
Parallel Windowed Method for Scalar Multiplication in Elliptic Curve
Cryptography

Parallel Windowed Method
for

Scalar Multiplication
in

Elliptic Curve Cryptography

By
Tanya Bouman B.A.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Science

McMaster University
© Copyright by Tanya Bouman, January 29, 2021

MASTER OF SCIENCE(2020) McMaster University
COMPUTER SCIENCE Hamilton, Ontario

TITLE: Parallel Windowed Method for Scalar Multiplication in Elliptic Curve Cryptography

AUTHOR: Tanya Bouman B.A.Sc. (McMaster University)

SUPERVISOR: Dr. Christopher K. Anand & Dr. Wolfram Kahl

NUMBER OF PAGES: ix, 28

LEGAL DISCLAIMER: This is an academic research report. I, my supervisor, defence committee,
and university, make no claim as to the fitness for any purpose, and accept no direct or indirect
liability for the use of algorithms, findings, or recommendations in this thesis.

ii

Abstract

Commercial applications, including Blockchain, require large numbers of cryptographic
signing and verification operations, increasingly using Elliptic Curve Cryptography. This uses a
group operation (called point addition) in the set of points on an elliptic curve over a prime field.
Scalar multiplication of the repeated addition of a fixed point, P , in the curve. Along with the infinity
point, which serves as the identity of addition and the zero of scalar multiplication, this forms a
vector space over the prime field. The scalar multiplication can be accelerated by decomposing the
number of additions into nibbles or other digits, and using a pre-computed table of values P , 2P ,
3P, . . . This is called a windowed method. To avoid side-channel attacks, implementations must
ensure that the time and power used do not depend on the scalar. Avoiding conditional execution
ensures constant-time and constant-power execution.

This thesis presents a theoretical reduction in latency for the windowed method by intro-
ducing parallelism. Using three cores can achieve an improvement of 42% in the latency versus a
single-threaded computation.

iii

Acknowledgments

Thank you to Christopher Anand for kindness and guidance, beginning in my undergrad,
and through my Masters. I appreciate the many wonderful opportunities. Thanks also to Wolfram
Kahl for additional guidance. Thanks to my parents, Glenn and Jorina, and my siblings, Henry,
Mark, and Janae for your love and encouragement. Thanks to my colleagues in ITB 229 for cama-
raderie and friendship, especially Musa Al-hassy for the helpful feedback on this thesis. And I owe
everything to the Lord, who gives strength sufficient for every day.

iv

Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1

2 Background 3
2.1 Elliptic Curve Cryptography . 3
2.2 Double and Add . 5
2.3 Windowed Method . 5
2.4 Scheduling . 6

2.4.1 Table Generation . 6
2.4.2 Main Computation . 7

3 Parallel Scheduling 9
3.1 Table Generation . 9

3.1.1 Greedy Scheduling for Infinitely Many Cores 9
3.1.2 Generate and Prune Scheduler for Finite Cores 10

3.2 Main Computation . 14
3.2.1 Symmetric table . 14
3.2.2 Multiple tables . 16
3.2.3 Split With One Table . 20

4 Implementation and Performance 23
4.1 Simulated Implementation in Haskell . 23
4.2 Parallel Implementation in Haskell . 24

5 Discussion 26
5.1 Related Work . 26
5.2 Future Work . 27

v

6 Conclusion 28

vi

List of Figures

2.1 Basic elliptic curve operations . 4

3.1 Unlimited cores schedule . 10
3.2 Comparison of calculating 15P with and without subtraction. 10
3.3 Histogram of generated schedule heights . 11
3.4 Parallel scheduling algorithm . 12
3.5 Table cost for different numbers of cores and widths. 13
3.6 Table cost for different widths and numbers of cores. 14
3.7 Total cost for different widths and numbers of cores 15
3.8 Total cost for key size 512 bits . 16
3.9 Total cost with symmetric table . 17
3.10 Division of the scalar into digits . 17
3.11 Split computation across two cores with two tables 18
3.12 Work assignment with three tables. 19
3.13 Work assignment in blocks to three cores. 20
3.14 Finding the optimal split point 1 and 2 by trying different values. 21
3.15 Split computation across two cores with one table 22

vii

List of Tables

2.1 Cost of point operations on affine (A) and Jacobian (J) coordinates 4
2.2 Ways to calculate (2n)P , including costs in number of modular multiplications. . . 7
2.3 Ways to calculate (2n+ 1)P , including costs in number of modular multiplications. 7

4.1 Performance results on one core . 25

viii

List of Algorithms

1 ECDSA signature generation . 2
2 ECDSA signature verification . 2

ix

Chapter 1

Introduction

Scalar multiplication is a fundamental operation in the various elliptic curve cryptographic scheme,
such as the Elliptic Curve Digital Signing Algorithm (ECDSA). ECDSA is the most frequently
used signing algorithm for public blockchains [WSL+19]. In this thesis we present a method for
improving the performance of this fundamental operation through parallelism. This is an expanded
version of a previous published paper [BIYA20].

1.1 Motivation
ECDSA requires key generation, signature generation, and signature verification. Key generation
includes a private and public key generation. The private key, d, is a random integer bounded by the
prime, p, and the public key, Q, is computed by the scalar multiplication of d and G. Both parties
agree in advance on G, which is one of the points in an elliptic curve. The signature is generated
based on the private key and some hash1 H of the message, and then verified based on the public key,
and hash of the message. Algorithms 1 and 2 show signature generation and verification, which
both include scalar multiplications. In both algorithms, H is a cryptographic hashing function.

When the messages to be signed are small enough that computing the hash of the message
does not dominate the computation time, scalar multiplication dominates. Thus any improvement to
the scalar multiplication significantly benefits the overall cost of the signature algorithms.

1.2 Objective
There exist numerous methods [HV04] for computing the scalar multiplication, such as the binary
method, windowed method and the Montgomery ladder. Building on work of previous authors, we
show that the windowed method for scalar multiplication can be parallelized, first to generate the
lookup table, and then to perform the rest of the computation. In particular, we work out a method
which uses 3 cores and could achieve a speedup of 42% compared to a serial windowed method.

1A specific hashing method is not defined in the protocol.

1

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

Algorithm 1 ECDSA signature generation [HV04]
Input: Private key d, message m, hash H , curve parameters, including base point G and prime p.
Output: Signature (r, s).

1: Randomly choose k ∈ [1, p− 1].
2: Compute (x1, y1) = kP .
3: Compute r = x1 mod p.
4: if r = 0 then
5: Go to step 1.
6: end if
7: Compute e = H(m).
8: Compute s = k−1(e+ dr) mod p.
9: if s = 0 then

10: Go to step 1.
11: end if
12: return (r, s).

Algorithm 2 ECDSA signature verification [HV04]
Input: Public key Q, message m, hash H , signature (r, s), curve parameters, including base point

G and prime p.
Output: Acceptance or rejection of the signature.

