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Lay Abstract

This thesis proposes two powerful and computationally efficient digital signal process-

ing (DSP)-based techniques, namely, artificial neural network nonlinear feed forward

equalizer (ANN-NFFE) and adaptive digital back propagation (A-DBP) equalizer,

for mitigating the induced distortions in short-reach and long-haul fiber-optic com-

munication systems, respectively. The ANN-NFFE combats nonlinear impairments

of direct-detected short-haul optical fiber communication systems, achieving com-

pensation performance comparable to the benchmark performance obtained using

maximum-likelihood sequence estimator with much lower computational cost. A novel

adjoint sensitivity analysis (ASA) approach is proposed to significantly accelerate the

sensitivity analyses of fiber-optic design problems. The A-DBP exploits a gradient-

based optimization method coupled with the ASA algorithm to blindly compensate

for the distortions of coherent-detected fiber-optic communication systems and net-

works, utilizing the minimum possible overhead of performed system simulations. The

robustness and efficiency of the proposed equalizers are demonstrated using numerical

simulations of varied examples extracted from practical optical fiber communication

systems scenarios.
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Abstract

Optical fibers play a vital role in modern telecommunication systems and networks.

An optical fiber link imposes some linear and nonlinear distortions on the propagating

light-wave signal due to the inherent dispersive nature and nonlinear behavior of the

fiber. These distortions impede the increasing demand for higher data rate transmis-

sion over longer distances. Developing efficient and computationally non-expensive

digital signal processing (DSP) techniques to effectively compensate for the fiber im-

pairments is therefore essential and of preeminent importance. This thesis proposes

two DSP-based approaches for mitigating the induced distortions in short-reach and

long-haul fiber-optic communication systems.

The first approach introduces a powerful digital nonlinear feed-forward equal-

izer (NFFE), exploiting multilayer artificial neural network (ANN). The proposed

ANN-NFFE mitigates nonlinear impairments of short-haul optical fiber communica-

tion systems, arising due to the nonlinearity introduced by direct photo-detection.

In a direct detection system, the detection process is nonlinear due to the fact that

the photo-current is proportional to the absolute square of the electric field inten-

sity. The proposed equalizer provides the most efficient computational cost with high
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equalization performance. Its performance is comparable to the benchmark compen-

sation performance achieved by maximum-likelihood sequence estimator. The equal-

izer trains an ANN to act as a nonlinear filter whose impulse response removes the

intersymbol interference (ISI) distortions of the optical channel. Owing to the pro-

posed extensive training of the equalizer, it achieves the ultimate performance limit

of any feed-forward equalizer. The performance and efficiency of the equalizer are

investigated by applying it to various practical short-reach fiber-optic transmission

system scenarios. These scenarios are extracted from practical metro/media access

networks and data center applications. The obtained results show that the ANN-

NFFE compensates for the received BER degradation and significantly increases the

tolerance to the chromatic dispersion distortion.

The second approach is devoted for blindly combating impairments of long-haul

fiber-optic systems and networks. A novel adjoint sensitivity analysis (ASA) approach

for the nonlinear Schrödinger equation (NLSE) is proposed. The NLSE describes the

light-wave propagation in optical fiber communication systems. The proposed ASA

approach significantly accelerates the sensitivity calculations in any fiber-optic design

problem. Using only one extra adjoint system simulation, all the sensitivities of a

general objective function with respect to all fiber design parameters are estimated.

We provide a full description of the solution to the derived adjoint problem. The

accuracy and efficiency of our proposed algorithm are investigated through a compar-

ison with the accurate but computationally expensive central finite-differences (CFD)

approach. Numerical simulation results show that the proposed ASA algorithm has

the same accuracy as the CFD approach but with a much lower computational cost.

Moreover, we propose an efficient, robust, and accelerated adaptive digital back
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propagation (A-DBP) method based on adjoint optimization technique. Provided

that the total transmission distance is known, the proposed A-DBP algorithm blindly

compensates for the linear and nonlinear distortions of point-to-point long-reach op-

tical fiber transmission systems or multi-point optical fiber transmission networks,

without knowing the launch power and channel parameters. The NLSE-based ASA

approach is extended for the sensitivity analysis of general multi-span DBP model. A

modified split-step Fourier scheme method is introduced to solve the adjoint problem,

and a complete analysis of its computational complexity is studied. An adjoint-based

optimization (ABO) technique is introduced to significantly accelerate the param-

eters extraction of the A-DBP. The ABO algorithm utilizes a sequential quadratic

programming (SQP) technique coupled with the extended ASA algorithm to rapidly

solve the A-DBP training problem and optimize the design parameters using min-

imum overhead of extra system simulations. Regardless of the number of A-DBP

design parameters, the derivatives of the training objective function with respect to

all parameters are estimated using only one extra adjoint system simulation per opti-

mization iterate. This is contrasted with the traditional finite-difference (FD)-based

optimization methods whose sensitivity analysis calculations cost per iterate scales

linearly with the number of parameters.

The robustness, performance, and efficiency of the proposed A-DBP algorithm are

demonstrated through applying it to mitigate the distortions of a 4−span optical fiber

communication system scenario. Our results show that the proposed A-DBP achieves

the optimal compensation performance obtained using an ideal fine-mesh DBP scheme

utilizing the correct channel parameters. Compared to A-DBPs trained using SQP

algorithms based on forward, backward, and central FD approaches, the proposed
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ABO algorithm trains the A-DBP with 2.02 times faster than the backward/forward

FD-based optimizers, and with 3.63 times faster than the more accurate CFD-based

optimizer. The achieved gain further increases as the number of design parameters

increases. A coarse-mesh A-DBP with less number of spans is also adopted to sig-

nificantly reduce the computational complexity, achieving compensation performance

higher than that obtained using the coarse-mesh DBP with full number of spans.

vii



To my wife, Marwa, and my little boy, Hamza

To the memory of my parents to whom I am indebted for as long as I live

To the memory of my little sisters, Mai & Manar, and my aunt, Somaia

To my beloved family and friends

viii



Acknowledgements

All praise is due to Allah, the Almighty, for his uncountable blessings, among which

is giving me the strength to complete this research work. I hope that he accepts my

sincere intention of making this work useful and helpful for others.

Words cannot express my deep gratitude to my supervisors, Dr. Mohamed Bakr

and Dr. Shiva Kumar. My sincere thanks and appreciation to the invaluable and

endless support I received from them during the course of my work. I am really

grateful for their time, innovative and insightful ideas, long discussions, and funding

throughout the development of this work. Definitely, this work would have never been

accomplished without their continuous guidance, enthusiasm, optimism, motivation,

encouragement, and patience. Honestly, Dr. Bakr and Dr. Kumar made every

effort to ensure maintaining a perfect, peaceful, quite, stress-free, and comfortable

environment during all times of my Ph.D. pursuit. Moreover, they showed all aspects

of understanding, care, and humanity in the social side of my life. It was really my

fortunate, honor, and privilege to work under supervision of such great, dedicated,

and distinguished professors. Dr. Bakr and Dr. Kumar, thanks for everything you

did for me.

I would like to express my sincere thanks and appreciation to Dr. Jamal Deen and

Dr. Xun Li, the members of my supervisory committee, for their precious comments,

ix



suggestions, interesting ideas, valuable feedbacks, and useful scientific discussions

during my research work. I would also like to thank my external examiner, Dr.

John Cartledge with Queens University, for his constructive suggestions and insightful

review of the dissertation. I am also grateful to Dr. James Reilly and Dr. Jiankang

Zhang, the course instructors who taught me during my Ph.D. program, for their

wonderful lectures. Rest in peace Dr. Zhang.

I sincerely acknowledge Ahmed Elsharabasy, Mohamed E. Fouda with University

of California, Islam S. Hassan with Concordia University, and Omar A. El-Gendy

with Purdue University, for their continuous encouragement, assistance, support, in-

teresting ideas, and fruitful scientific discussions.

Moreover, for their faithful friendship and encouragement, it is pleasure to thank

my friends and colleagues at the Department of Electrical and Computer Engineer-

ing, Ehab Sayed, Ayman Negm, Mohamed Fathy, Laleh Seyyed-Kalantari, Rishad

Arfin, Neda Khiabani, Yu Zhang, Xiaojun Liang, Jing Shao, Shovasis Biswas, Mahdi

Naghshvarianjahromi, Elham Bidaki, Hytham Afifi, Mostafa Medra, Ahmed Darwish,

Mohamed Hamouda, Khaled Ahmed, Ahmed Morra, Khaqan Majeed, Karim Osama,

and Abdallah Shawky.

I would like also to thank the administrative team at the Department of Electrical

and Computer Engineering, McMaster University, Cheryl Gies in particular, for the

constant support and for providing all the convenience and assistance I have needed.

Special gratitude is dedicated to my beloved wife, Marwa Negm, who came to my

life and brought lots of happiness. During the last two years and half of my Ph.D., it

was impossible to accomplish this journey without her great support, patience, and

compassion. My dear son, Hamza, thanks for all joy and happiness you brought to

x



our life. Your cute smile was and will always be the secret that makes hard times

easily fly.

I am deeply grateful and indebted to my beloved parents who dedicated their

lifetime to ensure that my sisters and I have an easy and comfortable life, and acquire

the best education. I wish they were with me right now, witnessing the completion

of this chapter in my life. However, I am pretty sure that they are now happy with

my graduation as they always used to be with any achievement I make in my life.

My mom and dad, making you happy and proud was and will always be the main

motivation and inspiration that push me to work hard, pursuing academic excellence.

Last but not least, I would like to express my profound gratitude and apprecia-

tion to my family whose patience, continuous encouragement, and overseas support

enabled me to complete this work. Special thanks to my uncle Maghrabi Taha, uncle

Mohamed Khalil, my aunt Nadia Osman, my mother-in-law, Hanan Said, my cousin,

Khaled Maghrabi, and my cousin, Abeer Mahmoud, for the incredible and continuous

moral support I received from them throughout my Ph.D. journey.

xi



Contents

Lay Abstract iii

Abstract iv

Acknowledgements ix

Abbreviations xxiii

1 Introduction 1

1.1 Evolution of Fiber-Optic Communication systems . . . . . . . . . . . 2

1.2 Impairments in an Optical Fiber Channel . . . . . . . . . . . . . . . 9

1.3 Electrical Compensation Techniques for Optical Fiber Distortions . . 15

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Dispersion Compensation of Direct Detected Optical Fiber Commu-

nication Systems Using Artificial Neural Networks (ANNs) 41

2.1 Optical Communication System Model . . . . . . . . . . . . . . . . . 44

2.2 ANN Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



3 An Adjoint Sensitivity Analysis Approach for the Nonlinear Schrödinger

Equation 69

3.1 Matrix Representation of the NLSE . . . . . . . . . . . . . . . . . . . 70

3.2 ASA for the NLSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Adjoint Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Adaptive Digital Back Propagation Exploiting Adjoint-Based Opti-

mization 95

4.1 Problem Formulation of a DBP Model . . . . . . . . . . . . . . . . . 96

4.2 ASA for the Multi-Span DBP Model . . . . . . . . . . . . . . . . . . 106

4.3 Adjoint-Based Optimization Algorithm . . . . . . . . . . . . . . . . . 119

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Conclusions and Future Work 146

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xiii



List of Figures

1.1 Basic structure of a fiber-optic communication system (Senior and

Jamro, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 An illustration of pulse broadening due to chromatic dispersion of the

fiber (Kalander and WANG, 2017). . . . . . . . . . . . . . . . . . . . 10

1.3 An instance of signal degradation due to the chromatic dispersion of

fiber. The transmitted data are 10 return-to-zero Gaussian pulses. The

modulation format is on-off-keying, the data rate is 10 Gbps, and the

fiber length is 140 km. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 An illustration of nonlinear interactions in a single channel and WDM

fiber-optic communication system (Kumar et al., 2018). . . . . . . . . 13

1.5 Block diagram of a M−taps linear feed-forward equalizer (Momtaz

and Green, 2010). T stands for a one bit time interval delay, Ci, i =

1, 2, . . . , M, are adjustable tap-weights, and M is the total number

of taps. The signals x(n) and y(n) are the un-equalized input and

equalized output at sampling time nTb, respectively, where Tb is the

inverse baud rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 General architecture of a decision feedback equalizer. . . . . . . . . . 19

xiv



2.1 Model of short-reach fiber optic communication system with direct

photo-detection. DML: Directly modulated laser, EML: Electrically

modulated laser, ADC: Analog to digital converter, BPF: Band pass

filter, LPF: Low pass filter. . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Basic configuration of the introduced ANN-NFFE. . . . . . . . . . . . 49

2.3 Schematic for the generation of the complete set training data. K is the

number of interfering symbols and n = 2K + 1 is the required number

of equalizer taps. The arrows refer to the actual training data, used

during the ANN weights adjustment, after discarding the redundant

guard data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 The value of training objective function f(W ) versus the number of op-

timization iterates. The transmitted data are NRZ-OOK with raised-

cosine pulse shaping. The data rate is 10 Gbps and the fiber length is

140 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Received BER, with and without the ANN-NFFE, versus OSNR. The

transmitted data are NRZ-OOK with raised-cosine pulse shaping. The

date rate is 10 Gbps and the fiber length is 140 km. . . . . . . . . . . 60

2.6 BER of the received equalized data versus OSNR. The transmitted

data rate is 10 Gbps, and the modulation format is NRZ-OOK. Various

transmission distances are considered and compared to the B2B case,

when the ANN-NFFE is used for the equalization of the received signal. 61

2.7 The required OSNR at received BER= 1 × 10−3 versus fiber optic

length. A NRZ-OOK modulation format with raised-cosine pulse shap-

ing is assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xv



2.8 BER of the received equalized data versus OSNR. The transmitted

data rate = 10 Gbps, and the modulation format is RZ-OOK with

50% duty cycle. Various transmission distances are considered and

compared to the B2B case, when the ANN-NFFE is used for the equal-

ization process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.9 The required OSNR at received BER= 1 × 10−3 versus fiber optic

length. The performance of the system with zero frequency chirping

without equalization case is compared to the cases of frequency chirping

with and without equalization. The data rate is 10 Gbps and the

modulation format is RZ-OOK with 50% duty cycle. The parameters

of the ANN-NFFE are n = 5, m = 5 at L ≤ 40 km, and n = 7 and

m = 6 at longer distances. . . . . . . . . . . . . . . . . . . . . . . . . 65

2.10 Received BER, with and without the ANN-NFFE, versus OSNR in

case of transmission distance (a) 10 km, (b) 15 km, and (c) 20 km.

The modulation format is NRZ-OOK with raised-cosine pulse shaping

and the data rate is 28 Gbps. . . . . . . . . . . . . . . . . . . . . . . 66

2.11 The required OSNR at received BER= 1 × 10−3 versus fiber optic

length. The data rate is 28 Gbps. A NRZ-OOK modulation format

with raised-cosine pulse shaping is assumed. The parameters of the

ANN-NFFE are n = 5, m = 5 at L ≤ 15 km, and n = 7, m = 6 at

longer distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xvi



3.1 The normalized ASA sensitivities of objective function (3.29) with re-

spect to the parameters: β1, β2, β3 and γ, for a sweep of L, as compared

to the more computationally expensive CFD approach. The nominal

fiber parameters are as given in Table 3.1. The modulation format is

OOK with Gaussian pulse shaping, the baud rate is 10 Gbps, and the

input pulse peak power is P0 = 2 dBm. . . . . . . . . . . . . . . . . . 85

3.2 The normalized ASA sensitivities of objective function (3.29) with re-

spect to the parameters: L and P0, for a sweep of L, as compared

to the more computationally expensive CFD approach. The nominal

fiber parameters are as given in Table 3.1. The modulation format is

OOK with Gaussian pulse shaping, the baud rate is 10 Gbps, and the

input pulse peak power is P0 = 2 dBm. . . . . . . . . . . . . . . . . . 86

3.3 The normalized ASA sensitivities of objective function (3.29) with re-

spect to the parameters: β1, β2, β3 and α, for a sweep of L, as compared

to the more computationally expensive CFD approach. The fiber pa-

rameters are as given in Table 3.3. The modulation format is 16 QAM

with a root raised cosine pulse shaping, the baud rate is 28 Gbaud,

and the average launch power is Pav = 6 dBm. . . . . . . . . . . . . . 88

3.4 The normalized ASA sensitivities of objective function (3.29) with re-

spect to the parameters: γ, Pav and L, for a sweep of L, as compared

to the more computationally expensive CFD approach. The fiber pa-

rameters are as given in Table 3.3. The modulation format is 16 QAM

with a root raised cosine pulse shaping, the baud rate is 28 Gbaud,

and the average launch power is Pav = 6 dBm. . . . . . . . . . . . . . 89

xvii



3.5 The normalized ASA sensitivities of objective function (3.31) with re-

spect to the parameters: β2, γ, L and P0, for a sweep of P0, as compared

to the more computationally expensive CFD approach. The fiber pa-

rameters are as given in Table 3.4. . . . . . . . . . . . . . . . . . . . . 92

3.6 The normalized optical power of the transmitted and received pulses.

The peak power of the launch pulse is: (a) 15 mW, i.e., less than the

required peak power to form a soliton Psol, and (b) 30 mW, i.e., greater

than Psol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 The propagation in a single-span optical transmission fiber (forward

propagation), and a single-span virtual DBP fiber (backward propaga-

tion).

Tx: transmitter, Rx: receiver, TF: transmission fiber, DBP: digital

back propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Model of propagation in an M−span optical fiber transmission system.

Tx: transmitter, Rx: receiver, FS: fiber span, Amp, amplifier. . . . . 101

4.3 Block diagram of a digital back propagation model for a M−span fiber-

optic communication system.

Rx: receiver, VFS: virtual fiber span, LE: loss element, DBP: digital

back propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Propagation model of an original DBP simulation, and its correspond-

ing adjoint DBP simulation.

Rx: receiver; DBP: digital back propagation; VFS: virtual fiber span;

LE: loss element; AFS: adjoint fiber span. . . . . . . . . . . . . . . . 111

xviii



4.5 Flow diagram of the modified symmetric SSFS algorithm used for solv-

ing the adjoint DBP problem. . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Flow diagram of the proposed adjoint-based optimization algorithm. . 125

4.7 Block diagram of the fiber-optic communication system considered in

the simulation.

Tx: transmitter; BPF: band pass filter; Rx: receiver; A/D: analog to

digital converter; CDC: chromatic dispersion compensation; A-DBP:

adaptive digital back propagation; MF: matched filter. . . . . . . . . 128

4.8 The value of the training objective function F in (4.52) versus the num-

ber of optimization iterates for the 4−span fiber-optic communication

system scenario. Four optimization algorithms are considered for the

training of the A-DBP, namely, the ABO algorithm, the SQP-CFD

algorithm, SQP-FFD algorithm, and SQP-BFD algorithm. . . . . . . 132

4.9 BER versus average launch power for the 4-span fiber-optic communi-

cation system scenario. The equalization at the receiver is performed

using the CDC unit only, the ideal DBP, the DBP, or the A-DBP. The

number of transmitted symbols is 217. . . . . . . . . . . . . . . . . . . 134

4.10 (a) Asymptotic number of conventional SSFS simulations required to

train a A-DBP versus number of design parameters N ; (b) Asymptotic

values of the simulation saving factor η achieved by the ABO algorithm

versus design parameters number N . The ABO algorithm is compared

to the SQP-CFD, SQP-FFD, and SQP-BFD. The number of training

samples is 8192. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xix



4.11 BER versus average launch power for the 4−span fiber-optic commu-

nication system scenario. The equalization at the receiver is performed

using ideal DBP with fine-mesh and coarse-mesh models. The signal

and system parameters are the same as that used for Fig. 4.9. . . . . 139

4.12 Total number of required SSFS steps versus average launch power for

the 4−span fiber-optic communication system scenario. The equaliza-

tion at the receiver is performed using ideal DBP with fine-mesh and

coarse-mesh models. The number of transmitted symbols is 217. . . . 140

4.13 (a) BER, and (b) Quality factor versus average launch power for the

4-span fiber-optic communication system scenario. The equalization

at the receiver is performed using the CDC unit only, the coarse-mesh

ideal DBP, the coarse-mesh 2−virtual fiber spans A-DBP, the coarse-

mesh 3−virtual fiber spans A-DBP, or the coarse-mesh 4−virtual fiber

spans A-DBP. The number of transmitted symbols is 217. . . . . . . . 143

4.14 Total number of required SSFS steps versus average launch power for

the 4-span fiber-optic communication system scenario. The equaliza-

tion at the receiver is performed using the CDC unit only, the coarse-

mesh ideal DBP, the coarse-mesh 2−virtual fiber spans A-DBP, the

coarse-mesh 3−virtual fiber spans A-DBP, or the coarse-mesh 4−virtual

fiber spans A-DBP. The number of transmitted symbols is 217. . . . . 144

xx



List of Tables

2.1 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Mean photo-current versus OSNR . . . . . . . . . . . . . . . . . . . . 57

3.1 Simulation parameters of Example 1 . . . . . . . . . . . . . . . . . . 84

3.2 The computational time for obtaining the sensitivity results using the

CFD and the ASA approaches. . . . . . . . . . . . . . . . . . . . . . 87

3.3 Simulation parameters of Example 2. . . . . . . . . . . . . . . . . . . 88

3.4 Fiber parameters used in Examples 3 . . . . . . . . . . . . . . . . . . 91

4.1 Computational complexity of the conventional and modified symmetric

split-step Fourier scheme (SSFS) algorithms. . . . . . . . . . . . . . . 118

4.2 Fiber simulation parameters. . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Lengths of fiber spans used in the simulation of the 4−span fiber-optic

communication system scenario. . . . . . . . . . . . . . . . . . . . . . 129

4.4 Optimal design point solutions of the A-DBP in case of the 4-span fiber-

optic communication system scenario. Four optimization algorithms

are used to train the A-DBP, namely, the ABO algorithm, the SQP-

CFD algorithm, the SQP-FFD algorithm, the SQP-BFD algorithm.

The initial design point (in km) is x0 = [85 85 85 85]T . . . . . . . . . 135

xxi



4.5 Computational cost of sensitivity calculations required to train the A-

DBP for mitigating the distortions of the 4−span fiber-optic communi-

cation system scenario. The A-DBP is trained using ABO, SQP-CFD,

SQP-FFD, and SQP-BFD algorithms. . . . . . . . . . . . . . . . . . . 136

4.6 Optimum values of the A-DBP design parameters for mitigating the

4−span fiber-optic communication system scenario. A coarse-mesh

model is considered with a maximum allowed nonlinear phase change

per SSFS step of 0.1 rad. The ABO is used to train A-DBP with 2−,

3−, and 4−virtual fiber spans. . . . . . . . . . . . . . . . . . . . . . . 141

xxii



Abbreviations

ABO Adjoint-based optimization

A/D Analog to digital

ADC Analog to digital converter

A-DBP Adaptive digital back propagation

AFS Adjoint fiber span

ANN Artificial neural network

ANN-NFFE Artificial neural network nonlinear feed-forward equalizer

ASA Adjoint sensitivity analysis

ASE Amplified spontaneous emission

B2B Back-to-back

BER Bit error rate

BFD Backward-finite differences

BFGS Broyden–Fletcher–Goldfarb–Shanno

xxiii



BPF Bandpass filter

CD Chromatic dispersion

CDC Chromatic dispersion compensation

CFD Central finite differences

C-RAN Cloud radio access network

DBP Digital back propagation

DCN Data center network

DFE Decision feedback equalizer

DML Directly modulated laser

DSF Dispersion-shifted fiber

DSP Digital signal processing

EDFA Erbium-doped fiber amplifier

EML Externally modulated laser

EON Elastic optical network

EVD Eigenvalue decomposition

FD Finite-difference

FDTD Finite-difference time-domain

FFD Forward-finite differences

xxiv



FFE Feed-forward equalizer

FFT Fast Fourier transform

FWM Four-wave mixing

IFWM Intra-channel four-wave mixing

IM-DD Intensity-modulation and direct detection

INLSE Inverse nonlinear Schrödinger equation

ISI Inter-symbol interference

IXPM Intra-channel cross-phase modulation

KKT Karush-Kuhn-Tucker

LAN Local area network

LC Linear compensation

LMS Least-mean square

LPF Low pass filter

MLSE Maximum likelihood sequence estimator

MPSK M−ray phase-shift keying

NLSE Nonlinear Schrödinger equation

NN neural network

NNE Neural networks-based equalizer

xxv



NRZ Non-return to zero

OEO Optical-electrical-optical

OSNR Optical signal to noise ratio

OOK On-off keying

PAM Pulse-amplitude modulation

QAM Quadrature amplitude modulation

QP Quadratic programing

QPSK Quadrature phase-shift keying

RLS Recursive least squares

Rx Receiver

RZ Return to zero

SMF Single-mode fiber

SPM Self-phase modulation

SQP Sequential quadratic programing

SSFS Split-step Fourier scheme

SSMF Standard single-mode fiber

TLM Transmission-line modeling

Tx Transmitter

xxvi



VA Viterbi algorithm

VFS Virtual fiber span

VSE Volterra series-based equalizer

WDM Wavelength-division multiplexing

XPM Cross-phase modulation

xxvii



Chapter 1

Introduction

A telecommunication system transmits information from one place to another, whether

separated by a few kilometers or by transoceanic distances (Al-Amri et al., 2016). It

may but does not need to involve optics. The information is usually carried by an

electromagnetic carrier wave whose frequency ranges between few kilohertz up to sev-

eral hundred terahertz (Kaminow et al., 2013). The traditional microwave wireless

communication systems, for which the typical frequency is about 1 GHz, are uti-

lized in many applications of our daily lives, including broadcast radio and television,

wireless local area networks (LANs), and mobile phones (Weber, 2001). However,

the data rates in most of the microwave systems are limited to few gigabits per sec-

ond due to the lack of the available spectrum in the radio frequency range (Pozar,

2011). In contrast, an optical fiber communication system transmits data through

light-waves, whose frequency carrier is very high- around 200 THz. It therefore has

a much larger bandwidth and can support data rates up to 100 terabits per second

and beyond (Malekiha, 2011).

Optical fibers are deployed in several telecommunication systems and applications.
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According to the transmission distance, the fiber-optic communication systems can be

classified into 2−main categories, namely, short-haul and long-haul optical fiber com-

munication systems (Agrawal, 2012). While the transmission distance in short-haul

optical communication systems ranges from a few meters to a few tens of kilometers,

the long-haul systems can have transmission distances of thousands of kilometers.

The initial deployment of fiber-optic was mainly for long-haul transmission system or

fiber-optic submarine transmission (Liang, 2015). However, optical fibers are being

considered recently in many promising short-reach applications. Metro and media

access networks, data center networks (DCNs), and cloud radio access network (C-

RANs) are instances among many other potential applications to short-haul fiber

optic communication systems (Lam et al., 2014; Andrews et al., 2014).

1.1 Evolution of Fiber-Optic Communication sys-

tems

A basic fiber-optic communication system is shown in Fig. 1.1. It consists of a trans-

mitter, followed by an optical fiber transmission channel, and then a receiver. The

transmitter converts the electrical signal data into a lightwave modulated signal. The

optical fiber carries the lightwave signal to the receiver. The receiver accepts the light-

wave signal and converts it back into an electrical signal. The evolution of optical

fiber communications is thus closely linked to the advent of technology breakthroughs

in any of these 3−main components of the fiber-optic communication system (Yang,

2010; Shao, 2015).

The first breakthrough in optical fiber communications dates back to the laser
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Transmitter

Receiver

Figure 1.1: Basic structure of a fiber-optic communication system (Senior and Jamro,
2009).

invention in 1960, providing the coherent optical source required for transmitting

data through lightwaves (Maiman, 1960). In 1966, the idea of using an optical fiber

medium as a potential candidate for lightwave transmission was proposed, due to

its capability of guiding the light in a manner similar to the guiding of electrons

in a copper wire (Kao and Hockham, 1966). However, all studies around this idea

remained theoretical during the 1960s. The main limitation at that time was the

fact that all realized optical fibers were suffering from extremely high losses (over

1000 dB/km). Nevertheless, in the early 1970s, the fiber losses were brought down

to less than 20 dB/km at a wavelength near 1 µm, by removing the fiber impurities

using a novel fabrication technique (Keck et al., 1973). Soon after, the low-loss fiber

was realized in 1979, at the operating wavelength of 1.55 µm, where fiber losses could

be significantly reduced to around 0.2 dB/km (Miya et al., 1979).

