

Figure 5.1 Dependence Structure of Type I Green Probes of the First Sample of
the Mania dataset and its corresponding simulated Frank Copula

54



Figure 5.2 Dependence Structure of Type I Red Probes of the First Sample of the
Mania dataset and its corresponding simulated Frank Copula

Figure 5.3 Dependence Structure of Type II Probes of the First Sample of the
Mania dataset and its corresponding simulated Frank Copula

In the original Functional Normalization, linear interpolation was used. A natural ex-

tension of this to the bivariate case would be bilinear interpolation. Bilinear interpolation

allows for interpolating functions of two variables on a rectilinear grid and is performed using

linear interpolation first in one direction, and then again in the other direction. The issue

55



of using this method is choosing the points needed for the fitting, as choosing these grid

points is non-trivial. If given more time, we would make the function needed for bilinear

intrpolation the adjustments done to our chosen points after regressing out the unwanted

variation by either PLSr or principal component regression.

We note that some recent work that has been made towards this matter. In particular,

one idea that has shown some promise is the use of Functional Normalization directly on

the Beta values or M-values instead of using them on methylated and unmethylated signals.

However, a drawback of this method is that once this particular normalization method is that

once this normalization procedure is done, there is no way to look at how the methylated

and unmethylated signals are affected and hence, cannot be retrieved. As such, due to the

complex nature of the problem, further research is needed.
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Appendix A

A.1 Chapter 3 Methodology

#---- Chapter 3 Methodology ----

#---- creating a function similar to ’preprocessFunNorm ’ ----

# need minfi package for supplementary functions for 450K data

# need pcaPP package for faster computation of Kendall ’s Tau

# need VineCopula package to calculate parameter of copula from

# Kendall ’s Tau

# need pls package for efficient partial least squares computation

library(minfi)

library(pcaPP)

library(copula)

library(VineCopula)

library(pls)

# Main Function

# We note that many of the functions are either directly

# from the original FunNorm function.

# We also note that the functions we’ve created are conceptually

based

# on original FunNorm but have been changed in a way to implement

# our ideas in Chapter 3.
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preprocessFunnorm.bivar <- function(rgSet , ncomp=3, sex = NULL ,

bgCorr = TRUE , dyeCorr = TRUE , keepCN = TRUE , ratioConvert = TRUE ,

verbose = TRUE) {

# makes sure that object is minfi -backed

.isMatrixBackedOrStop(rgSet , "preprocessFunnorm.bivar")

# makes sure that the object is’RGChannelSet ’ or ’

RGChannelSetExtended ’

.isRGOrStop(rgSet)

rgSet <- updateObject(rgSet)

# Background correction and dye bias normalization via noob

# (preprocessNoob () function):

if (bgCorr){

if(verbose && dyeCorr) {

message("[preprocessFunnorm.bivar]␣Background␣and␣dye␣bias␣

correction␣with␣noob")

} else {

message("[preprocessFunnorm.bivar]␣Background␣correction␣with␣

noob")

}

gmSet <- preprocessNoob(rgSet , dyeCorr = dyeCorr)

if(verbose) message("[preprocessFunnorm.bivar]␣Mapping␣to␣genome"

)

gmSet <- mapToGenome(gmSet)

} else {

if(verbose) message("[preprocessFunnorm.bivar]␣Mapping␣to␣genome"
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)

gmSet <- mapToGenome(rgSet)

}

# tells the user if the inner function should verbose

subverbose <- max(as.integer(verbose) - 1L, 0)

if(verbose) message("[preprocessFunnorm.bivar]␣Quantile␣extraction"

)

# extraction of control probes from data as described by

# Fortin et al. (2014)

extractedData <- .extractFromRGSet450k(rgSet)

rm(rgSet)

# adds sex vector if not specified before

if (is.null(sex)) {

gmSet <- addSex(gmSet , getSex(gmSet , cutoff = -3))

sex <- rep(1L, length(gmSet$predictedSex))

sex[gmSet$predictedSex == "F"] <- 2L

}

if(verbose) message("[preprocessFunnorm.bivar]␣Normalization")

# Gets A matrix of copy number values of the data

# Copy number variation is a phenomenon in which

# sections of the genome are repeated and the number

# of repeats in the genome varies between individuals.

# Needed to convert data to ratio data. In our case ,
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# to Beta -values

if(keepCN) {

CN <- getCN(gmSet)

}

# The main function that does our quantile normalization process

# specified in the thesis in Chapter 3

gmSet <- .normalizeFunnorm450k.bivar(object = gmSet ,

extractedData = extractedData ,

ncomp = ncomp , sex=sex ,

verbose = subverbose)

# Stores preprocess method used.

preprocessMethod <- c(preprocessMethod(gmSet),

mu.norm = sprintf("Funnorm.bivar ,␣ncomp=%s",

ncomp))

# Gets Beta -values if specified

if(ratioConvert) {

grSet <- ratioConvert(gmSet , type = "Illumina", keepCN = keepCN)

if(keepCN) {

assay(grSet , "CN") <- CN

}

grSet@preprocessMethod <- preprocessMethod

return(grSet)