1: if r /∈ [1, p− 1] or s /∈ [1, p− 1] then
2: return “Reject the signature”.
3: end if
4: Compute e = H(m).
5: Compute w = s−1 mod p.
6: Compute u1 = ew mod p and u2 = rw mod p.
7: Compute (x1, y1) = u1P + u2Q.
8: if (x1, y1) =∞ then
9: return “Reject the signature”

10: end if
11: Compute v = x1 mod p.
12: if v = r then
13: return “Accept the signature”
14: else
15: return “Reject the signature”
16: end if

2

Chapter 2

Background

In the rest of this section, we discuss elliptic curve cryptography, focusing on scalar multiplication,
and examine existing methods for performing those scalar multiplies.

2.1 Elliptic Curve Cryptography
The performance estimates in this thesis and implementations use the NIST P-256 parameters. NIST
P-256 uses an elliptic curve defined on an xy-plane in short Weierstrass form.

y2 = x3 + ax+ b

Given two points, P and Q, on that elliptic curve, an addition operation to calculate a third point, R,
can be defined by taking the line through P andQ and extending it to find the third point on the curve
where the line intersects, and negating the third point. Then R is the negation of that third point. In
the case that P = Q, the tangent to the curve at the point is used. Figure 2.1 illustrates both cases.
The identity of addition on an elliptic curve is the point at infinity, O, i.e. P +O = P = O + P . If
there is no third point where the line intersects the elliptic curve, R is O. This happens, for example,
when adding P to −P .

For the purposes of cryptographical schemes, the elliptic curve is defined over a prime field.
The prime field Fp of order p consists of the numbers 0, 1, . . . , p−1, and addition and multiplication
as the usual integer operations, performed modulo p.

There are two representations for points on the curve used in computation. The usual
representation of a point in (x, y) coordinates is called affine coordinates. This representation is
compact, but cannot represent the identity point (infinity). Since not all points (x, y) are points on
the curve, a point not on the curve could be used to represent the identity.

Projective coordinates represent the same (x, y) point with (X,Y, Z). The conversion is
(x, y) = (X/Zc, Y/Zd), where c and d are positive integers. Different types of projective coordi-
nates are defined by different values of c and d. Jacobian coordinates are one example of projective
coordinates, where c = 2, and d = 3. Any point with Z = 0 cannot be converted to the affine
representation, so this is a good representation of the infinity point. Jacobian coordinates are useful
for calculations on elliptic curves because they avoid expensive modular inverses that are necessary
to compute in affine coordinates [HV04]. Unlike affine coordinates, an inconvenience of any pro-
jective coordinates is that due the ratio caused by division by a power of Z, they are not unique
representations of a point.

3

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

y

x

P

Q

R

y

x

P

R

Figure 2.1: Addition and doubling of points on an elliptic curve over R [HV04]

Operation Cost (modular multiplications)
2 ∗ J 8
J +A 12
J −A 12
J + J 16
J − J 16

Table 2.1: Cost of point operations on affine (A) and Jacobian (J) coordinates

Since good performance is our goal, we use Jacobian coordinates in our calculations. We
use existing algorithms for point addition and point doubling (see [BL]). These algorithms depend
on modular addition and multiplications on the underlying prime field. The modular additions con-
sist of an addition, and if the result is larger than p, a subtraction to take care of the modulo. In
comparison, modular multiplications are much more expensive, with many additions to calculate
the initial multiplication, and a full modulo operation at the end. For performance estimates, we
count the number of modular multiplies performed in each calculation, since other operations such
as modular addition have negligible cost in comparison. See Table 2.1.

Given these addition and doubling operations, it is possible to define a scalar multiplication,
sometimes known as point multiplication, dP for an elliptic curve point P and d ∈ N. In elliptic
curve cryptography, the secret key d is the scalar in the multiplication and the product dP is the
public key. [HV04].

4

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

2.2 Double and Add
The simplest method of calculating the scalar multiplication is to take the binary representation of
the scalar and go through each bit of the scalar, di, doubling to calculate 2iP and adding the power
of 2 scaling to an accumulator when di is 1 [Gor98]. This is the same concept as methods used
to calculate binary multiplication using addition and shifting [Rei57], and similar methods can be
used to improve performance. More sophisticated methods of doubling and adding attempt to use
shorter addition chains than the one given by the binary representation of the scalar [BC90]. Since
subtraction of an elliptic curve point is simply addition of the negative, and the negative of an elliptic
curve point is formed by taking the negative of the second coordinate, subtraction costs about the
same as addition and addition-subtraction chains further improve performance. Double and add also
uses the same concept as multiply and squaring methods used in exponentiation, for example in
other cryptography contexts, such as RSA. One notable difference when multiplying and squaring
integers is that division is much more expensive that multiplication, so including it in the cases when
subtraction improves performance is not helpful [MO90].

For any of these approaches, the value of the scalar affects the number of operations needed
to compute the product, and thus the amount of computational time and energy spent. This makes
it possible for an attacker to discover information about the secret key by monitoring side channel
information such as the time elapsed or the energy expended, in a timing attack or Simple Power
Attack (SPA). One example takes an elliptic curve defined over a prime field, where the prime is
256 bits long. Within 200 signatures, an attacker may be able to reconstruct a secret key through
side channel information from cache hits and misses. Reconstructing the key without the side chan-
nel information would be computationally impossible [BvdPSY14]. One way to avoid this prob-
lem [Koc96] is to perform all of the possible doublings and additions needed for the scalar multipli-
cation, but discard unnecessary intermediate results in the final product [Cor99]. The Montgomery
ladder multiplication method is an efficient way to do that [Mon87].

A more sophisticated side-channel attack, such as Differential Power Analysis (DPA), can
extract side-channel information even if the sequence of operations does not depend on the scalar.
Countermeasures include randomization of the private exponent, blinding the point P , and random-
ization of projective coordinates [Cor99]. We do not discuss these measures any further, but the
techniques apply to the proposed parallel algorithm.

2.3 Windowed Method
The windowed method improves performance by calculating multiples of P in advance, i.e.,

1P, 2P, . . . , (2w − 2)P, (2w − 1)P,

where w is the width, in bits, of the window. To compute the scalar multiple dP , d is decomposed
into “digits”

d = dD−1dD−2 · · · d1d0

each with w bits, and containing a value between 0 and 2w−1, whereD is
⌈

l
w

⌉
, and l is the number

of bits in d. The smallest digit, d0 could have fewer bits ws than the others, if the total number of
bits does not equally divide by w. In the first step, a table lookup finds the corresponding dD−1P to
be used as the accumulator. In subsequent steps, the accumulator is doubled w times before adding

5

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

the next diP . So if the running total started as

dD−1P =

D−1∑
i=D−1

di2
(i−(D−1))wP,

after w doublings, it becomes

2w(dD−1P) =

D−1∑
i=D−1

di2
(i−(D−1)+1)wP.

To this we add the value dD−2P from the table to obtain

dD−2P + 2w(dD−1P) =

D−1∑
i=D−2

di2
(i−(D−2))wP.

After D − 1 steps, we obtain
D−1∑
i=1

di2
(i−1)wP,

and finally ws doublings and adding d0P gets

d0P +

D−1∑
i=1

2ws+(i−1)wdiP = dP

When the window size equally divides the number of bits, w = ws and it can be simplified to

D−1∑
i=0

di2
iwP = dP.

Note that when w = 1, this is the same as the double and add method, since the table only contains
0 and 1P .