The simultaneous feasibility of stable optical sources and low-loss optical fibers
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led to an extensive research efforts and rapid development of optical fiber commu-

nication systems. According to a fundamental change in the theoretical limit of the

lightwave system capacity (operating data rate) and/or the feasible transmission dis-

tance reach (the distance over which a lightwave system can transmit data without

introducing errors), the progress of fiber-optic communications can be classified into

five development generations (Agrawal, 2005; Kumar and Deen, 2014).

The first-generation has been investigated during 1970s, for which the GaAs semi-

conductor lase (Hayashi et al., 1970), operating at a wavelength near 0.8 µm, has been

utilized as an optical source. The operating transmission rate was 45 Mb/s, and the

repeater spacing was 10 km. Note that since signal is degraded during transmission,

most lightwave systems require periodic regeneration of the optical signal through

devices called repeaters. The repeater converts the optical signal into an electrical

signal, processing that electrical signal and then regenerating an optical signal based

on the processed electrical signal pattern. Although a repeater spacing of 10 km

value may seem too small from a modem perspective, this was 10 times larger than

the 1 km spacing required in coaxial systems at that time. The major limitation of

the repeater spacing in this generation system comes from chromatic dispersion (CD)

which causes significant pulse broadening and thus inter-symbol interference (ISI).

In the second-generation system, the repeater spacing could be increased con-

siderably by shifting the operating wavelength of the lightwave system near to the

1.3 µm region. In this wavelength region, optical fibers exhibit minimum dispersion

with fiber losses less than 0.5 dB/km. This realization led to a worldwide effort for

the development of semiconductor lasers and detectors operating near the 1.3 µm

region. In the early of 1980s, the first stable second-generation lightwave system

4



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

became available. However, the transmission data rate of this early system was lim-

ited by a threshold of 100 Mb/s, due to the intermodal dispersion of the multi-mode

fibers (Green, 1996). In order to reduce the dispersion effect, a single mode-fiber

(SMF) was then introduced (Yamada et al., 1981). As opposed to multi-mode fibers,

the SMF is designed to support the propagation of only one mode of light, exhibiting

lower dispersion. This allows to have a higher system data rate and longer repeater

distance. By 1987, advanced second-generation fiber-optic communication systems

were commercially available. This generation system was characterized by operating

at data rates of up to 1.7 Gb/s with a repeater spacing of about 50 km.

The main drawback of second-generation systems was the relatively high fiber

losses (∼ 0.5 dB/km) at the operating wavelength of 1.3 µm, which limits the re-

peater spacing. It has been demonstrated with the realization of the low-loss fiber,

whose typical loss is around 0.2 dB/km, that losses of silica fibers become minimum

near 1.55 µm (Miya et al., 1979). This fact motivated the development of a third-

generation fiber-optic system with an operating wavelength of 1.55 µm. However,

the emergence of third-generation systems was considerably delayed because of the

relatively large fiber dispersion in the wavelength region near 1.55 µm. Moreover, the

conventional InGaAsP semiconductor lasers could not be used as the coherent source

of the system. This is due to the fact that the conventional InGaAsP semiconductor

laser operating at 1.55 µm oscillates multiple longitudinal modes simultaneously, re-

sulting in large pulse broadening. Many studies have been investigated during 1980s

aiming to overcome these problems, either by using a dispersion-shifted fiber (DSF)

designed to have minimum dispersion near the 1.55 µm region, or by limiting he

laser spectrum to a single longitudinal mode. A dispersion-shifted single-mode silica
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fiber was designed and fabricated in 1979 (Cohen et al., 1979). The minimum chro-

matic dispersion of the DSFs, was shifted from 1.3 µm to the window of 1.55 µm,

by controlling their waveguide dispersion and dopant-dependent material dispersion.

It thus became feasible to have a transmission fiber with both of its low dispersion

and low attenuation occurring at the 1.55 µm transmission window. In 1983, an In-

GaAsP/InP semiconductor laser with a narrow single-mode linewidth of 10 kHz was

demonstrated (Wyatt and Devlin, 1983). By 1985, laboratory experiments indicated

the possibility of transmitting information at bit rates of up to 4 Gb/s over distances

in excess of 100 km (Gnauck et al., 1985). Later in 1990, the DSFs in combina-

tion with distributed-feedback semiconductor lasers oscillating in a single longitudinal

mode with narrow linewidths enabled the emergence of commercial third-generation

fiber-optic communication systems (Agrawal, 2012). The operating transmission rate

was 2.5 Gb/s, and the repeater spacing was up to 70 km. It has also been demon-

strated in 1995 that such systems are capable of operating at a bit rate of up to

10 Gb/s (Agrawal, 2012).

The main drawback of third-generation systems was that the optical transmitted

signal are regenerated periodically using optical-electrical-optical (OEO) repeaters,

spaced apart typically by 60− 70 km, because of the fiber losses. Such regenerating

procedure in the electrical domain would not be effective for multichannel lightwave

systems, as each single wavelength would require an OEO repeater, leading to exces-

sive system complexity. Another limitation of using OEO repeaters was that due to

the high data rate in optical fiber systems, high-speed electronic devices are therefore

required, but it would be very hard and expensive to make extra-high speed electron-

ics at that time. The idea that attracted the attention of many researchers during
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1980s was introducing an optical amplification method to be utilized as an efficient

alternative approach for the electrical amplification method. Optical amplifiers can

amplify the signal directly in the optical domain without the need for optical-electrical

or electrical-optical conversions. The first realization of optical amplification was in

1983, using semiconductor laser amplifiers (Mukai and Yamamoto, 1983). In 1986, the

optical amplification was then realized using Raman amplifiers (Byron, 1986). Later

in 1987, the most effective wideband optical amplification method was realized using

erbium-doped fiber amplifiers (EDFAs) (Shaw and Digonnet, 1987). Once EDFAs

have been commercially emerged, they widely replaced OEO repeaters due to their

cost efficiency, especially for multichannel long-haul lightwave systems (Mears et al.,

1987; Desurvire et al., 1987). The benefit of wideband optical amplification with low

noise and high gain, provided by EDFAs, stimulated the development of transmitting

signal through a single fiber channel using multiple carriers simultaneously, which can

be implemented using a wavelength-division multiplexing (WDM) scheme (DeLange,

1970). In a WDM system, signals in different channels are modulated on separate

wavelengths and simultaneously launch to the fiber by a multiplexer at the transmit-

ter. The signals in different channels would then be demultiplexed at the receiver

side. The WDM scheme therefore significantly increases the transmission capacity

without the need for extra fiber channels.

The fourth-generation of fiber-optic communication systems made use of optical

amplifiers and WDM for increasing the repeater spacing and the data rate, respec-

tively. This technology breakthrough started a revolution and brought a new era to

optical fiber communication systems. The system capacity could be doubled every

6 months reaching up to a bit rate of 10 Tb/s by 2001. Fiber losses could also be
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compensated periodically using EDFAs, typically spaced apart by 60 to 80 km. The

possibility of data transmission over 14, 300 km at a bit rate of 5 Gb/s has been

experimentally shown in 1991, using recirculating-loop configuration (Bergano et al.,

1991). By 1996, the transmission over 11, 300 km at a bit rate of 5 Gb/s has been

demonstrated using actual submarine cables (Otani et al., 1995). Soon after, com-

mercial transatlantic and transpacific cable systems became available, and submarine

lightwave systems started to largely deploy worldwide.

To further increase the system capacity and the transmission reach, the fifth-

generation of fiber-optic communication systems aims at extending the wavelength

range over which a WDM system can operate simultaneously (Sharma et al., 2013).

Up to now, the modern WDM systems can handle hundreds of channels and they can

expand a basic 10 Gb/s fiber-optic system to a total capacity of several Tb/s over

a single fiber channel (Willner, 2019). Although WDM systems can greatly improve

the capacity of optical fiber transmission systems through increasing the number of

channels, the achievable feasible data rate is limited by the optical amplifier band-

width and the induced nonlinear distortions of fiber. Optical amplifiers do not only

compensate for fiber losses, but they also add a white Gaussian noise to the amplified

signal. The main source of this noise is the amplified spontaneous emission (ASE)

noise. While the amplifying gain of the EDFA is provided by the stimulated emission

process, the ASE noise is due to the spontaneous emission process (Mears et al., 1987).

Increasing the transmitted signal power, i.e., the optical signal to noise ratio (OSNR),

can limit the performance deterioration due to the noise. However, the transmitted

signal power cannot be arbitrarily large, because of the fiber nonlinearity. In order to

address the bandwidth and power limitation, the design of fifth-generation systems
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need to simultaneously enhance the spectral efficiency and the power efficiency. The

spectral efficiency can be increased using advanced spectrally efficient modulation

format schemes. For instances M-ray phase-shift keying (MPSK) and quadrature

amplitude modulation (QAM) schemes. The power efficiency can be improved by

minimizing the required OSNR at a given level of bit error rate (BER). Therefore,

the fifth-generation systems is also concerned with developing robust and powerful

digital signal processing (DSP) and electrical equalization techniques to compensate

for fiber distortions at the receiver side, which in turns minimizes the average launch

power required for achieving a certain BER level (Willner, 2019). It should be clear

that the more effective DSP techniques are available at the receiver side, the more

feasible transmission distance reach can be achieved.

This thesis focuses on how to improve the power spectral efficiency of optical fiber

systems. The focus will therefore be on efforts that have been made to develop reliable,

stable, cost-efficient, and powerful digital equalization techniques that can be used to

compensate for the linear and nonlinear distortions of the fiber. We first discuss the

main sources of signal distortions in an optical fiber link in the next section. Then, a

discussion of several methods developed for mitigating the fiber impairments is drawn

in Section 1.3.

1.2 Impairments in an Optical Fiber Channel

While propagating through an optical fiber link, the transmitted signal is subjected to

several sources of unavoidable distortions. These distortions are classified into linear

and nonlinear impairments. The linear distortions are due to the loss, and chromatic

dispersion (CD) of optical fibers, whereas the main source for nonlinear impairments
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Due to chromatic 
dispersion

Figure 1.2: An illustration of pulse broadening due to chromatic dispersion of the
fiber (Kalander and WANG, 2017).

is the optical Kerr effect (Kerr, 1875). Material absorptions, the Rayleigh scattering

effect, and the splice effect are main reasons for the fiber loss (Ohashi et al., 1992;

Tsujikawa et al., 2007; Pradhan et al., 2003). Thanks to the realization of low-loss

silica fiber, fiber losses can be made as low as 0.2 dB/km. However, signal attenuation

becomes significant in long-haul transmission systems. In this case, fiber losses have

to be compensated using EDFAs which though add ASE noise. The ASE noise in

addition to other noises in the system (e.g. shot noise and thermal noise) represent

an upper threshold to the overall system performance, setting the hard constraint of

any practical fiber-optic communication system.

The fiber CD phenomenon is another major source for linear distortions in the op-

tical communication system. Due to the dispersive nature of an optical fiber medium,

its refractive index depends on frequency. As a result, each frequency component of an

optical pulse propagates, into the fiber link, at different speed leading to pulse broad-

ening, as illustrated in Fig. 1.2. When multiple pulses propagate together through
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Figure 1.3: An instance of signal degradation due to the chromatic dispersion of fiber.
The transmitted data are 10 return-to-zero Gaussian pulses. The modulation format
is on-off-keying, the data rate is 10 Gbps, and the fiber length is 140 km.

the fiber, the pulse spreading causes each optical pulse to interfere with its neigh-

bouring pulse, which is known as intersymbol interference (ISI) effect. As data rate

or transmission distance increases, the ISI effect causes severe degradation to the re-

ceived signal, resulting in bad data recovery and large bit error rate (BER) at the

receiver. Figure 1.3 shows an instance of transmitting a sequence of 10-Gaussian

pulses through a 140 km-optical fiber link, at a bit rate of 10 Gbps. Due to the CD

effect, the received signal deteriorates significantly as compared to the transmitted

signal, as declared in Fig. 1.3. Consider a half-level decision detector at the receiver,

the recovered bit pattern is then ‘0011000000’ as opposed to the ‘1011100110’ original

transmitted pattern, i.e., 4 bits out of 10 are recovered wrongly. The CD induced

spectrum broadening, even without nonlinearity, is therefore very crucial for high

data-rate transmission systems (> 2.5 Gb/s), and it limits the maximum feasible

(error-free) transmission distance.

Another major origin of signal impairments in fiber-optic systems is the fiber

nonlinearity effect. The optical fiber can only be approximated as a linear medium

when the launch power is sufficiently low. In other words, the linearity assumption

of fiber is only valid for short-haul optical fiber transmission systems, where launch
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power can be low. As transmission distance increases, the use of EDFAs becomes

mandatory, and the launch power must hence be increased to keep the OSNR high

enough for combating the accumulated ASE noise added by the EDFAs, distributed

along the transmission fiber link. When the launch power gets considerably high,

the nonlinear behaviour of the optical fiber becomes significant, resulting in severe

performance degradation. The fiber nonlinearity effects cannot therefore be ignored

for long-haul optical fiber communication systems. Fiber nonlinearity also enforces

an upper limit to the launch power of fiber-optic communication system, since it

increases as the optical signal power increases.

Nonlinear effects in optical fibers are mainly due to the optical Kerr effect, which

denotes to the refractive index dependence on the intensity of the propagated optical

pulse (Kerr, 1875). This phenomenon originates from the fact that when the optical

field intensity is comparable to the inter-atomic electric field of fiber, optical signal in-

teracts with atoms of fiber, generating new frequency components (Boyd, 2019). The

Kerr effect causes three types of nonlinear distortions in a single fiber-optic chan-

nel. They are self-phase modulation (SPM), intra-channel cross-phase modulation

(IXPM), and intra-channel four-wave mixing (IFWM). Figure 1.4 illustrates these

nonlinear effects (see for example channel 3).

The SPM represents the induced nonlinear phase shift added to an optical pulse

due to its own intensity, causing a spectral pulse broadening. Note that the SPM

interacts with the chromatic dispersion of the fiber. This interaction results in tem-

poral pulse broadening in case of normal dispersion, or causes pulse compression in

the anomalous dispersion case. The latter interaction (the SPM with the anomalous

fiber dispersion) can be exploited to formulate an important phenomenon known as
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Figure 1.4: An illustration of nonlinear interactions in a single channel and WDM
fiber-optic communication system (Kumar et al., 2018).

an optical soliton (Hasegawa and Tappert, 1973; Hasegawa and Kodama, 1981). The

optical soliton is a solitary light wave that maintains its shape while travelling through

an anomalous optical fiber, due to the cancellation of the SPM and the dispersive

effects of the fiber. The concept of the optical soliton formation is later discussed

in more details in Chapter 3. The IXPM is the nonlinear phase shift added to an

optical pulse because of the intensity dependence of its neighboring pulses. It causes

asymmetric spectral broadening for the optical pulse, resulting in amplitude distor-

tion in time-domain. The nonlinear interaction among the overlapped optical pulses

of a same channel also generates ghost or echo pulses at new frequencies. This effect

is known as the IFWM, and it represents the dominant penalties for high data-rate

(40 Gbaud and above) optical fiber systems (Essiambre et al., 1999). For instance,

the interaction between 3 pulses centered at t1, t2, and t3 leads to generating two
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ghost pulses at t1 + t2 − t3 and −t1 + t2 + t3.

In case of a WDM system, the Kerr effect causes nonlinear interactions between

not only pulses of the same channel but also pulses of different channels, as shown

in Fig. 1.4. The latter interactions are called inter-channel nonlinear effects. These

effects are divided into cross-phase modulation (XPM) and four-wave mixing (FWM).

While the XPM corresponds to the nonlinear interaction of two WDM channels, the

FWM corresponds to the nonlinear interactions of three WDM channels. The inter-

channel XPM represents the modulation of the phase of a signal in one channel due

to the power variance of a signal in another channel. Also, nonlinear interactions

among signal channels of center frequencies f1, f2, and f3 results in new frequency

components at f1 + f2 − f3 and −f1 + f2 + f3 due to the scattering of the incident

photons, which is known as the FWM effect (Tkach et al., 1995). These new frequency

components generated through FWM act as noise on channels centered at f1 +f2−f3

and −f1 + f2 + f3.

Moreover, nonlinear interactions between signal and ASE noise lead to additional

signal impairments, known as nonlinear phase noise. Due to the ASE noise, the

signal instantaneous power fluctuates, which causes random change in the signal

phase because of the nonlinear Kerr effect. This phenomenon is known as the Gordon-

Mollenauer effect (Gordon and Mollenauer, 1990). The nonlinear phase noise could

lead to significant performance degradation in the absence of fiber dispersion, limiting

the usefulness of phase-modulation schemes (Mecozzi, 1994). However, in the presence

of moderate to large dispersion, the effect of nonlinear phase noise is significantly

reduced (Kumar, 2005).
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This thesis focuses on studies of mitigating the impairments induced by a sin-

gle fiber-optic channel. We therefore summarize, in the next section, the electrical

equalization techniques developed for combating the linear and nonlinear distortions

induced by both short-reach and long-haul optical fiber communication systems, with

single channel carrier.

1.3 Electrical Compensation Techniques for Opti-

cal Fiber Distortions

Various compensation techniques have been proposed in literature for mitigating the

linear and nonlinear distortions imposed by optical fiber communication systems. The

impairments due to the optical fiber link can be equalized either by pre-compensating

the signal at the transmitter side (Bülow et al., 2008), or by using a compensa-

tion technique to equalize the received signal. The latter solution is known as post-

compensation technique, and it is currently of preeminent interest, due to the fact that

the exact pre-determination of the of transmission fiber link parameters represents a

major challenge to utilize a pre-compensating scheme.

The post-compensation techniques can be classified into optical and electrical

methods. While the optical compensation methods equalize the distorted signal in

optical domain, the electrical compensation techniques do the equalization in the elec-

trical domain, after the photo-detection step. Optical compensation techniques could

provide more efficient equalization performance since they deal with the impairments

in the domain where they actually occur. However, optical compensation methods

severely suffer from the high cost required for designing accurate and complex optical
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devices (Sarkis, 2009). Electrical compensation methods would not provide the same

efficiency that could be acquired in the optical domain. Optical domain equalizers

have drawn significant attention due to their ability to compensate for linear and

nonlinear distortions in real time and due to their WDM compatibility (Kumar and

Yang, 2011; Kumar and Shao, 2013; Bidaki and Kumar, 2019). However, as compared

to optical equalizers, electrical compensation techniques offer superior performance

in terms of speed, robustness, stability, and cost (Franceschini et al., 2007). More-

over, electrical equalizers offer an adaptive equalization that traces dynamic linear

distortions of the optical fiber (Bohn and Xia, 2009).

The first set of electrical equalizers, that have been utilized for compensating

optical fiber impairments, were mimicked from solutions introduced earlier to prob-

lems of wireless communications systems. Instances of these solutions are linear feed-

forward equalizer (FFE) (Curri et al., 2004), decision feedback equalizer (DFE) (Wang

and Kahn, 2004), and maximum-likelihood sequence estimator (MLSE) (Foggi et al.,

2006).

1.3.1 Feed-Forward and Decision Feedback Equalizers

The Linear FFE is the most popular and easy-to-implement electronic equalizer for

compensating linear impairments of optical fibers. The linear FFE, which is also

known as a digital transversal filter (or a tapped-delay-line), has the basic structure

shown in Fig. 1.5. The input signal x is fed into a delay line composed of M taps. Each

delay corresponds to one bit interval. The signal and its delayed versions are multi-

plied by adjustable equalization coefficients or tap-weights, (Ci, i = 1, 2, . . . , M),

and then summed up to generate the equalized output signal y. With the right choice
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Figure 1.5: Block diagram of a M−taps linear feed-forward equalizer (Momtaz and
Green, 2010).
T stands for a one bit time interval delay, Ci, i = 1, 2, . . . , M, are adjustable
tap-weights, and M is the total number of taps. The signals x(n) and y(n) are the
un-equalized input and equalized output at sampling time nTb, respectively, where Tb
is the inverse baud rate.

of the number of taps and the tap weights, we can use this equalizer to provide the

inverse response of any linear channel. Thus, the FFE can be utilized to undo the

linear distortions (e.g. chromatic dispersion effect) of the fiber.

Several algorithms can be applied to adaptively adjust and optimize the FFE tap-

weights. Three of the most widely used algorithms are least-mean square (LMS) algo-

rithm (Widrow and Kamenetsky, 2003), recursive least squares (RLS) algorithm (Cioffi

and Kailath, 1984), and zero-forcing algorithm (Lucky, 1965). The LMS algorithm

aims at minimizing the current mean square error between the desired and the re-

ceived signal. Whereas, the RLS algorithm recursively finds the tap-weights that

minimize the total weighted squared error between the desired signals and the re-

ceived signals, i.e., it adjust the equalizer weights based on the total error computed

from the beginning. In contrast, the zero-forcing algorithm seeks to minimize the

worst-case error at the output of the equalizer. As compared to the FFE trained
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using zero-forcing algorithm, the LMS and RLS based FFEs provide better perfor-

mance especially when the noise in the system is slightly high. At the expense of

more complexity and computational cost, the RLS algorithm provides smaller steady

state error as opposed to the LMS algorithm. However, the LMS based linear FFEs

are the most widely utilized in practical fiber-optic problems due to the fact that the

LMS algorithm provides the best trade-off between performance and computational

cost (Dhiman et al., 2013).

The equalization performance of linear FFE can be slightly enhanced using the

DFE. The basic idea of the DFE is to make use of previous decisions (previous

equalized and estimated data) in attempting to estimate the current data. The general

structure of a DFE consists of two linear FFE blocks, as shown in Fig. 1.6. The first

FFE block consists of M−delayed taps, and is fed by the received distorted signal x,

like the case in the normal FFE. On the other hand, the second FFE block (which

is called decision feedback block) has N−delayed taps, and is fed by the estimated

output signal of the decision circuit z. Therefore, this equalizer is formally denoted as

a feed-forward decision feedback equalizer. However, for simplicity, we use the term

DFE for the combination of the feed-forward and feedback blocks. The total equalized

output signal y of the DFE equalizer is obtained by subtracting the feedback output

from the feedforward output, as illustrated in Fig. 1.6. In other words, any trailing

(post-cursor) linear distortion caused by previous symbols is reconstructed and then

subtracted.

Thus, the leading linear distortions (e.g. precursor ISI) are removed in the same

way as in the linear FFE using the feed-forward block. However, the post-cursor linear

impairments are now removed through the feedback block using the output from the
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x y z

Figure 1.6: General architecture of a decision feedback equalizer.

decision circuit instead of the output from the forward delay line as the case in the

linear FFE. This way of estimating the past symbols has the advantage that it is free of

noise since it represents the precise transmitted symbol value, assuming that the past

decision was correct. Actually, this is the main reason that the DFE outperforms the

BER performance of the FFE. However, if it happened that a previous decision was

wrong, the DFE equalizer would add more distortions to the output signal y, which

in turns could cause further decision errors. This effect of passing wrong equalized

decisions to the feedback process is known as error propagation (Bohn and Xia, 2009).

Nevertheless, the advantages of the DFE outweigh its disadvantages, and in practice,

DFEs slightly outperform the performance of FFEs at the expense relatively higher

implementation complexity and computational cost (Watts, 2007).

Linear FFEs and DFEs are the simplest and fastest option amongst all other avail-

able electronic equalizers. Their computational cost represents the lower benchmark

threshold for the computational complexity of electrical compensation techniques.

The computational cost per symbol of both FFE and DFE scales linearly with the

ISI span (i.e. the required number of taps). Also, both FFE and DFE can effec-

tively compensate for the linear fiber distortions (e.g. CD dispersion), excluding the
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nonlinear impairments induced in long-haul coherent optical fiber communication sys-

tems. In contrast, they fail to mitigate these linear fiber distortions for short-reach

fiber-optic communication systems, despite the fact that nonlinear fiber distortions

are negligible in short-reach optical fiber transmission systems. This failure is due

to the fact that in practical short-haul optical fiber applications, the intensity of the

optical carrier is modulated by the electrical information signal, and at the receiver

a direct photo-detection system is usually used (Chen et al., 2020). This is known as

the intensity-modulation and direct detection (IM-DD) systems. The direct photo-

detection receiver is a nonlinear detector, since it consists of a single photodiode that

acts as a square-law detector, and correspondingly, the phase information of the op-

tical signal is lost at the electrical domain. The linear optical distortions thus turn

into nonlinear impairments in the electrical domain in the short-reach optical fiber

communication systems. As a result, linear equalizers such as FFEs and DFEs fail

to compensate for these nonlinear distortions, and the use of nonlinear equalizers

becomes mandatory to mitigate the distortions induced in the IM-DD systems.

1.3.2 Maximum-Likelihood Sequence Estimator

The maximum likelihood sequence estimator (MLSE) is one of the most effective,

but computationally expensive, nonlinear equalization techniques that can be used

at the receiver to compensate for the linear and nonlinear impairments of fiber-optic

communication systems. It provides the optimum equalization performance from the

error probability point of view. Its basic idea is to consider all possible combinations

of sequence stream, and the sequence for which the probability (to have been sent) is

the highest, is decided to be the transmitted signal sequence (Agazzi et al., 2005; Foggi
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et al., 2006). In other words, the MLSE aims at comparing the received distorted (due

to linear and nonlinear fiber impairments) and noisy signal with all possible distorted

but noise-free received sequences, and then selecting the closest one. For sequences

of length N bits, i.e., MLSE with memory size of N , this requires comparison with

2N different noise-free sequences. The MLSE is thus equivalent to the problem of

estimating the state of a discrete-time finite-state machine. When the symbols are

M−ary and the MLSE memory size is N , the state machine has MN states.

The MLSE technique requires knowledge of the channel characteristics. It there-

fore needs to be first trained by sending all possible sequence combinations and storing

their corresponding received data in order to create a look-up table for the channel

impairments. Once the look-up table has been established, actual unknown data can

be transmitted. The MLSE algorithm then employs the Viterbi algorithm (VA) to

search for the most probable path through a MN−state trellis (Proakis, 2007). The

MLSE shows high robustness performance for the nonlinear compensation of nonlin-

ear fiber-optic impairments (Bohn and Xia, 2009). It has been demonstrated that the

MLSE provides the superior BER performance over all other electrical equalization

techniques utilized for fiber-optic communication systems (Weiss, 2003). It can there-

fore be used as a BER lower bound estimation of optical fiber systems. Despite that,

it severely suffers from the high computational complexity. Its computational cost

per symbol is exponentially proportional to the ISI span (i.e. the required memory

size) (Bülow et al., 2008; Bohn and Xia, 2009). This drawback significantly limits the

possibility of high-speed transmission symbol rate.
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Alternative Candidates to the MLSE

The high computational cost of the MLSE can be reduced, at the expense of lower

BER performance, using other nonlinear compensation techniques. Volterra series-

based equalizers (VSEs) have been investigated for nonlinear compensation of optical

fiber nonlinear impairments (Schetzen, 2006). Until recently, the VSE has been uti-

lized as a good candidate for reducing the computational complexity of the MLSE,

offering a slightly lower BER performance as compared to the MLSE performance (Liu

et al., 2011). However, the computational complexity of VSEs is still reasonably high,

since it needs an enormous amount of calculations. Its computational cost per sym-

bol is of O(N3) to compensate for fiber nonlinear impairments, where N is the ISI

span (Xia and Rosenkranz, 2007). We are therefore motivated to investigate for an-

other nonlinear compensation technique that could provide the same performance of

the VSE with much simpler implementation and lower computational complexity.