} else {

gmSet@preprocessMethod <- preprocessMethod

return(gmSet)

64



}

}

##### Functions and Helper Functions #####

# Gets the indices of the probes belonging in either

# Type I Green , Type I Red , Type II and Sex chromosomes

.getFunnormIndices <- function(object) {

.isGenomicOrStop(object)

probeType <- getProbeType(object , withColor = TRUE)

autosomal <- (seqnames(object) %in% paste0("chr", 1:22))

indices <- list(IGrn = which(probeType == "IGrn" && autosomal),

IRed = which(probeType == "IRed" && autosomal),

II = which(probeType == "II" && autosomal),

X = which(seqnames(object) == "chrX"),

Y = which(seqnames(object) == "chrY"))

indices

}

# The main function that does our normalization process

# specified in Chapter 3

.normalizeFunnorm450k.bivar <- function(object , extractedData , ncomp ,

sex , verbose = FALSE) {

normalizeQuantiles.bivar <- function(Meth , Unmeth , indices , sex =

NULL) {

# Get the methylated and unmethylated probe signals via

# probe type
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Meth1 <- Meth[indices ,,drop=FALSE]

Unmeth1 <- Unmeth[indices ,,drop=FALSE]

# The old bivariate quantiles of the data as specified in the

thesis.

# We use the Frank copula and use v = u for the copula C(u,v).

oldQuantiles <- .bivariate.quantiles.frank.final(Meth = Meth1 ,

Unmeth = Unmeth1 ,

alpha = probs)

# regressing out unwanted variation by PLS regression

# for either the autosomes or sex chromosomes

if(is.null(sex)) {

newQuantiles <- .returnNewQuantiles(controlMatrix = model.

matrix ,

quantiles = oldQuantiles ,

ncomp = ncomp)

} else {

newQuantiles <- .returnFitBySex.bivar(controlMatrix = model.

matrix ,

quantiles = oldQuantiles ,

ncomp = ncomp , sex = sex)

}

# This function was from the original FunNorm

# where linear interpolation will be done between the quantiles

# after regressing out the variation.

.normalizeMatrix(cbind(Meth1 ,Unmeth1), newQuantiles)

}

indicesList <- .getFunnormIndices(object)
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# The control matrix is built from the extracted data

# by using the summary statistics defined in Fortin et al. (2014)

# for the control probes

model.matrix <- .buildControlMatrix450k(extractedData)

# Remove the first and last quantile level since we set the 1st

quantile

# to be 0 and the last quantile to be the 499th quantile value +

1000

probs <- seq(from = 0, to = 1, length.out = 500)[c(-1,-500)]

Meth <- getMeth(object)

Unmeth <- getUnmeth(object)

Combined <- cbind(Meth ,Unmeth)

n = ncol(Meth)

if (ncomp > 0){

# autosomes normalization

for (type in c("IGrn", "IRed", "II")) {

indices <- indicesList [[type]]

if(length(indices) > 0) {

if(verbose) message(sprintf("[normalizeFunnorm450k.bivar]␣

Normalization␣of␣the␣%s␣probes", type))

Combined[indices ,] <- normalizeQuantiles.bivar(Meth = Meth ,

Unmeth =

Unmeth ,

indices =

indices ,
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sex = NULL)

}

}

# X-chrom normalization

indices <- indicesList [["X"]]

if(length(indices) > 0) {

if(verbose) message("[normalizeFunnorm450k.bivar]␣Normalization

␣of␣the␣X-chromosome")

Combined[indices ,] <- normalizeQuantiles.bivar(Meth =Meth ,

Unmeth = Unmeth ,

indices =

indices ,

sex = sex)

#()

}

}

#()

Meth = Combined[,c(1:n)]

Unmeth = Combined[,c((n+1):(2*n))]

# Y-chrom normalization

# For Y-chrom , we use quantile normalization defined by Bolstad et

al. (2003)

# This method is in the preprocessCore package but is imported with

minfi

indices <- indicesList [["Y"]]
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if(length(indices) > 0) {

if(verbose) message("[normalizeFunnorm450k.bivar]␣Normalization␣

of␣the␣Y-chromosome")

sex <- as.character(sex)

levels <- unique(sex)

nSexes <- length(levels)

#()

if (nSexes == 2) {

level1 <- levels [1]

level2 <- levels [2]

}

if (nSexes == 2) {

if (sum(sex == level1) >1) {

Meth[indices , sex== level1] <- preprocessCore :: normalize.

quantiles(Meth[indices , sex == level1 , drop=FALSE])

Unmeth[indices , sex== level1] <- preprocessCore :: normalize.

quantiles(Unmeth[indices , sex == level1 ,drop=FALSE])

}

if (sum(sex == level2) >1) {

Meth[indices , sex== level2] <- preprocessCore :: normalize.

quantiles(Meth[indices , sex == level2 ,drop=FALSE])

Unmeth[indices , sex== level2] <- preprocessCore :: normalize.

quantiles(Unmeth[indices , sex == level2 ,drop=FALSE])