Other methods exist which improve upon the windowed method by skipping computation
for bits which have a zero value, and using a non-adjacent form (NAF) [Rei60] to increase the
number of zero bits in the representation. Skipping the zero bits means that the performance is no
longer in constant time, and those methods vulnerable to side-channel attacks like SPA [HV04].
Finally, there are other methods such as applying a Frobenius map [MS93] or other endomorphisms
[GLV01], but these only apply to specific types of curves.

2.4 Scheduling
This section discusses a performance estimate of a straightforward, serial windowed method, first
for table pre-computation, and then for main computation.

2.4.1 Table Generation
To generate the table for the windowed method, we calculate all of the points between 2P and
2wP − 1, starting with 1P as the input value in affine coordinates. The number of operations

6

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

Op. Cost (mod. mults.)
2 ∗ nP 2 ∗ P 8
(2n− 1)P + 1P P + 1 12
(2n− i)P + iP where 2 ≤ i < n P +Q 16

Table 2.2: Ways to calculate (2n)P , including costs in number of modular multiplications.

Op. Cost (mod. mults.)
(2n)P + 1P P + 1 12
(2n− i+ 1)P + iP where 2 ≤ i ≤ n P +Q 16

Table 2.3: Ways to calculate (2n+ 1)P , including costs in number of modular multiplications.

necessary to calculate each point does not matter; only the total number of operations to calculate
the entire table matters. The cost for a certain point is the number of operations used to calculate
that point, given all the previously calculated points. This varies depending on the cost of the point
doubling and point addition algorithm. The addition of a point in affine coordinates to a point in
Jacobian coordinates costs less than the addition of two Jacobian points, and the only point available
in affine coordinates is P itself, so adding 1P is preferred over other additions. 1

Starting with 1P , the only possible way to get 2P is by doubling 1P , which costs 8 modular
multiplies. Then, if all the points from 1P to (2n − 1)P are already calculated, there are several
ways of calculating (2n)P , and then (2n + 1)P . See Tables 2.2 and 2.3. For (2n)P , doubling
nP is the cheapest option. This costs 8 modular multiplies. For (2n + 1)P , the cheapest option is
adding 1P to (2n)P , which costs 12 modular multiplies. Therefore, if all the table pre-computation
occurs serially, the best solution is that the even numbers be computed by point doubling and the
odd numbers by adding P to the even number immediately preceding it, and this has a cost of

(2w−1 − 1)(cJ + cJA)

where cJ is the cost of doubling a Jacobian and cJA is the cost of adding a Jacobian to an affine.
These costs are 8 and 12 modular multiplies, respectively.

2.4.2 Main Computation
A straightforward serial implementation does the main computation of the windowed method as:

dP = d0P +

D−1∑
i=1

2ws+(i−1)wdiP

= d0P + 2ws(. . . (dD−2P + 2w(dD−1P)) . . .)

(2.1)

where ws (the width of the short digit at the end) is l − (D − 1)w. In the equation above, each
operation must occur in order, leaving no room for parallelism. The cost to perform all of these

1When adding affine to Jacobian, the algorithm is the same as adding two Jacobians, except that we know that one of the
Z-coordinates is 1, and this makes 4 of the modular multiplications unnecessary.

7

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

operations in serial is
16 · (D − 1) + 8 · (l − w).

Every digit needs to be added to the total, so there are d l
w e−1 orD−1 additions. Then the repeated

doubling in 2w happens for all but one of the digits, for a total of l − w doubles.
Putting together the table and main computations, this results in a total estimated cost of

3164 modular multiplies for w = 4, and 6120 for w = 1, which is essentially the double and add
method.

8

Chapter 3

Parallel Scheduling

This chapter discusses the scheduling methodology used. First, we make a parallel pre-computed
table, which can scale up to many cores. Second, we examine several possibilities for a parallel
main section, including a method which only works on two cores, and two methods which scale to
many cores.

3.1 Table Generation

3.1.1 Greedy Scheduling for Infinitely Many Cores
When multiple cores can work in parallel to compute the table, it becomes possible that the best
schedule performs different calculations than the optimized ones discussed in section 2.4.1. Fig-
ure 3.1 shows a possible schedule for the initial calculations of a table. It starts out the same way as
the table in serial. However, the order begins to differ at the computation of 8P , as it could begin
before the computation of 6P and 7P . After a while, things get more complicated. Notice, for
example, that at time 24, the computation 10P is not yet started, even though it could be calculated
from 8P + 2P . This is because at the next step we find out that it will actually be faster to compute
10P by doubling 5P , if we just wait one more step until it is completed. So 10P was removed from
that step and moved to a later step.

This scheduling is greedy in that it does as many computations as possible at the earliest
time that they can possibly end.

Since we have no theoretical limit for simultaneous calculations, the completion time of
each point can be minimized using the same methods as double-and-add calculations. The time
to calculate the whole table is equivalent to the longest time required to calculate any single given
point. In the case of the table of width 3, the point 7P is the last to finish, so that whole table
requires time equivalent to 36 modular multiplies to calculate, compared to 60 modular multiplies if
the table was calculated serially. However, the total amount of calculation increases to 64, because
the calculation of 7P from the addition of 3P and 4P costs more than the addition of 1P to 6P , and
that adds two Jacobians together, rather than an affine point to a Jacobian point.

One of the relevant improvements to the double-and-add methods is that rather than limiting
the chain of calculation to addition operations, we can include subtractions in the chain, and obtain
a better result. The smallest point which benefits from a mixed addition subtraction chain is 15P .
Figure 3.2 demonstrates the improvement, and the benefits continue for larger multiples of P .

9

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

Time (mod.
mults.)

0 2P=2∗P
4
8 3P=P+2P 4P=2∗2P

12
16 5P=P+4P 8P=2∗4P
20 6P=2∗3P 7P=3P+4P

24 9P=8P+P 11P=8P+3P 16P=2∗8P

Input: P

2P

3P 4P

5P

6P

8P

9P
7P

11P 16P

Figure 3.1: Given unlimited cores, this is the greedy schedule. The subscripts indicate how each
value is calculated. The second part of this figure shows the dependencies for each value calculated.

Time Without Subtraction With Subtraction
0 2P=2∗P 2P=2∗P
4
8 3P=P+2P 4P=2∗2P 4P=2∗2P

12
16 8P=2∗4P 8P=2∗4P
20 7P=3P+4P

24 16P=2∗8P
28
32 15P=16P−P
36 15P=7P+8P

40
44
48
52

Figure 3.2: Comparison of calculating 15P with and without subtraction.

3.1.2 Generate and Prune Scheduler for Finite Cores
The above algorithm schedules as many computations as possible at a time. Realistically, we only
have a limited number of cores available. When more computations are ready than cores avail-

10

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

96 100 104 108

0

2

4
·105

Schedule Height (Latency in modular multiplies)

Fr
eq

ue
nc

y

Figure 3.3: A histogram of schedule heights generated by depth-first search shows that most sched-
ules have similar heights.

able, we must decide which computations to allocate and which computations to delay for future
allocation. Given all of the computations possible at a certain point, we come up with all of the
possibilities for which computations to allocate, and which computations to delay until there is a
core available. Since we have no obvious way to know which choice of delays will produce the
shortest schedule, we try them all out. However, there might be schedules whose partial heights
are longer than whatever schedules were already generated, so these are pruned away to avoid any
further scheduling on them.