A neural network-based equalizer (NNE) could be a potential candidate offering

lower computational complexity for the compensation of the distortions induced in

the IM-DD fiber-optic systems. The neural network (NN) is a mathematical model

that simulates the human neurons ability. Biological neurons fire when the input

from all of its synapses exceeds a certain threshold. The mathematical neuron (node)

of the NN imitates this biological behavior. Since it mimics the most complicated

processing system in life (human brain), the NN is capable of performing any required

linear or nonlinear mapping function from the input parameters space into the space

of output responses (Bakr, 2013). Moreover, the model of a NN with single hidden

layer has been mathematically proved to be universal (Hornik et al., 1989).
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Due to their promising performance, NNs have been widely used in various en-

gineering fields and applications. For instance, NNs have been exploited to combat

the uncompensated ISI effects of wireless communication systems (Zayani and Boual-

legue, 2007; Burse et al., 2010). Moreover, it has been demonstrated that NNEs

could potentially improve the computational complexity required by VSEs (Owaki

and Nakamura, 2018). While the computational cost of NNEs increases in propor-

tion to the number of neurons in each layer, the VSE cost increases exponentially as

the number of tapped delays and the order of the Volterra series increase (Schetzen,

2006). In particular, the computational cost per symbol of the NNE scales as O(N2),

which is opposed to the O(N3) required by the VSE (Otsuka et al., 2018).

1.3.3 Digital Back Propagation

The traditional direct detection receiver is not employed for long-haul fiber-optic

transmission systems. In this case, a coherent photo-detection system is usually uti-

lized at the receiver side. Unlike direction detection, the coherent detection technique

makes it possible to obtain both the amplitude and phase information of the complex

signals (Yamamoto and Kimura, 1981). The basic idea of the coherent receiver is to

mix the received optical signal with a continuous wave signal from a coherent local

oscillator in a way such that the in-phase and quadrature components of information

signal can be detected using photo diodes (Basch and Brown, 1985). Since the phase

information of transmitted signal is preserved in the coherent detected systems (i.e.,

the complex valued electrical field is fully detected at the receiver side), the amplitude,

phase, and frequency of the optical carrier can all be utilized to carry the information.

In other words, more advanced modulation schemes and modulation constellations,
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e.g., QPSK and QAM, can be received as contrasted to the direct detection receivers.

Therefore, the spectral efficiency can be further improved. Moreover, the preserva-

tion of the temporal phase enables more effective methods for the adaptive electronic

compensation of transmission fiber impairments.

One of the most important advantage of coherent detected systems is that linear

fiber distortions (e.g. chromatic dispersion effect) can effectively be compensated

using the computationally non-expensive linear equalizers. This is due to the fact

that the nonlinear impairments introduced by the square-law detection is absent in

coherent receivers. However, since nonlinear fiber effects cannot be neglected in long-

reach optical fiber communication systems, a nonlinear equalizer is still required to

fully equalize the distortions. Digital back propagation (DBP) is the most commonly

used technique to compensate for fiber impairment in long-reach optical fiber systems

with coherent detection (Ip and Kahn, 2008; Li et al., 2008). The basic idea of the

DBP is to virtually transmit the received distorted signal through a virtual fiber

whose loss, dispersion, and nonlinear parameters are the same in magnitude, as the

actual transmission fiber, but with opposite signs, such that the distortion effects of

the transmission link can be inverted, i.e., the transmitted signal can be recovered.

The signal propagation through an optical fiber link is fully described by a par-

tial differential equation known as nonlinear Schrödinger equation (NLSE) (Agrawal,

2007; Kumar and Deen, 2014). The NLSE cannot be solved analytically, it is usually

solved numerically using a method called split-step Fourier scheme (SSFS) (Sinkin

et al., 2003; Shao et al., 2014; Deiterding and Poole, 2016). The NLSE and its so-

lution technique are discussed in details later on in Chapter 3. The NLSE is also

an invertible equation. The DBP therefore aims at numerically solving the inverted
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NLSE to undo the induced fiber impairments. Particularly, the DBP is fed by the

received optical signal after being converted into digital domain. Then, it applies the

SSFS method for numerically solving the inverse NLSE backward in space, in order to

undo the distortions and recover the transmitted signal. More details on DBP anal-

ysis are given in Chapter 4. Provided that the system is a noise-free and an enough

small step-size is used in the SSFS algorithm, the DBP can fully compensate for all

deterministic distortions due to dispersion and signal-signal nonlinear interactions.

However, in practice, the noise exists and the noise-signal nonlinearity interactions

cannot be compensated by the DBP. Also, the small SSFS step-size will increase the

computational burden, even though it increases the DBP performance.

DBP was first introduced as a pre-compensation method to be utilized at the

transmitter side of single optical fiber channel with direct detection system (Roberts

et al., 2006). The DBP is fed by the desired signal to be obtained at the receiver side.

Notice that the desired signal at the receiver is the ideal signal with no noise (i.e.

perfect constellations), which is already available at the transmitter. Pre-distortions

are then added to the signal using the pre-compensator DBP. The pre-distortions

imposed on the transmitted signal cancel with the distortions accumulated by the real

transmission fiber link. The non-distorted transmitted signal could thus be recovered

at the receiver if the system was noise-free. The implementation of a transmitter-

based DBP was due to the fact that in the absence of coherent detection, manipulation

of the field is only possible at the modulator. However, as previously mentioned, post-

compensation techniques provide better flexibly over pre-compensation methods since

it allows various adaptive equalization without the need for a feedback.

With coherent detection, employing a receiver-based DBP becomes applicable.
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DBP was first implemented as a post-compensation technique in (Ip and Kahn, 2008;

Li et al., 2008). The DBP is inserted after a coherent detector to equalize the dis-

torted received digital signal. In (Ip and Kahn, 2008), a non-iterative asymmetric

SSFS algorithm is proposed for solving the inverse NLSE. It has been theoretically

demonstrated that 3 samples per symbol are required for the DBP to achieve a good

numerical accuracy (Ip and Kahn, 2008). It has also been shown that setting a step-

size equal to the fiber span length achieves a reasonable performance provided that

the symbol rate is 10 Gbaud or below. In (Li et al., 2008), the dispersion step of the

DBP is realized using finite impulse response filters. A parallel architecture is also

designed for real-time implementation. It has been demonstrated using numerical

simulations that 2 samples per symbol in the digital domain are sufficient to achieve

significant nonlinearity compensation (Li et al., 2008).

Exploiting the DBP to compensate for nonlinear effects of long-reach fiber-optic

systems with coherent detection has been extensively studied in literature. DBPs

based on coupled NLSE and total-field NLSE are utilized to fully compensate for the

XPM and FWM effects in (Mateo et al., 2008). A symmetric iterative SSFS algorithm

is employed to solve the inverse NLSEs. The obtained results show that FWM distor-

tions are relatively weak as compared to the XPM impairments if the fiber has high

dispersion as in standard single-mode fibers (SSMF). It has also been demonstrated

that the coupled NLSE-based DBP is sufficient to provide effective compensation

for most nonlinearity effects in long-haul systems with large accumulated dispersion.

In (Mateo and Li, 2009), an enhanced coupled NLSE based-DBP algorithm was pro-

posed to fully compensate for the XPM effects and partially compensate for the FWM

distortions. At the expense of slightly lower compensation performance, significant
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reduction in the computational cost has been achieved as compared to the previous

DBP scheme. Then, the computational complexity of the coupled NLSE based-DBP

has been reduced by a factor of 4 through introducing an advanced SSFS method

in (Mateo et al., 2010).

In order to further reduce the computational cost of the DBP and to increase the

potential for real-time implementations in practical systems, a filtered DBP scheme

was proposed (Du and Lowery, 2010). Using the filtered DBP, it has been shown

that the required number of DBP steps per fiber span can be reduced to less than

one as compared to tens of steps needed by the conventional DBP. In the filtered

DBP scheme, a low pass filter (LPF) is inserted in each DBP step to filter the signal

before the nonlinearity compensation sub-step. The filtered DBP aims at enhancing

the accuracy of the conventional DBP method while allowing the numerical step-size

to be relatively large. In other words, the filtered DBP can provide compensation

performance higher than the conventional DBP when a large step-size is used in

both the two schemes. However, the optimal compensation performance obtained

using the filtered DBP cannot exceed the conventional DBP optimum performance

achieved when the step-size is reasonably small.

Note that the filtered DBP scheme reduces the required number of steps per span,

as compared to the conventional DBP, but at the expense of increased computational

complexity for each step. The filtered DBP therefore does not provide absolute reduc-

tion in the computational cost for all studied systems with any desired compensation

performance level. In other words, the compensation performance of the filtered DBP

is lower than that of the conventional DBP with small step-size, and it does not always

guarantee achieving the desired resultant computational cost reduction benefit. For
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instance, the resultant computational complexity (i.e. total number of required real

multiplications) of the filtered DBP is compared with the conventional DBP resultant

computational cost for different fiber-optic communication scenarios in (Gao et al.,

2012). It has been shown that, for single fiber-optic channels, the conventional DBP

is preferred over the filtered DBP when large number of steps per span is consid-

ered. In other words, the conventional DBP requires lower resultant computational

complexity as compared to the filtered DBP resultant computational cost when high

compensation performance is required.

Moreover, as the data rate per channel increases, the DBP with the step-size being

equal to the fiber span length does not provide a good performance, and it has been

shown that the step-size has to be smaller than the fiber span length (Shao et al.,

2014). However, the virtual fiber may be divided into a few sections and lengths

of each section are determined by optimizing the area mismatch between the ideal

exponential profile and its stepwise approximation (Shao et al., 2014).

One of the major limitations of conventional and filtered DBPs is the fact that

they only compensate for deterministic linear and nonlinear distortions of the fiber,

and inherently do not consider noise. In other words, the compensation performance

of DBPs is ultimately limited by non-deterministic nonlinear effects, e.g., nonlinear

signal-noise interactions between the transmitted signal and the amplified sponta-

neous emission (ASE) noise, which is known as the nonlinear phase noise (Essiambre

et al., 2010; Rafique and Ellis, 2011; Galdino et al., 2017). In (Irukulapati et al., 2014,

2016), stochastic DBP methods were proposed to compensate not only for determin-

istic linear and nonlinear impairments, but also to mitigate stochastic distortions due

to the nonlinear phase noise. The basic idea of the stochastic DBP is exploiting the
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Bayesian detection theory and factor graphs to formulate maximum a posteriori prob-

ability detectors that can mitigate data-pattern-dependent nonlinear impairments, by

minimizing the error probability. It has been shown that for dispersion-managed links,

stochastic DBP shows a significant increase in the system reach as compared to the

conventional DBP. However, the stochastic DBP and the conventional DBP exhibit

similar performance for dispersion uncompensated links (Irukulapati et al., 2014).

It is clear that the compensation of fiber impairments using the DBP requires pre-

determination of detailed physical fiber-optic channel parameters. Such information

can only be available at the receiver when the case of a point-to-point transmission

system is considered. Contrary, in case of a dynamic optical network, precise informa-

tion of the physical fiber channel parametrization may not be available. For instance,

transmitted carriers in elastic optical networks (EONs) may propagate through sev-

eral different routes until reaching the same receiver point (Sharma and Kumar, 2017).

These routes are determined according to the dynamic network configurations. Hence,

it becomes challenging and very difficult to determine the fiber channel parameters

in such scenarios (da Silva et al., 2015). Moreover, the physical parameters of opti-

cal fiber links and in-line EDFAs are subject to slight variations, from their nominal

values, due to environmental changes. The need for an adaptive DBP scheme that is

capable of obtaining and tracking the optimal DBP parameters is therefore essential

and of preeminent.

Some approaches have been proposed in literature for estimating the conventional

DBP parameters without knowing the launch power and channel parameters. A semi-

blind DBP method was first proposed in (Tanimura et al., 2010). In this method, the

dispersion and nonlinear parameters of the DBP are tuned according to information
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derived from the received signal after detection. However, such approach requires

significant delay and is not practical for high-speed transmission systems, since it

needs prior knowledge of previously detected data that have been recovered using

the computationally expensive forward error correction device. An adaptive DBP

method which could only self-determine the fiber nonlinearity coefficient utilizing

steepest descent algorithm is proposed in (Lin et al., 2014). Starting from wrong

nonlinear coefficient estimation, the DBP is trained, using the known transmitted

data, to minimize the phase-noise variance of the received constellation. In (da Silva

et al., 2015), a modified adaptive DBP technique is proposed where the nonlinear fiber

coefficient is optimized, exploiting a stochastic gradient algorithm, for minimizing the

metric of error vector magnitude.

In order to reduce the number of required DBP steps, Jiang et al. extended the

adaptive technique introduced in (Lin et al., 2014), for the conventional DBP, to

the filtered DBP scheme (Jiang et al., 2016). Instead of the phase noise variance,

the proposed approach aims at minimizing the Godard′s error function utilizing the

steepest descent algorithm. However, the optimization process in this algorithm is

only limited to the nonlinear compensation parameter. In other words, the dispersion

compensation parameter and the linear filter bandwidth are assumed to be known.

In Ref. (Zhang et al., 2016a), Zhang et al. proposed an adaptive filtered DBP method

that is capable of optimizing both the nonlinear scaling factor and the filter band-

width. However, this approach is limited to homogenous links, where the parameters

are considered identical for all DBP steps. Zhang et al. then extended their method

and proposed a multi-parameter adaptive filtered DBP method for heterogeneous op-

tical fiber links (Zhang et al., 2017). In the extended scheme, the steepest descent
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algorithm is used to optimize the dispersion compensation, nonlinearity compensa-

tion, and filter bandwidth parameters for every DBP step, where the objective is to

minimize the received noise variance. Zhou et al. recently proposed an adaptive DBP

method based on the perturbation theory (Zhou et al., 2020). Instead of utilizing the

assisted filter approach, the computational complexity of the DBP is reduced in this

scheme exploiting the perturbation theory (Liang and Kumar, 2014). Provided that

the total accumulated chromatic dispersion is known, the proposed adaptive pertur-

bation theory-based DBP method tends to optimize the nonlinear-step tap values

using the Levenberg-Marquardt method.

So far, the common thing between all the currently available adaptive DBP meth-

ods is the fact that they all utilize a gradient-based optimization algorithm for estimat-

ing the channel parameters and adapting the DBP parameters. Any gradient-based

optimization technique needs to evaluate the full gradient vector of the objective func-

tion (i.e. its derivatives with respect to all design parameters) with respect to the

current design parameter vector, at least once per each optimization step, in order

to determine the values of the next design parameter vector. Since the NLSE and its

inverse equation could not be solved analytically, the required gradient information

cannot be determined analytically. Rather, they are obtained numerically.

The classical approach to estimate the gradient information, which has been used

in all aforementioned adaptive DBP methods, utilizes finite-difference (FD) approx-

imations at the system response level. A total of extra N system simulations are

required, using forward or backward finite-differences approaches, for the training

of a DBP with N parameters. The more accurate central finite-differences (CFD)
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approach requires 2N extra simulations. This overhead is prohibitive and imprac-

tical for such problems with large number of design parameters. For instance, if a

fiber-optic network has 20 spans, the DBP at the receiver would need to know the

values of as many as 80 parameters. Hence, the nonlinearity compensation at the

receiver using DBP would require optimization of these parameters, which would

be computationally expensive. However, this intensive computational cost can be

significantly reduced through evaluating the sensitivities using an adjoint sensitivity

analysis (ASA) approach (Bakr et al., 2017).

The ASA method estimates the sensitivities of the desired objective function or

response with respect to all design parameters using at most one extra system simula-

tion, regardless of the design parameters number. A number of commercial software-

tools, e.g., HFSS (hfs, 2013) and CST (cst, 2013), have started to implement ASA

algorithms to limit the computational time necessary for the sensitivity calculations.

Several ASA algorithms based on Maxwell′s equations or wave equation have been

first proposed for estimating the sensitivities of high frequency structures. The first

set of these algorithms has been developed for frequency-domain simulation tech-

niques, e.g., the finite element method (Park et al., 1992, 1996; Webb, 2001, 2002;

Igarashi and Watanabe, 2010), and the method of moments (Georgieva et al., 2002).

The second set includes the ASA algorithms demonstrated for time-domain simu-

lation techniques, e.g., the transmission-line modeling (TLM) method, and the finite-

difference time-domain (FDTD) method. The time-domain ASA algorithms have the

advantage of supplying wideband sensitivity analysis information using a single extra

adjoint simulation. Different TLM-based ASA algorithms were introduced for sen-

sitivity estimation of high frequency structures. These algorithms are dedicated to
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problems with linear non-dispersive materials (Bakr and Nikolova, 2004; Negm et al.,

2014), linear dispersive materials (Ahmed et al., 2012), or TLM-based nonlinear and

non-dispersive materials (Bakr et al., 2014).

Various FDTD-based ASA algorithms have also been proposed for problems with

either linear non-dispersive materials (Chung et al., 2000, 2001; Nikolova et al., 2004;

Swillam et al., 2007), or linear dispersive materials (Zhang et al., 2014, 2016b). How-

ever, these approaches cannot estimate the sensitivities of problems with nonlinear

media. Moreover, all these algorithms are implemented utilizing the second-order

space derivatives of the wave equation, which results in complex formulation and

significantly increases the required memory storage. Bakr et al. developed the first

FDTD-based ASA approach that is derived from first-order basic Maxwell′s equations

in (Bakr et al., 2016, 2017). However, this algorithm was limited to only linear prob-

lems. The linear ASA approach of (Bakr et al., 2016, 2017) is recently extended to

general EM and photonic problems with nonlinear materials (Maghrabi et al., 2020).

The theory was also extended to adopt incident field excitation problems in addition

to problems excited by current sources.

Moreover, some ASA approaches have been proposed in other fields. An ASA

technique was proposed to estimate the sensitivities of switched reluctance motors

in (Sayed et al., 2018). ASA approaches have also been introduced for the linear

time-independent Schrödinger equation (Swillam et al., 2008), and for the linear time-

dependent Schrödinger equation (Ayad et al., 2015) to evaluate the sensitivities of

semiconductor quantum structures in their static and dynamic cases, respectively.

However, none of the existing ASA algorithms can be utilized to estimate the sen-

sitivities for the fiber-optic systems governed by the general nonlinear Schrödinger
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equation. We are therefore motivated to develop a general ASA approach for the

NLSE and the inverse NLSE. Such approach could be used to significantly accelerate

the training process of adaptive DBP schemes. Furthermore, an NLSE-based ASA

algorithm could be exploited to accelerate the design optimization of any optical

fiber system using gradient-based optimization algorithms. The optimal design of

dispersion-managed coherent fiber-optic systems is an instance of such design opti-

mization problems (Yang and Kumar, 2009).

1.4 Thesis Contribution

This thesis focuses on the mitigation of fiber-optic communication systems impair-

ments using electronic compensation techniques. Particularly, the objective is to

develop powerful and computationally efficient digital equalization techniques to com-

pensate for the linear and nonlinear distortions induced by single-channel short-reach

and long-haul optical fiber transmission systems and networks. This objective is

achieved using two approaches.

The first approach, presented in Chapter 2, is proposed for mitigating the dis-

tortions of short-reach optical fiber communication systems with direct detection.

Although fiber nonlinearity effects are neglected in short-haul fiber-optic transmis-

sion systems, the induced linear impairments turn into nonlinear, at the receiver, due

to the square-law detection of direct photo-detectors. A nonlinear equalizer is there-

fore required at the DSP unit of the receiver to effectively combat these distortions.

The MLSE provides the best compensation performance for such system. However,

its computational cost is very expensive, which significantly limits the desired trans-

mission of high-speed symbol rate.
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Chapter 2 proposes a powerful, fast, and easy-to-implement artificial neural net-

work nonlinear feed forward equalizer (ANN-NFFE). The proposed ANN-NFFE pro-

vides a slightly lower compensation performance, in terms of BER, as compared to

that of MLSE. However, the computational cost of the ANN-NFFE is significantly

lower than MLSE. While the ANN-NFFE requires computational cost per symbol

growing linearly with the length of ISI span, the cost of MLSE is exponentially pro-

portional to the ISI span. The proposed equalizer utilizes a trained ANN that acts

as a nonlinear filter whose impulse response inverts the nonlinear response of the op-

tical communication channel. At first, the parameters of the ANN are optimized and

adopted using extensive training process considering all possible data combinations

that will be later transmitted through the optical channel. Two possible application

areas for the potential use of the proposed ANN-NFFE, namely, metro networks and

data center networks (DCNs), are studied in this Chapter. Our simulation results

show that the ANN-NFFE increases the CD tolerance and significantly extends the

feasible system reach.

In the second approach, we aim at developing an efficient adaptive DBP scheme

with fast adaption process to mitigate the nonlinear distortions of long-reach fiber-

optic communication systems with coherent detection. The DBP method is widely

used to compensate for the nonlinear fiber impairments of coherent optical fiber sys-

tems. Given that the signal propagation through an optical fiber link is described

by the NLSE, the DBP algorithm tends to invert the fiber effects through applying

the inverse NLSE on the received distorted signal. Although the conventional DBP

scheme requires precise information of the fiber channel parametrization, a number

of adaptive DBP schemes were proposed to combat the fiber impairments without
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knowing the launch power and channel parameters. These schemes utilize a gradient-

based optimization algorithm to adapt the DBP parameters. The required sensitivity

information are estimated by applying the FD approach at the system level. How-

ever, the computational cost of the FD approach scales linearly with the number of

parameters. This overhead is prohibitive and impractical, especially when consider-

ing all freedom degrees of the DBP designable parameters. Estimating the sensitivity

information using the computationally efficient ASA approach could though signifi-

cantly reduce the intensive computational cost of sensitivity analyses. Developing an

ASA approach based on the NLSE is therefore essential to increase the potential for

real-time implementations of the adaptive DBP in practical fiber-optic systems.

Chapter 3 proposes an efficient ASA approach for the NLSE. To our knowledge,

this is the first time that an ASA approach is introduced for the general time-

dependent NLSE. The proposed ASA algorithm could be exploited to significantly

accelerate the required sensitivity calculations in any fiber-optic design problem. Re-

gardless of the number of design parameters, our ASA approach estimates the sen-

sitivities of a general objective function with respect to all design parameters using

only one extra adjoint system simulation. This is contrasted with the classical FD

approach whose computational cost depends on the number of designable parameters.

We derive an adjoint nonlinear system of equations corresponding to the SSFS repre-

sentation of the NLSE solution. A modified split-step Fourier scheme method is also

introduced to solve the derived adjoint problem. The accuracy and efficiency of the

proposed ASA algorithm are numerically investigated through optical fiber examples.

The results show that the proposed ASA algorithm has the same accuracy as the

CFD approach but with a much lower computational cost.

36



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

In Chapter 4, we propose a novel, powerful, and computationally efficient adaptive

DBP (A-DBP) scheme, exploiting the NLSE-based ASA approach, to blindly com-

pensate for the linear and nonlinear distortions of optical fiber transmission channels.

The ASA introduced for the NLSE is extended to adopt the sensitivity analysis of

the general multi-span DBP model, i.e., the extended ASA includes both the effect

of the inverse nonlinear Schrödinger equation (INLSE) and the in-line amplifier in-

verse effect. An adjoint-based optimization (ABO) algorithm based on the sequential

quadratic programming method is used to train and optimize the parameters of the

A-DBP. All sensitivity calculations, required by the ABO algorithm, are estimated

using the ASA approach for significant acceleration of the A-DBP training process.

Regardless of the considered A-DBP design parameters number, full gradient infor-

mation of the A-DBP training problem with respect to all parameters is obtained

using only one extra adjoint DBP system simulation. The robustness and efficiency

of the proposed A-DBP algorithm is investigated through applying it to mitigate the

distortions induced in a 4−span fiber-optic communication system. Provided that the

total transmitted distance is known, the proposed A-DBP could be rapidly trained,

achieving the optimum compensation performance that is obtained using a conven-

tional DBP with the correct parameters of the channel. The A-DBP training using

the ABO algorithm is shown to be as accurate as the training utilizing a traditional

CFD-based optimizer, but with much lower computational cost. To further reduce

the computational complexity, we also demonstrate the compensation of the 4−span

optical communication scenario using a coarse-mesh A-DBP model with less number

of spans. The obtained results show that an optimized 2−span coarse-mesh A-DBP
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model provides the best trade-off between equalization performance and computa-

tional cost.
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Chapter 2

Dispersion Compensation of Direct

Detected Optical Fiber

Communication Systems Using

Artificial Neural Networks (ANNs)

In this chapter, we propose a powerful, fast, and easy-to-implement artificial neural

network nonlinear feed-forward equalizer (ANN-NFFE). The ANN exploited in this

work is a mathematical model that simulates the human neurons ability. Biological

neurons fire when the input from all of its synapses exceeds a certain threshold. The

mathematical neuron (node) of the ANN imitates this biological behavior. The ANN,

because it mimics the most complicated processing system in life (human brain), is

capable of performing any required linear or nonlinear mapping function from the

input parameters space into the space of output responses (Bakr, 2013). Moreover,
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the model of an ANN with single hidden layer has been mathematically proved to

be universal (Hornik et al., 1989). Due to their promising performance, ANNs have

been widely used in various engineering fields and applications. Equalization of wire-

less communication channels is a particular instance of exploiting ANNs to combat

uncompensated ISI effects (Burse et al., 2010).

The proposed ANN-NFFE provides a slightly lower transmission system perfor-

mance, in terms of bit error rate (BER), as compared to that of maximum likelihood

estimator (MLSE). However, the computational cost of the ANN-NFFE is signif-

icantly lower than MLSE. While the ANN-NFFE requires computational cost per

symbol growing linearly with the length of intersymbol interference (ISI) span, the

cost of MLSE is exponentially proportional to the ISI span. The proposed equal-

izer utilizes a trained ANN that acts as a nonlinear filter whose impulse response

inverts the nonlinear response of the optical communication channel. At first, the

parameters of the ANN are optimized and adopted using extensive training process

considering all possible data combinations that will be later transmitted through the

optical channel.

We discuss, in this chapter, two possible application areas for the potential use

of the ANN-NFFE (i) metro networks and (ii) data center networks (DCNs). These

networks use directly modulated lasers and direct detection receivers. As the bit-rate

increases, the transmission distance is mainly limited by the chromatic dispersion

(CD). Our results show that the ANN-NFFE increases the CD tolerance and sig-

nificantly extends the feasible transmission distance. To achieve a BER of 10−9, our

ANN-NFFE extends the transmission distance up to 200 km with at most 2 dB-OSNR

penalty as compared to the back-to-back (B2B) transmission case.
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Typically, the transmission distance of DCNs ranges from a few meters to a few

tens of kilometers (Wei et al., 2012). For baud-rates less than 10 Gbaud and transmis-

sion distances less than 2 km, direct modulation and on-off keying (OOK) are simple

and cost effective (Lam et al., 2014). The CD of the fiber is usually not a limiting

factor for distances less than 2 km. However, as the link speed increases from 10 Gbps

to 100 Gbps and 400 Gbps, novel modulation schemes and digital signal processing

will be needed for DCNs (Lam et al., 2014). Our results show that when considering

the OOK modulation format and a baud-rate of 28 Gbaud, the ANN-NFFE extends

the feasible transmission distance from 10 km to 20 km. Moreover, the ANN-NFFE

might be used in transmission distances 10 km, in order to reduce the OSNR penalty

for achieving a BER of 10−9.

The chapter is organized as follows: The general structure of direct detected short-

reach fiber optic communication system is described in Section 2.1. A mathematical

model of the entire system is provided. Section 2.2 represents the configuration of

the introduced ANN equalizer and its governing mathematical equations. The exten-

sive training methodology used to adjust parameters of the ANN-NFFE is described.

Section 2.3 shows simulation results of adapting the ANN-NFFE to compensate the

dispersion imposed on non-return to zero (NRZ)- and return to zero (RZ)-on-off

keying (OOK) modulated format transmitted data through short-reach/metro fiber

optic communication systems. The typical bit-rate, used in such short-reach optical

communication systems, 10 Gbps, is assumed. Furthermore, we investigate the perfor-

mance of the ANN-NFFE when considering higher bit-rate, in order to follow up the

current trend in the applications of short-reach optical communication systems (Sun

et al., 2015). Particularly, we study the case of 28 Gbps data communication rate
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Figure 2.1: Model of short-reach fiber optic communication system with direct photo-
detection.
DML: Directly modulated laser, EML: Electrically modulated laser, ADC: Analog to
digital converter, BPF: Band pass filter, LPF: Low pass filter.

that has been recently used in metro fiber optic links and data center networks (Wei

et al., 2012; Lam et al., 2014; Sun et al., 2015). Finally, conclusions of the work are

drawn in Section 2.4.