}

} else {

Meth[indices ,] <- preprocessCore :: normalize.quantiles(Meth[

indices ,])

Unmeth[indices ,] <- preprocessCore :: normalize.quantiles(Unmeth[
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indices ,])

}

}

assay(object , "Meth") <- Meth

assay(object , "Unmeth") <- Unmeth

return(object)

}

### To extract quantiles and control probes from rgSet

.extractFromRGSet450k <- function(rgSet) {

rgSet <- updateObject(rgSet)

controlType <- c("BISULFITE␣CONVERSION␣I",

"BISULFITE␣CONVERSION␣II",

"EXTENSION",

"HYBRIDIZATION",

"NEGATIVE",

"NON -POLYMORPHIC",

"NORM_A",

"NORM_C",

"NORM_G",

"NORM_T",

"SPECIFICITY␣I",

"SPECIFICITY␣II",

"TARGET␣REMOVAL",

"STAINING")
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#()

array <- annotation(rgSet)[["array"]]

#()

## controlAddr <- getControlAddress(rgSet , controlType =

controlType , asList = TRUE)

ctrls <- getProbeInfo(rgSet , type = "Control")

#()

if(!all(controlType %in% ctrls$Type))

stop("The␣‘rgSet ‘␣does␣not␣contain␣all␣necessary␣control␣probes")

ctrlsList <- split(ctrls , ctrls$Type)[controlType]

#()

redControls <- getRed(rgSet)[ctrls$Address ,,drop=FALSE]

#()

redControls <- lapply(ctrlsList , function(ctl) redControls[ctl$

Address ,,drop=FALSE])

#()

greenControls <- getGreen(rgSet)[ctrls$Address ,,drop=FALSE]

#()

greenControls <- lapply(ctrlsList , function(ctl) greenControls[ctl$

Address ,,drop=FALSE])

#()

## Extraction of the undefined negative control probes

oobRaw <- getOOB(rgSet)

probs <- c(0.01, 0.50, 0.99)

greenOOB <- t(colQuantiles(oobRaw$Grn , na.rm = TRUE , probs = probs)

)
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redOOB <- t(colQuantiles(oobRaw$Red , na.rm=TRUE , probs = probs))

oob <- list(greenOOB = greenOOB , redOOB = redOOB)

return(list(

greenControls = greenControls ,

redControls = redControls ,

oob = oob , ctrlsList = ctrlsList ,

array = array))

}

## Extraction of the Control matrix from the control probes in

extracted data

## These are the summary statistics of the control probes

## as specified in Fortin et al. (2014)

.buildControlMatrix450k <- function(extractedData) {

getCtrlsAddr <- function(exType , index) {

ctrls <- ctrlsList [[index]]

addr <- ctrls$Address

names(addr) <- ctrls$ExtendedType

na.omit(addr[exType ])

}

array <- extractedData$array

greenControls <- extractedData$greenControls

redControls <- extractedData$redControls

controlNames <- names(greenControls)

ctrlsList <- extractedData$ctrlsList
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## Bisulfite conversion extraction for probe type II:

index <- match("BISULFITE␣CONVERSION␣II", controlNames)

redControls.current <- redControls [[ index ]]

bisulfite2 <- colMeans2(redControls.current , na.rm = TRUE)

## Bisulfite conversion extraction for probe type I:

index <- match("BISULFITE␣CONVERSION␣I", controlNames)

if (array=="IlluminaHumanMethylation450k"){

addr <- getCtrlsAddr(exType = sprintf("BS␣Conversion␣I%sC%s", c("

␣", "-", "-"), 1:3), index = index)

} else {

addr <- getCtrlsAddr(exType = sprintf("BS␣Conversion␣I%sC%s", c("

-", "-"), 1:2), index = index)

}

greenControls.current <- greenControls [[ index ]][addr ,,drop=FALSE]

if (array=="IlluminaHumanMethylation450k"){

addr <- getCtrlsAddr(exType = sprintf("BS␣Conversion␣I-C%s", 4:6)

, index = index)

} else {

addr <- getCtrlsAddr(exType = sprintf("BS␣Conversion␣I-C%s", 3:5)

, index = index)

}

redControls.current <- redControls [[ index ]][addr ,, drop=FALSE]

if (nrow(redControls.current)==nrow(greenControls.current)){

bisulfite1 <- colMeans2(redControls.current + greenControls.

current , na.rm = TRUE)

} else {
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bisulfite1 <- colMeans2(redControls.current , na.rm=TRUE) +

colMeans2(greenControls.current , na.rm = TRUE)

}

## Staining

index <- match("STAINING", controlNames)

addr <- getCtrlsAddr(exType = "Biotin␣(High)", index = index)

stain.green <- t(greenControls [[ index ]][addr ,,drop=FALSE])

addr <- getCtrlsAddr(exType = "DNP␣(High)", index = index)

stain.red <- t(redControls [[ index ]][addr ,, drop=FALSE ])

## Extension

index <- match("EXTENSION", controlNames)

addr <- getCtrlsAddr(exType = sprintf("Extension␣(%s)", c("A", "T")