The results given here are an estimate based on the number of modular multiplications that
an operation takes. This gives us a cost of 8 for point doubling, 12 for addition of the base point to
another point and 16 for any other addition. While there are other operations involved, their cost is
negligible in comparison, so for the purposes of this estimate, they are not considered.

The histogram in Figure 3.3 shows the distribution of schedule lengths produced by the
brute force scheduling of a table with width 5 on 4 cores. Since the brute force scheduler produces
many possible schedules, we select only the first 500 000 to show in the graph. While most of the
schedules in the graph do not have the optimal height of 96 modular multiplications, none of them
have a latency longer than 108, and the majority of the latencies are between 96 and 108.

Figure 3.5 shows how much parallelism is available in the window computation by plotting
the latency of table generation for different bit widths versus the number of cores. For example, at
bit width 2 with a table size of 4, there is enough parallelism to reduce latency by 30% with two
cores, but not enough parallelism to exploit more than two cores. At bit width 4, two cores brings a
40% reduction in latency, four cores a 48% reduction, and there are no further gains. Unsurprisingly,
it is easy to exploit parallelism across a small number of cores. But for bit widths w ≤ 5, there is no
advantage to using more than 2w−1 cores.

Figure 3.6 shows the latency of table generation compared to the width. Plotting the latency
of window computation as a function of the window width in bits shows that the computation scales
exponentially with a single core, but has sub-exponential scaling with larger numbers of cores. For
a single core, the cost depends on the width as 10(2w) − 20. For two cores, it is 5(2w) − 4, when
w > 2.

11

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

1 tablesScheduleNarrowedBruteForce ::
2 -> Int -- ^ number of parallel cores
3 -> Int -- ^ table width, in bits
4 -> [Schedule] -- ^ schedule of when and how to calculate

the multiples↪→

5 tablesScheduleNarrowedBruteForce cs w =
6 let
7 -- initialize schedule, initially running operations, and

completed computations↪→

8 initSchedule = [(0,Double 1)]
9 initRunning = (Double 1, 8)

10 initComplete = [1]
11 addToSchedule time complete schedule running delayed =
12 let
13 -- update the variables tracking which operations have

completed↪→

14 (justCompleted, stillRunning) = partition isDone running
15 newComplete = ops justCompleted ++ complete
16

17 -- figure out which calculations are possible to be
scheduled↪→

18 newPossibleOps = getNewOps delayed justFinished
newComplete stillRunning w↪→

19

20 -- come up with all possible further schedules
21 (newSchedules, newRunnings) = allAssignments schedule

stillRunning cs newPossibleOps↪→

22 in
23 if allEmpty newRunnings
24 then newSchedules
25 else
26 concat $ zipWith3 (addToSchedule (time+gcd opCosts)

newComplete) newSchedules (map updateRunTime
newRunnings) newDelayeds

↪→

↪→

27 in
28 addToSchedule 0 initComplete initSchedule initRunning []

Figure 3.4: Outline of Haskell function for Brute Force Scheduling of Parallel Table Pre-
Computation

When the windowed method is used without parallelization, the normal recommendation
is to use a width of size 4, due to the trade-off between the amount of pre-computation and the main
calculation itself. However, if the pre-computation portion can be performed in parallel, the latency
is significantly reduced, meaning that larger size widths can be considered. When we calculate
the total latency including both the window pre-computation and calculation using the window, we
find a more modest expected speedup of 20% when comparing the best window size for single-
core execution with the best window size for 32-core execution. This is because the window-using

12

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

20 21 22 23 24 25 26 27

102

103

104

Cores

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency versus Cores

Width 10

Width 9

Width 8

Width 7

Width 6

Width 5

Width 4

Width 3

Width 2

Figure 3.5: Table cost for different numbers of cores and widths.

computation is still serial. It is interesting to note that even without parallelizing that part of the
computation, the best window size increases with the number of cores. For a key (scalar) size of
256 bits, Figure 3.7 shows the total cost for the pre-computation and the main computation together,
illustrating the trade-off that occurs for various different widths. Thus for 32 cores, it would be
better to use a table of bit width 7 or 8, rather than 4. Figure 3.8 shows the advantage from a parallel
table when the key size is 512 bits.

One danger with a larger table is if the table is larger than the cache and some of the
loads from the table miss the cache, it would be possible for an attacker to get side-channel infor-
mation from those cache misses. For example, while the Montgomery ladder performs the same
amount of computation regardless of the input, it is still possible on certain processors to perform a
side-channel attack using information from the cache, since the memory lookups are not the same
[YB14]. Another consideration with large tables is the comb method, which would normally be
used for situations where the input point P is fixed across many calculations. It calculates a dif-
ferent table in advance, but that table is large enough that performance improvements only occur
after several multiplications. With the capacity to calculate large tables efficiently, the comb method
might possibly do better than the windowed method [HV04].

Basu calculates a table for a non-constant windowed method in parallel, but his estimate
has doubles and add with all the same cost, making performance estimation much simpler. The
table only requires 2P and odd multiples of P up to 2w − 3P , but he includes even multiples up
to 2nP , where n is the number of cores, so that parallelism is possible. The calculation of 2P to
2nP happens on one core, and the calculations from (2n + 1)P to (2w − 3)P spread out nicely
on n cores. For his setup, the cost is 2n − 1 + d 2

w−1−n−1
n e adds or doubles, but after putting it

through the brute force schedule, we notice that 2P to 2nP can be partly parallelized for a total cost
of dlog2(2n− 1) + 2w−1−n−1

n e adds or doubles [Bas12].

13

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

2 4 6 8 10

102

103

104

Width

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency versus Window Bit Width

1 Core
2 Cores
4 Cores
8 Cores

16 Cores
32 Cores
64 Cores

128 Cores

Figure 3.6: Table cost for different widths and numbers of cores.

3.2 Main Computation
In order to allow parallelism in the main computation, Equation 2.1, shown below for the reader’s
convenience, must be modified to a different form that still calculates the same dP .

dP = d0P +

D−1∑
i=1

2ws+(i−1)wdiP

= d0P + 2ws(. . . (dD−2P + 2w(dD−1P)) . . .)

(2.1)

These modifications may do redundant or duplicate operations in order to improve parallel perfor-
mance. We present three methods of introducing parallelism, and combine them to produce the final
speedup.