2.1 Optical Communication System Model

Throughout this chapter, our attention is focused on short-reach optical communica-

tion systems, e.g., metro and media access networks, and DCNs. The general model

of an optical communication system with direct photo-detection is shown in Fig. 2.1.

It is comprised of 3-main blocks, namely, transmitter (Tx) block, fiber-optic channel,
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and receiver (Rx) block.

The Tx block consists of a directly modulated or externally modulated laser. For

baud rates 10 Gbaud, the directly modulated laser (DML) is simple and cost effective.

However, for higher baud rates, externally modulated lasers (EML) such as those

using dual drive Mach-Zender modulator are utilized. Despite its relatively high cost,

EML has the advantage of negligible induced frequency chirp waveform distortions, as

compared to the DML (Krehlik, 2007). The noise n(t) due to transmitter is assumed

to be white and Gaussian. We consider the generalized transmitter model (Kumar

and Deen, 2014) in which the output of the transmitter is given by

x(t) =

N
2∑

k=−N
2

ak F (t− kT ) + n(t), (2.1)

where ak are independent and identically distributed (i.i.d.) input data symbols. N

is the total number of transmitted symbols, T−1 is the symbol rate and F (t) is the

complex pulse shape. For the case of DML, F (t) is given as (Krehlik, 2007):

F (t) =
√
P (t) exp

(
− iφ(t)

)
, (2.2)

where P (t) is the output power distribution and i =
√
−1. The phase φ(t) is in-

troduced as a result of the DML-induced frequency chirping. It is expressed by the

integral (Krehlik, 2007):

φ(t) =
α

2

t∫
0

(
1

P (t)

dP (t)

dt
+KvP (t)

)
dt, (2.3)

where α is the line enhancement factor and Kv is the adiabatic chirp coefficient. The
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first and second terms in (2.3) represent the transient chirp and the adiabatic chirp,

respectively. On the other hand, for the case of EML, F (t) is given as (Kumar and

Deen, 2014):

F (t) =
√
P (t). (2.4)

The channel block is assumed as a linear single mode fiber (SMF) that is modeled

by the transfer function (Agrawal, 2007; Kumar and Deen, 2014):

Hfiber(f) = exp

(
i

2
β2(2πf)2L

)
, (2.5)

where β2 is the group velocity dispersion coefficient and L is the optical fiber length.

The output of the fiber passes through an optical bandpass filter (BPF) of bandwidth

Bo. The signal at the receiver (Rx) front end is expressed as

r(t) =
(
x(t) ∗ hfiber(t)

)
∗ ho(t), (2.6)

where the operation ∗ denotes convolution and hfiber(t) and ho(t) are the impulse

responses of the fiber and the optical BPF, respectively.

The receiver (Rx) block includes the front-end unit and the electronic digital

signal processing (DSP) unit. The front-end unit consists of a photodetector which

translates optical signal to electrical signal, and an electrical low pass filter (LPF)

with 3 dB bandwidth Be. The receiver noise ne(t) includes shot noise and thermal

noise. The photo-detection is a direct detection, which is widely used in short-reach

systems. It is preferred over coherent detection in these applications, due to its

simplicity and low cost (Agrawal, 2007; Kumar and Deen, 2014). At the output of
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the electrical LPF, the signal is given by

y(t) =
(
|r(t)|2 + ne(t)

)
∗ he(t), (2.7)

where he(t) is the impulse response of the electrical LPF.

It is clear that even after ignoring the nonlinear effect (Kerr effect) of the optical

fiber channel, the linear ISI impairments imposed on the optical received signal r(t)

turn into nonlinear distortions in the electrical domain signal y(t). This is due to

the loss of the phase information of the received signal. Therefore, it is necessary to

have a nonlinear electronic equalizer within the DSP unit. This equalizer should be

capable of compensating for these impairments in order to detect or reconstruct the

transmitted data effectively.

The DSP unit is comprised of an analog to digital converter (ADC), a dispersion

compensation equalizer, and a decision circuit. The sampling rate at the ADC is

fds = 1/ T ds, where T ds is the tap spacing required by the equalizer. The output

samples of the ADC are denoted by yk = y(kT ds ), k = 0, 1, 2, . . . . It is shown

in (Franceschini et al., 2007; Curri et al., 2004), according to the Nyquist condition,

that a sampling rate of two samples per symbol is sufficient for accurate reconstruction

of time-continuous signals. The equalizer block is described in Section 2.2. Finally,

the decision circuit classifies the equalized data X̂k to the nearest symbol âk, according

to certain decision threshold/function.

In the next Section, the structure of our ANN-NFFE is introduced. We describe

our proposed extensive training routine to determine the parameters of the equalizer.

The generation process of the required training input-output data set is explained.

We also describe the methodology of the ANN-NFFE to combat the ISI impairments
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during the transmission of actual data.

2.2 ANN Equalizer

The objective of this work is to implement an inexpensive and simple equalizer. This

equalizer should be able to effectively compensate for nonlinear distortions as well as

to provide low computational cost. We suggest an equalizer that mainly consists of

an artificial neural network (ANN) (Bakr, 2013). It represents a nonlinear mapping

from the space of the input parameters Y ∈ Rn to the space of output response

X̂ ∈ R, where Y is the input vector of equalizer. The vector Y represents the

received distorted data and n is the required number of equalizer taps. The general

configuration of the proposed ANN nonlinear feed forward equalizer (NFFE) is shown

in Fig. 2.2. It is comprised of 2-layers. These two layers, the hidden and the output

layer, have m-nodes and 1-node, respectively. Without loss of generality, we consider

one single hidden layer. The universal approximation theorem (Hornik et al., 1989)

shows that an ANN with only one hidden layer is sufficient to model any nonlinear

mapping, provided that the correct number of hidden layer nodes is used.

Weighted versions of the input vector Y are applied to each node of the hidden

layer. A scalar nonlinear activation function of the hidden layer fh(·) is then applied

on the summation of each hidden layer node, resulting in an output of the form:

zj = fh

(
n∑
l=1

whjl yl

)
, j = 1, 2, . . .m, (2.8)

where whjl is the weight assigned to the connection between lth input yl and jth node

of hidden layer.
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Figure 2.2: Basic configuration of the introduced ANN-NFFE.

Similarly, the hidden layer outputs zj are assigned to different weights and their

summation triggers an output layer activation function f0(·), to produce the final

ANN output X̂:

X̂ = f0

(
m∑
j=1

w0
j zj

)
, (2.9)

where w0
j is the weight assigned to the connection between jth node of the hidden

layer and the output layer node. We define the weights vector W =
[
W T

h W
T
0

]T
,

where Wh ∈ Rnm is the set of weights connecting the input parameters to the hidden

layer nodes and W0 ∈ Rm is the set of weights connecting the hidden layer nodes to

the output layer nodes.

In order simulate the required functional response of the equalizer, the ANN is first
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trained by using a sufficient set of known input-output training data pairs. Through

this training process, the weight values of the ANN-NFFE are optimized. Thereafter,

the ANN-NFFE estimates the output response of inputs beyond the given training

data, following the desired mapping.

The ANN-NFFE runs in two different modes, namely, the training mode and the

transmission mode. In the training mode a set of known symbols is transmitted

through the channel and the weights W of the equalizer are adjusted such that

the equalizer models the inverse response of the channel, i.e., X̂k = Xk, for all the

transmitted training symbols. After the optimum values of weights have been set,

the ANN-NFFE switches to the transmission mode where actual data (unknown to

the receiver) are transmitted.

2.2.1 Training Mode

The training mode is essentially an optimization problem. This mode aims at achiev-

ing the optimal ANN weightsW ∗ that efficiently implement the required equalization

mapping: Rn → R. In other words, our goal in this mode is training the ANN equal-

izer to model the inverse response of the optical channel. The training process uses

a finite set of Ntr input-output training pairs {Yk, Xk} , k = 1, 2, . . . Ntr, where Yk

is the kth equalizer input, given by Yk =
[
y−Ntr

2
+k−1 y−Ntr

2
+k
. . . y−Ntr

2
+k+n−2

]T
, and

Xk is a delayed version, by time shift τ , of the kth time instant transmitted symbol

at the middle of each training scheme, i.e., Xk = x(kT − τ). The training step is thus

cast as the optimization problem:

minimize
W

f(W ) =
Ntr∑
k=1

‖X̂k(W ,Yk)−Xk‖
2

2, (2.10)
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where the error Ek = X̂k(W ,Yk)−Xk represents the difference between the output

of the ANN-NFFE and its corresponding desired output for the kth training symbol.

The square of the Euclidean norm is utilized in (2.10).

In order to have an efficient equalization performance, the length of the ANN-

NFFE input vector Y ∈ Rn as well as the required number of training data Ntr

should be properly determined. Depending on the modulation format, the optical

fiber length L, and its dispersion parameter β2; the number of neighbouring symbols

that may interfere with the current un-equalized symbol (i.e. ISI span) can be pre-

dicted. This determines values of n and Ntr. In practice, the number of equalizer

taps may be estimated by performing a convergence analysis. First, we choose the

minimum possible value n = 3, and train the ANN-NFFE, then we test the equalizer

performance. Afterwards, we gradually increase n until the BER value saturates.

An instance of determining the number of training data Ntr is as follows: consider

an M -ary modulated data transmitted through an optical communication system

that introduces certain chromatic dispersion. As a result, assume that the number of

interfering symbols is K. In this case, the length of equalizer input should be given

as n = 2K + 1 and the number of training data samples should be Ntr = Mn. In

other words (n×Mn)-different input training symbols and (1×Mn)-corresponding

output symbols are generated. However, such training does not include all possible

patterns that might be received during transmission mode. The outer symbols in

each pattern are still affected by the tail symbols of its successive neighbouring pat-

terns. This results in receiving schemes not included within the Mn-patterns. For a

complete training data set, we thus add K-guard symbols around the sides of each
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Figure 2.3: Schematic for the generation of the complete set training data. K is the
number of interfering symbols and n = 2K + 1 is the required number of equalizer
taps. The arrows refer to the actual training data, used during the ANN weights
adjustment, after discarding the redundant guard data.

scheme, as shown in Fig. 2.3. In other words, we first generate
(

(n+ 2K)×Mn+2K
)
–

different symbols, then after transmitting them, we discard those guard symbols, as

illustrated on Fig. 2.3. The final number of training schemes is thus Ntr = Mn+2K . A

total of
(
n×Mn+2K

)
-input training symbols and

(
1×Mn+2K

)
-corresponding out-

put training symbols are utilized. This extensive training guarantees that all possible

combination patterns that might be received during the transmission mode are taken

into account.

Once the input-output training data have been chosen, the optimal ANN-NFFE

weightsW ∗ are determined by solving the optimization problem (2.10). This problem

is effectively solved using any gradient-based optimization technique. In this work,

the Levenberg-Marquardt method is used (Bakr, 2013). The Levenberg-Marquardt is

one of the most effective gradient-based algorithm that is widely used to solve training

problems of ANNs (Hagan and Menhaj, 1994). It utilizes a step that is a combination

between the steepest-decent step and the Gauss-Newton step. That provides the best

trade-off between the global convergence and the convergence speed, achieved by

the steepest-decent algorithm and the Gauss-Newton algorithm. Given a current

weights vector W (i), the update formula of the Levenberg-Marquardt algorithm is
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given by (Bakr, 2013; Hagan and Menhaj, 1994):

W (i+1) = W (i) −
(
H(i) + µI

)−1∇f (i), i = 0, 1, 2 . . . , (2.11)

where∇f (i) and H(i) are the gradient vector and the Hessian matrix of the objective

function f(W ) at the current weights W (i), respectively. µ is a positive scalar and I

is the identity matrix. The step (2.11) requires the first- and second-order derivatives

information, ∇f (i) and H(i). This computational overhead may become formidable

if these derivatives information are evaluated through finite differences. In order to

accelerate the optimization process, the analytical derivatives of the objective function

f with respect to W are derived. Using the chain rule of differentiation (Bakr, 2013;

Hagan and Menhaj, 1994),

∇f =
∂f

∂W
= 2

Ntr∑
k=1

∇X̂k (W ,Yk)Ek, (2.12)

the gradient vector of the ANN output with respect to W is ∇X̂ =
[
∇T

h X̂ ∇T
0 X̂
]T

,

where ∇h =
[
∂/∂whjl

]T
, j = 1, 2, . . .m, and l = 1, 2, . . . n, and ∇0 =

[
∂/∂w0

j

]T
,

j = 1, 2, . . .m. The derivatives of X̂ with respect to the weights wh
jl and w0

j are

given by:

∂X̂

∂whjl
= f

′

0 (zj)w
0
jf

′

h (vj) yl, (2.13)

∂X̂

∂w0
j

= f
′

0 (zj) fh (vj) , (2.14)

where f
′

h (·) and f
′
0 (·) denote 1−st order derivative of the hidden and output activation
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functions, respectively, and vj =
∑n

l=1w
h
jlyl. The analytical formula of the hessian

matrix H is approximated as (Hagan and Menhaj, 1994):

H = JTJ , (2.15)

where the Jacobian matrix J is given by

J =
[
∇X̂1 ∇X̂2 ∇X̂3 . . . ∇X̂Ntr

]T
. (2.16)

2.2.2 Transmission Mode

Once the optimal weights have been obtained, the equalizer is switched to the trans-

mission mode where actual unknown data is transmitted. During this mode, the

input vectors of the ANN-NFFE are given as

Yk = [y−K+k y−K+k+1 . . . yk . . . yK+k−1 yK+k]
T , k = 0, 1, 2, . . . , (2.17)

where yk is transmitted symbol at the kth time instant, and K is the expected number

of interfering symbols.

Corresponding to each input vector Yk ∈ Rn, the ANN-NFFE produces a dis-

persion compensated version of the kth time instant transmitted signal X̂k ∈ R.

Thereafter, the decision circuit estimates the corresponding transmitted symbol âk,

which is assumed to be a reliable estimate of the actual transmitted symbol ak.

The fiber dispersion value is subjected to adherent fluctuations due to variations of

environmental conditions. However, these fluctuations occur at much slower rate than
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the transmission data rate. Our ANN-NFFE can be simply modified to adaptively re-

adjust its weights and trace these channel fluctuation. The required variation in the

weights’ values is small due to the limited effect of these environmental fluctuations

on the whole channel response (Kumar and Deen, 2014). Therefore, the weights could

be varied adaptively, in real time, after specific number of received symbols, using a

small number of gradient optimization steps. In practice, only one optimization step

is considered (Kumar and Deen, 2014). Furthermore, since we have no information

about the transmitted signal, in this case, the output of decision circuit âk is used to

calculate the current error of the training objective function, i.e.,

Ek = X̂k (W ,Yk)− âk. (2.18)

2.3 Results

In this Section, we study the efficiency of the introduced ANN-NFFE by investigating

its equalization performance for various scenarios of short-reach optical fiber com-

munication systems with direct detection. Two modulation formats are considered,

namely, non-return to zero (NRZ)-raised cosine pulse shaping on-off keying (OOK)

and return to zero (RZ)-Gaussian pulse shaping OOK. The achieved results are com-

pared to the results obtained using the standard equalization techniques (FFE, DFE

and MLSE). The comparison shows that our equalizer achieves comparable equaliza-

tion performance to the benchmark performance achieved by the maximum likelihood

estimator (MLSE). Our equalizer, however, has significantly lower computational cost

and complexity. Furthermore, we investigate the performance of our ANN-NFFE to

mitigate the impairments due to fiber dispersion in DCNs.
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Table 2.1: Simulation parameters

Parameter Value
Wavelength, λ 1.55 µm

Dispersion coefficient, β2 −21 ps2/km
Modulation scheme On-off keying (OOK)

Number of transmitted bits, N 16384
Sequence pattern PRBS 210 − 1

Fiber simulation number of samples per bit, Ns 16
DSP simulation number of samples per bit, Nd

s 2
Optical filter Gaussian band pass filter

Electrical filter Gaussian low pass filter
Load resistance, RL 1 KΩ

Temperature 300 K
Hidden layer activation function, fh(·) tanh(·)
Output layer activation function, f0(·) 1

For all results presented in this Section, the parameters of the communication

channel are as summarized in Table 2.1. The number of transmitted bits and sequence

pattern are selected such that the BER is stable and reliable. The effect of the DML

frequency chirping (2.3) is neglected, unless otherwise is stated. The variances of shot

noise and thermal noise are given by (Agrawal, 2007; Kumar and Deen, 2014):

σ2
shot = 2qIBe, (2.19)

σ2
thermal = 4KBTBe/RL, (2.20)

where q is the electron charge, I is the mean photo-current, Be is the 3-dB bandwidth

of the electrical LPF, KB is the Boltzmann’s constant, T is the temperature in Kelvin,

and RL is the load resistance. Note that the value of received photo-current Ir is not

constant; it varies with the received OSNR. In our simulations, we keep the average
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Table 2.2: Mean photo-current versus OSNR

OSNR (dB) Mean photo-current, I (mA)
8.0 1.50
10.0 1.30
13.5 1.10
17.0 1.00
22.0 0.95

*The mean signal power launch to fiber = 1 mW .

signal power launched to the fiber fixed at 1mW ; however, as the noise power increases

(OSNR value decreases), the value of mean photo-current increases. This is due to

the fact that the value of received photo-current is proportional to the transmitter’s

noise-noise beating term (Kumar and Deen, 2014), where the received photo-current

is given by:

Ir = R|r(t) + n(t)|2, (2.21)

where r(t) and n(t) are the optical signal and the noise before the photo-detector,

respectively. R is the responsivity of photo-detector. Therefore,

I = ≺ Ir � ∝ ≺ |r(t)|2 � + ≺ |n(t)|2 �, (2.22)

where ≺ · � denotes the mean. Table 2.2 tabulates values of mean photo-current I

as a function of received OSNR.

The performance of ANN-NFFE, in the presence of noise, is evaluated through

the bit error rate (BER). Under the Gaussian noise assumption, the BER is related
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to the Quality Factor by (Agrawal, 2007; Kumar and Deen, 2014):

BER =
1

2
erfc

(
Q√

2

)
, (2.23)

where erfc(·) stands for the complementary error function. The Quality Factor Q

is obtained by performing many Monte Carlo simulations of the entire system. It is

calculated through the formula (Agrawal, 2007; Kumar and Deen, 2014):

Q =
I1 − I0
σ1 + σ0

, (2.24)

where Iq and σq, q = 0, 1, are the mean and the standard deviation, respectively, of

the received signals and q refers to the type of the transmitted bit (‘0’ or ‘1’). It should

be noticed that the noise in direct-detection system is not Gaussian-distributed but it

has a Chi-square distribution. However, as shown in (Humblet and Azizoglu, 1991),

the difference in BER obtained by considering the noise to be Gaussian-distributed

and Chi-square-distributed is small. We therefore approximate the noise probability

density function by a Gaussian distribution.

2.3.1 10 Gbaud Fiber Optic System

We consider a metro optical fiber communication system with bit-rate of 10 Gbps.

The bandwidth of the optical and electrical filters are set as B0 = 50 GHz and Be = 7

GHz, respectively. The transmitted data are modulated with NRZ-OOK format and

the pulse shape is a raised cosine with roll-off factor of 0.6.

We first study communication scenario with fiber length L = 140 km. Due to pulse

broadening caused by chromatic dispersion (CD), the BER at the receiver without
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Figure 2.4: The value of training objective function f(W ) versus the number of
optimization iterates. The transmitted data are NRZ-OOK with raised-cosine pulse
shaping. The data rate is 10 Gbps and the fiber length is 140 km.

equalization and in the absence of noise is 4× 10−2. For this scenario, Fig. 2.4 shows

the change of the objective function f(W ) with the number of optimization iterates,

during the training process of the ANN-NFFE. The required number of equalizer taps

and the number of the hidden layer nodes of the ANN-NFFE are n = 7 and m = 6,

respectively. We denote such an equalizer configuration by ANN-NFFE{7,6}.

Figure 2.5 compares the BER, with and without equalization, versus swept OSNR

values, where OSNR is the conventional received optical signal to noise ratio calcu-

lated in 0.1 nm bandwidth (Kumar and Deen, 2014; Agrawal, 2007). From Fig. 2.5,

we see that a BER = 10−9 is achieved at OSNR = 14.3 dB and higher.

In Fig. 2.6, we further explore the performance of the ANN-NFFE for optical
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Figure 2.5: Received BER, with and without the ANN-NFFE, versus OSNR. The
transmitted data are NRZ-OOK with raised-cosine pulse shaping. The date rate is
10 Gbps and the fiber length is 140 km.

fiber lengths L = 180 km, L = 200 km, and L = 220 km. In all these cases,

the ANN-NFFE{7,6} is utilized. The values of BER, versus OSNR, are compared to

back-to-back (B2B) transmission case. It is shown from Fig. 2.6 that the ANN-NFFE

extends the transmission length up to 200 km while achieving BER = 10−9 with at

most 2 dB-OSNR penalty, as opposed to the B2B case. On the other hand, the 4

dB-OSNR penalty of the L = 220 km-case can be reduced by increasing the number

of equalizer taps. However, in this case the computational cost would highly increase,

as the ANN-NFFE computational cost per bit is proportional to mn.

In order to evaluate our ANN-NFFE, Fig. 2.7 plots the OSNR required to achieve
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Figure 2.6: BER of the received equalized data versus OSNR. The transmitted data
rate is 10 Gbps, and the modulation format is NRZ-OOK. Various transmission dis-
tances are considered and compared to the B2B case, when the ANN-NFFE is used
for the equalization of the received signal.

the BER= 1 × 10−3 versus the length of optical fiber. We compare our ANN-

NFFE to the linear feed forward equalizer (FFE) (Curri et al., 2004), FFE with

decision feedback equalizer (DFE) (Wang and Kahn, 2004), and maximum-likelihood

sequence estimator (MLSE) (Foggi et al., 2006). We compare the performance of

ANN-NFFE{7,6} to FFE{7}, DFE{4,3}, MLSE{7} and MLSE{9}, where {·} refers

to the number of FFE taps or the memory size of MLSE. In case of DFE, {·, ·} de-

notes the numbers of its feed-forward and feed-backward taps, respectively. For a

fair comparison, the same extensive training scheme, described in subsection 2.2.1, is

used to train all equalizers. In Fig. 2.7, we specifically show the required OSNR for
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Figure 2.7: The required OSNR at received BER= 1× 10−3 versus fiber optic length.
A NRZ-OOK modulation format with raised-cosine pulse shaping is assumed.

BER of 10−3, since the unequalized and the equalized data using FFE and DFE do

not reach the level of BER= 10−9 in most of the shown scenarios. As can be seen,

FFE and DFE do not provide performance benefit since the channel (fiber channel

+ detection) is nonlinear. MLSE and ANN-NFFE provide performance benefit, with

MLSE slightly outperforming ANN-NFFE. However, the computational cost of MLSE

increases exponentially with the number of taps. The computational cost of MLSE

scales as ∼ 2n, where n is the memory size of MLSE (Proakis, 2007). On the other

hand, the computational cost of the ANN-NFFE scales as ∼ m× n. Particularly, in

the scenarios considered in Fig. 2.7, MLSE{7} needs 128 multiplication operations

per bit. Moreover, the required number of multiplication operations per bit soars to
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Figure 2.8: BER of the received equalized data versus OSNR. The transmitted data
rate = 10 Gbps, and the modulation format is RZ-OOK with 50% duty cycle. Various
transmission distances are considered and compared to the B2B case, when the ANN-
NFFE is used for the equalization process.

512 in the case of MLSE{9}, whereas the ANN-NFFE{7,6} needs only 42 multiplica-

tion operations per bit. Hence, the ANN-NFFE provides a better trade-off between

performance and computational cost.

In Fig. 2.8, we examine the ANN-NFFE performance for the case of return to zero

(RZ) pulse with 50% duty cycle and Gaussian pulse shaping. For all the transmission

distances compared in Fig. 2.8, the equalizer parameters are n = 5 and m = 5 at

distances L ≤ 120 km, and n = 7 and m = 6 at longer distances. From Fig. 2.8, it can

be seen that as compared to the B2B case, to have a BER of 10−9, the OSNR penalties

are 2 dB and 5 dB for transmission distances 120 km and 140 km, respectively. As

compared to the case of NRZ-OOK (Fig 2.6), the maximum achievable transmission
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distance in the case of RZ-OOK is lower since the RZ pulse is more sensitive to CD

due to its narrower width.

So far, we neglected the waveform distortion induced by the DML frequency chirp-

ing. This chirp distortion interacts with the fiber dispersion resulting in further BER

performance degradation. We consider here the case of DML frequency chirping

with the parameters: α = 2.4 and Kv = 7.9 × 1012 Hz/W (Krehlik, 2007). The

required OSNR to obtain the BER= 1× 10−3 versus the optical fiber length is plot-

ted in Fig. 2.9. In case of no equalization, we compare the performance of the 50%

RZ-Gaussian pulse shaping system before and after taking into account the DML

frequency chirping effect. It can be observed that the performance deteriorates dra-

matically due to the DML chirping. The feasible transmission distance is significantly

limited to around 20 km as opposed to 100 km in the case of zero chirping. However,

our ANN-NFFE can be adopted to extend the feasible transmission distance up to

50 km, as shown in Fig. 2.9. In this case, the ANN-NFFE parameters are n = 5 and

m = 5 at L ≤ 40 km, and n = 7 and m = 6 at longer distances.

2.3.2 28 Gbaud Fiber Optic System

In this subsection, we investigate the impact of dispersion in data center networks

(DCNs) operating at 28 Gbps. Recently, this communication data rate has been used

in fiber-optic links deployed in data center applications (Wei et al., 2012; Lam et al.,

2014; Sun et al., 2015), either in 28 Gbaud serial links or in 4 × 28 Gbaud parallel

links, for implementing 100 Gbps data rate. Particularly, we consider DCNs with

transmission distances of the order of a few tens of kilometers. In such scenarios, the

communication configuration, described in Fig. 2.1, is still valid. Moreover, for the
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Figure 2.9: The required OSNR at received BER= 1× 10−3 versus fiber optic length.
The performance of the system with zero frequency chirping without equalization case
is compared to the cases of frequency chirping with and without equalization. The
data rate is 10 Gbps and the modulation format is RZ-OOK with 50% duty cycle.
The parameters of the ANN-NFFE are n = 5, m = 5 at L ≤ 40 km, and n = 7 and
m = 6 at longer distances.

considered transmission distance range, the use of OOK modulation scheme is prefer-

able (Wei et al., 2012). The results obtained in this subsection are also applicable for

metro networks operating at 28 Gbaud. The bandwidth of the optical and electrical

filters are assumed as B0 = 100 GHz and Be = 21 GHz, respectively.
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(a) 10 km (b) 15 km

(c) 20 km

Figure 2.10: Received BER, with and without the ANN-NFFE, versus OSNR in case
of transmission distance (a) 10 km, (b) 15 km, and (c) 20 km. The modulation format
is NRZ-OOK with raised-cosine pulse shaping and the data rate is 28 Gbps.

Figure 2.10 depicts the received BER, with and without equalization, versus OSNR

for transmission distances L = 10 km, 15 km and 20 km. The equalizer parameters

are assumed as n = 5 and m = 5 at L = 10 km and L = 15 km, whereas n = 7 and

m = 6 in case of L = 20 km. We notice that when the optical fiber length is less

than 10 km, the ISI distortion does not limit the achievable transmission distance.

However, the equalizer might still be used to reduce the OSNR penalty for achieving
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Figure 2.11: The required OSNR at received BER= 1×10−3 versus fiber optic length.
The data rate is 28 Gbps. A NRZ-OOK modulation format with raised-cosine pulse
shaping is assumed. The parameters of the ANN-NFFE are n = 5, m = 5 at L ≤ 15
km, and n = 7, m = 6 at longer distances.

BER of 10−9. A 14.4 dB reduction in OSNR can be achieved using the ANN-NFFE

at BER = 10−9, as shown in Fig. 2.10a. At longer distances, the distortions of fiber

dispersion dramatically increase, prohibiting to have a good transmission performance

without using an equalizer, even when the OSNR is high. In this case the use of digital

equalizers such as ANN-NFFE becomes mandatory, in order to improve dispersion

tolerance and to increase feasible distance limit. Figs. 2.10b and 2.10c show how

the ANN-NFFE can mitigate fiber dispersion, extending the feasible transmission

distance up to 20 km.