), index = index)

extension.red <- t(redControls [[index ]][addr ,,drop=FALSE])

colnames(extension.red) <- paste0("extRed", 1:ncol(extension.red))

addr <- getCtrlsAddr(exType = sprintf("Extension␣(%s)", c("C", "G")

), index = index)

extension.green <- t(greenControls [[index ]][addr ,,drop=FALSE])

colnames(extension.green) <- paste0("extGrn", 1:ncol(extension.

green))

## Hybridization should be monitored only in the green channel

index <- match("HYBRIDIZATION", controlNames)

hybe <- t(greenControls [[index ]])

colnames(hybe) <- paste0("hybe", 1:ncol(hybe))

74



## Target removal should be low compared to hybridization probes

index <- match("TARGET␣REMOVAL", controlNames)

targetrem <- t(greenControls [[ index ]])

colnames(targetrem) <- paste0("targetrem", 1:ncol(targetrem))

## Non -polymorphic probes

index <- match("NON -POLYMORPHIC", controlNames)

addr <- getCtrlsAddr(exType = sprintf("NP␣(%s)", c("A", "T")),

index = index)

nonpoly.red <- t(redControls [[index ]][addr , ,drop=FALSE])

colnames(nonpoly.red) <- paste0("nonpolyRed", 1:ncol(nonpoly.red))

addr <- getCtrlsAddr(exType = sprintf("NP␣(%s)", c("C", "G")),

index = index)

nonpoly.green <- t(greenControls [[index ]][addr , ,drop=FALSE])

colnames(nonpoly.green) <- paste0("nonpolyGrn", 1:ncol(nonpoly.

green))

## Specificity II

index <- match("SPECIFICITY␣II", controlNames)

greenControls.current <- greenControls [[index]]

redControls.current <- redControls [[index]]

spec2.green <- t(greenControls.current)

colnames(spec2.green) <- paste0("spec2Grn", 1:ncol(spec2.green))

spec2.red <- t(redControls.current)

colnames(spec2.red) <- paste0("spec2Red", 1:ncol(spec2.red))

spec2.ratio <- colMeans2(greenControls.current , na.rm = TRUE) /

colMeans2(redControls.current , na.rm = TRUE)
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## Specificity I

index <- match("SPECIFICITY␣I", controlNames)

addr <- getCtrlsAddr(exType = sprintf("GT␣Mismatch␣%s␣(PM)", 1:3),

index = index)

greenControls.current <- greenControls [[index ]][addr ,,drop=FALSE]

redControls.current <- redControls [[index ]][addr ,,drop=FALSE]

spec1.green <- t(greenControls.current)

colnames(spec1.green) <- paste0("spec1Grn", 1:ncol(spec1.green))

spec1.ratio1 <- colMeans2(redControls.current , na.rm = TRUE) /

colMeans2(greenControls.current , na.rm = TRUE)

index <- match("SPECIFICITY␣I", controlNames) # Added that line

addr <- getCtrlsAddr(exType = sprintf("GT␣Mismatch␣%s␣(PM)", 4:6),

index = index)

greenControls.current <- greenControls [[index ]][addr ,,drop=FALSE]

redControls.current <- redControls [[index ]][addr ,,drop=FALSE]

spec1.red <- t(redControls.current)

colnames(spec1.red) <- paste0("spec1Red", 1:ncol(spec1.red))

spec1.ratio2 <- colMeans2(greenControls.current , na.rm = TRUE) /

colMeans2(redControls.current , na.rm = TRUE)

spec1.ratio <- (spec1.ratio1 + spec1.ratio2) / 2

## Normalization probes:

index <- match(c("NORM_A"), controlNames)

normA <- colMeans2(redControls [[index]], na.rm = TRUE)

index <- match(c("NORM_T"), controlNames)

normT <- colMeans2(redControls [[index]], na.rm = TRUE)
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index <- match(c("NORM_C"), controlNames)

normC <- colMeans2(greenControls [[index]], na.rm = TRUE)

index <- match(c("NORM_G"), controlNames)

normG <- colMeans2(greenControls [[index]], na.rm = TRUE)

dyebias <- (normC + normG)/(normA + normT)

oobG <- extractedData$oob$greenOOB

oobR <- extractedData$oob$redOOB

oob.ratio <- oobG[2,]/oobR[2,]

oobG <- t(oobG)

colnames(oobG) <- paste0("oob", c(1 ,50,99))

model.matrix <- cbind(

bisulfite1 , bisulfite2 , extension.green , extension.red , hybe ,

stain.green , stain.red , nonpoly.green , nonpoly.red ,

targetrem , spec1.green , spec1.red , spec2.green , spec2.red , spec1.

ratio1 ,

spec1.ratio , spec2.ratio , spec1.ratio2 , normA , normC , normT ,

normG , dyebias ,

oobG , oob.ratio)

## Imputation

for (colindex in 1:ncol(model.matrix)) {

if(any(is.na(model.matrix[,colindex ]))) {

column <- model.matrix[,colindex]

column[is.na(column)] <- mean(column , na.rm = TRUE)
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model.matrix[ , colindex] <- column