3.2.1 Symmetric table
Since we can very cheaply negate a point by negating its y-coordinate, calculating a table of 0 to
2wP costs almost exactly as much as calculating a table of−2wP to 2wP . Methods that use the NAF
or other heuristics to maximize the number of 0-bits or 0-digits also take advantage of a symmetric
table to look up the resulting negative digits [HV04], but those methods are not constant-time, so
we cannot use them. Instead, the advantage here is that the secret key d can be divided into larger
digits, reducing the overall number of digits. This means that the width used in calculating the table
is 1 less than the width of the digits, so we use wd and wt to distinguish them, where wd = wt + 1.
For any digit d, we first subtract 2wt , then look it up in the table, and finally add 2wtP . The cost
of a single addition is 16 modular multiplications with the cost of the subtraction and table lookup

14

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

2 4 6 8 10
2,500

3,000

3,500

4,000

Width

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency for Combined Computation

32 Cores

16 Cores

8 Cores

4 Cores

2 Cores

1 Core

Figure 3.7: Cost of table computation for different widths and numbers of cores, and main compu-
tation on one core.

considered negligible.

dP = (d0 − 2wt)P + 2wtP +
D−1∑
i=1

2ws+(i−1)wd((di − 2wt)P + 2wtP) (3.1)

In serial, the cost of this calculation is

16 · (2 ·
⌈
l

wd

⌉
− 1) + 8 · (l − wd),

and it needs to include another 8 modular multiplications, because the table needs to include the
calculation of 2wP . The extra cost compared to the shortest serial version is

16 · (2 ·
⌈
l

wd

⌉
− 1) + 8 · (l − wd) + 8− 16 · (

⌈
l

wt

⌉
− 1)− 8 · (l − wt)

which simplifies to

16 · (2 ·
⌈
l

wd

⌉
−
⌈
l

wt

⌉
).

Thus, this scheme requires more computation. However, the extra addition of 2wtP can be put
in parallel with the rest of the computation, and the timing can be improved over the initial serial
version. The amount of computation that can be put onto the second core is

16 · (
⌈
l

wd

⌉
− 1).

15

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

4 6 8 10

5,000

5,500

6,000

6,500

7,000

Width

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency for Combined Computation

128 cores

64 cores

32 cores

16 cores

8 cores

4 cores

2 cores

1 core

Figure 3.8: Cost of table computation for different widths and numbers of cores, and main compu-
tation on one core. This is for a key of size 512 bits.

So the total amount of time saved is

16 · (
⌈
l

wd

⌉
− 1)− 16 · (2 ·

⌈
l

wd

⌉
−
⌈
l

wt

⌉
),

simplified as

16 · (
⌈
l

wt

⌉
− 1−

⌈
l

wd

⌉
).

Figure 3.9 compares the costs of a serial main calculation (Postive table: 2 core table, 1
core main; Positive table: 1 core table, 1 core main), with the extra cost of using the symmetric table
(Symmetric table: 1 core table, 1 core main), and finally the parallel version with the symmetric
table (Symmetric table: 2 core table, 2 core main).

For the best width, 5, the cost reduces from 3140 to 2848, an improvement of 10%. The
first core is busy for the entire time of the main computation, while the second core is only busy
part of the time. For width 5, this is 2688 and 672 modular multiplies, respectively. The balance is
much better for the table, where the cost of 160 represents an almost even split with a gap of 8 at the
beginning, and 4 at the end, so that the second core has 148 modular multiplies. In total, 29% of the
runtime has 2 cores running simultaneously, while the other 71% is on one core only.

3.2.2 Multiple tables
To introduce more parallelism, we split the summation formula from Equation 2.1 into 2 parallel
pieces.

dP = d0P +

D−1∑
i=1

2ws+(i−1)wdiP (2.1)

16

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

2 3 4 5 6 7 8

3,000

3,500

4,000

4,500

5,000

Table Width

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency of Full Computation with Symmetric Table

Symmetric table: 2 core table, 2 core main

Symmetric table: 1 core table, 1 core main

Positive table: 2 core table, 1 core main

Positive table: 1 core table, 1 core main

Figure 3.9: By expanding the table to include the negatives, we attain a slight performance improve-
ment.

0 s l

d0 d1 . . . dD1−1 dD1 dD1+1 . . . dD1+D2−1
ws1 w1 . . . w1 ws2 w2 . . . w2

Figure 3.10: Division of the scalar into digits

We split the secret key at some point s. There are s bits of the scalar on the lower side, and
l − s on the upper side. The bits of the scalar are laid out into digits of sizes w1,w2, etc. as shown
in Figure 3.10.

dP =
(
d0P +

D1−1∑
i=1

2ws1
+(i−1)w1(diP)

)
+
(
dD1

2sP +

D2−1∑
i=1

2ws2
+(i−1)w2(dD1+i2

sP)
)

(3.2)

where

D1 =

⌈
s

w1

⌉
,

D2 =

⌈
l − s
w2

⌉
,

ws1 = s− (D1 − 1)w1,

ws2 = (l − s)− (D2 − 1)w2.

17

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

Rather than calculating di2sP at every digit in the second half, we use a separate table
to look up each digit. This table’s values are 0, 2sP, . . . , (2w2 − 1)2sP (or −2w22sP, (−2w2 +
1)2sP, . . . , 2w22sP if it includes negatives.) The extra computation here is the calculation of 2sP
(which is s doubles or 8s), plus the cost of the extra table calculation, which is 12 · (2w2 − 2).
Note that since the initial point of the second table is not the input point, we do not have it in affine
coordinates, and this table costs slightly more. The total amount of computation done is

10 · (2w1 − 2) + 12 · (2w2 − 2) + 16 · (D1 +D2 − 1) + 8 · (l + s− w1 − w2).

Put in parallel, the latency is

16+max
{
10 · (2w1−2)+16 · (D1−1)+8 · (s−w1), 12 · (2w2−2)+16 · (D2−1)+8 · (l−w2)

}
.

176 178 180 182 184 186 188 190 192 194 196 198 200 202 204

2,420

2,440

2,460

2,480

2,500

2,520

2,540

2,560

2,580

2,600

2,620

Split Point

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency for Computation Split on 2 Cores

w0:3,w1:4
w0:6,w1:4
w0:4,w1:3
w0:4,w1:4
w0:4,w1:5
w0:5,w1:3
w0:5,w1:4

Figure 3.11: By splitting the main computation across two cores, the performance improves, de-
pending on the split point and table widths.

Figure 3.11 compares the costs of choosing different widths for the two tables and split
points. The best performing schedule is 2432 modular multiplies, when the first width is 5, the
second width is 3, and the split point is 193. The total amount of computation is 4824 modular

18

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

Core 1 Core 2 Core 3
Table 2,3: Table 1:
8 · s1 5 · 2w1 − 4

idle Main 1:
Table 3: Table 2: 16 · (D1 − 1)+
8 · (s2 − s1) + 12 · (2w3 − 2) 12 · (2w2 − 2) 8 · (s1 − w1)

Main 2:
16 · (D2 − 1) + 8 · (s2 − s1 − w2)

Main 3:
16 · (D3 − 1) + 8 · (l − s2 − w3)
Addition: 16 · 2
The first addition can occur while one of the cores is still running.

Figure 3.12: Work assignment with three tables.

multiplications, and is split almost evenly across the two cores, with only four modular multiples
more than the final point addition not happening in parallel. According to this estimate, there are a
few other possible schedule parameters that would result in similar performance, so a good imple-
mentation would try out several of these options.

Using the same concept, we can use 2 split points, s1 and s2 to expand to 3 tables. The
calculations are laid out as in Figure 3.12. The total amount of computation done is

10 · (2w1 − 2)+12 · (2w2 − 2+2w3 − 2)+16 · (D1+D2+D3− 1)+8 · (l+ s2−w1−w2−w3).