Figure 2.11 shows the OSNR required to obtain the BER= 1×10−3 versus the opti-

cal fiber length. The performance of the ANN-NFFE is compared to the performance

of FFE{7}, DFE{4,3}, MLSE{7} and MLSE{9}. As can be seen, the ANN-NFFE
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provides a performance close to that of MLSE with much lower computational cost.

At most 42 multiplication operations per bit are required as opposed to 128 and 512

in cases of MLSE{7} and MLSE{9}, respectively.

2.4 Conclusion

This chapter proposed a computationally efficient nonlinear feed forward equalizer

based on artificial neural networks. The introduced equalizer is used to effectively

compensate for the chromatic dispersion-induced distortions in short-reach optical

fiber communications systems with direct detection. The robustness and efficiency of

the equalizer has been demonstrated through a number numerical examples extracted

from practical short-haul optical fiber communication scenarios, e.g., metro optical

fiber communication systems and data center networks. It has been shown that the

proposed equalizer significantly reduces the computational cost, achieving a BER

compensation performance comparable to the MLSE.
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Chapter 3

An Adjoint Sensitivity Analysis

Approach for the Nonlinear

Schrödinger Equation

This chapter proposes, for the first time, an efficient adjoint sensitivity analysis (ASA)

approach for the general time-dependent nonlinear Schrödinger equation (NLSE).

Regardless of the number of design parameters, our proposed approach estimates the

sensitivities of a general objective function with respect to all the design parameters

using only one extra adjoint system simulation. We derive an adjoint nonlinear system

of equations and develop a numerical technique to solve this adjoint problem. We also

show the accuracy and efficiency of the proposed ASA algorithm through a number

of optical fiber examples.

The chapter is organized as follows: Section 3.1 provides a mathematical matrix

representation of the general complex NLSE in real space. In Section 3.2, we derive

an adjoint system simulation corresponding to the original system simulation of the
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NLSE. A full description of the introduced algorithm for solving the derived adjoint

simulation is given in Section 3.3. Section 3.4 investigates the validity and efficiency

of our approach through applying the introduced ASA algorithm to estimate the

sensitivities of 2−optical fiber numerical examples operating at varied transmission

bit rate and utilizing different modulation schemes. We also exploit the proposed ASA

approach to verify the optical soliton phenomenon in an optical fiber communication

system (Hasegawa and Tappert, 1973; Hasegawa and Kodama, 1981). All results

obtained using our ASA approach are compared with the results of the accurate

but computationally expensive central finite differences (CFD) approach. Finally,

conclusions of the work are drawn in Section 3.5.

3.1 Matrix Representation of the NLSE

The light propagation in an optical fiber link is governed by the normalized nonlinear

Schrödinger equation (NLSE), given by (Agrawal, 2007; Kumar and Deen, 2014):

−β3
6

∂3u

∂t3
+
iβ2
2

∂2u

∂t2
+ β1

∂u

∂t
+
∂u

∂z
+
(α

2
− iγP0|u|2

)
u = utx(t)δ(z), (3.1)

where u(z, t) = q/
√
P0 is a normalized signal of the complex envelope of the optical

field q(z, t), and P0 is the peak power of the transmitted pulse. The signal utx(t) =

qtx/
√
P0 is the normalized complex optical field envelope of the transmitter output

and i =
√
−1. The parameter β1 is the inverse group speed, β2 and β3 are the second-

and third-order dispersion coefficients, respectively, α is the fiber loss coefficient, and

γ is the nonlinear coefficient of the fiber. Note that in (3.1), we assume zero boundary
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condition field, i.e. u(0, t) = 0, and the field excitation is given by the right hand side

term utx(t)δ(z). Expressing u in terms of its independent real and imaginary parts

(u = ure + iuim), substituting in (3.1), and separating the real and imaginary terms,

we obtain:

 −β̃3 0

0 −β̃3


 ∂3ure

∂t3

∂3uim
∂t3

+

 0 −β̃2

β̃2 0


 ∂2ure

∂t2

∂2uim
∂t2

+

 β̃1 0

0 β̃1


 ∂ure

∂t

∂uim
∂t



+

 ∂/∂z 0

0 ∂/∂z


 ure

uim

+

 α̃ 0

0 α̃


 ure

uim

+

 0 γ̃

−γ̃ 0


 ure

uim


=

 Re {utx} δ (z)

Im {utx} δ (z)

 , (3.2)

where β̃1 = β1, β̃2 = β2/2, β̃3 = β3/6, α̃ = α/2, and γ̃ = γ̃(ure, uim) = γP0 (u2re + u2im).

The computational domain is discretized to M equally-spaced spatial cells, with a step

size of h. Writing (3.2) for all the discretization cells in the computational domain

and approximating the derivatives using finite differences, Eq. (3.2) is rewritten for

the entire domain as:

B3

...
U +B2Ü +B1U̇ +KcU +AU + Γ (U)U = Uin, (3.3)

where U =
[
uTre u

T
im

]T
is the system state vector, Uin =

[
Re {utx} eT1 Im {utx} eT1

]T
is the excitation vector, and e1 = [1 0 0 · · · 0]T is an elementary column vector,

and · denotes time derivative. The constant matrix Kc approximates the spatial

derivatives of (3.2). The system matrices are given as follows: B1 = β̃1I2M , B2 =
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β̃2

[
0 −IM

IM 0

]
, B3 = −β̃3I2M , and A = α̃I2M , where IM is an identity matrix of

sizeM . The matrix Γ (U) =

[
0 γ̃

−γ̃ 0

]
is the nonlinear matrix, where γ̃ is a diagonal

matrix whose jth entry is given by: γP0 [u2re (jh) + u2im (jh)], j = 0, 1, . . .M − 1. It

can be shown that: B1, B3 andA are symmetric matrices, whereasB2, Kc and Γ are

skew-symmetric matrices. Typically, Eq (3.3) is solved numerically using the split-

step Fourier scheme (SSFS) method (Sinkin et al., 2003; Shao et al., 2014; Deiterding

and Poole, 2016).

We derive next the adjoint simulation problem corresponding to the original prob-

lem (3.3).

3.2 ASA for the NLSE

We aim at estimating the sensitivities of an objective function of the form (Bakr

et al., 2017):

F =

Tm∫
−Tm

ψ(x,U )dt, (3.4)

where the kernel of the objective function integral ψ is a predefined function, x ∈ RN

is the design parameters vector of the optical fiber, and Tm is half of the computational

time window size. The analytic sensitivity of (3.4) with respect to the kth parameter

72



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

xk, k = 1, 2, . . . , N , is given by

∂F

∂xk
=

Tm∫
−Tm

∂eψ

∂xk
dt+

Tm∫
−Tm

(
ψ

∂U

)T
∂U

∂xk
dt, (3.5)

where ∂e/∂xk denotes the explicit dependence. The analytic expression in (3.5) can-

not be evaluated unless the vector ∂U/∂xk is known for every time step. The classical

approach for evaluating (3.5) involves repeatedly simulating perturbed structures, for

each designable parameter xk, k = 1, 2, . . . , N . However, this required overhead

computational cost which scales linearly with the number of design parameters is

significant and impractical. For example, in the case of DBP, the NLSE should be

solved 2N times to evaluate the gradient ∂U/∂xk, k = 1, 2, . . . , N .

Alternatively, an adjoint sensitivity analysis (ASA) approach can be derived to

estimate the implicit derivative in (3.5) with respect to all the design parameters

using only one extra system simulation. The derivation starts by differentiating the

original NLSE system (3.3) with respect to the kth parameter xk and shifting the

known terms to the right hand side to get:

B3
∂4U

∂xk∂t
3 +B2

∂3U

∂xk∂t
2+B1

∂2U

∂xk∂t
+Kc

∂U

∂xk
+A

∂U

∂xk
+
∂(ΓU)

∂UT

∂U

∂xk
+Γ

∂U

∂xk
= −Rk,

(3.6)

where U is the nominal value of U , treated as constant during the differentiation

operation in (3.6). It is clear that all the system matrices of (3.3) are constants with

time, except for the nonlinear coefficients matrix Γ (U). This dependency arises from

the fact that the nonlinearity term, γ̃ = γP0|u|2, is a function of the local field. It can

be noted that Uin is independent of the system design parameters xk. The residue
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vector Rk corresponding to the kth parameter is given by:

Rk =
∂eB3

∂xk

...
U +

∂eB2

∂xk
Ü +

∂eB1

∂xk
U̇ +

∂eA

∂xk
U +

∂eΓ

∂xk
U . (3.7)

Multiplying both sides of (3.6) by the yet-to-be determined temporal adjoint vector

λ and integrating over the total simulation time, we have:

Tm∫
−Tm

λT

(
B3

∂4U

∂xk∂t
3 +B2

∂3U

∂xk∂t
2 +B1

∂2U

∂xk∂t
+
(
Kc +A+

∂
(
ΓU

)
∂UT

+ Γ
)∂U
∂xk

)
dt =

−
Tm∫

−Tm

λTRkdt, (3.8)

where λ(z, t) = [λTre λ
T
im]

T
is the adjoint state vector. Integrating the first, second

and third terms (mixed derivative terms) in (3.8) by parts yields:

λTB3
∂3U

∂xk∂t
2

∣∣∣∣Tm
−Tm

+ λTB2
∂2U

∂xk∂t

∣∣∣∣Tm
−Tm

+ λTB1
∂U

∂xk

∣∣∣∣Tm
−Tm

+

Tm∫
−Tm

[
−λ̇TB3

∂3U

∂xk∂t
2 − λ̇

TB2
∂2U

∂xk∂t
+
(
− λ̇TB1 + λT

(
Kc +A+

∂
(
ΓU

)
∂UT

+ Γ
))
×

∂U

∂xk

]
dt = −

Tm∫
−Tm

λTRkdt. (3.9)

The adjoint vector λ is selected to have a terminal value of λ(Tm) = 0. Also, the

vectors U , ∂U/∂t and ∂2U/∂t2 have zero initial conditions regardless of the value of

the parameter xk, k = 1, 2, . . . , N . It follows that the first 3-terms in (3.9) vanish

and we get:
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Tm∫
−Tm

[
− λ̇TB3

∂3U
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− λ̇TB2
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− λ̇TB1 + λT
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)
∂UT

+ Γ
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∂U

∂xk

]
dt = −

Tm∫
−Tm

λTRkdt. (3.10)

We repeat the integration by parts 2-times again until we have no more mixed deriva-

tive terms, and by taking into account that λ̇(Tm) = 0 and λ̈(Tm) = 0, Eq. (3.10)

becomes:

Tm∫
−Tm

(
−

...
λ
T
B3 + λ̈TB2 − λ̇TB1 + λT

(
Kc +A+

∂
(
ΓU

)
∂UT

+ Γ
))∂U

∂xk
dt =

−
Tm∫

−Tm

λTRkdt. (3.11)

Notice that the second term on the right-hand side of (3.5) has the same form as the

left-hand side of (3.11). Equating these terms, and taking the transpose of both two

sides, we thus obtain the adjoint system problem, given as:

−B3
∂3λ

∂t3
−B2

∂2λ

∂t2
−B1

∂λ

∂t
−Kcλ+Aλ+ Γ λ(U)λ = Qλ

in, (3.12)

where Qλ
in is the adjoint excitation given by: Qλ

in(t) = ψ/∂U =
[
ψ/∂uTre ψ/∂uTim

]T
.

The nonlinear matrix of the adjoint problem Γ λ is given as:

Γ λ(U ) =
∂
(
ΓU

)T
∂U

− Γ =

[
a b

c −a

]
, (3.13)
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where a, b and c are diagonal matrices whose jth diagonal elements are given as

follows:

ajj = 2γP0ure(jh)uim(jh), (3.14a)

bjj = γP0

[
3u2re(jh) + u2im(jh)

]
, (3.14b)

cjj = γP0

[
u2re(jh) + 3u2im(jh)

]
, (3.14c)

where j = 0, 1, . . .M−1, and M is the total number of discretization cells utilized in

the original simulation (3.3). Equation (3.12) describes the evolution of the adjoint

variable vector λ over time and space. It can be noticed that, excluding the nonlinear

terms (ΓU and Γ λλ), the adjoint problem (3.12) has a similar form to the original

problem (3.3), but with different values of the system parameters (opposite signs of

the β1, β2, and β3 parameters) and different excitation vector. The adjoint excitation

in (3.12) is the derivative of the objective function kernel ψ with respect to the

original system state vector U . It should also be clear that the adjoint problem is

solved in a reversed spatial direction, Z = L− z, where L is the optical fiber length.

It follows that the linear part of the adjoint system can be solved using the same

numerical solver, i.e., the split-step Fourier scheme (SSFS), used to solve the original

system (Sinkin et al., 2003; Shao et al., 2014; Deiterding and Poole, 2016). However,

solving (3.12) for the nonlinear part requires a modification to the SSFS algorithm.

We discuss later, in Section 3.3 the required modification to solve the adjoint problem.

Once the original and adjoint fields are evaluated for every time step in all spatial

points of the computational domain, through solving (3.3) and (3.12), respectively,
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the adjoint sensitivity of the objective function F , given by (3.4), with respect to the

kth parameter xk, is obtained by:

∂F

∂xk
=

Tm∫
−Tm

∂eψ

∂xk
dt−

Tm∫
−Tm

λTRkdt, k = 1, 2, . . . , N. (3.15)

where the residue vector Rk is defined in (3.7). It should be clear that all explicit

derivatives arising in Rk are known. They can be evaluated using the definitions

of the original system matrices B1, B2, B3, A and Γ . For instance, assume that

the current design parameter is the second dispersion coefficient (i.e. xk = β2),

then all terms of (3.7) vanish except for the explicit derivative term of B2, i.e.,

Rk = ∂eB2/∂xk = −0.5I2M .

3.2.1 Algorithm

The NLSE-based ASA approach given by (3.3)−(3.15) can be summarized by the

following algorithm:

1. First, the kernel of the objective function ψ, given in (3.4), and the observa-

tion domain are defined. Note that the observation domain is a subset of the

computational domain. Practicaly, in optical fiber simulation problems, the ob-

jective function is defined in terms of the received signal. Hence, the observation

domain is typically defined as the output discretization cell.

2. The original NLSE simulation (3.3) is executed in the forward spatial direction

z. During this step, the following data are calculated and stored at all time

steps:
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(a) The adjoint excitation ∂ψ/∂U in the observation domain.

(b) The values of the original field U at all cells of the entire computational

domain.

(c) The explicit derivatives of the system matrices, ∂eB1/∂xk, ∂
eB2/∂xk,

∂eB3/∂xk, ∂
eA/∂xk, and ∂eΓ/∂xk, for k = 1, 2, . . . , N , corresponding

to all perturbation cells, i.e., the cells whose material parameters’ values

are perturbed due to xk, k = 1, 2, . . . , N , perturbation.

(d) The components of U̇ , Ü and
...
U at all cells of the perturbation domain.

Note that the data stored in (a) and (b) will be used later in the adjoint simu-

lation. The data stored in (c) and (d) will be utilized, in step 4, to calculate the

residue vector Rk required for evaluating the objective function sensitivities.

3. The adjoint simulation (3.12) is executed in the backward spatial direction Z.

During the simulation, the values of the adjoint field λ in the perturbation

domain are stored for all time steps.

4. Finally, the adjoint sensitivity of the objective function F is evaluated through

the formula given in (3.15).

It is worth emphasizing that the computational CPU time gain achieved by the

ASA approach is at the expense of memory storage. In other words, there is a trade-

off between computational time and memory storage. As illustrated in the proposed

algorithm, the ASA algorithm calculates and stores some data, during original and

adjoint simulations, to be accessed and used later during the adjoint simulation to

evaluate the adjoint sensitivities. For instance, the original and adjoint fields at
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all perturbation cells need to be stored during original and adjoint simulations. In

contrast, the FD approaches do not store these information. Therefore, the proposed

ASA algorithm significantly reduces the computational time cost required by FD

approaches, at the expense of using extra memory storage.

Next, we discuss the solution of the adjoint problem (3.12).

3.3 Adjoint Problem Solution

In order to develop a numerical solution method of the adjoint problem, we first

rewrite its corresponding system of equations at a certain spatial grid point inside

the computational domain as follows:

∂

∂Z
λ̂−

(
D̂ + N̂

)
λ̂ = λ̂inδ(Z, t), (3.16)

where λ̂(Z, t) = [λre λim]T is the vector of real and imaginary adjoint field in a certain

grid point, λ̂in(t) = [∂ψ/∂ure ∂ψ/∂uim]T is the vector of real and imaginary parts of

the adjoint excitation. In practice, the objective function F is defined in terms of the

received signal. We therefore assume that the adjoint excitation is non-zero only at

z = L or Z = 0, in other words, λ̂in = λ̂inδ(Z). The operators D̂ and N̂ represent

the linear (propagation delay, dispersion, and loss) and the nonlinear effects of the

adjoint simulation, respectively. They are given by:

D̂ =

[
−β3

6
∂3

∂t3
+ β1

∂
∂t
− a

2
−β2

2
∂2

∂t2

β2

2
∂2

∂t2
−β3

6
∂3

∂t3
+ β1

∂
∂t
− a

2

]
, (3.17)
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N̂ (u) =

[
−2γP0ureuim γP0(3u

2
re + uim)

−γP0(u
2
re + 3u2im) 2γP0ureuim

]
. (3.18)

Employing the symmetric split-step scheme (Sinkin et al., 2003; Shao et al., 2014;

Deiterding and Poole, 2016), it can be shown that the solution of (3.16) is approxi-

mated as:

λ̂
(

(j + 1)h, t
)

= exp(
h

2
D̂) exp(hN̂ ) exp(

h

2
D̂) λ̂(jh, t) + O(h3),

j = 0, 1, 2, . . . , M − 1, (3.19)

where M is the number of discretization cells, h is the spatial step size, and λ̂(0, t) =

λ̂in. The first linear sub-step in (3.19) is realized by writing the equivalent com-

plex differential equation of the operation exp(0.5hD̂)λ̂(jh, t). The sub-step linear

solution denoted by λ̂l
(

(j + 1/2)h, t
)

is then obtained using a pair of fast Fourier

transforms (FFTs) (Sinkin et al., 2003; Shao et al., 2014; Deiterding and Poole, 2016)

as follows:

λl
(

(j +
1

2
)h, t

)
= F−1

{
exp

[
h

2

(
i
β3
6
ω3 − iβ2

2
ω2 + iβ1ω −

α

2

)]
F
{
λ(jh, t)

}}
,

j = 0, 1, 2, . . . , M − 1, (3.20)

where λ(jh, t) = λre + iλim is the complex adjoint field at Z = jh, i =
√
−1,

and ω is the angular frequency. The operations F{·} and F−1{·} denote Fourier

and inverse Fourier transformations, respectively. Once the complex linear sub-

step solution λl
(

(j + 1/2)h, t
)

is evaluated, the vector of the sub-step solution is
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given as: λ̂l
(

(j + 1/2)h, t
)

=
[
Re{λl} Im{λl}

]T
. The nonlinear step solution

λ̂nl
(

(j + 1/2)h, t
)

is then obtained by solving the equivalent differential equation

of the operation exp(hN̂ )λ̂l
(

(j + 1/2)h, t
)

, given by:

∂

∂Z

(
λ̂nl
)

= N̂λ̂nl(Z, t). (3.21)

Here λ̂nl(0, t) = λ̂l
(

(j + 1/2)h, t
)

. Unlike the case in the conventional SSFS when

solving the original NLSE problem (Sinkin et al., 2003; Shao et al., 2014; Deiterding

and Poole, 2016), Eq. (3.21) cannot be solved directly since the nonlinear operator

matrix N̂ here is not a diagonal or an off-diagonal matrix. However, we can convert

(3.21) to a decoupled system using the eigenvalue decomposition (EVD) of N̂ . It can

be shown that N̂ is factorized as:

N̂ = PΛP−1, (3.22)

where the eigenvalues diagonal matrix Λ and the eigenvectors’ matrix P are given

by:

Λ = −i
√

3γP 0|u|
2

[
1 0

0 −1

]
, (3.23a)

P =

 i −i
√
3|u|2+2iureuim
|u|2+2u2

re

√
3|u|2−2iureuim
|u|2+2u2

re

 . (3.23b)

Substituting the EVD of N̂ in (3.21), and by defining Ŵ = [W1 W2]
T = P−1λ̂nl,
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Eq. (3.21) becomes:

∂

∂Z

(
Ŵ
)

= ΛŴ (Z, t), (3.24)

with Ŵ (0, t) = P−1λ̂l
(

(j + 1/2)h, t
)

. Owing to the fact that (3.24) is now a

decoupled system of differential equations, its solution is obtained directly as follows:

Ŵ
(

(j + 1)h, t
)

= exp (hΛ) Ŵ (jh, t), j = 0, 1, 2, . . . , M − 1. (3.25)

The nonlinear step solution vector is obtained as:

λ̂nl
(

(j +
1

2
)h, t

)
=
[
λnlre λnlim

]T
= PŴ

(
(j + 1)h, t

)
. (3.26)

Once the nonlinear step is executed, the second linear sub-step is applied, on λnl
(

(j+

1/2)h, t
)

= λnlre + λnlim, to obtain the adjoint field vector at the next grid point, as

follows:

λ
(

(j + 1)h, t
)

= F−1
{

exp

[
h

2

(
i
β3
6
ω3 − iβ2

2
ω2 + iβ1ω −

α

2

)]
×

F
{
λnl
(

(j + 1/2)h, t
)}}

, j = 0, 1, 2, . . . , M − 1. (3.27)

Finally, the vector of the next grid point solution is given as:

λ̂
(

(j + 1)h, t
)

= [Re {λ} Im {λ}]T . (3.28)

The algorithm of the adjoint problem solution is summarized by Eqs. (3.20), (3.25),
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and (3.27).

The robustness and efficiency of the proposed ASA algorithm is investigated in

next through three numerical examples.

3.4 Results

In all of the following examples, the step-size used for solving the original and adjoint

simulation is chosen adaptively such that the maximum nonlinear phase per step does

not exceed 0.01 rad. All simulations are conducted on an Intel Xeon CPU×5670@2.93

GHz. The central finite differences (CFD) estimates are obtained with perturbations

of 2% of the nominal parameter values.

3.4.1 Example 1

We consider first an optical fiber communication system operating at 10 Gbps. The

transmission fiber is a standard single-mode fiber (SSMF) whose parameters are as

given in Table 3.1. The transmitted data have a Gaussian pulse shape and are mod-

ulated with a return to zero on-off keying (OOK) format with 50% duty cycle. The

peak power of the transmitted pulse is P0 = 2 dBm, and the number of transmitted

bits is 32.

We aim at obtaining the sensitivities of an objective function of the form:

F =

Tm∫
−Tm

|urx − utx|2 dt, (3.29)

where urx = u(L, t) is the normalized complex envelope field of the received signal,

L is the optical fiber length, utx = utx(0, t) is the normalized transmitted complex
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Table 3.1: Simulation parameters of Example 1

Parameter Value
Inverse group speed, β1 0.016 ps/km

Second-order dispersion coefficient, β2 −21 ps2/km
Third-order dispersion coefficient, β3 0.1 ps3/km

Loss coefficient, α 0 dB/km
Nonlinear coefficient, γ 1.1 W−1km−1

envelope field, and Tm = 1.6 ns. This objective function is a measure of the signal

distortion due to fiber dispersion and nonlinear effects.

We utilize the proposed ASA algorithm to estimate the sensitivities of (3.29) with

respect to the design parameters x = [β1 β2 β3 γ L P0]
T .
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Figure 3.1: The normalized ASA sensitivities of objective function (3.29) with respect
to the parameters: β1, β2, β3 and γ, for a sweep of L, as compared to the more
computationally expensive CFD approach. The nominal fiber parameters are as given
in Table 3.1. The modulation format is OOK with Gaussian pulse shaping, the baud
rate is 10 Gbps, and the input pulse peak power is P0 = 2 dBm.

Figs. 3.1 and 3.2 show the obtained normalized sensitivities of (3.29) for a sweep

of the optical fiber length L. It can be noticed that the error objective function (3.29)

is more sensitive to the parameters β2, γ and P0 than the parameter β3. This agrees

with the physical fact that the impairments in an optical fiber communication system,
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Figure 3.2: The normalized ASA sensitivities of objective function (3.29) with respect
to the parameters: L and P0, for a sweep of L, as compared to the more computa-
tionally expensive CFD approach. The nominal fiber parameters are as given in
Table 3.1. The modulation format is OOK with Gaussian pulse shaping, the baud
rate is 10 Gbps, and the input pulse peak power is P0 = 2 dBm.

at a data rate of 10 Gbps, is dominated by β2 and γ rather than β3 (Agrawal, 2007;

Kumar and Deen, 2014). The sensitivities estimated using our ASA method are also

compared, in Figs. 3.1 and 3.2, to the sensitivities obtained using the CFD method.

As can be seen, a good match is achieved with CFD for all parameters. The ASA

algorithm requires only one extra system simulation per gradient evaluation, while

the CFD requires 12 extra simulations (2 simulations per design parameter). In other

words, a total of 11 extra simulations per gradient calculation have been avoided, in

this example, using the proposed ASA algorithm.

We define a time saving factor ST as the ratio TCFD = TASA, where TCFD and

TASA are the computational times of the CFD approach and our ASA approach,

respectively. The value of ST is calculated to be 4.4 for this example, as shown in

Table 3.2. Note that the proportion of time saving achieved is less than the proportion
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Table 3.2: The computational time for obtaining the sensitivity results using the CFD
and the ASA approaches.

Example
TCFD TASA Time saving factor
(sec) (sec) ST = TCFD/TASA

1 10.74 2.45 4.38
2 178.7 32.8 5.45
3 0.83 0.27 3.05

of the saved simulations. This is due to the fact that the adjoint simulation performs

extra mathematical operations to evaluate the adjoint nonlinear matrix Γ λ and the

residue vector Rk (see subsection 3.2.1), which is not involved in the original system

simulation.

3.4.2 Example 2

We further investigate the performance of the proposed ASA algorithm in case of

optical fiber systems operatinag at higher baud rate with higher level modulation

schemes. We consider a single span SSMF link with the same nominal parameters

given in Table 3.3. The input signal is 28 Gbaud, modulated with 16 quadrature

amplitude modulation (QAM) format using a root raised cosine pulse shaping with a

roll-off factor of 0.1. The average launch power is Pav = 6 dBm, and the number of

transmitted symbols is 4096. We consider a relatively high average launch power in

order to have a noticeable nonlinear effect. A noise-free amplifier is inserted at the

end of the fiber span to compensate for the fiber loss.

Our target is to evaluate the sensitivities of the same error objective function de-

fined in (3.29) with respect to all 7 design parameters: x = [β1 β2 β3 α γ L Pav]
T .
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Table 3.3: Simulation parameters of Example 2.

Parameter Value
Inverse group speed, β1 0.016 ps/km

Second-order dispersion coefficient, β2 −21 ps2/km
Third-order dispersion coefficient, β3 0.1 ps3/km

Loss coefficient, α 0.2 dB/km
Nonlinear coefficient, γ 1.1 W−1km−1
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Figure 3.3: The normalized ASA sensitivities of objective function (3.29) with respect
to the parameters: β1, β2, β3 and α, for a sweep of L, as compared to the more
computationally expensive CFD approach. The fiber parameters are as given in
Table 3.3. The modulation format is 16 QAM with a root raised cosine pulse shaping,
the baud rate is 28 Gbaud, and the average launch power is Pav = 6 dBm.
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The sensitivities estimated using the ASA algorithm, for a sweep of the fiber length

parameterL, are shown in Figs. 3.3 and 3.4. The results of the sensitivities esti-

mated using the ASA approach are compared to the CFD results. Good agreement

is observed between the ASA sensitivities and the corresponding CFD ones.
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Figure 3.4: The normalized ASA sensitivities of objective function (3.29) with respect
to the parameters: γ, Pav and L, for a sweep of L, as compared to the more compu-
tationally expensive CFD approach. The fiber parameters are as given in Table 3.3.
The modulation format is 16 QAM with a root raised cosine pulse shaping, the baud
rate is 28 Gbaud, and the average launch power is Pav = 6 dBm.