}

}

## Scaling

model.matrix <- scale(model.matrix)

## Fixing outliers

model.matrix[model.matrix > 3] <- 3

model.matrix[model.matrix < (-3)] <- -3

## Rescaling

model.matrix <- scale(model.matrix)

return(model.matrix)

}

# The old quantiles in a bivariate manner using our definition

# of a bivariate quantile. We use the Frank copula with C(u,v)

# where v =u in our case.

.bivariate.quantiles.frank.final = function(Meth , Unmeth , alpha){

n = ncol(Meth)

Meth.sort = apply(Meth , 2, sort)

Unmeth.sort = apply(Unmeth , 2, sort)

bivariate.list = c()

for (i in 1:n){

m = length(Meth[,i])
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tau = cor.fk(Meth[,i],Unmeth[,i])

theta = BiCopTau2Par(family = 5, tau = tau)

roots = (log(1 - sign(theta)* sqrt(-exp(-theta)

- exp(-theta*alpha)

+ exp(-theta*(alpha +1)) + 1)))

/ -theta

quants.meth = Meth.sort[,i][m*roots]

quants.unmeth = Unmeth.sort[,i][m*roots]

b.quants = cbind(quants.meth ,quants.unmeth)

colnames(b.quants) = c(paste(colnames(Meth)[i], "Meth" ,sep = ’.’

),

paste(colnames(Unmeth)[i], "Unmeth", sep =

’.’))

bivariate.list = cbind(bivariate.list , b.quants)

}

row.names(bivariate.list) = as.character(alpha)

return(bivariate.list)

}

# Return the normalized quantiles in a bivariate manner

# for the autosomes

.returnNewQuantiles = function(controlMatrix , quantiles , ncomp){

n = ncol(quantiles)

quantiles = rbind(numeric(n),quantiles , quantiles[nrow(quantiles),]

+ 1000)

rownames(quantiles)[1] = ’0.0’; rownames(quantiles)[500] = ’1.0’
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newQuantiles = array(0L, dim(quantiles))

#()

for (i in 2:nrow(quantiles)){

#()

quant = matrix(quantiles[i,], n/2,2, byrow = T)

#()

meanFunction = colMeans2(quant)

res = sweep(quant ,2, meanFunction)

fit = plsr(res ~ controlMatrix ,ncomp = ncomp)

newfit = sweep(fit$residuals[, , paste(as.character(ncomp), ’

comps’)],2,-meanFunction)

newQuantiles[i,] = as.vector(newfit)

}

newQuantiles = .regularizeQuantiles(newQuantiles)

#Putting row and column names for convenience

nam = c()

nam = append(nam ,colnames(quantiles)[seq(1,n-1,2)])

nam = append(nam ,colnames(quantiles)[seq(2,n,2)])

colnames(newQuantiles) = nam

row.names(newQuantiles) = row.names(quantiles)

return(newQuantiles)

}

### Return the normalized quantile functions in a bivariate manner

for sex

.sortbysex = function(sex , levels , newQuantiles1 , newQuantiles2){
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#note that newQuantiles1 is for female in this example

#and newQuantiles2 is for male in this example

n = ncol(newQuantiles1)/2

m = ncol(newQuantiles2)/2

l = length(sex)

# m+n = l

newQuantiles1.meth = newQuantiles1[,c(1:n)]

newQuantiles1.unmeth = newQuantiles1[,c((n+1):(2*n))]

newQuantiles2.meth = newQuantiles2[,c(1:m)]

newQuantiles2.unmeth = newQuantiles2[,c((m+1):(2*m))]

meth.sort = matrix(0,nrow =500, ncol=(n+m))

unmeth.sort = matrix(0,nrow =500, ncol=(n+m))

#()

for (i in 1:l){

if (sex[i] == levels [1]){

meth.sort[,i] <- newQuantiles1.meth[,1]

unmeth.sort[,i] <- newQuantiles1.unmeth [,1]

newQuantiles1.meth = as.matrix(newQuantiles1.meth[,-1])

newQuantiles1.unmeth = as.matrix(newQuantiles1.unmeth [,-1])

#()

} else{

meth.sort[,i] <- newQuantiles2.meth[,1]

unmeth.sort[,i] <- newQuantiles2.unmeth [,1]

newQuantiles2.meth = as.matrix(newQuantiles2.meth[,-1])

newQuantiles2.unmeth = as.matrix(newQuantiles2.unmeth [,-1])

#()

}

}

81



fulllist = cbind(meth.sort ,unmeth.sort)

return(fulllist)

}

# Helper function for .returnFitBySex.bivar

# Needed when normalization should be done separately by sex

.sex.bivariate = function(sex){

sex.biv = c()

for (i in 1: length(sex)){

sex.val = rep(sex[i],2)

sex.biv = append(sex.biv ,sex.val)

}

return(sex.biv)