Using the fact that the order of the two final additions can vary, there are 3 possibilities for the
latency, and we choose the minimum.

total = 32 + min
i∈0..2

(
max
j∈0..2

(cj − 16 · δij)
)

(3.3)

where

c0 = 12 · 2w3 − 2 + 16 · (D3 − 1) + 8 · (l − w3),

c1 = 12 · 2w2 − 2 + 16 · (D2 − 1) + 8 · (s2 − w2),

c2 = 5 · 2w1 − 4 + 16 · (D1 − 1) + 8 · (s1 − w1),

D1 =

⌈
s1
w1

⌉
,

D2 =

⌈
s2 − s1
w2

⌉
,

D3 =

⌈
l − s2
w3

⌉
,

δij = if i = j then 1 else 0,

w1 > 2, 8 · s1 > 5 · 2w1 − 4.

By brute force searching through all the possibilities, we find that the best parameters are
w1 = 5, w2 = 3, w3 = 3, s1 = 184 or 185, s2 = 235. Both require 5244 modular multiplications

19

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

cycle Core 1 Core 2 Core 3
0 2sP Make Table 1

152 idle Use Table 1
1488 Make Table 2
1584
2192 Use Table 2
2216 Addition idle idle
2232 Done

Figure 3.13: Work assignment in blocks to three cores.

and have a latency of 2216 modular multiplications. Compared to the serial version of 3164, this is
1.7x the amount of computation for a 41% improvement in the latency.

Putting the method with two tables together with the symmetric table method uses a total
of 4 cores. However, the 2 cores which add the extra 2wdP at each digit are not that busy, because
there is only one addition that needs to happen at the same time that the addition and wd doubles
occur. So these 2 cores can be merged together for a computation that runs on 3 cores. The latency
of that method is

16 +max{10 · 2w2t − 12 + 16 · (D2 − 1) + 8 · (l−w2d), 5 · 2w1t + 16 · (D1 − 1) + 8 · (s−w1d)}

where w1t > 1. The best case occurs with parameters w1d = 6, w2d = 4, s = 204, with 2308
modular multiplies.

Due to the amount of time spent on calculating 2swdP , there is also room on the 3 cores to
split one of the main computations again, further improving the performance.(

. . . d0 + 2wd(d1P + 2wd(. . .))
)
+ 2swd

(
. . . dD−1P + 2wd(dDP) . . .

)
Figure 3.13 shows how the calculations are laid out to achieve a performance of 2232. The total
amount of computation done is 5220 modular multiplications, which is split across the cores as
2216, 2184, and 820, respectively. Comparing this to the fastest serial computation, of 3164 modular
multiplications, it takes 30% less time by doing 1.6x more computation.

Figure 3.14 shows how the performance is affected by the choice of split point 1 and 2. To
find the best one, we try out different values.

3.2.3 Split With One Table
Similar to the multiple table method, we split the summation formula into 2 parallel pieces. We
again split it at some point s, which is the split point. However, this does not require a second table,
because 2s happens once at the end of the second core portion of the calculation. We use the same
digit layout as shown in Figure 3.10, except that since there is only one table, there is only one width,
w1 = w2.

dP =
(
d0P +

D1−1∑
i=1

2ws1
+(i−1)w(diP)

)
+ 2s

(
dD1

P +

D2−1∑
i=1

2ws2
+(i−1)w(dD1+iP)

)
(3.4)

20

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

150 160 170 180 190

2,240

2,260

2,280

2,300

2,320

2,340

Split point 1

C
os

t(
M

od
ul

ar
M

ul
tip

lic
at

io
ns

)

Total cost based on split point 1 and split point 2

Split point 2: 9
Split point 2: 8
Split point 2: 7
Split point 2: 6
Split point 2: 5

Figure 3.14: Finding the optimal split point 1 and 2 by trying different values.

where

D1 =

⌈
s

w

⌉
,

D2 =

⌈
l − s
w

⌉
,

ws1 = s− (D1 − 1)w,

ws2 = (l − s)− (D2 − 1)w.

Thus the total amount of calculation done is

10 · (2w)− 20 + 16 · (D1 +D2 − 1) + 8 · (l + s− w1 − w2).

and the latency is

5 · 2w − 4 + max{16 · (D1 − 1) + 8 · (s− w1), 16 · (D2 − 1) + 8 · (l − w2)}+ 16.

The table calculation happens on 2 cores, reducing its latency to 5 · 2w − 4, for w > 2, and the
two pieces of the main computation happen in parallel, with the latency being whichever piece takes
longer.

Figure 3.15 compares the costs of choosing different widths and split points. From the
graph, the best performance is 2348 and happens with a width of 4, and a split point 192. The total
amount of computation is 4668 modular multiplications. The load balancing between the two cores
is almost even, with a gap of 16 modular multiplies for the final sum at the end, and 12 modular
multiplies in the table. This means that for 99% of the computation time, both cores are active.
Compared to the best serial time, the performance improvement is 35%.

A similar method by Basu splits the secret evenly among the cores, and does the extra s
doubles at the end on one core, along with the final adds [Bas12]. Equation 3.4 still describes this

21

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

170 175 180 185 190 195 200 205 210

2,400

2,500

2,600

2,700

Split Point

L
at

en
cy

(P
ri

m
e

Fi
el

d
M

ul
tip

lic
at

io
ns

)

Latency for Computation Split on 2 Cores

Width 3
Width 4
Width 5
Width 6

Figure 3.15: By splitting the main computation across two cores, the performance improves, de-
pending on the split point and table width.

setup. Adapting his method for a comparison, we find the total amount of computation is

10 · (2w)− 20 + 16 · (2 ·D − 1 + n− 1) + 8 · (l + s− 2 · w).

where

s =

⌈
l

n

⌉
,

D =

⌈
s

w

⌉
,

and the cost in parallel is

5 · (2w)− 4 + 16 · (D − 1 + n− 1) + 8 · (l − w)

for w > 2. For 2 cores, the best performing width is 5 and the total cost is 2580 modular multiplies.
Due to the extra constraint that the split point be at 128, the load is not as well balanced between the
two cores, and the performance is not quite as good.

22

Chapter 4

Implementation and Performance

4.1 Simulated Implementation in Haskell
This project was developed in Haskell to take advantage of an interpreter for elliptic curve operations
and for ease of implementing heuristic scheduling with greedy phases. This made it easy to test the
table computations and the applications of the tables in the multi-window computation. This allowed
us to test for correctness of the underlying algorithm before attempting to schedule it.

The interpreter uses a class Prime to encode the information for specific elliptic curves.
For the purpose of this project, we implement a NISTP256 instance to store curve parameters.
There is no way to construct an element of type NISTP256. Instead, the instance Prime
NISTP256 holds the information. Then a second class, CryptType indicates different repre-

data NISTP256

sentations of prime field and elliptic curve elements, including interpretation in Haskell and repre-
sentations of code in lower-level languages. For the Haskell interpreter, the type is CryptINTERP.
This instance uses the Haskell Integers, which are arbitrary precision integers. Since Integer
is flexible about the size of the number is represents, the number of leading 0 bits in 256-bit number
affects the timing of operations on those Integers [HI].