The ASA requires only one extra simulation while the CFD approach requires 14
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extra simulations. In this example, the ASA algorithm 5.4 times faster than the CFD

approach in estimating the sensitivities (see Table 3.2). It thus clear that our ASA

approach becomes more efficient with the increase of the number of design parameters

N . In other words, the saving computational time, achieved using the proposed ASA

algorithm, gets increase as the number of design parameters increases.

3.4.3 Example 3

In this example, we exploit the proposed ASA approach to verify the optical soliton

phenomenon in an optical fiber communication system. Optical soliton is a solitary

light wave that maintains its shape while travelling through an anomalous optical

fiber, due to the cancellation of nonlinear and dispersive effects of the fiber (Hasegawa

and Tappert, 1973; Hasegawa and Kodama, 1981). It has been shown that the nor-

malized fundamental soliton pulse propagating through an anomalous fiber has a

hyperbolic secant shape of the form (Hasegawa and Tappert, 1973; Hasegawa and

Kodama, 1981):

u(z, t) = sech

(√
−γP0

β2

(
t− β1z

))
exp

(
iγP0z

2

)
. (3.30)

The above equation represents the normalized complex optical field envelope of a

fundamental soliton that propagates without any change in its pulse shape. It only

acquires a phase shift due to the propagation that is proportional to the pulse peak

power P0 and the nonlinear coefficient of the fiber γ. Assume that we launch the

hyperbolic pulse (3.30) with full width at half maximum of 50 ps into a lossless

optical fiber. The fiber has the parameters tabulated in Table 3.4. The analytic peak

power required to form a soliton in such system settings is Psol = 23.7 mW (Kumar
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Table 3.4: Fiber parameters used in Examples 3

Parameter Value
Inverse group speed, β1 0 ps/km

Second-order dispersion coefficient, β2 −21 ps2/km
Third-order dispersion coefficient, β3 0 ps3/km

Loss coefficient, α 0 dB/km
Nonlinear coefficient, γ 1.1 W−1km−1

Fiber length, L 80 km

and Deen, 2014).

In order to numerically verify this peak power, we apply our proposed ASA algo-

rithm to obtain the sensitivities of the following objective function:

F =

Tm∫
−Tm

∣∣urx − uref ∣∣2 dt, (3.31)

where uref = utx exp
(
iγP0L/2

)
, and utx = u(0, t) with u as given by (3.30).

Fig. 3.5 depicts the normalized sensitivities of (3.31) estimated with respect to

x = [β2 γ L P0]
T for a sweep of P0. As can be seen, a local minimum of the

objective function (zero gradient value) is detected at P0 ≈ Psol. Notice that when

the dispersion balances the nonlinear effect at P0 = Psol the objective function F

and its derivative ∂F/∂P0 become zeros. For P0 less than Psol, the dispersion effect

dominates over nonlinearity leading to pulse broadening as shown in Fig. 3.6a. The

derivative ∂F/∂P0 becomes negative, indicating a decreasing objective function. On

the other hand, for P0 > Psol, the nonlinear effect dominates dispersion, leading to

pulse compression (see Fig. 3.6b). The derivative ∂F/∂P0 becomes positive indicating

a rising objective function. It should also be clear that the peak values of sensitives

appearing around P0 = Psol (see Fig. 3.5) are because of the normalization.
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Figure 3.5: The normalized ASA sensitivities of objective function (3.31) with respect
to the parameters: β2, γ, L and P0, for a sweep of P0, as compared to the more
computationally expensive CFD approach. The fiber parameters are as given in
Table 3.4.

Since the absolute value of the objective function F is very small near P0 = Psol,

dividing by the small number of F causes peaks in the normalized sensitivities values,

as shown in Fig. 3.5.
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Figure 3.6: The normalized optical power of the transmitted and received pulses. The
peak power of the launch pulse is: (a) 15 mW, i.e., less than the required peak power
to form a soliton Psol, and (b) 30 mW, i.e., greater than Psol.

The estimated ASA sensitivites are also compared to the sensitivities obtained us-

ing the accurate CFD approach. As shown in Fig. 3.5, the sensitivities obtained using

the ASA approach are well matched to the CFD estimates. All the ASA sensitivities

shown in Fig. 3.5 require only one extra simulation as opposed to 8 extra simulations

required by the CFD approach, i.e., the ASA algorithm prevents extra 7 simulations

per gradient calculation. In this example, the ASA is 3.1 times faster than the CFD

(see Table 3.2).

3.5 Conclusion

In this Chapter, we proposed a computationally efficient nonlinear adjoint sensitivity

analysis approach for the general time-dependent nonlinear Schrödinger equation. In

contrast to finite-difference (FD) approaches that work on the system response level,

the basic idea of the proposed ASA approach is to store the original system state data
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and utilize these information in the adjoint simulation to estimate the sensitivities

with minimum number of system simulations. In other words, as compared to the FD

approach, the ASA approach significantly reduces the computational time cost of the

sensitivity analysis at the expense of extra memory storage usage. As compared to the

computationally expensive central finite-difference approach, the proposed algorithm

estimates accurate sensitivities of the desired objective function with respect to all

the design parameters but with a much lower computational cost. The efficiency of

the approach is illustrated through numerical examples of fiber-optic communication

systems. It has been shown that the gain of using the proposed ASA algorithms

becomes more significant as the number of design parameters increases.
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Chapter 4

Adaptive Digital Back Propagation

Exploiting Adjoint-Based

Optimization

As an application to the nonlinear Schrödinger equation (NLSE)-based ASA approach

introduced in Chapter 3, we might utilize our ASA approach to accelerate the param-

eters extraction of fiber-optic communication systems. In this Chapter, we apply our

NLSE-based ASA approach for the sensitivity analysis of the digital back propaga-

tion (DBP) system. The ASA algorithm is extended to estimate the sensitivities for

the multi-span DBP model, i.e., virtual backward fiber and inline loss element. The

DBP-based ASA algorithm in addition to a gradient-based optimization approach are

then exploited to develop a powerful and fast adjoint-based optimization (ABO) algo-

rithm. The ABO algorithm is used to train and optimize the design parameters of the

DBP in order to blindly compensate for the linear and nonlinear distortions of the op-

tical fiber transmission channel. The proposed ABO algorithm is shown to effectively
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optimize the compensation performance of the DBP in the case of a point-to-point

fiber-optic transmission system or an optical fiber transmission network.

The chapter is organized as follows: In Section 4.1, we review the basic concept

of digital back propagation and derive a general mathematical matrix representation

required for the DBP simulation. In Section 4.2, we derive the general adjoint system

simulation corresponding to the original system simulation of the DBP. A full descrip-

tion of the modified SSFS algorithm required for solving the derived adjoint simulation

is also given. Moreover, Section 4.2 provides a complete computational complexity

analysis of the modified SSFS algorithm. Section 4.3 provides a detailed description

of the proposed ABO algorithm. In Section 4.4, we investigate the efficiency of the

proposed ABO algorithm through applying it to train a DBP for blindly mitigating

the distortions inhered in a typical 4−span fiber-optic communication system. We

also compare the performance of the ABO algorithm as compared to finite-difference-

based optimization algorithms. The obtained results show that our ABO algorithm

has the same accuracy as the central finite-difference-based optimizer with much lower

computational complexity. Finally, conclusions of the work are drawn in Section 4.5.

4.1 Problem Formulation of a DBP Model

4.1.1 Single-Span DBP Model

Consider first a single-span optical fiber link with certain fiber dispersion, nonlinear

and loss coefficients. The evolution of the normalized optical field envelope in the
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fiber is described by the NLSE (Agrawal, 2007; Kumar and Deen, 2014):

∂u

∂z
=
[
D̂ + N̂

]
u, (4.1)

where u (z, t) = q/
√
P0 is the normalized signal of the complex optical field envelope

q (z, t), and P0 is the peak power of the transmitted pulse. The operators D̂ and

N̂ represent the linear (delay, dispersion, and loss) and the nonlinear effects of the

optical fiber, respectively. They are given by:

D̂ (t) =
β3
6

∂3

∂t3
−iβ2

2

∂2

∂t2
−β1

∂

∂t
− α

2
, (4.2)

N̂ (z, t) = iγP0|u (z, t)|2, (4.3)

where β1 is the inverse group speed, β2 and β3 are the second- and third-order dis-

persion coefficients, respectively. The parameter α is the fiber loss coefficient, γ is

the nonlinear coefficient of the fiber, and i =
√
−1.

The analytical solution of (4.1) is obtained as follows:

u (L, t) = M̂u (0, t) , (4.4)

where L is the fiber length and u (0, t) = utx (t) = qtx/
√
P0 is the normalized complex

envelope of the transmitted field qtx (t). The fiber operator M̂ is given as:

M̂ = exp

(∫ L

0

[
D̂ (t) + N̂ (z, t)

]
dz

)
. (4.5)

Multiplying both sides of (4.4) by the inverse operator of M̂ yields (Agrawal, 2007;
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Kumar and Deen, 2014):

u (0, t) = M̂−1u (L, t) , (4.6)

where

M̂−1 = exp

(
−
∫ L

0

[
D̂ (t) + N̂ (z, t)

]
dz

)
. (4.7)

In (4.6), the signal u (L, t) represents the received field which is distorted due to fiber

linear and nonlinear effects. In a noise-free system, if we multiply the received field by

the inverse fiber operator M̂−1, the linear and nonlinear fiber distortions can thus be

completely removed. Eq. (4.6), with M̂−1 as given by (4.7), is equivalent to solving

the following partial differential equation (Agrawal, 2007; Kumar and Deen, 2014):

∂v

∂Z
= −

[
D̂ + N̂

]
v, (4.8)

with the initial condition v (Z = 0, t) = u (z = L, t). Notice that the equalized signal

v (Z, t) is solved in the reversed spatial direction Z = L − z. This equalization

technique is therefore referred to as back propagation. The equation describing the

evolution of the normalized field in a single-span DBP model, denoted as the inverse

nonlinear Schrödinger equation (INLSE), is obtained by rewriting (4.8) as follows (Ip

and Kahn, 2008; Li et al., 2008):

∂v

∂Z
=
[
D̂b + N̂b

]
v, (4.9)

with v (Z = 0, t) = u (z = L, t) and

D̂b (t) = −β3
6

∂3

∂t3
+
iβ2
2

∂2

∂t2
+β1

∂

∂t
+
α

2
, (4.10)
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N̂b (Z, t) = −iγP0|v (Z, t)|2. (4.11)

It can be noticed that the INLSE (4.9) has the same form as the NLSE (4.1), but

with different values of the parameters (opposite signs of β1, β2, β3, α and γ), and

with different initial condition. The initial field of the INLSE problem is the received

field u (L, t) in electrical domain while the initial field in the NLSE problem is the

transmitted optical field u (0, t). The INLSE problem can therefore be assumed as

a simulation of a virtual fiber. The INLSE is also solved in a spatial direction Z

reversed to the direction z at which the forward NLSE is solved. It thus follows

that the problem of the INLSE can be solved using the same numerical solver, i.e.,

the split-step Fourier scheme (SSFS) method, used for solving the NLSE problem.

Fig. 4.1 illustrates the forward and backward propagations of a single-span optical

transmission fiber and virtual DBP fiber, respectively.

As shown in Fig. 4.1, the digital signal after the DBP can be written as:

vout (t) = v (Z = L, t) = ei
∫ L
0 [D̂b(t)+N̂b(Z,t)]dZ u (z = L, t)

= ei
∫ L
0 [D̂b(t)+N̂b(Z,t)]dZ × ei

∫ L
0 [D̂(t)+N̂(z,t)]dz u (z = 0, t)

= e−i
∫ L
0 [D̂(t)+N̂(z,t)]dz × ei

∫ L
0 [D̂(t)+N̂(z,t)]dz u (z = 0, t)

= u (z = 0, t) = utx (t) .

(4.12)

Thus, the transmitted signal is fully recovered after the DBP if there is no noise.
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Figure 4.1: The propagation in a single-span optical transmission fiber (forward prop-
agation), and a single-span virtual DBP fiber (backward propagation).
Tx: transmitter, Rx: receiver, TF: transmission fiber, DBP: digital back propagation.

4.1.2 Multi-Span DBP Model

For multi-span fiber-optic systems, Fig. 4.2 shows the typical propagation model in an

M−span optical fiber system. In order to compensate for the fiber losses, an erbium-

doped fiber amplifier (EDFA) is inserted at the end of each fiber span, with gain

exp(gj), j = 1, 2, . . . , M . The inserted EDFA not only compensates completely for

the fiber span loss, but it also adds a white Gaussian noise nj (t), j = 1, 2, . . . , M ,

to the amplified signal. The main source of this noise is known as the amplified

spontaneous emission (ASE) noise, having a noise figure Nf . Note that the amplifier

gain is provided by the stimulated emission process, while the noise is due to the

spontaneous emission process (Mears et al., 1987).

To undo the propagation distortions in the multi-span system, we generalize the

concept of the single-span DBP. The noisy amplifier with gain exp (g) is substituted
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Figure 4.2: Model of propagation in an M−span optical fiber transmission system.
Tx: transmitter, Rx: receiver, FS: fiber span, Amp, amplifier.

by a noise-free loss element with gain exp (−g) in the digital domain, and the real

fiber with parameters (β1, β2, β3, α, γ, L) is replaced by a virtual fiber having pa-

rameters (−β1,− β2, −β3, −α, −γ, L), as shown in Fig. 4.3. Notice that the signal

distortions due to the last fiber span in the fiber-optic link is compensated first in

the digital domain. Whereas, the distortions due to the first fiber span is compen-

sated using the last virtual span of the DBP. Although the DBP can compensate for

the deterministic linear and nonlinear fiber distortions, it cannot undo the impact of

the ASE noise and the nonlinearity-ASE coupling such as Gordon-Mollenauer phase

noise (Gordon and Mollenauer, 1990). In other words, the transmitted electric field

can be fully recovered after the DBP if the transmission system is free of noise.
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Figure 4.3: Block diagram of a digital back propagation model for a M−span fiber-
optic communication system.
Rx: receiver, VFS: virtual fiber span, LE: loss element, DBP: digital back propaga-
tion.

In order to mathematically represent a complete span of the DBP model shown
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in Fig.4.3 (i.e. virtual backward fiber + inline attenuator), we modify Eq. (4.9) as

follows:

∂v

∂Z
−
[
D̂b + N̂b

]
v + Ĝv = vinδ (Z) , (4.13)

where the linear and nonlinear operators (D̂b and N̂b) are given in Eqs. (4.10) and

(4.11), respectively. The attenuator operator Ĝ is defined as:

Ĝ =

 0, ∀ Z 6= jLj

gj, at Z = jLj

, (4.14)

where Lj and Gj = exp (gj) are the fiber length and the amplifier gain, respectively,

of the jth span, and j = 1, 2, . . . , M . Note that in (4.13), we assume zero boundary

condition, i.e., v (0, t) = 0, and the field excitation is given by the right-hand side term

vinδ (Z), where vin = u (z = L, t). Expressing the complex field v (Z, t) in terms of its

real and imaginary parts (v = vre + ivim), substituting in Eq. (4.13), and separating

real and imaginary terms, we obtain:
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 β̃3 0

0 β̃3


 ∂3vre

∂t3

∂3vim
∂t3

+

 0 β̃2

−β̃2 0


 ∂2vre

∂t2

∂2vim
∂t2

+

 −β̃1 0

0 −β̃1


 ∂vre

∂t

∂vim
∂t



+

 ∂/∂Z 0

0 ∂/∂Z


 vre

vim

+

 α̃ 0

0 α̃


 vre

vim

+

 0 −γ̃

γ̃ 0


 vre

vim



+

 g̃ 0

0 g̃


 vre

vim

 =

 Re {vin} δ (Z)

Im {vin} δ (Z)

 , (4.15)

where β̃1 = −β1,j, β̃2 = β2,j/2, β̃3 = β3,j/6, α̃ = −αj /2, and γ̃ (v) = γjP0 (v2re + v2im).

The parameter g̃ = gjδ
(
Z −

∑M
k=j+1 Lk

)
, where j can be 1, 2, . . . , or M . Assume

that the jth span is discretized into pj spatial cells with a step size of h. Writing

Eq. (4.15) for all cells of the span, and approximating the spatial derivatives using

central-finite differences, yields:
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β̃3

. . .

β̃3

0

0

β̃3

. . .

β̃3



 ∂3vre
∂t3

∂3vim
∂t3

+



0

β̃2

. . .

β̃2

−β̃2

. . .

−β̃2

0



 ∂2vre
∂t2

∂2vim
∂t2

+



β̃1

. . .

β̃1

0

0

β̃1

. . .

β̃1



 ∂vre
∂t

∂vim
∂t

+



h̃

−h̃ . . .

. . . h̃

−h̃

0

0

h̃

−h̃ . . .

. . . h̃

−h̃



 vre

vim

+



α̃

. . .

α̃

0

0

α̃

α̃

. . .

α̃



 vre

vim

+



0

−γ̃ (v1)

−γ̃ (v2)

. . .

−γ̃
(
vpj
)

γ̃ (v1)

γ̃ (v2)

. . .

γ̃
(
vpj
)

0



 vre

vim

+



g̃

0

. . .

0

0

0

g̃

0

. . .

0



 vre

vim

 =



Re {vin}

0

...

0

Im {vin}

0

...

0



, (4.16)
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where h̃ = 1/(2h), and the vectors vre and vim are the real- and imaginary-parts of

all components of the complex field v at all span cells. It should be clear that the

right-hand term (excitation vector) has a non-zero first component only at the 1st

DBP span. Eq. (4.16) can be written for the whole computational domain as follows:

B3

...

V +B2V̈ +B1V̇ +KcV +AV + Γ (V )V +GV = Vin (t) , (4.17)

where V =
[
vTre v

T
im

]T
is the system state vector, containing all real and imag-

inary parts of the complex field v in the entire computational domain, and ˙ de-

notes time derivative. The vector Vin (t) =
[
Re {vin} eT1 Im {vin} eT1

]T
is the ex-

citation vector, where e1 = [1 0 · · · 0]T is the 1st elementary column vector of size

2p, p =
∑M

j=1 pj is the total number of spatial cells in the computational domain,

and pj, j = 1, 2, . . . , M , is the number of cells in the jth span. The constant

matrix Kc approximates the spatial derivatives. The system matrices are given as:

B1 =

[
β̃1 0

0 β̃1

]
, B2 =

[
0 β̃2

−β̃2 0

]
, B3 =

[
β̃3 0

0 β̃3

]
, and A =

[
α̃ 0

0 α̃

]
,

where β̃1, β̃2, β̃3, and α̃ are all diagonal matrices whose lth diagonal entry contains

the corresponding values of β̃1, β̃2, β̃3, and α̃, respectively, at the lth cell of the compu-

tational domain, and l = 1, 2, . . . , p. The matrix G =

[
g̃ 0

0 g̃

]
is the loss elements

matrix, where g̃ is a diagonal matrix given as follows:

g̃ =
M∑
j=1

gjelje
T
lj
, (4.18)

where elj is an elementary column vector of size 2p whose nonzero entry is lj =
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1 +
∑j

k=1 pk−1 with the assumption that p0 = 0. The matrix Γ (V ) =

[
0 γ̃

−γ̃ 0

]
is

the matrix corresponding to the fiber nonlinearity, where γ̃ (V ) is a diagonal matrix

whose lth entry is given by: γlP0 [v2re (lh) + v2im (lh)], l = 0, 1, . . . p−1. Note that in the

definition of system matrices, we assume that the computational domain is discretized

with a fixed step-size h for mathematical convenience. However, the multi-span DBP

matrix representation given in (4.17) is general and still valid for the varied step-size

discretization case.

Eq. (4.17) represents the original simulation of the multi-span DBP system. Next,

we derive an adjoint system simulation corresponding to (4.17). Using those 2 simu-

lations (the original and adjoint simulations), the full gradient of a general objective

function with respect to all DBP design parameters can be estimated.

4.2 ASA for the Multi-Span DBP Model

Our objective is to estimate the sensitivities of the following objective function (Bakr

et al., 2017):

F =

∫ Tm

−Tm
ψ (x,V ) dt, (4.19)

where 2 × Tm is the total simulation time (i.e. time length of the normalized trans-

mitted signal utx), x ∈ RN is the vector of design parameters which includes all the

DBP design parameters, and V is the system state vector. The analytic derivative

106



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

of (4.19) with respect to the kth parameter xk, k = 1, 2, . . . , N , is given by:

∂F

∂xk
=

∫ Tm

−Tm

∂eψ

∂xk
dt+

∫ Tm

−Tm

(
∂ψ

∂V

)T
∂V

∂xk
dt, (4.20)

where ∂e/∂xk denotes the explicit dependence. The analytic expression in (4.20) can-

not be evaluated unless the vector ∂V /∂xk is known for every time step. The classical

approach for evaluating (4.20) involves repeatedly simulating perturbed structures,

for each design parameter xk, k = 1, 2, . . . , N . A total of extra N full DBP simu-

lations are required for forward or backward differences. The more accurate central

differences require 2N extra DBP simulations. This overhead can be significant even

for a small number of design parameters, especially for such time intensive simulation

problem. Notice that the computational complexity of a single-span DBP simulation

run scales as ∼ MpNslog2 (Ns), where Ns is the total number of time samples and

Mp is the number of propagation steps per span (Ip and Kahn, 2008; Li et al., 2008).

The alternative approach is to derive an adjoint sensitivity analysis (ASA) algo-

rithm to estimate the implicit derivative of (4.20) with respect to all design parameters

xk, k = 1, 2, . . . , N , using only one extra adjoint simulation. Similar to the deriva-

tion steps shown in Chapter 3, we start by differentiating the original multi-span

DBP system (4.17) with respect to the kth parameter xk, k = 1, 2, . . . , N , as follows:

∂eB3

∂xk

∂3V

∂t3
+B3

∂4V

∂xk∂t3
+
∂eB2

∂xk

∂2V

∂t2
+B2

∂3V

∂xk∂t
2+

∂eB1

∂xk

∂V

∂t
+B1

∂2V

∂xk∂t
+Kc

∂V

∂xk
+

∂eA

∂xk
V +A

∂V

∂xk
+
∂eΓ

∂xk
V +

∂
(
ΓV

)
∂V T

∂V

∂xk
+Γ

∂V

∂xk
+
∂eG

∂xk
V +A

∂G

∂xk
=0. (4.21)

where V is the nominal value of V , treated as constant during the differentiation
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operation in (4.21). It should be clear that all system matrices arising in (4.17) are

constants with time, except for the nonlinear coefficients matrix Γ = Γ (V ). This de-

pendency arises from the fact that the nonlinearity coefficient γ̃ = γp0|v|2 is function

of the local field value. Notice also that the normalized excitation vector Vin is not a

function of the DBP design parameters. All explicit derivatives appearing in (4.21)

are known and they can be evaluated using the definitions of DBP system matrices:

B1, B2, B3, A, Γ , and G. For example, if the second dispersion coefficient is the

current design parameter (i.e. xk = β2), then ∂eB1/∂xk = 0, ∂eB2/∂xk = −0.5I2m,

∂eB3/∂xk = 0, ∂eA/∂xk = 0, ∂eΓ/∂xk = 0, and ∂eG/∂xk = 0. Reorganizing (4.21)

to shift all the known terms to the right-hand side, we get:

B3
∂4V

∂xk∂t
3 +B2

∂3V

∂xk∂t
2 +B1

∂2V

∂xk∂t
+Kc

∂V

∂xk
+A

∂V

∂xk
+
∂
(
ΓV

)
∂V T

∂V

∂xk
+ Γ

∂V

∂xk
+

G
∂V

∂xk
= −Rk, (4.22)

where Rk is the residue vector corresponding to the kth parameter xk, given by:

Rk =
∂eB3

∂xk

...

V +
∂eB2

∂xk
V̈ +

∂eB1

∂xk
V̇ +

∂eA

∂xk
V +

∂eΓ

∂xk
V +

∂eG

∂xk
V . (4.23)

Multiplying both sides of (4.22) by the yet-to-be-determined temporal adjoint vec-

tor λ, integrating over time, and exploiting integration by parts to have no mixed

derivative terms in the kernel of integral, we obtain:
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∫ Tm

−Tm

(
−
...

λ
T
B3 + λ̈TB2 − λ̇TB1 + λT

(
Kc +A+

∂
(
ΓV

)
∂V T

+ Γ +G

))
∂V

∂xk
dt =

−
∫ Tm

−Tm
λTRkdt, (4.24)

where λ (Z, t) =
[
λTre λ

T
im

]T
is the adjoint state vector. Note that to obtain (4.24),

we assume the following zero boundary conditions: V (Z,−Tm) = V̇ (Z,−Tm) =

V̈ (Z,−Tm) = 0, and λ (Z, Tm) = λ̇ (Z, Tm) = λ̈ (Z, Tm) = 0. Comparing the second

term in (4.24) with the left-hand side (i.e. the implicit integral) of (4.20), we enforce

that:

−
...

λ
T
B3 + λ̈TB2 − λ̇TB1 + λT

(
Kc +A+

∂
(
ΓV

)
∂V T

+ Γ +G

)
=

(
∂ψ

∂V

)T
. (4.25)

From the system matrices definitions in (4.16), it is clear that: B1, B3, A, and G are

symmetric matrices, whereas B2, Kc, and Γ are skew-symmetric matrices. Taking

the transpose of both two sides of (4.25), we thus obtain the adjoint system problem,

given as:

−B3
∂3λ

∂t3
−B2

∂2λ

∂t2
−B1

∂λ

∂t
−Kcλ+Aλ+ Γ λ (V )λ+Gλ = Qλ

in (t) , (4.26)

where Qλ
in is the adjoint excitation vector given by: Qλ

in (t) = ∂ψ/∂V =
[
∂ψ/∂vTre

∂ψ/∂vTim
]T

. It can be shown that the matrix Γ λ corresponding to the fiber nonlin-

earity of the adjoint problem is given as:
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Γ λ (V ) =
∂
(
ΓV

)T
∂V

− Γ =

[
−a b

c a

]
, (4.27)

where a, b, and c are diagonal matrices whose lth diagonal elements are given as

follows:

all = 2γP0ure (lh)uim (lh) , (4.28a)

bll = γP0

(
3u2re (lh) + u2im (lh)

)
, (4.28b)

cll = −γP0

(
u2re (lh) + 3u2im (lh)

)
, (4.28c)

where h is the spatial discretization step size, l = 0, 1, . . . , p − 1, and p is the

total number of the spatial discretization cells in the entire computational domain.

Eq. (4.26) represents the adjoint problem corresponding to the original multi-span

DBP system (4.17), where it describes the evolution of the adjoint variable vector λ

over time and space. As opposed to the original problem (4.17), it can be noticed from

the opposite sign of the spatial derivative matrix (−Kc) that the adjoint problem is

solved in a reversed direction to the backward direction Z at which the original DBP

problem (4.17) is solved. In other words, the adjoint DBP problem (4.26) is solved

in the forward direction, z = Ltot − Z, where Ltot is the total fiber length.

Figure 4.4 depicts the adjoint DBP simulation (4.26) as opposed to the original

DBP simulation (4.17). As shown, each adjoint fiber span (AFS) has the same ab-

solute value of dispersion coefficients, but the signs are reversed as compared to the

original DBP. Since the dispersion coefficients of the virtual fiber spans have their
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Figure 4.4: Propagation model of an original DBP simulation, and its corresponding
adjoint DBP simulation.
Rx: receiver; DBP: digital back propagation; VFS: virtual fiber span; LE: loss ele-
ment; AFS: adjoint fiber span.

signs opposite of the physical fiber spans, dispersion coefficients of the adjoint DBP

spans have the same sign as that of the physical fiber spans. The gain coefficient

(−αj) of each AFS is identical to its corresponding virtual fiber span (VFS) gain in

the original simulation. All loss elements also remain the same in the adjoint simula-

tion. The input of the adjoint problem λin is obtained by differentiating the kernel of

the objective function integral ψ with respect to the original DBP field v. The non-

linear behavior of each AFS is different than its corresponding VFS. However, each

AFS nonlinear coefficient is a function of the original field v (not the adjoint field λ)

at its corresponding AFS in the original DBP simulation, as declared in Fig. 4.4.