}

.returnFitBySex.bivar <- function(controlMatrix , quantiles , ncomp ,

sex) {

stopifnot(is.matrix(quantiles))

stopifnot(is.matrix(controlMatrix))

sex <- as.character(sex)

levels <- unique(sex)

nSexes <- length(levels)

if (nSexes == 2) {

sex1 <- sum(sex == levels [1])

sex2 <- sum(sex == levels [2])

} else {

sex1 <- sum(sex == levels [1])
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sex2 <- 0

}

## When normalization should not be performed by sex separately:

if ((sex1 <= 10) | (sex2 <= 10)) {

newQuantiles <- .returnNewQuantiles(controlMatrix = controlMatrix

,

quantiles = quantiles ,

ncomp = ncomp)

} else {

sex.bivar = .sex.bivariate(sex=sex)

quantiles1 <- quantiles[, sex.bivar == levels [1]]

controlMatrix1 <- controlMatrix[sex == levels [1], ]

newQuantiles1 <- .returnNewQuantiles(controlMatrix =

controlMatrix1 ,

quantiles = quantiles1 ,

ncomp = ncomp)

quantiles2 <- quantiles[, sex.bivar == levels [2]]

controlMatrix2 <- controlMatrix[sex == levels [2], ]

newQuantiles2 <- .returnNewQuantiles(controlMatrix =

controlMatrix2 ,

quantiles = quantiles2 ,

ncomp = ncomp)

newQuantiles = .sortbysex(sex = sex , levels=levels ,

newQuantiles1=newQuantiles1 ,

83



newQuantiles2=newQuantiles2)

}

return(newQuantiles)

}

# Normalize a matrix of intensities via linear interpolation

# between the quantile values and

# quantile normalization using this new distribution as target/

reference

# distribution.

# This then makes the new methylated and unmethylated values come

# from this distribution

.normalizeMatrix <- function(intMatrix , newQuantiles) {

n <- nrow(newQuantiles)

normMatrix <- sapply (1: ncol(intMatrix), function(i) {

crtColumn <- intMatrix[ , i]

crtColumn.reduced <- crtColumn[!is.na(crtColumn)]

## Generation of the corrected intensities:

target <- sapply (1:(n-1), function(j) {

start <- newQuantiles[j,i]

end <- newQuantiles[j+1,i]

if (!isTRUE(all.equal(start ,end))){

sequence <- seq(start , end ,( end -start)/n)[-(n+1)]

} else {

sequence <- rep(start , n)

}

return(sequence)
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})

target <- as.vector(target)

result <- preprocessCore :: normalize.quantiles.use.target(matrix(

crtColumn.reduced), target)

return(result)

})

return(normMatrix)

}

# To ensure a monotonically increasing and non -negative quantile

function

.regularizeQuantiles <- function(x){

x[x<0] <- 0

colCummaxs(x)

}

# Some other helper functions obtained fromt the utilities in minfi

# so to make sure the data we work with is the correct object class

.isMatrixBackedOrStop <- function(object , FUN) {

if (!.isMatrixBacked(object)) {

stop("’", FUN , "()’␣only␣supports␣matrix -backed␣minfi␣objects.",

call. = FALSE)

}

}

.isMatrixBacked <- function(object) {

stopifnot(is(object , "SummarizedExperiment"))

all(vapply(assays(object), is.matrix , logical (1L)))
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}

.isRGOrStop <- function(object) {

if (!is(object , "RGChannelSet")) {

stop("object␣is␣of␣class␣’", class(object), "’,␣but␣needs␣to␣be␣

of␣",

"class␣’RGChannelSet ’␣or␣’RGChannelSetExtended ’")

}

}

.isGenomicOrStop <- function(object) {

if (!is(object , "GenomicMethylSet") && !is(object , "GenomicRatioSet

")) {

stop("object␣is␣of␣class␣’", class(object), "’,␣but␣needs␣to␣be␣

of␣",

"class␣’GenomicMethylSet ’␣or␣’GenomicRatioSet ’")

}

}
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Appendix B

B.1 Chapter 4 Methodologies

#---- Chapter 4: Second Methodology ----

# Need minfi package for supplementary functions for 450K data.

# Need pcaPP pacakge for faster computation of Kendall ’s Tau.

# Need VineCopula package to calculate parameter of copula from

# Kendall ’s Tau.

# Need pls package for efficient partial least squares computation.

# Need bivariate package for efficient computation of joint

probabilities

library(minfi)

library(VineCopula)

library(pcaPP)

library(bivariate)

library(pls)

#---- Functions ---

# Getting the probabilities that stem from Methylated values for

faster

# computation

getmeth.probs = function(Meth){

n = ncol(Meth)
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Fhat = vector("list",n)

Fhat1 = matrix(NA, nrow=nrow(Meth), ncol=n)

for (i in 1:n) {

Fhat[[i]] = ecdf(Meth[,i])

}

for (i in 1:n) {

Fhat1[,i] = Fhat[[i]]( Meth[,i])

}

return(Fhat1)

}

# This function retrieves the joint probabilities for each probe

# for each sample.

get.bivariate.probabilities = function(Meth , Unmeth){

n = ncol(Meth)