This already disqualifies the CryptINTERP interpreter from being a secure implementa-
tion, because timing information can leak out the size of the integers used in a computation. Nev-
ertheless, the interpreter can give useful indicators about the timing, and test that we get correct
answers from the implementation.

We implement most of the prime field operations in a fairly straightforward manner, making
an instance of the Num class so that the regular arithmetic operators are available. One operation
that does not fit into the Num class is the multiplicative inverse, so it is implemented separately.

These prime field operations make implementing the elliptic curve operations quite simple.
The EllipticCurve class contains these operations, so that the type system can easily keep track
of other implementations that might be necessary for other curves.

23

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

data CryptINTERP

1 instance (Prime p) => CryptType CryptINTERP p where
2 data IDX CryptINTERP p = IDXI Int
3 deriving (Eq, Ord, Show)
4 data NUM CryptINTERP p = NUMI Integer
5 deriving (Eq,Ord,Generic,NFData)
6 data JAC CryptINTERP p = JACI (Integer, Integer, Integer)
7 deriving (Eq,Generic,NFData)
8 data AFF CryptINTERP p = AFFI (Integer, Integer)
9 deriving (Eq,Generic,NFData)

1 instance forall p . (Prime p, CryptType CryptINTERP p) => Num (NUM
CryptINTERP p) where↪→

2 (NUMI x) * (NUMI y) = NUMI $ (x * y) `mod` (thePrime (undefined
:: p))↪→

3 (NUMI x) + (NUMI y) = NUMI $ (x + y) `mod` (thePrime (undefined
:: p))↪→

4 (NUMI x) - (NUMI y) = NUMI $ (x - y) `mod` (thePrime (undefined
:: p))↪→

5 negate (NUMI x) = NUMI $ thePrime (undefined :: p) - x

4.2 Parallel Implementation in Haskell
Given this model of the computation, we proceed to implement in parallel in Haskell, to do a pre-
liminary test of the performance improvement. The improvement is in comparison to the standard,
single core windowed method, also implemented in Haskell. Haskell provides MVar as the basic
communication method among threads.

Given an implementation which performs a scalar multiplication on 3 threads, we check
how the program actually uses the resources. With an AMD A10 Elite Quad-Core, there are cores
available for all of the threads. ThreadScope is a program which analyzes parallel Haskell programs
for their performance [TSW]. We used ThreadScope to help debug synchronization problems, and
verify that computation was being distributed across cores. Unfortunately, it also shows a large
amount of overhead on core 1, which is already scheduled to be the busiest core. Table 4.1 shows
both real performance numbers and cost in terms of modular multiplies for the regular windowed
method compared to running the 3-core parallel method on 1 core.

24

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

1 pointDoubleJJ :: forall ct p . (CryptType ct p, Num (NUM ct p),
MkNum (NUM ct p))↪→

2 => (NUM ct p, NUM ct p, NUM ct p) -- ^ The input
point in Jacobian Coordinates↪→

3 -> (NUM ct p, NUM ct p, NUM ct p) -- ^ The doubled
point in Jacobian Coordinates↪→

4 pointDoubleJJ (x1,y1,z1) =
5 let
6 delta = z1*z1 -- 0.67
7 gamma = y1*y1 -- 0.67
8 beta = x1*gamma -- 1
9 alpha = 3.*(x1-delta)*(x1+delta) --1

10 x3 = (alpha*alpha)-8.*beta -- 0.67
11 z3 = ((y1+z1)^(2::Int))-gamma-delta --0.67
12 gamma2 = gamma*gamma --0.67
13 y3 = alpha*(4.*beta-x3)-8.*(gamma2) --1
14 in
15 (x3,y3,z3) -- total cost using squaring: 6.35

1 class EllipticCurve ec where
2 pointDouble :: ec -> ec
3 pointAdd :: ec -> ec -> ec
4 pointNegate :: ec -> ec
5 zero :: ec
6

7 instance (CryptType ct NISTP256,Eq (JAC ct NISTP256)
8 ,NFData (JAC ct NISTP256),Eq (NUM ct NISTP256)
9 ,Num (NUM ct NISTP256),MkNum (NUM ct NISTP256))

10 => EllipticCurve (JAC ct NISTP256) where
11 pointDouble a = (nums2jac . pointDoubleJJ . jac2nums) a

estimate (mod. mults, ratio) real time (s, ratio)
serial 3104, 1 11.680, 1
3 core parallel, run on one core 5244, 1.69 19.024, 1.63

Table 4.1: Performance results for the regular windowed method and 3 core version, all run on one
core.

25

Chapter 5

Discussion

We have shown that there are many opportunities to reduce the latency of scalar multiplication in
elliptic curves. We have used the number of multiplications in the Galois field as the primary unit
of computation, ignoring other operations and overhead. Given that multiplication takes hundreds
of cycles, including other computation would not change our recommendations. Overhead can
significantly degrade performance, but in our case, we know the sequence of tasks required, which
makes overhead easier to avoid.

There are a range of platforms which need to perform cryptographic operations, from high-
throughput servers to desktops, laptops and mobile devices. On servers, we expect to have large
numbers of cores and sophisticated thread scheduling in the operating system. In this case, using a
thread pool and message queues with a fixed communication pattern would allow computation to be
distributed across cores efficiently. Since the computation is not dependent on the data, we are rea-
sonably confident that it is not subject to a side-channel attack like SPA, and a few extra measures,
such as randomization of the private exponent can secure it against prevent DPA. If processor load
varies significantly, the width of the algorithm could be tuned to the environment, from one compu-
tation to the next, trading latency off for efficiency as necessary. There is no need to dynamically
schedule the computation. It would be relatively straightforward to implement a parallelization strat-
egy on top of existing technology such as OpenMP, with either implicit or explicit synchronization,
or Go using coroutines with communication via channels. On the smallest devices (which still have
multiple threads), this support may be lacking, but the same structure as with coroutines could be
implemented by using atomic memory accesses to communicate the availability of required inputs.

One side effect of using branch-free implementations to avoid side-channel attacks is that
computation time is completely deterministic. Because multiplication in the Galois field dwarfs
other computation at the same level of abstraction, the computation is also conveniently chunked
into multiples of this time, which makes it easier to line up the computation to make spin locks
efficient.

5.1 Related Work
Using addition chains or addition-subtraction chains has applications in other contexts. Another
example in cryptography is using addition chains to calculate powers for RSA. In the case of cal-
culating powers, it is not helpful to include subtraction in the chains, since division is significantly
more expensive than multiplication [MO90, BC90]. Like many other methods, using chains of ad-

26

M.Sc. Thesis – Tanya Bouman – McMaster University – Computer Science

ditions and subtractions in an efficient manner dependent on the data leads to non-constant time
calculation, although there is a proposal by Oswald to get around this with randomization [OA01].