Once the original DBP response V and its corresponding adjoint response λ are

evaluated for every time step, in all the computational domain, through solving Eqs.

(4.17) and (4.26), respectively, the adjoint sensitivities of the objective function F
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are evaluated through:

∂F

∂xk
=

∫ Tm

−Tm

∂eψ

∂xk
dt−

∫ Tm

−Tm
λTRkdt, k = 1, 2, . . . , N. (4.29)

4.2.1 The Adjoint DBP Problem Solution

Excluding the adjoint amplifier term (Gλ) arising in the adjoint multi-span DBP

system (4.26), it is clear that the adjoint DBP problem (4.26) has a similar form to

the adjoint problem of the NLSE (see Eq. (3.12) in Chapter 3), but here it is carried

out for back propagation which means that the signs of dispersion and nonlinear coef-

ficients are reversed. It thus follows that the adjoint DBP problem (4.26), without the

adjoint amplifier effect, is solved using the same modified SSFS numerical algorithm

introduced in Section 3.3 of Chapter 3.

The flow diagram, illustrated in Fig. 4.5, summarizes the modified SSFS algorithm

utilized for solving the adjoint multi-span DBP problem (4.26). First, the distance

parameter z is set to zero, the current span index is set as j = 1, and the initial

adjoint field is calculated, according to the desired objective function as follows:

λl =
∂ψ

∂vre
+ i

∂ψ

∂vim
, (4.30)

where ψ is the integral kernel of the desired objective function, and i =
√
−1. The

fields vre and vim are the real and imaginary parts of the output solution of the original

DBP problem: Vout = [vre vim]T . Notice that, in practice, the objective function F

is defined in terms of the DBP output signal Vout. We therefore assume that the

adjoint excitation Qλ
in (t) = ∂ψ/∂V is nonzero only at the input of the adjoint DBP

problem, i.e., at z = 0 or Z = Ltot, where Ltot is the total fiber length.
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Figure 4.5: Flow diagram of the modified symmetric SSFS algorithm used for solving
the adjoint DBP problem.
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In the 2nd block (see Fig. 4.5), we update the parameters of the current adjoint

DBP and amplifier jth span, and determine the step size(s) utilized for the current

span. Then, a first half linear step is performed in the 3rd block as follows:

Λl = F
{
λl
}
, (4.31a)

Λl = Λl ×H (ω, h/2) , (4.31b)

λl = F−1
{

Λl
}
, (4.31c)

λ̂l =
[
Re
{
λl
}

Im
{
λl
} ]T

, (4.31d)

where H (ω, z) = exp
([
− iβ3ω3

6
+ iβ2ω2

2
− iβ1ω + α

2

]
z
)

is the linear transfer function

of the adjoint DBP problem, and ω is the angular frequency. The operations F {·}

and F−1 {·} denote Fourier and inverse Fourier transformations, respectively.

The nonlinear step executed in the 4th block includes the following operations:

Ŵ = P−1λ̂l, (4.32a)

Ŵ = exp
(
Dµ (v)h

)
Ŵ , (4.32b)

λ̂nl = PŴ , (4.32c)

λl = λnlre + iλnlim, (4.32d)

where λ̂nl =
[
λnlre λnlim

]T
, and the matrices P−1, Dµ, and P are given as:
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P−1 (v) =

[
−vrevim√

3|v|2 − i
1
2

(|v|2+2v2
re)

2
√
3|v|2

−vrevim√
3|v|2 + i1

2

(|v|2+2v2
re)

2
√
3|v|2

]
, (4.33a)

Dµ (v) = i
√

3γP 0|v|
2

[
1 0

0 −1

]
, (4.33b)

P (v) =

[
i −i

√
3|v|2+2ivrevim
|v|2+2v2

re

√
3|v|2−2ivrevim
|v|2+2v2

re

]
, (4.33c)

where v = vre+ivim is the original DBP problem solution at the current spatial point.

After applying the nonlinear step, the distance parameter is updated. If z is still less

than the length of the current fiber span, a full linear step is performed as follows:

Λl = F
{
λl
}
, (4.34a)

Λl = Λl ×H (ω, h) , (4.34b)

λl = F−1
{

Λl
}
, (4.34c)

λ̂l =
[
Re
{
λl
}

Im
{
λl
} ]T

. (4.34d)

On the other hand, if z is larger than or equal the current fiber span length, the

last half linear step is applied as given by Eq. (4.31). Then, an amplifier/loss step is

performed as follows:

λl = exp (g) λl. (4.35)

Once the simulation of the current jth span is completed, the span index j is updated.
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For j ≤ M , where M is total number of spans, the algorithm continues by updating

the parameters of the new span and so on. Once the current j exceeds M , the

final output of the adjoint DBP problem, λout = λl, is assigned, and the algorithm

terminates.

4.2.2 Computational Complexity of the modified SSFS Al-

gorithm

It should be clear that the computational complexity of each adjoint nonlinear step in

the modified SSFS algorithm is larger than that in the standard SSFS algorithm due

to the extra required diagonalization step, i.e., Eqs. (4.32a) and (4.32c). The adjoint

linear step though has the same complexity of the linear step in the standard SSFS

algorithm.

To analyze the complexity of the modified SSFS algorithm shown in Fig. 4.5, we

consider a block size of Ns samples. One step of the adjoint linear step, Eq. (4.31) or

Eq. (4.34), requires the evaluation of two Ns−point complex fast Fourier transforms

(FFTs) and Ns complex multiplications. Since each complex FFT operation costs

0.5N slog2 (Ns) complex multiplications, the complexity of one linear step is approx-

imately Ns +Nslog2 (Ns) complex multiplications (Spinnler, 2010; Gao et al., 2012;

Zhang et al., 2015). Note that one complex multiplication involves 4-real multiplica-

tions (Alt and van Leeuwen, 1981). Therefore, the total number of real multiplications

per one adjoint linear step is

4Ns

(
1 + log2 (Ns)

)
. (4.36)
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As for the first adjoint nonlinear sub-step, Eq. (4.32a), evaluating the components

of the P−1 matrix costs 9Ns−real multiplications, and multiplying by the vector λ̂l

requires 4Ns−real multiplication. Notice that the squared magnitude function evalu-

ation requires two real multiplications, and the complexity of a real division operation

is the same as that of a real multiplication (Alt and van Leeuwen, 1981). To calcu-

late the components of the Dµ matrix, extra 2Ns−real multiplications are needed.

Multiplying Dµ by the current step h needs 2Ns extra real multiplications. The ex-

ponential function exp (Dµh) is then implemented with a lookup table, while the

multiplication in exp (Dµh) ×Ŵ requires 2Ns more complex multiplications, or 8Ns

more real multiplications. Thus, the total cost of sub-step (4.32b) is 12Ns−real mul-

tiplications. Evaluating the P matrix components in sub-step (4.32c) requires extra

5Ns−real multiplications, and the multiplication of P × Ŵ needs extra 12Ns−real

multiplications (4Ns−real multiplications + 2Ns−complex multiplications). There-

fore, each adjoint nonlinear step, Eq. (4.32), in the modified SSFS algorithm requires

a total 42Ns−real multiplications.

Suppose the entire M−span adjoint DBP simulation is performed using KNLS

nonlinear steps. The total number of linear steps needed will thus be KNLS + M ,

where the step length used in the first and last linear steps of each span is a half-

step, i.e., h/2. However, all intermediate linear steps within a span use full length

step h, as illustrated in Fig. 4.5. Also, the total number of real multiplications

required by the amplifier step, Eq. (4.35), is 2NsM , where each amplifying step costs

2Ns−real multiplications. In total, the number of real multiplications for the modified
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Table 4.1: Computational complexity of the conventional and modified symmetric
split-step Fourier scheme (SSFS) algorithms.

Algorithm Number of needed real multiplications
Conventional

4Ns (KNLS +M)
(
1 + log2 (Ns)

)
+ 10NsKNLS + 2NsMSSFS (Spinnler, 2010)

Modified SSFS 4Ns (KNLS +M)
(
1 + log2 (Ns)

)
+ 42NsKNLS + 2NsM

symmetric SSFS algorithm, given in Fig. 4.5, is:

4Ns (KNLS +M)
(

1 + log2 (Ns)
)

+ 42NsKNLS + 2NsM, (4.37)

where M , Ns, KNLS are the number of spans, the number of samples, and the number

of performed nonlinear steps, respectively. The computational complexity of the

modified SSFS algorithm as compared to the complexity of the conventional SSFS

algorithm are summarized in Table 4.1. As can be seen, an overhead of 32Ns−real

multiplications per step are required by the modified SSFS algorithm, as opposed

to the conventional SSFS algorithm, which is due to the extra diagonalization step

needed within each adjoint nonlinear step.

In order to better compare the computational cost of the conventional SSFS

method to the modified SSFS method cost, we define a Modified SSFS overhead

parameter τ as the ratio of the modified SSFS cost over the conventional SSFS cost.

In other words, the Modified SSFS overhead parameter τ , is given as:

τ = 1 +
32KNLS

4 (KNLS +M)
(

1 + log2 (Ns)
)

+ 10KNLS + 2M
. (4.38)

In practical simulations, the number of performed nonlinear steps KNLS is usually

much larger than the number of spans M . We may therefore neglect the M−terms,
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simplifying Eq. (4.38) to:

τ = 1 +
16

7 + 2log2 (Ns)
. (4.39)

For example, with Ns = 2 × 217, M = 20, and KNLS = 540, using Eq. 4.38, we find

τ = 1.36, and using Eq. 4.39, we find τ = 1.37. Thus, the computational overhead

for the modified SSFS over the conventional SSFS is around 40%.

Next, we introduce the adjoint-based optimization algorithm proposed for accel-

erating the training process of the adaptive digital back propagation parameters.

4.3 Adjoint-Based Optimization Algorithm

In order to train and optimize the design parameters of an adaptive digital back

propagation (A-DBP), a constrained nonlinear optimization problem has to be solved.

A general formulation to this problem is given as:

min
x

F (x,V )

subject to

cj (x) ≥ 0, j = 1, 2, . . . , m, (4.40)

where F (x,V ) is a general nonlinear objective function that measures the error be-

tween the current DBP output and the desired one, x ∈ RN is the DBP design

parameters vector, and V is the system state vector. The inequality constraints

cj (x), j = 1, 2, . . . , m, might generally be nonlinear functions of the optimization

variables x, and m is the total number of constraints. Particularly, in the training
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of the adaptive DBP, the constraints cj (x) are defined to restrict the variation of

the optimization parameters within the practical ranges, and/or to guide the opti-

mizer to the global optimum solution. It should be clear that the derivatives of each

constraint function cj (x) with respect to the design parameters x can be obtained

analytically, using the definition of cj (x). Also, note that in the definition of the

optimization problem (4.40), only inequality constraints are considered. However,

an equal constraint h (x) = 0 can simply be imposed in (4.40) as a couple of two

inequality constraints given by (Rao, 2019): h (x) ≥ 0 and −h (x) ≥ 0.

The first order optimality condition of problem (4.40) is obtained utilizing the

Lagrangian function (Rao, 2019). Although the Lagrangian function is applied on

equality constrains, we may define an active set A (x) that contains all indices of the

inequality constraints cj (x) that are active at the current design vector x. In other

words, A includes all indices of cj (x) that are equal to 0 at the current x. The active

set A is mathematically defined as (Rao, 2019):

A (x) = l : cl (x) = 0. (4.41)

The Lagrangian function corresponding to problem (4.40) is thus formulated as fol-

lows:

L (x,π) = F (x,V )−
∑
l∈A(x)

πlcl (x), (4.42)

where the Lagrangian multipliers πl are positive nonzero scalers. The first order
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Karush-Kuhn-Tucker (KKT) optimality conditions of Eq. (4.42) are then given by:

∇L (x,π) =

(
∇xF −

∑
l∈A πl∇xcl

−C

)
= 0, (4.43)

where πl 6= 0, ∀ l ∈ A (x), and ∇ denotes gradient operation with respect to the vec-

tors x and π, i.e.,∇ =
[
∇T
x ∇T

π

]T
=
[
∂/∂x1, ∂/∂x2, · · · , ∂/∂xN , ∂/∂πi1 , ∂/∂πi2 ,

· · · , ∂/∂πiq(x)

]T
. The active constraint vector c (x) is a column vector that con-

tains all active constraints at certain x, i.e., C (x) =
[
ci1 ci2 · · · ciq(x)

]T
, where

A (x) =
{
i1, i2, · · · , iq(x)

}
, and q (x) ≤ m is the number of active constraints at x.

Starting from an initial guess x0 and π0, the optimal set (x∗, π∗) that satisfies all

constraints of (4.40) and at which the KKT conditions (4.43) holds can be obtained

recursively using any well-established nonlinear optimization algorithm. In this work,

we utilize the sequential quadratic programing (SQP) algorithm (Palomares and Man-

gasarian, 1976; Han, 1976; Nocedal and Wright, 2006).

SQP is one of the most effective methods for the numerical solution of nonlinear

constrained optimization problems. The basic idea of the SQP method is to model the

objective function by its local quadratic function approximation at the current design

point xk, and to linearize the most violated constraint(s) at point xk (i.e. current

active constraints) in order to construct a quadratic programing (QP) subproblem.

The QP subproblem is then solved, using Newton or quasi-Newton method, to obtain

a new solution iterate xk+1. The procedure is repeated iteratively till converging to

a local optimum x∗ that minimizes the objective function and satisfies all problem

constraints.

Before introducing a framework of the SQP method, we first recall the linear and
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quadratic approximations of a scalar function g (x) given, respectively, as (Nocedal

and Wright, 2006):

g (x) ≈ gk +∇gk (x− xk) , (4.44)

g (x) ≈ gk +∇gk (x− xk) +
1

2
(x− xk)THgk (x− xk) , (4.45)

where ∇gk and Hgk are the gradient vector and the Hessian matrix of the function

g (x) at xk, respectively, and gk denotes g (xk).

At a current iterate solution xk, a basic SQP algorithm determines the search

direction of the next iterate by solving the following QP subproblem (Palomares and

Mangasarian, 1976; Han, 1976; Nocedal and Wright, 2006):

min
sk

(∇xFk)Tsk +
1

2
sk

T
(
∇2
xxLk

)
sk

subject to

cl (xk) + (∇xcl (xk))Tsk = 0,∀ l ∈ A (xk) , (4.46)

where sk = xk+1 − xk is the search direction for the next iterate solution xk+1.

The matrix ∇2
xxLk is the hessian matrix of the Lagrangian function L (x,π), given

in (4.42), with respect to the x parameters only. This QP problem is obtained through

replacing the Lagrangian function (4.42) by its local quadratic approximation at xk.

The current active constraints are also replaced by their local linear approximations at

current xk. Using the constraint given in (4.46) and by omitting the constant terms,

it can be shown that the objective function provided in the QP subproblem (4.46) is
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equivalent to the local quadratic approximation of the Lagrangian function L (x,π)

at xk (Nocedal and Wright, 2006).

In order to solve problem (4.46), we apply Newton’s method to solve the nonlinear

system of equations given by the KKT conditions of (4.46), given as (Nocedal and

Wright, 2006):

(
∇2
xxLksk +∇xFk − JTk πk+1

Jksk +Ck

)
= 0, (4.47)

where Jk is the Jacobian matrix of the active constraints C(x) at xk, defined by

J(x)T =
[
∇ci1 (x) , ∇ci1 (x) , · · · , ∇ciq(x)

(x)
]
, (4.48)

where A (x) =
{
i1, i2, · · · , iq(x)

}
, and q (x) ≤ m. Reformulating Eq. (4.47), the

search direction of the next iterate sk and the new Lagrangian multipliers πk+1 can

thus be identified with the solution of

[
∇2
xxLk −JTk

Jk 0

][
sk

πk+1

]
=

[
−∇xFk

−Ck

]
. (4.49)

Clearly, the solution of Eq. (4.49) requires the computation of the Lagrangian func-

tion’s Hessian ∇2
xxL (xk,πk). However, for lower computational cost, this Hessian

matrix might be replaced with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) ap-

proximation (Bakr, 2013). The BFGS method is one of the most robust quasi-Newton

techniques developed for the Hessian matrix approximation, utilizing the first-order

derivatives information. Suppose that the Hessian matrix ∇2
xxLk at the kth iteration

is replaced by the approximate Hessian matrix Bk. A better solution xk+1 is thus

123



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

determined by solving the quasi-Newton-KKT system of equations, given as:

[
Bk −JTk

Jk 0

][
sk

πk+1

]
=

[
−∇xFk

−Ck

]
. (4.50)

The approximation of the Hessian matrix at the new point xk+1 is then obtained

through the BFGS updating formula (Bakr, 2013):

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
, (4.51)

where sk = xk+1− xk and yk = ∇xL (xk+1,πk+1)−∇xL (xk,πk). In most Quasi-

Newton methods, the initial Hessian matrix approximation B0 is set to an identity

matrix (Bakr, 2013). It is clear that the evaluation of the Lagrangian function’s

gradient at the kth iterate, ∇xLk = ∇xF (xk) − JTk πk, requires to calculate the

gradient of the objective function F (x,V ), and the Jacobian of the current active

constraints J (x) at xk. It is worth to emphasize that the Jacobian matrix is eval-

uated analytically using the definition of the constraints Cj (x), j = 1, 2, · · · , m,

given in (4.40). Contrarily, the gradient of F (x,V ), with respect to x, cannot be

determined analytically due to the implicit dependence on the system state vector

V . However, we exploit our proposed ASA algorithm, described in Section 4.2, to

estimate the gradient of F at each optimization iterate using only one extra adjoint

simulation. The introduced optimization algorithm is therefore denoted as an adjoint-

based optimization (ABO) algorithm. We summarize the ABO algorithm in the next

subsection.
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Start
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x*
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cj(xk), j=1, 2, …, m,

𝒜(xk), Ck, Jk, Fk,∇xFk 

If

cj(xk) ≥0, ∀  j
& 

||∇xFk|| ≤ 𝜀  

Yes

No
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∇xFk=∇xFk+1, Bk =Bk+1

Figure 4.6: Flow diagram of the proposed adjoint-based optimization algorithm.
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4.3.1 Algorithm

The ABO algorithm proposed for solving problem (4.40) is illustrated in Fig. 4.6.

We first define the objective function F (x,V ), the initial solution x0, the initial

Lagrangian multipliers π0, the stopping gradient criterion ε, and the problem con-

straints cj (x), j = 1, 2, . . . , m. Note that a feasible initial solution is assumed to

be provided to the algorithm, i.e., a solution that satisfies the problem constraints.

The parameters of the algorithm are then initialized. In step 3, we calculate the

constraints cj (x), j = 1, 2, . . . , m, at the current xk in order to determine the

current active constrains and update A (xk). The current active constraints vector

Ck and its Jacobian matrix Jk are determined. Also, the original and adjoint DBP

problems, (4.17) and (4.26), are performed to obtain the current objective function

Fk and its gradient∇xFk. If the current solution satisfies stopping criteria (satisfying

all constraints and having a gradient norm value lees than ε), we assign it to the op-

timal solution x∗ = xk, and terminate. Otherwise, we solve the quasi-Newton-KKT

system of equations (4.50) to obtain the next search direction and determine the new

solution set (xk+1, πk+1), where xk+1 = xk+sk. We then repeat step 3 to update the

indices of the next active constrains set A (xk+1). Also, we evaluate the next active

constraints vector Ck+1, the next Jacobian matrix Jk+1, the next objective function

Fk+1, and the next point gradient value ∇xFk+1. Then, the next Hessian matrix ap-

proximation Bk+1 is evaluated using the BFGS formula (4.51). The iteration index

is incremented k = k + 1, and the values of all next algorithm parameters are set

as the current values, i.e., A (xk) = A (xk+1), Ck = Ck+1, Jk = Jk+1, Fk = Fk+1,

∇xFk = ∇xFk+1, Bk = Bk+1, xk = xk+1, and πk+1 = πk. If the stopping criteria

are not satisfied yet, we again solve Eq. (4.50) for a better solution. The algorithm is

126



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

repeated until satisfying the stopping criteria test. Once the optimal solution is ob-

tained (i.e. stopping conditions are satisfied), the final solution x∗ = xk is assigned,

and the algorithm terminates.

Next, we investigate the robustness and efficiency of the proposed ABO algorithm

for the training of an adaptive DBP, through a number of numerical examples.

4.4 Results

For all results presented in this section, we consider a Monte-Carlo simulations of

the single-channel fiber-optic communication system, shown in Fig. 4.7. The system

is operating at 28 Gbaud, and the transmitted data have a root raised cosine pulse

shaping with a roll-off factor of 0.1. The modulation format used in the simulation is

a 16-quadrature amplitude modulation (16-QAM) format. The transmission channel

is a multi-span optical fiber system with the same configuration illustrated in Fig 4.2.

Each span consists of a standard single-mode fiber followed by an inline erbium-doped

fiber amplifier (EDFA). The simulation parameters of the fiber are given in Table 4.2.

The length of each fiber span is different, with values varying between 50 km and

125 km. This is the typical range of the fiber span lengths in North America (Kumar

and Deen, 2014). The EDFA at the end of each fiber span has a gain that fully

compensates for the respecting fiber loss, with a noise figure Nf = 4.77 dB. In our

simulations, we particularly consider an 4−span optical fiber communication system

scenario with fiber spans lengths as given in Table 4.3. The forward propagation in

these scenarios are simulated using the split-step Fourier scheme (SSFS) algorithm,

with an adaptive step-size guaranteeing that the maximum nonlinear phase per step

does not exceed 0.01 radian.
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Figure 4.7: Block diagram of the fiber-optic communication system considered in the
simulation.
Tx: transmitter; BPF: band pass filter; Rx: receiver; A/D: analog to digital converter;
CDC: chromatic dispersion compensation; A-DBP: adaptive digital back propagation;
MF: matched filter.

Table 4.2: Fiber simulation parameters.

Parameter Value
Inverse group speed, β1 0 ps/km

Second-order dispersion coefficient, β2 −21 ps2/km
Third-order dispersion coefficient, β3 0 ps3/km

Loss coefficient, α 0.2 dB/km
Nonlinear coefficient, γ 1.1 W−1km−1

A Gaussian band pass filter (BPF) with 50 GHz bandwidth is used before the co-

herent receiver. The front-end coherent receiver translates the in-phase and quadrature-

phase components of the received optical signal into electrical signal components. An

analog to digital (A/D) converter is utilized before the digital signal processing (DSP)

unit, to reduce the sampling rate from 8 to 2 samples per symbol. The chromatic

dispersion (CD) compensation block is used to estimate the total length of the trans-

mission fiber link, Ltot. It is only applied during the training process of the adaptive

digital back propagation (A-DBP). After being trained, the A-DBP compensates for

the linear and nonlinear distortions induced by the fiber channel. The output of the

A-DBP passes through a matched filter (i.e. a root raised cosine filter), to limit the

noise. The symbol sequence after the filter is compared with the symbol sequence at
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Table 4.3: Lengths of fiber spans used in the simulation of the 4−span fiber-optic
communication system scenario.

Fiber span number Length (km)
1 50
2 80
3 85
4 125

the transmitter and those symbols which have crossed the boundaries are counted as

error symbols.

Unless otherwise is specified, the proposed ABO algorithm is used to train the

A-DBP by solving the following A-DBP training problem:

min
x

∫ Tm

−Tm
|vout − utx|2 dt

subject to L1 + L2 + · · ·+ LM = Ltot,

50 km≤ Lj ≤ 125 km, j = 1, 2, · · · , M,
(4.52)

where vout is the normalized output signal of the A-DBP, utx is the normalized trans-

mitted signal in electrical domain, and Tm is half the window size used in the DSP

unit. Notice that the number of samples per symbol considered in utx is reduced to

the number of samples per symbol used in the DSP unit. In other words, utx is a

noise-free back-to-back version of the normalized transmitted signal at the DSP unit.

The design vector x = [L1 L2 · · ·LM ]T contains the lengths of all fiber spans, where
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Lj is the fiber length of the jth span. The training problem (4.52) aims at obtaining

the optimal design vector x∗ that minimize the error between the equalized signal

vout (i.e. output signal of the A-DBP) and the desired output utx. Note that in order

to reduce the estimation time, we assume that all fiber span parameters are known

to the receiver, except for the length of each fiber. The proposed ABO algorithm

is, however, general and can be used to estimate all fiber parameters as well as the

average power launched to the fiber. In practice, most of the fiber links are standard

single-mode fibers. Therefore, fiber span parameters other than the length (e.g. 2nd

order dispersion coefficient β2 and nonlinear coefficient γ) are known and similar for

all spans. Their values might only be subject to slight deviations, from nominal values

given in Table 4.2, due to environmental changes.

It is clear that the objective function in (4.52) has a form similar to the general

form of (4.19) which has been used to derive the adjoint sensitivity problem of the

original DBP problem (4.17). Hence, our adjoint sensitivity analysis algorithm can

be utilized to estimate the gradient of this objective function using one extra adjoint

simulation. The equality constraint in (4.52) is denoted as the linear compensation

(LC) constraint. It is introduced to guide the ABO to a global solution that mini-

mizes both linear and nonlinear distortions of the fiber. Obviously, any DBP whose

fiber span lengths satisfies the LC condition can effectively compensate for the linear

distortions of the transmission fiber link. All these linear solutions (satisfying the LC

condition) may be seen as local minima of problem (4.52) without the LC constraint.

While solving it, the ABO might get stuck at any of these local minima points. We

therefore introduce the LC constraint to guide the ABO algorithm to search for the

global optimal solution (that minimizes both linear and nonlinear distortions) among
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all possible linear solutions. Notice also that the constraints in problem (4.52) can

be re-formulated to obtain the same general form of (4.40), as follows:

min
x

F =

∫ Tm

−Tm
|vout − utx|2 dt

subject to

L1 + L2 + · · ·+ LM − Ltot ≥ 0,

−L1 − L2 − · · · − LM + Ltot ≥ 0,

Lj − 50 km ≥ 0, j = 1, 2, · · · , M,

125 km− Lj ≥ 0, j = 1, 2, · · · , M.

(4.53)

The initial parameters of the ABO algorithm are given as: π0 = [1 1 · · · 1]T and

ε = 10−12.

4.4.1 Validating the ASA Algorithm

We first investigate the accuracy and efficiency of the proposed ABO algorithm in

training and optimizing the parameters of the A-DBP. We study the ability of the

ABO to converge to the ideal DBP solution. We also compare our ABO algorithm

to other finite-differences-based optimization algorithms in terms of convergence rate

and computational complexity. Notice that the notation ideal DBP solution means

a DBP that uses the exact parameters of the transmission channel, and its SSFS

simulation is performed using a small step-size such that the DBP simulation has the

same accuracy as the simulation of the forward propagation problem.

The ABO algorithm is applied to train a 4−span A-DBP system for mitigating the

fiber impairments of the 4−span fiber communication system scenario. The virtual
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Figure 4.8: The value of the training objective function F in (4.52) versus the number
of optimization iterates for the 4−span fiber-optic communication system scenario.
Four optimization algorithms are considered for the training of the A-DBP, namely,
the ABO algorithm, the SQP-CFD algorithm, SQP-FFD algorithm, and SQP-BFD
algorithm.

fibers of the A-DBP has the same transmission fibers parameters given in Table 4.1.

The number of known symbols used to train the A-DBP is 4096. The average launch

power at the training process is Pav = 7 dBm. The total length of the channel

(estimated using the CD compensation unit) is Ltot = 340 km. Initially, the 4 spans

of the A-DBP are supposed to have an equal length of Ltot/4. In other words, the

initial design point given to the ABO algorithm (in km) is x0 = [85 85 85 85]T .

Clearly, this initial point is a feasible design point, i.e., it satisfies all the constraints

of training problem (4.52).

Fig. 4.8 illustrates the evolution of the objective function in (4.53) with number

of optimization iterates. The ABO algorithm terminates after 6 iterates with an

132



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

optimal solution x∗ = [50 79.92 85.08 125]T km. These values are quite close to

the actual fiber span lengths (See Table 4.3). The Euclidian norm of the objective

function gradient at this point is 4.1× 10−16 < ε = 10−12. As can be seen, the ABO

algorithm is capable of training the A-DBP, and successfully converges to the ideal

DBP solution.