Fhat = vector("list",n)

Fhat1 = matrix(NA, nrow=nrow(Meth), ncol=n)

for (i in 1:n) {

Fhat[[i]] = ebvcdf(Meth[,i],Unmeth[,i])

}

for (i in 1:n) {

Fhat1[,i] = Fhat[[i]]( Meth[,i], Unmeth[,i])

}

return(Fhat1)

}

# We now retrieve the probability points discussed in Chapter 4.2
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# by letting v =1-u for the copula C(u,v)

bivariate.quantiles.frank.final.2 = function(Meth , Unmeth , alpha){

n = ncol(Meth)

Meth.sort = apply(Meth , 2, sort)

Unmeth.sort = apply(Unmeth , 2, sort)

bivariate.list = c()

for (i in 1:n){

m = length(Meth[,i])

tau = cor.fk(Meth[,i],Unmeth[,i])

theta = BiCopTau2Par(family = 5, tau = tau)

a = exp(theta*(alpha - 1)) - exp(theta*alpha) + 1

b = -2*exp(-theta)

c = exp(-theta)

roots = (log((-b + sqrt(b^2 -4*a*c))/(2*a))) / (-theta)

roots2 = 1 - roots

roots[roots == 0] <- 1/m

roots2[roots2 == 0] <-1/m

quants.meth = Meth.sort[,i][m*roots]

quants.unmeth = Unmeth.sort[,i][m*roots2]

b.quants = cbind(quants.meth ,quants.unmeth)

colnames(b.quants) = c(paste(colnames(Meth)[i], "Meth" ,sep = ’.’

),

paste(colnames(Unmeth)[i], "Unmeth", sep =
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’.’))

bivariate.list = cbind(bivariate.list , b.quants)

}

return(bivariate.list)

}

# For the methodology described in 4.2, we retrieve the minimums and

maximums

# instead of setting the minimums to 0 and the maximums to the second

highest

# value + 1000

returnNewQuantiles2 = function(controlMatrix , quantiles , ncomp){

n = ncol(quantiles)

newQuantiles = array(0L, dim(quantiles))

for (i in 1:nrow(quantiles)){

quant = matrix(quantiles[i,], n/2,2, byrow = T)

meanFunction = colMeans2(quant)

res = sweep(quant ,2, meanFunction)

fit = plsr(res ~ controlMatrix ,ncomp = ncomp)

newfit = sweep(fit$residuals[, , paste(as.character(ncomp), ’

comps’)],2,-meanFunction)

newQuantiles[i,] = as.vector(newfit)

}

newQuantiles = .regularizeQuantiles(newQuantiles)

#Putting row and column names for convenience , in case if you want

to look
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nam = c()

nam = append(nam ,colnames(quantiles)[seq(1,n-1,2)])

nam = append(nam ,colnames(quantiles)[seq(2,n,2)])

colnames(newQuantiles) = nam

row.names(newQuantiles) = row.names(quantiles)

return(newQuantiles)

}

# We do this regularization in this way since the values in these

# bivariate probability points are bidirectional , ie when

# one value increases , the other value decreases

.regularizeQuantiles <- function(x){

n = ncol(x) /2

x[x<0] <- 0

x = cbind(colCummaxs(x[,1:n]),

colCummins(x[,(n+1):(2*n)]))

}

# We now take get the adjustments that were done to the quantiles

# by the PLS regression and store them

adjustment = function(oldQuantiles , newQuantiles){

n = ncol(oldQuantiles)

old.meth = oldQuantiles[,seq(1,(n - 1),by=2)]

old.unmeth = oldQuantiles[,seq(2,n,by=2)]

#browser ()

oldquants = cbind(old.meth ,old.unmeth)

adjust = newQuantiles - oldquants

return(adjust)
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}

# The adjustment process described in the first and

# second Variation Methodologies

normalize.bivariate = function(Meth , Unmeth , joint.ecdf ,

quantiles.edf , adjustments){

n = ncol(Meth)

m = nrow(Meth)

s = dim(quantiles.edf)[1]

adjust.meth = adjustments [,1:n]

adjust.unmeth = adjustments [,(n+1):(2*n)]

Meth.new = matrix(NA, nrow=m, ncol = n)

Unmeth.new = matrix(NA, nrow=m, ncol = n)

for (i in 1:n){

for (j in 1:(s-1)){

f2 = quantiles.edf[(j+1),i]

f1 = quantiles.edf[j,i]

indices = which( f1 <=joint.ecdf[,i] & joint.ecdf[,i] < f2)

fhat = joint.ecdf[indices , i]

y = cbind(Meth[indices ,i],Unmeth[indices ,i])

adjust.k2 = cbind(adjust.meth[(j+1),i], adjust.unmeth [(j+1),i])

adjust.k1 = cbind(adjust.meth[j,i], adjust.unmeth[j,i])
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weight = (fhat - f1) / (f2 - f1)

diff.k = adjust.k2 - adjust.k1

adjust.y = cbind(adjust.k1[1] + weight*diff.k[1], adjust.k1[2]