Izu and Takagi parallelize Montgomery’s scalar multiplication method by doing the add
and double at each step in parallel [IT02]. This has a total cost of 1 double and 255 adds, or 4088
modular multiplies, across two cores. That still costs more than the serial windowed method with
width 4, at 3164 modular multiplies. Instead, the advantage is that it does not require the extra
memory to store the table for the windowed method. Basu parallelizes a windowed method that
takes advantage of 0-bits. However, the idea of parallelism transfers to the constant-time windowed
method, though it does not achieve as much speedup [Bas12]. Brickell, Gordon, McCurley and
Wilson parallelize their fixed-point windowing method which performs well only when the point P
is constant, and d is the only new input over multiple iterations. However, when P changes at every
multiply, a fixed-base windowing method does not perform as well as the basic windowed method
described in this thesis [BGMW95].

5.2 Future Work
The windowed method as already presented works well for scalar multiplication in the general case,
with a new input point every time, and a single multiplication every at a time. However, ECDSA
signature generation does not calculation the signature based on a new P every time. Instead, it
calculates based on the agreed upon point. The windowed method, and our proposed parallel version
of it do not take advantage of the fact that P is always the same.

ECDSA signature verification does two scalar multiplications instead of one, as in u1P +
u2Q, and this also allows for simultaneous multiple point multiplication, also known as Shamir’s
trick [HV04]. The simultaneous multiple point multiplication depends on similar pre-computed
tables and windows on the scalar, so future work could apply the same techniques of parallelism to
that case, and probably see similar results.

While this thesis uses a short Weierstrass curve as an example, other curves can use the
same method. For example, Koblitz curves, which can take advantage of the Frobenius endomor-
phism to improve performance, still end up performing a scalar multiplication that is well suited to
windowed methods [GLV01], so future work could also investigate optimal parameters for that case.

27

Chapter 6

Conclusion

Initially, we showed that it is possible to parallelize the table pre-computation portion of the win-
dowed method for elliptic curve scalar multiplication, and that it significantly improves the latency.
Next, we considered block schedules, and found further expected efficiencies by scheduling compu-
tation using Table 1 in parallel with the calculation and use of Table 2. In future work, we hope to
more optimally minimize idle blocks in our current schedules.

In addition to estimating performance, we have implemented a synchronization scheme
using MVars in Haskell. This allows us to use the existing interpreter for elliptic curve operations.
Results from the interpreter show that the schedule produces the correct answer. However, it does
not give reliable performance information, probably due to overhead. This gives us confidence to
implement the computation in Go using a similar mechanism.

28

Bibliography

[Bas12] Saikat Basu. A new parallel window-based implementation of the elliptic curve point
multiplication in multi-core architectures. Group, 16(4a3):27b2, 2012. 13, 21, 27

[BC90] Jurjen Bos and Matthijs Coster. Addition chain heuristics. In Gilles Brassard, editor,
Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 400–407, New York,
NY, 1990. Springer New York. 5, 26

[BGMW95] Ernest F Brickell, Daniel M Gordon, Kevin S McCurley, and David B Wilson. Fast
exponentiation with precomputation: algorithms and lower bounds. Preprint, Mar,
1995. 27

[BIYA20] Tanya Bouman, Yusra Irfan, James You, and Christopher K. Anand. Parallel win-
dowed method for scalar multiplication in elliptic curve cryptography. In Proceed-
ings of the 30th Annual International Conference on Computer Science and Software
Engineering, CASCON ’20, page 237–246, USA, 2020. IBM Corp. 1

[BL] Daniel J. Bernstein and Tanja Lange. Explicit formulas database - jacobian coordi-
nates with a4=-3 for short weierstrass curves. Accessed 27 May 2020. 4

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “ooh aah... just a
little bit” : A small amount of side channel can go a long way. In Lejla Batina and
Matthew Robshaw, editors, Cryptographic Hardware and Embedded Systems – CHES
2014, pages 75–92, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. 5

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve
cryptosystems. In International workshop on cryptographic hardware and embedded
systems, pages 292–302. Springer, 1999. 5

[GLV01] Robert P Gallant, Robert J Lambert, and Scott A Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphisms. In Annual International Cryptology
Conference, pages 190–200. Springer, 2001. 6, 27

[Gor98] Daniel M Gordon. A survey of fast exponentiation methods. Journal of algorithms,
27(1):129–146, 1998. 5

[HI] HI. Basic libraries. https://hackage.haskell.org/package/base-4.
14.0.0/docs/Prelude.html#t:Integer. (Accessed on 09/18/2020). 23

[HV04] Alfred Menezes Hankerson, Darrel and SA (Scott Alexander) Vanstone. Guide to
elliptic curve cryptography. New York: Springer, 2004. 1, 2, 3, 4, 6, 13, 14, 27

29

https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html#t:Integer
https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html#t:Integer

[IT02] Tetsuya Izu and Tsuyoshi Takagi. A fast parallel elliptic curve multiplication resistant
against side channel attacks. In David Naccache and Pascal Paillier, editors, Public
Key Cryptography, pages 280–296, Berlin, Heidelberg, 2002. Springer Berlin Heidel-
berg. 27

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages
104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. 5

[MO90] François Morain and Jorge Olivos. Speeding up the computations on an elliptic curve
using addition-subtraction chains. RAIRO-Theoretical Informatics and Applications,
24(6):531–543, 1990. 5, 26

[Mon87] Peter L Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987. 5

[MS93] Willi Meier and Othmar Staffelbach. Efficient multiplication on certain nonsuper-
singular elliptic curves. In Ernest F. Brickell, editor, Advances in Cryptology —
CRYPTO’ 92, pages 333–344, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.
6

[OA01] Elisabeth Oswald and Manfred Aigner. Randomized addition-subtraction chains as a
countermeasure against power attacks. In Çetin K. Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems — CHES 2001, pages
39–50, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. 27

[Rei57] George W Reitwiesner. Summary discussion on performing binary multiplication
with the fewest possible additons. Technical report, ARMY BALLISTIC RESEARCH
LAB ABERDEEN PROVING GROUND MD, 1957. 5

[Rei60] George W. Reitwiesner. Binary arithmetic. In Franz L. Alt, editor, Advances in Com-
puters, volume 1, pages 231 – 308. Elsevier, 1960. 6

[TSW] Threadscope. https://wiki.haskell.org/ThreadScope. (Accessed on
05/04/2020). 24

[WSL+19] Licheng Wang, Xiaoying Shen, Jing Li, Jun Shao, and Yixian Yang. Cryptographic
primitives in blockchains. Journal of Network and Computer Applications, 127:43 –
58, 2019. 1

[YB14] Yuval Yarom and Naomi Benger. Recovering openssl ecdsa nonces using the flush+
reload cache side-channel attack. IACR Cryptology ePrint Archive, 2014:140, 2014.
13

30

https://wiki.haskell.org/ThreadScope

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objective

	Background
	Elliptic Curve Cryptography
	Double and Add
	Windowed Method
	Scheduling
	Table Generation
	Main Computation

	Parallel Scheduling
	Table Generation
	Greedy Scheduling for Infinitely Many Cores
	Generate and Prune Scheduler for Finite Cores

	Main Computation
	Symmetric table
	Multiple tables
	Split With One Table

	Implementation and Performance
	Simulated Implementation in Haskell
	Parallel Implementation in Haskell

	Discussion
	Related Work
	Future Work

	Conclusion