Next, 217 data symbols are transmitted through the 4−span transmission system

and pass through the trained A-DBP to retrieve the transmitted signal. Fig. 4.9 shows

the obtained bit error rate (BER) in case of using the initial A-DBP or the trained A-

DBP, as compared to the ideal DBP case, versus a sweep of the average launch power.

The BER values are also compared to the BER obtained when a linear chromatic

dispersion compensation (CDC) unit is only used at the receiver. As compared to the

initial A-DBP, the trained A-DBP effectively mitigates the distortions at the higher

launch power ranges, achieving as BER performance as the ideal DBP. The BER is

found to be zero, using the trained A-DBP, for average fiber launch powers larger

than −4 dBm and less than 14 dBm. For low launch power (Pav ≤ −8 dBm), the

fiber nonlinear distortion is negligible, and the distortions are mainly due to fiber CD

effects and amplifiers’ noise (Kumar and Deen, 2014). Therefore, the CDC unit or

the initial A-DBP can provide a BER performance comparable to the trained A-DBP

(as well as the ideal DBP) at this region. As the power slightly increases, the signal

to noise ratio increases resulting in a BER reduction. However, at higher power levels

(Pav ≥ −4 dBm) the fiber nonlinearity becomes the dominant source of distortion,

and the CDC cannot mitigate the impairments anymore. Contrarily, the trained A-

DBP can still provide a BER performance benefit up to average launch power of 14

dBm. For very high launch power (Pav > 14 dBm), both the trained A-DBP and
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Figure 4.9: BER versus average launch power for the 4-span fiber-optic communica-
tion system scenario. The equalization at the receiver is performed using the CDC
unit only, the ideal DBP, the DBP, or the A-DBP. The number of transmitted symbols
is 217.

the ideal DBP fail to mitigate the distortions due to the severe signal-noise nonlinear

interactions (Kumar and Deen, 2014).

Next, we re-train the initial A-DBP using the same optimization method (sequen-

tial quadratic programming (SQP) method). However, the gradient of the objective

function is evaluated using the central-finite differences (CFD), the forward-finite dif-

ferences (FFD), or the backward-finite differences (BFD) approach. These techniques

are respectively denoted as SQP-CFD, SQP-FFD, and SQP-BFD. All the three algo-

rithms (SQP-CFD, SQP-FFD, and SQP-BFD) terminate after 6-iterations with an

objective function gradient norm of 1.19 × 10−16, 2.9 × 10−14, and 2.6 × 10−14, re-

spectively. The optimal design points obtained are given in Table 4.4. Owing to the
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Table 4.4: Optimal design point solutions of the A-DBP in case of the 4-span
fiber-optic communication system scenario. Four optimization algorithms are used
to train the A-DBP, namely, the ABO algorithm, the SQP-CFD algorithm, the
SQP-FFD algorithm, the SQP-BFD algorithm. The initial design point (in km)
is x0 = [85 85 85 85]T .

Fiber span Fiber span’s optimum length (km)
number ABO SQP-CFD SQP-FFD SQP-BFD

1 50.00 50.00 51.85 50.00
2 79.92 80.01 78.21 78.74
3 85.08 84.99 85.57 86.26
4 125.00 125.00 124.37 125.00

proper definition of the training problem (4.52), all three optimizers converge to the

ideal DBP solution as well as the ABO optimizer does. However, the solutions of the

ABO and SQP-CFD algorithms are slightly better (more closer to the ideal solution)

than the SQP-FFD and SQP-BFD solutions. This is due to the fact that the deriva-

tives estimations of both the adjoint and CFD approaches are more accurate than the

FFD and BFD estimations. Fig. 4.8 shows the objective function evolution in case

of using the 3−finite-differences-based optimizers as compared to that of the ABO

algorithm. Obviously, there is a slight difference between the routes each algorithm

takes towards the optimal solution. This is due to the slight differences between the

gradient estimations of each sensitivity technique.

Table 4.5 compares between the four optimizers (ABO, SQP-CFD, SQP-FFD, and

SQP-BFD) in terms of the total number of SSFS simulations performed during the

training process of the initial A-DBP. The total number of samples used during the

training process is 4096× 2, where the number of training symbols is 4096, and num-

ber of samples per symbol used in the DSP unit is 2. Substituting in Eq. (4.39), the

modified SSFS overhead parameter for these settings is τ ≈ 1.48. In other words, the
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Table 4.5: Computational cost of sensitivity calculations required to train the A-
DBP for mitigating the distortions of the 4−span fiber-optic communication system
scenario. The A-DBP is trained using ABO, SQP-CFD, SQP-FFD, and SQP-BFD
algorithms.

Algorithm

Total
Number Number of Number of number of

of original DBP adjoint DBP equivalent
iterations simulations simulations conventional

SSFS
simulations

ABO 6 6× 1 6× 1 14.88
SQP-CFD 6 6× (1 + 2N) − 54
SQP-FFD 6 6× (1 +N) − 30
SQP-BFD 6 6× (1 +N) − 30
*The number of design parameters in this example is N = 4.

complexity of one adjoint DBP simulation run is approximately equivalent to 1.48×

complexity of one original DBP simulation run. At each iterate of the ABO algorithm,

we need to perform 1−original and 1−adjoint DBP simulations, to evaluate current

objective function value and its gradient vector. This is equivalent to performing

2.48 conventional SSFS simulation runs. Contrarily, each SQP-CFD iterate requires

(2N + 1)−original DBP simulations, where N is the number of design parameters,

to determine current objective function value and the gradient vector. Each of the

SQP-FFD and SQP-BFD needs to run (N + 1)−original DBP simulations every op-

timization iterate, to obtain the current objective function value and a less accurate

(as compared to ABO and SQP-CFD algorithms) gradient vector estimation.

As shown in the last column of Table 4.5, our proposed ABO algorithm saves

around 39−system simulations, as opposed to the SQP-CFD algorithm, to train the

A-DBP with similar accuracy as that of the SQP-CFD. Moreover, with a better

training accuracy than the SQP-FFD or SQP-BFD, our ABO algorithm prevents
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Figure 4.10: (a) Asymptotic number of conventional SSFS simulations required to
train a A-DBP versus number of design parameters N ; (b) Asymptotic values of the
simulation saving factor η achieved by the ABO algorithm versus design parameters
number N . The ABO algorithm is compared to the SQP-CFD, SQP-FFD, and SQP-
BFD. The number of training samples is 8192.

extra 15−system simulations required to train the 4−span A-DBP using the SQP-

FFD or SQP-BFD algorithm. It should be emphasized that the number of extra

simulations avoided by the ABO algorithm is expected to increase linearly as the

number of parameters increases, as shown in Fig. 4.10a. This is due to the fact that

the number of extra simulations required by the finite-differences-based optimizers

(SQP-CFD, SQP-FFD, and SQP-BFD) is linearly proportional to the number of

design parameters. Contrarily, the ABO optimizer always requires one extra adjoint

simulation per iterate to evaluate the full gradient information whatever the number

of parameters is.

In order to better clarify the gain achieved by the ABO algorithm in terms of the

computational cost, we define a simulation saving factor η as the ratio of the total
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number of conventional SSFS simulations required by a certain optimizer to train a

A-DBP over the simulations’ number needed by the ABO to train the same A-DBP.

For this example, the value of η is calculated to be 3.63 and 2.02 for the SQP-CFD

and SQP-FFD/BFD, respectively, when the number of design parameters = 4. In

other words, our ABO algorithm is 3.63 times faster than the SQP-CFD in training

the 4−span A-DBP. The asymptotic gain of applying the ABO algorithm to optimize

the A-DBP parameters versus a sweep of the design parameters number is shown in

Fig. 4.10b. Clearly, as the number of parameters increases, the gain achieved by the

ABO algorithm, as opposed to other FD-based algorithms, soars.

4.4.2 Optimum Low-Complexity A-DBP

In this subsection, our objective is to reduce the computational complexity of the

A-DBP. At the expense of a lower/worse equalization performance, we aim at ac-

celerating the A-DBP equalization processing time. For a trained A-DBP or ideal

DBP, we may replace the small step-size used in the SSFS simulation with a rela-

tively larger step. Since the symmetric SSFS simulation has an error of order O (h3),

a coarse-mesh A-DBP simulation with relatively larger step-size will not be identical

to the inverse response of the fiber channel. As a result, the equalization performance

of a fiber communication system with a coarse-mesh DBP model degrades as op-

posed to a fine-mesh DBP model. For the 4−span fiber-optic communication system

scenario, Fig. 4.11 shows the BER performance of a coarse-mesh model of the ideal

DBP as compared to the fine-mesh ideal DBP model. The adaptive step-size used

in the coarse-mesh model is chosen to ensure that the maximum nonlinear phase

change within each step is smaller than 0.1 radian, as opposed to 0.004 radian in
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Figure 4.11: BER versus average launch power for the 4−span fiber-optic commu-
nication system scenario. The equalization at the receiver is performed using ideal
DBP with fine-mesh and coarse-mesh models. The signal and system parameters are
the same as that used for Fig. 4.9.

the fine-mesh case. As shown in Fig. 4.11, the BER performance of the coarse-mesh

ideal DBP model deteriorates significantly at average launch power above 0 dBm.

However, the coarse-mesh ideal DBP model requires only a total of 4−SSFS steps

at Pav = 0 dBm, as compared to 53−SSFS steps required by the fine-mesh ideal DBP

model at the same launch power.

In order to enhance the performance of the coarse-mesh ideal DBP model with

a computational cost within the same range, we apply our ABO algorithm to train
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Figure 4.12: Total number of required SSFS steps versus average launch power for the
4−span fiber-optic communication system scenario. The equalization at the receiver
is performed using ideal DBP with fine-mesh and coarse-mesh models. The number
of transmitted symbols is 217.

coarse-mesh A-DBP models with 2−, 3−, and 4−spans, although the fiber optic sys-

tem has 4 spans with parameters given in Tables 4.2 and 4.3. In other words, we

would like to compensate for the dispersion and nonlinear impairments of a 4−span

fiber-optic system with M virtual spans (M ≤ 4) whose lengths and nonlinear co-

efficients will be optimized. We consider here lengths Lj and nonlinear coefficients

γj of each virual fiber span as design parameters. In other words, the design vector

x = [L1 L2 · · ·LM γ1 γ2 · · · γM ]T contains the lengths and nonlinear coefficients of

all fiber spans, where Lj and γj are the length and nonlinear coefficient of the jth
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Table 4.6: Optimum values of the A-DBP design parameters for mitigating the
4−span fiber-optic communication system scenario. A coarse-mesh model is con-
sidered with a maximum allowed nonlinear phase change per SSFS step of 0.1 rad.
The ABO is used to train A-DBP with 2−, 3−, and 4−virtual fiber spans.

Fiber span
number

Optimum parameters
2−span A-DBP 3−span A-DBP 4−span A-DBP
L γ L γ L γ

(km) (W−1km−1) (km) (W−1km−1) (km) (W−1km−1)
1 123.47 3.69 132.15 3.82 50.50 1.47
2 216.53 18.82 1.36 20.00 80.69 1.32
3 − − 206.49 9.97 16.85 1.69
4 − − − − 191.96 6.08

virtual fiber span. The A-DBP training problem is modified as follows:

min
x

F =

∫ Tm

−Tm
|vout − utx|2 dt

subject to
L1 + L2 + · · ·+ LM = Ltot,

0 km≤ Lj ≤ Ltot, j = 1, 2, · · · , M,

0.001 W−1km−1≤ γj ≤ 20 W−1km−1, j = 1, 2, · · · , M,

(4.54)

where Ltot = 340 km, and M = 2, 3, or 4. The average launch power at the training

process is Pav = 6 dBm. The initial length and nonlinear coefficient of each span

are set to 0.6 W−1km−1, and Ltot/M , respectively. The number of symbols used

to train the A-DBP is 4096. The optimal design points of the 2−span, 3−span,

and 4−span trained A-DBP models, obtained using the ABO algorithm, are given

in Table 4.6. Notice that in this example we do not wish to converge to the actual

channel parameters, since the coarse-mesh ideal DBP model (whose parameters are

identical to actual channel parameters) does not provide the global optimum solution
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anymore. We therefore relax the constraints of the training problem, owing to the

fact that the A-DBP is a virtual fiber, which allows for non physical/practical values

of the parameters. This relaxation extends the parameter space (i.e. the feasible

region) at which the ABO algorithm searches for the optimal coarse-mesh A-DBP

parameters, thus seeking to achieve the best possible compensation performance.

Fig. 4.13a shows the BER performance of the 4−span fiber-optic communication

system as a function of fiber launch power for various cases of DBP and CDC only.

The quality factors and the total number of SSFS steps required by each equalizer,

versus a sweep of the launch power, are also compared in Figs. 4.13b and 4.14, re-

spectively. It is worth emphasizing that the compensation performance of the 4-span

A-DBP shows a peak at Pav = 6 dBm, since this is the average launch power at which

the A-DBP is trained. As can be seen in Fig. 4.13b, all M−span trained A-DBP,

with M = 2, 3, and 4, outperform the coarse-mesh ideal DBP. The 2−span A-DBP

increases the quality factor by 1 dB with a lower computational cost; 2−SSFS steps as

opposed to 4−SSFS steps required by the coarse-mesh ideal DBP at Pav = −2 dBm,

for the 2−span A-DBP. A Q-factor increments of 2.2 dB and 2.7 dB are achieved

respectively by the 3−span and 4−span A-DBPs. The 3−span and 4−span A-DBPs

though require 2−extra SSFS step as compared to the coarse-mesh ideal DBP. Hence,

the 2−span A-DBP provides a better trade-off between performance and computa-

tional cost.
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Figure 4.13: (a) BER, and (b) Quality factor versus average launch power for the
4-span fiber-optic communication system scenario. The equalization at the receiver
is performed using the CDC unit only, the coarse-mesh ideal DBP, the coarse-mesh
2−virtual fiber spans A-DBP, the coarse-mesh 3−virtual fiber spans A-DBP, or the
coarse-mesh 4−virtual fiber spans A-DBP. The number of transmitted symbols is 217.
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Figure 4.14: Total number of required SSFS steps versus average launch power for the
4-span fiber-optic communication system scenario. The equalization at the receiver
is performed using the CDC unit only, the coarse-mesh ideal DBP, the coarse-mesh
2−virtual fiber spans A-DBP, the coarse-mesh 3−virtual fiber spans A-DBP, or the
coarse-mesh 4−virtual fiber spans A-DBP. The number of transmitted symbols is 217.

4.5 Conclusion

A powerful and computationally efficient adaptive DBP method has been proposed

to blindly mitigate the linear and nonlinear impairments-induced in long-reach op-

tical fiber communication systems and networks. The proposed approach uses an

adjoint-based optimization algorithm for which an ASA algorithm is utilized for sen-

sitivity analysis. Regardless of the number of design parameters, the ABO algorithm

obtains all the required sensitivity calculations per optimization iterate using only

one extra adjoint system simulation. This is contrasted with conventional FD-based
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optimizers whose required sensitivity calculations per iterate scales linearly with the

number of parameters. To demonstrate the efficiency and reliability of the proposed

A-DBP method, it was employed to blindly compensate for the distortions of a 4-span

fiber-optic communication system scenario. Regardless of the initial parameters, the

A-DBP showed good ability to converge to the optimal compensation performance

achieved using the ideal DBP with fine-mesh and known channel parameters. It has

also been shown that a coarse-mesh A-DBP with lower number spans could be used

to significantly reduce the computational complexity, achieving compensation perfor-

mance higher than that obtained using the coarse-mesh DBP with complete number

of spans.
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Chapter 5

Conclusions and Future Work

Optical fibers have revolutionized the telecommunication world. They form a main

backbone of modern telecommunication systems, because of their low loss, large band-

width, and robustness to electromagnetic interference. With the rapid development

of fiber-optic communication systems, the demand for higher transmission data rate

with longer transmission reach becomes vital and more essential. However, the light-

wave propagation through the optical fiber suffers from severe and unavoidable linear

and nonlinear distortions, due to the loss, chromatic dispersion, and optical Kerr

effect. These impairments are the major barriers to further increase the capacity

and feasible transmission reach of optical fiber systems. This thesis therefore focused

on the development of reliable, stable and computationally efficient electrical equal-

ization techniques to compensate for the linear and nonlinear distortions induced in

optical fiber communication systems and networks.

We first studied the mitigation of short-reach fiber-optic communication systems

with direct detection. Nonlinear distortions due to optical Kerr effect are negligible

for short-haul optical fiber systems. Only linear distortions that are mainly due to
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chromatic dispersion exist in such systems. However, direct detectors are usually

used to detect received signals in the case of short-haul transmission systems. Due

to the square-law detection of the direct detection system, the linear impairments in

optical domain turn into nonlinear in the electrical domain. A nonlinear equalizer is

therefore required at the digital signal processing (DSP) unit of the receiver to effec-

tively compensate for the resultant nonlinear distortions. The maximum likelihood

sequence estimator (MLSE) is one of the most effective candidates to offer an excel-

lent compensation performance for such system. However, its computational cost is

significantly high, which makes it impractical to be implemented in a DSP chip.

To reduce the computational complexity, at the expense of slightly lower com-

pensation performance, Chapter 2 proposed a simple and computationally-efficient

nonlinear feed forward equalizer (NFFE) based on artificial neural networks (ANN).

The proposed equalizer is used to mitigate the distortions due to chromatic disper-

sion in metro optical fiber communication systems and data center networks, with

direct photo-detection. Our ANN-NFFE equalizer is comprised of one ANN-hidden-

layer which leads to superfast signal processing. An extensive training process for the

equalizer is introduced which allows to reach the best possible FFEs performance.

The proposed ANN-NFFE achieves a transmission system performance comparable

to the MLSE with much lower computational cost. Its required cost per symbol is

linearly proportional to the ISI span, in contrast to the exponential growth of the

MLSE computational cost.

The efficiency of the proposed equalizer was demonstrated in two fiber-optic appli-

cation areas. The first of which was 10 Gbps data rate communication system widely

used in media and access networks. The obtained results show that the introduced
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ANN-NFFE increases the chromatic dispersion tolerance and significantly extends

the feasible transmission distance. It has been shown that the ANN-NFFE extends

the transmission distance up to 200 km, achieving a BER of 10−9 with at most 2

dB-OSNR penalty in comparison to the back-to-back transmission case. The second

application was 28 Gbps data rate short-reach fiber optic communication system,

which is widely deployed in data center networks. Our results show that the ANN-

NFFE significantly reduces the OSNR penalty for achieving a BER of 10−9 in case

of transmission distances ≤ 10 km. Furthermore, it extends the feasible transmis-

sion distance beyond 10 km, allowing the reach up to 20 km with reasonable OSNR

penalty as compared to the back-to-back performance.

We then studied combating the nonlinear distortions of long-haul fiber-optic com-

munication systems with coherent detection. The digital back propagation (DBP)

method is one of the most effective electronic techniques to mitigate the nonlinear

fiber impairments of coherent fiber-optic systems. Since lightwave propagation within

an optical fiber link is governed by the nonlinear Schrödinger equation (NLSE), the

idea of DBP approach is to apply the inverse of the NLSE on the received signal

to undo the distortion effects of the fiber. This requires precise information of the

transmission channel parameters. However, such information is not available at the

receiver end for optical fiber networks, due to the random network configurations and

the unavoidable environmental changes. For such cases, an adaptive DBP scheme

can be utilized to compensate for the fiber impairments without knowing the launch

power and channel parameters. Initially at a training phase, a stream of known data

is sent, and a gradient-based optimization algorithm is used to train the DBP, esti-

mating the parameters of the channel. Then, the adaptive DBP can be used to recover
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unknown data. In such adaptive DBP method, the required sensitivity information

required during the training process are typically obtained using the traditional finite-

difference (FD) approach. However, the computational cost of the FD approach scales

linearly with the number of parameters. This overhead is prohibitive and prevents

the real-time implementations of adaptive DBP methods in practical fiber-optic sys-

tems. We therefore developed a general adjoint sensitivity analysis (ASA) technique

to significantly accelerate the estimation of sensitivity information required for any

fiber-optic system. Then, as an application to the developed ASA approach, it was

exploited to propose a computationally efficient adaptive DBP (A-DBP) method.

A novel, powerful, and easy-to-implement ASA algorithm based on the NLSE was

first proposed in Chapter 3. Using only one extra adjoint simulation, the gradient of

the desired objective function is estimated with respect to all the design parameters

of the problem. A modified algorithm to the split-step Fourier scheme (SSFS) was

developed for solving the adjoint problem. It has the same accuracy of the SSFS

since it uses the same grid points distribution used in the original problem solution.

The efficiency of the proposed ASA algorithm was demonstrated through the sensi-

tivity analysis of three numerical fiber-optic examples. Good agreement is observed

with the results obtained using the accurate, but computationally expensive, central

finite-difference (CFD) approach. The results show that our proposed algorithm sig-

nificantly accelerates the sensitivity analysis of any optical fiber design problems. For

instance, it has been shown that the ASA requires only one extra simulation while

the CFD approach requires 14 extra simulations, in case of design problems with 7

design parameters, i.e., the ASA could save extra 13 system simulations required by

the CFD. Also, the ASA algorithm was 5.4 times faster than the CFD approach to
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estimate the sensitivities in the mentioned example. This computational time saving

would also increase as the number of design parameters increases.

We then proposed a computationally efficient A-DBP method exploiting our NLSE-

based ASA approach in Chapter 4. An efficient ABO technique was introduced for

accelerating the parameters extraction of the A-DBP. The ABO algorithm uses the

sequential quadratic programming (SQP) optimization technique for solving the A-

DBP training problem. It also utilizes a generalized ASA approach, based on the

inverse nonlinear Schrödinger equation (INLSE), to rapidly evaluate the required

sensitivity information at each optimization iterate. This ASA approach estimates

the full gradient information of the desired objective function with respect to all A-

DBP design parameters, using only one extra adjoint DBP simulation. Full details

of the modified (SSFS) method required for solving the adjoint DBP simulation was

presented. A computational complexity analysis for the modified SSFS algorithm

was also performed. It has been shown that the computational complexity of the

adjoint DBP simulation requires an overhead of 32Ns−real multiplications per step

as compared to the computational cost of the conventional/original DBP simulation,

where Ns is the number of processing samples. However, the overhead of the ASA

approach is constant and does not depend on the number of design parameters. This

is contrasted with the classical FD approaches whose computational complexity scales

linearly with the design parameters number.

The efficiency and robustness of the proposed ABO algorithm have been demon-

strated through a typical 4−span optical fiber communication system example. Pro-

vided that the total transmission distance is known, the ABO algorithm shows an

excellent ability to predict the fiber channel parameters, and effectively trains the
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A-DBP to converge to the ideal DBP solution, starting from random initial parame-

ters. As compared to the A-DBP training using FD-based SQP algorithms, our ABO

algorithm is 2.02 times faster than the backward/forward FD-based optimizers, and

3.63 times faster than the more accurate CFD-based optimizer. Having an accuracy

as high as the CFD-based optimizer, the computational complexity gain of our ABO

algorithm also increases linearly with the number of parameters. Moreover, we in-

vestigated the reduction of the A-DBP computational cost at the expense of slightly

lower equalization performance. The proposed ABO algorithm has been applied to

train a 2−, 3−, and 4−span A-DBP systems with coarse-meshing models. The ob-

tained results show that an optimized 2−span coarse-mesh A-DBP model provides

the best trade-off between equalization performance and computational cost. It pro-

vides a 1−dB quality factor increment as compared to the coarse-mesh ideal DBP

equalizer, with half the computational cost.

Last but not least, we discuss some suggestions for future work in the next section.

5.1 Future work

This thesis provided theoretical analysis and presented simulation results of electrical

compensation techniques for mitigating the optical fiber induced linear and nonlinear

distortions. Experimental research is one of the most important future works to

measure and validate the theoretical results obtained.

Other suggestions of future work directions are as follows:

I. Using noisy data to train and adopt the parameters of the proposed artificial

neural network nonlinear feed forward equalizer (ANN-NFFE). In Chapter 2,

we utilized noise-free data to train the equalizer, which is the typical way for

151



Ph.D. Thesis – Mahmoud Maghrabi McMaster University – Electrical Engineering

training. However, optimizing the ANN weights using multiple sets of noisy data

would be of more practical sense, and could further improve the compensation

performance of the equalizer.

II. Applying the proposed ANN-NFFE for the compensation of direct-detected

short-reach optical fiber systems with advanced modulation formats. Although

we investigated the proposed equalizer for the case of on-off keying (OOK)

modulation formats, we believe the same algorithm of the proposed ANN-NFFE

can be applied to higher modulation formats e.g., pulse amplitude modulation

(PAM). The same internal structure of ANN-NFFE could be used. In this case,

the equalizer would be applied on symbols rather than bits. The same concept

and procedures would still apply. For instance, in case of PAM-4, the output of

ANN-NFFE will vary between 4 states instead of 2 states (of OOK).

III. Extending the proposed ANN-NFFE to compensate for nonlinear distortions of

long-haul fiber-optic communication systems with coherent detection. For this

case, the coherent receiver will be able to detect the complex optical field rather

than the signal power, i.e., both in-phase and quadrature-phase information will

be available at the DSP unit. In other words, the conversion of linear distor-

tions into nonlinear impairments will be avoided. However, since nonlinear fiber

distortions cannot be neglected for long-haul transmission systems, a nonlinear

equalizer is still required to recover the transmitted data. We believe that the

approach of the developed ANN-NFFE could be easily extended to compensate

for the nonlinear distortions of coherent-detected long-reach optical fiber sys-

tems. Instead of using one ANN equalizer, we would need to train 2−ANNs

to simultaneously recover the transmitted data. Both the two networks would
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have the in-phase and quadrature phase signals as inputs. The 1st network

would then be trained to equalize the in-phase signal (i.e. its output would

be the in-phase part of the transmitted signal), while the 2nd network would

output the equalized quadrature-phase signal part. Notice that this suggested

scheme is necessary for efficient compensation performance, in order to effec-

tively compensate for the distortions-induced due to the fiber and due to the

coupling between in-phase and quadrate phase data as well. It should also be

clear that the computation complexity of the suggested scheme will be the same

as the computational cost of one ANN-NNE, since both the 2−ANN equalizers

would be independent and would be processing in parallel.

IV. Developing an ASA approach for the nonlinear Schrödinger equation (NLSE)

in the Hilbert space. To derive the NLSE-based ASA approach proposed in

Chapter 3, we first wrote the complex NLSE in real domain, and all preceding

steps were done in the real space. However, the theory could be more elegant if

derivations were accomplished in the Hilbert space, i.e., all derivation steps are

performed in the complex domain. Moreover, it would be promising to extend

the theory and develop the ASA approach for the Manakov system of equations

(describing the average polarization evolution of the coupled vector NLSEs),

in order to generalize the proposed ASA approach for sensitivity analysis of

polarization multiplexed fiber-optic systems.

V. Applying the developed NLSE-based adjoint sensitivity algorithm to accelerate

the sensitivity calculations required in other practical optical fiber design prob-

lems, e.g., dispersion-managed coherent fiber optic systems. Also, the proposed

ASA could also be applied for the sensitivity analysis of any other dynamic
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systems governed by the NLSE. Although we focus on fiber-optic problems, the

proposed ASA approach is general and applicable for the sensitivity analysis

of all other dynamic systems governed by the linear or nonlinear Schrödinger

equation, e.g., time-dependent quantum structures.

VI. Developing an adaptive filtered digital back propagation (DBP) scheme based

on adjoint optimization. The A-DBP method introduced in Chapter 4 was

based on the conventional DBP scheme. In other words, the ASA approach

derived includes only the effects of the invers NLSE and in-line loss elements. If

we wish to reduce the number of steps per span, we may extend the theory to the

assisted filter A-DBP scheme. In this case, an extended ASA approach needs to

be derived to include the effects of the inverse NLSE, the in-line loss elements,

and the low pass filter preceding each nonlinear step, in order to estimate the

derivatives with respect to the design parameters of fiber, LPF, and in-line loss

elements.
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