+ weight*diff.k[2])

yhat = y + adjust.y

# Methylated and Unmethylated values must be >= 0

yhat[yhat <0] <-0

Meth.new[indices , i] = yhat[,1]

Unmeth.new[indices , i] = yhat[,2]

}

}

return(cbind(Meth.new ,Unmeth.new))

}

# ---- Applying the methodology to the Mania dataset ----

# Retrieving the dataset from where is was stored

RGSet <- read.metharray.exp(’D:/methyldatamedium/methyldatamedium ’)

# Getting the phenotypes of the samples (whether a patient has Mania

or not)

type.mania = c()

for (i in seq(1,80, by =2)){

l = as.character(type_mania[i,1])

type.mania = append(type.mania , l)

}
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# We follow the steps done from FunNorm to the data prior

# to normalization. We use the functions from the Chapter 3

# methodology to get what we need

gmSet <- preprocessNoob(RGSet , dyeCorr = T)

gmSet <- mapToGenome(gmSet)

extractedData = .extractFromRGSet450k(RGSet)

mod.mat = .buildControlMatrix450k(extractedData)

indices = .getFunnormIndices(gmSet)

Meth.cor = getMeth(gmSet)

Unmeth.cor = getUnmeth(gmSet)

probs <- seq(from = 0, to = 1, length.out = 501)

#---- Type I Green probes ----

mat1.meth = Meth.cor[indices [[1]],,drop=FALSE]

mat1.unmeth = Unmeth.cor[indices [[1]],,drop=FALSE]

Meth.green.probs = getmeth.probs(mat1.meth)

system.time({joint.edf.green =

get.bivariate.probabilities(mat1.meth ,mat1.unmeth)})

# user system elapsed

# 1017.23 2.57 1044.25
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# Using the law of total probability P(a) = P(a & b) + P(a & b^c) to

get

# P(Meth <M,Unmeth >U)

joint.prob.green.2 = Meth.green.probs - joint.edf.green

# Probability points stemming from v = 1-u and the corresponding

adjustments

quants.green.2 = bivariate.quantiles.frank.final .2( mat1.meth ,

mat1.unmeth ,

probs)

newQuantiles.green.2 = returnNewQuantiles2(controlMatrix = mod.mat ,

quantiles = quants.green

.2,

ncomp = 3)

edf.quantiles.green.2 = joint.edf.of.quantiles .2( mat1.meth ,mat1.

unmeth ,

quants.green .2)

adjust.green.2 = adjustment(oldQuantiles = quants.green.2,

newQuantiles = newQuantiles.green .2)

#Second Variation Normalization

fit1.green = normalize.bivariate(mat1.meth ,mat1.unmeth ,

joint.ecdf = joint.prob.green
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.2,

quantiles.edf = edf.quantiles.

green.2,

adjustments = adjust.green .2)

# Getting the Methylated and Unmethylated signals

fitting.green.meth = fitting.green [ ,1:40]

fitting.green.unmeth = fitting.green [ ,41:80]

# beta -values

fit.beta.green = fitting.green.meth / (fitting.green.meth + fitting.

green.unmeth +100)

#plot

densityPlot(fit.beta.green , sampGroups = type.mania)

#---- Type I Red Probes ----

mat2.meth = Meth.cor[indices [[2]],,drop=FALSE]

mat2.unmeth = Unmeth.cor[indices [[2]],,drop=FALSE]

Meth.red.probs = .getmeth.probs(mat2.meth)

system.time({joint.prob.red.1 =

.get.bivariate.probabilities(mat2.meth ,mat2.unmeth)})

#user system elapsed

#3755.82 157.16 3977.30

# Using the law of total probability P(a) = P(a & b) + P(a & b^c) to

get
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# P(Meth <M,Unmeth >U)

joint.prob.red.2 = Meth.red.probs - joint.prob.red.1

# Probability points stemming from v = 1-u and the corresponding

adjustments

quants.red.2 = .bivariate.quantiles.frank.final .2( mat2.meth ,

mat2.unmeth ,

probs)

newQuantiles.red.2 = .returnNewQuantiles2(controlMatrix = mod.mat ,

quantiles = quants.red.2,

ncomp = 3)

edf.quantiles.red.2 = .joint.edf.of.quantiles .2( mat2.meth ,mat2.unmeth

,

quants.red.2)

adjust.red.2 = .adjustment(oldQuantiles = quants.red.2,

newQuantiles = newQuantiles.red.2)

# Second Variation Normalization

fit1.red = normalize.bivariate(mat2.meth ,mat2.unmeth ,

joint.ecdf = joint.prob.red.2,

quantiles.edf = edf.quantiles.red

.2,

adjustments = adjust.red.2)
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# Methylated and Unmethylated values

fitting.red.meth = fit1.red [ ,1:40]

fitting.red.unmeth = fit1.red [ ,41:80]

# Beta -values

fit.beta.red = fitting.red.meth / (fitting.red.meth + fitting.red.

unmeth +100)

#plot

densityPlot(fit.beta.red , sampGroups = type.mania)
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